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One of the first aims of Constructive Quantum Field Theory is the (more or less
explicit) construction of models satisfying Wightman axioms or one of their
equivalent formulations, for example Osterwalder�Schrader axioms.

Osterwalder�Schrader axioms describe the necessary and sufficient conditions such
that a set of distributions Sn(x1; : : : ; xn) (where xi=(xi0; : : : ; xid¡1)2Rd) are the
Schwinger functions of some quantum field theory with a unique ground state.



This means, in non-formal sense, that there is a Hilbert space H, a quantum field
�:D�Rd¡1!L(H) (where D�C such that x02D if <(x0) = 0, =(x0)> 0
and L(H) is the set of linear operators onH), and a ground state 
2H such that

Sn(x1; : : : ; xn)=
h�(ix10; x11; : : : ; x1d¡1)� � ��(ixn¡10 ; xn¡1

1 ; : : : ; xn¡1
d¡1)�(ixn

0; xn
1; : : : ; xn

d¡1)
;
iH

where 06x106x206 � � �6xn0. In the bosonic case we have

�b(ix10; x11; : : : ; x1
d¡1)�b(ix20; x21; : : : ; x2

d¡1)= �b(ix20; x21; : : : ; x2
d¡1)�b(ix10; x11; : : : ; x1

d¡1):

E. Nelson observed that many kind of Schwinger functions can be realized as the
expectation of a (tempered-distribution) random field ' defined on Rd:

Sn(x1; : : : ; xn)=E�['(x1)� � �'(xn)]
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Thanks to Nelson observation, the constructive quantum field theory for boson can
be reduced to the problem of the definition of the measure � of the random field '.

In many cases of interest, the measure � can be formally written as

d�=00 e¡S(')D' 00=00e¡Sint(') 00d�free

where S = Sfree+ Sint is the (classical) action of the field ', and �free is the
Gaussian measure on the space of tempered distributions of the free field with
variance Sfree.

Thanks to this probabilistic formulation of the problem, in combination with renor-
malization techniques, it was possible to build many models of interacting bosons
(see, e.g., [Simon,1973], [Glimm-Jaffe,1981], [Rivasseau,1991]).



Another probabilistic method for the construction of � is stochastic quanti-
zation, first proposed by [Parisi-Wu, 1981] (see [Damgaard-Hüffel,1987]). It is
based on the observation that ���(t; �) can be seen as the probability law of the
invariant solution � to the SPDE

@�
@t
(t; x)=¡�S

�'
(�(t; x))+ �(t; x)

where x2Rd, t is an additional �computer time�, �S
�'

is the functional derivatives

of the action S, and � is a R1+d (space-times) white noise.

Thanks to the relatively recent advances in the analysis of SPDEs, the previous equa-
tion has been studied using different techniques: regularity structures [Hairer,2014],
paracontrolled distributions [Gubinelli-Imkeller-Perkowski,2015], methods based on
renormalization group techniques [Kupiainen,2016], and methods based on rough
path theory [Otto-Weber,2019].

A final probabilistic method for building � is based on a stochastic optimal control
problem studied in [Barashkov-Gubinelli,2020].
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Osterwalder�Schrader axioms can also be used for quantum field theories including
fermions. The most important difference of (Euclidean) fermionic fields �f is that
they commute when evaluated at different points:

�f(ix10; x11; : : : ; x1
d¡1)�f(ix20; x21; : : : ; x2

d¡1)=¡�f(ix20; x21; : : : ; x2d¡1)�f(ix10; x11; : : : ; x1d¡1):

This means that the Schwinger functions

Sn(x1; : : : ; xn)=
h�f(ix10; x11; : : : ; x1d¡1)� � ��f(ixn¡10 ; xn¡1

1 ; : : : ; xn¡1
d¡1)�f(ixn0 ; xn1 ; : : : ; xn

d¡1)
;
iH

cannot be realized as expectations of (standard) random fields.

Our main aim is to find a probabilistic-like framework where to describe the fermi-
onic QFTs.



Feynman-Kac formula, proposed in [Osterwalder-Schrader,1973/74], for fermions
with action S=Sfree+Sint is

Sn(x1; : : : ; xn) = !( (x1)� � � (xn))
= !free( 00e

¡Sint( free) 00 free(x1)� � � free(xn)) (1)

where  free is the non-commutative random field having the �Gaussian� law related
to the quadratic form Sfree. Other probabilistic-like constructions are discussed in
[Fröhlich-Osterwalder,1974].

Formula (1), in combination with renormalization group methods, has been
applied to many fermionic models in quantum field theory and condensed matter,
see, e.g., [Gawedzki-Kupiainen, 1985], [Feldman-Magnen-Rivasseau-Sénéor,1986]
[Lesniewski, 1987], [Benfatto-Gallavotti, 1990], [Disertori-Rivasseau, 2000], [Giu-
liani-Mastropietro-Porta, 2017], [Giuliani-Mastropietro-Rychkov, 2020], and see
[Salmhofer, 2007], [Mastropietro, 2008] for some reviews.
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In [Albeverio-Borasi-D-Gubinelli,2022] we giveC�-algebra construction of fermions

We consider a C�-algebra M which stays for the space of (bounded) random
variables, i.e. M is a Banach algebra with a conjugate operation �� such that for
any a2M we have

kakM2 = kaa�kM= ka�akM:

The probability measure is here replaced by a positive state ! defined onM, i.e.
!:A!C is a linear map for which !(aa�)> 0.
This kind of formulation of probability contains the standard (commutative) prob-
ability as a special case: given a probability space (
;F ;P) we have that

A=L1(
;C) !(�)=EP[�]:



In this contest a Grassmann random field X defined on the vector space V is a
linear map

X:V !M

such that for any v1; v22V we have

X(v1)X(v2)=¡X(v2)X(v1):

We can extend X 2L(V ;M) to a homomorphism X : �V !M, where �V is
the exterior algebra generated by V equipped with the natural exterior product.

In this way, we interpret the elements F 2�V , i.e. F =
P

k;�i
v�1^ � � � ^ v�k, as

the functions from the space of G. fieldsM (the space of random variables), i.e.

F (X) :=X(F )=
X
k;�i

X (v�1)X(v�2)� � �X (v�k):
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Suppose that V is equipped with a pre-Hilbert (real) scalar product h�; �iV and let
G be an antisymmetric operator on V with respect to h�; �iV .

In this setting, a Gaussian Grassmann random field X is a Grassmann random field
such that, for any v1; : : : ; vn2V we have

!(X(v1)� � �X(v2n))=
X

P2fperfect matching of f1; : : : ;2ngg

(¡1)P
l

(i;j)2P

hvi; Gvji:

Topological requirement: It is useful to ask for the topological property

kX(v)kM6 hv; viV
p



Lemma For every antisymmetric and bounded G: V ! V there exist a pair
(M; !) and Grassmann Gaussian field X defined on V with correlation G.

Idea of the proof: Suppose that V =V1�V1, and

G=C

�
0 1
¡1 0

�
=CJ:

Consider the fermionic Fock space ¡fV and letM=L(¡fV ) with the state !(a)=
ha
;
i, where 
2¡fV is the ground state.

We can identify ¡fV with the (Hilbert closure) of �V , which is the exterior algebra
generated by V equipped with the scalar product

hv1^ : : : ^ vn; w1^ : : : ^wni=det((hvi; wjiV )i;j=1; : : : ;n):



Let �; �� be the creation �:V !L(¡fV ) and annihilation ��:V !L(¡fV ) oper-
ators on ¡fV , i.e. for any v; v1; : : : ; vn2V , a=w1^ � � � ^wn2¡fV

�(v)(a)= v^ v1^ � � � ^ vn;

�(v)�a=
X
`=1

n

(¡1)`¡1hv; w`iw1^ � � � ^w`^ � � � ^wn:

Then X:V !M=L(¡fV ) can be defined as

X(v) :=�
¡
C

1

2 v
�
+��

¡
C

1

2Jv
�
:



A Grassmann stochastic process on V is a Grassmann random filed defined on VR
where

VR=L2(R+)
V :

A Gaussian Grassmann noise with covariance G (defined on V ) is a Grassmann
stochastic process � on VR equipped by the pre-Hilbert norm of the tensor product
L2(R+)
V and with covariance IL2
G.

We define also the concept of Grassmann Brownian motion as the �integral� of the
noise � with respect to the time

Bt(v)=�(I[0;t]
 v):



This setting was enough to prove the existence and uniqueness of additive noise,
non-singular SDEs both in finite and infinite dimension. Furthermore we
were able to prove that the �invariant measure� of an additive noise SDE with
gradient type drift @U( ) is the associated Gibbs measure e¡2U( ) (see [Albeverio-
Borasi-D-Gubinelli,2022]).

In [D-Fresta-Gubinelli,2022] we apply a similar setting to singular (super-renor-
malizable) fermionic models. In this work we do not use a Langevin dynamic
but a combination of Barashkov-Gubinelli stochastic variational method and the
Polchinski flow.

An other work, using C�-algebras for fermions, is [Chandra�Hairer�Peev,2023]
where the authors develop a setting for �almost sure� analysis of non-commutative
random variables via the notion of locally C�-algebras, and they solve (locally in
time) some singular SPDEs.



Consider the Grassmann field (	;	�) on V =L2(T2)
R2 with covariance

G=

 
0 (¡�T2+m2)¡1

¡(¡�T2+m2)¡1 0

!
:

In this case 	;	� cannot be identified with function from T2!M=L(¡fV ) but
only with proper distribution. In analogy with the bosonic case we can define the
Wick product : 	(x)	�(x): as an operator on ¡fV , but : 	(x)	�(x):2M.

A similar problem arise in the definition of Ito integral. Let H:R+� V !M a
(predictable) bounded process then the Riemann sumsX

ti2�

Hti(v)(Bti+1(v)¡Bti(v))

do not usually converge in M.
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A classical extension of measure theory to the non-commutative setting was pro-
posed by [Segal,1953]. In this case we consider a C�-algebra (or better von
Neumann algebra) M equipped with a tracial state ! = � , namely a state
for which

!(ab)= �(ab)= �(ba)

for any a; b2M. Using this kind of states we can define some new normsM as

kakL�p(M)
p = �(jajp): (2)

This permits to build a space L�
p(M) for any p>1. In particular L�1(M)=M�

Lp(!), and for a2M the norm reeds exactly as in formula (2).



In this kind of spaces is possible to obtain:

� Hölder inequality (and as a consequence L=
T

16p<1L
p(!) is an algebra);

� If fMtgt2R+ is an increasing filtration of C�-subalgebras of M is possible to
introduce a sort of conditional expectation �t:L�

p(M)!L�
p(Mt);

� Hypercontractivity for Gaussian random variables (or fields) holds (see [Carlen-
Lieb,1993]);

� Stochastic calculus for �Brownian motion� (or more generally continuous mar-
tingales) with Itô integral and the martingale representation theorem (see
[Barnett-Streater-Wilde,1982]).

The main problem of this approach is that we are not able to build a Grassmann
Brownian motion with respect to any tracial state � , since the tracial nature of �
forces the covariance to be zero due to the contrasting requirements of symmetry
and antisymmetry.
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Consider a von Neumann algebra M equipped with a faithful state !, i.e. for
any a2M

!(a�a)= 0:

In this case is possible to define the Tomita�Takesaki modular automorphism
�t:R+�M!M, i.e. for a2M

�t(a)=�¡ita�it2M

where � is a (unbounded self-adjoint) operator on the GNS representation of
(M; !).



The Tomita�Takesaki automorphism �measures� the non-traciality of the state !.
Indeed let Ma�M be the algebra of analytic elements of M, i.e. b2Ma if

t2C 7!�t(b)2M

is an entire map. Then for any a; b2Ma we have

!(ab)=!(�¡i(b) a):

In the case where ! is tracial �t= IM and �= IH.

Haagerup in [Haagerup,1979] proposed a standard way of building non-commuta-
tive L!

p(M) spaces in this non-tracial setting. Non-tracial Lp spaces have been
extensively studied in the literature, in particular standard martingale inequalities are
available, see, e.g., the work of [Pisier�Xu,1997], [Junge,2002], [Junge�Xu,2003],
and hypercontractivity of some particular Gaussian factors has been proved by
[Lee�Richard,2011].
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The main problem of Haagerup Lp spaces is that they are not defined directly as
a subset of operators in the GNS (or generic) representation of (M; !). This fact
in particular implies that L!

p(M)\L!
q(M)= ; when p= q.

So we introduce the notion of twisted L!
p(M) spaces. In the case where p2 2N

we can define the norm x2Ma

kxkLp
p = sup

j� j61¡ 1

2p

!
�
�
i
�
�¡2p¡1

2p

�(x)�¡i��+ 2p¡3
2p

�(x�)����
i
�
�¡ 3

2p

�(x)�¡i��+ 1

2p

�(x�)�:
This definition is a modification of the one proposed in [Majewski-Zegarlinski,1996]
(who had considered only the norm � =0).



There are some maps

T�
(p):L!

p(M)!L!
p(M); j� j6 (2p¡ 1)/2p:

and we can write

kxkL!p(M)= sup
j� j61¡ 1

2p

kT�
(p)(x)kL!p(M):

We have also

L!
p(M)�L!

q(M); q6 p

Ma�L!
p(M) p> 1:

The Hölder inequality holds:

kxykL!r (M)6 kxkL!p(M)kykL!q (M)
1
p
+
1
q
=
1
r
:
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The previous construction of Grassmann Gaussian random fields was not done with
a faithful state !.

Our proposal is to realize Grassmann Gaussian probability over Lp through a large
class of non-Fock (and non-tracial) quasi-free states of the CAR algebra, and in
particular by the Araki�Wyss factors [Araki-Wyss,1964].

Indeed, fix a (real) Hilbert space V , consider ¡a(V �V ), the operators


�(f)=�(�f � 0)+��(0� �¡1f); f 2V ; 0< �< 1

and the von Neumann algebra

M :=M(V ; �)= f
�(f); f 2V g00:



The Araki�Wyss factors have the properties

f
�(f); 
�(g)g= f
��(f); 
��(g)g=0

f
��(f); 
�(g)g=(�2+ �¡2)hf ; giV :

One can check that the Fock vacuum !(�) = h
; �
i¡a(V �V ) is a faithful quasi-
free state. The Tomita�Takesaki modular operator/automorphism is

�=¡a(�4IV � �¡4IV ); �t(
�(f))= �¡4it
�(f);

In particular the previous equality implies that 
�(f); 
��(f)2Ma.



Thanks to these factors we can defined Grassmann Gaussian field, by replacing �;
�� in the C�-algebraic construction by 
�; 
�� as follows

X(f)=
1

�2¡ �¡2
�

�

�
C

1

2Jf
�
+ 
�

�
�
C

1

2f
��

which is well defined whenever 0< �< 1 (and thus �= I¡a(V �V )).

Since 
�; 
�� are quasi-free, X is Gaussian, and we have

�it(X(f))= �¡4tX(f)

and thus

kX(f)kLp.
 

sup
j� j61¡ 1

2p

�¡4�
!
kf kV :



Thanks to the previous construction we are able to:

� Prove Hypercontractivity for functionals of Gaussian random fields inLp spaces;

� Generalize the notion of Brownian motion Bt2Ma�M (with an antisym-

metric covariance G=CJ), satisfying kBt¡BskLp.p jt¡ sj
1

2;

� Define a conditional expectation !t:L!
p(M)!L!

p(Mt), whereMt is the von
Neumann algebra generated by Bs; Bs� for s6 t;

� Define the Itô integral
R
0

t
HsdBs, for H:R+! L!

2(M) predictable satis-
fying Itô isometry and Burkholder-Davis-Gundy inequality (see also [Barnett-
Streater-Wilde,1983]);

� Generalize Itô formula and Girsanov theorem for Itô processes, when Hs

(anti)commute with Xs.

The proof of previous results are a combination of the classical ideas of sto-
chastic analysis and the analogous results in Haagerup spaces (see [Pisier�Xu,1997],
[Junge,2002], [Junge�Xu,2003], and [Lee�Richard,2011]).
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In the paper we propose two applications of stochastic analysis on Lp:

1. A construction �à la Nelson� of the 	24 (fermionic) �measure� on T2;

2. Existence of weak solutions for the stochastic quantization SPDE on T2 of the
	2
4 (fermionic) model extending the analogous bosonic result of [Jona Lasinio-

Mitter,1984].
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We consider a Gaussian field defined on V =(H¡1+s(T2))4, s>0, of two fermionic
fields 	=((	1;	� 1); (	2;	� 2)) with covariance

!(	1(x)	� 1(y))=!(	2(x)	� 2(y))= (¡�+m2)¡1+s(x¡ y)

!(	i(x)	i(y))=!(	� i(x)	� i(y))=!(	j(x)	� i(y))= 0

where x; y 2T2 and i; j 2f1; 2g, i= j. The operators 	=((	1;	� 1); (	2;	� 2))
are not functions, but they can be identified with distributions in the Besov spaces

Bp;p
¡s¡"(T2;Ma)

for any p> 1 and "> 0.



We define the potential

V (	)=

Z
T2

: 	1(x)	� 1(x)	2(x)	� 2(x): dx

which can be identified with an element of L!
p(M).

We want to prove the existence of the expectation

!V (�)=
!(eV (	) � )
!(eV (	))

:

Theorem (D-Fresta-Gordina-Gubinelli) If 067s<1, then eV (	) exists and
eV (	)2

T
16p<+1L!

p(M).



Idea of the proof:

Consider a �:R! [0; 1] smooth function with compact support and identically
one in a neighborhood of 0. Then define

((	t
1;	� t

1); (	t
2;	� t

2))=	t=F¡1
�
�

�
j�j
t

��
�	:

We can consider

Vt(	t)=

Z
T2

( 	t
1	� t

1	t
2	� t

2¡ ct(	t1	� t1+	t
2;	� t

2)+ ct
2 )dx

where ct=
P

k2Z2
1

(jk j2+m2)1¡s
�
�
jkj
t

�
:



Lemma For any � < 1¡ (4¡ 1)s=1¡ 3s

kVt(	t)kL1. t4s; kT�
(2)(Vt(	t)¡Vt 0(	t 0))kL!2 (M).� t

0�

where the constants .� are locally bounded in � 2R.

The constants ct� t2s�
P
jk j6t

1

(jkj2+1)1¡s
as t!+1, furthermore k	tikL1=

k	� tjkL1� ts.

For the other term we note that

kT�
(2)(Vt¡Vt 0)k22= kT�

(2)(Vt)k22¡kT�
(2)(Vt 0)k22

=C�
X

k1; : : : ;k42Z2

�Y
i

�(jkij/t)¡
Y
i

�(jkij/t 0)
�

1P
iki=0Q

i
(1+ ki

2)1¡s

. t 0
¡1¡2"¡3s

1+" :



By the previous inequalities and hypercontractivity we get

kVtkLp6 kVt 0kL1+ kVt¡Vt 0kLp_2. t 04s+ p2 t 0¡�:

In particular, choosing t 0= p
2

4s+� we have kVtkLp. p
8s

4s+�, and by the fact that
7 s< 1 implies

keVt(	t)kLp6
X
n>0

kVtkLpnn

n!
6
X
n>0

cn (p n)
8sn

4s+�

n!

where 8 s

4 s+ �
< 1 since �� 1¡ 3s. Thus

keVt(	t)¡ eVt 0(	t 0)kLp.
�

sup
r=t 0;t

keVt 0(	t 0)kL2p
�
kVt¡Vt 0kL2p. t 0¡�:
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Here we consider the approximate 	24 equation on T2

8>>>>>><>>>>>>:
�t
(N)(x) = �0

(N)(x)¡
Z
0

t

[A1¡2��s
(N)(x)+

PN(A¡2�J�s(N)j�s(N)j2K)(x)]ds+A¡�Xt(x);

�0
(N)(x) = X~0(x)+h0(x):

where �t
(N)= (�t

(N);1; ��t
(N);1; �t

(N);2; ��t
(N);2), PN is the projection on the Fourier

modes smaller thanN 2N, A=(¡�+m2), 06�<1,X~0 is a Grassmann random
field distributed as 	 in the previous slides, when s=0, and h0 is a Grassmann
random field such that h0:T2!L!

1(M) is a C1 function.



We introduce also the process

Zt
N ;h0= exp

�
�

Z
0

tZ
T2

PN(A¡�JP3(PN(Xs
A+e¡A

1¡2�sh0))K)(x)dXs(x)

¡�
2

2

Z
0

tZ
T2

hPN(A¡�JP3(PN(Xs
A+e¡A

1¡2�sh0))K); iR4dxds

�
;

UA¡�JP3(PN(Xs
A+e¡A

1¡2�sh0))K

where

Xt
A=e¡A

1¡2�tX~0+

Z
0

t

e¡A
1¡2�(t¡s)A¡�dXs;

P3(PN(Xs
A+e¡A

1¡2�sh0))=PN(Xs
A+e¡A

1¡2�sh0)jPN(Xs
A+e¡A

1¡2�sh0)j2:



Using some techniques similar to the ones of the previous slides, we are able to
prove that Zt

N ;h02C0([0; T ];L!
p(M)), for every 26 p<+1, and that, when �

is close enough to 1

2
, it converges to some Zt

h0, in the same space, as N!+1.

Theorem (D-Fresta-Gordina-Gubinelli) Let 19
40 < � <

1

2
and h0 2 C1(T2;

L1) anti-commuting with X. Then, for any F 2
L

n=0

k
�n(S(T2)r) and any

t1< � � �<tr2R+ we have

lim
N!1

!0(F (�t1
(N); : : : ; �tr

(N)))

= lim
N!1

!0(F (Xt1
A+e¡A

1¡2�t1h0; : : : ; Xtr
A+e¡A

1¡2�t1h0)Ztr
h0;N)

= !0(F (Xt1
A+e¡A

1¡2�t1h0; : : : ; Xtr
A+e¡A

1¡2�t1h0)Ztr
h0);

where �t
(N) is the solution to approximated 	2

4 SPDE.
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We propose a probabilistic theory for the description of fermionic quantum fields,
introducing the notion of twisted Lp spaces. This allows us to develop an anti-
commutative stochastic calculus and to apply it to some toy models.

The stochastic quantization program in the case of fermionic systems is only at
the beginning, and it needs new developments in particular in the unification of
the anti-commutative stochastic calculus and the pathwise analysis of SPDEs.

We think that the improvement of such a theory is useful in constructive field
theory, particularly in the case of systems including both fermions and bosons.

Thank you for your attention!
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