

Metric inequalities under lower scalar curvature bounds

Mathematics Münster Mid-term Conference

Rudolf Zeidler March 25, 2024

 $\mathsf{K} < \mathsf{0} \qquad \qquad \mathsf{K} = \mathsf{0} \qquad \qquad \mathsf{K} > \mathsf{0}$

Sectional curvature

(M, g) ... n-dimensional Riemannian manifold.

■ $E \subseteq T_pM$ 2-plane \leadsto $sec(E) \in \mathbb{R}$, defined "in terms of g, ∂g , $\partial^2 g$ ".

Sectional curvature

(M, g) ... n-dimensional Riemannian manifold.

■ $E \subseteq T_pM$ 2-plane \leadsto $sec(E) \in \mathbb{R}$, defined "in terms of g, ∂g , $\partial^2 g$ ".

Theorem (Toponogov 1959, case of $sec \ge 1$)

Let (M,g) be complete with $sec \geqslant 1$. Given "hinges" (p,x,y) in M and (p',x',y') in S^n with $d(p,x) = d_{S^n}(p',x')$, $d(p,y) = d_{S^n}(p',y')$, $\angle(\overline{px},\overline{py}) = \angle(\overline{p'x'},\overline{p'y'})$, we have $d(x,y) \leqslant d_{S^n}(x',y')$

Theorem (Gromoll-Meyer 1969)

Let (M, g) complete, non-compact, with sec > 0. Then M is diffeomorphic to \mathbb{R}^n .

Theorem (Gromoll-Meyer 1969)

Let (M, g) complete, non-compact, with sec > 0. Then M is diffeomorphic to \mathbb{R}^n .

e.g. Paraboloid $\{z = x^2 + y^2\}$

Ricci curvature

 $\qquad \qquad \mathbf{v} \in \mathsf{T}_{\mathsf{p}} M \text{ unit vector} \leadsto \mathsf{Ric}(\mathsf{v}) = \textstyle \sum_{i=1}^{\mathsf{n}} \mathsf{sec}(\langle \mathsf{e}_i, \mathsf{v} \rangle) (1 - \mathsf{g}(\mathsf{e}_i, \mathsf{v})^2)$

Ricci curvature

 $\mathbf{v} \in \mathsf{T}_{\mathfrak{p}} \mathsf{M} \text{ unit vector} \leadsto \mathsf{Ric}(\mathsf{v}) = \sum_{i=1}^{\mathsf{n}} \mathsf{sec}(\langle \mathsf{e}_{\mathsf{i}}, \mathsf{v} \rangle) (1 - \mathsf{g}(\mathsf{e}_{\mathsf{i}}, \mathsf{v})^2)$

Theorem (Myers 1941; Bonnet 1855, Synge 1926 for $sec \ge 1$, rigidity: Cheng 1975)

Let (M,g) be a complete Riemannian n-manifold. If $Ric_g \geqslant (n-1)$, then $diam(M,g) \leqslant \pi$.

Ricci curvature

 $\mathbf{v} \in \mathsf{T}_{p}M$ unit vector $\leadsto \mathsf{Ric}(\mathsf{v}) = \sum_{i=1}^{\mathsf{n}} \mathsf{sec}(\langle \mathsf{e}_i, \mathsf{v} \rangle) (1 - \mathsf{g}(\mathsf{e}_i, \mathsf{v})^2)$

Theorem (Myers 1941; Bonnet 1855, Synge 1926 for $sec \ge 1$, rigidity: Cheng 1975)

Let (M,g) be a complete Riemannian n-manifold. If $\mathrm{Ric}_g \geqslant (n-1)$, then $\mathrm{diam}(M,g) \leqslant \pi$. If $\mathrm{diam}(M,g) = \pi$, then $(M,g) \cong (S^n,g_{round})$.

Example

(Paraboloid \times S²) is complete, non-compact, with Ric > 0.

Example

(Paraboloid \times S²) is complete, non-compact, with Ric > 0.

Theorem ((corollary of) Cheeger-Gromoll 1971)

Let (M, g) be complete, non-compact, with Ric > 0. Then M is connected at infinity.

Example

(Paraboloid \times S²) is complete, non-compact, with Ric > 0.

Theorem ((corollary of) Cheeger-Gromoll 1971)

Let (M, g) be complete, non-compact, with Ric > 0. Then M is connected at infinity.

Scalar curvature

$$\mathsf{scal} \colon M \to \mathbb{R}, \qquad \mathsf{scal} = 2\sum_{\mathfrak{i} < \mathfrak{j}} \mathsf{sec}(\langle e_{\mathfrak{i}}, e_{\mathfrak{j}} \rangle) = \sum_{\mathfrak{i}} \mathsf{Ric}(e_{\mathfrak{i}}).$$

Scalar curvature

$$\mathsf{scal} \colon \mathsf{M} \to \mathbb{R}, \qquad \mathsf{scal} = 2\sum_{\mathfrak{i} < \mathfrak{j}} \mathsf{sec}(\langle e_{\mathfrak{i}}, e_{\mathfrak{j}} \rangle) = \sum_{\mathfrak{i}} \mathsf{Ric}(e_{\mathfrak{i}}).$$

Product constructions

$$(X,g_X),(Y,g_Y) \qquad \rightsquigarrow \qquad \mathsf{On}\ X\times Y \colon \ \mathsf{scal}_{g_X\oplus g_Y}(x,y) = \mathsf{scal}_{g_X}(x) + \mathsf{scal}_{g_Y}(y)$$

- \exists complete (M, g) of scal $\geqslant c > 0$ and arbitrary diameter, e.g. $S^{n-1} \times R \cdot S^1$.
- \blacksquare \exists complete non-compact (M, g) of scal > 0 and more than one end, e.g. $S^{n-1} \times \mathbb{R}$.

Scalar curvature

$$\mathsf{scal} \colon \mathsf{M} \to \mathbb{R}, \qquad \mathsf{scal} = 2\sum_{\mathfrak{i} < \mathfrak{j}} \mathsf{sec}(\langle e_{\mathfrak{i}}, e_{\mathfrak{j}} \rangle) = \sum_{\mathfrak{i}} \mathsf{Ric}(e_{\mathfrak{i}}).$$

Product constructions

$$(X,g_X),(Y,g_Y) \qquad \rightsquigarrow \qquad \mathsf{On}\ X\times Y \colon \ \mathsf{scal}_{g_X\oplus g_Y}(x,y) = \mathsf{scal}_{g_X}(x) + \mathsf{scal}_{g_Y}(y)$$

- \exists complete (M, g) of scal $\geqslant c > 0$ and arbitrary diameter, e.g. $S^{n-1} \times R \cdot S^1$.
- \exists complete non-compact (M, g) of scal > 0 and more than one end, e.g. $S^{n-1} \times \mathbb{R}$.

Questions

- Metric inequalities under lower scalar curvature bounds?
- Global structure of non-compact complete manifolds with scal > 0?

• Obstructions by Gauß-Bonnet if $\dim(M) = 2$: $\int_M \operatorname{scal} dV = \int_M 2 \sec dV = 4\pi \chi(M)$

- Obstructions by Gauß-Bonnet if $\dim(M) = 2$: $\int_M \operatorname{scal} dV = \int_M 2 \sec dV = 4\pi \chi(M)$
- But $M = S^2 \times N$ admits a metric of scal > 0 for any compact N.

- Obstructions by Gauß-Bonnet if $\dim(M) = 2$: $\int_M \operatorname{scal} dV = \int_M 2 \operatorname{sec} dV = 4\pi \chi(M)$
- But $M = S^2 \times N$ admits a metric of scal > 0 for any compact N.
- Prototypical examples that *do not admit metrics of* scal > 0:

K3 surface
$$V^4 = \{[z_0:z_1:z_2:z_3] \in \mathbb{C}\mathsf{P}^3 \mid z_0^4 + z_1^4 + z_3^4 + z_4^4 = 0\}$$

$$T^{\mathfrak{n}} = S^1 {\times} \cdots {\times} S^1$$

- Obstructions by Gauß-Bonnet if $\dim(M) = 2$: $\int_M \operatorname{scal} dV = \int_M 2 \operatorname{sec} dV = 4\pi \chi(M)$
- But $M = S^2 \times N$ admits a metric of scal > 0 for any compact N.
- Prototypical examples that *do not admit metrics of* scal > 0:

$$\begin{tabular}{ll} K3 \ surface \\ V^4 = \{[z_0:z_1:z_2:z_3] \in \mathbb{C} P^3 \ | \ z_0^4 + z_1^4 + z_3^4 + z_4^4 = 0\} \end{tabular}$$

Torus $T^n = S^1 \times \cdots \times S^1$

Spinor Dirac Operator

 $\begin{array}{c} \text{Minimal hypersurfaces} \\ & (n\leqslant 7) \end{array}$

- Obstructions by Gauß-Bonnet if $\dim(M) = 2$: $\int_M \operatorname{scal} dV = \int_M 2 \operatorname{sec} dV = 4\pi \chi(M)$
- But $M = S^2 \times N$ admits a metric of scal > 0 for any compact N.
- Prototypical examples that *do not admit metrics of* scal > 0:

K3 surface
$$V^4=\{[z_0:z_1:z_2:z_3]\in\mathbb{C}\mathsf{P}^3\ |\ z_0^4+z_1^4+z_3^4+z_4^4=0\}$$
 Lichnerowicz 1963 Spinor Dirac Operator

$$\begin{array}{c} \text{Torus} \\ T^{\mathfrak{n}} = S^{1} {\times} {\cdots} {\times} S^{1} \end{array}$$

Minimal hypersurfaces $(n \le 7)$

- Obstructions by Gauß-Bonnet if $\dim(M) = 2$: $\int_M \operatorname{scal} dV = \int_M 2 \operatorname{sec} dV = 4\pi \chi(M)$
- But $M = S^2 \times N$ admits a metric of scal > 0 for any compact N.
- Prototypical examples that *do not admit metrics of* scal > 0:

K3 surface
$$V^4=\{[z_0:z_1:z_2:z_3]\in\mathbb{CP}^3\ |\ z_0^4+z_1^4+z_3^4+z_4^4=0\}$$
 Lichnerowicz \uparrow 1963 Spinor Dirac Operator

- Obstructions by Gauß-Bonnet if $\dim(M) = 2$: $\int_M \operatorname{scal} dV = \int_M 2 \sec dV = 4\pi \chi(M)$
- But $M = S^2 \times N$ admits a metric of scal > 0 for any compact N.
- Prototypical examples that *do not admit metrics of* scal > 0:

- Obstructions by Gauß-Bonnet if $\dim(M) = 2$: $\int_M \operatorname{scal} dV = \int_M 2 \sec dV = 4\pi \chi(M)$
- But $M = S^2 \times N$ admits a metric of scal > 0 for any compact N.
- Prototypical examples that *do not admit metrics of* scal > 0:

- Obstructions by Gauß-Bonnet if dim(M) = 2: $\int_M scal dV = \int_M 2 sec dV = 4\pi \chi(M)$
- But $M = S^2 \times N$ admits a metric of scal > 0 for any compact N.
- Prototypical examples that *do not admit metrics of* scal > 0:

- Obstructions by Gauß-Bonnet if $\dim(M) = 2$: $\int_M \operatorname{scal} dV = \int_M 2 \operatorname{sec} dV = 4\pi \chi(M)$
- But $M = S^2 \times N$ admits a metric of scal > 0 for any compact N.
- Prototypical examples that *do not admit metrics of* scal > 0:

$$\begin{array}{c|c} \text{K3 surface} \\ V^4 = \{[z_0:z_1:z_2:z_3] \in \mathbb{CP}^3 \mid z_0^4 + z_1^4 + z_3^4 + z_4^4 = 0\} \end{array} \\ \hline \\ \text{$Lichnerowicz} \uparrow 1963 & Schoen-Yau \uparrow 1980\text{'s} \\ \hline \\ \text{Certain exotic spheres} \\ \text{in dim} = 9, 10, \ 17, 18, \dots \end{array} \\ \begin{array}{c|c} \text{Spinor Dirac Operator} \\ \hline \end{array} \\ \begin{array}{c} \text{Minimal hypersurfaces} \\ \text{($n \leqslant 7$)} \end{array}$$

- Obstructions by Gauß-Bonnet if dim(M) = 2: $\int_M scal dV = \int_M 2 sec dV = 4\pi \chi(M)$
- But $M = S^2 \times N$ admits a metric of scal > 0 for any compact N.
- Prototypical examples that *do not admit metrics of* scal > 0:

- Obstructions by Gauß-Bonnet if $\dim(M) = 2$: $\int_{M} \operatorname{scal} dV = \int_{M} 2 \operatorname{sec} dV = 4\pi \chi(M)$
- But $M = S^2 \times N$ admits a metric of scal > 0 for any compact N.
- \blacksquare Prototypical examples that do not admit metrics of scal > 0:

- Obstructions by Gauß-Bonnet if $\dim(M) = 2$: $\int_M \operatorname{scal} dV = \int_M 2 \sec dV = 4\pi \chi(M)$
- But $M = S^2 \times N$ admits a metric of scal > 0 for any compact N.
- Prototypical examples that *do not admit metrics of* scal > 0:

- Recall *Myers*: (M^n, g) complete, $Ric \ge (n-1) \implies diam(M, g) \le \pi$.
- But: No general diameter bounds under scal $\geqslant n(n-1)$ for $n \geqslant 3$,

e.g.:
$$S^{n-1} \times \mathbb{R}$$
, $g = \sqrt{\frac{n-2}{n}} g_{S^{n-1}} + dx^2$

- Recall *Myers*: (M^n, g) complete, $Ric \ge (n-1) \implies diam(M, g) \le \pi$.
- But: No general diameter bounds under scal $\geqslant n(n-1)$ for $n \geqslant 3$, e.g.: $S^{n-1} \times \mathbb{R}$, $g = \sqrt{\frac{n-2}{n}} g_{S^{n-1}} + dx^2$

Let's try to find $g = \phi^2 g_{\mathsf{flat}} + \mathsf{d} x^2$ on $\mathsf{T}^{n-1} \times (\mathsf{x}_-, \mathsf{x}_+)$ of $\mathsf{scal}_g = \mathsf{n}(n-1)$:

- Recall Myers: (M^n, g) complete, $Ric \ge (n-1) \implies diam(M, g) \le \pi$.
- But: No general diameter bounds under scal $\geqslant n(n-1)$ for $n \geqslant 3$, e.g.: $S^{n-1} \times \mathbb{R}$, $g = \sqrt{\frac{n-2}{n}} g_{S^{n-1}} + dx^2$

Let's try to find
$$g=\phi^2g_{\text{flat}}+\text{d}x^2$$
 on $\mathsf{T}^{\mathfrak{n}-1}\times(x_-,x_+)$ of $\mathsf{scal}_g=\mathfrak{n}(\mathfrak{n}-1)$:

$$\rightsquigarrow \mathsf{scal}_g = -2(\mathsf{n}-1) \left(\frac{\phi'}{\phi}\right)' - \mathsf{n}(\mathsf{n}-1) \left(\frac{\phi'}{\phi}\right)^2$$

- Recall Myers: (M^n, q) complete, $Ric \ge (n-1) \implies diam(M, q) \le \pi$.
- But: No general diameter bounds under scal $\geq n(n-1)$ for $n \geq 3$, e.g.: $S^{n-1} \times \mathbb{R}$, $g = \sqrt{\frac{n-2}{n}} g_{S^{n-1}} + dx^2$

Let's try to find $q = \varphi^2 q_{flat} + dx^2$ on $T^{n-1} \times (x_-, x_+)$ of scal_q = n(n-1):

$$\rightsquigarrow \mathsf{scal}_g = -2(\mathsf{n}-1) \left(\frac{\phi'}{\phi}\right)' - \mathsf{n}(\mathsf{n}-1) \left(\frac{\phi'}{\phi}\right)^2$$

We can achieve $scal_q = n(n-1)$ for a time ...

$$\varphi \colon \left(-\frac{\pi}{n}, \frac{\pi}{n}\right) \to (0, \infty), \quad \varphi(x) = \cos\left(\frac{nx}{2}\right)^{\frac{2}{n}}.$$

- Recall Myers: (M^n, q) complete, $Ric \ge (n-1) \implies diam(M, q) \le \pi$.
- But: No general diameter bounds under scal $\geqslant n(n-1)$ for $n \geqslant 3$, e.g.: $S^{n-1} \times \mathbb{R}$, $g = \sqrt{\frac{n-2}{n}} g_{S^{n-1}} + dx^2$

Let's try to find
$$g=\phi^2g_{\text{flat}}+\text{d}x^2$$
 on $\mathsf{T}^{\mathfrak{n}-1}\times(x_-,x_+)$ of $\mathsf{scal}_g=\mathfrak{n}(\mathfrak{n}-1)$:

$$\leadsto \mathsf{scal}_g = -2(\mathfrak{n}-1) \left(\frac{\phi'}{\phi}\right)' - \mathfrak{n}(\mathfrak{n}-1) \left(\frac{\phi'}{\phi}\right)^2$$

We can achieve $scal_g = n(n-1)$ for a time ...

$$\varphi \colon \left(-\frac{\pi}{n}, \frac{\pi}{n}\right) \to (0, \infty), \quad \varphi(x) = \cos\left(\frac{nx}{2}\right)^{\frac{2}{n}}.$$

- Recall Myers: (M^n, g) complete, $Ric \ge (n-1) \implies diam(M, g) \le \pi$.
- But: No general diameter bounds under scal $\geqslant n(n-1)$ for $n \geqslant 3$, e.g.: $S^{n-1} \times \mathbb{R}$, $g = \sqrt{\frac{n-2}{n}} g_{S^{n-1}} + dx^2$

Let's try to find $g=\phi^2g_{\text{flat}}+\text{d}x^2$ on $\mathsf{T}^{\mathfrak{n}-1}\times(x_-,x_+)$ of $\mathsf{scal}_g=\mathfrak{n}(\mathfrak{n}-1)$:

$$\leadsto \mathsf{scal}_g = -2(\mathfrak{n}-1) \left(\frac{\phi'}{\phi}\right)' - \mathfrak{n}(\mathfrak{n}-1) \left(\frac{\phi'}{\phi}\right)^2$$

We can achieve $scal_q = n(n-1)$ for a time ...

$$\varphi \colon \left(-\frac{\pi}{n}, \frac{\pi}{n}\right) \to (0, \infty), \quad \varphi(x) = \cos\left(\frac{nx}{2}\right)^{\frac{2}{n}}.$$

Let M be a compact connected manifold of dimension $n-1 \neq 4$ such that M does not admit a metric of scal > 0. Let g be a Riemannian metric on $V = M \times [-1,1]$ of scal $_g \geqslant n(n-1)$. Then

$$\mathsf{width}(V,g) \coloneqq \mathsf{dist}_g(\mathfrak{d}_-V,\mathfrak{d}_+V) < \frac{2\pi}{n}, \qquad \mathsf{where} \ \mathfrak{d}_\pm V = M \times \{\pm 1\}.$$

Let M be a compact connected manifold of dimension $n-1 \neq 4$ such that M does not admit a metric of scal > 0. Let g be a Riemannian metric on $V = M \times [-1, 1]$ of scal $p \geqslant n(n-1)$. Then

$$\mathsf{width}(V,g) \coloneqq \mathsf{dist}_g(\mathfrak{d}_-V,\mathfrak{d}_+V) < \frac{2\pi}{n}, \qquad \mathsf{where} \ \mathfrak{d}_\pm V = M \times \{\pm 1\}.$$

■ Gromov 2018: True for $M = T^{n-1}$ (enlargeable) if $n \le 7$ using minimal hypersurfaces.

Let M be a compact connected manifold of dimension $n-1 \neq 4$ such that M does not admit a metric of scal > 0. Let g be a Riemannian metric on $V = M \times [-1,1]$ of scal $_g \geqslant n(n-1)$. Then

$$\mathsf{width}(V,g) \coloneqq \mathsf{dist}_g(\mathfrak{d}_-V,\mathfrak{d}_+V) < \frac{2\pi}{n}, \qquad \mathsf{where} \ \mathfrak{d}_\pm V = M \times \{\pm 1\}.$$

- Gromov 2018: True for $M = T^{n-1}$ (enlargeable) if $n \le 7$ using minimal hypersurfaces.
- Z. 2019–2020: True if M spin and $\alpha_{\pi_1(M)}(M) \neq 0 \in KO_*(C^*(\pi_1M))$. Thus it holds for

Let M be a compact connected manifold of dimension $n-1 \neq 4$ such that M does not admit a metric of scal > 0. Let g be a Riemannian metric on $V = M \times [-1,1]$ of scal $_q \geqslant n(n-1)$. Then

$$\mathsf{width}(V,g) \coloneqq \mathsf{dist}_g(\vartheta_-V,\vartheta_+V) < \frac{2\pi}{n}, \qquad \mathsf{where} \ \vartheta_\pm V = M \times \{\pm 1\}.$$

- Gromov 2018: True for $M = T^{n-1}$ (enlargeable) if $n \leq 7$ using minimal hypersurfaces.
- Z. 2019–2020: True if M spin and $\alpha_{\pi_1(M)}(M) \neq 0 \in KO_*(C^*(\pi_1M))$. Thus it holds for
 - lacksquare all simply-connected manifolds of dimension \geqslant 5 (in particular exotic spheres Σ with $\alpha(\Sigma) \neq 0$),

Let M be a compact connected manifold of dimension $n-1 \neq 4$ such that M does not admit a metric of scal > 0. Let g be a Riemannian metric on $V = M \times [-1, 1]$ of scal $p \geqslant n(n-1)$. Then

$$\mathsf{width}(V,g) \coloneqq \mathsf{dist}_g(\vartheta_-V,\vartheta_+V) < \frac{2\pi}{n}, \qquad \mathsf{where} \ \vartheta_\pm V = M \times \{\pm 1\}.$$

- Gromov 2018: True for $M = T^{n-1}$ (enlargeable) if $n \leq 7$ using minimal hypersurfaces.
- Z. 2019–2020: True if M spin and $\alpha_{\pi_1(M)}(M) \neq 0 \in KO_*(C^*(\pi_1M))$. Thus it holds for
 - lacksquare all simply-connected manifolds of dimension \geqslant 5 (in particular exotic spheres Σ with $\alpha(\Sigma) \neq 0$),
 - Tⁿ for all n, more generally: all enlargeable spin manifolds,

Let M be a compact connected manifold of dimension $n-1 \neq 4$ such that M does not admit a metric of scal > 0. Let g be a Riemannian metric on $V = M \times [-1, 1]$ of scal $p \geqslant n(n-1)$. Then

$$\mathsf{width}(V,g) \coloneqq \mathsf{dist}_g(\vartheta_-V,\vartheta_+V) < \frac{2\pi}{n}, \qquad \mathsf{where} \ \vartheta_\pm V = M \times \{\pm 1\}.$$

- Gromov 2018: True for $M = T^{n-1}$ (enlargeable) if $n \leq 7$ using minimal hypersurfaces.
- **Z.** 2019–2020: True if M spin and $\alpha_{\pi_1(M)}(M) \neq 0 \in KO_*(C^*(\pi_1M))$. Thus it holds for
 - lacksquare all simply-connected manifolds of dimension \geqslant 5 (in particular exotic spheres Σ with $\alpha(\Sigma) \neq 0$),
 - Tⁿ for all n, more generally: all enlargeable spin manifolds,
 - **a** aspherical spin manifolds M where π_1M satisfies the strong Novikov conjecture.

Let M be a compact connected manifold of dimension $n-1 \neq 4$ such that M does not admit a metric of scal > 0. Let g be a Riemannian metric on $V = M \times [-1, 1]$ of scal $p \geqslant n(n-1)$. Then

$$\mathsf{width}(V,g) \coloneqq \mathsf{dist}_g(\mathfrak{d}_-V,\mathfrak{d}_+V) < \frac{2\pi}{n}, \qquad \mathsf{where} \ \mathfrak{d}_\pm V = M \times \{\pm 1\}.$$

- Gromov 2018: True for $M = T^{n-1}$ (enlargeable) if $n \le 7$ using minimal hypersurfaces.
- Z. 2019–2020: True if M spin and $\alpha_{\pi_1(M)}(M) \neq 0 \in KO_*(C^*(\pi_1M))$. Thus it holds for
 - lacksquare all simply-connected manifolds of dimension \geqslant 5 (in particular exotic spheres Σ with $\alpha(\Sigma) \neq 0$),
 - Tⁿ for all n, more generally: all enlargeable spin manifolds,
 - **a** aspherical spin manifolds M where $\pi_1 M$ satisfies the strong Novikov conjecture.
- Gromov, Räde 2021: All orientable manifolds for $5 \neq n \leq 7$.

Theorem (Cecchini–Z. 2021)

Let (V,g) be a Riemannian spin manifold, $\partial V = \partial_- V \sqcup \partial_+ V$ where $\partial_\pm V$ are non-empty unions of components. Suppose $\widehat{A}(\partial_\pm V) \neq 0$ and $\operatorname{scal}_q \geqslant \mathfrak{n}(\mathfrak{n}-1)$.

1. If $H_g \geqslant -\tan(nl/2)$ for $0 < l < \pi/n$, then width $(V, g) = \text{dist}_g(\partial_- V, \partial_+ V) \leqslant 2l$.

Theorem (Cecchini-Z. 2021)

Let (V,g) be a Riemannian spin manifold, $\partial V=\partial_- V\sqcup\partial_+ V$ where $\partial_\pm V$ are non-empty unions of components. Suppose $\widehat{A}(\partial_\pm V)\neq 0$ and $\operatorname{scal}_q\geqslant \mathfrak{n}(\mathfrak{n}-1)$.

- $\textbf{1.} \ \ \text{If} \ \ H_g\geqslant -\tan(n\mathfrak{l}/2) \ \text{for} \ \ 0<\mathfrak{l}<\pi/n\text{, then width}(V\text{,}\ g)=\text{dist}_g(\mathfrak{d}_-V\text{,}\ \mathfrak{d}_+V)\leqslant 2\textbf{l}\text{.}$
- 2. If distance equality in 1. is attained, then V is isometric to $M\times [-l,\,l]$,

$$g = \cos(nx/2)^{2/n}g_M + dx^2,$$

for some spin manifold (M,g_M) that admits a parallel spinor.

Theorem (Cecchini-Z. 2021)

Let (V,g) be a Riemannian spin manifold, $\partial V=\partial_- V\sqcup\partial_+ V$ where $\partial_\pm V$ are non-empty unions of components. Suppose $\widehat{A}(\partial_\pm V)\neq 0$ and $\operatorname{scal}_g\geqslant \mathfrak{n}(\mathfrak{n}-1)$.

- $\textbf{1.} \ \ \text{If} \ \ H_g\geqslant -\tan(n\mathfrak{l}/2) \ \text{for} \ \ 0<\mathfrak{l}<\pi/n\text{, then width}(V\text{,}\ g)=\text{dist}_g(\mathfrak{d}_-V\text{,}\ \mathfrak{d}_+V)\leqslant 2\textbf{l}\text{.}$
- 2. If distance equality in 1. is attained, then V is isometric to $M \times [-l, l]$,

$$g = \cos(nx/2)^{2/n}g_M + dx^2,$$

for some spin manifold (M, g_M) that admits a parallel spinor.

3. In particular, width $(V, g) < 2\pi/n$.

Theorem (Cecchini-Z. 2021)

Let (V, g) be a Riemannian spin manifold, $\partial V = \partial_- V \sqcup \partial_+ V$ where $\partial_\pm V$ are non-empty unions of components. Suppose $\widehat{A}(\partial_\pm V) \neq 0$ and $\operatorname{scal}_q \geqslant n(n-1)$.

- 1. If $H_g \geqslant -\tan(nl/2)$ for $0 < l < \pi/n$, then width $(V, g) = \text{dist}_g(\partial_- V, \partial_+ V) \leqslant 2l$.
- 2. If distance equality in 1. is attained, then V is isometric to $M \times [-l, l]$,

$$g = \cos(nx/2)^{2/n}g_M + dx^2,$$

for some spin manifold (M, g_M) that admits a parallel spinor.

3. In particular, width $(V, g) < 2\pi/n$.

Key proof idea: Modified Dirac operator $\mathcal{B}_f \coloneqq \mathcal{D} + f\sigma$ depending on a scalar function f.

$$\Rightarrow \quad \mathfrak{B}_{\mathsf{f}}^2 = \quad \dots \quad \geqslant \widetilde{\nabla}^* \widetilde{\nabla} + \frac{\mathsf{scal}_g}{4} + \frac{\mathsf{n} - \mathsf{1}}{\mathsf{n}} \left(\mathsf{f}^2 - |\mathsf{d}\mathsf{f}| \right).$$

Theorem (Gromov, Wang-Xie-Yu 2021)

Let g be a Riemannian metric on the cube $[-1,1]^n$ of $scal_q \ge n(n-1)$. Then

$$\sum_{i=1}^n \frac{1}{d_i^2} \geqslant \frac{n^2}{4\pi^2}, \qquad \text{in particular } \min_i d_i \leqslant \frac{2\pi}{\sqrt{n}}.$$

Recall: Ric $> 0 \implies$ connected at infinity; but scal > 0 allows more than one end (e.g. $S^2 \times \mathbb{R}$).

Recall: Ric $> 0 \implies$ connected at infinity; but scal > 0 allows more than one end (e.g. $S^2 \times \mathbb{R}$).

Theorem (Gromov-Lawson 1983)

 $\mathsf{T}^{n-1} \times \mathbb{R}$ does not admit a complete metric of scal > 0.

Recall: Ric $> 0 \implies$ connected at infinity; but scal > 0 allows more than one end (e.g. $S^2 \times \mathbb{R}$).

Theorem (Gromov-Lawson 1983)

 $\mathsf{T}^{n-1} \times \mathbb{R}$ does not admit a complete metric of scal > 0.

Theorem (Rosenberg 2007, Cecchini 2018, Z. 2020)

Let M be a compact spin manifold of $0 \neq \alpha_{\pi_1 M}(M) \in KO_*(C^*\pi_1 M)$. Then $M \times \mathbb{R}$ does not admit a complete metric of scal > 0.

Recall: Ric $> 0 \implies$ connected at infinity; but scal > 0 allows more than one end (e.g. $S^2 \times \mathbb{R}$).

Theorem (Gromov-Lawson 1983)

 $\mathsf{T}^{n-1} \times \mathbb{R}$ does not admit a complete metric of scal > 0.

Theorem (Rosenberg 2007, Cecchini 2018, Z. 2020)

Let M be a compact spin manifold of $0 \neq \alpha_{\pi_1 M}(M) \in KO_*(C^*\pi_1 M)$. Then $M \times \mathbb{R}$ does not admit a complete metric of scal > 0.

Conjecture (Rosenberg-Stolz 1994)

Let M be a compact connected manifold that does not admit a metric of scal > 0 with $dim(M) \neq 4$. Then $M \times \mathbb{R}$ does not admit a complete metric of scal > 0.

An *open band* is a non-compact manifold V with a decomposition $Ends(V) = \mathcal{E}_- \sqcup \mathcal{E}_+$, $\mathcal{E}_\pm \neq \emptyset$ open.

An *open band* is a non-compact manifold V with a decomposition $Ends(V) = \mathcal{E}_- \sqcup \mathcal{E}_+$, $\mathcal{E}_\pm \neq \emptyset$ open.

13

An *open band* is a non-compact manifold V with a decomposition $Ends(V) = \mathcal{E}_- \sqcup \mathcal{E}_+$, $\mathcal{E}_\pm \neq \emptyset$ open.

An *open band* is a non-compact manifold V with a decomposition $Ends(V) = \mathcal{E}_- \sqcup \mathcal{E}_+$, $\mathcal{E}_\pm \neq \emptyset$ open.

13

An *open band* is a non-compact manifold V with a decomposition $Ends(V)=\mathcal{E}_-\sqcup\mathcal{E}_+$, $\mathcal{E}_\pm\neq\emptyset$ open.

An *open band* is a non-compact manifold V with a decomposition $Ends(V)=\mathcal{E}_-\sqcup\mathcal{E}_+$, $\mathcal{E}_\pm\neq\emptyset$ open.

Proposition (Cecchini-Räde-Z. 2022)

Let (V,g) be an open band endowed with a complete metric of scal > 0 and $n = \dim(V) \le 7$. Then there exists a properly separating $\Sigma \subset V$ that admits a metric of scal > 0.

13

An *open band* is a non-compact manifold V with a decomposition $Ends(V) = \mathcal{E}_- \sqcup \mathcal{E}_+$, $\mathcal{E}_\pm \neq \emptyset$ open.

Proposition (Cecchini–Räde–Z. 2022)

Let (V,g) be an open band endowed with a complete metric of scal >0 and $n=\dim(V)\leqslant 7$. Then there exists a properly separating $\Sigma\subset V$ that admits a metric of scal >0.

Key proof ingredient: "μ-bubbles" (Gromov, J. Zhu, Chodosh–Li, ...; (Andersson–Eichmair–Metzger))

Theorem (Cecchini-Räde-Z. 2022)

Let X be an orientable connected n-manifold with $6 \le n \le 7$ and let $M \subset X$ be a twosided compact connected incompressible hypersurface which does not admit a metric of scal > 0. Suppose

- either X and M are both almost spin,
- or X and M are both totally non-spin.

Then X does not admit a complete metric of scal > 0.

Theorem (Cecchini-Räde-Z. 2022)

Let X be an orientable connected n-manifold with $6 \le n \le 7$ and let $M \subset X$ be a twosided compact connected incompressible hypersurface which does not admit a metric of scal > 0. Suppose

- either X and M are both almost spin,
- or X and M are both totally non-spin.

Then X does not admit a complete metric of scal > 0.

Corollary: Rosenberg–Stolz conjecture for $M^{n-1} \times \mathbb{R}$ holds if $5 \neq n \leqslant 7$ and M is orientable.

Theorem (Cecchini-Räde-Z. 2022)

Let X be an orientable connected \mathfrak{n} -manifold with $6 \leqslant \mathfrak{n} \leqslant 7$ and let $M \subset X$ be a twosided compact connected incompressible hypersurface which does not admit a metric of scal > 0. Suppose

- either X and M are both almost spin,
- or X and M are both totally non-spin.

Then X does not admit a complete metric of scal > 0.

Corollary: Rosenberg-Stolz conjecture for $M^{n-1} \times \mathbb{R}$ holds if $5 \neq n \leqslant 7$ and M is orientable.

Example

 $M \coloneqq (K3 \times T^2) \# (\mathbb{C}P^2 \times S^2)$ is totally non-spin and admits scal > 0,

but it contains $K3 \times S^1$ as an incompressible hypersurface which is spin and does not admit scal > 0.

Thank you for your attention!