Phase Transitions in Quantum Many-body Theory

Zhituo Wang

Harbin Institute of Technology

From Perturbative to non-Perturbative QFT Münster University

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Phase Transitions in Quantum Many-body Theory

Zhituo Wang

Harbin Institute of Technology

From Perturbative to non-Perturbative QFT Münster University

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► The 2-D Honeycomb-Hubbard model and main results.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The Content

- ► The 2-D Honeycomb-Hubbard model and main results.
- Sketch of the proof: fermionic cluster expansions and renormalization group analysis.

(ロ)、(型)、(E)、(E)、 E) の(の)

The Content

- ► The 2-D Honeycomb-Hubbard model and main results.
- Sketch of the proof: fermionic cluster expansions and renormalization group analysis.
- Hubbard model on the 2-D square lattice and universality.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Content

- ► The 2-D Honeycomb-Hubbard model and main results.
- Sketch of the proof: fermionic cluster expansions and renormalization group analysis.
- Hubbard model on the 2-D square lattice and universality.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusions and perspectives.

The 2d Honeycomb Hubbard model

The honeycomb lattice Λ = Λ^A ∪ Λ^B is the superposition of the triangular lattice Λ^A (White dots) with Λ^B = Λ^A + δ_i (Black dots): δ₁ = (1,0), δ₂ = ½(-1, √3), δ₃ = ½(-1, −√3).

The states of the system.

► Let $\Lambda_L = \Lambda/L\Lambda$, $L \in \mathbb{N}$. The one-particle Hilbert space $\mathcal{H}_L = \{\psi_{\mathbf{x},\alpha,\tau} : \Lambda_L \times \{A, B\} \times \{\uparrow,\downarrow\} \to \mathbb{C} \}$ such that $\|\psi\|_2^2 = \sum_{\mathbf{x},\tau,\alpha} |\psi_{\mathbf{x},\alpha,\tau}|^2 = 1.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The states of the system.

- ▶ Let $\Lambda_L = \Lambda/L\Lambda$, $L \in \mathbb{N}$. The one-particle Hilbert space $\mathcal{H}_L = \{\psi_{\mathbf{x},\alpha,\tau} : \Lambda_L \times \{A, B\} \times \{\uparrow,\downarrow\} \to \mathbb{C} \}$ such that $\|\psi\|_2^2 = \sum_{\mathbf{x},\tau,\alpha} |\psi_{\mathbf{x},\alpha,\tau}|^2 = 1.$
- The Fermionic Fock space \mathcal{F}_L over \mathcal{H}_L :

$$\mathcal{F}_L = \mathbb{C} \oplus \bigoplus_{N=1}^{4L^2} \mathcal{F}_{\Lambda}^{(N)}, \quad \mathcal{F}_L^{(N)} = \bigwedge^N \mathcal{H}_L.$$

The states of the system.

- ▶ Let $\Lambda_L = \Lambda/L\Lambda$, $L \in \mathbb{N}$. The one-particle Hilbert space $\mathcal{H}_L = \{\psi_{\mathbf{x},\alpha,\tau} : \Lambda_L \times \{A, B\} \times \{\uparrow,\downarrow\} \to \mathbb{C} \}$ such that $\|\psi\|_2^2 = \sum_{\mathbf{x},\tau,\alpha} |\psi_{\mathbf{x},\alpha,\tau}|^2 = 1.$
- The Fermionic Fock space \mathcal{F}_L over \mathcal{H}_L :

$$\mathcal{F}_L = \mathbb{C} \oplus igoplus_{N=1}^{4L^2} \mathcal{F}^{(N)}_\Lambda, \quad \mathcal{F}^{(N)}_L = igwedge^N \mathcal{H}_L.$$

 For any ψ ∈ H_L, we can define the Fermionic operators a[±](ψ) (while dots) and b[±](ψ) (black dots) satisfying the CAR:

$$\{a^{+}(\psi), a^{-}(\phi)\} := a^{+}(\psi)a^{-}(\phi) + a^{-}(\phi)a^{+}(\psi)$$

= $\langle \psi, \phi \rangle_{\mathcal{H}_{L}}$
 $\{a^{+}(\psi), a^{+}(\phi)\} = 0 = \{a^{-}(\psi), a^{-}(\phi)\}$

The Fermionic operators

The operators a[±](ψ) (while dots) and b[±](ψ) (black dots) acting on F_L, (ξ = (x, τ)) by:

$$(a^{+}(\psi)\Psi)^{(N)}(\xi_{1},\cdots,\xi_{N})$$

$$=\sum_{j=1}^{N}\frac{(-1)^{j}}{\sqrt{N}}\psi(\xi_{j})\psi^{(N-1)}(\xi_{1},\cdots,\xi_{j-1},\xi_{j+1},\cdots,\xi_{N}),$$

$$(a^{-}(\psi)\Psi)^{(N)}(\xi_{1},\cdots,\xi_{N})$$

$$=\sqrt{N+1}\int d\xi\bar{\psi}(\xi)\psi^{(N+1)}(\xi,\xi_{1},\cdots,\xi_{N})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Fermionic operators

The operators a[±](ψ) (while dots) and b[±](ψ) (black dots) acting on F_L, (ξ = (x, τ)) by:

$$(a^{+}(\psi)\Psi)^{(N)}(\xi_{1},\cdots,\xi_{N})$$

$$=\sum_{j=1}^{N}\frac{(-1)^{j}}{\sqrt{N}}\psi(\xi_{j})\psi^{(N-1)}(\xi_{1},\cdots,\xi_{j-1},\xi_{j+1},\cdots,\xi_{N}),$$

$$(a^{-}(\psi)\Psi)^{(N)}(\xi_{1},\cdots,\xi_{N})$$

$$=\sqrt{N+1}\int d\xi\bar{\psi}(\xi)\psi^{(N+1)}(\xi,\xi_{1},\cdots,\xi_{N})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► The fermionic fields a_{ξ}^{\pm} : $a^+(\psi) = \int \psi(\xi) a_{\xi}^+ d\xi$, $a^-(\psi) = \int \bar{\psi}(\xi) a_{\xi}^- d\xi$

The Fermionic operators

The operators a[±](ψ) (while dots) and b[±](ψ) (black dots) acting on F_L, (ξ = (x, τ)) by:

$$(a^{+}(\psi)\Psi)^{(N)}(\xi_{1},\cdots,\xi_{N})$$

$$=\sum_{j=1}^{N}\frac{(-1)^{j}}{\sqrt{N}}\psi(\xi_{j})\psi^{(N-1)}(\xi_{1},\cdots,\xi_{j-1},\xi_{j+1},\cdots,\xi_{N}),$$

$$(a^{-}(\psi)\Psi)^{(N)}(\xi_{1},\cdots,\xi_{N})$$

$$=\sqrt{N+1}\int d\xi\bar{\psi}(\xi)\psi^{(N+1)}(\xi,\xi_{1},\cdots,\xi_{N})$$

- The fermionic fields a_{ξ}^{\pm} : $a^{+}(\psi) = \int \psi(\xi) a_{\xi}^{+} d\xi$, $a^{-}(\psi) = \int \overline{\psi}(\xi) a_{\xi}^{-} d\xi$
- ► The CAR for $\{a_{\mathbf{x},\tau}^{\pm}\}$: $\{a_{\mathbf{x},\tau}^{+}, a_{\mathbf{x}',\tau'}^{-}\} = \delta_{\mathbf{x},\mathbf{x}'}\delta_{\tau,\tau'},$ $\{a_{\mathbf{x},\tau}^{+}, a_{\mathbf{x}',\tau'}^{+}\} = 0, \ \{a_{\mathbf{x},\tau}^{-}, a_{\mathbf{x}',\tau'}^{-}\} = 0.$ The same for $b_{\mathbf{z},\tau}^{\pm}$.

The Hubbard model on the honeycomb lattice

The grand-canonical Hamiltonian is:

$$\begin{aligned} \mathcal{H}_{\Lambda_{L}} &= -t \sum_{\substack{\mathbf{x} \in \Lambda_{A} \\ i=1,2,3}} \sum_{\tau=\uparrow\downarrow} \left(a_{\mathbf{x},\tau}^{+} b_{\mathbf{x}+\vec{\delta}_{i},\tau}^{-} + b_{\mathbf{x}+\vec{\delta}_{i},\tau}^{+} a_{\mathbf{x},\tau}^{-} \right) \\ &- \mu \sum_{\mathbf{x} \in \Lambda_{A}} \sum_{\tau=\uparrow\downarrow} \left(a_{\mathbf{x},\tau}^{+} a_{\mathbf{x},\tau}^{-} + b_{\mathbf{x}+\vec{\delta}_{i},\tau}^{+} b_{\mathbf{x}+\vec{\delta}_{i},\tau}^{-} \right) \\ &+ \lambda \sum_{\mathbf{x} \in \Lambda_{A}} \left(a_{\mathbf{x},\uparrow}^{+} a_{\mathbf{x},\uparrow}^{-} a_{\mathbf{x},\downarrow}^{+} a_{\mathbf{x},\downarrow}^{-} + b_{\mathbf{x},\uparrow}^{+} b_{\mathbf{x},\uparrow}^{-} b_{\mathbf{x},\downarrow}^{+} b_{\mathbf{x},\downarrow}^{-} \right) \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• $t \in \mathbb{R}^+$, the hopping parameter, $\lambda \in \mathbb{R}$, the coupling constant, $\mu \in \mathbb{R}$ is the chemical potential.

The Hubbard model on the honeycomb lattice

The grand-canonical Hamiltonian is:

$$\begin{aligned} \mathcal{H}_{\Lambda_{L}} &= -t \sum_{\substack{\mathbf{x} \in \Lambda_{A} \\ i=1,2,3}} \sum_{\tau=\uparrow\downarrow} \left(a_{\mathbf{x},\tau}^{+} b_{\mathbf{x}+\vec{\delta}_{i},\tau}^{-} + b_{\mathbf{x}+\vec{\delta}_{i},\tau}^{+} a_{\mathbf{x},\tau}^{-} \right) \\ &- \mu \sum_{\mathbf{x} \in \Lambda_{A}} \sum_{\tau=\uparrow\downarrow} \left(a_{\mathbf{x},\tau}^{+} a_{\mathbf{x},\tau}^{-} + b_{\mathbf{x}+\vec{\delta}_{i},\tau}^{+} b_{\mathbf{x}+\vec{\delta}_{i},\tau}^{-} \right) \\ &+ \lambda \sum_{\mathbf{x} \in \Lambda_{A}} \left(a_{\mathbf{x},\uparrow}^{+} a_{\mathbf{x},\uparrow}^{-} a_{\mathbf{x},\downarrow}^{+} a_{\mathbf{x},\downarrow}^{-} + b_{\mathbf{x},\uparrow}^{+} b_{\mathbf{x},\uparrow}^{-} b_{\mathbf{x},\downarrow}^{+} b_{\mathbf{x},\downarrow}^{-} \right) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- t ∈ ℝ⁺, the hopping parameter, λ ∈ ℝ, the coupling constant, μ ∈ ℝ is the chemical potential.
- **x**, coordinates of the sites, $\tau = \uparrow \downarrow$ are the spins.

The Hubbard model on the honeycomb lattice

The grand-canonical Hamiltonian is:

$$\begin{aligned} H_{\Lambda_{L}} &= -t \sum_{\substack{\mathbf{x} \in \Lambda_{A} \\ i=1,2,3}} \sum_{\tau=\uparrow\downarrow} \left(a_{\mathbf{x},\tau}^{+} b_{\mathbf{x}+\vec{\delta}_{i},\tau}^{-} + b_{\mathbf{x}+\vec{\delta}_{i},\tau}^{+} a_{\mathbf{x},\tau}^{-} \right) \\ &- \mu \sum_{\mathbf{x} \in \Lambda_{A}} \sum_{\tau=\uparrow\downarrow} \left(a_{\mathbf{x},\tau}^{+} a_{\mathbf{x},\tau}^{-} + b_{\mathbf{x}+\vec{\delta}_{i},\tau}^{+} b_{\mathbf{x}+\vec{\delta}_{i},\tau}^{-} \right) \\ &+ \lambda \sum_{\mathbf{x} \in \Lambda_{A}} \left(a_{\mathbf{x},\uparrow}^{+} a_{\mathbf{x},\uparrow}^{-} a_{\mathbf{x},\downarrow}^{+} a_{\mathbf{x},\downarrow}^{-} + b_{\mathbf{x},\uparrow}^{+} b_{\mathbf{x},\uparrow}^{-} b_{\mathbf{x},\downarrow}^{+} b_{\mathbf{x},\downarrow}^{-} \right) \end{aligned}$$

- t ∈ ℝ⁺, the hopping parameter, λ ∈ ℝ, the coupling constant, μ ∈ ℝ is the chemical potential.
- **x**, coordinates of the sites, $\tau = \uparrow \downarrow$ are the spins.
- ▶ When \u03c6 = 0, any fermion is only hopping to its nearest neighbor. When \u03c6 > 0, all fermions are correlated through the interaction term.

► Let
$$\mathbf{a}_{\mathbf{x},1}^{\pm} = \mathbf{a}_{\mathbf{x}}^{\pm}$$
, $\mathbf{a}_{\mathbf{x},2}^{\pm} = \mathbf{b}_{\mathbf{x}}^{\pm}$. Define the imaginary-time evolution: $\mathbf{a}_{\mathbf{x},\alpha}^{\pm} = e^{H_{\Lambda_L} \mathbf{x}^0} \mathbf{a}_{\mathbf{x},\alpha}^{\pm} e^{-H_{\Lambda_L} \mathbf{x}^0}$, $x = (x^0, \mathbf{x}) \in \Lambda_{\beta,L} := [-\beta, \beta) \times \Lambda_L$, $\beta = 1/T$.

► Let
$$\mathbf{a}_{\mathbf{x},1}^{\pm} = \mathbf{a}_{\mathbf{x}}^{\pm}$$
, $\mathbf{a}_{\mathbf{x},2}^{\pm} = \mathbf{b}_{\mathbf{x}}^{\pm}$. Define the imaginary-time evolution: $\mathbf{a}_{\mathbf{x},\alpha}^{\pm} = e^{H_{\Lambda_L} x^0} \mathbf{a}_{\mathbf{x},\alpha}^{\pm} e^{-H_{\Lambda_L} x^0}$, $x = (x^0, \mathbf{x}) \in \Lambda_{\beta,L} := [-\beta, \beta) \times \Lambda_L$, $\beta = 1/T$.

• The Gibbs state associated with the Hamiltonian H_{Λ_L} is: $\langle \cdot \rangle = \text{Tr}_{\mathcal{F}_L} \left[\cdot e^{-\beta H_{\Lambda_L}} \right] / Z_{\beta,\Lambda_L}, Z_{\beta,\Lambda_L} = \text{Tr}_{\mathcal{F}_L} e^{-\beta H_{\Lambda_L}}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- ► Let $\mathbf{a}_{\mathbf{x},1}^{\pm} = \mathbf{a}_{\mathbf{x}}^{\pm}$, $\mathbf{a}_{\mathbf{x},2}^{\pm} = \mathbf{b}_{\mathbf{x}}^{\pm}$. Define the imaginary-time evolution: $\mathbf{a}_{\mathbf{x},\alpha}^{\pm} = e^{H_{\Lambda_L} \mathbf{x}^0} \mathbf{a}_{\mathbf{x},\alpha}^{\pm} e^{-H_{\Lambda_L} \mathbf{x}^0}$, $x = (x^0, \mathbf{x}) \in \Lambda_{\beta,L} := [-\beta, \beta) \times \Lambda_L$, $\beta = 1/T$.
- The Gibbs state associated with the Hamiltonian H_{Λ_L} is: $\langle \cdot \rangle = \operatorname{Tr}_{\mathcal{F}_L} \left[\cdot e^{-\beta H_{\Lambda_L}} \right] / Z_{\beta,\Lambda_L}, \ Z_{\beta,\Lambda_L} = \operatorname{Tr}_{\mathcal{F}_L} e^{-\beta H_{\Lambda_L}}.$

(日) (同) (三) (三) (三) (○) (○)

Interesting quantities are:

- ► Let $\mathbf{a}_{\mathbf{x},1}^{\pm} = \mathbf{a}_{\mathbf{x}}^{\pm}$, $\mathbf{a}_{\mathbf{x},2}^{\pm} = \mathbf{b}_{\mathbf{x}}^{\pm}$. Define the imaginary-time evolution: $\mathbf{a}_{\mathbf{x},\alpha}^{\pm} = e^{H_{\Lambda_L} \mathbf{x}^0} \mathbf{a}_{\mathbf{x},\alpha}^{\pm} e^{-H_{\Lambda_L} \mathbf{x}^0}$, $x = (x^0, \mathbf{x}) \in \Lambda_{\beta,L} := [-\beta, \beta) \times \Lambda_L$, $\beta = 1/T$.
- The Gibbs state associated with the Hamiltonian H_{Λ_L} is: $\langle \cdot \rangle = \operatorname{Tr}_{\mathcal{F}_L} \left[\cdot e^{-\beta H_{\Lambda_L}} \right] / Z_{\beta,\Lambda_L}, \ Z_{\beta,\Lambda_L} = \operatorname{Tr}_{\mathcal{F}_L} e^{-\beta H_{\Lambda_L}}.$
- Interesting quantities are:
 - ► The 2*p*-point Schwinger's function $p \ge 0$ (2*p*-th moments of the Gibbs states) for $L \to \infty$: $[S_{2,\beta}(x_1, x_2, \lambda)]_{\alpha_1, \alpha_2} = \lim_{L \to \infty} \langle \mathbf{Ta}_{x_1, \alpha_1, \tau_1}^{\varepsilon_1} \mathbf{a}_{x_2, \alpha_2, \tau_2}^{\varepsilon_2} \rangle_{\beta, L}$ $\langle \cdot \rangle = \operatorname{Tr}_{\mathcal{F}_L} [\cdot e^{-\beta H_{\Lambda_L}}] / Z_{\beta, \Lambda_L}$, **T** is the time-ordering operator.

(日) (同) (三) (三) (三) (○) (○)

- ► Let $\mathbf{a}_{\mathbf{x},1}^{\pm} = \mathbf{a}_{\mathbf{x}}^{\pm}$, $\mathbf{a}_{\mathbf{x},2}^{\pm} = \mathbf{b}_{\mathbf{x}}^{\pm}$. Define the imaginary-time evolution: $\mathbf{a}_{\mathbf{x},\alpha}^{\pm} = e^{H_{\Lambda_L} \mathbf{x}^0} \mathbf{a}_{\mathbf{x},\alpha}^{\pm} e^{-H_{\Lambda_L} \mathbf{x}^0}$, $x = (x^0, \mathbf{x}) \in \Lambda_{\beta,L} := [-\beta, \beta) \times \Lambda_L$, $\beta = 1/T$.
- The Gibbs state associated with the Hamiltonian H_{Λ_L} is: $\langle \cdot \rangle = \operatorname{Tr}_{\mathcal{F}_L} \left[\cdot e^{-\beta H_{\Lambda_L}} \right] / Z_{\beta,\Lambda_L}, \ Z_{\beta,\Lambda_L} = \operatorname{Tr}_{\mathcal{F}_L} e^{-\beta H_{\Lambda_L}}.$
- Interesting quantities are:
 - The 2*p*-point Schwinger's function *p* ≥ 0 (2*p*-th moments of the Gibbs states) for *L* → ∞: [S_{2,β}(x₁, x₂, λ)]_{α1,α2} = lim_{L→∞} ⟨Ta^{ε1}_{x1,α1,τ1}a^{ε2}_{x2,α2,τ2}⟩_{β,L} ⟨·⟩ = Tr_{FL} [· e^{-βH_{ΛL}}]/Z_{β,ΛL}, T is the time-ordering operator.
 The connected Schwinger's function S^c_{2,β}(x₁, x₂, λ) "cummulants of the Gibbs state" and the self-energy Σ_{2,β}(x₁, x₂; λ).

(日) (同) (三) (三) (三) (○) (○)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

►
$$C(x_1, x_2, 0, \mu) = \int dk_0 d\mathbf{k} \hat{C}(k_0, \mathbf{k}, 0) e^{ik(x_1 - x_2)},$$

 $k_0 = (2n+1)\pi T, n \in \mathbb{Z}_{\geq 0}, \mathbf{k} = (k_1, k_2) \in \mathcal{B} = \mathbb{R}^2 / \Lambda^*,$
 $\Lambda^* = \{\mathbf{k} \in \mathbb{R}^2, \langle \mathbf{x}, \mathbf{k} \rangle \in 2\pi \mathbb{Z}, \forall \mathbf{x} \in \Lambda\}.$

$$\mathsf{C}(x_1, x_2, 0, \mu) = \int dk_0 d\mathbf{k} \hat{C}(k_0, \mathbf{k}, 0) e^{ik(x_1 - x_2)}, \\ k_0 = (2n+1)\pi T, \ n \in \mathbb{Z}_{\geq 0}, \ \mathbf{k} = (k_1, k_2) \in \mathcal{B} = \mathbb{R}^2 / \Lambda^*, \\ \Lambda^* = \{\mathbf{k} \in \mathbb{R}^2, \langle \mathbf{x}, \mathbf{k} \rangle \in 2\pi \mathbb{Z}, \ \forall \ \mathbf{x} \in \Lambda\}.$$

►

$$\hat{C}(k_0, \mathbf{k}, 0) = \frac{1}{k_0^2 + |\Omega(\mathbf{k})|^2 - \mu^2 - 2i\mu k_0} \begin{pmatrix} ik_0 + \mu & -\Omega^*(\mathbf{k}) \\ \Omega(\mathbf{k}) & ik_0 + \mu \end{pmatrix}$$
$$\Omega(\mathbf{k}) = 1 + 2e^{-i\frac{3}{2}k_1} \cos(\frac{\sqrt{3}}{2}k_2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{array}{l} \blacktriangleright \quad C(x_1, x_2, 0, \mu) = \int dk_0 d\mathbf{k} \hat{C}(k_0, \mathbf{k}, 0) e^{ik(x_1 - x_2)}, \\ k_0 = (2n+1)\pi T, \; n \in \mathbb{Z}_{\geq 0}, \; \mathbf{k} = (k_1, k_2) \in \mathcal{B} = \mathbb{R}^2 / \Lambda^*, \\ \Lambda^* = \{ \mathbf{k} \in \mathbb{R}^2, \langle \mathbf{x}, \mathbf{k} \rangle \in 2\pi \mathbb{Z}, \; \forall \; \mathbf{x} \in \Lambda \}. \end{array}$$

►

$$\begin{split} \hat{C}(k_0, \mathbf{k}, 0) &= \frac{1}{k_0^2 + |\Omega(\mathbf{k})|^2 - \mu^2 - 2i\mu k_0} \begin{pmatrix} ik_0 + \mu & -\Omega^*(\mathbf{k}) \\ \Omega(\mathbf{k}) & ik_0 + \mu \end{pmatrix} \\ \Omega(\mathbf{k}) &= 1 + 2e^{-i\frac{3}{2}k_1} \cos(\frac{\sqrt{3}}{2}k_2) \\ \text{It is well defined for } T > 0 \ (k_0 > 0). \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\begin{array}{l} \blacktriangleright \quad C(x_1, x_2, 0, \mu) = \int dk_0 d\mathbf{k} \hat{C}(k_0, \mathbf{k}, 0) e^{ik(x_1 - x_2)}, \\ k_0 = (2n+1)\pi T, \; n \in \mathbb{Z}_{\geq 0}, \; \mathbf{k} = (k_1, k_2) \in \mathcal{B} = \mathbb{R}^2 / \Lambda^*, \\ \Lambda^* = \{ \mathbf{k} \in \mathbb{R}^2, \langle \mathbf{x}, \mathbf{k} \rangle \in 2\pi \mathbb{Z}, \; \forall \; \mathbf{x} \in \Lambda \}. \end{array}$$

$$\hat{C}(k_0, \mathbf{k}, 0) = \frac{1}{k_0^2 + |\Omega(\mathbf{k})|^2 - \mu^2 - 2i\mu k_0} \begin{pmatrix} ik_0 + \mu & -\Omega^*(\mathbf{k}) \\ \Omega(\mathbf{k}) & ik_0 + \mu \end{pmatrix}$$

$$\Omega(\mathbf{k}) = 1 + 2e^{-i\frac{3}{2}k_1}\cos(\frac{\sqrt{3}}{2}k_2)$$

• It is well defined for T > 0 $(k_0 > 0)$.

► For $T \to 0$, $\hat{S}_{2,\beta}(k_0, \mathbf{k}, 0)$ is singular on the set: $\mathcal{F}_0 = \{\mathbf{k} \in \mathcal{B}, |\Omega(\mathbf{k})| - \mu = 0\}$, called the Fermi surface.

The Fermi surfaces

• When $\mu = 0$, $\mathcal{F}_0 = \{\mathbf{k}_F^{\pm} = (\frac{2\pi}{3}, \pm \frac{2\pi}{3\sqrt{3}})\}$ is a pair of points.

The Fermi surfaces

- When $\mu = 0$, $\mathcal{F}_0 = \{\mathbf{k}_F^{\pm} = (\frac{2\pi}{3}, \pm \frac{2\pi}{3\sqrt{3}})\}$ is a pair of points.
- ▶ When $\mu = 1$, $\mathcal{F}_0 = \{(k_1, k_2), k_2 = \pm \frac{(2n+1)\pi}{\sqrt{3}}, n \in \mathbb{Z}\}$ $\cup \{(k_1, k_2), k_2 = \pm \sqrt{3}k_1 \mp \frac{4n+2}{\sqrt{3}}\pi, n \in \mathbb{Z}\}.$

The Fermi surfaces

- When $\mu = 0$, $\mathcal{F}_0 = \{\mathbf{k}_F^{\pm} = (\frac{2\pi}{3}, \pm \frac{2\pi}{3\sqrt{3}})\}$ is a pair of points.
- ▶ When $\mu = 1$, $\mathcal{F}_0 = \{(k_1, k_2), k_2 = \pm \frac{(2n+1)\pi}{\sqrt{3}}, n \in \mathbb{Z}\}$ $\cup \{(k_1, k_2), k_2 = \pm \sqrt{3}k_1 \mp \frac{4n+2}{\sqrt{3}}\pi, n \in \mathbb{Z}\}.$

For $0 < \mu < 1$, \mathcal{F}_0 is a set of convex curves surrounding \mathbf{k}_F^{\pm} .

The interacting theory $\lambda \neq 0$

The fundamental questions are:

► Is $\lim_{L\to\infty} \frac{Z_{\beta,\Lambda_L}(\lambda)}{Z_{\beta,\Lambda_L}(0)}$ or $\lim_{L\to\infty} \log Z_{\beta,\Lambda_L}(\lambda)$ a well-defined quantity? Or can we rigorously define this model?

The interacting theory $\lambda \neq 0$

The fundamental questions are:

- ► Is $\lim_{L\to\infty} \frac{Z_{\beta,\Lambda_L}(\lambda)}{Z_{\beta,\Lambda_L}(0)}$ or $\lim_{L\to\infty} \log Z_{\beta,\Lambda_L}(\lambda)$ a well-defined quantity? Or can we rigorously define this model?
- The analytic properties of the (connected)-Schwinger functions?

The interacting theory $\lambda \neq 0$

The fundamental questions are:

► Is $\lim_{L\to\infty} \frac{Z_{\beta,\Lambda_L}(\lambda)}{Z_{\beta,\Lambda_L}(0)}$ or $\lim_{L\to\infty} \log Z_{\beta,\Lambda_L}(\lambda)$ a well-defined quantity? Or can we rigorously define this model?

- The analytic properties of the (connected)-Schwinger functions?
- Is the ground state of this model a Fermi liquid?

Definition (Fermi liquid, Salmhofer, 1998)

Let $\hat{S}_{2,\beta}^{c}(k,\lambda)$ be the Fourier transform of $S_{2,\beta}^{c}(x_{1},x_{2},\lambda)$. The ground state of an interacting many-fermion system is said to be a Fermi liquid in the equilibrium (at $\beta = 1/T$) if

Definition (Fermi liquid, Salmhofer, 1998)

Let $\hat{S}_{2,\beta}^{c}(k,\lambda)$ be the Fourier transform of $S_{2,\beta}^{c}(x_{1},x_{2},\lambda)$. The ground state of an interacting many-fermion system is said to be a Fermi liquid in the equilibrium (at $\beta = 1/T$) if

- The Fourier transform of the self-energy function, Σ̂(k, λ, β), is C² in k for β → ∞.

Examples of Fermi liquids and non-Fermi liquids

- ▶ Jellium model: FL for $T \ge T_c$ (Disertori, Rivasseau 2000)
- ▶ Fermic model in the continuum with central symmetric Fermi surfaces: FL for T ≥ T_c. (Benfatto, Giuliani, Mastropietro 2003)
- ▶ Many-fermion model with asymmetric Fermi surfaces: FL for $T \rightarrow 0$: (Feldman, Knörrer, Trubowitz 2004)
- ► Hubbard model on the square lattice at half-filling: Non-fermi liquid for T ≥ T_c (Afchain, Magnen, Rivasseau 2005)
- ► Hubbard model on the square lattice far from half-filling: FL for T ≥ T_c (Benfatto, Giuliani, Mastropietro 2006)

The Honeycomb Hubbard model with $\mu = 0$, $\lambda \neq 0$. (Graphene)

The Honeycomb Hubbard model with $\mu = 0$, $\lambda \neq 0$. (Graphene)

► Theorem (Giuliani, Mastropietro, 2010) There exists a positive constant U such that the "pressure function" $\log \frac{Z_{\beta,\Lambda}(\lambda)}{Z_{\beta,\Lambda}(0)}$ and the connected Schwinger function $S_{2,\beta}^{c}(x_{1}, x_{2}, \lambda)$ are both analytic functions of λ when $\beta \to \infty$, for $|\lambda| \leq U$.
The Honeycomb Hubbard model with $\mu = 1$, $\lambda \neq 0$

Theorem (Rivasseau, ZW 2021)

There exists a positive constants β_c = 1/T_c such that for any β ≤ β_c, the "pressure function" log Z_{β,Λ}(λ)/Z_{β,Λ}(0) and the connected two-point function S^c_{2,β}(λ) are analytic functions of the coupling constant λ, in the region

$$|\lambda \log^2 \beta| < 1. \tag{1}$$

The Honeycomb Hubbard model with $\mu = 1, \lambda \neq 0$

Theorem (Rivasseau, ZW 2021)

There exists a positive constants β_c = 1/T_c such that for any β ≤ β_c, the "pressure function" log ^{Z_{β,Λ}(λ)}/_{Z_{β,Λ}(0)} and the connected two-point function S^c_{2,β}(λ) are analytic functions of the coupling constant λ, in the region

$$|\lambda \log^2 \beta| < 1. \tag{1}$$

くしゃ (雪) (雪) (雪) (雪) (雪) (

Fix λ, with |λ| < 1, the transition temperature is
 T_c = C₁e^{-C₂}/_{|λ|^{1/2}}, C₁, C₂ > 0 are two strictly positive constants.

The Honeycomb Hubbard model with $\mu = 1, \lambda \neq 0$

Theorem (Rivasseau, ZW 2021)

There exists a positive constants β_c = 1/T_c such that for any β ≤ β_c, the "pressure function" log Z_{β,Λ}(λ)/Z_{β,Λ}(0) and the connected two-point function S^c_{2,β}(λ) are analytic functions of the coupling constant λ, in the region

$$|\lambda \log^2 \beta| < 1. \tag{1}$$

- Fix λ , with $|\lambda| < 1$, the transition temperature is $T_c = C_1 e^{-\frac{C_2}{|\lambda|^{1/2}}}$, $C_1, C_2 > 0$ are two strictly positive constants.
- The self-energy function $\hat{\Sigma}(k, \lambda)$ is $C^{1+\epsilon}$ differentiable w.r.t. the momentum for $T \to 0$. The ground state is not a Fermi liquid.

Proof-The Grassmann algebra and Berezin Integrals

The Grassmann algebra Gra is an associative, non-commutative, nilpotent algebra generated by the Grassmann variables {ψ_{k,α}^ε}, ε = ±, α = 1, 2, k = (k₀, k) ∈ D_{β,L} = {2π/β (n + 1/2), n ∈ N} × D_L, D_L = ℝ²/Λ_L^{*} such that ψ_{k,α}^εψ_{k',α'}^{ε'} = -ψ_{k',α'}^{ε'}ψ_{k,α}^ε and (ψ_{k,α}^ε)² = 0.

Proof-The Grassmann algebra and Berezin Integrals

- The Grassmann algebra Gra is an associative, non-commutative, nilpotent algebra generated by the Grassmann variables {ψ^ε_{k,α}}, ε = ±, α = 1, 2, k = (k₀, k) ∈ D_{β,L} = {2π/β (n + 1/2), n ∈ N} × D_L, D_L = ℝ²/Λ^{*}_L such that ψ^ε_{k,α}ψ^{ε'}_{k',α'} = -ψ^{ε'}_{k',α'}ψ^ε_{k,α} and (ψ^ε_{k,α})² = 0.
 The Grassmann differentiation and integrals are defined as:
 - $\partial_{\hat{\psi}_{k,\alpha}^{\varepsilon}}\hat{\psi}_{k',\alpha'}^{\varepsilon'} = \delta_{k,k'}\delta_{\alpha,\alpha'}\delta_{\varepsilon,\varepsilon'}, \int \hat{\psi}_{k,\alpha}^{\varepsilon}d\hat{\psi}_{k',\alpha'}^{\varepsilon'} = \delta_{k,k'}\delta_{\alpha,\alpha'}\delta_{\varepsilon,\varepsilon'}$

(日) (同) (三) (三) (三) (○) (○)

Proof-The Grassmann algebra and Berezin Integrals

- The Grassmann algebra Gra is an associative, non-commutative, nilpotent algebra generated by the Grassmann variables {ψ^ε_{k,α}}, ε = ±, α = 1, 2, k = (k₀, k) ∈ D_{β,L} = {2π/β(n + 1/2), n ∈ N} × D_L, D_L = ℝ²/Λ^{*}_L such that ψ^ε_{k,α}ψ<sup>ε'_{k',α'} = -ψ<sup>ε'_{k',α'}ψ^ε_{k,α} and (ψ^ε_{k,α})² = 0.
 </sup></sup>
- ► The Grassmann differentiation and integrals are defined as: $\partial_{\hat{\psi}_{k,\alpha}^{\varepsilon}} \hat{\psi}_{k',\alpha'}^{\varepsilon'} = \delta_{k,k'} \delta_{\alpha,\alpha'} \delta_{\varepsilon,\varepsilon'}, \int \hat{\psi}_{k,\alpha}^{\varepsilon} d\hat{\psi}_{k',\alpha'}^{\varepsilon'} = \delta_{k,k'} \delta_{\alpha,\alpha'} \delta_{\varepsilon,\varepsilon'}$

(日) (同) (三) (三) (三) (○) (○)

• A model of **Gra** is the exterior algebra (dx, \wedge)

The Grassmann Gaussian measure $P(d\psi)$ with covariance $\hat{C}(k)$:

$$P(d\psi) = N^{-1}D\psi \cdot \exp\left\{-\frac{1}{\beta|\Lambda_L|}\sum_{k=(k_0,\mathbf{k})\in\mathcal{D}_{\beta,L},\tau,\alpha}\hat{\psi}^+_{k,\tau,\alpha}\hat{C}(k)^{-1}\hat{\psi}^-_{k,\tau,\alpha}\right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where
$$N = \prod_{\mathbf{k}\in\mathcal{D}_{L}, \tau=\uparrow\downarrow} \frac{1}{\beta|\Lambda_{L}|} \begin{pmatrix} -ik_{0}-1 & -\Omega^{*}(\mathbf{k}) \\ -\Omega(\mathbf{k}) & -ik_{0}-1 \end{pmatrix}$$
,
$$\lim_{L\to\infty} \int P(d\psi)\hat{\psi}^{-}_{k_{1},\tau_{1},\alpha_{1}}\hat{\psi}^{+}_{k_{2},\tau_{2},\alpha_{2}} = \delta_{k_{1},k_{2}}\delta_{\tau_{1},\tau_{2}}[\hat{C}(k_{1})]_{\alpha_{1},\alpha_{2}}.$$

► Define
$$\psi_{x,\tau,\alpha}^{\pm} = \frac{1}{\beta|\Lambda_L|} \sum_{k \in \mathcal{D}_{\beta,L}} e^{\pm ikx} \hat{\psi}_{k,\tau,\alpha}^{\pm}, x \in \Lambda_{\beta,L} := [-\beta, \beta] \times \Lambda_L,$$

<□ > < @ > < E > < E > E のQ @

► Define
$$\psi_{x,\tau,\alpha}^{\pm} = \frac{1}{\beta |\Lambda_L|} \sum_{k \in \mathcal{D}_{\beta,L}} e^{\pm ikx} \hat{\psi}_{k,\tau,\alpha}^{\pm}$$
,
 $x \in \Lambda_{\beta,L} := [-\beta, \beta] \times \Lambda_L$,

the interacting potential becomes:

$$\mathcal{V}(\psi) = \lambda \sum_{lpha, lpha'=1,2} \int_{\Lambda_{eta,L}} d^3x \, \psi^+_{x,\uparrow,lpha} \psi^-_{x,\uparrow,lpha'} \psi^+_{x,\downarrow,lpha} \psi^-_{x,\downarrow,lpha'} \; ,$$

► Define
$$\psi_{x,\tau,\alpha}^{\pm} = \frac{1}{\beta |\Lambda_L|} \sum_{k \in \mathcal{D}_{\beta,L}} e^{\pm ikx} \hat{\psi}_{k,\tau,\alpha}^{\pm}$$
,
 $x \in \Lambda_{\beta,L} := [-\beta, \beta] \times \Lambda_L$,

the interacting potential becomes:

$$\mathcal{V}(\psi) = \lambda \sum_{\alpha, \alpha'=1,2} \int_{\Lambda_{\beta,L}} d^3 x \, \psi^+_{\mathbf{x},\uparrow,\alpha} \psi^-_{\mathbf{x},\uparrow,\alpha'} \psi^+_{\mathbf{x},\downarrow,\alpha} \psi^-_{\mathbf{x},\downarrow,\alpha'} \; ,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► The normalized Grassmann measure $\frac{1}{Z_L} P(d\psi) e^{-\mathcal{V}(\psi)}$, $Z_L = \int P(d\psi) e^{-\mathcal{V}(\psi)}$.

► Define
$$\psi_{x,\tau,\alpha}^{\pm} = \frac{1}{\beta |\Lambda_L|} \sum_{k \in \mathcal{D}_{\beta,L}} e^{\pm ikx} \hat{\psi}_{k,\tau,\alpha}^{\pm}$$
,
 $x \in \Lambda_{\beta,L} := [-\beta, \beta] \times \Lambda_L$,

the interacting potential becomes:

$$\mathcal{V}(\psi) = \lambda \sum_{\alpha, \alpha'=1,2} \int_{\Lambda_{\beta,L}} d^3 x \, \psi^+_{\mathbf{x},\uparrow,\alpha} \psi^-_{\mathbf{x},\uparrow,\alpha'} \psi^+_{\mathbf{x},\downarrow,\alpha} \psi^-_{\mathbf{x},\downarrow,\alpha'} \; ,$$

- ► The normalized Grassmann measure $\frac{1}{Z_L} P(d\psi) e^{-\mathcal{V}(\psi)}$, $Z_L = \int P(d\psi) e^{-\mathcal{V}(\psi)}$.
- ► The Schwinger functions:

$$S_{n,\beta}(x_1,\cdots,x_n)=\lim_{L\to\infty}\frac{1}{Z_L}\int\psi_{x_1,\tau_1,\alpha_1}^{\epsilon_1}\cdots\psi_{x_n,\tau_n,\alpha_n}^{\epsilon_n}e^{-\lambda\mathcal{V}(\psi)}P(d\psi).$$

 Let j⁺, j⁻ be two Grassmann variables. Define: Z(j⁺, j⁻, λ) = ∫ e<sup>-λV(ψ)+∫ dxψ⁺(x)j⁻(x)++∫ dxj⁺(x)ψ⁻(x)P(dψ). and W(j[±], λ) = log Z(j[±], λ), the cumulant generating functional.

</sup>

- Let j^+, j^- be two Grassmann variables. Define: $Z(j^+, j^-, \lambda) = \int e^{-\lambda \mathcal{V}(\psi) + \int dx \psi^+(x) j^-(x) + \int dx j^+(x) \psi^-(x)} P(d\psi)$. and $W(j^{\pm}, \lambda) = \log Z(j^{\pm}, \lambda)$, the cumulant generating functional.
- ► The connected 2*p*-point Schwinger's functions:

$$S_{2p}^{c}(x_{1}, \cdots, x_{p}, y_{1} \cdots, y_{p}) = \prod_{i=1}^{p} \frac{\delta^{2}}{\delta j^{+}(x_{i})\delta j^{-}(y_{i})} W(j^{+}, j^{-})|_{j^{\pm}=0}$$

- Let j^+, j^- be two Grassmann variables. Define: $Z(j^+, j^-, \lambda) = \int e^{-\lambda \mathcal{V}(\psi) + \int dx \psi^+(x) j^-(x) + \int dx j^+(x) \psi^-(x)} P(d\psi)$. and $W(j^{\pm}, \lambda) = \log Z(j^{\pm}, \lambda)$, the cumulant generating functional.
- The connected 2p-point Schwinger's functions:

$$S_{2p}^{c}(x_{1}, \cdots, x_{p}, y_{1} \cdots, y_{p}) = \prod_{i=1}^{p} \frac{\delta^{2}}{\delta j^{+}(x_{i})\delta j^{-}(y_{i})} W(j^{+}, j^{-})|_{j^{\pm}=0}$$

► Define $\phi^+(x) = \frac{\delta}{\delta j^-(x)} W(j)$, $\phi^-(x) = \frac{\delta}{\delta j^+(x)} W(j)$, define $\Gamma(\phi^+, \phi^-, \lambda) =$ $W(j^+, j^-, \lambda) - \int d^3x \left[j^+(x)\phi^-(x) + \phi^+(x)j^-(x) \right]$

- ▶ Let j^+, j^- be two Grassmann variables. Define: $Z(j^+, j^-, \lambda) = \int e^{-\lambda \mathcal{V}(\psi) + \int dx \psi^+(x) j^-(x) + \int dx j^+(x) \psi^-(x)} P(d\psi)$. and $W(j^{\pm}, \lambda) = \log Z(j^{\pm}, \lambda)$, the cumulant generating functional.
- The connected 2p-point Schwinger's functions:

$$S_{2p}^{c}(x_{1}, \cdots, x_{p}, y_{1} \cdots, y_{p}) = \prod_{i=1}^{p} \frac{\delta^{2}}{\delta j^{+}(x_{i})\delta j^{-}(y_{i})} W(j^{+}, j^{-})|_{j^{\pm}=0}$$

► Define $\phi^+(x) = \frac{\delta}{\delta j^-(x)} W(j)$, $\phi^-(x) = \frac{\delta}{\delta j^+(x)} W(j)$, define $\Gamma(\phi^+, \phi^-, \lambda) =$ $W(j^+, j^-, \lambda) - \int d^3x \left[j^+(x)\phi^-(x) + \phi^+(x)j^-(x)\right]$

• The self-energy $\Sigma(x, y, \lambda) = \frac{\delta^2}{\delta \phi^+(x)\delta \phi^-(y)} \Gamma(\phi^+, \phi^-, \lambda)|_{\phi^{\pm}=0}$

The (naive) perturbation expansion For $|\lambda| < 1$, perform perturbation expansions:

$$Z(\lambda) = \int P(d\psi) e^{\lambda \int_{\Lambda_{\beta,L}} d^3 x \left[\psi^+_{x,\uparrow} \psi^-_{x,\downarrow} \psi^+_{x,\downarrow} \psi^-_{x,\downarrow} \right]}$$

$$" = "\sum_{n=0}^{\infty} \frac{\lambda^n}{n!} \int P(d\psi) \left[\int_{\Lambda_{\beta}} d^3 x \left(\psi^+_{x,\uparrow} \psi^-_{x,\uparrow} \psi^+_{x,\downarrow} \psi^-_{x,\downarrow} \right) \right]^n.$$

$$= \sum_n \frac{\lambda^n}{n!} \int_{(\Lambda_{\beta,L})^n} d^3 x_1 \cdots d^3 x_n \begin{cases} x_{1,\varepsilon_1,\tau_1} \cdots x_{n,\varepsilon_n,\tau_n} \\ x_{1,\varepsilon_1,\tau_1} \cdots x_{n,\varepsilon_n,\tau_n} \end{cases},$$

 $\{\ \cdot\ \}$ is a 2n imes 2n determinant, Cayley's notation:

$$\begin{cases} x_{i,\tau} \\ x_{j,\tau'} \end{cases} = \det \left[\delta_{\tau\tau'} \left[C(x_i - x_j) \right] \right], C(x - y) = \int_{\Lambda_{\beta,L}} \hat{C}(k) e^{ik(x - y)} d^3 x$$

$$\hat{C}(k) = \frac{1}{k_0^2 + |\Omega(\mathbf{k})|^2 - \mu^2 - 2i\mu k_0} \begin{pmatrix} ik_0 + \mu & -\Omega^*(\mathbf{k}) \\ \Omega(\mathbf{k}) & ik_0 + \mu \end{pmatrix}$$

Difficulties and solutions

► Q1: The perturbation series can be labeled by graphs, called the Feynman graphs. Fully expansion of the determinant generates the combinatorial factor (2n)!, which makes the perturbation series divergent.

Difficulties and solutions

- ▶ Q1: The perturbation series can be labeled by graphs, called the Feynman graphs. Fully expansion of the determinant generates the combinatorial factor (2*n*)!, which makes the perturbation series divergent.
- Solution: partially expand the determinant (fermionic cluster expansions) so that only the terms corresponding to spanning forests appear.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let {𝒯} be the set of spanning trees of 𝔅 and 𝑢(𝔅,𝒯) be a probability measure on {𝒯}: ∑𝑘𝔅𝔅𝑘𝔅𝔅,𝒯) = 1.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let {T} be the set of spanning trees of G and w(G, T) be a probability measure on {T}: ∑_{T⊂G} w(G, T) = 1.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Organizing the perturbation terms as: $S = \sum_{G} A_{G} = \sum_{G} \sum_{\mathcal{T} \subset G} w(G, \mathcal{T}) A_{G} = \sum_{\mathcal{T}} A_{\mathcal{T}},$ $A_{\mathcal{T}} = \sum_{G \supset \mathcal{T}} w(G, \mathcal{T}) A_{G}.$

►

- Let {T} be the set of spanning trees of G and w(G, T) be a probability measure on {T}: ∑_{T⊂G} w(G, T) = 1.
- Organizing the perturbation terms as: $S = \sum_{G} A_{G} = \sum_{G} \sum_{\mathcal{T} \subset G} w(G, \mathcal{T}) A_{G} = \sum_{\mathcal{T}} A_{\mathcal{T}},$ $A_{\mathcal{T}} = \sum_{G \supset \mathcal{T}} w(G, \mathcal{T}) A_{G}.$

$$w(G,\mathcal{T}) = \int_0^1 \prod_{\ell \in \mathcal{T}} dw_\ell \prod_{\ell \notin \mathcal{T}} x_\ell^{\mathcal{T}}(\{w\}).$$

- Let {T} be the set of spanning trees of G and w(G, T) be a probability measure on {T}: ∑_{T⊂G} w(G, T) = 1.
- Organizing the perturbation terms as: $S = \sum_{G} A_{G} = \sum_{G} \sum_{\mathcal{T} \subset G} w(G, \mathcal{T}) A_{G} = \sum_{\mathcal{T}} A_{\mathcal{T}},$ $A_{\mathcal{T}} = \sum_{G \supset \mathcal{T}} w(G, \mathcal{T}) A_{G}.$

$$w(G, \mathcal{T}) = \int_0^1 \prod_{\ell \in \mathcal{T}} dw_\ell \prod_{\ell \notin \mathcal{T}} x_\ell^{\mathcal{T}}(\{w\}).$$

• Assign a parameter w_{ℓ} , $\forall \ell \in \mathcal{T}$.

- Let {T} be the set of spanning trees of G and w(G, T) be a probability measure on {T}: ∑_{T⊂G} w(G, T) = 1.
- Organizing the perturbation terms as: $S = \sum_{G} A_{G} = \sum_{G} \sum_{\mathcal{T} \subset G} w(G, \mathcal{T}) A_{G} = \sum_{\mathcal{T}} A_{\mathcal{T}},$ $A_{\mathcal{T}} = \sum_{G \supset \mathcal{T}} w(G, \mathcal{T}) A_{G}.$

$$w(G,\mathcal{T}) = \int_0^1 \prod_{\ell\in\mathcal{T}} dw_\ell \prod_{\ell\notin\mathcal{T}} x_\ell^{\mathcal{T}}(\{w\}).$$

- Assign a parameter w_ℓ , $\forall \ell \in \mathcal{T}$.
- ► For any $\bar{\ell} \in G \setminus T$, $\bar{\ell} = (v, v')$, assign the parameter $x_{\bar{\ell}}^T(\{w\})$: $x_{\bar{\ell}}^T(\{w\}) = 0$ if (v, v') is not connected, $x_{\bar{\ell}}^T(\{w\}) = 1$ if v = v'. $x_{\bar{\ell}}^T(\{w\}) = \inf_{\ell \in P_T(v, v')} \{w_\ell\}$ for other $\bar{\ell}$. (Rivasseau-ZW 14 for examples)

- Let {T} be the set of spanning trees of G and w(G, T) be a probability measure on {T}: ∑_{T⊂G} w(G, T) = 1.
- Organizing the perturbation terms as: $S = \sum_{G} A_{G} = \sum_{G} \sum_{\mathcal{T} \subset G} w(G, \mathcal{T}) A_{G} = \sum_{\mathcal{T}} A_{\mathcal{T}},$ $A_{\mathcal{T}} = \sum_{G \supset \mathcal{T}} w(G, \mathcal{T}) A_{G}.$

$$w(G,\mathcal{T}) = \int_0^1 \prod_{\ell\in\mathcal{T}} dw_\ell \prod_{\ell\notin\mathcal{T}} x_\ell^{\mathcal{T}}(\{w\}).$$

- Assign a parameter w_{ℓ} , $\forall \ell \in \mathcal{T}$.
- ► For any $\bar{\ell} \in G \setminus T$, $\bar{\ell} = (v, v')$, assign the parameter $x_{\bar{\ell}}^T(\{w\})$: $x_{\bar{\ell}}^T(\{w\}) = 0$ if (v, v') is not connected, $x_{\bar{\ell}}^T(\{w\}) = 1$ if v = v'. $x_{\bar{\ell}}^T(\{w\}) = \inf_{\ell \in P_T(v, v')} \{w_\ell\}$ for other $\bar{\ell}$. (Rivasseau-ZW 14 for examples)
- The canonical way of defining the weights is the BKAR forest formula (Brydges, Kennedy 87, Abdesselam Rivasseau 95).

Difficulties and solutions

Q2: Ĉ(k) is singular for k₀ → 0, k ∈ F. Typical term in the perturbation series is ∫ dk · · · [Ĉ(k)]^p. But Ĉ(k) is locally L¹ but not L^p, ∀p ≥ 2;

Difficulties and solutions

Q2: Ĉ(k) is singular for k₀ → 0, k ∈ F. Typical term in the perturbation series is ∫ dk · · · [Ĉ(k)]^p. But Ĉ(k) is locally L¹ but not L^p, ∀p ≥ 2;

Solution: The singularities are approached in multi-steps.

The multi-scale analysis

Let G^h₀(ℝ), h > 1, be the Gevrey class of compactly supported functions. Define a cutoff function χ ∈ G^h₀(ℝ) as:

$$\chi(t) = \chi(-t) = \begin{cases} = 0, & \text{for } |t| > 2, \\ \in (0, 1), & \text{for } 1 < |t| \le 2, \\ = 1, & \text{for } |t| \le 1. \end{cases}$$
(2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The multi-scale analysis

Let G^h₀(ℝ), h > 1, be the Gevrey class of compactly supported functions. Define a cutoff function χ ∈ G^h₀(ℝ) as:

$$\chi(t) = \chi(-t) = \begin{cases} = 0, & \text{for } |t| > 2, \\ \in (0, 1), & \text{for } 1 < |t| \le 2, \\ = 1, & \text{for } |t| \le 1. \end{cases}$$
(2)

• Given fixed constant $\gamma \geq 10$, construct a partition of unity

$$1 = \sum_{j=0}^{j_{max}} \chi_j(t), \quad j_{max} = E(\log_{\gamma} \frac{1}{T}); \quad (3)$$

$$\chi_0(t) = 1 - \chi(t), \quad \chi_j(t) = \chi(\gamma^{2j-1}t) - \chi(\gamma^{2j}t) \text{ for } j \ge 1.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The multi-slice expansion

• The free propagator is decomposed as :

$$\begin{split} \hat{C}(k)_{\alpha\alpha'} &= \sum_{j=0}^{j_{max}} \hat{C}_j(k)_{\alpha\alpha'}, \ \alpha, \alpha' = 1, 2, \\ \hat{C}_j(k)_{\alpha\alpha'} &= \hat{C}(k)_{\alpha\alpha'} \cdot \chi_j [4k_0^2 + e^2(\mathbf{k})], \\ e(\mathbf{k}) &= 8[\cos(\sqrt{3}k_2/2)] \cdot [\cos(\frac{1}{4}(3k_1 + \sqrt{3}k_2))] \\ &\cdot [\cos(\frac{1}{4}(3k_1 - \sqrt{3}k_2))]. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

<□ > < @ > < E > < E > E のQ @

► Not sufficient to obtain the optimal decaying of propagator.

- Not sufficient to obtain the optimal decaying of propagator.
- We introduce a second partition of unity:

$$1 = \sum_{s=0}^{j} v_{s}(t), \quad \begin{cases} v_{0}(t) = 1 - \chi(\gamma^{2}t), \\ v_{s}(t) = \chi_{s+1}(t), \\ v_{j}(t) = \chi(\gamma^{2j}t), \end{cases} \quad \text{for} \quad 1 \le s \le j-1, \ (4)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Not sufficient to obtain the optimal decaying of propagator.
- We introduce a second partition of unity:

$$1 = \sum_{s=0}^{j} v_{s}(t), \quad \begin{cases} v_{0}(t) = 1 - \chi(\gamma^{2}t), \\ v_{s}(t) = \chi_{s+1}(t), \\ v_{j}(t) = \chi(\gamma^{2j}t), \end{cases} \quad \text{for} \quad 1 \le s \le j-1, \ (4)$$

► $\hat{C}_{j}(k) = \sum_{\sigma=(s_{a},s_{b})} \hat{C}_{j,\sigma}(k), \ \hat{C}_{j,\sigma}(k) = \hat{C}_{j}(k) \cdot v_{s_{a}}[t_{a}] \ v_{s_{b}}[t_{b}],$ $a, b \in \{1, 2, 3\}, \ t_{1} = \cos^{2}(\sqrt{3}k_{2}/2),$ $t_{2} = \cos^{2}(\frac{1}{4}(3k_{1} + \sqrt{3}k_{2})), \ t_{3} = \cos^{2}(\frac{1}{4}(3k_{1} - \sqrt{3}k_{2})).$

- Not sufficient to obtain the optimal decaying of propagator.
- We introduce a second partition of unity:

$$1 = \sum_{s=0}^{j} v_{s}(t), \quad \begin{cases} v_{0}(t) = 1 - \chi(\gamma^{2}t), \\ v_{s}(t) = \chi_{s+1}(t), \\ v_{j}(t) = \chi(\gamma^{2j}t), \end{cases} \quad \text{for} \quad 1 \le s \le j-1, \ (4)$$

- ► $\hat{C}_{j}(k) = \sum_{\sigma = (s_{a}, s_{b})} \hat{C}_{j,\sigma}(k), \ \hat{C}_{j,\sigma}(k) = \hat{C}_{j}(k) \cdot v_{s_{a}}[t_{a}] \ v_{s_{b}}[t_{b}],$ $a, b \in \{1, 2, 3\}, \ t_{1} = \cos^{2}(\sqrt{3}k_{2}/2),$ $t_{2} = \cos^{2}(\frac{1}{4}(3k_{1} + \sqrt{3}k_{2})), \ t_{3} = \cos^{2}(\frac{1}{4}(3k_{1} - \sqrt{3}k_{2})).$
- Correspondingly, ψ^{±,j}_{k,τ,α} = ∑_{σ=(s_a,s_b)} ψ^{±,j,σ}_{k,τ,α}, and Ĉ_{j,σ}(k) is the covariance of ψ^{±,j,σ}_{k,τ,α}.

Figure: An illustration of the various sectors.

In each shell of scale $j \in [0, j_{max}]$, a sector is of size $\gamma^{-s_a} \times \gamma^{-s_b}$, in which $0 \le s_a, s_b \le j$, $s_a + s_b \ge j - 2$.

The bounds for the propagators

►

$$\|C_{j,\sigma}(x-y)]_{\alpha\alpha'}\|_{L^{\infty}} \le O(1)\gamma^{-s_a-s_b} e^{-c[d_{j,\sigma}(x,y)]^{\alpha_0}},$$

where $0 \le s_a, s_b \le j, \ \alpha_0 = 1/h, \ \text{and} d_{j,\sigma}(x,y) = \gamma^{-j}|x_0 - y_0| + \gamma^{-s_a}|x_a - y_a| + \gamma^{-s_b}|x_b - y_b|$
The bounds for the propagators

Theorem (The BKAR jungle Formula. Brydges, Kennedy 87, Abdesselam Rivasseau 95)

Let $I_n = \{1, \dots, n\}$, $\mathcal{P}_n = \{\ell = (i, j), i, j \in I_n, i \neq j\}$, \mathcal{S} a set of smooth functions from $\mathbb{R}^{\mathcal{P}_n}$ to some Banach space, $\mathbf{1} \in \mathbb{R}^{\mathcal{P}_n}$ be the vector with every entry equals 1. Then for any $\mathbf{x} = (x_\ell)_{\ell \in \mathcal{P}_n} \in \mathbb{R}^{\mathcal{P}_n}$ and $f \in \mathcal{S}$:

$$f(\mathbf{1}) = \sum_{\mathcal{J}} \left(\int_0^1 \prod_{\ell \in \mathcal{F}} dw_\ell \right) \left(\prod_{k=1}^m \left(\prod_{\ell \in \mathcal{F}_k \setminus \mathcal{F}_{k-1}} \frac{\partial}{\partial x_\ell} \right) \right) f[X^{\mathcal{F}}(w_\ell)],$$

- J = (F₀ ⊂ F₁ · · · ⊂ F_{rmax} = F) is any partially ordered set of forests F_i with n vertices.
- $X^{\mathcal{F}}(w_{\ell})$ is a vector with elements $x_{\ell} = x_{ij}^{\mathcal{F}}(w_{\ell})$:
 - $x_{ij}^{\mathcal{F}} = 1$ if i = j, or if i and j are connected by \mathcal{F}_{k-1} .
 - $x_{ii}^{\mathcal{F}} = 0$ if i and j are not connected by \mathcal{F}_k ,
 - $x_{ij}^{\mathcal{F}} = \inf_{\ell \in P_{ij}^{\mathcal{F}}} w_{\ell}$, if *i* and *j* are connected by the forest \mathcal{F}_k but not \mathcal{F}_{k-1} , where $P_{ij}^{\mathcal{F}_k}$ is the unique path in the forest that connects *i* and *j*,

The connected functions

$$S_{2}^{c}(\lambda) = \sum_{n} S_{2,n}^{c} \lambda^{n},$$

$$S_{2,n}^{c} = \frac{1}{n!} \sum_{\{\underline{\tau}\},\mathcal{G}^{r},\mathcal{T}} \sum_{\mathcal{J}^{\prime}}^{\prime} \epsilon(\mathcal{J}^{\prime}) \prod_{i^{\prime}=1}^{n} \int d^{3}x_{i^{\prime}} \delta(x_{1})$$

$$\prod_{\ell \in \mathcal{T}} \int_{0}^{1} dw_{\ell} C_{\tau_{\ell},\sigma_{\ell}}(x_{\ell}, \bar{x}_{\ell}) \prod_{i=1}^{n} \chi_{i}(\sigma) \det_{\mathrm{left}}(C_{j}(w)) .$$

- $\mathcal{J}' = (\mathcal{F}_0 \subset \mathcal{F}_1 \cdots \subset \mathcal{F}_{r_{max}} = \mathcal{T})$ is called a jungle.
- Perturbation terms are organized into the Gallavotti-Nicolò tree G^r. r = 2(j + s₊ + s₋). |k| ~ γ^{-r}.

Figure: $r = 2(j + s_+ + s_-)$. $|\mathbf{k}| \sim \gamma^{-r}$.

<ロト <回ト < 注ト < 注ト

æ

► Q3: The dispersion relation receives quantum corrections: $|\Omega(\mathbf{k})|^2 \rightarrow |\Omega(\mathbf{k})|^2 + \hat{\Sigma}(k_0, \mathbf{k}, \lambda), \ \mu \rightarrow \mu + \tilde{\delta}\mu(\lambda)$. The interacting Fermi surface is

$$\mathcal{F} = \{ \mathbf{k} | |\Omega(\mathbf{k})|^2 - \mu - \tilde{\delta}\mu(\lambda) - \hat{\Sigma}(0, \mathbf{k}, \lambda) = 0 \}.$$

Q3: The dispersion relation receives quantum corrections: |Ω(k)|² → |Ω(k)|² + Σ̂(k₀, k, λ), μ → μ + δ̃μ(λ). The interacting Fermi surface is

$$\mathcal{F} = \{ \mathbf{k} | |\Omega(\mathbf{k})|^2 - \mu - \tilde{\delta}\mu(\lambda) - \hat{\Sigma}(0, \mathbf{k}, \lambda) = 0 \}.$$

Solution: Fix the Fermi surface by counter-terms:

$$\begin{split} \delta \mathcal{H}_{\Lambda} &= \delta \mu(\lambda) \sum_{k \in \mathcal{D}_{\beta}} \sum_{\alpha=1,2} \sum_{\tau=\uparrow,\downarrow} \hat{\psi}^+_{k,\tau,\alpha} \hat{\psi}^-_{k,\tau,\alpha} \\ &+ \sum_{k \in \mathcal{D}_{\beta}, \tau=\uparrow\downarrow} \sum_{\alpha,\alpha'=1,2} \hat{\nu}(k_0,\mathbf{k},\lambda) \hat{\psi}^+_{k,\tau,\alpha} \hat{\psi}^-_{k,\tau,\alpha'} \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Q3: The dispersion relation receives quantum corrections: |Ω(k)|² → |Ω(k)|² + Σ̂(k₀, k, λ), μ → μ + δ̃μ(λ). The interacting Fermi surface is

$$\mathcal{F} = \{ \mathbf{k} | |\Omega(\mathbf{k})|^2 - \mu - \tilde{\delta}\mu(\lambda) - \hat{\Sigma}(0, \mathbf{k}, \lambda) = 0 \}.$$

Solution: Fix the Fermi surface by counter-terms:

$$\begin{split} \delta H_{\Lambda} &= \delta \mu(\lambda) \sum_{k \in \mathcal{D}_{\beta}} \sum_{\alpha=1,2} \sum_{\tau=\uparrow,\downarrow} \hat{\psi}^+_{k,\tau,\alpha} \hat{\psi}^-_{k,\tau,\alpha} \\ &+ \sum_{k \in \mathcal{D}_{\beta}, \tau=\uparrow\downarrow} \sum_{\alpha,\alpha'=1,2} \hat{\nu}(k_0,\mathbf{k},\lambda) \hat{\psi}^+_{k,\tau,\alpha} \hat{\psi}^-_{k,\tau,\alpha'} \end{split}$$

• $\delta\mu(\lambda)$ cancels the term $\tilde{\delta}\mu(\lambda)$.

Q3: The dispersion relation receives quantum corrections: |Ω(k)|² → |Ω(k)|² + Σ̂(k₀, k, λ), μ → μ + δ̃μ(λ). The interacting Fermi surface is

$$\mathcal{F} = \{ \mathbf{k} | |\Omega(\mathbf{k})|^2 - \mu - \tilde{\delta}\mu(\lambda) - \hat{\Sigma}(0, \mathbf{k}, \lambda) = 0 \}.$$

Solution: Fix the Fermi surface by counter-terms:

$$\begin{split} \delta H_{\Lambda} &= \delta \mu(\lambda) \sum_{k \in \mathcal{D}_{\beta}} \sum_{\alpha=1,2} \sum_{\tau=\uparrow,\downarrow} \hat{\psi}^+_{k,\tau,\alpha} \hat{\psi}^-_{k,\tau,\alpha} \\ &+ \sum_{k \in \mathcal{D}_{\beta}, \tau=\uparrow\downarrow} \sum_{\alpha,\alpha'=1,2} \hat{\nu}(k_0,\mathbf{k},\lambda) \hat{\psi}^+_{k,\tau,\alpha} \hat{\psi}^-_{k,\tau,\alpha'} \end{split}$$

•
$$\delta\mu(\lambda)$$
 cancels the term $\tilde{\delta}\mu(\lambda)$.

• $\hat{\nu}(2\pi T, \mathbf{k}, \lambda)$ cancels $\hat{\Sigma}(2\pi T, P_F(\mathbf{k}), \lambda)$

Q3: The dispersion relation receives quantum corrections: |Ω(k)|² → |Ω(k)|² + Σ̂(k₀, k, λ), μ → μ + δ̃μ(λ). The interacting Fermi surface is

$$\mathcal{F} = \{ \mathbf{k} | |\Omega(\mathbf{k})|^2 - \mu - \tilde{\delta}\mu(\lambda) - \hat{\Sigma}(0, \mathbf{k}, \lambda) = 0 \}.$$

Solution: Fix the Fermi surface by counter-terms:

$$\begin{split} \delta H_{\Lambda} &= \delta \mu(\lambda) \sum_{k \in \mathcal{D}_{\beta}} \sum_{\alpha=1,2} \sum_{\tau=\uparrow,\downarrow} \hat{\psi}^+_{k,\tau,\alpha} \hat{\psi}^-_{k,\tau,\alpha} \\ &+ \sum_{k \in \mathcal{D}_{\beta}, \tau=\uparrow\downarrow} \sum_{\alpha,\alpha'=1,2} \hat{\nu}(k_0,\mathbf{k},\lambda) \hat{\psi}^+_{k,\tau,\alpha} \hat{\psi}^-_{k,\tau,\alpha'} \end{split}$$

- $\delta\mu(\lambda)$ cancels the term $\tilde{\delta}\mu(\lambda)$.
- $\hat{\nu}(2\pi T, \mathbf{k}, \lambda)$ cancels $\hat{\Sigma}(2\pi T, P_F(\mathbf{k}), \lambda)$
- The cancellations are carried in the multi-scale representation using renormalization theory.

The renormalization of the two-point function

► The local term: $\delta \mu^r(y) = -[\int dz \ S_r^c(y, z)]$ will be canceled by the counter-term at scale r: $\delta \mu^r + \tilde{\delta} \mu^r = 0$,

The renormalization of the two-point function

- ► The local term: $\delta \mu^r(y) = -[\int dz \ S_r^c(y, z)]$ will be canceled by the counter-term at scale r: $\delta \mu^r + \tilde{\delta} \mu^r = 0$,
- Renormalization of the non-local part:

$$\hat{\Sigma}_{s_{+},s_{-}}^{r} \left[(2\pi T, P_{F}(\mathbf{k}))_{s_{+},s_{-}}, \hat{\nu}^{\leq r}, \lambda \right] + \hat{\nu}_{s_{+},s_{-}}^{r} (P_{F}(\mathbf{k})_{s_{+},s_{-}}, \lambda) = 0.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The remainder terms bounded by $\sim \gamma^{-r}$

• Desired L^1 and L^∞ bounds for free propagators on sectors.

• Desired L^1 and L^∞ bounds for free propagators on sectors.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ Perform renormalization for the two-point functions.

- Desired L^1 and L^{∞} bounds for free propagators on sectors.
- Perform renormalization for the two-point functions.
- Using Gram-Hadammard inequality to bound the unexpanded determinant: If *M* is a square matrix with elements *M*_{ij} = ⟨*A*_i, *B*_j⟩, with *A*_i, *B*_j ∈ *L*², then
 || det *M*|| ≤ ∏_i ||*A*_i||_{L²} · ||*B*_i||_{L²}.

- Desired L^1 and L^∞ bounds for free propagators on sectors.
- Perform renormalization for the two-point functions.
- Using Gram-Hadammard inequality to bound the unexpanded determinant: If *M* is a square matrix with elements *M*_{ij} = ⟨*A*_i, *B*_j⟩, with *A*_i, *B*_j ∈ *L*², then
 || det *M*|| ≤ ∏_i ||*A*_i||₁² · ||*B*_i||₁².
- Summation over the sector indices using the Sector counting lemma (Rivasseau 2004, ZW 2021);

- Desired L^1 and L^∞ bounds for free propagators on sectors.
- Perform renormalization for the two-point functions.
- Using Gram-Hadammard inequality to bound the unexpanded determinant: If *M* is a square matrix with elements *M_{ij}* = ⟨*A_i*, *B_j*⟩, with *A_i*, *B_j* ∈ *L*², then || det *M*|| ≤ ∏_i ||*A_i*||_{*L*²} · ||*B_i*||_{*L*²}.
- Summation over the sector indices using the Sector counting lemma (Rivasseau 2004, ZW 2021);

• Bounds over spanning trees with *n* vertices $\sum_{T} \sim n!$;

- Desired L^1 and L^{∞} bounds for free propagators on sectors.
- Perform renormalization for the two-point functions.
- Using Gram-Hadammard inequality to bound the unexpanded determinant: If *M* is a square matrix with elements *M_{ij}* = ⟨*A_i*, *B_j*⟩, with *A_i*, *B_j* ∈ *L*², then || det *M*|| ≤ ∏_i ||*A_i*||_{*L*²} · ||*B_i*||_{*L*²}.
- Summation over the sector indices using the Sector counting lemma (Rivasseau 2004, ZW 2021);
- Bounds over spanning trees with *n* vertices $\sum_{T} \sim n!$;
- ► The perturbation series (not Taylor series) is convergent for $|\lambda \log^2 \beta| \le 1$.

Upper and lower bounds for the self-energy $\Sigma(y, z, \lambda, \beta)$

- The perturbation series of Σ(y, z, λ, β) are labeled by one-particle irreducible graphs (two-connected graphs)
- ▶ We partially expand the determinant det({C(f_i, g_j)})_{left,T}, the multi-arch expansion (liagonitzer, Magnen (~ 1994), Disertori-Rivasseau 2000)

 Establish the upper and lower bounds for the self-energy and its derivatives.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Theorem (Benffatto, Giuliani, Mastropietro, 2007)
 For 0 < µ ≤ 1, the ground state is a Fermi liquid for T ≥ T_c, with T_c = K₁ exp(-C₁/|λ|). K₁, C₁ > 0.

► Theorem (Benffatto, Giuliani, Mastropietro, 2007) For 0 < µ ≤ 1, the ground state is a Fermi liquid for T ≥ T_c, with T_c = K₁ exp(-C₁/|λ|). K₁, C₁ > 0.

- ► Theorem (Benffatto, Giuliani, Mastropietro, 2007) For $0 < \mu \le 1$, the ground state is a Fermi liquid for $T \ge T_c$, with $T_c = K_1 \exp(-\frac{C_1}{|\lambda|})$. $K_1, C_1 > 0$.
- ► Theorem (Afchain, Magnen, Rivasseau, 2004) For $\mu = 2$, the ground state is a not a Fermi liquid for $T \ge T_c$, with $T_c = K_2 \exp(-\frac{C_2}{|\lambda|^{1/2}})$. $K_2, C_2 > 0$.

- ► Theorem (Benffatto, Giuliani, Mastropietro, 2007) For $0 < \mu \le 1$, the ground state is a Fermi liquid for $T \ge T_c$, with $T_c = K_1 \exp(-\frac{C_1}{|\lambda|})$. $K_1, C_1 > 0$.
- Theorem (Afchain, Magnen, Rivasseau, 2004)

For $\mu = 2$, the ground state is a not a Fermi liquid for $T \ge T_c$, with $T_c = K_2 \exp(-\frac{C_2}{|\lambda|^{1/2}})$. $K_2, C_2 > 0$.

- ► Theorem (Benffatto, Giuliani, Mastropietro, 2007) For $0 < \mu \le 1$, the ground state is a Fermi liquid for $T \ge T_c$, with $T_c = K_1 \exp(-\frac{C_1}{|\lambda|})$. $K_1, C_1 > 0$.
- ► Theorem (Afchain, Magnen, Rivasseau, 2004) For $\mu = 2$, the ground state is a not a Fermi liquid for $T \ge T_c$, with $T_c = K_2 \exp(-\frac{C_2}{|\lambda|^{1/2}})$. $K_2, C_2 > 0$.
- Theorem (ZW, 2022)

For $\mu = 2 - \mu_0$, $\mu_0 \ll 1$ fixed, the ground state is a not a Fermi liquid for $T \ge T_c$, with $|\lambda \log^2(\mu_0 T)| \le K_3$:

$$T_{c} = \begin{cases} \frac{K_{3}}{\mu_{0}} \exp(-\frac{C_{3}}{|\lambda|^{1/2}}), \ \mu_{0} \geq T_{c} \ \text{fixed}, \\ K_{4} \exp(-\frac{C_{3}}{2|\lambda|^{1/2}}), \ \mu_{0} \to 0. \end{cases}, \quad K_{3}, C_{3} > 0.$$

Conclusions and perspectives

► We provide rigorous proof that the ground state of the Honeycomb Hubbard model at µ = 1 is not a Fermi liquid.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusions and perspectives

▶ We provide rigorous proof that the ground state of the Honeycomb Hubbard model at µ = 1 is not a Fermi liquid.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► Case of 0 < µ < 1 ?</p>

Conclusions and perspectives

- ► We provide rigorous proof that the ground state of the Honeycomb Hubbard model at µ = 1 is not a Fermi liquid.
- ► Case of 0 < µ < 1 ?</p>
- Metal-Insulator transitions and many-body localization in Hubbard model.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

References

- V. Rivasseau, Z. Wang, Honeycomb Hubbard Model at van Hove Filling, arXiv:2108.10852, CMP2023.
- Z. Wang, Phase Transitions in the Hubbard Model on the Square Lattice, arXiv:2303.13628

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thanks for your attention!