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Introduction I

Random tensors, like matrix models, originated in theoretical physics.

In the 70’s the hot stuff in theoretical physics was to quantize the elementary
particles like quarks and gluons. In this period matrix models had some success
in quantizing the strong interaction.

In the 90’s the dominating theory in quantizing gravity was string theory.
Random matrix models were seen at this time as a successful theory for
quantizing gravity, but only in two dimensions.

The inventors of random tensor models, such as Ambjorn, Gross, Sasakura...
wanted to replicate the success of matrix models for dimensions three and four.
But they lacked an essential tool, the 1/N expansion.
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Introduction II

Let’s come to 2010’s. The tensor track is an attempt to quantize gravity in
dimensions greater than two, by combining random tensor models, discrete
geometry and the renormalisation group.

The tensor track lies at the crossroad of several closely related approaches to
quantize gravity, most notably causal dynamical triangulations, quantum field
theory on non-commutative spaces and group field theory.

Random tensors share with random matrices the fact that they are a
zero-dimensional world, and, as such, they are background-independent ; they
made no references whatsoever of any particular space-time.

Moreover, random tensors models, based on the quantum field theory of
Feynman, are manageable by renormalisation group techniques. Simple models
even share with non-Abelian gauge theories the property of asymptotic freedom.
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Introduction III

Random tensors are expected to play a growing role in many areas of
mathematics, physics, and computer science.

Communities using random tensors have grown apart, developing their own
tools and results.

Nowadays there is an increasing circle of mathematicians and physicists
working on random tensors. These people are recently inclined towards
applications linked to data analysis and artificial intelligence.

The line which once separated them from computer scientists becomes a bit
blurred...
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Matrix Models

In the Wishart’s complex matrix ensemble, the free partition function is defined
by the integral over complex N × N matrices M,

Z0(N) :=

∫
dM e−Tr[MM†],

where dM is defined by the probability measure

dM := πN
∏

1≤i,j≤N

dRe(Mij)d Im(Mij) .

and the expectation values of U(N) invariants

< Tr[MM†]p1 Tr[MM†]p2 ...Tr[MM†]pk >

is entirely determined by the propagator and by Wick’s rule.
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Matrix Models and the 1/N Expansion

t’Hooft made the fundamental observation that the 1/N expansion for matrix
models is a topological expansion.

t’Hooft degree is the number of holes of a surface associated to the graph G . It
is related to the Euler characteristic χ via χ = 2− 2g and it is noted g(G).

A sphere has a number of holes equal to 0, a torus has 1 hole, and so on...
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Tensor Models, I

In 2010 a new kind of 1/N expansion was discovered for random tensor models.
It relies on the Gurău degree of a colored graph G .

The Gurău degree ω is a positive number, with is partly topological and partly
combinatorial :

ω(G) ∈ N.

To define it, we need a new notion, that of the jackets. For the moment, it is
enough to say that a Jσ jacket is associated to a colored graph and to a cyclic
permutation σ on the colors.

There are three inequivalent jackets for a tensor of rank 3, twelve inequivalent
jackets for a tensor of rank 4, and so on.

See the work of J. Ben Geloun, V. Bonzom, R. Gurău and myself.
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Tensor Models, II

Any scalar function of a tensor theory of quantum fields is a big functional
integral on a Gaussian measure and an interactive part.

In the tensor case, this interactive part is a sum of tensor invariants, denoted∑
I SI (T ). For example, the partition function and the free energy are scalar

functions of N and partition function and free energy are related by a
normalized logarithm :

Z(N) =

∫
dµ(T )e−

∑
I SI (T ), F (N) =

1

ND
logZ(N).

To each jacket is associated a combinatorial map, so a matrix model, so a
’tHooft degree of the corresponding matrix model. The Gurău degree is then
proportional to the sum of the ’tHooft degrees of the jackets :

ω(G) =
1

(D − 1)!

∑
σ

g(Jσ).
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Tensor Models, III

The invariants themselves can be classified in terms of graphs. Of course, these
graphs depend crucially on the symmetries of the tensor.

For matrix models the expectation values of the invariants can be classified by
ribbon graphs, the two ribbons corresponding to the two indices defining the
matrix.

The family of melonic graphs, i.e. the graphs that have Gurău degree 0, can
perhaps be called too trivial from a topologist point of view ; it corresponds to
some triangulations of the sphere SD where D is the rank of the tenseur.

But, as the Gurău degree is not only purely topological, the interplay between
combinatorics and topology in sub-leading terms can be amazingly complex !
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Quantum Gravity I

In the field theory approach to quantum gravity, one has to perform a
functional integral over random geometry pondered by Einstein-Hilbert action :

Quantum Gravity <=> Random geometry + EH.

One builds the geometry by gluing discrete blocks, or“space time quanta”.

Fundamental interactions of a few space time quanta lead to effective behavior
of an huge ensemble of many space time quanta.
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Quantum Gravity II

Let us come to the Sachdev-Ye-Kitaev (SYK) model. It is a quartic model of N
Majorana fermions coupled by a disordered tensor. It is a model of condensed
matter, hence it depends on time though a Hamiltonian.

The disordered tensor is centered Gaussian independently and identically
distributed (iid)

< Jabcd >= 0, < J2
abcd >=

λ2

N3
,

and the Hamiltonian is simply H = Jabcdψaψbψcψd .
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Quantum Gravity III

This model possesses three important properties :

- it is solvable at large N,

- at strong coupling there is a conformal symmetry, hence it can be a fixed
point of the renormalization group,

- above all, from the point of view of quantum gravity, it is maximally chaotic
in the sense of Maldacena, Shenker and Stanford.

Hence the SYK model, although very simple, offers a path to the main
theoretical concepts of quantum gravity, such as the Bekenstein-Hawking
entropy and holography.
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Quantum Gravity IV

SYK became a very active field. At large N the Schwinger-Dyson equation for
the 2-point function is closed. The conformal symmetry can be broken and the
corresponding subject goes under the name of near-AdS2/near-CFT1

correspondence.

Witten has found a genuine field theory model (with no disorder), in which the
tensors plays a much more fundamental role. In a nutshell, he discovered that
his model has the same melonic limit as the tensors models pioneered by Gurău.

Klebanov and Tarnopolsky, when combined with an earlier work of Carrozza and
Tanasa, allows a big simplification of the group symmetry of the main tensor,
from U(N)D(D−1)/2 to O(N)D , but the graphs are not bipartite (see Figure).
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Quantum Gravity V

The action of the KTCT model is

S =
i

2

∫
dt ψi1,i2,i3∂tψi1,i2,i3 +

λ

4N3/2
ψi1,i2,i3ψi4,i5,i3ψi4,i2,i6ψi1,i5,i6 .

Unlike the initial SYK model, these tensor models fit in the framework of local
quantum field theory with D = 1. Hence there is a possibility to extend them in
dimension greater than one.

See the recent work of D. Benedetti, S. Carrozza, R. Gurău and collaborators.
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A constructive field question

For a long time I was fascinated by the following question :

“how to make Feynman graphs more rigorous ?”

I mean “more rigorous for a mathematical perspective...”

This is typically a constructive field question,
that was bequeathed to me by my PhD director, Arthur Wightman.
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Loop Vertex Expansion

In 2007 I was able to say something sensible about this question. I did discover
the loop vertex expansion (in short LVE).

I hasten to say that the LVE only partly answers this question : for instance in
the initial times, it was limited to matrix models with quartic interactions and,
what’s more, when renormalization is absent.

But still, I consider it to be a rather new technique of constructive field theory.
For the first time it applies to Bosonic fields, and a main feature of the LVE is
that it is written in terms of trees which are exponentially bounded.

It means that the outcome of the LVE is convergent, whereas the usual
perturbative quantum field theory, that of Feynman, diverges.
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Loop Vertex Expansion II

The LVE does indeed converge : the next question is “to which sum” ?

Answer : It converges to the Borel sum (named after the mathematician Emile
Borel ; there are plenty of mathematicians) who were interested in divergent
series, such as Borel and Nevanlinna and in more recent times Sokal, Ecalle...)

The essential ingredients of LVE are the intermediate field and the BKAR
formula, developed by D. Brydges, T. Kennedy and perfected by A.
Abdesselam, me and my collaborator Z. Wang.

In 2014 T. Krajewski and R. Gurău solved by an LVE method the main
constructive problem of the cumulants.
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Loop Vertex Expansion, III

In 2022 another step using the Loop Vertex Expansion, was published by
Benedetti, Gurău, Keppler and Lettera. It uses also the formalism of
trans-series due to Ecalle. These authors study the small-N expansions of
Z(g ,N) and W (g ,N).

For any g = |g |eıϕ on the sector of the Riemann surface with |ϕ| < 3π/2, the
small-N expansion of Z(g ,N) has infinite radius of convergence in N, while the
expansion of W (g ,N) has a finite radius of convergence in N.

Figure – The cardioid domain (dotted blue line) and the extended cardioid (red line),
for θ = ϕ/6, in the complex g -plane.

Vincent Rivasseau Random Tensors, Loop Vertex Representation and Cumulants



Introduction
Random Tensors

Loop Vertex Representation
The work of Sazonov on Jacobian Conjecture

Loop Vertex Expansion, IV

The Taylor coefficients of these expansions, Zn(g) and Wn(g), exhibit analytic
properties similar to Z(g ,N) and W (g ,N) and have transseries expansions.

The transseries expansion of Zn(g) is readily accessible : much like Z(g ,N), for
any n, Zn(g) has a zero- and a one-instanton contribution.

The transseries of Wn(g) is obtained using Möebius inversion and summing
these transseries yields the transseries expansion of W (g ,N).

The transseries of Wn(g) and W (g ,N) are markedly different : while W (g ,N)
displays contributions from arbitrarily many multi-instantons, Wn(g) exhibits
contributions of only up to n-instanton sectors.
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Loop Vertex Representation

In 2016 I discovered a refinement of the LVE, which I named LVR. The added
ingredients of the LVR are essential combinatorial, based on selective Gaussian
integration and the generating function of Fuss-Catalan numbers.

I think that the LVR has more power than the LVE, since the LVR can treat
more models, with higher polynomial interactions.

It converges to the Borel-LeRoy sum (Le Roy was a PhD student of Borel).

It has been developed and perfected for approximately 6 years by T. Krajewski,
V. Sazonov and me :

T. Krajewski has added the holomorphic matrix calculus,

V. Sazonov has recently and beautifully applied selective Gaussian
integration in the quantum field theory formulation of the Jacobian
conjecture.

Vincent Rivasseau Random Tensors, Loop Vertex Representation and Cumulants



Introduction
Random Tensors

Loop Vertex Representation
The work of Sazonov on Jacobian Conjecture

Loop Vertex Representation II

LVR has an additional parameter p, the degree of the polynomial interaction.
Hence the partition function for Wishart’s complex matrix ensemble is

Zp(λ,N) =

∫
dMe

−Tr[MM†+ λ
Np−1 (MM†)p ]

p = 2 is equivalent to quartic interaction ; but in this case LVE is sufficient,
hence LVR is really necessary from p = 3 to infinity.

In the case p = 3 the LVR is somewhat simplified ; the Fuss-Catalan equation
for the generated function is

zT 3
3 (z)− T3(z) + 1 = 0,

which is soluble by radicals.
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Loop Vertex Representation for Cumulants, I

Last month, I constructed by the LVR method the cumulants in a
cardioid-shaped domain C of the coupling constant (for instance for the
Wishart’s complex matrix model).

1
4

Reλ

Imλ

Cardioid domain C in the complex λ plane, in the case p = 3.
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Loop Vertex Representation for Cumulants, II

Let the partition function be Zp(λ,N, J) ; the cumulants are defined by

Kk
p(λ,N, J) :=

[ ∂2

J†a1b1
Jc1d1

· · · ∂2

J†akbk Jckdk
logZp(λ,N, J)

]
{J}=0

. (1)

Let me fix kmax. My last month’s main result extend to higher interactions
p = 3, ...,∞ those of Krajewski and Gurău in 2014 :

Theorem
Let k ≤ kmax. The series (1) is absolutely convergent in the cardioid domain C.
This expansion is analytic for any λ ∈ C and Borel-LeRoy summable. The proof
holds uniformly in the external variables.
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Sketch of proof of the main result, I

The crux of the LVR lies in the matrix-valued function A and the functional
change of variables from M to X such that

A(λ,X ) := XTp(−λX p−1) ,

so that Equation (1) can now be rewritten as

X = A(λ,X ) + λAp(λ,X ) .
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Sketch of proof of the main result, II

We define

dµ(M) := dMe−TrMM† ,

Σ(λ,X ) :=

p−1∑
k=0

Ak(X )⊗ Ap−1−k(X ),

S(λ,X ) := −Tr⊗ log
[
1⊗ + λΣ(λ,X )

]
,

KJ,N(λ,X ) := N(J†,
[
1⊗ + λΣ(λ,X )

]−1
J) ,

so that the formula for the moments of the partition function is

Sk(λ,N) :=

{
∂2

J†a1b1
Jc1d1

· · · ∂2

J†akbk Jckdk

∫
dµ(M)eKJ,N (λ,X )−S(λ,X )

}
J=0

Our goal is to deduce the formula for the cumulants Kk(λ,N), which are the
connected moments.
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Sketch of proof of the main result, III

We want to factorize

Zp(λ,N, J) =

∫
dµ(M)eKJ,N (λ,X )−S(λ,X ).

In the first step we define W := W1 + W2, W1 := eKJ,N (λ,X ), W2 := e−S(λ,X ),
and we expand to infinity the exponential of the interaction

Z(λ,N, J) =
∞∑
n=0

1

n!

∫
dµ(M) W n =

∞∑
n=0

1

n!

∫
dµ(M)

n∏
i=1

W i ,

provided ∀i ,W i = W .

The second step is to introduce replicas and to subtly replace the integral over
the single N × N complex matrix M by an integral over an n-tuple of such
N × N matrices Mi , 1 ≤ i ≤ n.

In the third step we perform the BKAR expansion.
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Sketch of proof of the main result, IV

After the BKAR expansion we perform the Cauchy holomorphic matrix calculus
introduced by Krajewski, and the partition function with sources can be
rewritten as :

Sk(λ,N, J) = Nk
∞∑
n=k

1

n!

∑
F

∫
dwF∂F

∫
dµC{xF}(M)

k∏
i=1

(J†ai bi ,
[
1⊗ + λΣ(λ,X i )

]−1
Jci ,di )

n∏
i=k+1

e−S(λ,X i ).

Remark that this formula does not require the intermediate field, because it is
defined as a Gaussian integral over X i = 1

N
MiM

†
i .
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Sketch of proof of the main result, V

Now our result can be summarized as a convergent expansion of Kk(λ,N, J) as
a sum over LVR trees with k cilia [L. Ferdinand & co, 09/22] : since the fields,
the measure and the integrand are now factorized over the connected
components of F , its logarithm is computed as exactly the same sum but
restricted to the spanning trees

Kk(λ,N, J) = Nk
∞∑
n=k

1

n!

∑
T

∫
dwT∂T

∫
dµC{xT }(M)

k∏
i=1

(J†ai bi ,
[
1⊗ + λΣ(λ,X i )

]−1
Jci ,di )

n∏
i=k+1

e−S(λ,X i ).

After some combinatoric tricks (counting the cilia, trees, etc...), this concludes
the proof.
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Introduction

The Jacobian conjecture can be formulated as follows. Let F : Cn → Cn be a
polynomial map written as

F (x1, . . . , xn) = (F1(x1, . . . , xn), . . . ,Fn(x1, . . . , xn)) ,

where x1, . . . , xn are coordinates and the functions Fi : Cn → C are
polynomials. Hereafter we write just x for (x1, . . . , xn). Suppose that the
Jacobian determinant

JF (x) := det

(
∂Fi (x)

∂xj

)
is identically a nonzero constant – without loss of generality it can be fixed to
the value JF (x) = 1. Show then that F is globally invertible in sense of
composition and its inverse G := F−1 is also a polynomial map.
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Abdesselam-Rivasseau (AR) model, I

The AR model is defined by the action

S :=
n∑

i=1

ψiFi (φ1, . . . , φn)−
n∑

i=1

ψiyi ,

where Fi (φ) = φi − Hi (φ), and where H is a polynomial with d := degH. In
tensorial notations the functions Hi (φ) can be written as

Hi (φ) =
1

d!

n∑
j1,...jd=1

wi,j1...jdφj1 ...φjd ,

with the tensor wi,j1...jd being completely symmetric in j indices.
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AR model, II

The inverse map Gk(y) is equal to the power series of the first cumulant of the
model

Gk(y) =
1

Z

∫
dψdφ φke

−S ,

and is convergent for the small |y | (Abdesselam, 2002).

This reduces the proof of Jacobian Conjecture to prove the vanishing of all the
coefficients after a certain order of this perturbative series for Gk(y).
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Colored AR model

An example of the tree with d = 3 and V = 3.

9 

Is it possible that colored trees can contain some chains of vertices of a length
greater than n ?
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Colored AR model, II

An example of the tree of a not specified order.

Le 

Can the chains circled by the sky-blue and orange lines be longer than n ? This
question is equivalent to the question about the maximal possible depth of the

trees and is directly related to the proof of the Jacobian Conjecture.
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Termination of the series !

For trees with maximal depth (n − 1), the maximal number of leaves is dn−1.

In 1982 Bass, Connell and Wright already reduced the Jacobian Conjecture to
the case d = 3, ∀n.

I think the argument of V. Sazonov is correct and optimal, in the sense that it
works for any homogeneous polynomial

Hi (φ) =
n∑

j1,...jd=1

wi,j1...jdφj1 ...φjd

and make no use of the reduction of Bass, Connell and Wright.

I could be wrong, but I think that the Jacobian Conjecture has now become the
Jacobian Theorem.

Stay tune !
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