Loop Vertex Representation for Random Matrices with Higher Order Interactions

Thomas Krajewski
Centre de Physique Théorique
Aix-Marseille University
thomas.krajewski@cpt.univ-mrs.fr
joint work with Vincent Rivasseau and Vasily Sazonov based on 1910.13261

Stochastic Analysis meets QFT - critical theory 12-14 June 2023, in Münster, Germany

Motivation : Divergence of perturbative expansions

Perturbative expansion in QFT over Feynman graphs

$$
\begin{aligned}
\log Z & =\log \int[\mathcal{D} \phi] \exp -\int\left\{\frac{1}{2}(\partial \phi)^{2}+\frac{m^{2}}{2} \phi^{2}+\frac{g}{4!} \phi^{4}\right\} \\
& "=\sum_{G \text { Feynman graph }} \mathcal{A}(G) g^{\# \text { vertices }}
\end{aligned}
$$

The perturbative expansion is a divergent power series (otherwise Z defined for $\operatorname{Re}(g)<0, g=0$ boundary of analyticity domain).

Perturbative expansion only valid as an asymptotic series for $g \rightarrow 0$ but does not allow for a definition of a QFT.

Origins of the divergence : $\sum_{G \text { order } n} \mathcal{A}(G) \sim n$!

- too many graphs of given order (instantons)
- too large graph amplitudes at given order (renormalons)

Construction of QFT from its perturbative expansion usually addressed using Borel summation.

Factorial growth of the number of Feynman graphs

Consider a simple integral analogue to the functional integral in quantum field theory $(\operatorname{Re}(g) \geq 0)$ with asymptotic expansion

$$
\begin{equation*}
Z=\int_{\mathbb{R}} \frac{d \phi}{\sqrt{2 \pi}} \exp -\left\{\frac{\phi^{2}}{2}+\frac{g \phi^{4}}{4!}\right\} \quad "=" \quad \sum_{n=0}^{+\infty}(-1)^{n} a_{n} g^{n} \tag{1}
\end{equation*}
$$

This integral counts Feynman graphs with factorial growth, thus impeding the convergence of the series (two many graphs)

$$
\begin{equation*}
\underset{n \rightarrow+\infty}{\sim} C(2 / 3)^{n} n! \tag{3}
\end{equation*}
$$

From a physical viewpoint, the integral defines an analytic function for $\operatorname{Re}(g)>0$ such that the origin lies on the boundary of analyticity domain. If the series were convergent, it would make sense for $\operatorname{Re}(g)<0$ leading to an unstable model. Alternatively, $g \phi^{4}$ cannot be treated as small for large field ϕ.

Borel summability and instanton singularity

Starting with a possibly divergent series $\sum(-1)^{n} a_{n} g^{n}$ asymptotic to a function $F(g)$, we can attempt at recovering F using

$$
\begin{equation*}
F(g)=\frac{1}{g} \int_{0}^{+\infty} d s B(s) \exp (-s / g) \tag{4}
\end{equation*}
$$

with $B(s)=\sum_{n=0}^{+\infty} \frac{(-1)^{n} a_{n}}{n!} s^{n}$ the Borel transform.
This requires $B(s)$ to be free of singularities on the positive real axis. After rescaling the field $\phi \rightarrow \phi / \sqrt{g}$

$$
\begin{align*}
Z & =\int_{\mathbb{R}} \frac{d \phi}{\sqrt{2 \pi}} \exp -\left\{\frac{1}{g}\left(\frac{\phi^{2}}{2}+\frac{\phi^{4}}{4!}\right)\right\} \tag{5}\\
& =\frac{1}{\sqrt{g}} \int_{0}^{+\infty} d s \exp (-s / g) \int_{\mathbb{R}} \frac{d \phi}{\sqrt{2 \pi}} \delta\left\{\frac{\phi^{2}}{2}+\frac{\phi^{4}}{4!}-s\right\} \tag{6}
\end{align*}
$$

The composed Dirac distribution $\delta(F(\phi))=\sum_{F\left(\phi_{i}\right)=0} \frac{\delta\left(\phi-\phi_{i}\right)}{\left|F^{\prime}\left(\phi_{i}\right)\right|}$ leads to instanton singularities for classical solutions of the equations of motion.

The Nevanlinna-Sokal theorem on Borel resummation

Recall the Nevanlinna-Sokal theorem: If F is a analytic function in the disk $\operatorname{Re}(1 / g)>R^{-1}$ and $\sum_{n} a_{n} g^{n}$ a formal power series such that

$$
\begin{equation*}
\left|F(g)-\sum_{k=1}^{n} a_{k} g^{k}\right| \leq C \sigma^{-(n+1)}|g|^{n+1}(n+1)! \tag{7}
\end{equation*}
$$

then F can be reconstructed from $B(s)=\sum_{n} \frac{a_{n}}{n!} s^{n}$

$$
\begin{equation*}
F(g)=\frac{1}{g} \int_{0}^{+\infty} \exp (-s / g) B(s) \tag{8}
\end{equation*}
$$

Combinatorial approach : Loop Vertex Representation

Basic idea (V. Rivasseau, arxiv 0706.1224) : expand the partition function over forests (= not necessarily connected graphs without loops) over instead of graphs and logarithm expanded over trees (connected components)

$$
Z=\sum_{F \text { forest }} \mathcal{A}_{F}(g) \quad \Leftrightarrow \quad \log Z=\sum_{T \text { tree }} \mathcal{A}_{T}(g)
$$

Convergence of the expansion possible because of power law growth (solving the "too many graphs" issue)

$$
\#\binom{\text { trees of }}{\text { order } n} \underset{n \rightarrow+\infty}{\sim} \kappa^{n} \quad \text { vs } \#\binom{\text { graphs of }}{\text { order } n} \underset{n \rightarrow+\infty}{\sim} n!
$$

and power law bounds on tree amplitudes $\left|\mathcal{A}_{T}(g)\right| \leq C^{n}|g|^{n}$
Usual perturbative expansion recovered by further expanding $\mathcal{A}_{T}(g)$ in powers of g (addition of loops to T)

Open question in QFT but interesting results for random matrices,

Random Matrices

Topological ribbon graph expansion of matrix integral

$$
\begin{aligned}
\frac{1}{N^{2}} \log \int D M \exp -N\left\{\operatorname{Tr} M^{2}+g \operatorname{Tr} M^{2 p}\right\} & = \\
& \sum_{G \text { ribbon graph }} \mathcal{A}_{G} g^{\#(\text { vertices })} N^{\chi(G)}
\end{aligned}
$$

with $\chi=2-$ genus $=\#($ vertices $)-\#($ edges $)+\#($ faces $)$
Ribbon Feynman graph (double line) dual to trianagulations

$$
\operatorname{Tr} M^{3}=\sum_{i, j, k} M_{i j} M_{j k} M_{k i} \rightarrow
$$

Multiple occurence in physics as random Hamiltonians (spectra of heavy nuclei, JT gravity in the Schwarzian limit, ..) or topological expansion (large N QCD, 2d gravity, ...).

Main result: Uniform analyticity in a "Pac-Man" domain

 For any $\epsilon>0$ there exists $\eta>0$ such that the LVE expansion$$
\begin{equation*}
\frac{1}{N^{2}} \log \int D M \exp -N\left\{\operatorname{Tr} M^{2}+g^{p-1} \operatorname{Tr} M^{2 p}\right\}=\sum_{T \text { tree }} \mathcal{A}_{T}(g, N) \tag{9}
\end{equation*}
$$

is convergent and defines an analytic function for

$$
\begin{equation*}
g \in\left\{0<|g|<\eta,|\arg g|<\frac{\pi}{2}+\frac{\pi}{p-1}-\epsilon\right\} \tag{10}
\end{equation*}
$$

It is bounded by a constant independent of N and Borel summable in g, uniformly in N (with a cut for $p=2$).

Forest Formula (Abdesselam, Brydges, Kennedy, Rivasseau)

 ϕ function of $\frac{n(n-1)}{2}$ variables $x_{i j} \in[0,1]$ (edges between n vertices)$$
\phi(1, \ldots, 1)=\sum_{\substack{F \text { forest } \\ \text { on } n \text { vertices }}} \int_{0}^{1} \prod_{(i, j) \in F} d u_{i j}\left(\frac{\partial^{\#(\text { edges in } F)} \phi}{\prod_{(i, j) \in F} \partial x_{i j}}\right)\left(v_{i j}\right),
$$

where $v_{i j}$ is the infimum of $u_{k l}$ along the unique path from from i to j in F if it exists and 0 otherwise

- $n=2: 2$ forests (1) (2), (1)-(2),

$$
\phi(1)=\phi(0)+\int_{0}^{1} d u_{12}\left(\frac{\partial \phi}{\partial x_{12}}\right)\left(u_{12}\right)
$$

$$
\begin{align*}
& n=3: \tag{2}\\
& \phi(1,1,1)=\phi(0,0,0)+\int_{[0,1]} d u_{12}\left(\frac{\partial \phi}{\partial x_{12}}\right)\left(u_{12}, 0,0\right)+\text { perm. } \\
+ & \int_{[0,1]^{2}} d u_{12} d u_{23}\left(\frac{\partial^{2} \phi}{\partial x_{12} \partial x_{23}}\right)\left(u_{12}, u_{23}, \inf \left(u_{12}, u_{23}\right)\right)+\text { perm. }
\end{align*}
$$

Tree expansion of the partition function

Then, one can rewrite the integral of the exponential over a variable ϕ as a sum of multiple integrals over multiple variable $\phi_{1}, \ldots, \phi_{n}$

$$
\begin{align*}
& Z=\int d \mu_{C}(\phi) \exp \{-V(\phi)\}= \\
& \quad \sum_{n=0}^{+\infty} \frac{(-1)^{n}}{n!} \int d \mu_{c_{i j}=1}\left(\phi_{1}, \ldots, \phi_{n}\right) V\left(\phi_{1}\right) \cdots V\left(\phi_{n}\right) \tag{11}
\end{align*}
$$

In this formula, $d \mu c_{i j=1}(\phi)$ is a Gaussian measure with a covariance matrix whose entries are all equal to $1 \Leftrightarrow$ sets $\phi_{1}=\cdots=\phi_{n}$
Replacing $C_{i j}=u_{i j}$ for $i \neq j$, we can apply the forest formula

$$
\begin{equation*}
Z=\left.\int d \mu_{C(u)}(\phi) \exp \{-V(\phi)\}\right|_{u_{i j}=1}=\sum_{\text {forests } \mathcal{F}} \mathcal{A}_{\mathcal{F}} \tag{12}
\end{equation*}
$$

Since $\mathcal{A}_{\mathcal{F}}=\mathcal{A}_{\mathcal{T}_{1}} \cdots \mathcal{A}_{\mathcal{T}_{c}}$, the logarithm reduces to a sum over trees

$$
\begin{equation*}
\log Z=\sum_{\text {trees } \mathcal{T}} \mathcal{A}_{\mathcal{F}} \tag{13}
\end{equation*}
$$

Tree expansion of the matrix integral

Let us apply the forest formula after rescaling the matrix as $M \rightarrow M / g$

$$
\begin{align*}
& Z=\int d M \exp -\frac{N}{g}\left\{\operatorname{Tr} M^{2}+V(M)\right\} \tag{14}\\
&= \sum_{n} \frac{(-1)^{n}}{n!} \int d M_{1} \cdots d M_{n} \exp -\frac{N}{g}\left\{\sum_{1 \leq i, j \leq n} C_{i j}^{-1} \operatorname{Tr}\left(M_{i} M_{j}\right)\right\} \\
& V\left(M_{1}\right) \cdots V\left(M_{1}\right) \underbrace{\mid c_{i j}=1}_{\text {sets } A_{i}=A_{j}} \tag{15}
\end{align*}
$$

$$
\begin{equation*}
=\sum_{F \text { embedded forest }} \mathcal{A}_{F} \tag{16}
\end{equation*}
$$

Then the free energy $\log Z$ is a sum over embedded trees.
It remains to bound the amplitudes and the number of trees.

Morse-Palais change of variables

The Morse-Palais lemma states that any functional can be reduced to a quadratic one in the vicinity of its extrema. For the matrix integral, we set

$$
\begin{equation*}
K=M \sqrt{1+M^{2 p-2}} \quad \Leftrightarrow \quad M=K \sqrt{T\left(-K^{2 p-2}\right)} \tag{17}
\end{equation*}
$$

with T the Fuß-Catalan function such that $T(z)=1+z T^{p}(z)$.
For the matrix integral, it leads to

$$
\begin{array}{r}
\int d M \exp -\frac{N}{g}\left\{\operatorname{Tr} M^{2}+\operatorname{Tr} M^{2 p}\right\}= \\
\int d K \exp -\left\{N \operatorname{Tr} K^{2}+V_{\text {eff }}(K)\right\} \tag{19}
\end{array}
$$

with an effective potential computed from the Jacobian

$$
\begin{equation*}
V_{e f f}(K)=-\log \operatorname{det} \frac{\delta M}{\delta K}=-\operatorname{Tr}_{\otimes} \log \frac{\delta M}{\delta K} \tag{20}
\end{equation*}
$$

The derivative of the logarithm is a resolvent and analytic properties of $T(z)$ lead to useful bounds on tree amplitudes

Effective potential and matrix derivative

For any single matrix function $M=\sum_{n} a_{K}^{n}$, the matrix derivative acting on matrices $M_{N}(\mathbb{C}) \sim \mathbb{C}^{N} \otimes \mathbb{C}^{N}$ by left and right multiplication is defined as

$$
\begin{equation*}
\delta M=\sum_{n} \sum_{k=0}^{n-1} a_{n} K^{k} \delta K K^{n-1-k} \Leftrightarrow \frac{\delta M}{\delta K}=\sum_{n} \sum_{k=0}^{n-1} a_{n} K^{k} \otimes K^{n-1-k} \tag{21}
\end{equation*}
$$

In our case with Fuß-Catalan function T

$$
\begin{equation*}
\frac{\delta M}{\delta K}=\frac{K \sqrt{T\left(-K^{2 p-2}\right)} \otimes 1-1 \otimes K \sqrt{T\left(-K^{2 p-2}\right)}}{K \otimes 1-1 \otimes K} \tag{22}
\end{equation*}
$$

if e_{i} diagonalises $K, K e_{i}=\nu_{i} e_{i}$, then $e_{i}^{\dagger} e_{j}$ diagonalises $\frac{\delta M}{\delta K}$ and

$$
\begin{equation*}
V_{\text {eff }}(K)=\sum_{i, j} \log \left|\frac{\nu_{i} \sqrt{T\left(-\nu_{i}^{2 p-2}\right)}-\nu_{j} \sqrt{T\left(-\nu_{j}^{2 p-2}\right)}}{\nu_{i}-\nu_{j}}\right| \tag{23}
\end{equation*}
$$

Fuß-Catalan generating function

Lagrange inversion formula leads to Fuß-Catalan numbers

$$
\begin{equation*}
T(z)=1+z T^{p}(z) \quad \Rightarrow \quad T(z)=\sum_{n} \frac{(n p)!}{n!(n p-n+1)!} z^{n} \tag{24}
\end{equation*}
$$

ordinary Catalan numbers for $p=2$ (counting p-ary trees)
Some useful properties:

- $T(z)$ analytic on the cut plane $\mathbb{C}-\left[\frac{(p-1)^{p-1}}{p^{p}},+\infty[\right.$
- behavior at infinity $T(z) \sim-\left(\frac{1}{z}\right)^{1 / p}$.
- $T(z) \neq 0$ for finite z

On any domain Ω staying at a finite distance from the cut

$$
\begin{equation*}
|T(z)| \leq \frac{C_{\Omega}}{(1+|z|)^{1 / p}}, \quad\left|T^{\prime}(z)\right| \leq \frac{C_{\Omega}^{\prime}}{(1+|z|)^{1 / p+1}}, \ldots \tag{25}
\end{equation*}
$$

Analyticity from counting trees

The number of labelled and embedded trees on n vertices is

$$
\begin{array}{r}
\sum_{\substack{r_{1}-1+\cdots+r_{n}-1 \\
=n-2}} \overbrace{\frac{(n-2)!}{\left(r_{1}-1\right)!\cdots\left(r_{n}-1\right)!}}^{\text {trees with coordination } r_{1}, \ldots, r_{n}} \times \overbrace{\left(r_{1}-1\right)!\cdots\left(r_{n}-1\right)!}^{\text {embeddings }} \\
=\frac{(2 n-3)!}{(n-1)!} \tag{26}
\end{array}
$$

Bounding each tree amplitude leads to a convergent series

$$
\begin{equation*}
|F| \leq \sum_{T}\left|\mathcal{A}_{T}\right| \leq \frac{(2 n-3)!}{(n-1)!} \times \frac{|\lambda|^{n}[\kappa(\arg \lambda)]^{n}}{n!} \tag{27}
\end{equation*}
$$

The factorial growth cancel so that the series has a finite radius of convergence, with $\kappa(\arg \lambda) \propto \frac{1}{|\cos (\arg \lambda)|}$ for $|\arg \lambda|<\pi / 2$ (positivity of Gaußian measure) \Rightarrow not enough for Borel summation.

Analytic continuation from contour rotation

To accommodate a large range for $\arg \lambda$ let us rotate the matrix integral by and angle $\alpha M \rightarrow \exp (\mathrm{i} \alpha) M$ as well as all Cauchy contours with two constraints :

- positivity of the Gaußian measure $\exp -\frac{\operatorname{tr} K^{2}}{g}$

$$
\begin{equation*}
-\pi / 2<\arg \lambda-2 \alpha<\pi / 2 \tag{28}
\end{equation*}
$$

- singularity of the Fuß-Catalan function $T\left(-K^{2 p-2}\right)$

$$
\begin{equation*}
-\pi<(2 p-2) \alpha<\pi \tag{29}
\end{equation*}
$$

The maximal opening of the domain of analyticity is therefore

$$
\begin{equation*}
-\frac{\pi}{2}-\frac{\pi}{p-1}+\epsilon \leq \arg \lambda \leq \frac{\pi}{2}+\frac{\pi}{p-1}-\epsilon \tag{30}
\end{equation*}
$$

Bounds on the tree amplitude

Writing the effective potential as $V_{\text {eff }}(K)=\operatorname{Tr}_{\otimes} \log (1-\Sigma)$ (acting in $\mathbb{C}^{N} \otimes \mathbb{C}^{N}$), every vertex is represented as a double line graph with insertions of $(1-\Sigma)^{-1}$ or $\frac{\partial \Sigma}{\partial K}$, written as a contour integral. The tree amplitude \mathcal{A}_{T} involves $E(T)+2$ faces and is a trace in $\mathbb{C}^{\otimes(E(T)+2)}$. Using $|\operatorname{Tr}(A)| \leq N^{\otimes(E(T)+2)}\|A\|$, it can be bounded as

$$
\begin{equation*}
\left|\mathcal{A}_{T}\right| \leq N^{2} \prod_{i} \oint_{\Gamma_{i}}\left|d u_{i}\right| \prod_{j}\left\|\mathcal{O}_{j}\right\| \tag{31}
\end{equation*}
$$

where \mathcal{O}_{j} are the operators encountered around the vertices and contracted along the edges.

Borel summability of the matrix model partition function

Borel summability follows from the Nevanlinna-Sokal theorem checking the two hypothesis:

- Analyticity on the circle tangent to the positive axis follows from the analyticity in the Pac-Man domain.
- The bound on the remainder can be obtained by recursively adding edges to the trees

$$
\begin{equation*}
\log Z=\sum_{k=0}^{n}(-1)^{n} a_{n} g^{n}+R_{n+1}(g, N) \tag{32}
\end{equation*}
$$

The remainder is a over trees with at least $n+1-k$ edges on which k edges have been added using the representation

$$
\begin{equation*}
\int d \mu_{C}(K) f(K)=\left.\exp \left(\frac{1}{2} \sum_{i j} C_{i j} \frac{\partial^{2}}{\partial K_{i} \partial K_{j}}\right) f(K)\right|_{K=0} \tag{33}
\end{equation*}
$$

Towards a similar approach in Quantum Field Theory

Change of variables from Morse-Palais lemma : reduction of a functional around a critical point in Hilbert space to a quadratic form $S[\phi]=\langle\chi(\phi), \chi(\phi)\rangle$

$$
\int\left\{\frac{1}{2}(\partial \phi)^{2}+\frac{m^{2}}{2} \phi^{2}+\frac{g}{4!} \phi^{4}\right\}=\int\left\{\frac{1}{2}(\partial \chi)^{2}+\frac{m^{2}}{2} \chi^{2}\right\}
$$

leading to the non local effective potential (Jacobian)

$$
V_{\text {eff }}[\chi]=\log \operatorname{det} \frac{\delta \phi}{\delta \chi}=\operatorname{Tr} \log \frac{\delta \phi}{\delta \chi}
$$

Difficulty : find suitable cut-off independent bounds.
Matrix model with kinetic term (Grosse-Wulkenhaar model)

$$
\int D M \exp -\left\{\operatorname{Tr} A M^{2}+g \operatorname{Tr} M^{4}\right\}
$$

2d case by V. Rivasseau and Z.T. Wang arxiv1805.06365.

