Non-perturbative results of a just-renormalisable model

 based on works with Harald Grosse \& Raimar Wulkenhaar, and work in progress with J. Thürigen
Alexander Hock

University of Oxford
alexander.hock@maths.ox.ac.uk

June 14, 2023

Overview

- Motivating noncommutative geometry
- ϕ^{4} matrix model
- Double expansion (in $\frac{1}{N}$ and λ)
- Exact solution at genus 0
- Renormalisation Hopf algebra

Why noncommutative space?

- QFT uses operator-valued distributions smeared over the support of a test function
- Taking Einstein gravity into account we find a minimal length, Planck length
\rightarrow measure uncertainties at Planck scale
- Uncertainties give rise to noncommutativity (e.g. $\left.\Delta x_{1} \Delta p_{x_{1}} \geq \hbar / 2 \quad \rightarrow \quad\left[Q_{x_{1}}, P_{x_{1}}\right]=i \hbar\right)$
- $\left[x_{1}, x_{2}\right]=i V \in i \mathbb{R}$
\rightarrow Moyal space

Scalar QFT on the Moyal Space

The action of the noncommutative real scalar ϕ_{D}^{4} QFT on the Moyal space is defined by

$$
S[\phi]:=\frac{1}{8 \pi} \int_{\mathbb{R}^{D}} d x\left(\frac{1}{2} \phi\left(-\Delta+\Omega^{2}\left\|2 \Theta^{-1} x\right\|^{2}+\mu^{2}\right) \star \phi+\frac{\lambda}{4} \phi^{\star, 4}\right)(x),
$$

where Δ is the Laplacian, μ the mass, λ the coupling constant and $\Omega \in \mathbb{R}$. The Moyal *-product is defined by

$$
\begin{aligned}
& (g \star h)(x)=\int_{\mathbb{R}^{D}} \frac{d k}{(2 \pi)^{D}} \int_{\mathbb{R}^{D}} d y g\left(x+\frac{1}{2} \Theta k\right) h(x+y) e^{i k \cdot y}, \\
& \Theta=\operatorname{id}_{D / 2} \otimes\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \cdot 4 V^{2 / D}, \quad V \in \mathbb{R}, \quad x \in \mathbb{R}^{D}, \quad g, h \in \mathcal{S}\left(\mathbb{R}^{D}\right) .
\end{aligned}
$$

Notice, $(g \star h)(x)=g(x) h(x)$ for $V=0$

Matrix Base

The Moyal algebra $\mathcal{A}_{\star}=\left(\mathcal{S}\left(\mathbb{R}^{D}\right), \star\right)$ is a vector space equipped with the \star-product. For this vector space, a matrix basis $f_{n m}(x)$ exists with:

$$
\left(f_{n m} \star f_{k l}\right)(x)=\delta_{m, k} f_{n l}(x), \quad \int_{\mathbb{R}^{D}} d x f_{n m}(x)=8 \pi V \delta_{n, m}
$$

A function $\phi \in \mathcal{C}_{0}\left(\mathbb{R}^{D}\right)$ that vanishes at infinity can be expanded in this basis

$$
\phi(x)=\sum_{n, m} \phi_{n m} f_{n m}(x)
$$

where $\left(\phi_{n m}\right)$ is Hermitian

Action in the Matrix Base at $\Omega=1$

Taking renormalization into account, the renormalized action is then

$$
S[\phi]=V\left(\sum_{n, m} E_{n} Z \phi_{n m} \phi_{m n}+\frac{Z^{2} \lambda_{\text {bare }}}{4} \sum_{n_{i}} \phi_{n_{1} n_{2}} \phi_{n_{2} n_{3}} \ldots \phi_{n_{4} n_{1}}\right)
$$

$$
E_{n}:=\frac{\mu_{\text {bare }}^{2}}{2}+\frac{n}{V^{2 / D}} \quad \text { eigenvalues of the Laplacian }
$$

with renormalizations for mass $\mu_{\text {bare }}^{2}$, field Z and coupling constant $\lambda_{\text {bare }}$. Important: The eigenvalues E_{n} have multiplicities r_{n} depending on the dimension D
$D=2 \rightarrow r_{n}=1, \quad D=4 \rightarrow r_{n}=n, \quad D=6 \rightarrow r_{n}=n(n+1) / 2$

Action in the Matrix Base at $\Omega=1$

Taking renormalization into account, the renormalized action is then

$$
\begin{aligned}
S[\phi] & =V\left(\sum_{n, m} E_{n} Z \phi_{n m} \phi_{m n}+\frac{Z^{2} \lambda_{\text {bare }}}{4} \sum_{n_{i}} \phi_{n_{1} n_{2}} \phi_{n_{2} n_{3}} \ldots \phi_{n_{4} n_{1}}\right) \\
E_{n} & :=\frac{\mu_{\text {bare }}^{2}}{2}+\frac{n}{V^{2 / D}} \quad \text { eigenvalues of the Laplacian }
\end{aligned}
$$

with renormalizations for mass $\mu_{\text {bare }}^{2}$, field Z and coupling constant $\lambda_{\text {bare }}$. Important: The eigenvalues E_{n} have multiplicities r_{n} depending on the dimension D

$$
D=2 \rightarrow r_{n}=1, \quad D=4 \rightarrow r_{n}=n, \quad D=6 \rightarrow r_{n}=n(n+1) / 2
$$

Fact

The interaction is only cyclic symmetric
\rightarrow oriented Feynman graphs (ribbon graphs)
\rightarrow embedded into Riemann surfaces with a genus and boundaries

ϕ^{4} Matrix Model and Correlation Functions

Let H_{N} be the space of Hermitian $(N \times N)$-matrices, $E \in H_{N}$ positive with eigenvalues $\left(E_{n}\right)$ (from the Laplacian).

The size N of the matrix is related to the noncommutativity V.
Define the partition function

$$
\mathcal{Z}=\int_{H_{N}} d \phi \exp [-S[\phi]]
$$

ϕ^{4} Matrix Model and Correlation Functions

Let H_{N} be the space of Hermitian $(N \times N)$-matrices, $E \in H_{N}$ positive with eigenvalues $\left(E_{n}\right)$ (from the Laplacian).

The size N of the matrix is related to the noncommutativity V.
Define the partition function

$$
\mathcal{Z}=\int_{H_{N}} d \phi \exp [-S[\phi]]
$$

The 2-point correlation function is by definition

$$
G_{p q}:=V\left\langle\phi_{p q} \phi_{q p}\right\rangle=\frac{V \int_{H_{N}} d \phi \phi_{p q} \phi_{q p} \exp [-S[\phi]]}{\int_{H_{N}} d \phi \exp [-S[\phi]]}
$$

for $E_{p} \neq E_{q}$.

Computational steps

- Calculating Dyson-Schwinger equations (DSE)
- Calculating Ward-Takahashi identities \rightarrow in the formal $\frac{1}{N}$-expansion the DSE decouple

$$
G_{p q}=\sum_{g=0}^{\infty} N^{-2 g} G_{p q}^{(g)}
$$

- To recover correlation functions on the Moyal space, the continuum limit is performed
- The size of the matrices N and the deformation V tends to ∞ with constant ratio $\frac{N}{V^{2 / D}}$ defining the UV cut-off Λ^{2}
- The correlation functions become continuous functions on $\left[0, \Lambda^{2}\right]$. For instance, the 2-point function gets

$$
\lim _{\substack{V, N \rightarrow \infty \\ \frac{\nu}{V^{2} / D}=\Lambda^{2}}} G_{p q}^{(g)}=: G^{(g)}(x, y)
$$

where $x=\lim \frac{p}{V^{2 / D}}$ and $y=\lim \frac{q}{V^{2 / D}}$.

Renormalized 2-Point Dyson-Schwinger Equation

The planar 2-point function obeys in a formal N expansion the nonlinear equation

$$
\left(\mu_{\text {bare }}^{2}+\frac{p}{V^{2 / D}}+\frac{q}{V^{2 / D}}+\frac{\lambda_{\text {bare }}}{V} \sum_{m} r_{m} Z G_{p m}^{(0)}\right) Z G_{p q}^{(0)}=1+\frac{\lambda_{\text {bare }}}{V} \sum_{m} r_{m} Z \frac{G_{m q}^{(0)}-G_{p q}^{(0)}}{\frac{m}{V^{2 / D}}-\frac{p}{V^{2 / D}}}
$$

Renormalized 2-Point Dyson-Schwinger Equation

The planar 2-point function obeys in a formal N expansion the nonlinear equation

$$
\left(\mu_{\text {bare }}^{2}+\frac{p}{V^{2 / D}}+\frac{q}{V^{2 / D}}+\frac{\lambda_{\text {bare }}}{V} \sum_{m} r_{m} Z G_{p m}^{(0)}\right) Z G_{p q}^{(0)}=1+\frac{\lambda_{\text {bare }}}{V} \sum_{m} r_{m} Z \frac{G_{m q}^{(0)}-G_{p q}^{(0)}}{\frac{m}{V^{2 / D}}-\frac{p}{V^{2 / D}}} .
$$

Performing the continuum limit (by the scaling limit with constant ratio $\left.\lim \frac{N}{V^{2 / D}} \mapsto \Lambda^{2}\right)$ with $\frac{p}{V^{2 / D}} \mapsto x \in\left[0, \Lambda^{2}\right]$ and $G_{p q} \mapsto G(x, y)$ yields
$\left(y+\mu_{\text {bare }}^{2}+x+\lambda_{\text {bare }} \int_{0}^{\Lambda^{2}} d t t^{D / 2-1}\left(Z G^{(0)}(x, t)+\frac{1}{t-x}\right)\right) Z G^{(0)}(x, y)=1+\lambda_{\text {bare }} Z \int_{0}^{\Lambda^{2}} d t t^{D / 2-1} \frac{G^{(0)}(t, y)}{t-x}$,
where $\mu_{\text {bare }}, \lambda_{\text {bare }}, Z$ depend on Λ^{2}, the cut-off.

The Starting Point

Thm (Grosse, AH, Wulkenhaar '19)

The red part is UV finite and given by

$$
\mu_{\text {bare }}^{2}+x+\lambda_{\text {bare }} Z \int_{0}^{\Lambda^{2}} d t t^{D / 2-1}\left(G(x, t)+\frac{1}{t-x}\right)=-R\left(-R^{-1}(x)\right)
$$

where $R(z)$ satisfies

$$
\begin{aligned}
& R(z)=z-(-z)^{\frac{D}{2}} \lambda \int_{0}^{\infty} \frac{d t \varrho_{\lambda}(t)}{\left(t+\mu^{2}\right)^{\frac{D}{2}}\left(t+\mu^{2}+z\right)}, \\
& \varrho_{\lambda}(t)=R(t)^{D / 2-1},
\end{aligned}
$$

Examples

$$
\begin{array}{ll}
D=2: & R(z)=-\frac{1}{2}+z+\lambda \log \left(\frac{1}{2}+z\right) \quad \text { (Panzer,Wulkenhaar '18) } \\
D=4: & R(z)=\left(-\frac{\mu^{2}}{2}+z\right){ }_{2} F_{1}\left(\begin{array}{c}
\alpha_{\lambda}, 1-\alpha_{\lambda} \\
2
\end{array} \frac{1}{2}-\frac{z}{\mu^{2}}\right), \quad \alpha_{\lambda}=\frac{\arcsin (\lambda \pi)}{\pi} \\
\text { finite } N: & R(z)=z-\frac{\lambda}{V} \sum_{k=1}^{N} \frac{r_{k}}{R^{\prime}\left(\varepsilon_{k}\right)\left(z+\varepsilon_{k}\right)}, \quad E_{n}=R\left(\varepsilon_{n}\right), \quad \lim _{\lambda \rightarrow 0} \varepsilon_{n}=E_{n}
\end{array}
$$

Examples

$$
\begin{array}{ll}
D=2: & R(z)=-\frac{1}{2}+z+\lambda \log \left(\frac{1}{2}+z\right) \quad \text { (Panzer,Wulkenhaar '18) } \\
D=4: & R(z)=\left(-\frac{\mu^{2}}{2}+z\right){ }_{2} F_{1}\left(\begin{array}{c}
\alpha_{\lambda}, 1-\alpha_{\lambda} \\
2
\end{array} \frac{1}{2}-\frac{z}{\mu^{2}}\right), \quad \alpha_{\lambda}=\frac{\arcsin (\lambda \pi)}{\pi} \\
\text { finite } N: & R(z)=z-\frac{\lambda}{V} \sum_{k=1}^{N} \frac{r_{k}}{R^{\prime}\left(\varepsilon_{k}\right)\left(z+\varepsilon_{k}\right)}, \quad E_{n}=R\left(\varepsilon_{n}\right), \quad \lim _{\lambda \rightarrow 0} \varepsilon_{n}=E_{n}
\end{array}
$$

Finite radius of convergence in $\lambda!!$

In 4D: Exact Solution of the 2-Point Function

Solving the singular integral equation (of Carleman type) yields $G^{(0)}(x, y)=\frac{\mu^{2} \exp (N(x, y))}{\mu^{2}+x+y}$

$$
\begin{aligned}
N(x, y):=\frac{1}{2 \pi \mathrm{i}} \int_{-\infty}^{\infty} d & \left\{\log \left(x-R\left(-\frac{\mu^{2}}{2}-\mathrm{i} t\right)\right) \frac{d}{d t} \log \left(y-R\left(-\frac{\mu^{2}}{2}+\mathrm{i} t\right)\right)\right. \\
& -\log \left(-R\left(-\frac{\mu^{2}}{2}-\mathrm{i} t\right)\right) \frac{d}{d t} \log \left(-R\left(-\frac{\mu^{2}}{2}+\mathrm{i} t\right)\right) \\
& -\log \left(x-\left(-\frac{\mu^{2}}{2}-\mathrm{i} t\right)\right) \frac{d}{d t} \log \left(y-\left(-\frac{\mu^{2}}{2}+\mathrm{i} t\right)\right) \\
& \left.+\log \left(-\left(-\frac{\mu^{2}}{2}-\mathrm{i} t\right)\right) \frac{d}{d t} \log \left(-\left(-\frac{\mu^{2}}{2}+\mathrm{i} t\right)\right)\right\}
\end{aligned}
$$

Graph Expansion of the 2-Point Function $G^{(0)}(x, y)$

Exact result coincides with the perturbative expansion!

Graph Expansion of the 2-Point Function $G^{(0)}(x, y)$

Exact result coincides with the perturbative expansion!
Renormalon problem from perturbation theory

Spectral Dimension of ϕ_{4}^{4}

The asymptotic of the hypergeometric functions

$$
{ }_{2} F_{1}\left(\left.\begin{array}{c}
a, \\
1-a \\
2
\end{array} \right\rvert\,-x\right) \stackrel{x \rightarrow \infty}{\sim} \frac{1}{x^{a}}
$$

Spectral Dimension of ϕ_{4}^{4}

The asymptotic of the hypergeometric functions

$$
{ }_{2} F_{1}\left(\left.\begin{array}{cc}
a, & 1-a \\
2
\end{array} \right\rvert\,-x\right) \stackrel{x \rightarrow \infty}{\sim} \frac{1}{x^{a}} .
$$

The R-function defines an effective measure, which behaves asymptotically

$$
R(x)=x_{2} F_{1}\left(\left.\begin{array}{c}
\alpha_{\lambda}, \\
2
\end{array} \right\rvert\,-\frac{\alpha_{\lambda}}{\mu^{2}}\right) \stackrel{x \rightarrow \infty}{\sim} x^{1-\alpha_{\lambda}}
$$

where $\alpha_{\lambda}=\frac{\arcsin (\lambda \pi)}{\pi}$.
Finally, the spectral dimension D has the asymptotics
$x^{\frac{D}{2}-1} \rightarrow D=4-2 \frac{\arcsin (\lambda \pi)}{\pi}$.

Why does it avoid the Triviality Problem?

The inverse R^{-1} is an essential ingredient for the exact solution! Would instead the solution be constructed by

$$
\tilde{R}(x)=x-\lambda x^{2} \int_{0}^{\infty} \frac{d \varrho_{0}(t)}{\left(\mu^{2}+t\right)^{2}\left(\mu^{2}+t+x\right)}, \quad d \varrho_{0}(t)=d t t
$$

\Rightarrow no inverse exists globally on \mathbb{R}_{+}
$\Rightarrow \tilde{R}$ has an upper bound behaving at $x_{\max }=K \cdot e^{\frac{1}{\lambda}}$

Why does it avoid the Triviality Problem?

The inverse R^{-1} is an essential ingredient for the exact solution! Would instead the solution be constructed by

$$
\tilde{R}(x)=x-\lambda x^{2} \int_{0}^{\infty} \frac{d \varrho_{0}(t)}{\left(\mu^{2}+t\right)^{2}\left(\mu^{2}+t+x\right)}, \quad d \varrho_{0}(t)=d t t
$$

\Rightarrow no inverse exists globally on \mathbb{R}_{+}
$\Rightarrow \tilde{R}$ has an upper bound behaving at $x_{\max }=K \cdot e^{\frac{1}{\lambda}}$
The function $R(x)$ has a global inverse on \mathbb{R}_{+}!
The effective dimension drop is only visible on the level of exact solutions Not accessible with perturbation theory!

Perturbative Renormalisation

Question

Since we can resum each genus sector in λ, does that mean that perturbative renormalisation is simpler?

Perturbative Renormalisation

Question

Since we can resum each genus sector in λ, does that mean that perturbative renormalisation is simpler?

Looking for example at the sunrise graph, we have perturbatively "overlapping" divergencies.

Subtracting subdivergences in QFT correctly is described via BPHZ forest formula.

The BPHZ forest formula has (secretely) a Hopf algebra structure.
This was revealed by Allain Connes and Dirk Kreimer.
Does the Hopf algebraic structure of the model under consideration differ from the other 4D QFTs?

Hopf algebra of ribbon graphs [J. Thürigen]

For a fixed external structure (e.g. 2-point and 4-point graphs of genus $g=0$), let G be the set of all connected 1PI ribbon graphs. Then, the \mathbb{Q}-algebra generated by G

$$
\mathcal{G}=\langle\mathrm{G}\rangle
$$

is a Hopf algebra.
Product is the disjoint union
Co-product $\Delta: \mathrm{G} \rightarrow \mathrm{G} \otimes \mathrm{G}, \Gamma \mapsto \sum_{\Theta} \Theta \otimes \Gamma / \Theta$, where Γ / Θ contracts Θ in Г, e.g.

Series of 1PI graphs

Consider the series

$$
X^{\gamma}=1 \pm \sum_{\substack{\Gamma \in G \\ \operatorname{res}(\Gamma)=\gamma}} \alpha^{F_{\Gamma}} \frac{\Gamma}{|A u t \Gamma|}=1 \pm \sum_{j=1}^{\infty} \alpha^{j} c_{j}^{\gamma}
$$

where γ is a fixed external structure, i.e. $\Gamma / \Gamma=\gamma$.
For the 1PI 2-point function and 4-point we abbriviate

$$
X_{2} \equiv X^{-}, \quad X_{4} \equiv X^{\times}
$$

where $\gamma=-$ is the external structure of the 2-point function and $\gamma=\times$ of the 4-point.

Combinatorial Dyson－Schwinger equations

$$
\begin{aligned}
& X_{2}=\mathbb{1}-\alpha B^{2}\left(\frac{X_{4}}{X_{2}}\right)=\mathbb{1}-\alpha(B \Omega+B \mathbf{O})\left(\frac{X_{4}}{X_{2}}\right), \\
& X_{4}=1+\sum_{\text {over all primitive }} \alpha^{F_{\Gamma}} B^{\Gamma}\left(\left(\frac{X_{4}}{X_{2}^{2}}\right)^{F_{\Gamma}} X_{4}\right) \\
& \text { over all primitive } \\
& \text { 4-point graphs 「 } \\
& =1+\alpha\left(B>\alpha_{+B} \text { 久 }\right)\left(\frac{X_{4}^{2}}{X_{2}^{2}}\right)+\ldots,
\end{aligned}
$$

Primitive graphs have no subdivergencies．Grafting operator B^{γ}

$$
B^{\gamma}(X)=\frac{1}{(\gamma \mid X)|X|_{\vee}} \sum_{\substack{\Gamma \in \mathrm{G} \\ \operatorname{res}(\Gamma)=\operatorname{res}(\gamma)}} \frac{\operatorname{bij}(\gamma, X, \Gamma)}{\operatorname{maxf}(\Gamma)} \Gamma,
$$

symmetry factors $(\gamma \mid X),|X|_{\vee}, \operatorname{maxf}(\Gamma), \operatorname{bij}(\gamma, X, \Gamma)$ such that the combinatorial DSEs hold by definition．

Observations/Properties of Hopf algebra structure

- coupled system of combinatorial DSE
- infinitely many primitive 4-point graphs
- c_{n}^{γ} generate a Hopf subalgebra, i.e. $\Delta\left(c_{n}^{\gamma}\right)=\sum_{k=0}^{n} P_{n, k}^{\gamma}(c) \otimes c_{n-k}^{\gamma}$
- the grafting operator is Hochschild 1-cocycle, i.e.

$$
\Delta B=B \otimes 1+(1 \otimes B) \Delta
$$

- an algebra homomorphism to the space a Feynman amplitudes is very complicated, we have to include all the symmetry factors of the grafting operator B
\rightarrow exact results are not accessible from the Hopf algebraic perspective

Summary

- Use noncommutative geometry to combine gravity and QFT
- matrix model with nontrivial covariance
- Closed Dyson-Schwinger equations after using Ward identites in the formal $\frac{1}{N}$ expansion
- exact solution in λ at each order in $\frac{1}{N}$
- effective drop of the spectral dimension to $D=4-2 \frac{\arcsin (\lambda \pi)}{\pi}$
- resummation in N is not absolutely convergent (resurgence)
- at a fixed order in λ finitely many terms contribute, resummable in N at a finite order in λ
- just the genus $g=0$ sector has to be renormalised
- $g=0$ has the renormalisation complexity of an ordinary QFT \rightarrow both in the sense of field and mass renormalisation $Z, \mu_{\text {bare }}$ and from Hopf algebraic perspective (except for running coupling in λ)

