Non-perturbative results of a just-renormalisable model based on works with Harald Grosse & Raimar Wulkenhaar, and work in progress with J. Thürigen

Alexander Hock

University of Oxford

alexander.hock@maths.ox.ac.uk

June 14, 2023

Overview

- Motivating noncommutative geometry
- ϕ^4 matrix model
- **Double expansion** (in $\frac{1}{N}$ and λ)
- Exact solution at genus 0
- Renormalisation Hopf algebra

Why noncommutative space?

- QFT uses operator-valued distributions smeared over the support of a test function
- Taking Einstein gravity into account we find a **minimal length**, Planck length
 - \rightarrow measure uncertainties at Planck scale
- Uncertainties give rise to noncommutativity (e.g. $\Delta x_1 \Delta p_{x_1} \ge \hbar/2 \rightarrow [Q_{x_1}, P_{x_1}] = i\hbar$)
- $[x_1, x_2] = iV \in i\mathbb{R}$ \rightarrow Moyal space

Scalar QFT on the Moyal Space

The action of the **noncommutative real scalar** $\phi_D^4~{\rm QFT}$ on the Moyal space is defined by

$$S[\phi] := \frac{1}{8\pi} \int_{\mathbb{R}^D} dx \left(\frac{1}{2} \phi \left(-\Delta + \Omega^2 \| 2\Theta^{-1} x \|^2 + \mu^2 \right) \star \phi + \frac{\lambda}{4} \phi^{\star,4} \right)(x),$$

where Δ is the Laplacian, μ the mass, λ the coupling constant and $\Omega \in \mathbb{R}$. The Moyal *-product is defined by

$$(g \star h)(x) = \int_{\mathbb{R}^D} \frac{dk}{(2\pi)^D} \int_{\mathbb{R}^D} dy \, g(x + \frac{1}{2}\Theta k) \, h(x + y) e^{ik \cdot y},$$

$$\Theta = \mathrm{id}_{D/2} \otimes \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot 4V^{2/D}, \quad V \in \mathbb{R}, \quad x \in \mathbb{R}^D, \quad g, h \in \mathcal{S}(\mathbb{R}^D).$$

Notice, $(g \star h)(x) = g(x)h(x)$ for V = 0

Matrix Base

The **Moyal algebra** $\mathcal{A}_{\star} = (\mathcal{S}(\mathbb{R}^D), \star)$ is a vector space equipped with the \star -product. For this vector space, a **matrix basis** $f_{nm}(x)$ exists with:

$$(f_{nm}\star f_{kl})(x) = \delta_{m,k}f_{nl}(x), \qquad \int_{\mathbb{R}^D} dx f_{nm}(x) = 8\pi V \delta_{n,m}.$$

A function $\phi \in C_0(\mathbb{R}^D)$ that vanishes at infinity can be expanded in this basis

$$\phi(x) = \sum_{n,m} \phi_{nm} f_{nm}(x),$$

where (ϕ_{nm}) is **Hermitian**

Action in the Matrix Base at $\Omega = 1$

Taking renormalization into account, the renormalized action is then

$$S[\phi] = V\left(\sum_{n,m} E_n Z \phi_{nm} \phi_{mn} + \frac{Z^2 \lambda_{bare}}{4} \sum_{n_i} \phi_{n_1 n_2} \phi_{n_2 n_3} \dots \phi_{n_4 n_1}\right)$$
$$E_n := \frac{\mu_{bare}^2}{2} + \frac{n}{V^{2/D}} \quad \text{eigenvalues of the Laplacian}$$

with renormalizations for mass μ_{bare}^2 , field Z and coupling constant λ_{bare} . **Important:** The eigenvalues E_n have **multiplicities** r_n depending on the dimension D

 $D = 2 \rightarrow r_n = 1$, $D = 4 \rightarrow r_n = n$, $D = 6 \rightarrow r_n = n(n+1)/2$

Action in the Matrix Base at $\Omega = 1$

Taking renormalization into account, the renormalized action is then

$$S[\phi] = V\left(\sum_{n,m} E_n Z \phi_{nm} \phi_{mn} + \frac{Z^2 \lambda_{bare}}{4} \sum_{n_i} \phi_{n_1 n_2} \phi_{n_2 n_3} \dots \phi_{n_4 n_1}\right)$$
$$E_n := \frac{\mu_{bare}^2}{2} + \frac{n}{V^{2/D}} \quad \text{eigenvalues of the Laplacian}$$

with renormalizations for mass μ_{bare}^2 , field Z and coupling constant λ_{bare} . **Important:** The eigenvalues E_n have **multiplicities** r_n depending on the **dimension** D

 $D = 2 \rightarrow r_n = 1$, $D = 4 \rightarrow r_n = n$, $D = 6 \rightarrow r_n = n(n+1)/2$

Fact

The interaction is only cyclic symmetric

- ightarrow oriented Feynman graphs (ribbon graphs)
- \rightarrow embedded into $\ensuremath{\textbf{Riemann}}$ surfaces with a genus and boundaries

・ロト ・ 同ト ・ ヨト ・ ヨト

$\phi^{\rm 4}$ Matrix Model and Correlation Functions

Let H_N be the space of Hermitian $(N \times N)$ -matrices, $E \in H_N$ positive with eigenvalues (E_n) (from the Laplacian).

The size N of the matrix is **related** to the noncommutativity V.

Define the partition function

$$\mathcal{Z} = \int_{H_N} d\phi \exp\left[-S[\phi]\right].$$

$\phi^{\rm 4}$ Matrix Model and Correlation Functions

Let H_N be the space of Hermitian $(N \times N)$ -matrices, $E \in H_N$ positive with eigenvalues (E_n) (from the Laplacian).

The size N of the matrix is **related** to the noncommutativity V.

Define the partition function

$$\mathcal{Z} = \int_{H_N} d\phi \exp\left[-S[\phi]\right].$$

The 2-point correlation function is by definition

$$G_{pq} := V \langle \phi_{pq} \phi_{qp} \rangle = \frac{V \int_{H_N} d\phi \, \phi_{pq} \phi_{qp} \exp\left[-S[\phi]\right]}{\int_{H_N} d\phi \exp\left[-S[\phi]\right]}$$

for $E_p \neq E_q$.

Computational steps

- Calculating Dyson-Schwinger equations (DSE)
- Calculating Ward-Takahashi identities
 - \rightarrow in the formal $\frac{1}{N}$ -expansion the DSE decouple

$$G_{pq} = \sum_{g=0}^{\infty} N^{-2g} G_{pq}^{(g)}$$

- To recover correlation functions on the Moyal space, the **continuum limit** is performed
- The size of the matrices N and the deformation V tends to ∞ with constant ratio $\frac{N}{V^{2/D}}$ defining the UV cut-off Λ^2
- The correlation functions become **continuous functions** on $[0, \Lambda^2]$. For instance, the 2-point function gets

$$\lim_{\substack{V,N\to\infty\\\frac{N}{V^{2/D}}=\Lambda^{2}}}G_{pq}^{(g)}=:G^{(g)}(x,y),$$

where $x = \lim \frac{p}{V^{2/D}}$ and $y = \lim \frac{q}{V^{2/D}}$.

Renormalized 2-Point Dyson-Schwinger Equation

The planar 2-point function obeys in a formal N expansion the **nonlinear** equation

$$\left(\mu_{bare}^{2} + \frac{p}{V^{2/D}} + \frac{q}{V^{2/D}} + \frac{\lambda_{bare}}{V} \sum_{m} r_{m} Z G_{pm}^{(0)}\right) Z G_{pq}^{(0)} = 1 + \frac{\lambda_{bare}}{V} \sum_{m} r_{m} Z \frac{G_{mq}^{(0)} - G_{pq}^{(0)}}{\frac{m}{V^{2/D}} - \frac{p}{V^{2/D}}}$$

Renormalized 2-Point Dyson-Schwinger Equation

The planar 2-point function obeys in a formal N expansion the **nonlinear** equation

$$\left(\mu_{bare}^{2} + \frac{p}{V^{2/D}} + \frac{q}{V^{2/D}} + \frac{\lambda_{bare}}{V} \sum_{m} r_{m} Z G_{pm}^{(0)}\right) Z G_{pq}^{(0)} = 1 + \frac{\lambda_{bare}}{V} \sum_{m} r_{m} Z \frac{G_{mq}^{(0)} - G_{pq}^{(0)}}{\frac{m}{V^{2/D}} - \frac{p}{V^{2/D}}}$$

Performing the **continuum limit** (by the scaling limit with constant ratio $\lim \frac{N}{V^{2/D}} \mapsto \Lambda^2$) with $\frac{p}{V^{2/D}} \mapsto x \in [0, \Lambda^2]$ and $G_{pq} \mapsto G(x, y)$ yields

$$\left(y + \mu_{bare}^2 + x + \lambda_{bare} \int_0^{\Lambda^2} dt \ t^{D/2 - 1} \left(ZG^{(0)}(x, t) + \frac{1}{t - x}\right) \right) ZG^{(0)}(x, y) = 1 + \lambda_{bare} Z \int_0^{\Lambda^2} dt \ t^{D/2 - 1} \frac{G^{(0)}(t, y)}{t - x}$$

where μ_{bare} , λ_{bare} , Z depend on Λ^2 , the **cut-off**.

The Starting Point

Thm (Grosse, AH, Wulkenhaar '19)

The red part is UV finite and given by

$$\mu_{bare}^{2} + x + \lambda_{bare} Z \int_{0}^{\Lambda^{2}} dt \, t^{D/2 - 1} \left(G(x, t) + \frac{1}{t - x} \right) = -R(-R^{-1}(x))$$

where R(z) satisfies

$$egin{aligned} R(z) = & z - (-z)^{rac{D}{2}} \lambda \int_0^\infty rac{dt \, arrho_\lambda(t)}{(t+\mu^2)^{rac{D}{2}}(t+\mu^2+z)}, \ & arrho_\lambda(t) = & R(t)^{D/2-1}, \end{aligned}$$

A (10) < A (10) < A (10) </p>

Examples

$$D = 2: \qquad R(z) = -\frac{1}{2} + z + \lambda \log\left(\frac{1}{2} + z\right) \qquad \text{(Panzer, Wulkenhaar '18)}$$

$$D = 4: \qquad \qquad R(z) = \left(-\frac{\mu^2}{2} + z\right) {}_2F_1\left(\frac{\alpha_\lambda}{2}, \frac{1-\alpha_\lambda}{2} \middle| \frac{1}{2} - \frac{z}{\mu^2}\right), \quad \alpha_\lambda = \frac{\arcsin(\lambda\pi)}{\pi}$$

finite N:
$$R(z) = z - \frac{\lambda}{V} \sum_{k=1}^{N} \frac{r_k}{R'(\varepsilon_k)(z + \varepsilon_k)}, \quad E_n = R(\varepsilon_n), \quad \lim_{\lambda \to 0} \varepsilon_n = E_n$$

<ロト <問ト < 目と < 目と

Examples

$$D = 2: \qquad R(z) = -\frac{1}{2} + z + \lambda \log\left(\frac{1}{2} + z\right) \qquad \text{(Panzer, Wulkenhaar '18)}$$

$$D = 4: \qquad \qquad R(z) = \left(-\frac{\mu^2}{2} + z\right) {}_2F_1\left(\frac{\alpha_\lambda}{2}, \frac{1-\alpha_\lambda}{2} \middle| \frac{1}{2} - \frac{z}{\mu^2}\right), \quad \alpha_\lambda = \frac{\arcsin(\lambda\pi)}{\pi}$$

finite N:
$$R(z) = z - \frac{\lambda}{V} \sum_{k=1}^{N} \frac{r_k}{R'(\varepsilon_k)(z + \varepsilon_k)}, \quad E_n = R(\varepsilon_n), \quad \lim_{\lambda \to 0} \varepsilon_n = E_n$$

Finite radius of convergence in λ !!

(日) (四) (日) (日) (日)

In 4D: Exact Solution of the 2-Point Function

Solving the **singular integral equation** (of Carleman type) yields $G^{(0)}(x, y) = \frac{\mu^2 \exp(N(x, y))}{\mu^2 + x + y}$

$$\begin{split} N(x,y) &:= \frac{1}{2\pi \mathrm{i}} \int_{-\infty}^{\infty} dt \, \bigg\{ \log \big(x - R(-\frac{\mu^2}{2} - \mathrm{i}t) \big) \frac{d}{dt} \log \big(y - R(-\frac{\mu^2}{2} + \mathrm{i}t) \big) \\ &- \log \big(- R(-\frac{\mu^2}{2} - \mathrm{i}t) \big) \frac{d}{dt} \log \big(- R(-\frac{\mu^2}{2} + \mathrm{i}t) \big) \\ &- \log \big(x - (-\frac{\mu^2}{2} - \mathrm{i}t) \big) \frac{d}{dt} \log \big(y - (-\frac{\mu^2}{2} + \mathrm{i}t) \big) \\ &+ \log \big(- (-\frac{\mu^2}{2} - \mathrm{i}t) \big) \frac{d}{dt} \log \big(- (-\frac{\mu^2}{2} + \mathrm{i}t) \big) \bigg\}, \end{split}$$

Graph Expansion of the 2-Point Function $G^{(0)}(x, y)$

Exact result coincides with the perturbative expansion!

Graph Expansion of the 2-Point Function $G^{(0)}(x, y)$

Exact result coincides with the perturbative expansion!

Renormalon problem from perturbation theory

3

< □ > < □ > < □ > < □ > < □ >

3

< □ > < □ > < □ > < □ > < □ >

<ロト <問ト < 目と < 目と

Spectral Dimension of ϕ_4^4

The asymptotic of the hypergeometric functions

$$_{2}F_{1}\left(\begin{vmatrix}a, \ 1-a\\2\end{vmatrix} - x\right) \stackrel{x\to\infty}{\sim} \frac{1}{x^{a}}.$$

Spectral Dimension of ϕ_4^4

The asymptotic of the hypergeometric functions

$$_{2}F_{1}\left(\begin{vmatrix}a, \ 1-a\\2\end{vmatrix} - x\right) \stackrel{x\to\infty}{\sim} \frac{1}{x^{a}}.$$

The *R*-function defines an **effective measure**, which behaves asymptotically

$$R(x) = x_2 F_1 \left(\begin{array}{c} \alpha_{\lambda}, \ 1 - \alpha_{\lambda} \\ 2 \end{array} \right| - \frac{x}{\mu^2} \right) \stackrel{x \to \infty}{\sim} x^{1 - \alpha_{\lambda}},$$

where $\alpha_{\lambda} = \frac{\arcsin(\lambda \pi)}{\pi}$. Finally, the **spectral dimension** D has the asymptotics $x^{\frac{D}{2}-1} \rightarrow D = 4 - 2\frac{\arcsin(\lambda \pi)}{\pi}$.

Why does it avoid the Triviality Problem?

The inverse R^{-1} is an essential ingredient for the exact solution! Would instead the solution be constructed by

$$ilde{R}(x) = x - \lambda x^2 \int_0^\infty rac{d arrho_0(t)}{(\mu^2 + t)^2 (\mu^2 + t + x)}, \qquad d arrho_0(t) = dt \, t$$

- $\Rightarrow\,$ no inverse exists globally on \mathbb{R}_+
- \Rightarrow $ilde{R}$ has an upper bound behaving at $x_{max} = K \cdot e^{rac{1}{\lambda}}$

Why does it avoid the Triviality Problem?

The inverse R^{-1} is an essential ingredient for the exact solution! Would instead the solution be constructed by

$$ilde{\mathsf{R}}(x)=x-\lambda x^2\int_0^\infty rac{darrho_0(t)}{(\mu^2+t)^2(\mu^2+t+x)},\qquad darrho_0(t)=dt\,t$$

 \Rightarrow no inverse exists globally on \mathbb{R}_+

 \Rightarrow $ilde{R}$ has an upper bound behaving at $x_{max} = K \cdot e^{rac{1}{\lambda}}$

The function R(x) has a global inverse on \mathbb{R}_+ ! The effective dimension drop is only visible on the level of exact solutions Not accessible with perturbation theory!

Perturbative Renormalisation

Question

Since we can **resum each genus sector** in λ , does that mean that **perturbative renormalisation is simpler**?

Perturbative Renormalisation

Question

Since we can **resum each genus sector** in λ , does that mean that **perturbative renormalisation is simpler**?

Looking for example at the sunrise graph, we have **perturbatively** "overlapping" divergencies.

Subtracting subdivergences in QFT correctly is described via **BPHZ forest formula**.

The BPHZ forest formula has (secretely) a **Hopf algebra structure**.

This was revealed by Allain Connes and Dirk Kreimer.

Does the Hopf algebraic structure of the model under consideration differ from the other 4D QFTs?

Hopf algebra of ribbon graphs [J. Thürigen]

For a fixed external structure (e.g. 2-point and 4-point graphs of genus g = 0), let G be the set of all connected 1PI ribbon graphs. Then, the \mathbb{Q} -algebra generated by G

$$\mathcal{G} = \langle \mathsf{G} \rangle$$

is a Hopf algebra.

Product is the disjoint union **Co-product** $\Delta : G \to G \otimes G, \Gamma \mapsto \sum_{\Theta} \Theta \otimes \Gamma/\Theta$, where Γ/Θ contracts Θ in Γ , e.g.

Series of 1PI graphs

Consider the series

$$X^{\gamma} = 1 \pm \sum_{\substack{\Gamma \in \mathsf{G} \\ \operatorname{res}(\Gamma) = \gamma}} \alpha^{F_{\Gamma}} \frac{\Gamma}{|\operatorname{Aut}\Gamma|} = 1 \pm \sum_{j=1}^{\infty} \alpha^{j} c_{j}^{\gamma},$$

where γ is a fixed external structure, i.e. $\Gamma/\Gamma=\gamma.$

For the 1PI 2-point function and 4-point we abbriviate

$$X_2 \equiv X^-, \qquad X_4 \equiv X^{\times},$$

where $\gamma=-$ is the external structure of the 2-point function and $\gamma=\times$ of the 4-point.

Combinatorial Dyson-Schwinger equations

$$X_{2} = \mathbb{1} - \alpha B^{2} \left(\frac{X_{4}}{X_{2}} \right) = \mathbb{1} - \alpha (B - A + B^{-}) \left(\frac{X_{4}}{X_{2}} \right),$$

$$X_{4} = 1 + \sum_{\substack{\text{over all primitive} \\ 4-\text{point graphs } \Gamma}} \alpha^{F_{\Gamma}} B^{\Gamma} \left(\left(\frac{X_{4}}{X_{2}^{2}} \right)^{F_{\Gamma}} X_{4} \right)$$

$$= 1 + \alpha (B^{\times} + B^{\times}) \left(\frac{X_{4}^{2}}{X_{2}^{2}} \right) + ...,$$

Primitive graphs have no subdivergencies. Grafting operator B^{γ}

$$B^{\gamma}(X) = \frac{1}{(\gamma|X)|X|_{\vee}} \sum_{\substack{\Gamma \in \mathsf{G} \\ \operatorname{res}(\Gamma) = \operatorname{res}(\gamma)}} \frac{\operatorname{bij}(\gamma, X, \Gamma)}{\operatorname{maxf}(\Gamma)} \Gamma,$$

symmetry factors $(\gamma | X), |X|_{\vee}, \max(\Gamma), \operatorname{bij}(\gamma, X, \Gamma)$ such that the combinatorial DSEs hold by definition.

Alexander Hock (University of Oxford)

June 14, 2023 22 / 24

Observations/Properties of Hopf algebra structure

- coupled system of combinatorial DSE
- infinitely many primitive 4-point graphs
- c_n^{γ} generate a **Hopf subalgebra**, i.e. $\Delta(c_n^{\gamma}) = \sum_{k=0}^n P_{n,k}^{\gamma}(c) \otimes c_{n-k}^{\gamma}$
- the grafting operator is Hochschild 1-cocycle, i.e.

$$\Delta B = B \otimes 1 + (1 \otimes B) \Delta.$$

• an algebra homomorphism to the space a Feynman amplitudes is very **complicated**, we have to include all the **symmetry factors** of the grafting operator *B*

 \rightarrow exact results are not accessible from the Hopf algebraic perspective

Summary

- Use noncommutative geometry to combine gravity and QFT
- matrix model with nontrivial covariance
- Closed Dyson-Schwinger equations after using Ward identites in the formal $\frac{1}{N}$ expansion
- exact solution in λ at each order in $\frac{1}{N}$
- effective drop of the spectral dimension to $D = 4 2 \frac{\arcsin(\lambda \pi)}{\pi}$
- resummation in N is not absolutely convergent (resurgence)
- at a fixed order in λ finitely many terms contribute, resummable in N at a finite order in λ
- just the genus g = 0 sector has to be renormalised
- g = 0 has the **renormalisation complexity of an ordinary QFT** \rightarrow both in the sense of **field and mass renormalisation** Z, μ_{bare} and from **Hopf algebraic** perspective (except for running coupling in λ)