A new approach to $O(N)$ breaking interfaces and boundaries

Sabine Harribey

Work in progress with Igor Klebanov and Zimo Sun

Münster - June $14^{\text {th }}$

Boundary CFTs and defects

- Critical $O(N)$ models: thoroughly studied class of $3 D$ CTFs $\rightarrow \epsilon$ expansion, bootstrap, $1 / N$ expansion
- Introduce boundaries or defects [Diehl, cond-mat/9610143]
- Interface: codimension 1 defect
- Boundary: codimension 1 defect where the extra dimension is integrated only over half-space
- Extraordinary: break $O(N)$ symmetry to $O(N-1)$

Surface defects

- RG analysis and $1 / N$ expansion: $3 D$ extraordinary log universality class [Metlitski 2009.05119]
- Recently: D dimensional bulk and defects of codimension $D-2$
[Trepanier; Giombi, Liu; Raviv-Moshe, Zhong]
\rightarrow Quadratic defects
$\rightarrow 4-\epsilon$ and $6-\epsilon$ expansion
\rightarrow Ordinary and extraordinary defects
$\rightarrow 1 / N$ expansion: singular for $D \rightarrow 3$

Surface defects

- RG analysis and $1 / N$ expansion: $3 D$ extraordinary log universality class [Metlitski 2009.05119]
- Recently: D dimensional bulk and defects of codimension $D-2$
[Trepanier; Giombi, Liu; Raviv-Moshe, Zhong]
\rightarrow Quadratic defects
$\rightarrow 4-\epsilon$ and $6-\epsilon$ expansion
\rightarrow Ordinary and extraordinary defects
$\rightarrow 1 / N$ expansion: singular for $D \rightarrow 3$
- Here: $4-\epsilon$ expansion with defects of codimension 1
- Cubic interactions on the defect are then marginal

Free vs interacting bulk

Schematically

$$
S=\int d^{d+1} x\left[\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\lambda_{n} \phi^{n}\right]+\int d^{d} x \lambda_{p} \phi^{p}
$$

- UV dimension of the field $\Delta_{\phi}=\frac{d-1}{2}$
- The defect interaction is then marginal for $d_{c}=\frac{p}{p-2}$
- In $d_{c}+1=\frac{2 p-2}{p-2}$, the operator $\phi^{2(p-1)}$ is marginal in the bulk

Free vs interacting bulk

Schematically

$$
S=\int d^{d+1} x\left[\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\lambda_{n} \phi^{n}\right]+\int d^{d} x \lambda_{p} \phi^{p}
$$

- UV dimension of the field $\Delta_{\phi}=\frac{d-1}{2}$
- The defect interaction is then marginal for $d_{c}=\frac{p}{p-2}$
- In $d_{c}+1=\frac{2 p-2}{p-2}$, the operator $\phi^{2(p-1)}$ is marginal in the bulk

Dimension d_{c}	Bulk	Defect
3	$n=4$	$p=3$
2	$n=6$	$p=4^{1}$
$5 / 3$	$n=8$	$p=5$

Outline

(1) Multi-scalar model
(2) Applications

- $N=1$
- $O(N-1)$ vector model
- Symplectic fermions
(3) Boundary with cubic interactions

Model

$$
\begin{aligned}
S[\phi]= & \int d^{d+1} x\left[\frac{1}{2} \partial_{\mu} \phi_{\mathrm{a}} \partial^{\mu} \phi_{\mathrm{a}}+\frac{\lambda_{\mathrm{abcd}}^{(4)}}{4!} \phi_{\mathrm{a}} \phi_{\mathrm{b}} \phi_{\mathrm{c}} \phi_{\mathrm{d}}\right] \\
& +\int d^{d} x\left[\frac{\lambda_{\mathrm{abc}}}{3!} \phi_{\mathrm{a}} \phi_{\mathrm{b}} \phi_{\mathrm{c}}\right]
\end{aligned}
$$

- Indices take values from 1 to \mathcal{N}
- $\lambda_{a b c d}^{(4)}$ and $\lambda_{a b c}$ fully symmetric tensors
\Rightarrow In general $\binom{\mathcal{N}+3}{4}$ and $\binom{\mathcal{N}+2}{3}$ couplings respectively

Model

$$
\begin{aligned}
S[\phi]= & \int d^{d+1} x\left[\frac{1}{2} \partial_{\mu} \phi_{\mathrm{a}} \partial^{\mu} \phi_{\mathrm{a}}+\frac{\lambda_{\mathrm{abcd}}^{(4)}}{4!} \phi_{\mathrm{a}} \phi_{\mathrm{b}} \phi_{\mathrm{c}} \phi_{\mathrm{d}}\right] \\
& +\int d^{d} x\left[\frac{\lambda_{\mathrm{abc}}}{3!} \phi_{\mathrm{a}} \phi_{\mathrm{b}} \phi_{\mathrm{c}}\right]
\end{aligned}
$$

- Indices take values from 1 to \mathcal{N}
- $\lambda_{\mathrm{abcd}}^{(4)}$ and λ_{abc} fully symmetric tensors
\Rightarrow In general $\binom{\mathcal{N}+3}{4}$ and $\binom{\mathcal{N}+2}{3}$ couplings respectively
- Non-trivial propagators on the interface

Propagator on the defect

Fourier transform the free propagator along the defect directions:

$$
\begin{aligned}
\left\langle\phi_{I}\left(\mathrm{p}_{1}, y_{1}\right) \phi_{J}\left(\mathrm{p}_{2}, y_{2}\right)\right\rangle & =\delta_{I J} \frac{\Gamma\left(\frac{d-1}{2}\right)}{4 \pi^{\frac{d+1}{2}}} \int d^{d} \mathrm{x}_{1} d^{d} \mathrm{x}_{2} \frac{e^{i \mathrm{p}_{1} \cdot x_{1}+i \mathrm{p}_{2} \cdot \mathrm{x}_{2}}}{\left(\mathrm{x}_{12}^{2}+y_{12}^{2}\right)^{\frac{d-1}{2}}} \\
& =(2 \pi)^{d} \delta^{d}\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right) \delta_{I J} \frac{e^{-\left|\mathrm{p}_{1}\right|\left|y_{12}\right|}}{2\left|\mathrm{p}_{1}\right|}
\end{aligned}
$$

Propagator on the defect

Fourier transform the free propagator along the defect directions:

$$
\begin{aligned}
\left\langle\phi_{I}\left(\mathrm{p}_{1}, y_{1}\right) \phi_{J}\left(\mathrm{p}_{2}, y_{2}\right)\right\rangle & =\delta_{I J} \frac{\Gamma\left(\frac{d-1}{2}\right)}{4 \pi^{\frac{d+1}{2}}} \int d^{d} \mathrm{x}_{1} d^{d} \mathrm{x}_{2} \frac{e^{i \mathrm{p}_{1} \cdot \times_{1}+i \mathrm{p}_{2} \cdot \mathrm{x}_{2}}}{\left(\mathrm{x}_{12}^{2}+y_{12}^{2}\right)^{\frac{d-1}{2}}} \\
& =(2 \pi)^{d} \delta^{d}\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right) \delta_{I J} \frac{e^{-\left|\mathrm{p}_{1}\right|\left|y_{12}\right|}}{2\left|\mathrm{p}_{1}\right|}
\end{aligned}
$$

- Interface-to-bulk propagator: $y_{1}=0$

$$
K_{I J}(\mathrm{p}, y)=\frac{e^{-|\mathrm{p}||y|}}{2|\mathrm{p}|} \delta_{I J}
$$

Propagator on the defect

Fourier transform the free propagator along the defect directions:

$$
\begin{aligned}
\left\langle\phi_{I}\left(\mathrm{p}_{1}, y_{1}\right) \phi_{J}\left(\mathrm{p}_{2}, y_{2}\right)\right\rangle & =\delta_{I J} \frac{\Gamma\left(\frac{d-1}{2}\right)}{4 \pi^{\frac{d+1}{2}}} \int d^{d} \mathrm{x}_{1} d^{d} \mathrm{x}_{2} \frac{e^{i \mathrm{p}_{1} \cdot \times_{1}+i \mathrm{p}_{2} \cdot \mathrm{x}_{2}}}{\left(\mathrm{x}_{12}^{2}+y_{12}^{2}\right)^{\frac{d-1}{2}}} \\
& =(2 \pi)^{d} \delta^{d}\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right) \delta_{I J} \frac{e^{-\left|\mathrm{p}_{1}\right|\left|y_{12}\right|}}{2\left|\mathrm{p}_{1}\right|}
\end{aligned}
$$

- Interface-to-bulk propagator: $y_{1}=0$

$$
K_{I J}(\mathrm{p}, y)=\frac{e^{-|\mathrm{p}||y|}}{2|\mathrm{p}|} \delta_{I J}
$$

- Interface propagator: $y_{1}=y_{2}=0$

$$
G_{I J}(p)=\frac{\delta_{I J}}{2|\mathrm{p}|}
$$

Divergences and regularization

Power counting in $d=3$:

- Two-point graphs: power divergent
- Three-point graphs: log divergent
- Wave function renormalization: not modified by the boundary couplings \rightarrow neglected at one-loop

Choice of scheme:

- Dimensional regularization $d=3-\epsilon$
- BPHZ subtraction with symmetric external momenta

Three-point function: One loop contributions

Graph with only cubic couplings

T

Graph with both cubic and quartic couplings

Bare expansion

$\Gamma_{\text {abc }}^{(3)}=\lambda_{\mathrm{abc}}+\lambda_{\text {ade }} \lambda_{\mathrm{bdf}} \lambda_{\text {cef }} \mu^{-\epsilon} T-\frac{1}{2}\left(\lambda_{\text {abef }}^{(4)} \lambda_{\text {efc }}+2\right.$ terms $) \mu^{-\epsilon} B$

- Why "+ 2 terms"? To conserve permutation symmetry
- T : computed in momentum space with interface propagators
- B: have to use a mixed representation

$$
\begin{aligned}
I_{B} & =\mu^{\epsilon} \int \frac{d^{d} \mathrm{k}}{(2 \pi)^{d}} \int_{\mathbb{R}} d y\left(\frac{1}{2|\mathrm{k}|}\right)^{2} e^{-2(|\mathrm{p}|+|\mathrm{k}|)|y|} \\
& =\frac{\mu^{\epsilon}}{4} \int \frac{d^{d} \mathrm{k}}{(2 \pi)^{d}} \frac{1}{|\mathrm{k}|^{2}(|\mathrm{p}|+|\mathrm{k}|)}=\frac{2}{(4 \pi)^{2} \epsilon}+\cdots
\end{aligned}
$$

Beta functions

Running coupling \leftrightarrow dimensionless three-point function

$$
g_{\mathrm{abc}}=\mu^{-\epsilon / 2} \Gamma_{\mathrm{abc}}^{(3)}
$$

Beta functions: scale derivative of the running coupling

$$
\beta_{\mathrm{abc}}^{(3)}=\mu \partial_{\mu} g_{\mathrm{abc}}
$$

Beta functions

Running coupling \leftrightarrow dimensionless three-point function

$$
g_{\mathrm{abc}}=\mu^{-\epsilon / 2} \Gamma_{\mathrm{abc}}^{(3)}
$$

Beta functions: scale derivative of the running coupling

$$
\beta_{\mathrm{abc}}^{(3)}=\mu \partial_{\mu} g_{\mathrm{abc}}
$$

Method:

- Derive the bare expansion with respect to μ
- Invert the bare expansion to obtain the renormalized series
- Substitute the bare coupling by its expression in terms of the renormalized one

One-loop beta functions

- Beta function for the cubic couplings:

$$
\beta_{\mathrm{abc}}^{(3)}=-\frac{\epsilon}{2} \tilde{g}_{\mathrm{abc}}-\frac{1}{4} \tilde{g}_{\mathrm{ade}} \tilde{g}_{\mathrm{bdf}} \tilde{g}_{\mathrm{cef}}+\left(\tilde{g}_{\mathrm{abef}}^{(4)} \tilde{g}_{\mathrm{efc}}+2 \text { terms }\right)
$$

where we rescaled the coupling as $g_{\mathrm{abc}}=(4 \pi)^{\frac{d}{4}} \Gamma\left(\frac{d}{2}\right)^{1 / 2} \tilde{g}_{\mathrm{abc}}$

- Theory in the bulk not modified by the defect:

$$
\beta_{\mathrm{abcd}}^{(4)}=-\epsilon \tilde{g}_{\mathrm{abcd}}^{(4)}+\left(\tilde{g}_{\mathrm{abef}}^{(4)} \tilde{g}_{\text {efcd }}^{(4)}+2 \text { terms }\right)
$$

where we rescaled the coupling as $g_{\mathrm{abc}}^{(4)}=(4 \pi)^{\frac{d+1}{2}} \Gamma\left(\frac{d+1}{2}\right) \tilde{g}_{\mathrm{abc}}^{(4)}$

$N=1$

$$
S=\int d^{d+1} x\left[\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{\lambda_{4}}{4!} \phi^{4}\right]+\int d^{d} x \frac{\lambda_{3}}{3!} \phi^{3}
$$

Only one cubic coupling:

$$
\begin{aligned}
& \beta_{4}=-\epsilon g_{4}+3 g_{4}^{2} \\
& \beta_{3}=-\frac{\epsilon}{2} g_{3}-\frac{g_{3}^{3}}{4}+3 g_{4} g_{3}
\end{aligned}
$$

Free bulk

- Stable purely imaginary fixed point
- Similar to standard Yang-Lee model

Fixed points and CFT data

- Usual Wilson-Fisher fixed point for the quartic coupling
- Two non-trivial fixed points for the cubic coupling

$$
g_{3}^{\star}= \pm \sqrt{2 \epsilon}
$$

- Negative critical exponent $\omega=-\epsilon \rightarrow$ unstable
- Trivial fixed point is stable
- Dimension of quadratic operator

$$
\Delta_{2}=2-\frac{7 \epsilon}{6}+\mathcal{O}(\epsilon)
$$

$O(N-1)$ vector model

$$
\begin{aligned}
S[\phi] & =\int d^{d+1} x\left[\frac{1}{2} \partial_{\mu} \phi_{l}(x) \partial^{\mu} \phi_{l}(x)+\frac{\lambda_{4}}{4!}\left(\phi_{l}(x) \phi_{l}(x)\right)^{2}\right] \\
& +\int d^{d} x\left[\frac{\lambda_{1}}{2} \phi_{N}(x) \phi_{a}(x) \phi_{a}(x)+\frac{\lambda_{2}}{3!} \phi_{N}^{3}\right]
\end{aligned}
$$

where I summed from 1 to N while a summed from 1 to $N-1$

$$
\Rightarrow \text { Symmetry broken to } O(N-1)
$$

Beta functions obtained from the multi-scalar model by setting:

$$
\begin{gathered}
\lambda_{\mathrm{abcd}}^{(4)}=\frac{\lambda_{4}}{3}\left(\delta_{a b} \delta_{c d}+\delta_{\mathrm{ac}} \delta_{b d}+\delta_{\mathrm{ad}} \delta_{b c}\right) \\
\lambda_{\mathrm{abc}}=\lambda_{1}\left(\delta_{\mathrm{a} N} \delta_{b c}+\delta_{b N} \delta_{a c}+\delta_{c N} \delta_{a b}\right)+\lambda_{2} \delta_{a N} \delta_{b N} \delta_{c N}
\end{gathered}
$$

One-loop beta functions

$$
\begin{aligned}
& \beta_{g_{4}}=-\epsilon g_{4}+\frac{N+8}{3} g_{4}^{2} \\
& \beta_{g_{1}}=-\frac{\epsilon}{2} g_{1}-\frac{1}{4} g_{1}^{2}\left(g_{1}+g_{2}\right)+\frac{1}{3} g_{4}\left((N+5) g_{1}+g_{2}\right) \\
& \beta_{g_{2}}=-\frac{\epsilon}{2} g_{2}-\frac{1}{4}\left((N-1) g_{1}^{3}+g_{2}^{3}\right)+g_{4}\left((N-1) g_{1}+3 g_{2}\right)
\end{aligned}
$$

Free bulk

- $N=2$: two pairs of purely imaginary fixed points, one stable
- $N>2$.
- One pair of real unstable fixed points
- Purely imaginary fixed points with $g_{1}=0$ and $g_{2}= \pm i \sqrt{2 \epsilon}$ and critical exponent ($\epsilon,-\frac{\epsilon}{2}$)
- Two pairs of complex conjugate fixed points: complex critical exponent but with positive real part
\Rightarrow No unitarity

Interacting bulk

- $N=2$: all fixed points real but unstable
- $N=3,4$: appearance of complex fixed points, unstable
- $N \geq 5$: one purely imaginary stable fixed point
- $N>N_{\text {crit }} \sim 7.1274+\mathcal{O}(\epsilon)$: only complex fixed points

At the stable purely imaginary fixed points:

- Quadratic operators have real dimensions within unitarity bounds

Large- N behavior

Denoting $g_{1}=2 i \sqrt{2 \epsilon} X, g_{2}=2 i \sqrt{2 \epsilon} y$, the purely imaginary stable fixed points are given by:

$$
\begin{aligned}
x^{\star} & = \pm\left(\frac{1}{N}+\ldots\right)+\mathcal{O}(\epsilon) \\
y^{\star} & =\mp\left(\frac{1}{2}-\frac{3}{2 N}+\ldots\right)+\mathcal{O}(\epsilon)
\end{aligned}
$$

Large- N behavior

Denoting $g_{1}=2 i \sqrt{2 \epsilon} x, g_{2}=2 i \sqrt{2 \epsilon} y$, the purely imaginary stable fixed points are given by:

$$
\begin{aligned}
x^{\star} & = \pm\left(\frac{1}{N}+\ldots\right)+\mathcal{O}(\epsilon) \\
y^{\star} & =\mp\left(\frac{1}{2}-\frac{3}{2 N}+\ldots\right)+\mathcal{O}(\epsilon)
\end{aligned}
$$

Critical exponents

$$
\begin{aligned}
& \omega_{1}=\left(\frac{1}{2}-\frac{11}{N}+\ldots\right) \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \\
& \omega_{2}=\left(1+\frac{6}{N}+\ldots\right) \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

Quadratic operators

- Two quadratic operators $\mathbb{O}_{1}=\frac{\phi_{i} \phi_{i}}{\sqrt{N-1}}$ and $\mathbb{O}_{2}=\phi_{N}^{2}$
- Compute dimensions at the purely imaginary stable fixed points at large N

$$
\begin{aligned}
& \Delta_{-}=2-\frac{\epsilon}{2}-\frac{2 \epsilon}{N} \\
& \Delta_{+}=2-\frac{5 \epsilon}{N}
\end{aligned}
$$

- Corresponding to the operators

$$
\begin{aligned}
& \mathbb{O}_{-}=-\frac{1}{N^{1 / 2}} \mathbb{O}_{1}+\mathbb{O}_{2} \\
& \mathbb{O}_{+}=\left(N^{1 / 2}-\frac{1}{2 N^{1 / 2}}\right) \mathbb{O}_{1}+\mathbb{O}_{2}
\end{aligned}
$$

Symplectic fermions

M pairs of symplectic fermions and one scalar:

$$
\begin{aligned}
S[\phi] & =\int d^{d+1} x\left[\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\partial_{\mu} \theta_{a} \partial^{\mu} \bar{\theta}_{a}+\frac{\lambda_{4}}{4!}\left(\phi^{2}+2 \theta_{a} \bar{\theta}_{a}\right)^{2}\right] \\
& +\int d^{d} x\left[\lambda_{1} \phi \theta_{a} \bar{\theta}_{a}+\frac{\lambda_{2}}{3!} \phi^{3}\right]
\end{aligned}
$$

- General $M: \operatorname{OSp}(1 \mid 2 M)$ symmetry broken to $\operatorname{Sp}(2 M)$
- $M=1$: can preserve $\operatorname{OSp}(1 \mid 2)$ if $\lambda_{2}=2 \lambda_{1}$
- Beta functions obtained by setting $N \rightarrow 1-2 M$

Fixed points

Quartic coupling: $g_{4}^{\star}=\frac{3 \epsilon}{9-2 M} \Rightarrow$ positive for $M \leq 4$

- $M=1$
- Four pairs of real fixed points
- One preserves $\operatorname{OSp}(1 \mid 2)$
- Only the trivial fixed point is stable
- $2 \leq M \leq 4$
- Complex non-trivial fixed points
- Complex critical exponents
- Only the trivial fixed point is stable

Boundary action and propagator

$$
\begin{aligned}
S[\phi] & =\int_{y \geq 0} d y d^{d} x\left[\frac{1}{2} \partial_{\mu} \phi_{I} \partial^{\mu} \phi_{l}+\frac{\lambda_{4}}{4!}\left(\phi_{I} \phi_{l}\right)^{2}\right] \\
& +\int d^{d} \times\left[\frac{\lambda_{1}}{2} \phi_{N} \phi_{a} \phi_{a}+\frac{\lambda_{2}}{3!} \phi_{N}^{3}\right]
\end{aligned}
$$

- Neumann boundary conditions
- Two terms in the free bulk propagator

$$
\begin{aligned}
& \left\langle\phi_{I}\left(x_{1}, y_{1}\right) \phi_{J}\left(x_{2}, y_{2}\right)\right\rangle_{B}= \\
& \delta_{I J} \frac{\Gamma\left(\frac{d-1}{2}\right)}{4 \pi^{\frac{d+1}{2}}}\left(\frac{1}{\left(x_{12}^{2}+\left(y_{1}-y_{2}\right)^{2}\right)^{\frac{d-1}{2}}}+\frac{1}{\left(x_{12}^{2}+\left(y_{1}+y_{2}\right)^{2}\right)^{\frac{d-1}{2}}}\right)
\end{aligned}
$$

Propagators in momentum space

Boundary to bulk and boundary propagators

$$
K_{I J}^{(B)}(\mathrm{p}, y)=\frac{e^{-|\mathrm{p}| y}}{|\mathrm{p}|} \delta_{I J}, \quad G_{I J}^{(B)}(\mathrm{p})=\frac{1}{|\mathrm{p}|}
$$

- Pure boundary graphs: factor 2 for each propagator
- Boundary-to-bulk graphs:
- factor 2 for each propagator
- extra dimension integrated only over half-space
- Not a simple rescaling of the coupling constants
- Qualitatively different from the interface case

Link with long-range models

- Non-trivial power of the Laplacian: $\phi_{I}\left(-\partial^{2}\right)^{\zeta} \phi_{I}, 0<\zeta<1$
- Propagator $C(p)=\frac{1}{p^{2 \zeta}}$
- Cubic interactions: marginal for $\zeta=\frac{d}{6}, d<6$
- Study fixed points for $\zeta=\frac{d+\epsilon}{6}$
- Recover boundary model for $d=3-\epsilon$

Link with long-range models

- Non-trivial power of the Laplacian: $\phi_{I}\left(-\partial^{2}\right)^{\zeta} \phi_{I}, 0<\zeta<1$
- Propagator $C(p)=\frac{1}{p^{2 \zeta}}$
- Cubic interactions: marginal for $\zeta=\frac{d}{6}, d<6$
- Study fixed points for $\zeta=\frac{d+\epsilon}{6}$
- Recover boundary model for $d=3-\epsilon$

Long-range models \Leftrightarrow Boundary interactions with free bulk

Beta functions and fixed points

After rescaling of the cubic couplings:

$$
\begin{aligned}
& \beta_{1}=-\frac{\epsilon}{2} \tilde{g}_{1}-\frac{1}{4} \tilde{g}_{1}^{2}\left(\tilde{g}_{1}+\tilde{g}_{2}\right)+\frac{2}{3} g_{4}\left((N+5) \tilde{g}_{1}+\tilde{g}_{2}\right) \\
& \beta_{2}=-\frac{\epsilon}{2} \tilde{g}_{2}-\frac{1}{4}\left((N-1) \tilde{g}_{1}^{3}+\tilde{g}_{2}^{3}\right)+2 g_{4}\left((N-1) \tilde{g}_{1}+3 \tilde{g}_{2}\right)
\end{aligned}
$$

- $N=1$: real unstable fixed points
- $2 \leq N \leq 16$: complex fixed points, only the trivial fixed point is stable
- $N \geq 17$: purely imaginary stable fixed points

Summary and outlook

- $N=1$: Real fixed points but unstable
- Large N : One pair of purely imaginary stable fixed points
- Critical N : no real fixed points for $N>N_{\text {crit }}=7.1274$
- Stable fixed points always purely imaginary

Summary and outlook

- $N=1$: Real fixed points but unstable
- Large N : One pair of purely imaginary stable fixed points
- Critical N : no real fixed points for $N>N_{\text {crit }}=7.1274$
- Stable fixed points always purely imaginary
- Unitarity? Extraordinary universality class?
- $\epsilon=1$: compare with surface defect of [Krishnan, Metlitski 2301.05728]
- Monotonicity theorem

