
A new approach to O(N) breaking interfaces and
boundaries

Sabine Harribey

Work in progress with Igor Klebanov and Zimo Sun

Münster - June 14th



1/26

Boundary CFTs and defects

Critical O(N) models: thoroughly studied class of 3D CTFs
→ ϵ expansion, bootstrap, 1/N expansion

Introduce boundaries or defects [Diehl, cond-mat/9610143]

Interface: codimension 1 defect

Boundary: codimension 1 defect where the extra dimension is
integrated only over half-space

Extraordinary : break O(N) symmetry to O(N − 1)
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Surface defects

RG analysis and 1/N expansion: 3D extraordinary log universality
class [Metlitski 2009.05119]

Recently: D dimensional bulk and defects of codimension D − 2
[Trepanier; Giombi, Liu; Raviv-Moshe, Zhong]

→ Quadratic defects
→ 4 − ϵ and 6 − ϵ expansion
→ Ordinary and extraordinary defects
→ 1/N expansion: singular for D → 3

Here: 4 − ϵ expansion with defects of codimension 1

Cubic interactions on the defect are then marginal
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Free vs interacting bulk

Schematically

S =

∫
dd+1x

[1
2
∂µϕ∂

µϕ+ λnϕ
n
]
+

∫
ddxλpϕ

p

UV dimension of the field ∆ϕ = d−1
2

The defect interaction is then marginal for dc = p
p−2

In dc + 1 = 2p−2
p−2 , the operator ϕ2(p−1) is marginal in the bulk

Dimension dc Bulk Defect
3 n = 4 p = 3
2 n = 6 p = 41

5/3 n = 8 p = 5

1 [Söderberg Rousu 2304.05786]
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Outline

1 Multi-scalar model

2 Applications
N = 1
O(N − 1) vector model
Symplectic fermions

3 Boundary with cubic interactions
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Model

S [ϕ] =

∫
dd+1x

[
1
2
∂µϕa∂

µϕa +
λ
(4)
abcd
4!

ϕaϕbϕcϕd

]
+

∫
ddx

[
λabc

3!
ϕaϕbϕc

]

Indices take values from 1 to N

λ
(4)
abcd and λabc fully symmetric tensors

⇒ In general
(N+3

4

)
and

(N+2
3

)
couplings respectively

Non-trivial propagators on the interface
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Propagator on the defect

Fourier transform the free propagator along the defect directions:

⟨ϕI (p1, y1)ϕJ(p2, y2)⟩ = δIJ
Γ
(
d−1

2

)
4π

d+1
2

∫
ddx1 d

dx2
e ip1·x1+ip2·x2(
x2
12 + y2

12
) d−1

2

= (2π)dδd(p1+p2) δIJ
e−|p1||y12|

2|p1|

Interface-to-bulk propagator: y1 = 0

KIJ(p, y) =
e−|p||y |

2|p|
δIJ

Interface propagator: y1 = y2 = 0

GIJ(p) =
δIJ
2|p|
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Divergences and regularization

Power counting in d = 3:
Two-point graphs: power divergent

Three-point graphs: log divergent

Wave function renormalization: not modified by the boundary
couplings → neglected at one-loop

Choice of scheme:
Dimensional regularization d = 3 − ϵ

BPHZ subtraction with symmetric external momenta
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Three-point function: One loop contributions

Graph with only cubic couplings

<0

<p < p

T

Graph with both cubic and quartic couplings

>
(p, y)

<
(p, y)

<
0

B
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Bare expansion

Γ
(3)
abc = λabc + λadeλbdfλcef µ

−ϵT − 1
2
(
λ
(4)
abefλefc + 2 terms

)
µ−ϵB

Why "+ 2 terms"? To conserve permutation symmetry
T : computed in momentum space with interface propagators
B : have to use a mixed representation

IB = µϵ

∫
ddk
(2π)d

∫
R
dy

(
1

2|k|

)2

e−2(|p|+|k|)|y |

=
µϵ

4

∫
ddk
(2π)d

1
|k|2(|p|+ |k|)

=
2

(4π)2 ϵ
+ · · ·
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Beta functions

Running coupling ↔ dimensionless three-point function

gabc = µ−ϵ/2Γ
(3)
abc

Beta functions: scale derivative of the running coupling

β
(3)
abc = µ∂µgabc

Method:
Derive the bare expansion with respect to µ

Invert the bare expansion to obtain the renormalized series
Substitute the bare coupling by its expression in terms of the
renormalized one
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One-loop beta functions

Beta function for the cubic couplings:

β
(3)
abc =− ϵ

2
g̃abc −

1
4
g̃adeg̃bdf g̃cef +

(
g̃
(4)
abef g̃efc + 2 terms

)
where we rescaled the coupling as gabc = (4π)

d
4 Γ(d2 )

1/2g̃abc

Theory in the bulk not modified by the defect:

β
(4)
abcd = − ϵg̃

(4)
abcd +

(
g̃
(4)
abef g̃

(4)
efcd + 2 terms

)
where we rescaled the coupling as g

(4)
abc = (4π)

d+1
2 Γ(d+1

2 )g̃
(4)
abc
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N = 1

S =

∫
dd+1x

[1
2
∂µϕ∂

µϕ+
λ4

4!
ϕ4
]
+

∫
ddx

λ3

3!
ϕ3

Only one cubic coupling:

β4 = −ϵg4 + 3g2
4

β3 = − ϵ

2
g3 −

g3
3
4

+ 3g4g3

Free bulk
Stable purely imaginary fixed point
Similar to standard Yang-Lee model
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Fixed points and CFT data

Usual Wilson-Fisher fixed point for the quartic coupling
Two non-trivial fixed points for the cubic coupling

g⋆
3 = ±

√
2ϵ

Negative critical exponent ω = −ϵ → unstable
Trivial fixed point is stable
Dimension of quadratic operator

∆2 = 2 − 7ϵ
6

+O(ϵ)
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O(N − 1) vector model

S [ϕ] =

∫
dd+1x

[
1
2
∂µϕI (x)∂

µϕI (x) +
λ4

4!
(ϕI (x)ϕI (x))

2
]

+

∫
ddx

[
λ1

2
ϕN(x)ϕa(x)ϕa(x) +

λ2

3!
ϕ3
N

]
where I summed from 1 to N while a summed from 1 to N − 1

⇒ Symmetry broken to O(N − 1)

Beta functions obtained from the multi-scalar model by setting:

λ
(4)
abcd =

λ4

3
(δabδcd + δacδbd + δadδbc)

λabc = λ1 (δaNδbc + δbNδac + δcNδab) + λ2δaNδbNδcN
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One-loop beta functions

βg4 = −ϵg4 +
N + 8

3
g2
4

βg1 = − ϵ

2
g1 −

1
4
g2
1 (g1 + g2) +

1
3
g4 ((N + 5)g1 + g2)

βg2 = − ϵ

2
g2 −

1
4
(
(N − 1)g3

1 + g3
2
)
+ g4 ((N − 1)g1 + 3g2)
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Free bulk

N = 2: two pairs of purely imaginary fixed points, one stable

N > 2:
One pair of real unstable fixed points
Purely imaginary fixed points with g1 = 0 and g2 = ±i

√
2ϵ and

critical exponent (ϵ,− ϵ
2 )

Two pairs of complex conjugate fixed points: complex critical
exponent but with positive real part

⇒ No unitarity
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Interacting bulk

N = 2: all fixed points real but unstable

N = 3, 4: appearance of complex fixed points, unstable

N ≥ 5: one purely imaginary stable fixed point

N > Ncrit ∼ 7.1274 +O(ϵ): only complex fixed points

At the stable purely imaginary fixed points:
Quadratic operators have real dimensions within unitarity bounds
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Large-N behavior

Denoting g1 = 2i
√

2ϵx , g2 = 2i
√

2ϵy , the purely imaginary stable fixed
points are given by:

x⋆ = ±
(

1
N

+ . . .

)
+O(ϵ)

y⋆ = ∓
(

1
2
− 3

2N
+ . . .

)
+O(ϵ)

Critical exponents

ω1 =

(
1
2
− 11

N
+ . . .

)
ϵ+O(ϵ2)

ω2 =

(
1 +

6
N

+ . . .

)
ϵ+O(ϵ2)
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Quadratic operators

Two quadratic operators O1 = ϕiϕi√
N−1

and O2 = ϕ2
N

Compute dimensions at the purely imaginary stable fixed points at
large N

∆− = 2 − ϵ

2
− 2ϵ

N

∆+ = 2 − 5ϵ
N

Corresponding to the operators

O− = − 1
N1/2O1 +O2

O+ =

(
N1/2 − 1

2N1/2

)
O1 +O2
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Symplectic fermions

M pairs of symplectic fermions and one scalar:

S [ϕ] =

∫
dd+1x

[
1
2
∂µϕ∂

µϕ+ ∂µθa∂
µθ̄a +

λ4

4!
(
ϕ2 + 2θaθ̄a

)2 ]
+

∫
ddx

[
λ1ϕθaθ̄a +

λ2

3!
ϕ3
]

General M: OSp(1|2M) symmetry broken to Sp(2M)

M = 1: can preserve OSp(1|2) if λ2 = 2λ1

Beta functions obtained by setting N → 1 − 2M
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Fixed points

Quartic coupling: g⋆
4 = 3ϵ

9−2M ⇒ positive for M ≤ 4

M = 1
Four pairs of real fixed points

One preserves OSp(1|2)

Only the trivial fixed point is stable

2 ≤ M ≤ 4
Complex non-trivial fixed points

Complex critical exponents

Only the trivial fixed point is stable
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Boundary action and propagator

S [ϕ] =

∫
y≥0

dyddx

[
1
2
∂µϕI∂

µϕI +
λ4

4!
(ϕIϕI )

2
]

+

∫
ddx
[
λ1

2
ϕNϕaϕa +

λ2

3!
ϕ3
N

]

Neumann boundary conditions
Two terms in the free bulk propagator

⟨ϕI (x1, y1)ϕJ(x2, y2)⟩B =

δIJ
Γ
(
d−1

2

)
4π

d+1
2

(
1

(x2
12 + (y1 − y2)2)

d−1
2

+
1

(x2
12 + (y1 + y2)2)

d−1
2

)
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Propagators in momentum space

Boundary to bulk and boundary propagators

K
(B)
IJ (p, y) =

e−|p|y

|p|
δIJ , G

(B)
IJ (p) =

1
|p|

Pure boundary graphs: factor 2 for each propagator
Boundary-to-bulk graphs:

- factor 2 for each propagator
- extra dimension integrated only over half-space

Not a simple rescaling of the coupling constants
Qualitatively different from the interface case
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Link with long-range models

Non-trivial power of the Laplacian: ϕI

(
−∂2)ζ ϕI , 0 < ζ < 1

Propagator C (p) = 1
p2ζ

Cubic interactions: marginal for ζ = d
6 , d < 6

Study fixed points for ζ = d+ϵ
6

Recover boundary model for d = 3 − ϵ

Long-range models ⇔ Boundary interactions with free bulk
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Beta functions and fixed points

After rescaling of the cubic couplings:

β1 = − ϵ

2
g̃1 −

1
4
g̃2
1 (g̃1 + g̃2) +

2
3
g4 ((N + 5)g̃1 + g̃2)

β2 = − ϵ

2
g̃2 −

1
4
(
(N − 1)g̃3

1 + g̃3
2
)
+ 2g4 ((N − 1)g̃1 + 3g̃2)

N = 1: real unstable fixed points
2 ≤ N ≤ 16: complex fixed points, only the trivial fixed point is
stable
N ≥ 17: purely imaginary stable fixed points
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Summary and outlook

N = 1: Real fixed points but unstable

Large N: One pair of purely imaginary stable fixed points

Critical N: no real fixed points for N > Ncrit = 7.1274

Stable fixed points always purely imaginary

Unitarity? Extraordinary universality class?

ϵ = 1: compare with surface defect of [Krishnan, Metlitski 2301.05728]

Monotonicity theorem
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