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Quantum field theorists often resort to perturbative expansions in a reasonably
small parameter. Yet these may have no radius of convergence. Summation of
sign-alternating asymptotic series is sometimes achievable by a Borel transform,
which may be improved by Padé approximates. I shall give an example that yields
to these methods. The less tractable sign-constant case occurs in condensed matter
problems. Here, Michael Borinsky and I have developed a trans-series. This is
a formal expansion in powers of x, exp(−1/x) and log(x), with coefficients whose
asymptotic growth is determined by further terms in the trans-series, and so on,
ad infinitum. This is referred to as resurgence. [arXiv:2202.01513]

1. Two sources of divergent series

2. Dyson-Schwinger equation and asymptotic expansion

3. Padé-Borel summation with alternating signs

4. Trans-series and resurgent hyperasymptotic expansions
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Wilhem Killing (with help from Wolfgang Hein at Siegen)

1. Born 10 May 1847, Burbach, near Siegen. Died 11 February 1923, Münster.

2. 1865–1867: studied at the Königlich Theologische und Philosophische
Akademie in Münster.

3. 1867–1872 student of Helmholtz, Kummer and Weierstrass in Berlin.

4. Taught in Berlin 1873–1878, Brilon 1878–1882, Braunsberg 1882-1892.

5. 1892–1919 Professor at Royal Academy/WWU, Münster. Rektor 1897/8.

6. Einführung in die Grundlagen der Geometrie, 1. Bd. 1893, 2. Bd. 1898.

7. 1894: Élie Cartan, doctoral thesis, Sur la structure des groupes de
transformations finis et continus: “Le présent travail a pour but d‘exposer et
de compléter en certains points les recherches de M. Killing, en y
introduisant toute la rigueur desirable.”
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1 Two sources of divergent series

Too many diagrams: An example of a divergent perturbation expansion in field
theory by Angas Hurst in 1951 considers the super-renormalizable case of φ3

theory in D = 4 space-time dimensions. The number of primitive n-loop digrams
increases factorially with n. Each diagram gives a positive integral over
Feynman parameters, bounded from below geometrically.

A renormalon: On high order estimates in QED by Benny Lautrup in 1977
considers the magnetic moment of the electron. At n loops there is a single
gauge-invariant diagram whose contribution grows factorially with n.

Imaginary coupling: Divergence of perturbation theory in quantum
electrodynamics by Freeman Dyson in 1952 remarks that convergence in
α = e2/(4π), would make sense of a non-unitary theory with imaginary
coupling giving α < 0 and a nightmarish world in which electrons repel positrons.

Recent work: Instantons or renormalons? A comment on φ4 theory in the MS
scheme by Gerald Dunne and Max Meynig in 2022 uses recent perturbative
results to investigate a suggestion by Gerard 't Hooft that renormalons do not
contribute to anomalous dimensions in a mimimal subtraction scheme.
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2 Dyson-Schwinger equation and asymptotic expansion

Consider the perturbation expansion generated by a single divergent diagram, via
the non-linear Dyson-Schwinger equation

= + + + · · ·

contributing to the self-energy term Σ in the inverse propagator q2(1− Σ), for a
massless scalar particle with a φ3 interaction, in the critical space-time
dimension D = 6, for which the coupling constant is dimensionless.

The dependence of Σ on the external momentum q comes solely from
renormalization. At n loops, we get a contribution that is a polynomial of
degree n in the logarithm log(q2/µ2), multiplied by an where a = λ2/(4π)3, λ is
the coupling constant and µ is the renormalization scale.

If we use momentum-space subtraction, so that Σ vanishes at q2 = µ2, the
dependence on momentum is completely determined by the anomalous
dimension, with

γ(a) = − q2 dΣ

dq2

∣∣∣∣
q2=µ2

giving
d log(1− Σ)

d log q2
= γ

(
a

(1− Σ)2

)
.
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How many n-loop Feynman diagrams for this problem?

The number of distinct diagrams at n loops is the number Tn of rooted trees
with n nodes, which gives the sequence

1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381,

up to 16 loops. The iterated structure: tree = root + branches, with every
branch being itself a tree, gives the asymptotic growth

Tn =
b

n3/2
cn(1 +O(1/n))

b = 0.43992401257102530404090339143454476479808540794011 . . .

c = 2.95576528565199497471481752412319458837549230466359 . . .

At 250 loops the number of Feynman diagrams is

T_250=517763755754613310897899496398412372256908589980657316

271041790137801884375338813698141647334732891545098109934676

This is not the main source of the problem. If the contribution of each diagram
was bounded, there would be a finite radius of convergence for the perturbation
expansion. The divergence of the series comes from renormalization, which
makes the n-loop term grow factorially. This is called a renormalon singularity.
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At 4 loops, we have a rainbow, a chain and two more interesting diagrams:

The sum of rainbows converges. Chains can be summed by Borel transformation.

γrainbow =
3−

√
5 + 4

√
1 + a

2
= −a

6
+ 11

a2

63
− 206

a3

65
+ 4711

a4

67
+O(a5)

γchain = −
∫ ∞
0

6 exp(−6z/a)dz

(z + 1)(z + 2)(z + 3)
= −a

6
+ 11

a2

63
− 170

a3

65
+ 3450

a4

67
+O(a5)

γ ∼
∑
n>0

Gn
(−a)n

62n−1
= −a

6
+ 11

a2

63
− 376

a3

65
+ 20241

a4

67
+O(a5)

with large integers Gn in the alternating asymptotic series for γ. Note that
G4 = 20241 > 4711 + 3450, because of two further diagrams, above. In one we
have a chain inside a double rainbow. In the other, a double rainbow is chained
with the primitive divergence. This interplay is coded by rooted trees.
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At 500 loops I determined the integer coefficient

G500=206261451966080541451119356265266407905816117576895601520616328670543304097

62369668214104674763068056454522518617422020409397336434904863988900797769773644

47129884863324773181376863120291798830884688213932683869821267125662274428136514

68974978228592824043044373847281757207937081063432528806815509319762088807291996

54549245884853496719417048678199825379018355919198123075612308008976364608893906

00835837012056033720017238115336850340799075684336975651857656078799282745256216

85768456030809283727097722850488278232311177219444745322287340871435443707536590

64304859950724683157717734493071321199539578218428617617722892100276682781401203

04983974209704793621909710059353724523231635766062166284812903992269403282699432

81718327508638643305481989940132234093616573076862094588977827344981584305605437

66475002382217933275761312682929603923397580260987048907414858143897114762331252

08694985337972553885925402003826420205441859988844001867088083850782378303677991

14077650584544145709672328391394562704209221732180879565868213522109303655045186

92714017665002971967455255310508358729281544729403249398746232320441525286283859

23093041626365262630100048817481274793707664791767175677240144896307853488347045

21622394885797995125083750860330519417878429051836575477220881369445751634601965

33191009573619480068718080810533581305996863996579338522874547127421808710757882

86996199556804886954946559116947132125235605586627322129268965041445488085748194

82341875039156647569797757032552836429751077302524927736861138479038542006096835

73747720303607608007740173613335602076396299832459826245418033598839559699294537

37336134624690115674194793212055897162647586497730033948880084738561472545509216

with 1675 decimal digits. The number of diagrams has merely 231 digits.
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This was achieved in work with Dirk Kreimer that resulted in a third-order
differential equation

8a3γ
{
γ2γ′′′ + 4γγ′γ′′ + (γ′)3

}
+ 4a2γ

{
2γ(γ − 3)γ′′ + (γ − 6)(γ′)2

}
+ 2aγ(2γ2 + 6γ + 11)γ′ − γ(γ + 1)(γ + 2)(γ + 3) = a

with quartic non-linearity.

Our interest in this problem came from his discovery of the Hopf algebra of the
iterated subtraction of subdivergences, whose utility we illustrated in this example,
with a single primitive divergence leading to undecorated rooted trees.

For the corresponding diagrams in Yukawa theory, in its critical dimension D = 4,
we found a first-order equation with merely quadratic non-linearity, which we
solved using the complementary error function, thereby achieving explicit
all-orders results for both the anomalous dimension and the self energy. The
expansion coefficients in this simpler case enumerate connected cord diagrams.

We also investigated the D = 4 and D = 6 examples in the more cumbersome
minimal subtraction scheme, where one retains finite parts of Σ at q2 = µ2.
Here one encounters unwieldy products of zeta values with weights that increase
linearly with the loop-number. Recently Paul-Hermann Balduf has shown how
to absorb these into a rescaling of µ that can be expanded in the coupling a.
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3 Padé-Borel summation with alternating signs

We sought to resum the factorially divergent alternating series by an Ansatz

γ(a) = − a

6Γ(β)

∫ ∞
0

B(ax/3) exp(−x)xβ−1dx, B(z) =
N(z)

D(z)
.

The expansion coefficients of the Borel transform B(z) = 1 +O(z) are obtained
from those those of γ(a)/a by dividing the latter by factorially increasing factors,
producing a function expected to have a finite radius of convergence in the Borel
variable z, with singularities on the negative z-axis, as for the sum of chains.

The Padé trick is to convert the expansion of B, up to n loops, into a ratio N/D
of polynomials of degrees close to n/2. Then one can check how well this method
reproduces Gn+1. We found that this works rather well with β ≈ 3 .

We fitted the first 29 values of Gn with a ratio of polynomials of degree 14 and
found a pole, coming from the denominator D(z), at z = −0.994. The other 13
poles occurred further to the left, with <z < −1. This method reproduced the first
15 decimal digits of G30. Gerald Dunne has recently shown that this method works
even better with β = 35/12, for reasons that I shall now explain.
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4 Trans-series and resurgent hyperasymptotics

There is an old and rather loose argument, going back to Freeman Dyson in
1952, that we should not expect realistic field theories to give convergent
expansions in the square of a coupling constant. If they did, we could get sensible
answers for a pathological non-unitary theory with an imaginary coupling
constant, such as an electrodynamics in which electrons repel positrons.

There is an amusing converse of this suggestion. If you find an expansion that is
Borel summable, then study it at imaginary coupling, where φ3 theory gives the
Yang-Lee edge singularity in condensed matter physics, using PT symmetry.

So now I recast the Broadhurst-Kreimer problem, in the manner of Borinksy,
Dunne and Meynig, by setting g(x) = γ(−3x)/x, to obtain an ODE that is
economically written as

(g(x)P − 1)(g(x)P − 2)(g(x)P − 3)g(x) = −3, P = x

(
2x

d

dx
+ 1

)
,

and has an unsummable formal perturbative solution

g0(x) ∼
∞∑
n=0

Anx
n =

1

2
+

11

24
x+

47

36
x2 +

2249

384
x3 +

356789

10368
x4 +

60819625

248832
x5 +O(x6).
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The expansion coefficients behave as

An = S1Γ

(
n+

35

12

)(
1− 97

48

(
1

n

)
+O

(
1

n2

))
,

at large n, with a Stokes constant

S1 = 0.087595552909179124483795447421262990627388017406822 . . .

that can be determined, empirically, by considering a solution

g(x) = g0(x) + σ1x
−β exp(−1/x)h1(x) +O(σ21)

and retaining terms linear in σ1 in the ODE. This yields a linear homogeneous
ODE for h1(x), which permits a solution that is finite and regular at x = 0 if and
only if β = 35

12 . Normalizing σ1 by setting h1(0) = −1, we obtain the expansion of

h1(x) ∼
∞∑
k=0

Bkx
k = −1 +

97

48
x+

53917

13824
x2 +

3026443

221184
x3 +

32035763261

382205952
x4 +O(x5)

which gives the first-instanton correction to the perturbative solution,
suppressed by exp(−1/x).
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By developing the series An and Bk, I was able to determine 3000 digits of S1 in

An ∼ −S1

∑
k≥0

Γ

(
n+

35

12
− k
)
Bk.

This is an example of resurgence: information about An resurges in Bk, and vice
versa, because both A(x) = g0(x) and B(x) = h1(x) know about the same physics.

Hyperasymptotic expansions involve the study of how Bn behaves at large n,
which involves another set of numbers Ck, at small k, and so on, and so on.

Large A’s need smaller B’s, especially to guide them,
and larger B’s need smaller C’s, and so ad infinitum.

Hyperasymptotic investigation involves terms suppressed by exp(−m/x), with
action m > 1. For this third-order ODE, there are 3 solutions to the
linearized problem, namely

g(x) = g0(x) + σm

(
x−

35
12e−

1
x

)m
hm(x) +O(σ2m), m ∈ {1, 2, 3},

with h2/x
5 = C and h3/x

5 = D finite and regular near the origin.
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Then we use the linearized ODE to develop the expansions

C(x) = h2(x)/x5 = −1 +
151

24
x− 63727

3456
x2 +

7112963

82944
x3 − 7975908763x

23887872
x4 +O(x5),

D(x) = h3(x)/x5 = −1 +
227

48
x+

1399

4608
x2 +

814211

73728
x3 +

3444654437

42467328
x4 +O(x5).

Before presenting the trans-series, I remark on some of its general features.

1. The terms suppressed by exp(−2/x) involve σ2 and σ21. The former are given
by C and the latter are determined by an inhomogeneous linear ODE,
whose solution is ambiguous, up to a multiple of the homogeneous solution
h2 = x5C, since we can shift σ2 by a multiple of σ21.

2. In the terms suppressed by exp(−3/x) there a second ambiguity, since we
can shift σ3 by a multiple of σ31.

3. Ambiguities of inhomogeneous solutions occur at places in expansions where
logarithms first arise. This happens when the power of x in an expansion is
a multiple of 5.

4. The highest power of log(x), in terms with action m, is bm/2c.
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The terms in the trans-series with action m ≤ 4 are of the form

g =
∑
m≥0

gm

(
x−

35
12 e−

1
x

)m
, L =

21265

2304
x5 log(x),

g0 = A, g1 = σ1B, g2 = σ2x
5C + σ21(F + CL),

g3 = σ3x
5D + σ1σ2x

5E + σ31(I + (D + E)L),

g4 = σ1σ3x
5G+ σ22x

10H + σ21σ2x
5(J + 2HL) + σ41(K + (G+ J)L+HL2).

Denoting the coefficients of xn in functions by subscripts, we found that the choices

F5

2!
=
I5
3!

=
32642693907919

36691771392

greatly simplify of our system of hyperasymptotic expansions. Then

Bn ∼ −2S1

∑
k≥0

FkΓ(n+ 35
12 − k)

+ 4S1

∑
k≥0

CkΓ(n− 25
12 − k)

(
21265
4608 ψ(n− 25

12 − k) + d1
)
,

d1 = −43.332634728250755924500717390319380703460728022278 . . .

with ψ(z) = Γ′(z)/Γ(z) = log(z) +O(1/z), shows the m = 1 term, at large n,
looking forward to m = 2 terms, at small k.
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For the asymptotic expansion of the second-instanton coefficients, we found

Cn ∼ −S1

∑
k≥0

EkΓ(n+ 35
12 − k) + S3

∑
k≥0

Bk(−1)n−kΓ(n+ 25
12 − k).

The first sum looks forwards to m = 3 in the trans-series, where coefficients of

E(x) = −4 + 371
12 x−

111785
1152 x

2 + 8206067
18432 x

3 − 18251431003
10616832 x4 +O(x5)

appear. It does not contain the coefficients Dk of the third instanton, which
decouples from the asymptotic expansion for the second instanton.

The second sum has alternating signs, looks backwards to m = 1 and is
suppressed by a factor of 1/n5/6. This can be understood using alien calculus.
Likewise,

Fn ∼− 3S1

∑
k≥0

IkΓ(n+ 35
12 − k)

+ 2S1

∑
k≥0

(3Dk + 2Ek)Γ(n− 25
12 − k)

(
21265
4608 ψ(n− 25

12 − k) + d1
)

− 2S3

∑
k≥0

Bk(−1)n−kΓ(n− 35
12 − k)

(
21265
4608 ψ(n− 35

12 − k) + f1
)

looks forwards to Ik, Dk and Ek, at m = 3, and backwards to Bk at, m = 1.
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The new constants are

S3 = 2.1717853140590990211608601227903892302479464193027 . . .

f1 = −40.903692509228515003814479126901354785263669553014 . . .

Two more were discovered in the backward looking terms of

In ∼ −4S1

∑
k≥0

KkΓ(n+ 35
12 − k)

+2S1

∑
k≥0

(3Gk + 2Jk)Γ(n− 25
12 − k)

(
21265
4608 ψ(n− 25

12 − k) + d1
)

−4S3

∑
k≥0

Fk(−1)n−kΓ(n− 35
12 − k)

(
21265
4608 ψ(n− 35

12 − k) + f1
)

−8S3

∑
k≥0

Ck(−1)n−kΓ(n− 95
12 − k)Q(n− 95

12 − k),

Q(z) =
(
21265
4608

)2 (
ψ2(z) + ψ′(z)

)
+ 2c1

(
21265
4608

)
ψ(z) + c2,

c1 = −41.031956764302710583921068101545509453704897898188 . . .

c2/c
2
1 = 1.0002016472131992595822805380838324188011572304276 . . .

We believe that 6 constants suffice for the complete description of resurgence.
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Conjecture: The trans-series and its resurgence take the forms

g(x) =
∞∑
m=0

(
x−

35
12 e−

1
x

)m bm/2c∑
i=0

b(m−2i)/3c∑
j=0

σm−2i−3j1 σ̂i2σ̂
j
3x

5(i+j)
∑
n≥0

a
(m)
i,j (n)xn,

σ̂2 = σ2 + 21265
2304 σ

2
1 log(x), σ̂3 = σ3 + 21265

2304 σ
3
1 log(x),

a
(m)
i,j (n) ∼ −(s+ 1)S1

∑
k≥0

a
(m+1)
i,j (k)Γ(n+ 35

12 − k)

+ S1

∑
k≥0

(
4(i+ 1)a

(m+1)
i+1,j (k) + 6(j + 1)a

(m+1)
i,j+1 (k)

)
Γ(n− 25

12 − k)
(
21265
4608 ψ(n− 25

12 − k) + d1
)

+ 1
4S3

∑
k≥0

(
4(s+ 1)a

(m−1)
i−1,j (k) + 6(j + 1)a

(m−1)
i−2,j+1(k)

)
(−1)n−kΓ(n+ 25

12 − k)

− 2(s− 2i− 1)S3

∑
k≥0

a
(m−1)
i,j (k)(−1)n−kΓ(n− 35

12 − k)
(
21265
4608 ψ(n− 35

12 − k) + f1
)

− S3

∑
k≥0

(
8(i+ 1)a

(m−1)
i+1,j (k) + 6(j + 1)a

(m−1)
i,j+1 (k)

)
(−1)n−kΓ(n− 95

12 − k)Q(n− 95
12 − k)

− (f1 − c1)S3

∑
k≥0

(
2(i+ 1)a

(m−1)
i+1,j−1(k) + 6(i+ j)a

(m−1)
i,j (k)

)
(−1)n−kΓ(n− 35

12 − k),

with s = m− 2i− 3j and Q(z) =
(
21265
4608

)2 (
ψ2(z) + ψ′(z)

)
+ 2c1

(
21265
4608

)
ψ(z) + c2.
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Comments and conclusions

1. The conjecture exhibits 17 resurgent terms, all of which have been
intensively tested at high precision, for all actions m ≤ 8.

2. The 6 Stokes constants have been determined to better than 1000 digits.

3. Excellent freeware, from Pari-GP in Bordeaux, was vital to this enterprise.

4. First and second derivatives of Γ and suppressions by 1/n5/6 make
Richardson acceleration infeasible. I used systematic matrix inversion.

5. The presence of logarithms in trans-series has been ascribed to resonant
actions. Michael Borinsky and I find this misleading. We showed that a
closely analogous second-order problem is both resonant and log-free.

6. We have been guided by helpful advice from Gerald Dunne and encouraged
by the programme and workshops on Applicable Resurgent Asymptotics
hosted by the Isaac Newton Institute in Cambridge.

7. For physicists who wonder, as I did, why one might consider imaginary
coupling, I remark that the idea goes back 70 years, to Freeman Dyson,
who was a notable inquirer into both mathematics and quantum field theory.
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