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Abstract. We discuss the number theoretic origins of the Langlands program, its
geometrization and categorification over function fields, and more recently over p-adic
fields by Fargues–Scholze. We conclude by describing some of our own contributions
to the emerging field and possible future directions.

1. Reciprocity laws

One of the most celebrated theorems of Gauss [Gau86] is the quadratic reciprocity
law. It states that for two distinct odd primes p 6= q, there is an equality(
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where the Legendre symbol on the left equals 1 if p has a square root modulo q, and −1
otherwise. This law has the mesmerizing effect of determining the existence of square
roots of a prime p modulo another prime q, provided one understands the case of q
modulo p, which would be a completely different problem a priori.

There are several non-trivial proofs of this fact, but we are going to regard it as a
special case of a very general reciprocity law using the language of algebraic number
theory. Consider a finite field extension F/Q and let OF ⊂ F be the subring of algebraic
integers. While this is no longer a unique factorization domain, the ideals I ⊂ OF do
factor uniquely into a product of prime ideals p, i.e., such that the quotient OF /p is an
integral domain. In algebraic number theory, the goal is to gather as much information
as possible on the prime ideal decomposition of pOF for any finite extension F/Q. This
can lead to the solution of certain Diophantine equations, e.g., decompose p = m2 + n2

with p prime inside Z[i].
We say that the prime p is unramified with respect to F/Q if pOF decomposes as a

product of different primes. In this case, there is a conjugacy class of Frobenius ϕp ∈
GalF/Q whose elements reduce to x 7→ xp modulo some p above p. The Frobenius plays
a decisive role in the entirety of this article. For instance, the Legendre symbols can be
rewritten in terms of the value of ϕp in GalQ(

√
±q)/Q ' {±1}. Emil Artin [Art27] found

a formulation of reciprocity encompassing all previously known examples.

Theorem 1.1 ([Art27]). For any abelian Galois extension F/Q and every character
ρ : GalF/Q → C×, there exists a Dirichlet character χρ : (Z/NZ)× → C× for some N
such that ρ(ϕp) = χρ(p).

The original proof of this result was analytic in nature rather than algebraic, and
had to do with the density of split primes. This is also not so surprising if we think in
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terms of L-functions. Dirichlet [LD69] proved the existence of infinitely many primes in
arithmetic progressions by studying the L-function given by the Euler product

L(s, χ) =
∏
p-N

(1− χ(p)p−s)−1

that converges on the right half-plane Re(s) > 1 and then meromorphically continued
to the entire complex plane. In a similar fashion, we have the Artin L-function L(s, ρ)
for Re(s) � 0 attached to a n-dimensional representation ρ : GalQ → GLn(C), whose
unramified portion is given by the characteristic polynomial of ρ(ϕp) evaluated at p−s.
Artin reciprocity can be formulated in terms of the equality L(s, χρ) = L(s, ρ).

Let us now mention the ring of adèles. Hensel [Hen01] introduced the ring Zp :=
limnZ/pnZ of p-adic integers, a discrete valuation ring and a profinite set. Its fraction
field Qp = Zp[p−1] is called the field of p-adic numbers. We define the finite adèles
A∞ := Ẑ⊗Z Q with Ẑ :=

∏
p Zp, and the full adèles A := A∞ ⊕ R by including the real

place. This is a locally compact abelian group and Q embeds diagonally as a discrete
closed subgroup. The ring A plays a crucial role in number theory, as it encapsulates the
local-global principle, i.e., the idea that one should compare global questions over Q to
local questions over A.

Chevalley [Che40] rephrased Artin reciprocity in terms of A and proved it algebraically.
First, one defines a dense injection Q×p → Galab

Qp into the profinite Galois group of
the maximal abelian extension. The image of p equals ϕp on the maximal unramified
extensionQur

p and the identity on the maximal cyclotomic extensionQcyc
p . The local maps

can be explicitly constructed via Galois cohomology and Lubin–Tate theory [LT65], and
then are assembled into a global isomorphism

Q×\A×/R>0 ' Galab
Q

of topological groups. This is the adèlic formulation of Artin reciprocity.

1.1. Acknowledgements. This expository article is an expanded version of a talk given
in Coimbra during the GPM conference. We thank Nuno Arala, Alexander Kovačec, and
Miguel Moreira for comments and questions after the talk. We are thankful to Timo
Richarz for helpful comments on a preliminary version of this text.

2. Elliptic curves and modular forms

In the previous section, we saw how the adèle units relate to the abelian Galois group
of Q. Note that A× equals the A-valued points of the algebraic group Gm. At the same
time, Galab

Q captures the information afforded by characters χ : GalQ → C× = Gm(C).
In this section, we discuss what happens when Gm is replaced by GL2.

Consider the upper half space H = {τ ∈ C : im(C) > 0}. The real Lie group SL2(R)
acts on H by Möbius transformations:

γ(τ) :=

(
a b
c d

)
· τ =

aτ + b

cτ + d
,

so the point i has stabilizer given by the maximal compact subgroup SO2(R) ⊂ SL2(R).
This identifies H with the quotient SL2(R)/SO2(R), the simplest example of a Hermitian
symmetric space. At the same time, we still have an action of the arithmetic group
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Γ(1) := SL2(Z) on D := H and we define the modular curve XΓ(1) := Γ(1)\D. Besides,
one can write

XΓ(1) = SL2(Q)\SL2(A)/(SL2(Ẑ)× SO2(R))

so the modular curve also fits into the previous framework of adelic uniformazation.
However, there is more to this story and it turns out that the points of the modular

curve are elliptic curves themselves, i.e., genus 1 smooth curves in P2. This means
XΓ(1) is a moduli space of a class of algebraic varieties, a recurrent theme in algebraic
geometry. Indeed, for every τ , we associate a complex torus C/Λτ with Λτ := (Z + τZ).
The homothety class of Λτ is invariant under SL2(Z), so our assignment descends to a
bijection between XΓ(1) and the set of complex tori. Now, Weierstrass defined a certain
series ℘τ (z) converging everywhere on C except Λτ , and proved that it satisfies the
functional equation ℘′τ (z)2 = 4℘τ (z)3 − g2℘τ (z) − g3. The coefficients g2 = 60G4 and
g3 = 140G6 are rescaled Eisenstein series G2n(τ) :=

∑
06=λ∈Λτ

λ−2n converging when
n ≥ 3, some of the most famous examples of modular forms. We define an elliptic curve
Eτ = {(℘τ (z), ℘′τ (z)), z ∈ C/Λτ}, realizing XΓ(1) as a moduli space of elliptic curves.

The advantage of realizing XΓ(1) as a moduli space of elliptic curves is that this
definition extends to an algebraic variety over Q. One can obtain variants of the modular
curve by replacing Γ(1) by deeper level Γ ⊂ Γ(1), e.g., the congruence subgroups Γ(n) :=
ker(SL2(Z)→ SL2(Z/nZ)). The resulting map XΓ(n) := Γ(n)\D → XΓ(1) is a finite étale
cover and admits a Q(ζn)-realization by adding isomorphisms of the n-torsion E[n] :=
ker([n] : E → E) with (Z/nZ)2. Modular curves can be compactified to X∗Γ by adding
cusps in P1

Q, and Deligne–Rapoport [DR73] studied their integral models XΓ, i.e., certain
schemes over Z[ζn], whose generic fiber recovers XΓ.

Until now, we have only described the underlying geometry of the automorphic rep-
resentations of GL2. The main players in the automorphic representation theory are
certain Γ-equivariant functions investigated by Hecke [Hec27], called modular forms.
Concretely, a modular form of weight k and level Γ is a function f : H → C such
that (cτ + d)kf = f ◦ γ for every γ ∈ Γ, admitting a Fourier expansion near the cusps at
infinity. We give some examples below so the reader can get a better feeling. We have al-
ready seen the Eisenstein series Gn(τ), which are modular forms of level Γ(1) and weight
n. Jacobi defined the theta function θ(τ) =

∑
n∈Z e

πin2τ converging when τ ∈H by the
Poisson summation formula, a modular form of level Γ(2) and weight 1/2. Furthermore
we have the discriminant of the Weierstrass equation ∆(τ) = e2πiτ

∏
n≥1(1− e2nπiτ )24, a

modular form of level Γ(1) and weight 12. Its Fourier coefficients τ(n) were conjectured
by Ramanujan to satisfy |τ(p)| < 2p11/2. The study of modular forms has lead to many
remarkable arithmetic identities.

Hecke defined the L-series L(s, f) =
∑

n≥1 ann
−s attached to a cusp form f , i.e.,

vanishing at the cusps, of weight k and level Γ, where the sequence an are the Fourier
coefficients of f , and proved it admits a meromorphic continuation to C with poles at
s = 0 and s = k. Moreover, when a1 = 1, then L(s, f) has an Euler product with
terms equal to (1 − app

−s + pk−1−2s)−1 for almost all p. Deligne [Del71a] associated
2-dimensional complex Galois representations ρf to modular forms f of weight k ≥ 2
by using the étale cohomology of modular curves, and proved the Ramanujan conjecture
with the help of his proof in [Del74] of the Weil conjectures.
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On the other hand, an elliptic curve over Q has an associated L-function L(s, E).
Indeed, consider the Galois representation ρE : GalQ → GL2(C) deduced via scalar ex-
tension from the natural action on the Tate Z`-module T`(E) := limnE[`n] ' Z2

` for a
fixed prime `, and set L(s, E) := L(s, ρE). This L-function has an Euler product expan-
sion with terms of the form (1 − app−s + p1−2s)−1 for almost all p, with ap giving the
trace of ϕp. This is not a coincidence:

Theorem 2.1 ([BCDT01]). Elliptic curves over Q are modular.

The statement means that for each such E, there exists some normalized cusp form f
of weight 2 such that the associated representations ρE ' ρf or equivalently L-functions
L(s, E) = L(s, f) coincide. Originally, this result was conjectured by Taniyama–Shimura
[ST61]. Nowadays it is known as the modularity theorem and was proved by Breuil–
Conrad–Diamond–Taylor [BCDT01] building on work of Wiles [Wil95] and Taylor–Wiles
[TW95] for semistable curves. The work of Wiles received widespread attention because
Ribet [Rib90] had previously observed it implies Fermat’s last theorem.

3. Shimura varieties and Langlands

The previous two sections handled the Langlands program for GLn with n ≤ 2. Now,
we address the much more demanding case of GLn for arbitrary n. We being by explaining
how to replace elliptic and modular curves. An abelian variety A is a geometrically
connected projective algebraic group over a field. Elliptic curves are abelian varieties of
dimension 1, with group law given by P +Q+R = 0 for any collinear triple. Over C, an
abelian variety is given by a n-dimensional torus AZ := Cn/ΛZ with ΛZ := Zn + ZZn,
where Z belongs to the Siegel upper half spaceD := Hn. The elements ofD are symmetric
matrices Z ∈ Mn(C) with positive definite imaginary part. Note that AZ carries a
polarization λZ (automatic for elliptic E), i.e., an alternating form on the lattice ΛZ .
Again, we have an identification D ' Sp2n(R)/Un(R) via Möbius transformations, where
Un(R) ⊂ Sp2n(R) is the real unitary subgroup of the real symplectic group. For any
congruence subgroup Γ ⊂ Sp2n(Z), the quotient XΓ := Γ\D is thus a moduli space of
polarized abelian varieties with level structure, defined over a finite extension of Q.

It is not a fluke that the symplectic group Sp2n appeared above instead of SLn: un-
fortunately, the automorphic quotients of SLn for n > 2 are never complex manifolds.
To remedy this, we need to work with more general groups. Let G be a reductive
group over Q, i.e., a linear algebraic Q-group whose maximal smooth unipotent con-
nected subgroup vanishes. This includes semi-simple groups like Sp2n and SLn, but
also general linear groups GLn, unitary groups Un,F/Q, orthogonal groups On, etc. Let
D = G(R)/ZG(R)+K∞ be the Riemannian symmetric space obtained by quotienting
out the connected component of the center ZG(R), and a compact real Lie subgroup
K∞ ⊂ G(R) with maximal compact Lie subalgebra. Finally, we set

XK := G(Q)\(D ×G(A∞))/K

for any compact open subgroup K ⊂ G(A∞). One can show that this equals the disjoint
union of quotients Γ\D by arithmetic subgroups Γ ⊂ G(Q), so it is a real orbifold. If K is
sufficiently small, XK is a real manifold. After Shimura [Shi63] worked out a wide variety
of examples, Deligne [Del71b] introduced the notion of a Shimura datum, where D arises
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as the conjugacy class of homomorphisms S := ResC/RGm → GR, and satisfies a series of
axioms to ensure that D is a disjoint union of Hermitian symmetric spaces. For Shimura
data and neat K, Baily–Borel [BB66] proved that the XK are quasi-projective smooth
C-varieties, by constructing minimal compactifications of Γ\D. These XK are called
Shimura varieties and vastly generalize moduli of polarized abelian varieties. Deligne
[Del79] proved that, for almost all (G,D) with G classical, they descend to a finite
extension E/Q, and the general case was handled independently by Borovoi [Bor83] and
Milne [Mil83]. Shimura varieties play a distinguished role in the Langlands program,
because their étale cohomology relates to both automorphic and Galois representations.

Finally, we are ready to discuss the notion of an automorphic representation of GLn,
or even of a general reductive group G over Q. We consider the Hilbert space L2([G])
of square-integrable functions on the automorphic space [G] := G(Q)AG(Q)\G(A) with
its natural Radon measure. Here, AG is the maximal Q-split central torus of G, and one
kills it to ensure the finite volume of [G]. An automorphic representation of G(A) is an
irreducible unitary G(A)-representation appearing as a subquotient of L2([G]). At the
same time, we define automorphic forms as K-invariant smooth functions ϕ : G(A)→ C
of moderate growth with finite translates under K∞ and the center of U(Lie(GR)). For
GL2, we recover modular forms up to a twist and furthermore, automorphic representa-
tions can be described in terms of automorphic forms.

Our final ingredient for stating the global Langlands correspondence (GLC) is the
notion of automorphic L-functions. Langlands [Lan70] was studying the constant terms
of Eisenstein series, i.e., their values at the boundary of Γ\D, when he was led to the
L-function of an automorphic representation of GLn(A) for all n. Indeed, the Satake
isomorphism encountered in the next section associates a dominant coweight µ(πp) of
GLn(C) to the p-primary part πp of the automorphic representation π. For unramified p,
one sets L(s, πp) to be the value at p−s of the characteristic polynomial of µ(πp). More
care is needed to define L(s, π∞) and L(s, πp) for ramified p, and show that the Euler
product L(s, π) := L(s, π∞)

∏
p L(s, πp) admits a meromorphic continuation to C.

Conjecture 3.1 ([Lan70]). The Artin L-function L(s, ρ) of an irreducible Galois repre-
sentation ρ : GalQ → GLn(C) coincides with the L-function L(s, πρ) of an automorphic
representation πρ of GLn(A).

This is a crude version of the GLC that does not pin down the automorphic rep-
resentation πρ. Advances in the theory of Shimura varieties and p-adic Hodge theory
have led to a better understanding of how the GLC should look like, and we refer to
[BG14] for a modern treatment of the GLC in this direction. Over the p-adic field Qp,
we get the local Langlands correspondence (LLC) with a much clearer formulation. The
LLC predicts a bijection.between isomorphism classes of irreducible admissible represen-
tations of GLn(Qp) on the automorphic side and GLn(C)-conjugacy classes of semisimple
L-parameters WQp × SL2(C)→ GLn(C) o GalQp . These so-called L-parameters are cer-
tain group homomorphisms from the Weil–Deligne group WQp × SL2(C), such that the
image of the Frobenius ϕ is semisimple. This conjecture was proved by Harris–Taylor
[HT01] using global ingredients coming from the cohomology of Shimura varieties, whose
decomposition allowed them to relate automorphic and Galois representations. For gen-
eral reductive groups other than GLn, the situation is more complicated as one does not
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expect a bijection anymore, but rather a map with finite fibers called L-packets. This is
a matter of current intense investigation.

4. Geometric Langlands

It is well known that there is an analogy between number fields and function fields, by
which we mean a field K(X) of rational functions on a geometrically connected proper
smooth curve X over Fp. Indeed, if one considers the affine spectrum of Z, this is a
1-dimensional scheme and its closed points are given by its primes, just like the places of
K(X) correspond to closed points of X. From the point of view of algebraic geometry,
it is however much easier to work with curves over Fp. Besides, one also gets a canonical
Frobenius homomorphism ϕ.

Let G be a split connected reductive group over the curve X in the sense of Chevalley
[Che55], see also [GD63] (for the unfamiliar reader, this includes classical groups such as
GLn, Sp2n, SOn, but unitary groups like SUn are non-split). Consider the moduli stack
BunG classifying G-bundles on the curve X. This is a smooth Artin stack over Fp and
we can write

BunG(Fp) = G(Fp)\G(AX)/G(OX) (4.1)

where the right side resembles the automorphic side of Artin reciprocity. Indeed, in this
setting, we define automorphic forms as sections of constant Q̄`-sheaves on this space for
some prime ` 6= p. Besides the stack of G-bundles, there are other important stacks to
consider, such as the Hecke stack denoted by HkG which classifies modifications E0 99K E1

ofG-bundles along a point of the curve x ∈ X; or the stack ofG-shtukas ShtG that is given
as the pullback of the Frobenius graph of BunG along the natural map HkG → BunG.
Shtuka stacks play a similar role to Shimura varieties in the number field case.

Originally, Drinfeld [Dri74] came up with the notion of vector bundles equipped with a
meromorphic ϕ-semilinear structure, which he named shtukas (Russian for “thing, stuff”)
and applied it in [Dri80] to prove the GLC when GL2 over global function fields. These
techniques were then further developed by Laumon–Rapoport–Stuhler [LRS93] to prove
the local Langlands correspondence (LLC) for local fields in characteristic p. After that,
Laurent Lafforgue [Laf02] used shtukas to prove the GLC for GLn over X, and finally
his brother Vincent Lafforgue [Laf18] figured out the automorphic to Galois direction for
arbitrary G over X.

Theorem 4.1 ([Laf18]). There is a natural map π → σπ from automorphic representa-
tions of G(AX) to semisimple Langlands parameters, i.e., G∨(Q̄`)-conjugacy classes of
continuous 1-cocycles GalK(X) → G∨(Q̄`).

Several ingredients go into the proof of this theorem, the most original one being the
construction of the so-called excursion operators. Another fundamental ingredient that
we want to address is the geometric Satake equivalence. Let Ox be the complete local
ring of X at x and Fx be its fraction field. The classical Satake isomorphism following
[Sat63] identifies the spherical Hecke algebra HG := C[G(Ox)\G(Fx)/G(Ox)] of G with
the Weyl invariants HWT = C[X∗(T )]W of the Hecke algebra of a maximal torus T ⊂ G.
Up to passing to `-adic coefficients, we can identify HG with the Grothendieck group
K0 of étale Q̄`-sheaves on the fiber HkG,x of the Hecke stack at the point x and HWT
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with that of representations of the L-group LG = G∨ o GalFx . This observation can be
upgraded to an equivalence of categories:

Theorem 4.2 ([Gin95]). There is a natural symmetric monoidal equivalence of abelian
categories between the category P(HkG,x) of perverse Q̄`-sheaves on the Hecke stack and
the category Rep(LG) of representations of the L-group of G.

Recall that for a smooth variety over Fp, Poincaré duality holds for étale cohomology by
[SGA73b]. However, if we work with non-singular varieties, then this is no longer the case
and HkG,x is very far from smooth. It admits a pro-smooth cover by the affine Grassman-
nian GrG,x which is an ind-scheme. Its closed G(Ox)-equivariant subvarieties GrG,x,≤µ
are called Schubert varieties and indexed by dominant coweights µ of G. These are very
rarely smooth, but are always normal and Cohen–Macaulay if π1(G) is p-torsion free by
a theorem of Faltings [Fal03] (if π1(G) has p-torsion, pathologies occur by [HLR18]), see
[Lou23] for a new proof via distribution Fp-algebras.

Fortunately, Goresky–MacPherson [GM83] discovered in the topological setting, later
rephrased by Beilinson–Bernstein–Deligne–Gabber [BBDG18] in the algebraic setting,
that constant sheaves shifted by the dimension along a smooth stratification of X can
be glued to complexes on X (called a perverse sheaf nonetheless). One gets an abelian
full subcategory P(X) ⊂ D(X) of the derived category of sheaves, which satisfies a form
of Poincaré duality even for non-smooth X. The geometric Satake equivalence furnishes
a plethora of perverse sheaves (one calls them also Satake sheaves) on the Hecke stack,
which are used as the convolution kernels of geometric Hecke operators. It is also known
with Z̄`- and F̄`-coefficients thanks to the work of Mirković–Vilonen [MV07].

5. Geometrization for p-adic fields

In this section, we want to explain some of the emerging story over p-adic fields due
to Fargues–Scholze [FS21], which takes a lot of inspiration from global function fields. It
is already a daunting task to work in the local p-adic field situation, so from now on we
will forget about global number fields.

The first problem that we encounter is that we do not really have a decent curve, or at
least the curve that we would normally have, i.e. the affine spectrum of Zp, is not that
rich geometrically. Even the number field setting is not useful because we lack a canonical
Frobenius to move things around... The idea here comes in a sense from the theory of
Witt vectors [Wit37]. They allow us to lift perfect Fp-algebras to mixed characteristic.
Scholze [Sch12] defined a tilting functor that passes from mixed characteristic perfectoid
rings to perfect Fp-algebras. While tilting is a functor, there is a myriad of untilts and
classifying them yields the Fargues–Fontaine curve [FF18].

More precisely, a perfectoid Tate ring is a pair (R,R+) consisting of a subring R+ ⊂
R = R+[1/$] equipped with the $-adic topology such that $p divides p and the Frobe-
nius ϕ : R+/$ → R+/$p is an isomorphism. The tilting functor of [Sch12] takes (R,R+)

to the perfect Tate ring (R[, R[+), where R[+ is the limit of R+/p along ϕ. Kedlaya–
Liu [KL15] proved that every untilt (S], S]+) of a perfect Tate ring (S, S+) can be
uniquely obtained as the quotient S]+ = W (S+)/ξ with ξ = p + [$]α, where [$] is
the Teichmüller lift. This leads us to define the absolute curve Y over Spa(Qp) whose
(S, S+)-valued points are given by the non-vanishing locus of p[$] in the affinoid adic
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space Spa(W (S+)). The adic Fargues–Fontaine curve X := Y/ϕZ is the quotient by
the totally discontinuous action of the Frobenius ϕ. Here, we have to use the theory
of adic spaces due to Huber [Hub96] which captures analytic features in a better fash-
ion; this is related also to the recently developed notion of analytic rings and stacks by
Clausen–Scholze [CS19].

Now, one can define BunG in this setting again as the stack of G-torsors on X. Its
geometric points are in bijection with Kottwitz’s set B(G) classifying ϕ-conjugacy classes
in G(W (F̄p)[1/p]) by a theorem of Fargues [Far20], with topology explicitly described via
the combinatorics of Newton polygons as shown by Viehmann [Vie21]. Scholze [Sch17]
developed a formalism of étale cohomology for perfectoid stacks, and [FS21] proves that
D(BunG) captures the derived categories of smooth representations of the inner forms
Jb of the Levi subgroups of G attached to b ∈ B(G), glued in a yet mysterious way.

One can also define the Hecke stacks HkG, affine Grassmannians GrG and shtuka
stacks ShtG in this setup. These are stacks on perfectoids with a natural map to the
mirror curve Div1

X of the Fargues–Fontaine curve X. Using the concept of universally
locally acyclic sheaves, [FS21] proved the geometric Satake equivalence for HkG, but the
L-group is given by the semi-direct product G∨oWQp with the Weil group. Most of the
formal arguments in [Laf18] concerning excursion operators can be repeated to yield the
automorphic to Galois direction of the LLC for p-adic fields.

Besides, the Galois side of the LLC can be geometrized via the stack Z1(WQp , G
∨) of

L-parameters studied by Zhu [Zhu20] and Dat–Helm–Kurinczuk–Moss [DHKM20], which
classifies continuous 1-cocycles ϕ : WQp → G∨(Q̄`). The Langlands philosophy combined
with the previous geometrization efforts suggests that one should find a correspondence
between derived categories of sheaves on the automorphic space and the Galois space.

Conjecture 5.1 ([FS21]). There is an equivalence D(BunG)ω ' Dbcoh([G∨\Z1(WQp , G
∨)])

of derived categories.

On the left of the equivalence, we consider the full subcategory of compact objects
inside D(BunG), whereas on the right of the equivalence we consider the category of
bounded complexes of coherent sheaves on the stack [G∨\Z1(WQp , G

∨)]. Similar ver-
sions of this conjecture have recently appeared also by Hellmann [Hel23] and Zhu [Zhu20]
and it can be made much more explicit as follows. In [FS21], the Hecke action on
D(BunG) given by the Satake sheaves is extended to a full action by the category
Perf([G∨\Z1(WQp , G

∨)]) of perfect complexes on the stack of L-parameters. One can
therefore ask that the equivalence above respects the spectral action. Moreover, it is ex-
pected that the inverse equivalence maps the structure sheaf O to a Whittaker sheafWψ,
i.e., obtained via compact induction from a Whittaker datum ψ on a maximal unipotent
subgroup U(Qp).

6. Sheaves on integral models

In this section, we discuss further developments related to integral Zp-models and
their reduction to Fp. The curve Y admits an obvious integral model Y by including
characteristic p untilts, but it is no longer natural to consider its Frobenius quotient,
because the action is not free anymore. Let G be a parahoric Zp-model in the sense
of Bruhat–Tits [BT84] of our connected reductive Qp-group G: this notion means that
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G(Zp) ⊂ G(Qp) behaves for many purposes like a parabolic subgroup, e.g. take the
pullback of an actual parabolic subgroup along the reduction map G(Zp) → G(Fp).
Then, one can still define the notions of Hecke stacks HkG and shtuka stacks ShtG , and
affine Grassmannians GrG . The bounds by coweights µ extend to Zp by taking closures,
and one of our contributions revolved around understanding this procedure in detail.

Theorem 6.1 ([AGLR22, GL22]). The v-sheaf GrG,≤µ is normal with special fiber equal
to the µ-admissible locus. If µ is minuscule, then it is representable by a unique normal,
Cohen–Macaulay, flat Zp-scheme with reduced special fiber.

Part of this had been previously conjectured by Scholze–Weinstein [SW20] and much
of the motivation stemmed from the arithmetic of Shimura varieties, where the minuscule
integral Schubert varieties appear as local models for controlling the singularities, see the
book of Rapoport–Zink [RZ96]. These were studied extensively in the last decades, most
notably by Pappas, Rapoport, and Zhu [PR08, PZ13], but the approach in [AGLR22]
was the first to actually provide a complete and functorial theory.

One important ingredient in [AGLR22] is the formalism of kimberlites due to Gleason
[Gle22], which are v-sheaves of formal nature with a scheme-theoretic reduction whose
complement is a diamond, and admitting a specialization map between the underlying
topological spaces. In [AGLR22] we proved that GrG,≤µ can be recovered from its Zp-
fibers and the specialization map between them. Note that the special fiber of the
unbounded Grassmannian GrG was first defined by Zhu [Zhu17] and then Bhatt–Scholze
[BS17] proved it is an ind-perfect scheme. The µ-admissible locus in the theorem goes
back to Kottwitz–Rapoport [KR00] and equals the union of the G(Zp)-orbit closures in
GrG,Fp of the Weyl conjugates of µ. We are able to pinpoint the specialization map for
minuscule µ by using a convolution analogue of the Iwasawa decomposition.

Arguably, the most crucial task in [AGLR22] is identifying the special fiber of GrG,≤µ.
This requires working with the derived category D(HkG) of étale Q̄`-sheaves on the
Hecke stack building on [Sch17]. The main tool for us is the functor of nearby cycles
RΨ : D(Xη̄) → D(Xs̄) specializing between geometric fibers. Its origins lie in Morse
theory: for a map f : X → D with an isolated singularity at the origin, RΨ carries the
cohomology classes of the non-singular fibers to the fiber at 0. In the case of schemes,
Deligne defined RΨ for a map f : X → Zp in [SGA73a] by pushing sheaves forward
along the absolute integral closure, and this definition of also works in the situation of
[AGLR22]. Using constant terms functors, we could prove that universal locally acyclic
sheaves are preserved under RΨ and their images are actually scheme-theoretic.

Theorem 6.2 ([AGLR22, ALWY23]). The functor RΨ: P(HkG,Cp) → D(HkG,F̄p) lifts
to the Drinfeld center and lands in P(HkG,F̄p).

This is the analogue of the main theorem of Gaitsgory [Gai01] in the function field
case, but the p-adic setting complicates matters. For instance, nearby cycles of algebraic
schemes preserve perversity by Artin vanishing, but this is no longer true for general v-
sheaves. In order to prove it, we introduced Wakimoto sheaves in [ALWY23] at Iwahori
level following Arkhipov–Bezrukavnikov [AB09], and used them in combination with geo-
metric Satake to a filtration of RΨ by Wakimoto perverse sheaves. As for the centrality
of RΨ, we constructed the main isomorphisms in [AGLR22], but only verified the higher
homotopy coherences in [ALWY23].
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In [AGLR22], we applied nearby cycles and geometric Satake to show that the special
fiber of GrG,≤µ coincides with the µ-admissible locus. Another application of the central
sheaves is the normality of GrG,≤µ proved in [GL22] by a much simpler method than
[Zhu14] in the function field case. We use the Wakimoto filtration to show connectedness
for the analytic tubes of the closed points in the special fiber of GrG,µ up to codimension
2. This reduces normality to a combinatorial S2 property for the special fiber, which we
verify in the function field case thanks to a dynamical argument of Le–Le Hung–Levin–
Morra [LHLM22].

A natural continuation of the above is to extend the central functor to a Bezrukavnikov
equivalence for p-adic fields in analogy with [Bez16] for Laurent series fields. It asserts
that there is an equivalence of derived categories

Dcoh([G∨\StG∨ ]) ' D(HkI,F̄p) (6.1)

of coherent sheaves on the left and étale Q̄`-sheaves on the left. Here, StG∨ is the dual
Steinberg variety of triples and I is a Iwahori model of G. In [ALWY23], we followed
[AB09] to construct roughly one half of the equivalence using the Springer resolution of
the nilpotent cone NG∨ in place of the Steinberg variety. Unfortunately, there is one
essential ingredient still missing in the p-adic setting beyond the GLn case. We need
to bound certain Hom spaces involving quasi-minuscule representations and the fastest
way to do this is extending the monodromy operator on the image of RΨ to the entire
category of perverse sheaves. This is classically done via rescaling uniformizers but cannot
be performed in the p-adic setting. We hope to address this also in our future work.

The importance of the Bezrukavnikov equivalence lies in its usefulness for geometric
Langlands. Recently, Zhu [Zhu20] proposed a different geometrization of local Langlands
over Qp, where instead of BunG he considers the stack IsocG of G-isocrystals, which
geometric points equal B(G) but carries the opposite topology. In upcoming work of
Hemo–Zhu, the Bezrukavnikov equivalence is used via the trace of Frobenius to produce
a Langlands equivalence for tame representations with IsocG in place of BunG. We are
thus led to anticipate the following.

Conjecture 6.3. There is an equivalence D(IsocG) ' D(BunG) of derived categories.

Recently, Gleason–Ivanov [GI23] constructed a geometric correspondence between
IsocG and BunG. In an ongoing project, we aim to tackle the conjecture above by using
this geometric correspondence. Simultaneously, the Bezrukavnikov equivalence and our
partial work towards it in [ALWY23] should be an essential ingredient in comparing the
(tame) spectral action on the two sides.
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