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Cohomology of moduli spaces

Mg = {space of genus g Riemann surfaces}
Mtrop

g = {space of metric graphs with g loops}
Ag = {space of g-dim principally polarised abelian varieties}

Confn(X) = {space of n distinct unordered particles in X}
BDi�(M) = {space of submanifolds of R∞ di�eomorphic to M}

...

If a moduli spaceM classifies a kind of mathematical object X then

Hd(M;A) = A-valued invariants of d-parameter families of X’s

Generalises invariants of deformation classes of X’s: H0(M).

Klein ’82: H0(Mg;Z) = Z.

Mumford ’67: H1(Mg;Z) = 0.

Harer ’83: H2(Mg;Z) = Z for all g ≥ 3.
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Cohomology of moduli spaces

Many communities are interested in the cohomology of various
moduli spaces, and their many points of view make the subject
particularly rich.

In the last ∼25 years a new community has emerged, coming from
Homotopy Theory. Its genesis was a theorem of Tillmann ’97
relating Riemann’s moduli spaceMg to infinite loop spaces.

Its breakthrough result was the resolution of Mumford’s conjecture
on the cohomology of Riemann’s moduli space:

Madsen–Weiss ’07: H∗(Mg;Q) = Q[κ1, κ2, . . .] for ∗ ≤ 2g−2
3 .

This new community has its own point of view and toolbox, inspired
by Quillen’s foundations for algebraic K-theory and many other
developments in Homotopy Theory.

In situations where this point of view applies it has often led to
significant results.
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A case study



Points in the plane

Moduli space of n distinct unordered particles in the complex plane:

Confn(C) = {(z1, z2, . . . , zn) ∈ Cn | zi 6= zj for i 6= j}/Sn

= {d ∈ C[t] | degree n monic polynomial
with no repeated roots }

π1(Confn(C)) = βn

Artin’s braid group on n strands

Arnold ’70: Hi(Confn(C);Q) =

{
Q i = 0, 1
0 else

for all n ≥ 2.
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Branched covers

Associated to a degree n monic polynomial d with no repeated roots
is the smooth Riemann surface

Cd = {(x, y) ∈ C2 | y2 = d(x)},

i.e. the double cover of C branched over the roots of d.

It is a genus n−1
2 surface with a point

removed if n is odd, and a genus n−2
2

surface with two points removed if n
is even.

The assignment d 7→ H1(Cd;Z) defines a local system V of symplectic
forms over Confn(C), so a symplectic representation of the braid
group βn: this is “the reduced integral Burau representation”.
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The question

For simplicity suppose from now on that n = 2g+ 1 is odd, so the
corresponding branched cover is a genus g surface with a point
removed.

Then “the reduced integral Burau representation” has the form

β2g+1 −→ Sp2g(Z).

Let V be the fundamental representation of Sp2g.

Question: What is H∗(Conf2g+1(C);V) = H∗(β2g+1;V)?

More generally, the irreducible representations of Sp2g are named
Vλ for partitions λ of length ≤ g, and one may ask:

Question: What is H∗(Conf2g+1(C);Vλ) = H∗(β2g+1;Vλ)?
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Motivation for the question

Let q be an odd prime power. For d ∈ Fq[t] monic and squarefree of
degree n = 2g+ 1 there is a curve

Cd = {(x, y) ∈ A2
Fq | y

2 = d(x)}.

We may count the number of solutions of the equation y2 = d(x)

over each finite extension Fqk of Fq. Then

exp

∑
k≥1

#Cd(Fqk)
tk

k

 =
PCd(t)

(1− t)(1− qt) for all |t| < 1
q

for an integer polynomial PCd .

Conjecture(∗) of Conrey–Farmer–Keating–Rubinstein–Snaith
For fixed q and r

q−2g−1
∑

d monic, squarefree
of degree 2g+1

PCd(q−1/2)r = Qr(2g+ 1) + o(1) as g→∞

for an explicit polynomial Qr of degree r(r + 1)/2.
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Arithmetic and topology

For suitable schemes X over Z there is an incredible relationship
between arithmetic and topology, specifically between

(weighted) counts of X(Fqk) and (twisted) cohomology of X(C)

via the Grothendieck–Lefschetz trace formula, Artin’s comparison
theorem, and Deligne’s bound on Frobenius eigenvalues.

Example of the principle

#X(Fq) = qdim(X)
∑
i

(−1)iTr(Frobq : Hét
i (XF̄q)→ Hét

i (XF̄q))

Applied with X = Confn(A1) and H∗(Confn(C);Q) =

{
Q i = 0, 1
0 else

⇒ #{d ∈ Fq[t] | degree n monic polynomial
with no repeated roots } = qn(1− q−1)
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Work of Bergström–Diaconu–Petersen–Westerland

Bergström–Diaconu–Petersen–Westerland ’23 apply this to the
scheme Conf2g+1(A1)/Ga and the local system (Λ•V)⊗r.

The corresponding weighted point count is the left-hand side in the
CFKRS conjecture.

One has (Λ•V)⊗r =
⊕

λ pλ,r(2g+ 1) · Vλ for certain polynomials pλ,r
of degree r(r + 1)/2.

Bergström, Diaconu, Petersen, and Westerland:

(i) completely calculate limg→∞ H∗(Conf2g+1(C);Vλ), showing that
with the pλ,r it recovers the right-hand side in the CFKRS
conjecture, and

(ii) explain how that conjecture would follow (for fixed r and all
large enough q) if

Hi(Conf2g+1(C);Vλ)
∼←− Hi(Conf2(g+1)+1(C);Vλ)

for all i ≤ A · g− B, some A > 0.
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Strategy of Bergström–Diaconu–Petersen–Westerland

Modern homotopical methods for calculating stable cohomology of
e.g. Confn(C) exploit locality:

U 7−→ {discrete subsets of U}

is a sheaf of spaces on C (and almost a homotopy sheaf).

Taking compactly supported global sections gives
⊔
n≥0 Confn(C).

Now Vλ is local on Confn(C), but is not meaningfully local on C. Its
fibre depends on the arrangement of all points in a configuration,
and cannot be expressed in terms of individual contributions.

However: for a topological space X,

Confn(C)X := {(d, ϕ) |d ∈ Confn(C), ϕ : Cd → X}

is describable locally on C.

The homotopical methods apply here, functorially in X. This gives a
large (enough) supply of local systems on Confn(C) for which one
can calculate the stable cohomology.

9
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Work of Miller–Patzt–Petersen–R-W

Bergström, Diaconu, Petersen, and Westerland reduce the CFKRS
conjecture to showing: there are A > 0, B such that

Hi(Conf2g+1(C);Vλ)
∼←− Hi(Conf2(g+1)+1(C);Vλ)

for all i ≤ A · g− B and all λ.

Showing this for i ≤ g− 1+|λ|
2 is by now routine in the subject of

homological stability (it follows from R-W–Wahl ’17) but is useless
here: BDPW need a single stability range that works for all λ at once.

Miller–Patzt–Petersen–R-W ’24: It holds for all i ≤ 1
6 · g− 1.

⇒ q−2g−1
∑

d monic, squarefree
of degree 2g+1

PCd(q−1/2)r = Qr(2g+ 1) + O(4g(r+1)q−(g+6)/12)

⇒ CFKRS conjecture for all q > 224(r+1)
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Strategy of Miller–Patzt–Petersen–R-W

This kind of homological stability theorem, where the stable range
is independent of the local system of coe�cients, is new. We show
it also holds for moduli spaces of Riemann surfaces, graphs, ...

Borel ’81: For Γ an arithmetic subgroup of Sp2g, and Vλ a nontrivial
irreducible representation of Sp2g, we have Hi(Γ;Vλ) = 0 for i < g.

Our strategy is to take

Γn := Im(βn
Burau→ Spn−1(Z)),

whch are arithmetic subgroups of the even-or-odd symplectic
groups, and satisfy the conclusion of Borel’s theorem.

We then show that C∗(Γn;Vλ) can be constructed in a precisely
controlled way from the collection

{C∗(βm;Vµ)}m≤n,µ≤λ ,

in such a way that if our required stability theorem did not hold,
then neither could Borel’s.
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This kind of homological stability theorem, where the stable range
is independent of the local system of coe�cients, is new. We show
it also holds for moduli spaces of Riemann surfaces, graphs, ...

Borel ’81: For Γ an arithmetic subgroup of Sp2g, and Vλ a nontrivial
irreducible representation of Sp2g, we have Hi(Γ;Vλ) = 0 for i < g.

Our strategy is to take

Γn := Im(βn
Burau→ Spn−1(Z)),

whch are arithmetic subgroups of the even-or-odd symplectic
groups, and satisfy the conclusion of Borel’s theorem.

We then show that C∗(Γn;Vλ) can be constructed in a precisely
controlled way from the collection

{C∗(βm;Vµ)}m≤n,µ≤λ ,

in such a way that if our required stability theorem did not hold,
then neither could Borel’s. 11
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