
CLASSIFYING SIMPLE AMENABLE C˚-ALGEBRAS

Stuart White

University of Oxford

Mathematics Muenster: Mid Term Conference



OPERATOR ALGEBRAS

AN EXAMPLE

H a Hilbert space, a complete inner product space.
BpHq the continuous linear operators on H.
Algebraic structure. ˚-algebra: xT ˚ξ, ηy “ xξ,Tηy.
Analytic structure. }T } “ supt}T ξ} : ξ P H, }ξ} ď 1u.
BpCnq is the n ˆ n complex matrices; ˚ is conjugate transpose.

C˚-ALGEBRAS

˚-subalgebras of BpHq
closed in norm topology;
Commutative algebras,
C0pX q, locally compact X
Topological nature

VON NEUMANN ALGEBRAS

˚-subalgebras of BpHq
closed under pointwise limits
Commutative algebras,
L8pX q, measure space X
Measure theoretic nature
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CLASSIFICATION

of classes of operator
algebras upto isomorphism
invariants computable in
natural examples
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Reap structural benefits
from classification
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CLASSIFICATION

of classes of operator
algebras upto isomorphism
invariants computable in
natural examples

STRUCTURE

Abstractly identify
classifiable classes
Reap structural benefits
from classification

VON NEUMANN ALGEBRAS

Definitive structure and classification theorems: 1940s and 70s
(Connes).

C˚-ALGEBRAS

‘Elliott programme’ – large scale project seeks analogous results
Work of many researchers over decades



EXAMPLES FROM GROUP ACTIONS

Group action β : G ñ X .
Induces action on
functions α : G ñ CpX q

αgpf qpxq “ f pβ´1
g pxqq

EG: IRRATIONAL ROTATION

Z ñ T by rotation by an
irrational multiple θ of 2π.
Space of orbits T{Z badly
behaved.

IN THE SPIRIT OF THE SEMI-DIRECT PRODUCT FOR GROUPS

Embed CpX q Ď CpX q ¸α G in a larger algebra, so the action
α : G ñ CpX q becomes inner in this larger algebra.
CpX q ¸α G a non-abelian C˚-algebra generated by CpX q Ă BpHq,
and unitaries ug on H implementing the action.

IRRATIONAL ROTATION ALGEBRA Aθ “ CpTq ¸θ Z
C˚-algebra generated by unitaries U,V with UV “ e2πiθVU.
Think of as a non-commutative torus.
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EXAMPLES FROM GROUP ACTIONS
SPECIAL CASE: GROUP OPERATOR ALGEBRAS FROM UNITARY REPRESENTATIONS

X IS A SINGLETON: CpX q “ L8pX q “ C
C¸G “: C˚r pGq generated by a unitary representation of G on a
Hilbert space (the left-regular representation).
von Neumann version: VNpGq.

THIS GENERALISES THE FOURIER TRANSFORM FOR LOCALLY
COMPACT ABELIAN GROUPS

G abelian: C˚r pGq “ C0p
pGq, VNpGq “ L8ppGq

C˚r pZq “ CpTq fl CpT2q “ C˚r pZ2q.
VNpZq “ L8pTq – L8pT2q “ VNpZ2q.
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EXAMPLES: INDUCTIVE LIMITS

M8 “ C Ă M2 Ă M4 Ă M8 Ă . . .

NOTICE

This is all compatible with the normalised trace on these matrices:
Inductive limit

Ť8
n“0 M2n has a normalised trace τ

REPRESENT ON A HILBERT SPACE AND CLOSE TO OBTAIN:
a C˚-algebra M28 — the CAR algebra from mathematical physics.
and a von Neumann algebra R. The trace extends to these
algebras.



STRUCTURE AND CLASSIFICATION OF VNAS

THEOREM (MURRAY AND VON NEUMANN ‘45)
There exists a unique hyperfinite infinite dimensional simple von
Neumann algebra with a trace acting on a separable Hilbert space.

This is R.

Simple = no non-trivial von Neumann algebra ideals.
infinite dimensional, simple, with a trace = ‘II1 factor’
Hyperfinite: arises as an inductive limit of finite dimensional
algebras as the previous example.

CONNES ’77
Abstract characterisation of hyperfiniteness: amenability

in terms of an operator algebraic version of amenability for groups.
readily verifiable in examples
L8pX q ¸G hyperfinite for G amenable (eg G “ Z).
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STRUCTURE AND CLASSIFICATION OF VNAS

CONNES ’77
Abstract characterisation of hyperfiniteness:

in terms of an operator algebraic version of amenability for groups.
readily verifiable in examples
L8pX q ¸G hyperfinite for G amenable.

STRUCTURE (CONNES) & CLASSIFICATION (MURRAY-VON
NEUMANN)
There exists a unique (separably acting) amenable II1 factor.

Classification for traceless hyperfinite factors completed by
Haagerup.
Completely understand amenable vNas.



ONE OF MANY INGREDIENTS IN CONNES WORK

View our inductive limit construction of R as a representation of
the infinite tensor product

Â

N M2

Of course
Â

N M2 – p
Â

N M2q b p
Â

N M2q

This persists in the von Neumann tensor product: R – RbR.

STEP IN CONNES PROOF:
A (separably acting) amenable II1 factor M is McDuff if M –MbR

R is acting as a tensorial unit on M



INVARIANTS FOR C˚-ALGEBRAS

CAN SEE THE MATRIX SIZE IN THE C˚-INDUCTIVE LIMITS

M28 fl M38

7 τppq “ τpqq when p and q are norm close projections
can not approximate

ˆ

1 0
0 0

˙

by a projection in M3n .

MAKING THIS LESS AD HOC: K -THEORY FOR C˚-ALGEBRAS

Non-commutative extension of Atiyah and Hirzebruch’s K -theory
for spaces
For A unital, K0pAq constructed from equivalence classes of
projections in matrices over A.

K0pMn8q “ t
r

nk : r P Z, k “ 0,1,2, . . . u

“ tτppq ´ τpqq : p,q projections in matrices over Mn8u

together with r1Mn8
s0 which corresponds to 1.
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TRACES: NON COMMUTATIVE INVARIANT MEASURES

M28 has a unique trace, as each M2n does.

TRACES ON CpX q ¸α G
Given by invariant measures on X (when action is essentially free)
Collection of all traces is compact, convex.

IRRATIONAL ROTATION BY θ ON T
Unique invariant measure — unique trace on CpTq ¸θ Z.
K0pCpTq ¸θ Zq – Z‘ Z, K1pCpTq ¸θ Zq – Z‘ Z
The pairing with the trace identifies

τpK0pCpTq ¸θ Zqq “ Z` pθ{2πqZ Ă R.

Irrational rotation algebras associated to θ1 and θ2 are isomorphic
if and only if θ2 “ ˘θ1 mod 2πZ.
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ELLIOTT PROGRAMME

Classify simple separable amenable C˚-algebras by K -theory
and traces

AMENABILITY

C˚-algebraic version of Connes’ von Neumann algebraric
amenability condition.
readily testable in examples
for G countable discrete, C˚r pGq amenable iff G is amenable.
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ELLIOTT PROGRAMME

Classify simple separable amenable C˚-algebras by K -theory
and traces

A

B

EllpAq

EllpBq
Ó–Ó–

simple separable amenable
C˚-algebras

K -theory
and traces

Ell

CLASSIFIABLE = ISOMORPHISMS LIFT

Every Φ : EllpAq –Ñ EllpBq is Ellpφq for a (suitably) unique φ : A –
Ñ B.
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HIGHER DIMENSIONAL EXAMPLES

COUNTER EXAMPLES 2000S

Exist simple inductive limit A of C˚-algebras MmnpCpXnqq such that
A fl AbM28 but this can not be seen via K -theory and traces, or
countably many other homotopy invariant functors into abelian groups

K -theory

and traces

QUESTION

Where is the dividing line between the classifiable and the exotic?
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WHAT IS THE RIGHT C˚-ANALOG OF R?

RECALL:
R is a tensor unit for amenable II1 factors

WANT SIMPLE C˚-ALGEBRAS D WITH

D – D b D
EllpAb Dq – EllpAq: tensoring by D should be trivial on invariants

NEW EXAMPLE: JIANG-SU ALGEBRA Z FOUND LATE 90S

Infinite dimensional simple separable unital amenable C˚-algebra
with EllpZq – EllpCq.
Construction somewhat intricate, but by now lots of different
constructions all giving the same algebra.
Can not have both C and Z within a class of algebras classified by
K -theory and traces.



Z AS A NON-COMMUTATIVE TENSOR UNITS

A and Ab Z indistinguishable by K -theory and traces.

Z -STABILITY: A – Ab Z
Z-stability a minimal non-trivial absorption hypothesis.
There are efficient tools for describing Z-stability (without
reference to Z) which in spirit go back to McDuff.

K -theory

and traces

Z-stable?
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C˚-ALGEBRA

THE UNITAL CLASSIFICATION THEOREM

Z-stable, simple, separable, unital, amenable C˚-algebras in the UCT
class are classified by K -theory and traces.

Analogue for C˚-algebras of the Murray-von Neumann, Connes,
Haagerup classification of amenable von Neumann factors.
These results 25+ year endeavour; work of many researchers.
Dichotomy between traceless case (Kirchberg, Philips 94-00), and
tracial case.



C˚-ALGEBRA: STRUCTURE AND CLASSIFICATION

THE CLASSIFICATION THEOREM

Z-stable, simple, separable, unital, amenable C˚-algebras in the UCT
class are classified by K -theory and traces.

UCT CLASS: SATISFIES A NONCOMMUTATIVE UNIVERSAL
COEFFICIENT THEOREM

Computes Kasparov’s bivariant KK -theory in terms of K -theory.
CpX q does satisfy the UCT; think of satisfying UCT as being
homotopic (in a weak sense) to an abelian algebra.
Major problem. Do all amenable C˚-algebras satisfy the UCT?
But all amenable C˚-algebras which have been written down
explicitly do.



C˚-ALGEBRA: STRUCTURE AND CLASSIFICATION

THE CLASSIFICATION THEOREM

Z-stable, simple, separable, unital, amenable C˚-algebras in the UCT
class are classified by K -theory and traces.

RANGE OF INVARIANT

Is understood: all possible K -theory trace pairings arise. Obtain
structural consequences from classification:

all classifiable C˚-algebras have twisted groupoid models
Internal inductive limit structure arises from classification



EXAMPLES CpX q ¸G

THE UNITAL CLASSIFICATION THEOREM

Z-stable, simple, separable, unital, amenable C˚-algebras in the UCT
class are classified by K -theory and traces.

FOR CpX q ¸G: BLUE CONDITIONS EASILY DESCRIBED

Unital: automatic
Separability: from G countable discrete and X metrisable.
Amenable: when G is amenable (or more generally precisely
when the action is amenable)
Simple: when action is topologically free and minimal.

FOR CpX q ¸G:
UCT automatic when G (or action) is amenable.
All that remains is Z-stability - huge body of work in this direction.
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DOING THINGS APPROXIMATELY IS EASIER THAN DOING

THEM EXACTLY

CLASSIFY APPROXIMATELY MULTIPLICATIVE MAPS φ, ψ : A Ñ B
Encode approximate multiplicativity using ultrapower. For a free
ultrafilter ω P βNzN, define

Bω “ `8pBq{tpxnq P `
8pBq : lim

nÑω
}xn} “ 0u.

Then bounded sequences of ˚-linear maps φn : A Ñ B which are
approximately multiplicative are encoded by a single
˚-homomorphism φ : A Ñ Bω.

EASIER TO PROVE EXISTENCE. BUT

Harder to prove uniqueness
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θ classified by trace
��

lifts: classified by KK

}}
0 // JB // Bω // Bω // 0

OBSTRUCTION TO THE EXISTENCE OF LIFTS A Ñ Bω OF θ : A Ñ Bω

lives in KK pA,Bωq — access via the UCT.

DATA NEEDED FOR UNIQUENESS OF LIFTS A Ñ Bω OF θ : A Ñ Bω

lives in KK pA, JBq — access via the UCT.
It turns out that this data is more than just K -theory (and traces)

AS WE NEED MORE DATA IN THE INVARIANT FOR UNIQUENESS. . .
. . . this means we have to prove a stronger existence theorem. . .
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Thank you


