# Classifying simple amenable $\mathcal{C}^*$ -algebras

#### Stuart White

University of Oxford

Mathematics Muenster: Mid Term Conference

## **OPERATOR ALGEBRAS**

#### AN EXAMPLE

- $\bullet \ \mathcal{H}$  a Hilbert space, a complete inner product space.
- $\mathcal{B}(\mathcal{H})$  the continuous linear operators on  $\mathcal{H}.$
- Algebraic structure. \*-algebra:  $\langle T^*\xi, \eta \rangle = \langle \xi, T\eta \rangle$ .
- Analytic structure.  $||T|| = \sup\{||T\xi|| : \xi \in \mathcal{H}, ||\xi|| \le 1\}.$
- $\mathcal{B}(\mathbb{C}^n)$  is the  $n \times n$  complex matrices; \* is conjugate transpose.

# **OPERATOR ALGEBRAS**

#### AN EXAMPLE

- $\mathcal{H}$  a Hilbert space, a complete inner product space.
- $\mathcal{B}(\mathcal{H})$  the continuous linear operators on  $\mathcal{H}$ .
- Algebraic structure. \*-algebra:  $\langle T^*\xi, \eta \rangle = \langle \xi, T\eta \rangle$ .
- Analytic structure.  $||T|| = \sup\{||T\xi|| : \xi \in \mathcal{H}, ||\xi|| \le 1\}.$
- $\mathcal{B}(\mathbb{C}^n)$  is the  $n \times n$  complex matrices; \* is conjugate transpose.

#### C\*-ALGEBRAS

 \*-subalgebras of B(H) closed in norm topology;

#### VON NEUMANN ALGEBRAS

• \*-subalgebras of  $\mathcal{B}(\mathcal{H})$  closed under pointwise limits

# **OPERATOR ALGEBRAS**

#### AN EXAMPLE

- $\mathcal{H}$  a Hilbert space, a complete inner product space.
- $\mathcal{B}(\mathcal{H})$  the continuous linear operators on  $\mathcal{H}$ .
- Algebraic structure. \*-algebra:  $\langle T^*\xi, \eta \rangle = \langle \xi, T\eta \rangle$ .
- Analytic structure.  $||T|| = \sup\{||T\xi|| : \xi \in \mathcal{H}, ||\xi|| \le 1\}.$
- $\mathcal{B}(\mathbb{C}^n)$  is the  $n \times n$  complex matrices; \* is conjugate transpose.

#### C\*-ALGEBRAS

- \*-subalgebras of B(H) closed in norm topology;
- Commutative algebras, C<sub>0</sub>(X), locally compact X
- Topological nature

#### VON NEUMANN ALGEBRAS

- \*-subalgebras of  $\mathcal{B}(\mathcal{H})$ closed under pointwise limits
- Commutative algebras,
   L<sup>∞</sup>(X), measure space X
- Measure theoretic nature

# STRUCTURE AND CLASSIFICATION

#### CLASSIFICATION

- of classes of operator algebras upto isomorphism
- invariants computable in natural examples

#### **STRUCTURE**

- Abstractly identify classifiable classes
- Reap structural benefits from classification

# STRUCTURE AND CLASSIFICATION

#### CLASSIFICATION

- of classes of operator algebras upto isomorphism
- invariants computable in natural examples

#### STRUCTURE

- Abstractly identify classifiable classes
- Reap structural benefits from classification

#### VON NEUMANN ALGEBRAS

• Definitive structure and classification theorems: 1940s and 70s (Connes).

# STRUCTURE AND CLASSIFICATION

#### CLASSIFICATION

- of classes of operator algebras upto isomorphism
- invariants computable in natural examples

#### STRUCTURE

- Abstractly identify classifiable classes
- Reap structural benefits from classification

#### VON NEUMANN ALGEBRAS

• Definitive structure and classification theorems: 1940s and 70s (Connes).

## **C**\*-ALGEBRAS

- 'Elliott programme' large scale project seeks analogous results
- Work of many researchers over decades

## **EXAMPLES FROM GROUP ACTIONS**

- Group action  $\beta : G \rightharpoonup X$ .
- Induces action on functions α : G ¬ C(X)

$$\alpha_g(f)(x) = f(\beta_g^{-1}(x))$$

#### EG: IRRATIONAL ROTATION

- ℤ ¬ T by rotation by an irrational multiple θ of 2π.
- Space of orbits  $\mathbb{T}/\mathbb{Z}$  badly behaved.

## **EXAMPLES FROM GROUP ACTIONS**

- Group action  $\beta : G \rightharpoonup X$ .
- Induces action on functions α : G → C(X)

 $\alpha_g(f)(\mathbf{x}) = f(\beta_g^{-1}(\mathbf{x}))$ 

#### EG: IRRATIONAL ROTATION

- Z ¬ T by rotation by an irrational multiple θ of 2π.
- Space of orbits  $\mathbb{T}/\mathbb{Z}$  badly behaved.

#### IN THE SPIRIT OF THE SEMI-DIRECT PRODUCT FOR GROUPS

- Embed  $C(X) \subseteq C(X) \rtimes_{\alpha} G$  in a larger algebra, so the action  $\alpha : G \rightharpoonup C(X)$  becomes inner in this larger algebra.
- C(X) ⋊<sub>α</sub> G a non-abelian C\*-algebra generated by C(X) ⊂ B(H), and unitaries u<sub>g</sub> on H implementing the action.

#### Irrational rotation algebra $A_{\theta} = C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$

- $C^*$ -algebra generated by unitaries U, V with  $UV = e^{2\pi i \theta} VU$ .
- Think of as a non-commutative torus.

## **EXAMPLES FROM GROUP ACTIONS**

SPECIAL CASE: GROUP OPERATOR ALGEBRAS FROM UNITARY REPRESENTATIONS

X is a singleton:  $C(X) = L^{\infty}(X) = \mathbb{C}$ 

- C ⋊ G =: C<sup>\*</sup><sub>r</sub>(G) generated by a unitary representation of G on a Hilbert space (the left-regular representation).
- von Neumann version: VN(G).

THIS GENERALISES THE FOURIER TRANSFORM FOR LOCALLY COMPACT ABELIAN GROUPS

• *G* abelian: 
$$C_r^*(G) = C_0(\widehat{G}), VN(G) = L^{\infty}(\widehat{G})$$

• 
$$C_r^*(\mathbb{Z}) = C(\mathbb{T}) \ncong C(\mathbb{T}^2) = C_r^*(\mathbb{Z}^2).$$

• 
$$VN(\mathbb{Z}) = L^{\infty}(\mathbb{T}) \cong L^{\infty}(\mathbb{T}^2) = VN(\mathbb{Z}^2).$$





 $\mathbb{C} \subset M_2$ 

$$M_2 = egin{array}{c|c} a_{1,1} & a_{1,2} & & & \\ \hline & & & & & \\ a_{2,1} & a_{2,2} & & & \\ \end{array}$$

 $\mathbb{C} \subset M_2$ 

$$M_4 \supset M_2 = \begin{bmatrix} a_{1,1} & 0 & a_{1,2} & 0 \\ 0 & a_{1,1} & 0 & a_{1,2} \\ \hline a_{2,1} & 0 & a_{2,2} & 0 \\ \hline 0 & a_{2,1} & 0 & a_{2,2} \end{bmatrix}$$

Λ

$$\mathbb{C} \subset M_2 \subset M_4$$

 $M_{4} =$ 

| * | * | * | * |
|---|---|---|---|
| * | * | * | * |
| * | * | * | * |
| * | * | * | * |

$$\mathbb{C} \subset M_2 \subset M_4 \subset M_8 \subset \ldots$$



 $\mathbb{C} \subset M_2 \subset M_4 \subset M_8 \subset \ldots$ 

#### NOTICE

This is all compatible with the normalised trace on these matrices:



 $\mathbb{C} \subset M_2 \subset M_4 \subset M_8 \subset \ldots$ 

#### NOTICE

This is all compatible with the normalised trace on these matrices:

$$\frac{1}{2}(a_{1,1}+a_{2,2})$$

$$\mathbb{C} \subset M_2 \subset M_4 \subset M_8 \subset \ldots$$

## NOTICE

This is all compatible with the normalised trace on these matrices:

$$\frac{1}{2}(a_{1,1}+a_{2,2})=\frac{1}{4}(a_{1,1}+a_{1,1}+a_{2,2}+a_{2,2})$$



 $\mathbb{C} \subset M_2 \subset M_4 \subset M_8 \subset \ldots$ 

#### NOTICE

This is all compatible with the normalised trace on these matrices:

• Inductive limit  $\bigcup_{n=0}^{\infty} M_{2^n}$  has a normalised trace  $\tau$ 



 $\mathbb{C} \subset M_2 \subset M_4 \subset M_8 \subset \ldots$ 

#### NOTICE

This is all compatible with the normalised trace on these matrices:

• Inductive limit  $\bigcup_{n=0}^{\infty} M_{2^n}$  has a normalised trace  $\tau$ 

#### REPRESENT ON A HILBERT SPACE AND CLOSE TO OBTAIN:

- a  $C^*$ -algebra  $M_{2^{\infty}}$  the CAR algebra from mathematical physics.
- and a von Neumann algebra  $\mathcal{R}$ . The trace extends to these algebras.

# STRUCTURE AND CLASSIFICATION OF VNAS

## THEOREM (MURRAY AND VON NEUMANN '45)

There exists a unique hyperfinite infinite dimensional simple von Neumann algebra with a trace acting on a separable Hilbert space.

- This is  $\mathcal{R}$ .
- Simple = no non-trivial von Neumann algebra ideals.
- infinite dimensional, simple, with a trace = 'II<sub>1</sub> factor'
- Hyperfinite: arises as an inductive limit of finite dimensional algebras as the previous example.

# STRUCTURE AND CLASSIFICATION OF VNAS

## THEOREM (MURRAY AND VON NEUMANN '45)

There exists a unique hyperfinite infinite dimensional simple von Neumann algebra with a trace acting on a separable Hilbert space.

- This is  $\mathcal{R}$ .
- Simple = no non-trivial von Neumann algebra ideals.
- infinite dimensional, simple, with a trace = 'II<sub>1</sub> factor'
- Hyperfinite: arises as an inductive limit of finite dimensional algebras as the previous example.

## CONNES '77

Abstract characterisation of hyperfiniteness: amenability

- in terms of an operator algebraic version of amenability for groups.
- readily verifiable in examples
- $L^{\infty}(X) \rtimes G$  hyperfinite for G amenable (eg  $G = \mathbb{Z}$ ).

# STRUCTURE AND CLASSIFICATION OF VNAS

## CONNES '77

Abstract characterisation of hyperfiniteness:

- in terms of an operator algebraic version of amenability for groups.
- readily verifiable in examples
- $L^{\infty}(X) \rtimes G$  hyperfinite for *G* amenable.

# STRUCTURE (CONNES) & CLASSIFICATION (MURRAY-VON NEUMANN)

There exists a unique (separably acting) amenable  $II_1$  factor.

- Classification for traceless hyperfinite factors completed by Haagerup.
- Completely understand amenable vNas.

## ONE OF MANY INGREDIENTS IN CONNES WORK

- View our inductive limit construction of *R* as a representation of the infinite tensor product ⊗<sub>N</sub> M<sub>2</sub>
- Of course  $\bigotimes_{\mathbb{N}} M_2 \cong (\bigotimes_{\mathbb{N}} M_2) \otimes (\bigotimes_{\mathbb{N}} M_2)$
- This persists in the von Neumann tensor product:  $\mathcal{R} \cong \mathcal{R} \otimes \mathcal{R}$ .

#### STEP IN CONNES PROOF:

A (separably acting) amenable II<sub>1</sub> factor  $\mathcal{M}$  is McDuff if  $\mathcal{M} \cong \mathcal{M} \otimes \mathcal{R}$ 

•  ${\mathcal R}$  is acting as a tensorial unit on  ${\mathcal M}$ 

# Invariants for $\mathcal{C}^*$ -algebras

Can see the matrix size in the  $\mathcal{C}^*$ -inductive limits

- $M_{2^{\infty}} \ncong M_{3^{\infty}}$
- $: : \tau(p) = \tau(q)$  when *p* and *q* are norm close projections can not approximate  $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$  by a projection in  $M_{3^n}$ .

# INVARIANTS FOR $C^*$ -ALGEBRAS

#### Can see the matrix size in the $C^*$ -inductive limits

- $M_{2^{\infty}} \ncong M_{3^{\infty}}$
- · : τ(p) = τ(q) when p and q are norm close projections can not approximate (<sup>1</sup><sub>0</sub> <sup>0</sup><sub>0</sub>) by a projection in M<sub>3<sup>n</sup></sub>.

## Making this less ad hoc: K-theory for $C^*$ -algebras

- Non-commutative extension of Atiyah and Hirzebruch's *K*-theory for spaces
- For *A* unital, *K*<sub>0</sub>(*A*) constructed from equivalence classes of projections in matrices over *A*.

#### ۲

$$\begin{aligned} \mathcal{K}_0(\mathcal{M}_{n^{\infty}}) &= \{ \frac{r}{n^k} : r \in \mathbb{Z}, \ k = 0, 1, 2, \dots \} \\ &= \{ \tau(\boldsymbol{p}) - \tau(\boldsymbol{q}) : \boldsymbol{p}, \boldsymbol{q} \text{ projections in matrices over } \mathcal{M}_{n^{\infty}} \} \end{aligned}$$

together with  $[1_{M_{n^{\infty}}}]_0$  which corresponds to 1.

## TRACES: NON COMMUTATIVE INVARIANT MEASURES

•  $M_{2^{\infty}}$  has a unique trace, as each  $M_{2^n}$  does.

## TRACES ON $C(X) \rtimes_{\alpha} G$

- Given by invariant measures on X (when action is essentially free)
- Collection of all traces is compact, convex.

## TRACES: NON COMMUTATIVE INVARIANT MEASURES

•  $M_{2^{\infty}}$  has a unique trace, as each  $M_{2^n}$  does.

## TRACES ON $C(X) \rtimes_{\alpha} G$

- Given by invariant measures on X (when action is essentially free)
- Collection of all traces is compact, convex.

## Irrational rotation by $\theta$ on $\mathbb T$

- Unique invariant measure unique trace on  $C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$ .
- $K_0(C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}, K_1(C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}$

## TRACES: NON COMMUTATIVE INVARIANT MEASURES

•  $M_{2^{\infty}}$  has a unique trace, as each  $M_{2^n}$  does.

## TRACES ON $C(X) \rtimes_{\alpha} G$

- Given by invariant measures on X (when action is essentially free)
- Collection of all traces is compact, convex.

## Irrational rotation by $\theta$ on $\mathbb T$

- Unique invariant measure unique trace on  $C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$ .
- $K_0(C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}, K_1(C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}$
- The pairing with the trace identifies

$$au(\mathcal{K}_0(\mathcal{C}(\mathbb{T})\rtimes_{\theta}\mathbb{Z})) = \mathbb{Z} + (\theta/2\pi)\mathbb{Z} \subset \mathbb{R}.$$

• Irrational rotation algebras associated to  $\theta_1$  and  $\theta_2$  are isomorphic if and only if  $\theta_2 = \pm \theta_1 \mod 2\pi \mathbb{Z}$ .

Classify simple separable amenable C\*-algebras by K-theory and traces

#### AMENABILITY

- *C*\*-algebraic version of Connes' von Neumann algebraric amenability condition.
- readily testable in examples
- for *G* countable discrete,  $C_r^*(G)$  amenable iff *G* is amenable.









#### ELLIOTT PROGRAMME

*Classify simple separable amenable C\*-algebras by K-theory and traces* 



CLASSIFIABLE = ISOMORPHISMS LIFT

Every  $\Phi : \operatorname{Ell}(A) \xrightarrow{\cong} \operatorname{Ell}(B)$  is  $\operatorname{Ell}(\phi)$  for a (suitably) unique  $\phi : A \xrightarrow{\cong} B$ .

## ELLIOTT PROGRAMME

*Classify simple separable amenable C\*-algebras by K-theory and traces* 



Aspects of the classifiable bubble:

• AF algebras (Elliott '76),
*Classify simple separable amenable C\*-algebras by K-theory and traces* 



Aspects of the classifiable bubble:

• AF algebras (Elliott '76), increasingly general inductive limits...

*Classify simple separable amenable C\*-algebras by K-theory and traces* 



Aspects of the classifiable bubble:

• AF algebras (Elliott '76), increasingly general inductive limits...

*Classify simple separable amenable C\*-algebras by K-theory and traces* 



Aspects of the classifiable bubble:

- AF algebras (Elliott '76), increasingly general inductive limits...
- Kirchberg Phillips theorem (90's)

*Classify simple separable amenable C\*-algebras by K-theory and traces* 



Aspects of the classifiable bubble:

- AF algebras (Elliott '76), increasingly general inductive limits...
- Kirchberg Phillips theorem (90's)

*Classify simple separable amenable C\*-algebras by K-theory and traces* 



Aspects of the classifiable bubble:

- AF algebras (Elliott '76), increasingly general inductive limits...
- Kirchberg Phillips theorem (90's)

# HIGHER DIMENSIONAL EXAMPLES

### Counter examples 2000s

Exist simple inductive limit *A* of *C*\*-algebras  $M_{m_n}(C(X_n))$  such that  $A \not\cong A \otimes M_{2^{\infty}}$  but this can not be seen via *K*-theory and traces, or countably many other homotopy invariant functors into abelian groups

# HIGHER DIMENSIONAL EXAMPLES

### Counter examples 2000s

Exist simple inductive limit *A* of *C*\*-algebras  $M_{m_n}(C(X_n))$  such that  $A \not\cong A \otimes M_{2^{\infty}}$  but this can not be seen via *K*-theory and traces, or countably many other homotopy invariant functors into abelian groups



### QUESTION

Where is the dividing line between the classifiable and the exotic?

**RECALL:** 

 $\bullet \ \mathcal{R}$  is a tensor unit for amenable  $II_1$  factors

### **RECALL:**

 $\bullet \ \mathcal{R}$  is a tensor unit for amenable  $II_1$  factors

WANT SIMPLE  $C^*$ -ALGEBRAS D WITH •  $D \cong D \otimes D$ 

• eg  $D = \mathbb{C}, D = M_{2^{\infty}}, M_{3^{\infty}}, \ldots$ 

### **RECALL:**

 $\bullet \ \mathcal{R}$  is a tensor unit for amenable  $II_1$  factors

# Want simple $C^*$ -algebras D with

- $D \cong D \otimes D$
- $\operatorname{Ell}(A \otimes D) \cong \operatorname{Ell}(A)$ : tensoring by *D* should be trivial on invariants

• eg 
$$D = \mathbb{C}, D = M_{2^{\infty}}, M_{3^{\infty}}, \dots$$

### **RECALL:**

•  $\mathcal{R}$  is a tensor unit for amenable II<sub>1</sub> factors

# Want simple $C^*$ -algebras D with

- $D \cong D \otimes D$
- $\operatorname{Ell}(A \otimes D) \cong \operatorname{Ell}(A)$ : tensoring by *D* should be trivial on invariants

### New example: Jiang-Su algebra $\mathcal Z$ found late 90s

- Infinite dimensional simple separable unital amenable C\*-algebra with Ell(Z) ≃ Ell(C).
- Construction somewhat intricate, but by now lots of different constructions all giving the same algebra.
- Can not have both  $\mathbb{C}$  and  $\mathcal{Z}$  within a class of algebras classified by *K*-theory and traces.

# ${\mathcal Z}$ as a non-commutative tensor units

• A and  $A \otimes \mathcal{Z}$  indistinguishable by K-theory and traces.

# $\mathcal{Z}$ -stability: $A \cong A \otimes \mathcal{Z}$

- $\mathcal{Z}$ -stability a minimal non-trivial absorption hypothesis.
- There are efficient tools for describing  $\mathcal{Z}$ -stability (without reference to  $\mathcal{Z}$ ) which in spirit go back to McDuff.

# ${\mathcal Z}$ as a non-commutative tensor units

• A and  $A \otimes \mathcal{Z}$  indistinguishable by *K*-theory and traces.

# $\mathcal{Z}$ -stability: $A \cong A \otimes \mathcal{Z}$

- $\mathcal{Z}$ -stability a minimal non-trivial absorption hypothesis.
- There are efficient tools for describing *Z*-stability (without reference to *Z*) which in spirit go back to McDuff.



# $C^*$ -ALGEBRA

### THE UNITAL CLASSIFICATION THEOREM

 $\mathcal{Z}$ -stable, simple, separable, unital, amenable  $C^*$ -algebras in the UCT class are classified by K-theory and traces.

- Analogue for *C*\*-algebras of the Murray-von Neumann, Connes, Haagerup classification of amenable von Neumann factors.
- These results 25+ year endeavour; work of many researchers.
- Dichotomy between traceless case (Kirchberg, Philips 94-00), and tracial case.

# $C^*$ -ALGEBRA: STRUCTURE AND CLASSIFICATION

### THE CLASSIFICATION THEOREM

 $\mathcal{Z}$ -stable, simple, separable, unital, amenable  $C^*$ -algebras in the UCT class are classified by *K*-theory and traces.

# UCT CLASS: SATISFIES A NONCOMMUTATIVE UNIVERSAL COEFFICIENT THEOREM

- Computes Kasparov's bivariant KK-theory in terms of K-theory.
- *C*(*X*) does satisfy the UCT; think of satisfying UCT as being homotopic (in a weak sense) to an abelian algebra.
- Major problem. Do all amenable C\*-algebras satisfy the UCT?
- But all amenable *C*\*-algebras which have been written down explicitly do.

# $C^*$ -ALGEBRA: STRUCTURE AND CLASSIFICATION

### THE CLASSIFICATION THEOREM

 $\mathcal{Z}$ -stable, simple, separable, unital, amenable  $C^*$ -algebras in the UCT class are classified by K-theory and traces.

### RANGE OF INVARIANT

Is understood: all possible *K*-theory trace pairings arise. Obtain structural consequences from classification:

- all classifiable C\*-algebras have twisted groupoid models
- Internal inductive limit structure arises from classification

# Examples $C(X) \rtimes G$

### THE UNITAL CLASSIFICATION THEOREM

 $\mathcal{Z}$ -stable, simple, separable, unital, amenable  $C^*$ -algebras in the UCT class are classified by K-theory and traces.

### For $C(X) \rtimes G$ : Blue conditions easily described

- Unital: automatic
- Separability: from *G* countable discrete and *X* metrisable.
- Amenable: when *G* is amenable (or more generally precisely when the action is amenable)
- Simple: when action is topologically free and minimal.

# Examples $C(X) \rtimes G$

### THE UNITAL CLASSIFICATION THEOREM

 $\mathcal{Z}$ -stable, simple, separable, unital, amenable  $C^*$ -algebras in the UCT class are classified by K-theory and traces.

### For $C(X) \rtimes G$ : Blue conditions easily described

- Unital: automatic
- Separability: from *G* countable discrete and *X* metrisable.
- Amenable: when *G* is amenable (or more generally precisely when the action is amenable)
- Simple: when action is topologically free and minimal.

### For $C(X) \rtimes G$ :

• UCT automatic when *G* (or action) is amenable.

# Examples $C(X) \rtimes G$

### THE UNITAL CLASSIFICATION THEOREM

 $\mathcal{Z}$ -stable, simple, separable, unital, amenable  $C^*$ -algebras in the UCT class are classified by K-theory and traces.

### For $C(X) \rtimes G$ : Blue conditions easily described

- Unital: automatic
- Separability: from *G* countable discrete and *X* metrisable.
- Amenable: when *G* is amenable (or more generally precisely when the action is amenable)
- Simple: when action is topologically free and minimal.

### For $C(X) \rtimes G$ :

- UCT automatic when *G* (or action) is amenable.
- All that remains is  $\mathcal{Z}$ -stability huge body of work in this direction.

# Classify maps $\phi, \psi : \mathbf{A} \rightarrow \mathbf{B}$

 Up to approximate unitary equivalence: there exist a sequence of unitaries (u<sub>n</sub>) in B with u<sub>n</sub>φ(a)u<sup>\*</sup><sub>n</sub> → ψ(a) for all a ∈ A.

# Classify maps $\phi, \psi : \mathbf{A} \to \mathbf{B}$

- Up to approximate unitary equivalence: there exist a sequence of unitaries (u<sub>n</sub>) in B with u<sub>n</sub>φ(a)u<sup>\*</sup><sub>n</sub> → ψ(a) for all a ∈ A.
- Classification means:
  - uniqueness



# Classify maps $\phi, \psi : \mathbf{A} \to \mathbf{B}$

- Up to approximate unitary equivalence: there exist a sequence of unitaries (u<sub>n</sub>) in B with u<sub>n</sub>φ(a)u<sup>\*</sup><sub>n</sub> → ψ(a) for all a ∈ A.
- Classification means:
  - uniqueness



# Classify maps $\phi, \psi : \mathbf{A} \rightarrow \mathbf{B}$

- Up to approximate unitary equivalence: there exist a sequence of unitaries (u<sub>n</sub>) in B with u<sub>n</sub>φ(a)u<sup>\*</sup><sub>n</sub> → ψ(a) for all a ∈ A.
- Classification means:
  - uniqueness
  - existence



# Classify maps $\phi, \psi : \mathbf{A} \rightarrow \mathbf{B}$

- Up to approximate unitary equivalence: there exist a sequence of unitaries (u<sub>n</sub>) in B with u<sub>n</sub>φ(a)u<sup>\*</sup><sub>n</sub> → ψ(a) for all a ∈ A.
- Classification means:
  - uniqueness
  - existence



# Classify maps $\phi, \psi : \mathbf{A} \to \mathbf{B}$

- Up to approximate unitary equivalence: there exist a sequence of unitaries (u<sub>n</sub>) in B with u<sub>n</sub>φ(a)u<sup>\*</sup><sub>n</sub> → ψ(a) for all a ∈ A.
- Classification means:
  - uniqueness
  - existence

### USING THIS AN INTERTWINING ARGUMENT

can be used to lift  $Inv(A) \cong Inv(A)$  to the required isomorphism  $A \cong B$ .

# Classify maps $\phi, \psi : \mathbf{A} \to \mathbf{B}$

- Up to approximate unitary equivalence: there exist a sequence of unitaries (u<sub>n</sub>) in B with u<sub>n</sub>φ(a)u<sup>\*</sup><sub>n</sub> → ψ(a) for all a ∈ A.
- Classification means:
  - uniqueness
  - existence

### USING THIS AN INTERTWINING ARGUMENT

can be used to lift  $Inv(A) \cong Inv(A)$  to the required isomorphism  $A \cong B$ .

### BUT AT FIRST GLANCE

It does not seem easier to produce a map  $A \rightarrow B$  as compared to producing an isomorphism.

# DOING THINGS APPROXIMATELY IS EASIER THAN DOING THEM EXACTLY

Classify approximately multiplicative maps  $\phi, \psi: A \rightarrow B$ 

• Encode approximate multiplicativity using ultrapower. For a free ultrafilter  $\omega \in \beta \mathbb{N} \setminus \mathbb{N}$ , define

$$B_{\omega} = \ell^{\infty}(B) / \{ (x_n) \in \ell^{\infty}(B) \colon \lim_{n \to \omega} \|x_n\| = 0 \}.$$

Then bounded sequences of \*-linear maps φ<sub>n</sub> : A → B which are approximately multiplicative are encoded by a single \*-homomorphism φ : A → B<sub>ω</sub>.

EASIER TO PROVE EXISTENCE. BUT Harder to prove uniqueness

### Simplifying assumption: ${\it B}$ has a unique trace au

• gives 2-norm  $||x||_2 = \tau (x^*x)^{1/2} \le ||x||$ .

### Simplifying assumption: $m{B}$ has a unique trace au

- gives 2-norm  $||x||_2 = \tau (x^*x)^{1/2} \le ||x||$ .
- $B_{\omega}$  quotients onto  $B^{\omega} = \ell^{\infty}(B)/\{(x_n) \in \ell^{\infty}(B) \colon \lim_{n \to \omega} \|x_n\|_2 = 0\}.$
- and this is a II<sub>1</sub> factor (simple von Neumann algebra with a trace)





SIMPLIFYING ASSUMPTION: *B* has a unique trace au

- gives 2-norm  $||x||_2 = \tau (x^* x)^{1/2} \le ||x||$ .
- $B_{\omega}$  quotients onto  $B^{\omega} = \ell^{\infty}(B)/\{(x_n) \in \ell^{\infty}(B) \colon \lim_{n \to \omega} \|x_n\|_2 = 0\}.$
- and this is a II<sub>1</sub> factor (simple von Neumann algebra with a trace)



FOLKLORE CONSEQUENCE OF VON NEUMANN CLASSIFICATION Maps from separable nuclear  $C^*$ -algebra to a II<sub>1</sub> factor classified by the trace

Simplifying assumption:  $m{B}$  has a unique trace au

- gives 2-norm  $||x||_2 = \tau (x^*x)^{1/2} \le ||x||$ .
- $B_{\omega}$  quotients onto  $B^{\omega} = \ell^{\infty}(B)/\{(x_n) \in \ell^{\infty}(B) \colon \lim_{n \to \omega} \|x_n\|_2 = 0\}.$
- and this is a II<sub>1</sub> factor (simple von Neumann algebra with a trace)



**OBSTRUCTION TO THE EXISTENCE OF LIFTS**  $A \to B_{\omega}$  OF  $\theta : A \to B^{\omega}$ • lives in  $KK(A, B_{\omega})$  — access via the UCT.

Simplifying assumption:  $m{B}$  has a unique trace au

- gives 2-norm  $||x||_2 = \tau (x^*x)^{1/2} \le ||x||$ .
- $B_{\omega}$  quotients onto  $B^{\omega} = \ell^{\infty}(B)/\{(x_n) \in \ell^{\infty}(B) \colon \lim_{n \to \omega} \|x_n\|_2 = 0\}.$
- and this is a II<sub>1</sub> factor (simple von Neumann algebra with a trace)



Obstruction to the existence of lifts  $A \to B_{\omega}$  of  $\theta : A \to B^{\omega}$ 

• lives in  $KK(A, B_{\omega})$  — access via the UCT.

DATA NEEDED FOR UNIQUENESS OF LIFTS  $A \to B_{\omega}$  OF  $\theta : A \to B^{\omega}$ • lives in  $KK(A, J_B)$  — access via the UCT.



**OBSTRUCTION TO THE EXISTENCE OF LIFTS**  $A \to B_{\omega}$  OF  $\theta : A \to B^{\omega}$ • lives in  $KK(A, B_{\omega})$  — access via the UCT.

Data needed for uniqueness of lifts  $A \rightarrow B_{\omega}$  of  $\theta : A \rightarrow B^{\omega}$ 

- lives in  $KK(A, J_B)$  access via the UCT.
- It turns out that this data is more than just K-theory (and traces)



**OBSTRUCTION TO THE EXISTENCE OF LIFTS**  $A \to B_{\omega}$  OF  $\theta : A \to B^{\omega}$ • lives in  $KK(A, B_{\omega})$  — access via the UCT.

Data needed for uniqueness of lifts  $A \to B_\omega$  of  $\theta : A \to B^\omega$ 

- lives in  $KK(A, J_B)$  access via the UCT.
- It turns out that this data is more than just K-theory (and traces)

As we need more data in the invariant for uniqueness...

... this means we have to prove a stronger existence theorem...

# TAKE AWAY

Classification of tracial  $C^*$ -algebras obtained from lifting von Neumann classification and working with *KK*-theory.

# TAKE AWAY

Classification of tracial  $C^*$ -algebras obtained from lifting von Neumann classification and working with KK-theory.

- Can now hope for much more in this direction: topological analogs of the next 50 years of von Neumann algebras
- eg. Gabe-Szabo dynamical Kirchberg-Phillips theorem.
## TAKE AWAY

Classification of tracial  $C^*$ -algebras obtained from lifting von Neumann classification and working with KK-theory.

- Can now hope for much more in this direction: topological analogs of the next 50 years of von Neumann algebras
- eg. Gabe-Szabo dynamical Kirchberg-Phillips theorem.



Thank you