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e Analytic structure. |T| = sup{||T¢||: £ € H, &] < 1}.

e B(C™ is the n x n complex matrices; * is conjugate transpose.

C*-ALGEBRAS

e *-subalgebras of B(H)
closed in norm topology;

e Commutative algebras,
Co(X), locally compact X

e Topological nature

VON NEUMANN ALGEBRAS

e *-subalgebras of B(H)
closed under pointwise limits

e Commutative algebras,
L*(X), measure space X

e Measure theoretic nature
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CLASSIFICATION STRUCTURE
e of classes of operator o Abstractly identify
algebras upto isomorphism classifiable classes
e invariants computable in e Reap structural benefits
natural examples from classification

VON NEUMANN ALGEBRAS

o Definitive structure and classification theorems: 1940s and 70s
(Connes).

C*-ALGEBRAS
o ‘Elliott programme’ — large scale project seeks analogous results
e Work of many researchers over decades
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EXAMPLES FROM GROUP ACTIONS

e Group action 8: G —~ X. EG: IRRATIONAL ROTATION
o Induces action on e Z —~ T by rotation by an
functions o : G ~ C(X) irrational multiple 6 of 27.
1 e Space of orbits T/Z badly
ag(f)(x) = f(Bg" (X)) behaved.

IN THE SPIRIT OF THE SEMI-DIRECT PRODUCT FOR GROUPS
e Embed C(X) < C(X) x, Gin a larger algebra, so the action
a: G ~ C(X) becomes inner in this larger algebra.
e C(X) x, G anon-abelian C*-algebra generated by C(X) < B(H),
and unitaries ug on H implementing the action.

IRRATIONAL ROTATION ALGEBRA Ay = C(T) xy Z

e C*-algebra generated by unitaries U, V with UV = 2™ VU.
e Think of as a non-commutative torus.




EXAMPLES FROM GROUP ACTIONS
SPECIAL CASE: GROUP OPERATOR ALGEBRAS FROM UNITARY REPRESENTATIONS
X 1S A SINGLETON: C(X) = L*(X) =C

e C x G =: C;(G) generated by a unitary representation of Gon a
Hilbert space (the left-regular representation).

e von Neumann version: VN(G).

THIS GENERALISES THE FOURIER TRANSFORM FOR LOCALLY
COMPACT ABELIAN GROUPS

o Gabelian: C}(G) = Co(G), VN(G) = L*(G)

o C}(z) = C(T) £ C(T?) = G} (Z?).

o VN(Z) = L®(T) = L*(T?) = VN(Z?).
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EXAMPLES: INDUCTIVE LIMITS

M4DM2=

a1l 0 |a12| 0
0 |a11| 0 | &2

1| 0 |a2| 0
0 |d1| 0 | @2

CcMcM,
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EXAMPLES: INDUCTIVE LIMITS

a1 0 |[d12] 0

0 | a1 0 | &,
M4DM2=

0 |1 | 0 |@p2

NOTICE
This is all compatible with the normalised trace on these matrices:

1 1
Slar+ae)=7(a1+a + a2+ ap)
2 4

a1 | 0 |az| o CcMycMycMgc ...
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EXAMPLES: INDUCTIVE LIMITS

Mg = CcMycMycMgc...

NOTICE
This is all compatible with the normalised trace on these matrices:
e Inductive limit | J;_, M2n has a normalised trace =

REPRESENT ON A HILBERT SPACE AND CLOSE TO OBTAIN:
e a C*-algebra M, — the CAR algebra from mathematical physics.

e and a von Neumann algebra R. The trace extends to these
algebras.
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THEOREM (MURRAY AND VON NEUMANN 45)

There exists a unique hyperfinite infinite dimensional simple von
Neumann algebra with a trace acting on a separable Hilbert space.
e Thisis R.

e Simple = no non-trivial von Neumann algebra ideals.
e infinite dimensional, simple, with a trace = ‘ll; factor’

e Hyperfinite: arises as an inductive limit of finite dimensional
algebras as the previous example.
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STRUCTURE AND CLASSIFICATION OF VNAS

CONNES *77

Abstract characterisation of hyperfiniteness:
e in terms of an operator algebraic version of amenability for groups.
e readily verifiable in examples
e L*(X) x G hyperfinite for G amenable.

STRUCTURE (CONNES) & CLASSIFICATION (MURRAY-VON
NEUMANN)

There exists a unique (separably acting) amenable Il; factor.

e Classification for traceless hyperfinite factors completed by
Haagerup.

e Completely understand amenable vNas.




ONE OF MANY INGREDIENTS IN CONNES WORK

e View our inductive limit construction of R as a representation of
the infinite tensor product &)y M

o Of course @y Mz = (Qy Mz) @ (X M)
e This persists in the von Neumann tensor product: R @ R ® R.

STEP IN CONNES PROOF:
A (separably acting) amenable Ily factor M is McDuff if M = M ® R
e R is acting as a tensorial unit on M




INVARIANTS FOR C*-ALGEBRAS

CAN SEE THE MATRIX SIZE IN THE C*-INDUCTIVE LIMITS
L Mgoo ;Té M3oo
e ' 7(p) = 7(q) when p and g are norm close projections
can not approximate (g, g) by a projection in Man.
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CAN SEE THE MATRIX SIZE IN THE C*-INDUCTIVE LIMITS
L Mgoo ;,“é M3oo
e ' 7(p) = 7(q) when p and g are norm close projections
can not approximate (g g) by a projection in Man.

MAKING THIS LESS AD HOC: K-THEORY FOR C*-ALGEBRAS

e Non-commutative extension of Atiyah and Hirzebruch’s K-theory
for spaces

e For A unital, Ko(A) constructed from equivalence classes of
projections in matrices over A.

Ko(Mp) = €Z, k=0,1,2..}

{r:r
= {7(p) — 7(q) : p, q projections in matrices over M=}

together with [1y .. ]Jo Which corresponds to 1.




TRACES: NON COMMUTATIVE INVARIANT MEASURES

e Mo» has a unique trace, as each M.» does.

TRACES ON C(X) x, G
e Given by invariant measures on X (when action is essentially free)
e Collection of all traces is compact, convex.
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TRACES: NON COMMUTATIVE INVARIANT MEASURES

e Mo» has a unique trace, as each M.» does.

TRACES ON C(X) x, G
e Given by invariant measures on X (when action is essentially free)
e Collection of all traces is compact, convex.

IRRATIONAL ROTATION BY § ON T
e Unique invariant measure — unique trace on C(T) xg Z.
o Koy(C(T) %9 Z) =Z®Z, Ky(C(T) xgZ) = ZDZ
e The pairing with the trace identifies

T(Ko(C(T) %9 Z)) = Z + (0/27)Z < R.

e Irrational rotation algebras associated to 6 and 6, are isomorphic
if and only if 0o = +6; mod 27Z.




ELLIOTT PROGRAMME

Classify simple separable amenable C*-algebras by K-theory
and traces

AMENABILITY

e C*-algebraic version of Connes’ von Neumann algebraric
amenability condition.

e readily testable in examples
e for G countable discrete, C;(G) amenable iff G is amenable.
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Classify simple separable amenable C*-algebras by K-theory
and traces

Ell

simple separable amenable K-theory
C*-algebras and traces

CLASSIFIABLE = [ISOMORPHISMS LIFT
Every ¢ : Ell(A) > EII(B) is Ell(¢) for a (suitably) unique ¢ : A > B. J
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e Kirchberg - Phillips theorem (90’s)
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COUNTER EXAMPLES 2000S

Exist simple inductive limit A of C*-algebras M, (C(X,)) such that

A % A® Mo but this can not be seen via K-theory and traces, or
countably many other homotopy invariant functors into abelian groups




HIGHER DIMENSIONAL EXAMPLES

COUNTER EXAMPLES 2000S

Exist simple inductive limit A of C*-algebras M, (C(X,)) such that

A % A® Mo but this can not be seen via K-theory and traces, or
countably many other homotopy invariant functors into abelian groups

QUESTION
Where is the dividing line between the classifiable and the exotic?
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WHAT IS THE RIGHT C*-ANALOG OF R?

RECALL:
e R is a tensor unit for amenable Il factors

WANT SIMPLE C*-ALGEBRAS D WITH
e D~D®D
e Ell(A® D) = Ell(A): tensoring by D should be trivial on invariants

v

NEW EXAMPLE: JIANG-SU ALGEBRA Z FOUND LATE 90s
e Infinite dimensional simple separable unital amenable C*-algebra
with EIl(Z) = EII(C).
e Construction somewhat intricate, but by now lots of different
constructions all giving the same algebra.

e Can not have both C and Z within a class of algebras classified by
K-theory and traces.

V.




Z AS A NON-COMMUTATIVE TENSOR UNITS
e Aand A® Z indistinguishable by K-theory and traces.

Z-STABILITY: A~ AR Z
e Z-stability a minimal non-trivial absorption hypothesis.

e There are efficient tools for describing Z-stability (without
reference to Z) which in spirit go back to McDuff.




Z AS A NON-COMMUTATIVE TENSOR UNITS
e Aand A® Z indistinguishable by K-theory and traces.

Z-STABILITY: A~ AR Z
e Z-stability a minimal non-trivial absorption hypothesis.

e There are efficient tools for describing Z-stability (without
reference to Z) which in spirit go back to McDuff.

Z-stable?



C*-ALGEBRA

THE UNITAL CLASSIFICATION THEOREM

Z-stable, simple, separable, unital, amenable C*-algebras in the UCT
class are classified by K-theory and traces.

e Analogue for C*-algebras of the Murray-von Neumann, Connes,
Haagerup classification of amenable von Neumann factors.

e These results 25+ year endeavour; work of many researchers.

e Dichotomy between traceless case (Kirchberg, Philips 94-00), and
tracial case.



C*-ALGEBRA: STRUCTURE AND CLASSIFICATION

THE CLASSIFICATION THEOREM

Z-stable, simple, separable, unital, amenable C*-algebras in the UCT
class are classified by K-theory and traces.

UCT CLASS: SATISFIES A NONCOMMUTATIVE UNIVERSAL
COEFFICIENT THEOREM

e Computes Kasparov’s bivariant KK-theory in terms of K-theory.

e C(X) does satisfy the UCT; think of satisfying UCT as being
homotopic (in a weak sense) to an abelian algebra.

e Major problem. Do all amenable C*-algebras satisfy the UCT?

e But all amenable C*-algebras which have been written down
explicitly do.




C*-ALGEBRA: STRUCTURE AND CLASSIFICATION

THE CLASSIFICATION THEOREM

Z-stable, simple, separable, unital, amenable C*-algebras in the UCT
class are classified by K-theory and traces.

RANGE OF INVARIANT

Is understood: all possible K-theory trace pairings arise. Obtain
structural consequences from classification:

o all classifiable C*-algebras have twisted groupoid models
e Internal inductive limit structure arises from classification




EXAMPLES C(X) x G

THE UNITAL CLASSIFICATION THEOREM

Z-stable, simple, separable, unital, amenable C*-algebras in the UCT
class are classified by K-theory and traces.

FoR C(X) x G: BLUE CONDITIONS EASILY DESCRIBED
e Unital: automatic
e Separability: from G countable discrete and X metrisable.

e Amenable: when G is amenable (or more generally precisely
when the action is amenable)

e Simple: when action is topologically free and minimal.
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EXAMPLES C(X) x G

THE UNITAL CLASSIFICATION THEOREM

Z-stable, simple, separable, unital, amenable C*-algebras in the UCT
class are classified by K-theory and traces.

FoRr C(X) x G: BLUE CONDITIONS EASILY DESCRIBED
e Unital: automatic
e Separability: from G countable discrete and X metrisable.

e Amenable: when G is amenable (or more generally precisely
when the action is amenable)

e Simple: when action is topologically free and minimal.

For C(X) x G:
e UCT automatic when G (or action) is amenable.
o All that remains is Z-stability - huge body of work in this direction.

v
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(ROUGHLY) HOW DOES IT WORK? I

CLASSIFY MAPS 9,9 : A— B

e Up to approximate unitary equivalence: there exist a sequence of
unitaries (up) in B with uy¢(a)u;;, — ¢ (a) for all ae A.
e Classification means:

uniqueness
existence

USING THIS AN INTERTWINING ARGUMENT
can be used to lift Inv(A) =~ Inv(A) to the required isomorphism A ~ B.

BUT AT FIRST GLANCE

It does not seem easier to produce a map A — B as compared to
producing an isomorphism.




DOING THINGS APPROXIMATELY IS EASIER THAN DOING
THEM EXACTLY

CLASSIFY APPROXIMATELY MULTIPLICATIVE MAPS ¢,1) : A — B

e Encode approximate multiplicativity using ultrapower. For a free
ultrafilter w € SN\N, define

B, = £(B)/{(xn) € £*(B): lim |xa] = O}.

e Then bounded sequences of *-linear maps ¢, : A — B which are
approximately multiplicative are encoded by a single
*-homomorphism ¢ : A — B,,.

EASIER TO PROVE EXISTENCE. BUT
Harder to prove uniqueness
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e gives 2-norm | x| = 7(x*x)"/2 < | x|.
e B, quotients onto B = (*(B)/{(xn) € £*(B): limp_, ||Xn|2 = 0}.
e and this is a lly factor (simple von Neumann algebra with a trace)

A
elclassified by trace
B, —— B

Maps from separable nuclear C*-algebra to a Il factor classified by

FOLKLORE CONSEQUENCE OF VON NEUMANN CLASSIFICATION
the trace J
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SIMPLIFYING ASSUMPTION: B HAS A UNIQUE TRACE T
e gives 2-norm | x|2 = 7(x*x)"/2 < | x|.
e B, quotients onto B = (*(B)/{(xn) € £{**(B): limp_ |Xn|2 = 0}.
e and this is a ll; factor (simple von Neumann algebra with a trace)

A
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0 | classified by trace
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How DOES IT ROUGHLY WORK I1I:

A
lifts: classified by KK .~ .
0 | classified by trace
ya

0 Jp B, B~ 0

OBSTRUCTION TO THE EXISTENCE OF LIFTS A — B, 0Ff# : A— B¥
e lives in KK (A, B,,) — access via the UCT.

DATA NEEDED FOR UNIQUENESS OF LIFTSA — B, OF 6 : A — B~
e lives in KK (A, Jg) — access via the UCT.
o It turns out that this data is more than just K-theory (and traces)

V.

AS WE NEED MORE DATA IN THE INVARIANT FOR UNIQUENESS. ..
...this means we have to prove a stronger existence theorem. ..
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TAKE AWAY

Classification of tracial C*-algebras obtained from lifting von Neumann
classification and working with KK-theory.
e Can now hope for much more in this direction: topological analogs
of the next 50 years of von Neumann algebras
e eg. Gabe-Szabo dynamical Kirchberg-Phillips theorem.

Thank you



