Euler systems and the Bloch-Kato conjecture

David Loeffler
(UniDistance Suisse)

Mathematics Münster Mid-term Conference

Münster, 27/3/2024

Established by the European Commission

(1) Class groups and zeta functions

(2) The Birch-Swinnerton-Dyer conjecture

(3) Kolyvagin's theorem

4. The quest for Euler systems

Riemann's zeta-function

■ Zeta-function:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad\binom{s \in \mathbb{C},}{\operatorname{Re}(s)>1}
$$

Riemann's zeta-function

■ Zeta-function:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad\binom{s \in \mathbb{C},}{\operatorname{Re}(s)>1}
$$

■ Euler's product formula:

$$
\zeta(s)=\prod_{p \text { prime }}\left(\frac{1}{1-p^{-s}}\right)
$$

Riemann's zeta-function

■ Zeta-function:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad\binom{s \in \mathbb{C}}{\operatorname{Re}(s)>1}
$$

■ Euler's product formula:

$$
\zeta(s)=\prod_{p \text { prime }}\left(\frac{1}{1-p^{-s}}\right)
$$

- Riemann: use this \& complex analysis to study distribution of primes

Number fields

■ Finite field extensions of \mathbb{Q}, eg

$$
\mathbb{Q}(\sqrt{d})=\{a+b \sqrt{d}: a, b \in \mathbb{Q}\} \quad(d \in \mathbb{N} \text { squarefree })
$$

FernUni.ch UniDistance.ch

Number fields

■ Finite field extensions of \mathbb{Q}, eg

$$
\mathbb{Q}(\sqrt{d})=\{a+b \sqrt{d}: a, b \in \mathbb{Q}\} \quad(d \in \mathbb{N} \text { squarefree })
$$

$\square \mathcal{O}_{K}$ ring of algebraic integers in K

FernUni.ch UniDistance.ch

Number fields

■ Finite field extensions of \mathbb{Q}, eg

$$
\mathbb{Q}(\sqrt{d})=\{a+b \sqrt{d}: a, b \in \mathbb{Q}\} \quad(d \in \mathbb{N} \text { squarefree })
$$

- \mathcal{O}_{K} ring of algebraic integers in K
$■$ Not a UFD, but have unique factorisation of ideals into prime ideals

Number fields

■ Finite field extensions of \mathbb{Q}, eg

$$
\mathbb{Q}(\sqrt{d})=\{a+b \sqrt{d}: a, b \in \mathbb{Q}\} \quad(d \in \mathbb{N} \text { squarefree })
$$

$\square \mathcal{O}_{K}$ ring of algebraic integers in K
$■$ Not a UFD, but have unique factorisation of ideals into prime ideals
■ Dedekind zeta function:

$$
\zeta_{K}(s)=\sum_{\mathfrak{a} \leqslant \mathcal{O}_{K}} \frac{1}{\operatorname{Norm}(\mathfrak{a})^{s}}=\prod_{\substack{\mathfrak{p} \varangle \mathcal{O}_{K} \\ \text { prime ideal }}}\left(1-\operatorname{Norm}(\mathfrak{p})^{-s}\right)^{-1}
$$

David Loeffiler

Leading terms

Theorem (Analytic class number formula)

We have

$$
\lim _{s \rightarrow 1}(s-1) \zeta_{K}(s)=\frac{2^{r_{1}}(2 \pi)^{r_{2}} R_{K} h_{K}}{w_{K} \sqrt{D_{K}}}
$$

($h_{K}=$ order of class group, R_{K} related to units of \mathcal{O}_{K})

Leading terms

Theorem (Analytic class number formula)

We have

$$
\lim _{s \rightarrow 1}(s-1) \zeta_{K}(s)=\frac{2^{r_{1}}(2 \pi)^{r_{2}} R_{K} h_{K}}{w_{K} \sqrt{D_{K}}}
$$

($h_{K}=$ order of class group, R_{K} related to units of \mathcal{O}_{K})
\square So the zeta-function (analytic object) encodes algebraic properties of K (class group / units)

FernUni.ch
UniDistance.ch

(1) Class groups and zeta functions

(2) The Birch-Swinnerton-Dyer conjecture

(3) Kolyvagin's theorem

4 The quest for Euler systems

Function fields

■ What other fields "behave like" algebraic number fields?

Function fields

■ What other fields "behave like" algebraic number fields?
■ Answer: Function fields of algebraic curves over finite fields, e.g.

$$
y^{2}=f(x), \quad f \in \mathbb{F}_{p}[X]
$$

Function fields

■ What other fields "behave like" algebraic number fields?
■ Answer: Function fields of algebraic curves over finite fields, e.g.

$$
y^{2}=f(x), \quad f \in \mathbb{F}_{p}[X]
$$

- Prime ideal \mathfrak{p} for each point (x, y) of \mathcal{C} (over \mathbb{F}_{p} or any extension, up to Galois action)

Zeta functions of curves

\square Can form a zeta function of \mathcal{C} : $\zeta_{\mathcal{C}}(s)=\prod_{\mathfrak{p}}\left(1-\operatorname{Norm}(\mathfrak{p})^{-s}\right)^{-1}$

FernUni.ch
UniDistance.ch

Zeta functions of curves

- Can form a zeta function of \mathcal{C} :

$$
\zeta_{\mathcal{C}}(s)=\prod_{\mathfrak{p}}\left(1-\operatorname{Norm}(\mathfrak{p})^{-s}\right)^{-1}
$$

■ "Generating function" for points on \mathcal{C} :

$$
\zeta_{\mathcal{C}}(s)=\exp \left(\sum_{k \geq 1} \frac{\# \mathcal{C}\left(\mathbb{F}_{\left.p^{n}\right)}\right)}{n} p^{-n s}\right)
$$

FernUni.ch
UniDistance.ch

Zeta functions of curves

- Can form a zeta function of \mathcal{C} :

$$
\zeta_{\mathcal{C}}(s)=\prod_{\mathfrak{p}}\left(1-\operatorname{Norm}(\mathfrak{p})^{-s}\right)^{-1}
$$

■ "Generating function" for points on \mathcal{C} :

$$
\zeta_{\mathcal{C}}(s)=\exp \left(\sum_{k \geq 1} \frac{\# \mathcal{C}\left(\mathbb{F}_{p^{n}}\right)}{n} p^{-n s}\right)
$$

- Hasse, Weil: this is a rational function of p^{-s}, and satisfies an analogue of the Riemann hypothesis.

FernUni.ch
UniDistance.ch

Back to the rational numbers

■ What about algebraic curves over \mathbb{Q} (or other number fields)?

FernUni.ch UniDistance.ch

Back to the rational numbers

■ What about algebraic curves over \mathbb{Q} (or other number fields)?

- First interesting case: elliptic curves, $y^{2}=$ cubic in x

Back to the rational numbers

■ What about algebraic curves over \mathbb{Q} (or other number fields)?

- First interesting case: elliptic curves, $y^{2}=$ cubic in x

■ Set of rational points can be finite, or infinite

Back to the rational numbers

$■$ What about algebraic curves over \mathbb{Q} (or other number fields)?

- First interesting case: elliptic curves, $y^{2}=$ cubic in x

■ Set of rational points can be finite, or infinite
■ Can show it has an abelian group structure; but what is its rank?

Back to the rational numbers

$■$ What about algebraic curves over \mathbb{Q} (or other number fields)?

- First interesting case: elliptic curves, $y^{2}=$ cubic in x

■ Set of rational points can be finite, or infinite
■ Can show it has an abelian group structure; but what is its rank?
■ Maybe some sort of generating function might explain this?

An outrageous idea

$■$ Can reduce equations mod p (excluding finitely many bad primes)

$$
E \rightsquigarrow E_{p} \quad \text { curve } / \mathbb{F}_{p}
$$

An outrageous idea

■ Can reduce equations mod p (excluding finitely many bad primes)

$$
E \rightsquigarrow E_{p} \quad \text { curve } / \mathbb{F}_{p}
$$

■ Maybe if E has "lots" of points over \mathbb{Q}, it should also have more than expected number of points over \mathbb{F}_{p} (for lots of primes p)

An outrageous idea

- Can reduce equations $\bmod p$ (excluding finitely many bad primes)

$$
E \rightsquigarrow E_{p} \quad \text { curve } / \mathbb{F}_{p}
$$

■ Maybe if E has "lots" of points over \mathbb{Q}, it should also have more than expected number of points over \mathbb{F}_{p} (for lots of primes p)
■ Outrageous idea: just smash the $\zeta_{E_{p}}(s)$ for different p together into an infinite product

An outrageous idea

■ Can reduce equations mod p (excluding finitely many bad primes)

$$
E \rightsquigarrow E_{p} \quad \text { curve } / \mathbb{F}_{p}
$$

■ Maybe if E has "lots" of points over \mathbb{Q}, it should also have more than expected number of points over \mathbb{F}_{p} (for lots of primes p)
\square Outrageous idea: just smash the $\zeta_{E_{p}}(s)$ for different p together into an infinite product
■ Slight refinement:

$$
L(E, s):=\frac{\zeta(s) \zeta(s-1)}{\prod_{p} \zeta_{E_{p}}(s)}
$$

(removes some junk terms)

Some examples

$$
L(E, s) \text { for } E:=Y^{2}=X^{3}-n^{2} X
$$

Rank of $E(\mathbb{Q}): 0,1,2$ respectively

Analytic continuation

$$
L(E, s) \text { for } E:=Y^{2}=X^{3}-n^{2} X
$$

Rank of $E(\mathbb{Q}): 0,1,2$ respectively

The Birch-Swinnerton-Dyer conjecture

Conjecture (Birch-Swinnerton-Dyer, 1963)
Let E be an elliptic curve. Then: $\operatorname{ord}_{s=1} L(E, s)=r(E)$.
rank of $E(\mathbb{Q})$

FernUni.ch
UniDistance.ch

The Birch-Swinnerton-Dyer conjecture

Conjecture (Birch-Swinnerton-Dyer, 1963)

Let E be an elliptic curve. Then: $\operatorname{ord}_{s=1} L(E, s)=r(E)$. rank of $E(\mathbb{Q})$

- Also predict leading term at $s=1$ in terms of finer algebraic invariants (regulator, Shafarevich-Tate group)

Generalising the BSD conjecture

■ Definition of L-function makes sense much more generally:

Generalising the BSD conjecture

■ Definition of L-function makes sense much more generally:

- Algebraic varieties (systems of algebraic equations, any number of variables)

Generalising the BSD conjecture

- Definition of L-function makes sense much more generally:
- Algebraic varieties (systems of algebraic equations, any number of variables)
- Varieties over any number field (not just \mathbb{Q})

Generalising the BSD conjecture

■ Definition of L-function makes sense much more generally:

- Algebraic varieties (systems of algebraic equations, any number of variables)
- Varieties over any number field (not just \mathbb{Q})
- motives = "pieces" of the geometry of algebraic varieties

Generalising the BSD conjecture

■ Definition of L-function makes sense much more generally:

- Algebraic varieties (systems of algebraic equations, any number of variables)
- Varieties over any number field (not just \mathbb{Q})
- motives = "pieces" of the geometry of algebraic varieties
$■$ Always given by infinite products over primes (Euler products)

Generalising the BSD conjecture

■ Definition of L-function makes sense much more generally:

- Algebraic varieties (systems of algebraic equations, any number of variables)
- Varieties over any number field (not just \mathbb{Q})
- motives = "pieces" of the geometry of algebraic varieties

■ Always given by infinite products over primes (Euler products)
■ Less obvious how to generalise rank

Generalising the BSD conjecture

- Definition of L-function makes sense much more generally:
- Algebraic varieties (systems of algebraic equations, any number of variables)
- Varieties over any number field (not just \mathbb{Q})
- motives = "pieces" of the geometry of algebraic varieties
- Always given by infinite products over primes (Euler products)

■ Less obvious how to generalise rank

- Works for varieties when the points have a group structure (Abelian varieties)

Generalising the BSD conjecture

■ Definition of L-function makes sense much more generally:

- Algebraic varieties (systems of algebraic equations, any number of variables)
- Varieties over any number field (not just \mathbb{Q})
- motives = "pieces" of the geometry of algebraic varieties
- Always given by infinite products over primes (Euler products)

■ Less obvious how to generalise rank

- Works for varieties when the points have a group structure (Abelian varieties)
- Doesn't make sense for general motives

The Bloch-Kato conjecture

Conjecture (Bloch-Kato, 1990)
For any motive M and $n \in \mathbb{Z}$, we have

$$
\operatorname{ord}_{s=n} L(M, s)=
$$

The Bloch-Kato conjecture

Conjecture (Bloch-Kato, 1990)

For any motive M and $n \in \mathbb{Z}$, we have

$$
\operatorname{ord}_{s=n} L(M, s)=
$$

FernUni.ch

The Bloch-Kato conjecture

Conjecture (Bloch-Kato, 1990)

For any motive M and $n \in \mathbb{Z}$, we have

$$
\operatorname{ord}_{s=n} L(M, s)=\text { rank of certain cohomology group }
$$ (Selmer group) attached to M and n

The Bloch-Kato conjecture

Conjecture (Bloch-Kato, 1990)

For any motive M and $n \in \mathbb{Z}$, we have

$$
\operatorname{ord}_{s=n} L(M, s)=\text { rank of certain cohomology group }
$$ (Selmer group) attached to M and n

- Refined form predicting leading term

(1) Class groups and zeta functions

(2) The Birch-Swinnerton-Dyer conjecture

(3) Kolyvagin's theorem

(4) The quest for Euler systems

FernUni.ch
UniDistance.ch

BSD for small orders of vanishing

Theorem (Kolyvagin, 1989)
 Let E / \mathbb{Q} be an elliptic curve. If ord $_{s=1} L(E, s)$ $=0$ or 1 , then $\operatorname{rank} E(\mathbb{Q})=\operatorname{ord}_{s=1} L(E, s)$.

BSD for small orders of vanishing

Theorem (Kolyvagin, 1989)

Let E / \mathbb{Q} be an elliptic curve. If $\operatorname{ord}_{s=1} L(E, s)$
$=0$ or 1 , then $\operatorname{rank} E(\mathbb{Q})=\operatorname{ord}_{s=1} L(E, s)$.

■ Steady progress towards leading term formula under these hypotheses (most cases done, but not all)

BSD for small orders of vanishing

Theorem (Kolyvagin, 1989)
 Let E / \mathbb{Q} be an elliptic curve. If $\operatorname{ord}_{s=1} L(E, s)$
 $=0$ or 1 , then $\operatorname{rank} E(\mathbb{Q})=\operatorname{ord}_{s=1} L(E, s)$.

■ Steady progress towards leading term formula under these hypotheses (most cases done, but not all)
■ Originally needed to assume E modular - now a theorem that this always holds (Wiles, Breuil-Conrad-Diamond-Taylor)

BSD for small orders of vanishing

Theorem (Kolyvagin, 1989)
 Let E / \mathbb{Q} be an elliptic curve. If $\operatorname{ord}_{s=1} L(E, s)$
 $=0$ or 1 , then $\operatorname{rank} E(\mathbb{Q})=\operatorname{ord}_{s=1} L(E, s)$.

■ Steady progress towards leading term formula under these hypotheses (most cases done, but not all)
■ Originally needed to assume E modular - now a theorem that this always holds (Wiles, Breuil-Conrad-Diamond-Taylor)

- Still know virtually nothing for order of vanishing ≥ 2

Modularity

$■$ Upper half-plane $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$

FernUni.ch UniDistance.ch

Modularity

■ Upper half-plane $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$

- For $N \geq 1$ the group

$$
\Gamma_{0}(N)=\left\{\left(\begin{array}{cc}
a & b \\
N c & d
\end{array}\right): a, b, c, d \in \mathbb{Z}, a d-N b c=1\right\}
$$

acts on \mathbb{H}, and on compactification $\mathbb{H}^{*}=\mathbb{H} \cup \mathbb{P}^{1}(\mathbb{Q})$

FernUni.ch
UniDistance.ch

Modularity

■ Say E is modular if for some N, \exists complex-analytic map

$$
\phi: \Gamma_{0}(N) \backslash \mathbb{H}^{*} \rightarrow E(\mathbb{C}) .
$$

Modularity

■ Say E is modular if for some N, \exists complex-analytic map

$$
\phi: \Gamma_{0}(N) \backslash \mathbb{H}^{*} \rightarrow E(\mathbb{C}) .
$$

■ Taniyama-Shimura conjecture: all E / \mathbb{Q} are modular (proved by Taylor-Wiles, Breuil-Conrad-Diamond-Taylor)

Modularity

■ Say E is modular if for some N, \exists complex-analytic map

$$
\phi: \Gamma_{0}(N) \backslash \mathbb{H}^{*} \rightarrow E(\mathbb{C}) .
$$

■ Taniyama-Shimura conjecture: all E / \mathbb{Q} are modular (proved by Taylor-Wiles, Breuil-Conrad-Diamond-Taylor)

- Key to proof of Fermat's last theorem

FernUni.ch
UniDistance.ch

CM points and Heegner points

■ A CM point is a point in \mathbb{H} of form $a+\sqrt{-d}, a, d \in \mathbb{Q}, d>0$

FernUni.ch UniDistance.ch

CM points and Heegner points

- A CM point is a point in \mathbb{H} of form $a+\sqrt{-d}, a, d \in \mathbb{Q}, d>0$

■ Heegner point on a modular elliptic curve: image of a CM point under $\phi: \Gamma_{0}(N) \backslash \mathbb{H}^{*} \rightarrow E(\mathbb{C})$

CM points and Heegner points

■ A CM point is a point in \mathbb{H} of form $a+\sqrt{-d}, a, d \in \mathbb{Q}, d>0$
■ Heegner point on a modular elliptic curve: image of a CM point under $\phi: \Gamma_{0}(N) \backslash \mathbb{H}^{*} \rightarrow E(\mathbb{C})$

■ Miracle: Heegner points are algebraic, i.e. lie in $E(\overline{\mathbb{Q}})$ (entirely un-obvious from construction)

CM points and Heegner points

■ A CM point is a point in \mathbb{H} of form $a+\sqrt{-d}, a, d \in \mathbb{Q}, d>0$
■ Heegner point on a modular elliptic curve: image of a CM point under $\phi: \Gamma_{0}(N) \backslash \mathbb{H}^{*} \rightarrow E(\mathbb{C})$

■ Miracle: Heegner points are algebraic, i.e. lie in $E(\overline{\mathbb{Q}})$ (entirely un-obvious from construction)
■ Shimura reciprocity describes precisely which number field each one lives in (always an abelian extension of $\mathbb{Q}(\sqrt{-d})$)

Kolyvagin's Euler system

■ Heegner theory gives points $c_{n} \in E\left(K_{n}\right)$ for an infinite family of number fields K_{n}

Kolyvagin's Euler system

- Heegner theory gives points $c_{n} \in E\left(K_{n}\right)$ for an infinite family of number fields K_{n}
■ Norm-compatibility relation: for $n \mid m$, have $K_{n} \subseteq K_{m}$ and

$$
\operatorname{norm}_{K_{n}}^{K_{m}}\left(c_{m}\right)=\left(\prod_{\substack{p \mid m \\ p \nmid n}} P_{p}\right) \cdot c_{n}
$$

where $P_{p}=$ factor at p in Euler product for L-series

Kolyvagin's Euler system

- Heegner theory gives points $c_{n} \in E\left(K_{n}\right)$ for an infinite family of number fields K_{n}
■ Norm-compatibility relation: for $n \mid m$, have $K_{n} \subseteq K_{m}$ and

$$
\operatorname{norm}_{K_{n}}^{K_{m}}\left(c_{m}\right)=\left(\prod_{\substack{p \mid m \\ p \nmid n}} P_{p}\right) \cdot c_{n}
$$

where $P_{p}=$ factor at p in Euler product for L-series
\square Gross-Zagier theorem: bottom point c_{1} is non-trivial if $\operatorname{ord}_{s=1} L(E, s) \leq 1$

FernUni.ch
UniDistance.ch

Kolyvagin's Euler system

- Heegner theory gives points $c_{n} \in E\left(K_{n}\right)$ for an infinite family of number fields K_{n}
■ Norm-compatibility relation: for $n \mid m$, have $K_{n} \subseteq K_{m}$ and

$$
\operatorname{norm}_{K_{n}}^{K_{m}}\left(c_{m}\right)=\left(\prod_{\substack{p \mid m \\ p \nmid n}} P_{p}\right) \cdot c_{n}
$$

where $P_{p}=$ factor at p in Euler product for L-series
■ Gross-Zagier theorem: bottom point c_{1} is non-trivial if $\operatorname{ord}_{s=1} L(E, s) \leq 1$

- Delicate manipulations with duality theory of Galois cohomology \Rightarrow bounds on $E(\mathbb{Q})$: either it's zero, or c_{1} generates it up to a finite error.

(1) Class groups and zeta functions

(2) The Birch-Swinnerton-Dyer conjecture
(3) Kolyvagin's theorem

4 The quest for Euler systems

FernUni.ch
UniDistance.ch

Beyond elliptic curves

■ Are there Euler systems for other L-functions / motives?

FernUni.ch
UniDistance.ch

Beyond elliptic curves

■ Are there Euler systems for other L-functions / motives?

- Rubin, Kato, Perrin-Riou: general definition of what Euler systems should be

Beyond elliptic curves

■ Are there Euler systems for other L-functions / motives?

- Rubin, Kato, Perrin-Riou: general definition of what Euler systems should be
- when these exist, get bounds on Selmer groups (\rightsquigarrow Bloch-Kato?)

Beyond elliptic curves

■ Are there Euler systems for other L-functions / motives?

- Rubin, Kato, Perrin-Riou: general definition of what Euler systems should be
- when these exist, get bounds on Selmer groups (\rightsquigarrow Bloch-Kato?)

■ Besides Kolyvagin, two "easy" examples from units in number fields (cyclotomic / elliptic units)

Beyond elliptic curves

■ Are there Euler systems for other L-functions / motives?

- Rubin, Kato, Perrin-Riou: general definition of what Euler systems should be
- when these exist, get bounds on Selmer groups (\rightsquigarrow Bloch-Kato?)

■ Besides Kolyvagin, two "easy" examples from units in number fields (cyclotomic / elliptic units)
■ Wiles: unsuccessful attempt to build Euler system for Sym^{2} of elliptic curve

Beyond elliptic curves

■ Are there Euler systems for other L-functions / motives?

- Rubin, Kato, Perrin-Riou: general definition of what Euler systems should be
- when these exist, get bounds on Selmer groups (\rightsquigarrow Bloch-Kato?)

■ Besides Kolyvagin, two "easy" examples from units in number fields (cyclotomic / elliptic units)
■ Wiles: unsuccessful attempt to build Euler system for Sym^{2} of elliptic curve
■ Kato (2004): Euler system for a modular form

Beyond elliptic curves

■ Are there Euler systems for other L-functions / motives?

- Rubin, Kato, Perrin-Riou: general definition of what Euler systems should be
- when these exist, get bounds on Selmer groups (\rightsquigarrow Bloch-Kato?)

■ Besides Kolyvagin, two "easy" examples from units in number fields (cyclotomic / elliptic units)
■ Wiles: unsuccessful attempt to build Euler system for Sym^{2} of elliptic curve
■ Kato (2004): Euler system for a modular form
■ No more examples for >10 years

Beilinson-Flach elements

Theorem (Lei-L.-Zerbes 2014, Kings-L.-Zerbes 2017)

There is a non-trivial Euler system attached to the Rankin-Selberg convolution of two modular forms.

Beilinson-Flach elements

Theorem (Lei-L.-Zerbes 2014, Kings-L.-Zerbes 2017)

There is a non-trivial Euler system attached to the Rankin-Selberg convolution of two modular forms.

■ Builds on work of Beilinson, Flach, and Bertolini-Darmon-Rotger

Beilinson-Flach elements

Theorem (Lei-L.-Zerbes 2014, Kings-L.-Zerbes 2017)

There is a non-trivial Euler system attached to the Rankin-Selberg convolution of two modular forms.

■ Builds on work of Beilinson, Flach, and Bertolini-Darmon-Rotger
■ Gives new results towards Bloch-Kato, and BSD over number fields

A production line of Euler systems

■ Techniques adapted to define many new Euler systems

FernUni.ch UniDistance.ch

A production line of Euler systems

■ Techniques adapted to define many new Euler systems
■ Correspond to automorphic forms for various matrix groups G

A production line of Euler systems

■ Techniques adapted to define many new Euler systems
■ Correspond to automorphic forms for various matrix groups G

- $\mathrm{GL}_{2} \times \mathrm{GL}_{2}$ (Rankin-Selberg)

A production line of Euler systems

■ Techniques adapted to define many new Euler systems
■ Correspond to automorphic forms for various matrix groups G

- $\mathrm{GL}_{2} \times \mathrm{GL}_{2}$ (Rankin-Selberg)
- GSp_{4} (Siegel modular forms)

A production line of Euler systems

■ Techniques adapted to define many new Euler systems
■ Correspond to automorphic forms for various matrix groups G

- $\mathrm{GL}_{2} \times \mathrm{GL}_{2}$ (Rankin-Selberg)
- GSp_{4} (Siegel modular forms)
- unitary groups, Hilbert modular groups,

A production line of Euler systems

■ Techniques adapted to define many new Euler systems
■ Correspond to automorphic forms for various matrix groups G

- $\mathrm{GL}_{2} \times \mathrm{GL}_{2}$ (Rankin-Selberg)
- GSp ${ }_{4}$ (Siegel modular forms)
- unitary groups, Hilbert modular groups,
$■$ Uses geometry of Shimura varieties (generalisations of $\left.\Gamma_{0}(N) \backslash \mathbb{H}\right)$

A production line of Euler systems

■ Techniques adapted to define many new Euler systems
■ Correspond to automorphic forms for various matrix groups G

- $\mathrm{GL}_{2} \times \mathrm{GL}_{2}$ (Rankin-Selberg)
- GSp_{4} (Siegel modular forms)
- unitary groups, Hilbert modular groups,

■ Uses geometry of Shimura varieties (generalisations of $\Gamma_{0}(N) \backslash \mathbb{H}$)
■ Proving non-triviality is more difficult (needs explicit reciprocity laws) - done for GSp_{4}, and for quadratic Hilbert modular groups
[various works of Grossi, Lei, L., Pilloni, Skinner, Zerbes]

Applications

(1) Bloch-Kato non-zero values of L-functions of Siegel modular forms (for GSp_{4}, weight ≥ 3)

FernUni.ch UniDistance.ch

Applications

(1) Bloch-Kato non-zero values of L-functions of Siegel modular forms (for GSp_{4}, weight ≥ 3)
(2) BSD for abelian surfaces A with $L(A, 1) \neq 0$ (conditional on 2 big conjectures)

Applications

(1) Bloch-Kato non-zero values of L-functions of Siegel modular forms (for GSp_{4}, weight ≥ 3)
(2) BSD for abelian surfaces A with $L(A, 1) \neq 0$ (conditional on 2 big conjectures)
© Euler system for symmetric square of a modular form

Applications

(1) Bloch-Kato non-zero values of L-functions of Siegel modular forms (for GSp_{4}, weight ≥ 3)
(2) BSD for abelian surfaces A with $L(A, 1) \neq 0$ (conditional on 2 big conjectures)
(0) Euler system for symmetric square of a modular form

- New approach to (parts of) proof of Fermat's last theorem

Applications

(1) Bloch-Kato non-zero values of L-functions of Siegel modular forms (for GSp_{4}, weight ≥ 3)
(2) BSD for abelian surfaces A with $L(A, 1) \neq 0$ (conditional on 2 big conjectures)
(3) Euler system for symmetric square of a modular form

- New approach to (parts of) proof of Fermat's last theorem
- Iwasawa main conjecture for Sym ${ }^{2}$

Applications

(1) Bloch-Kato non-zero values of L-functions of Siegel modular forms (for GSp_{4}, weight ≥ 3)
(2) BSD for abelian surfaces A with $L(A, 1) \neq 0$ (conditional on 2 big conjectures)
(3) Euler system for symmetric square of a modular form

- New approach to (parts of) proof of Fermat's last theorem
- Iwasawa main conjecture for Sym ${ }^{2}$
- Cf. parallel work of Sangiovanni-Skinner

How far can this go?

■ To build Euler systems for automorphic forms on G, need two ingredients:

How far can this go?

■ To build Euler systems for automorphic forms on G, need two ingredients:

- Subgroup H sitting "nicely" inside G

How far can this go?

■ To build Euler systems for automorphic forms on G, need two ingredients:

- Subgroup H sitting "nicely" inside G
- Family of cohomology classes for the Shimura variety of H

How far can this go?

■ To build Euler systems for automorphic forms on G, need two ingredients:

- Subgroup H sitting "nicely" inside G
- Family of cohomology classes for the Shimura variety of H
$■$ Second ingredient can be identity class $1_{H} \in H^{0}\left(\mathrm{Sh}_{H}\right)$

How far can this go?

- To build Euler systems for automorphic forms on G, need two ingredients:
- Subgroup H sitting "nicely" inside G
- Family of cohomology classes for the Shimura variety of H

■ Second ingredient can be identity class $1_{H} \in H^{0}\left(\mathrm{Sh}_{H}\right)$

- Not a trivial case!

How far can this go?

- To build Euler systems for automorphic forms on G, need two ingredients:
- Subgroup H sitting "nicely" inside G
- Family of cohomology classes for the Shimura variety of H
\square Second ingredient can be identity class $1_{H} \in H^{0}\left(\mathrm{Sh}_{H}\right)$
- Not a trivial case!
- Covers Kolyvagin's Heegner points ($G=\mathrm{GL}_{2}, H=U(1)$) and other "anticyclotomic" Euler systems

How far can this go?

- To build Euler systems for automorphic forms on G, need two ingredients:
- Subgroup H sitting "nicely" inside G
- Family of cohomology classes for the Shimura variety of H

■ Second ingredient can be identity class $1_{H} \in H^{0}\left(\mathrm{Sh}_{H}\right)$

- Not a trivial case!
- Covers Kolyvagin's Heegner points ($G=\mathrm{GL}_{2}, H=U(1)$) and other "anticyclotomic" Euler systems
■ ... or Siegel units when $H=$ product of GL_{2} 's

How far can this go?

- To build Euler systems for automorphic forms on G, need two ingredients:
- Subgroup H sitting "nicely" inside G
- Family of cohomology classes for the Shimura variety of H
\square Second ingredient can be identity class $1_{H} \in H^{0}\left(\mathrm{Sh}_{H}\right)$
- Not a trivial case!
- Covers Kolyvagin's Heegner points ($G=\mathrm{GL}_{2}, H=U(1)$) and other "anticyclotomic" Euler systems
■ ... or Siegel units when $H=$ product of GL_{2} 's
- Kato's ES, and all the examples on last slide

How far can this go?

■ To build Euler systems for automorphic forms on G, need two ingredients:

- Subgroup H sitting "nicely" inside G
- Family of cohomology classes for the Shimura variety of H
\square Second ingredient can be identity class $1_{H} \in H^{0}\left(\mathrm{Sh}_{H}\right)$
- Not a trivial case!
- Covers Kolyvagin's Heegner points ($G=\mathrm{GL}_{2}, H=U(1)$) and other "anticyclotomic" Euler systems
■ ... or Siegel units when $H=$ product of GL_{2} 's
- Kato's ES, and all the examples on last slide

■ ... or something else? [Sangiovanni-Skinner, in preparation]

Spherical pairs

■ Correct notion of ' H sits nicely inside G ' : (G, H) should be a spherical pair

FernUni.ch UniDistance.ch

Spherical pairs

■ Correct notion of ' H sits nicely inside G ' : (G, H) should be a spherical pair
■ Much-studied concept in representation theory

Spherical pairs

■ Correct notion of ' H sits nicely inside G ' : (G, H) should be a spherical pair
■ Much-studied concept in representation theory

- Connections to number theory recently emerging (Sakellaridis-Venkatesh, Wei Zhang)

Spherical pairs

■ Correct notion of ' H sits nicely inside G ' : (G, H) should be a spherical pair
■ Much-studied concept in representation theory
■ Connections to number theory recently emerging (Sakellaridis-Venkatesh, Wei Zhang)
■ Gan-Gross-Prasad conjectures: $U(n) \subset U(n) \times U(n+1)$, $S O(n) \subset S O(n) \times S O(n+1)$

Spherical pairs

■ Correct notion of ' H sits nicely inside G ' : (G, H) should be a spherical pair
■ Much-studied concept in representation theory
■ Connections to number theory recently emerging (Sakellaridis-Venkatesh, Wei Zhang)
■ Gan-Gross-Prasad conjectures: $U(n) \subset U(n) \times U(n+1)$, $S O(n) \subset S O(n) \times S O(n+1)$
■ Many more cases to explore!

