Euler systems and the Bloch–Kato conjecture

David Loeffler

(UniDistance Suisse)

Mathematics Münster Mid-term Conference

Münster, 27/3/2024

European Research Council Established by the European Commission

David Loeffler

Euler systems

2) The Birch–Swinnerton-Dyer conjecture

David Loeffler

Euler systems

Münster, 27/3/2024 2/28

Riemann's zeta-function

Zeta-function:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \left(\begin{array}{c} s \in \mathbb{C}, \\ \operatorname{Re}(s) > 1 \end{array} \right)$$

David Loeffler

Euler systems

Münster, 27/3/2024 3/28

Riemann's zeta-function

Zeta-function:

$$\zeta(\boldsymbol{s}) = \sum_{n=1}^{\infty} \frac{1}{n^{\boldsymbol{s}}} \left(\begin{array}{c} \boldsymbol{s} \in \mathbb{C}, \\ \operatorname{Re}(\boldsymbol{s}) > 1 \end{array} \right)$$

Euler's product formula:

$$\zeta(\boldsymbol{s}) = \prod_{\boldsymbol{p} \text{ prime}} \left(\frac{1}{1 - \boldsymbol{p}^{-\boldsymbol{s}}} \right)$$

Riemann's zeta-function

Zeta-function:

$$\zeta(\boldsymbol{s}) = \sum_{n=1}^{\infty} \frac{1}{n^{\boldsymbol{s}}} \left(\begin{array}{c} \boldsymbol{s} \in \mathbb{C}, \\ \operatorname{Re}(\boldsymbol{s}) > 1 \end{array} \right)$$

Euler's product formula:

$$\zeta(s) = \prod_{p \text{ prime}} \left(\frac{1}{1 - p^{-s}}\right)$$

Riemann: use this & complex analysis to study distribution of primes

Finite field extensions of Q, eg

$$\mathbb{Q}(\sqrt{d}) = \{a + b\sqrt{d} : a, b \in \mathbb{Q}\}$$
 $(d \in \mathbb{N} \text{ squarefree})$

David Loeffler

Euler systems

Münster, 27/3/2024 4/28

Finite field extensions of Q, eg

$$\mathbb{Q}(\sqrt{d}) = \{a + b\sqrt{d} : a, b \in \mathbb{Q}\}$$
 $(d \in \mathbb{N} \text{ squarefree})$

 $\blacksquare \mathcal{O}_{\mathcal{K}} \text{ ring of algebraic integers in } \mathcal{K}$

Finite field extensions of Q, eg

$$\mathbb{Q}(\sqrt{d}) = \{a + b\sqrt{d} : a, b \in \mathbb{Q}\}$$
 $(d \in \mathbb{N} \text{ squarefree})$

 $\blacksquare \mathcal{O}_K \text{ ring of algebraic integers in } K$

Not a UFD, but have unique factorisation of *ideals* into prime ideals

■ Finite field extensions of Q, eg

$$\mathbb{Q}(\sqrt{d}) = \{a + b\sqrt{d} : a, b \in \mathbb{Q}\}$$
 $(d \in \mathbb{N} \text{ squarefree})$

 $\blacksquare \mathcal{O}_K \text{ ring of algebraic integers in } K$

Not a UFD, but have unique factorisation of *ideals* into prime ideals
 Dedekind zeta function:

$$\zeta_{\mathcal{K}}(\boldsymbol{s}) = \sum_{\mathfrak{a} \triangleleft \mathcal{O}_{\mathcal{K}}} \frac{1}{\operatorname{Norm}(\mathfrak{a})^{\boldsymbol{s}}} = \prod_{\substack{\mathfrak{p} \triangleleft \mathcal{O}_{\mathcal{K}} \\ \text{prime ideal}}} (1 - \operatorname{Norm}(\mathfrak{p})^{-\boldsymbol{s}})^{-1}$$

Leading terms

Theorem (Analytic class number formula)

We have

$$\lim_{s\to 1} (s-1)\zeta_{\mathcal{K}}(s) = \frac{2^{r_1}(2\pi)^{r_2}R_{\mathcal{K}}h_{\mathcal{K}}}{w_{\mathcal{K}}\sqrt{D_{\mathcal{K}}}}$$

(h_K = order of class group, R_K related to units of \mathcal{O}_K)

David Loeffler

Euler systems

Münster, 27/3/2024 5/28

Leading terms

Theorem (Analytic class number formula)

We have

$$\lim_{s \to 1} (s-1)\zeta_{K}(s) = \frac{2^{r_{1}}(2\pi)^{r_{2}}R_{K}h_{K}}{w_{K}\sqrt{D_{K}}}$$

(h_K = order of class group, R_K related to units of \mathcal{O}_K)

 So the zeta-function (analytic object) *encodes* algebraic properties of K (class group / units)

2 The Birch–Swinnerton-Dyer conjecture

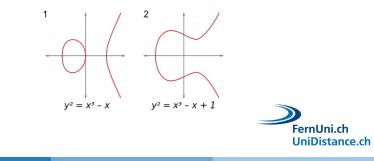
David Loeffler

Euler systems

Münster, 27/3/2024 6/28

Function fields

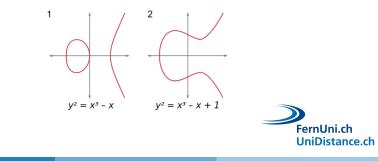
What other fields "behave like" algebraic number fields?



Function fields

- What other fields "behave like" algebraic number fields?
- Answer: Function fields of algebraic curves over finite fields, e.g.

$$y^2 = f(x), \qquad f \in \mathbb{F}_p[X]$$

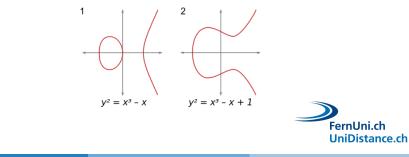


Function fields

- What other fields "behave like" algebraic number fields?
- Answer: Function fields of algebraic curves over finite fields, e.g.

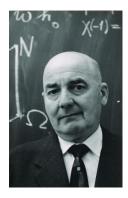
$$y^2 = f(x), \qquad f \in \mathbb{F}_p[X]$$

Prime ideal p for each point (x, y) of C (over F_p or any extension, up to Galois action)



Zeta functions of curves

■ Can form a zeta function of C: $\zeta_{\mathcal{C}}(s) = \prod_{\mathfrak{p}} (1 - \operatorname{Norm}(\mathfrak{p})^{-s})^{-1}$



David Loeffler

Euler systems

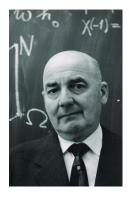
Münster, 27/3/2024 8/28

Zeta functions of curves

■ Can form a **zeta function** of C: $\zeta_C(s) = \prod_{p} (1 - \operatorname{Norm}(p)^{-s})^{-1}$

■ "Generating function" for points on C:

$$\zeta_{\mathcal{C}}(\boldsymbol{s}) = \exp\left(\sum_{k\geq 1} \frac{\#\mathcal{C}(\mathbb{F}_{p^n})}{n} p^{-ns}\right)$$



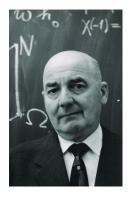
Zeta functions of curves

• Can form a zeta function of C: $\zeta_C(s) = \prod_{p} (1 - \operatorname{Norm}(p)^{-s})^{-1}$

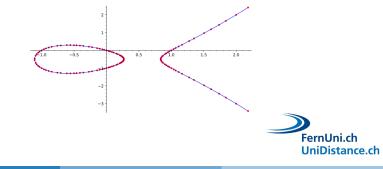
■ "Generating function" for points on C:

$$\zeta_{\mathcal{C}}(s) = \exp\left(\sum_{k\geq 1} \frac{\#\mathcal{C}(\mathbb{F}_{p^n})}{n} p^{-ns}\right)$$

Hasse, Weil: this is a rational function of p^{-s}, and satisfies an analogue of the Riemann hypothesis.

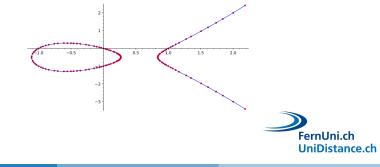


■ What about algebraic curves over Q (or other number fields)?

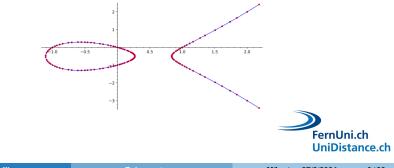


■ What about algebraic curves over Q (or other number fields)?

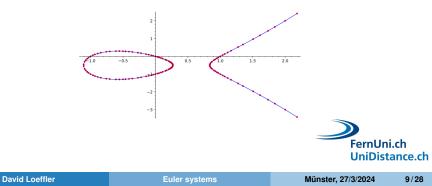
First interesting case: *elliptic* curves, $y^2 =$ cubic in x



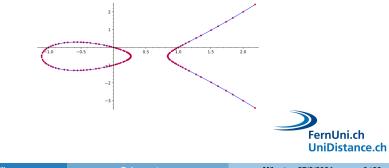
- What about algebraic curves over Q (or other number fields)?
- First interesting case: *elliptic* curves, y^2 = cubic in x
- Set of rational points can be finite, or infinite



- What about algebraic curves over Q (or other number fields)?
- First interesting case: *elliptic* curves, $y^2 =$ cubic in x
- Set of rational points can be finite, or infinite
- Can show it has an abelian group structure; but what is its rank?



- What about algebraic curves over Q (or other number fields)?
- First interesting case: *elliptic* curves, $y^2 =$ cubic in x
- Set of rational points can be finite, or infinite
- Can show it has an abelian group structure; but what is its rank?
- Maybe some sort of generating function might explain this?



Can reduce equations mod *p* (excluding finitely many bad primes)

 $E \rightsquigarrow E_p$ curve / \mathbb{F}_p

Can reduce equations mod p (excluding finitely many bad primes)

 $E \rightsquigarrow E_{\rho}$ curve / \mathbb{F}_{ρ}

■ Maybe if *E* has "lots" of points over Q, it should also have more than expected number of points over F_p (for lots of primes p)

Can reduce equations mod p (excluding finitely many bad primes)

 $E \rightsquigarrow E_{\rho}$ curve / \mathbb{F}_{ρ}

- Maybe if *E* has "lots" of points over Q, it should also have more than expected number of points over F_p (for lots of primes p)
- Outrageous idea: just smash the ζ_{E_p}(s) for different p together into an infinite product

Can reduce equations mod p (excluding finitely many bad primes)

 $E \rightsquigarrow E_{\rho}$ curve / \mathbb{F}_{ρ}

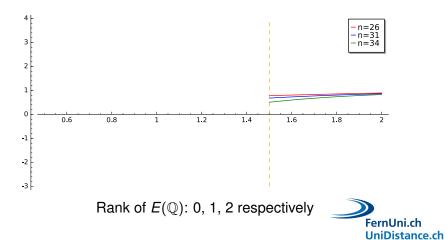
- Maybe if *E* has "lots" of points over Q, it should also have more than expected number of points over F_p (for lots of primes p)
- Outrageous idea: just smash the ζ_{E_p}(s) for different p together into an infinite product
- Slight refinement:

$$L(E, s) := rac{\zeta(s)\zeta(s-1)}{\prod_p \zeta_{E_p}(s)}$$

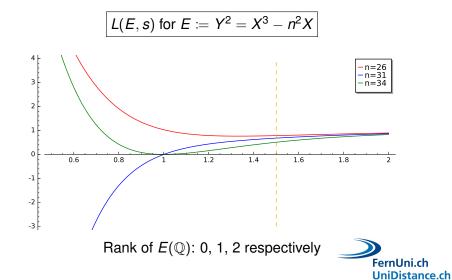
(removes some junk terms)

Some examples

$$L(E, s)$$
 for $E := Y^2 = X^3 - n^2 X$



Analytic continuation



David Loeffler

The Birch–Swinnerton-Dyer conjecture

Conjecture (Birch–Swinnerton-Dyer, 1963)

Let E be an elliptic curve. Then: $\operatorname{ord}_{s=1} L(E, s) = \underbrace{r(E)}_{rank \text{ of } E(\mathbb{Q})}$.

The Birch–Swinnerton-Dyer conjecture

Conjecture (Birch–Swinnerton-Dyer, 1963) Let *E* be an elliptic curve. Then: $\operatorname{ord}_{s=1} L(E, s) = \underbrace{r(E)}_{rank \text{ of } E(\mathbb{Q})}$.

Also predict leading term at s = 1 in terms of finer algebraic invariants (regulator, Shafarevich–Tate group)

Definition of *L*-function makes sense much more generally:

David Loeffler

Euler systems

Definition of *L*-function makes sense much more generally:

 Algebraic varieties (systems of algebraic equations, any number of variables)

Definition of *L*-function makes sense much more generally:

- Algebraic varieties (systems of algebraic equations, any number of variables)
- Varieties over any number field (not just Q)

Definition of *L*-function makes sense much more generally:

- Algebraic varieties (systems of algebraic equations, any number of variables)
- Varieties over any number field (not just Q)
- motives = "pieces" of the geometry of algebraic varieties

Definition of *L*-function makes sense much more generally:

- Algebraic varieties (systems of algebraic equations, any number of variables)
- Varieties over any number field (not just Q)
- motives = "pieces" of the geometry of algebraic varieties
- Always given by infinite products over primes (Euler products)

Generalising the BSD conjecture

Definition of *L*-function makes sense much more generally:

- Algebraic varieties (systems of algebraic equations, any number of variables)
- Varieties over any number field (not just Q)
- motives = "pieces" of the geometry of algebraic varieties
- Always given by infinite products over primes (Euler products)
- Less obvious how to generalise rank

Generalising the BSD conjecture

Definition of *L*-function makes sense much more generally:

- Algebraic varieties (systems of algebraic equations, any number of variables)
- Varieties over any number field (not just Q)
- motives = "pieces" of the geometry of algebraic varieties
- Always given by infinite products over primes (Euler products)
- Less obvious how to generalise *rank*
 - Works for varieties when the points have a group structure (Abelian varieties)

Generalising the BSD conjecture

Definition of *L*-function makes sense much more generally:

- Algebraic varieties (systems of algebraic equations, any number of variables)
- Varieties over any number field (not just Q)
- motives = "pieces" of the geometry of algebraic varieties
- Always given by infinite products over primes (Euler products)
- Less obvious how to generalise rank
 - Works for varieties when the points have a group structure (Abelian varieties)
 - Doesn't make sense for general motives

Conjecture (Bloch–Kato, 1990)

For any motive M and $n \in \mathbb{Z}$, we have

$$\operatorname{ord}_{s=n} L(M, s) =$$

Conjecture (Bloch–Kato, 1990)

For any motive M and $n \in \mathbb{Z}$, we have

$$\operatorname{ord}_{s=n} L(M, s) =$$

David Loeffler

Conjecture (Bloch–Kato, 1990)

For any motive M and $n \in \mathbb{Z}$, we have

 $\operatorname{ord}_{s=n} L(M, s) = \operatorname{rank} \operatorname{of} \operatorname{certain} \operatorname{cohomology} \operatorname{group}$ (Selmer group) attached to M and n

Conjecture (Bloch–Kato, 1990)

For any motive M and $n \in \mathbb{Z}$, we have

 $\operatorname{ord}_{s=n} L(M, s) = \operatorname{rank} \operatorname{of} \operatorname{certain} \operatorname{cohomology} \operatorname{group}$ (Selmer group) attached to M and n

Refined form predicting leading term

Class groups and zeta functions

2 The Birch–Swinnerton-Dyer conjecture

David Loeffler

Euler systems

Münster, 27/3/2024 16/28

Theorem (Kolyvagin, 1989)

Let E/\mathbb{Q} be an elliptic curve. If $\operatorname{ord}_{s=1} L(E, s) = 0$ or 1, then rank $E(\mathbb{Q}) = \operatorname{ord}_{s=1} L(E, s)$.

David Loeffler

Euler systems

Münster, 27/3/2024 17/28

Theorem (Kolyvagin, 1989)

Let E/\mathbb{Q} be an elliptic curve. If $\operatorname{ord}_{s=1} L(E, s) = 0$ or 1, then rank $E(\mathbb{Q}) = \operatorname{ord}_{s=1} L(E, s)$.

 Steady progress towards leading term formula under these hypotheses (most cases done, but not all)

Theorem (Kolyvagin, 1989)

Let E/\mathbb{Q} be an elliptic curve. If $\operatorname{ord}_{s=1} L(E, s) = 0$ or 1, then rank $E(\mathbb{Q}) = \operatorname{ord}_{s=1} L(E, s)$.

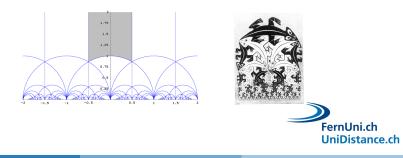
- Steady progress towards leading term formula under these hypotheses (most cases done, but not all)
- Originally needed to assume E modular now a theorem that this always holds (Wiles, Breuil–Conrad–Diamond–Taylor)

Theorem (Kolyvagin, 1989)

Let E/\mathbb{Q} be an elliptic curve. If $\operatorname{ord}_{s=1} L(E, s) = 0$ or 1, then rank $E(\mathbb{Q}) = \operatorname{ord}_{s=1} L(E, s)$.

- Steady progress towards leading term formula under these hypotheses (most cases done, but not all)
- Originally needed to assume E modular now a theorem that this always holds (Wiles, Breuil–Conrad–Diamond–Taylor)
- Still know virtually nothing for order of vanishing ≥ 2

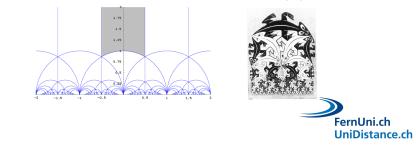
• Upper half-plane $\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$



Upper half-plane 𝔅 = {z ∈ 𝔅 : Im(z) > 0}
 For N ≥ 1 the group

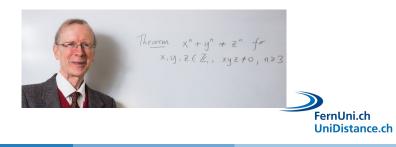
$$\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ Nc & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad - Nbc = 1 \}$$

acts on \mathbb{H} , and on compactification $\mathbb{H}^* = \mathbb{H} \cup \mathbb{P}^1(\mathbb{Q})$



Say *E* is *modular* if for some N, \exists complex-analytic map

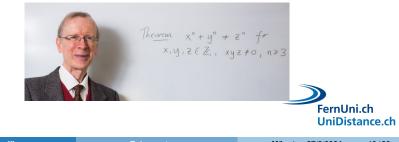
$$\phi : \Gamma_0(N) \setminus \mathbb{H}^* \twoheadrightarrow E(\mathbb{C}).$$



Say *E* is *modular* if for some N, \exists complex-analytic map

 $\phi: \Gamma_0(N) \backslash \mathbb{H}^* \twoheadrightarrow E(\mathbb{C}).$

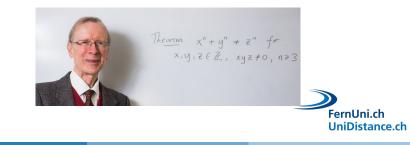
■ Taniyama–Shimura conjecture: all *E*/ℚ are modular (proved by Taylor–Wiles, Breuil–Conrad–Diamond–Taylor)



Say *E* is *modular* if for some N, \exists complex-analytic map

 $\phi: \Gamma_0(N) \backslash \mathbb{H}^* \twoheadrightarrow E(\mathbb{C}).$

- Taniyama–Shimura conjecture: all *E*/ℚ are modular (proved by Taylor–Wiles, Breuil–Conrad–Diamond–Taylor)
- Key to proof of Fermat's last theorem

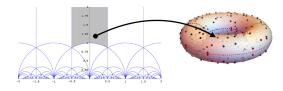


A CM point is a point in \mathbb{H} of form $a + \sqrt{-d}$, $a, d \in \mathbb{Q}$, d > 0

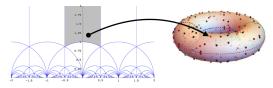
David Loeffler

Euler systems

A CM point is a point in ℍ of form a + √-d, a, d ∈ Q, d > 0
 Heegner point on a modular elliptic curve: image of a CM point under φ : Γ₀(N)\ℍ* → E(C)

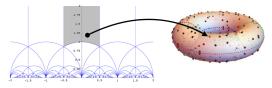


- A CM point is a point in \mathbb{H} of form $a + \sqrt{-d}$, $a, d \in \mathbb{Q}$, d > 0
- Heegner point on a modular elliptic curve: image of a CM point under φ : Γ₀(N)\ℍ* → E(C)



Miracle: Heegner points are *algebraic*, i.e. lie in $E(\overline{\mathbb{Q}})$ (entirely un-obvious from construction)

- A CM point is a point in \mathbb{H} of form $a + \sqrt{-d}$, $a, d \in \mathbb{Q}$, d > 0
- Heegner point on a modular elliptic curve: image of a CM point under φ : Γ₀(N)\ℍ* → E(C)



- Miracle: Heegner points are algebraic, i.e. lie in E(Q) (entirely un-obvious from construction)
- Shimura reciprocity describes precisely which number field each one lives in (always an abelian extension of $\mathbb{Q}(\sqrt{-d})$)

■ Heegner theory gives points c_n ∈ E(K_n) for an infinite family of number fields K_n

- Heegner theory gives points c_n ∈ E(K_n) for an infinite family of number fields K_n
- Norm-compatibility relation: for $n \mid m$, have $K_n \subseteq K_m$ and

$$\operatorname{norm}_{K_n}^{K_m}(c_m) = (\prod_{\substack{p \mid m \\ p \nmid n}} P_p) \cdot c_n,$$

where P_p = factor at p in Euler product for L-series

- Heegner theory gives points c_n ∈ E(K_n) for an infinite family of number fields K_n
- Norm-compatibility relation: for $n \mid m$, have $K_n \subseteq K_m$ and

$$\operatorname{norm}_{\mathcal{K}_n}^{\mathcal{K}_m}(\boldsymbol{c}_m) = (\prod_{\substack{\rho \mid m \\ p \nmid n}} P_{\rho}) \cdot \boldsymbol{c}_n,$$

where P_p = factor at p in Euler product for *L*-series
Gross–Zagier theorem: bottom point c₁ is non-trivial if ord_{s=1} L(E, s) ≤ 1

- Heegner theory gives points c_n ∈ E(K_n) for an infinite family of number fields K_n
- Norm-compatibility relation: for $n \mid m$, have $K_n \subseteq K_m$ and

$$\operatorname{norm}_{K_n}^{K_m}(\boldsymbol{c}_m) = (\prod_{\substack{p \mid m \\ p \nmid n}} P_p) \cdot \boldsymbol{c}_n,$$

where P_p = factor at p in Euler product for L-series

- Gross–Zagier theorem: bottom point c₁ is non-trivial if ord_{s=1} L(E, s) ≤ 1
- Delicate manipulations with duality theory of Galois cohomology ⇒ bounds on *E*(Q): either it's zero, or *c*₁ generates it up to a finite error.

FernUni.ch UniDistance.ch

Class groups and zeta functions

2) The Birch–Swinnerton-Dyer conjecture

3 Kolyvagin's theorem

David Loeffler

Are there Euler systems for other L-functions / motives?

David Loeffler

Euler systems

Are there Euler systems for other L-functions / motives?

 Rubin, Kato, Perrin-Riou: general *definition* of what Euler systems should be

- Rubin, Kato, Perrin-Riou: general *definition* of what Euler systems should be
- when these exist, get bounds on Selmer groups (~> Bloch–Kato?)

- Rubin, Kato, Perrin-Riou: general *definition* of what Euler systems should be
- ▶ when these exist, get bounds on Selmer groups (~→ Bloch–Kato?)
- Besides Kolyvagin, two "easy" examples from units in number fields (cyclotomic / elliptic units)

- Rubin, Kato, Perrin-Riou: general *definition* of what Euler systems should be
- ▶ when these exist, get bounds on Selmer groups (~→ Bloch–Kato?)
- Besides Kolyvagin, two "easy" examples from units in number fields (cyclotomic / elliptic units)
- Wiles: unsuccessful attempt to build Euler system for Sym² of elliptic curve

- Rubin, Kato, Perrin-Riou: general *definition* of what Euler systems should be
- ▶ when these exist, get bounds on Selmer groups (~→ Bloch–Kato?)
- Besides Kolyvagin, two "easy" examples from units in number fields (cyclotomic / elliptic units)
- Wiles: unsuccessful attempt to build Euler system for Sym² of elliptic curve
- Kato (2004): Euler system for a modular form

- Rubin, Kato, Perrin-Riou: general *definition* of what Euler systems should be
- ▶ when these exist, get bounds on Selmer groups (~→ Bloch–Kato?)
- Besides Kolyvagin, two "easy" examples from units in number fields (cyclotomic / elliptic units)
- Wiles: unsuccessful attempt to build Euler system for Sym² of elliptic curve
- Kato (2004): Euler system for a modular form
- No more examples for > 10 years

Beilinson–Flach elements

Theorem (Lei–L.–Zerbes 2014, Kings–L.–Zerbes 2017)

There is a non-trivial Euler system attached to the Rankin–Selberg convolution of two modular forms.

Beilinson–Flach elements

Theorem (Lei–L.–Zerbes 2014, Kings–L.–Zerbes 2017)

There is a non-trivial Euler system attached to the Rankin–Selberg convolution of two modular forms.

Builds on work of Beilinson, Flach, and Bertolini–Darmon–Rotger

Beilinson–Flach elements

Theorem (Lei–L.–Zerbes 2014, Kings–L.–Zerbes 2017)

There is a non-trivial Euler system attached to the Rankin–Selberg convolution of two modular forms.

- Builds on work of Beilinson, Flach, and Bertolini–Darmon–Rotger
- Gives new results towards Bloch–Kato, and BSD over number fields

Techniques adapted to define many new Euler systems

- Techniques adapted to define many new Euler systems
- Correspond to automorphic forms for various matrix groups G

- Techniques adapted to define many new Euler systems
- Correspond to automorphic forms for various matrix groups G
 - GL₂ × GL₂ (Rankin–Selberg)

- Techniques adapted to define many new Euler systems
- Correspond to automorphic forms for various matrix groups G
 - GL₂ × GL₂ (Rankin–Selberg)
 - GSp₄ (Siegel modular forms)

Techniques adapted to define many new Euler systems

- Correspond to automorphic forms for various matrix groups G
 - GL₂ × GL₂ (Rankin–Selberg)
 - GSp₄ (Siegel modular forms)
 - unitary groups, Hilbert modular groups,

Techniques adapted to define many new Euler systems

- Correspond to automorphic forms for various matrix groups G
 - ► GL₂ × GL₂ (Rankin–Selberg)
 - GSp₄ (Siegel modular forms)
 - unitary groups, Hilbert modular groups,
- Uses geometry of Shimura varieties (generalisations of $\Gamma_0(N) \setminus \mathbb{H}$)

Techniques adapted to define many new Euler systems

- Correspond to automorphic forms for various matrix groups G
 - GL₂ × GL₂ (Rankin–Selberg)
 - GSp₄ (Siegel modular forms)
 - unitary groups, Hilbert modular groups,
- Uses geometry of Shimura varieties (generalisations of Γ₀(N)\H)
- Proving non-triviality is more difficult (needs *explicit reciprocity laws*) – done for GSp₄, and for quadratic Hilbert modular groups

[various works of Grossi, Lei, L., Pilloni, Skinner, Zerbes]

Bloch–Kato non-zero values of *L*-functions of Siegel modular forms (for GSp₄, weight ≥ 3)

- Bloch–Kato non-zero values of *L*-functions of Siegel modular forms (for GSp₄, weight ≥ 3)
- SD for abelian surfaces A with L(A, 1) ≠ 0 (conditional on 2 big conjectures)

- Bloch–Kato non-zero values of *L*-functions of Siegel modular forms (for GSp₄, weight ≥ 3)
- SD for abelian surfaces A with L(A, 1) ≠ 0 (conditional on 2 big conjectures)
- Solution States and St

- Bloch–Kato non-zero values of *L*-functions of Siegel modular forms (for GSp₄, weight ≥ 3)
- BSD for abelian surfaces A with L(A, 1) ≠ 0 (conditional on 2 big conjectures)
- Solution Euler system for symmetric square of a modular form
 - New approach to (parts of) proof of Fermat's last theorem

- Bloch–Kato non-zero values of *L*-functions of Siegel modular forms (for GSp₄, weight ≥ 3)
- BSD for abelian surfaces A with L(A, 1) ≠ 0 (conditional on 2 big conjectures)
- Solution States and St
 - New approach to (parts of) proof of Fermat's last theorem
 - Iwasawa main conjecture for Sym²

- Bloch–Kato non-zero values of *L*-functions of Siegel modular forms (for GSp₄, weight ≥ 3)
- BSD for abelian surfaces A with L(A, 1) ≠ 0 (conditional on 2 big conjectures)
- Euler system for symmetric square of a modular form
 - New approach to (parts of) proof of Fermat's last theorem
 - Iwasawa main conjecture for Sym²
 - Cf. parallel work of Sangiovanni–Skinner

- To build Euler systems for automorphic forms on G, need two ingredients:
 - Subgroup H sitting "nicely" inside G

- To build Euler systems for automorphic forms on G, need two ingredients:
 - Subgroup *H* sitting "nicely" inside *G*
 - Family of cohomology classes for the Shimura variety of H

- Subgroup *H* sitting "nicely" inside *G*
- Family of cohomology classes for the Shimura variety of H
- Second ingredient can be identity class $1_H \in H^0(Sh_H)$

- Subgroup *H* sitting "nicely" inside *G*
- Family of cohomology classes for the Shimura variety of H
- Second ingredient can be identity class $1_H \in H^0(Sh_H)$
 - Not a trivial case!

- Subgroup *H* sitting "nicely" inside *G*
- Family of cohomology classes for the Shimura variety of H
- Second ingredient can be identity class $1_H \in H^0(Sh_H)$
 - Not a trivial case!
 - Covers Kolyvagin's Heegner points (G = GL₂, H = U(1)) and other "anticyclotomic" Euler systems

- Subgroup *H* sitting "nicely" inside *G*
- Family of cohomology classes for the Shimura variety of H
- Second ingredient can be identity class $1_H \in H^0(Sh_H)$
 - Not a trivial case!
 - Covers Kolyvagin's Heegner points (G = GL₂, H = U(1)) and other "anticyclotomic" Euler systems
 - ... or Siegel units when H = product of GL₂'s

- Subgroup *H* sitting "nicely" inside *G*
- Family of cohomology classes for the Shimura variety of H
- Second ingredient can be identity class $1_H \in H^0(Sh_H)$
 - Not a trivial case!
 - Covers Kolyvagin's Heegner points (G = GL₂, H = U(1)) and other "anticyclotomic" Euler systems
- ... or Siegel units when H = product of GL₂'s
 - Kato's ES, and all the examples on last slide

- Subgroup *H* sitting "nicely" inside *G*
- Family of cohomology classes for the Shimura variety of H
- Second ingredient can be identity class $1_H \in H^0(Sh_H)$
 - Not a trivial case!
 - Covers Kolyvagin's Heegner points (G = GL₂, H = U(1)) and other "anticyclotomic" Euler systems
- ... or Siegel units when H = product of GL₂'s
 - Kato's ES, and all the examples on last slide
- ... or something else? [Sangiovanni–Skinner, in preparation]

Correct notion of 'H sits nicely inside G': (G, H) should be a spherical pair

- Correct notion of 'H sits nicely inside G': (G, H) should be a spherical pair
- Much-studied concept in representation theory

- Correct notion of 'H sits nicely inside G': (G, H) should be a spherical pair
- Much-studied concept in representation theory
- Connections to number theory recently emerging (Sakellaridis–Venkatesh, Wei Zhang)

- Correct notion of 'H sits nicely inside G': (G, H) should be a spherical pair
- Much-studied concept in representation theory
- Connections to number theory recently emerging (Sakellaridis–Venkatesh, Wei Zhang)
- Gan–Gross–Prasad conjectures: $U(n) \subset U(n) \times U(n+1)$, $SO(n) \subset SO(n) \times SO(n+1)$

- Correct notion of 'H sits nicely inside G': (G, H) should be a spherical pair
- Much-studied concept in representation theory
- Connections to number theory recently emerging (Sakellaridis–Venkatesh, Wei Zhang)
- Gan–Gross–Prasad conjectures: $U(n) \subset U(n) \times U(n+1)$, $SO(n) \subset SO(n) \times SO(n+1)$
- Many more cases to explore!

