The existence and properties of rectangular structures

Ziemowit Kostana

Bar-Ilan University Ramat-Gan, Israel

Young Set Theory Workshop, Münster, 30.05.2023

Part 1. Fraïssé theory

Definition

A class of finite structures \mathcal{K} is a *Fraïssé class*, if satisfies the following:

- Has countably many isomorphism types,
- Is closed under taking substructures,
- Satisfies the Joint Embedding Property,
- Satisfies the Amalgamation Property.

Theorem (Fraïssé, 1954)

If \mathcal{K} is a Fraissé class, then there exists a unique countable structure \mathbb{K} , called the Fraissé limit of \mathcal{K} , satisfying the following:

- The class of finite substructures of K coincides with K (universality),
- *For each a* ∈ K, each embedding i : a → K, and a ⊆ b ∈ K, there exists an extension of i to b, i.e.

$$\overline{i}: b \to \mathbb{K},$$

such that

$$\overline{i} \upharpoonright a = i.$$

🗇 🕨 🖌 🖻 🕨 🔺 🗎

Proposition

If \mathcal{K} is the class of finite models of a first order theory \mathcal{T} , then \mathbb{K} is the universal object if size ω .

Proposition

If \mathcal{K} is a Fraïssé class with the Fraïssé limit \mathbb{K} , then each isomorphism between finite substructures of \mathbb{K} extends to an automorphism of \mathbb{K} ([ultra]homogeneity).

Examples:

- **①** The order of rationals (\mathbb{Q}, \leq) . (linear orders)
- The countable universal, homogeneous partial order. (partial orders)
- S The countable atomless Boolean algebra. (Boolean algebras)
- The random graph. (graphs)
- The random tournament. (tournaments)
- The Hall's locally finite group. (finite groups)
- **(2)** The rational Urysohn space. (finite rational metric spaces)

伺 ト イ ヨ ト イ ヨ

Examples:

- **①** The order of rationals (\mathbb{Q}, \leq) . (linear orders)
- The countable universal, homogeneous partial order. (partial orders)
- S The countable atomless Boolean algebra. (Boolean algebras)
- The random graph. (graphs)
- The random tournament. (tournaments)
- The Hall's locally finite group. (finite groups)
- **(2)** The rational Urysohn space. (finite rational metric spaces)

Corollary

Uniqueness of the above objects.

伺 ト く ヨ ト く ヨ ト

For our purposes we focus on cases where:

- Structures are relational.
- **2** The class \mathcal{K} satisfies the Strong Amalgamation Property.

43643

Definition

For a class \mathcal{K} we define the forcing

$$\operatorname{Fn}(S,\mathcal{K},\omega) = \{ \mathbb{A} \in \mathcal{K} | A \in [S]^{<\omega} \},\$$

where A denotes the universe of \mathbb{A} . The order is the reversed inclusion of substructures.

• • = •

-

Definition

For a class \mathcal{K} we define the forcing

$$\operatorname{Fn}(S,\mathcal{K},\omega) = \{ \mathbb{A} \in \mathcal{K} | A \in [S]^{<\omega} \},\$$

where A denotes the universe of \mathbb{A} .

The order is the reversed inclusion of substructures.

Familiar case: take as \mathcal{K} the class of finite sets *a* together with mappings $p: a \to 2$.

伺 ト イ ヨ ト イ ヨ

Let \mathcal{LO} be the class of (finite) linear orders. What does $Fn(\omega, \mathcal{LO}, \omega)$ do?

- It adds a Cohen real.
- It adds a very complicated ordering (ω, \leq_G) , isomorphic to (\mathbb{Q}, \leq) .
- Every infinite ground model set $S \subseteq \omega$ will be dense in (ω, \leq_G) .

A A B A A

More generally:

Proposition

If *S* is countable, this is just a version of the Cohen forcing, that adds an isomorphic copy of the Fraïssé limit of \mathcal{K} , living on *S*.

Proof.

A density argument.

Proposition

For any set S, $Fn(S, \mathcal{K}, \omega)$ is Knaster.

Remark: This is due to the Strong Amalgamation Property. Otherwise, it may collapse ω_1 .

- A - E - M

Theorem (K. 2021)

Assume S is uncountable, and K is any of the following classes: graphs, linear orders, partial orders, tournaments, rational metric spaces. Then

 $\operatorname{Fn}(S, \mathcal{K}, \omega) \Vdash$ "the generic structure on S is rigid".

• • **=** • • **=**

Theorem (K. 2021)

Assume S is uncountable, and K is any of the following classes: graphs, linear orders, partial orders, tournaments, rational metric spaces. Then

 $\operatorname{Fn}(S, \mathcal{K}, \omega) \Vdash$ "the generic structure on S is rigid".

Theorem (K. 2021)

If $|S| > \omega_1$, and CH holds, then $\operatorname{Fn}(S, \mathcal{LO}, \omega_1)$ forces that the generic linear order is rigid in any ccc extension of the universe.

Part 2. Meanwhile, in a mostly unrelated part of mathematics...

A set $A \subseteq \mathbb{R}$ is *increasing* if it is uncountable and the following holds: For each sequence of pairwise disjoint tuples $\{(a_1^{\xi}, \dots, a_k^{\xi}) | \xi < \omega_1\} \subseteq A^k$ there exists $\xi < \eta < \omega_1$ such that for all $i, j = 1, \dots, k$ $a_i^{\xi} < a_i^{\eta} \iff a_i^{\xi} < a_i^{\eta}$.

Part 2. Meanwhile, in a mostly unrelated part of mathematics...

A set $A \subseteq \mathbb{R}$ is *increasing* if it is uncountable and the following holds: For each sequence of pairwise disjoint tuples $\{(a_1^{\xi}, \ldots, a_k^{\xi}) | \xi < \omega_1\} \subseteq A^k$ there exists $\xi < \eta < \omega_1$ such that for all $i, j = 1, \ldots, k$ $a_i^{\xi} < a_i^{\eta} \iff a_j^{\xi} < a_j^{\eta}$.

Proposition

If *A* is increasing, then *A* is not isomorphic to $-A = \{-a | a \in A\}$.

A > 4 = > 4

Theorem (Avraham-Shelah, 1981)

The existence of an increasing set is consistent with $ZFC + MA + 2^{\omega} = \omega_2$.

-

We start with a model $V \models CH$, and an increasing set *A*.

Definition

The forcing \mathbb{P} satisfies A-cc if for each sequence of pairwise disjoint k-tuples $\{(p_{\xi}, a_1^{\xi}, \dots, a_k^{\xi}) | \xi < \omega_1\}$ there exist $\xi < \eta < \omega_1$ such that:

- p_{ξ} and p_{η} are compatible,
- for all i, j = 1, ..., k

$$a_i^{\xi} < a_i^{\eta} \iff a_j^{\xi} < a_j^{\eta}.$$

We start with a model $V \models CH$, and an increasing set *A*.

Definition

The forcing \mathbb{P} satisfies A-cc if for each sequence of pairwise disjoint k-tuples $\{(p_{\xi}, a_1^{\xi}, \dots, a_k^{\xi}) | \xi < \omega_1\}$ there exist $\xi < \eta < \omega_1$ such that:

- p_{ξ} and p_{η} are compatible,
- for all i, j = 1, ..., k

$$a_i^{\xi} < a_i^{\eta} \iff a_j^{\xi} < a_j^{\eta}.$$

- A finite support iteration of *A*-cc forcings is *A*-cc.
- **2** If \mathbb{P} is *A*-cc, then $\mathbb{P} \Vdash$ "*A* is increasing.".

The conclusion is that

$$ZFC + MA(A-cc) + "2^{\omega} = \omega_2" + "A$$
is increasing."

is consistent. But in fact, MA(A-cc) implies MA.

< E

Theorem (Avraham-Shelah, 1981)

It is consistent with ZFC that there exists an uncountable set of reals A with the property that each uncountable partial function $f \subseteq A \times A$ is non-decreasing on some uncountable set.

Proof.

Let $V \models \text{ZFC} + \text{MA}_{\omega_1} + A^{\text{"}}$ is increasing". Fix an uncountable partial function $f \subseteq A \times A$.

- If f is constant on an uncountable set, there is nothing to do.
- Otherwise, we can assume that f is 1-1. We apply MA_{ω_1} to the partial order

$$\{E \in [\operatorname{dom}(f)]^{<\omega} | f \upharpoonright E \text{ is increasing.}\}.$$

イロト イポト イヨト イヨト

The funny observation:

Proposition

$$\operatorname{Fn}(\omega_1, \mathcal{LO}, \omega) \Vdash "(\omega_1, \leq) \text{ is increasing"}.$$

Proof:

Take a sequence of names $\{(\dot{\alpha}_1^{\xi}, \ldots, \dot{\alpha}_k^{\xi})\}_{\xi < \omega_1}$ for pairwise disjoint *k*-tuples from ω_1 . Fix a condition $p \in \mathbb{P} = \operatorname{Fn}(\omega_1, \mathcal{K}, \omega)$. For every $\xi < \omega_1$ we may find a condition $p_{\xi} \leq p$ such that p_{ξ} decides $\{\alpha_1^{\xi}, \ldots, \alpha_k^{\xi}\}$ and the generic order on this set. We may assume that $\{\alpha_1^{\xi}, \ldots, \alpha_k^{\xi}\} \subseteq p_{\xi} = (p_{\xi}, \leq_{\xi})$.

The funny observation:

Proposition

$$\operatorname{Fn}(\omega_1, \mathcal{LO}, \omega) \Vdash "(\omega_1, \leq) \text{ is increasing"}.$$

Proof:

Take a sequence of names $\{(\dot{\alpha}_1^{\xi}, \ldots, \dot{\alpha}_k^{\xi})\}_{\xi < \omega_1}$ for pairwise disjoint *k*-tuples from ω_1 . Fix a condition $p \in \mathbb{P} = \operatorname{Fn}(\omega_1, \mathcal{K}, \omega)$. For every $\xi < \omega_1$ we may find a condition $p_{\xi} \leq p$ such that p_{ξ} decides $\{\alpha_1^{\xi}, \ldots, \alpha_k^{\xi}\}$ and the generic order on this set. We may assume that $\{\alpha_1^{\xi}, \ldots, \alpha_k^{\xi}\} \subseteq p_{\xi} = (p_{\xi}, \leq_{\xi})$.

We choose a suitable Δ -system $\{p_{\xi} | \xi \in S\}$, $S \subseteq \omega_1$, with a root $R = (R, \leq_R)$. We may also guarantee that for each $i = 1, \ldots, k$ all extensions of the form $(R, \leq_R) \subseteq (R \cup \{\alpha_i^{\xi}\}, \leq_{\xi})$ are pairwise isomorphic. For any $\xi \neq \eta \in S$ we can amalgamate p_{ξ} and p_{η} , so that we obtain $(q, \leq_q) \supseteq (p_{\xi}, \leq_{\xi}), (p_{\eta}, \leq_{\eta})$, and

 $a_i^{\xi} <_q a_i^{\eta},$

for i = 1, ..., k.

• • • • • • •

Can we apply this idea to other structures added by forcings $Fn(\omega_1, \mathcal{K}, \omega)$?

- ∢ ≣ ▶

- ₹ 🖹 🕨

Definition

A metric space (X, d) is *rectangular* if it is uncountable, and for every family of tuples $\{(x_1^{\xi}, \ldots, x_n^{\xi}) | \xi < \omega_1\} \subseteq X^k$ there exists $\xi < \eta < \omega_1$ such that $(x_1^{\xi}, \ldots, x_n^{\xi}) \circledast (x_1^{\eta}, \ldots, x_n^{\eta})$.

Definition

A metric space (X, d) is *rectangular* if it is uncountable, and for every family of tuples $\{(x_1^{\xi}, \ldots, x_n^{\xi}) | \xi < \omega_1\} \subseteq X^k$ there exists $\xi < \eta < \omega_1$ such that $(x_1^{\xi}, \ldots, x_n^{\xi}) \circledast (x_1^{\eta}, \ldots, x_n^{\eta})$.

Where $(x_1, \ldots, x_n) \circledast (y_1, \ldots, y_n)$ stands for the conjunction of the following axioms

A1
$$\forall i, j = 1, \dots, n \ (d(x_i, y_i) = d(x_j, y_j))$$

A2 $\forall i, j = 1, \dots, n \ (d(x_i, x_j) = d(y_i, y_j))$
A3 $\forall i, j = 1, \dots, n \ (x_i \neq x_j \implies d(x_i, x_j) = d(x_i, y_j))$

Proposition

Let Metr denote the class of all rational metric spaces. $\operatorname{Fn}(\omega_1, \operatorname{Metr}, \omega) \Vdash "(\omega_1, \dot{d})$ is rectangular".

Z. Kostana The existence and properties of rectangular structures

3 ×

Proposition

Let Metr denote the class of all rational metric spaces. $\operatorname{Fn}(\omega_1, \operatorname{Metr}, \omega) \Vdash "(\omega_1, \dot{d})$ is rectangular".

We denote the generic space (\mathcal{M}, d) . It contains a dense isomorphic copy of the rational Urysohn space.

Definition

A forcing \mathbb{P} satisfies (\mathcal{M}, d) -cc if for each sequence of pairwise disjoint *k*-tuples $\{(p_{\xi}, x_1^{\xi}, \ldots, x_k^{\xi}) | \xi < \omega_1\} \subseteq (\mathcal{M}, d)^k$ there exist $\xi < \eta < \omega_1$ such that:

- p_{ξ} and p_{η} are compatible,
- for all i, j = 1, ..., k

$$(x_1^{\xi},\ldots,x_n^{\xi}) \circledast (x_1^{\eta},\ldots,x_n^{\eta}).$$

► 4 Ξ ►

Like the last time, we have

Proposition

- A finite support iteration of (\mathcal{M}, d) -cc forcings is (\mathcal{M}, d) -cc.
- If \mathbb{P} satisfies (\mathcal{M}, d) -cc, then $\mathbb{P} \Vdash "(\mathcal{M}, d)$ is rectangular".

3 ×

Like the last time, we have

Proposition

- A finite support iteration of (\mathcal{M}, d) -cc forcings is (\mathcal{M}, d) -cc.
- If \mathbb{P} satisfies (\mathcal{M}, d) -cc, then $\mathbb{P} \Vdash "(\mathcal{M}, d)$ is rectangular".

Theorem (K. 2021)

The theory

$$ZFC + MA((\mathcal{M}, d) - cc) + "2^{\omega} = \omega_2" + "(\mathcal{M}, d) \text{ is rectangular"}$$

is consistent. Therefore also

 $ZFC + MA + "2^{\omega} = \omega_2" + "(\mathcal{M}, d)$ is rectangular".

(ロ) (型) (ヨ) (ヨ)

Theorem (K. 2021)

If is consistent with $ZFC + MA + "2^{\omega} = \omega_2$ " that there exists an uncountable, separable metric space (\mathcal{M}, d) such that any uncountable partial 1-1 function $f \subseteq \mathcal{M} \times \mathcal{M}$, is an isometry on an uncountable subspace.

• • = •

Theorem (K. 2021)

If is consistent with ZFC + MA + " $2^{\omega} = \omega_2$ " that there exists an uncountable, separable metric space (\mathcal{M}, d) such that any uncountable partial 1-1 function $f \subseteq \mathcal{M} \times \mathcal{M}$, is an isometry on an uncountable subspace.

Proof.

Apply MA_{ω_1} to the partial order

 $\mathbb{P}_f := \{ E \in [\operatorname{dom}(f)]^{<\omega} | \quad f \upharpoonright E \text{ is an isometry} \}.$

If (\mathcal{M}, d) is rectangular, then \mathbb{P}_f is ccc.

通アメヨアメヨア

Part 3. Homogeneity

Theorem

 MA_{ω_1} implies that if there exists an ω_1 -dense increasing linear order, it is unique to reversing the order. Moreover, it is (ultra)homogeneous.

Definition

Let (X, d) be a metric space.

• A set $D \subseteq X$ is a *saturating subset* if for any finite set $F \subseteq X$, any any point $x \in X$, there is $e \in D$ such that

$$d(f,x) = d(f,e)$$

for every $f \in F$.

- (X, d) is *separably saturated* if it has a countable saturating subset.
- (X, d) is hereditarily separably saturated (HSS) if for any countable $E \subseteq X$, $(X \setminus E, d)$ is separably saturated.

The idea behind it, is to have a metric analog of a separable linear order.

Proposition

 $Fn(\omega_1, Metr, \omega)$ forces that the generic space is HSS.

Proof: By a density argument, every infinite ground model subset is a saturating subset.

伺下 イヨト イヨト

Proposition

 $Fn(\omega_1, Metr, \omega)$ forces that the generic space is HSS.

Proof: By a density argument, every infinite ground model subset is a saturating subset.

Theorem (K. 2021)

Assume MA_{ω_1} , and let (X, d) be any HSS rectangular rational metric space of size ω_1 .

- If $Y \subseteq X$ is an uncountable HSS space, then X and Y are isometric.
- **2** (X, d) is ultrahomogeneous.

From the previous part, we know that the existence of a HSS rectangular rational metric space is consistent with MA_{ω_1} .

イロト (行) () () () ()

Instead of rational metric spaces, we can look at metric space with distances in any given countable set $K \subseteq [0, \infty)$. In the case $K = \{0, 1, 2\}$ these are just graphs (even though in such class the AP might fail).

Proposition

Assume MA_{ω_1} . If *G* is a rectangular graph, then each uncountable partial 1-1 function $f \subseteq G \times G$ is a homomorphism on an uncountable set.

Definition

- Let (G, E) be any graph.
 - A set D ⊆ G is a *saturating subset* if for any finite, disjoint sets A, B ⊆ G, there is d ∈ D such that

$$\forall a \in A \quad \{a,d\} \in E$$

$$\forall \ b \in B \quad \{b,d\} \notin E$$

- (G, E) is *separably saturated* if it has a countable saturating subset.
- ◎ (G, E) is hereditarily separably saturated (HSS) if for any countable $H \subseteq G$, $(G \setminus H, E)$ is separably saturated.

🗇 🕨 🖉 🕨 🖉 🖻

Proposition

 $Fn(\omega_1, Graph, \omega)$ forces that the generic graph is HSS.

Proof: Again, any infinite ground model set will be a saturating set.

4 E b

Theorem (K. 2021)

Assume MA_{ω_1} , and let G be any HSS rectangular graph of size ω_1 .

- If H is another HSS rectangular graph of size ω_1 , then $G \simeq H$ iff G and the complement of H contain no common uncountable subgraph.
- **2** If $H \subseteq G$ is an uncountable HSS subgraph, then $H \simeq G$.
- Solution G is the unique HSS rectangular graph of size ω_1 , up to taking the complement.
- **G** is ultrahomogeneous.

That's it! Thank you for attention. More on the topic can be found in the preprints *Cohen-like first order structures*, to appear in Annals of Pure and Applied Logic, https://arxiv.org/abs/2009.03552 *What would the rational Urysohn space and the random graph look like if they were uncountable*?, https://arxiv.org/abs/2102.05590

- E - E