Determinacy, Partition Properties, and Combinatorics III

Steve Jackson

May/June, 2023 Young Set Theory Workshop University of Münster

A ⊡ ► A ⊡ ► A

We present two more recent results which are joint with W. Chan and N. Trang.

Suppose $\kappa \to (\kappa)^{\lambda}$ where $\lambda \leq \kappa$. We let μ_{κ}^{λ} be the measure on $[\kappa]_{*}^{\lambda} = \{f : \lambda \to \kappa \text{ of the correct type }\}$ defined by:

 $\mu_{\kappa}^{\lambda}(A) = 1$ iff there is a c.u.b. $C \subseteq \kappa$ such that $[\kappa]_{*}^{\lambda} \subseteq A$.

Theorem (Chan, J, Trang)

Suppose $\kappa \to (\kappa)^{\lambda}$. Then the measure μ_{κ}^{λ} is monotonic. That is if $\Phi : [\kappa]_{*}^{\lambda} \to On$ then there is a c.u.b. $C \subseteq \kappa$ such that if $f, g \in [C]_{*}^{\lambda}$ and $f(\alpha) \leq g(\alpha)$ for all $\alpha < \lambda$, then $\Phi(f) \leq \Phi(g)$.

As a corollary we have the following.

Definition

We say a measure μ on δ is monotonic if for all $f: \delta \to On$, there is a μ measure one set $A \subseteq \delta$ such that $f \upharpoonright A$ in monotonically increasing.

If $\kappa \to (\kappa)^{\lambda}$ and ν is a measure on λ , we let $W(\nu)$, if $\lambda < \kappa$, or $S(\nu)$, if $\lambda = \kappa$, denote the measure on $j_{\nu}(\kappa)$ be the measure induced by μ_{κ}^{λ} and the measure ν .

Corollary

If $\kappa \to \kappa^{\lambda}$ and ν is a measure on λ , then the measure $W(\nu)$ or $S(\nu)$ on $j_{\nu}(\kappa)$ is monotonic.

く 何 ト く ヨ ト く ヨ ト -

We consider the case $\lambda = \kappa$.

Lemma

If $\Phi : [\kappa]_*^{\kappa} \to On$ then there is a c.u.b. $C \subseteq \kappa$ such that if $f, g \in [C]_*^{\kappa}$ and for all $\alpha < \kappa$ we have:

1.
$$f(\alpha) \leq g(\alpha)$$

2. $g(\alpha) \neq \sup_{\beta < \alpha} f(\beta)$ for all limit $\beta < \kappa$.
3. $f(\alpha) \neq \sup_{\beta < \alpha} g(\beta)$ for all limit $\beta < \kappa$.
then $\Phi(f) \leq \Phi(g)$.

< 回 > < 三 > < 三 >

Fix $I: \kappa \to \kappa$ increasing, discontinuous, with range in the additively indecomposable ordinals. We use functions of "indecomposable type I."

For $h \in [\kappa]_*^{\kappa}$, let main $(h)(\alpha) = h(\mathcal{I}(\alpha))$. Note that main(h) is also of the correct type.

 \mathcal{P} : partition $h \in [\kappa]^{\kappa}_*$ according to whether

 $\forall p \in [h[\kappa]]_*^{\kappa} \Phi(\operatorname{main}(h)) \leq \Phi(\operatorname{main}(p))$

By wellfoundedness, on the homogeneous side of the partition the stated property holds. Fix C_0 homogeneous for \mathcal{P} and let $C_1 \subseteq C_0$ be the closure points of C_0 .

= nar

Fix $f, g \in [C_1]^{\kappa}_*$ satisfying (1)-(3), and we show that $\Phi(f) \leq \Phi(g)$.

We define two functions h, p with $h \in [C_0]_*^{\kappa}$, $p \in [h[\kappa]]_*^{\kappa}$, main(h) = f, and main(p) = g.

Let σ_{β} be least so that $g(\sigma_{\beta}) > f(\beta)$. So $\sigma_{\beta} \leq \beta + 1$.

Proceeding inductively on α we assume:

- For all β < α, h ↾ (I(β) + 1) has been defined (of correct type) and h(I(β)) = f(β).</p>
- For all β < α, for all η < σ_β, p ↾ (I(η) + 1) has been defined and p(I(η)) = g(η).

イロト イロト イヨト -

= nar

▶ sup $f \upharpoonright \alpha < g(\iota_{\alpha})$ and sup $(A) < f(\alpha)$ from our assumptions.

Let

$$\delta_0 = \sup\{\mathcal{I}(\beta) + 1 : \beta < \alpha\}$$

$$\tau_0 = \sup\{\mathcal{I}(\beta) + 1 : \beta < \iota_{\alpha}\}$$

So we have defined $h \upharpoonright \delta_0$, $p \upharpoonright \tau_0$, and $\sup h \upharpoonright \delta_0 = \sup f \upharpoonright \alpha$, $\sup p \upharpoonright \tau_0 = \sup g \upharpoonright \iota_{\alpha}$. For $\nu < \xi$, set:

$$\delta_{\nu} = \sup\{\delta_{0} + \mathcal{I}(\iota_{\alpha} + \eta) + 1 : \eta < \nu\}$$

$$\epsilon_{\nu} = \delta_{0} + \mathcal{I}(\iota_{\alpha} + \nu) = \delta_{\nu} + \mathcal{I}(\iota_{\alpha} + \nu)$$

$$\tau_{\nu} = \sup\{\tau_0 + I(\iota_{\alpha} + \eta) + 1 : \eta < \nu\}$$

$$\mu_{\nu} = \tau_0 + I(\iota_{\alpha} + \nu) = \tau_{\nu} + I(\iota_{\alpha} + \nu)$$

Assume $h \upharpoonright \delta_{\nu}$, $p \upharpoonright \tau_{\nu}$ have been defined and sup $h \upharpoonright \delta_{\nu} = \sup p \upharpoonright \tau_{\nu} = \sup g \upharpoonright (\iota_{\alpha} + \nu).$

For $\beta < I(\iota_{\alpha} + \nu)$, define:

$$h(\delta_{\nu}+\beta)=p(\tau_{\nu}+\beta)=\operatorname{next}_{C_{0}}^{\omega\cdot(\beta+1)}(\sup h\restriction\delta\nu)$$

(日)

This defines
$$h \upharpoonright \epsilon_{\nu}$$
, $p \upharpoonright \mu_{\nu}$, and we then set
 $h(\epsilon_{\nu}) = p(\mu_{\nu}) = g(\iota_{\alpha} + \nu)$.
Let $\delta = \sup\{\epsilon_{\nu} + 1 : \nu < \xi\}, \tau = \sup\{\mu_{\nu} + 1 : \nu < \xi\}$.
So, $h \upharpoonright \delta$, $p \upharpoonright \tau$ have been defined and
 $\sup h \upharpoonright \delta = \sup p \upharpoonright \tau = \sup g \upharpoonright (\iota_{\alpha} + \xi)$.

• Note that $\tau \leq \delta \leq \delta_0 + \sup(\mathcal{I} \upharpoonright \alpha) + 1 < \delta_0 + \mathcal{I}(\alpha) = \mathcal{I}(\alpha)$.

= 990

Let
$$\ell = \min(\kappa \setminus A) = \iota_{\alpha} + \xi$$
. We could have $g(\ell) > f(\alpha)$ or
 $g(\ell) = f(\alpha)$.
If $g(\ell) > f(\alpha)$, set for $\beta < I(\alpha)$: $h(\delta + \beta) = \operatorname{next}_{C_0}^{\omega \cdot (\beta+1)}(\sup h \upharpoonright \delta)$
and set $h(I(\alpha)) = f(\alpha)$.
If $g(\ell) = f(\alpha)$ and $\ell = \alpha$, set for $\beta < I(\alpha)$,
 $h(\delta + \beta) = \operatorname{next}_{C_0}^{\omega \cdot (\beta+1)}(\sup h \upharpoonright \delta)$,
 $p(\tau + \beta) = \operatorname{next}_{C_0}^{\omega \cdot (\beta+1)}(\sup p \upharpoonright \tau)$,

イロト イロト イヨト イヨト

Э.

If
$$g(\ell) = f(\alpha)$$
 and $\ell < \alpha$, set for $\beta < I(\ell)$,
 $h(\delta + \beta) = \operatorname{next}_{C_0}^{\omega \cdot (\beta+1)}(\sup h \restriction \delta),$
 $p(\tau + \beta) = \operatorname{next}_{C_0}^{\omega \cdot (\beta+1)}(\sup p \restriction \tau),$
and for $\beta < I(\alpha)$ set
 $h(\delta + I(\ell) + \beta) = \operatorname{next}_{C_0}^{\omega \cdot (\beta+1)}(\sup h \restriction I(\ell)),$
as shown.

Set
$$h(I(\alpha)) = f(\alpha)$$
, $p(I(\ell)) = g(\ell) = f(\alpha)$.

▲□▶ ▲圖▶ ▲国▶ ▲国▶

≡ ∽ へ (~

We now consider the general case, without the restrictions on *f* and *g*.

Let C_0 be homogeneous for the previous restricted version, and C_1 the closure points of C_0 .

Fix $f, g \in [C_1]^{\kappa}_*$ with $f(\alpha) \leq g(\alpha)$ for all $\alpha < \kappa$.

- We first lower g to get k with f ≤ k ≤ g and such that (k, g) satisfies the assumptions and (f, k) satisfies k(α) is not of the form sup f ↾ β for limit β.
- We then define *h* with *f* ≤ *h* ≤ *k* where (*h*, *k*) and (*f*, *h*) satisfy the assumptions.

(日)

Definition of k:

Let (η_{ξ}, v_{ξ}) enumerate the pairs with $g(\eta_{\xi}) = \sup f \upharpoonright v_{\xi}$. If α is not of the form η_{ξ} , let $k(\alpha) = g(\alpha)$.

$$\underbrace{\sup f \upharpoonright \mu_{\xi}}_{\sup g} f(\mu_{\xi}) \quad f(\mu_{\xi} + 1) \quad \sup f \upharpoonright \nu_{\xi} \quad f(\nu_{\xi})$$
$$k(\eta_{\xi})$$
$$\underbrace{\sup g \upharpoonright \eta_{\xi}}_{\sup g} g(\eta_{\xi})$$

We have $\eta_{\xi} \leq \mu_{\xi} < \mu_{\xi} + 1 < \nu_{\xi}$.

Definition of h:

Let (η_{ξ}, v_{ξ}) enumerate the pairs with $f(v_{\xi}) = \sup k \upharpoonright \eta_{\xi}$.

$$\sup f \upharpoonright v_{\xi} \qquad \qquad f(v_{\xi})$$

$$h(\mu_{\xi}) \quad \sup h \upharpoonright \eta_{\xi}$$

 $\sup k \upharpoonright \mu_{\xi} \qquad \qquad k(\mu_{\xi}) \quad \sup k \upharpoonright \eta_{\xi} \quad k(\eta_{\xi})$

 μ_{ξ} is least so that $k(\mu_{\xi}) > \sup f \upharpoonright v_{\xi}$. $\mu_{\xi} < \eta_{\xi} \le v_{\xi}$.

= nar

Theorem (Chan, J, Trang)

Suppose $\epsilon < \kappa$, $cof(\epsilon) = \omega$, and $\kappa \to (\kappa)^{\epsilon \cdot \epsilon}$. Then for any $\Phi : [\kappa]^{\epsilon}_* \to On$, there is a c.u.b. $C \subseteq \kappa$ and a $\delta < \epsilon$ such that if $f, g \in [C]^{\epsilon}_*$ with $f \upharpoonright \delta = g \upharpoonright \delta$ and sup(f) = sup(g), then $\Phi(f) = \Phi(g)$.

We have the following application.

Theorem (CJT)

Suppose $\kappa \to (\kappa)^{<\kappa}$. Then for all $\lambda < \kappa$, there does not exist an injection of $\kappa^{<\kappa}$ into ${}^{\lambda}On$.

A (1) < A (2) < A (2) </p>

We prove the application from the theorem.

Proof: Suppose $\Phi: \kappa^{<\kappa} \rightarrow {}^{\lambda}$ On is injective.

For each $\gamma < \lambda$ and $\epsilon < \kappa$, Φ induces $\Phi_{\gamma}^{\epsilon} : [\kappa]_*^{\epsilon} \to \text{On by}$

$$\Phi^\epsilon_\gamma(f) = \Phi(f)(\gamma)$$

By the Theorem, $\forall \gamma < \lambda \ \forall \epsilon < \kappa \ \exists C \subseteq \kappa \ \exists \delta < \epsilon \ \text{for all } f, g \in [C]^{\epsilon}_{*}$, if $\sup f = \sup g \text{ and } f \upharpoonright \delta = g \upharpoonright \delta$, then $\Phi^{\epsilon}_{\gamma}(f) = \Phi^{\epsilon}_{\gamma}(g)$.

Let $\delta_{\gamma}^{\epsilon} < \epsilon$ be the least such δ .

A (10) N (10)

For each $\gamma < \lambda$, let $\delta_{\gamma} < \kappa$ be such that for almost all ϵ of cofinality ω , we have $\delta_{\gamma}^{\epsilon} = \delta_{\gamma}$.

Let
$$\delta^* = \sup_{\gamma < \lambda} \delta_{\gamma} < \kappa$$
.

For each $\gamma < \lambda$, there is an ω -club in κ of ϵ such that $\delta_{\gamma}^{\epsilon} = \delta_{\gamma} < \delta^*$.

By additivity of the club filter, we may fix an $\epsilon^* < \kappa$ so that for all $\gamma < \lambda$, $\delta_{\gamma}^{\epsilon^*} < \delta^*$.

So, for all $\gamma < \lambda$ there is a club $C \subseteq \kappa$ such that for all $f, g \in [C]_*^{\epsilon^*}$ with $\sup f = \sup g$ and $f \upharpoonright \delta^* = g \upharpoonright \delta^*$ we have $\Phi(f)(\gamma) = \Phi(g)(\gamma)$.

We need a variation of the additivity argument.

- 4 伺 ト 4 ヨ ト 4 ヨ ト -

If we find a c.u.b. $C \subseteq \kappa$ that works for all $\gamma < \lambda$, then we have a contradiction:

Consider $f, g \in [C]^{\epsilon^*}_*$ with sup $f = \sup g, f \upharpoonright \delta^* = g \upharpoonright \delta^*$ and with $f \neq g$.

Additivity argument.

For all
$$\gamma < \lambda$$
, $\forall^* f \in [\kappa]^{\epsilon^*}_*$ if $g \upharpoonright \delta^* = f \upharpoonright \delta^*$, and $g \sqsubseteq f$, then $\Phi(g)(\gamma) = \Phi(g)(\gamma)$.

By the additivity of the function space measure, there is a c.u.b. $C \subseteq \kappa$ such that $\forall \gamma < \lambda \ \forall f \in [C]^{\epsilon^*}_*$ if $g \upharpoonright \delta^* = f \upharpoonright \delta^*$, and $g \sqsubseteq f$, then $\Phi(f)(\gamma) = \Phi(g)(\gamma)$.

This c.u.b. $C \subseteq \kappa$ works. If $f, g \in [C]_{*}^{\epsilon^{*}}$, $f \upharpoonright \delta^{*} = g \upharpoonright \delta^{*}$, and $\sup(f) = \sup(g)$, then there is an $h \in [C]_{*}^{\epsilon^{*}}$ with $h \upharpoonright \delta^{*} = f, g \upharpoonright \delta^{*}$, and with $f \sqsubseteq h, g \sqsubseteq h$.

イロト イロト イヨト

э.

We first prove the following consequence of continuity.

Definition

We say $f, g: \epsilon \to \kappa$ are E_0 -equivalent if $\exists \alpha \forall \beta \geq \alpha f(\beta) = g(\beta)$.

Theorem

Assume $\kappa \to \kappa^{<\kappa}$. Let $\epsilon < \kappa$ with $cof(\kappa) = \omega$. Let $\Phi : [\kappa]^{\epsilon}_* \to On$ be E_0 -invariant. Then there is a c.u.b. $C \subseteq \kappa$ such that if $f, g \in [C]^{\epsilon}_*$ wirth sup(f) = sup(g), then $\Phi(f) = \Phi(g)$.

イロト イポト イヨト イヨト

Assume first that ϵ is indecomposable.

Partition: For $f \in [\kappa]^{\epsilon}_{*}$, $\mathcal{P}_{1}(f) = 1$ if there is a $g \sqsubseteq f$ with $\Phi(g) > \Phi(f)$.

Assume towards a contradiction that $\mathcal{P}_1(f) = 1$ on the homogeneous side.

Partition: For $h \in [\kappa]^{\epsilon \cdot \epsilon}_*, \mathcal{P}_2(h) = 1$ iff letting $h' : \epsilon \to \kappa$ be $h'(\alpha) = \sup\{h(\epsilon \cdot \alpha + \beta) : \beta < \epsilon\}$, there is an $f \in [C_h]^{\epsilon}_*$ with $h' \sqsubseteq f$ and $\Phi(f) < \Phi(h')$.

イロト イロト イヨト -

∃ na

From $\mathcal{P}_1 = 1$ on the homogeneous side we get $\mathcal{P}_2 = 1$ on the homogeneous side. Suppose not, and let C_1 , C_2 be homogeneous for $\mathcal{P}_1 = 1$ and $\mathcal{P}_2 = 0$. Let $C = (C_1 \cap C_2)'$.

Fix $f: \epsilon \to C$ of the correct type and $g \sqsubseteq f$ of correct type with $\Phi(g) > \Phi(f)$.

We construct $h \in [C]_*^{\epsilon \cdot \epsilon}$ with h' = g and $h' \sqsubseteq f$, and $f \in [C_h]_*^{\epsilon}$. This contradicts $\mathcal{P}_2(h) = 0$.

< 口 > < 同 > < 三 > < 三 > 、

∃ na

Let $\rho: \omega \to \epsilon$ be cofinal. Let $b(\alpha)$ be least *n* such that $\rho(n) > \alpha$. Let $B_n = \{\alpha: b(\alpha) = n\} = \rho(n) - \rho(n-1)$.

Let $r^{\alpha} : \epsilon \to (\sup_{\beta < \alpha} g(\beta), g(\alpha))$ with $r^{\alpha}(\beta) = \operatorname{next}_{C}^{\omega \cdot (\beta+1)}(G(\alpha, b(\beta)))$ where *G* witnesses *g* has uniform cofinality ω .

伺下 イヨト イヨト

Let F^{α} be those points of $[sup_{\beta < \alpha}f(\beta), f(\alpha)) \cap ran(f)$ not a limit of $ran(r^{\alpha})$.

Let $\{h(\epsilon \cdot \alpha + \beta) : \beta < \epsilon\}$ enumerate $ran(r^{\alpha}) \cup F^{\alpha}$.

This shows that on the homogeneous side we have $\mathcal{P}_2 = 1$.

We now do an argument which contradicts $\mathcal{P}_1 = 1$ on the homogenous side.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ = ● ● ● ●

Let $D_0 = (C_2)'$, and $D_{n+1} = D'_n$.

We construct functions $g_0, g_1, ...$ in $[[D_1]^{\epsilon}_*$ with $\Phi(g_0) > \Phi(g_1) > \cdots$, a contradiction.

Let $g_0 \in [D_1]^{\epsilon}_*$ be such that (*): for all *n* and all large enough $\alpha < \epsilon$ we have $g_0(\alpha) \in D_n$. Assume g_n also has these properties.

Let $h: \epsilon \cdot \epsilon \to D_0$ be such that if $\alpha \in D_m$, then $h(\epsilon \cdot \alpha + \beta) \in D_{m-1}$ and $h' = g_n$.

By homogeneity of C_2 , there is a $\tilde{g}_{n+1} \in [C_h]^{\epsilon}_*$ with $g_n = h' \sqsubseteq \tilde{g}_{n+1}$ and $\Phi(g_{n+1}) < \Phi(g_n)$. Easily \tilde{g}_{n+1} also satisfies (*).

Let $g_{n+1}E_0\tilde{g}_{n+1}$ and $g_{n+1}\in [D_1]^{\epsilon}_*$.

∃ na

Now we prove the general continuity result.

Let $\Phi : [\kappa]^{\epsilon}_* \to \text{On.}$ We assume ϵ is indecomposible (general case similar). Again let $\rho : \omega \to \epsilon$ be cofinal.

We say (f, g) is of type *n* if $f, g: \epsilon \to \kappa$ are of the correct type and

For each *n* we consider the partition

 \mathcal{P}^n : partition pairs (f, g) of type *n* by:

$$\mathcal{P}^n(f,g) = egin{cases} 0 & ext{if } \Phi(f) = \Phi(g) \ 1 & ext{if } \Phi(f) < \Phi(g) \ 2 & ext{if } \Phi(f) > \Phi(g) \end{cases}$$

Claim

There is an m^* such that for all $n \ge m^*$, \mathcal{P}^n is homogeneous for the 0 side.

First suppose there are infinitely many *n* such that \mathcal{P}^n is homogeneous for the 1 side.

Say $n_0 < n_1 < \cdots$ are homogeneous for the 1 side. Let *C* be a homogeneous set for the \mathcal{P}^n .

Fix $\delta_0 < \delta_1 < \cdots$ in C''.

We define $f_0, f_1, ...$ in $[C]^{\epsilon}_*$ such that (f_{i+1}, f_i) is of type n_i for all *i*. Then $\Phi(f_{i+1}) < \Phi(f_i)$ for all *i*, a contradiction.

Let $f_0 \in [C']^{\epsilon}_*$ with $f_0 \upharpoonright [\rho(n-1), \rho(n)) \subseteq (\delta_{n-1}, \delta_n)$.

Given f_i , define f_{i+1} by:

►
$$f_{i+1} \upharpoonright \rho(n_i) = f_i \upharpoonright \rho(n_i)$$

► For $\alpha \in [\rho(n_i), \rho(n_i+1)), f_{i+1}(\alpha) = \operatorname{next}_{C_0}^{\omega \cdot (\alpha+1)}(\delta_i)$
► For $j > n_i$ and $\alpha \in [\rho(j), \rho(j+1)), f_{i+1}(\alpha) = \operatorname{next}_{C_1}^{\omega \cdot (\alpha+1)}(\sup f_i \upharpoonright \rho(j+1))$

$$f_1 \quad f_0 \quad f_0 \quad f_1 \quad f_0 \quad f_1$$

$$f_1 \quad f_0 \quad f_0 \quad f_1 \quad f_0 \quad f_1$$

$$f_1 \quad f_0 \quad \delta_{n_0+1} \quad \delta_{n_0+2}$$

Steve Jackson Determinacy, Partition Properties, and Combinatorics III

イロト イロト イヨト イヨト

Э.

Suppose there are infinitely many *n* for which \mathcal{P}^n is homogeneous for the 2 side. Again fix $n_0 < n_1 < \cdots$.

The argument is similar to the previous case except now start with f_0 such that $f_0 \upharpoonright [\rho(n-1), \rho(n)) \subseteq C^{(n)}$.

< 🗇 🕨 < 🖻 🕨 < 🖻

Fix $m^* \in \omega$ such that for all $n \ge m^*$, \mathcal{P}^n is homogeneous for the 0 side. Let *C* be homogeneous for all of the \mathcal{P}^n . Let $\epsilon^* = \rho(m^*)$.

For $\ell \in [C]^{\rho(m*)}_*$, let $\Phi_\ell \colon [\kappa]^{\epsilon}_* \to On$ be given by $\Phi_\ell(u) = \Phi(\ell^{-}u)$.

Claim

 Φ_{ℓ} is E_0 -invariant.

To see this, suppose $u, v \in [C'']^{\epsilon}_*$ with uE_0v . Let $f = \ell^{-}u, g = \ell^{-}v$. So, $f \upharpoonright \rho(m^*) = g \upharpoonright \rho(m^*)$, and say $\forall \alpha > \rho(n^*) f(\alpha) = g(\alpha)$.

Let $f_{m^*} = f$, $g_{m^*} = g$. We define f_{m^*} , f_{m^*+1} , ..., f_{n^*} and likewise for g with $f_{n^*} = g_{n^*}$, so that

$$\Phi(f) = \Phi(f_{m^*}) = \Phi(f_{m^*+1}) = \cdots = \Phi(f_{n^*})$$
$$= \Phi(g_{n^*}) = \cdots = \Phi(g_{m^*}) = \Phi(g)$$

So, for almost all ℓ , $\Phi_{\ell}(u)$ depends only on $\sup(u)$ for almost all u. Let $\delta = \rho(m^*)$.

To finish, consider the partition:

 $\mathcal{P}: \text{ partition } f \in [\kappa]^{\epsilon}_* \text{ according to whether, if we let } \ell = f \upharpoonright \delta \text{ and } u = f \upharpoonright [\delta, \epsilon), \text{ for all } v \sqsubseteq u \text{ we have } \Phi(\ell^{\frown} u) = \Phi(\ell^{\frown} v).$

Since $\Phi(\ell^{-}u)$ only depends on $\sup(u)$ almost everywhere, on the homogeneous side the stated property holds.

Let $C \subseteq \kappa$ be homogeneous for \mathcal{P} .

Then if $f, g \in [C]_*^{\epsilon}$, $f \upharpoonright \delta = g \upharpoonright \delta$, and $\sup(f) = \sup(g)$, then $\Phi(f) = \Phi(g)$ (consider $f \cup g$).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ = ● ● ● ●