Determinacy, Partition Properties, and Combinatorics II

Steve Jackson

May/June, 2023 Young Set Theory Workshop University of Münster

We first show the easiest version of the partition relations.

Theorem $\omega_1 \to (\omega_1)^{<\omega_1}$.

Remark

The same proof shows that if Γ is a Π_1^1 -like class (Γ is closed under $\forall^{\omega^{\omega}}, \wedge, \vee, \text{ and pwo}(\Gamma)$) then $\delta \to (\delta)^{<\omega_1}$.

Remark

The proof uses the Martin framework for showing partition properties from AD.

< 回 > < 回 > < 回 >

Proof: Fix $\epsilon < \omega_1$, fix a bijection $\pi: \omega \cdot \epsilon \to \omega$.

For $x \in \omega^{\omega}$, x codes a partial $\omega \cdot \epsilon$ sequence f_x by: for $\alpha < \omega \cdot \epsilon$,

$$f_x(\alpha) = |(x)_{\pi(\alpha)}|.$$

If f_x has domain $\omega \cdot \epsilon$ and is increasing, we let $F_x \colon \epsilon \to \omega_1$ be the function it induces: $F_x(\alpha) = \sup f_x \upharpoonright \omega \cdot (\alpha + 1)$.

A (10) × A (10) × A (10) ×

Given the partition $\mathcal{P}: [\omega_1]^{\epsilon}_* \to 2$, play the following game. I plays out *x*, II plays out *y*.

If there is a least $\alpha < \omega \cdot \epsilon$ such that either $x_{\pi(\alpha)} \notin WO$ or $y_{\pi(\alpha)} \notin WO$ then I wins iff $x_{\pi(\alpha)} \in WO$.

Otherwise, $f_x, f_y: \omega \cdot \epsilon \to \omega_1$ are defined. Let for $\alpha < \epsilon$,

$$F(\alpha) = \max\{F_x(\alpha), F_y(\alpha)\}.$$

Then I wins iff $\mathcal{P}(F) = 0$.

∃ na

Suppose w.l.o.g. that II has a winning strategy τ .

For $\alpha < \omega \cdot \epsilon$ and $\beta < \omega_1$, Let

$$R_{\alpha,\beta} = \{ x \colon \forall \alpha' \le \alpha \ f_x(\alpha') \le \beta \}$$

Here $f_x(\alpha') \leq \beta$ means $x_{\pi(\alpha')} \in WO$ and $|x_{\pi(\alpha')}| \leq \beta$. Easily, $R_{\alpha,\beta} \in \Delta_1^1$. So, $\tau[R_{\alpha,\beta}] \in \Sigma_1^1$. By the payoff condition on the game,

 $\tau[R_{\alpha,\beta}] \subseteq R_{\alpha} = \{ \mathbf{y} \colon \forall \alpha' \leq \alpha \ \mathbf{y}_{\pi(\alpha')} \in \mathsf{WO} \}.$

A (10) × A (10) × A (10) ×

A Σ_1^1 subset of R_{α} codes a bounded set of ordinals.

Let
$$g(\alpha,\beta) = \sup\{|y_{\pi(\alpha)}: y \in \tau[R_{\alpha,\beta}]\}.$$

Let C be c.u.b. and closed under g.

Then C' is homogeneous for \mathcal{P} :

Fix $F : \epsilon \to C'$ of the correct type and let $f : \omega \cdot \epsilon \to C$ induce F, i.e., $F(\alpha) = \sup\{f(\alpha') : \alpha' < \omega \cdot (\alpha + 1)\}.$

Fix *x* coding *f*.

Since $x \in R_{\alpha',f(\alpha')}$ for all $\alpha' < \omega \cdot \epsilon$, $f_y(\alpha') < g(\alpha', f(\alpha')) < f(\alpha'+1)$. So, $F_x = F_y = F$, and as τ is winning for II, $\mathcal{P}(F) = 1$.

(日本) (日本) (日本)

We abstract the above argument into a definition.

Definition

Let $\lambda \leq \kappa$, where $\lambda \in On$, κ a cardinal. We say κ is λ -reasonable if there is a non-selfdual pointclass Γ closed under $\exists^{\omega^{\omega}}$ and a map ϕ with domain ω^{ω} satisfying:

1.
$$\phi(x) \subseteq \lambda \times \kappa$$
.

2.
$$\forall f : \lambda \to \kappa \exists x \in \omega^{\omega} \phi(x) = f.$$

3.
$$\forall \alpha < \lambda \ \forall \beta < \kappa \ R_{\alpha,\beta} \in \Delta$$
, where $x \in R_{\alpha,\beta} \leftrightarrow \phi(x)(\alpha,\beta) \land (\phi(x)(\alpha,\beta') \to \beta' = \beta)$.

4. Suppose
$$\alpha < \lambda$$
, $A \in \exists^{\omega^{\omega}} \Delta$, and
 $A \subseteq R_{\alpha} = \{x : \exists \beta < \kappa \ x \in R_{\alpha,\beta}\}$. Then
 $\exists \beta_0 < \kappa \ \forall x \in A \ \exists \beta < \beta_0 \ \phi(x)(\alpha, \beta).$

伺下 イヨト イヨト

Theorem (Martin)

Suppose κ is $\omega \cdot \lambda$ reasonable. Then $\kappa \to \kappa^{\lambda}$.

Proof: Exactly as in the previous proof.

We now show the strong partition relation at ω_1 .

```
Theorem (Martin)
```

 $\omega_1 \rightarrow (\omega_1)^{\omega_1}.$

Proof (J): We show there is a coding of the functions $f: \omega_1 \to \omega_1$ witnessing that ω_1 is ω_1 -reasonable.

The main step is to analyze the measure on ω_1 , and then convert this to an analysis of the subsets of ω_1 via an argument of Kunen.

A (10) × A (10) × A (10) ×

The (cub) partition relation $\kappa \to (\kappa)^2$ gives that the ω -cofinal c.u.b. filter of κ is a normal measure W_1^1 on κ .

Let W_1^n denote the *n*-fold product of W_1^1 .

Theorem $(AD + DC_{\mathbb{R}})$

Let μ be a measure on ω_1 . Then μ is equivalent to W_1^n for some n (or to a principal measure).

(周) (三) (三)

Proof: Assume μ is non-principal.

Let $f_1: \omega_1 \to \omega_1$ represent the least equivalence class such that f_1 is almost everywhere non-constant, and monotonically increasing.

Let $v_1 = f_1(\mu)$. Then $v_1 = W_1^1$. Fix a μ measure one set A_1 on which f_1 is monotonically increasing.

Let
$$g_1(\beta) = \sup\{\alpha \in A_1 : f_1(\alpha) \le \alpha\}.$$

Let x_1 be such that $\forall^* \beta_1 g_1(\beta_1) < |T_{x_1} \upharpoonright \beta_1|$.

For μ almost all α , let $r_1(\alpha)$ be such that

 $\alpha = |T_{x_1} \upharpoonright f_1(\alpha)(r_1(\alpha))|.$

< 回 > < 回 > < 回 >

Now we proceed with the measure $r_1(\mu)$.

Consider the case r_1 not constant almost everywhere. Note that a.e. $r_1(\alpha) < f_1(\alpha)$.

Let f_2 represent the least μ equivalence class such that f_2 is not a.e. constant, and is a.e. monotonically increasing with respect to r_1 .

That is, there is a μ measure one set A such that if α , α' are in A, $f_1(\alpha) = f_1(\alpha')$, and $r_1(\alpha) \le r_1(\alpha')$, then $f_2(\alpha) \le f_2(\alpha')$.

< 回 > < 回 > < 回 >

Note that there does not exist a c.u.b. $C \subseteq \omega_1$ and a μ measure one set A such that for all $\beta \in C$, { $f_2(\alpha) : f_1(\alpha) = \beta \land \alpha \in A$ } is bounded below $f_1(\alpha)$. [Otherwise r_2 is constant μ almost everywhere.]

Claim

We have $f_2(\mu) = W_1^1$.

For suppose $C \subseteq \omega_1$ is c.u.b. and $\forall_{\mu}^* \alpha f_2(\alpha) \notin C$.

Let $f'_2 = \ell_C \circ f_2$ where $\ell(\gamma)$ is the largest element of $C \ge \gamma$.

Then for μ almost all α we have $f'_2(\alpha) < f_2(\alpha)$ and f'_2 is monotonically increasing "on the f_1 blocks" with respect to r_1 . Also, f'_2 is not constant μ almost everywhere. This contradicts the definition of f_2 .

イロト イポト イヨト イヨト

= nar

Fix a μ measure one set $A_2 \subseteq A_1$ on which f_2 is monotonically increasing on the f_1 blocks with respect to r_1 .

Define g_2 by:

$$g_2(\beta_2,\beta_1) = \sup\{r_1(\alpha) \colon \alpha \in A_2 \land f_1(\alpha) = \beta_1 \land f_2(\alpha) = \beta_2\}.$$

Then for W_1^2 almost all (β_2, β_1) , $g_2(\beta_2) < \beta_1$. This follows from the monotonicity of f_2 on the f_1 blocks and the fact that f_2 is not constant μ almost everywhere.

э

For W_1^2 almost all (β_2, β_1) , $g_2(\beta_2, \beta_1)$ depends only on β_2 . Fix x_2 such that for W_1^1 almost all β_2 , $g_2(\beta_2) < |T_{x_2} \upharpoonright \beta_2|$. This then defines r_2 : $\forall_{\mu}^* \alpha$

$$\alpha = |T_{x_1} \upharpoonright f_1(\alpha)(|T_{x_2} \upharpoonright f_2(\alpha)(r_2(\alpha))|)|$$

Continuing, we define $f_1, \ldots, f_n, g_1, \ldots, g_n$ for some *n*, reals x_1, \ldots, x_n , and r_1, \ldots, r_n such that r_n is constant almost everywhere, say equal to δ .

< 同 ト く ヨ ト く ヨ ト

We then have: $\forall_{\mu}^{*} \alpha$

$$\alpha = |T_{x_1}(f_1(\alpha))(|T_{x_2}(f_2(\alpha))(\cdots(|T_{x_n}(f_n(\alpha)(\delta))|)\cdots)|)|$$

We also have that if $F(\alpha) = (f_1(\alpha), \dots, f_n(\alpha), \text{ then } F(\mu) = W_1^n$. Let $G(\beta_1, \dots, \beta_n) = |T_{x_n} \upharpoonright (\beta_n)(G_{n-1}(\beta_1, \dots, \beta_{n-1}))|$, where $G_k(\beta_1, \dots, \beta_k) = |T_{x_k} \upharpoonright \beta_k(G_{k-1}(\beta_1, \dots, \beta_{k-1}))|$, and $G_0(\emptyset) = \delta$.

A (10) × A (10) × A (10) ×

We have defined a μ measure one set A_n on which F is one-to-one and $F(\mu) = W_1^n$.

This completes the analysis of measures on ω_1 .

Fact (AD)

(Martin) The cone filter is a measure on the set $\ensuremath{\mathcal{D}}$ of Turing degrees.

Definition

 Θ is the supremum of the lengths of the pwos of $\mathbb{R}.$

Fact

(Kunen) Let $\lambda < \Theta$. Then every countably additive filter \mathcal{F} on λ can be extended to a measure on λ .

< 回 > < 三 > < 三 >

Proof: Let $\pi: \omega^{\omega} \to \mathcal{P}(\lambda)$ be onto (coding lemma). Let ν be the Martin measure on \mathcal{D} . For $d \in \mathcal{D}$, let

$$f(d) = \min \ \cap \{\pi(x) \colon x \in d \land \pi(x) \in \mathcal{F}\}.$$

Let $\mu = f(v)$.

Fix the Kunen tree T at ω_1 .

We say $\tau \in \omega^{\omega}$ is a code for a c.u.b. set if $\forall x \in WO \ \tau(x) \in WO$. Let $C_x = \{ \alpha < \omega_1 : \forall \gamma < \alpha \ | T_x \upharpoonright \gamma | < \alpha \}.$

Fact

For every c.u.b. $C \subseteq \omega_1$ there is a code x such that $C_x \subseteq C$.

< 回 > < 三 > < 三 >

Definition

A set $S \subseteq \omega_1$ is simple if there is a c.u.b. code τ , an $\alpha_0 < \omega_1$, x_1, \ldots, x_n with T_{x_i} wellfounded such that

$$\mathbf{S} = \{\alpha \colon \exists \alpha_1 < \cdots < \alpha_n \in \mathbf{C}_\tau \ \alpha = h_n(\alpha_1, \ldots, \alpha_n; \vec{\mathbf{x}})\}$$

where

$$h_i(\alpha_1,\ldots,\alpha_i;\vec{x}) = |T_{x_i} \upharpoonright \alpha_i(h_{i-1}(\alpha_1,\ldots,\alpha_{i-1};\vec{x}))|$$

and

$$h_0(\vec{x}) = \alpha_0.$$

イロト イポト イヨト イヨト

э

A code for the simple set *S* a real of the form $(x_0; x_1, ..., x_n; \tau)$ where τ is a c.u.b. code, $x_0 \in WO$, and T_{x_i} are wellfounded.

Following an argument of Kunen we show:

Fact

Every $A \subseteq \omega_1$ is a countable union of simple sets.

Proof: Let I be the σ -ideal generated by the simple sets contained in A.

Assume toward a contradiction \mathcal{I} is a proper ideal, and let μ be a measure on A extending the corresponding filter \mathcal{F} .

A (10) × A (10) × A (10) ×

э

By the analysis of measures on ω_1 , there are x_1, \ldots, x_n with T_{x_i} wellfounded and an $\alpha_0 < \omega_1$ such that for all $B \subseteq \omega_1$ (assuming *B* is not bounded):

$$\mu(B) = 1 \leftrightarrow \exists c.u.b. \ C \subseteq \omega_1 \forall \beta_1 < \cdots < \beta_n \in C$$
$$h_n(\alpha_0; \beta_1, \dots, \beta_n, x_1, \dots, x_n) \in B.$$

Since $\mu(A) = 1$, we may fix a c.u.b. code τ , a $x_0 \in WO$ coding α_0 , and the x_1, \ldots, x_n above.

Let $S = S(x_0; x_1, ..., x_n; \tau)$ be the simple set given by these reals, so $S \subseteq A$.

Then $\mu(S) = 1$, but this contradicts $S \in I$.

イロト イポト イヨト イヨト

∃ na

We now define the coding map ϕ . As a warm-up we first define a coding for subsets of ω_1 , so $\phi(x) \subseteq \omega_1$.

View $x \in \omega^{\omega}$ as coding countably many $(x_0^i; x_1^i, \dots, x_{n_i}^i; \tau^i)$. Set $\phi(x)(\alpha)$ iff $\exists i \ \alpha \in S(x^i) = S(x_0^i; x_1^i, \dots, x_{n_i}^i; \tau^i)$ iff

$$\exists i \exists \beta_1 < \cdots < \beta_{n_i} \in C_{\tau^i} \cap \alpha \ [|x_0^i| < \alpha \\ \land h(|x_0^i|; \beta_1, \dots, \beta_{n_i}; x_1^i, \dots, x_{n_i}^i) = \beta].$$

э

So, every $A \subseteq \omega_1$ is of the form $\phi(x)$ for some $x \in \omega^{\omega}$.

This is a Δ_1^1 -coding of the subsets of ω_1 :

For all $\alpha < \omega_1$, $\{x : \phi(x)(\alpha)\} \in \mathbf{\Delta}_1^1$.

We modify this coding to code functions from ω_1 to ω_1 . So, $\phi(x) \subseteq \omega_1 \times \omega_1$.

It is not quite good enough to just regard $f: \omega_1 \to \omega_1$ as a subset of $\omega_1 \times \omega_1 \approx \omega_1$.

< 回 > < 三 > < 三 >

Suppose $f: \omega_1 \to \omega_1$ is increasing.

A simple subfunction $S \subseteq f$ is one where there is a c.u.b.code τ , x_1, \ldots, x_n with T_{x_i} wellfounded, and two $\gamma_0, \gamma_1 < \omega_1$ such that:

$$(\alpha,\beta) \in S \leftrightarrow \exists \max\{\gamma_0,\gamma_1\} < \beta_1 < \dots < \beta_n < \alpha$$
$$[\beta_1,\dots,\beta_n \in C_\tau \land h(\gamma_0,\beta_1,\dots,\beta_n;\vec{x}) = \alpha$$
$$\land h(\gamma_1,\beta_1,\dots,\beta_n;\vec{x}) = \beta]$$

(日)

э

An argument similar to that for sets shows that every function *f* is a countable union of simple subfunctions.

- We let X = f, and analyze the measures on X.
- ▶ If μ is a measure on X, let $f_0: X \to \omega_1$ represent the least equivalence class of a function which is not μ a.e. constant and monotonically increasing in the first argument (if $\alpha_1 \le \alpha_2$, then $f_0(\alpha_1, \beta_1) \le f_0(\alpha_2, \beta_2)$).
- $f_0(\mu) = W_1^1$ as before.
- Let $g_0(\delta) = \sup\{\max\{\alpha, \beta\} \colon (\alpha, \beta) \in X \land f_0(\alpha) \le \delta\}.$
- The rest of the argument proceeds as before.

Fact (AD)

Every ultrafilter on a set X is countably additive (i.e., a measure).

Fact (AD)

(Martin) The cone filter is a measure on the set $\ensuremath{\mathcal{D}}$ of Turing degrees.

Definition

 Θ is the supremum of the lengths of the pwos of \mathbb{R} .

Fact

(Kunen) Let $\lambda < \Theta$. Then every countably additive filter \mathcal{F} on λ can be extended to a measure on λ .

(日)

Proof: Let $\pi: \omega^{\omega} \to \mathcal{P}(\lambda)$ be onto (coding lemma). Let ν be the Martin measure on \mathcal{D} . For $d \in \mathcal{D}$, let

$$f(d) = \min \ \cap \{\pi(x) \colon x \in d \land \pi(x) \in \mathcal{F}\}.$$

Let $\mu = f(v)$.

Fix the Kunen tree T at ω_1 .

We say $\tau \in \omega^{\omega}$ is a code for a c.u.b. set if $\forall x \in WO \ \tau(x) \in WO$. Let $C_x = \{ \alpha < \omega_1 : \forall \gamma < \alpha \ | T_x \upharpoonright \gamma | < \alpha \}.$

Fact

For every c.u.b. $C \subseteq \omega_1$ there is a code x such that $C_x \subseteq C$.

< 回 > < 三 > < 三 >

Definition

A set $S \subseteq \omega_1$ is simple if there is a c.u.b. code τ , an $\alpha_0 < \omega_1$, x_1, \ldots, x_n with T_{x_i} wellfounded such that

$$\mathbf{S} = \{\alpha \colon \exists \alpha_1 < \cdots < \alpha_n \in \mathbf{C}_\tau \ \alpha = h_n(\alpha_1, \ldots, \alpha_n; \vec{\mathbf{x}})\}$$

where

$$h_i(\alpha_1,\ldots,\alpha_i;\vec{x}) = |T_{x_i} \upharpoonright \alpha_i(h_{i-1}(\alpha_1,\ldots,\alpha_{i-1};\vec{x}))|$$

and

$$h_0(\vec{x}) = \alpha_0.$$

イロト イポト イヨト イヨト

э

A code for the simple set *S* a real of the form $(x_0; x_1, ..., x_n; \tau)$ where τ is a c.u.b. code, $x_0 \in WO$, and T_{x_i} are wellfounded.

Following an argument of Kunen we show:

Fact

Every $A \subseteq \omega_1$ is a countable union of simple sets.

Proof: Let I be the σ -ideal generated by the simple sets contained in A.

Assume toward a contradiction \mathcal{I} is a proper ideal, and let μ be a measure on A extending the corresponding filter \mathcal{F} .

A (10) × A (10) × A (10) ×

э

By the analysis of measures on ω_1 , there are x_1, \ldots, x_n with T_{x_i} wellfounded and an $\alpha_0 < \omega_1$ such that for all $B \subseteq \omega_1$ (assuming *B* is not bounded):

$$\mu(B) = 1 \leftrightarrow \exists c.u.b. \ C \subseteq \omega_1 \forall \beta_1 < \cdots < \beta_n \in C$$
$$h_n(\alpha_0; \beta_1, \dots, \beta_n, x_1, \dots, x_n) \in B.$$

Since $\mu(A) = 1$, we may fix a c.u.b. code τ , a $x_0 \in WO$ coding α_0 , and the x_1, \ldots, x_n above.

Let $S = S(x_0; x_1, ..., x_n; \tau)$ be the simple set given by these reals, so $S \subseteq A$.

Then $\mu(S) = 1$, but this contradicts $S \in I$.

イロト イポト イヨト イヨト

∃ na

We now define the coding map ϕ . As a warm-up we first define a coding for subsets of ω_1 , so $\phi(x) \subseteq \omega_1$.

View $x \in \omega^{\omega}$ as coding countably many $(x_0^i; x_1^i, \dots, x_{n_i}^i; \tau^i)$. Set $\phi(x)(\alpha)$ iff $\exists i \ \alpha \in S(x^i) = S(x_0^i; x_1^i, \dots, x_{n_i}^i; \tau^i)$ iff

$$\exists i \exists \beta_1 < \cdots < \beta_{n_i} \in C_{\tau^i} \cap \alpha \ [|x_0^i| < \alpha \\ \land h(|x_0^i|; \beta_1, \dots, \beta_{n_i}; x_1^i, \dots, x_{n_i}^i) = \beta].$$

э

So, every $A \subseteq \omega_1$ is of the form $\phi(x)$ for some $x \in \omega^{\omega}$.

This is a Δ_1^1 -coding of the subsets of ω_1 :

For all $\alpha < \omega_1$, $\{x : \phi(x)(\alpha)\} \in \mathbf{\Delta}_1^1$.

We modify this coding to code functions from ω_1 to ω_1 . So, $\phi(x) \subseteq \omega_1 \times \omega_1$.

It is not quite good enough to just regard $f: \omega_1 \to \omega_1$ as a subset of $\omega_1 \times \omega_1 \approx \omega_1$.

< 回 > < 三 > < 三 >

Suppose $f: \omega_1 \to \omega_1$ is increasing.

A simple subfunction $S \subseteq f$ is one where there is a c.u.b.code τ , x_1, \ldots, x_n with T_{x_i} wellfounded, and two $\gamma_0, \gamma_1 < \omega_1$ such that:

$$(\alpha,\beta) \in S \leftrightarrow \exists \max\{\gamma_0,\gamma_1\} < \beta_1 < \dots < \beta_n < \alpha$$
$$[\beta_1,\dots,\beta_n \in C_\tau \land h(\gamma_0,\beta_1,\dots,\beta_n;\vec{x}) = \alpha$$
$$\land h(\gamma_1,\beta_1,\dots,\beta_n;\vec{x}) = \beta]$$

э

An argument similar to that for sets shows that every function *f* is a countable union of simple subfunctions.

- We let X = f, and analyze the measures on X.
- ▶ If μ is a measure on X, let $f_0: X \to \omega_1$ represent the least equivalence class of a function which is not μ a.e. constant and monotonically increasing in the first argument (if $\alpha_1 \le \alpha_2$, then $f_0(\alpha_1, \beta_1) \le f_0(\alpha_2, \beta_2)$).
- $f_0(\mu) = W_1^1$ as before.
- Let $g_0(\delta) = \sup\{\max\{\alpha, \beta\} \colon (\alpha, \beta) \in X \land f_0(\alpha) \le \delta\}.$
- The rest of the argument proceeds as before.

We give a new proof (Chan, J, Trang) of the Martin-Paris result that ω_2 does not have the strong partition property.

Theorem $\omega_2 \twoheadrightarrow (\omega_2)^{\omega_2}$.

The new proof gives a specific partition witnessing the failure of the strong partition property.

- 4 回 ト 4 三 ト

Theorem (Chan, J, Trang)

Let $A \subseteq \omega_2$ and suppose there is a c.u.b. $C \subseteq \omega_2$ such that $A \cap C = cof_{\omega} \cap C$. Then $A \notin Ult_{W_1^1}$.

We use the following lemma.

Lemma (almost everywhere club uniformization)

Let $f: \omega_1 \to \mathcal{P}(\omega_1)$ with $\forall^* \alpha f(\alpha)$ contains a club. Then there is a club $C \subseteq \omega_1$ such that $\forall^* \alpha \in C \setminus \{\alpha + 1\} \subseteq f(\alpha)$.

Proof: Partition $f: \omega_1 \to \omega_1$ of the correct type according to whether $ran(f) \setminus \{f(0)\} \subseteq A_{f(0)}$. On the homogeneous side this must hold, say by *C*. Fix $f: \omega_1 \to C$ of the correct type. Then ran(f) witnesses the Lemma.

A (1) < A (2) < A (2) </p>

Lemma

Assume $\kappa \to \kappa^{\kappa}$. Let μ be a normal measure on κ . Let $\delta = j_{\mu}(\kappa)$. Then if $D \subseteq \delta$ is c.u.b., there exists a c.u.b. $C \subseteq \kappa$ with $j_{\mu}(C) \subseteq D$.

Proof: Partition $f, g: \kappa \to \kappa$ of the correct type with $f(\alpha) < g(\alpha) < f(\alpha + 1)$ according to whether $[g]_{\mu} > N_D([f]_{\mu})$.

On the homogeneous side this holds. Say $C \subseteq \kappa$ is homogeneous for this side.

Then $j_{\mu}(C') \subseteq D$.

4 冊 ト 4 三 ト 4 三 ト

Proof of Theorem: Let $C \subseteq \omega_2$ be as in the Theorem, so $A \cap cof_{\omega} = C \cap cof_{\omega}$. Suppose $A = [F]_{W_1^1}$, where $F(\alpha) \subseteq \omega_1$.

Let $C_0 \subseteq \omega_1$ be such that $j_{W_1^1}(C_0) \subseteq C$.

Case 1. $\forall^* \alpha F(\alpha)$ contains a club.

By the Lemma, let $C_1 \subseteq \omega_1$ be such that $\forall^* \alpha \ C_1 \setminus \{\alpha + 1\} \subseteq F(\alpha)$. Let $C_2 = C_0 \cap C_1$.

Fix $f: \omega_1 \to C_2$ such that $f(\alpha)$ has uniform cofinality α .

ヘロト 人間 ト ヘヨ ト ヘヨ トー

Then [*f*] has cofinality ω_1 and is in $j(C_0) \subseteq C$.

So by the assumed property of A, $[f] \notin A$.

On the other hand, $\forall^* \alpha \ f(\alpha) \in C_1 \setminus \{\alpha + 1\} \subseteq F(\alpha)$. So, $[f] \in [F] = A$.

Case 2: $\forall^* \alpha F(\alpha)$ is disjoint from a club.

The argument is similar, but now taking $f: \omega_1 \to C_2$ such that $f(\alpha)$ has uniform cofinality ω .

イロト イロト イヨト

Proof of $\omega_2 \twoheadrightarrow (\omega_2)^{\omega_2}$.

Consider the partition $\mathcal{P} \colon [\omega_1]^{\omega_1}_* \to \{0, 1\}$:

$$\mathcal{P}(f) = 1 \text{ iff } f \in \text{Ult}_{W_1^1}.$$

Suppose $D \subseteq \omega_2$ were homogeneous for \mathcal{P} . Let $C \subseteq \omega_1$ be c.u.b. with $j_{W_1^1}(C) \subseteq D$.

Case I: *D* is homogeneous for the $F \notin \text{Ult}_{W_1^1}$ side.

Let $f: \omega_1 \to C$ be of the correct type. Then $F = j_{W_1^1}(f): \omega_2 \to D$ is of the correct type. So, $F \notin \text{Ult}_{W_1^1}$, a contradiction.

Case II: *D* is homogeneous for the $F \in Ult_{W_1}$ side.

We show in this case that $\mathcal{P}(\omega_2) \subseteq \text{Ult}_{W_1^1}$, a contradiction to a previous lemma.

Fix $H: \omega_2 \rightarrow D$ of the correct type.

Let $A \subseteq \omega_2$.

ヘロト 人間 ト ヘヨト ヘヨト

Define:

$$F(\alpha) = H(2 \cdot \alpha)$$

$$G(\alpha) = \begin{cases} H(2 \cdot \alpha) & \text{if } \alpha \in A \\ H(2 \cdot \alpha + 1) & \text{if } \alpha \notin A \end{cases}$$

By the homogeneity of *D*, both *F*, *G* are in $Ult_{W_1^1}$. Then easily $A \in Ult_{W_1^1}$.

イロト イポト イヨト イヨト

Note
$$\alpha \in A$$
 iff $F(\alpha) = G(\alpha)$.
Let $F = [f]_{W_1^1}, G = [g]_{W_1^1}$.
For any $\alpha = [k]_{W_1^1} < \omega_2, \alpha \in A$ iff $\forall_{W_1^1}^* \beta f(\beta)(k(\beta)) = g(\beta)(k(\beta))$.
So,

$$\mathsf{A} = [\beta \mapsto \{\gamma < \omega_1 \colon f(\beta)(\gamma) = g(\beta)(\gamma)\}]_{W_1^1}.$$

▲□▶▲□▶▲□▶▲□▶ ■ の々で