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Proving Partition Properties

We first show the easiest version of the partition relations.

Theorem
ω1 → (ω1)<ω1 .

Remark
The same proof shows that if Γ is a Π1

1-like class (Γ is closed
under ∀ω

ω
, ∧, ∨, and pwo(Γ)) then δ→ (δ)<ω1 .

Remark
The proof uses the Martin framework for showing partition
properties from AD.
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Proof: Fix ε < ω1, fix a bijection π : ω · ε → ω.

For x ∈ ωω, x codes a partial ω · ε sequence fx by: for α < ω · ε,

fx(α) = |(x)π(α)|.

If fx has domain ω · ε and is increasing, we let Fx : ε → ω1 be the
function it induces: Fx(α) = sup fx � ω · (α + 1).
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Given the partition P : [ω1]ε∗ → 2, play the following game.

I plays out x, II plays out y.

If there is a least α < ω · ε such that either xπ(α) < WO or
yπ(α) < WO then I wins iff xπ(α) ∈ WO.

Otherwise, fx , fy : ω · ε → ω1 are defined. Let for α < ε,

F(α) = max{Fx(α),Fy(α)}.

Then I wins iff P(F) = 0.
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Suppose w.l.o.g. that II has a winning strategy τ.

For α < ω · ε and β < ω1, Let

Rα,β = {x : ∀α′ ≤ α fx(α′) ≤ β}

Here fx(α′) ≤ β means xπ(α′) ∈ WO and |xπ(α′)| ≤ β.

Easily, Rα,β ∈ ∆
1
1. So, τ[Rα,β] ∈ Σ1

1.

By the payoff condition on the game,
τ[Rα,β] ⊆ Rα = {y : ∀α′ ≤ α yπ(α′) ∈ WO}.
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A Σ1
1 subset of Rα codes a bounded set of ordinals.

Let g(α, β) = sup{|yπ(α) : y ∈ τ[Rα,β]}.

Let C be c.u.b. and closed under g.

Then C ′ is homogeneous for P:

Fix F : ε → C ′ of the correct type and let f : ω · ε → C induce F ,
i.e., F(α) = sup{f(α′) : α′ < ω · (α + 1)}.

Fix x coding f .

Since x ∈ Rα′,f(α′) for all α′ < ω · ε, fy(α′) < g(α′, f(α′)) < f(α′+ 1).

So, Fx = Fy = F , and as τ is winning for II, P(F) = 1.
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We abstract the above argument into a definition.

Definition
Let λ ≤ κ, where λ ∈ On, κ a cardinal. We say κ is λ-reasonable if
there is a non-selfdual pointclass Γ closed under ∃ω

ω
and a map φ

with domain ωω satisfying:

1. φ(x) ⊆ λ × κ.

2. ∀f : λ→ κ ∃x ∈ ωω φ(x) = f .

3. ∀α < λ ∀β < κ Rα,β ∈ ∆, where
x ∈ Rα,β ↔ φ(x)(α, β) ∧ (φ(x)(α, β′)→ β′ = β).

4. Suppose α < λ, A ∈ ∃ω
ω
∆, and

A ⊆ Rα = {x : ∃β < κ x ∈ Rα,β}. Then
∃β0 < κ ∀x ∈ A ∃β < β0 φ(x)(α, β).
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Theorem (Martin)
Suppose κ is ω · λ reasonable. Then κ → κλ.

Proof: Exactly as in the previous proof.
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We now show the strong partition relation at ω1.

Theorem (Martin)
ω1 → (ω1)ω1 .

Proof (J): We show there is a coding of the functions f : ω1 → ω1

witnessing that ω1 is ω1-reasonable.

The main step is to analyze the measure on ω1, and then convert
this to an analysis of the subsets of ω1 via an argument of Kunen.
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The (cub) partition relation κ → (κ)2 gives that the ω-cofinal c.u.b.
filter of κ is a normal measure W1

1 on κ.

Let Wn
1 denote the n-fold product of W1

1 .

Theorem (AD + DCR)
Let µ be a measure on ω1. Then µ is equivalent to Wn

1 for some n
(or to a principal measure).
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Proof: Assume µ is non-principal.

Let f1 : ω1 → ω1 represent the least equivalence class such that f1
is almost everywhere non-constant, and monotonically increasing.

Let ν1 = f1(µ). Then ν1 = W1
1 . Fix a µ measure one set A1 on

which f1 is monotonically increasing.

Let g1(β) = sup{α ∈ A1 : f1(α) ≤ α}.

Let x1 be such that ∀∗β1 g1(β1) < |Tx1 � β1|.

For µ almost all α, let r1(α) be such that

α = |Tx1 � f1(α)(r1(α))|.
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Now we proceed with the measure r1(µ).

Consider the case r1 not constant almost everywhere. Note that
a.e. r1(α) < f1(α).

Let f2 represent the least µ equivalence class such that f2 is not
a.e. constant, and is a.e. monotonically increasing with respect to
r1.

That is, there is a µ measure one set A such that if α, α′ are in A ,
f1(α) = f1(α′), and r1(α) ≤ r1(α′), then f2(α) ≤ f2(α′).
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Note that there does not exist a c.u.b. C ⊆ ω1 and a µ measure one
set A such that for all β ∈ C, {f2(α) : f1(α) = β ∧ α ∈ A } is bounded
below f1(α). [Otherwise r2 is constant µ almost everywhere.]

Claim
We have f2(µ) = W1

1 .

For suppose C ⊆ ω1 is c.u.b. and ∀∗µα f2(α) < C.

Let f ′2 = `C ◦ f2 where `(γ) is the largest element of C ≥ γ.

Then for µ almost all α we have f ′2(α) < f2(α) and f ′2 is
monotonically increasing “on the f1 blocks” with respect to r1. Also,
f ′2 is not constant µ almost everywhere. This contradicts the
definition of f2.
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Fix a µ measure one set A2 ⊆ A1 on which f2 is monotonically
increasing on the f1 blocks with respect to r1.

Define g2 by:

g2(β2, β1) = sup{r1(α) : α ∈ A2 ∧ f1(α) = β1 ∧ f2(α) = β2}.

Then for W2
1 almost all (β2, β1), g2(β2) < β1. This follows from the

monotonicity of f2 on the f1 blocks and the fact that f2 is not
constant µ almost everywhere.
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For W2
1 almost all (β2, β1), g2(β2, β1) depends only on β2.

Fix x2 such that for W1
1 almost all β2, g2(β2) < |Tx2 � β2|.

This then defines r2: ∀∗µα

α = |Tx1 � f1(α)(|Tx2 � f2(α)(r2(α))|)|

Continuing, we define f1, . . . , fn, g1, . . . , gn for some n, reals
x1, . . . , xn, and r1, . . . , rn such that rn is constant almost
everywhere, say equal to δ.
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We then have: ∀∗µα

α = |Tx1(f1(α))(|Tx2(f2(α))(· · · (|Txn (fn(α)(δ))|) · · · )|)|

We also have that if F(α) = (f1(α), . . . , fn(α), then F(µ) = Wn
1 .

Let G(β1, . . . , βn) = |Txn � (βn)(Gn−1(β1, . . . , βn−1))|, where
Gk (β1, . . . , βk ) = |Txk � βk (Gk−1(β1, . . . , βk−1))|,

and G0(∅) = δ.
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We have defined a µ measure one set An on which F is one-to-one
and F(µ) = Wn

1 .

This completes the analysis of measures on ω1.
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Coding at ω1

Fact (AD)
(Martin) The cone filter is a measure on the set D of Turing
degrees.

Definition
Θ is the supremum of the lengths of the pwos of R.

Fact
(Kunen) Let λ < Θ. Then every countably additive filter F on λ can
be extended to a measure on λ.
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Proof: Let π : ωω → P(λ) be onto (coding lemma).

Let ν be the Martin measure on D.

For d ∈ D, let

f(d) = min ∩{π(x) : x ∈ d ∧ π(x) ∈ F }.

Let µ = f(ν).
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Fix the Kunen tree T at ω1.

We say τ ∈ ωω is a code for a c.u.b. set if ∀x ∈ WO τ(x) ∈ WO.

Let Cx = {α < ω1 : ∀γ < α |Tx � γ| < α}.

Fact
For every c.u.b. C ⊆ ω1 there is a code x such that Cx ⊆ C.
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Definition
A set S ⊆ ω1 is simple if there is a c.u.b. code τ, an α0 < ω1,
x1, . . . , xn with Txi wellfounded such that

S = {α : ∃α1 < · · · < αn ∈ Cτ α = hn(α1, . . . , αn;~x)}

where

hi(α1, . . . , αi;~x) = |Txi � αi(hi−1(α1, . . . , αi−1;~x))|

and
h0(~x) = α0.
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A code for the simple set S a real of the form (x0; x1, . . . , xn; τ)
where τ is a c.u.b. code, x0 ∈ WO, and Txi are wellfounded.

Following an argument of Kunen we show:

Fact
Every A ⊆ ω1 is a countable union of simple sets.

Proof: Let I be the σ-ideal generated by the simple sets contained
in A .

Assume toward a contradiction I is a proper ideal, and let µ be a
measure on A extending the corresponding filter F .
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By the analysis of measures on ω1, there are x1, . . . , xn with Txi

wellfounded and an α0 < ω1 such that for all B ⊆ ω1 (assuming B
is not bounded):

µ(B) = 1↔ ∃c.u.b. C ⊆ ω1∀β1 < · · · < βn ∈ C

hn(α0; β1, . . . , βn, x1, . . . , xn) ∈ B .

Since µ(A) = 1, we may fix a c.u.b. code τ, a x0 ∈ WO coding α0,
and the x1, . . . , xn above.

Let S = S(x0; x1, . . . , xn; τ) be the simple set given by these reals,
so S ⊆ A .

Then µ(S) = 1, but this contradicts S ∈ I.
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We now define the coding map φ. As a warm-up we first define a
coding for subsets of ω1, so φ(x) ⊆ ω1.

View x ∈ ωω as coding countably many (x i
0; x i

1, . . . , x
i
ni

; τi).

Set φ(x)(α) iff ∃i α ∈ S(x i) = S(x i
0; x i

1, . . . , x
i
ni

; τi) iff

∃i ∃β1 < · · · < βni ∈ Cτi ∩ α [|x i
0| < α

∧ h(|x i
0|; β1, . . . , βni ; x i

1, . . . , x
i
ni

) = β].
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So, every A ⊆ ω1 is of the form φ(x) for some x ∈ ωω.

This is a ∆1
1-coding of the subsets of ω1:

For all α < ω1, {x : φ(x)(α)} ∈ ∆1
1.

We modify this coding to code functions from ω1 to ω1. So,
φ(x) ⊆ ω1 × ω1.

It is not quite good enough to just regard f : ω1 → ω1 as a subset
of ω1 × ω1 ≈ ω1.
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Suppose f : ω1 → ω1 is increasing.

A simple subfunction S ⊆ f is one where there is a c.u.b.code τ,
x1, . . . , xn with Txi wellfounded, and two γ0, γ1 < ω1 such that:

(α, β) ∈ S ↔ ∃max{γ0, γ1} < β1 < · · · < βn < α

[β1, . . . , βn ∈ Cτ ∧ h(γ0, β1, . . . , βn;~x) = α

∧ h(γ1, β1, . . . , βn;~x) = β]
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An argument similar to that for sets shows that every function f is a
countable union of simple subfunctions.

I We let X = f , and analyze the measures on X .
I If µ is a measure on X , let f0 : X → ω1 represent the least

equivalence class of a function which is not µ a.e. constant
and monotonically increasing in the first argument (if α1 ≤ α2,
then f0(α1, β1) ≤ f0(α2, β2)).

I f0(µ) = W1
1 as before.

I Let g0(δ) = sup{max{α, β} : (α, β) ∈ X ∧ f0(α) ≤ δ}.
I The rest of the argument proceeds as before.
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Coding at ω1

Fact (AD)
Every ultrafilter on a set X is countably additive (i.e., a measure).

Fact (AD)
(Martin) The cone filter is a measure on the set D of Turing
degrees.

Definition
Θ is the supremum of the lengths of the pwos of R.

Fact
(Kunen) Let λ < Θ. Then every countably additive filter F on λ can
be extended to a measure on λ.
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Proof: Let π : ωω → P(λ) be onto (coding lemma).

Let ν be the Martin measure on D.

For d ∈ D, let

f(d) = min ∩{π(x) : x ∈ d ∧ π(x) ∈ F }.

Let µ = f(ν).
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Fix the Kunen tree T at ω1.

We say τ ∈ ωω is a code for a c.u.b. set if ∀x ∈ WO τ(x) ∈ WO.

Let Cx = {α < ω1 : ∀γ < α |Tx � γ| < α}.

Fact
For every c.u.b. C ⊆ ω1 there is a code x such that Cx ⊆ C.
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Definition
A set S ⊆ ω1 is simple if there is a c.u.b. code τ, an α0 < ω1,
x1, . . . , xn with Txi wellfounded such that

S = {α : ∃α1 < · · · < αn ∈ Cτ α = hn(α1, . . . , αn;~x)}

where

hi(α1, . . . , αi;~x) = |Txi � αi(hi−1(α1, . . . , αi−1;~x))|

and
h0(~x) = α0.
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A code for the simple set S a real of the form (x0; x1, . . . , xn; τ)
where τ is a c.u.b. code, x0 ∈ WO, and Txi are wellfounded.

Following an argument of Kunen we show:

Fact
Every A ⊆ ω1 is a countable union of simple sets.

Proof: Let I be the σ-ideal generated by the simple sets contained
in A .

Assume toward a contradiction I is a proper ideal, and let µ be a
measure on A extending the corresponding filter F .
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By the analysis of measures on ω1, there are x1, . . . , xn with Txi

wellfounded and an α0 < ω1 such that for all B ⊆ ω1 (assuming B
is not bounded):

µ(B) = 1↔ ∃c.u.b. C ⊆ ω1∀β1 < · · · < βn ∈ C

hn(α0; β1, . . . , βn, x1, . . . , xn) ∈ B .

Since µ(A) = 1, we may fix a c.u.b. code τ, a x0 ∈ WO coding α0,
and the x1, . . . , xn above.

Let S = S(x0; x1, . . . , xn; τ) be the simple set given by these reals,
so S ⊆ A .

Then µ(S) = 1, but this contradicts S ∈ I.
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We now define the coding map φ. As a warm-up we first define a
coding for subsets of ω1, so φ(x) ⊆ ω1.

View x ∈ ωω as coding countably many (x i
0; x i

1, . . . , x
i
ni

; τi).

Set φ(x)(α) iff ∃i α ∈ S(x i) = S(x i
0; x i

1, . . . , x
i
ni

; τi) iff

∃i ∃β1 < · · · < βni ∈ Cτi ∩ α [|x i
0| < α

∧ h(|x i
0|; β1, . . . , βni ; x i

1, . . . , x
i
ni

) = β].
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So, every A ⊆ ω1 is of the form φ(x) for some x ∈ ωω.

This is a ∆1
1-coding of the subsets of ω1:

For all α < ω1, {x : φ(x)(α)} ∈ ∆1
1.

We modify this coding to code functions from ω1 to ω1. So,
φ(x) ⊆ ω1 × ω1.

It is not quite good enough to just regard f : ω1 → ω1 as a subset
of ω1 × ω1 ≈ ω1.
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Suppose f : ω1 → ω1 is increasing.

A simple subfunction S ⊆ f is one where there is a c.u.b.code τ,
x1, . . . , xn with Txi wellfounded, and two γ0, γ1 < ω1 such that:

(α, β) ∈ S ↔ ∃max{γ0, γ1} < β1 < · · · < βn < α

[β1, . . . , βn ∈ Cτ ∧ h(γ0, β1, . . . , βn;~x) = α

∧ h(γ1, β1, . . . , βn;~x) = β]
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An argument similar to that for sets shows that every function f is a
countable union of simple subfunctions.

I We let X = f , and analyze the measures on X .
I If µ is a measure on X , let f0 : X → ω1 represent the least

equivalence class of a function which is not µ a.e. constant
and monotonically increasing in the first argument (if α1 ≤ α2,
then f0(α1, β1) ≤ f0(α2, β2)).

I f0(µ) = W1
1 as before.

I Let g0(δ) = sup{max{α, β} : (α, β) ∈ X ∧ f0(α) ≤ δ}.
I The rest of the argument proceeds as before.
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Non-partition results at ω2

We give a new proof (Chan, J, Trang) of the Martin-Paris result that
ω2 does not have the strong partition property.

Theorem
ω2 9 (ω2)ω2 .

The new proof gives a specific partition witnessing the failure of the
strong partition property.
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Theorem (Chan, J, Trang)
Let A ⊆ ω2 and suppose there is a c.u.b. C ⊆ ω2 such that
A ∩ C = cofω ∩ C. Then A < UltW1

1
.

We use the following lemma.

Lemma (almost everywhere club uniformization)
Let f : ω1 → P(ω1) with ∀∗α f(α) contains a club. Then there is a
club C ⊆ ω1 such that ∀∗α ∈ C \ {α + 1} ⊆ f(α).

Proof: Partition f : ω1 → ω1 of the correct type according to
whether ran(f) \ {f(0)} ⊆ Af(0). On the homogeneous side this
must hold, say by C. Fix f : ω1 → C of the correct type. Then
ran(f) witnesses the Lemma.
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Lemma
Assume κ → κκ. Let µ be a normal measure on κ. Let δ = jµ(κ).
Then if D ⊆ δ is c.u.b., there exists a c.u.b. C ⊆ κ with jµ(C) ⊆ D.

Proof: Partition f , g : κ → κ of the correct type with
f(α) < g(α) < f(α + 1) according to whether [g]µ > ND([f ]µ).

On the homogeneous side this holds. Say C ⊆ κ is homogeneous
for this side.

Then jµ(C ′) ⊆ D.
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Proof of Theorem: Let C ⊆ ω2 be as in the Theorem, so
A ∩ cofω = C ∩ cofω. Suppose A = [F ]W1

1
, where F(α) ⊆ ω1.

Let C0 ⊆ ω1 be such that jW1
1
(C0) ⊆ C.

Case 1. ∀∗α F(α) contains a club.

By the Lemma, let C1 ⊆ ω1 be such that ∀∗α C1 \ {α + 1} ⊆ F(α).

Let C2 = C0 ∩ C1.

Fix f : ω1 → C2 such that f(α) has uniform cofinality α.
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Then [f ] has cofinality ω1 and is in j(C0) ⊆ C.

So by the assumed property of A , [f ] < A .

On the other hand, ∀∗α f(α) ∈ C1 \ {α + 1} ⊆ F(α). So,
[f ] ∈ [F ] = A .

Case 2: ∀∗α F(α) is disjoint from a club.

The argument is similar, but now taking f : ω1 → C2 such that f(α)
has uniform cofinality ω.
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Proof of ω2 9 (ω2)ω2 .

Consider the partition P : [ω1]ω1
∗ → {0, 1}:

P(f) = 1 iff f ∈ UltW1
1
.

Suppose D ⊆ ω2 were homogeneous for P.

Let C ⊆ ω1 be c.u.b. with jW1
1
(C) ⊆ D.
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Case I: D is homogeneous for the F < UltW1
1

side.

Let f : ω1 → C be of the correct type. Then F = jW1
1
(f) : ω2 → D is

of the correct type. So, F < UltW1
1
, a contradiction.

Case II: D is homogeneous for the F ∈ UltW1
1

side.

We show in this case that P(ω2) ⊆ UltW1
1
, a contradiction to a

previous lemma.

Fix H : ω2 → D of the correct type.

Let A ⊆ ω2.
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Define:

F(α) = H(2 · α)

G(α) =

H(2 · α) if α ∈ A

H(2 · α + 1) if α < A

By the homogeneity of D, both F ,G are in UltW1
1
.

Then easily A ∈ UltW1
1
.
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Note α ∈ A iff F(α) = G(α).

Let F = [f ]W1
1
, G = [g]W1

1
.

For any α = [k ]W1
1
< ω2, α ∈ A iff ∀∗

W1
1
β f(β)(k(β)) = g(β)(k(β)).

So,
A = [β 7→ {γ < ω1 : f(β)(γ) = g(β)(γ)}]W1

1
.
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