Determinacy, Partition Properties, and Combinatorics I

Steve Jackson

May/June, 2023 Young Set Theory Workshop University of Münster

We outline the theory and AD and AD⁺ particularly as it relates to partition relations, combinatorics and definable cardinalities.

Some topics we will discuss include:

- Basic theory of AD, scales and Suslin cardinals.
- Paritition properties and introduction to analysis of measures.
- Computation of ultrapowers and uniform cofinalities.
- Recent consequences of partition properties such as monotonicity and continuity (joint with W. Chan and N. Trang).
- Applications to definable cardinalities in AD models.

< 回 > < 三 > < 三 >

We develop the basic theory assuming determinacy axioms.

Let X be a set. A game on X is a set $A \subseteq X^{\omega}$ which we view as the payoff of a two-player game:

Ι	<i>x</i> ₀		<i>x</i> ₂		<i>x</i> ₄		•••	
II	<i>x</i> 0	<i>x</i> ₁		<i>x</i> ₃		<i>x</i> 5		

I wins the run iff $x = (x_0, x_1, \dots) \in A$.

A strategy for I is a function $\sigma: \bigcup_n X^{2n} \to X$, and similarly for II. If $x = (x_1, x_3, ...) \in X^{\omega}$, let $\sigma * x = (x_0, x_1, ...)$, where

 $x_{2n} = \sigma(x \upharpoonright 2n)$. Similarly define $\tau * x$ if τ is a strategy for II.

・ ロ ト ・ 同 ト ・ ヨ ト ・ 日 ト ・

We say the game on $A \subseteq X^{\omega}$ is determined if one of the players has a winning strategy.

 AD_X is the assertion that every game on X is determined.

AD is the assertion that every game on $X = \omega$ is determined.

- AD was introduced by Mycielski and Steinhaus.
- AD is equivalent to AD₂.
- $AD_{\mathbb{R}}$ is stronger than AD.
- ► $AD_{\mathcal{P}(\mathbb{R})}$, AD_{ω_1} are inconsistent.

We generally work in the base theory $ZF + AD + DC_{\mathbb{R}}$.

A (1) × A (2) × A (2) ×

э.

By Gale-Stewart, every open game $A \subseteq X^{\omega}$ (in the product of the discrete topologies) is (quasi) determined.

This follows from the rank-analysis of the game:

Let W_0 be the set of $s \in X^{<\omega}$ of even length such that $N_s \subseteq A$.

Let $W_{<\alpha} = \bigcup_{\beta < \alpha}$ for α limit.

Let $W_{\alpha} = W_{<\alpha} \cup \{s \colon \exists x \in X \forall y \in X (s^{x} \neq W_{<\alpha})\}$

∃ na

Let θ be least so that $W_{\theta} = W_{\theta+1}$. For $s \in W_{\theta}$, let |s| be the least α such that $s \in W_{\alpha}$.

Then I has a winning (quasi) strategy from *s* if $s \in W_{\theta}$.

If $s \notin W_{\theta}$, then II has a winning (quasi) strategy from *s*. Namely, if I plays *x*, then II plays the (set of) *y* such that $s^{-}x^{-}y \notin W_{\theta}$.

This gives a canonical winning (quasi) strategy for a closed game.

イロト イロト イヨト -

∃ na

Theorem (Martin)

(ZFC) Every Borel game on a set X is determined.

Hurkens and Neeman showed that in ZF, every Borel game is quasi-determined.

- (Harrington, Martin) Σ₁¹-determinacy is equivalent to ∀x x[#] exists.
- (Martin-Steel, Woodin) Σ¹_{n+1}-determinacy is equiconsistent with ∃n Woodin cardinals. Σ¹_{n+1} determinacy follows from ∃n Woodin cardinals plus a measurable.
- (Woodin) AD^{L(R)} follows from ∃ω many Woodin cardinals plus a measurable. AD is eqiconsistent with ∃ω many Woodin cardinals.

Remark

Recently, Borel determinacy has found application to the theory of Borel equivalence relations.

For Γ a finitely generated group with a given presentation (a marked group), let $\chi_B(F(\omega^{\Gamma}))$ be the Borel chromatic number of the free part of the shift-action of Γ on the space ω^{Γ} .

For Γ , Δ countable groups, let $\Gamma * \Delta$ denote their free product.

Theorem (Marks)

$$\chi_B(\omega^{\Gamma*\Delta}) \geq \chi_B(\omega^{\Gamma}) + \chi_B(\omega^{\Delta}) - 1.$$

Theorem (Marks)

For each $2 \le i \le n + 1$, there is an n-regular Borel graph with Borel chromatic number equal to *i*.

A (10) A (10)

Definition

A tree on a set X is a set $T \subseteq X^{<\omega}$ closed under subsequence. $b \in X^{\omega}$ is a branch through T if $\forall n \ b \upharpoonright n \in T$. We let [T] denote the set of infinite branches through X.

Fact

A set $A \subseteq X^{\omega}$ is closed iff if there is a tree $T \subseteq X^{<\omega}$ such that A = [T].

A Suslin representation generalizes this representation for closed sets.

Definition

If *T* is a tree on $X \times Y$, then $p[T] \subseteq X^{\omega}$ is defined by:

$$x \in p[T] \text{ iff } \exists y \in Y^{\omega} (x, y) \in [T]$$

iff $\exists y \in Y^{\omega} \forall n (x \upharpoonright n, y \upharpoonright n) \in T.$

< 回 > < 三 > < 三 >

э

Definition

A ⊆ *X*^{ω} is *κ*-Suslin if there is a tree *T* on *X* × *κ* such that *A* = *p*[*T*]. Let *S*(*κ*) denote the collection of *κ*-Suslin subsets of $ω^{\omega}$.

Fact

 $S(\kappa)$ is a pointclass closed under $\exists^{\omega^{\omega}}$, countable unions and intersections and (Kechris), assuming AD, non-selfdual.

Definition

 κ is a Suslin cardinal if $S(\kappa) \setminus \bigcup_{\lambda < \kappa} S(\lambda) \neq \emptyset$.

A B M A B M

A Suslin representation of $A \subseteq \omega^{\omega}$ on κ is equivalent to a semi-scale on A into κ .

Definition

A semi-scale on *A* is a sequence of maps $\varphi_n \colon A \to On$ such that if $x_m \in A, x_m \to x$, and for each $n, \varphi_n(x_m)$ is eventually constant, say equal to λ_n , then $x \in A$.

 $\{\varphi_n\}$ is a scale on *A* if in addition, $\varphi_n(x) \leq \lambda_n$.

 $\{\varphi_n\}$ is a Γ -scale if the norm relations are in Γ :

$$x <_n^* y \leftrightarrow (x \in A) \land [(y \notin A) \lor (y \in A \land \varphi_n(x) < \varphi_n(y)] x \leq_n^* y \leftrightarrow (x \in A) \land [(y \notin A) \lor (y \in A \land \varphi_n(x) \le \varphi_n(y)]$$

伺下 イヨト イヨト

The Moschovakis periodicity theorems propagate the scale proprty under quantifiers.

Fact

(ZF) Assume scale(Γ) where Γ is closed under $\forall^{\omega^{\omega}}, \wedge, \vee$. Then scale($\exists^{\omega^{\omega}}\Gamma$).

Theorem

 $(\Delta$ -det+DC_R) Assume scale(Γ) where Γ is closed under $\exists^{\omega^{\omega}}, \land, \lor$. Then scale($\forall^{\omega^{\omega}}\Gamma$).

Corollary

 $(\mathsf{PD} + \mathsf{DC}_{\mathbb{R}}) \text{ scale}(\mathbf{\Pi}_{2n+1}^1), \text{ scale}(\mathbf{\Sigma}_{2n+2}^1) \text{ for all } n \ge 0.$

A (1) < A (2) < A (2) </p>

э.

We use the Erdös-Rado partition notation.

Definition $\kappa \to (\lambda)^{\epsilon}_{\delta}$ if for every partition $\mathcal{P} \colon \kappa^{\epsilon} \to \delta$, there is a $H \subseteq \kappa$ with $|H| = \lambda$ such that $\mathcal{P} \upharpoonright [H]^{\epsilon}$ is constant.

Remark

We usually have $\lambda = \kappa$.

We say κ has the strong partition property if $\kappa \to (\kappa)_2^{\kappa}$, and the very strong partition property if $\kappa \to (\kappa)_{<\kappa}^{\kappa}$. κ has the weak partition property if $\forall \epsilon < \kappa$ we have $\kappa \to (\kappa)_2^{\epsilon}$.

We abbreviate the strong and weak as $\kappa \to (\kappa)^{\kappa}$ and $\kappa \to (\kappa)^{<\kappa}$.

In the AD context an alternate form of the partition relations is preferred.

We say a function $f: \epsilon \to \kappa$ is of the correct type if it is increasing, discontinuous, and of uniform cofinality ω .

We let $[\kappa]^{\epsilon}_{*}$ denote the function from ϵ to κ of the correct type.

We say $\kappa \xrightarrow{\text{cub}} \kappa^{\epsilon}$ if for every partition $\mathcal{P} \colon [\kappa]_*^{\epsilon} \to \{0, 1\}$, there is a c.u.b. $C \subseteq \kappa$ such that $\mathcal{P} \upharpoonright [C]_*^{\epsilon}$ is constant.

A (10) × A (10) ×

э.

The two versions of the partition relation are essentially equivalent.

Fact 1. $\kappa \xrightarrow{cub} (\kappa)^{\epsilon}$ implies $\kappa \to (\kappa)^{\epsilon}$. 2. $\kappa \to (\kappa)^{\omega \cdot \epsilon}$ implies $\kappa \xrightarrow{cub} (\kappa)^{\epsilon}$.

In particular, the notion of weak and strong partition properties are the same for these two versions.

More generally, we have the c.u.b. version of the partition property for functions $\epsilon \rightarrow \kappa$ of any specified type, that is, any specified uniform cofinality.

э

Theorem

There is a tree T on $\omega \times \omega_1$ such that for all $f: \omega_1 \to \omega_1$ there is an $x \in \omega^{\omega}$ with T_x wellfounded and for all $\alpha \ge \omega$:

 $f(x) \leq |T_x \upharpoonright \alpha|.$

Proof: There is a tree *W* on $\omega \times \omega$ such that $\sup\{|W_x|: W_x \text{ is wellfounded }\} = \omega_1$.

Let $S \subseteq (\omega \times \omega_1)^{<\omega}$ be the tree of the nautural Π_1^1 -scale on WO.

Let *T* be the tree on $\omega \times \omega \times \omega_1 \times \omega \times \omega$ given by: $(s, t, \vec{\alpha}, u, v) \in T$ iff

- 1. $\exists \sigma, x, y$ extending s, t, u with $\sigma * x = y$.
- **2.** $(t, \vec{\alpha}) \in S$.

3. $(u, v) \in W$.

伺 ト イ ヨ ト イ ヨ ト

э.

To see this works, let $f: \omega_1 \to \omega_1$.

Play the Solovay game where I plays x, II plays y, and II wins iff

 $(x \in WO) \rightarrow (W_{\gamma} \text{ is wellfounded}) \land |W_{\gamma}| > |x|)$

By boundedness, II wins this game, say by σ .

Then for all $\alpha \ge \omega$, there is an $x \in WO$ with $x \in p[S \upharpoonright \alpha]$, and so $|W_{\sigma(x)}| > f(\alpha)$.

So, $|T_{\sigma} \upharpoonright \alpha| > f(\alpha)$.

= nar

Uniform cofinalities at ω_1

We analyze the possible uniform cofinalities for a function $f: (\omega_1)^n \to \omega_1$.

By the partition relation $\omega_1 \to (\omega_1)^{n+1}$, there is a function $g: \omega_1 \to \omega_1$ such that $\forall^* \alpha_1 < \cdots < \alpha_n f(\alpha_1, \dots, \alpha_n) < g(\alpha_n)$. Let $x \in \omega^{\omega}$ be such that

$$\forall^* \vec{\alpha} f(\vec{\alpha}) < g(\alpha_n) < |T_x \upharpoonright \alpha_n|.$$

Let $h(\vec{\alpha}) \le \alpha_n$ be least so that for some function $\ell : \{(\vec{\alpha}, \beta) : \beta < h(\vec{\alpha})\} \to \omega_1$ we have, for almost all $\vec{\alpha}$:

$$\sup\{\ell(\vec{\alpha},\beta):\beta<\vec{h}(\alpha)\}=f(\vec{\alpha}).$$

A (10) × A (10) × A (10) ×

Claim

 $\forall^* \alpha_1, \ldots, \alpha_n h(\vec{\alpha}) = \alpha_i$ for some *i*, or $h(\vec{\alpha})$ is almost everywhere constant.

Suppose $\forall^* \vec{\alpha} \ \alpha_i < h(\vec{\alpha}) < \alpha_{i+1}$. Let $h'(\vec{\alpha}) = \alpha_i$.

By a partition as above, there is a function $k : \omega_1 \to \omega_1$ such that $\forall^* \vec{\alpha} \ h(\vec{\alpha}) < k(\alpha_i)$.

Fix *y* so that $k(\beta) < |T_y| \beta$ almost everywhere.

Define $\ell'(\vec{\alpha},\beta)$ for $\beta < \alpha_i$ by

$$\ell'(\vec{\alpha},\beta) = \ell(|T_y \upharpoonright \alpha_i(\beta)|)$$

if $|T_y \upharpoonright \alpha_i(\beta)| < h(\vec{\alpha})$, and 0 otherwise.

医静脉 医原体 医原体

= nar

Then h', ℓ' violates the minimality of h, ℓ .

So either $h(\vec{\alpha}) = \alpha_i$ or $h(\vec{\alpha})$ is constant almost everywhere.

In the first case we have that $f(\vec{\alpha})$ has uniform cofinality α_i almost everywhere. In the second case, $f(\vec{\alpha})$ has uniform cofinality ω almost everywhere.

Fact

These uniform cofinalities are distinct.

(日本) (日本) (日本)

A similar analysis describes the (almost everywhere) type of an arbitrary $f: \omega_1^n \to \omega_1$.

There is a partial permutation $\pi = (i_1, ..., i_k)$ of (1, ..., n) beginning with *n* so that $f(\vec{\alpha}) < f(\vec{\beta})$ iff

$$(\alpha_{i_1},\ldots,\alpha_{i_k}) <_{\mathsf{lex}} (\beta_{i_1},\ldots,\beta_{i_k}).$$

Then either:

- $f(\vec{a})$ has uniform cofinality ω .
- $f(\vec{\alpha})$ is continuous almost everywhere.
- There is a partial permutation π' extending π which gives the unform cofinality.

э.

Fact

Assuming AD, every ultrafilter on a set X is countably additive.

The (cub) partition relation $\kappa \to (\kappa)^2$ gives that the ω -cofinal c.u.b. filter of κ is a normal measure W_1^1 on κ .

Let W_1^n denote the *n*-fold product of W_1^1 .

Theorem $(AD + DC_{\mathbb{R}})$

Let μ be a measure on ω_1 . Then μ is equivalent to W_1^n for some n (or to a principal measure).

< 回 > < 三 > < 三 >

Proof: Assume μ is non-principal.

Let $f_1: \omega_1 \to \omega_1$ represent the least equivalence class such that f_1 is almost everywhere non-constant, and monotonically increasing.

Let $v_1 = f_1(\mu)$. Then $v_1 = W_1^1$. Fix a μ measure one set A_1 on which f_1 is monotonically increasing.

Let
$$g_1(\beta) = \sup\{\alpha \in A_1 : f_1(\alpha) \le \alpha\}.$$

Let x_1 be such that $\forall^* \beta_1 g_1(\beta_1) < |T_{x_1} \upharpoonright \beta_1|$.

For μ almost all α , let $r_1(\alpha)$ be such that

 $\alpha = |T_{x_1} \upharpoonright f_1(\alpha)(r_1(\alpha))|.$

< 回 > < 回 > < 回 >

Now we proceed with the measure $r_1(\mu)$.

Consider the case r_1 not constant almost everywhere. Note that a.e. $r_1(\alpha) < f_1(\alpha)$.

Let f_2 represent the least μ equivalence class such that f_2 is not a.e. constant, and is a.e. monotonically increasing with respect to r_1 .

That is, there is a μ measure one set A such that if α , α' are in A, $f_1(\alpha) = f_1(\alpha')$, and $r_1(\alpha) \le r_1(\alpha')$, then $f_2(\alpha) \le f_2(\alpha')$.

< 回 > < 回 > < 回 >

Note that there does not exist a c.u.b. $C \subseteq \omega_1$ and a μ measure one set A such that for all $\beta \in C$, { $f_2(\alpha) : f_1(\alpha) = \beta \land \alpha \in A$ } is bounded below $f_1(\alpha)$. [Otherwise r_2 is constant μ almost everywhere.]

Claim

We have $f_2(\mu) = W_1^1$.

For suppose $C \subseteq \omega_1$ is c.u.b. and $\forall_{\mu}^* \alpha f_2(\alpha) \notin C$.

Let $f'_2 = \ell_C \circ f_2$ where $\ell(\gamma)$ is the largest element of $C \ge \gamma$.

Then for μ almost all α we have $f'_2(\alpha) < f_2(\alpha)$ and f'_2 is monotonically increasing "on the f_1 blocks" with respect to r_1 . Also, f'_2 is not constant μ almost everywhere. This contradicts the definition of f_2 .

イロト イポト イヨト イヨト

= nar

Fix a μ measure one set $A_2 \subseteq A_1$ on which f_2 is monotonically increasing on the f_1 blocks with respect to r_1 .

Define g_2 by:

$$g_2(\beta_2,\beta_1) = \sup\{r_1(\alpha) \colon \alpha \in A_2 \land f_1(\alpha) = \beta_1 \land f_2(\alpha) = \beta_2\}.$$

Then for W_1^2 almost all (β_2, β_1) , $g_2(\beta_2) < \beta_1$. This follows from the monotonicity of f_2 on the f_1 blocks and the fact that f_2 is not constant μ almost everywhere.

- 4 伺 ト 4 ヨ ト 4 ヨ ト -

э

For W_1^2 almost all (β_2, β_1) , $g_2(\beta_2, \beta_1)$ depends only on β_2 . Fix x_2 such that for W_1^1 almost all β_2 , $g_2(\beta_2) < |T_{x_2} \upharpoonright \beta_2|$. This then defines r_2 : $\forall_{\mu}^* \alpha$

$$\alpha = |T_{x_1} \upharpoonright f_1(\alpha)(|T_{x_2} \upharpoonright f_2(\alpha)(r_2(\alpha))|)|$$

Continuing, we define $f_1, \ldots, f_n, g_1, \ldots, g_n$ for some *n*, reals x_1, \ldots, x_n , and r_1, \ldots, r_n such that r_n is constant almost everywhere, say equal to δ .

< 同 ト 4 ヨ ト 4 ヨ ト

We then have: $\forall_{\mu}^{*} \alpha$

$$\alpha = |T_{x_1}(f_1(\alpha))(|T_{x_2}(f_2(\alpha))(\cdots(|T_{x_n}(f_n(\alpha)(\delta))|)\cdots)|)|$$

We also have that if $F(\alpha) = (f_1(\alpha), \dots, f_n(\alpha), \text{ then } F(\mu) = W_1^n$. Let $G(\beta_1, \dots, \beta_n) = |T_{x_n} \upharpoonright (\beta_n)(G_{n-1}(\beta_1, \dots, \beta_{n-1}))|$, where $G_k(\beta_1, \dots, \beta_k) = |T_{x_k} \upharpoonright \beta_k(G_{k-1}(\beta_1, \dots, \beta_{k-1}))|$, and $G_0(\emptyset) = \delta$.

A (1) < A (2) < A (2) </p>

We have defined a μ measure one set A_n on which F is one-to-one and $F(\mu) = W_1^n$.

This completes the analysis of measures on ω_1 .

We present the general framework, due to Martin for proving partition relations from AD.

Definition

Let $\lambda \leq \kappa$, where $\lambda \in On$, κ a cardinal. We say κ is λ -reasonable if there is a non-selfdual pointclass Γ closed under $\exists^{\omega^{\omega}}$ and a map ϕ with domain ω^{ω} satisfying:

1.
$$\phi(x) \subseteq \lambda \times \kappa$$
.

2.
$$\forall f : \lambda \to \kappa \exists x \in \omega^{\omega} \phi(x) = f.$$

3.
$$\forall \alpha < \lambda \ \forall \beta < \kappa \ R_{\alpha,\beta} \in \Delta$$
, where
 $x \in R_{\alpha,\beta} \leftrightarrow \phi(x)(\alpha,\beta) \land (\phi(x)(\alpha,\beta') \rightarrow \beta' = \beta).$

4. Suppose
$$\alpha < \lambda$$
, $A \in \exists^{\omega^{\omega}} \Delta$, and
 $A \subseteq R_{\alpha} = \{x : \exists \beta < \kappa \ x \in R_{\alpha,\beta}\}$. Then
 $\exists \beta_0 < \kappa \ \forall x \in A \ \exists \beta < \beta_0 \ \phi(x)(\alpha,\beta)$.

伺 ト イヨト イヨト

Theorem (Martin)

Suppose κ is $\omega \cdot \lambda$ reasonable. Then $\kappa \to \kappa^{\lambda}$.

Proof: Assume that Δ is closed under < κ unions and intersections (this actually follows).

Let $\mathcal{P}: \kappa_*^{\lambda} \to \{0, 1\}$ partition the functions of the correct type.

Play the game: I plays out *x*, II plays out *y*.

- If there is a least α < ω · λ such that ¬R_α(x) or ¬R_α(y), then I wins iff R_α(x).
- Otherwise, let f_x , f_y be the functions they determine: $f_x(\alpha) = \beta$ iff $R_{\alpha,\beta}(x)$. Let

$$f_{x,y}(\alpha) = \sup\{\max(f_x(\alpha'), f_y(\alpha')) \colon \alpha' < \omega \cdot (\alpha + 1)\}.$$

Then II wins iff $\mathcal{P}(f_{x,y}) = 1$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ = ● ● ● ●

Say II has a winning strategy τ . Define a c.u.b. $C \subseteq \kappa$ as follows. For $\alpha < \omega \cdot \lambda, \beta < \kappa$, let $x \in S_{\alpha,\beta} \leftrightarrow \forall \alpha' \leq \alpha \exists \beta' \leq \beta R_{\alpha',\beta'}(x).$

So,
$$S_{\alpha,\beta} \in \mathbf{\Delta}$$
. So $\tau[S_{\alpha,\beta}] \in \exists^{\omega^{\omega}} \mathbf{\Delta}$.
Also, $\tau[S_{\alpha,\beta}] \subseteq R_{\alpha}$.
Let $g(\alpha,\beta) = \sup\{\phi(x)(\alpha) \colon x \in \tau[S_{\alpha,\beta}]\} < \kappa$.

(日)

э

Let $C \subseteq \kappa$ be closed under g.

Then C is homogeneous for \mathcal{P} :

- Let $f: \lambda \to C'$ be of the correct type.
- ► Let *x* be such that $\phi(x)$ codes a function f_x (i.e., $x \in R_\alpha$ for all $\alpha < \omega \cdot \lambda$) and f_x induces *f* (i.e., $f(\alpha) = \sup\{f_x(\alpha') : \alpha' < \omega \cdot \alpha\}$).
- Let $y = \tau(x)$, so y codes $f_y : \omega \cdot \lambda \to \kappa$.
- For all α , $f_y(\omega \cdot \alpha + n) < f_x(\omega \cdot \alpha + n + 1)$, so $f_{x,y} = f$.
- Since τ is winning for II, $\mathcal{P}(f) = 1$.

A

Fact (AD)

Every ultrafilter on a set X is countably additive (i.e., a measure).

Fact (AD)

(Martin) The cone filter is a measure on the set $\ensuremath{\mathcal{D}}$ of Turing degrees.

Definition

 Θ is the supremum of the lengths of the pwos of \mathbb{R} .

Fact

(Kunen) Let $\lambda < \Theta$. Then every countably additive filter \mathcal{F} on λ can be extended to a measure on λ .

(日)

Proof: Let $\pi: \omega^{\omega} \to \mathcal{P}(\lambda)$ be onto (coding lemma). Let ν be the Martin measure on \mathcal{D} . For $d \in \mathcal{D}$, let

$$f(d) = \min \ \cap \{\pi(x) \colon x \in d \land \pi(x) \in \mathcal{F}\}.$$

Let $\mu = f(\nu)$.

э.

Fix the Kunen tree T at ω_1 .

We say $\tau \in \omega^{\omega}$ is a code for a c.u.b. set if $\forall x \in WO \ \tau(x) \in WO$. Let $C_x = \{ \alpha < \omega_1 : \forall \gamma < \alpha \ | T_x \upharpoonright \gamma | < \alpha \}.$

Fact

For every c.u.b. $C \subseteq \omega_1$ there is a code x such that $C_x \subseteq C$.

< 回 > < 三 > < 三 >

Definition

A set $S \subseteq \omega_1$ is simple if there is a c.u.b. code τ , an $\alpha_0 < \omega_1$, x_1, \ldots, x_n with T_{x_i} wellfounded such that

$$\mathbf{S} = \{\alpha \colon \exists \alpha_1 < \cdots < \alpha_n \in C_\tau \; \alpha = h_n(\alpha_1, \ldots, \alpha_n; \vec{\mathbf{x}})\}$$

where

$$h_i(\alpha_1,\ldots,\alpha_i;\vec{x}) = |T_{x_i} \upharpoonright \alpha_i(h_{i-1}(\alpha_1,\ldots,\alpha_{i-1};\vec{x}))|$$

and

$$h_0(\vec{x}) = \alpha_0.$$

イロト イポト イヨト イヨト

э

A code for the simple set *S* a real of the form $(x_0; x_1, ..., x_n; \tau)$ where τ is a c.u.b. code, $x_0 \in WO$, and T_{x_i} are wellfounded.

Following an argument of Kunen we show:

Fact

Every $A \subseteq \omega_1$ is a countable union of simple sets.

Proof: Let I be the σ -ideal generated by the simple sets contained in A.

Assume toward a contradiction \mathcal{I} is a proper ideal, and let μ be a measure on A extending the corresponding filter \mathcal{F} .

A (10) × A (10) × A (10) ×

By the analysis of measures on ω_1 , there are x_1, \ldots, x_n with T_{x_i} wellfounded and an $\alpha_0 < \omega_1$ such that for all $B \subseteq \omega_1$ (assuming *B* is not bounded):

$$\mu(B) = 1 \leftrightarrow \exists c.u.b. \ C \subseteq \omega_1 \forall \beta_1 < \cdots < \beta_n \in C$$
$$h_n(\alpha_0; \beta_1, \dots, \beta_n, x_1, \dots, x_n) \in B.$$

Since $\mu(A) = 1$, we may fix a c.u.b. code τ , a $x_0 \in WO$ coding α_0 , and the x_1, \ldots, x_n above.

Let $S = S(x_0; x_1, ..., x_n; \tau)$ be the simple set given by these reals, so $S \subseteq A$.

Then $\mu(S) = 1$, but this contradicts $S \in I$.

イロト イポト イヨト イヨト

∃ na

We now define the coding map ϕ . As a warm-up we first define a coding for subsets of ω_1 , so $\phi(x) \subseteq \omega_1$.

View $x \in \omega^{\omega}$ as coding countably many $(x_0^i; x_1^i, \dots, x_{n_i}^i; \tau^i)$. Set $\phi(x)(\alpha)$ iff $\exists i \ \alpha \in S(x^i) = S(x_0^i; x_1^i, \dots, x_{n_i}^i; \tau^i)$ iff

$$\exists i \exists \beta_1 < \cdots < \beta_{n_i} \in C_{\tau^i} \cap \alpha \ [|x_0^i| < \alpha \\ \land h(|x_0^i|; \beta_1, \dots, \beta_{n_i}; x_1^i, \dots, x_{n_i}^i) = \beta].$$

э

So, every $A \subseteq \omega_1$ is of the form $\phi(x)$ for some $x \in \omega^{\omega}$.

This is a Δ_1^1 -coding of the subsets of ω_1 :

For all $\alpha < \omega_1$, $\{x : \phi(x)(\alpha)\} \in \mathbf{\Delta}_1^1$.

We modify this coding to code functions from ω_1 to ω_1 . So, $\phi(x) \subseteq \omega_1 \times \omega_1$.

It is not quite good enough to just regard $f: \omega_1 \to \omega_1$ as a subset of $\omega_1 \times \omega_1 \approx \omega_1$.

A (1) < A (2) < A (2) </p>

Suppose $f: \omega_1 \to \omega_1$ is increasing.

A simple subfunction $S \subseteq f$ is one where there is a c.u.b.code τ , x_1, \ldots, x_n with T_{x_i} wellfounded, and two $\gamma_0, \gamma_1 < \omega_1$ such that:

$$(\alpha,\beta) \in S \leftrightarrow \exists \max\{\gamma_0,\gamma_1\} < \beta_1 < \dots < \beta_n < \alpha$$
$$[\beta_1,\dots,\beta_n \in C_\tau \land h(\gamma_0,\beta_1,\dots,\beta_n;\vec{x}) = \alpha$$
$$\land h(\gamma_1,\beta_1,\dots,\beta_n;\vec{x}) = \beta]$$

(日)

э

An argument similar to that for sets shows that every function *f* is a countable union of simple subfunctions.

- We let X = f, and analyze the measures on X.
- ▶ If μ is a measure on X, let $f_0: X \to \omega_1$ represent the least equivalence class of a function which is not μ a.e. constant and monotonically increasing in the first argument (if $\alpha_1 \le \alpha_2$, then $f_0(\alpha_1, \beta_1) \le f_0(\alpha_2, \beta_2)$).
- $f_0(\mu) = W_1^1$ as before.
- Let $g_0(\delta) = \sup\{\max\{\alpha, \beta\} \colon (\alpha, \beta) \in X \land f_0(\alpha) \le \delta\}.$
- The rest of the argument proceeds as before.

Fix $\lambda < \omega_2$, and we show $\omega_2 \rightarrow (\omega_2)^{\lambda}$.

Fix a function $h: \omega_1 \to \omega_1$ with $[h]_{W_1^1} = \lambda$.

Say a function *f* is of type *h* if dom(*f*) = {(α , β): $\alpha < h(\beta)$ }. Note that [*f*]_{*W*¹} is a function *F* from λ to ω_2 :

$$F([h']_{W_1^1}) = [\beta \mapsto f(h'(\alpha), \beta)]_{W_1^1}$$

for $[h'] < [h] = \lambda$.

A (1) < A (2) < A (2) </p>

Fact

Every $F: \lambda \to \omega_2$ is represented as $F = [f]_{W_1^1}$ for some f of type h. Fix h' with $[h'] > \sup_{\alpha,\lambda} F(\alpha)$, and let $|T_x \upharpoonright \alpha| > \max\{h(\alpha), h'(\alpha)\}$. For $\gamma < \omega_1$, let $\alpha_\gamma = [\beta \mapsto T_x \upharpoonright \beta(\gamma)]$ if this is less than $h(\beta)$. Let $\beta_\gamma = F(\alpha_\gamma)$. Let $g(\gamma) < \omega_1$ be such that $[\beta \mapsto |T_x \upharpoonright \beta(g(\gamma))|]_{W_1^1} = \beta_\gamma$. Then $F = [\beta \mapsto \{(|T_x \upharpoonright \beta(\gamma), |T_x \upharpoonright \beta(g(\gamma))|): \gamma < \beta\}$.

∃ na

Let \mathcal{P}' partition the functions *f* of type *h* according to whether $\mathcal{P}(F) = 1$, where $F = [f]_{W_1^1}$.

Let $C \subseteq \omega_1$ be homogeneous for \mathcal{P}' .

Let $D = j_{W_1^1}(C) \subseteq \omega_2$. If $F \colon \lambda \to D$ is of the correct type, then there is an $f \colon \omega_1 \to C$ of type *h* with F = [f].

This shows *D* is homogeneous for \mathcal{P} .

医静脉 医原体 医原体

Theorem (Chan, J, Trang)

Let $A \subseteq \omega_2$ and suppose there is a c.u.b. $C \subseteq \omega_2$ such that $A \cap C = cof_{\omega} \cap C$. Then $A \notin Ult_{W_1^1}$.

We use the following lemma.

Lemma (almost everywhere club uniformization)

Let $f: \omega_1 \to \mathcal{P}(\omega_1)$ with $\forall^* \alpha f(\alpha)$ contains a club. Then there is a club $C \subseteq \omega_1$ such that $\forall^* \alpha \in C \setminus \{\alpha + 1\} \subseteq f(\alpha)$.

Proof: Partition $f: \omega_1 \to \omega_1$ of the correct type according to whether $ran(f) \setminus \{f(0)\} \subseteq A_{f(0)}$. On the homogeneous side this must hold, say by *C*. Fix $f: \omega_1 \to C$ of the correct type. Then ran(f) witnesses the Lemma.

Lemma

Assume $\kappa \to \kappa^{\kappa}$. Let μ be a normal measure on κ . Let $\delta = j_{\mu}(\kappa)$. Then if $D \subseteq \delta$ is c.u.b., there exists a c.u.b. $C \subseteq \kappa$ with $j_{\mu}(C) \subseteq D$.

Proof: Partition $f, g: \kappa \to \kappa$ of the correct type with $f(\alpha) < g(\alpha) < f(\alpha + 1)$ according to whether $[g]_{\mu} > N_D([f]_{\mu})$.

On the homogeneous side this holds. Say $C \subseteq \kappa$ is homogeneous for this side.

Then $j_{\mu}(C') \subseteq D$.

4 冊 ト 4 三 ト 4 三 ト

Proof of Theorem: Let $C \subseteq \omega_2$ be as in the Theorem, so $A \cap cof_{\omega} = C \cap cof_{\omega}$. Suppose $A = [F]_{W_1^1}$, where $F(\alpha) \subseteq \omega_1$.

Let $C_0 \subseteq \omega_1$ be such that $j_{W_1^1}(C_0) \subseteq C$.

Case 1. $\forall^* \alpha F(\alpha)$ contains a club.

By the Lemma, let $C_1 \subseteq \omega_1$ be such that $\forall^* \alpha \ C_1 \setminus \{\alpha + 1\} \subseteq F(\alpha)$. Let $C_2 = C_0 \cap C_1$.

Fix $f: \omega_1 \to C_2$ such that $f(\alpha)$ has uniform cofinality α .

ヘロト 人間 ト ヘヨ ト ヘヨ トー

э.

Then [*f*] has cofinality ω_1 and is in $j(C_0) \subseteq C$.

So by the assumed property of A, $[f] \notin A$.

On the other hand, $\forall^* \alpha \ f(\alpha) \in C_1 \setminus \{\alpha + 1\} \subseteq F(\alpha)$. So, $[f] \in [F] = A$.

Case 2: $\forall^* \alpha F(\alpha)$ is disjoint from a club.

The argument is similar, but now taking $f: \omega_1 \to C_2$ such that $f(\alpha)$ has uniform cofinality ω .

イロト イロト イヨト

э.