Combinatorial Sets of Reals, III

Spectra and Definability

Vera Fischer

University of Vienna

May 29–June 3, 2023

Young Set Theory Workshop 2023

4 3 5 4 3 5 5

Definition

We refer to a MCG \mathscr{G} of cardinality μ as witnesses to

$$\mu \in \mathsf{sp}(\mathfrak{a}_g) = \{|\mathscr{G}| : \mathscr{G} \text{ is mcg}\}$$

and to values $\mu \in sp(\mathfrak{a}_g)$ such that

 $\aleph_1 < \mu < \mathfrak{c}$

as intermediate cardinalities (or values).

< 🗇 🕨

YST 2023

Definition: Good projective witnesses A good projective witness to

 $\mu\in \mathsf{sp}(\mathfrak{a}_g)$

is a MCG ${\mathscr G}$ of cardinality μ which is also of

lowest projective complexity,

i.e. there are no witnesses to μ whose definitional complexity lies strictly below that of \mathscr{G} in terms of the projective hierarchy.

YST 2023

Question

What can we say about the definability properties of maximal cofinitary groups ${\mathscr G}$ such that

 $\aleph_1 < |\mathscr{G}| < \mathfrak{c}?$

Observation

Note that a Σ_2^1 MCG must be either of size \aleph_1 or continuum (being the union of \aleph_1 many Borel sets). Therefore the lowest possible projective complexity of a witness to intermediate values in sp(\mathfrak{a}_q) is Π_2^1 .

Theorem (F., Friedman, Schrittesser, Törnquist)

It is relatively consistent with ZFC that:

- $\mathfrak{c} \geq \aleph_3$ and
- there is a Π_2^1 MCG of size \aleph_2 .

Thus, it is consistent that there is a Π_2^1 good projective witness to an intermediate value in sp(\mathfrak{a}_g).

Remark

The same holds for the spectrum of MED and MAD.

Theorem (F., Friedman, Schrittesser, Törnquist)

Let $2 \le M < N < \aleph_0$ be given. There is a cardinal preserving generic extension of the constructible universe *L* in which

$$\mathfrak{a}_g = \mathfrak{b} = \mathfrak{d} = \mathfrak{A}_M < \mathfrak{c} = \mathfrak{A}_N$$

and there is a Π_2^1 definable maximal cofinitary group to size \aleph_M .

Remark

The analogous result holds for maximal families of eventually different reals, maximal families of eventually different permutations, maximal families of almost disjoint sets.

・ 同 ト ・ ヨ ト ・ ヨ ト

YST 2023

E 990

ヘロト ヘヨト ヘヨト ヘヨト

Independent Families

A family $\mathscr{A} \subseteq [\omega]^{\omega}$ is said to be independent for any two non-empty finite disjoint subfamilies \mathscr{A}_0 and \mathscr{A}_1 the set

$$|\bigcap \mathscr{A}_0 \setminus \bigcup \mathscr{A}_1| = \omega.$$

It is a maximal independent family if it is maximal under inclusion and

$$\mathfrak{i} = \min\{|\mathscr{A}| : \mathscr{A} \text{ is a m.i.f.}\}$$

- (Boolean combinations) For finite *h*: A → {0,1}, we refer to
 A^h = ∩ h⁻¹(0)\∪ h⁻¹(1) as a boolean combination. If h' ⊇ h, we say that A^{h'} strengthen A^h.
- (Maximality) $\forall X \in ([\omega]^{\omega} \setminus \mathscr{A}) \exists h \in FF(\mathscr{A})(X \text{ does not split } \mathscr{A}).$

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

... and once again Maximality

Let \mathscr{A} be an independent family. If for each $X \in [\omega]^{\omega} \setminus \mathscr{A}$ and every $h \in FF(\mathscr{A})$ there is a strengthening \mathscr{A}^{g} of \mathscr{A}^{h} such that X does not split \mathscr{A}^{g} , we say that \mathscr{A} is densely maximal.

Remark

The notion of dense maximality appears for the first time in the work of M. Goldstern and S. Shelah on the consistency of $\mathfrak{r} < \mathfrak{u}$.

Density filter

Let \mathscr{A} be an independent family. The family of all $Y \subseteq \omega$ with the property that every \mathscr{A}^h has a strengthening contained in Y is a filter, referred to as the the density filter and denoted fil(\mathscr{A}).

YST 2023

Lemma

Let \mathscr{A} be an independent family. Then \mathscr{A} is densely maximal if and only if

 $\mathscr{P}(\omega) = \mathsf{fil}(\mathscr{A}) \cup \langle \{ \omega \setminus \mathscr{A}^h : h \in \mathsf{FF}(\mathscr{A}) \} \rangle_{dn}.$

YST 2023

Definition: Selective independence

A densely maximal independent family \mathscr{A} is said to be selective if $fil(\mathscr{A})$ is Ramsey.

Theorem (Shelah, 1992)

- Selective independent families exist under CH.
- They are indestructible by a countable support iterations and countable support products of Sacks forcing.

Remark

It is consistent that $\mathfrak{i}<\mathfrak{c}.$ In fact the construction can be extracted from Shelah's proof of $\mathfrak{i}<\mathfrak{u}.$

< ロ > < 同 > < 回 > < 回 >

Theorem (A. Miller)

There are no analytic maximal independent families.

Theorem (Brendle, F., Khomskii)

It is relatively consistent that $\mathfrak{i}=\aleph_1<\mathfrak{c}$ with a co-analytic witness to $\mathfrak{i}.$

Recall that existence of a Σ_2^1 MIF implies the existence of a Π_1^1 MIF.

YST 2023

Optimal spectra?

$$MIF \quad \checkmark \qquad \mu \qquad c \\ MIF \quad \checkmark \qquad - \qquad ? \qquad V^{\mathbb{S}_{\lambda}} \vDash sp(i) = \{\aleph_1, c\}$$
$$MIF \quad - \qquad - \qquad \checkmark \qquad V^{\mathbb{P}} \vDash r = i = c$$

It is still open how to guarantee the existence of

1.

- good projective witnesses for two distinct cardinals in sp(i), or
- a good projective witness for intermediate values.

A 10

YST 2023

Indestructibility

Let \mathscr{A} be a selective independent family. Then \mathscr{A} remains selective after forcing with the countable support iteration of any of:

- (Shelah, 1989) Shelah's poset for diagonalizing a maximal ideal,
- (Cruz-Chapital, F., Guzman, Supina, 2020) Miller partition forcing,
- (J. Bergfalk, F., C. Switzer, 2021) Coding with perfect trees,
- (Switzer, 2022) *h*-perfect trees,
- (F., Switzer, 2023) Miller lite forcing,

leading in particular to the consistency of each of the following

 $\mathfrak{i} < \mathfrak{u}, \mathfrak{u} = \mathfrak{a} = \mathfrak{i} < \mathfrak{a}_T, \mathfrak{i} = \mathfrak{u} < \operatorname{cof}(\mathscr{N}) = \operatorname{non}(\mathscr{N}), \mathfrak{i} = \mathfrak{hm} < \mathfrak{l}_{n,\omega}.$

-

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Definition

A poset \mathbb{P} is Cohen preserving if every every new dense open subset of $2^{<\omega}$ (or, equivalently $\omega^{<\omega}$) contains an old dense subset.

Remark

More formally, \mathbb{P} is Cohen preserving if for all $p \in \mathbb{P}$ and all \mathbb{P} -names D so that

$$p\Vdash``\dot{D}\subseteq$$
 2 $^{<\omega}$ is dense open"

there is a dense $E \subseteq 2^{<\omega}$ in the ground model, $q \leq_{\mathbb{P}} p$ so that

$$q \Vdash \check{E} \subseteq \dot{D}.$$

YST 2023

Theorem (Shelah)

If δ is an ordinal and $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\beta} \mid \alpha \leq \delta, \beta < \delta \rangle$ is a countable support iteration such that for each $\alpha < \delta$

 $\Vdash_{\alpha}``\dot{\mathbb{Q}}_{\alpha}$ is proper and Cohen preserving''

then \mathbb{P}_{δ} is proper and Cohen preserving.

Lemma

If \mathbb{P} is Cohen preserving and proper, then \mathbb{P} is ${}^{\omega}\omega$ -bounding.

YST 2023

Theorem (V. Fischer, C. Switzer, 2023)

Let δ be an ordinal. Let \mathscr{A} be a selective independent family and let $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} \mid \alpha < \delta \rangle$ be a countable support iteration of proper forcing notions so that for every $\alpha < \delta$,

 \Vdash_{α} " $\hat{\mathbb{Q}}_{\alpha}$ is Cohen preserving".

If for every $\alpha < \delta$,

 \Vdash_{α} " $\dot{\mathbb{Q}}_{\alpha}$ preserves the dense maximality of \mathscr{A} "

then \mathbb{P}_{δ} preserves the selectivity of \mathscr{A} .

YST 2023

Genericity

A-diagonalization filters

Let \mathscr{A} be an independent family. A filter \mathscr{U} is said to be an

A-diagonalization filter if

$$\forall F \in \mathscr{U} \forall h \in \mathsf{FF}(\mathscr{A})(|F \cap \mathscr{A}^h| = \omega)$$

and is maximal with respect to the above property.

< 🗇 🕨

4 E b

YST 2023

Genericity

Theorem (F., Montoya, Switzer 2023)

Let \mathscr{A} be an independent family. Then \mathscr{A} is densely maximal iff fil(\mathscr{A}) is the unique diagonalization filter for \mathscr{A} .

Proof

If 𝒜 is densely maximal then fil(𝒜) is

the unique diagonalization filter for \mathscr{A} .

If fil(𝒜) is the unique diagonalization filter, then

A is densely maximal.

< ロ > < 同 > < 回 > < 回 > < 回 > <

YST 2023

Lemma

Suppose \mathscr{U} is a \mathscr{A} -diagonalization filter, G is $\mathbb{M}(\mathscr{U})$ -generic and

$$x_G = \bigcup \{ s : \exists F(s, F) \in G \}.$$

Then:

- $\mathscr{A} \cup \{x_G\}$ is independent
- **2** If *y* ∈ ($[ω]^ω \setminus 𝒜$) ∩ *V* is such that

 $\mathscr{A} \cup \{y\}$

is independent, then $\mathscr{A} \cup \{x_G, y\}$ is not independent.

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

YST 2023

э

Proof (1): For $h \in FF(\mathscr{A})$ and $n \in \omega$, the sets

of $n \in \Pi(\omega)$ and $n \in \omega$, the sets

•
$$D_{h,n} := \{(s, F) \in \mathbb{M}(\mathscr{U}) : |s \cap \mathscr{A}^h| > n\}, \text{ and }$$

•
$$E_{h,n} := \{(s,F) : |(\min F \setminus \max s) \cap \mathscr{A}^h| > n\}$$

are dense, and so $\mathscr{A}^h \cap x_G$, and $\mathscr{A}^h \setminus x_G$ are infinite.

< ロ > < 同 > < 回 > < 回 > .

YST 2023

Proof (2):

Fix *y* such that $\mathscr{A} \cup \{y\}$ is independent.

- **1** If $y \in \mathcal{U}$, then $x_G \subseteq^* y$ and so $x_G \setminus y$ is finite.
- 2 If $y \notin \mathcal{U}$, then
 - either there is $F \in \mathscr{U}$ such that $F \cap y$ is finite, and so $x_G \cap y$ is finite,
 - or there are $F \in \mathscr{U}$, $h \in FF(\mathscr{A})$ s.t. $F \cap y \cap \mathscr{A}^h = \emptyset$, in which case $x_G \cap y \cap \mathscr{A}^h$ is finite.
- **③** Thus in either case $\mathscr{A} \cup \{x_G, y\}$ is not independent.

イロト イポト イラト イラト

YST 2023

Corollary

Let κ be a regular uncountable cardinal. Then consistently

 $\aleph_1 < \mathfrak{i} = \kappa < \mathfrak{c}.$

Proof:

Let $\lambda > \kappa$ be the desired size of the continuum. The ordinal product $\gamma^* = \lambda \cdot \kappa$ contains an unbounded subset \mathscr{I} of cardinality κ . Consider a finite support iteration of length γ^* such that along \mathscr{I} we

- recursively generate a max. independent family of cardinality κ,
- as well as a scale of length κ,

and along $\gamma^* \backslash \mathscr{I},$ we add Cohen reals. Then in the final generic extension

$$\aleph_1 < \mathfrak{d} = \kappa \leq \mathfrak{i} \leq \kappa < \mathfrak{c} = \lambda.$$

・ ロ ト ス 雪 ト ス ヨ ト

YST 2023

э

Genericity

Theorem (F., Switzer, 2023)

The generic maximal independent family added by an iteration of Mathias forcing relativized to diagonalization filters is selective.

Corollary

If p = c, then there is a selective independent family.

・ロト ・ 聞 ト ・ 臣 ト ・ 臣 ト

YST 2023

Genericity

Theorem (F., Switzer, 2023)

(GCH) Let $\kappa < \lambda$ be regular uncountable. It is consistent that

$$\mathfrak{i} = \kappa < \mathfrak{c} = \lambda$$

holds with a selective witness to i.

YST 2023

- Can we adjoin via forcing a maximal ideal independent family of cardinality *κ*_ω?
- 2 In the Sacks model $\mathfrak{sp}(\mathfrak{i}) = \{ \aleph_1, \mathfrak{c} \}.$
 - Can we have a large spectrum?
 - For which sets of uncountable cardinals C can we achieve a precise evaluation sp(i) = C?

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・ ・

YST 2023

э

Lemma

Let \mathscr{A} be an independent family, \mathscr{U} a \mathscr{A} -diagonalization filter. Let n > 1 and for each $i \in n$ let $\mathscr{U}_i = \mathscr{U}$. Let

$$G = \prod_{i \in n} G_i$$
 be $\mathbb{P} = \prod_{i \in n} \mathbb{M}(\mathscr{U}_i)$ -generic filter

and for each $i \in n$ let $x_i = x_{G_i}$. Then in V[G]:

- $\mathscr{A} \cup \{x_i\}_{i \in n}$ is independent;
- 2 if $y \in (V \setminus \mathscr{A}) \cap [\omega]^{\omega}$ be such that

 $\mathscr{A} \cup \{y\}$ is independent,

イロト イポト イヨト イヨト

YST 2023

28/52

then for each $i \in n$, the family $\mathscr{A} \cup \{y, x_i\}$ is not independent.

Proof

Item (2) holds, since each x_i is a diagonalization real.

To prove item (1):

• fix $h \in FF(\mathscr{A})$ and an arbitrary $j : n \rightarrow 2$;

• for each $n \in \omega$, we will show that the set

$$\mathcal{D}_{h,j,n} = \{ \langle (t_i, \mathcal{H}_i) \rangle_{i \in n} : \exists i^* > n(i^* \in \bigcap t_i^{j(i)} \cap \mathscr{A}^h) \}$$

is dense in \mathbb{P} , where $t_i^0 = t$, $t_i^1 = \min H_i \setminus t_i$. Thus, if $p \in D_{h,j,n}$ then

$$p \Vdash i^* \in \bigcap_{i \in n} x_i^{j(j)} \cap \mathscr{A}^h,$$

Image: A matrix a

YST 2023

29/52

where $x_i^0 = x_i$ and $x_i^1 = \omega \setminus x_i$.

Proof cnt'd:

- Let $\bar{p} = \langle (s_i, F_i) \rangle_{i \in n} \in \mathbb{P}$. Let $I = \{i \in n : j(i) = 0\}$ and $J = n \setminus I$.
- Thus, for each $i \in I$, $s_i^{j(i)} = s_i$ and for each $i \in J$, $s_i^{j(i)} = \omega \setminus s_i$.
- Since 𝒞 is 𝔄-diagonalization,

$$\bigcap_{i\in I} F_i \cap \mathscr{A}^h$$

is infinite and so there is

$$i^* \in \bigcap_{i \in I} F_i \cap \mathscr{A}^h,$$

Image: A mathematical straight and the straight and th

YST 2023

30/52

which is strictly bigger than *n* and the maximum of s_i for all $i \in n$.

Proof cnt'd:

Then:

- **●** if $i \in I$, $(s_i \cup \{i^*\}, F_i \setminus (i^* + 1)) \leq (s_i, F_i)$ and forces $i^* \in x_i \cap \mathscr{A}^h$;
- ② if $i \in J$, $(s_i, F_i \setminus (i^* + 1)) \le (s_i, F_i)$ and forces $i^* \in (\omega \setminus x_i) \cap \mathscr{A}^h$.

Let $ar{q} = \langle q_i angle_{i \in n}$ where

 $q_i = (s_i \cup \{i^*\}, F_i \setminus (i^*+1))$ for $i \in I$, $q_i = (s_i, F_i \setminus (i^*+1))$ for $i \in J$.

Then $\bar{q} \leq \bar{p}$ and $\bar{q} \in D_{h,j,n}$. In particular,

$$\bar{q} \Vdash i^* \in \bigcap_{i \in n} x_i^{j(i)} \cap \mathscr{A}^h.$$

31/52

YST 2023

Proof cnt'd:

Then:

- **●** if $i \in I$, $(s_i \cup \{i^*\}, F_i \setminus (i^* + 1)) \leq (s_i, F_i)$ and forces $i^* \in x_i \cap \mathscr{A}^h$;
- ② if $i \in J$, $(s_i, F_i \setminus (i^* + 1)) \le (s_i, F_i)$ and forces $i^* \in (\omega \setminus x_i) \cap \mathscr{A}^h$.

Let $ar{q} = \langle q_i angle_{i \in n}$ where

 $q_i = (s_i \cup \{i^*\}, F_i \setminus (i^*+1))$ for $i \in I$, $q_i = (s_i, F_i \setminus (i^*+1))$ for $i \in J$.

Then $\bar{q} \leq \bar{p}$ and $\bar{q} \in D_{h,j,n}$. In particular,

$$\bar{q} \Vdash i^* \in \bigcap_{i \in n} x_i^{j(i)} \cap \mathscr{A}^h.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

YST 2023

Theorem (F., Shelah)

(GCH) Let θ be an uncountable cardinal. Then, there is a ccc poset, which adjoins a maximal independent family of cardinality θ .

Remark

In particular, there is a ccc poset adjoining a maximal independent family of cardinality \aleph_{ω} .

・ 同 ト ・ ヨ ト ・ ヨ ト

YST 2023

Proof (Outline)

Fix $\sigma \leq \theta \leq \lambda$, where:

- σ is regular uncountable (the intended value of i),
- λ is of uncountable cofinality (the intended value of c).
- Let $S \subseteq \theta^{<\sigma}$ be a well-prunded θ -splitting tree of height σ .
- For each $\alpha < \sigma$, let S_{α} be the α -th splitting level of S.

イロト イポト イヨト イヨト

YST 2023

э

Recursively define a finite support iteration

$$\mathbb{P}_{\mathcal{S}} = \langle \mathbb{P}_{oldsymbol{lpha}}, \dot{\mathbb{Q}}_{oldsymbol{lpha}} : oldsymbol{lpha} \leq oldsymbol{\sigma}, oldsymbol{eta} < oldsymbol{\sigma}
angle$$

of length σ such that for each α , in $V^{\mathbb{P}_{\alpha}}$ we have

$$\mathbb{Q}_{lpha} = \prod_{oldsymbol{\eta}\in \mathcal{S}_{oldsymbol{lpha}}} \mathbb{Q}_{oldsymbol{\eta}}$$

where \mathbb{Q}_{η} is Mathias forcing for an appropriate diagonalization filter. Moreover the diagonalization filters are chosen in such a way, that in $V^{\mathbb{P}_{S}}$ for each branch $\eta \in [S]$ the family

$$\mathscr{A}_{\eta} = \{a_{v} : v \in \mathsf{succ}(\eta \restriction \xi), \xi < \alpha\}$$

is a maximal independent family of cardinality θ .

不得た イヨト イヨト

YST 2023

Corollary (F., Shelah)

There is a ccc forcing notion adjoining a maximal independent family ${\mathscr A}$ such that

$$|\mathscr{A}| = \aleph_{\omega}.$$

Proof:

Use an \aleph_{ω} -splitting tree of height ω_1 .

▲ 同 ▶ ▲ 三 ▶

A 30 b

36/52

YST 2023

Theorem (F., Shelah, 2022)

Assume GCH.Let σ be a regular uncountable cardinal, λ a cardinal of uncountable cofinality such that $\sigma \leq \lambda$. Let

 $\Theta_1 \subseteq [\sigma,\lambda]$

be such that

$$\sigma = \min \Theta_1, \max \Theta_1 = \lambda.$$

Then there is a ccc generic extension in which

 $\Theta_1 \subseteq \mathfrak{sp}(\mathfrak{i}).$

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

YST 2023

Theorem (F., Shelah)

• For any finite set $C \subseteq \{\aleph_n\}_{n \in \omega \setminus 1}$, consistently

$$sp(i) = C.$$

For any infinite C ⊆ { ℵ_n}_{n∈ω\1} and λ > ℵ_ω of uncountable cofinality, consistently

$$\operatorname{sp}(\mathfrak{i}) = C \cup \{ \aleph_{\omega}, \mathfrak{c} = \lambda \}.$$

Comment

Excluding values is an isomorphism of names argument, essentially a counting argument, relying on specific properties of the forcing construction.

YST 2023

Ideal Independence

• A family $\mathscr{A} \subseteq [\omega]^{\omega}$ such that for all $\mathscr{F} \in [\mathscr{A}]^{<\omega}$ and $A \in \mathscr{A} \setminus \mathscr{F}$, the set

A∖Uℱ

is infinite, is said to be ideal independent.

- An ideal independent family which is maximal under inclusion is said to be a maximal ideal independent family.
- The least cardinality of an infinite ideal independent family, maximal under inclusion, is denoted \$\$mm\$.
- Almost disjoint families and independent families are both examples of ideal independent families.

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・ ・

YST 2023

Earlier investigations (Cancino, Guzman, Miller) of \mathfrak{s}_{mm} show that

 $max\{\mathfrak{d},\mathfrak{r}\} \leq \mathfrak{s}_{\textit{mm}}$

and that each of the following inequalities

 $\mathfrak{u} < \mathfrak{s}_{mm}, \quad \mathfrak{s}_{mm} < \mathfrak{i}, \quad \mathfrak{s}_{mm} < \mathfrak{c}$

is consistent.

YST 2023

э

Definition

Let \mathscr{A} be an ideal independent family. For any $A \in \mathscr{A}$, the filter $\mathscr{F}(\mathscr{A}, A)$ generated by the family

$$\{A \setminus \bigcup \mathscr{F} : \mathscr{F} \in [\mathscr{A}]^{<\omega} \land A \notin \mathscr{F}\}.$$

is referred to as the complemented filter of A

YST 2023

Observation

An ideal independent family \mathscr{A} is maximal if and only if

$$\mathscr{P}(\omega) = \mathscr{I}(\mathscr{A}) \cup \Big(\bigcup \{\mathscr{F}(\mathscr{A}, A) : A \in \mathscr{A}\}\Big).$$

YST 2023

э

Theorem(Bardyla, Cancino, F., Switzer)

 $\mathfrak{u} \leq \mathfrak{s}_{mm}$

As a consequence we obtain the independence of \mathfrak{s}_{mm} and \mathfrak{i} , as

- the consistency of $\mathfrak{s}_{mm} < \mathfrak{i}$ is shown by Cancino, Guzman, Miller,
- while the consistency of i < s_{mm} follows from the above result and the consistency of i < u.

< 回 > < 回 > < 回 >

Definition

Let \mathscr{U} be an ultrafilter. A maximal ideal independent family \mathscr{A} is called \mathscr{U} -encompassing if the following conditions hold:

1 $\mathscr{U} \cap \mathscr{A} = \emptyset$, i.e. \mathscr{A} is contained in the dual ideal of \mathscr{U} .

2 For every $X \in \mathcal{U}$ the set of $A \in \mathcal{A}$ so that $X \in \mathcal{F}(\mathcal{A}, A)$ is co-countable.

Theorem (Bardyla, Cancino, F., Switzer)

Assume CH. For any *p*-point \mathscr{U} there is a \mathscr{U} -encompassing maximal ideal independent family \mathscr{A} such that for all $A \in \mathscr{A}$, the filter $\mathscr{F}(\mathscr{A}, A)$ is a *p*-point.

< ロ > < 同 > < 回 > < 回 > < □ > <

YST 2023

Theorem (Bardyla, Cancino, F., Switzer)

Let \mathscr{U} be a *p*-point and let \mathbb{P} be

```
proper, \omega^{\omega}-bounding, p-points preserving poset.
```

Then \mathbb{P} preserves the maximality of any

 \mathscr{U} -encompassing maximal ideal independent family \mathscr{A}

with the property that $\mathscr{F}(\mathscr{A}, A)$ is a *p*-point for all $A \in \mathscr{A}$.

Observation

Note that this theorem implies that under CH, in the generic extension by any proper, ω^{ω} -bounding, *p*-point preserving forcing notion $\mathfrak{s}_{mm} = \mathfrak{K}_1$.

YST 2023

Corollary

- **2** $\mathfrak{s}_{mm} = \mathfrak{K}_1$ in the Miller partition model and hence $\mathfrak{s}_{mm} < \mathfrak{a}_T$ is consistent.
- If smm = ℵ₁ in the *h*-perfect tree forcing model and hence smm < non(𝒴) is consistent.</p>

YST 2023

An alternation of Miller partition forcing and *h*-perfect tree forcings leads to the consistency of

 $\mathfrak{i} = \mathfrak{s}_{mm} < \operatorname{non}(\mathscr{N}) = \mathfrak{a}_T = \mathfrak{K}_2.$

Corollary

 \mathfrak{s}_{mm} is independent of \mathfrak{a}_T

Proof.

- In the Miller partition model, $\mathfrak{s}_{mm} < \mathfrak{a}_T$.
- On the other hand, $a_T < u$ holds in the Random model and hence $a_T < s_{mm}$ holds in that model as well.

YST 2023

Lemma: Eliminating intruders

Let \mathscr{A} be an ideal independent family. There is a *ccc* forcing $\mathbb{P}(\mathscr{A})$ which adds a set *z* such that in $V^{\mathbb{P}(\mathscr{A})}$:

- **1** $\mathscr{A} \cup \{z\}$ is an ideal independent family, and
- 2 for each $y \in V \cap ([\omega]^{\omega} \setminus \mathscr{A})$ the family $\mathscr{A} \cup \{z, y\}$ is not ideal independent.

イロト イポト イヨト イヨト

YST 2023

Theorem

Assume *GCH*. Let *C* be a set of uncountable cardinals. Then there is a *ccc* generic extension in which

 $C \subseteq \operatorname{spec}(\mathfrak{s}_{mm}) = \{ |\mathscr{A}| : \mathscr{A} \text{ is a maximal ideal independent family} \}.$

Under some restrictions on *C*, one can obtain a cardinal preserving generic extension in which *C* is realized as $spec(s_{mm})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

YST 2023

Questions

- Is it consistent that $\mathfrak{s}_{mm} = \mathfrak{K}_{\omega}$?
- What *ZFC* restrictions are there on the set spec(*s_{mm}*)?

YST 2023

э

Vera Fischer (University of Vienna)

æ.

< ロ > < 回 > < 回 > < 回 > < 回 > .

Thank you for your attention!

<ロ> <同> <同> <同> < 同> < 同>

YST 2023

æ.