Combinatorial Sets of Reals, II

Induced logarithmic measures and coherent systems

Vera Fischer

University of Vienna

May 29–June 3, 2023

Young Set Theory Workshop 2023

< 🗇 🕨

Question Is it consistent that $\aleph_1 < \mathfrak{b} < \mathfrak{s}$?

э

< ロ > < 同 > < 回 > < 回 >

Recall Shelah's creature poset \mathbb{Q} .

Definition

- A family of pure conditions \mathscr{C} is centered if whenever $X, Y \in \mathscr{C}$ there is $R \in \mathscr{C}$ which is their common extension.
- If *C* is a family of pure conditions, then Q(*C*) is the suborder of Q consisting of all (u, T) ∈ Q such that ∃R ∈ C(R ≤ T).

Remark

We work exclusively with centered families \mathscr{C} which are closed with respect to final segments. Note that any two conditions of $\mathbb{Q}(\mathscr{C})$ are compatible as conditions in $\mathbb{Q}(\mathscr{C})$ iff they are compatible in \mathbb{Q} .

YST 2023

Definition (Induced logarithmic measure)

Let $P \subseteq [\omega]^{<\omega}$ be an upwards closed family. Then *P* induces a logarithmic measure *h* on $[\omega]^{<\omega}$ defined recursively on the |s| for $s \in [\omega]^{<\omega}$ as follows:

1
$$h(e) \ge 0$$
 for every $e \in [\omega]^{<\alpha}$

2
$$h(e) > 0$$
 iff $e \in P$ and $|e| > 1$

3 for $l \ge 1$, $h(e) \ge l+1$ iff |e| > 1 and whenever $e_0, e_1 \subseteq e$ are such that $e = e_0 \cup e_1$, then $h(e_0) \ge l$ or $h(e_1) \ge l$.

Then h(e) = l if *l* is maximal for which $h(e) \ge l$. The elements of *P* are called positive sets and *h* is said to be induced by *P*.

Theorem (V.F., J. Steprans, 2008)

Let κ be a regular uncountable cardinal, $cov(\mathcal{M}) = \kappa$,

 $\mathscr{H} \subset {}^{\omega}\omega$

be an unbounded, \leq^* -directed family of cardinality κ . Assume that

 $\forall \lambda < \kappa (2^{\lambda} < \kappa).$

Then, there is a centered family

64

of pure conditions, such that $|\mathscr{C}_{\mathscr{H}}| = \kappa$ and such that

 $\mathbf{0} \Vdash_{\mathbb{Q}(\mathscr{C}_{\mathscr{H}})} ``\mathscr{H} is unbounded''$

2 $\mathbb{Q}(\mathscr{C}_{\mathscr{H}})$ adds a real not split by the ground model reals.

Theorem (V.F., J. Sterpans, 2008)

(GCH) Let κ be a regular uncountable cardinal. Then there is a ccc generic extension in which $\mathfrak{b} = \kappa < \mathfrak{s} = \kappa^+$.

- Can we do better? Is it consistent that there is an arbitrarily large spread between b and s?
- 2 The techniques leading to the above result, heavily use the fact that the cardinality of the unbounded family is κ!
- So, we do need a new approach. But, before that, an observation:

YST 2023

Lemma (V.F., B. Irrgang, 2010)

Let \mathscr{C} be a centered family of pure conditions in \mathbb{Q} . Then $\mathbb{Q}(\mathscr{C})$ is densely embedded in $\mathbb{M}(\mathscr{F}_{\mathscr{C}})$, where

$$\mathscr{F}_{\mathscr{C}} = \{ X \in [\omega]^{\omega} : \exists T \in \mathscr{C}(\operatorname{int}(T) \subseteq X) \}.$$

Proof

The mapping $(u, T) \mapsto (u, int(T))$ is a dense embedding.

< A >

4 B b

YST 2023

Corollary

Let κ be a regular uncountable cardinal, $\operatorname{cov}(\mathscr{M}) = \kappa$, $\mathscr{H} \subseteq {}^{\omega}\omega$ is an unbounded, \leq^* directed family of cardinality κ . Assume that $\forall \lambda < \kappa (2^{\lambda} \leq \kappa)$. Then, there is an ultrafilter $\mathscr{U}_{\mathscr{H}}$ such that

 $\Vdash_{\mathbb{M}(\mathscr{U}_{\mathscr{H}})}$ " \mathscr{H} is unbounded".

Canjarness

- There are earlier examples of ultrafilters, such that the relativized Mathias forcing, preserves the unboundedness of a given family: In Blass-Shelah consistency proof of u = κ < 0 = λ from 1989, one can find the construction of a special ultrafilter U_H, associated to a set of Cohen reals H, such that M(U_H) preserves the unboundedness of H.
- 2 In both instances, $|\mathcal{H}| = \mathfrak{c}$.

・ロト ・四ト ・ヨト ・ヨト

Definition: Hechler's poset for adding a dominating real, \mathbb{D} :

The poset consists of all pairs $(s, f) \in {}^{<\omega}\omega \times {}^{\omega}\omega$ such that $(s_1, f_1) \leq (s_2, f_2)$ iff

- s₂ is an initial segment of s₁
- for all $i \in \text{dom}(s_1) \setminus \text{dom}(s_2)$, $s_1(i) \ge f_2(i)$;
- for all $i \in \omega$, $f_2(i) \leq f_1(i)$.

If only elements of a given family $\mathscr{F} \subseteq {}^{\omega}\omega$ are allowed as second coordinates in the the above definition, we speak about restricted Hechler forcing, denoted $\mathbb{D}^{\mathscr{F}}$ of $\mathbb{D}(\mathscr{F})$.

A (a) < (b) </p>

YST 2023

Definition: Hechler's poset for adding a mad family, $\mathbb{H}(\gamma)$:

Let γ be an ordinal. Then, $\mathbb{H}(\gamma)$ is the poset of all finite partial functions

 $p: \gamma \times \omega \rightarrow 2$

such that dom(p) = $F_p \times n_p$ where $F_p \in [\gamma]^{<\omega}$, $n_p \in \omega$.

The order is given by $q \leq p$ if

•
$$p \subseteq q$$

• $|q^{-1}(1) \cap F^p \times \{i\}| \le 1$ for all $i \in n_q \setminus n_p$.

Image: A matrix a

YST 2023

The complete embedding property

Lemma

Let G_I be $\mathbb{H}(I)$ -generic, $\mathscr{A}_I = \{A_i\}_{i \in I}$, $A_i = \{n : \exists p \in G_I p(i, n) = 1\}$ for $i \in I$.

Then $\mathscr{A}_{I} = \{A_{i}\}_{i \in I}$ is almost disjoint.

- **1** If *I* is uncountable, then \mathscr{A}_I is maximal almost disjoint.
- 2 If $J \subset I$ then $\mathbb{H}(J) \triangleleft \mathbb{H}(I)$ and the quotient is 'good'.

< ロ > < 同 > < 回 > < 回 > .

YST 2023

Lemma: Diagonalization

- Let $I = J \cup \{i\}$, where $i \notin J$. Then $G_I = G_J * G(i)$:

 - ② If *X* ∈ *V*[*G*_{*J*}] ∩ ([ω]^{ω}*I*(*\mathscr{A}_J*)), then *X* ∩ *A*_{*i*} is infinite.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

YST 2023

э.

Definition: Elimination of Intruders

Let $M \subseteq N$ be models, $\mathscr{B} = \{B_{\alpha}\}_{\alpha < \gamma} \subseteq M \cap [\omega]^{\omega}$ and let $A \in N \cap [\omega]^{\omega}$ such that $\mathscr{B} \cup \{A\}$ is almost disjoint. We say that

A diagonalizes \mathscr{B} over M

if for every

 $X \in M \cap ([\omega]^{\omega} \setminus \mathscr{I}(\mathscr{B})),$

where $\mathscr{I}(\mathscr{B})$ denotes the ideal generated by \mathscr{B} , we have

 $|A \cap X| = \infty$.

Remark

- Alternatively, we say that A eliminates *B*-intruders over M.
- Thus, A_i diagonalizes \mathscr{A}_l over $V[G_J]$.

イロト イポト イラト イラト

YST 2023

Persistent (!?) Elimination of Intruders Let $M \subseteq N$ be models,

$$\mathscr{B} = \{B_{\alpha}\}_{\alpha < \gamma} \subseteq M \cap [\omega]^{\omega}, \ A \in N \cap [\omega]^{\omega}$$

and suppose A eliminates *B*-intruders over M. Let

$$\bar{\mathbb{P}}_{\boldsymbol{s}} = \langle \mathbb{P}_{\boldsymbol{\alpha}}^{\boldsymbol{s}} : \boldsymbol{\alpha} \leq \boldsymbol{\lambda} \rangle,$$

where $s \in \{0,1\}$ be FS iterations in M, N (for s = 0 and s = 1 respectively) such that $\mathbb{P}^0_{\alpha} \leq \mathbb{P}^1_{\alpha}$ for each α . Then:

Is it necessarily the case that

A eliminates \mathscr{B} -intruders over $M^{\mathbb{P}_{\alpha}}$

for each $\alpha \leq \lambda$?

YST 2023

Definition (Strong diagonalizaiton)

Let $M \subseteq N$ be models of set theory, $\mathscr{B} = \{B_{\alpha}\}_{\alpha < \gamma} \subseteq M \cap [\omega]^{\omega}$ and let $A \in N \cap [\omega]^{\omega}$. Then $(* \overset{M}{\mathscr{B}} \overset{N}{A})$ holds if for every

$$h: \omega \times [\gamma]^{<\omega} \to \omega$$

 $h \in M$ and every $m \in \omega$ there are $n \ge m$ and $F \in [\gamma]^{<\omega}$ such that

$$[n,h(n,F))\setminus \bigcup_{\alpha\in F}B_{\alpha}\subseteq A.$$

We say that A strongly diagonalizes \mathscr{B} over M.

Lemma

If
$$(*_{\mathscr{B}}^{M} {\overset{N}{A}})$$
, then A eliminates \mathscr{B} -intruders.

Vera Fischer (University of Vienna)

YST 2023

Lemma (Persistent elimination of intruders)

Let $\overline{\mathbb{P}}_s = \langle \mathbb{P}_{s,n} : n \leq \omega \rangle$, $s \in \{0,1\}$ be FS iterations such that $\mathbb{P}_{0,n} \ll \mathbb{P}_{1,n}$ for all n.

Let $V_{s,n} = V^{\mathbb{P}_{s,n}}$. Let

$$\mathscr{B} = \{B_{\alpha}\}_{\alpha < \gamma} \subseteq V_{0,0} \cap [\omega]^{\omega}, A \in V_{1,0} \cap [\omega]^{\omega}.$$

If A strongly diagonalizes \mathscr{B} over $V_{0,n}$ for each n, then

A strongly diagonalizes \mathscr{B} over $V_{0,\omega}$.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

YST 2023

3

Lemma (Strong diagonalization)

Let $G_{\gamma+1}$ be $\mathbb{H}(\gamma+1)$ -generic, $G_{\gamma} = G_{\gamma+1} \cap \mathbb{H}(\gamma)$ and $A_{\gamma} = \{A_{\alpha}\}_{\alpha < \gamma}$, where

$$A_{\alpha} = \{i : \exists p \in G_{\gamma+1}p(\alpha, i) = 1\},\$$

for $\alpha \leq \gamma$. Then

$$\begin{pmatrix} V[G_{\gamma}] & V[G_{\gamma+1}] \\ \mathscr{A}_{\gamma} & A_{\gamma} \end{pmatrix}$$

holds.

YST 2023

э.

Lemma (Strong diagonalization and ultrafilters)

Let $M \subseteq N$ be models, $\mathscr{B} = \{B_{\alpha}\}_{\alpha < \gamma} \subseteq M \cap [\omega]^{\omega}$, $A \in N \cap [\omega]^{\omega}$ such that

A strongly diagonalizes \mathscr{B} over M.

Let \mathscr{U} be an ultrafiler in M. Then \exists an ultrafilter \mathscr{V} in N such that $\mathscr{U} \subseteq \mathscr{V}$ and

- every maximal antichain of M(𝒴) which belongs to *M* is a maximal antichain of M(𝒴) in *N*,
- If or every M(𝒴)-generic filter G over N, which by item (1) is M(𝒴)-generic over N, the set

A strongly diagonalizes \mathscr{B} over M[G].

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

YST 2023

Lemma (... more strong diagonalizaiton)

Let $M \subseteq N$ be models, $\mathbb{P} \in M$ a poset, G a \mathbb{P} -generic filter over N. Let

$$\mathscr{B} = \{B_{\alpha}\}_{\alpha < \gamma} \subseteq M \cap [\omega]^{\omega}, \ A \in N \cap [\omega]^{\omega}.$$

If A strongly diagonalizes \mathscr{B} over M, then

A strongly diagonalizes \mathscr{B} over M[G].

イロト イポト イラト イラト

YST 2023

Assume GCH and let $\kappa < \lambda$ be regular uncountable cardinals. Let

$$f: \{\eta < \lambda : \eta \equiv 1 \mod 2\}
ightarrow \kappa$$

be an onto mapping such that

$$\forall \alpha < \kappa, f^{-1}(\alpha)$$
 is cofinal in λ .

Recursively define a system of finite support iterations

$$\langle \langle \mathbb{P}_{lpha,\zeta} : lpha \leq \kappa, \zeta \leq \lambda
angle, \langle \dot{\mathbb{Q}}_{lpha,\zeta} : lpha \leq \kappa, \zeta < \lambda
angle
angle$$

as follows:

YST 2023

э

- For all α, ζ let $V_{\alpha,\zeta} = V^{\mathbb{P}_{\alpha,\zeta}}$.
- If ζ = 0 then for all α ≤ κ, let P_{α,0} be Hechler's poset for adding an a.d. family A_α = {A_β}_{β<α}. Note that for α ≥ ω₁, A_α is maximal almost disjoint in V_{α,0}.
- If $\zeta = \eta + 1$, $\zeta \equiv 1 \mod 2$, then $\Vdash_{\mathbb{P}_{\alpha,\eta}} \dot{\mathbb{Q}}_{\alpha,\eta} = \mathbb{M}(\dot{\mathcal{U}}_{\alpha,\eta})$ where $\dot{\mathcal{U}}_{\alpha,\eta}$ is a $\mathbb{P}_{\alpha,\eta}$ -name for an ultrafilter and for all $\alpha < \beta \leq \kappa$,

$$\Vdash_{\mathbb{P}_{\beta,\eta}} \dot{\mathscr{U}}_{\alpha,\eta} \subseteq \dot{\mathscr{U}}_{\beta,\eta}.$$

• If ζ is a limit, then for all $\alpha \leq \kappa$, $\mathbb{P}_{\alpha,\zeta}$ is the finite support iteration of $\langle \mathbb{P}_{\alpha,\eta}, \dot{\mathbb{Q}}_{\alpha,\eta} : \eta < \zeta \rangle$.

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

YST 2023

Furthermore, we guarantee that the construction satisfy the following properties:

$$\ \, \bullet \forall \zeta \leq \lambda \text{ and } \forall \alpha < \beta \leq \kappa, \\ \mathbb{P}_{\alpha,\zeta} \lessdot \mathbb{P}_{\beta,\zeta}.$$

2 For all $\zeta \leq \lambda$, $\forall \alpha < \kappa$ the strong elimination of intruders property

$$\begin{pmatrix} V_{\alpha,\zeta} & V_{\alpha+1,\zeta} \\ \mathscr{A}_{\alpha} & \mathcal{A}_{\alpha+1} \end{pmatrix}$$

implying that A_{α} eliminates \mathscr{A}_{α} -intruders over $V_{\alpha,\zeta}$ for each $\zeta \leq \lambda$.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

YST 2023

3

Lemma

The construction satisfies that for all $\alpha < \beta \leq \kappa$, and all $\zeta < \eta \leq \lambda$,

 $\mathbb{P}_{\alpha,\zeta} \lessdot \mathbb{P}_{\beta,\eta}.$

Lemma

For each $\zeta \leq \lambda$:

- **1** For every $p \in \mathbb{P}_{\kappa,\zeta}$ there is $\alpha < \kappa$ such that $p \in \mathbb{P}_{\alpha,\zeta}$.
- **2** For every $\mathbb{P}_{\kappa,\zeta}$ -name for a real \dot{f} there is $\alpha < \kappa$ such that \dot{f} is a $\mathbb{P}_{\alpha,\zeta}$ -name.

< ロ > < 同 > < 回 > < 回 > .

YST 2023

Theorem (V. F., J. Brendle, 2010)

$$V_{\kappa,\lambda} \vDash \mathfrak{b} = \mathfrak{a} = \kappa < \mathfrak{s} = \lambda.$$

イロト イポト イヨト イヨト

YST 2023

э

Proof: $\mathfrak{a} \leq \kappa$

- We will show that family $\{A_{\alpha}\}_{\alpha < \kappa}$ remains maximal in $V_{\kappa,\lambda}$.
- Otherwise $\exists B \in V_{\kappa,\lambda} \cap [\omega]^{\omega}$ such that

$$\forall \alpha < \kappa | B \cap A_{\alpha} | < \omega.$$

However there is $\alpha < \kappa$ such that

 $B \in V_{\alpha,\lambda} \cap [\omega]^{\omega}.$

• Note that $B \notin \mathscr{I}(\mathscr{A}_{\alpha})$. Then strong elimination of intruders

$$\begin{pmatrix} V_{\alpha,\lambda} & V_{\alpha+1,\lambda} \\ \mathscr{A}_{\alpha} & \mathcal{A}_{\alpha+1} \end{pmatrix}$$

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・

YST 2023

25/53

holds and so $|B \cap A_{\alpha+1}| = \infty$, which is a contradiction.

• Thus, $\mathfrak{a} \leq \kappa$.

Proof: $\kappa \leq \mathfrak{b}$ and so $\mathfrak{b} = \mathfrak{a} = \kappa$

- Let $B \subseteq V_{\kappa,\lambda} \cap {}^{\omega}\omega$ be of cardinality $< \kappa$. Then there are $\alpha < \kappa$, $\zeta < \lambda$ such that $B \subseteq V_{\alpha,\zeta}$.
- Since {γ: f(γ) = α} is cofinal in λ, there is ζ' > ζ such that f(ζ') = α.
- Then $\mathbb{P}_{\alpha+1,\zeta'+1}$ adds a real dominating $V_{\alpha,\zeta'} \cap {}^{\omega}\omega$, and so in particular $V_{\alpha,\zeta} \cap {}^{\omega}\omega$.
- Thus *B* is not unbounded.
- Therefore in $V_{\kappa,\lambda}$, we have that $b \ge \kappa$. However $b \le a$ and so, in $V_{\kappa,\lambda}$ we have $b = a = \kappa$.

YST 2023

э.

Proof: $\mathfrak{s} = \lambda$

To see that in $V_{\kappa,\lambda}$, $\mathfrak{s} = \lambda$, note that if

 $S \subseteq V_{\kappa,\lambda} \cap [\omega]^{\omega}$

is of cardinality $< \lambda$, then there is $\zeta < \lambda$ such that

$$\zeta = \eta + 1, \zeta \equiv 1 \mod 2$$

and

 $S \subseteq V_{\kappa,\lambda}$.

Then $\mathbb{M}(\mathscr{U}_{\kappa,\eta})$ adds a real not split by *S* and so *S* is not splitting.

YST 2023

э

Observation (Strongly *H*-Canjar)

Note that if μ is a cardinal such that

$$\kappa < \mu \leq \lambda$$

in the above construction, then in $V_{\kappa,\mu+1}$ there is an ultrafilter

$$\mathscr{U} = \mathscr{U}_{\kappa,\mu+1}$$

such that

 $\mathbb{M}(\mathscr{U})$ preserves the unboundedness of $\mathscr{H} \subseteq {}^{\omega}\omega$,

where $|\mathscr{H}| = \kappa < \mu \leq \mathfrak{c}$ (!)

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

YST 2023

-

Questions:

2 Is it consistent that b < a < s?

イロト イポト イヨト イヨト

YST 2023

э

Maximal Eventually Different Families

Definition

A family $\mathscr{E} \subseteq {}^{\omega}\omega$ is eventually different(abbreviated e.d.) if for any two distinct $f, g \in \mathscr{E}$ there is $n \in \mathbb{N}$ such that

 $\forall m > n(f(m) \neq g(m)).$

We write $f \neq^* g$. An e.d. family is maximal if it is not properly contained in any other e.d. family.

We denote such maximal families MED, their minimal cardinality \mathfrak{a}_e . For $f, g \in {}^{\omega}\omega$ if it is not the case that f, g are e.d., we write $f = {}^{\infty}g$.

YST 2023

Maximal cofinitary groups

Definition

- A group 𝒢 ≤ S_∞ is cofinitary if its elements are pairwise eventually different.
- A cofinitary group is maximal if it is not properly contained in any other cofinitary group.
- We denote such groups with MCG and their minimal cardinality a_g .

YST 2023

It is clear that MED and MCG are close relatives to maximal almost disjoint families and so a_g , a_e are close relatives of a, the minimal cardinality of an infinite maximal almost disjoint subfamily of $[\omega]^{\omega}$.

< A >

() <) <)
 () <)
 () <)
</p>

32/53

YST 2023

To what extent are those distinct?

non(\mathscr{M}) and \mathfrak{a} are independent, while non(\mathscr{M}) $\leq \mathfrak{a}_g, \mathfrak{a}_e$.

Comparing those combinatorial notions with respect to their projective complexity provides further clear distinctions:

- (A. Mathias) There are no analytic MAD families.
- (H. Horowitz, S. Shelah) There are Borel MED and Borel MCG.

YST 2023

MCG

- (Gao, Zhang) In *L* there is a MCG with a co-analytic generating set.
- (Kastermans) In *L* then there is a co-analytic MCG.
- (Horowitz, Shelah) There is a Borel MCG.

Question

What can we say about the existence of such nicely definable combinatorial sets of reals in models of large continuum?

YST 2023

Cohen forcing

Theorem (F., Schrittesser, Törnquist)

Assume V = L. Then there is a co-analytic MCG which is indestructible by Cohen forcing.

Corollary

The existence of a Π_1^1 MCG of cardinality \aleph_1 is consistent with \mathfrak{c} begin arbitrarily large.

Our construction is inspired by the forcing method...

・ 同 ト ・ ヨ ト ・ ヨ ト

YST 2023

Definition: Coding a real into a group element

Let σ be a partial function from $\mathbb N$ to $\mathbb N.$ Then

() σ codes a finite string $t \in 2^{l}$ with parameter $m \in \mathbb{N}$ iff

$$(\forall k < l)\sigma^k(m) = t(k) \mod 2.$$

2 σ exactly codes t with parameter m iff

it codes *t* and $\sigma'(m)$ is undefined.

③ σ codes $z \in 2^{\mathbb{N}}$ with parameter *m* iff

$$(\forall k \in \mathbb{N})\sigma^k(m) = z(k) \mod 2.$$

YST 2023

To summarize

- The existence of a co-analytic MCG of cardinality ℵ₁ is consistent with a_g = b < 0 = c.</p>
- 2 The existence of a co-analytic MED of cardinality ℵ₁ is consistent with a_e = b < ∂ = c.</p>

YST 2023

How to obtain a model in which there is a co-analytic MED family of cardinality \aleph_1 and $\mathfrak{d} < \mathfrak{c}?$

YST 2023

Theorem (F., Schrittesser)

In the constructible universe L there is a co-analytic MED which remains maximal after countable support iterations or countable support products of Sacks forcing.

To summarize

The existence of a co-analytic MED family of cardinality \aleph_1 is consistent with

$$\mathfrak{a}_{e} = \mathfrak{d} = \aleph_{1} < \mathfrak{c}.$$

伺 と く ヨ と く ヨ と

YST 2023

Definition

A forcing notion \mathbb{P} has the property ned iff for every countable $\mathscr{F}_0 \subseteq {}^{\omega}\omega$ and every \mathbb{P} -name \dot{f} for a function in ${}^{\omega}\omega$ such that

 $\Vdash_{\mathbb{P}} \dot{f}$ is e.d. from $\check{\mathscr{F}}_0$,

there are $h \in {}^{\omega}\omega$ which is e.d. from \mathscr{F}_0 and $p \in \mathbb{P}$ with

$$p \Vdash_{\mathbb{P}} \check{h} = \check{f}.$$

Vera Fischer (University of Vienna)

YST 2023

Theorem

Sacks forcing, as well as its countable support products and iterations have property ned.

Theorem

Suppose \mathscr{E} is a Σ_2^1 MED family. Then, there is a Π_1^1 MED family \mathscr{E}' such that for any forcing \mathbb{P} , if \mathscr{E} is \mathbb{P} -indestructible, then so is \mathscr{E}' .

YST 2023

Tightness

Observations

- If X is a set of functions, then $\bigcup X \subseteq \omega^2$.
- Similarly if $T \subseteq \omega^{<\omega}$ is a tree then $\bigcup T \subseteq \omega^2$.

Definition

Let $X \subseteq {}^{\omega}\omega$, $T \subseteq {}^{<\omega}\omega$ be a tree. We say that *X* almost covers *T* if

 $\bigcup T \subseteq^* \bigcup X.$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

YST 2023

э.

The tree ideal generated by \mathscr{E}

Definition (F., C. Switzer)

The tree ideal generated by *E*, denotes *I*_{tr}(*E*), is the set of all trees *T* ⊆ ω^{<ω} so that there are

 $t \in T$ and a finite $X \subseteq \mathscr{E}$

so that

$$\bigcup T_t \subseteq^* \bigcup X.$$

YST 2023

43/53

② A tree *T* ⊆ $\omega^{<\omega}$ is said to be in $\mathscr{I}_{tr}(\mathscr{E})^+$ if for each *t* ∈ *T* it is not the case that $\bigcup T_t$ can be almost covered by a finite *X* ⊆ \mathscr{E} .

Tight eventually different families

Definition

Let $T \subseteq \omega^{<\omega}$ be a tree, $g \in {}^{\omega}\omega$. We say that g densely diagonalizes T, if for every $t \in T$ there is a branch h through t in T such that $h = {}^{\infty} g$.

Definition

An eventually different family \mathscr{E} is tight if for any $\{T_n\}_{n \in \omega} \subseteq \mathscr{I}_{tr}(\mathscr{E})^+$ there is a single $g \in \mathscr{E}$ which densely diagonalizes all the T_n 's.

< ロ > < 同 > < 回 > < 回 > .

YST 2023

Observations

- If *E* is a tight eventually different family, then it is maximal.
- MA(σ-linked) implies that every e.d. family *E*₀, |*E*₀| < c is contained in a tight e.d. family.
- CH implies that tight eventually different families exist.

Moreover...

tight eventually different families are never analytic, which is a strong distinction with the Borel MED family of Horowitz-Shelah.

くぼう くきり くきり

YST 2023

... and moreover:

- tight eventually different families are Cohen indestructible;
- In L there is a co-analytic tight e.d. family;
- Solution that the second s

A (1) < (1) < (1) </p>

YST 2023

Strong Preservation of Tightness

Definition: Strong preservation

Let \mathbb{P} be a proper forcing notion and \mathscr{E} a tight e.d. family. We say that \mathbb{P} strongly preserves the tightness of \mathscr{E} if for every sufficiently large θ and $M \prec H_{\theta}$ such that $p, \mathbb{P}, \mathscr{E}$ are elements of M,

if g densely diagonalizes every elements of $M \cap \mathscr{I}_T(\mathscr{E})^+$,

then there is an (M, \mathbb{P}) -generic $q \leq p$ such that q forces that

g densely diagonalizes every element of $M[G] \cap \mathscr{I}_{\mathcal{T}}(\mathscr{E})^+$.

Such a *q* is called an $(M, \mathbb{P}, \mathcal{E}, g)$ -generic condition.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

YST 2023

-

Theorem

Suppose \mathscr{E} is a tight e.d. family. If $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \gamma \rangle$ is a countable support iteration of proper forcing notions such that for all α ,

 $\Vdash_{\alpha} \dot{\mathbb{Q}}_{\alpha}$ strongly preserves the tightness of $\check{\mathscr{E}}$,

then \mathbb{P}_{γ} strongly preserves the tightness of \mathscr{E} .

YST 2023

Lemma

- Suppose ℙ strongly preserves the tightness of ℰ and Q is a ℙ-name for a poset, which strongly preserves the tightness of ℰ.
 Then ℙ * Q strongly preserves the tightness of ℰ.
- Moreover, if *p* is (*M*, ℙ, ℰ, *g*)-generic and forces *q* to be (*M*[*G*], ℙ, ℰ, *g*)-generic then (*p*, *q*) is (*M*, ℙ, ℰ, *g*)-generic.

YST 2023

Lemma

Let $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \gamma \rangle$ be a countable support iteration of proper forcing notions such that for all α ,

 $\Vdash_{\alpha} \dot{\mathbb{Q}}_{\alpha}$ densely preserves the tightness of $\check{\mathscr{E}}$,

 θ sufficiently large and $M \prec H_{\theta}$ containing $\mathbb{P}_{\gamma}, \gamma, \mathscr{E}$. For each $\alpha \in M \cap \gamma$ and every $(M, \mathbb{P}_{\alpha}, \mathscr{E}, g)$ -generic condition $p \in \mathbb{P}_{\alpha}$ the following holds: If \dot{q} is a \mathbb{P}_{α} -name, $p \Vdash_{\alpha} \dot{q} \in \mathbb{P}_{\gamma} \cap M$ and $p \Vdash_{\alpha} \dot{q} \upharpoonright \alpha \in \dot{G}_{\alpha}$, then there is

an $(M, \mathbb{P}_{\gamma}, \mathscr{E}, g)$ -generic condition $\bar{p} \in \mathbb{P}_{\gamma}$ so that

 $\bar{p} \upharpoonright \alpha = p \text{ and } \bar{p} \Vdash_{\gamma} \dot{q} \in \dot{G}.$

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

YST 2023

The notion of a tight eventually different family gives a uniform framework which applies to a long list of partial orders, including:

- Sacks,
- Miller rational perfect set forcing,
- Miller partition forcing,
- Infinitely often equal forcing,
- Shelah's poset for diagonalizing a maximal ideal

and gives rise to a MED family indestructible by the above posets.

< 🗇 🕨

YST 2023

Theorem (F., Switzer)

The following inequalities are all consistent and in each case there is a tight eventually different family and a tight eventually different set of permutations of cardinality \aleph_1 , respectively.

1
$$a = a_e = a_p < \vartheta = a_T = 2^{\aleph_0}$$
 2 $a = a_e = a_p = \vartheta < a_T = 2^{\aleph_0}$
 3 $a = a_e = a_p = \vartheta = u < non(\mathcal{N}) = cof(\mathcal{N}) = 2^{\aleph_0}$
 3 $a = a_e = a_p = i = cof(\mathcal{N}) < u$

Moreover, if we work over the constructible universe, we can provide co-analytic witnesses of cardinality \aleph_1 to each of

in the above inequalities.

< ∃ > < ∃ >

52/53

YST 2023

Thank you for your attention!

・ロ・・ (日・・ モ・・ ・ モ・・

YST 2023

æ.