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Question
Is it consistent that ℵ1 < b< s?
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Recall Shelah’s creature poset Q.

Definition

1 A family of pure conditions C is centered if whenever X ,Y ∈ C there is
R ∈ C which is their common extension.

2 If C is a family of pure conditions, then Q(C ) is the suborder of Q
consisting of all (u,T ) ∈Q such that ∃R ∈ C (R ≤ T ).

Remark
We work exclusively with centered families C which are closed with respect to
final segments. Note that any two conditions of Q(C ) are compatible as
conditions in Q(C ) iff they are compatible in Q.
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Definition (Induced logarithmic measure)

Let P ⊆ [ω]<ω be an upwards closed family. Then P induces a logarithmic
measure h on [ω]<ω defined recursively on the |s| for s ∈ [ω]<ω as follows:

1 h(e)≥ 0 for every e ∈ [ω]<ω

2 h(e)> 0 iff e ∈ P and |e|> 1

3 for l ≥ 1, h(e)≥ l +1 iff |e|> 1 and whenever e0,e1 ⊆ e are such that
e = e0 ∪e1, then h(e0)≥ l or h(e1)≥ l .

Then h(e) = l if l is maximal for which h(e)≥ l . The elements of P are called
positive sets and h is said to be induced by P.
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Theorem (V.F., J. Steprans, 2008)

Let κ be a regular uncountable cardinal, cov(M ) = κ,

H ⊆ ω
ω

be an unbounded, ≤∗-directed family of cardinality κ. Assume that

∀λ < κ(2λ ≤ κ).

Then, there is a centered family

CH

of pure conditions, such that |CH |= κ and such that
1 ⊩Q(CH ) “H is unbounded”
2 Q(CH ) adds a real not split by the ground model reals.
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Theorem (V.F., J. Sterpans, 2008)
(GCH) Let κ be a regular uncountable cardinal. Then there is a ccc
generic extension in which b= κ < s= κ+.

1 Can we do better? Is it consistent that there is an arbitrarily large
spread between b and s?

2 The techniques leading to the above result, heavily use the fact
that the cardinality of the unbounded family is κ!

3 So, we do need a new approach. But, before that, an observation:
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Lemma (V.F., B. Irrgang, 2010)

Let C be a centered family of pure conditions in Q. Then Q(C ) is
densely embedded in M(FC ), where

FC = {X ∈ [ω]ω : ∃T ∈ C (int(T )⊆ X )}.

Proof
The mapping (u,T ) 7→ (u, int(T )) is a dense embedding.

Vera Fischer (University of Vienna) CSR YST 2023 7 / 53



Corollary

Let κ be a regular uncountable cardinal, cov(M ) = κ, H ⊆ ω ω is an
unbounded, ≤∗ directed family of cardinality κ. Assume that ∀λ < κ(2λ ≤ κ).
Then, there is an ultrafilter UH such that

⊩M(UH ) “H is unbounded”.

Canjarness

1 There are earlier examples of ultrafilters, such that the relativized
Mathias forcing, preserves the unboundedness of a given family: In
Blass-Shelah consistency proof of u= κ < d= λ from 1989, one can find
the construction of a special ultrafilter UH , associated to a set of Cohen
reals H , such that M(UH ) preserves the unboundedness of H .

2 In both instances, |H |= c.
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Matrix iteration and b= a= κ < s= λ

Definition: Hechler’s poset for adding a dominating real, D:

The poset consists of all pairs (s, f ) ∈ <ωω ×ωω such that
(s1, f1)≤ (s2, f2) iff

s2 is an initial segment of s1

for all i ∈ dom(s1)\dom(s2), s1(i)≥ f2(i);
for all i ∈ ω, f2(i)≤ f1(i).

If only elements of a given family F ⊆ ωω are allowed as second
coordinates in the the above definition, we speak about restricted
Hechler forcing, denoted DF of D(F ).
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Matrix iteration and b= a= κ < s= λ

Definition: Hechler’s poset for adding a mad family, H(γ):

Let γ be an ordinal. Then, H(γ) is the poset of all finite partial functions

p : γ ×ω → 2

such that dom(p) = Fp ×np where Fp ∈ [γ]<ω , np ∈ ω.

The order is given by q ≤ p if
1 p ⊆ q
2 |q−1(1)∩F p ×{i}| ≤ 1 for all i ∈ nq\np.
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Matrix iteration and b= a= κ < s= λ

The complete embedding property

Lemma

Let GI be H(I)-generic, AI = {Ai}i∈I , Ai = {n : ∃p ∈ GIp(i ,n) = 1} for i ∈ I.

Then AI = {Ai}i∈I is almost disjoint.

1 If I is uncountable, then AI is maximal almost disjoint.

2 If J ⊂ I then H(J)⋖H(I) and the quotient is ‘good’.
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Matrix iteration and b= a= κ < s= λ

Lemma: Diagonalization

Let I = J ∪{i}, where i /∈ J. Then GI = GJ ∗G(i):

1 AI = AJ ∪{Ai} is almost disjoint

2 If X ∈ V [GJ ]∩ ([ω]ω\I (AJ)), then X ∩Ai is infinite.
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Matrix iteration and b= a= κ < s= λ

Definition: Elimination of Intruders

Let M ⊆ N be models, B = {Bα}α<γ ⊆ M ∩ [ω]ω and let A ∈ N ∩ [ω]ω such that
B∪{A} is almost disjoint. We say that

A diagonalizes B over M

if for every
X ∈ M ∩ ([ω]ω\I (B)),

where I (B) denotes the ideal generated by B, we have

|A∩X |= ∞.

Remark

Alternatively, we say that A eliminates B-intruders over M.

Thus, Ai diagonalizes AI over V [GJ ].
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Matrix iteration and b= a= κ < s= λ

Persistent (!?) Elimination of Intruders

Let M ⊆ N be models,

B = {Bα}α<γ ⊆ M ∩ [ω]ω , A ∈ N ∩ [ω]ω

and suppose A eliminates B-intruders over M. Let

P̄s = ⟨Ps
α : α ≤ λ ⟩,

where s ∈ {0,1} be FS iterations in M, N (for s = 0 and s = 1 respectively)
such that P0

α ⋖P1
α for each α. Then:

1 B∪{A} is almost disjoint throughout(!). However:

2 Is it necessarily the case that

A eliminates B-intruders over MPα

for each α ≤ λ?
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Matrix iteration and b= a= κ < s= λ

Definition (Strong diagonalizaiton)

Let M ⊆ N be models of set theory, B = {Bα}α<γ ⊆ M ∩ [ω]ω and let
A ∈ N ∩ [ω]ω . Then (∗M

B
N
A ) holds if for every

h : ω × [γ]<ω → ω

h ∈ M and every m ∈ ω there are n ≥ m and F ∈ [γ]<ω such that

[n,h(n,F ))\
⋃

α∈F

Bα ⊆ A.

We say that A strongly diagonalizes B over M.

Lemma

If (∗M
B

N
A ), then A eliminates B-intruders.
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Matrix iteration and b= a= κ < s= λ

Lemma (Persistent elimination of intruders)

Let P̄s = ⟨Ps,n : n ≤ ω⟩, s ∈ {0,1} be FS iterations such that

P0,n ⋖P1,n for all n.

Let Vs,n = VPs,n . Let

B = {Bα}α<γ ⊆ V0,0 ∩ [ω]ω , A ∈ V1,0 ∩ [ω]ω .

If A strongly diagonalizes B over V0,n for each n, then

A strongly diagonalizes B over V0,ω .
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Matrix iteration and b= a= κ < s= λ

Lemma (Strong diagonalization)

Let Gγ+1 be H(γ +1)-generic, Gγ = Gγ+1 ∩H(γ) and Aγ = {Aα}α<γ , where

Aα = {i : ∃p ∈ Gγ+1p(α, i) = 1},

for α ≤ γ. Then
(∗V [Gγ ]

Aγ

V [Gγ+1]

Aγ
)

holds.
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Matrix iteration and b= a= κ < s= λ

Lemma (Strong diagonalization and ultrafilters)

Let M ⊆ N be models, B = {Bα}α<γ ⊆ M ∩ [ω]ω , A ∈ N ∩ [ω]ω such that

A strongly diagonalizes B over M.

Let U be an ultrafiler in M. Then ∃ an ultrafilter V in N such that U ⊆ V and

1 every maximal antichain of M(U ) which belongs to M is a maximal
antichain of M(V ) in N,

2 for every M(V )-generic filter G over N, which by item (1) is
M(U )-generic over N, the set

A strongly diagonalizes B over M[G].
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Matrix iteration and b= a= κ < s= λ

Lemma ( ... more strong diagonalizaiton)

Let M ⊆ N be models, P ∈ M a poset, G a P-generic filter over N. Let

B = {Bα}α<γ ⊆ M ∩ [ω]ω , A ∈ N ∩ [ω]ω .

If A strongly diagonalizes B over M, then

A strongly diagonalizes B over M[G].
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Matrix iteration and b= a= κ < s= λ

Assume GCH and let κ < λ be regular uncountable cardinals. Let

f : {η < λ : η ≡ 1 mod 2}→ κ

be an onto mapping such that

∀α < κ, f−1(α) is cofinal in λ .

Recursively define a system of finite support iterations

⟨⟨Pα,ζ : α ≤ κ,ζ ≤ λ ⟩,⟨Q̇α,ζ : α ≤ κ,ζ < λ ⟩⟩

as follows:
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Matrix iteration and b= a= κ < s= λ

For all α,ζ let Vα,ζ = VPα,ζ .

If ζ = 0 then for all α ≤ κ, let Pα,0 be Hechler’s poset for adding an a.d.
family Aα = {Aβ}β<α . Note that for α ≥ ω1, Aα is maximal almost
disjoint in Vα,0.

If ζ = η +1, ζ ≡ 1 mod 2, then ⊩Pα,η Q̇α,η =M(U̇α,η) where U̇α,η is a
Pα,η -name for an ultrafilter and for all α < β ≤ κ,

⊩Pβ ,η
U̇α,η ⊆ U̇β ,η .

If ζ = η +1, ζ ≡ 0 mod 2, then

if α ≤ f (η), Q̇α,η is a Pα,η -name for the trivial forcing notion.
If α > f (η) then Q̇α,η is a Pα,η -name for DVf (η),η .

If ζ is a limit, then for all α ≤ κ, Pα,ζ is the finite support iteration of
⟨Pα,η ,Q̇α,η : η < ζ ⟩.
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Matrix iteration and b= a= κ < s= λ

Furthermore, we guarantee that the construction satisfy the following
properties:

1 ∀ζ ≤ λ and ∀α < β ≤ κ,
Pα,ζ ⋖Pβ ,ζ .

2 For all ζ ≤ λ , ∀α < κ the strong elimination of intruders property

(∗Vα,ζ

Aα

Vα+1,ζ
Aα+1

)

implying that Aα eliminates Aα -intruders over Vα,ζ for each ζ ≤ λ .
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Matrix iteration and b= a= κ < s= λ

Lemma

The construction satisfies that for all α < β ≤ κ, and all ζ < η ≤ λ ,

Pα,ζ ⋖Pβ ,η .

Lemma

For each ζ ≤ λ :

1 For every p ∈ Pκ,ζ there is α < κ such that p ∈ Pα,ζ .

2 For every Pκ,ζ -name for a real ḟ there is α < κ such that ḟ is a
Pα,ζ -name.
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Matrix iteration and b= a= κ < s= λ

Theorem (V. F., J. Brendle, 2010)

Vκ,λ ⊨ b= a= κ < s= λ .
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Matrix iteration and b= a= κ < s= λ

Proof: a≤ κ

We will show that family {Aα}α<κ remains maximal in Vκ,λ .

Otherwise ∃B ∈ Vκ,λ ∩ [ω]ω such that

∀α < κ|B∩Aα |< ω.

However there is α < κ such that

B ∈ Vα,λ ∩ [ω]ω .

Note that B /∈ I (Aα). Then strong elimination of intruders

(∗Vα,λ

Aα

Vα+1,λ
Aα+1

)

holds and so |B∩Aα+1|= ∞, which is a contradiction.

Thus, a≤ κ.
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Matrix iteration and b= a= κ < s= λ

Proof: κ ≤ b and so b= a= κ

Let B ⊆ Vκ,λ ∩ω ω be of cardinality < κ. Then there are α < κ, ζ < λ

such that B ⊆ Vα,ζ .

Since {γ : f (γ) = α} is cofinal in λ , there is ζ ′ > ζ such that f (ζ ′) = α.

Then Pα+1,ζ ′+1 adds a real dominating Vα,ζ ′ ∩ω ω, and so in particular
Vα,ζ ∩ω ω.

Thus B is not unbounded.

Therefore in Vκ,λ , we have that b≥ κ. However b≤ a and so, in Vκ,λ we
have b= a= κ.
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Matrix iteration and b= a= κ < s= λ

Proof: s= λ

To see that in Vκ,λ , s= λ , note that if

S ⊆ Vκ,λ ∩ [ω]ω

is of cardinality < λ , then there is ζ < λ such that

ζ = η +1,ζ ≡ 1 mod 2

and
S ⊆ Vκ,λ .

Then M(Uκ,η) adds a real not split by S and so S is not splitting.

Vera Fischer (University of Vienna) CSR YST 2023 27 / 53



Matrix iteration and b= a= κ < s= λ

Observation (Strongly H -Canjar)
Note that if µ is a cardinal such that

κ < µ ≤ λ

in the above construction, then in Vκ,µ+1 there is an ultrafilter

U = Uκ,µ+1

such that

M(U ) preserves the unboundedness of H ⊆ ω
ω,

where |H |= κ < µ ≤ c (!)
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Matrix iteration and b= a= κ < s= λ

Questions:

1 Is it consistent that b< s< a?

2 Is it consistent that b< a< s?
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Matrix iteration and b= a= κ < s= λ

Maximal Eventually Different Families

Definition
A family E ⊆ ωω is eventually different(abbreviated e.d.) if for any two
distinct f ,g ∈ E there is n ∈ N such that

∀m > n(f (m) ̸= g(m)).

We write f ̸=∗ g. An e.d. family is maximal if it is not properly contained
in any other e.d. family.

We denote such maximal families MED, their minimal cardinality ae.
For f ,g ∈ ωω if it is not the case that f ,g are e.d., we write f =∞ g.
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Matrix iteration and b= a= κ < s= λ

Maximal cofinitary groups

Definition
A group G ≤ S∞ is cofinitary if its elements are pairwise eventually
different.
A cofinitary group is maximal if it is not properly contained in any
other cofinitary group.
We denote such groups with MCG and their minimal cardinality ag .
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Matrix iteration and b= a= κ < s= λ

It is clear that MED and MCG are close relatives to maximal almost
disjoint families and so ag , ae are close relatives of a, the minimal
cardinality of an infinite maximal almost disjoint subfamily of [ω]ω .
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Matrix iteration and b= a= κ < s= λ

To what extent are those distinct?

non(M ) and a are independent, while non(M )≤ ag ,ae.

Comparing those combinatorial notions with respect to their projective
complexity provides further clear distinctions:

(A. Mathias) There are no analytic MAD families.
(H. Horowitz, S. Shelah) There are Borel MED and Borel MCG.
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Matrix iteration and b= a= κ < s= λ

MCG

(Gao, Zhang) In L there is a MCG with a co-analytic generating set.

(Kastermans) In L then there is a co-analytic MCG.

(Horowitz, Shelah) There is a Borel MCG.

Question
What can we say about the existence of such nicely definable combinatorial
sets of reals in models of large continuum?
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Matrix iteration and b= a= κ < s= λ

Cohen forcing

Theorem (F., Schrittesser, Törnquist)
Assume V = L. Then there is a co-analytic MCG which is
indestructible by Cohen forcing.

Corollary

The existence of a Π1
1 MCG of cardinality ℵ1 is consistent with c begin

arbitrarily large.

Our construction is inspired by the forcing method...
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Matrix iteration and b= a= κ < s= λ

Definition: Coding a real into a group element
Let σ be a partial function from N to N. Then

1 σ codes a finite string t ∈ 2l with parameter m ∈ N iff

(∀k < l)σk (m) = t(k) mod 2.

2 σ exactly codes t with parameter m iff

it codes t and σ
l(m) is undefined.

3 σ codes z ∈ 2N with parameter m iff

(∀k ∈ N)σk (m) = z(k) mod 2.
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Matrix iteration and b= a= κ < s= λ

To summarize
1 The existence of a co-analytic MCG of cardinality ℵ1 is consistent

with ag = b< d= c.
2 The existence of a co-analytic MED of cardinality ℵ1 is consistent

with ae = b< d= c.

Vera Fischer (University of Vienna) CSR YST 2023 37 / 53



Matrix iteration and b= a= κ < s= λ

How to obtain a model in which there is a co-analytic MED family of
cardinality ℵ1 and d< c?
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Matrix iteration and b= a= κ < s= λ

Theorem (F., Schrittesser)
In the constructible universe L there is a co-analytic MED which
remains maximal after countable support iterations or countable
support products of Sacks forcing.

To summarize
The existence of a co-analytic MED family of cardinality ℵ1 is
consistent with

ae = d= ℵ1 < c.
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Matrix iteration and b= a= κ < s= λ

Definition
A forcing notion P has the property ned iff for every countable F0 ⊆ ωω

and every P-name ḟ for a function in ωω such that

⊩P ḟ is e.d. from F̌0,

there are h ∈ ωω which is e.d. from F0 and p ∈ P with

p ⊩P ȟ =∞ ḟ .
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Matrix iteration and b= a= κ < s= λ

Theorem
Sacks forcing, as well as its countable support products and iterations
have property ned.

Theorem

Suppose E is a Σ1
2 MED family. Then, there is a Π1

1 MED family E ′

such that for any forcing P, if E is P-indestructible, then so is E ′.
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Matrix iteration and b= a= κ < s= λ

Tightness

Observations

If X is a set of functions, then
⋃

X ⊆ ω2.
Similarly if T ⊆ ω<ω is a tree then

⋃
T ⊆ ω2.

Definition
Let X ⊆ ωω, T ⊆ <ωω be a tree. We say that X almost covers T if⋃

T ⊆∗ ⋃X .
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Matrix iteration and b= a= κ < s= λ

The tree ideal generated by E

Definition (F., C. Switzer)
1 The tree ideal generated by E , denotes Itr (E ), is the set of all

trees T ⊆ ω<ω so that there are

t ∈ T and a finite X ⊆ E

so that ⋃
Tt ⊆∗ ⋃X .

2 A tree T ⊆ ω<ω is said to be in Itr (E )+ if for each t ∈ T it is not
the case that

⋃
Tt can be almost covered by a finite X ⊆ E .
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Matrix iteration and b= a= κ < s= λ

Tight eventually different families

Definition
Let T ⊆ ω<ω be a tree, g ∈ ωω. We say that g densely diagonalizes T ,
if for every t ∈ T there is a branch h through t in T such that h =∞ g.

Definition
An eventually different family E is tight if for any {Tn}n∈ω ⊆ Itr (E )+

there is a single g ∈ E which densely diagonalizes all the Tn’s.
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Matrix iteration and b= a= κ < s= λ

Observations
If E is a tight eventually different family, then it is maximal.
MA(σ -linked) implies that every e.d. family E0, |E0|< c is
contained in a tight e.d. family.
CH implies that tight eventually different families exist.

Moreover...
tight eventually different families are never analytic, which is a strong
distinction with the Borel MED family of Horowitz-Shelah.
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Matrix iteration and b= a= κ < s= λ

... and moreover:
1 tight eventually different families are Cohen indestructible;
2 in L there is a co-analytic tight e.d. family;
3 thus (once again!) ae has a co-analytic witness in a model of

ae = b= ℵ1 < d= c.
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Matrix iteration and b= a= κ < s= λ

Strong Preservation of Tightness

Definition: Strong preservation
Let P be a proper forcing notion and E a tight e.d. family. We say that P
strongly preserves the tightness of E if for every sufficiently large θ

and M ≺ Hθ such that p,P,E are elements of M,

if g densely diagonalizes every elements of M ∩IT (E )+,

then there is an (M,P)-generic q ≤ p such that q forces that

g densely diagonalizes every element of M[Ġ]∩IT (E )+.

Such a q is called an (M,P,E ,g)-generic condition.
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Matrix iteration and b= a= κ < s= λ

Theorem

Suppose E is a tight e.d. family. If ⟨Pα ,Q̇α : α < γ⟩ is a countable
support iteration of proper forcing notions such that for all α,

⊩α Q̇α strongly preserves the tightness of Ě ,

then Pγ strongly preserves the tightness of E .
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Matrix iteration and b= a= κ < s= λ

Lemma

Suppose P strongly preserves the tightness of E and Q̇ is a
P-name for a poset, which strongly preserves the tightness of E .
Then P∗ Q̇ strongly preserves the tightness of E .
Moreover, if p is (M,P,E ,g)-generic and forces q̇ to be
(M[Ġ],P,E ,g)-generic then (p, q̇) is (M,P,E ,g)-generic.
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Matrix iteration and b= a= κ < s= λ

Lemma

Let ⟨Pα ,Q̇α : α < γ⟩ be a countable support iteration of proper forcing
notions such that for all α,

⊩α Q̇α densely preserves the tightness of Ě ,

θ sufficiently large and M ≺ Hθ containing Pγ ,γ,E . For each α ∈ M ∩ γ

and every (M,Pα ,E ,g)-generic condition p ∈ Pα the following holds:

If q̇ is a Pα -name, p ⊩α q̇ ∈ Pγ ∩M and p ⊩α q̇ ↾ α ∈ Ġα , then there is
an (M,Pγ ,E ,g)-generic condition p̄ ∈ Pγ so that

p̄ ↾ α = p and p̄ ⊩γ q̇ ∈ Ġ.
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Matrix iteration and b= a= κ < s= λ

The notion of a tight eventually different family gives a uniform
framework which applies to a long list of partial orders, including:

Sacks,
Miller rational perfect set forcing,
Miller partition forcing,
Infinitely often equal forcing,
Shelah’s poset for diagonalizing a maximal ideal

and gives rise to a MED family indestructible by the above posets.
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Matrix iteration and b= a= κ < s= λ

Theorem (F., Switzer)
The following inequalities are all consistent and in each case there is a tight
eventually different family and a tight eventually different set of permutations
of cardinality ℵ1, respectively.

1 a= ae = ap < d= aT = 2ℵ0

2 a= ae = ap = d< aT = 2ℵ0

3 a= ae = ap = d= u< non(N ) = cof (N ) = 2ℵ0 .

4 a= ae = ap = i= cof (N )< u.

Moreover, if we work over the constructible universe, we can provide
co-analytic witnesses of cardinality ℵ1 to each of

a,ae,ap, i,u

in the above inequalities.
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Matrix iteration and b= a= κ < s= λ

Thank you for your attention!
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