Combinatorial Sets of Reals, II

Induced logarithmic measures and coherent systems

Vera Fischer

University of Vienna
May 29-June 3, 2023
Young Set Theory Workshop 2023

Question

Is it consistent that $\aleph_{1}<\mathfrak{b}<\mathfrak{s}$?

Recall Shelah's creature poset \mathbb{Q}.

Definition

(1) A family of pure conditions \mathscr{C} is centered if whenever $X, Y \in \mathscr{C}$ there is $R \in \mathscr{C}$ which is their common extension.
(2) If \mathscr{C} is a family of pure conditions, then $\mathbb{Q}(\mathscr{C})$ is the suborder of \mathbb{Q} consisting of all $(u, T) \in \mathbb{Q}$ such that $\exists R \in \mathscr{C}(R \leq T)$.

Remark

We work exclusively with centered families \mathscr{C} which are closed with respect to final segments. Note that any two conditions of $\mathbb{Q}(\mathscr{C})$ are compatible as conditions in $\mathbb{Q}(\mathscr{C})$ iff they are compatible in \mathbb{Q}.

Definition (Induced logarithmic measure)

Let $P \subseteq[\omega]^{<\omega}$ be an upwards closed family. Then P induces a logarithmic measure h on $[\omega]^{<\omega}$ defined recursively on the $|s|$ for $s \in[\omega]^{<\omega}$ as follows:
(1) $h(e) \geq 0$ for every $e \in[\omega]^{<\omega}$
(2) $h(e)>0$ iff $e \in P$ and $|e|>1$
(3) for $I \geq 1, h(e) \geq I+1$ iff $|e|>1$ and whenever $e_{0}, e_{1} \subseteq e$ are such that $e=e_{0} \cup e_{1}$, then $h\left(e_{0}\right) \geq l$ or $h\left(e_{1}\right) \geq l$.
Then $h(e)=l$ if I is maximal for which $h(e) \geq I$. The elements of P are called positive sets and h is said to be induced by P.

Theorem (V.F., J. Steprans, 2008)
Let κ be a regular uncountable cardinal, $\operatorname{cov}(\mathscr{M})=\kappa$,

$$
\mathscr{H} \subseteq{ }^{\omega} \omega
$$

be an unbounded, \leq^{*}-directed family of cardinality κ. Assume that

$$
\forall \lambda<\kappa\left(2^{\lambda} \leq \kappa\right)
$$

Then, there is a centered family

$$
\mathscr{C}_{\mathscr{H}}
$$

of pure conditions, such that $\left|\mathscr{C}_{\mathscr{H}}\right|=\kappa$ and such that
(1) $\vdash_{\mathbb{Q}\left(\mathscr{C}_{\mathscr{H}}\right)}$ " \mathscr{H} is unbounded"
(2) $\mathbb{Q}\left(\mathscr{C}_{\mathscr{H}}\right)$ adds a real not split by the ground model reals.

Theorem (V.F., J. Sterpans, 2008)
(GCH) Let κ be a regular uncountable cardinal. Then there is a ccc generic extension in which $\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^{+}$.
(1) Can we do better? Is it consistent that there is an arbitrarily large spread between \mathfrak{b} and \mathfrak{s} ?
(2) The techniques leading to the above result, heavily use the fact that the cardinality of the unbounded family is κ !
(3) So, we do need a new approach. But, before that, an observation:

Lemma (V.F., B. Irrgang, 2010)
Let \mathscr{C} be a centered family of pure conditions in \mathbb{Q}. Then $\mathbb{Q}(\mathscr{C})$ is densely embedded in $\mathbb{M}\left(\mathscr{F}_{\mathscr{C}}\right)$, where

$$
\mathscr{F}_{\mathscr{C}}=\left\{X \in[\omega]^{\omega}: \exists T \in \mathscr{C}(\operatorname{int}(T) \subseteq X)\right\} .
$$

Proof

The mapping $(u, T) \mapsto(u, \operatorname{int}(T))$ is a dense embedding.

Corollary

Let κ be a regular uncountable cardinal, $\operatorname{cov}(\mathscr{M})=\kappa, \mathscr{H} \subseteq{ }^{\omega} \omega$ is an unbounded, \leq^{*} directed family of cardinality κ. Assume that $\forall \lambda<\kappa\left(2^{\lambda} \leq \kappa\right)$. Then, there is an ultrafilter $\mathscr{U}_{\mathscr{C}}$ such that

$$
\vdash_{\mathbb{M}(\mathscr{U} \mathscr{H})} \text { " } \mathscr{H} \text { is unbounded". }
$$

Canjarness

(1) There are earlier examples of ultrafilters, such that the relativized Mathias forcing, preserves the unboundedness of a given family: In Blass-Shelah consistency proof of $\mathfrak{u}=\kappa<\mathfrak{d}=\lambda$ from 1989, one can find the construction of a special ultrafilter $\mathscr{U}_{\mathscr{H}}$, associated to a set of Cohen reals \mathscr{H}, such that $\mathbb{M}\left(\mathscr{U}_{\mathscr{H}}\right)$ preserves the unboundedness of \mathscr{H}.
(2) In both instances, $|\mathscr{H}|=c$.

Definition: Hechler's poset for adding a dominating real, \mathbb{D} :
The poset consists of all pairs $(s, f) \in{ }^{<\omega} \omega \times{ }^{\omega} \omega$ such that $\left(s_{1}, f_{1}\right) \leq\left(s_{2}, f_{2}\right)$ iff

- s_{2} is an initial segment of s_{1}
- for all $i \in \operatorname{dom}\left(s_{1}\right) \backslash \operatorname{dom}\left(s_{2}\right), s_{1}(i) \geq f_{2}(i)$;
- for all $i \in \omega, f_{2}(i) \leq f_{1}(i)$.

If only elements of a given family $\mathscr{F} \subseteq{ }^{\omega} \omega$ are allowed as second coordinates in the the above definition, we speak about restricted Hechler forcing, denoted $\mathbb{D}^{\mathscr{F}}$ of $\mathbb{D}(\mathscr{F})$.

Definition: Hechler's poset for adding a mad family, $\mathbb{H}(\gamma)$:
Let γ be an ordinal. Then, $\mathbb{H}(\gamma)$ is the poset of all finite partial functions

$$
p: \gamma \times \omega \rightarrow 2
$$

such that $\operatorname{dom}(p)=F_{p} \times n_{p}$ where $F_{p} \in[\gamma]^{<\omega}, n_{p} \in \omega$.
The order is given by $q \leq p$ if
(1) $p \subseteq q$
(2) $\left|q^{-1}(1) \cap F^{p} \times\{i\}\right| \leq 1$ for all $i \in n_{q} \backslash n_{p}$.

The complete embedding property

Lemma

Let G_{l} be $\mathbb{H}(I)$-generic, $\mathscr{A}_{I}=\left\{A_{i}\right\}_{i \in I}, A_{i}=\left\{n: \exists p \in G_{l} p(i, n)=1\right\}$ for $i \in I$.
Then $\mathscr{A}_{1}=\left\{A_{i}\right\}_{i \in l}$ is almost disjoint.
(1) If I is uncountable, then \mathscr{A}_{1} is maximal almost disjoint.
(2) If $J \subset I$ then $\mathbb{H}(J) \lessdot \mathbb{H}(I)$ and the quotient is 'good'.

Lemma: Diagonalization

Let $I=J \cup\{i\}$, where $i \notin J$. Then $G_{l}=G_{J} * G(i)$:
(1) $\mathscr{A}_{I}=\mathscr{A}_{J} \cup\left\{A_{i}\right\}$ is almost disjoint
(2) If $X \in V\left[G_{J}\right] \cap\left([\omega]^{\omega} \backslash \mathscr{I}\left(\mathscr{A}_{J}\right)\right)$, then $X \cap A_{i}$ is infinite.

Definition: Elimination of Intruders

Let $M \subseteq N$ be models, $\mathscr{B}=\left\{B_{\alpha}\right\}_{\alpha<\gamma} \subseteq M \cap[\omega]^{\omega}$ and let $A \in N \cap[\omega]^{\omega}$ such that $\mathscr{B} \cup\{A\}$ is almost disjoint. We say that

$$
\text { A diagonalizes } \mathscr{B} \text { over } M
$$

if for every

$$
X \in M \cap\left([\omega]^{\omega} \backslash \mathscr{I}(\mathscr{B})\right),
$$

where $\mathscr{I}(\mathscr{B})$ denotes the ideal generated by \mathscr{B}, we have

$$
|A \cap X|=\infty .
$$

Remark

- Alternatively, we say that A eliminates \mathscr{B}-intruders over M.
- Thus, A_{i} diagonalizes \mathscr{A}_{1} over $V\left[G_{J}\right]$.

Persistent (!?) Elimination of Intruders

Let $M \subseteq N$ be models,

$$
\mathscr{B}=\left\{B_{\alpha}\right\}_{\alpha<\gamma} \subseteq M \cap[\omega]^{\omega}, A \in N \cap[\omega]^{\omega}
$$

and suppose A eliminates \mathscr{B}-intruders over M. Let

$$
\overline{\mathbb{P}}_{s}=\left\langle\mathbb{P}_{\alpha}^{S}: \alpha \leq \lambda\right\rangle
$$

where $s \in\{0,1\}$ be FS iterations in M, N (for $s=0$ and $s=1$ respectively) such that $\mathbb{P}_{\alpha}^{0} \lessdot \mathbb{P}_{\alpha}^{1}$ for each α. Then:
(1) $\mathscr{B} \cup\{A\}$ is almost disjoint throughout(!). However:
(2) Is it necessarily the case that

A eliminates \mathscr{B}-intruders over $M^{\mathbb{P} \alpha}$
for each $\alpha \leq \lambda$?

Definition (Strong diagonalizaiton)
Let $M \subseteq N$ be models of set theory, $\mathscr{B}=\left\{B_{\alpha}\right\}_{\alpha<\gamma} \subseteq M \cap[\omega]^{\omega}$ and let $A \in N \cap[\omega]^{\omega}$. Then $\left(*_{\mathscr{B}}^{M}{ }_{A}^{N}\right)$ holds if for every

$$
h: \omega \times[\gamma]^{<\omega} \rightarrow \omega
$$

$h \in M$ and every $m \in \omega$ there are $n \geq m$ and $F \in[\gamma]^{<\omega}$ such that

$$
[n, h(n, F)) \backslash \bigcup_{\alpha \in F} B_{\alpha} \subseteq A
$$

We say that A strongly diagonalizes \mathscr{B} over M.

Lemma
If $\left(\begin{array}{cc}* & M \\ \mathscr{B}\end{array}\right)$, then A eliminates \mathscr{B}-intruders.

Lemma (Persistent elimination of intruders)
Let $\overline{\mathbb{P}}_{s}=\left\langle\mathbb{P}_{s, n}: n \leq \omega\right\rangle, s \in\{0,1\}$ be FS iterations such that

$$
\mathbb{P}_{0, n} \lessdot \mathbb{P}_{1, n} \text { for all } n
$$

Let $V_{s, n}=V^{\mathbb{P}_{s, n}}$. Let

$$
\mathscr{B}=\left\{B_{\alpha}\right\}_{\alpha<\gamma} \subseteq V_{0,0} \cap[\omega]^{\omega}, A \in V_{1,0} \cap[\omega]^{\omega} .
$$

If A strongly diagonalizes \mathscr{B} over $V_{0, n}$ for each n, then
A strongly diagonalizes \mathscr{B} over $V_{0, \omega}$.

Lemma (Strong diagonalization)
Let $G_{\gamma+1}$ be $\mathbb{H}(\gamma+1)$-generic, $G_{\gamma}=G_{\gamma+1} \cap \mathbb{H}(\gamma)$ and $A_{\gamma}=\left\{A_{\alpha}\right\}_{\alpha<\gamma}$, where

$$
A_{\alpha}=\left\{i: \exists p \in G_{\gamma+1} p(\alpha, i)=1\right\}
$$

for $\alpha \leq \gamma$. Then

$$
\left(\begin{array}{ll}
*_{\mathscr{A} \gamma} & A_{\gamma}
\end{array}\right)
$$

holds.

Lemma (Strong diagonalization and ultrafilters)

Let $M \subseteq N$ be models, $\mathscr{B}=\left\{B_{\alpha}\right\}_{\alpha<\gamma} \subseteq M \cap[\omega]^{\omega}, A \in N \cap[\omega]^{\omega}$ such that
A strongly diagonalizes \mathscr{B} over M.
Let \mathscr{U} be an ultrafiler in M. Then \exists an ultrafilter \mathscr{V} in N such that $\mathscr{U} \subseteq \mathscr{V}$ and
(1) every maximal antichain of $\mathbb{M}(\mathscr{U})$ which belongs to M is a maximal antichain of $\mathbb{M}(\mathscr{V})$ in N,
(2) for every $\mathbb{M}(\mathscr{V})$-generic filter G over N, which by item (1) is $\mathbb{M}(\mathscr{U})$-generic over N, the set

A strongly diagonalizes \mathscr{B} over $M[G]$.

Lemma (... more strong diagonalizaiton)
Let $M \subseteq N$ be models, $\mathbb{P} \in M$ a poset, G a \mathbb{P}-generic filter over N. Let

$$
\mathscr{B}=\left\{B_{\alpha}\right\}_{\alpha<\gamma} \subseteq M \cap[\omega]^{\omega}, A \in N \cap[\omega]^{\omega} .
$$

If A strongly diagonalizes \mathscr{B} over M, then
A strongly diagonalizes \mathscr{B} over $M[G]$.

Assume GCH and let $\kappa<\lambda$ be regular uncountable cardinals. Let

$$
f:\{\eta<\lambda: \eta \equiv 1 \quad \bmod 2\} \rightarrow \kappa
$$

be an onto mapping such that

$$
\forall \alpha<\kappa, f^{-1}(\alpha) \text { is cofinal in } \lambda .
$$

Recursively define a system of finite support iterations

$$
\left\langle\left\langle\mathbb{P}_{\alpha, \zeta}: \alpha \leq \kappa, \zeta \leq \lambda\right\rangle,\left\langle\dot{\mathbb{Q}}_{\alpha, \zeta}: \alpha \leq \kappa, \zeta<\lambda\right\rangle\right\rangle
$$

as follows:

- For all α, ζ let $V_{\alpha, \zeta}=V^{\mathbb{P}_{\alpha, \zeta}}$.
- If $\zeta=0$ then for all $\alpha \leq \kappa$, let $\mathbb{P}_{\alpha, 0}$ be Hechler's poset for adding an a.d. family $\mathscr{A}_{\alpha}=\left\{A_{\beta}\right\}_{\beta<\alpha}$. Note that for $\alpha \geq \omega_{1}, \mathscr{A}_{\alpha}$ is maximal almost disjoint in $V_{\alpha, 0}$.
- If $\zeta=\eta+1, \zeta \equiv 1 \bmod 2$, then $\Vdash_{\mathbb{P}_{\alpha, \eta}} \dot{\mathbb{Q}}_{\alpha, \eta}=\mathbb{M}\left(\dot{\mathscr{U}}_{\alpha, \eta}\right)$ where $\dot{\mathscr{U}}_{\alpha, \eta}$ is a $\mathbb{P}_{\alpha, \eta}$-name for an ultrafilter and for all $\alpha<\beta \leq \kappa$,

$$
\Vdash_{\mathbb{P}_{\beta, \eta}} \dot{\mathscr{U}}_{\alpha, \eta} \subseteq \dot{\mathscr{U}}_{\beta, \eta} .
$$

- If $\zeta=\eta+1, \zeta \equiv 0 \bmod 2$, then
- if $\alpha \leq f(\eta), \dot{\mathbb{Q}}_{\alpha, \eta}$ is a $\mathbb{P}_{\alpha, \eta}$-name for the trivial forcing notion.
- If $\alpha>f(\eta)$ then $\dot{\mathbb{Q}}_{\alpha, \eta}$ is a $\mathbb{P}_{\alpha, \eta}$-name for $\mathbb{D}^{V_{f(\eta), \eta}}$.
- If ζ is a limit, then for all $\alpha \leq \kappa, \mathbb{P}_{\alpha, \zeta}$ is the finite support iteration of $\left\langle\mathbb{P}_{\alpha, \eta}, \dot{\mathbb{Q}}_{\alpha, \eta}: \eta<\zeta\right\rangle$.

Furthermore, we guarantee that the construction satisfy the following properties:
(1) $\forall \zeta \leq \lambda$ and $\forall \alpha<\beta \leq \kappa$,

$$
\mathbb{P}_{\alpha, \zeta} \lessdot \mathbb{P}_{\beta, \zeta}
$$

(2) For all $\zeta \leq \lambda, \forall \alpha<\kappa$ the strong elimination of intruders property

$$
\left(\begin{array}{ll}
v_{\alpha, \zeta} & V_{\alpha+1, \zeta} \\
\overbrace{\alpha} & A_{\alpha+1}
\end{array}\right)
$$

implying that A_{α} eliminates \mathscr{A}_{α}-intruders over $V_{\alpha, \zeta}$ for each $\zeta \leq \lambda$.

Lemma

The construction satisfies that for all $\alpha<\beta \leq \kappa$, and all $\zeta<\eta \leq \lambda$,

$$
\mathbb{P}_{\alpha, \zeta} \lessdot \mathbb{P}_{\beta, \eta}
$$

Lemma

For each $\zeta \leq \lambda$:
(1) For every $p \in \mathbb{P}_{\kappa, \zeta}$ there is $\alpha<\kappa$ such that $p \in \mathbb{P}_{\alpha, \zeta}$.
(2) For every $\mathbb{P}_{\kappa, \zeta}$-name for a real \dot{f} there is $\alpha<\kappa$ such that \dot{f} is a $\mathbb{P}_{\alpha, \zeta}$-name.

Theorem (V. F., J. Brendle, 2010)

$$
V_{\kappa, \lambda} \vDash \mathfrak{b}=\mathfrak{a}=\kappa<\mathfrak{s}=\lambda .
$$

Proof: $\mathfrak{a} \leq \kappa$

- We will show that family $\left\{A_{\alpha}\right\}_{\alpha<\kappa}$ remains maximal in $V_{\kappa, \lambda}$.
- Otherwise $\exists B \in V_{\kappa, \lambda} \cap[\omega]^{\omega}$ such that

$$
\forall \alpha<\kappa\left|B \cap A_{\alpha}\right|<\omega .
$$

However there is $\alpha<\kappa$ such that

$$
B \in V_{\alpha, \lambda} \cap[\omega]^{\omega} .
$$

- Note that $B \notin \mathscr{I}\left(\mathscr{A}_{\alpha}\right)$. Then strong elimination of intruders

$$
\left(\begin{array}{cc}
\boldsymbol{V}_{\alpha, \lambda} & V_{\alpha+1, \lambda} \\
A_{\alpha} & A_{\alpha+1}
\end{array}\right)
$$

holds and so $\left|B \cap A_{\alpha+1}\right|=\infty$, which is a contradiction.

- Thus, $\mathfrak{a} \leq \kappa$.

Proof: $\kappa \leq \mathfrak{b}$ and so $\mathfrak{b}=\mathfrak{a}=\kappa$

- Let $B \subseteq V_{\kappa, \lambda} \cap^{\omega} \omega$ be of cardinality $<\kappa$. Then there are $\alpha<\kappa, \zeta<\lambda$ such that $B \subseteq V_{\alpha, \zeta}$.
- Since $\{\gamma: f(\gamma)=\alpha\}$ is cofinal in λ, there is $\zeta^{\prime}>\zeta$ such that $f\left(\zeta^{\prime}\right)=\alpha$.
- Then $\mathbb{P}_{\alpha+1, \zeta^{\prime}+1}$ adds a real dominating $V_{\alpha, \zeta^{\prime}} \cap^{\omega} \omega$, and so in particular $V_{\alpha, \zeta} \cap{ }^{\omega} \omega$.
- Thus B is not unbounded.
- Therefore in $V_{\kappa, \lambda}$, we have that $\mathfrak{b} \geq \kappa$. However $\mathfrak{b} \leq \mathfrak{a}$ and so, in $V_{\kappa, \lambda}$ we have $\mathfrak{b}=\mathfrak{a}=\kappa$.

Proof: $\mathfrak{s}=\lambda$
To see that in $V_{\kappa, \lambda}, \mathfrak{s}=\lambda$, note that if

$$
S \subseteq V_{\kappa, \lambda} \cap[\omega]^{\omega}
$$

is of cardinality $<\lambda$, then there is $\zeta<\lambda$ such that

$$
\zeta=\eta+1, \zeta \equiv 1 \quad \bmod 2
$$

and

$$
S \subseteq V_{\kappa, \lambda}
$$

Then $\mathbb{M}\left(\mathscr{U}_{\kappa, \eta}\right)$ adds a real not split by S and so S is not splitting.

Observation (Strongly \mathscr{H}-Canjar)
Note that if μ is a cardinal such that

$$
\kappa<\mu \leq \lambda
$$

in the above construction, then in $V_{\kappa, \mu+1}$ there is an ultrafilter

$$
\mathscr{U}=\mathscr{U}_{\kappa, \mu+1}
$$

such that
$\mathbb{M}(\mathscr{U})$ preserves the unboundedness of $\mathscr{H} \subseteq{ }^{\omega} \omega$,
where $|\mathscr{H}|=\kappa<\mu \leq \mathfrak{c}(!)$

Questions:

(1) Is it consistent that $\mathfrak{b}<\mathfrak{s}<\mathfrak{a}$?
(2) Is it consistent that $\mathfrak{b}<\mathfrak{a}<\mathfrak{s}$?

Maximal Eventually Different Families

Definition

A family $\mathscr{E} \subseteq{ }^{\omega} \omega$ is eventually different(abbreviated e.d.) if for any two distinct $f, g \in \mathscr{E}$ there is $n \in \mathbb{N}$ such that

$$
\forall m>n(f(m) \neq g(m))
$$

We write $f \not \neq^{*} g$. An e.d. family is maximal if it is not properly contained in any other e.d. family.

We denote such maximal families MED, their minimal cardinality \mathfrak{a}_{e}. For $f, g \in{ }^{\omega} \omega$ if it is not the case that f, g are e.d., we write $f={ }^{\infty} g$.

Maximal cofinitary groups

Definition

- A group $\mathscr{G} \leq S_{\infty}$ is cofinitary if its elements are pairwise eventually different.
- A cofinitary group is maximal if it is not properly contained in any other cofinitary group.
- We denote such groups with MCG and their minimal cardinality \mathfrak{a}_{g}.

It is clear that MED and MCG are close relatives to maximal almost disjoint families and so $\mathfrak{a}_{g}, \mathfrak{a}_{e}$ are close relatives of \mathfrak{a}, the minimal cardinality of an infinite maximal almost disjoint subfamily of $[\omega]^{\omega}$.

To what extent are those distinct?

$\operatorname{non}(\mathscr{M})$ and \mathfrak{a} are independent, while $\operatorname{non}(\mathscr{M}) \leq \mathfrak{a}_{g}, \mathfrak{a}_{e}$.

Comparing those combinatorial notions with respect to their projective complexity provides further clear distinctions:

- (A. Mathias) There are no analytic MAD families.
- (H. Horowitz, S. Shelah) There are Borel MED and Borel MCG.

MCG

- (Gao, Zhang) In L there is a MCG with a co-analytic generating set.
- (Kastermans) In L then there is a co-analytic MCG.
- (Horowitz, Shelah) There is a Borel MCG.

Question

What can we say about the existence of such nicely definable combinatorial sets of reals in models of large continuum?

Cohen forcing

Theorem (F., Schrittesser, Törnquist)
Assume $V=L$. Then there is a co-analytic MCG which is indestructible by Cohen forcing.

Corollary
The existence of a Π_{1}^{1} MCG of cardinality \aleph_{1} is consistent with \mathfrak{c} begin arbitrarily large.

Our construction is inspired by the forcing method...

Definition: Coding a real into a group element
Let σ be a partial function from \mathbb{N} to \mathbb{N}. Then
(1) σ codes a finite string $t \in 2^{\prime}$ with parameter $m \in \mathbb{N}$ iff

$$
(\forall k<l) \sigma^{k}(m)=t(k) \quad \bmod 2
$$

(2) σ exactly codes t with parameter m iff
it codes t and $\sigma^{\prime}(m)$ is undefined.
(3) σ codes $z \in 2^{\mathbb{N}}$ with parameter m iff

$$
(\forall k \in \mathbb{N}) \sigma^{k}(m)=z(k) \quad \bmod 2
$$

To summarize
(1) The existence of a co-analytic MCG of cardinality \aleph_{1} is consistent with $\mathfrak{a}_{g}=\mathfrak{b}<\mathfrak{d}=\mathfrak{c}$.
(2) The existence of a co-analytic MED of cardinality \aleph_{1} is consistent with $\mathfrak{a}_{e}=\mathfrak{b}<\mathfrak{d}=\mathfrak{c}$.

How to obtain a model in which there is a co-analytic MED family of cardinality $\mathfrak{\aleph}_{1}$ and $\mathfrak{d}<\mathfrak{c}$?

Theorem (F., Schrittesser)

In the constructible universe L there is a co-analytic MED which remains maximal after countable support iterations or countable support products of Sacks forcing.

To summarize
The existence of a co-analytic MED family of cardinality \aleph_{1} is consistent with

$$
\mathfrak{a}_{e}=\mathfrak{d}=\mathfrak{N}_{1}<\mathfrak{c}
$$

Definition

A forcing notion \mathbb{P} has the property ned iff for every countable $\mathscr{F}_{0} \subseteq{ }^{\omega} \omega$ and every \mathbb{P}-name f for a function in ${ }^{\omega} \omega$ such that

$$
\Vdash_{\mathbb{P}} \dot{f} \text { is e.d. from } \check{\mathscr{F}}_{0}
$$

there are $h \in{ }^{\omega} \omega$ which is e.d. from \mathscr{F}_{0} and $p \in \mathbb{P}$ with

$$
p \Vdash_{\mathbb{P}} \check{h}={ }^{\infty} \dot{f}
$$

Theorem

Sacks forcing, as well as its countable support products and iterations have property ned.

Theorem
Suppose \mathscr{E} is a Σ_{2}^{1} MED family. Then, there is a Π_{1}^{1} MED family \mathscr{E}^{\prime} such that for any forcing \mathbb{P}, if \mathscr{E} is \mathbb{P}-indestructible, then so is $\mathscr{E}^{\prime \prime}$.

Tightness

Observations

- If X is a set of functions, then $\cup X \subseteq \omega^{2}$.
- Similarly if $T \subseteq \omega^{<\omega}$ is a tree then $\cup T \subseteq \omega^{2}$.

Definition
Let $X \subseteq{ }^{\omega} \omega, T \subseteq{ }^{<\omega} \omega$ be a tree. We say that X almost covers T if

$$
\bigcup T \subseteq^{*} \bigcup X
$$

The tree ideal generated by \mathscr{E}

Definition (F., C. Switzer)

(1) The tree ideal generated by \mathscr{E}, denotes $\mathscr{I}_{\text {tr }}(\mathscr{E})$, is the set of all trees $T \subseteq \omega^{<\omega}$ so that there are

$$
t \in T \text { and a finite } X \subseteq \mathscr{E}
$$

so that

$$
\bigcup T_{t} \subseteq^{*} \bigcup X
$$

(2) A tree $T \subseteq \omega^{<\omega}$ is said to be in $\mathscr{I}_{t r}(\mathscr{E})^{+}$if for each $t \in T$ it is not the case that $\cup T_{t}$ can be almost covered by a finite $X \subseteq \mathscr{E}$.

Tight eventually different families

Definition

Let $T \subseteq \omega^{<\omega}$ be a tree, $g \in{ }^{\omega} \omega$. We say that g densely diagonalizes T, if for every $t \in T$ there is a branch h through t in T such that $h={ }^{\infty} g$.

Definition

An eventually different family \mathscr{E} is tight if for any $\left\{T_{n}\right\}_{n \in \omega} \subseteq \mathscr{I}_{t r}(\mathscr{E})^{+}$ there is a single $g \in \mathscr{E}$ which densely diagonalizes all the T_{n} 's.

Observations

- If \mathscr{E} is a tight eventually different family, then it is maximal.
- MA(σ-linked) implies that every e.d. family $\mathscr{E}_{0},\left|\mathscr{E}_{0}\right|<\mathfrak{c}$ is contained in a tight e.d. family.
- CH implies that tight eventually different families exist.

Moreover...

tight eventually different families are never analytic, which is a strong distinction with the Borel MED family of Horowitz-Shelah.
... and moreover:
(1) tight eventually different families are Cohen indestructible;
(2) in L there is a co-analytic tight e.d. family;
(3) thus (once again!) \mathfrak{a}_{e} has a co-analytic witness in a model of

$$
\mathfrak{a}_{e}=\mathfrak{b}=\mathfrak{\aleph}_{1}<\mathfrak{d}=\mathfrak{c} .
$$

Strong Preservation of Tightness

Definition: Strong preservation
Let \mathbb{P} be a proper forcing notion and \mathscr{E} a tight e.d. family. We say that \mathbb{P} strongly preserves the tightness of \mathscr{E} if for every sufficiently large θ and $M \prec H_{\theta}$ such that $p, \mathbb{P}, \mathscr{E}$ are elements of M,
if g densely diagonalizes every elements of $M \cap \mathscr{I}_{T}(\mathscr{E})^{+}$,
then there is an (M, \mathbb{P})-generic $q \leq p$ such that q forces that g densely diagonalizes every element of $M[\dot{G}] \cap \mathscr{I}_{T}(\mathscr{E})^{+}$.

Such a q is called an $(M, \mathbb{P}, \mathscr{E}, g)$-generic condition.

Theorem

Suppose \mathscr{E} is a tight e.d. family. If $\left\langle\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}: \alpha<\gamma\right\rangle$ is a countable support iteration of proper forcing notions such that for all α,
$\Vdash_{\alpha} \dot{\mathbb{Q}}_{\alpha}$ strongly preserves the tightness of $\check{\mathscr{E}}$,
then \mathbb{P}_{γ} strongly preserves the tightness of \mathscr{E}.

Lemma

- Suppose \mathbb{P} strongly preserves the tightness of \mathscr{E} and $\dot{\mathbb{Q}}$ is a \mathbb{P}-name for a poset, which strongly preserves the tightness of \mathscr{E}. Then $\mathbb{P} * \dot{\mathbb{Q}}$ strongly preserves the tightness of \mathscr{E}.
- Moreover, if p is $(M, \mathbb{P}, \mathscr{E}, g)$-generic and forces \dot{q} to be $(M[\dot{G}], \mathbb{P}, \mathscr{E}, g)$-generic then (p, \dot{q}) is $(M, \mathbb{P}, \mathscr{E}, g)$-generic.

Lemma

Let $\left\langle\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}: \alpha<\gamma\right\rangle$ be a countable support iteration of proper forcing notions such that for all α,
$\Vdash_{\alpha} \dot{\mathbb{Q}}_{\alpha}$ densely preserves the tightness of $\check{\mathscr{E}}$,
θ sufficiently large and $M \prec H_{\theta}$ containing $\mathbb{P}_{\gamma}, \gamma, \mathscr{E}$. For each $\alpha \in M \cap \gamma$ and every $\left(M, \mathbb{P}_{\alpha}, \mathscr{E}, g\right)$-generic condition $p \in \mathbb{P}_{\alpha}$ the following holds: If \dot{q} is a \mathbb{P}_{α}-name, $p \Vdash_{\alpha} \dot{q} \in \mathbb{P}_{\gamma} \cap M$ and $p \Vdash_{\alpha} \dot{q} \mid \alpha \in \dot{G}_{\alpha}$, then there is an $\left(M, \mathbb{P}_{\gamma}, \mathscr{E}, g\right)$-generic condition $\bar{p} \in \mathbb{P}_{\gamma}$ so that

$$
\bar{p} \upharpoonright \alpha=p \text { and } \bar{p} \Vdash_{\gamma} \dot{q} \in \dot{G} .
$$

The notion of a tight eventually different family gives a uniform framework which applies to a long list of partial orders, including:

- Sacks,
- Miller rational perfect set forcing,
- Miller partition forcing,
- Infinitely often equal forcing,
- Shelah's poset for diagonalizing a maximal ideal and gives rise to a MED family indestructible by the above posets.

Theorem (F., Switzer)

The following inequalities are all consistent and in each case there is a tight eventually different family and a tight eventually different set of permutations of cardinality \aleph_{1}, respectively.
(1) $\mathfrak{a}=\mathfrak{a}_{e}=\mathfrak{a}_{p}<\mathfrak{d}=\mathfrak{a}_{T}=2^{\mathfrak{N}_{0}}$
(2) $\mathfrak{a}=\mathfrak{a}_{e}=\mathfrak{a}_{p}=\mathfrak{d}<\mathfrak{a}_{T}=2^{\mathfrak{N}_{0}}$
(3) $\mathfrak{a}=\mathfrak{a}_{e}=\mathfrak{a}_{p}=\mathfrak{d}=\mathfrak{u}<\operatorname{non}(\mathscr{N})=\operatorname{cof}(\mathscr{N})=2^{\mathbb{N}_{0}}$.
(4) $\mathfrak{a}=\mathfrak{a}_{e}=\mathfrak{a}_{p}=\mathfrak{i}=\operatorname{cof}(\mathscr{N})<\mathfrak{u}$.

Moreover, if we work over the constructible universe, we can provide co-analytic witnesses of cardinality \aleph_{1} to each of

$$
\mathfrak{a}, \mathfrak{a}_{e}, \mathfrak{a}_{p}, \mathfrak{i}, \mathfrak{u}
$$

in the above inequalities.

Thank you for your attention!

