Information Theory with Kernel Methods

Francis Bach
INRIA - Ecole Normale Supérieure, Paris, France

Münster, March 2024

Measuring "distance" between probability distributions

- Common sub-task in many areas of data science
- Model fitting
- Independence or homogeneity tests
- Quantifying loss of information or uncertainty
- Independent component analysis
- Mean field analysis of neural networks

Measuring "distance" between probability distributions

- Common sub-task in many areas of data science
- Model fitting
- Independence or homogeneity tests
- Quantifying loss of information or uncertainty
- Independent component analysis
- Mean field analysis of neural networks
- Main difficulties
- Beyond discrete random variables and Gaussians
- Non-linear dependencies
- Need to be estimated from data
- Physical / statistical meaning

Classical comparison frameworks

- Information theory (Cover and Thomas, 1999)
- Kullback-Leibler divergence for finite set \mathcal{X}

$$
D(p \| q)=\sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}
$$

Classical comparison frameworks

- Information theory (Cover and Thomas, 1999)
- Kullback-Leibler divergence for finite set \mathcal{X}

$$
D(p \| q)=\sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}
$$

- Invariance properties and strong physical interpretation
- Link with probabilistic inference
- Hard to estimate beyond small discrete and Gaussian distributions

Classical comparison frameworks

- Information theory (Cover and Thomas, 1999)
- Kullback-Leibler divergence for finite set \mathcal{X}

$$
D(p \| q)=\sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}
$$

- Invariance properties and strong physical interpretation
- Link with probabilistic inference
- Hard to estimate beyond small discrete and Gaussian distributions
- Optimal transport (Peyré and Cuturi, 2019)
- Physical interpretation through base distance d

Studying probability distributions through moments

- Moments of feature map $\varphi: X \rightarrow \mathcal{H}$ Hilbert space (or \mathbb{R}^{d})
- Probability distributions p on X
- Mean element: $\mu_{p}=\int_{X} \varphi(x) d p(x)$

Studying probability distributions through moments

- Moments of feature map $\varphi: X \rightarrow \mathcal{H}$ Hilbert space (or \mathbb{R}^{d})
- Probability distributions p on X
- Mean element: $\mu_{p}=\int_{X} \varphi(x) d p(x)$
- Full characterization if \mathcal{H} large enough
- See Sriperumbudur et al. (2010); Micchelli et al. (2006)
- Natural metric: $(p, q) \mapsto\left\|\mu_{p}-\mu_{q}\right\|$
- Easy to estimate with convergence rates $\propto 1 / \sqrt{n}$
- Only the kernel $k(x, y)=\langle\varphi(x), \varphi(y)\rangle$ is needed

Studying probability distributions through moments

- Moments of feature map $\varphi: X \rightarrow \mathcal{H}$ Hilbert space (or \mathbb{R}^{d})
- Probability distributions p on X
- Mean element: $\mu_{p}=\int_{X} \varphi(x) d p(x)$
- Full characterization if \mathcal{H} large enough
- See Sriperumbudur et al. (2010); Micchelli et al. (2006)
- Natural metric: $(p, q) \mapsto\left\|\mu_{p}-\mu_{q}\right\|$
- Easy to estimate with convergence rates $\propto 1 / \sqrt{n}$
- Only the kernel $k(x, y)=\langle\varphi(x), \varphi(y)\rangle$ is needed

$$
\left\|\hat{\mu}_{p}-\hat{\mu}_{q}\right\|^{2}=\left\|\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)-\frac{1}{m} \sum_{j=1}^{m} \varphi\left(y_{j}\right)\right\|^{2}
$$

Studying probability distributions through moments

- Moments of feature map $\varphi: X \rightarrow \mathcal{H}$ Hilbert space (or \mathbb{R}^{d})
- Probability distributions p on X
- Mean element: $\mu_{p}=\int_{X} \varphi(x) d p(x)$
- Full characterization if \mathcal{H} large enough
- See Sriperumbudur et al. (2010); Micchelli et al. (2006)
- Natural metric: $(p, q) \mapsto\left\|\mu_{p}-\mu_{q}\right\|$
- Easy to estimate with convergence rates $\propto 1 / \sqrt{n}$
- Only the kernel $k(x, y)=\langle\varphi(x), \varphi(y)\rangle$ is needed
- Many applications (see, e.g., Muandet et al., 2017)
- Model fitting, independence tests, GANs, gradient flows, etc.

Studying probability distributions through moments

- Moments of feature map $\varphi: X \rightarrow \mathcal{H}$ Hilbert space (or \mathbb{R}^{d})
- Probability distributions p on X
- Mean element: $\mu_{p}=\int_{X} \varphi(x) d p(x)$
- Full characterization if \mathcal{H} large enough
- See Sriperumbudur et al. (2010); Micchelli et al. (2006)
- Natural metric: $(p, q) \mapsto\left\|\mu_{p}-\mu_{q}\right\|$
- Easy to estimate with convergence rates $\propto 1 / \sqrt{n}$
- Only the kernel $k(x, y)=\langle\varphi(x), \varphi(y)\rangle$ is needed
- Many applications (see, e.g., Muandet et al., 2017)
- Model fitting, independence tests, GANs, gradient flows, etc.
- Any link with information-theoretic quantities?

From mean element to covariance operator

- Covariance operator / matrix $\Sigma_{p}=\int_{x} \varphi(x) \varphi(x)^{*} d p(x)$
- Self-adjoint / symmetric / Hermitian, positive-semidefinite

From mean element to covariance operator

- Covariance operator / matrix $\Sigma_{p}=\int_{x} \varphi(x) \varphi(x)^{*} d p(x)$
- Self-adjoint / symmetric / Hermitian, positive-semidefinite
- Main tool: Quantum entropies
- Von Neumann entropy: $\operatorname{tr}\left[\Sigma_{p} \log \Sigma_{p}\right]$
- Relative entropy: $\operatorname{tr}\left[\Sigma_{p}\left(\log \Sigma_{p}-\log \Sigma_{q}\right)-\Sigma_{p}+\Sigma_{q}\right]$

From mean element to covariance operator

- Covariance operator / matrix $\Sigma_{p}=\int_{x} \varphi(x) \varphi(x)^{*} d p(x)$
- Self-adjoint / symmetric / Hermitian, positive-semidefinite
- Main tool: Quantum entropies
- Von Neumann entropy: $\operatorname{tr}\left[\Sigma_{p} \log \Sigma_{p}\right]$
- Relative entropy: $\operatorname{tr}\left[\Sigma_{p}\left(\log \Sigma_{p}-\log \Sigma_{q}\right)-\Sigma_{p}+\Sigma_{q}\right]$
- Many properties (https://arxiv.org/abs/2202.08545)
- Clear relationships with regular information theory
- Estimation in $1 / \sqrt{n}$
- Use in multivariate modelling
- Variational inference
- Related work: Giraldo et al. (2014); Minh (2021)

Covariance operators $\Sigma_{p}=\int_{x} \varphi(x) \varphi(x)^{*} d p(x)$

- Assumptions
- $(x, y) \mapsto k(x, y)$ positive definite kernel on $\mathcal{X} \times \mathcal{X}$
- X compact, and $\forall x \in X, k(x, x) \leqslant 1$

Covariance operators $\Sigma_{p}=\int_{X} \varphi(x) \varphi(x)^{*} d p(x)$

- Assumptions
- $(x, y) \mapsto k(x, y)$ positive definite kernel on $\mathcal{X} \times \mathcal{X}$
- X compact, and $\forall x \in X, k(x, x) \leqslant 1$
- There exists a feature map $\varphi: \mathcal{X} \rightarrow \mathcal{H}$ Hilbert space such that

$$
\forall x, y \in X, \quad k(x, y)=\langle\varphi(x), \varphi(y)\rangle
$$

- Space of linear functions in φ, that is, $f(x)=\langle f, \varphi(x)\rangle$ for $f \in \mathcal{H}$

Covariance operators $\Sigma_{p}=\int_{X} \varphi(x) \varphi(x)^{*} d p(x)$

- Assumptions
- $(x, y) \mapsto k(x, y)$ positive definite kernel on $\mathcal{X} \times \mathcal{X}$
- X compact, and $\forall x \in X, k(x, x) \leqslant 1$
- There exists a feature map $\varphi: \mathcal{X} \rightarrow \mathcal{H}$ Hilbert space such that

$$
\forall x, y \in X, \quad k(x, y)=\langle\varphi(x), \varphi(y)\rangle
$$

- Space of linear functions in φ, that is, $f(x)=\langle f, \varphi(x)\rangle$ for $f \in \mathcal{H}$
- Universal kernel (Steinwart, 2001): dense in the set of continuous functions with uniform norm

Covariance operators $\Sigma_{p}=\int_{X} \varphi(x) \varphi(x)^{*} d p(x)$

- Assumptions
- $(x, y) \mapsto k(x, y)$ positive definite kernel on $\mathcal{X} \times \mathcal{X}$
- X compact, and $\forall x \in X, k(x, x) \leqslant 1$
- There exists a feature map $\varphi: \mathcal{X} \rightarrow \mathcal{H}$ Hilbert space such that

$$
\forall x, y \in X, \quad k(x, y)=\langle\varphi(x), \varphi(y)\rangle
$$

- Space of linear functions in φ, that is, $f(x)=\langle f, \varphi(x)\rangle$ for $f \in \mathcal{H}$
- Universal kernel (Steinwart, 2001): dense in the set of continuous functions with uniform norm
- Classical example for $X \subset \mathbb{R}^{d}: k(x, y)=\exp \left(-\|x-y\|_{2}^{2} / \sigma^{2}\right)$
- Infinitely differentiable functions

Covariance operators $\Sigma_{p}=\int_{X} \varphi(x) \varphi(x)^{*} d p(x)$

- Torus $X=[0,1]^{d}$
- $k(x, y)=q(x-y), q$ 1-periodic, with positive Fourier series \hat{q}
- Corresponds to $\varphi(x)_{\omega}=\hat{q}(\omega)^{1 / 2} e^{2 i \pi \omega^{\top} x}, \omega \in \mathbb{Z}^{d}$

$$
k(x, y)=\langle\varphi(x), \varphi(y)\rangle=\sum_{\omega \in \mathbb{Z}^{d}} \hat{q}(\omega) e^{2 i \pi \omega^{\top}(x-y)}=q(x-y)
$$

Covariance operators $\Sigma_{p}=\int_{X} \varphi(x) \varphi(x)^{*} d p(x)$

- Torus $X=[0,1]^{d}$
- $k(x, y)=q(x-y), q$ 1-periodic, with positive Fourier series \hat{q}
- Corresponds to $\varphi(x)_{\omega}=\hat{q}(\omega)^{1 / 2} e^{2 i \pi \omega^{\top} x}, \omega \in \mathbb{Z}^{d}$
- Link to characteristic functions

$$
\left(\Sigma_{p}\right)_{\omega \omega^{\prime}}=\hat{q}(\omega)^{1 / 2} \hat{q}\left(\omega^{\prime}\right)^{1 / 2} \cdot \mathbb{E}\left[e^{2 i \pi\left(\omega-\omega^{\prime}\right)^{\top} x}\right]
$$

- Example: $\hat{q}(\omega) \propto \exp \left(-\sigma\|\omega\|_{1}\right)$

Covariance operators $\Sigma_{p}=\int_{X} \varphi(x) \varphi(x)^{*} d p(x)$

- Torus $X=[0,1]^{d}$
- $k(x, y)=q(x-y), q$ 1-periodic, with positive Fourier series \hat{q}
- Corresponds to $\varphi(x)_{\omega}=\hat{q}(\omega)^{1 / 2} e^{2 i \pi \omega^{\top} x}, \omega \in \mathbb{Z}^{d}$
- Link to characteristic functions

$$
\left(\Sigma_{p}\right)_{\omega \omega^{\prime}}=\hat{q}(\omega)^{1 / 2} \hat{q}\left(\omega^{\prime}\right)^{1 / 2} \cdot \mathbb{E}\left[e^{2 i \pi\left(\omega-\omega^{\prime}\right)^{\top} x}\right]
$$

- Example: $\hat{q}(\omega) \propto \exp \left(-\sigma\|\omega\|_{1}\right)$
- Finite sets $\mathcal{X}=\{1, \ldots, m\}$
- "One-hot" encoding $\left(\forall i, \varphi(x)_{i}=1_{x=i}\right)$ leads to $\Sigma_{p}=\operatorname{Diag}(p)$
$-X=\{-1,1\}^{d}$, with $\varphi(x)$ composed of monomials
- Beyond!

Properties of covariance operators
 $$
\Sigma_{p}=\int_{X} \varphi(x) \varphi(x)^{*} d p(x)
$$

- Characterization of probability distributions
$-\Sigma_{p}$ is positive semi-definite, with trace less than one
- Sequence of positive eigenvalues tending to zero
- The mapping $p \mapsto \Sigma_{p}$ is injective
- Similar to the mean element $\mu_{p}=\int_{x} \varphi(x) d p(x)$

Quantum entropies

- Negative entropy (von Neumann, 1932): $\operatorname{tr}[A \log A]=\sum_{\lambda \in \Lambda(A)} \lambda \log \lambda$
- $\Lambda(A)$ set of eigenvalues of A

Quantum entropies

- Negative entropy (von Neumann, 1932): $\operatorname{tr}[A \log A]=\sum_{\lambda \in \Lambda(A)} \lambda \log \lambda$
- $\Lambda(A)$ set of eigenvalues of A
- Relative entropy: $D(A \| B)=\operatorname{tr}[A(\log A-\log B)-A+B]$
- Kullback-Leibler divergence
- Bregman divergence $\psi(A)-\psi(B)-\langle\nabla \psi(B), A-B\rangle$ for $\psi(A)=\operatorname{tr}[A \log A]$

Quantum entropies

- Negative entropy (von Neumann, 1932): $\operatorname{tr}[A \log A]=\sum_{\lambda \in \Lambda(A)} \lambda \log \lambda$
- $\Lambda(A)$ set of eigenvalues of A
- Relative entropy: $D(A \| B)=\operatorname{tr}[A(\log A-\log B)-A+B]$
- Kullback-Leibler divergence
- Bregman divergence $\psi(A)-\psi(B)-\langle\nabla \psi(B), A-B\rangle$ for $\psi(A)=\operatorname{tr}[A \log A]$
- Properties (Petz, 1986; Ruskai, 2007; Wilde, 2013)
- $D(A \| B) \geqslant 0$ with equality if and only if $A=B$
- $(A, B) \mapsto D(A \| B)$ jointly convex in A and B
- Applications to matrix concentration inequalities (Tropp, 2015)
- Used in optimization (Chandrasekaran and Shah, 2017)

Kernel relative entropy (Bach, 2022a)

- Definition: $D\left(\Sigma_{p} \| \Sigma_{q}\right)=\operatorname{tr}\left[\Sigma_{p}\left(\log \Sigma_{p}-\log \Sigma_{q}\right)-\Sigma_{p}+\Sigma_{q}\right]$
- Σ_{p} and Σ_{q} covariance operators

Kernel relative entropy (Bach, 2022a)

- Definition: $D\left(\Sigma_{p} \| \Sigma_{q}\right)=\operatorname{tr}\left[\Sigma_{p}\left(\log \Sigma_{p}-\log \Sigma_{q}\right)-\Sigma_{p}+\Sigma_{q}\right]$
- Σ_{p} and Σ_{q} covariance operators
- Properties
- Finite if $\left\|\frac{d p}{d q}\right\|_{\infty}$ finite
- Always non-negative, with equality if and only $p=q$
- Jointly convex in (p, q)

Kernel relative entropy (Bach, 2022a)

- Definition: $D\left(\Sigma_{p} \| \Sigma_{q}\right)=\operatorname{tr}\left[\Sigma_{p}\left(\log \Sigma_{p}-\log \Sigma_{q}\right)-\Sigma_{p}+\Sigma_{q}\right]$
- Σ_{p} and Σ_{q} covariance operators
- Properties
- Finite if $\left\|\frac{d p}{d q}\right\|_{\infty}$ finite
- Always non-negative, with equality if and only $p=q$
- Jointly convex in (p, q)
- Extension to non-relative entropy
- See Bach (2022a)

Kernel relative entropy (Bach, 2022a)

- Definition: $D\left(\Sigma_{p} \| \Sigma_{q}\right)=\operatorname{tr}\left[\Sigma_{p}\left(\log \Sigma_{p}-\log \Sigma_{q}\right)-\Sigma_{p}+\Sigma_{q}\right]$
- Σ_{p} and Σ_{q} covariance operators
- Properties
- Finite if $\left\|\frac{d p}{d q}\right\|_{\infty}$ finite
- Always non-negative, with equality if and only $p=q$
- Jointly convex in (p, q)
- Extension to non-relative entropy
- See Bach (2022a)
- Not all properties of Shannon relative entropy will be satisfied
- For axiomatic definition of entropy, see Csiszár (2008)

Finite sets with orthonormal embeddings

- Finite set X
- Orthonormal embeddings $\langle\varphi(x), \varphi(y)\rangle=1_{x=y}$
- All covariance operators jointly diagonalizable with probability mass values as eigenvalues

Finite sets with orthonormal embeddings

- Finite set X
- Orthonormal embeddings $\langle\varphi(x), \varphi(y)\rangle=1_{x=y}$
- All covariance operators jointly diagonalizable with probability mass values as eigenvalues
- Recovering regular relative entropy exactly

$$
D\left(\Sigma_{p} \| \Sigma_{q}\right)=\sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}=D(p \| q)
$$

- Beyond finite sets?

Lower bound on Shannon relative entropy

- Using Jensen's inequality and $\forall x \in \mathcal{X},\|\varphi(x)\|^{2}=1$

$$
D\left(\Sigma_{p} \| \Sigma_{q}\right)=D\left(\int_{X} \varphi(x) \varphi(x)^{*} d p(x) \| \int_{x} \frac{d q}{d p}(x) \varphi(x) \varphi(x)^{*} d p(x)\right)
$$

Lower bound on Shannon relative entropy

- Using Jensen's inequality and $\forall x \in \mathcal{X},\|\varphi(x)\|^{2}=1$

$$
\begin{aligned}
D\left(\Sigma_{p} \| \Sigma_{q}\right) & =D\left(\int_{x} \varphi(x) \varphi(x)^{*} d p(x) \| \int_{x} \frac{d q}{d p}(x) \varphi(x) \varphi(x)^{*} d p(x)\right) \\
& \leqslant \int_{x} D\left(\varphi(x) \varphi(x)^{*} \| \frac{d q}{d p}(x) \varphi(x) \varphi(x)^{*}\right) d p(x)
\end{aligned}
$$

Lower bound on Shannon relative entropy

- Using Jensen's inequality and $\forall x \in \mathcal{X},\|\varphi(x)\|^{2}=1$

$$
\begin{aligned}
D\left(\Sigma_{p} \| \Sigma_{q}\right) & =D\left(\int_{x} \varphi(x) \varphi(x)^{*} d p(x) \| \int_{x} \frac{d q}{d p}(x) \varphi(x) \varphi(x)^{*} d p(x)\right) \\
& \leqslant \int_{x} D\left(\varphi(x) \varphi(x)^{*} \| \frac{d q}{d p}(x) \varphi(x) \varphi(x)^{*}\right) d p(x)
\end{aligned}
$$

Lower bound on Shannon relative entropy

- Using Jensen's inequality and $\forall x \in \mathcal{X},\|\varphi(x)\|^{2}=1$

$$
\begin{aligned}
D\left(\Sigma_{p} \| \Sigma_{q}\right) & =D\left(\int_{x} \varphi(x) \varphi(x)^{*} d p(x) \| \int_{x} \frac{d q}{d p}(x) \varphi(x) \varphi(x)^{*} d p(x)\right) \\
& \leqslant \int_{x} D\left(\varphi(x) \varphi(x)^{*} \| \frac{d q}{d p}(x) \varphi(x) \varphi(x)^{*}\right) d p(x) \\
& =\int_{x}\|\varphi(x)\|^{2} \log \frac{\|\varphi(x)\|^{2}}{\|\varphi(x)\|^{2} \frac{d q}{d p}(x)} d p(x)
\end{aligned}
$$

Lower bound on Shannon relative entropy

- Using Jensen's inequality and $\forall x \in \mathcal{X},\|\varphi(x)\|^{2}=1$

$$
\begin{aligned}
D\left(\Sigma_{p} \| \Sigma_{q}\right) & =D\left(\int_{x} \varphi(x) \varphi(x)^{*} d p(x) \| \int_{x} \frac{d q}{d p}(x) \varphi(x) \varphi(x)^{*} d p(x)\right) \\
& \leqslant \int_{x} D\left(\varphi(x) \varphi(x)^{*} \| \frac{d q}{d p}(x) \varphi(x) \varphi(x)^{*}\right) d p(x) \\
& =\int_{x}\|\varphi(x)\|^{2} \log \frac{\|\varphi(x)\|^{2}}{\|\varphi(x)\|^{2} \frac{d q}{d p}(x)} d p(x) \\
& \leqslant \int_{x} \log \left(\frac{d p}{d q}(x)\right) d p(x)=D(p \| q)
\end{aligned}
$$

Lower bound on Shannon relative entropy

- Using Jensen's inequality and $\forall x \in \mathcal{X},\|\varphi(x)\|^{2}=1$

$$
\begin{aligned}
D\left(\Sigma_{p} \| \Sigma_{q}\right) & =D\left(\int_{x} \varphi(x) \varphi(x)^{*} d p(x) \| \int_{x} \frac{d q}{d p}(x) \varphi(x) \varphi(x)^{*} d p(x)\right) \\
& \leqslant \int_{x} D\left(\varphi(x) \varphi(x)^{*} \| \frac{d q}{d p}(x) \varphi(x) \varphi(x)^{*}\right) d p(x) \\
& =\int_{x}\|\varphi(x)\|^{2} \log \frac{\|\varphi(x)\|^{2}}{\|\varphi(x)\|^{2} \frac{d q}{d p}(x)} d p(x) \\
& \leqslant \int_{x} \log \left(\frac{d p}{d q}(x)\right) d p(x)=D(p \| q)
\end{aligned}
$$

- How tight?

Small-width asymptotics for metric spaces

- Approximation bound: assuming that p, q have strictly positive Lipschitz-continuous densities

$$
0 \leqslant D(p \| q)-D\left(\Sigma_{p} \| \Sigma_{q}\right) \leqslant E(p, q) \times \Delta(k)
$$

- $\Delta(k)$ characterizes lack of orthonormality of embedding φ
- Explicit constant $E(p, q)$, see Bach (2022a)
- Proof based on quantum information theory

Proof

- Quantum measurement (with $\Sigma=\int_{x} \varphi(x) \varphi(x)^{*} d \tau(x)$)
- Define for all $y \in \mathcal{X}$, operator $D(y)=\Sigma^{-1 / 2}\left(\varphi(y) \varphi(y)^{*}\right) \Sigma^{-1 / 2}$
- Positive self-adjoint operators such that $\int_{X} D(y) d \tau(y)=I$

Proof

- Quantum measurement (with $\Sigma=\int_{x} \varphi(x) \varphi(x)^{*} d \tau(x)$)
- Define for all $y \in \mathcal{X}$, operator $D(y)=\Sigma^{-1 / 2}\left(\varphi(y) \varphi(y)^{*}\right) \Sigma^{-1 / 2}$
- Positive self-adjoint operators such that $\int_{x} D(y) d \tau(y)=I$
- Measurement $\operatorname{tr}\left[D(y) \Sigma_{p}\right]=\tilde{p}(y)$, with

$$
\tilde{p}(y)=\int_{X} \operatorname{tr}\left[\Sigma^{-1 / 2}\left(\varphi(y) \varphi(y)^{*}\right) \Sigma^{-1 / 2} \varphi(x) \varphi(x)^{*}\right] d p(x)=\int_{X} h(x, y) d p(x)
$$

where $h(x, y)=\left\langle\varphi(x), \Sigma^{-1 / 2} \varphi(y)\right\rangle^{2}$, and $\int_{x} h(x, y) d \tau(x)=1$

Proof

- Quantum measurement (with $\Sigma=\int_{x} \varphi(x) \varphi(x)^{*} d \tau(x)$)
- Define for all $y \in \mathcal{X}$, operator $D(y)=\Sigma^{-1 / 2}\left(\varphi(y) \varphi(y)^{*}\right) \Sigma^{-1 / 2}$
- Positive self-adjoint operators such that $\int_{x} D(y) d \tau(y)=I$
- Measurement $\operatorname{tr}\left[D(y) \Sigma_{p}\right]=\tilde{p}(y)$, with
$\tilde{p}(y)=\int_{X} \operatorname{tr}\left[\Sigma^{-1 / 2}\left(\varphi(y) \varphi(y)^{*}\right) \Sigma^{-1 / 2} \varphi(x) \varphi(x)^{*}\right] d p(x)=\int_{X} h(x, y) d p(x)$
where $h(x, y)=\left\langle\varphi(x), \Sigma^{-1 / 2} \varphi(y)\right\rangle^{2}$, and $\int_{x} h(x, y) d \tau(x)=1$
- Monotonicity of quantum measurements: $D(\tilde{p} \| \tilde{q}) \leqslant D\left(\Sigma_{p} \| \Sigma_{q}\right)$
- "Sandwich": $D(\tilde{p} \| \tilde{q}) \leqslant D\left(\Sigma_{p} \| \Sigma_{q}\right) \leqslant D(p \| q)$

Small-width asymptotics for metric spaces

- Approximation bound: assuming that p, q have strictly positive Lipschitz-continuous densities

$$
0 \leqslant D(p \| q)-D\left(\Sigma_{p} \| \Sigma_{q}\right) \leqslant E(p, q) \times \Delta(k)
$$

- $\Delta(k)$ characterizes lack of orthonormality of embedding φ
- Explicit constant $E(p, q)$, see Bach (2022a)
- Proof based on quantum information theory
- Consequences on the d-dimensional torus
- With $\hat{q}(\omega) \propto \exp \left(-\sigma\|\omega\|_{1}\right)$, we have $D(p \| q)-D\left(\Sigma_{p} \| \Sigma_{q}\right)=O\left(\sigma^{2}\right)$
- Corresponds to $k(x, y)$ being a function of $\frac{1}{\sigma}(x-y)$

Estimation from finite sample - I

- Canonical problem: estimate $D\left(\Sigma_{p} \| \Sigma_{q}\right)$ from n i.i.d. samples of p
- With $D\left(\Sigma_{p} \| \Sigma_{q}\right)=\operatorname{tr}\left[\Sigma_{p} \log \Sigma_{p}-\Sigma_{p} \log \Sigma_{q}-\Sigma_{p}+\Sigma_{q}\right]$

Estimation from finite sample - I

- Canonical problem: estimate $D\left(\Sigma_{p} \| \Sigma_{q}\right)$ from n i.i.d. samples of p
- With $D\left(\Sigma_{p} \| \Sigma_{q}\right)=\operatorname{tr}\left[\Sigma_{p} \log \Sigma_{p}-\Sigma_{p} \log \Sigma_{q}-\Sigma_{p}+\Sigma_{q}\right]$
- Natural estimator of $\operatorname{tr}\left[\Sigma_{p} \log \Sigma_{p}\right]$ is $\operatorname{tr}\left[\hat{\Sigma}_{p} \log \hat{\Sigma}_{p}\right]$, with

$$
\hat{\Sigma}_{p}=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right) \varphi\left(x_{i}\right)^{*}
$$

Estimation from finite sample - I

- Canonical problem: estimate $D\left(\Sigma_{p} \| \Sigma_{q}\right)$ from n i.i.d. samples of p
- With $D\left(\Sigma_{p} \| \Sigma_{q}\right)=\operatorname{tr}\left[\Sigma_{p} \log \Sigma_{p}-\Sigma_{p} \log \Sigma_{q}-\Sigma_{p}+\Sigma_{q}\right]$
- Natural estimator of $\operatorname{tr}\left[\Sigma_{p} \log \Sigma_{p}\right]$ is $\operatorname{tr}\left[\hat{\Sigma}_{p} \log \hat{\Sigma}_{p}\right]$, with

$$
\hat{\Sigma}_{p}=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right) \varphi\left(x_{i}\right)^{*}
$$

- Proposition: $\operatorname{tr}\left[\hat{\Sigma}_{p} \log \hat{\Sigma}_{p}\right]=\operatorname{tr}\left[\frac{1}{n} K \log \left(\frac{1}{n} K\right)\right]$
- with $K \in \mathbb{R}^{n \times n}$ the kernel matrix defined as $K_{i j}=k\left(x_{i}, x_{j}\right)$
- Running time complexity: from $O\left(n^{3}\right)$ to $O\left(n m^{2}\right)$ (Boutsidis et al., 2009; Rudi et al., 2015)
- Applicable to other divergences (Giraldo et al., 2014; Minh, 2021)

Estimation from finite sample - II

- Statistical performance
- Let $c=\int_{0}^{+\infty} \sup _{x \in X}\left\langle\varphi(x),(\Sigma+\lambda I)^{-1} \varphi(x)\right\rangle^{2} d \lambda$
- Assume $\frac{d p}{d q}(x) \geqslant \alpha$
$\mathbb{E}\left[\left|\operatorname{tr}\left[\hat{\Sigma}_{p} \log \hat{\Sigma}_{p}\right]-\operatorname{tr}\left[\Sigma_{p} \log \Sigma_{p}\right]\right|\right] \leqslant 34 \cdot \frac{\sqrt{c}}{\sqrt{n}}+\frac{1+c(8 \log n)^{2}}{n \alpha}+\frac{17 \log n}{\sqrt{n}}$
- No need to regularize

Estimation from finite sample - II

- Statistical performance
- Let $c=\int_{0}^{+\infty} \sup _{x \in X}\left\langle\varphi(x),(\Sigma+\lambda I)^{-1} \varphi(x)\right\rangle^{2} d \lambda$
- Assume $\frac{d p}{d q}(x) \geqslant \alpha$
$\mathbb{E}\left[\left|\operatorname{tr}\left[\hat{\Sigma}_{p} \log \hat{\Sigma}_{p}\right]-\operatorname{tr}\left[\Sigma_{p} \log \Sigma_{p}\right]\right|\right] \leqslant 34 \cdot \frac{\sqrt{c}}{\sqrt{n}}+\frac{1+c(8 \log n)^{2}}{n \alpha}+\frac{17 \log n}{\sqrt{n}}$
- No need to regularize
- Proof technique: $A \log A=A \log (A+\nu I)-\int_{0}^{\nu} A(A+\lambda I)^{-1} d \lambda$

Estimation from finite sample - II

- Statistical performance
- Let $c=\int_{0}^{+\infty} \sup _{x \in X}\left\langle\varphi(x),(\Sigma+\lambda I)^{-1} \varphi(x)\right\rangle^{2} d \lambda$
- Assume $\frac{d p}{d q}(x) \geqslant \alpha$
$\mathbb{E}\left[\left|\operatorname{tr}\left[\hat{\Sigma}_{p} \log \hat{\Sigma}_{p}\right]-\operatorname{tr}\left[\Sigma_{p} \log \Sigma_{p}\right]\right|\right] \leqslant 34 \cdot \frac{\sqrt{c}}{\sqrt{n}}+\frac{1+c(8 \log n)^{2}}{n \alpha}+\frac{17 \log n}{\sqrt{n}}$
- No need to regularize
- Torus: $c \propto \sigma^{-d} \Rightarrow$ estimation rate proportional to $\sigma^{-d / 2} / \sqrt{n}$
- Entropy estimation in $n^{-2 /(d+4)}$
- NB: optimal rate equal to $n^{-4 /(d+4)}$ (Han et al., 2020)
- Extension: estimating $D\left(\Sigma_{p} \| \Sigma_{q}\right)$ from samples of p and q

Estimation from finite sample - III

- Negative entropy estimation
- From i.i.d. samples with 20 replications, $d=1$
- Two values of the kernel bandwidth σ, as n increases

- NB: Faster estimation from oracles $\int_{x} k(x, y) k(x, z) d p(x)$

Log-partition functions and variational inference

- Log-partition function: given $f: X \rightarrow \mathbb{R}$ and a distribution q on X

$$
\log \int_{X} e^{f(x)} d q(x)=\sup _{p \text { probability }} \int_{X} f(x) d p(x)-D(p \| q)
$$

- Used within variational inference (Wainwright and Jordan, 2008)
- Duality between maximum entropy and maximum likelihood

Log-partition functions and variational inference

- Log-partition function: given $f: X \rightarrow \mathbb{R}$ and a distribution q on X

$$
\log \int_{X} e^{f(x)} d q(x)=\sup _{p \text { probability }} \int_{X} f(x) d p(x)-D(p \| q)
$$

- Used within variational inference (Wainwright and Jordan, 2008)
- Upper-bound (assuming unit norm features)

$$
\begin{gathered}
b(f)=\sup _{p \text { measure }} \int_{X} f(x) d p(x)-D\left(\Sigma_{p} \| \Sigma_{q}\right) \\
\text { - If } f(x)=\langle\varphi(x), H \varphi(x)\rangle, \quad b(f)=\sup _{p \text { measure }} \operatorname{tr}\left[H \Sigma_{p}\right]-D\left(\Sigma_{p} \| \Sigma_{q}\right)
\end{gathered}
$$

- Computable by semi-definite programming

Log-partition functions and variational inference

- Simple example
$-X=[0,1], f(x)=\cos (2 \pi x)$, with $\log \left(\int_{0}^{1} e^{f(x)} d x\right) \approx 0.2359$
$-\hat{\varphi}(x)_{\omega}=\hat{q}(\omega) e^{2 i \pi \omega x}$, for $\omega \in\{-r, \ldots, r\}$

Relationship with optimization

- Adding a temperature (regular entropy and partition function):

$$
\varepsilon \log \int_{X} e^{\frac{1}{\varepsilon} f(x)} d q(x)=\sup _{p \text { probability }} \int_{X} f(x) d p(x)-\varepsilon D(p \| q)
$$

- When $\varepsilon \rightarrow 0$, converges to $\sup _{p \text { probability }} \int_{X} f(x) d p(x)=\sup _{x \in X} f(x)$
- What about for kernel entropies?

Relationship with optimization

- Adding a temperature (regular entropy and partition function):

$$
\varepsilon \log \int_{x} e^{\frac{1}{\varepsilon} f(x)} d q(x)=\sup _{p \text { probability }} \int_{x} f(x) d p(x)-\varepsilon D(p \| q)
$$

- When $\varepsilon \rightarrow 0$, converges to $\sup _{p \text { probability }} \int_{X} f(x) d p(x)=\sup _{x \in X} f(x)$
- What about for kernel entropies?
- "Sum-of-squares" optimization of $f(x)=\langle\varphi(x), F \varphi(x)\rangle$
$\max _{\int_{X} d p(x)=1} \operatorname{tr}\left[F \int_{x} \varphi(x) \varphi(x)^{*} d p(x)\right]$ such that $\int_{x} \varphi(x) \varphi(x)^{*} d p(x) \succcurlyeq 0$
- Kernel sums-of-squares (Rudi, Marteau-Ferey, and Bach, 2020)
- Extends polynomial formulations (Lasserre, 2001; Parrilo, 2003)

Extensions

- f-divergences: $D(p \| q)=\int_{x} f\left(\frac{d p}{d q}(x)\right) d q(x)$
- Need f operator convex (KL, squared Hellinger, Pearson, χ^{2})
- All properties are preserved

Extensions

- f-divergences: $D(p \| q)=\int_{X} f\left(\frac{d p}{d q}(x)\right) d q(x)$
- Need f operator convex (KL, squared Hellinger, Pearson, χ^{2})
- All properties are preserved
- Other notions of quantum divergences (Matsumoto, 2015)

$$
\operatorname{tr}\left[A \log \left(B^{-1 / 2} A B^{-1 / 2}\right)\right] \geqslant \operatorname{tr}[A(\log A-\log B)]
$$

Extensions

- f-divergences: $D(p \| q)=\int_{x} f\left(\frac{d p}{d q}(x)\right) d q(x)$
- Need f operator convex (KL, squared Hellinger, Pearson, χ^{2})
- All properties are preserved
- Other notions of quantum divergences (Matsumoto, 2015)

$$
\operatorname{tr}\left[A \log \left(B^{-1 / 2} A B^{-1 / 2}\right)\right] \geqslant \operatorname{tr}[A(\log A-\log B)]
$$

- Optimal lower-bound
$\underset{p, q \text { probability measures }}{\inf } D(p \| q)$ such that $\Sigma_{p}=A$ and $\Sigma_{q}=B$
- Tractable sum-of-squares relaxations
- See https://arxiv.org/abs/2206.13285 for details

Discussion

- Is this just a Gaussian assumption in feature space?
- No, as this would lead to (up to constants)

$$
\frac{1}{2} \operatorname{tr}\left[\Sigma_{p} \Sigma_{q}^{-1}\right]-\frac{1}{2} \log \operatorname{det}\left[\Sigma_{p} \Sigma_{q}^{-1}\right]
$$

Discussion

- Is this just a Gaussian assumption in feature space?
- No, as this would lead to (up to constants)

$$
\frac{1}{2} \operatorname{tr}\left[\Sigma_{p} \Sigma_{q}^{-1}\right]-\frac{1}{2} \log \operatorname{det}\left[\Sigma_{p} \Sigma_{q}^{-1}\right]
$$

- Any links with quantum mechanics / information theory?
- Balian (1992, 2014); Wilde (2013)
- We consider only a subclass of density matrices

$$
\Sigma_{p}=\int_{x} \varphi(x) \varphi(x)^{*} d p(x)
$$

Discussion

- Is this just a Gaussian assumption in feature space?
- No, as this would lead to (up to constants)

$$
\frac{1}{2} \operatorname{tr}\left[\Sigma_{p} \Sigma_{q}^{-1}\right]-\frac{1}{2} \log \operatorname{det}\left[\Sigma_{p} \Sigma_{q}^{-1}\right]
$$

- Any links with quantum mechanics / information theory?
- Balian (1992, 2014); Wilde (2013)
- We consider only a subclass of density matrices

$$
\Sigma_{p}=\int_{x} \varphi(x) \varphi(x)^{*} d p(x)
$$

- Any links with quantum computing?

Conclusion

- Information theory with kernel methods
- Quantum entropies applied to covariance operators
- Precise relationships with Shannon entropies
- Estimation with no optimization
- Applications to variational inference

Conclusion

- Information theory with kernel methods
- Quantum entropies applied to covariance operators
- Precise relationships with Shannon entropies
- Estimation with no optimization
- Applications to variational inference
- Extensions / applications
- Large-scale algorithms (Bach, 2022b)
- Structured objects beyond finite sets and \mathbb{R}^{d}
- Differential privacy (Domingo-Enrich and Mroueh, 2022)
- Variational inference beyond Gaussian or discrete variables

References

Francis Bach. Information theory with kernel methods. Technical Report 2202.08545, arXiv, 2022a.
Francis Bach. Sum-of-squares relaxations for information theory and variational inference. Technical Report 2206.13285, arXiv, 2022b.
Roger Balian. Physique Statistique. Ecole Polytechnique, 1992.
Roger Balian. The entropy-based quantum metric. Entropy, 16(7):3878-3888, 2014.
Christos Boutsidis, Michael W. Mahoney, and Petros Drineas. An improved approximation algorithm for the column subset selection problem. In Proceedings of the Symposium on Discrete algorithms, pages 968-977, 2009.
Venkat Chandrasekaran and Parikshit Shah. Relative entropy optimization and its applications. Mathematical Programming, 161(1):1-32, 2017.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley \& Sons, 1999.
Imre Csiszár. Axiomatic characterizations of information measures. Entropy, 10(3):261-273, 2008.
Carles Domingo-Enrich and Youssef Mroueh. Auditing differential privacy in high dimensions with the kernel quantum Renyi divergence. arXiv preprint arXiv:2205.13941, 2022.
Luis Gonzalo Sanchez Giraldo, Murali Rao, and Jose C. Principe. Measures of entropy from data using infinitely divisible kernels. IEEE Transactions on Information Theory, 61(1):535-548, 2014.

Yanjun Han, Jiantao Jiao, Tsachy Weissman, and Yihong Wu. Optimal rates of entropy estimation over Lipschitz balls. The Annals of Statistics, 48(6):3228-3250, 2020.

Michael I. Jordan and Martin J. Wainwright. Semidefinite relaxations for approximate inference on graphs with cycles. Advances in Neural Information Processing Systems, 16, 2003.
Jean-Bernard Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization, 11(3):796-817, 2001.
Keiji Matsumoto. A new quantum version of f-divergence. In Nagoya Winter Workshop: Reality and Measurement in Algebraic Quantum Theory, pages 229-273. Springer, 2015.
Charles A. Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal kernels. Journal of Machine Learning Research, 7(12), 2006.
Hà Quang Minh. Quantum Jensen-Shannon divergences between infinite-dimensional positive definite operators. In International Conference on Geometric Science of Information, pages 154-162. Springer, 2021.
Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, and Bernhard Schölkopf. Kernel mean embedding of distributions: A review and beyond. Foundations and Trend in Machine Learning, 10 (1-2):1-141, 2017.
Pablo A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Mathematical Programming, 96(2):293-320, 2003.
Dénes Petz. Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Communications in Mathematical Physics, 105(1):123-131, 1986.
Gabriel Peyré and Marco Cuturi. Computational optimal transport: With applications to data science. Foundations and Trends in Machine Learning, 11(5-6):355-607, 2019.
Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco. Less is more: Nyström computational
regularization. Advances in Neural Information Processing Systems, 28, 2015.
Alessandro Rudi, Ulysse Marteau-Ferey, and Francis Bach. Finding global minima via kernel approximations. Technical Report 2012.11978, arXiv, 2020.

Mary Beth Ruskai. Another short and elementary proof of strong subadditivity of quantum entropy. Reports on Mathematical Physics, 60(1):1-12, 2007.
Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, and Gert R. G. Lanckriet. Hilbert space embeddings and metrics on probability measures. Journal of Machine Learning Research, 11:1517-1561, 2010.

Ingo Steinwart. On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research, 2(Nov):67-93, 2001.
Joel A. Tropp. An introduction to matrix concentration inequalities. Foundations and Trends in Machine Learning, 8(1-2):1-230, 2015.
John von Neumann. Mathematische Grundlagen der Quantenmechanik. Springer Berlin, 1932.
Martin J. Wainwright and Michael I. Jordan. Graphical Models, Exponential Families, and Variational Inference. Now Publishers Inc., 2008.
Mark M. Wilde. Quantum Information Theory. Cambridge University Press, 2013.

