
Information Theory with Kernel Methods

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

ÉCOLE NORMALE

S U P É R I E U R E

Münster, March 2024



Measuring “distance” between probability

distributions

• Common sub-task in many areas of data science

– Model fitting

– Independence or homogeneity tests

– Quantifying loss of information or uncertainty

– Independent component analysis

– Mean field analysis of neural networks
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• Main difficulties

– Beyond discrete random variables and Gaussians

– Non-linear dependencies

– Need to be estimated from data

– Physical / statistical meaning
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– Kullback-Leibler divergence for finite set X

D(p‖q) =
∑

x∈X

p(x) log
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– Invariance properties and strong physical interpretation

– Link with probabilistic inference

– Hard to estimate beyond small discrete and Gaussian distributions

• Optimal transport (Peyré and Cuturi, 2019)

– Physical interpretation

through base distance d

d(x, y)

x y

p
q



Studying probability distributions through moments

• Moments of feature map ϕ : X → H Hilbert space (or Rd)

– Probability distributions p on X

– Mean element: µp =

∫

X

ϕ(x)dp(x)

- Full characterization if H large enough

- See Sriperumbudur et al. (2010); Micchelli et al. (2006)

- Natural metric: (p, q) 7→ ‖µp − µq‖
- Easy to estimate with convergence rates ∝ 1/

√
n

- Only the kernel k(x, y) = 〈ϕ(x), ϕ(y)〉 is needed

- Many applications (Muandet et al., 2017)

- Model fitting, independence tests, GANs, etc.

- Any link with information-theoretic quantities?
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From mean element to covariance operator

• Covariance operator / matrix Σp =

∫

X

ϕ(x)ϕ(x)∗dp(x)

– Self-adjoint / symmetric / Hermitian, positive-semidefinite

• Main tool: Quantum entropies

– Von Neumann entropy: tr
[

Σp log Σp

]

– Relative entropy: tr
[

Σp(log Σp − log Σq)− Σp + Σq

]

• Many properties (https://arxiv.org/abs/2202.08545)

– Clear relationships with regular information theory

– Estimation in 1/
√
n

– Use in multivariate modelling

– Variational inference

• Related work: Giraldo et al. (2014); Minh (2021)
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• Assumptions

– (x, y) 7→ k(x, y) positive definite kernel on X× X

– X compact, and ∀x ∈ X, k(x, x) 6 1

– There exists a feature map ϕ : X → H Hilbert space such that

∀x, y ∈ X, k(x, y) = 〈ϕ(x), ϕ(y)〉
– Space of linear functions in ϕ, that is, f(x) = 〈f, ϕ(x)〉 for f ∈ H

– Universal kernel (Steinwart, 2001): dense in the set of continuous

functions with uniform norm

• Classical example for X ⊂ R
d: k(x, y) = exp(−‖x− y‖22/σ2)

– Infinitely differentiable functions



Covariance operators Σp =

∫

X

ϕ(x)ϕ(x)∗dp(x)

• Torus X = [0, 1]d

– k(x, y) = q(x− y), q 1-periodic, with positive Fourier series q̂

– Corresponds to ϕ(x)ω = q̂(ω)1/2e2iπω
⊤x, ω ∈ Z
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• Torus X = [0, 1]d

– k(x, y) = q(x− y), q 1-periodic, with positive Fourier series q̂

– Corresponds to ϕ(x)ω = q̂(ω)1/2e2iπω
⊤x, ω ∈ Z

d

– Link to characteristic functions

(Σp)ωω′ = q̂(ω)1/2q̂(ω′)1/2 · E
[

e2iπ(ω−ω′)⊤x
]

– Example: q̂(ω) ∝ exp(−σ‖ω‖1)

• Finite sets X = {1, . . . ,m}
– “One-hot” encoding (∀i, ϕ(x)i = 1x=i) leads to Σp = Diag(p)

– X = {−1, 1}d, with ϕ(x) composed of monomials

• Beyond!



Properties of covariance operators

Σp =

∫

X

ϕ(x)ϕ(x)∗dp(x)

• Characterization of probability distributions

– Σp is positive semi-definite, with trace less than one

– Sequence of positive eigenvalues tending to zero

– The mapping p 7→ Σp is injective

• Similar to the mean element µp =

∫

X

ϕ(x)dp(x)
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Quantum entropies

• Negative entropy (von Neumann, 1932): tr
[

A logA
]

=
∑

λ∈Λ(A)

λ log λ

– Λ(A) set of eigenvalues of A

• Relative entropy: D(A‖B) = tr[A(logA− logB)−A+B]

– Kullback-Leibler divergence

– Bregman divergence ψ(A)− ψ(B)− 〈∇ψ(B), A−B〉
for ψ(A) = tr

[

A logA
]

• Properties (Petz, 1986; Ruskai, 2007; Wilde, 2013)

– D(A‖B) > 0 with equality if and only if A = B

– (A,B) 7→ D(A‖B) jointly convex in A and B

– Applications to matrix concentration inequalities (Tropp, 2015)

– Used in optimization (Chandrasekaran and Shah, 2017)
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Kernel relative entropy (Bach, 2022a)

• Definition: D(Σp‖Σq) = tr
[

Σp(log Σp − log Σq)− Σp +Σq

]

– Σp and Σq covariance operators

• Properties

– Finite if
∥

∥

dp
dq

∥

∥

∞
finite

– Always non-negative, with equality if and only p = q

– Jointly convex in (p, q)

• Extension to non-relative entropy

– See Bach (2022a)

• Not all properties of Shannon relative entropy will be satisfied

– For axiomatic definition of entropy, see Csiszár (2008)
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Finite sets with orthonormal embeddings

• Finite set X

– Orthonormal embeddings 〈ϕ(x), ϕ(y)〉 = 1x=y

– All covariance operators jointly diagonalizable with probability mass

values as eigenvalues

• Recovering regular relative entropy exactly

D(Σp‖Σq) =
∑

x∈X

p(x) log
p(x)

q(x)
= D(p‖q)

– Beyond finite sets?



Lower bound on Shannon relative entropy

• Using Jensen’s inequality and ∀x ∈ X, ‖ϕ(x)‖2 = 1
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Lower bound on Shannon relative entropy

• Using Jensen’s inequality and ∀x ∈ X, ‖ϕ(x)‖2 = 1

D(Σp‖Σq) = D
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(dp
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)
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• How tight?



Small-width asymptotics for metric spaces

• Approximation bound: assuming that p, q have strictly positive

Lipschitz-continuous densities

0 6 D(p‖q)−D(Σp‖Σq) 6 E(p, q) ×∆(k)

– ∆(k) characterizes lack of orthonormality of embedding ϕ

– Explicit constant E(p, q), see Bach (2022a)

– Proof based on quantum information theory
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(
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)
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X
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[

Σ−1/2
(
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)

Σ−1/2ϕ(x)ϕ(x)∗
]
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X
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where h(x, y) = 〈ϕ(x),Σ−1/2ϕ(y)〉2, and
∫

X

h(x, y)dτ(x) = 1

• Monotonicity of quantum measurements: D(p̃‖q̃) 6 D(Σp‖Σq)

• “Sandwich”: D(p̃‖q̃) 6 D(Σp‖Σq) 6 D(p‖q)



Small-width asymptotics for metric spaces

• Approximation bound: assuming that p, q have strictly positive

Lipschitz-continuous densities

0 6 D(p‖q)−D(Σp‖Σq) 6 E(p, q) ×∆(k)

– ∆(k) characterizes lack of orthonormality of embedding ϕ

– Explicit constant E(p, q), see Bach (2022a)

– Proof based on quantum information theory

• Consequences on the d-dimensional torus

– With q̂(ω) ∝ exp(−σ‖ω‖1), we haveD(p‖q)−D(Σp‖Σq) = O(σ2)

– Corresponds to k(x, y) being a function of 1
σ(x− y)



Estimation from finite sample - III

• Canonical problem: estimate D(Σp‖Σq) from n i.i.d. samples of p

– With D(Σp‖Σq) = tr
[

Σp log Σp − Σp log Σq − Σp +Σq

]
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Estimation from finite sample - III

• Canonical problem: estimate D(Σp‖Σq) from n i.i.d. samples of p

– With D(Σp‖Σq) = tr
[

Σp log Σp − Σp log Σq − Σp +Σq

]

– Natural estimator of tr
[

Σp log Σp

]

is tr
[

Σ̂p log Σ̂p

]

, with

Σ̂p =
1

n

n
∑

i=1

ϕ(xi)ϕ(xi)
∗

• Proposition: tr
[

Σ̂p log Σ̂p

]

= tr
[

1
nK log

(

1
nK

)

]

– with K ∈ R
n×n the kernel matrix defined as Kij = k(xi, xj)

– Running time complexity: from O(n3) to O(nm2) (Boutsidis et al.,

2009; Rudi et al., 2015)

– Applicable to other divergences (Giraldo et al., 2014; Minh, 2021)



Estimation from finite sample - III

• Statistical performance

– Let c =

∫ +∞

0

sup
x∈X

〈ϕ(x), (Σ + λI)−1ϕ(x)〉2dλ

– Assume
dp

dq
(x) > α

E

[

∣

∣ tr
[

Σ̂p log Σ̂p

]

−tr
[

Σp log Σp

]∣

∣

]

6 34·
√
c√
n
+
1 + c(8 log n)2

nα
+

17 log n√
n

– No need to regularize
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• Statistical performance

– Let c =

∫ +∞

0

sup
x∈X

〈ϕ(x), (Σ + λI)−1ϕ(x)〉2dλ

– Assume
dp

dq
(x) > α

E

[

∣

∣ tr
[

Σ̂p log Σ̂p

]

−tr
[

Σp log Σp

]∣

∣

]

6 34·
√
c√
n
+
1 + c(8 log n)2

nα
+

17 log n√
n

– No need to regularize

– Proof technique: A logA = A log(A+ νI)−
∫ ν

0

A(A+ λI)−1dλ



Estimation from finite sample - III

• Statistical performance

– Let c =

∫ +∞

0

sup
x∈X

〈ϕ(x), (Σ + λI)−1ϕ(x)〉2dλ

– Assume
dp

dq
(x) > α

E

[

∣

∣ tr
[

Σ̂p log Σ̂p

]

−tr
[

Σp log Σp

]∣

∣

]

6 34·
√
c√
n
+
1 + c(8 log n)2

nα
+

17 log n√
n

– No need to regularize

• Torus: c ∝ σ−d ⇒ estimation rate proportional to σ−d/2/
√
n

– Entropy estimation in n−2/(d+4)

– NB: optimal rate equal to n−4/(d+4) (Han et al., 2020)

• Extension: estimating D(Σp‖Σq) from samples of p and q



Estimation from finite sample - III

• Negative entropy estimation

– From i.i.d. samples with 20 replications, d = 1

– Two values of the kernel bandwidth σ, as n increases
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• NB: Faster estimation from oracles

∫

X

k(x, y)k(x, z)dp(x)



Log-partition functions and variational inference

• Log-partition function: given f : X → R and a distribution q on X

log

∫

X

ef(x)dq(x) = sup
p probability

∫

X

f(x)dp(x)−D(p‖q)

– Used within variational inference (Wainwright and Jordan, 2008)

– Duality between maximum entropy and maximum likelihood



Log-partition functions and variational inference

• Log-partition function: given f : X → R and a distribution q on X

log

∫

X

ef(x)dq(x) = sup
p probability

∫

X

f(x)dp(x)−D(p‖q)

– Used within variational inference (Wainwright and Jordan, 2008)

• Upper-bound (assuming unit norm features)

b(f) = sup
p measure

∫

X

f(x)dp(x)−D(Σp‖Σq)

– If f(x) = 〈ϕ(x),Hϕ(x)〉, b(f) = sup
p measure

tr[HΣp]−D(Σp‖Σq)

– Computable by semi-definite programming



Log-partition functions and variational inference

• Simple example

– X = [0, 1], f(x) = cos(2πx), with log(
∫ 1

0
ef(x)dx) ≈ 0.2359

– ϕ̂(x)ω = q̂(ω)e2iπωx, for ω ∈ {−r, . . . , r}
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Relationship with optimization

• Adding a temperature (regular entropy and partition function):

ε log

∫

X

e
1
εf(x)dq(x) = sup

p probability

∫

X

f(x)dp(x)− εD(p‖q)

– When ε→ 0, converges to sup
p probability

∫

X

f(x)dp(x) = sup
x∈X

f(x)

– What about for kernel entropies?



Relationship with optimization

• Adding a temperature (regular entropy and partition function):

ε log

∫

X

e
1
εf(x)dq(x) = sup

p probability

∫

X

f(x)dp(x)− εD(p‖q)

– When ε→ 0, converges to sup
p probability

∫

X

f(x)dp(x) = sup
x∈X

f(x)

– What about for kernel entropies?

• “Sum-of-squares” optimization of f(x) = 〈ϕ(x), Fϕ(x)〉

max∫
X
dp(x)=1

tr
[

F

∫

X

ϕ(x)ϕ(x)∗dp(x)
]

such that

∫

X

ϕ(x)ϕ(x)∗dp(x) < 0

– Kernel sums-of-squares (Rudi, Marteau-Ferey, and Bach, 2020)

– Extends polynomial formulations (Lasserre, 2001; Parrilo, 2003)



Extensions

• f-divergences: D(p‖q) =
∫

X

f
(dp

dq
(x)

)

dq(x)

– Need f operator convex (KL, squared Hellinger, Pearson, χ2)

– All properties are preserved



Extensions

• f-divergences: D(p‖q) =
∫

X

f
(dp

dq
(x)

)

dq(x)

– Need f operator convex (KL, squared Hellinger, Pearson, χ2)

– All properties are preserved

• Other notions of quantum divergences (Matsumoto, 2015)

tr
[

A log(B−1/2AB−1/2)
]

> tr
[

A(logA− logB)
]



Extensions

• f-divergences: D(p‖q) =
∫

X

f
(dp

dq
(x)

)

dq(x)

– Need f operator convex (KL, squared Hellinger, Pearson, χ2)

– All properties are preserved

• Other notions of quantum divergences (Matsumoto, 2015)

tr
[

A log(B−1/2AB−1/2)
]

> tr
[

A(logA− logB)
]

• Optimal lower-bound

inf
p,q probability measures

D(p‖q) such that Σp = A and Σq = B

– Tractable sum-of-squares relaxations

– See https://arxiv.org/abs/2206.13285 for details



Discussion

• Is this just a Gaussian assumption in feature space?

– No, as this would lead to (up to constants)
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• Any links with quantum mechanics / information theory?

– Balian (1992, 2014); Wilde (2013)

– We consider only a subclass of density matrices

Σp =

∫

X

ϕ(x)ϕ(x)∗dp(x)



Discussion

• Is this just a Gaussian assumption in feature space?

– No, as this would lead to (up to constants)

1

2
tr[ΣpΣ

−1
q ]− 1

2
log det[ΣpΣ

−1
q ]

• Any links with quantum mechanics / information theory?

– Balian (1992, 2014); Wilde (2013)

– We consider only a subclass of density matrices

Σp =

∫

X

ϕ(x)ϕ(x)∗dp(x)

• Any links with quantum computing?
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• Information theory with kernel methods

– Quantum entropies applied to covariance operators

– Precise relationships with Shannon entropies

– Estimation with no optimization

– Applications to variational inference



Conclusion

• Information theory with kernel methods

– Quantum entropies applied to covariance operators

– Precise relationships with Shannon entropies

– Estimation with no optimization

– Applications to variational inference

• Extensions / applications

– Large-scale algorithms (Bach, 2022b)

– Structured objects beyond finite sets and R
d

– Differential privacy (Domingo-Enrich and Mroueh, 2022)

– Variational inference beyond Gaussian or discrete variables
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Hà Quang Minh. Quantum Jensen-Shannon divergences between infinite-dimensional positive definite

operators. In International Conference on Geometric Science of Information, pages 154–162.

Springer, 2021.

Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, and Bernhard Schölkopf. Kernel mean

embedding of distributions: A review and beyond. Foundations and Trend in Machine Learning, 10

(1-2):1–141, 2017.

Pablo A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Mathematical

Programming, 96(2):293–320, 2003.

Dénes Petz. Sufficient subalgebras and the relative entropy of states of a von Neumann algebra.

Communications in Mathematical Physics, 105(1):123–131, 1986.
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