Chang's Conjecture for triples revisited

Monroe Eskew (joint work with Masahiro Shioya)

University of Vienna Supported by FWF Project P34603

Young Set Theory Workshop 2023 Münster, June 3, 2023

Jónsson cardinals

Definition

A cardinal κ is *Jónsson* if for all structures \mathfrak{A} on κ in a countable language, there is $X \prec \mathfrak{A}$ such that $|X| = \kappa$ but $X \neq \kappa$.

Facts:

- **Q** Ramsey cardinals and singular limits of measurables are Jónsson.
- 2 ω is not Jónsson, because of the function $n \mapsto n-1$.
- **③** If κ is not Jónsson, then neither is κ^+ .
- (Tryba) Successors of regular cardinals are not Jónsson.
- Shelah) If κ is singular and not the limit of regular Jónsson cardinals, then κ^+ is not Jónsson. In particular, $\aleph_{\omega+1}$ is not Jónsson.

So the least possible cardinal that could be Jónsson is \aleph_{ω} . The question of whether this is consistent is one of the top open problems in set theory, according to Wikipedia!

Axiom I2

There is an elementary embedding $j: V \to M$ with critical point κ , such that, if $\kappa_1 = \kappa$ and $\kappa_{n+1} = j(\kappa_n)$ and $\lambda = \sup_n \kappa_n$, then $V_\lambda \subseteq M$.

Assume we have such an embedding. We want to collapse each κ_n to be ω_n and generically lift the embedding.

Assume we have such a forcing \mathbb{P} that does this, so that whenever $G \subseteq \mathbb{P}$ is generic, then there is a further forcing which yields a $G' \subseteq j(\mathbb{P})$ that is generic over M, with j " $G \subseteq G'$. So we can lift to $j : V[G] \to M[G']$.

Work in V[G]. Let \mathfrak{A} be a rich enough structure on λ . Let $F : [\lambda]^{<\omega} \to \lambda$ be such that whenever $X \subseteq \lambda$ is closed under F, then $X \prec \mathfrak{A}$, and further that F is closed under compositions, (meaning that for all $X \subseteq \lambda$, $F^{*}[X]^{<\omega}$ is closed under F).

For each $n < \omega$, let F_n be the function on $[\kappa_n]^{<\omega}$ where $F_n(x) = F(x)$ if $F(x) < \kappa_n$ and otherwise $F_n(x) = 0$. So $X \subseteq \lambda$ is closed under F iff for each $n, X \cap \kappa_n$ is closed under F_n .

Let T be the tree of sets X such that for some $n, X \subseteq \kappa_n, X$ is closed under $F_n, X \cap \kappa_1 \in \kappa_1$, and for $1 < i \le n, |X \cap \kappa_i| = \kappa_{i-1}$. We put $X \le_T Y$ when $X = Y \cap \kappa_n$, where n is the witness that $X \in T$.

In the extension where we get G', $j''\lambda$ is closed under j(F). M[G'] does not see $j''\lambda$, but it sees that for each n, $X_n = j''\lambda \cap \kappa_n \in j(T)$, and $X_n <_{j(T)} X_{n+1}$. By absoluteness of well-foundedness, j(T) has an infinite branch in M[G'].

By elementarity, T has an infinite branch in V[G], and the union of this branch witnesses Jónssonness of $\lambda = \aleph_{\omega}^{V[G]}$.

OK, but how do we get such a \mathbb{P} ?

If $\theta > \aleph_{\omega}$ is regular and $M \prec H_{\theta}$ has $|M \cap \aleph_{\omega}| = \aleph_{\omega}$, let $\chi_M(n)$ be the number k such that $\operatorname{ot}(M \cap \omega_k) = \omega_n$.

Definition

Let $f: \omega \to \omega$. \aleph_{ω} is *f*-Jónsoson if for regular $\theta > \aleph_{\omega}$, stationary-many $M \prec H_{\theta}$ have $\chi_M = f$.

If something like this forcing approach works, it would get \aleph_{ω} is s_1 -Jónsson, where $s_1(0) = 0$ and $s_1(n) = n + 1$ for n > 0.

Theorem (E.)

If \aleph_{ω} is s_1 -Jónsson, then it is f-Jónsson for all increasing $f : \omega \to \omega$ with f(0) = 0. (Note that if \aleph_{ω} is f-Jónsson, then f takes this form.)

Theorem (Silver)

If $2^{\omega} < \aleph_{\omega}$ and \aleph_{ω} is Jónsson, then \aleph_{ω} is f-Jónsson for some f.

Proof sketch: Let $\mathfrak{A} \prec \langle H_{\theta}, \in, \triangleleft \rangle$, where $\theta > \aleph_{\omega}$ and \triangleleft is a well-order. Let $2^{\omega} = \omega_n$. If $M \prec \mathfrak{A}$, then we can take $N = \operatorname{Sk}^{\mathfrak{A}}(M \cup \omega_n)$, and we will have $\sup(N \cap \omega_k) = \sup(M \cap \omega_k)$ for all k > n. This is because, if g is a definable Skolem function, $p \in M$, and $\alpha \in \omega_n$, then

$$g(p,\alpha) < \sup_{\beta < \omega_n} g(p,\beta) \in M \cap \omega_k.$$

Thus there are stationary-many $M \prec \mathfrak{A}$ with $\omega^{\omega} \subseteq M$, $|M \cap \aleph_{\omega}| = \aleph_{\omega}$ and $M \cap \aleph_{\omega} \neq \aleph_{\omega}$. The function $M \mapsto \chi_M$ is regressive on a stationary set, and thus constant on one by Fodor. \Box

Another way of writing that \aleph_{ω} is *f*-Jónsson is:

$$(\ldots, \aleph_{f(3)}, \aleph_{f(2)}, \aleph_{f(1)}, \aleph_{f(1)-1}) \twoheadrightarrow (\ldots, \aleph_3, \aleph_2, \aleph_1, \aleph_0)$$

If m_0 is least such that the m_0^{th} corresponding number on the left is greater than m_0 , then recursively defining m_1 = that number and $m_{n+1} = f(m_n)$, we have:

$$(\ldots, \aleph_{m_4}, \aleph_{m_3}, \aleph_{m_2}, \aleph_{m_1}) \twoheadrightarrow (\ldots, \aleph_{m_3}, \aleph_{m_2}, \aleph_{m_1}, \aleph_{m_0})$$

In particular, if \aleph_{ω} is s_1 -Jónsson, then

$$(\ldots, \aleph_4, \aleph_3, \aleph_2, \aleph_1) \twoheadrightarrow (\ldots, \aleph_3, \aleph_2, \aleph_1, \aleph_0)$$

Since these "Chang principles" are transitive, this implies $(\aleph_{n+k}, \ldots, \aleph_m) \twoheadrightarrow (\aleph_{m+k}, \ldots, \aleph_m)$ for all $n, m, k < \omega$ with n > m. Let's see how much of this we can get.

Theorem (Foreman, 1983)

It is consistent relative to a 2-huge cardinal that for all $m < n < \omega$, $(\aleph_{n+1}, \aleph_n) \twoheadrightarrow (\aleph_{m+1}, \aleph_m)$

Theorem (E.-Hayut, 2018)

It is consistent relative to a huge cardinal that for all regular κ and all infinite $\mu < \kappa$, $(\kappa^+, \kappa) \twoheadrightarrow (\mu^+, \mu)$.

Theorem (Foreman, 1982)

For each n, it is consistent relative to a 2-huge cardinal that $(\aleph_{n+3}, \aleph_{n+2}, \aleph_{n+1}) \twoheadrightarrow (\aleph_{n+2}, \aleph_{n+1}, \aleph_n)$

Question (Foreman)

Is it consistent that for all n > m, $(\aleph_{n+2}, \aleph_{n+1}, \aleph_n) \twoheadrightarrow (\aleph_{m+2}, \aleph_{m+1}, \aleph_m)$?

Getting $(\kappa^{++}, \kappa^{+}) \twoheadrightarrow (\kappa^{+}, \kappa)$

Theorem (Kunen, 1978)

 κ is huge with target λ and $\mu < \kappa$ is regular, then there is a μ -closed forcing extension in which $\kappa = \mu^+$, $\lambda = \kappa^+$, and the hugeness embedding can be generically lifted, implying $(\mu^{++}, \mu^+) \rightarrow (\mu^+, \mu)$ holds.

Kunen constructs a κ -c.c. forcing $\mathbb{P} \subseteq V_{\kappa}$ such that for many $\alpha < \kappa$, $\mathbb{P} \cap V_{\alpha} \trianglelefteq \mathbb{P}$ and $\mathbb{P} \cap V_{\alpha} * \mathbb{S}(\alpha, \kappa) \trianglelefteq \mathbb{P}$.

 $\mathbb{S}(\alpha, \beta)$ is the Silver collapse, the collection of partial functions $p: \beta \times \alpha \to \beta$ such that dom $(p) \subseteq X \times \xi$ for some $X \in [\beta]^{\leq \alpha}$ and $\xi < \alpha$, and for each $(\gamma, \delta) \in \text{dom}(p)$, $p(\gamma, \delta) < \gamma$.

We will have $\mathbb{P} * \dot{\mathbb{S}}(\kappa, \lambda) \leq j(\mathbb{P})$. If G * H is generic, then we first lift to $j : V[G] \rightarrow M[G']$, with $H \in M[G']$.

For every $q \in H$, dom $j(q) \in X \times \kappa$, for $X \in [j(\lambda)]^{\leq \lambda}$. Since $|H| = \lambda$, $\bigcup j$ " $H \in \mathbb{S}(\lambda, j(\lambda))^{M[G']}$. Force below this to lift further to $j : V[G][H] \to M[G'][H']$.

Iteration and simplification

Foreman constructed a similar \mathbb{P} that can be iterated, where $\mathbb{P}(\mu, \kappa) * \dot{\mathbb{P}}(\kappa, \lambda) \trianglelefteq \mathbb{P}(\mu, \lambda)$.

If we have $\kappa_1 < \kappa_2 < \kappa_3 < \ldots$ huge cardinals that map to each other, then we can iterate $\mathbb{P}(\omega, \kappa_1) * \dot{\mathbb{P}}(\kappa_1, \kappa_2) * \dot{\mathbb{P}}(\kappa_2, \kappa_3) * \ldots$ to get $(\omega_{n+1}, \omega_n) \twoheadrightarrow (\omega_{m+1}, \omega_m)$ for all $m < n < \omega$.

Kunen's and Foreman's constructions are somewhat complicated.

Definition (Shioya)

The Easton collapse $\mathbb{E}(\kappa, \lambda)$ is the Easton-support product of $\text{Col}(\kappa, \alpha)$ over $\kappa \leq \alpha < \lambda$.

Theorem (E.)

 $\mathbb{E}(\omega, \kappa_1) * \dot{\mathbb{E}}(\kappa_1, \kappa_2) * \dot{\mathbb{E}}(\kappa_2, \kappa_3) * \dots$ forces that $(\omega_{n+1}, \omega_n) \twoheadrightarrow (\omega_{m+1}, \omega_m)$ holds for all $m < n < \omega$.

Easton collapse

Lemma (McAloon?)

If \mathbb{P} is κ -closed and collapses $|\mathbb{P}|$ to κ , then there is a dense embedding from $\text{Col}(\kappa, |\mathbb{P}|)$ to \mathbb{P} .

Corollary

Assuming enough GCH, for regular $\mu < \kappa < \lambda$, $\mathbb{E}(\mu, \lambda) \cong \mathbb{E}(\mu, \lambda) \times \mathbb{E}(\kappa, \lambda).$

Proof:

$$\mathbb{E}(\mu,\lambda) \cong \mathbb{E}(\mu,\kappa) \times \prod_{\kappa \le \alpha < \lambda}^{E} \operatorname{Col}(\mu,\alpha) \cong \mathbb{E}(\mu,\kappa) \times \prod_{\kappa \le \alpha < \lambda}^{E} \operatorname{Col}(\mu,\alpha) \times \operatorname{Col}(\kappa,\alpha)$$
$$\cong \mathbb{E}(\mu,\kappa) \times \prod_{\kappa \le \alpha < \lambda}^{E} \operatorname{Col}(\mu,\alpha) \times \mathbb{E}(\kappa,\lambda) \cong \mathbb{E}(\mu,\lambda) \times \mathbb{E}(\kappa,\lambda)$$

Easton collapse

If $\dot{\mathbb{Q}}$ is a \mathbb{P} -name for a forcing, the *termspace forcing* $T(\mathbb{P}, \dot{\mathbb{Q}})$ is the set of names for elements of \mathbb{Q} , ordered by $\dot{q}_1 \leq \dot{q}_0$ when $1 \Vdash \dot{q}_1 \leq \dot{q}_0$.

Lemma (Laver)

For all posets \mathbb{P} and \mathbb{P} -names for posets $\hat{\mathbb{Q}}$, the identity map is a projection from $\mathbb{P} \times T(\mathbb{P}, \dot{\mathbb{Q}})$ to $\mathbb{P} * \dot{\mathbb{Q}}$.

Lemma

If \mathbb{P} is κ -c.c. and of size κ , then for any $\delta \geq \kappa$ with $\delta^{<\kappa} = \delta$, there is a dense embedding from $Col(\kappa, \delta)$ into $T(\mathbb{P}, Col(\kappa, \delta))$.

Corollary (Shioya)

If $\kappa < \lambda$ are Mahlo and $\mu < \kappa$ is regular, then there is a projection from $\mathbb{E}(\mu, \lambda)$ to $\mathbb{E}(\mu, \kappa) * \dot{\mathbb{E}}(\kappa, \lambda)$.

CC from Easton

Definition

We will say \mathbb{P} is κ -flat when \mathbb{P} can be written as an increasing union of regular suborders (filtration), $\mathbb{P} = \bigcup_{\alpha < \lambda} \mathbb{P}_{\alpha}$, where $cf(\lambda) > \kappa$, each \mathbb{P}_{α} is κ -directed-closed with infima and of size $< \lambda$, there is a commuting system of continuous projections $\upharpoonright \alpha : \mathbb{P} \to \mathbb{P}_{\alpha}$, and with the following property: Whenever $\langle p_{\alpha} : \alpha < \kappa \rangle \subseteq \mathbb{P}$ and $\langle \xi_{\alpha} : \alpha < \kappa \rangle \subseteq \lambda$ is increasing, and $p_{\beta} \upharpoonright \xi_{\alpha} = p_{\alpha}$ for $\alpha < \beta < \kappa$, then $\langle p_{\alpha} : \alpha < \kappa \rangle$ has a lower bound in \mathbb{P} .

Note: $\mathbb{E}(\kappa, \lambda)$ is κ -flat.

Lemma

Suppose $j : M \to N$ is an elementary embedding between models of set theory and $\mathbb{P} \in M \cap N$ is κ -flat as witnessed by a filtration of length λ , $j(\kappa) = \lambda$, $j``\lambda \in N$, and there is $G \in N$ that is a \mathbb{P} -generic filter over M. Then j``G has a lower bound in $j(\mathbb{P})$.

Suppose κ is huge with target λ and $\mu < \kappa$ is regular. Let $G * H \subseteq \mathbb{E}(\mu, \kappa) * \dot{\mathbb{E}}(\kappa, \lambda)$ be generic. Let $G' \subseteq \mathbb{E}(\mu, \lambda)$ be such that G * H is the projection of G'. First lift to $j : V[G] \to M[G']$.

In V[G], $\mathbb{E}(\kappa, \lambda)$ is κ -flat with a filtration of length λ . Since $H \in M[G']$, the above lemma implies that j "H has a lower bound in $E(\lambda, j(\lambda))^{M[G']}$.

Force below this to obtain H' and a lifting $j : V[G * H] \to M[G' * H']$. This shows $(\lambda, \kappa) \twoheadrightarrow (\kappa, \mu)$ holds in V[G * H]. Suppose μ is a regular cardinal, $\kappa > \mu$ is 2-huge, and $j : V \to M$ is a witnessing embedding with $j(\kappa) = \lambda$, $j(\lambda) = \theta$, and $M^{\theta} \subseteq M$. We want a μ -distributive forcing that makes $\kappa = \mu^+$, $\lambda = \kappa^+$, $\theta = \lambda^+$, and allows the embedding to be generically lifted.

The forcing will be of the form P * Q * R, where $P \subseteq V_{\kappa}$, $P * Q \subseteq V_{\lambda}$, and $P * Q * R \subseteq V_{\theta}$. We will need a projection $\pi_0 : j(P) \to P * Q$ with the following properties:

• The identity map is a complete embedding from P to j(P), and $\pi_0 \upharpoonright P = id$.

Whenever G' ⊆ j(P) is generic and G * H = π₀[G'], then j[H] has a lower bound in j(Q)^{M[G']}.

This will allow a lifting $j : V[G * H] \to M[G' * H']$ by forcing below such a lower bound. Further, we will need a j(P)-name for a condition $q^* \in j(Q)$ and projection $\pi_1 : j(P * Q) \upharpoonright (1, q^*) \to P * Q * R$ such that:

- $\pi_1 \upharpoonright j(P) = \pi_0.$
- If G' ⊆ j(P) is generic and G * H = π₀[G'], q^{*} is forced to be a lower bound to j[H].
- If $G' * H' \subseteq j(P * Q) \upharpoonright (1, q^*)$ is generic and $G * H * K = \pi_1[G' * H']$, then j[K] has a lower bound in $j(R)^{M[G' * H']}$.

Then we can force below a lower bound of j[K] to lift the embedding through G * H * K.

How can we achieve this? Since $j(P) \subseteq V_{\lambda}$, the work of absorbing a generic for R must be mostly the responsibility of j(Q). R will be a relatively simple λ -closed θ -c.c. poset in V^{P*Q} , but it will no longer be λ -closed in $V^{j(P)}$. Over $V^{j(P)}$, it should be forced that j(Q) absorbs such a poset R as constructed in the inner model V^{P*Q} .

Since $\kappa \notin \operatorname{ran}(j)$, j(Q) should include "versions" of R from a collection of inner models large enough to include M^{P*Q} , which will not be definable from paramters in the range of j. Therefore, j(Q) should project to various such R as defined in different "cuts" of j(P) into candidate factors $P_{\alpha} * Q_{\alpha}$, where $\mu < \alpha < \lambda$.

By elementarity, this requires that Q projects to many baby versions R_{α} of R contained in V_{λ} , as defined in various cuts of P into factors $P_{\alpha} * Q_{\alpha}$, where $\mu < \alpha < \kappa$. Thus Q will not be κ -closed in V^{P} .

We should have a sequence of projections $\sigma_{\alpha}: P \to P_{\alpha} * Q_{\alpha}$ for appropriate cut points $\mu < \alpha < \kappa$, with $\pi_0 = j(\vec{\sigma})(\kappa)$. In order to find the appropriate master conditions, we will want to amalgamate local master conditions for the posets R_{α} as defined in $V^{P_{\alpha}*Q_{\alpha}}$, wherein R_{α} will be κ -directed-closed.

In order to amalgamate these local master conditions, we will want Q to project to versions of R in a well-organized way. For appropriate cut points α , $\mu < \alpha < \kappa$, we want a generic $G * H \subseteq P * Q$ to absorb a generic K_{α} for the version R_{α} as defined in $V^{P_{\alpha}*Q_{\alpha}}$ with the following property:

Suppose $G' \subseteq j(P)$ is generic. Let $G * H = \pi_0[G']$ and $G_\alpha * H_\alpha = \sigma_\alpha[G]$. Let $G_\alpha * H'_\alpha = j(\vec{\sigma})(\alpha)[G']$. Let $K_\alpha \subseteq R_\alpha$ be the generic absorbed in V[G * H]. Then we want to also arrange that $K_\alpha \in V[G_\alpha * H'_\alpha]$.

In this case, we can lift the embedding j to $j: V[G_{\alpha} * H_{\alpha}] \to V[G_{\alpha} * H'_{\alpha}]$, and $j[K_{\alpha}]$ will have a lower bound $r_{\alpha}^* \in j(R_{\alpha})^{M[G_{\alpha} * H'_{\alpha}]}$. Then we will amalgamate the r_{α}^* into a sequence $r^* = \langle r_{\alpha}^* : \mu < \alpha < \kappa \rangle$. This will serve as a master condition for the part of Q that absorbs the versions R_{α} , which will essentially be a $<\kappa$ -support product of these versions. If this suborder of Q is Q_0 , and $H_0 = H \cap Q_0$, then we will be able to lift the embedding j to $j : V[G * H_0] \rightarrow M[G' * H'_0]$ by taking H'_0 generic with $r^* \in H'_0$. The quotient Q/Q_0 will be nice enough that lifting through the rest of H will be no trouble. This will require an extension of r^* to some q^* , below which we force to obtain $H' \subseteq j(Q)$.

So $(1, q^*)$ will serve as the desired master condition in j(P * Q). By the way we will have set things up, P * Q will be an appropriate cut of j(P), and M[G' * H'] will possess a generic $K \subseteq R$, a poset which is λ -directed-closed in V[G * H]. A lower bound to j[K] will exist, enabling a further lifting to $j[G * H * K] \rightarrow M[G' * H' * K']$.

For regular $\mu < \gamma$, we define a poset $P(\mu, \gamma)$ inductively. Let $P_0(\mu, \gamma) = \mathbb{E}(\mu, \gamma)$. For $n < \omega$ and a regular γ assume that we have defined $P_i(\alpha, \gamma)$ for $i \leq n$ and regular $\alpha < \gamma$. Define:

$$P_{n+1}(\mu,\gamma) = \prod_{\alpha \in (\mu,\gamma) \cap \mathsf{M}}^{\mathsf{E}} P_n(\alpha,\gamma)^{<\alpha}$$

Finally, let

$$P(\mu,\gamma) = \prod_{n \in \omega} P_n(\mu,\gamma)$$

M is the class of Mahlo cardinals. $P(\mu, \kappa)$ will be μ -directed-closed with infima and κ -c.c. for Mahlo κ .

Main forcing

Using the telescoping nature of $P(\mu, \kappa)$, for each $\alpha \in (\mu, \kappa) \cap M$, there will be a projection

$$\chi_{\alpha}: \mathcal{P}(\mu,\kappa) \to \mathcal{P}(\alpha,\kappa)^{<\alpha}$$

For $\alpha \in (\mu, \kappa) \cap M$, we send $p \mapsto \langle p(n)(\alpha) \rangle_{n>0}$, giving a map:

$$P(\mu,\kappa) \to \prod_{n>0} P_{n-1}(\alpha,\kappa)^{<\alpha} \cong P(\alpha,\gamma)^{<\alpha}$$

Next, for $\alpha \in (\mu, \kappa) \cap M$, define

$$\bar{Q}(\mu, \alpha, \kappa) = P(\alpha, \kappa)^{<\alpha} \times \prod_{\beta \in (\alpha, \gamma) \cap \mathsf{M}}^{\mathsf{E}} P(\beta, \gamma)$$

along with a projection $\psi_{\alpha} : P(\mu, \kappa) \to P(\mu, \alpha) \times \overline{Q}(\mu, \alpha, \kappa)$, which is defined by:

$$\psi_{\alpha}(\boldsymbol{p}) = (\boldsymbol{p} \upharpoonright \alpha, \chi_{\alpha}(\boldsymbol{p})^{\frown} \langle \chi_{\beta}(\boldsymbol{p})(\alpha) \rangle_{\beta \in (\alpha, \gamma) \cap \mathsf{M}})$$

For Mahlo $\alpha < \gamma \leq \kappa,$ we inductively define

$$R(\mu, \alpha, \gamma) = P(\mu, \alpha) \star \left(\prod_{\zeta \in (\mu, \alpha) \cap \mathsf{M}}^{\alpha} \dot{P}(\alpha, \gamma)^{R(\mu, \zeta, \alpha)} \times \prod_{\xi \in (\alpha, \gamma) \cap \mathsf{M}}^{\mathsf{E}} \dot{P}(\xi, \gamma)\right)$$

along with projections $\varphi_{\alpha\gamma}$ from the posets $P(\mu, \alpha) \times \overline{Q}(\mu, \alpha, \gamma)$. This uses nested termspace projections.

Suppose κ is huge with target λ and $\mu < \kappa$. If $G \star H \subseteq R(\mu, \kappa, \lambda)$ is generic, then a further forcing gets a generic $G' \subseteq P(\mu, \lambda)$ that projects to $G \star H$. We can lift to $j : V[G] \to M[G']$.

For each Mahlo $\alpha < \kappa$, there is a projection from G to a generic $G_{\alpha} \star H_{\alpha}$ for $R(\mu, \alpha, \kappa)$. Also there is a projection from G' to $G_{\alpha} \star H'_{\alpha}$, with $G_{\alpha} \star H_{\alpha}$ as an initial segment. We can lift to $j : V[G_{\alpha} \star H_{\alpha}] \to M[G_{\alpha} \star H'_{\alpha}]$.

If $H(\alpha)$ is the α^{th} component of H, it is $P(\kappa, \lambda)$ -generic over $V[G_{\alpha} \star H_{\alpha}]$. If $H'_{\alpha}(\kappa)$ is the κ^{th} component of H'_{α} , it is $P(\kappa, \lambda)$ -generic over $V[G_{\alpha}]$.

The termspace projection will yield a filter H'' from $H'_{\alpha}(\kappa)$, computable in $M[G_{\alpha} \star H_{\alpha}]$ that is $P(\kappa, \lambda)$ -generic over $V[G_{\alpha} \star H_{\alpha}]$. It turns out by the way the maps are defined that $H'' = H(\alpha)$. Since $P(\kappa, \lambda)$ is κ -flat, there is a condition $r_{\alpha} \in M[G_{\alpha} \star H'_{\alpha}]$ that is below j " $H(\alpha)$.

Let $r = \langle r_{\alpha} : \alpha < \kappa \rangle$. Using κ -flatness again, there is s that is below $H \upharpoonright (\kappa, \lambda)$. Forcing below $r \cap s$ allows a lifting to $j : V[G \star H] \to M[G' \star H']$.

Now suppose the embedding was moreover 2-huge, with $j(\lambda) = \theta$. The κ^{th} component of H' is a filter K that is $P(\lambda, \theta)$ -generic over $V[G \star H]$. Adjoining this and invoking λ -flatness allows a further generic lift to

$$j: V[G \star H][K] \to M[G' \star H'][K']$$

We conclude that $(\theta, \lambda, \kappa) \twoheadrightarrow (\lambda, \kappa, \mu)$ holds in $V[G \star H][K]$.

The forcing used was $(P(\mu, \kappa) \star Q(\kappa, \lambda)) * \dot{P}(\lambda, \theta)$. If λ is itself 2-huge, we can continue with the next Q. If we have an ω -chain of 2-huge cardinals $\kappa_1 < \kappa_2 < \kappa_3 < \ldots$, then a general preservation argument shows that

$$(P(\omega,\kappa_1)\star Q(\kappa_1,\kappa_2))*(\dot{P}(\kappa_2,\kappa_3)\star \dot{Q}(\kappa_3,\kappa_4))*(\dot{P}(\kappa_4,\kappa_5)\star\ldots)$$

forces $(\omega_{n+3}, \omega_{n+2}, \omega_{n+1}) \twoheadrightarrow (\omega_{n+2}, \omega_{n+1}, \omega_n)$ to hold for all even $n < \omega$.

Modifying *P* slightly and the construction of *R* more seriously, we can get another version of $P(\mu, \kappa)$ where for all selections of an odd number of Mahlo cardinals $\mu < \alpha_1 < \cdots < \alpha_n < \kappa$, we get a projection of $P(\mu, \kappa)$ to a poset of the form

$$A_{\langle \mu,\alpha_1,\ldots,\alpha_n,\kappa\rangle} = (P(\mu,\alpha_1) \star Q(\alpha_1,\alpha_2)) \ast \cdots \ast (\dot{P}(\alpha_{n-1},\alpha_n) \star \dot{Q}(\alpha_n,\kappa))$$

And for any Mahlo $\gamma < \kappa$, there is a projection from $P(\mu, \kappa)$ to a poset of the form $P(\mu, \gamma) \star Q(\gamma, \kappa)$, where $Q(\gamma, \kappa)$ absorbs the posets $P(\gamma, \kappa)$ as defined in all the subextensions $A_{\langle \mu, \alpha_1, \dots, \alpha_n, \gamma \rangle}$ of $P(\mu, \gamma)$.

Lemma

If θ is 3-huge, then there is a sequence $\kappa_1 < \kappa_2 < \kappa_3 < \dots$ below θ such that for every m < n, there is an embedding $j : V \to M$ such that $j(\kappa_{m+i}) = \kappa_{n+i}$ for i < 2, and M is closed under κ_{n+2} -sequences.

So now let us consider forcing with $(P(\omega, \kappa_1) \star Q(\kappa_1, \kappa_2)) \star (\dot{P}(\kappa_2, \kappa_3) \star \dot{Q}(\kappa_3, \kappa_4))$. We want to show that $(\omega_4, \omega_3, \omega_2) \twoheadrightarrow (\omega_2, \omega_1, \omega)$ holds. Take an embedding as above that sends κ_n to κ_{n+2} for n = 1, 2.

 $j(P(\omega, \kappa_1)) = P(\omega, \kappa_3)$, and it absorbs $(P(\omega, \kappa_1) \star Q(\kappa_1, \kappa_2)) \star \dot{P}(\kappa_2, \kappa_3)$. We can easily lift through the first stage, say $j : V[G_1] \to M[G'_1]$, and we will get projected $G_2, G_3 \in M[G'_1]$ for $Q(\kappa_1, \kappa_2)$ and $P(\kappa_2, \kappa_3)$ respectively.

With similar arguments as before, we can extend this to lift further to $j: V[G_1, G_2, G_3] \rightarrow M[G'_1, G'_2, G'_3].$

After forcing up to $P(\kappa_2, \kappa_3)$, $Q(\kappa_3, \kappa_4)$ absorbs the versions of $P(\kappa_3, \kappa_4)$ as defined in all the intermediate extensions by

$$(P(\omega,\kappa_1)\star Q(\kappa_1,\kappa_2))\star A_{\langle\kappa_2,\vec{\alpha},\kappa_3\rangle}.$$

In M[G'], $j(Q(\kappa_1, \kappa_2))$, which is the $Q(\kappa_3, \kappa_4)$ after forcing with $P(\omega, \kappa_3)$, absorbs the versions of $P(\kappa_3, \kappa_4)$ as defined in all the intermediate extensions by $A_{\langle \omega, \vec{\alpha}, \kappa_3 \rangle}$. But this is a superset of the ones absorbed by the $Q(\kappa_3, \kappa_4)$ of $(P(\omega, \kappa_1) \star Q(\kappa_1, \kappa_2)) \star \dot{P}(\kappa_2, \kappa_3)$.

Thus G'_2 also absorbs a generic G_4 for the smaller $Q(\kappa_3, \kappa_4)$.

Using a flatness argument, there will be a condition below j " G_4 , so we can lift further to include $V[G_1, G_2, G_3, G_4]$, obtaining $(4, 3, 2) \rightarrow (2, 1, 0)$.

Some preservation arguments will show that after doing this ω -times will full support, for all even *n*, the model will satisfy

$$(n+3, n+2, n+1) \twoheadrightarrow (n+2, n+1, n)$$

and

$$(n+4, n+3, n+2) \twoheadrightarrow (n+2, n+1, n).$$

Using the transitivity of this principles, we get

$$(m+2, m+1, m) \twoheadrightarrow (n+2, n+1, n)$$

for all even n and all m > n.