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Attempt to give a very short overview (abstract)

First we consider a simple special case and show that KK-equivalent simple

purely infinite separable unital nuclear C *-algebras A and B are isomorphic if

the group isomorphism from K0(A) onto K0(B), that are induced by the KK-

equivalence, maps the K0-class [1A] of the unit element of A in K0(A) to the class

[1B ] ∈ K0(B).

We call them pi-sun algebras, because they are automatically simple by the

requirement of the algebraic property that for each non-zero a ∈ A there are

elements c, d ∈ A with cad = 1A. It yields that pi-sun algebras are isomorphic

if their K∗-groups are isomorphic by an isomorphism that maps the K0-classes

of their unit elements into each other and if both are KK-equivalent to Abelian

C *-algebras, i.e., if the Universal Coefficient Theorem applies to both of them.

Here are the first question:

Is KK-equivalence to commutative C *-algebras really needed?

Is each p.i.s.u.n. algebra A isomorphic to A⊗O∞?
Is A ⊗ O2 isomorphic to O2 if A is a separarable unital nuclear

simple C*-algebra?

Give references for or against it (with cite or refs)

Where are examples or counter-examples?

The considerations are based on the here applicable Cuntz–Kasparov isomor-

phism KK(A,B) ∼= Ext(A,SB) and the homotopy invariance of KK(A,B), that

will be used to show that the natural group-morphism from the Rørdam groups

R(A,B) – a sort of “unsuspended” and “nuclear” E-theory – into Ext(A,SB) is

an isomorphism. The last step for this proof of the functorial equivalence will be

done in Chapter 8.

M. Rørdam was/sounded not happy with my interpretation

of -- from him defined groups R(A,B).

Perhaps my interpretation is different

and I should call them GK(A,B).

A similar partly classification is given later for non-simple separable stable nu-

clear strongly purely infinite C *-algebras. Those algebras absorb the Cuntz-algebra

O∞ tensorial, i.e., a separable nuclear C *-algebra A is isomorphic to A ⊗ O∞, if

and only if, A strongly purely infinite (cf. Definition 1.2.2), that is, if A satisfies

a generalized Weyl–von-Neumann–Voiculescu type theorem for weakly residually

nuclear maps (cf. Chapters 5 and 10).

9
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10 ATTEMPT TO GIVE A VERY SHORT OVERVIEW (ABSTRACT)

The basic study of properties of tensorial self-absorbing unital separable C *-

algebras will be postponed to Chapter 11 because it has another nature, e.g. it is

not really related to pure infiniteness.

We remove in Chapter 12 by study of some properties of ultrapowers some

technical additional assumptions that we added in the other chapters to make the

some of the proofs, e.g. in Chapter 6, more transparent: We contain a proof that

Prim(A) for separable non-simple C *-algebras A has always a natural property that

we call “Abelian factorization” property 1.2.4. It leads to a rather long study over

the interrelations between general Dini spaces (i.e., second countable locally quasi-

compact point-complete T0-spaces), “coherent” Dini spaces and second countable

locally compact Hausdorff spaces and is not only related to functional analysis.

The in Chapter 6 made additional assumption – that the considered separable

stable σ-unital nuclear C *-algebras have some property that is (formally) weaker

than “regular” factorization through a l.c. Hausdorff space for their prime ideal

space – can here (in this book) only be reduced in Chapter 12 where we use that

every separable C *-subalgebra of an ultra-power (or more generally in that what

we call “corona algebras”) is contained in a bigger separable C *-algebras that

contains a nice Abelian C *-algebra with the much stronger property that it not

only separates the ideals but is also “regular” in the sense of our Definition 1.2.9.

(or B.4.1 ????)..

This is a much stronger property than regular factorization. And regular fac-

torization is usually stronger than having an Abelian C *-subalgebra that separates

the ideals of a stable separable C *-algebra (with the additional property that it can

be done in a way that the norm functions of its elements exhausts all Dini functions

on Prim(A)).

A special consequence of our classification results is the following:

If A and B are separable stable nuclear C *-algebras and if there is a homeomor-

phism γ from the T0-space X := Prim(A) of primitive ideals in A onto Prim(B),

then we prove the existence of an isomorphism ψ from A⊗O2 onto B ⊗O2, such

that ψ induces γ in the sense ψ(J ⊗O2) = γ(J)⊗O2 for J ∈ Prim(A). The ψ with

this property is unique up to approximate unitary equivalence.

We generalize Kasparov’s equivariant functor RKKG(X; ., .) (here only in the

case where the group G is trivial) to some kind of generalized “actions” of locally

quasi-compact T0-spaces X on C *-algebras (cf. Definitions 1.2.6 and 1.2.10). We

denote this functor by KK(X; A,B). In fact, we show that Kasparov’s KK-functor

extends in a natural way to a functor KK(C; A,B) from the category of matrix

operator convex cones (m.o.c. cone) C ⊂ CP(A,B) into the abelian groups. In this

technical approach the algebras itself play then only the role of indices and we have

to study only the category of m.o.c. cones, and then to translate it back to the

category of C *-algebras ...

The main result of this considerations is the following:

Suppose that A1 and A2 are strongly purely infinite, separable, stable and nuclear,
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and that there is given an homeomorphism ψ from X := Prim(A1) onto Prim(A2)

and that A and B are KK(X; ., .)-equivalent in a ψ-equivariant manner. Then there

exist ψ-equivariant *-monomorphisms h1 : A1 → A2 and h2 : A2 → A1 that induces

the given KK(X, ., .)-equivalence, and that h2◦h1 and h1◦h2 unitarily homotopic to

the identity maps of A1 respectively A2. It implies the existence of an isomorphism

γ : A1 → A2 from A1 onto A2, such that γ is approximately unitary equivalent to

h1 and γ−1 is approximately unitary equivalent to h2. (But it is at present still not

clear if γ itself can be chosen such that γ is unitarily homotopic to the given h1.)

On the way of the proof we obtain also several results that are basic for our

main results, e.g. the following:

1. Every exact separable C *-algebra is a C *-subalgebra of O2 (Theorem A).

More generally we show the following “embedding theorem”:

If a (not necessarily simple) C *-algebra D is separable, stable and is “strongly

purely infinite” in the sense of Definition 1.2.2, and if X := Prim(D) acts by a

map ΨA : O(X) → I(A) on a separable stable exact C *-algebra A lower semi-

continuously and upper monotone continuously, then there is a *-monomorphism

h0 : A → D such that h0 ⊕ h0 is unitarily equivalent to h0 and that h0 induces

the given action ΨA . The h0 is unique up to unitary homotopy (Theorem K),

moreover, h0 can be realized by a non-degenerate *-monomorphism, if and only if,

the action ΨA of X on A is non-degenerate.

If D is a non-degenerate stable C *-subalgebra of a C *-algebra B, then B is

stable, D defines an upper semi-continuous action ΨB of X on B, and h0 defines

an element of the semigroup of unitary equivalence classes [Homnuc(X; A,B)] of

ΨA–ΨB–residually nuclear *-homomorphisms from A to B.

We use the above h0 (a generator of some m.o.c. cone C ⊆ CP(A,B) to de-

scribe the nuclear KK-groups KKnuc(X; A,B) as classes of unitarily homotopic

Ψ-residually nuclear homomorphisms modulo stabilization with [h0], cf. Theorems

B and M:

[Homnuc(X; A,B)] + [h0] ∼= KKnuc(X;A,B) .

2. The spatial tensor product of two simple C *-algebras is purely infinite if

one of them is not stably finite and the other is non-elementary, cf. Theorem E.

More generally the minimal C *-tensor products A ⊗ B of any C *-algebra A with

a strongly purely infinite C *-algebra B is strongly purely infinite.

3. The UCT holds for all separable nuclear C *-algebras, if and only if, up to

isomorphisms there is only one pi-sun algebra A with K∗(A) = 0, cf. Corollary J

(1).

??? The question is here: Is every separable nuclear C *-algebra B KK-

equivalent to some pi-sun C *-algebra A. One can first tensor A with O∞ ⊗ K
... ( Seems to be that ??: A⊗O∞⊗K is KK–equivalent to A – but here should no

1This is a very important observation, that should direct all the further research to the study

of all pi-sun algebras A with K∗(A) = 0. Nobody started it yet (January 2022). Why?
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commutative C*-algebra be involved by constructing the KK-equivalence ... The

KK-equivalence of O2 with C0((0, 1]) should be directly constructed. Same with

O∞ with C([0, 1]) or with C ... )

If A is stable, i.e., A ∼= A⊗K then one can repeat the constructions given by

using a suitable unital mono-morphism

M(A⊗K) 7→ 1M(A) ⊗ L(K) ⊆M(A⊗K) .

This operation will be infinitely repeated and the resulting inductive limit (re-

stricted to the tower of images of A⊗ c0(K) should be KK-equivalent to A⊗ c0(K)

and the obvious endomorphism given by the forward shift (k1, k2, . . .) 7→ (0, k1, k2)

on c0 respectively by the natural endomorphism of the above described inductive

limit.

This should be KK-equivalent to A⊗c0(K), and the natural shift endomorphism

S on c0 should produce the isomorphism S o c0 ∼= Kp using c0(K) ∼= c0 ⊗ K and

K ⊗ K ∼= K KK-equivalence of A ∼= A ⊗ K with the above defined inductive limit

that is a stable pi-sun C*-algebra.

4. Hausdorff distances of C *-convex hulls of elements a, b and distance between

the generalized Gelfand-transformations of a and b are the same, cf. Corollary

3.10.12 and Remark 3.11.3.

5. Results on ideal spaces and approximate 1-step-innerness of residually nu-

clear maps are given in Chapters 2, 3 and 12.

6. Generalized Weyl–von-Neumann–Voiculescu type theorems and asymptotic

analogs of them are proven in Chapters 5 and 7.

7. The non-negative Dini functions on Prim(A), cf. Definition 12.2.5, are the

generalized Gelfand transforms of elements of A if A is separable and A ∼= A⊗O∞
(Proposition 12.2.6 – a very special case of [447] –).



CHAPTER 1

Introduction and main results

Following topics should be extracted and published in more detail (also as

beamer presentations, and with lists of its definitions of properties in an elementary

way).

1.) “Squeezing Property” implies K1-injectivity. (See Chp. 4. for definitions

of this properties! )

Here a question remains:

When K1-injectivity implies the Squeezing Property?

At least in unital separable nuclear case ?? (Would be nice ! )

(But have no idea until now: Jan 2022 !!!)

2.) Precise version of a quasi-trace state on a type-I C *-algebra that is not a

2-quasi-trace.

See end of Chapter 1 (= Introduction), and the more details in a (still in work)

section of the appendices.

Here following questions remain:

What happens if a separable nuclear C *-algebra has no type-I sub-quotient?

Are then all quasi-traces “trivial” or 2-quasi-traces?

3.) Forgotten!!! Try to remember!

Something important ...? Also related to topics in this book, e.g.:

When (all?) pi-sun algebras A satisfy the UCT?

( Has it to do with the existence/non-existence of ?? Cartan sub-algebras ?? )

Seems to be studied in new papers (since 2016 –2021)!

For example: Is every separable nuclear C*-algebra B KK-equivalent to a

pi-sun C*-algebra?

Possible ideas? Check it!: B⊗O∞ and B⊗K are KK-equivalent to B ? (Seems

to be.)

Here K ( – also denoted by K(`2) – ) means the algebra of compact operators

on `2(N).

Then the stable separable nuclear C*-algebra C := B ⊗ O∞ ⊗ K is strongly

purely infinite and absorbs O∞ tensorial. It should be KK-equivalent to B. (Seems

to work!)

13
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14 1. INTRODUCTION AND MAIN RESULTS

Notice that L(`2) = M(K) is unitally contained in M(C), because M(C)

contains a natural unital copy of

M(B)⊗O∞ ⊗M(K) .

Therefore, there exists an injective non-degenerate endomorphism ρ of C into 1⊗
1⊗M(K) ⊂M(C). Here ”non-degenerate” means that each of the products ρ(C)C

and Cρ(C) are dense in C.

This implies that ρ extends naturally to a unital endomorphism

M(ρ) : M(C) 7→ M(C)

.

The inductive limit with help of iterations of this unital endomorphism M(ρ)

produces a ( huge ) unital C*-algebra E with an ”distinguished” endomorphism

λ : E 7→ E.

Moreover, there is an injective C*-algebra morphism η : C →??? ⊂ E such that

η(C) is an ideal of E with the property η(C) + λ(E) = E

(??? check it ! It is very important)

and η(C) ∩ λ(E) = {0}. ???

Now define inductive D1 := η(C), D2 := η(C) + ρ(C) = C ⊆M(C),

. . . , D3 := C + ...??

Is it at least the case if B satisfies the UCT? It asks then the weaker question

only:

Is at least every separable nuclear C*-algebra B K-equivalent to a pi-sun alge-

bra (in general)?

Can a positive answer for the special case K∗(A) = 0 give also a positive answer

for the general case?

E.g. that K∗(A) = 0 implies A ∼= O2 ???

Case of K∗(A) = (Z, 0), as A ∼= O∞ ???

Are there relations to the QWEP conjecture?

By definition, a C*-algebra B has the QWEP if B is a quotient C*-algebra

B ∼= C/J of a C*-algebra C that has the ”weak expectation property” (WEP).

A C*-algebra C ⊆ L(H) has the property WEP, if and only if, there exists a

completely positive contraction V : L(H) → C∗∗ into the bi-dual C∗∗ of C such

that V (c) = c for all c ∈ C.

Perhaps it could follow from (????):

C∗(F∞)⊗max L(H) = C∗(F∞)⊗min L(H)

where F∞ is the free group on countably many (or more!) generators.

In particular, for every C*-representation d : C → L(K) on a Hilbert space K

there exists completely positive contraction W : L(K) → d(C)′′ ⊆ L(K) with the
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property that W (d(c)) = d(c) for all c ∈ C. This can be used also as definition,

because one can take here a sufficiently universal representation d of C.

(So far the answer to the QWEP question is open for exact C*-algebras.)

All nuclear separable C*-algebras B are WEP algebras, because their bi-duals

B∗∗ are always injective von-Neumann algebras B∗∗ ∼= N = N ′′ ⊆ L(H) (because

L(H) is injective for each Hilbert space H).

The QWEP conjecture and its possible answer is very important, because is

could be that we need some very selective and constructive definition of ultra-filters

and approximation methods to get a coherent picture of the desired results with

sensible methods.

One can reduce this question a bit if every simple, separable, nuclear, unital,

strongly purely infinite C*-algebra A contains a UCT-class member 1A ∈ B ⊆ A

with all other properties the same as A.

Are all separable typ I C*-algebras A in the UCT-class? (Seems to be !)

Is the (separable nuclear) UCT-class closed under extensions, tensor-products

and inductive limits? (Seems to be! But with which necessary restrictions?)

Also under crossed products – by actions of amenable groups G on A ?

What about crossed products by an endomorphism? I.e., by an injective action

of the natural numbers N

Look to the Rørdam - Property !! ??Which one?

Preview.

Later add (???) on weak semi-projectivity

of pi-sun (??) algebras and

kernel of η : Aut(A)→ Aut(K∗(A)) in UCT case (important!)

and

classification of tensorial self-absorbing algebras in UCT class

Def. of ‘‘pi-sun’’ is on 3 places -- 2 with motivation

Is ‘‘pi-sun’’ good notation? ??

A long time ago George Elliott [258] did conjecture that simple separable

amenable C *-algebras can be classified by invariants that are, in some sense, K-

theoretic in nature (1).

In fact the status of the conjecture of G. Elliott can now described very roughly

as a classification up to isomorphisms of those simple separable nuclear C *-algebras

A with following properties:

1 A C *-algebra A is “amenable”, if and only if, A is “nuclear”, cf. [340] and [159]. We

rarely use the terminology “amenable” for nuclear C *-algebras, because we work with matrix

operator-convex cones C of nuclear maps, but not directly with the (co-) homological properties

of amenability. But it would be interesting to see if some direct (!) applications of the (co-)

homological definition of amenability give additional new insight for answers to the questions and

problems that we study here, give new insides of open questions ...

I am not sure what
he refers to here.

This is clearly the case.

This must be 
known.
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16 1. INTRODUCTION AND MAIN RESULTS

(a) that absorb the Jiang-Su algebra Z tensorial, in the sense that A ∼= A⊗Z
(see Definition A.3.1 of the Jiang-Su algebra in Section 3) of Appendix A,

and

(b) where A is KK-equivalent to some separable commutative C *-algebra C.

The properties (a,b) are satisfied e.g. for the (Joachim) Cuntz algebra O2 : for (a)

because, O2 absorbs any unital simple nuclear separable C *-algebra B tensorial, i.e.

by isomorphisms O2
∼= O2 ⊗B for any unital simple nuclear separable C *-algebra

B, – especially if we take the Jiang-Su algebra Z as B. The property (b) is satisfied

with C := C0(0, 1], because K∗(C0(0, 1]) = {0} = K∗(O2)., – an observation of J.

Cuntz. That will be shown later in this book in any detail as partial result of some

more general observations.

A basic desire is an explicit answer to the following question: Let A a pi-

sun C *-algebra, i.e., a purely infinite separable unital nuclear C *-algebra with the

property that {0} = K∗(A). Is A isomorphic to O2?

(Because all separable exact C *-algebras are C *-subalgebras of O2, we can

suppose the additional assumption that A is a unital C *-subalgebra of O2.)

The algebra C := C[0, 1] of continuous functions on the interval [0, 1], and

the unital simple C*-algebras Z (the Jiang-Su algebra) and O∞ (the Cuntz algebra

generated by an infinite sequence s1, s2, . . . of isometries with mutually orthogonal

ranges) are all KK-equivalent to the algebra complex numbers C (considered as a

unital C*-algebra).

Give here precise references for the observation that O2
∼= B ⊗O2

for unital separable simple and nuclear C *-algebras B etc. !!!

Where is the KK-equivalence to commutative C *-algebras shown??

Give reference!!!

We say in Section 4 of this introduction more about his formulations and the

now (almost) complete state of the proof of the Conjecture of George Elliott. Except

in the until now only partially understood case of stably projection-less algebras

there is a still remaining questions that is equivalent to the below stated question

(Q2) that is equivalent to the question if all separable amenable C *-algebras are

KK-equivalent to Abelian C *-algebras and, to some more general questions that

are “in spirit similar” to our question (Q1), namely what additional structure

has to be imposed to make sure that a given amenable simple separable stably

infinite C *-algebra can be classified by the so far accepted invariants of simple

C *-algebras, among them e.g. the corona factorization property (CFP) and real

rank zero together, or absence of certain types of “infinitesimal” sequences in its

Cuntz-semigroup.

Give ref.s to next??

if invariants of K∗-theoretic nature (including the pairing with trace cones) together

and with “local approximation” allow to detect if a given separable simple amenable

C *-algebras A tensorial absorbs the Jiang-Su algebra Z. It leads for all separable,

This is Kirchberg's 
fundamental 
theorem.

cml367
Highlight
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purely infinite and nuclear C *-algebras A to the important conclusion that A is

isomorphic to A⊗O∞ if and only if A is isomorphic to A⊗Z.

This ????? second ?????

open question is for the stably infinite amenable simple separable C *-algebras

if they are KK-equivalent to an Abelian C *-algebra C0(X):

Give a direct construction of a pi-sun C *-algebra that is KK-equivalent to C0(X)

for a given finite polyhedron X. They should meet transparently in the ?????

in the study of the generators and relations of there K∗-theories ?????

Is there any example of ?????

Here are some special questions:

Let A denote a separable C*-algebra ...

The History of this circle of questions:

All of the work on this book was mainly motivated and inspired by the original

conjectures of G. Elliott and pioneering ideas of J. Cuntz on this circle of questions.

The “easy” beginning sections of the chapters in this book are concerned with an

alternative proof of the Elliott conjecture but only in the case of simple purely

infinite separable nuclear C*-algebras A in the UCT class. The original definition

of purely infinite (simple) algebras given by J. Cuntz [172, p. 186] – stated there

only in the unital case –, can be reformulated for general unital rings A as: For

each non-zero a ∈ A, there are c, d ∈ A with cad = 1. (See proof of [172, prop. 1.6]

and [169, 1.3, 3.4].) Clearly, this definition implies automatically that A is simple.

But one has also to require then that A not ∼= C · 1A.

It is easy to see that K∗(L(`2)) = 0, because B := L(`2) has real rank zero

Mn(B) ∼= B, (1B⊕p) ∼= 1B for each projection p ∈ B, and for each unitary in u ∈ B
one finds q ∈ B and ξ ∈ C such that |ξ| = 1 and ‖(1− q)u(1− q) + ξ · p− u‖ < 1/9.

(Moreover the unitary group of B := L(`2) is ”globally” contractible to 1, in

the sense that ???? WHAT ????)

The elements are all exponentials u = exp(ih) of self-adjoint operators h∗ =

h ∈ B, because each of them is contained in commutative W*-subalgebra of B.

It follows local contractibility.

(But gives it global contractibility??)

But the Calkin-Algebra Q(`2) := L(`2)/K(`2) with `2 := `2(N) is also a simple

C*-algebra with K-theory, that is K0(Q) = 0 and K1(Q) = Z K-theory, because

again Q(`2) ∼= Mn(Q(`2)) and non-zero projections are equivalent (thus all are sta-

bly equivalent), numbers in K1(Q) are the ”indices” (e.g. of the Toeplitz operators

on `2.

Moreover, Q(`2) contains infinitely many ... pair-wise non-isomorphic ... sep-

arable simple unital C*-subalgebras with trivial K-theory. (Can they be exact ?
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Are there continuously many – or at least countably many – unital, non-nuclear

and simple C*-subalgebras of O2 not pairwise isomorphic? )

If one tensors the Cuntz algebra O2 with any separable simple exact and unital

C*-algebra B, then A := B ⊗O2 has again trivial K-theory K∗(A) = 0.

Thus, only in case of pi-sun C*-algebras A (i.e. purely infinite, separable,

unital and nuclear C*-algebras) there is a chance that K∗(A) = 0 implies that A is

isomorphic to the Cuntz algebra O2. )

The below given Definition 1.2.1 of purely infinite C *-algebras is equivalent

to this algebraic definition of J. Cuntz if A is a unital and simple C*-algebra,

cf. Proposition 2.2.1: It turns out that a not necessarily simple or unital C *-algebra

A is purely infinite (more precisely: is 1-purely infinite) in the sense of the below

given Definition 1.2.1 if every non-zero element a ∈ A+ is properly infinite, i.e., if

there exists a sequence dn ∈M2(A) (depending on a, and the dn can be chosen with

zeros on the second line: (dn)21 = 0 = (dn)22) with limn d
∗
n(a⊕ 0)dn = a⊕ a , (2).

This is property pi-1, that is a special case of property pi-n defined in Definition

??

and the, – in a non-trivial manner equivalent – Definition 1.2.1 that is a special

case of 1-purely infinite algebras, (i.e., pi(1)-algebras) of the weakly purely infinite

algebras defined in Definition 2.0.4.

See Proposition 2.12.12 for the general equivalences ??.

The name and definition of nuclear C *-algebras is “inspired” – beside is very

different – by the description of “nuclear” locally convex vector spaces V by unique-

ness of the topology given by any compatible locally convex structure on alge-

braic tensor products V �W with other locally convex vector spaces W , given by

A. Grothendieck [336]. The C *-algebra A is nuclear, if and only if, there is only one

C *-norm on the algebraic tensor product A�B for every C *-algebra B, cf. [766]

(where it was called “ property T ” in 1964), and [509].

It has been later observed that the C *-algebra A is nuclear if and only if there

exists a net {Vτ}τ∈T of completely positive maps Vτ : A → A of finite linear rank

that converges in point-norm topology to idA, (see [426] as outlined in our Remark

3.1.2(iii,f) that does not factorize through the work of A. Connes on von Neumann

algebras, – or consult the paper of Choi and Effros [145, thm. 3.1] that applies

results of A. Connes on von Neumann algebras).

A. Connes has shown that separable C *-algebras A are nuclear if they are

amenable in the sense of Banach algebra theory, cf. [159, cor. 2]. Later, U. Haagerup

proved that each nuclear C *-algebra A is amenable in this sense, cf. [340, thm.3.1].

We do never use the amenability of nuclear C *-algebras in our considerations, and

read throughout this book “amenable” as synonym of “nuclear”.

2Here and some other places the notation x ⊕ y denotes the ”diagonal” 2 × 2-matrix [xjk]

with entries x11 := x, x12 := 0, x21 := 0 and x22 := y.
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We say that a separable C *-algebra A is in the UCT class, if A satisfies the

conditions of the Universal Coefficient Theorem of Rosenberg and Schochet [699],

cf. [73, thm. 23.1.1]. An observation of G. Skandalis says that the UCT for a

separable C *-algebra A is equivalent to: There exists a locally compact metric

space X such that A is KK-equivalent to C0(X) ( 3 ).

If a separable C *-algebra A is KK-equivalent to an Abelian C *-algebra, then

A is also KK-equivalent to an algebra C0(X), with X a locally compact Polish

space that is locally (!) a finite CW-complex of dimension ≤ 3. This is because for

every countably generated Z2-graded Abelian group G = G0⊕G1 there is a locally

compact Polish space X that is locally an at most 3-dimensional CW-complex with

K∗(X) ∼= G for those X, cf. Lemma B.11.1 or proof of [73, cor.23.10.3]. If G

is finitely generated then one can take for X a usual (= global) CW-complex of

dimension ≤ 3.

CHECK (and replace if necessary) ”equivariant” by some accepted expression

...

It seems likely that every separable nuclear C *-algebra C is KK-equivalent to

a pi-sun algebra A. Then only 2 questions remain: Does there exists a separable,

simple, and nuclear C that is not in the UCT class ...

Other question ???

What about K∗(A) = 0 for general separable nuclear A ?

Can the UCT-class – in a sense – distinguish between O∞ and the Jiang-Su

algebra? ...

The proof of the Elliott Conjecture that is given in this book for the very special

class of purely infinite, simple, nuclear and separable algebras uses some methods

that will be stepwise generalized later to the case of non-simple strongly purely

infinite (s.p.i.) C *-algebras cf. Definition 1.2.2. One of the remaining problems

for the applicability of the later described ideal-system equivariant classification of

separable nuclear s.p.i. C *-algebras has – among others – to do with the question

under which conditional properties a purely infinite nuclear C *-algebras A becomes

strongly purely infinite (which is then in case of separable nuclear A equivalent to

A ∼= A⊗O∞ or to A ∼= A⊗Z, where Z denotes the Jiang-Su algebra).

Give reference!! where this is proved here.

Conj.: ?????

(OK!)

If A is separable then Ac := (A′ ∩Aω)/Ann(A) is always a unital C *-algebra.

Here A ⊆ Aω is natural embedded via a ∈ A 7→ πω(a, a, . . .) into Aω :=

πω(`∞(A)) for some ultra-filter ω (= non-trivial character of the commutative C *-

algebra `∞(C) ).

(seems that there are counterexamples for next !!)

3 See [73, thm. 23.10.5], cf. also below reasoning for Corollary J.
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If Ac has no character then Ac contains a unital copy of the Jiang-Su algebra

Z and A ∼= A⊗Z ??? ???? It seems one needs much stronger assumptions ...

At least if A is s.p.i., separable and exact, or ?????

The question is:

Let B a separable unital C *-algebra without characters. Does B contain a nuclear

C *-subalgebra D with 1B ∈ D and without any character?

Moreover: Does C := B ⊗max B ⊗max · · · contain a copy of Z ?

Seems not to be the case ? Need stronger assumptions.

But does C contain unitally a copy of a unital nuclear D without characters?

Let D nuclear and unital, but without characters, does D ⊗min D ⊗min · · ·
contain the Jiang-Su algebra Z ?

Seems to have a negative answer ...?

This generalization explores all aspects of the technics that we introduce for

the study of simple nuclear C *-algebras and requires some additional study of the

m.o.c. cones ...

Give reference res.nuc. c.p. maps HERE !! of the later in Definition

????

See the definition of residually nuclear c.p. maps in Definition 3.10.1 defined

“residually nuclear” completely positive maps.

The Definition 3.5.9 – here considered in the special case of the ideal lattices

of the considered algebras.

The residually nuclear maps generalize fiber-wise nuclear C(X)-modular maps

between C(X)-C *-algebras and generalize asymptotic C(X)-algebras. But a suit-

able equivariant sort of the UCT and related families of representatives for suf-

ficiently general UCT classes for the classification of non-simple amenable C *-

algebras is not in sight yet. But in case of separable nuclear C *-algebras A with

non-Hausdorff primitive ideal space Prim(A) of finite decomposition dimension ( 4 )

there could be a chance to find classifying representatives, cf. more in Chapter 8.

This monograph is essentially self-contained and requires only very basis knowl-

edge on C *-algebras, very elementary facts of K∗-theory and the classical results

of J. Cuntz [169], [172] on his algebras On ( 5 ).

The proofs of Theorems A and B use that every unital separable exact C *-

algebra is a sub-quotient of the CAR-algebra M2∞ (first shown in cf. [437] and

4 Notice that the decomposition dimension and the covering dimension are very different for

non-Hausdorff topological spaces in general!
5 See Sect. 1 of Appendix A. We need only the defining relations and that O2 and O∞

are simple, purely infinite, separable, unital and nuclear, with K∗(O2) = 0, K0(O∞) = Z and

K1(O∞) = 0. And that they really are KK-equivalent to the commutative C *-algebras C0(0, 1]

and C[0, 1]), or the algebra of one point: C in case of O∞.
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[438]). The ideal-equivariant generalizations in Theorem 6.3.1 is more general

than Theorem A but uses similar ideas in its proof. But the point is that those

ideas have to be generalized before in an ideal system equivariant manner. Its proof

contains implicitly the old result on sub-quotients of M2∞ in [438], that is a kind of

“inverse” of Glimm’s characterization of non-type-I C *-algebras as a very special

case.

We refer the reader to [73], [692] and [816] for the needed basic K-theory, and

to [73] for some of the later used ideas of KK-theory, but we give in Chapter 4 proofs

of those facts in K-theory that will be used for an interpretation of KK-groups as

K∗-groups of generated by certain relative commutators.

We call a simple, purely infinite, separable, unital and nuclear C *-algebra A a

pi-sun algebra ( 6 ), cf. Chapters 2 and 3 for equivalent definitions and properties,

for example, Part(vi) of Proposition 2.2.1 is another reason for our decision not to

mention the simplicity of A in “pi-sun”.

The class of simple purely infinite, separable, unital and nuclear C *-

algebras (in short: pi-sun algebras) include the simple Cuntz-Krieger algebras

associated to Markov chains [183], [174] or – more generally – some simple graph-

algebras and the Ruelle algebras associated to hyperbolic homeomorphisms of com-

pact spaces [653] as well as some C *-algebras associated to boundary actions of

certain groups and to a class of groupoids [19], [507]. The crossed product C *-

algebra C(X) o Γ defined by the action of a lattice Γ ⊂ G on the Fuerstenberg

boundary X of G is a pi-sun algebra if G is a real connected semi-simple Lie group

G without compact factors and with trivial center, [19]. Sometimes invariants of

pi-sun algebras reflect geometric properties of the underlying dynamical systems,

for example the K-theory groups of the Cuntz-Krieger algebras OA are the Bowen–

Franks invariants of flow equivalence for the related matrix A ([102], [183]). Many,

but not all, Cuntz-Pimsner algebras of Hilbert bi-modules over commutative C *-

algebras, and certain classes of crossed products by “properly outer” actions are

strongly purely infinite (7).

All pi-sun algebras A in the UCT-class are stably isomorphic to (generalized)

Toeplitz C *-algebras of a suitable Hilbert C0(X,K)-bi-module H where X is a

locally compact Polish space with K∗(X) = K∗(A). This is one of the many pos-

sible ways to show that the K-theory invariants are really exhausted by the pi-sun

algebras in the UCT-class up to stable equivalence.

To provide the reader just here with at least one example in each stable iso-

morphism class we give here a description of suitable bi-modules H for given locally

compact X (see Chapter 11 for more details):

6 We do not mention the “simplicity” in the name “pi-sun” because the – very first – original

algebraic definition of pure infiniteness of unital algebras A was: For 0 6= a ∈ A there are b, c ∈ A
with bac = 1. Non-simple p.i. algebras require anyway a much more elaborate classification theory!

7 Results of [359] show that the example of Rørdam [687] of a unital simple finite, but

stably infinite (!), algebra R is a full corner of a Cuntz-Pimsner algebra given by a suitable

Hilbert bi-module H(A, h) over A := C(S2 × S2 × · · · , K) . Thus, R is KK-equivalent to A.
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Let D : C0(X,K) → L(`2) = M(K) be a faithful non-degenerate *-representation

that is unitarily equivalent to its infinite repeat δ∞ ◦D ∼= D⊕D⊕· · · . Then H :=

C0(X,K) becomes a Hilbert C0(X,K)-bi-module with left action φ of C0(X,K) on

H given by

φ(f)g := (1⊗D(f))g for f, g ∈ C0(X,K) .

The corresponding generalized Toeplitz-Pimsner C *-algebra T (H) is simple, sepa-

rable, stable and nuclear, cf. Corollary 2.18.7 ( 8 ). It is KK-equivalent to C0(X,K)

(and, hence, to A) by results of Pimsner [633, thm.4.4, cor.3.14]. Using Voiculescu’s

generalization of the Weyl–von-Neumann theorem, cf. [43] – or our further going

generalizations of it in Proposition 5.4.1, one can show that T (H) is moreover purely

infinite (cf. Corollary 2.18.14). Our Theorem B implies that A⊗K is isomorphic to

T (H) if A is a pi-sun algebra that is KK-equivalent to C0(X). Since T (H) is stable

and simple, it is the same as the Cuntz-Pimsner algebra OH. The latter implies

that A ⊗ K is the crossed product B o Z of some type-I algebra B by a suitable

automorphism of B.

In this way, we can see that the possible K∗-invariants are exhausted by the

above examples, because they are exhausted by the K∗(X)-groups of locally com-

pact Polish spaces X, cf. Lemma B.11.1. Other constructions of pi-sun algebras

with given K∗-invariants have been used by Elliott and Rørdam [269]. But all this

examples do not say that it is their only appearance. Usually it is not easy to verify

from some given informations whether an algebra is a (simple) pi-sun algebra in

the UCT class or not. The present status is that there is no general method to

detect from defining relations on generators if the universal C *-algebra defined by

this relations is KK-equivalent to a commutative C *-algebra or not.

See more about the relations between our interpretation of the classification

conjecture and its formulations by G. Elliott in Section 4, cf. also [686, sec. 2.2].

We consider here at first the special case where A is simple, separable, nuclear,

T+(A) = {0} and the real rank of A is zero. Here we denote by T+(A) the cone of

non-negative semi-finite lower semi-continuous traces τ : (A⊗K)+ → [0,∞].

It turns out that our considerations of the special case of (simple) pi-sun C *-

algebras imply that the general Conjecture of Elliott – here restricted to the par-

ticular case of pi-sun algebras – is equivalent to the below stated questions (Q1)

and (Q2). The notion of simple purely infinite algebras was introduced in [172,

p. 186] and will be discussed in Chapter 2 in detail. We prefer to work with the

below given Definition 1.2.1.

By [269], or by Theorem I below, the possible Elliott invariants are exhausted

by C *-algebras in the class of those simple purely infinite separable nuclear unital

C *-algebras (here called pi-sun algebra) that are KK-equivalent to commutative

C *-algebras, i.e., that are in the ”UCT-class”.

8 Since D is unitarily equivalent to its infinite repeat δ∞ ◦D, the algebra T (H) is equal to

the Cuntz-Pimsner algebra O(H).
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Summing up we get: A complete proof of the Conjecture of Elliott in the

case of simple separable nuclear C *-algebras A and B of real rank zero and with

T+(A) = T+(B) = 0 would imply in particular that the following two long-standing

open Questions (Q1) and (Q2) could be answered affirmative:

(Q1) Is every simple stably infinite unital nuclear C*-algebra A of real rank

zero also purely infinite?

This means: Is every non-zero projection p ∈ A infinite in A if A has

”real rank zero”, A is simple, is nuclear, is separable, and A contains at

least one infinite projection q 6= 0 ?

(Q2) Is O2 up to isomorphisms the only (simple) pi-sun C*-algebra A with

K∗(A) = 0 ?

HereO2 denotes the Cuntz algebra on two isometries as generators (i.e. s1, s2 ∈ O2,

with s∗1s1 = s∗2s2 = 1 = s1s
∗
1 + s2s

∗
2 cf. Section 1 of Appendix A or [169].

By Theorem E(ii) below, the Question (Q1) has a positive answer (also if A

has not real rank zero) in the special case where A ∼= B⊗C and where the algebras

B and C both are not “elementary”, i.e., both are not isomorphic to the compact

operators K(H) on a Hilbert space H of infinite or finite dimension. Implicitly, our

results imply also that a simple unital separable nuclear C *-algebra A is purely

infinite, if and only if, the relative commutant A′ ∩Aω of A in its ultrapower Aω is

not stably finite (cf. [448, rem. 2.13] for details), and this is the case, if and only if,

this relative commutant is purely infinite and simple (9). Then, one has A ∼= O2, if

and only if, 0 = [1] ∈ K0(A′ ∩Aω) (cf. Corollary G).

But even if it turns out that Question (Q1) has a negative answer, we could

add to the invariants the pre-ordered “local” Cuntz semigroup CS(A), cf. Definition

2.4.3, or [171], [175] for the unital case, as an almost K-theoretic invariant. Then

we can describe the purely infinite algebras in the following way (cf. Corollary

2.4.6):

A simple C *-algebra A is purely infinite – or is isomorphic to K(H) for some

Hilbert space H –, if and only if, the “local” Cuntz semigroup CS(A) of A does not

contain an “infinitesimal sequence” [an] ∈ CS(A) in the sense of Definition 2.4.4 of

infinitesimal sequences in pre-ordered semi-groups.

Another possible “weak additional assumption” for an answer of question (Q1)

is the assumption that A has the corona factorization property (CFP) – that we

discuss in Section 26 of Appendix A.

If a simple separable C *-algebra A has real rank zero and satisfies the (CFP)

then A is stably finite or is purely infinite.

If B := A ⊗ K(`2) contains an infinite projection P , then this projection is

properly infinite by simplicity of B. More generally if P ∈ B is a projection and

9 More generally: If a C *-algebra A has the property that F (A) := (A′ ∩Aω)/Ann(A,Aω)

and A are both separable, then A is simple and nuclear, and then only the three cases can occur:

A = 0, or A and F (A) are both purely infinite, or where A⊗ K ∼= K and F (A) ∼= C, cf. [448].
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0 6= b = PbP is an infinite element, then b and P are properly infinite in B by

simplicity of B

⇐ Where is this proved?

How the (CFP) should manage that this strong alternative happens?

If one of the (non-zero) projections q is infinite, then q is automatic properly

infinite by simplicity of A.

It is sufficient then to consider qAq because then there exists a unital morphism

of the Cuntz algebra O∞ into qAq. To get that A is purely infinite, one needs that

every non-zero projection 0 6= p ≤ q is infinite (otherwise no projection in pAp is

infinite!).

It needs that each non-zero projection p is infinite, because then p is automatic

properly infinite by simplicity of A. This follows from the general property that

the set of elements a ∈ A with a⊕ p - p is a closed ideal of A.

But the assumptions give only that all non-zero projections p have the property

that there exists an individual number n(p) ∈ (N) such that 1n(p) ⊗ p is infinite in

Mn(p) ⊗A. – It is then there in Mn(p) ⊗A properly infinite.

Until here we have not used the ... ?????

The nuclearity of A is not considered in all combinations of above listed addi-

tional assumptions to get A purely infinite: There could be some weaker additional

assumption in case of nuclear A, not found or conjectured yet (2022).

The below given Corollary J shows that Question (Q2) is equivalent to the

following important open question (Q2*), and that positive answers to (Q1) and

(Q2) together imply a proof of the Conjecture of Elliott in the case T+(A) = {0}
and amenable separable A with real rank zero .

(Q2*) Does every separable nuclear C*-algebra satisfy the Universal Coefficient

Theorem?

Here the Universal Coefficient Theorem (=: UCT) in the sense of Rosenberg and

Schochet is considered, [699]. We refer the reader to [73, sec. 23]. A separable

C *-algebra satisfies the UCT, if and only if, it is KK-equivalent to a commutative

C *-algebra (cf. [73, thm: 23.10.5], [726, prop. 3.5], [699, cor. 7.5]). It suffices

to consider in question (Q2) simple purely infinite A with K∗(A) = 0 that are

fixpoint-algebras A of circle actions on O2 , cf. Corollary J.

We use a careful explained and conceptual approach for proofs in case of simple

algebras, that is not the shortest possible way in this special case, but illustrate

more involved generalizations that allow later to generalize some of the results to

non-simple algebras: the results allow to classify all separable stable nuclear C *-

algebras up to tensor products with the Cuntz algebra O∞ by its KK-equivalence

classes for some generalized ideal-system equivariant KK-theory. We consider the

non-simple case and the needed definitions in the second part of this introduction.
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In Chapter 12 we give the proofs of lemmas and propositions which are used to

extend the ideas for simple algebras to the non-simple case.

If we consider all from this general viewpoint, then, in Chapters 2 and 3, we

establish the implication { purely infinite ⇒ “strongly” purely infinite } in the

particular case where Prim(A) consists only of one point. In Chapters 5 and 7 we

study the consequences of this implication. Generalizations of results of Chapters 2

and 3 to the case of non-simple algebras are in parts joint works with E. Blanchard

and M. Rørdam. Detailed proofs did appear in separate papers, ([462], [463], [92],

[93]), cf. remarks in Chapters 2 and 3.

Our exposition is completely self-contained and needs only basic knowledge on

C *-algebras, as e.g. functional calculus and some basic observations of KK-theory

from textbooks, e.g. [73]. The use of some ideas from [172] will be explained in

Chapter 4 and Appendix A.

Notice that this very detailed introduction contains all the proofs of the Corol-

laries C, D, F, G, H, J, L and N.

Only the very key Theorems A, B, E, I, K, M and O will be proved in the

chapters of this book, together with some other independent results that could be

initial for some future research.

1. The case of simple purely infinite algebras

We consider first the case of simple C *-algebras. The spatial tensor product

of C *-algebras A and B by A ⊗ B it is the completion of the algebraic tensor

product A�B with respect to the minimal C *-norm on it, cf. [766]. C *-algebras

A are called exact if the functor B 7→ A⊗B (here with spatial = minimal tensor

product) is an exact functor on the category of C *-algebras (see [428]-[438], [810]

and Chapters 3 and 6).

Obviously every nuclear C *-algebra A is exact, by the definition of nuclearity

via uniqueness of the C *-norm on the algebraic tensor product A � B for each

C *-algebra B ([766], [509]).

The following Theorems A, B and E in the case of simple algebras (and The-

orems K and M in the non-simple cases) are the fundamental results of this book.

...

Theorem A. Let A denote a unital separable C*-algebra.

(i) A is exact, if and only if, A is isomorphic to a C*-subalgebra of O2.

(ii) A is nuclear, if and only if, A is isomorphic to the range of a unital

conditional expectation from O2 onto a C*-subalgebra of O2.

Clearly Part (i) remains true if A is not unital because A is exact if and only

if its unitization Ã is exact.

The embedding of unital separable exact A into O2 as expressed in Part (i) can

be always taken as unital *-monomorphism from A into O2, because K∗(O2) = 0
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implies that every non-zero projection p 6= 1 of O2 is the range of an isometry,

cf. [172] and Lemma 4.2.6(ii).

A slight modification of the arguments in the proof of Corollary C (below) shows

that Theorem B(i)-(iii) implies that any two unital monomorphisms h, k : A→ O2

are unitarily homotopic in the sense of the below given definition. In particular,

they are approximately unitarily equivalent.

We prove Theorem A in Chapter 6. The idea of the proof is the following: Our

Weyl–von-Neumann–Voiculescu type theorem for p.i. algebras (see Chapter 5)

give exact cite for our WvNV-theorem in Chp.5 !!!

implies that sub-quotients of O2 are isomorphic to subalgebras of O2. We apply

Glimm’s theorem to the anti-liminal algebra O2, and then we use the characteriza-

tion of separable exact algebras as sub-quotients of the CAR algebra M2∞ , [438].

Certainly, one could also use directly the natural inclusion of M2∞ into O2. But

then one does not get the additional result that the embedding of unital nuclear A

into O2 can be chosen such that the conditional expectation in Part (ii) of Theorem

A, is an extreme point of the linear contractions of O2, cf. Remark 6.2.2. It implies

e.g. that there are unital separable nuclear C *-algebras A and unital embeddings

of A into O2
∼= O2⊗1 ⊂ O2⊗O2

∼= O2 that can not be “conjugate” in O2⊗O2⊗K
by using automorphisms of A ⊗ O2 ⊗ K and O2 ⊗ O2 ⊗ K, though even all unital

C *-monomorphisms of A into O2 are unitarily homotopic (in the sense of Definition

5.0.1 in Chapter 5).

Theorem A will be used to formulate and prove the below stated Theorem B,

which we start to explain now:

Suppose that A is a separable unital exact C *-algebra. Theorem A shows

the existence of unital *-monomorphisms h1 : A → O2 and h2 : O2 ⊗ O2 → O2,

because O2 ⊗ O2 is nuclear. We define a unital *-monomorphism hu0 : A → O2 by

hu0 (a) := h2(h1(a)⊗ 1). If B is a unital C *-algebra which contains a (fixed) unital

copy of O2, then hu0 defines a unital nuclear *-monomorphism from A into B (which

we fix from now on).

We define h0 : A⊗K→ B ⊗K by h0 := hu0 ⊗ idK.

Let D, E be C *-algebras and h : D → E, k : D → E C *-morphisms. We

say that h and k are unitarily equivalent if there is a unitary u in the mul-

tiplier algebra M(E) of E such that u∗k(·)u = h, and we say that h and k

are unitarily homotopic ( 10 ) if there exists a strongly continuous map t 7→
U(t) from R+ = [0,∞) into the unitary operators in M(E) ⊆ L(E) such that

limt→∞ U(t)∗k(b)U(t) = h(b) for every b ∈ D. (Note that this does not imply that

h and k are homotopic: unitarily equivalent morphisms are unitarily homotopic,

but unital inner automorphisms are not necessarily homotopic to the identity map.)

If h and k are unitarily homotopic, then h is homotopic to U(0)∗k(·)U(0) in the

usual sense. But we can conclude homotopy from unitary homotopy in the case

10 Compare with the more general Definition 5.0.1 in the case where h, k : D →M(E).
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where the unitary group of M(E) is connected, e.g., if E is stable and σ-unital, if

E is an AF-algebra, or if E is purely infinite and simple and K1(E) = 0, cf. [172],

e.g. in case E = On, n = 2, 3, . . . ,∞. Under this very special circumstance the

unitary homotopy becomes considerably stronger than homotopy. But homotopy

implies unitary homotopy in some cases, see Corollary D and the remarks below

Corollary L and Theorem M.

Let [Homnuc(D,E)] denotes the classes of unitarily equivalent nuclear *-homo-

morphisms from D into E. IfM(E) contains a unital copy C∗(s, t) ⊆ E of O2, then

one can define the Cuntz addition [h] + [k] := [h ⊕O2
k] of unitary equivalence

classes of morphisms h, k ∈ Homnuc(D,E) by:

h⊕O2 k(d) := sh(d)s∗ + tk(d)t∗ for d ∈ D ,

where s and t denote the canonical generators of the copy of O2 in E. The definition

is independent – up to unitary equivalence – of the choice of the representatives h

and k of the unitary equivalence classes [h] and [k] and of the chosen unital copy

of O2. Homnuc(D,E) becomes with Cuntz addition a commutative semigroup. All

that follows from the observation of Cuntz [172] that ti = usi where u =
∑
tis
∗
i is

unitary if si and ti for (i = 1, ..., n) are canonical generators of unital copies of On

(i.e., t∗i ti = s∗i si = 1,
∑
tit
∗
i =

∑
sis
∗
i = 1).

The Cuntz addition coincides with the natural addition of morphisms if E is

stable, i.e., if E ∼= F ⊗K for some C *-algebra F , because the “natural” embedding

K ⊕ K ⊂ M2(K) ∼= K is defined by a selection of a unital copy of O2 in L(H) =

M(K), and this copy is so natural or artificial as the Cuntz addition is in general:

It becomes “natural” or “well-defined” only after passage to unitary equivalence

classes. It is useful to remind this phenomenon if one seeks for generalizations of

this constructions to the case where one wants to get some sort of “equivariant”

isomorphisms up to conjugacy for actions of groups, quantum-groups, (or specific

sub-systems of ideals) by suitable generalizations of our approach, because then

one can only expect some sort of outer co-cycle conjugacy, sometimes only by 2-co-

cycles.

The natural map Hom(A,B) 3 h 7→ [h− 0] ∈ KK(A,B) is given

by the Kasparov module (h,B, 0), i.e., φ := h, E := B and F := 0.

Or some other equivalent constructions,

as e.g. by the natural isomorphism KK(A,B) ∼= Ext(SA,B) and the

mapping cone construction.

We compare the semi-group of unitary equivalence classes of nuclear morphisms

in Homnuc(A⊗K, B⊗K) with nuclear KK-theory and nuclear Ext-theory in Chap-

ters 8 and 9, using Theorem 4.4.6 and other basics from Chapter 4. A natural

semigroup morphism

α : Homnuc(A⊗K, B ⊗K)→ Extnuc(A⊗K, SB) ∼= KKnuc(A,B)

is defined as follows:
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We define a nuclear *-monomorphism

ψh : A⊗K→M(SB ⊗K)/(SB ⊗K)

(i.e., a representative of an element of Extnuc(A⊗K, SB)) for a given representative

h : A⊗K→ B⊗K of [h] ∈ Homnuc(A⊗K, B⊗K). It gives the Busby invariant of an

extension [h−0] in Extnuc(A⊗K, SB), which is just the mapping cone construction.

It can be described with help of the natural monomorphisms and isomorphisms

B ⊗K ⊂ Q(R+, B ⊗K) := Cb([0,∞), B ⊗K)/C0([0,∞), B ⊗K)

and ???

Is this the correct definition?

Or have we to take here 0 ⊕ (B ⊗K) ? ??

Or can we use here that B ⊗K ⊂ Cb([0,∞), B ⊗K)?

Compare with image of [(h,B, 0)] ∈ KK(A,B)

by the map KK(A,B)→ Ext(A,SB) !!!

Or explore here that B ⊗K ⊂ Cb([0,∞), B ⊗K) ?

(B ⊗K)⊕ (B ⊗K) ⊂ Q(R−, B ⊗K)⊕Q(R+, B ⊗K) ∼= Q(R, B ⊗K)

and Q(R, B ⊗K) ⊂M(SB ⊗K)/SB ⊗K , where we use the notation

Q(X,D) := Cb(X,D)/C0(X,D)

for a locally compact space X and a C *-algebra D. Then ψh is defined by

ψh(a) := (0, h(a)) ∈ (B ⊗K)⊕ (B ⊗K) ⊂ Q(R, B ⊗K).

The corresponding extension of A⊗K by SB ⊗K is the well-known mapping cone

Ch of h, see [73, p. 236/237].

We denote by [h− 0] the class of h in Extnuc(A⊗K, SB).

Next red nearly a black-out??

One has to add the universal trivial extension

H0 : A⊗K→M(SB)/SB and gets [h− 0] = [k − 0]

if and only if

H0 ⊕ h and H0 ⊕ k are unitary equivalent modSB !!

We have that [h − 0] = [k − 0] in Extnuc(A ⊗ K, SB) if h and k are stably

unitarily equivalent by unitaries in M(C0(R+, B ⊗ K))/C0(R+, B ⊗ K), because,

for unital B, every unitary ofM(C0(R+, B⊗K))/C0(R+, B⊗K) lifts to a unitary

in M(C0(R+, B ⊗ K)), but those unitaries are given by strictly continuous maps

from R+ into the unitaries of M(B ⊗K) (11).

11 In this particular case the unitary equivalence can be given by an operator-norm contin-

uous path t 7→ exp(ih1(t)) · . . . · exp(ihn(t)) with continuous maps t 7→ hk(t) = hk(t)∗ ∈ B ⊗ K.
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In particular, α([h]) := [h − 0] is well-defined, and the natural isomorphism

Extnuc(A ⊗ K, SB) ∼= KKnuc(A,B) maps the element [h − 0] into the usual KK-

difference of h and the zero morphism, which is given by the KKnuc-class of the

Kasparov module (B, h, 0).

The key result for the classification of pi-sun algebras is the following Theorem

B, which combines three essentially different “theorems” as Parts (i)+(ii), (iii) and

(iv).

Theorem B. Let A be a separable unital exact C*-algebra and suppose that

B is unital and contains a copy of O2 unitally. Let h0 : A⊗K→ B ⊗K the up to

unitary homotopy unique *-monomorphism that is defined by Theorem A.

(i) The map α : [h] 7→ [h − 0] (given by the mapping cone construction by

h) is a semigroup epimorphism from the semigroup of unitary equivalence

classes [h] of nuclear C*-morphisms h ∈ Homnuc(A ⊗ K, B ⊗ K) onto

KKnuc(A,B), and

(ii) Needs to prove first homotopy invariance of R(h0 ; A,B)?

The decomposition argument works now well ! ??

[h− 0] = [k − 0] in KKnuc(A,B) if and only if h⊕ h0 and k ⊕ h0 are

unitarily homotopic.

(iii) If moreover B is purely infinite and simple, then h⊕h0 is unitarily homo-

topic to h for all *-monomorphisms h ∈ Hom(A⊗K, B ⊗K).

(iv) Check again proof of part (iv)!

Does it work for stable D and E ? ??

Let D and E separable C*-algebras and h : D → E, k : E → D *-

monomorphisms such that h ◦ k is unitarily homotopic to idE and k ◦ h is

unitarily homotopic to idD.

Then there exists an isomorphism ϕ from D onto E that is unitarily

homotopic to h.

Can only prove -- so far -- that:

Then there exists an isomorphism ϕ from D onto E that is approxi-

mately unitary equivalent to h.

Notice here that KK(A,B) = KKnuc(A,B) if one of A or B is nuclear.

The proof of Parts (i) and (ii) of Theorem B is given in Chapter 9. We prove

Part (iii) in Chapter 7 and Part (iv) in Chapter 10.

One can use the result of Theorem B to relax the above given very special

definition of the “zero-element” h0 as follows.

A C *-algebra morphism h : A⊗K→ B⊗K is unitarily homotopic to h0, if and

only if, there exist *-monomorphisms k1 : A⊗K→ O2⊗K and k2 : O2⊗K→ B⊗K
such that

h = k2k1 ?????? (or only h unitarily homotopic to k2k1??) ??

and B ⊗K is the closed ideal generated by k2(O2 ⊗K). This can be seen from

Theorem B and following general observations (1)-(3) using [172]:
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(1) If O2
∼= C∗(s, t) ⊆ B is a given copy of O2 in B with 1B ∈ O2, then every

(non-zero) C *-morphism h : O2⊗K→ B⊗K that generates B⊗K as the

closed ideal of B ⊗K generated by the image of h, i.e., the C *-morphism

h satisfies (B ⊗ K)h(O2 ⊗ K)(B ⊗ K) = B ⊗ K , is “unitary homotopic”

in the multiplier algebraM(B⊗K) – in the sense of Definition 5.0.1 – to

a C *-morphism k ⊗ idK : O2 ⊗K→ B ⊗K, where k : O2 → B is a unital

C *-morphism.

This new copy k(O2) of O2 can be different from the given copy

C∗(s, t) and k is not necessarily homotopic in Hom(O2, B) to the C *-

morphism h : O2 → B defined by h(s) := s and h(t) := t, because it can

happen that the class [k(s)s∗ + k(t)t∗] is non-zero in K1(B) ( 12 ).

(2) The statements (i) and (ii) of Theorem B are independent of a particular

selection of a unital copy of O2 in B.

(3) h0 : A ⊗ K → O2 ⊗ K is unitarily homotopic to k ⊗ idK by Parts (i,ii,iii)

of Theorem B because KK(A,O2) = 0, cf. [172].

It requires that Thm. B is correct with ????

But this can be shown also by elementary considerations form

K∗(O2) = 0, the K1-injectivity of O2 and of D2 := O2 ⊗O2 ⊗ · · · , if one

uses both of [172] and the Elliott-Rørdam isomorphism O2
∼= D2.

The proof of Parts (i) and (ii) of Theorem B is given in Chapter 9, using

Chapters 7, 8 and ????. It can be outlined as follows:

We extend α to a semigroup morphism from Homnuc(A ⊗ K,Q(R+, B ⊗ K))

into Extnuc(A⊗K, SB) ∼= KKnuc(A,B) in the obvious way.

(It is formally almost the same definition as for the mapping cone construction!)

We use basic observations in Chapter 4 to recognize that

[h0] + Homnuc(A⊗K,Q(R+, B ⊗K))

is naturally isomorphic to the Grothendieck group R(A,B) of the semi-group of

unitary equivalence classes of morphisms in Homnuc(A⊗K,Q(R+, B ⊗K)) .

in between: there is a new way to apply directly Theorem 4.4.6,

using Section 5 of Chapter 8!

proof property (CD) first?

It requires some careful technical observations and in essence an independent

proof for homotopy invariance of R(A,B) with respect to the second variable B

In fact is not clear if the older variant does that,

except by N.Ch. Phillips argument,

seems not to work by application of Theorem 4.4.6,

because [k ⊕H0] = [H0] in Ext(A,SB)

does (perhaps) not automatically imply that k ⊕ h0

and h0 are stably asymptotically homotopic.

12 This is one of the reasons that we pass to stable algebras
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--> This is now at the end of Chp. 8 fixed.

Is it still open if the ‘‘algebraic’’ KK

is really homotopy invariant?.

Needs that evaluations at t ∈ [0, 1] define

isomorphisms KK([0, 1]C; A,C([0, 1], B))→ KK(C; A,B) .

Here, the operator homotopy seems to be enough?

to show that α induces an isomorphism of R(A,B) and Extnuc(A ⊗ K, SB).

This yields, in particular, a proof of Theorem B(ii).

??? Next needs first to show the injectivity of G(h0; A,B) → G(H0; A,B) to

get the homotopy invariance !!!

The natural isomorphism Extnuc(A⊗K, SB) ∼= KKnuc(A,B) and the homotopy

invariance of KKnuc(A,B) imply that, for a nuclear asymptotic C *-morphism k

from A ⊗ K into B ⊗ K, i.e., , for k ∈ Homnuc(A ⊗ K,Q(R+, B ⊗ K)) , h0 ⊕ k is

unitarily equivalent to all its “up/down-scales”, given by homeomorphisms of R+.

But we show this homotopy invariance directly and use the resulting scaling

invariance much earlier in the way of proving that α induces an isomorphism from

the continuous Rørdam groups R(A,B) onto KKnuc(A,B).

next? Senseless? Correction?

It means that the powerful Theorem B can be used

(and are used here ?) as a reminder of several results that can be deduced from

Theorem B but can be also proved independently by other methods.

The homotopy invariance implies, for

k : A⊗K→ Q(R+, B ⊗K) ,

the existence of h ∈ Homnuc(A⊗K, B ⊗K) that is unitary equivalent to h0 ⊕ k in

Homnuc(A⊗K,Q(R+, B ⊗K)) .

Does it prove finally Part (i) of Theorem B ???

The absorption result (iii) of Theorem B is an asymptotic version (given in

Chapter 9) of the generalized Weyl–von-Neumann–Voiculescu theorem (cf. Chapter

5), and Part (iv) of Theorem B is a “continuous” version of a result of Elliott,

cf. [256], [678], and Chapter 10.

Notice that our proof of Part (iv) is more general, because it needs only as-

sumptions on D and E that are independent and weaker than all those required for

A and B in Theorem B. In particular, exactness, amenability (nuclearity), stability

or pure infiniteness are all not used.

Theorem B leads to the below given classification results Corollaries C and H.
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If A and B are pi-sun algebras, then we find pi-sun algebras C and D, such that

C and D both contain O2 unitally, and A⊗K ∼= C⊗K, B⊗K ∼= D⊗K, cf. J. Cuntz

[172]. If E or F is nuclear and separable, we have Hom(E,F ) = Homnuc(E,F )

and KK(E,F ) = KKnuc(E,F ). Thus, by Theorem B, for z ∈ KK(A,B), there is a

*-monomorphism h ∈ Hom(A⊗K, B⊗K) such that z = [h− 0] and that h(A⊗K)

contains a strictly positive element of B ⊗K.

If moreover z = [h− 0] is a KK-equivalence and w = [k− 0] ∈ KK(B,A) is the

KK-inverse of z then [idA−0] = z ⊗B w = [kh − 0] in KK(A,A) and [idB − 0] =

[hk− 0] in KK(B,B). By Theorem B(ii)+(iii), hk is unitarily homotopic to idB⊗K

and kh is unitarily homotopic to idA⊗K. Depends from validity of OLD B(iv)

By Theorem B(iv), there exists an isomorphism λ from A⊗K onto B⊗K which

is unitarily homotopic to h.

Let γ : KK(A,B)→ Hom(K∗(A),K∗(B)) be the natural functor from KK(·, ·)
into Hom(K∗(·),K∗(·)) given by γ(z) : [x] ∈ K∗(A) 7→ [x] ⊗A z ∈ K∗(B), see [73,

sec. 23.1]. Then γ([h − 0]) = K∗(h) if h ∈ Hom(A ⊗ K, B ⊗ K), cf. Chapter 8 for

more details.

But [1A] = [1A ⊗ p11] ∈ K0(A) and K0(h)([1A ⊗ p11]) = [h(1A ⊗ p11)] ∈
K0(B), where pjk here denotes the natural basis of

⋃
nMn ⊆ K with p∗jk = pkj and

pjkp`m = δk,`pjm i.e., p11 is the “upper left corner minimal non-zero projection” in

K. Thus, if z = [h− 0] and γ(z) maps [1A] to [1B ], then [h(1A⊗ p11)] = [1B ⊗ p11],

and, by [172], there exist a unitary v ∈M(B⊗K) with v∗h(1A⊗p11)v = 1B⊗p11.

b ∈ B 7→ b⊗ p11 ∈ B⊗K is an isomorphism from B onto (1⊗ p11)(B⊗K)(1⊗ p11).

Let µ be the inverse of this isomorphism. Then ϕ(a) := µ(v∗h(a⊗p11)v) is a unital

*-monomorphism from A into B with [ϕ − 0] = [h − 0] = z in KK(A,B), because

composition with a 7→ a⊗ p11 (respectively with µ and v∗(·)v) induce the identity

on KK(A,B), cf. [73, chap. VIII].

If h is moreover unitarily homotopic to λ by u(t) ∈ M(B ⊗ K) and λ is an

isomorphism from A⊗K onto B⊗K, then we find as above a unitary w ∈M(B⊗
K) such that w∗λ(1A ⊗ p11)w = 1B ⊗ p11 and ψ(a) := µ(w∗λ(a ⊗ p11)w) is an

isomorphism from A onto B. t→ u1(t) := v∗u(t)w defines a unitary homotopy from

v∗h(·)v to w∗λ(·)w. In particular, limt→∞ u1(t)∗(1B ⊗ p11)u1(t) = 1B ⊗ p11. Thus

there exists t0 > 0 such that a small perturbation of b(t) = µ(1B⊗p11u1(t)1B⊗p11)

for t > t0 defines a unitary homotopy from ϕ to the isomorphism ψ.

The above arguments prove that Theorem B has the following corollary:

Corollary C. Suppose that A and B are pi-sun algebras.

(i) Every z ∈ KK(A,B) such that γ(z) maps [1A] ∈ K0(A) to [1B ] ∈ K0(B)

is given by a unital C*-morphism ϕ : A→ B, such that z = [ϕ− 0].

Also here is to check: z − [ϕ − 0] is perhaps only modulo the kernel

KK(A,B)→ Hom(K0(A),K0(B)) determined!

(ii) Check proof of C(ii) again! ??
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If z is moreover a KK-equivalence and ϕ : A → B is a unital *-

monomorphism with z = [ϕ− 0],

then there are an isomorphism ψ from A onto B and a continuous

map t 7→ u(t) from R+ = [0,∞) into the unitaries of B, such that

ψ(a) = lim
t→∞

u(t)∗ϕ(a)u(t) for all a ∈ A .

Thus, z = [ψ − 0].

In particular, Aut(A) 3 ϕ 7→ [ϕ − 0] ∈ KK(A,A) maps onto the invertible

elements z ∈ KK(A,A) with γ(z)([1A]) = [1A].

Two automorphisms of A have the same image in KK(A,A), if and only if,

they are unitarily homotopic.

The KK-equivalence of unital endomorphisms ϕ and ψ gives

that ψ(1) = ϕ(1) and that

φ0 ⊕ h0 and ψ0 ⊕ h0 on Ast are unitarily homotopic.

Now ‘‘absorption’’ , i.e., φ0 ⊕ h0 unitary homotopic to φ0.

Corollary C implies the following Corollary D, because KK is homotopy invari-

ant (without assuming UCT ! ), and homotopy equivalences fixes the K0-class of

the unit element. Here we consider general homotopy (in the usual sense), and not

our above defined unitary homotopy (cf. also Definition 5.0.1).

Corollary D. Homotopy equivalent pi-sun algebras are isomorphic.

Next depends from old version of Cor. C(ii) ??

The isomorphism can be chosen such that it is unitarily homotopic to the C*-

morphism that defines the homotopy equivalence.

One of the problems is:

Let α : A→ A and β : A→ A such that

α ◦ β and β ◦ α are unitarily homotopic to idA.

Is α unitarily homotopic to an automorphism of A ?

Really? Is that enough?

Notice that here A is “stably infinite” if A⊗K contains a full properly infinite

projection. In case of simple A this is equivalent to the existence of a (non-zero)

infinite projection in A⊗K. The following theorem shows that finite but not stably

finite simple C *-algebras must be necessarily “tensorial prime”. Its proof is given

in Section 3 of Chapter 2.

Theorem E. Suppose that A and B are simple C*-algebras, that are not

isomorphic to the algebra of compact operators on a Hilbert space.

(i) If A or B is stably infinite, then the spatial tensor product A⊗B is purely

infinite (and simple).

(ii) If A ⊗ B is nuclear and is stably infinite, i.e., A ⊗ B ⊗ K contains an

infinite projection, then A⊗B is purely infinite.
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In particular, A⊗B is purely infinite if B is pi-sun and A is simple, e.g. A⊗On is

pi-sun for n = 2, . . . ,∞ and each simple, separable, unital and nuclear C *-algebra

A ( 13).

Notice here, that the identity map id of A ⊗ O2 ⊗ K is homotopic to id⊕ id,

because this is true for O2, cf. [172]. Thus, KK(A ⊗ O2, A ⊗ O2) = 0 and λ : a ∈
O2 7→ 1A ⊗ a ∈ A ⊗ O2 must necessarily define a KK-equivalence z = [λ − 0] ∈
KK(O2, A ⊗ O2). By Theorem E and Corollary C, λ is unitarily homotopic to an

isomorphism from O2 onto A⊗O2. In the same way one can see that for pi-sun A

with KK(A,A) = 0 the only element of KK(O2, A) = 0 is given by an isomorphism

from O2 onto A. (Here we have used that O2 is pi-sun, cf. [172].)

The map ϕ(a) = a ⊗ 1 is a unital monomorphism from A into A ⊗ O∞, and

z = [ϕ − 0] is just the Kasparov tensor product of w = [idA − 0] with the KK-

equivalence [ϕ1 − 0] given by ϕ1 : t ∈ C 7→ t · 1 ∈ O∞. Thus, z is a KK-equivalence

(– or use [73, 17.8.5 and 17.8.6] twice, or see the related arguments used in Chapter

8 for the generalization to KK(X; ·, ·) and KK(C; ·, ·) –). So we get from ϕ(1A) =

1A ⊗ 1O∞ and from Corollary C that ϕ is unitarily homotopic to an isomorphism

from A onto A ⊗ O∞. Thus, we obtain the following corollary of Theorems B, E

and Corollary C :

Corollary F. If A is a separable unital nuclear simple C*-algebra, then:

(i) A⊗O∞ is a pi-sun algebra.

(ii) A⊗O∞ ∼= A if and only if A is pi-sun.

(iii) A⊗O2
∼= O2.

(iv) If A is pi-sun, then KK(A,A) = 0 if and only if A ∼= O2.

Perhaps proof more generally:

Give first ref’s to: On is pi-sun!

(ii,1) The C *-algebra A⊗D is strongly p.i. in sense of Definition 1.2.2 for every

non-zero C *-algebra A and for every (non-zero) strongly p.i. C *-algebra D.

In particular this applies to D := O∞.

(ii,2) For every nuclear separable strongly p.i. C *-algebra A there exists an

isomorphism ϕ from A⊗O∞ onto A.

(ii,3) If a C *-algebra A is isomorphic to A⊗O∞, then there exists an (other)

isomorphism ϕ from A⊗O∞ onto A such that the endomorphism a ∈ A 7→ ϕ(a⊗
1) ∈ A is unitarily homotopic to the identity map idA on A.

(In particular, the isomorphism ϕ−1 : A → A ⊗ O∞ has the property that

ϕ−1(J) = J ⊗O∞ for each closed ideal J of A.)

Way of proof:

It is enough to show:

13 If B = On then one can allow here also A = Mk, k = 1, 2, . . ., or A = K by [172], cf. refhere

in book appendix A???
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(1) A⊗D is strongly p.i.

[should be in Chp. 2 ready?]

(2) O∞ is strongly p.i., because pi-sun, and O∞ ⊗O∞ ∼= O∞,

[should use Chp. 2,4, 11 ???]

(3) Separable nuclear s.p.i. C *-algebra A has property: 1F (A) is properly

infinite in F (A) := A′ ∩Aω.

[should be first in Chp. 2 ?]

(4) O∞⊗O∞⊗· · · ⊆ F (A) (unitally) implies for separable A that A ∼= A⊗O∞

[Should be first in Chp. 11 complete?

Needs that O∞⊗O∞ has approximately inner flip and that x ∈ O∞ → x⊗1 ∈
O∞ ⊗ O∞ is approximately unitary equivalent to an isomorphism from O∞ onto

O∞ ⊗O∞.]

(5) Prove all of (ii,3) for A = O∞ and then for A ⊗ O∞ (– In place of A ∼=
A⊗O∞). Then use the isomorphism of A⊗O∞ onto A.

M. Rørdam [678] gave a proof for the isomorphism A ∼= A⊗O2 if A is unital,

separable and contains an approximately central sequence of unital copies of O2.

A modification of an idea of G. Elliott leads us to a more general result from [438,

cor. 2.4(II)] (see also [786]) at the end of Chapter 10:

There is an isomorphism A ∼= A⊗B⊗B⊗· · · if A contains an approximately central

sequence of unital copies of B in A, and if the C *-monomorphisms b 7→ b⊗ 1B and

b 7→ 1B ⊗ b are approximately unitarily equivalent in B⊗B. Notice that then B is

automatically nuclear and simple by an argument from Effros and Rosenberg [243],

cf. Corollary 10.3.5. In the case of non-unital separable A, one has to require that

B has an approximately inner flip, and that a copy of B is unitally contained in

F (A) := (A′∩Aω)/Ann(A,Aω), then one gets A ∼= A⊗B if A is stable or contains

an approximate unit consisting of projections. We get the equivalence of B ⊆ F (A)

and of A ∼= A⊗ B for (general) separable A if B has the additional property that

B is unitally contained in the ultrapower E(B,B)ω of tensorial join algebra

E(B,B) := {f ∈ C([0, 1], B ⊗B) ; f(0) ∈ B ⊗ 1 , f(1) ∈ B ⊗B } .

See [448, thm. 4.5(3)]. The property follows from the K1-injectivity of B, and is

therefore satisfied for all C *-algebras B that are purely infinite or that absorb the

Jiang-Su algebra tensorial by

Rørdam ?????? citation ? ... Def. of K1-injectivity of B ?

But the latter property is now known for all separable C *-algebras B that

absorb tensorial, – i.e., in sense B ⊗ E ∼= B –, a tensorial self-absorbing separable

C *-algebra E, because all this E absorb the Jiang-Su algebra Z tensorial by a

result of W. Winter in [831].
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Is the K1-bijectivity not secure by Z absorption from work of

M. Rørdam?

Check Ref’s again:

This property is now established for all tensorial self-absorbing separable E

with approximately inner flip that allow in addition to apply the Künneth Theorem,

e.g. if they are in the UCT-class. This is because W. Winter [831] observed that

all those absorb the Jiang-Su algebra Z tensorial.

The tensorial absorption B ⊗Z ∼= B of Z implies K1-injectivity, and allows to

deduce that U0(B) = U(B) if B is tensorial self-absorbing, separable and is in the

Künneth Theorem class.

On the other hand, – by Corollary F(iii) –, we have that O2
∼= O2 ⊗O2 ⊗ · · · .

Thus O2 contains an approximately central sequence of unital copies of O2. Again

by Corollary F(iii), this together implies the following corollary.

Corollary G. Let A be a simple, separable, unital and nuclear C*-algebra.

Then A ∼= O2 , if and only if, A contains an approximately central sequence

ψn : O2 → A (of copies of O2) unitally.

With other words: A ∼= O2, if and only if, A is simple, separable, unital and

nuclear, and A′ ∩Aω contains a copy of O2 unitally.

Recall that the natural group morphism γ : KK(A,B)→ Hom(K∗(A),K∗(B))

is an epimorphism ifA satisfies the UCT. Moreover, ifA andB both satisfy the UCT

and γ(z) : K∗(A) → K∗(B) is bijective, then z ∈ KK(A,B) is a KK-equivalence,

cf. [73, prop. 23.10.1]. Therefore, we obtain from Corollary C the following.

Corollary H. Suppose that A and B are pi-sun algebras, and that A satisfies

the universal coefficient theorem (UCT) for KK(A, ·).

(i) If σ∗ = (σ0, σ1) : K∗(A) → K∗(B) is an element of Hom(K∗(A),K∗(B))

such that σ0([1A]) = [1B ] in K(B), then there is a unital *-monomorphism

τ : A→ B such that K∗(τ) = σ∗ .

(ii) If B also is in the UCT-class and σ∗ is an isomorphism from K∗(A) onto

K∗(B) and τ : A→ B is a unital *-morphism with K∗(τ) = σ∗, then there

is a *-isomorphism ψ : A→ B from A onto B

NEXT has to be checked again: ??

such that ψ is unitarily homotopic to τ .

Check proof again!

At least ψ and τ are approximately unitary equivalent!?

In particular, K∗(ψ) = σ∗.

(iii) If Ext1(K∗(A),K∗(B)) = 0 , then all unital *-monomorphisms τ : A→ B

with K∗(τ) = σ∗ are unitarily homotopic.

We list here some immediate consequences of Corollary H:

O∞ ∼= O∞ ⊗O∞ ⊗ · · ·
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by an isomorphism that is unitarily homotopic to

τ : a ∈ O∞ 7→ a⊗ 1⊗ 1⊗ · · · ∈ O∞ ⊗O∞ ⊗ · · · ,

because both algebras are pi-sun with UCT and K∗-groups Z[1] and 0 (i.e., here

K∗(τ) is a K∗-isomorphism and Ext1 = 0).

But we outline also alternative

proofs of the latter conclusions, by proving first

the homotopy invariance of a general version of Rørdam groups.

In the beginning we gave explicit examples of pi-sun algebras A in the UCT-

class with prescribed K∗(A) using Cuntz-Pimsner algebras, and we give some al-

ternative construction further below. It follows that Corollary H(i) implies:

If B is pi-sun and G
(n)
∗ ⊆ K∗(B) is an increasing sequence of finitely generated

graded subgroups with [1B ] ∈ G(n)
0 and

⋃
nG

(n)
∗ = K∗(B) , then there is a sequence

(An) of pi-sun algebras in the UCT-class, unital *-morphisms τn : An → An+1 and

a unital *-morphism η : A → B for A := indlimnAn with K∗(An) = G
(n)
∗ , K∗(τn)

the inclusion G
(n)
∗ ↪→ G

(n+1)
∗ and K∗(η ◦ τn) is the inclusion G

(n)
∗ ↪→ K∗(B) In

particular, K∗(η) is an isomorphism from K∗(A) onto K∗(B).

Since A is in the UCT-class, Corollary H(ii) now implies:

Next works also if Corollary H(ii)

has to be corrected to weaker version,

where KK-equivalences are not all expressible by isomorphisms.

If B is in the UCT-class, then the above *-morphism η : A→ B can be chosen

as an isomorphism from A onto B.

We denote by Aut(K∗(A), [1]) the automorphisms of the Z2-graded Abelian

group K∗(A) that fix the element [1A] ∈ K0(A).

Then we get from Corollary H:

Suppose that A is pi-sun and satisfies the UCT.

This is partly still in question ?? Or oK?

The composition γ ◦ α of the map α given in Theorem B(i) with the natural

map γ : KK(A,A)→ End(K∗(A)) defines an epimorphism ???????

γ ◦ α : Aut(A)→ Aut(K∗(A), [1]) .

If Ext1(K∗(A),K∗(A)) = 0, then the kernel of this epimorphism ????????

Must check how the kernel of

KK(·, ·)→ Hom∗(K∗(·),K∗(·))

looks like?

is equal to the set of those automorphisms of A that are unitarily homotopic to

id of A.
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Every pi-sun algebra A in the UCT-class is anti-isomorphic to itself. Moreover,

if [1A] = 0 in K0(A), then there is a kind of “co-multiplication”-like unital mono-

morphism A ⊗ A → A. It comes from a – not necessarily unital – commutative

algebra C ⊂ A that is KK-equivalent to A (via this embedding), and from the

diagonal map Ĉ 3 χ 7→ (χ, χ) ∈ Ĉ × Ĉ. It is co-commutative and co-associative.

A first application of the above general results is the following:

Let Am be finite direct sums of algebras of form C(X,Mk(On)), where X are

compact metric spaces and k = 1, 2, . . ., n = 2, 3, . . .. Let hm : Am → Am+1 be

unital C *-morphisms and B := indlim(hm : Am → Am+1). It is easy to see that

B ∼= B ⊗ O∞, because above we have seen that An ∼= An ⊗ O∞ and O∞ ∼=
O∞ ⊗ O∞ ⊗ · · · . In particular B is purely infinite if B is simple (see Corollary

3.2.23 for a more general result). The algebras An and therefore B are in the UCT

class. Thus Corollary H classifies the simple one’s of those inductive limits up to

isomorphism.

To see which invariants are exhausted in given classes of metric spaces X and

values k,m, we need to calculate the K∗-invariants, because the corresponding

realizations by C *-morphisms can be obtained from Theorem B using the UCT

( 14 ). The below described construction (before Theorem I stated below), gives a

simpler way to produce pi-sun examples representing given KK-classes of nuclear

separable C *-algebras. This construction can be generalized to the category of

C(X)-algebras (see end of Chapter 11).

An separable C *-algebra A satisfies the UCT if and only if, A is in the “boot-

strap category” or “bootstrap class” N (see [699] or [73, def. 22.3.4] for a def-

inition), if and only if, A is KK-equivalent to a commutative C *-algebra by an

observation of G. Skandalis [724].

G. Elliott and M. Rørdam have shown that, given any pair of countable com-

mutative groups G0 and G1 and a distinguished element g0 ∈ G0, there exists a

simple purely infinite separable unital nuclear C *-algebra A in the (little) bootstrap

class N` such that (K0(A), [1A]) ∼= (G0, g0) and K1(A) ∼= G1 , cf. [269, thm. 5.6],

and [679, thms. 3.1, 3.6]. Our Corollary H says that such A is unique if we consider

simple pi-sun algebras in the UCT class. In particular, simple pi-sun algebras in

the bootstrap class N are automatically in “small” bootstrap class N`.

A more general result by a rather simple method is given by the following

Theorem I if we combine this with [73, cor.23.10.3] or Lemma B.11.1.

14 The K∗-groups and its group homomorphisms for certain “elementary” CW-complexes X

can be calculated in good cases with help of the Künneth theorem, 6-term exact sequence, Bott pe-

riodicity and Mayer-Vietoris sequence. The calculation of K∗(X) for a arbitrary CW complex X is

not straight-forward, except one knows explicitly the involved elements of Ext(K∗+1(Xn),K∗(Rn))

and of Hom(K∗(Xn),K∗(Rn)) that correspond to attaching n-cells to the (n−1)-dimensional CW-

subcomplex Xn, . . . etc.
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We describe now an almost functorial construction of simple separable exact

purely infinite algebras P (A), such that P (A) is KK-equivalent to a given separable

exact C *-algebra A

Check: Now on new places?!

Check again the exact case! Check references!!! (15).

Let A be a separable exact C *-algebra and let O∞st := (1−s1s
∗
1)O∞(1−s1s

∗
1),

where s1, s2, . . . are the canonical generators of O∞. Then O∞st contains a copy

of O2 unitally, cf. [172] or Lemma 4.2.6(iii). We let At := A⊗O∞st if A is unital,

and define At as the natural unital split extension of O2
∼= 1M(A)⊗O2 by A⊗O∞st

if A is not unital, i.e., we have then a unital split-exact sequence

0 → A⊗O∞st → At → 1⊗O2 → 0 .

The algebra At is a unital separable exact C *-subalgebra of Ã⊗O∞st and contains

a copy of O2 unitally. The injective C *-morphism η0 : a ∈ A 7→ (a ⊗ (s2s
∗
2)) ∈ At

defines a KK-equivalence of A with At. Clearly, the algebra At is nuclear if and

only if A is nuclear.

The Theorem A provides a unital *-monomorphism hu0 : At → O2 ⊂ At, e.g. as

described before Theorem B, and then define a unital *-monomorphism for a ∈ At
with help of isometries t1, t2 ∈ O2 ⊂ O∞st ⊆ At by

h(a) := t1 a t
∗
1 + t2 h

u
0 (a) t∗2 ,

that is here expressed using the Cuntz-addition – discussed in Chapter 4 ( 16 ) – of

the identity map and h0

idAt ⊕t1,t2hu0 : At → At .

Now simply let P (A) := indlim(h : At → At) the “stationary” inductive limit

with natural defining monomorphisms h∞n : At → P (A) given by h∞n+1h = h∞n , and

let η(a) = h∞1 (η0(a)) ∈ P (A) the associated natural unital embedding from At into

P (A).

The author has outlined the proof of the following easy theorem at the

Check again: ??

Conference on Operator Algebras and Quantum Field Theory (in Rome, Italy)

July 1996.

Theorem I. Let A be a separable exact C*-algebra. Then:

(i) The algebra P (A) is a simple, separable and exact C*-algebra that con-

tains a copy of O2 unitally.

(ii) P (A) ∼= P (A)⊗O∞. In particular, P (A) is purely infinite.

15 See [810] or Chapters 3 and 6 on the here needed definition and basic properties of exact

C *-algebras.
16 The “Cuntz sum” defined in Chapter 4 is the base of our there discussed version of KK-

groups that is “constructive” in some sense.
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(iii) The monomorphism η : A → P (A) defines a KK-equivalence [η − 0] be-

tween A and P (A).

(iv) There is a conditional expectation from the hereditary C*-subalgebra D ⊆
P (A), that is generated by η(A), onto η(A) ∼= A.

(v) P (A) is nuclear, if and only if, A is nuclear.

A proof of a more general result for continuous fields is given in Chapter

11. We surround the discontinuity of the functor KK(X ; P (A), ( · )) with respect

to inductive limits, and use the continuity of KK(X; ( · ), P (A)) in the sense of

[73, thms. 21.5.2, 19.7.1] and some considerations of E-theoretic nature, the X-

equivariant continuous version of the

??? Effros-Rørdam ??? or Elliott-Rørdam ??

groups considered in Chapter 7.

Check next red and over-next again!

check correct refs to Chapter 11

Are so many footnotes necessary? ??

In fact, we prove in Chapter 11 a more general result for continuous fields

(Ax)x∈X of exact C *-algebras Ax on a compact metric space X with the additional

property that the C *-algebra A of continuous sections is exact ( 17 ):

We take again := A⊗O∞st if A is unital, and define At as the natural unital split

extension of

C(X,O2) ∼= [C(X)1M(A)]⊗O2

by A⊗O∞st if A is not unital.

Not clear if the C(X)-algebra At is again continuous

and has unital fibers that are the minimal unitizations of fibers of

A
Check construction and its continuity.

Compare with fibre-wise construction!

Then we can use the sub-triviality theorem of E. Blanchard [89] ( 18 ), to get

a unital C(X)-module *-monomorphism hu0 : A → C(X,O2) ⊆ A . We define again

the Cuntz sum h := idAt ⊕hu0 and let then P(A) := indlim(h : At → At) – the

stationary inductive limit. All the operations are compatible with the above defined

(fiber-wise) constructions of (Ax)t and P (Ax) for the fibers Ax of (Ax)x∈X . It

turns out that (P (Ax))x∈X is a continuous field of C *-algebras, and that P(A) is

the algebra of continuous sections of this field. By construction, P(A) is exact,

and is C(X)-module isomorphic to P(A) ⊗ O∞. Further, the *-monomorphisms

ηx : Ax → P (Ax) define a C(X)-module monomorphism η from A into P(A).

17 By [471], this is equivalent to exactness of all Ax and the continuity of the field (Ax ⊗
B)x∈X for each separable C *-algebra B. It follows e.g. from nuclearity of the fibers Ax and the

continuity of the field.
18 Theorem A implies a proof of the sub-triviality. The sub-triviality itself is a special case

of Theorem K below.
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We show in Chapter 11 a more general result:

The monomorphism η defines a KK(X; ·, ·)-equivalence between A and P(A) . ( 19 ).

At the end of Chapter 11 we outline a different construction that leads to

KK(X; ·, ·)-equivalent exact (respectively nuclear) stable algebras P (A) with prim-

itive ideal space isomorphic to a T0 space X that acts monotone-continuously on

A (cf. the definitions below and Theorems 11.4.1 and O):

One starts with a suitable “universal” Hilbert bimodule and builds the correspond-

ing Cuntz-Pimsner algebra. The universality of the construction has the advantage

that G-actions of locally compact groups G on (Ax)x∈X lead in a natural way to

G-actions on (P (Ax)⊗K)x∈X ( 20 ).

Furthermore, we modify in Chapter 11 the above described (non-universal !)

construction of A⇒ P (A) in a way that we get (cf. Theorem 11.0.7):

Suppose that A is a unital separable nuclear C*-algebra, G is a discrete countable

exact group, and that α : G → Aut(A) is group-morphism. Then there exist a

pi-sun algebra B, a group-morphism β : G → Aut(B) and a G-equivariant unital

monomorphism η : A→ B that defines a KKG-equivalence [η] ∈ KKG(A,B).

The latter construction plays nicely together with permutation actions of G on

multiple tensor products.

Next is wrong! ??

P∞ is isomorphic to the crossed product (O∞st⊗O∞st)oZ2 by the flip auto-

morphism a⊗ b 7→ b⊗ a on O∞st ⊗O∞st .

Here P∞ denotes the unique pi-sun algebra in the UCT-class with K0(P∞) =

{0} and K1(P∞) = Z .

(But it is likely that the Z2 crossed product by the flip on P∞⊗P∞ is isomorphic

to O∞st.)

The flip automorphism is approximately inner on O∞st ⊗ O∞st , because the

flip on O∞ ⊗O∞ is approximately inner:

(Un) a sequence of unitaries that approximately implement the flip.

Then [Un, (1 − s1s
∗
1) ⊗ (1 − s1s

∗
1)] → 0 in O∞ ⊗ O∞. Small perturbations of

the Un produces unitaries Vn that commute with (1− s1s
∗
1)⊗ (1− s1s

∗
1) .

The Wn := Vn · ((1 − s1s
∗
1) ⊗ (1 − s1s

∗
1)) are unitaries in O∞st ⊗ O∞st that

approximately implement the flip on O∞st ⊗O∞st .

Let us now consider an other application of Theorem I :

If A is a separable nuclear C *-algebra, then there is a pi-sun algebra B = P (A)

which is KK-equivalent to A and contains a unital copy of O2.

19 The bi-functor KK(X; A,B) is, for compact metric spaces X, the same as the Kasparov

functor RKKG(X; ·, ·), with G = the trivial group.
20 At least in the case where the fibers Ax are nuclear, because then, by Theorem M(iii),

there are C(X)-module isomorphisms of P(A) ⊗ K onto any other p.i. stable separable nuclear

C(X)-algebra B that is KK(X; ·, ·)-equivalent to A and has simple fibers Bx.
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In particular K∗(B) ∼= K∗(A). We can find a separable commutative C *-algebra

D with K∗(D) ∼= K∗(A), cf. [73, cor. 23.10.3], [715] or Lemma B.11.1.

We replace D by a KK-equivalent pi-sun algebra E, which contains a unital

copy of O2. Then E satisfies the UCT and there is an isomorphism λ from K∗(E)

onto K∗(B). By the UCT for E, there exists z ∈ KK(E,B) with γ(z) = λ, and

by Corollary C there exists a unital monomorphism ϕ from E into B such that

z = [ϕ− 0], and thus λ = K∗(ϕ). But then

λ : K∗(E)→ K(∗−1)mod2(SB) = K∗(B)

is the connecting map for the six term exact sequence for the mapping cone Cϕ

and therefore K∗(Cϕ) = 0. Cϕ is nuclear because Cϕ is an extension of nuclear

C *-algebras.

If KK(Cϕ, Cϕ) = 0, then KK(Cϕ, F ) = 0 for every (σ-unital) C *-algebra F .

By the six term exact sequence for KK one gets that B and E are KK-equivalent,

i.e., that A is KK-equivalent to a commutative C *-algebra.

Hence, if the nuclear separable C*-algebra A is not KK-equivalent to a com-

mutative C*-algebra, then KK(Cϕ, Cϕ) is not trivial, and the pi-sun algebra N :=

P (Cϕ) satisfies K∗(N) = 0 but KK(N,N) is non-zero.

We can go a bit further to a more special class of algebras that is sufficient to

decide the UCT-problem by following observations (21):

There is a circle action on O2 with simple and purely infinite fix-point algebra B0

in the UCT-class with K0(B0) = Z2, K1(B0) = 0 and 0 = [1] ∈ K0(B0).

Indeed: Take B0 := P (C ⊕ C) in Theorem I. It is a pi-sun algebra that is

KK-equivalent to C ⊕ C and contains a copy of O2 unitally. By Corollary F(ii),

B0
∼= B0 ⊗ O∞ by an isomorphism that is unitarily homotopic to b 7→ b ⊗ 1, and,

– by Corollary H(ii) –, there is an automorphism ψ of B0 such that

(i) ψ0(m,n) = (n, n + m) for (n,m) ∈ Z2 ∼= K0(B0) (hence id−ψ0 has

determinant = −1),

(ii) ψn is strictly outer (in the sense of [578]) for every n 6= 0, because ψn0 6= 0

for all n 6= 0.

(iii) B0 oψ Z ∼= (B0 oψ Z)⊗O∞

In part (iii) we could also use that B0
∼= B0 ⊗O∞ and then change ψ to idO∞ ⊗ψ

to omit the proof of pure infiniteness for B0 oψ Z. One can see, e.g. by [578] or

by Proposition 2.18.1, that C := B0 oψ Z is simple, because B0 is simple and ψ

satisfies (ii). It is known that C is nuclear, because B0 is nuclear and Z is amenable,

and that C is in the UCT-class because B0 is in the UCT-class (cf. [73, 22.3.5g]).

It follows that C is a pi-sun algebra in the UCT-class with K∗(C) = 0, by Corollary

F(ii) and by the Pimsner-Voiculescu sequence [73, thm.10.2.1]. Then B0 is the

fixpoint algebra of the (dual) R/Z-action on C, and C ∼= O2 by Corollary H(ii).

21 Build the tensor product of the example [73, 23.15.12] of Blackadar with O∞ to get a

version of N .
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Now we consider any separable nuclear C *-algebra D and let B0 := P (C⊕C)

and A := P (D)⊗B0. The natural embedding η of D⊕D ∼= D⊗(C⊕C) into P (D)⊗
P (C⊕C) defines a KK-equivalence η : (D⊕D)→ A, because KK-equivalences are

compatible with tensor products if one of the factors are nuclear, cf. [389, lem.

2.1.27]. The algebra A is the fixpoint algebra of a circle action on P (D)⊗C ∼= O2,

by Corollary F(iii).

Together with Corollary F(iv) and [73, cor.23.10.8] the above reductions (to

the case of pi-sun A with K∗(A) = 0 and to the fix-point algebra of a circle action)

on O2 prove the following.

Corollary J. For every separable nuclear C*-algebra D there is a pi-sun

algebra A with [1A] = 0 in K0(A) and a *-monomorphism η : D⊕D ↪→ A such that

(i) [η] is a KK-equivalence of D ⊕D and A .

(ii) A is a fix-point algebra of a circle action on O2 .

In particular, every separable nuclear C*-algebra is KK-equivalent to a commutative

C*-algebra, if and only if, every pi-sun algebra A with K∗(A) = 0, that is isomorphic

to a fixpoint algebra of a circle action on O2 , is also isomorphic to O2 itself.

Thus, Questions (Q2) and (Q2*) have the same answer, and we can limit (Q2)

to the case where A is the fix-point algebra of a circle action on O2.

revise/check next text blue/red text

One can even step a bit further: If we consider P (Aop⊕A)⊗B0 in place of A,

then we can see by the above arguments that the possible existence of a separable

and nuclear example B that does not satisfy the UCT implies the existence of

pi-sun A with K∗(A) = 0 that is anti-isomorphic to itself, that does not satisfy the

UCT, and A is the fix-point algebra of a circle action on O2. The reason is that

Thus, the non-existence of an anti-automorphism does not necessarily produce a

counterexample for the UCT in the class of amenable separable C *-algebras.

If one considers the class of arbitrary (not necessary simple) separable nuclear

stable C *-algebras that have trivial KK-theory (e.g. contractible algebras) then

every separable nuclear C *-algebra is KK-equivalent to a fixed point algebra of a

Z2-action of one of them. But one has to consider also inner actions, e.g. given by

conjugation by a symmetry in the multiplier algebra.

On the other hand one can say: If the fix-point algebra of the flip automorphism

Π(a⊗ b) := b⊗ a on O2 ⊗O2 (respectively on O∞st ⊗O∞st) is isomorphic to O2

(respectively to O∞st) then the Cuntz standard form Ast is isomorphic to the fixed

point-algebra of a Z2-action on O2.

The reason is, that this conjectures together imply the conjecture that the fix-

point algebra of of the flip on P∞⊗P∞ ∼= O∞st is isomorphic to O2. The flip is an

order-2 isomorphism of O∞st that changes the signs of elements in Z ∼= K(O∞).

Similar arguments show that the Künneth Theorem on tensor products holds

for all separable nuclear C *-algebras, if and only if, K∗(A ⊗ A) = 0 for all pi-sun
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A with K∗(A) = 0 that is the fix-point algebra of a circle action on O2 and is

anti-isomorphic to itself (22).

If one has such a C *-algebra A, then one can consider C := P (A ⊗ O∞) and

ask if ?????? C := O∞st.

In particular, let D := pCp for a projection p ∈ C with 1 = [p] ∈ K0(C) ∼= Z.

Is D tensorial self-absorbing ?

Here we say that a unital separable D is a tensorial self-absorbing algebra

if D 6∼= C and the unital monomorphism D 3 d 7→ d⊗ 1 ∈ D ⊗D is approximately

unitarily equivalent to an isomorphism from D onto D⊗D (see [448, sec.4.def.4.1]).

We mention this, because it shows that the UCT-problem and related prob-

lems have connections with the question of the classification of the tensorial self-

absorbing algebras A – without assuming before that A is in the UCT-class !

A special case of the UCT problem is the following interesting and long standing

open question:

Let A a separable unital tensorial self-absorbing algebra that has the property that

Mn is not unitally contained in A for every n > 1. Is A ∼= O∞ or A ∼= Z? Here

Z denotes the Jiang-Su algebra. The answer is positive in the UCT-class. But so

far one has no idea what happens without UCT.

Is Mn also not unitally (!) contained in A⊗O∞? There exist no projection in

A⊗O∞ with n[p] = [1] in K0(A⊗O∞) ∼= K0(A) ...

2. Towards a classification of non-simple purely infinite algebras

In the period from 1995-2015 the author has studied methods that allow to gen-

eralize the classification of pi-sun algebras to a classification of non-simple nuclear

strongly purely infinite stable separable C *-algebras.

Compare the 2 below given blue discussions of [442, lem.3.8]

A report on results and outline of the proofs has been published in [442].

But the important “abstract” Lemma [442, lem.3.8] was not proved there and

the author has to regret for his claim “It is a straight-forward proof” (Es ist ein

Gradeaus-Beweis). Indeed, the author had overseen that the list of conditions in

the technical Lemma [442, lem. 3.8] is incomplete:

The surjectivity of the there considered natural group morphism of in Chapter 4

defined groups G(h0 ; A,E) to G(H0 ; A,E) is easy to derive from the listed prop-

erties, but the there proposed injectivity is unclear. Therefore we have revised the

Lemma [442, lem. 3.8] in a very detailed technical Chapter 4 and have reformu-

lated it as Theorem 4.4.6. It is in a sense a general tool for comparing sorts of

unsuspended but stable E-theories with naturally corresponding KK-theories. This

Theorem lists additional conditions, each of them equivalent to the injectivity of

22 It suffices to check K0(A⊗A) = 0, because one can replace A by P (A⊕ (A⊗P∞))⊗B0.
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the canonical epimorphism from G(h0 ; A,E) onto G(H0 ; A,E). An explicit (cer-

tainly very abstract !) example where the natural map is not injective only under

the assumptions of the old Lemma [442, lem. 3.8] has not been found so far – but

still could exist for some example that fits the general “axiomatic” assumptions of

[442, lem. 3.8] ( 23 ).

The Lemma [442, lem.3.8] is here worked out in more detail and extended to

Theorem 4.4.6 by adding a condition (DC), and we give a detailed proof of it in

Chapter 4. But we have used/misused Chapter 4 to give also a very detailed account

of sorts of calculations in K-theory of properly infinite unital C *-algebras and of

K∗(h0(A)′ ∩E) for “KK-theory-defining” morphism h0 : A→ E, where h0(A)′ ∩E
contains a copy of O2 unitally as our minimal permanent assumption. It leads to

groups G(h0 ; A,E) that must be understood in detail by the reader before he can

understand the proofs in several other parts of this book entirely, e.g. the groups

Ext(C ; A,B) in Chapter 5.

Fortunately we can generalize Kasparov’s proof (and the way over the cobor-

dism variant defined by J. Cuntz and G. Skandalis) of the identities KKp(A,B) =

KKc(A,B) = KKh(A,B) , i.e., the proof of the homotopy invariance of KK-theory,

to get that our cone-depending groups KK(C; A,B) are homotopy invariant. This

C-related result will be used to prove general decomposition theorems for strictly

continuous paths of “deriving” unitaries, compare Section 5 in Chapter 8 for details.

This decomposition results allow to proof that Ext(SC ; A,SB) – which is natu-

rally isomorphic to KK(C ; A,B) – satisfies the assumptions of Theorem 4.4.6 in

Chapter 4, in particular the – long time disputed – decomposition property (DC). It

implies that the natural group epimorphism from the m.o.c. cone C-equivariant un-

suspended E-theory – the generalized Rørdam groups R(C; A,B) – onto the group

KK(C; A,B) is an isomorphism. This is our base for isomorphism results, including

the case of pi-sun A, B and C = CP(A,B).

Has next blue part to be changed? Technics works?

Phillips method works?

Relation to KK-theory clear?

Independently from this result that completes of [442, lem. 3.8] we have in Sec-

tion 3 of Chapter 9 also outlined a generalization of the arguments of N. Ch. Phillips

in a way that they allow to show the homotopy invariance of m.o.c. cone C-related

unsuspended stable E theories – like our continuous variants R(C; A,B) of a kind

groups that M. Rørdam and G. Elliott used in their proofs for the classification of

certain Cuntz-Krieger algebras.

It is based on the homotopy invariance of the Grothendieck group of those

kinds of semigroups – but that are not homotopy invariant as semigroups itself

(sic !) – defined as unsuspended, but stable, variants of E-theory that satisfy

asymptotically some additional relations, who’s proof is essentially inspired by ideas

23 A specific counter-example would be interesting for finding the minimal necessary assump-

tions for the axioms that make the surjective map from G(h0 ; A,E) onto G(H0 ; A,E) injective.
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of N.Ch. Phillips in [627]. But we do not know if this can be used to prove in this

special case the injectivity of G(h0 ; A,E)→ G(H0 ; A,E), i.e., if two asymptotic

morphisms h1 : A → Q(R+, B) and h2 : A → Q(R+, B) are “stably homotopic”

if h1 and h2 define the same element of Ext(SC ; A,SB) – with C ⊆ CP(A,B)

generated by h0.

Above and below should be solved now at the end of Chapter 8 !!!

It is also not clear how to produce an asymptotic homotopy between k ⊕ h0

and h0 if there is strictly continuous path of unitaries t ∈ [0,∞) 7→ U(t) ∈ M(B)

with U(0) = 1 and

t ∈ [0,∞)→ U(t)∗(k ⊕H0(a))U(t)−H0(a) ∈ B ,

(where H0 := δ∞ ◦ h0 = h0 ⊕ h0 ⊕ · · · ) and

lim
t→∞

‖U(t)∗(k ⊕H0(a))U(t)−H0(a)‖ = 0 .

But please without (sic !) using the decomposition argument (DC) that we

prove in Section 5 of Chapter 8, because this proves anyway the full Theorem 4.4.6

in Chapter 4, and factorize through the whole – most abstract – study of C-related

KK-theory in Chapter 8 to get the general (unrestricted) homotopy invariance of

all this functors. It is a generalization of non-trivial observation of G. Kasparov

(plus arguments of J. Cuntz and G. Skandalis).

But above needs the still not proven facts that KK(C ; A,B) is homotopy in-

variant with respect to B, and that it is isomorphic to the kernel of

K1

(
πB(HC(A))′ ∩Qs(B)

)
→ K1

(
Qs(B)

)
.

If one wants to conclude as in [442] then one needs as an additional information,

e.g. the homotopy invariance of the Rørdam groups – a very special case of unsus-

pended but stable ideal-equivariant E-theory introduced and studied in Chapters 7

and 9.

But need also that the kernel of R-groups to KK

is E-homotopy equivalent of h0. ?????

But there is then needed an extra condition, ????? related to Kasparov’s argu-

ments ????, for the homotopy invariance of the groups KK(C; ·, ·) and Ext(C; ·, ·).

But finally the classification is given by a generalized Kasparov theory. In

particular, A⊗O2
∼= B ⊗O2 if A and B are separable stable nuclear C *-algebras

and have topologically isomorphic primitive ideal spaces.

Certainly, there is the still open question about the explicit calculation of our

“generalized KK-invariants” given by

KKnuc(X; ·, ·) := KK(CX ; ·, ·)

for the m.o.c. cone CX := CPXnuc of the X-equivariant residually nuclear c.p. maps,

i.e., nuclear maps that are residually nuclear with respect to a given “action” of

X. Notice that this is the open Question (Q2) in the special case where X is a
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point. But one can define generalizations of the UCT-class, e.g. with help of the

“tautological” epimorphism and the 6-term exact sequence, cf. the proof of Theorem

O in Chapter 12 for some simple example. Again, the non-trivial question is, which

nuclear C *-algebras are in this class.

Compare Theorem O for an example of some related difficulties in question.

Now for applications of the classification the most natural question is:

When does a separable nuclear C *-algebra A absorb O∞ tensorial, i.e., when

A ⊗ O∞ ∼= A ? (If such an isomorphism exist then there exists an other that is

moreover an ideal-system preserving *-isomorphism.)

There are several necessary and sufficient conditions for A absorbing O∞. We

show – finally at the end of Chapter 10 and independently from the classification

results and only from general properties of strong pure infiniteness and from the

observation that O∞ ∼= D∞ := O∞⊗O∞⊗· · · by an isomorphism that is unitarily

homotopic to the embedding a ∈ O∞ 7→ a⊗1⊗· · · ∈ D∞ –, that a separable nuclear

A is isomorphic to A⊗O∞ if and only if A is “strongly” purely infinite in the sense

of the below given Definition 1.2.2 (24). The following definition is essentially the

same as [462, def. 4.1].

Definition 1.2.1. We call a C *-algebra A purely infinite if A has following

properties (i) and (ii):

(i) A has no character, i.e., every irreducible representation of A has dimension

> 1, and

(ii) For every a ∈ A+ and every positive c in the closed ideal generated by a, and

every ε > 0, there exists an element d := d(a, c, ε) ∈ A such that

‖ c − d∗ad ‖ < ε . (2.1)

([462, def. 2.3] is a Defination of MvN-equivalence, with reference to G.K.

Pedersen [621] that it is an equivalence relation on A+.)

A C *-algebra A is p.i. if and only if A has the – formally stronger – property

that every nonzero c ∈ A+ is properly infinite, cf. [462, lem. 4.2], or Corollary 2.5.6.

To be checked: or more directly:

because an element a ∈ A is properly infinite in A, if and only if, πJ(a) is

infinite in A/J for every closed ideal J /A with a 6∈ J , cf. Part (v) of Lemma 2.5.3,

and since properties (i) and (ii) of the definition pass to πJ(a) for all quotients A/J

of A with closed ideals J 63 a .

Implies ????

Definition 1.2.1 has not much to do with that for “pi-1” or “pi(1)” because Def.

1.2.1 includes simplicity ????

24 In the case of stable or unital A we get this also from Theorem M in the same way as we

can deduce A ∼= A⊗O∞ from Theorem B in the case of pi-sun algebras A.
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NO! So as it is now, it is exactly the same as pi(1) (up to that it is not required

that `∞(A) has no character!! But this can be shown in this case, because pi(1)

and pi-1 are equivalent properties.

It is still an open question – also for separable nuclear non-simple C *-algebras

A – if purely infinite C *-algebras are “strongly” purely infinite in sense of the

following Definition 1.2.2. Our ideal-system equivariant KK(X; ·, ·)-classification

works only for separable nuclear C *-algebras that are “strongly” purely infinite

C *-algebras in the sense of the following Definition 1.2.2.

Definition 1.2.2. The non-zero C *-algebra A is strongly purely infinite if

A satisfies the following condition:

For every a, b ∈ A+ and ε > 0 there exist elements d := d(ε, a, b), e := e(ε, a, b) ∈ A
such that

‖ a2 − d∗a2d ‖ < ε , ‖b2 − e∗b2e‖ < ε and ‖d∗abe‖ < ε . (2.2)

(We abridge ‘purely infinite’ by ‘p.i.’ and ‘strongly purely infinite’ by ‘s.p.i.’)

It is easy to see that every non-zero strongly p.i. algebra is a purely infinite C *-

algebras in sense of Definition 1.2.1, indeed: Let a := b := c1/2 in Definition 1.2.2

for c ∈ A+, then Definition 1.2.2 shows that each non-zero c ∈ A+ is a properly

infinite element of A in the sense of [462, def. 3.2], cf. also Section 1 of Chapter 2.

If we use the isomorphism of C and C ⊗ O∞ ⊗ O∞ · · · , then we can see that

A := B⊗C is strongly p.i. for every (simple) pi-sun algebra C and every (non-zero)

C *-algebra B. We show moreover that A := B⊗Z is s.p.i. if A (2-quasi-) traceless

and Z denotes the Jiang-Su algebra, cf. also [690] in case of exact B.

If a C *-algebra A has the WvN-property of Definition 1.2.3, then A has the

property that for every self-adjoint h∗ = h ∈M(A⊗K)ω there is a *-monomorphism

λh : C∗(h)⊗O∞ →M(A⊗K)ω with λ(h⊗1) = h. The latter implies thatM(A) is

purely infinite. (It is still an open question if the pure infiniteness ofM(A) implies

that A is strongly p.i., except some special cases as

e.g. ??? Even in case that ???? .)

M. Rørdam and the author have shown in [463] that strongly purely infinite

C *-algebras have the WvN-property, see Remarks 2.15.12 and 3.11.4 in Chapters

2 and 3 for an outline of the proof (including correction of typos in [463]).

It is still an open question, whether or not p.i. (or at least the existence of

the above described *-monomorphisms λh in sufficiently general position) implies

“strongly” p.i. in general.

By [93, thm.4.17], a sufficient condition for A being strongly p.i. is that every

non-zero quotient A/J of A is p.i. in the sense of the definition of J. Cuntz [172,

p. 186] (cf. Introduction to Chapter 2 and compare also [169, thm. 1.13, thm. 1.4]

in the special cases of A = On for n = 2, . . . ,∞), i.e., for every closed ideal J ⊆ A

holds that every non-zero hereditary C *-subalgebra D of A/J contains a (non-zero)

properly infinite projection p ∈ D.
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In particular, if A has real rank zero, then A is strongly p.i., if and only if, each

projection of A is infinite.

The algebra C0((0, 1],O2) is strongly p.i. but is not purely infinite in the sense

of J. Cuntz. The unitization of O2 ⊗K has real rank zero and is purely infinite in

the sense of J. Cuntz but is not p.i. in the sense of our Definition.

We list the needed results on purely infinite and strongly purely infinite non-

simple C *-algebras in Chapters 2 and 3 and outline the ideas for their proofs.

This results are mainly joint work with M. Rørdam and E. Blanchard and we refer

sometimes for details of the proofs to [462], [463] and [93].

Begin of discussion of ‘‘WvN-property’’:

1) Has to be revised at several places.

2) Sort mentioned results for chapters, and formulate them there.

3) Where are Defs. of: ‘‘residually nuclear maps’’ ?.

In case of A ⊆ B and V : A → B residually nuclear c.p. contraction

?.

V is ‘‘1-step approximately inner’’ c.f. Definition 3.10.1? Not a

good place!

We prefer to work in this book with the WvN-property of the following Defi-

nition 1.2.3 and, sometimes, even with additional assumptions as listed in Remark

3.11.1, because the WvN-property is, in a conceptional sense, a starting point for

most of the proofs, and the strong pure infiniteness is a basic property for all of our

constructions and its applications. It turns out in Chapter 12 as a result of ideal-

system equivariant KK(X; ·, ·)-classification that this two properties are equivalent.

Definition 1.2.3. A C *-algebra B has the Weyl–von-Neumann property

– in short WvN-property – if for every σ-unital hereditary C *-subalgebraD ⊆ B and

every C *-subalgebra C of the multiplier algebraM(D⊗K) ofD⊗K, every residually

nuclear completely positive contraction V : C → D ⊗ K can be approximated in

point-norm by maps C 3 c 7→ d∗cd with contractions d ∈ D ⊗K ( 25 ).

We say that a C *-algebra B has residually nuclear separation if, for every

separable C *-subalgebra C ⊆ B, every a ∈ C+ and every ε > 0, there exists a

residually nuclear contraction V : C → B such that ‖V (a)− a‖ < ε.

Notice that we can modify the residually nuclear contraction V : C → B in

Definition 1.2.3 that it has in addition the property V (C) ⊆ CBC.

Next should be part of a Proposition/ Theorem -- to be cited

The WvN-property implies that B is purely infinite in the sense of Definition

1.2.1, that equivalently says that all elements of B+ are properly infinite in B, i.e.,

25 It implies that the c.p.c. V is “1-step approximately inner” in the sense of Definition 3.10.1.
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B satisfies the equivalent properties pi(1) of Definition 2.0.4 and pi-1 of Definition

??, cf. also [462, def. 3.2, def. 4.1, thm. 4.16].

Give ref.s/not.cite for def.s and proofs

Shift details to other places?!!

Moreover the WvN-property implies that for every separable C *-subalgebra

D ⊆ B with the property that the inclusion map ιD : d→ d is nuclear (which implies

automatically thatD is exact), there is a C *-morphism h : (D⊗K)⊗O∞ → (B⊗K)ω

such that h((d ⊗ k) ⊗ 1) = d ⊗ k for d ∈ D, k ∈ K under the natural inclusion

B ⊗K ⊂ (B ⊗K)ω of B ⊗K into the ultrapower (B ⊗K)ω. (26).

Indeed, let C := D ⊗ K, s1, s2 ∈ M(D ⊗ K) isometries with s∗jsk = δj,k1 the

map c 7→ s1cs
∗
1 + s2cs

∗
2 is residually nuclear, thus is 1-step approximately inner in

B ⊗K if B has the WvN-property.

And it shows that each element of (B ⊗ K)+ is properly infinite if B has the

WvN-property.

It seems (! open question?) that the WvN property also implies

that

πB(D)′ ∩M(B)/B contains a unital copy of O∞.
Try to factorize the cone of D over `∞(B ⊗K)/c0(B ⊗K) ???

One can show (27) that a C *-algebra B is strongly p.i. if B has both of the

WvN-property and the residually nuclear separation property of Definition 1.2.3.

It is obvious that the WvN-property passes to hereditary C *-subalgebras and

is invariant under stabilization, hence is an invariant of Morita equivalence. The

definition of the WvN-property says only something that one can limit the algebras

C in the definition of the WvN-property to the case of separable C.

Moreover it is not difficult to see

BY DEFINITION ??

that B has the WvN-property if Bω has the WvN-property.

Clearly the identity map idB =: V on nuclear C *-algebras B defines residually

nuclear separation for each separable C *-subalgebra C of B. Thus, for nuclear

C *-algebras B the WvN-property and strong pure infiniteness are the same.

Studies of primitive ideal spaces of nuclear C *-algebras in combination with

[359] and [456] lead to the observation that all stable separable C *-algebras A have

the (formally) stronger property of Abelian factorization, which obviously implies

residually nuclear separation:

26 We define the ultrapower Aω of A by Aω := `∞(A)/cω(A) where ω ∈ γ(N) := β(N) \ N
is a point in the non-elementary part of the Stone-Čech compactification of N.

Other authors use the notation Aω for this algebra and then Aω for the central sequence algebra

A′ ∩Aω .
27 E.g. by ideas in the proof of [463, cor. 7.22] – that contains unfortunately some typos,

see Chapters 2/3?? for corrected versions.
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Definition 1.2.4. A stable separable C *-algebra A has the Abelian fac-

torization property if there exists a locally compact Polish space P and non-

degenerate *-monomorphisms h : C0(P,K) → M(A) and k : A → M(C0(P,K))

such that the “C *-correspondence” γ := M(h) ◦ k : A → M(A) (– a special kind

of Hilbert A-module with a left-sided action by A – ) has the property

J = γ−1M(A, J) for all J ∈ I(A) .

All simple stable C *-algebras A have Abelian factorization by the trivial reason

that one can take here for P := {p} a point, i.e., C0(P,K) = K and use that A⊗K ∼=
A if A is stable, h(T ) := 1⊗T ∈M(A⊗K) ∼=M(A) and let k : A→ L(`2) ∼=M(K)

any non-degenerate *-representation of A on `2.

It turns out that, if A has the Abelian factorization property, then the l.c. Polish

space P and h can be chosen always such that P is 1-dimensional ( 28 ).

Therefore strong pure infiniteness and the WvN-property ( ?????? ref? ) are

now known to be equivalent for all C *-algebras, because both have to be checked

only on suitable sufficiently large separable C *-subalgebras with one of this prop-

erties.

A proof of the Abelian factorization (see ??) Definition in all generality uses a

detailed study of the topology of second countable locally quasi-compact sober (=

“point-complete”) T0 spaces (that we call “Dini spaces”) and their “Dini functions”,

using the very last conclusions in Chapter 12. Therefore we have not included a

proof here in the book. And we avoid to use Abelian factorization here directly.

Instead we use methods that are still fairly elaborate but use formally weaker

assumptions than the “residual factorization property” of A, (cf. Definition 1.2.3).

But in the special case of separable exact C *-algebras, one can derive residu-

ally nuclear separation, defined in Definition 1.2.3 with help of Theorem K by the

following construction:

Use Theorem K with A⊗O2⊗K in place of both A and B and with the natural

“action” of Prim(A) = Prim(B) on A for the proof of residually nuclear separation

of separable exact A :

The resulting residually nuclear endomorphism h0 has the property that its

restrictions to commutative C *-subalgebras C of A approximately dominates the

inclusion map C ↪→ A in the sense of Definition 3.10.1. Thus, the point-norm

closed matricial operator-convex cone generated by h0 defines “residually nuclear

separation” for A as defined in Definition 1.2.3. This argument works so simple

only for separable exact C *-algebras A. And, unfortunately, needs ultra-power

constructions that we want not to bore the reader at the main parts of this books.

So we make sometimes additional assumptions that we all replace in Chapter 12

by embeddings into suitable separable C *-algebras in the ultrapower that have the

required properties. Then we observe that this what we can do in the ultrapower

28 But P is not something like a one-dimensional polyhedron. It is only some projective limit

of such polyhedra.
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“in one step” can be done approximately in the given algebra itself. Such a “fitting

together” and approximation arguments in the earlier chapters can be applied to

all studied cases in a controlled way.

Alternatively, mone can use a deeper result for separable exact C *-algebras

A: It says that A ⊗ O2 contains a regular Abelian C *-subalgebra C in the sense

of Definition B.4.1. It implies that A has Abelian separation (in sense of: give

reference here!) and follows also from Corollary 12.3.1 and applications of Theorem

K and Corollary L in the remark following Corollary 12.3.1, and the corresponding

result for nuclear C *-algebras in [464] and [359]. But we should not get lazy and

put non-trivial stuff simply in the assumptions: Applicability or Non-applicability

depends mainly from the difficulty to observe the assumptions of some derived

useful applications and conclusions (in the theorems). The study of assumptions

and its interrelations, weaker properties and inducing properties is what a result

makes a true invention.

Thus, we get finally that an exact C*-algebra A is strongly p.i., if and only if,

A has the WvN-property. But we can not use this simple (but not obvious) identity

of two properties before the very end of Chapter 12!

But the reader should not forget that one first has to give a proof of Theo-

rem K to get a base e.g. for the deduction of the permanently used and needed

WvN-property, that we must derive from strong pure infiniteness to reach our ap-

plications.

We go along an alternative way as follows:

A C *-algebra B is s.p.i. if and only if its ultra-power Bω is s.p.i., cf. Proposition

2.16.8. A C *-algebra B is weakly purely infinite if and only its ultra-power Bω has

“residually nuclear separation” in the sense of Definition 1.2.3 (and in a very “local”

way), see also [463, prop. 7.13] ( 29 ).

Next should be a Prop./Thm. in Chp.3 ?? Which section?

More precisely:

If B is weakly purely infinite (i.e., B is n-pi for some n ∈ N) and A ⊆ Bω is a

separable C *-subalgebra of Bω, C ⊆ A an Abelian C *-subalgebra of A then there

exists a separable C *-subalgebra D ⊆ Bω, an Abelian C *-subalgebra C1 ⊆ D and

a conditional expectation E : D → C1 such that A ⊆ D, C ⊆ C1, and E(D ∩ J) ⊆
C1 ∩ J for each closed ideal of J / Bω.

Moreover, one can find such a system (D,E : D → C1 ⊂ D,D) for each given

separable A ⊂ Bω with this properties and with the additional property that E

is an – inside D – approximately inner c.p. map. In particular, C1 is a “regular”

C *-subalgebra of D.

29 This property of Bω is “natural” because B is completely characterless – i.e., no σ-unital

hereditary C *-algebra of Bω has a non-zero character – if B weakly p.i.
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Conversely, if Bω has no irreducible representations that contain the compact

operators in its image, and if in Bω such systems (D,E : D → C1) exists for each

given C ⊆ A ⊂ Bω, then B is weakly purely infinite.

Since B is strongly p.i. if and only if Bω is strongly p.i., it follows that Bω has

the WvN-property if B is strongly p.i.

In this way we obtain that a C*-algebra A is s.p.i. in the sense of Definition

1.2.2, if and only if, Aω has the WvN-property of Definition 1.2.3.

That the WvN-property of Aω induces the WvN-property of A, can be shown

also directly from the definition of the WvN-property. ???? Really ???? Idea

forgotten? ??

Thus, every s.p.i. C*-algebra A has the WvN-property.

The converse direction – that the WvN-property of A implies that A is s.p.i.–

is for the final proofs of theTheorems ?? and ????? important. ????

We need “nuclear separation” to establish the realizations of actions Ψ by the

related cones CΨ of Ψ-equivariant residually nuclear maps.

Which proofs use “nuclear separation” and where is it defined?

Chp.2: residual nuclear separation and WvN-property imply strong p.i.

But for simple C *-algebras there are many formally weaker – but for them

equivalent – properties.

Chp.3: residually nuclear maps build the “minimal” ideal system invariant cone

(the later needed property is that this cone is non-degenerate for separable stable

C *-algebras).

Chp.6: “nuclear separation” is – needed / required – to proof the “embedding

theorem” (give references to def’s and theorems !!!)

(Starting alone from any non-degenerate l.s.c. action of Prim(B) on separable

exact A that is monotone upper s.c., it can be proved only fully after one has proven

with help of this special case in chp.12 that the nuclear separation of the action

can be proved with help of results in Chp. 7, 9 and 12).

Chp.12: // B separable and B stable, σ-unital, and B ⊗ O∞ ∼= B, show

existence of separable stable C *-subalgebras D with B ⊆ D ⊂ Q(R+, B), D stable,

σ-unital, and D ⊗ O∞ ∼= D, with a regular Abelian subalgebra C (that separates

the ideals of D).

Then finding for A :=??? c.p. maps V : A→ C ⊂ D (that realize the action of

Prim(B) = piB(Prim(Q(R+, B))) on A and with their help a nuclear embedding

k1 : A⊗O2 → D suitable (existing by the main embedding theorem) and realizing

the action of Prim(D) on A. But h1 := k1((·)⊗1) is re-scaling invariant by Chapter

7. Thus, unitary equivalent to a “defining” nuclear embedding A→ O2 → B⊗O∞.

In particular this implies that the given action of Prim(B) on A has nuclear

separation.
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This argument works only for separable exact C *-algebras. Because for non-

separable or non-exact C *-algebras there does not exist an “embedding theorem”.

(Into O2 ?)

The WvN-property of A implies always that A is p.i.

Since WvN-property implies p.i., it is also part (??) of the open problem if p.i.

implies s.p.i.

It is unknown if p.i. implies s.p.i.

It is not unlikely that an elementary observation exists that shows that A with

WvN-property is always s.p.i.

The results of this book allow to proof that for all separable stable A the natural

action of X := Prim(A) on A – given by the natural isomorphism OX ∼= I(A) – has

“residually nuclear” separation (i.e., this action is “induced” from the m.o.c. cone

CPrn(A,A) of residually nuclear maps from A to A), but to carry the proof out one

needs the possibly stronger – and not in this book proved – “Abelian separation”

property for separable C *-algebras.

important???// This can be used for ????????

The QUESTION is/was:

Is there a simple way to derive directly

for separable *-algebras A from WvN-property of A

the STRONG pure infiniteness of A?

Or, -- equivalently -- from WvN-property of A

the WvN-property of Aω.

The residual nuclear separation follows in case of separable exact C *-algebras

from Corollary L, it implies directly that every separable exact C *-algebra A has

the stronger property that A⊗O2 contains a “regular” Abelian C *-subalgebra that

separates the ideals of A.

The existence of a regular Abelian C *-subalgebra implies in particular the

existence of an “Abelian factorization” for A⊗K, which is (formally) stronger than

“residually nuclear separation”.

A more easy way to prove that the WvN-property implies strong pure infinite-

ness is not in sight yet.

Despite the rather involved result of existence of “Abelian factorization” it

remains the more special and interesting question, whether A ⊗ O2 contains a

regular Abelian C *-subalgebra in the sense of Definition B.4.1 for every separable

C *-algebra A. By Corollary 12.3.1 and [464, thm. 6.11] the latter is the case, if

and only if, A⊗O2 contains a regular exact C *-subalgebra.

End discussion of ‘‘WvN-property’’. Still not well explained !

In special cases we obtain that “p.i.” implies “strongly p.i.”, e.g., for algebras

of real rank zero, for algebras with Hausdorff primitive ideal space, or for separable
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C *-algebras with linearly ordered lattice of closed ideals. In particular, all simple

purely infinite algebras are strongly purely infinite.

Why we consider different definitions of pure infiniteness?

One can only work with the property of strong pure infiniteness, but the others

are usually easier to verify. We can then try to check additional properties of the

studied algebras that allow to conclude strong pure infiniteness e.g. from (1-) pure

infiniteness. But this is also an open problem for separable nuclear C *-algebras B.

There are only some sufficient conditions as e.g. B has Hausdorff primitive ideal

space,

(of finite dimension ?),

I(B) is linearly ordered ideal lattice, and to “s.p.i.” equivalent properties, as

e.g. B ∼= B⊗O∞ if B is nuclear. Simple and exact strongly purely infinite separable

C *-algebras B do not absorb O∞ tensorial in general, as e.g. the example of the

(strongly) purely infinite algebra B := C∗reg(F2) ⊗ R shows, where R is the finite

but not stably finite simple nuclear C *-algebra of M. Rørdam [687] and C∗reg(F2)

is the (exact) regular group C *-algebra of C∗reg(F2). M. Rørdam itself denoted

his algebra R by W.

At first we give some definitions concerning non-Hausdorff spaces, which are

needed for suitable generalizations of the main results for simple p.i. algebras to

non-simple p.i. algebras.

Definition 1.2.5. A topological T0-space X is sober if every prime closed

subset of X is the closure of a point ( 30 ).

Here a closed subset F ⊆ X is prime, if F is not the union F1 ∩ F2 of two

closed subsets F1, F2 of F that are both different from F .

Since, by results of J. Dixmier

citation? See also book of Pedersen ...

for a separable C *-algebras A, closed prime ideals of A are primitive, the

primitive ideal space Prim(A) of a separable C *-algebra is a “sober” T0-space (we

call it “point-complete”) with a countable base of its topology. The countable

base can be described by the supports of the lower semi-continuous functions J ∈
Prim(A) 7→ ‖πJ(bn,k)‖, where bn,k = (an− 1/k)+ for a sequence a1, a2, . . . which is

dense in {a ∈ A+ : ‖a‖ = 1} and n, k ∈ N.

In 2001 N. Weaver [815] published an example of non-separable prime C *-

algebras that is not non-primitive. Later T. Katsura [411] constructed examples

of non-separable AF-algebras that are prime but not non-primitive.

30It is also called point-complete or tidy. Sober l.c. T0-spaces are sometimes also called

spectral space , but some authors define spectral spaces as point-complete T0-spaces that have a

base of the topology consisting of compact open subsets.
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But it seems that one needs some set theory axiom that is

stronger than the Axiom of choice?

But weaker than the Continuum Hypothesis??

Definition 1.2.6. Let X be a sober T0-space that is second countable, i.e.,

has a topology with a countable base.

We say that X acts on a C *-algebra A, if there is given a monotone map

Ψ from the lattice O(X) of open subsets Z of X to the closed ideals I(A) of a

C *-algebra A with Ψ(∅) = 0 and Ψ(X) = A .

The action Ψ of X on A will be called upper semi-continuous , if, moreover,

(i) Ψ(Z1 ∪Z2) = Ψ(Z1) + Ψ(Z2) for every pair of open subsets Z1 and Z2 of

X, and

(ii) Ψ(
⋃
Zn) is the closure of

⋃
Ψ(Zn) if Z1 ⊆ Z2 ⊆ · · · is an increasing

sequence of open subsets of X, i.e., Ψ is monotone.

The action Ψ is called lower semi-continuous if (instead of (i) and (ii)):

(iii) Ψ(Z1 ∩ Z2) = Ψ(Z1) ∩Ψ(Z2) for every pair of open subsets Z1 and Z2 of

X, and

(iv) Ψ(K) =
⋂

Ψ(Zn), where K is the interior of
⋂
Zn in X, if Z1 ⊃ Z2 ⊃ · · ·

is a decreasing sequence of open subsets of X.

If the monotone map Ψ satisfies (i)–(iv), then we say that X acts on A con-

tinuously. (Or: Ψ is continuous).

It is monotone continuous if it satisfies only (ii)–(iv).

An example of a continuous action is the action of Y := Prim(A) on A given

by the one-to-one correspondence between the open subsets of Prim(A) and closed

ideals I(A) of A:

Z ∈ O(Y ) 7→ ΨA(Z) :=
⋂
{J : J ∈ Prim(A) \ Z} .

Note that ΨA(∅) = 0 and that here we define ΨA(Y ) := A.

If nothing is said about an action of Prim(A) on A, then this natural corre-

spondence is used.

Therefore, the monotonous maps Ψ from X to the closed ideals of A are in

one-to-one correspondence to the monotonous maps from the open subsets of X

into the open subsets of the primitive ideal space Y = Prim(A) of A.

Check cite of Fell60 [296]!

By [559] and [296], if A is separable, then I(A) is naturally order anti-

isomorphic (respectively the family F(Prim(A)) of closed subsets of Prim(A) is order

isomorphic) to a closed subset ZA of the Hilbert cube [0, 1]∞ with the coordinate-

wise order: Take the map

J ∈ I(A) 7→ (‖πJ(cn)‖)∞n=1,
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where c1, c2, . . . is a dense sequence in {a ∈ A+ : ‖a‖ = 1}. The induced Haus-

dorff topology on F(Prim(A)) is the Fell-Vietoris topology. The one-to-one map

F ∈ F(Prim(A)) 7→ Prim(A) \ F ∈ O(Prim(A)) ∼= I(A) defines on O(Prim(A)) a

topology that is equal to the so-called Lawson topology.

Since the Dini-functions ϕ : X → [0, 1] on the Dini spaces X

(= point-complete second countable l.c. T0-spaces)

are naturally related to the ‘‘way-below’’ (= ‘‘well-below’’)

continuous monotone functions on

the continuous lattice O(X) into [−∞,∞]

if we take e.g. the strictly order-monotone homeomorphism

ψ : t ∈ [0, 1] 7→ [−∞,+∞] given by ψ(t) := tan(π(t− 1/2)).

Countably generated Continuous lattices Ω are in 1-1-correspondence

with O(X) with -- up to homeomorphisms unique -- Dini space X.

There is a Theorem in lattice theory that gives the same embedding

in a different formulation (Graetzer [332], Lattice Theory , Thm.

47 (of Larson),

see also [321, thm. IV-3.20].

The set ZA ∼= I(A) contains zero (0, 0, . . .) ↔ A and ZA is preserved under

forming of component-wise maxima: If α, β ∈ ZA, then max(α, β) ∈ ZA. The

points of Prim(A) can be found by considering the prime elements of ZA with

respect to the continuous “multiplication” given by (α, β) 7→ max(α, β) .

If we identify Prim(A) with this subset of prime elements in ZA ∼= I(A), then

the closure of a set S in Prim(A) ⊆ ZA is given by the hull-kernel operation

hk(S) := {α ∈ Prim(A) : α ≤ maxS} .

A simple set-theoretical argument shows, that, for second countable sober

(point-complete) T0-spaces X, the above defined upper semicontinuity of a faithful

and monotonous map Ψ: O(X)→ I(A) which satisfies moreover (iii) and the non-

degeneracy Ψ(∅) = 0 and Ψ(X) = A, is equivalent to the existence of a (unique)

continuous map p from Prim(A) into X such that Ψ(Z) is the ideal corresponding

to p−1(Z).

If Ψ is given by p−1, then properties (i)–(iii), Ψ(X) = A and Ψ(∅) = 0 hold.

The action Ψ is faithful, if and only if, p(Prim(A))∩(U \V ) 6= ∅ for all open subsets

V ⊂ U ⊆ X with V 6= U . Then, furthermore, (iv) holds for Ψ, if and only if, p is

“pseudo-open” (which is the same as “open” only if X is Hausdorff, see [359] for

details).

Let us consider the special case where X is a locally compact Hausdorff space

and Ψ is faithful and satisfies (i)–(iii) and Ψ(∅) = 0, Ψ(X) = A. By Dauns-Hofmann

theorem ([402, exercise 10.5.84], [616, cor. 4.4.8]) one gets that there is a unique

C *-morphism α from C0(X) into the center ofM(A) such that Ψ(Z) = α(C0(Z))A
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for every open subset Z of X. It is then easy to see, that A is C *-bundle with

base space X in the sense of [471] (31), if and only if, Ψ is non-degenerate and

satisfies conditions (i)–(iv). Thus, the faithful continuous actions of locally compact

Hausdorff spaces X on a C *-algebra A are in natural one-to-one correspondence to

the structures of C *-bundles on A in the sense of [471]. It says that our general

theory contains those results for C*-algebra bundles.

In the case of continuous bundles, E. Blanchard [89] has found a special case

of the below given “trivialization” Theorem K. The remaining points are, to give

necessary and sufficient conditions on the bundle under which it is exact (this was

done in [471]), and to give other conditions under which it is (strongly) purely

infinite. See Chapter 2 for partial answers and related problems.

A C *-algebra B defines on its multiplier algebra M(B) or, more generally,

on the C *-algebra L(E) of B-linear operators with bounded adjoints on a Hilbert

B-module E, an action Ψup of X = O(Prim(B)) ∼= I(B) as follows:

Ψup : J ∈ I(B) 7→ M(E, J) ∈ I(L(E))

whereM(E, J) := {T ∈ L(E) ; TE ⊂ EJ} . In the case where E = B (considered

as left B-module), we haveM(B) = L(E) andM(B, J) is the kernel of the natural

C *-morphism M(B) → M(B/J). Ψup satisfies (i), (iii) and (iv) if B is σ-unital

and E is countably generated over B. But Ψup does not satisfy (ii) in general,

e.g. in the case B = c0 ⊗ K. If λ is an isometric B-module isomorphism from E1

onto E2, then λ(M(E1, J)) =M(E2, J) for every closed ideal J of B.

How could the realization of a given action of Prim(B) on A look like?

Above we have defined the action Ψup : I(B)→ I(M(B)) . In a more general

setting we have:

Definition 1.2.7. Let A ⊆M(B). One has two natural maps ΨA,B
down and Ψup

B,A

from the open subsets O(Prim(A)) ∼= I(A) of Prim(A) into I(B) (respectively from

O(Prim(B)) ∼= I(B) into I(A)), given by:

ΨA,B
down : K ∈ I(A) 7→ BKB ∈ I(B) ,

respectively by

Ψup
B,A : J ∈ I(B) 7→ A ∩M(B, J) ∈ I(A) .

Here BKB means the closure of the linear span of elements bac, where a ∈ K,

b, c ∈ B

The corresponding actions of Prim(A) on B and of Prim(B) on A are increasing

maps, the one corresponding to ΨA,B
down satisfies (i) and (ii) (but it is in general not

faithful and has neither (iii) nor (iv)), and the one corresponding to Ψup
B,A fulfills

(iii) and (iv) (but it is in general not faithful and has neither property (i) nor (ii)).

31 I.e., A is the C *-algebra of continuous sections in a continuous field of C *-algebras

{Ax}x∈X , equipped with its C0(X)-module structure.
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If A ⊆M(B) satisfies A∩ (I+J) = A∩ I+A∩J for all closed ideals I, J ofM(B)

and if B is σ-unital, then Ψup
B,A satisfies (i).

In view of Theorem K, it is important that Ψup
B,A satisfies (ii) if A ⊆ B.

There are examples which show that

J ∈ I(B) 7→ M(B, J) +B ∈ I(M(B)/B)

is in general neither lower semi-continuous nor upper semi-continuous, but satisfies

(i) and (iii) if B is σ-unital. This causes a striking technical difficulty for proofs of

generalized Weyl-von Neumann-Voiculescu theorems, cf. Chapter 5.

The results and methods of this monograph allow to prove

(but not here in this book because it requires in detail several

another hundert pages)

that each separable stable C *-algebra A has

‘‘Abelian factorization’’.

This implies a proof of the n.c. Michael selection Conj.

and a proof that the MvN-property implies strong pure infiniteness

It remains the question if, for every separable C *-algebra A,

the O2-stabilization A⊗O2 contains a

‘‘regular abelian C *-algebra’’ C in sense of Definition 1.2.9

The non-commutative Michael selection Conjecture 12.3.2 says that for separa-

ble stable C *-algebras A and B and lower semi-continuous actions Ψ: I(B)→ I(A)

of Prim(B) on A there is a C *-morphism h : A→M(B) such that Ψ = h−1Ψup
B,h(A),

i.e., that Ψ(J) = h−1M(B, J) for J ∈ I(B). Moreover, h should be weakly Ψ-

residually nuclear in the sense of Definition 1.2.8. A proof of Conjecture 12.3.2

would imply that C *-algebras with WvN-property in Definition 1.2.3 are strongly

purely infinite, because Conjecture 12.3.2 implies the conjecture that every C *-

algebra has residually nuclear separation in sense of Definition 1.2.3.

Theorem 12.1.8 and the below stated Theorem K are partial results in the

direction of the non-commutative Michael selection Conjecture 12.3.2. Theorem

12.1.8 (and Proposition 12.2.15) will be used for the proof of Theorem K.

Definition 1.2.8. Suppose that X is a point-complete (also called “spectral”,

“sober” etc.) T0-space with a countable base of its topology. Let ΨA and ΨB

monotonous actions of X on C *-algebras A and B. A completely positive map

V : A → B is called Ψ-equivariant (or, more precisely, ΨA–ΨB-equivariant) if

V (ΨA(Z)) ⊆ ΨB(Z) for every open subset Z of X.

V is Ψ-residually nuclear (or, more precisely ΨA–ΨB-residually nuclear) if

it is Ψ-equivariant and the class maps [V ] : A/ΨA(Z) → B/ΨB(Z) are nuclear for

every open subset Z of X.

A completely positive map T from A into M(B) will be called weakly Ψ-

equivariant (respectively weakly Ψ-residually nuclear) if Vb := b∗T (·)b is Ψ-

equivariant (respectively is Ψ-residually nuclear) for every b ∈ B.
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We say that V is residually nuclear (respectively that T is weakly resid-

ually nuclear) in the special situation where X = Prim(B), A ⊆ M(B), ΨB is

natural (i.e., ΨB := idI(B)), ΨA = Ψup
B,A and V is Ψ-residually nuclear (respectively

T is weakly Ψ-residually nuclear).

If A is exact, then V is Ψ-residually nuclear if V is Ψ-equivariant and is nuclear.

But this is not true for arbitrary separable A (and arbitrary actions). If A ⊆ B

and V : A→ B

In Chapter 12 we finish the proof of the following embedding (or “sub-

triviality”) Theorem K which generalizes Theorem A and E. Blanchard’s sub-

triviality theorem for exact C *-algebra bundles in [89].

Theorem K (Embedding Theorem). Suppose that A and B are separable and

stable C*-algebras, such that A is exact and B is strongly purely infinite.

Let ΨA : O(X) ∼= I(B) → I(A) be a lower semi-continuous action of X :=

Prim(B) on A which satisfies the “monotone upper semi-continuity” condition (ii)

of Definition 1.2.6, together with the non-degeneracy condition

ΨA(B) = ΨA(X) = A and ΨA(∅) = 0 .

Then there exists a Ψ-residually nuclear *-monomorphism h : A⊗O2 ↪→ B such

that, for h0 := h((·)⊗ 1) and every closed ideal J of B,

h0(ΨA(J)) = J ∩ h0(A) .

Moreover, h0 is unitarily homotopic in the sense of Definition 5.0.1 to h0 ⊕ h0.

Every nuclear *-monomorphism h1 from A into B, which is unitarily homotopic

to h1⊕h1 and satisfies h1(ΨA(J)) = J∩h1(A) for J ∈ I(B), is unitarily homotopic

to h0.

If ΨA(J) = A always implies that J = B, then h can be found such that h0(A)B

is dense in B.

A part of the proof of this Embedding Theorem is given in Chapter 6. It uses an

additional assumption of a property of B: The existence of a “regular Abelian C *-

subalgebra” in B⊗O2 in sense of Definition 1.2.9. From this property we derive the

“Abelian factorization” property and the (for some arguments in our proof needed)

“minimal” assumption of the “residual nuclear separation” property of B that we

must require for the proof in Chapter 6. After that we can free the proof of the

embedding theorem from the extra assumption of existence of “residually nuclear

separation” by showing in Chapter 12 that we can find in the asymptotic corona

Q(R+, B) of B a separable strongly purely infinite subalgebra F that contains B,

contains a regular abelian C *-subalgebra and has a monotone continuous action and

upper s.c. action of I(A) on F that is compatible under rescaling automorphisms

of Q(R+, B). The uniqueness up to unitary equivalence of the embedding of A⊗O2

in Q(R+, B) gives that this is unitarily equivalent to an embedding from A⊗O2 in

B that fits into the given action of Prim(B) on A.
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The results of this book (all together) lead to a proof that any separable stable

C *-algebra B has an Abelian factorization. The existence of regular Abelian C *-

subalgebras in B⊗O2 follows for separable exact B from Corollary L given below.

But despite of the not in this book proven existence of “Abelian factorization”

for separable stable B, the Question about the existence of a regular Abelian C *-

subalgebra in C∗max(F∞) ⊗ O2 is still open. (If it exists, then B ⊗ O2 contains a

regular Abelian C *-subalgebra AB ⊆ B ⊗O2 for every separable C *-algebra B.)

Why that? Give reason here, or reference to reasons given on other places!

Definition 1.2.9. We call an Abelian C *-subalgebra C ⊆ B of a C *-algebra

B regular in B if

(i) (J + I) ∩ C = (J ∩ C) + (I ∩ C) for all I, J ∈ I(B), and

(ii) C separates the lattice of ideals of B, i.e., I ∩ C = J ∩ C implies I = J .

The additional assumption of the existence of a regular Abelian C *-subalgebra

C in B⊗O2 will be removed finally in Chapter 12 by showing that the asymptotic

corona Q(R+, B) contains a separable strongly purely infinite C *-subalgebra B1 ⊂
Q(R+, B) with the properties that B ⊂ B1 and that B1 ⊗ O2 contains a regular

Abelian C *-subalgebra C ⊂ B1 ⊗ O2. The action Ψ of Prim(B) on A can be

extended to an action Ψ1 of PrimB1 on A by letting Ψ1(K) := Ψ(K ∩ B) for

K ∈ I(B1). This extended action is invariant under “rescaling” (i.e., parameter

change).

The uniqueness of the Ψ-preserving nuclear *-monomorphisms from A⊗O2 in

Q(R+, B) up to unitary homotopy (cf. Chapters 5, 7 and 9) leads to a “constant”

nuclear embedding of A⊗O2 into B itself that realizes the action Ψ.

With other words, under the above assumptions on A, B and ΨA, the action ΨA

of Prim(B) on A can be realized as h−1
0 Ψup

B,h0(A) for some non-degenerate nuclear *-

monomorphism h0 : A→ B with h0⊕h0 unitarily homotopic to h0. Moreover, then

the nuclear *-monomorphism h0 is uniquely determined, up to unitary homotopy,

by ΨA and the property that h0 ⊕ h0 is unitarily homotopic to h0.

The existence and uniqueness of h0 up unitary homotopy immediately implies

the following Corollary L of Theorem K :

Corollary L. Suppose that A and B are separable stable nuclear C*-algebras

and that γ is a topological isomorphism from Prim(A) onto Prim(B).

Then there is a *-isomorphism ϕ from A⊗O2 onto B ⊗O2 that “realizes” γ ,

in the sense that ϕ(J ⊗O2) = γ(J)⊗O2 for primitive ideals J of A.

The isomorphism ϕ with this property is unique up to unitary homotopy.

MOVE TO PROOF of?

Notice, that the uniqueness up to unitary homotopy quoted in Corollary L is

an “elementary” fact because [ϕ1 ⊕ ϕ2] = [ϕk] in R(Prim(A); A⊗O2, B ⊗O2) for

k ∈ {1, 2} for any two γ-equivariant ϕ1, ϕ2.
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Another easy consequence of Theorem K is Corollary 12.3.1, that implies that

for every separable exact C*-algebra A there exists a unique separable stable nu-

clear C*-algebra B with the same primitive ideal space Prim(A) ∼= Prim(B) and

with B ∼= B ⊗O2.

Such an algebra B and the homeomorphism γ from Prim(A) onto Prim(B) are

unique up to algebraical and topological isomorphisms.

By Theorem K and with this properties the C *-algebra B is unique up to

isomorphisms that fix the given homeomorphism γ from Prim(B) onto Prim(A).

There are γ-equivariant non-degenerate C *-morphisms from B into A and from B

into A.

We are now going to use the Theorem K and the there defined h0 : A → B in

the same way as we have used above Theorem A to obtain Theorem B.

For that we need to generalize Kasparov’s RKKG(X; ·, ·) functor in some di-

rection.

Definition 1.2.10. Let X be a point-complete ( 32 ) T0-space with countable

basis, and suppose that ΨA and ΨB are monotonous actions of X on A and B.

By Hom(X; A,B) – or more precisely by Hom(Ψ; A,B) – we denote the Ψ-

equivariant C *-morphisms from A to B. If the multiplier algebra of B con-

tains a unital copy of O2, then the unitary equivalence classes [h] of elements

h ∈ Hom(X; A,B) are preserved under Cuntz addition and they constitute in a

natural way an abelian semigroup.

By Homnuc(X; A,B) we denote the Ψ-residually nuclear C *-morphisms.

We define a Ψ-equivariant Kasparov module as a Kasparov (A,B)-module

E = (E, φ, F ) (see e.g. Definition 8.2.1) which has the additional property that φ is

ΨA-Ψup ◦ΨB-equivariant. Or equivalently, for each e ∈ E, the completely positive

map

Ve : a ∈ A 7→ 〈φ(a)e, e〉 ∈ B

satisfies Ve(ΨA(U)) ⊆ ΨB(U) for all open subsets U ∈ O(X). The class of Ψ-

equivariant Kasparov (A,B)-modules is closed under direct sums of Kasparov mod-

ules and under unitary equivalence.

Let ∼scp denote the equivalence relation in the (A,B)-Kasparov modules given

by unitary isomorphisms and compact perturbations (of F , cf. Section 1 of Chapter

8). The equivalence classes build a commutative semigroup E(A,B)/ ∼scp, such

that KK(A,B) := Gr(E(A,B)/ ∼scp).

If (E1, φ1, F1) ∼scp (E, φ, F ) and (E, φ, F ) is Ψ-equivariant, then (E1, φ1, F1)

is so.

We define the Ψ-equivariant KK-group KK(X; A,B) as the Grothendieck

group of the sub-semigroup E(X; A,B)/ ∼scp of the ∼scp classes of Ψ-equivariant

32 Also called “spectral” or “sober”.
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(A,B)-Kasparov modules in E(A,B)/ ∼scp. The induced equivalence-relation on

the Ψ-equivariant (A,B)-Kasparov modules implies the equivalence ∼c of “cobor-

dism” or “homology” (but is build inside the semigroup of unitary equivalence

classes of Ψ-equivariant Kasparov modules, cf. Chapter 8).

Give precise references and def’s !!!

A Ψ-equivariant Kasparov module E = (E, φ, F ) is called Ψ-nuclear if for

every e ∈ E the completely positive map a 7→ 〈φ(a)e, e〉 from A to B is Ψ-residually

nuclear. If a Kasparov module is ∼scp equivalent to a Ψ-nuclear Kasparov module,

then it is itself Ψ-nuclear. The Ψ-nuclear ∼scp classes are closed (i.e. ”invariant”)

under direct sums and unitary equivalence.

Thus, the ∼scp equivalence classes of Ψ-nuclear Kasparov (A,B)-modules build

a sub-semigroup Enuc(X; A,B)/ ∼scp of the semigroup E(A,B)/ ∼scp of ∼scp
equivalence classes of Kasparov modules.

We define the Ψ-nuclear KK-group KKnuc(X; A,B) as the Grothendieck group

of the sub-semigroup Enuc(X; A,B)/ ∼scp of the semi-group E(A,B)/ ∼scp.

More generally, we consider in Chapters 8 and 9 the groups KK(C; A,B) :=

Gr(E(C; A,B)/ ∼scp) where C ⊆ CP(A,B) is a point-norm closed operator-convex

cone of completely positive maps, and E(C; A,B)/ ∼scp⊆ E(A,B)/ ∼scp denotes

the semigroup of ∼scp-equivalence classes of C-compatible Kasparov modules

(E, φ, F ) (i.e., of the modules with the property that for every e ∈ E the com-

pletely positive map a 7→ 〈φ(a)e, e〉 is in C). Notice that almost nothing is changed

in Kasparov’s theory except that we restrict the constructions to more special

classes of A-B-modules that produce automatically the desired equi-variances.

In this more systematic approach the old non-equivariant theory is still con-

tained and can be seen by considering KK(A,B) = KK(C; A,B) for C := CP(A,B),

and KK(X; A,B) = KK(C; A,B) for the m.o.c. cone C of with respect to O(X)-

action equivariant elements in CP(A,B) ...

An adaptation of the proofs in usual KK-theory shows that KK(X; ·, ·),
KKnuc(X; ·, ·) and the most general KK(C; A,B) behave analogously to KK:

There is a natural semigroup morphism

[h] ∈ [Hom(X; A,B)] 7→ [h− 0] := [Eh] ∈ KK(X; A,B),

for stable separable A and B, where the Kasparov B-module Eh is given by Eh :=

(B, h, 0) and [h] denotes the unitary equivalence classes by unitaries in M(B).

The usual KK-groups can be rediscovered from our general approach by

KK(A,B) = KK({point}; A,B) .

One can prove the existence of Kasparov products x ⊗B y ∈ KK(X; A,C) for

x ∈ KK(X; A,B) and y ∈ KK(X; B,C) in the same way as for ordinary KK-theory.

There is a natural bi-additive map

KK(X; A,B)×KK(C,D)→ KK(X; A⊗ C,B ⊗D),
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that is induced by tensor products of modules (if C and D are nuclear), where the

action of X on the tensor products, e.g. on A⊗ C, is given by

O(X) 3 Z 7→ ΨA(Z)⊗ C ∈ I(A⊗ C) .

If we fix X, then KK(X; A,B) is a bi-functor in the category of Ψ-equivariant

C *-morphisms. The bi-functor KK(X; ·, ·) is homotopy invariant for Ψ-equivariant

homotopy, has Bott periodicity in each variable, and has six-term exact sequences in

each variable on Ψ-equivariant (and Ψ-equivariant semi-split) short exact sequences

of separable algebras,

where we suppose that the actions Ψ of X on A and B satisfy some regularity

conditions expressed by the related m.o.c. cone C(X,ΨA,ΨB ;A,B).

Exactly which ‘‘regularity conditions’’,

Where mentioned?

If X is Hausdorff and the actions on A and B are continuous, then KK(X; A,B)

is the same as Kasparov’s RKKG(X; A,B) for the trivial group G = {e}, even if

differently defined.

The functor KKnuc(X; A,B) has similar properties, but KK(X; ·, ·)-equivalence

does not necessarily imply KKnuc(X; ·, ·)-equivalence. If A or B is nuclear, then

the natural morphism from KKnuc(X; A,B) into KK(X; A,B) is an isomorphism.

Consider e.g. X = {0, 1} with topology O(X) = {∅, {0}, {0, 1}}. Then the

elements of KK(X; A,B) give invariants for transformations between extension

0 → I → A → A/I → 0 into 0 → J → B → B/J → 0, if the Busby invariants of

the extensions dominate the zero representation (cf. Section 8 of Chapter 5).

We define in Chapter 5 weakly nuclear extension groups Extnuc(X; A,B) –

and more general Ext(C ; A,B) for countably generated operator convex cones

C ⊆ CP(A,B). The analog of Kasparov’s proof for the isomorphism Extnuc(A,SB)

and KKnuc(A,B) shows also that Extnuc(X; A,SB) is naturally isomorphic to

KKnuc(X; A,B), see Chapter 8.

If B is σ-unital and stable, then a kind of Weyl–von-Neumann–Voiculescu the-

orem for the class of weakly residually nuclear maps V : C ⊆M(B)→M(B) holds

if and only if B has the WvN-property of Definition 1.2.3.

Moreover, Bω (respectively Q(R+, B)) has the WvN-property, if and only if, B

is “strongly purely infinite” in the sense of Definition 1.2.2. Therefore all proofs,

mapping cone constructions and difference constructions carry over to this new

category, cf. Chapters 5, 7, 8 and the proofs of Theorems B and M in Chapter 9.

Now we make, for the next Theorem M, the following assumptions (1)-(3) on

A, B, N ⊆ B, X := Prim(N) and the actions of X on A and B :

(1) Suppose that A is separable, stable and exact, B is σ-unital, and N is a

strongly purely infinite separable stable C*-subalgebra of B such that NB

is dense in B.

(2) Let X := Prim(N), and let X act on B by ΨB := ΨN,B
down.
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(3) Further, suppose that X acts lower semi-continuously on A, such that,

moreover, ΨA(X) = A, ΨA(∅) = 0, ΨA(Z) = A implies Z = X, and such

that ΨA satisfies (ii) of Definition 1.2.6, i.e., the action ΨA of A on A is

non-degenerate and monotone continuous.

We can apply Theorem K to the action of Prim(N) on A, and get a non-

degenerate nuclear *-monomorphism h0 : A → N ⊆ B, such that h0 is unitarily

homotopic to h0 ⊕ h0, and h0(ΨA(J)) = h0(A) ∩ J for J ∈ I(N). Note, that h0 is

determined by this properties up to unitary homotopy as a nuclear C *-morphism

from A into N .

Is the following intermediate action not contained

in the general type of C- or Ψ-equivariant actions?

Theorem M. Suppose that A, B, N ⊆ B, X, and the actions ΨB, ΨA satisfy

the above assumptions (1)-(3).

Let h0 : A → N ⊆ B be the *-monomorphism given by Theorem K, let [h] ∈
[Homnuc(X; A,B)] denote the unitary equivalence class of h, and let [h − 0] ∈
KKnuc(X; A,B) be the difference construction for h ∈ Homnuc(X; A,B).

(i) The map

α : [Homnuc(X; A,B)] 3 [h] 7→ [h− 0] ∈ KKnuc(X; A,B)

is a semigroup epimorphism.

(ii) [h− 0] = [k − 0] in KKnuc(X; A,B) if and only if h⊕ h0 and k ⊕ h0 are

unitarily homotopic.

(iii) If, moreover, B is itself strongly purely infinite and ΨB is an isomorphism,

i.e., comes from an isomorphism of Prim(N) onto Prim(B), then h⊕ h0

is unitarily homotopic to h for every *-monomorphisms h : A ↪→ B which

satisfies h(ΨA(Z)) = h(A) ∩ΨB(Z) for open subsets Z ⊆ X.

Notice that ΨB is an isomorphism, if and only if, ΨB defines an isomorphism

of Prim(N) onto Prim(B) – and is defined by such an isomorphism.

The proof of Parts (i) and (ii) will be given together with the proof of Parts

(i) and (ii) of Theorem B. But we assume there the existence of the nuclear *-

monomorphism h : A⊗O2 ↪→ N with the properties listed in Theorem K for N (in

place of B). Theorem K will be proven independently in Chapter 12, based on a

partial result in Chapter 6. The important absorption result (iii) of Theorem M is

shown in Chapter 7.

KK(X; ·, ·) classifies all separable stable nuclear C *-algebras up to O∞-stable

isomorphisms by the following generalization of Corollary C.

Corollary N. Suppose that A and B are separable, stable and nuclear C*-

algebras, and that there is a topological isomorphism γ from Prim(A) onto Prim(B).

Let ΨB denote the continuous action of X := Prim(A) on B defined by γ.
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If z ∈ KK(X; A,B) is a KK(X; ·, ·)-equivalence between A and B, then there

is a Ψ-equivariant isomorphism ϕ from A⊗O∞ onto B ⊗O∞

It seems only true that there are X-equivariant *-monomorphisms

h : A → B and k : B → A such that k ◦ h is unitarily homotopic to idA

and h ◦ k is unitarily homotopic to idB such that [ϕ− 0] = z.

There is only one isomorphism ϕ with this property up to unitary homotopy.

The proof follows from Theorem M in the same way as the proof of Corollary

C follows from Theorem B (see the arguments above Corollary C).

As in the case of simple nuclear algebras, the C *-algebras A and B absorb O∞
tensorial if A and B are moreover strongly p.i.

BEGIN: discussion of homotopy invariance.

The example in detail should be moved to some suitable chapter.

It should be noted that homotopy invariance of the isomorphism classes of

strongly purely infinite separable stable nuclear C *-algebras does not follow, even

if we assume in addition that the ideal structure is preserved on the way of the ho-

motopy and can be “corrected” to an ideal system fixing path of full endomorphisms

by adding the non-degenerate “zero” endomorphism h0 to this path.

This can be illustrated transparently by separable nuclear s.p.i. algebras that

??????

For example, consider the half-open interval X0 := (0, 1]lsc with the “lower

semi-continuity”-describing T0-topology given by the intervals (r, 1] (r ∈ [0, 1))

and ∅ as open sets, see also [359, thm. 1.4].

By [559] (see also [689]), there is a canonical way to produce a separable nuclear

C *-algebra C with Prim(C) = X0 = (0, 1]lsc that is “locally purely infinite” in a

rather weak sense of Definition 2.0.3.

It implies by Corollary 2.6.6 that C is strongly p.i. , which implies C ∼= C⊗O∞
by Theorem ??.

There exist separable nuclear C *-algebras D with Prim(D) := (0, 1]lsc that are

not purely infinite. Since C is separable, purely infinite and has no unital quotient

it is stable. Thus, there is a unital copy of C∗(s1, s2) ∼= O2 in its multiplier algebra

M(C) . This shows C ∼= C ⊗ O∞ ∼= C ⊗ O∞ ⊗ K, and that there exists an ideal

system preserving non-degenerate *-monomorphism h0 : C⊗O2
∼= C⊗O2⊗K→ C,

by using a non-degenerate C *-morphism O2 ⊗K→ O∞ ⊗K .

Question: Are all approximate to id unitary equivalent isomorphisms of sepa-

rable K⊗A⊗O2 unitary homotopic to id?

Here the question could be how near the unitaries U∗nUn+1 of such approxi-

mate unitary equivalence defining unitaries can be taken to the unitary group

U(A⊗O2 + 1M(A) ⊗O2).

This group of isomorphisms is not studied well until yet.
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We can build the Cuntz sum idC ⊕s1,s2h0 : C → C that is unitarily homotopic

to idC because idC asymptotically dominates h0 by Corollary ??.

This unitary homotopy – in sense of Definition 5.0.1 – defines a point-norm

continuous path ψt : C → C with ψ0 = id and ψt(c) = u(t)∗cu(t) and ψ1(c) =

idC ⊕h0. Moreover, since C is σ-unital and stable, there is a norm-continuous path

of unitaries t ∈ [0, 1) 7→ u(t) ∈ M(C) such that limt→1 u(t)∗s2cs
∗
2u(t) = c for all

c ∈ C, i.e., idC and 0⊕s1,s2 idC are unitarily homotopic, in particular 0⊕s1,s2 h0 is

ideal system preserving homotopic to h0.

If we combine the above defined paths of endomorphisms then we find a *-

monomorphism from ϕ : C → C([0, 1], C) that is ideal system preserving, thus

defines an element of KK(Prim(C) ; C,C([0, 1], C)) and satisfies π0 ◦ ϕ = idC and

π1 ◦ϕ = h0. If we apply the above arguments in a bit more general situation (with

obvious generalization), we get the following corollary of the classification:

Corollary 1.2.11. If A is a separable nuclear strongly purely infinite C*-

algebra that admits a ideal system preserving zero homotopy, then A is stably iso-

morphic to A⊗O2 ⊗K, i.e., A⊗K ∼= A⊗O2 ⊗K.

It follows that the homeomorphism class of the primitive ideal space is the only

invariant of the isomorphism class of A⊗O2⊗K. And it is not difficult to see that

Prim(A) must by homeomorphic to (0, 1]lsc × Prim(A).

Indeed, let a1, a2, . . . a dense sequence in the positive contractions of A and

let b :=
∑
n 2−nan. Then, clearly, ‖πI(b)‖ ≤ ‖πJ(b)‖ for J ⊆ I. The equation

‖πI(b)‖ = ‖πJ(b)‖ implies that J = I.

Give a transparent proof:

The latter, because in case J 6= I (and J ⊂ I) there exists a pure state ρ on A

with ρ(J) = {0} but ρ(I) 6= {0} ...

(All non-empty open sets are prime and there is a countable sequence of open

subsets Vn of Prim(A) that build a base of the topology of Prim(A). If we take for

each of this a strictly positive contraction an ∈ Jn for the corresponding ideal and

let b :=
∑
n 2−1an. If ‖πJk(b)‖ = ‖πJ`(b)‖ and Jk ⊆ J` ...????

Check cite/ref and explain

A modification of the construction in ???

[816, ????] ?? ????

It seems not to be the right class

Perhaps Rørdam’s paper [689] seems to be nearer to the idea.

reference to his Israel J. Math. paper?

allows to construct C ∼= C ⊗ O∞ in a manner, that it has an explicit ideal-

preserving zero-homotopy, this is a C *-morphism γ : C → C((0, 1], C) with γt ∼=
πt ◦ γ : J(s, 1]→ J(ts, 1],

where we ?????????????? and ???????????
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Notice that J(t, 1] ⊂ J(s, 1] and
⋂
t∈(0,1] J(t, 1] = {0}, i.e., there is a point-norm

continuous path {γt ; t ∈ [0, 1]} of endomorphisms γt : C → C such that γ1 = id,

γ0 = 0 and γt(J) ⊆ J for every closed ideal J of C and every t ∈ [0, 1], cf. [464,

prop. 6.1].

Give the path explicit ?!!

Check cite !! ??

It follows that the (non-zero) strongly purely infinite algebra A := C ⊕ (O2⊗K)

is homotopic to B := O2 ⊗K in a Ψ-equivariant manner,

but the algebras have primitive ideal spaces that are not homotopic.

Check: Are Z := X0 ] {−1} with ‘‘open’’ {−1} and the space {−1}
NOT homotopic??

Let ψ(t)(s) := t · s and ψ(t)(−1) = −1.

Is each ψ(t) continuous on Z?

Is ψ(t) globally continuous?

Is X0 via ψ(t) homotopic to ∅?

Clearly, this phenomenon can not appear if A and B are replaced by simple

(p.i.) C *-algebras.

Now let, more generally, C an arbitrary strongly purely infinite stable separable

nuclear C *-algebra (in particular C ∼= C ⊗ O∞ ⊗ K), and let γt : C → C an ideal

system preserving homotopy between id and 0 (like in the special case above). Then

we can (Cuntz-)add to the morphisms γt the mono-morphism h0, and get that γt⊕
h0 : C → C defines a Ψ-equivariant homotopy from idC ⊕h0 to the monomorphism

0⊕h0. In this special case it is equivalent to the property that (γt⊕h0)(J) generates

J for each J ∈ I(C).

They must define the same element of KK(X; C,C) by homotopy invariance

of KK(X; ·, ·). Both satisfy the assumptions of Part (iii) of Theorem M. It follows,

that h0 : C → C is unitarily homotopic to idC , which implies that

C 3 c 7→ c⊗ 1 ∈ C ⊗O2

is an KK(X0, ·, ·)-equivalence. Thus, C 3 c 7→ c ⊗ 1 ∈ C ⊗ O2 is approximately

unitary equivalent to an isomorphism from C onto C ⊗O2. This shows:

If a strongly purely infinite separable nuclear C*-algebra C admits an ideal-

system preserving zero homotopy, then C absorbs O2 tensorial, i.e., C ∼= C ⊗O2.

See the paper [464] for a more detailed study of this class of nuclear C *-

algebras:

It turns out that they are all AH-algebras with building blocks Mn(C0(P, p∞))

where (P, p∞) are certain pointed one-dimensional finite CW-complexes P with

each point connected to p∞ ∈ P .

Give precise conditions on P!
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The converse does not hold, e.g. O2⊗K tensorial absorbs O2 but is not homo-

topic to zero: No (non-zero) simple C *-algebra A is zero-homotopic, [175], because

A⊗O2 has real rank zero for simple A, cf. Theorem E.

It follows that one has necessarily to consider a sort of more special Ψ-

equivariant homotopy, that ensure that also the corresponding primitive ideal

spaces are homeomorphic.

Definition 1.2.12. Suppose that ΨA : O(X)→ I(A) and ΨB : O(X)→ I(B)

are actions of a T0 space X on A respectively B.

Let k0, k1 : A → B be ΨA-ΨB–equivariant C *-morphisms (respectively Ψ-

residually nuclear C *-morphisms, respectively k0, k1 ∈ C ⊆ CP(A,B)).

We say that k0 and k1 are Ψ-homotopic ,

if ????? and ??? how to avoid singularities?,

if there is is a point-norm continuous path [0, 1] 3 t 7→ γt in the ΨA-ΨB–

equivariant C *-morphisms (respectively Ψ-residually nuclear C *-morphisms, re-

spectively γt ∈ C is C-compatible for C ⊆ CP(A,B) ) γt : A→ B such that γ0 = k0

and γ1 = k1.

The family {γt} is an equivariant homotopy, respectively is a C-compatible

homotopy.

The Ψ-equivariant homotopy γt between k0 and k1 will be called full if, for

each U ∈ O(X), γt(ΨA(U)) generates for every t ∈ [0, 1] the same ideal Φ(U) :=

Bk0(ΨA(U))B ⊆ ΨB(U) of B .

Check homotopy statements

above and from here to next label ! : ??

The homotopy invariance of KK(X; A,B) and of KKnuc(X; A,B) ensures

that Ψ-homotopic k0 and k1 have the same KK(X; A,B)-class, respectively same

KKnuc(X; A,B)-class.

On the other hand, we can find (by Corollary N) a Ψ-equivariant isomorphism

from A ⊗ O∞ onto B ⊗ O∞, if we consider only those homotopy equivalences

which are given by h : A → B, k : B → A, p(t) : A → A and q(t) : B → B, which

satisfy kh = p(0), p(1) = idA, p(t)(A) ∩ J = p(t)(J) and Ap(t)(J)A dense in J for

every J ∈ IA and every t ∈ [0, 1], and hk = q(0), q(1) = idB , q(t)(B)∩J = q(t)(J)

and Bq(t)(J)B is dense in J for every J ∈ IB and every t ∈ [0, 1]. It means that

we require that p(t) induces the identity map of the lattice O(Prim(A)) ∼= I(A) for

each t ∈ [0, 1] (and same for q(t) and O(Prim(B))).

The latter (strong) non-degeneracy condition for an Ψ-equivariant homotopy

can be arrived by replacing h by h⊕hA,B0 (respectively k by k⊕hB,A0 , pt by pt⊕h0

and qt by qt ⊕ h0).

This strong conditions on the homotopy imply in particular that Prim(A) and

Prim(B) are homeomorphic. If then h : A→ B and k : B → A define an equivariant

homotopy with respect to the natural actions of Prim(B) (respectively of Prim(A))
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of the above stronger type, then [h] ∈ KK(PrimB; A,B) is a KK(PrimB; ·, ·)-
equivalence, and h ⊕ h0 is unitarily homotopic to an isomorphism from A onto B

(33).

Check above formula! And next statement on ??????

Thus, a strongly p.i. separable stable nuclear C*-algebra A is isomorphic to

A⊗O2 if it is homotopic to zero in a Prim(A)-equivariant manner.

(For example, C ∼= C ⊗ O2 if C is the above considered algebra with ideal

system preserving zero homotopy). The converse does not hold as the example

A := O2 ⊗ K shows. But one has, for s.p.i. separable nuclear stable algebras A,

that A⊗O2
∼= A if and only if KK(Prim(A); A,A) = 0. (Use almost verbatim the

same arguments as for Part (iv) of Corollary F.)

Partly mentioned further above? What? ??

END: discussion of homotopy invariance.

Corollary L tells us nothing about the structure of the primitive ideal spaces of

separable nuclear C *-algebras A. A pure topological description of the primitive

ideal spaces of nuclear C *-algebras A is given in [359], that uses results of [464]

and of Chapters 3 and 12.

It would be desirable to know under which conditions on A the algebra D =

A ⊗ O2 ⊗ K is the inductive limit of C *-algebras C0(Yn,O2 ⊗ K) for Polish l.c.

spaces Yn. This is the case, e.g. , if I(A) is linearly ordered (by inclusion of ideals).

Unfortunately there are also examples where D can not be expressed as such

an inductive limit, e.g. , if A := {f ∈ C([0, 1],M2) : f(1) ∈ ∆} where ∆ denotes

the subalgebra of diagonal matrices in M2. (In fact, for the last example A, the

algebra D can not be any inductive limit of C *-algebras with Hausdorff primitive

ideal spaces, cf. Remark B.12.1.)

All strongly purely infinite separable nuclear C *-algebras A that admit an ideal-

system preserving homotopy beween idA and 0 satisfy A ∼= A ⊗ O2 ⊗ K and are

inductive limits of algebras A1 ⊆ A2 ⊆ · · · with An isomorphic to C0(Γ, p)⊗Mkn ,

where Γ is a finite connected graph and C0(Γ, p) denotes the algebra of continuous

functions on Γ that vanish at a distinguished point p ∈ Γ, cf. [464].

It is still an open question whether, for every separable stable nuclear C *-

algebra B, the C *-algebra D := B ⊗O2 is an inductive limit of C *-subalgebras of

D that are isomorphic to C *-algebras A⊗O2, where A is of type I.

One can show that D is a crossed product of an inductive limit of algebras of the

form C0(Pn\{qn},Mn) with Z, where Pn denotes a connected finite one-dimensional

polyhedron and qn is a point of Pn, cf. [464].

It implies that for every nuclear separable C *-algebras A the algebra A ⊗ O2

contains an Abelian C *-subalgebra C ⊂ A ⊗ O2 that is “regular” in the sense of

Definition 1.2.9.

33 Notice here that hA,B0 ◦ hB,A0 is unitarily homotopic to hA,A0 .
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It follows that for the T0 space Y := Prim(A) of a separable exact C *-algebra A

there exist a locally compact Polish space X ( 34 ) and a continuous map ψ : X → Y

that is “pseudo-open” and “pseudo-surjective” in the sense of Definitions ?? and

??. In fact, then C := C(X) can be embedded by Theorem ?? into A ⊗ O2 such

that ϕ : C → A⊗O2 induces ψ−1.

Conversely, for any locally quasi-compact sober T0 space Y with the property

that such a continuous map ψ : X → Y exists for some locally compact Polish space

X there exists a separable nuclear C *-algebra A such that Prim(A) ∼= Y by [359,

thm. 1.4].

Next must be changed drastically, because of New results ??

Which New results?? Give Ref’s or Cite !!!

Let us consider an other aspect of the the “UCT”:

M. Dadarlat published in [193, sec. 3] an example (based on an observation

in [369]) of a continuous field (Ax)x∈Q of C *-algebras Ax over the Hilbert cube

Q := [0, 1]∞ that has fibers Ax ∼= O2 and that its C *-algebra of continuous sections

A has non-trivial K1(A) 6= 0. If one tensors with P∞ then one gets an example

with Ax ∼= O2 but K0(A) 6= 0.

In particular, (Ax)x∈Q can’t be locally trivial. One can see (e.g. from the

construction of Dadarlat) that the nuclear algebra A is strongly purely infinite

(i.e., absorbs O∞ tensorial) and satisfies the UCT.

Let (Ax)x∈Q an arbitrary continuous field over Q := [0, 1]∞ with all fibers

isomorphic to O2.

Is the C *-algebra A of continuous sections in the field (Ax)x∈Q always in the

UCT-class?

This kind of algebras A are all “locally” purely infinite in the sense of Definition

2.0.3. Are this algebras A purely infinite (weakly purely infinite, strongly purely

infinite)? Counterexamples? What are reasonable invariants to distinguish them?

It leads to the question of classification of the isomorphisms from O2⊗O2 onto O2

by a suitable “classifying space”.

Next comes some old stuff. Partly to be removed!! ??

Let Y a (not-necessarily Hausdorff) sober T0-space. We use for an action

Ψ: O(Y )→ I(A) of a topological space Y on A the notation A|Z := Ψ(U)/Ψ(U)∩
Ψ(U \Z) if Z is a closed subset of an open subset U ⊆ X. We say that X acts on A

continuously if Ψ is a lattice monomorphism and is both “upper semi-continuous”

and “lower semi-continuous” in the sense of Definitions ??.

34 i.e., X is a locally compact second countable Hausdorff space, or equivalently expressed:

X is homeomorphic to a separable complete metric space that is in addition locally compact. The

complete metric is not uniquely determined by this property of X.
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Theorem O. Let X a second countable locally quasi-compact point-complete

T0 space, and let G a second countable l.c. group that acts continuously on X by

µ : G→ Homeo(X).

Then holds:

If X acts continuously on a stable separable nuclear C*-algebra A and α : G →
Aut(A) is an action on A with α(g)(Ψ(U)) = Ψ(µ(g)(U)) for all g ∈ G, then

there exists a unique separable stable purely infinite nuclear C*-algebra B with a

continuous action β : G → Aut(B), an isomorphism λ : X → Prim(B) from X

onto Prim(B), an X-equivariant monomorphism ϕ : A → B and a new action

α′ : G→ Aut(A), such that

α′ is (exterior equivalent ?? or weakly?? outer) 1-cocycle conjugate to α ?

only 2-cocycle conjugate ????

??

ϕ ◦ α′(g) = β(g) ◦ β(g)

β(g)(B|λ(U)) = B|λ(µ(g)(U))

[ϕ] ∈ KK(X; A,B) is a KK(X; ·, ·)-equivalence.

B is determined up to unitary homotopy and X-equivariant isomorphisms.

Moreover, TFAE:

(i) If A is nuclear and separable, Prim(A) ∼= X, and A/J ∼= (A/J)⊗O2 for

every primitive ideal, then A ∼= A⊗O2.

(ii) If X acts on separable nuclear C*-algebras A and B continuously,

and if ψ : A → B is an X-equivariant *-monomorphism such that,

for each x ∈ X, the induced morphism A|{x} → B|{x} defines a

KK({x}; A|{x}, B|{x}) equivalence,

then ψ defines a KK(X; A,B) equivalence.

(iii) more? dim(X) <∞?

(iv) more?

In the meantime Dadarlat [192] has shown that A ∼= C0(X,O2) (respec-

tively A ∼= C0(X,O∞)) if A is separable and unital, X := Prim(A) is a a finite-

dimensional Hausdorff space and if every primitive quotient of A is isomorphic to

O2 (respectively O∞).

Is some local triviality needed?

He shows also that O2 and O∞ are the only pi-sun algebras B with the property

A ∼= C(X,B) for all compact metric spaces X of finite dimension, and all C(X)-

algebras A with fibers Ax ∼= B.

(We did not check if here only the UCT class has been studied !!!)

It follows that X satisfies (i) of Theorem O if X has a decomposition series Xγ

with Xγ+1 \Xγ is a finite-dimensional Hausdorff space,
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Def. of strong UCT-class for KK(X; ·, ·) given by suitable actions of X

on Polish l.c. spaces Y or on separable type one C *-algebras.

HERE we should also list the new defined basic properties for the classification

and its terminology.

Riesz decomposition property, ”strongly self-absorbing” C*-algebras, Com-

pletely positive maps of order zero, QDQ vs. UCT, Decomposition rank (of

subhomogenuous C*-algs), pure C*-algebras, Nuclear dimension, Covering di-

mension for nuclear C*-algebras, locally finite decomposition rank, Controlled

KK-theory, property A, Watatani Index for C*-algebras, slice maps, nonc. Weyl -

von Neumann theorem, Elliott invariant, Flat dimension growth for C*-algebras,

Nonstable K-Theory, corona factorisation property,

3. Background and some basic ideas in proofs

The conceptional background of our proofs of Parts (i) and (ii) of Theorems B

and M can be described as follows:

If we have “actions” ΨA : O(X) → I(A) and ΨB : O(X) → I(B) of spaces X

on C *-algebras A and B, then we can select suitable matrix operator-convex cones

C ⊆ CP(A,B) of c.p. maps V that are equivariant with respect to the actions, i.e.,

V (ΨA(U)) ⊆ ΨB(U) for U ∈ O(X), and satisfy like-wise additional conditions,

e.g. that V is residually nuclear for the ideal systems selected via the actions ΨA

and ΨB .

This procedure is almost equivalent to a functorial selections of subsemigroups

of the semigroups of unitary equivalence classes of Kasparov A-B-modules.

We define in Chapters 5 and 8 groups Ext(C; A,B) and KK(C; A,B),

depending on non-degenerate operator-convex cones C ⊆ CP(A,B) in a func-

torial way, such that e.g. KK(A,B) = KK(CP(A,B); A,B) or KKnuc(A,B) =

KK(CPnuc(A,B); A,B) if A is separable and B is σ-unital (see Chapters 5, 8, 9).

Our extension groups Ext(C; A,B) will be defined by relations that are similar

to relations given for KK1(A,B) ∼= Ext(A,B) for trivially graded stable σ-unital

A and B, the difference is that the generalized morphisms (ψ, P ) of the Cuntz-

Kasparov picture – cf. [73, 17.6.4] – are required to fulfill the extra condition that

b∗ψ(·)b ∈ C for each b ∈ B. We prove and apply that

KK(C; A,B) ∼= Ext(C(R); A,C0(R, B))

to bring C-compatible asymptotic morphisms and KK-groups together.

The functorial construction (C; A,B) 7→ KK(C; A,B) is homotopy in-

variant inside the – chosen/allowed – matricial operator-convex cones (de-

fined and partly studied in Chapter 3) and there is a natural isomorphism

Ext(C(R); A,C0(R, B)) ∼= KK(C; A,B), where C(R) ⊆ CP(A,C0(R, B)) denotes

the operator-convex cone of c.p. maps V : A → C0(R, B) with V (·)(t) ∈ C for all
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t ∈ R. Moreover, Ext(C(R); A,C0(R, B)) is naturally isomorphic to the kernel of

K1 (πB(H0(A))′ ∩Qs(B))→ K1 (Qs(B)) .

(Here H0 : A→M(B) is a non-degenerate *-morphism with infinite repeat δ∞ ◦H0

unitarily equivalent H0, such that the c.p. maps A 3 a 7→ b∗H0(a)b ∈ B are dense

in C.)

The results will be used in Chapter 9 to prove with help of Theorem A (respec-

tively Theorem K) the following result that is more general than Parts (i) and (ii)

of Theorems B and M :

Let A and B stable C *-algebras, where A is separable and B is σ-unital, and

let h0 : A ↪→ B a non-degenerate *-monomorphism such that h0 ⊕ h0 = h0. Let

C ⊆ CP(A,B) denote the point-norm closed matrix operator-convex cone generated

by h0. Then,

the difference construction h 7→ [(B, h, 0)] =: [h − 0] defines an additive map from

Hom(A,B) ∩ C onto KK(C; A,B) such that [h − 0] = [k − 0] if and only if h ⊕ h0

and k ⊕ h0 are unitarily homotopic.

Here the addition on Hom(A,B) is given (up unitary equivalence inM(B)) by the

Cuntz addition with a copy of O2 that unitally contained in M(B).

If we use the non-degenerate monomorphism h0 : A ⊗ K → B ⊗ K, from The-

orems A and K, then we get Parts (i) and (ii) of Theorems B and M. With this

general result in hand, the hard work reduces to the proof of Theorems A and K.

On the way to the proofs of Theorems A and K we obtain and use (among

others) a sufficient criteria for existence of an X-equivariant lift :

Next must be a Prop/Thm in Chap. 5. Check! ?? Suppose that A and

B are stable C *-algebras, where A is separable B is σ-unital, and that H0 : A ↪→
M(B) and ϕ : A ↪→ Q(B) = M(B)/B are nuclear *-monomorphisms with the

properties that H0(A)B is dense in B and, for every a ∈ A, πB(H0(a)) and ϕ(a)

generate the same closed ideal of Q(B). Then, there is a unitary U ∈ M(B) such

that ϕ = πB(U∗H0(·)U), if one of the following conditions (i) or (ii) is satisfied:

(i) There exists a C *-algebra C such that B ∼= C ⊗O2 ⊗O2 ⊗ · · · , or

(ii) π−1
B (ϕ(A)) is stable, and there are C *-morphisms H : A ⊗ O2 ↪→ M(B)

and Φ: A⊗O2 ↪→ Q(B) =M(B)/B with H0(a) = H(a⊗ 1) and ϕ(a) =

Φ(a⊗ 1) for a ∈ A.

It has to be emphasized that much of the machinery needed for this work was

already present in the literature (at least implicitly), especially done in the works

of J. Cuntz, J. Glimm, G. Kasparov and D. Voiculescu until mid of the eighties of

last century (cf. Chapters 2, 4. 5 and 8). Our viewpoints are inspired by early work

of Elliott and Rørdam on the classification of Cuntz-Krieger algebras.

Our proofs of Theorem A and of Theorem B need old results of J. Cuntz

concerning the realization of K0 and K1 for purely infinite C *-algebras in [172],
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our characterization of exact C *-algebras [438], some basic results of Kasparov

theory [405], and improvements of Kasparov’s Proof by Cuntz and Skandalis and

others, see [73] and the “nuclear” variant of Kasparov theory given by Skandalis

[726].

Additional background basic material can be found in textbooks [73], [616],

[810], and in the articles [172] and [726].

Generalizations of results from Glimm’s early work are important technical

tools. This gives a way of approximating nuclear maps by maps of the form

x 7→ c∗xc (under certain additional assumptions). It leads us in Chapter 5 to a

generalized Weyl–von-Neumann–Voiculescu theorem, by modifying and using ideas

of Kasparov [404].

The results of Chapters 2, 3, 4, 5 and 7 are fundamental and each is crucial

for the proofs in the following Chapters. Chapter 6 contains the proof of Theorem

A. Its method will be explored to prove Theorem 6.3.1, which is a special case of

Theorem K, but Theorem K without any extra technical assumption will be finally

proved in Chapter 12 with help of a sort non-commutative variant of the Michael

selection theorem.

4. On J. Elliott’s Classification Programm and Conjectures

Section to be rewritten/shorten:

Short cut, and outline some new results.

But only as summary e.g. following ICM lectures?

Don’t forget the stable projection-less case

My (in-adequate?) remarks could be moved in Appendix A or B?

The below formulated Elliott classification conjecture is now verified for all

simple separable nuclear C *-algebras A that tensorial absorb the Jiang-Su algebra

Z and satisfy the Universal Coefficient Theorem (UCT) for its KK-theory. The

latter means that there exists a separable commutative C *-algebras C that is KK-

equivalent to A.

The classification of the ”elementary” cases, e.g. K∗(A) = 0 could perhaps also

replace the UCT by other asymptotic equivalence..???

But it gives not an essentially simpler proof for the above considered case of

(simple) pi-sun C *-algebras. And the methods used in the case where e.g. A is

stably projection-less is a bit away from the methods developed and used here. In

particular, stably projection-less simple nuclear C *-algebras have automatic one or

more quasi-traces (cf. E.K. paper cited ???), and are in a sense the opposite of the

pi-sun C *-algebras.

The complete data are the ordered K-theory, – with K0 pointed and scaled by

a possible unit element –, and the cone of l.s.c. traces and its pairing with K0.
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It seems that the case of stably projection-less C *-algebras is not completely

studied, e.g. it could be that most of them are mostly crossed products of stable

purely infinite algebras by some R-action.

An inspiring role for this development of this final results was the idea of

“decomposition rank” and to use the “balancing” role of tensorial absorption of the

Jiang-Su algebra Z, that spells out many in early study unexpected difficulties. The

cases of AF-algebras, special study on AH-algebras and ASH-algebras did pave the

way, also the in this book considered special case of nuclear purely infinite algebras

related to graphs did play an inspiring role on the way to the success until now.

Partial results on stably projection-less nuclear C *-algebras do also exist, but

have until now no systematic description of all possible cases with given trace cone,

or has not appeared until now. For example, stably projection-less C *-algebras

A remain stably projection-less if we tensor them with the Jiang-Su algebra Z
(or other ASH-algebras). All simple separable nuclear stably projection-less C *-

algebras have densely defined (e.g. on the positive part of the Pedersen algebra)

additive traces that play a role for the classification.

It should be emphasized that the, up to tensorial Z stably isomorphic, classes

of simple nuclear C *-algebras A can have different K0(A)+, e.g. the embedding

a 7→ a ⊗ 1 defines a natural isomorphism K∗(A) ∼= K∗(A ⊗ Z) but the ordered

“cones” K∗(A)+ and K∗(A⊗Z)+ of the stable equivalence classes of idempotents in

(A⊗K)+ (respectively in (A⊗Z⊗K)+) are in some cases different. This can happen

also for simple ASH-algebras A, because there are examples of unital simple ASH-

algebras where the ordered semigroup K0(A ⊗ K)+ is not “weakly unperforated”,

but it is known (!!!!! find citation / reference !!!!!) that K0(A⊗Z ⊗K)+ is weakly

unperforated for every C *-algebra A.

It has to do – and in the “locally” purely infinite case that is our minimal

assumption – with properties of the “large” version of the Cuntz semi-group Cu(A),

that reduces to the set of Dini-functions on Prim(A) in the cases that A ∼= A⊗O∞
as it happens in the case that we consider.

We restate a special case of the original Classification Conjecture of G. El-

liott in a way that allows the reader to see, how our viewpoints and the results

of N.Ch. Phillips and the author in the special case of separable simple unital

amenable C *-algebras are related to it, and which questions – namely (Q1) and

(Q2) concerning the classification of simple purely infinite algebras remain open.

It is possible that one has answers if one requires additional properties, as

e.g. the CFT property or infinitesimally properties.

Before we begin with this we want to acknowledge with congratulation the

important almost final result for the classification of unital simple C *-algebras:

If A1, A2 are a separable unital simple nuclear C *-algebra that are KK-

equivalent to separable Abelian C *-algebra C1, C2 and tensorial absorb the
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Jiang-Su algebra Z in the sense Ak ⊗ Z ∼= Ak, then A1 and A2 are isomorphic if

and only if A1 and A2 the same Elliott invariant (as defined below ??).

Since A and A⊗O∞ are isomorphic for all strongly purely infinite separable nu-

clear algebras (and since for simple A pure infiniteness and strong pure infiniteness

are the same) A ∼= A⊗Z follows from O∞ ⊗Z = O∞.

(But I do not know if also for the stably projection-less separable simple nuclear

C *-algebras A with A ∼= A ⊗ Z the classification in the UCT class becomes now

complete.

An interesting question is if they all come from crossed products AoR of stable

pi-sun algebras A by an action of the real numbers R, or as crossed product by an

action of the semigroup R+ = [0,∞), or by (0,∞).

Next is a bit out of discussion and perhaps not related.

We define a Z2-graded group K∗(A) := K0(A) ⊕ K1(A), and a pre-order on

K0(A) by the subsemigroup K0(A)+ := {[p] ∈ K0(A) : p ∈ Proj(A⊗K)} .

Let A be a C *-algebra and let T+(A) denote the locally compact cone of non-

negative (additive) traces on the Pedersen ideal of A⊗K. There is a natural pairing

〈 ·, · 〉 between K0(A) and T+(A), defined by 〈z, τ〉 := τ(p − q) ∈ R for z ∈ K0(A)

and τ ∈ T+(A).

Is next correct? Here p, q are projections in Ã ⊗ K such that z = [p] − [q],

p− q is in the Pedersen ideal of A⊗K, and Ã is the unitization of A.

Suppose that A and B are simple, separable and nuclear C *-algebras, and

that σ0 : K0(A) → K0(B) and σ1 : K1(A) → K1(B) are group isomorphisms from

the K-groups of A onto the K-groups of B such that σ0(K0(A)+) = K0(B)+. Let

σT : T+(B) → T+(A) be a continuous additive isomorphism from T+(B) onto

T+(A), such that they have the coherence properties 〈z, σT (τ)〉 = 〈σ0(z), τ〉 for all

z ∈ K0(A) and τ ∈ T+(B).

If σ1, σ2 and σT are given, then a variant of the Conjecture of Elliott Cite

source for Elliott invariant !!! can be reformulated in an equivalent way

as follows:

There exists an isomorphism ψ from A⊗K onto B ⊗K such that

σ∗ = K∗(ψ) and σT (τ) = τ ◦ ψ ∀ τ ∈ T+(B) .

If A and B are unital and σ0([1]) = [1] then one requires in addition that the

isomorphism σ can be chosen such that, ψ(1⊗ p11) = 1⊗ p11 .

If one of the algebrasA orB is not known to be of real rank zero, then sometimes

additional invariants have been introduced to verify the Elliott conjecture even only

in very special cases. The now most prominent one is tensorial absorption of the

Jiang-Su algebra Z, cf. [391], because A⊗Z and A have “almost” the same Elliott

invariants. This excludes also the cases where one of A or B is “elementary”, i.e., is
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stably isomorphic to the compact operators K, e.g. to distinguish C and the Jiang-

Su algebra Z, or where one of the algebras is unital and finite but is not stably

finite, or [687].

And ??????????????

??

(35),

extra requirements on the stable rank, on the real rank, or the decomposition

rank ... weakly unperforated perforated K0(A)+ etc. ??? .

It happens if one tensors by Jiang-Su algebra as shown by Rørdam

‘‘strongly K1-surjective’’ [690, def. 6.1]????.

An example of a property that is perhaps not encoded in the Elliott invariants

is the local K1-surjectivity :

We say that a simple C *-algebra A is locally K1-surjective , if for every non-zero

projection p ∈ A⊗K and every x ∈ K1(A) there exists a projection q ∈ A⊗K such

that

(i) [p] = [q] in K0(A), and

(ii) x is in the image of the natural C *-morphism from the unitary group of

q(A⊗K)q into K1(A).

This condition is trivially satisfied for all stably projection-less C *-algebras A.

The property of local K1-surjectivity has an explanation with help of the graded

K∗-groups: There is a natural isomorphism

K∗(A) := K0(A)⊕K1(A) ∼= K0(C(S1, A)) ,

cf. [73, sec.9.4.1], and one can use this isomorphism to introduce an pre-order

structure K∗(A)+ on K∗(A) by the sub-semigroup K0(C(S1, A))+ of K0(C(S1, A)).

One can see that this semigroup consists of the elements ([p], [u]) ∈ K∗(A),

where p ∈ A⊗K is a projection and u ∈ U(p(A⊗K)p) is a unitary (that has to be

extended to a unitary in the unitization (A⊗K)̃ by u 7→ u+ (1− p) ).

Indeed, if P = {p(e2πit) ∈Mn(A) ; t ∈ [0, 1]} is a projection in C(S1,Mn(A)) ⊆
C(S1, A⊗K) then there exists a continuous path t ∈ [0, 1]→ v(t) ∈ U(Mn(A+C·1))

with v(0) = 1 and v(t)∗p(1)v(t) = p(e2πit).

Then u := pv(1)p ∈ U(p(A ⊗ K)p) for p := p(1). The element [p] ∈ K0(A) is

the image of [P ] under the map [λ]0 : K0(C(S1, A)) → K0(A) induced by λ : f ∈
C(S1, A⊗K)) 7→ f(1) ∈ A⊗K. This attaches to P a pair (p, u) with u ∈ U(p(A⊗
K)p) and p = λ(P ).

35 The semigroup of all Murray–von-Neumann equivalence classes of projections inM(A⊗K),

or the infimum of the dimensions of the maximal ideal spaces of the family of Abelian Kadison-

Singer-type C *-subalgebras of A (i.e., with unique pure states extension property), or comparison

properties (certain sub-semigroups of) the Cuntz semigroup of A⊗ K.
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Let ([q], [w]) ∈ K∗(A) with q ∈ A⊗K and w ∈ U(q(A⊗K)q). Then w⊕s,t(w∗) ∈
U0((q⊕s,t q)(A⊗K)(q⊕s,t q)) and if w(t) ∈ U0((q⊕s,t q)(A⊗K)(q⊕s,t q)) is a path

with w(0) = q ⊕s,t q and w(1) = w ⊕s,t w∗, then P (e2πit) := w(t)(q ⊕s,t 0)w(t)∗ is

a projection in (q ⊕s,t q)(A⊗K)(q ⊕s,t q) with p := λ(P ) = q ⊕s,t 0 and pw(1)p =

w ⊕s,t 0 ∈ U(p(A⊗K)p). more details???? ??

All simple stably infinite C *-algebras A are locally K1-surjective, and for them

holds K0(A)+ = K0(A) and K∗(A)+ = K∗(A), because for each projection p ∈ A⊗K
there exists a full and properly infinite projection q ∈ A⊗K with [q] = [p] in K0(A),

cf. Lemma 4.2.6(ii) (compare also classical work of J.Cuntz [172] ! ). Then there

are natural isomorphisms K1(A) ∼= K1(A ⊗ K) ∼= K1(E) for the unital C *-algebra

E := q(A ⊗ K)q, and E has a properly infinite unit q, which implies that E is

K1-surjective, i.e., that u ∈ U(E)→ [u] ∈ K1(E) is surjective, cf. Lemma 4.2.6(v).

If A is simple and stably finite, then it is easy to see that A is locally K1-

surjective, if and only if,

K∗(A)+ = {(0, 0)} ∪
(
(K0(A)+ \ {0})⊕K1(A)

)
,

where ∅⊕K1(A) := ∅, e.g. stably projection-less A are locally K1-surjective because

K∗(A)+ = 0⊕ 0 = {(0, 0)}.

Simple unital locally K1-surjective algebras A with cancellation property (for

the semi-group V (A) = [P∞(A)]) are necessarily K1-surjective in the sense that

u ∈ U(A)→ [u] ∈ K1(A) is a surjective map.

Unital simple C *-algebras A with stable rank one are locally K1-surjective (36).

Unital simple C *-algebras that are inductive limits of homogeneous algebras have

in general stable rank > 1, cf. Villardsen [797], [795].

Question 1.4.1. Can methods of [797] and [795] help to construct a unital

simple ASH algebra that is not locally K1-surjective?

Even for simple nuclear C *-algebras of real rank zero it is not known if they

are locally K1-surjective (but they are K1-injective, cf. [525, cor.4.2.10]).

The Conjecture of Elliott has been confirmed in many cases, but always under

strong restrictions on A and B, e.g. that they are inductive limits of certain special

sub-homogenous algebras An and Bn (37), or, in some very special cases, where A

and B are stably isomorphic to (cocycle) crossed products of such inductive limits

by outer actions of Z, Zn or by R. Until now, on has not found a method to

deduce this required properties of A and B from conditions of K-theoretic nature

alone, or from “general defining relations” of A and B given by non-commutative

polynomials.

36 Apply Gauss algorithm to invertible matrices in Mn(pAp) that have invertible entries.
37 The primitive ideal spaces Prim(An) and Prim(Bn) contain only Hausdorff subspaces X

with “small” dimension in comparison with the minimal dimension of its irreducible representa-

tions
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Stably projection-less simple exact C *-algebras A have always non-zero additive

traces (cf. e.g. [441]), i.e., T+(A) 6= 0. There exist inductive limits A of sub-

homogenous algebras such that A is stably projection-less and K∗(A) = 0. It is

then not difficult to see that they satisfy T+(A) 6= 0. The existence of such algebras

A can be seen from [259, thm. 3.2, thm. 5.2], that shows that the possible Elliott

invariants (G+
0 , G0, G1, T

+, 〈·, ·〉), with the additional conditions T+ 6= 0 and that

〈z, τ〉 > 0 (for all τ ∈ T+) implies z ∈ G+
0 , are exhausted by the invariants of

simple inductive limits A of sub-homogenous algebras An that are extensions of

sums of sub-homogenous algebras with at most 2-dimensional Hausdorff subspaces

of primitive ideal spaces (38).

Let us consider from now on only the the Elliott invariant (K∗(A)+ ⊆ K∗(A))

of simple separable nuclear C*-algebras A with T+(A) = 0:

A combination of works of Blackadar, Cuntz [78] and Haagerup [342] shows

that, for simple and exact C *-algebras A, the equation T+(A) = 0 holds, if and

only if, A is not stably finite (cf. B.4.5 or [441]). If, in addition, A is separable

then there is a simple unital C *-algebra B with properly infinite unit (in fact we

find then B that contains a copy of O2 unitally) such that A⊗K ∼= B ⊗K.

Thus, if T+(A) = 0, then K0(A)+ = K0(A) by [172], and A ⊗ K contains a

properly infinite projection, which implies e.g. that A⊗K can not be the inductive

limit of type-I C *-algebras (39). Every simple inductive limit A of type-I C *-

algebras has a non-zero positive trace on its minimal dense ideal Ped(A). More

generally, a simple C *-algebra A without a densely defined 2-quasi-trace can’t be

a subalgebra of an ultra-product∏
ω(B1, B2, . . .) of a sequence B1, B2, . . . of type-I algebras, which involves a

striking difference between the class of stable infinite nuclear simple C *-algebras

and all classes of algebras that can be described as inductive limits of type-I C *-

algebras. This sorts of inductive limits contain strictly all other sorts of algebras

that have been successfully classified up to isomorphisms by its Elliott invariant

until so far.

If K0(A) 6= 0 and K0(A)+ = K0(A), or if K0(A) = 0 and A ⊗ K contains

a non-zero projection, then A is stably infinite and T+(A) = 0. So we see that

the equation T+(A) = 0 for simple nuclear A describes the stably infinite algebras

among the simple nuclear C *-algebras A. For them, the invariants of Elliott reduce

only to K0 and K1. M. Rørdam has constructed in [687] a simple, separable, unital,

and nuclear C *-algebra R that is finite but is stably infinite.

38 They are defined by a generalized mapping torus construction An (a special difference

construction) for pairs of morphisms between sums of sub-homogenous algebras with primitive

ideal spaces such that the Hausdorff parts have dimension ≤ 2. See [273, appendix] for an

alternative proof, where the building blocks An are sub-homogenous algebras with at most 1-

dimensional Hausdorff subspaces of its primitive ideal spaces.
39 Moreover, there is a finite subset X of A such that 1/2 ≤ max{dist(x,B) ; x ∈ X} for

every type-I C *-subalgebra B of A∗∗.
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In particular, R is not purely infinite in the sense of Definition 1.2.1, given

below. The algebra R is stably isomorphic to the crossed product of a certain type

I C *-algebra C by an endomorphism λ of C, thus, R is stably isomorphic to a

crossed product D oµ Z by an automorphism µ of D := limn→∞ λn : Cn → Cn+1

with Cn := C, and λn := λ. The algebra R has not real rank zero, but contains

“small” projections, cf. [691] and K∗(R) = K∗(C(X)) for X := S2 × S2 × · · ·
where S2 means here the 2-dimensional sphere. In fact it is stably isomorphic to

the generalized Fock-Toeplitz algebra (and to the Cuntz-Pimsner algebra) of some

Hilbert C(X,K)–bi-module.

Its K∗-groups are both isomorphic to Z⊕Z⊕· · · , i.e., K∗(R) ∼= K∗(S1×S1×· · · ).

Let us say some words about the general classification problem for non-p.i. al-

gebras and its connection with the Rørdam groups R(C; A,B) that we introduce in

Chapter 7.

to be filled in: overview! and Rordam groups ??

update: (Now 2021 ???): The classification covers now all – unital? – separable

simple nuclear C *-algebras that absorb the Jiang-Su algebra tensorial and are in

the UCT-class?)

Some of the proofs of Elliott’s Conjecture work well for inductive limits A :=

indlimnAn of sub-homogenous algebras An, e.g. provided that A is of real rank

zero and that there is some bound ∞ > Γ ≥ Dn/Rn for the ratio between the

supremum Dn of the dimensions of the Hausdorff subspaces of Prim(An) and the

infimum Rn of the dimensions of the irreducible representations of the An’s, or

that A is simple and the An’s are extensions of finite dimensional algebras Cn by

suspensions SBn of finite dimensional algebras Bn, i.e., if there are exact sequences

0→ SBn → An → Cn → 0.

No description of this additional assumptions in terms of the K-theory has been

found yet.

E.g. it is even an open problem whether a simple separable unital nuclear C *-

algebra A of real rank zero with unique trace state and with the pre-ordered K- and

KK-groups of the CAR algebra M2∞ is stably isomorphic to M2∞ . In particular

suppose that A⊗O∞ ∼= M2∞⊗O∞ and that (K0(A), [1A],K0(A)+) and the Elliott

invariant of the UHF-algebra M2∞ are order isomorphic by an isomorphism that

is compatible with the – by O∞-stable isomorphism – given isomorphism of K0(A)

with K0(M2∞).

Question: Is A stably isomorphic to M2∞ ?

This should be the case if A is in the UCT-class ... ???

The true problem is here if such A must automatic tensorial absorb the Jiang-Su

algebra Z. Or at least if F (A) := A′ ∩Aω has no character ... ??????
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It is even not clear if there exists a simple unital nuclear C *-algebra C of real

rank zero with the Elliott invariant (Z,Z+, 1) and unique trace state, but (!) such

that F (C) has a character.

(I want to see how it is constructed as an inductive limit of finite-dimensional

C *-algebras An by completely positive contractions, because all separable nuclear

C *-algebras A are such inductive limits up to completely positive and completely

isometric isomorphisms.)

Forgive me, if I want to see pi-sun algebra with trivial K-theory that is not

isomorphic to O2, which is simply generated by two isometries s1, s2 ∈ L(`2(N)

with

1 = s∗1s1 = s∗2s2 = s1s
∗
1 + s2s

∗
2 .

Perhaps it is e.g. the case if C has not the “corona factorization property”

(CFP).

One can see here that ??????? CFP is very necessary and excludes cases that

have not CFP (or satisfy not the UCT ?). Therefore we write here all at a construc-

tive and elementary level that shows where we suddenly this additional properties

UCT or CFP need.

Moreover it is even unknown whether pre-ordered KK-invariants and trace

invariants are enough to characterize the CAR algebra among the simple separable

nuclear quasi-diagonal C *-algebras in the UCT-class with real rank zero and stable

rank one. (Please don’t misunderstand me: Here we should start with data from

the ordered K∗-theory and not from the methods to construct them from inductive

limits of (many step) extensions of stabilized sub-homogenous algebras combined

with semi-direct products by semigroups or quantum groups. The question should

be: how many pairwise stably non-isomorphic simple nuclear C *-algebras have the

same invariants, and how look the amenable C *-algebras in those classes of partially

ordered K∗-theory that are NOT in (some sort of) the UCT-class.

Is ”seems” that the (non-zero) separable, unital, nuclear (= amenable), purely

infinite, and simple C *-algebras A with A ∼= A⊗ Z are all contained in the UCT-

class.

But no proof or counter examples have been found yet (end of 2021?). Notice

here that all pi-sun A satisfy A ∼= A ⊗ O∞ (give references here) and that O∞ ∼=
O∞ ⊗Z.

Next has to be edited !!! update:

The latter follows (not simply) from the fact that O∞, Z and O∞ ⊗ Z are

all nuclear, simple, separable, unital and are in the UCT class, and that O∞ and

O∞ ⊗Z are strongly purely infinite (because are p.i. and simple).

In the case of simple separable nuclear projection-less stable algebras there are

only some interesting examples studied so far.
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One of it is given by a crossed product of O2 with an irreducible circle action,

????? In the case of a unital C *-algebra without non-trivial projections there is

e.g. the open question if the Jiang-Su algebra Z, [391], is the only tensorial self-

absorbing separable unital C *-algebra A 6= C in the UCT-class that has the same

Elliott invariant as C.

Since W. Winter has shown that all separable tensorial self-absorbing unital

C *-algebras with approximately inner flip absorb the Jiang-Su algebra Z, and

since the class of Z-absorbing unital simple nuclear stably finite C *-algebras in the

UCT-class are classified by its Elliott invariant it follows that tensorial Z-absorbing

and a kind of ordered (K0(A),K0(A)+, 1A) is then a complete invariant.

The big open problem is: Can we escape from the very serious additional

assumption that A is in the UCT-class for the classification of pi-sun algebras A?

More generally is A⊗O∞ (or A⊗Z) for all amenable separable A in the UCT

class?

Is the UCT property equivalent to the Corona factorization property?

“Sudden” Question:

Consider the universal C *-algebra An = C∗(a, dk, 1, s, t) given for a ≥ 0,

d1, . . . , dn, 1, s, t by the relations
∑
k d
∗
kadk = 1, s∗t = 0, s∗s = 1, t∗t = 1.

(It implies that An contains a copy of O∞. Let t1, t2, ... natural generators

build from s and t.)

X :=
∑
k tka

1/2dk satisfies X∗X = 1.

Is a⊗ 1 properly infinite in An ⊗Z?

I.e., does there exist g ∈ An ⊗Z with g∗(a⊗ 1)g = 1⊗ 1?

It is enough to find h ∈ A⊗ Z, and non-zero b ∈ Z+ with h∗(a⊗ 1)h = 1⊗ b,
because Z is simple, O∞ ⊗Z ∼= O∞ and 1A ∈ O∞ ⊆ A.

Take elements b and x1, . . . , xn ∈ Z with x∗kx` = δk,`b (e.g. coming from an

n-homogenous element ψ : C0(0, 1]⊗Mn → Z b = ψ(f0 ⊗ p11)).

Then g :=
∑
k dk ⊗ xk has this property.

In [467] it is shown that the (CFP) is valid if F (A) = (A′ ∩ Aω)/Ann(A,Aω)

has no character.

Theorem 4.3. (of [467]):

Let A be a unital separable C *-algebra such that the central sequence algebra

F (A) has no characters. Then A has the Strong Corona Factorization Property (s

CFP ? SCFP ?).

“Strong” Corona Factorization Property for semigroups, cf. citation [18, Defi-

nition 2.12] (in [467] ??? what is 18??):
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For every x′, x, y1, y2, y3, . . . in Cu(A) and m ∈ N such that x′ << x and

x ≤ myn in Cu(A) for all n ≥ 1, there exists k ≥ 1 such that x′ ≤ y1 + y2 + . . .+ yk

in Cu(A).

The (strong) Corona Factorization Property can therefore be viewed as a weak

comparability property for Cu(A).

It is not known how the Rørdam semi-groups SR(A,B) of Chapter 7 play

together with (versions of) the Cuntz semigroups, even not in the important case,

where A and B tensorial absorb the Jiang-Su algebra Z.

This shows that we can’t present here an idea for answering classification ques-

tions in full generality if other types of algebras or additional structure like group

actions have to be studied. We develop in this book a method to reduce some

classification problems to questions on the realization of KK-theory with help of

generalized Weyl–von-Neumann–Voiculescu theorems. The main tools are contin-

uous modifications of the Rørdam groups R(A,B), as defined in Chapter 7. They

play a role in several generalizations, e.g. to the non-simple case as described above,

or others, as mentioned in the remarks of Chapter 7. Some of the known stable in-

variants for simple separable nuclear C *-algebras are the same for R(·, ·)-equivalent

C *-algebras A and B (e.g. they are KK-equivalent, F (A) and F (B) contain, up to

isomorphisms, the same simple separable C *-subalgebras, the stable rank, the real

rank and decomposition rank are the same). A part of further study on classifica-

tion could be the study of the consequences of R(·, ·)-equivalence. Partial results

in this direction are Theorems B and M and its Corollaries C and N above. Above

where? Above where? Give references !!

5. The way to here. Acknowledgements

This book is a very expanded and generalized version of the preprint of Decem-

ber 1994 (3rd draft) with the same title “Classification of purely infinite C*-algebras

using Kasparov’s theory”. In the original 1994-preprint a simpler “discrete” asymp-

totic theory using EKω(A,B) has been taken to eliminate some technical difficulties

arising in the continuous case. Now we have replaced the discrete asymptotic meth-

ods (working with sequences) by their technically more involved continuous versions

(working with paths going to infinity). This more elaborate theory allows to see

more clearly where we have homotopy-invariant results. Now they are all integrated

into our newest version that rigorously uses matricial operator-convex cones, be-

cause, up to the – not here – discussed group- or quantum-group equivariance.

A pre-version (of some sections concerning basics on purely infinite simple al-

gebras) partly has been written in 1998 by postdoc students of the Fields Institute

year on C *-algebras. It was based on a seminar which was organized and held by

postdoc students, but was supported by several lectures, consultations, e-mails and

outlines from the author. The sections concerning simple algebras in the new pre-

sentation reflects a compromise between their detailed and elementary approach and

the authors new insights, that changed during more then three decades considerably.
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More details and background are given. In fact, the exposition is sometimes very

detailed. But here we are running into a problem: half of the technical lemmas are

folklore trivialities for those readers coming from the theory of exact C *-algebras,

tensor products and operator spaces. The other half is trivial for readers who have

a clear understanding how different variants of KK-theories and K-theories can be

constructed, and how they can be compared. But both is presented here at an

elementary level, – so far as it is really used for the proof of our theorems. Only

textbook material is omitted or is only sketched ( 40 ).

The old and sketchy proof of the natural isomorphism of the Grothendieck

group R(A,B) of [Homnuc(A ⊗ K,Q(R+, B ⊗ K))]u with KKnuc(A,B) from the

Appendix A of the Dec 94 preprint is now explained in a more transparent manner,

by an axiomatic study of the semigroups of morphisms which are dominated by a

fixed morphism (see Theorem 4.4.6, Proposition 7.2.13 and Chapter 9). But, up

to using a technical framework that divide the arguments into smaller steps and

offer more details, we use the same idea as in the proof outlined in the Appendix

A of the Dec 94 preprint. Now it becomes visible that the ideas in the preprint

apply also to the semigroups SR(X; A,B) := [Homnuc(X; A,Q(R+, B))] and to the

even more general semigroups SR(C; A,B) for (non-simple) stable separable exact

A and arbitrary σ-unital stable strongly purely infinite B, and, more generally,

to the semigroups SR(C; A,B) for in a “functorial way” selected matrix operator-

convex cones C ⊆ CP(A,B). But one needs to use the homotopy invariance of

the generalized m.o.c. cone equivariant Kasparov groups KK(C; A,B) to get the

basic ingredient for the proof that the natural group epimorphism from the C-
controlled unsuspended-but-stable E-theory groups R(C; A,B) onto KK(C; A,B)

is also injective.

Notice that E. Blanchard [89] has extended Theorem A to C *-algebra bundles.

He uses Theorem A and Rørdam’s proof of O2
∼= O2 ⊗ O2 ⊗ · · · (cf. [678]). This

was done independent by N. Ch. Phillips [?] and the author with other methods

and applications.

Also, there is an alternative proof of Part (i) of Theorem A and Parts (ii) and

(iii) of Corollary F, given by N. Ch. Phillips and the author [?], that does not use

a generalized Weyl–von-Neumann–Voiculescu theorem, that we, here in this book,

prove and use.

N. Ch. Phillips [627] gave a shorter proof of Corollary C based on the observa-

tions given here in Parts (ii) and (iii) of Corollary F above (as in the beginning of the

authors Dec 94 preprint). His proof uses E-theory and deep results of M. Dadarlat,

N. Higson, A. Loring, H. Lin and M. Rørdam.

One can proceed in the non-simple case along a way similar to the approach

of N.Ch. Phillips with a generalized ideal lattice-equivariant version of E-theory

in the non-simple case, after one has proved Theorem K (= non-simple variant of

40 Some knowledge on Cuntz-Krieger algebras is useful for considering examples. But the

most basic examples are discussed here in the Appendix A.
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Theorem A). In fact, some results of N. Higson, J. Cuntz and others indicate that

every sort of an KK-theory is functorial equivalent to a “liftable” (or “semi-split”)

variant of some E-theory. We are quite happy to find a convincing proof in our case

of KK(C; A,B) and the related stable but unsuspended version of E-theory, here

realized by the generalization R(C; A,B) of Rørdam’s sequence groups.

This can be made precise in analogy with our natural isomorphisms

R(C; A,B) ∼= Ext(C; A,SB) ∼= KK(C; A,B) ,

where A and B are stable and separable and C = C(h0) for some non-degenerate

*-morphism h0 : A → B that is unitarily homotopic to h0 ⊕ h0. That means: We

show that in the considered cases there is a bijection between certain m.o.c. cones

and such morphisms h0.

If one imposes into the definitions directly some sort of homotopy-equivalence

then the above considered isomorphisms are “almost evident”. Then the iso-

morphisms are much easier to derive than our “constructive” results in Chap-

ters 8 and 9 that give really unitary homotopy rather than general homotopy

equivalence. But general homotopy equivalences are useless for our purpose. In

fact, – at least in view of our applications –, the great invention of Kasparov

was the observation that the groups Ext(A,B) with its fairly algebraic defini-

tion – see Chapter 5 – are naturally isomorphic to the homotopy invariant groups

KK(A,SB), cf. Chapters 5 and 8 for more details and Section 5 for the most im-

portant implication of this homotopy invariance. We need a more “constructive”

proof of the isomorphism Ext(C; A,SB) ∼= KK(C; A,B) than those proofs given

usually, because it becomes an important ingredient of our proof of the isomorphism

R(C; A,B) ∼= Ext(C; A,SB) at the very end of Chapter 9. The reader also should

observe that some technical preparation for the proofs of above isomorphisms con-

tain new results, that we have formulated and established in much more generality

than actually used here in the book for proofs of the main topics.

The author has outlined proofs of Theorem A(i), Corollary F(iii) and Corollary

G (and of the result that a pi-sun algebra has a central sequence of unital copies

of O∞) in his talk on the ICM-satellite conference in Geneva in August 1994. The

idea of the proofs of Theorem I and Corollary J has been outlined in the authors

talk in Rome, July 1996, at the conference on Operator Algebras and Quantum

Field Theory.

In 1995-1998 we have extended the results, except Corollary H, to continuous

bundles of C *-algebras with finite dimensional metrizable compact base, in the

sense of [471]. One only has to replace KKnuc(·, ·) by a “nuclear” version of the

Kasparov functor RKKG(X; ·, ·) for the base space X (where here G := {e} is

the trivial group!), and the sub-triviality theorem of E. Blanchard [89] replaces

Theorem A.
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In the period from March to September 1998 we arrived at a complete classifi-

cation of all stable separable nuclear C *-algebras that tensorial absorb O∞ up to

ideal system preserving isomorphisms by their KK(X; ·, ·)-class.

Theorem M has been presented in the authors talk in Copenhagen, August

1998. A talk about Theorem K was given in Münster, March 1999. An overview of

the main results of this book was given in [442], including outlines of some proofs.

In the meantime many new results have appeared, and our new exposition should

allow the reader to see that several fundamental observations can be derived also by

our approach. The more general viewpoint using operator-convex cones in Chapters

3, 5, 7, 8 and 9 has been worked out in 2001–2006, and was outlined in conference

and workshop talks in 2007 and 2008. Among the applications are ??????

list some applications of classification ??????? ??

The author likes to thank R. Bhat, S. Friese, P. Friis, T. Häberlen, H. Harnisch,

H. Osaka and G. Vaillant. They have helped to prepare versions of parts of the

early 1994 preprint and/or have worked out a more detailed version of parts of it.

Inspiring, helpful and sometimes (with any right !) critical remarks came from

C. Anantharaman-Delaroche, D. Bisch, B. Blackadar, E. Blanchard, U. Bunke,

J. Cuntz, M. Dadarlat, G. Elliott, U. Haag, G. Kasparov, M. Rørdam, V. Voicu-

lescu, A. Wassermann, S. Wassermann, J. Weidner and W. Werner. They also have

suggested improvements that I tried to follow on.

J. Cuntz, J. Elliott and M. Rørdam have supported the work of the author on

this monograph several times.

6. To do: Unify NOTATION in all Chapters!

Use ≈ (Cuntz equiv.) and ∼MvN (Murray–von-Neumann equiv.)

Adjust in all chapters of the book the use of ∼ and ≈

And the same with [a]∼, 〈a〉∼, [a]≈, 〈a〉≈ .

Put it in the Index list. Decide where a reminder is necessary... ??.





CHAPTER 2

Basics on purely infinite C*-algebras

We consider here several properties that cause pure infiniteness of simple or non-

simple C *-algebras. It requires to discuss first the relations between the different

definitions of infiniteness and the related terminology for C *-algebras. The three

Sections 2, 3 and 4 consider mainly the case of simple algebras. But the later

considered pure infiniteness of non-simple algebras play also for the classification of

simple C *-algebras an important role. It causes a partly study of the huge variety

of definitions of sorts of “infiniteness” for non-simple C *-algebras or of elements in

them. Then some of the later used permanence properties will be studied here in

this chapter.

The last three Sections 16, 17 and 18 study properties of strong purely infinite

C *-algebras in sense of Definition 1.2.2, and some constructions that lead to strong

p.i. C *-algebras. Before and in-between there is the study of general observations

needed in the proofs of results in later chapters, where sometimes only locally some

sort of infiniteness plays a role for the applications.

The inventor – and pioneer of the study – of “purely infinite simple C *-

algebras” was Joachim Cuntz. He introduced in [172, p. 186] a notion of pure in-

finiteness in case of simple C *-algebras using his observation in below given Lemma

2.1.6 for simple C *-algebras:

A C *-algebra A is said to be purely infinite – in the sense of J. Cuntz – if every

non-zero hereditary C*-subalgebra D of A contains an infinite projection p ∈ D,

p 6= 0, i.e., a non-zero projection p that is Murray–von-Neumann equivalent to a

proper sub-projection of itself in the sense of following definition:

Definition 2.0.1. Elements a, b ∈ A+ are Murray–von-Neumann equiv-

alent (short: MvN-equivalent) in A if there exists d ∈ A with d∗d = a and

dd∗ = b . The relation will be denoted by a ∼MvN b or simply by a ∼ b .

The MvN-equivalence class of a ∈ A+ will be denoted by [a]MvN – or simply

by [a] if there is no danger to be mixed up with the considerably “bigger” class

[a]≈ of all b ∈ A+ that are Cuntz–equivalent to a (cf. Definition 2.5.1 ).

Basic examples of purely infinite simple algebras are the Cuntz algebrasOn, n =

2, 3, . . . , that are the universal unital C *-algebras generated by elements s1, . . . , sn

with defining relations s∗jsk = δj,k1 for j, k ∈ {1, 2, 3, . . . , n} and
∑n
k=1 sks

∗
k = 1,

respectively the Cuntz algebra O∞ generated by a sequence of elements s1, s2, . . .

with relations s∗jsk = δj,k1 for j, k ∈ N, cf. [169]. In particular, J. Cuntz studied

89
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and confirmed in early work some related conjectures of J. Dixmier (1964) in [214]

concerning O2 .

Some properties of O∞ and O2 did play a fundamental role for the proofs of the

classification results for pi-sun algebras both in the approach of N. Ch. Phillips and

in the the approach of the author of this book. Therefore, we list some properties of

Cuntz-algebrasOn andO∞ in Section 1 of Appendix A and outline there elementary

proofs for this properties, – but only so far as they do not follow immediately from

some of the very basic observations in Chapters 2, 3 and 4. Moreover, we give in

Section 1 of Appendix A some additional informations on the algebras On that will

be used often in proofs, applications and examples.

Our “long” Proposition 2.2.1 says that on the class of simple C *-algebras pure

infiniteness in the sense of J. Cuntz is equivalent to each of the local, weak or

strong pure infiniteness defined below, and to many other properties that are useful

for several applications useful. But there are examples of amenable (= nuclear)

separable unital simple C *-algebras that are (quasi-) trace-less but are not purely

infinite in the sense of any here given and considered definitions, cf. the example of

M. Rørdam [687] ( 1 ).

It has been shown in [462, prop. 4.7], [463, cor. 6.9] and [93, thm. 4.17], –

cf. also our Proposition 2.6.5 –, that in case of C *-algebras A of real rank zero all

of our below given definitions of pure infiniteness of simple C *-algebras A coincide.

Unfortunately, this is not the case for non-simple A. ????

Next blue/red text has to be verified, is ‘‘under observation":

More generally, equivalence of all definitions of pure infiniteness ( – except possibly

strong pure infiniteness! – ) for C *-algebras holds for all C *-algebras with the

property that

for every closed ideal J 6= A of A and every non-zero hereditary C*-subalgebra D

of A/J there exists a non-zero projection p ∈ D,

i.e., where A is “rich of projections” in the sense of our Definition 2.6.1: If C *-

algebras A with this property has our “weakest” property of infiniteness, – i.e. the

“local pure infiniteness” (l.p.i) of Definition 2.0.3 – then it turns out that A is

purely infinite in the sense of Definition 1.2.1.

This class of C *-algebras A contains the class given by the property that

every non-zero hereditary C*-subalgebra D ⊆ A/J of any quotient A/J of A con-

tains a non-zero infinite projection p ∈ D,

– i.e., those where all quotients are purely infinite in the sense of the above quoted

1 Since a long time it seems to be still (January 2022) an open question if there exists a

simple nuclear C *-algebra of “real rank zero” that is stably infinite but is not purely infinite,

cf. Question (Q1) in Chapter 1. This cited famous example of M. Rørdam has not this properties.

Such an example (of real rank zero), – if it exists –, can be modified to produce a unital simple

algebra A with real rank zero, that contains no infinite projection, but M2(A) contains a copy of

O2 unitally. Even if this exists, then the question is: Can such kind of A be a nuclear C*-algebra

with all this properties?
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definition of J. Cuntz in [172] (2) –,

are purely infinite in sense of Definition 1.2.1.

We do not know if purely infinite C *-algebras A, that are “rich of projections”,

in sense of our Definition 2.6.1, are moreover strongly purely infinite in sense of

Definition 1.2.2, – our so far strongest infiniteness property of a C *-algebra that is

”rich of protections”.

We need only a kind of semi-splitting

(in cases where we can reduce all arguments to the separable case

by considering suitable C∗-subalgebras E if possible):

An element b ∈ E+ with bEb ⊆ A with b ≈ (b⊕ b) and a non-zero element c ∈ E+

orthogonal to b, i.e., cb = 0 and πA(c) 6= 0.

Can only work if A(??) is not “essential”???...

But it could be that all non-zero projections of cEc are contained in cAc ...?

No progress ... !!!

To find b, c one could take a strictly positive element of a ∈ A+, i.e., A = aEa.

Try to use the projectivity of C0((0, 1],M2), and consider M2 ⊆ E/A ...

It gives positive contractions c, d ∈ E+ with cd = 0, πA(c) = p11, πA(d) = p22.

Then try to modify a+ d ...

NO PROGRESS !!!

One question is, if in case of separable σ-unital A, where A is an ideal of

E, that is “rich of projections” and is purely infinite (⇐ HERE: A or E ?), has

the property that an exact sequence 0 → A →η E →π O2 → 0 must split, i.e.,

that there exists a C *-morphism φ : O2 → E with π ◦ φ = idO2
for the quotient

epimorphism π : E → O2 with kernel η(A) for the inclusion morphism η : A → E

onto an ideal of E if E has real rank zero.

(Questions: Is this splitting necessary for E being s.p.i.? Or is ”semi-splitness”

enough?)

Because then it would be the same as our Definition 2.6.1 (but with property

l.p.i. added as additional property) if we could show that each copy of O2 can be

lifted for a strongly p.i. ideal with many projections. Here we can reduce all to the

separable case, and build later inductive limits of them.

In general the question is:

Does there exists a separable p.i. C *-algebra A such that every non-zero here-

ditary C *-subalgebra D of A is not strongly p.i.?

There exists D that contains may nonzero n-homogenous C *-subalgebra En :=

Fn ⊗Mn with En+1 ⊆ En.

(The injections ??????? .)

If such example not exists, then every p.i. algebra is s.p.i. !!!

2... defined there mainly for the study of simple Cuntz-Krieger algebras!
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(Where are the proofs of this?)

Thus, it suffices to consider suitable separable C *-subalgebras of ultrapowers

of p.i. algebras ... ???

But if A has real rank zero then local pure infiniteness of A implies strong pure

infiniteness of A, because it is a special case of the following result:

If A satisfies the stronger condition that, – for every hereditary C *-subalgebra

D ⊆ A and pure state ρ on A with ρ|D 6= 0 – , there exists a projection p ∈ D with

ρ(p) 6= 0 ( 3 ), then A is strongly purely infinite in sense of Definition 1.2.2 if A is

locally purely infinite in sense of Definition 2.0.3 .

So far we don’t have seen any example of a purely infinite separable C *-algebra

A that satisfies the properties in Definition 2.6.1 of C *-algebras with “many pro-

jections”, but is not strongly purely infinite.

Check, compare and relate this blue part to above to the written

text. Remove repeats in blue parts!!!

The two next discussed cases seem not to be equivalent! Check

again!

Merge below and above text about special cases!

Look more to applications than to

problems with very weak definitions!

THIS is somewhere in the proof:

It implies immediately that every πJ(a) ∈ A/J is infinite for each a ∈ A+ and

closed ideal J of A with a 6∈ J , if one takes D := πJ(a)(A/J)πJ(a). Thus, each

non-zero element of A is infinite.

Suppose that each non-zero element of A+ is infinite, is then each non-zero

element of A+ properly infinite?

??? lem:2.infinite.elem ??? cf. Lemma ??(v) and discussion of case of algebras

that are “rich of projections” ...

Definition 2.6.1

Propositions on generalized Cuntz def. ?? and ??

[prop:2.Cases.where..Cuntz.pi..implies..l.p.i]

[prop:2.cases.where..l.p.i..implies..p.i.?]

Refs.: proof of cases where l.p.i implies p.i.

e.g. tensor ‘‘q-traceless’’ with Jiang-Su algebra

linear ordered lattice of ideals leads to s.p.i.

being ‘‘rich of projections’’ ... ???????

... then A is moreover strongly purely infinite in sense of Definition 1.2.2.

(Really???)

3 Equivalently expressed: For every a ∈ A+ with ‖a‖ = 1 and pure state ρ on A with ρ(a) = 1

there exists a projection p ∈ aAa with ρ(p) > 1/2.



2. BASICS ON PURELY INFINITE C*-ALGEBRAS 93

It seems that this class of C *-algebras (with real rank zero or at least with

many projections) and the class of C *-algebras A with the property that the ideal-

lattice of A is linear ordered, are the only cases where we can show so-far that the

properties (l.p.i.) and (s.p.i) coincide.

Then the permanence properties for the class of strong purely infinite C *-

algebras allows to define from this classes other classes of C *-algebras where (l.p.i.)

and (s.p.i) coincide.

But until now (Jan 2022) we have seen no example of a C *-algebra A that is

locally or weakly purely infinite but is not strongly purely infinite ... but, unfortu-

nately, some proofs and most interesting applications require strong pure infinite-

ness. END OF BLUE DISPUT TEXT. ????

On the other hand, the algebra O2 ⊗ K + C · 1 (with unit 1 := 1O2
⊗ id`2)

has real rank zero and is purely infinite in the sense of the above mentioned defi-

nition of J. Cuntz [172, p. 186], but is even not locally p.i. in the weakest sense:

the “local pure infiniteness” of Definition 2.0.3, because its unit element 1 is not

properly infinite (inside the multiplier algebra M(O2 ⊗K) of O2 ⊗K. The algebra

C0((0, 1],O2) is strongly p.i. in the sense of our Definition 1.2.2, but is not purely

infinite in sense of the definition in [172], because it is stably projection-less.

Therefore, it is necessary to underline that we use or consider the original

definition of J. Cuntz only in case of simple C *-algebras A :

The Definition 1.2.2 of strongly purely infinite algebras is better applicable to

non-simple C *-algebras, and has nice functorial properties, e.g. passes to quotients,

extensions (see Section 17) and to tensorproducts with exact C *-algebras ( 4 ).

One can even work with the below given (possibly weaker) definitions, that are

both equivalent to strong pure infiniteness in particular cases, e.g. where A has real

rank zero, or is simple, or has a Hausdorff primitive ideal space Prim(A) of finite

dimension, or where the lattice I(A) of closed ideals of A is linearly ordered.

What about examples or counter examples?

But here is good news for readers that feel disturbed by the “zoological gar-

den” of definitions of pure infiniteness of non-simple C *-algebras A and their still

incomplete list of permanence properties:

If one tensors a C *-algebra A 6= {0} with the Jiang-Su algebra Z then all

our definitions of pure infiniteness become the same, i.e., A ⊗ Z is “locally purely

infinite” in sense of Definition 2.0.3 if and only if A ⊗ Z is strongly purely infinite

as defined in Definition 1.2.2.

It implies immediately that A ⊗ O∞ is s.p.i. for every C *-algebra A 6= {0},
because O∞ ∼= O∞ ⊗Z.

4 Despite we haven’t seen so far a, – necessarily non-simple –, example of a weakly p.i.

C *-algebra that is not strongly p.i. It is related to the more general open question if non-

zero elements have good approximate Glimm halving in non-simple residually anti-liminary C *-

algebras, cf. Section 7.
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Give cite or ref for isomorphism O∞ ∼= O∞ ⊗Z !

(Must show KK-equivalence ??? of Z to C or O∞)

Moreover this is even the case if A ⊗ Z has no non-trivial 2-quasi-trace. Here

“trivial” means that the 2-quasi-trace takes only the values {0,+∞} on (A⊗Z)+.

(All quasi-traces on C*-algebras A are automatically 2-quasi-traces if A is both

simple and exact ... ?

”Prime” C*-algebras with non-trivial l.s.c. 1-quasi-traces can exist. The full

free group C*-algebra C∗(F∞) has all sorts of quasi-traces, among them those that

are not 2-quasi-traces.)

Moreover A ⊗ Z is strongly purely infinite if each lower semi-continuous

2-quasi-trace τ : A+ → [0,∞] takes only the values 0 and +∞, i.e., if each τ is

“trivial” in the following sense:

Compare and choose from the kernel descriptions!!

A lower semi-continuous 2-quasi-trace τ : A+ → [0,+∞] is called trivial if τ

takes only values in {0,+∞} , and is defined by its closed kernel ideal τ−1(0) =:

J ⊆ A.

“Trivial” lower semi-continuous 2-quasi-traces τ : A+ → {0,+∞} correspond

naturally to closed ideals Jτ defined by (Jτ )+ := τ−1(0), and, conversely, τJ is

defined from a closed ideals J /A by τJ(a) := 0 if a ∈ J+ and by τJ(a) := +∞ for

a ∈ A+ \ J .

If A is an exact C *-algebra, then A ⊗ Z is s.p.i. , if and only if, A+ has no

non-trivial additive trace.

Why we need here that A is exact? Has to do with the additivity of of 2-quasi-

traces (are they natural extendable to M2(A)+ etc. ...) ???

Give exact citation !!!

Corollary 3.12 of the authors Abel Proc. paper – submitted in 2005! (or 2004?)

– says moreover:

A⊗Z is s.p.i. if every l.s.c. 2-quasi-trace on A+ is trivial.

(It is (= seems to be) clear that A⊗Z has no non-trivial 2-quasi-trace if A has

no non-trivial 2-quasi-trace.

Thus, the point in the proof is: If A⊗Z has no non-trivial 2-quasi-trace, then

A⊗Z is s.p.i.

(All s.p.i. C*-algebras have no traces ... A bit imprecise expressed:

The traces on B+ a C*-algebra B can be extended to and calculated from the

”open” projections in W*-algebra (B ⊗ K)∗∗. The natural order and equivalence

will be respected ... If they are approximated from below by stable projections then

only the values 0 and +∞ can appear.)
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The point seems to be that we have to consider the corresponding ”dimension

functions” on the open projections. They must be trivial in sense that only 0 and

+∞ can appear.

Definition: Pedersen Ideal := The ideal of B that is generated by the elements

(b− ε · 1)+ with b ∈ B+ and ε ∈ (0, ‖b‖) and 1 ∈M(B).

Does this arguments use that Z ∼= Z ⊗ Z ?)

This has been proven by M. Rørdam, first in the special case of nuclear C *-

algebras A in [690, thm.5.2], – where one can use the result of U. Haagerup

[342] that all 2-quasi-traces are additive on exact C *-algebras – and later in [690,

thm.5.?2?] for all A . We give a different proof in Section ??, that is a modification

of the authors original proof in ?? Abel proc...??? ... ??????

?????? Kirchberg ???

More important for our more special applications is that the tensor products

A⊗O∞ of any non-zero C *-algebra A with the Cuntz algebra O∞ is strongly purely

infinite (= s.p.i.) in sense of Definition 1.2.2.

Only in the very special case of separable nuclear C *-algebras A we have al-

ways the strong conclusion: Separable nuclear C *-algebras A are strongly purely

infinite, if and only if, A ∼= A⊗O∞ . For general exact and separable C *-algebras

A this seems to be Give reference to this isomorphism, it is likely in

Chapter 11?

Example 2.0.2. !!! Adjust my notation for R by notion W,

because M. Rørdam called it W in [467].

Then change it also on other places, e.g. in the Introduction Chapter

1

Also in the Introduction where it is mentioned!!

Where is written that this A has the property

(CFP) (= Corona Factorization property ) and where that

F (A) has a character ?

Where is F (A) defined ???? Give Ref’s !!!

No-Where! But W and C∗red(F2) have the properties

that F (W ) and F (C∗red(F2)) have characters,

It is not known if F (A) has a character.

There is a claim that some conjectures related to (CFP) would be

destroyed if F (A) has a character.

Let W := R denote the unital simple separable nuclear C *-algebra W with

K∗(W ) ∼= K∗(S
2 × S2 × · · · ) constructed by M. Rørdam in [687] that is finite but

is not stable finite, where S2 denotes here the 2-dimensional unit sphere in R3.

Where is the existence of a character on F (W ) proven? Or a general theorem

that says: F (A) without character implies that A is not stably finite ...

The simple, separable, unital and exact C *-algebra A := C∗red(F2)⊗R is purely

infinite by Theorem E. Hence, it is also strongly purely infinite by simplicity of this
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A. But this C *-algebra A does not absorb tensorial any amenable C *-algebra 6= C.

( 5 ).

Moreover, the algebras B := C∗red(F2) and C := R (= W ) have both the

property that the unital C *-algebra F (B) and F (C) have a character.

(Where are W and R defined, and described. In a paper of Rørdam. The W

seems to be )

In case of C∗red(F2) this follows from the classical observation that the commu-

tant vN(F2)′ ∩ vN(F2)ω of the von-Neumann algebra vN(F2) in its von-Neumann

algebra ultrapower vN(F2)ω has a character, because it is simply C · 1.

Notice that vN(F2)ω is the adjoint of the Banach space (vN(F2)∗)ω (in our

terminology). There is a natural unital C *-morphism from C∗red(F2)ω into the von-

Neumann algebra vN(F2)ω. It maps C∗red(F2)′∩C∗red(F2)ω into vN(F2)′∩vN(F2)ω,

because ‖[a, u]‖+‖[a, v]‖ ≥ ‖[a, u]‖2+‖[a, v]‖2 and the unit ball of C∗red(F2) is dense

in the unit ball of vN(F2), – with respect to the `2-norm on C∗red(F2) ⊂ `2(F2).

This seems TO BE WRONG and has not been claimed in [467]!!: A has

perhaps the (then rather surprising) property that the central sequence algebra

F (A) := A′ ∩Aω has a character, see [467, ex. 4.6].

NO? that above is still not proven! But is a question how near an operator∑
g∈X Lg ⊗ cg is to 1 ⊗R (now denoted by 1 ⊗W ?) if it commutes almost with

the generators of F2 .

??? Next also still to check:

This example could show also that simple separable unital exact C *-algebras A

with the Corona Factorization Property (CFP)

Give reference to Def. of (CFP) !!!

exist ??? with the property that the invariant

F (A) := A′ ∩Aω/Ann(A,Aω)

has a character ???

Seems not clear if this example has a character!, All simple purely infinite exact

C *-algebras should have always the (CFP)? Or not?? Some answer ???

All σ-unital simple purely infinite C *-algebras A are unital or stable.

Citation of Prop./Cor.?

This will be shown for separable A, but carries automatically over to σ-unital

simple purely infinite C *-algebras A, because they can be considered as an limit of

an directed net {Aτ} of separable simple purely infinite C *-subalgebras of A that

contain a strictly positive element of A.

5 It is not shown there that A 6∼= A ⊗Mn, but that follows for this A from the fact that

there exist non-zero [p] ∈ K0(A) with the property that there does not exist [q] ∈ K0(A) with

[p] = n[q], i.e., [p] is not “divisible” inside K0(A) by some n ∈ N.
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If A is then stable, then M(A)/A is simple and purely infinite. This

could/should imply the corona factorization property (CFP) ???

Above was not proven! Ref. to Def?

If a simple separable and exact C *-algebra A has the property that F (A) has

not a character then one has always that (simple ?) A has property (CFP).

?? Above and below the same ??

But it is also known that if A is separable and F (A) has no character then A

has corona factorization property (CFP), cf. [467, thm. 4.3].

Our study starts with a variety of helpful weaker properties that are related to

pure infiniteness but are often easier to verify than pure infiniteness itself, e.g. for

C *-bundles (i.e., C *-algebras of bounded continuous sections in continuous fields

of C *-algebras), or for C *-algebras with linearly ordered ideal lattice.

The property that an element a ∈ A with a 6= 0 is “infinite” in A has been

defined by J. Cuntz by the requirement that there exists non-zero element b ∈ A
such that

b⊕ a - a .

See Definitions 2.0.3 ?? and ??.

Among the almost “weakest” definition of pure infiniteness of C*-algebras is

that of “local pure infiniteness”:

Check blue text, refs and labels of l.p.i

Check/COMPARE other places of Def. ?? ??? with next blue.

Move equivalent formulations to places where they are used.

The local stability is perhaps a very rare property! Have to find other types of

elements to work with.

Definition 2.0.3. A non-zero C *-algebra A is locally purely infinite (l.p.i.)

if, for every non-zero a ∈ A+ and pure state ρ on A with ρ(a) > 0, there exists a

stable C *-subalgebra D ⊆ aAa with ρ(D) 6= {0}.

Later the Lemma 2.7.15 says that we can replace in Definition 2.0.3 the “pure

state” simply by “state”, and get therefore a formally stronger definition than that

formulated in Definition 2.0.3.

(That definition could be ”incorrect” for a suitable version of ”local pure in-

finiteness”, because ”infinite” is not necessarily ”stable” ... Moreover, it should be

called “locally stable” !!! But a stable C *-algebra D is isomorphic to D⊗K(`2), i.e.

D ∼= D ⊗ K and contains a σ-unital stable separable C *-subalgebra E ⊆ D with

the property that there exists a non-zero epimorphism from F := C0(0, 1]⊗K onto

E. But the diagonal compact operator f := (1, 1/2, 1/4, . . . , 2−n . . .) is properly

infinite operator in K, in the sense that there exist sequences of elements (an) and

(bn) such that

f ⊗ 12 = lim
n

[an, bn]∗[fan, fbn]
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in M2(K) ∼= K This implies that F and E contain a strictly positive contraction

that is properly infinite.

Or is it somewhere shown that for p.i. elements a ∈ A+ the algebra aAa

contains a non-zero stable C *-subalgebra D ⊆ aAa?

If a is ”infinite”, then (perhaps ??????) some element e ∈ aAa+ with ‖e‖ = 1

exists that is infinite in sense (e− t)+ ⊕ (e− t)+ - (e− t)+ for suitable t ∈ (0, 1).

Perhaps ... this implies that aAa+ contains a (non-zero) stable C *-algebra?

⇐ Would be important and interesting to know!

But stability D ∼= D⊗K of D implies natural pure infiniteness of each strictly

positive elements a ∈ D+, i.e. with D = aDa.

Suppose that B is ”purely infinite” ... (says that b⊕ b - b for all b ∈ B+)

... or suppose something weaker ???, this could be that every element of B

is ”infinite” in the sense, that – for each non-zero b ∈ B+ – there exits a non-

zero cb ∈ B+ with cb ⊕ b - b ... ??? It is known that those elements cb build the

positive part J(b)+ of some closed ideal J(b) of B. And one knows that the element

πJ(b)(b) := b + J(b) of B/J(b) is finite in B/J(b) ... ( Give References ! the strict

finiteness of ).

It implies: If every non-zero positive element of every quotient of B/J is infinite,

then each element b ∈ B+ is properly infinite, i.e. b⊕ b - b.

Moreover, suppose that B is σ-unital, non-unital, and each (non-zero) quotient

B/J has no unit element.

Is B then itself stable? (Stability Question: B ⊗K ∼= B ?)

Look to Rordam paper ... ???

Ref.? Big question: to what kind of ”purely infinite” C *-algebras.!! )

” Zhang’s Dichotomy ”:

A σ-unital, purely infinite (!!!), simple C*-algebra is either unital or stable.

(Reference/Cite ???).

What kind of definition of ”pure infiniteness” is used for ”Zhang’s Dichotomy”?

[688, prop. 5.4] Rordam, Japan 2004 (or 2003),

Definition 6.10.? of this Rordam paper (defines Property: ”regular”)

A C*-algebra I is called ”regular” if every full, hereditary sub-C*-algebra of I,

that has no unital quotients and no bounded traces, is stable.

(E.K.: I := K – of `2(N) – is not regular ????) Every non-zero hereditary

C*-subalgebra D of K is ”full” in K? because each nonzero element x of K+

generates K as the closed ideal of K that is generated by x. The D is given by a

positive compact operator (by taking one of its strictly positive contractions in it).

Alternatively it is given as PKP for some orthogonal projection P on `2(N). PKP
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has finite dimension, if and only if, P`2(N) is finite-dimensional (and has a faithful

trace). Otherwise PKP is stable.

Thus, each D := PK(`2)P satisfies the definition of a regular hereditary sub-

C*-algebra of K(`2) (given by M. Rørdam for all hereditary C*-subalgebras of

K(`2).

(Check this again !!!)

[688] Proposition 6.12. (of Rordam [688] ???) Let 0−− > I −− > A−− >

B −− > 0 be a short exact sequence of separable C*-algebras and suppose that I

is regular. Then A is stable, if and only if, I and B are stable.

Question 6.5. of Rordam [688]:

Does every (separable) C*-algebra A have a greatest stable ideal (i.e., a stable

ideal that contains all other stable ideals)?

(Is a the closure of an upward directed family of stable ideals of A a stable ideal

of A?)

Equivalently: Let A be the sum of two stable ideals A = J + I. Is A stable?

Is C0(0, 1]⊗K ( = C0((0, 1],K) ??) semi-projective ?.

compare next blue with Lemma 2.7.15!

If each stable C *-subalgebra D ⊆ aAa satisfies ρ(D) = {0}, then ρ is zero on

the hereditary C *-subalgebra E of aAa that is generated by all stable elements in

aAa .

DEFINITION (cite/ref: where first def.?) of ”stable” elements b ∈ A+: bAb is

stable, i.e. bAb ∼= bAb⊗K .

Equivalently: b ∈ A+ is a stable element, if and only if, there exists a

C *-homomorphism ψ : C0(0, 1] ⊗ K → A such that b = ψ(f0 ⊗ (t1, t2, . . .)), for

(t1, t2, . . .) ∈ c0 ⊂ K with 1 ≥ t1 ≥ t2 ≥ · · · , and all tn > 0.

(First one has to find an isomorphism bAb ∼= bAb⊗K and then ???? use ????

that b is there approximately equivalent to b ⊗ c0, ( or simply replace b by b ⊗ c0
...).

But E is invariant under automorphisms of D, in particular E is a closed ideal

of D, i.e., in general the hereditary C *-subalgebra E of D generated by the convex

combinations of all positive ”stable” elements in D is an ideal of D. The E must

be equal to D if A is locally purely infinite in sense of Definition 2.0.3.

If a hereditary C *-subalgebra E of D is invariant under conjugation by certain

unitary elements in the multiplier algebra M(D) ... ?

It follows that ??????

The following Definition is equivalent to Definition [93, def. 1.2].

Definition 2.0.4. We call a C *-algebra A n-purely infinite (or: A is pi(n))

for some fixed n ∈ N if A satisfies that



100 2. BASICS ON PURELY INFINITE C*-ALGEBRAS

(i) for every nonzero a ∈ A+, positive b in the closed ideal J(a) of A

generated by a, and every ε > 0, there exists d1, . . . , dn ∈ A such that

‖ b −
∑

1≤k≤n

d∗kadk ‖ < ε ,

and

(ii) every quotient C *-algebra 6= 0 of `∞(A) has (linear) dimension > n2.

The Part (ii) says here that `∞(A) has no irreducible *-representation on a

Hilbert space H of dimension k ≤ n.

Why we use here in Part (ii) of Definition 2.0.4 the huge `∞(A) in place of A?

Is there an example where (ii) for A (in place of `∞(A)) is not enough?

Is not clear if we can prove that `∞(A) has no irreducible representation on a

Hilbert space of dimension k ≤ n if A has no irreducible representation on a Hilbert

space of Dimension k ≤ n ...

Use projectivity of Mk(C0(0, 1]) ...

But there are more general and precise observations needed ...

... because this ”proof” gives only a sequence of (needed) positive functions

fm : (0, 1]→ (0, 1]

with fm(1/m, 1] = 1 and fm+1fm = fm, and that have the property that a convex

combination ak of n + 1-homogenous contractions in `∞(A) exist that are ... ( !!!

check hand-written papers for an idea of proof ... but seems not complete ...).

If we can use only the following weaker requirement in Part (ii*) of Definition

2.0.5 in place of Part (ii) of Definition 2.0.4 then it is not clear if the two Definitions

2.0.4 and 2.0.5 are really equivalent, or if Definition 2.0.4 is strictly stronger than

Definition 2.0.5 ...

Definition 2.0.5. Let A a C*-algebra. Then A is called (n-step) ”locally

purely infinite” (or ”A is pi(n)”) if

(i*) Each element a ∈ A+ is n-step infinite in the sense:

For each elements c1, . . . , cn+1 ∈ A and ε > 0 there exist d1, . . . , dn ∈ A
such that

‖
∑

1≤j≤n+1

c∗jacj −
∑

1≤k≤n

d∗kadk ‖ < ε ,

and

(ii*) A has no irreducible representation on a Hilbert space H of dimension

k ≤ n.

We say that A is weakly purely infinite (for short w.p.i.) if A is pi(n) for

some n ∈ N = {1, 2, . . .}.
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The property (i*) in Definition 2.0.5 implies that for a C*-algebra A with

this property implies that the property (ii*) is equivalent to each of the following

properties (ii*,1)–(ii*,4?) for its elements and irreducible representations:

(ii*,1) No hereditary C*-subalgebra D of A has a (non-zero) character.

(ii*,2) No hereditary C*-subalgebra D of A has a (non-zero) finite-dimensional

quotient D/J . (Here one can take a closed ideal I of A and consider J := I ∩D,

because for each closed ideal J of a hereditary C *-subalgebra D of A the closed

ideal J of A generated by I, i.e., the closure I of the linear span of A ·J ·A, satisfies

J = I ∩D, because DAJAD ⊆ I.)

(ii*,3) No irreducible representation ρ(A) of A contains a (non-zero) compact

operator in its image.

(ii*,4) No closed ideal J of A has an irreducible representation ρ : J 7→ L(H)

with ρ(J) = K(H).

It is not difficult to see that the Part (i) of Definition 2.0.4 and

??????

are equivalent to Part (i*) of Definition 2.0.5.

It follows that A is purely infinite in the sense of Definition 1.2.1, if and only

if, A is pi(1) in the sense of Definition 2.0.4, but pi(1) follows from the formally

weaker requirements (i) for n := 1 and (ii*) that A has no character (instead to

require moreover that `∞(A) has no character !).

The conjecture (!) is that the same holds for the requirement (ii) for pi(n), i.e.,

that it is enough to require that

(ii*) A (itself) has no irreducible representation of dimension ≤ n.

But until now (2022) no general argument for a proof of this has been found.

But properties (i) and (ii*) imply together that all (non-zero) n-homogenous ele-

ments of A are properly infinite, cf. Proposition ??? ??. And this implies that all

non-zero n-homogenous elements of `∞(A) and of Aω are properly infinite...

But this argument does not exclude the existence of irreducible representations

of dimension < n on Aω or M(A)... ??? Examples ?? for this phenomenon ??

Part (ii) says that `∞(A) has no irreducible representation d : `∞(A) → L(H)

with Dim(H) ≤ n. SinceM(A) is a unital C *-subalgebra of `∞(M(A)) and `∞(A)

is an essential ideal of `∞(M(A)), it would be stronger to require that M(A) has

no irreducible representation of dimension ≤ n. It is not known, even in the case

where A is separable, ifM(A) can have an irreducible representation of dimension

≤ n, but its sequence algebra `∞(A) has no irreducible representation of dimension

≤ n. (But `∞(M(A)) has then a C *-epimorphism onto `∞(Mk) for some k ≤ n.)

It has to do with the more general question if `∞(A) is again residual antilimi-

nary if a C *-algebra A is residually antiliminary, cf. the discussions below Definition

2.7.2 of residual antiliminary C *-algebras.
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The Definition 2.0.4 is an equivalent formulation of [93, def. 1.2]. It was used in

[93] for some results on pure infiniteness of C *-bundles ( := algebras of continuous

sections vanishing at ∞ in continuous fields of C *-algebra ).

An alternative description of weak pure infiniteness is given in the following

definition of a perhaps stronger property “pi-n” defined in [463, def. 4.3].

This is mentioned below a second time (with footnote?). Compare

it and remove one of them:

The pi(n) C *-algebras have the formally stronger property pi-m of Definition

2.0.6 for suitable (but still unknown) m ∈ N with n ≤ m.

Definition 2.0.6. We say that a C *-algebra A has property pi-n (or: A is

pi-n) if, for each non-zero a ∈ A, the n-fold direct sum a⊕ a⊕ · · · ⊕ a = a⊗ 1n is

properly infinite in Mn(A), if considered as a diagonal matrix in Mn(A).

If A has the property of Definition ?? then no (non-zero) hereditary C *-

subalgebra D of A has a character and any n-homogenous positive contraction

a ∈ A is properly infinite in A.

The Definition 1.2.1 and the above given Definitions 2.0.3, 2.0.4, and ?? of local

or weak pure infiniteness coincide in case of simple C *-algebras, cf. Proposition

2.2.1.

In Section 12 of this chapter it is shown that property pi-n implies property

pi(n) on non-simple A.

Conversely, if A has property pi(m) for some m then there exists n ≥ m

such that A has property pi-n, but no general function f : N → N is known yet

(Febr.2022) with the property that n ≤ f(m) . Moreover, there exists, for every

factorial state ρ on A, a closed ideal J of A with the properties

(i) ρ|J 6= 0,

(ii) J is “essential” in A, i.e., a ∈ A and a · J = {0} implies a = 0, and

(iii) the ideal J has property pi-n (if A has property pi(n)).

Moreover, if A has property pi(m) then there exists n ≥ m such that A has

property pi-n. But until now (Febr 2022 ?) no estimating function f(m) ∈ N
is known with the property that A is pi-f(m) and f(m) ≥ m if A has property

pi(m). It seems that such estimating functions m→ f(m) depend from topological

properties of Prim(A).

We give an overview about the known results and open questions concerning

non-simple (locally, weakly or strongly) purely infinite algebras in Section 11 of

this chapter – with some parts of the needed proofs postponed to later sections and

chapters, because there are then the needed observations available for the reader.

By Definition 1.2.1 in the Introduction Chapter 1, a C *-algebra A is purely

infinite, if and only if, A has a property that is formally weaker than the Property

pi(1) of Definition 2.0.4: But it suffices to require that A has no non-zero character
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– instead to require the additional property that `∞(A) has no character as it is

extra required in Definition 2.0.4.

We give later in Proposition ?? a list of order between infiniteness.

In fact, – without (!) some sort of infiniteness –, there could be examples of

separable (non-simple?) C *-algebras A that have no irreducible representations of

finite dimension but that `∞(A) has a non-zero character. Then M(A)/A has a

character ??? and, for all b ∈ A, the sequence (b, b, . . .) ∈ `∞(A) is in the kernel

ideal of this representation.

It is related to questions about the ultrapowers of states on A and finite di-

mensional quotients of M(A)/A.

What about A := M2∞ ⊗K?
Why M(A)/A should have a "character"? Reference ?? The question if this

A has no character is equivalent to the questions: Has M(A) a character ?? Has

M(A) a trace?

It turns out that A is purely infinite in sense of Definition 1.2.1, if and only

if, each non-zero element a ∈ A is properly infinite in the sense of Definition 2.1.1.

But this says that A has Property pi-1 of Definition 2.0.6. See Corollary 2.5.6 for

a proof of this equivalences based on a more engaged discussion of the variety of

notions of “infinity” of elements and of pure infiniteness of C *-algebras. It is still

not known (2022 ?) what happens in case n = 2, e.g. even in case of C([0, 1], A)

for non-simple properly infinite C *-algebras A. Up to some special cases, it is not

known (Jan 2022 ?) if Property pi-1 implies that A is strongly purely infinite in

sense of Definition 1.2.2, except in some very particular cases, e.g. if A contains

“many projections” in a sense perhaps equivalent to A having “real rank zero”, or

where the lattice of closed ideals of A is linear ordered ...

Recall that a non-zero element a ∈ A+ is called n-homogenous if there exists

a (non-zero) C*-algebra morphism ψ : C0((0, 1]) ⊗Mn 7→ A with a = ψ(f0 ⊗ 1n),

where f0(t) := t ∈ (0, 1]. With other words: There exists a non-zero positive

contraction b ∈ A+ (e.g. with b := ψ(f0 ⊗ e1,1) and elements c2, . . . , cn ∈ A with

c∗jcj = b, c∗j b = 0 and c∗jck = 0 for j 6= k, j, k ∈ {2, . . . , n}. Then the n-homogenous

a ∈ A becomes a = b+ c2(c∗2) + · · ·+ cn(c∗n).

The comparison between the definitions should be reached with the formula-

tions with help of the J. Cuntz semigroup and by absence of traces ! No (non-zero)

hereditary quasi-traces

Let us finish all this possible ideas concerning pure infiniteness of C*-algebras

A by the following (until here weakest) definition of pure infiniteness:

We say that a C *-algebra A has property pi-n (or: A is pi-n) if, for each

non-zero a ∈ A, the n-fold direct sum a⊕ a⊕ · · · ⊕ a = a⊗ 1n is properly infinite

in Mn(A), if considered as a diagonal matrix in Mn(A).

There is a relation between the two definitions:
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Above pi-n says that a⊗ 1n is s.p.i. in Mn(A) for all a ∈ A. It is not obvious

that this implies that a = b+c2(c∗2)+· · ·+cn(c∗n) (like in Definition 2.0.7) is properly

infinite. But the diagonal matrices with diagonals (a, 0, 0, ..., 0), (b, c2c
∗
2, ..., cn(c∗n))

and (b, b, ..., b) are equivalent in Mn(A). The diagonal matrix (b, b, ..., b) = b⊕ b⊕
· · · ⊕ b is p.i. in Mn(A) if A has the property pi-n of Definition 2.0.6. This matrix

is MvN-equivalent to (a, 0, ..., 0) = a ⊕ 0 ⊕ · · · ⊕ 0 in Mn(A). Thus, the Property

pi-n of Definition 2.0.6 implies the formally weaker Property ”pi-n” of Definition

2.0.7.

It is now the question: What happens with the others: pi-n, pi(n), ...?

Definition 2.0.7. We say that a C *-algebra A is ”locally n-purely infinite” if

(i) No (non-zero) hereditary C *-subalgebra D of A has a (non-zero) charac-

ter.

(ii) Each (non-zero) n-homogenous positive contraction a ∈ A, a := b +

c2(c∗2) + · · ·+ cn(c∗n) with c∗kcj = δj,kb, has the property that a⊕ c - a for

each c ∈ J+, where J ⊆ A is the closed ideal generated by b (that contains

the element a).

In particular Part(ii) implies that any n-homogenous positive contraction a ∈
A is properly infinite in A. And Part(i) is equivalent to the property that no

irreducible representation of A has a non-zero compact operator in its image.

Below part of old text ?? Begin of change?

property pi-n (or: A is pi-n) if, for each non-zero a ∈ A, the n-fold direct

sum a⊕ a⊕ · · · ⊕ a = a⊗ 1n is properly infinite in Mn(A).

We define in the next section a formally (much?) weaker property of pure

infiniteness on C *-algebras in Definition ??. weak.p.i. ? Each ?????

1. Infinite elements, factorization and transitivity

This section collects basic definitions concerning infiniteness and some needed

technical lemmata that are interesting in itself and play a role in several poofs in

the other chapters. But some of those proofs will be postponed and then given or

outlined in the Appendices A and B, simply to run not too far away from the main

topic of this chapter: A small portion of many ideas for non-commutative versions

of “infiniteness”.

We recall first our later often used definitions of infinite, properly infinite, stable,

n-infinite, n-properly infinite and n-homogenous positive elements of a C *-algebra

A, and some equivalents of it. Notice that we have changed and refined them for our

applications, because those given by other authors have only applications to very

special types of C *-algebras. See e.g. some remarks below and in other chapters

on this differences.

New way:

All the variants of infiniteness imply the last n-homogenous variant.
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(THAT is not clear now! And, if it is so, then the reachability in n-steps shows

only that all (n + 1)-homogenous elements are properly infinite. It requires the

additional assumption that no hereditary C*-subalgebra D of A has a character.

But it is, in case of non-simple separable C*-algebras A, not enough to show

that all non-zero elements a ∈ A+ are infinite – but for each pure state ρ on

D := aAa there exists an in D non-zero ”infinite” element d ∈ D+ with ρ(d) > 0.)

It is important to consider those definitions that carry over to suitable separable

C*-sub-algebras of A ...

The minimal requirement should be that for every hereditary C*-subalgebra

D ⊆ A and every pure state ρ on D there exists an infinite positive contraction

d ∈ D with ρ(d) > 2/3. ”Infinite” means here that there exists non-zero e ∈ D+

with e⊕ d -D d ...

No!!! We must require that the ideal J of D generated by the elements e ∈ D+

with the property e⊕ d -D d contains d, i.e., d⊕ d -D d and d is properly infinite.

This means that we have to find e ∈ D+ with e⊕ d -D d and ρ(e) > 0.

How is this related to:

1) No hereditary C*-subalgebra D ⊆ A has a character

(i.e. equivalently (!): no irreducible representation ρ of A contains the compact

operators in its image.),

and

2) There exists (general and fixed) n ∈ N with the property that, for each

a ∈ A+, b ∈ A+ with b in the closed ideal Ja of A generated by a, and ε ∈ (0, ‖a‖),
there exists d1, . . . , dn ∈ A with

∑n
k=1 d

∗
kadk = (b− ε)+.

(Can we here replace this by n := f(m) for a suitable function f and the

requirement that a⊗ 1m is properly infinite in Mm(A) ?)

!!! But it is not clear if we must require (below, later or here) that there exists

suitable e ∈ D+ with ρ(e) > 1/2 and e⊕ d -D d. !!!

If we require here that there exists e ∈ D+ with ρ(e) 6= 0 and e⊕ d -D d, then

this would show that d itself must satisfy d ⊕ d -D d, i.e. that d is p.i. (and not

only infinite).

The point in the case of separable C*-algebras A is that in each non-zero here-

ditary C*-subalgebra D of a quotient A/J there exists a properly infinite element in

D. This generates ”maximal” properly infinite elements in the quotients hereditary

C*-sub-algebras of A.

If one has then an extension theorem (that is yet not available) for (rather

special) extensions of separable C*-algebras with p.i. strictly positive elements.

Then one can try to find out if the extension has also a p.i. strictly positive

element.
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The problem is then to show that every separable subset X of A is contained

in a separable C*-sub-algebra B of A, that is again suitably generated by infinite

elements ..., has again this (given) local pure infiniteness ... :

In particular it says: c⊕ b -B b if b, c ∈ B ⊆ A and c⊕ b -A b.

Requirements:

(1) No non-zero hereditary C*-sub-algebra D of A has a character. (This is

equal to the property that for every irreducible representation φ of A does not

intersect the algebra of compact operators.)

(2) if D is a non-zero σ-unital hereditary C*-sub-algebra of A, and J 6= A a

closed ideal of A, such that D is not contained in J , then (the requirement is that)

E := D/(D ∩ J) ⊆ A/J contains an infinite element, i.e. there exists non-zero

elements f, g ∈ E+ with g ⊕ f -E f .

But we need the stronger property: For every a ∈ A+ and every closed ideal J of

A with a 6∈ J there exists a non-zero element b ∈ (A/J)+ with b⊕πJ(a) -A/J πJ(a).

It says a is contained in the closed ideal Ja of A defined by: e ∈ Ja, if and only

if, e⊕ a -A a. The element πJa(a) is always finite in A/Ja.

Thus a ∈ A is properly infinite

(or is ”purely infinite” ??)

in A, i.e., a ⊕ a -A a) if and only if, for every closed ideal J of A πJ(a) is

infinite in A/J or a ∈ J (i.e., that πJ(a) = 0).

(This relation in M2(E) for E := D/(D ∩ J) is here the same as the relation

g ⊕ f -A/J f in M2(A/J). One should require more precise that ?????

The point is:

So far, we can all reduce to the separable case (– depending much from the

chosen definition of ”locally infinite” elements! –), then we can reduce our study to

separable A, and then for given d ∈ A+ and let D := dAd there exists a ”maximal”

closed ideal J := eAe = eDe of D with the property that e ∈ D+ is

(1.) strictly positive in J and

(2.) e is properly infinite in D,

This maximality comes in the case of separable D from the fact that there

exists an extremal closed ideal J of D such that J the strictly positive elements

e ∈ J of J are all properly infinite, i.e. e⊕ e -J e.

This existing (≈-) maximal p.i. contraction e ∈ D+ should turn out (by a

suitable proof) to be strictly positive in D, i.e. J = eAe and e⊕ e -J e.

The proof is likely indirect:

(1.) We have to show that for each closed ideal of J of D with D 6= J that

each non-zero σ-unital hereditary sub-algebra E of D/J exists a (non-zero) infinite

element e ∈ E+.
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that is ????

We could pass to F := {a ∈ D;πJ(a) ∈ E}. Then J ⊆ F ⊆ D and F is

hereditary in D and in A. Moreover, J ⊆ F is a closed ideal of F .

If J is σ-unital then F is again σ-unital (as D by definition).

Since one can all reduce to the separable case (by preserving - with some care

!) we can always suppose and use that all is σ-unital.

It is necessary and sufficient to consider the case of hereditary C*-sub-algebras

D of separable C*-algebras A ... Each closed ideal J of D is the intersection

J = I ∩D of a closed ideal I of A with D.

This implies that ?????.

and D/J contains again a properly infinite element f ∈ D/J ... ...)

All can be reduced to a suitable separable C*-sub-algebra B of A that contains

a given separable subspace X of A and satisfies that b1 -Mn(B) b2 for b1, b2inMn(B)

if and only if b1 -Mn(A) b2.

(THAT IS NOT obvious ...)

All are compatible with inductive limits (of this separable subspaces).

In this sense:

It is likely that many p.i.-elements appear in the separable case:

There, in hereditary D ⊆ A, are (inside D) extremal (!) positive p.i. elements

d ∈ D+, in the sense that for every p.i. element e ∈ D+ with d ∈ eDe holds that

e -D d (and automatically d -D e). The separability of A (and then that of D)

secure that the closed ideal J ⊇ D of D generated by d has the property that a

strictly positive contraction of f ∈ J+ has the property that d ≈ f . It implies that

there are elements an, bn ∈ A with a∗ndan = (f − 2−n)+ (by proper infiniteness of

d) and b∗nfbn = (d − 2−n)+. It shows that for the corresponding open projections

p, q ∈ A∗∗ that define D and J are equal, i.e. we get that D = J .

(In fact then J := dDd is for such d ∈ D+ is always an ideal of D by the

maximality and this could give then also uniqueness! ???).

(NEXT: try to use this to show that ”p.i.” implies ”s.p.i.” ??? Find it in the

appendix ??? !!!!!!)

SOME TECHNICAL CONSIDERATIONS:

Let a, b ∈ A+ with ‖a‖ ≤ 1 and ‖b‖ ≤ 1, then straight calculation shows that

2(a− (a− b)+) = (a+ b)−
√

(a− b)2.

Notice here that
√

(a− b)2 = |a− b|.

a− (a− b)+ and b− (b− a)+ have norms ≤ 2‖ab‖

Pedersen book: Proposition 1.3.8.: If 0 < β ≤ 1 the function t 7→ tβ is operator

monotone for each t ∈ [0,∞).
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I.e. in a C*-algebra A, then a, b ∈ A+, 0 < β ≤ 1, a ≤ b implies aβ ≤ bβ .

(we need case β = 1/2).

Does it follow that ‖bβ − aβ‖ ≤ ‖b− a‖β , at least for β = 1/2 ?

(cite here Pedersen book ...?)

The relevant formula for the needed decompositions by the estimate for con-

tractions a, b ∈ A+ is given by some estimate like (?? upper next is not really

checked !)

‖(a+ b)− |a− b|‖ ≤ 2‖ab‖ ,
or ≤ (2‖ab‖)1/2 and the (correct !) equation:

2(a− (a− b)+) = (a+ b)−
√

(a− b)2 .

Notice here that
√

(a− b)2 = |a− b|.

Needs study of operator-monotone function:

Something like ‖x − y‖ ≤ ‖x2 − y2‖1/2 for x, y ∈ A+ ??? or equivalently

‖a1/2 − b1/2‖ ≤ ‖a − b‖1/2 for a, b ∈ A+ by operator-monotony of the map a ∈
A+ 7→ a1/2.

SEE APPENDIX ”C” !!! for more.

Definition 2.1.1. An element a ∈ A+ is infinite if there exists non-zero

b ∈ A+ such that, for every ε > 0, there exist d1, d2 ∈ A (depending on ε) with

‖d∗1ad1 − a‖ < ε, ‖d∗2ad2 − b‖ < ε and ‖d∗1ad2‖ < ε . (1.1)

Expressed by use of the Cuntz semigroup as: a⊕ b -A a in Cu(A).

A non-positive element a in Ped(A) is called “infinite” if a∗a is infinite.

The element a ∈ A+ is properly infinite if we can take b := a in the second

of the Inequalities (1.1).

Thus a ∈ A and a⊕ a -A a says that a is a properly infinite element of A.

We call a non-zero element a ∈ A stable if the σ-unital hereditary C *-

subalgebra a∗Aa is a stable C *-subalgebra of A.

Notice here that a∗Aa is stable, if and only if, aAa∗ is stable. Following

Lemma shows that Property pi-n of Definition ?? implies Property pi(n) of Defi-

nition 2.0.4.

Lemma 2.1.2. Let A denote a C*-algebra and let a ∈ A a non-zero element in

A. Suppose that there exist ` ∈ N sequences of elements D`, E` ∈Mn+1(A) with

lim
`→∞

D` diag(a, . . . , a, 0)E` = diag(a, . . . , a, a) . (1.2)

Then 1n ⊗ a is properly infinite in Mn(A) ∼= Mn ⊗ A, and, for each element

b ∈ J(a) in the closed ideal J(a) of A generated by a and ε > 0, there exists

f1, . . . , fn, g1, . . . , gn with ‖b−
∑n
k=1 fkagk‖ < ε . If a and b are positive then one

can find here the elements fk, gk ∈ A with fk = g∗k.
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Let a, b1, b2, . . . ∈ A+ contractions with the properties that (a − ε)⊗1n and

(bk − ε)+ ⊗ 1n are properly infinite in Mn(A) or zero for each ε ∈ (0, 1].

Then b := (b1, b2, . . .) ∈ `∞(A), (respectively b := (a, a, . . .)) has the property

that h(b) 6∈ K(H) for every irreducible representation h : `∞(A)→ L(H), i.e., h(b)

is not compact if h(b) 6= 0.

In particular, if a ⊗ 1n is properly infinite in Mn(A) for each non-zero ele-

ment a ∈ A+, then `∞(A) has no irreducible representations that contains compact

operators in its image.

Especially a ∈ A, respectively (a, a, . . .) and (b1, b2, . . .) in `∞(A) are contained

in the kernel of all irreducible representations of finite dimension of A, respectively

of `∞(A) .

Proof. The equations 1.2 say that 1n+1⊗a - 1n⊗a in the --terminology of J.

Cuntz, or, even more abstractly expressed, that (n+1)[a] ≤ n[a], in the pre-ordered

“large” Cuntz semi-group Cu(A), cf. Section 5 in Appendix A, our definitions in

Section

section 2.infinitesimal ??

and Definition 2.5.1.

We can repeat the approximation by suitable choice of new operators

D`,m, E`,m ∈ Mn+m(A) beginning with D`,1 := D`, E`,1 := E` and the suit-

able products D`,m := diag(1m, D`) ∈ Mm+k(A) and E`,m := diag(1m, D`) ∈
Mm+k(A) to get that 1n+m+1 ⊗ a is the limit of D`,m((1n+m ⊗ a) ⊕ 0)E`,m for

`→∞.

The following uses that generally diag(h(b), . . . , h(b)) ∼= (h ⊗ idn)(b ⊗ 1n) is

properly infinite in C ⊗Mn if h(b) 6= 0 and b ⊗ 1n is properly infinite in B ⊗Mn,

for each given C *-morphism h : B → C.

Notice here that positive compact operators c ∈ K(H)+ ⊆ L(H) have the

property that ((c ⊗ 1n) − ε)+ = (c − ε)+ ⊗ 1n is finite or zero for each ε > 0, –

because they have finite rank in K(H)⊗Mn
∼= K(H⊗ `2(n)) . In particular, c = 0

if c ≥ 0, c ⊗ 1n ∈ K(H) ⊗Mn and ((c ⊗ 1n) − ε)+ = (c − ε)+ ⊗ 1n is properly

infinite or zero for each ε > 0 .

Let B := `∞(A) and b := (b1, b2, . . .) or b := (a, a, . . .) in B+, respectively

B := A and b := a ∈ A, with the property that (b − ε)+ ⊗ 1n is zero or properly

infinite in B ⊗Mn.

Suppose that there exists irreducible representation h : B → L(H) such that

h(b) is a non-zero compact operator on H.

Let h : B → L(H) an irreducible representation, and suppose that h(b) is

compact, i.e., h(b) ∈ K(H). Then, for ι := idMn
, (h ⊗ ι)(b ⊗ 1n) ∈ K(H) ⊗

1n ⊆ K(H ⊗2 `2(n)) and (h ⊗ ι)((b − ε)+ ⊗ 1n) = ((h(b) ⊗ 1n) − ε)+. Thus,

(h⊗ ι)((b− ε)+ ⊗ 1n) has non-zero finite rank in the Hilbert space H⊗2 `2(n) for

ε ∈ (0, ‖b‖), or ((h(b)⊗1n)−ε)+ = 0. But, by assumption, (b−ε)+⊗1n is properly
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infinite if ε ∈ (0, ‖b‖). It follows that ((h(b)⊗ 1n)− ε)+ is properly infinite or zero,

and that ((h(b)⊗ 1n)− ε)+ has finite rank. Thus, ((h(b)⊗ 1n)− ε)+ = 0 for every

ε > 0, i.e., h(b) = 0. It says h(b) = 0 if h(b) ∈ K(H).

Thus, the images of irreducible representations of A and `∞(A) can not contain

compact operators. In particular, they have no irreducible representations that

contain non-zero compact images in its images. �

If we use Lemma 2.1.9, then we can see that an element a ∈ A+ is infinite if

there exists non-zero b ∈ A+ with the property that for every ε > 0 there exists

δ ∈ (0, ε) and d := d(a, b, ε, δ) ∈M2(A) such that

d∗
(
(a− δ)+ ⊕ 0

)
d = (a− ε)+ ⊕ (b− ε)+ .

Clearly the element a ∈ A+ is properly infinite if we find for each ε > 0 some δ > 0

and d := d(a, ε) ∈M2(A) such that

d∗
(
(a− δ)+ ⊕ 0

)
d = (a− ε)+ ⊕ (a− ε)+ .

It is not difficult to obtain from Definition 2.1.1 that positive a ∈ A+ is properly

infinite inside the hereditary C *-subalgebra D := aAa of A if and only if a is

properly infinite in A, cf. the arguments in the proof of Proposition 2.2.5(i).

It implies that every stable element is properly infinite. But (non-zero) properly

infinite projections are obviously not stable.

Sometimes it is useful to allow also a = 0 to be “properly infinite” (respectively

“stable”) in the formulation of some results, but notice that 0 is not an infinite

element by our Definition 2.1.1.

But the Definition 2.1.1 of (non-properly infinite but) infinite elements allows

to conclude only that a is infinite in A if (and only if) a∗a is infinite inside the

hereditary C *-subalgebra D := a∗Aa = (a∗a)A(a∗a). Therefore a ∈ A is infinite in

A if and only a is infinite inside the closed ideal J(a) := span(AaA) of A generated

by a, cf. the “compression” arguments in the proof of Proposition 2.2.5(i).

By Lemma 2.5.3(v), a non-zero a ∈ A+ is properly infinite if (and only if)

πJ(a) is zero or infinite in A/J for every closed ideal J of A. It implies e.g. that

all non-zero elements in A+ are properly infinite in A if A is purely infinite in the

sense of Definition 1.2.1, which is, almost verbatim, equal to the below considered

property pi(1) in Definition 2.0.4, and this turns later out to be equal to property

pi-1 of Definition 2.0.6, and says that each non-zero a ∈ A+ is properly infinite.

But the ”property pi-1” defined in Definition 2.0.7 seems to be different. be-

cause it requires that a is 2-homogenous. ???

We ask here for some care, because different definitions of infiniteness of ele-

ments in some publications do not imply infiniteness in the sense of our Definition

2.1.1, e.g. H. Lin and Sh. Zhang gave in [532, def. 1.1] the following definition for

positive elements a in the Pedersen ideal Ped(A) :
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An element a ∈ Ped(A)+ is called infinite in [532], if there are nonzero positive

elements b and c in Ped(A)+ such that bc = cb = 0, and there exist sequences (xn)

and (yn) in A such that b+c = limn x
∗
ncxn, and c = limn y

∗
nayn. In our terminology,

this property of a ∈ Ped(A)+ is equivalent to c - a and is slightly stronger than

b ∈ IA(c), i.e., c is infinite and a majorize c. And, in our terminology, this implies

that [a] ≥ [c] in Cu(A) and that c is infinite. Lemma 2.1.6 shows that in case of

simple C *-algebras A the definition [532, def. 1.1] of infinite elements is equivalent

to our notion of infinite elements given in our Definition 2.1.1. The existence of a

nonzero element b ∈ A+ with bc = 0 and b + c - c inside A is not equivalent to

infiniteness of c if the C *-algebra A is not simple. But it is a sufficient condition

for being infinite in non-simple C *-algebras, cf. Lemma 2.5.4.

This definitions of proper infiniteness are not the same in case of non-simple

C *-algebras A :

Let A here denote the unitization of C0(0, 1]⊗O2 : Then 1⊗1 ≥ f0⊗1 and the

element f0 ⊗ 1 ∼MvN f0 ⊗ (s1s
∗
1) is properly infinite in A in the sense of definition

[532, def. 1.1], because f0 ⊗ (s1s
∗
1) is orthogonal to the element f0 ⊗ (s2s

∗
2). But

1 ⊗ 1 is finite, because a non-unitary isometry can not be homotopic to 1 in O2

inside the class of isometries. We don’t know if the above cited definition of Lin and

Zhang of infinite elements are equivalent to our definition at least for non-simple A

with real rank zero, (but didn’t see a counterexample). Consider the unitization of

C0(X,O2) for X := C ∩ (0, 1], where C ⊂ [0, 1] is the Cantor subset. The unit is

infinite but is not properly infinite: It can’t be properly infinite because restriction

to a zero-sequence in X shows this by observing that (1, 1, . . .) is not properly

infinite in c0(O2) + C · (1, 1, . . .) ⊂ `∞(O2).

Let A ⊂ `∞(O2) denote the C *-algebra generated by c0(O2) and the unit

element (1, 1, . . .) ∈ `∞(O2), then each element of A is infinite, but (1, 1, . . .) is not

properly infinite in A. This A has real rank zero and each projection is infinite, but

only the elements of c0(O2) are properly infinite.

But for projections a, b, c in a C *-algebra A of real rank zero the projection

a is infinite in sense of our Definition 2.1.1 if one restricts the definition of Lin

and Zhang only to projections a, b, c ∈ A. It says then only that each non-zero

projection a that satisfies their conditions has the property that a = p + q with p

an infinite projection.

We have to consider also several non-simple C *-algebras with non-zero real

rank if we study general purely infinite C *-algebras.

Some conditions allow only to see that diagonal elements diag(a, a, . . . , a) =

a ⊗ 1n ∈ Mn(A) ∼= A ⊗ Mn are infinite or properly infinite for some unknown

(!) fixed n ∈ N, e.g. this is the case where one can show only that `∞(A) has no

non-trivial quasi-trace. We are forced to variate and refine the Definition 2.1.1 in

the following manner:
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Definition 2.1.3. An element a ∈ A+ is n-infinite (respectively is n-

properly infinite), if a ⊗ 1n is infinite (respectively is properly infinite) in

A⊗Mn.

An element a ∈ A+ is n-stable if the hereditary C *-subalgebra D :=

(a⊗ 1n)(A⊗Mn)(a⊗ 1n) of A⊗Mn contains a stable hereditary C *-subalgebra

E that is full in D.

Notice that here n-stability of a ∈ A+ only means that the stable E ⊆ D

generates the same ideal of A⊗Mn as D does.

Important warning: 1-stable elements a ∈ A+ are not necessarily stable elements

in the sense of Definition 2.1.1.

If each element a ∈ A+ is n-infinite (or n-properly infinite), then at least every

n-homogenous element a ∈ A+ is infinite (respectively n-properly infinite) in A,

and it is always contained in the kernel of every irreducible representation of A of

dimension < n. It is also contained in the kernel of Of all irreducible representations

od dimension n if a is n-properly infinite.

We remind the definition of n-homogenous positive elements:

Definition 2.1.4. An element a ∈ A+ is called n-homogenous, if there exists

a C *-morphism ρ : C0(0, 1]⊗Mn → A with ‖a‖ · ρ(f0 ⊗ 1n) = a for the generator

f0(t) = t of C0(0, 1].

The proof of Proposition A.8.4. or [538, prop. 2.7], give the following equiva-

lent description of an n-homogenous element a ∈ A+: There exist – not uniquely

determined – contractions z2, . . . , zn ∈ A with properties zkz
∗
j = 0 for j 6= k,

zjzk = 0 for j, k = 2, . . . , n and z∗j zj = z∗2z2 for j = 3, . . . , n, such that a =

‖a‖ · (z∗2z2 +
∑n
k=2 zkz

∗
k) .

A C *-morphism ρ : C0(0, 1]⊗Mn → A with ‖a‖·ρ(f0⊗1n) = a is then defined

by {z2, . . . , zn} and the assignments

ρ : f0 ⊗ pk,1 7→ zk .

By Remark 2.1.16, a C *-algebra A contains an n-homogenous element a ∈ A+ with

‖a‖ = 1 if A is not a k-sub-homogenous C *-algebra for some k < n.

Recall that C *-algebra A is k-sub-homogenous if A is isomorphic to a C *-

subalgebra of Mk(C) for some commutative C *-algebra C. This happens, if and

only, if all irreducible representations of A have dimension ≤ k. All separable k-

sub-homogenous C *-algebras are C *-subalgebras of Mk ⊗ `∞ = `∞(Mk).

Our notions of n-homogenous and of n-stable positive elements have nothing

in common, because n-stable elements a ∈ A+ have the property that a ⊗ 1n is

properly infinite in Mn(A), but n-homogenous a ∈ A+ have not necessarily this

property, as e.g. a := 1n ∈Mn.
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Sometimes we use following important property of n-homogenous elements:

If a ∈ A+ is n-homogenous, then a⊗ p11 ∈ A⊗Mn is MvN-equivalent to b⊗ 1n in

Mn(A) ∼= A⊗Mn for suitable b ∈ aAa+ that commutes with a in A.

We allow only in some exceptional cases for all the above given definitions of

properties of elements a ∈Mn(A) that a = 0, then just to simplify the formulation

of conditions or of results.

Remark 2.1.5. Some authors prefer to use (completely positive) “order-zero

morphisms” ψ : C → A from C to A instead of C *-algebra homomorphisms

h : C0((0, 1], C) → A. Those ψ are often used in cases where C = Mn (and more

generally if C is of finite dimension).

The order-zero morphisms ψ are defined as completely positive linear maps

ψ : C → A with ‖ψ‖ ≤ 1 and the property that ψ(c)ψ(d) = 0 for all c, d ∈ C+

with cd = 0. In particular, ψ(c) := h(f0 ⊗ c) is an order-zero morphism if

h : C0((0, 1], C)→ A is a C *-algebra homomorphism.

We modify in Section 9 of Appendix A arguments in the proofs of [838, thm.2.3]

of M. Wolff and of W. Winter and J. Zacharias in [836], where they show that for

each completely positive order-zero map ψ : C → A there exists a unique C *-algebra

homomorphism h : C0((0, 1], C)→ A with h(f0 ⊗ c) = ψ(c) for all c ∈ C.

In fact we need for our recovery of h from ψ only the 2-positivity of the linear

map ψ and the orthogonality property of ψ on C+, i.e., that idM2
⊗ψ is positive

and that ψ(c)ψ(d) = 0 for c, d ∈ C+ for cd = 0. to obtain the latter, cf. Section 9

of Appendix A.

A crucial starting point for the study of simple purely infinite C *-algebras was

observed first by J. Cuntz. It is the nice observation stated in the following Lemma

2.1.6. Its proof should be an exercise, – e.g. by using an argument that is a bit

more elementary than using properties of the general Cuntz relation - on elements

of A⊗K(`2).

Lemma 2.1.6. Suppose that A is a simple C*-algebra. Let a, b ∈ A+. If a ≤ b

and a is infinite in A, then a and b are both properly infinite in A, and a is properly

infinite inside the hereditary C*-subalgebra aAa of A.

This Lemma does not apply to non-simple C *-algebras, cf. Example 2.5.13,

but it is also a very special case of Lemma 2.5.3(i) on the Cuntz majorization - in

arbitrary C *-algebras.

Another often used fact is Part (ii) of the following Lemma 2.1.7 concerning

stably generated ideals, and ideals generated by ideals of C *-subalgebras. The first

statement in each item plays a particular role Consider blue changes! Give

new proofs?// Consider also the remark before proof!// Compare with

Lemma 2.7.3!!
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Lemma 2.1.7. Let A a C*-algebra, B ⊆ A a C*-subalgebra, and let J the

closed ideal of A that is generated by B, i.e., J is the closed linear span of the set

of products A ·B ·A.

(o) The set B · A · B of products b1ab2 with b1, b2 ∈ B and a ∈ A is the

same as the hereditary C*-subalgebra E := span(BAB) of A generated

by B, where span( · ) denotes the linear span, i.e., no addition operations

or approximations are needed to get all elements of the hereditary C*-

subalgebra E from the set of products b1ab2.

In particular, B is hereditary in A, if and only if, the set B ·A ·B is

equal to B.

(i) If the unit 1M(B) is properly infinite in M(B), then the hereditary C*-

subalgebra E = B ·A ·B of A contains a stable hereditary C*-subalgebra D

of A that generates the same closed ideal J of A as generated by B (also

generated by E).

(ii) If the unit 1M(B) is properly infinite in M(B), and a1, a2, . . . ∈ J+ is

any sequence in J , then there exists a sequence d1, d2, . . . ∈ A with the

properties d∗jdk = δjkak and dkd
∗
k ∈ D ⊆ E .

(iii) In particular, if p ∈ M(A) is a non-zero properly infinite projection,

then pAp contains a stable hereditary C*-algebra D such that the ideal J

generated by D contains pAp.

(iv) If, moreover, B is stable then 1M(B) is properly infinite and the hereditary

C*-algebra E = BAB itself is stable.

(v) (Ideal-separation and ideals of hereditary C*-subalgebras)

Let B ⊆ A a C*-subalgebra of A and denote by JB := Span(ABA) the

closed ideal of A generated by B.

Consider the maps Φ: Y 7→ Span(AY A) from the family of all subsets

Y ⊆ A of A into the family closed ideals of A, and the map Ψ: I 7→ I ∩B,

from the family of closed ideals I of A into the closed ideals J of B.

Then, Φ(Ψ(I)) = I ∩ JB for each closed ideal I of A, if and only if,

the elements of B separate the closed ideals of the hereditary C*-subalgebra

BAB of A.

If,– in addition –, each closed ideal of J of B is the intersection J =

I ∩ B of a closed ideal I ⊆ A with B then the restriction Φ|I(B) of Φ to

the family of closed ideals J of B is the inverse map of the map I 7→ B∩I,

i.e., Ψ(Φ(J)) = J each for each closed ideal J of B.

Thus, then J = B ∩ Span(AJA) for all ideals J ∈ B and I =

Span(A(B ∩ I)A) for all closed ideals | of A.

In particular, for all hereditary C*-subalgebras D of A and every

closed ideal I of A, the closed ideal D ∩ I of D generates the closed ideal

I ∩ JD of A and each closed ideal K of D is the intersection K = D ∩ I
of the closed ideal I of A generated by K.

Proof. (o): Let E := span(B ·A ·B) the closed linear span of the elements

b1ab2 = (b∗2a
∗b∗1)∗ with a ∈ A and b1, b2 ∈ B.
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Clearly, E ⊆ A is a hereditary C *-subalgebra of A, and E is a non-degenerate

left and right B-module. Moreover for every countable subset X of E there exists a

sequence of positive contractions b1, b2, . . . ∈ B+ such that x = limn bnx = limn xbn

for all x ∈ X. If we let d :=
∑
n 2−nbn, then

X ⊆ d · E · d ⊆ d ·A · d ⊆ E .

We can apply the factorization theorem of G.K. Pedersen [621, thm. 4.1] to the non-

degenerate C∗(d)-bimodule d · E · d ⊆ E, cf. also our special version in Theorem

A.11.1. This allows to see that for each finite sequence e1, . . . , en ∈ d · E · d ⊆ E

there exists a positive contraction d0 ∈ C∗(d)+ ⊆ B+ and elements f1, . . . , fn ∈ E
such that ek = d0fkd0 for k = 1, . . . , n. In particular, E is identical with the set

B ·A ·B of products b1ab2 with a ∈ A and b1, b2 ∈ B.

(i): The non-degenerate *-monomorphism defined by the inclusion B ↪→ E :=

B ·A ·B defines a unital *-monomorphism M(B) ↪→M(E) .

By assumptions, there are isometries s, t ∈ M(B) ⊆ M(E) with orthogonal

ranges. Then s1 := s, sn := tn−1s for n = 2, 3, . . . correspond to a unital C *-

morphism from O∞ into M(E).

Thus, M(E) has a properly infinite unit, i.e., contains a copy of O∞ :=

C∗(s1, s2, . . . ; s∗jsk = δjk1) unitally. The C *-subalgebra D of E generated by

{skes∗j ; j, k ∈ N , e ∈ E} is a stable C *-subalgebra of E because D is the closure

of
⋃
m,n smEs

∗
n, which implies that D ∼= E ⊗ K, e.g. via the isomorphism ψ given

by ψ(e⊗ pkj) = skes
∗
j for the matrix units pjk of K.

The D is full in E and is hereditary in E, because it is the closure of the union

of the increasing family of split corners PnEPn of E with Pn := s1s
∗
1 + · · ·+ sns

∗
n,

s1Es
∗
1 ⊂ PnEPn ⊂ E, and s1es

∗
1 ∼MvN e inside E for each e ∈ E+.

Hence, D, E and B generate the same closed ideal J := span(ABA) of A.

(ii): By Part (i), D is isomorphic to E⊗K via natural transformation with help

of the isometries s1, s2, . . . ∈M(E). (But the sn are not necessarily in M(D).)

If we use that K⊗K ∼= K we get isometries Tn ∈M(K) with T ∗j Tk = δjk1 such

that
∑
k TkT

∗
k strictly converges to the unit 1M(K). It follows that the isometries

Sk := 1 ⊗ Tk are isometries in M(E) ⊗M(K) ⊆ M(E ⊗ K) such that
∑
k SkS

∗
k

converges strictly to 1 inM(E⊗K). The isomorphism ψ from D onto E⊗K extends

to a strictly continuous *-isomorphism M(ψ) from M(D) onto M(B ⊗ K). Then

the sequence t1, t2, . . . ∈ M(D) of isometries tk := M(ψ)−1(Sk) has the property

that t∗j tk = δjk1 and that
∑
k tkt

∗
k converges in M(D) strictly to 1.

It is enough to show that for each a ∈ J+ there exists an element h ∈ J with

h∗h = a and hh∗ ∈ D to obtain the requested elements dn ∈ D :

Indeed, we find for the given sequence a1, a2, . . . ∈ J+ a sequence h1, h2, . . . ∈ J+

with h∗khk = ak and hkh
∗
k ∈ D. Then the elements dk := tkhk satisfy d∗jdk = δjkak

and dkd
∗
k ∈ D.

Let a ∈ J+ where J := span(A ·D ·A) , and let ε > 0.
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Then D is full in J , and there are e1, . . . , em ∈ D+ and f1, . . . , fm ∈ J with

‖a− b‖ < ε for b :=
∑
j f
∗
j ejfj .

If we use Lemma 2.1.9, then we find c ∈ A such that g1 := f1c, . . . , gm :=

fnc ∈ A with
∑
j g
∗
j ejgj = (a− ε)+. The element x :=

∑
j tj(ej)

1/2gj ∈ A satisfies

x∗x = (a− ε)+ and xx∗ ∈ D . The latter uses that D is hereditary and tjejt
∗
j ∈ D.

In particular x ∈ J . Let ν(t) := (t−ε−δ)+/(t−ε)+, the element y := x(1−ν(a))1/2

satisfies y∗y = (a− ε)+ − (a− ε− δ)+ .

In this way, we find y1, y2, . . . ∈ J with yny
∗
n ∈ D, y∗1y1 = (a − 1/2)+, y∗nyn =

(a − 2−n)+ − (a − 22−n)+ for n > 1. Then h :=
∑
n tnyn is an element of the

requested type, because the series is absolutely convergent by

‖tnyn‖ ≤ ‖yn‖ ≤ ‖(a− 2−n)+ − (a− 2−(n−1))+‖1/2 ≤ 2−n/2 for n > 1,

h∗h =
∑
n y
∗
nyn = a and hh∗ = limn→∞(

∑
j,k≤n tjyjy

∗
kt
∗
k) ∈ D .

(iii): There are partial isometries u, v ∈ A with u∗u = v∗v = p and uu∗+vv∗ ≤
p . LetB = C∗(u, v). ThenM(B) = B and 1M(B) = p is properly infinite, E = pAp

and D is the closure of
⋃
m,n smEs

∗
n, where here sn := un−1v for n = 1, 2, . . . and

u0 := p. Notice that psnp = sn and s∗jsk = δjkp .

(iv): The C *-algebra B is stable, if and only if, its multiplier algebra M(B)

contains a sequence t1, t2, . . . of isometries with mutually orthogonal ranges, such

that the sum
∑
n tnt

∗
n converges to 1M(B) in the strict topology of M(B), cf. Re-

mark 5.1.1(8) for more about “stability”.

The natural map ι : M(B)→M(E) is injective, unital and strictly continuous

for E = BAB. Therefore s1 := ι(t1), s2 := ι(t2), . . . ∈ M(E) satisfy again∑
n sns

∗
n = 1. Thus, E is stable if B is a stable.

(v): The subsets Φ(Y ) := Span(AY A) of A are the closed ideals of A generated

by non-empty subsets Y of A, in particular JB := Φ(B) is the smallest closed ideal

of A with B ⊆ JB . Notice that Φ(I ∩ B) ⊆ I ∩ JB for all closed ideals of I of A,

and Φ(Φ(Y )) = Φ(Y ) for all non-empty subsets Y ⊆ A of A.

Let I a closed ideal of A. Recall that Ψ(B∩I) is the closed ideal of A generated

by B ∩ I. Since B ∩ I is contained in the ideal JB ∩ I, it follows that

Ψ(B ∩ I) ⊆ JB ∩ I .

And it implies that B ∩ Ψ(B ∩ I) = B ∩ I, because B ∩ I ⊆ Ψ(B ∩ I) and

B ∩ (JB ∩ I) = B ∩ I by B ⊆ JB .

The above equations show that B∩(JB∩I) = B∩Ψ(B∩I), which is equivalent

to B∩(D∩I) = B∩(D∩Ψ(B∩I)) for the hereditary C *-subalgebra D := B ·A ·B,

cf. Part (i).

It follows: The C *-subalgebra B of A separates the closed ideals of D :=

B ·A ·B, if and only if, B separates the ideals of JB , if and only if, the ideal JB ∩ I
of JB that is generated by B ∩ I for all closed ideals I of JB , i.e., each closed ideal

of JB is determined by its intersection with B.
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Thus, always B ∩ Ψ(I ∩ B) = B ∩ I, or B does not separate the closed ideals

of BAB, respectively of JB .

It follows then that I∩B = Ψ(I∩B)∩B for all closed ideals I of A. Thus, if B

is separating for the ideals of JB (or – equivalently – for the ideals of D := B ·A ·B)

then this says that Ψ(I ∩B) = I ∩ JB for all closed ideals I of A.

But the ideals I∩B are not all ideals of B if B is not hereditary in A. There are

examples of finite-dimensional C *-algebras A where B can have much more closed

ideals than the special ideals I ∩B for ideals I of A. �

Example 2.1.8. The stable C *-subalgebra D defined in the proof of Lemma

2.1.7 is not necessarily equal to E, because B := A := O∞ satisfy our assumptions,

but E := O∞ and J = O∞ are not stable.

The behaviour of the isometries and elements constructed during the proof has

to be considered with some care because they are usually not in M(A):

Consider the C *-algebra A := O∞ ⊗K, and a pure state ρ on O2. Let L := {c ∈
O2 ; ρ(c∗c) = 0} the closed left-ideal corresponding to ρ and B := (L∗∩L)⊗p11 ⊂
A. Then B is a full stable hereditary C *-subalgebra of A, and the algebras B ⊆ A
satisfy with E = B = D and J = A all the assumptions of Lemma 2.1.7, where here

B itself is full, stable and hereditary, but the in the proof of Lemma 2.1.7(i) defined

and used isometries and projections sn, Pn ∈ M(B) ⊆ M(E) are not elements of

M(J) = M(A). But there exists an element X ∈ A with X∗X strictly positive

in A and XX∗ strictly positive in B that creates an almost canonical isomorphism

fromM(B) ⊂ B∗∗ ⊂ A∗∗ ontoM(A) ⊆ A∗∗ by the isometry V ∈ A∗∗ given by the

polar decomposition X = V (X∗X)1/2 .

Beginning of transport back from Appendix A:

Replace e.g. all ‘‘Lemma lem:A.old.2.5 (iv)’’ by Remark 2.1.16

The following often used Lemma is [463, lem. 2.4(iii)]. We give here a different

proof that is short, elementary and does not use results about operator monotone

functions. The self-adjoint operator a+ − a− is the polar decomposition of a∗ = a.

Lemma 2.1.9. Suppose that a ∈M(A), b ∈ A and γ ∈ [0,∞) satisfy in M(A)

that

0 ≤ b ≤ a+ γ · 1 .

Then, for every ε > γ, there exists d := d(ε) ∈ bC∗(a, b)b ⊆ A with

‖d‖ ≤ 1 and d∗ a+ d = (b− ε)+ .

In particular, there exists d ∈ A with ‖d‖ ≤ 1 and d∗a+d = (b − ε)+ if a∗ =

a ∈ A and b ∈ A+ satisfy ‖b− a‖ < ε .

Proof. Let ϕ(t) :=
(
(t− γ)−1

+ (t− (ε+ γ)/2)+

)1/2
and g := ϕ(b)a+ϕ(b) .

The function ϕ(t) is zero on [0, µ] for µ := (ε+γ)/2 > γ and is a non-negative

continuous function on [µ,∞). It is increasing because ϕ(t)2 = 1− (µ−γ)(t−γ)−1
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for t ∈ [µ,∞). This and the inequalities 0 < γ < µ < ε imply (t − γ)− · ϕ(t) = 0,

ϕ(t) ∈ [0, 1), 0 ≤ ϕ(b) ≤ ϕ(‖b‖) · 1. Recall that (b− ε)+ ≤ (b− µ)+ for 0 ≤ µ ≤ ε.

Then ‖ϕ(b)‖ < 1, ϕ(b) · (b− γ)− = 0 and

(b− ε)+ ≤ (b− µ)+ = ϕ(b)(b− γ)ϕ(b) ≤ g . (1.3)

We define d as the norm-limit of the elements dn := ϕ(b)(g+1/n)−1/2(b−ε)1/2
+ :

The dn ∈ A are contractions and the sequence (d1, d2, . . .) converges in A,

because ‖ϕ(b)‖ ≤ 1 and Inequality (1.3) imply ‖d∗ndn‖ ≤ 1 and, by monotony of

the C *-norms on the cone of positive operators, that

‖dn − dm‖2 ≤ ‖ g(g + 1/n)−1 − g(g + 1/m)−1 ‖ ≤ 2/min(n,m) .

It is obvious from the definition of the dn that (b− ε)+ = limn d
∗
na+dn , – and this

convergence is independent from the above shown convergence for the sequence

(dn).

If a∗ = a ∈ A and b ∈ A+ satisfy γ := ‖b− a‖ < ε , then b ≤ a+ γ . �

Remark 2.1.10. It seems to be well-known folklore that matrices a = [aj,k] ∈
Mn(A) have operator norm estimates

‖a‖ ≤ n ·max{‖aj,k‖ ; 1 ≤ j, k ≤ n} .

Moreover, one gets the better estimate

‖a‖ ≤ (n− 1) ·max{‖aj,k‖ ; 1 ≤ j, k ≤ n} .

if the “diagonal” sub-matrix LR(n) = diag(a1,1, a22 . . . , an,n) of [aj,k] has only zero

entries,.

The estimate follows from the choice of n sub-matrices LR(`), ` ∈ {1, . . . , n},
each with at most n non-zero suitably chosen entries aj,k, e.g. with (k− j)mod` for

` ∈ {1, . . . , n} in Z/nZ , and the property that LR(`)∗LR(`) is a diagonal matrix.

Thus, the norm of LR(`) is given exactly by the maximum of the norms of the

entries of LR(`) . Then ‖a‖ ≤ the sum of the norms of this sub-matrices.

See Section 18 in Appendix B for more details on such sub-matrices.

An immediate consequence of Lemma 2.1.9 is the following observation:

Lemma 2.1.11. Let e1, e2, . . . , en ∈ A and γ > (n− 1) · ‖e∗jek‖ for all j > k.

Then there exists a contraction D = [dj,k] ∈Mn(A) such that f∗j fk = δj,k(e∗kek−γ)+

for the elements fk := e1d1,k + e2d2,k + . . .+ endn,k with k ∈ {1, 2, . . . , n} .

Proof. Consider the matrices a, b ∈Mn(A)+ defined by

a := [e1, . . . , en]∗ · [e1, . . . , en] and b := diag(e∗1e1, . . . , e
∗
nen) .

The matrix a− b ∈Mn(A) has zero diagonal elements, Remark 2.1.10 applies and

says that

‖a− b‖ ≤ (n− 1) · max{‖e∗jek‖ ; 1 ≤ j < k ≤ n } .
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Lemma 2.1.9 provides a matrix D = [djk] ∈Mn(A) that satisfies D∗aD = (b−γ)+

and hast norm ‖D‖ ≤ 1 . �

We need in Chapter 3 and other places the equivalences for a given element

h ∈ A+ listed in the following Lemma:

Lemma 2.1.12. Let A a C*-algebra, h ∈ A+ and 2 ≤ q ∈ N .

The following properties (a, i)–(a,iii) of h are equivalent:

(a, i) For every ε > 0, there exist e1, e2, . . . , eq ∈ A with ‖e∗jek − δj,kh‖ < ε for

j, k ∈ {1, 2, . . . , q} .

(a, ii) For each γ > 0 and ψ ∈ C0(0, ‖h‖]+ with ψ|[0, γ] = 0 there are elements

e1, . . . , eq ∈ A with e∗jek = δjk · ψ(h) for j, k ∈ {1, . . . , q} .

(a,iii) Each element g ∈ hAh+ satisfies the property in part (a, i) – with g in

place of h .

The following, considerable stronger, properties (b, i)–(b,iv) of h ∈ A+ and the

closed ideal J := J(h) ⊆ A, generated by h, are equivalent to each other:

(b, i) For every a ∈ J+ and ε > 0 there exist elements e1, e2 ∈ A with

‖e∗jek − δjka‖ < ε for j, k ∈ {1, 2} .

(b, ii) For each n > 1 and ε > 0 there exist elements e1, . . . , en ∈ A with

e∗jek = δjk(h− ε)+ for j, k ∈ {1, 2, . . . , n}.

(b,iii) For every a ∈ J+, n ∈ N and ε > 0 there exist d1, . . . , dn ∈ J such that

d∗jdk = δjk(a− ε)+ for j, k ∈ {1, 2, . . . , n} .

(b,iv) A∞ := `∞(A)/c0(A) contains a stable hereditary C*-subalgebra D such

that the element ∆(h) := (h, h, . . .)+c0(A) is contained in the closed ideal

of A∞ generated by D.

We do not require in part (a, i) that eje
∗
j ∈ hAh , e.g. the case A = M2, q = 2

and h = p11 shows that the properties (a, i) and (b, i) are very different.

The property (b, i) in Lemma 2.1.12 applies to all a ∈ A+ e.g. if the unit element

ofM(A) is properly infinite, or if – more general – A contains an approximate unit

consisting of positive contractions eσ that are M-vN equivalent to two orthogonal

pairs of contractions, e.g. there are fσ, gσ ∈ A with f∗σgσ = 0, f∗σfσ = eσ and

g∗σgσ = eσ.

Proof. All items are equivalent if h = 0. It suffices to consider on all places

the cases where ‖h‖ = 1, ‖g‖ = 1 respectively ‖a‖ = 1, because otherwise we can

rescale the ε > 0, γ > 0, and change the function ψ ∈ C0(0, ‖h‖]+ in a suitable

manner.

Equivalence of (a, i), (a,ii) and (a,iii):

(a,iii)⇒ (a, i): h ∈ C∗(h3)+ ⊆ hAh+ .
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(a, i)⇒ (a,iii): Let ‖h‖ = 1 = ‖a‖ , g ∈ hAh+ with ‖g‖ = 1, ε ∈ (0, 1/2) and

γ := ε/7 . There exists a ∈ A with a∗ = a and ‖g1/2 − h1/2ah1/2‖ < γ, because

hAh = h1/2Ah1/2 . Then ‖g − h1/2ahah1/2‖ < (2 + γ)γ < ε/2 .

Let µ := ε/(1 + 2‖a‖2) , then ‖ah1/2‖2 · µ ≤ µ‖a‖2 < ε/2.

By assumption there exists elements e1, e2, . . . , eq ∈ A with ‖e∗jek − δj,kh‖ < µ

for j, k ∈ {1, . . . , q} . Let fk := ekah
1/2 . Then ‖f∗j fk − δj,kh

1/2ahah1/2‖ <

µ · ‖ah1/2‖2 ≤ µ‖a‖2 < ε/2 . Hence, ‖f∗j fk − δj,kg‖ < ε .

(a,ii)⇒ (a, i): Let ε > 0 and take δ := ε/2 and ψ(t) := max(0, t− δ)+.

(a, i)⇒ (a,ii): It follows from the special case where ψ := ϕγ for γ > 0 and

ϕγ(t) := max(0, t− γ). Indeed, if ψ ∈ C0(0, ‖h‖]+ with and ψ|[0, 2γ] = 0 is given,

and d1, . . . , dq ∈ A exists with d∗jdk = δjk · ϕγ(h) , then the elements ek := dka

satisfy e∗jek = δjk · ψ(h) for a := λ(h) with λ(t) :=
(
max(0, t− γ)−1ψ(t)

)1/2
.

In the special case ϕγ(h) = (h−γ)+ we can apply Lemma 2.1.11 to the situation

in Part (a, i):

Let µ := γ/(q + 1) , and find f1, . . . , fq ∈ A with ‖f∗j fk − δj,kh‖ < µ . By Lemma

2.1.9 there exist contractions gk ∈ A with g∗kf
∗
kfkgk = (h − µ)+ . It follows that

still ‖g∗j f∗j fkgk‖ ≤ ‖f∗j fk‖ < µ for j 6= k . The inequality q · µ < γ allows

to apply Lemma 2.1.11 and obtain e1, . . . , eq ∈ A with e∗jek = δjk · (h − γ)+ for

j, k ∈ {1, . . . , q} .

Equivalence of (b, i)–(b, iv):

We use the equivalence of (a, i)–(a,iii) to prove equivalence of (b, i)–(b,iv).

The implications (b,iii)⇒ (b, i) and (b,iii)⇒ (b, ii) are obvious. We show the

implications (b, i)⇒ (b,iii), (b,ii)⇒ (b,iv) and (b,iv)⇒ (b, i).

(b, i)⇒(b,iii): The equivalence of (a, i) and (a, ii), applied to a ∈ J+ in place

of h and q := 2, shows that the property in Part (b, i) is equivalent to the property

that, for every a ∈ J+ and every ε > 0, there exist elements e1, e2 ∈ A with

e∗jek = δj,k(a− ε)+, for j, k ∈ {1, 2}. Notice that all e1, e2 ∈ A with this property

are automatically in J .

We proceed by induction over n ≥ 2 and suppose that we have shown that for

every a ∈ A+ and every ε > 0 there exist elements e1, e2, . . . , en ∈ A – depending

from a and ε – that satisfy the following equations 1.4:

e∗jek = δj,k(a− ε)+ for j, k ∈ {1, 2, . . . , n} . (1.4)

The assumptions in (b, i) allow to find n + 1 elements e1, . . . , en, en+1 ∈ A that

satisfy Equation (1.4):

Let ε > 0, a ∈ J+ and γ := ε/3 and 2 ≤ n ∈ N . There exists d1, d2, . . . , dn ∈ A
with with d∗jdk = δj,k(a− γ)+ by induction assumption. This implies that dk ∈ J ,

dkd
∗
k ∈ J+ and d∗jdk = 0 for j, k ∈ {1, 2, . . . , n} . Let b :=

∑n
k=1 dkd

∗
k ∈ J+ .

(b− γ)+ =
∑n
k=1(dkd

∗
k − γ)+ because d∗jdk = 0 for j 6= k .

By assumptions in Part (b, i), there exists f1, f2 ∈ A with f∗j fk = δj,k(b− γ)+.
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The orthogonality of the fkf
∗
k , uniqueness of polar decomposition allow to show

with functional calculus that (b − γ)
1/2
+ dk = (dkd

∗
k − γ)

1/2
+ dk = dk(d∗kdk − γ)

1/2
+ =

dk(a− 2γ)
1/2
+ . Thus, (f`dj)

∗f`dk = δj,k(a− 2γ)+(a− γ)+ . Recall that ε = 3γ and

(well-) define a function ϕ ∈ C0(0, ‖a‖]+ by

ϕ(t) :=
(

(t− ε)+ / ((t− 2γ)(t− γ))
)1/2

.

Then ek := f1dkϕ(d∗kdk) for k ∈ {1, . . . , n} and en+1 := f2d1ϕ(b) satisfy e∗jek =

δj,k(b− ε)+ for j, k ∈ {1, . . . , n, n+ 1} .

(b,ii)⇒(b,iv): By assumptions of Part (b,ii) we can find ek,n ∈ A , k ∈
{1, . . . , n} with the property

e∗j,nek,n = δj,k(h− 2−n)+ for j, k ∈ { 1, . . . , n } .

Define ek,n := 0 for k > n, and elements Rk ∈ A∞ := `∞(A)/c0(A) by

Rk := (ek,1, ek,2, . . . , ek,n, ek,n+1, . . .) + c0(A) .

Then R∗jRk = δj,k · ∆(h) for all j, k ∈ N. Thus, the closed linear span of the

elements RjR
∗
k ∈ A∞ for j, k ∈ N generate a stable hereditary C *-subalgebra D of

A∞ ( 6 ). The ∆(h) is contained in the closed ideal of A∞ that is generated by D .

(b,iv)⇒(b, i): Let D ⊆ A∞ a stable hereditary C *-subalgebra of A∞ :=

`∞(A)/c0(A) and let I ⊆ A∞ the closed ideal of A∞ that is generated by D. If

(h, h, . . .) + c0(A) =: ∆(h) ∈ I then ∆(a) ∈ I for each a ∈ J = span(AhA) .

By Lemma 2.1.7(ii), there exist for each element b ∈ I+ elements c1, c2 ∈ I with

c∗1c2 = 0 and c∗1c1 = c∗2c2 = b. If we apply this to b := ∆(a) and take, for k ∈ {1, 2},
elements (d

(k)
1 , d

(k)
2 , . . .) ∈ `∞(A) with norms = ‖ck‖ and (d

(k)
1 , d

(k)
2 , . . .)+c0(A) = ck

then

lim
n→∞

‖(d(j)
n )∗d(k)

n − δj,kb‖ = 0 for j, k ∈ {1, 2} .

Thus, the inequality in Part (b, i) is satisfied if we let e1 := d
(1)
n and e2 := d

(2)
n for

suitable n ∈ N. �

Remark 2.1.13. It is not clear if the equivalent properties in Parts (b,i)–(b,iv)

of Lemma 2.1.12 are also equivalent to the following version of “local stability”:

For every ε > 0 there exists a stable hereditary C*-subalgebra Dε of A such that

(h− ε)+ is in the closed ideal of A generated by Dε . ( 7 )

Remark 2.1.14. The implication (b, ii)⇒ (b,iii) in Lemma 2.1.12 was very

indirectly obtained in the proof of Lemma 2.1.12 by the row of implications:

(b, ii) → (b,iv) → (b, i) → (b,iii).

Here is an alternative direct proof for the implication (b, ii)⇒ (b,iii) :

Let a ∈ J+, n ∈ N and ε > 0 . Since a is a positive element in the ideal

generated by h, there exist m ∈ N and elements g1, . . . , gm ∈ A and γ ∈ (0, ε/2)

6 This D is isomorphic to K⊗ C∗(h)
7 It could be that this can be translated into a question about the existence of a full stable

hereditary C *-subalgebra in a certain hereditary C *-subalgebra of an infinite amalgamated free

product.
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such that ‖a −
∑m
j=1 g

∗
j (h − γ)+gj‖ < ε/2 . Let q := mn. By Part (b, ii) there

exists q elements ej,k ∈ A with e∗j,kej,k = (h − γ)+ (1 ≤ j ≤ m, 1 ≤ k ≤ n).

The elements fk :=
∑m
j=1 ej,kgj have the properties f∗` fk = 0 for ` 6= k and

‖a− f∗kfk‖ < γ for `, k ∈ {1, . . . , n} .

By Lemma 2.1.9 there exists contractions dk ∈ A with d∗kf
∗
kfkdk = (a − ε)+.

Thus, e∗jek = δj,k(a− ε)+ for ek := fkdk and j, k ∈ {1, . . . , n}.

Some old citation changes/compare again:

Proposition A.21.4 (A.1.24 or: A.old.2.4)

Proposition A.21.4 (or: K.2.4, A.old.2.4 also in old: A.8.1)

Only 1-cited in proof of Lemma 2.2.3.

Lemma A.6.1 (old A.1.9.)

Proposition A.21.4 and/or Lemma lem:A.old.3.4c = ?? Lemma 2.1.22

(old A.1.24 (= lem:A.old.2.4) - old A.1.28)

Lemma 2.1.15 covert by new lem:2.advance.Kadison.transit exhausting

old: lem:A.old.3.4b or lem:2.6-1

The Part (i) of the following Lemma 2.1.15 is one of the possible characteriza-

tion of projections in the “socle” of bi-duals A∗∗ ( 8 ). The observation that they

are “closed” projections imply a very important and often used “excision” result.

Lemma 2.1.15 (Generalized Kadison transitivity and Excision).

Let A a C*-algebra and p ∈ A∗∗ a non-zero projection.

(i) The W*-subalgebra pA∗∗p of A∗∗ has finite dimension, if and only if, there

are pairwise inequivalent irreducible representations Dk : A→ L(Hk) and

projections qk ∈ L(Hk) of finite rank such that for the natural normal

(and unital) extensions of Dk to A∗∗ satisfy

(D1 ⊕ . . .⊕Dn)(pap) = q1D1(a)q1 ⊕ . . .⊕ qnDn(a)qn

for a ∈ A and that (D1 ⊕ · · · ⊕Dn)|pA∗∗p is faithful on pA∗∗p ( 9 ).

(ii) (Generalized Kadison transitivity.) If p ∈ A∗∗ is a projection such that

M := pA∗∗p is finite-dimensional, then the natural C*-morphism π from

{p}′∩A into pA∗∗p, given by a 7→ ap , is an epimorphism, and there exists

a C*-morphism

ψ : C0((0, 1],M)→ {p}′ ∩A

such that π(ψ(f)) = ψ(f)p = f(1) for all f ∈ C0((0, 1],M).

(iii) (Generalized Excision Lemma.) Suppose that M := pA∗∗p is finite-

dimensional, Ω ⊆ A is a compact subset of A and

ψ : C0((0, 1],M)→ {p}′ ∩A

8 “socle” is french, but the english translation “base” does not fit here.
9 Our notation does not distinguish between a representation D of A and its normal extension

to A∗∗, given by Π ◦D∗∗ via the natural normal *-epimorphism Π: L(H)∗∗ → L(H).
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is any C*-morphism such that

π(ψ(f)) = ψ(f)p = f(1) for all f ∈ C0((0, 1],M) . (1.5)

Then there exists a positive contraction g ∈ A+ with gp = p such that

lim
n→∞

‖gn
(
a− ψ(f0 ⊗ pap)

)
gn‖ = 0 for all a ∈ Ω , (1.6)

where f0(t) := t, i.e., (f0 ⊗ pap)(t) = t · pap ∈ pA∗∗p for t ∈ [0, 1] .

We can Ω replace by the compact set Ω∪{ψ(f0⊗ c) ; c ∈M, ‖c‖ ≤ 1}, without

change of other assumptions or conclusions in Part (iii).

Notice that b−ψ(f0⊗ pbp) ∈ L∗+L for all b ∈ Ω , because L∗+L is the kernel

of A 3 a 7→ pap, where L ⊆ A denotes the closed left-ideal

L := {a ∈ A ; p(a∗a)p = 0 } .

A suitable decomposition of Ω could help / can help / to give a proof of Parts (ii)

and (iii). See the arguments for the special case where L is a left-kernel of a pure

state on A.

Proof. (i): If one does not go the “rigorous” way mentioned in our Remark

2.1.19 and use instead e.g. G.K. Pedersen’s improved version [616, thm. 2.7.5] of

the Kadison transitivity theorem, then we have to show before at least the (almost

obvious?) existence of some normal unital representation H : A∗∗ → L(H) with the

property that the restriction to pA∗∗p is faithful and that H(p) has finite rank in

L(H), i.e., it is necessary to show first that H can be selected with the additional

property H(p) ∈ K(H). The following is such an elementary argument that shows

the existence of H with this for the application of [616, thm. 2.7.5] very needed

properties:

Let p∗p = p ∈ A∗∗ nonzero. Suppose that pA∗∗p has finite (linear) dimension.

Then there are projections q1, . . . , qn in the center of pA∗∗p such that qkA
∗∗qk =

qkpA
∗∗p ∼= Mnk and q1 + . . .+ qn = p. We find “minimal” projections 0 6= ek ≤ qk

with ekA
∗∗ek = C · ek. It implies that central projections Q ∈ Z(A∗∗) can only

satisfy one of Qqk = qk or Qqk = 0. Moreover, Qek = 0 implies Qqk = 0. Let Rk the

maximal central projection with Rkek = 0 and let Qk := 1−Rk. The Qk ∈ Z(A∗∗)

is the central support projection of ek and A∗∗Qk is a type-I-factor. By definition of

the Qk holds pQk = qk, QkQj = 0 for k 6= j and p(Q1 + . . .+Qn) = p. Thus, there

are Hilbert spacesHk and normal *-isomorphisms dk : A∗∗Qk → L(Hk) from A∗∗Qk

onto L(Hk). Let Dk(a) := dk(aQk) for a ∈ A. Here we identify A with its natural

image in the W*-algebra A∗∗. Clearly the restrictions Dk|A to A of the normal

*-representations Dk of A∗∗ are pairwise non-equivalent irreducible representations

of A and the normalization D of the direct sum (D1|A) ⊕ · · · ⊕ (Dn|A) of this

irreducible representations is identical with

D1 ⊕ · · · ⊕Dn : A∗∗ → L(H1 ⊕2 · · · ⊕2 Hn) .

Moreover D(p) is a projection of finite rank Rk(p) ≤ Dim(pA∗∗p).
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Conversely, suppose that p ∈ A∗∗ is a projection and that pairwise inequivalent

irreducible representations Dk : A → L(Hk), k = 1, . . . , n and projections qk ∈
L(Hk) of finite rank exist such that, for a ∈ A and the normal extensions of Dk to

A∗∗ (again denoted by Dk), holds

(D1 ⊕ · · · ⊕Dn)(pap) = q1D1(a)q1 ⊕ · · · ⊕ qnDn(a)qn

and that (D1 ⊕ · · · ⊕ Dn)|pA∗∗p is faithful on pA∗∗p. Now use that irreducible

*-representations are always non-degenerate, direct sums of non-degenerate *-

representations are non-degenerate, and that normalizations of non-degenerate

*-representations are unital. It follows that the direct sum D := D1 ⊕ · · · ⊕ Dn

of the normal extensions of Dk to A∗∗ is unital, satisfies D(p) = q1 ⊕ . . . ⊕ qn, –

i.e., D(p) has finite rank – and D|pA∗∗p is faithful. Thus, pA∗∗p has finite linear

dimension (equal to sum of squares of the ranks
∑
k Rk(qk)2). This properties

show that the above selected representation D : A→ L(H) satisfies all assumptions

of [616, thm. 2.7.5].

(ii): With Part(i) in hand, we are in position to use [616, thm. 2.7.5] and

get the desired surjectivity of the natural C *-morphism π : {p}′ ∩A 7→ pA∗∗p with

π(a) := ap = pap for a ∈ {p}′ ∩A.

Alternatively, – but with some in Remark 2.1.18 given necessary additional

observations –, one could use also [400, thm. 5.4.5] and its generalization by S. Sakai

[704, thm. 1.21.16] to derive this surjectivity.

In fact we decide here to use Part(i) to obtain – from the assumption that pA∗∗p

is of finite dimension – the following special kind of *-representation D exists:

Let D a normal unital *-representation of A∗∗ onto a von-Neumann algebra in

some L(H) and p ∈ A∗∗ is a projection such that D|pA∗∗p is faithful and D(p) is

of finite rank, i.e., Dim(D(p)L(H)) < ∞ . Then there exists a central projection

Q ∈ Z(A∗∗) with Qp = p such that D|QA∗∗Q is faithful (and again unital).

Thus, the natural C *-morphism ({p}′ ∩ A) 3 a 7→ pa ∈ pA∗∗p is surjective by

this observation and [616, thm. 2.7.5].

(See Remark 2.1.18 or Remark 2.1.19 for alternative proofs of this surjectivity.)

Let π denote the natural *-epimorphism from A0 := {p}′∩A onto M := pA∗∗p,

and let J := ker(π), and consider the evaluation map η : CM → M given by

f 7→ f(1) =: η(f) from CM := C0((0, 1],M) onto M . By Proposition A.8.4,

the cone CM := C0((0, 1],M) is projective. Thus, there exist a C *-morphism

ψ : CM → A0 ⊆ A with π ◦ ψ = η.

(iii): Recall that M := pA∗∗p and CM := C0((0, 1],M) . By Part(ii), there

exists a C *-morphism ψ : CM → A0 := {p}′ ∩ A that satisfies π(ψ(f)) = f(1) =

pf(1)p for all f ∈ CM .

The separable case has to do with Proposition A.15.2 and the determination

of the multiplicative domain of πL∗+L : A → A/(L∗ + L) considered in Theorem

A.16.5(iii). ?????



1. INFINITE ELEMENTS, FACTORIZATION AND TRANSITIVITY 125

The excision result needs Lemma A.21.1 on peak elements.

The non-separable case can then be considered by selecting a suitable separable

C *-subalgebra B of A that contains ψ(CM) and the given separable subset. This

can be done with help of the separable selection Lemma B.14.1 and Proposition

A.15.2.

Later ??? bring ??? Proposition A.21.4 back to Chapter 2.???

Or refers in place of his proof to here???

To get more precise in calculations we discuss some topics ... with help of listed

below/above.. ???

Here, p ∈ A∗∗ is a projection such that M := pA∗∗p is a C *-algebra of fi-

nite (linear) dimension, π denotes the restriction to A0 of the completely positive

contraction Vp(a) := pap for a ∈ A∗∗ ⊇ A.

The C *-subalgebra B0 of A0 generated by ψ(CM) is separable and B0/(B0 ∩
J) = A0/J ∼= M is unital, where J ⊂ A0 is the kernel of π.

Obviously (why ???) J = D := A ∩ ((1 − p)A∗∗(1 − p)) is a hereditary C *-

subalgebra of A and is equal to the kernel ideal of π : a ∈ A0 7→ pa = pap ∈ A∗∗ .

L := A∩ (A∗∗(1− p)), A =? = L∗ +L+A0, D = L∗ ∩L = J , A0 = B0 +D =

N (A,D).

By Proposition A.15.2, L∗+L is a closed linear subspace of A and the natural

map A/(L∗+L)→ pA∗∗p induced by π : A 3 a 7→ pap ∈ pA∗∗p defines a completely

isometric isomorphism from (A/(L∗+L))∗∗ onto pA∗∗p =: M . Since π(ψ(CM)) =

M It follows that A = L∗+L+ψ(CM). Let A1 denote the separable C *-subalgebra

of A generated by Ω ∪ ψ(CM). By Lemma B.14.1, there exists a separable C *-

subalgebras B of A with the property that A1 ⊆ B and B ∩ (L∗ + L) = (B ∩
L)∗ + (B ∩L) and the natural map from B/

(
(B ∩L)∗ + (B ∩L)

)
to A/(L∗ +L) is

completely isometric and completely positive.

Since A/(L∗ +L) ∼= M and πL∗+L ◦ ψ = idM it follows that we can repeat the

above consideration in case for separable A now for B and Ω ∪ ψ(CM).

Here possible end of proof,

if separable case is before completely shown.

Or is it below?

The crucial points of the proof are to show that the projection p is closed, and

that the open support projection qD ∈ A∗∗ ofD is equal to 1−p and J = D = L∗∩L.

Then e ∈ A+ with ‖e‖ = 1, e(1−e) ∈ D, ep = p and e(1−e) strictly positive in

D exists. By separability of D (if A is separable) and p is the unit of M = pA∗∗p.

Apply the Lemma A.21.1 to E := π−1(C · p) ⊆ A0 and J to get a positive

contraction g ∈ E with the properties that π(g) = p and g − g2 ∈ J+ is strictly

positive in J .

Then g is strictly positive in A and has the excision property of Equation (1.6).
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(1) in case where A is separable, that A = A0 +DA+AD and that there exists

g ∈ (A0)+ with ‖g‖ = 1, π(g) = p and g − g2 strictly positive in D. (Because then

g has obviously the in (iii) proposed properties ????

A0 = N (A,D) = D + ψ(CM) ???

(2) Reduction of the general case to the separable case if A is non-separable:

Find (!!!) separable C *-subalgebra B of A with ψ(CM) ∪ Ω ⊆ B such that

F := B ∩D satisfies B = BF + FB + ψ(CM) and B/(BF + FB) ∼= M naturally.

(The point is to manage that N (B,F ) ⊆ A0 and BF = B ∩ (AD).???)

Could it be that dist(b, BF ) = dist(b, AD) for all b ∈ B is sufficient?

Notice that ψ(CM) ∩D is an ideal of ψ(CM).

Then apply above arguments to separable B (in place of A).

The argument works well if D = J is σ-unital. Reduce to this case !!! ???

Next to be filled in / corrected !?

It is necessary to use characterizations of open and closed

projections -- as considered in Appendix A.

Take better all to there.

And 1 − p ∈ A∗∗ is the “open” support projection of D, i.e., D∗∗ ∼= wcl(D) =

(1− p)A∗∗(1− p).

We consider first the case where A is separable:

Cite here the Prop. ?? on closed/open projection!!!

Existence of contraction e ∈ A+ with pep = p has to be deduced!!!

There exists e ∈ A+ with pep = p and ‖e‖ ≤ 1 by Part (ii), e.g. e := ψ(f0⊗1M ).

Let f ∈ D+ a strictly positive contraction for D := L∗ ∩ L, where L :=

A ∩ (A∗∗(1− p)).

Then D = A∩ (1− p)A∗∗(1− p) is the kernel of the C *-morphism A0 = {p}′ ∩
A→ pA∗∗p, because a ∈ {p}′∩A, if and only if, a ∈ A∩(pA∗∗p+(1−p)A∗∗(1−p)).
And pap = 0 if and only if a ∈ (1− p)A∗∗(1− p)) .

We get for the above taken e, f ∈ A+ that e, f ∈ {p}′∩A = N (A,D), and that

there exists g ∈ ({p}′ ∈ A)+ with ‖g‖ ≤ 1, pgp = p and g(1− g) is strictly positive

in D .

Build g from e and f . !!!!!!

a 7→ pap = V (a) has kernel A · D + D · A ???? V (a − ψ(f0 ⊗ V (a))) =

V (a)− pV (a) = 0 ???

gnd, dgn → 0 for all d ∈ D, because g(1− g) is strictly positive in D.

Way of arguments:

1) p is closed,
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2) the open 1 − p is the right support projection of the closed left ideal L :=

A ∩A∗∗(1− p). (Thus L∗∗ = A∗∗(1− p).)

3) pA∗∗p = pAp ∼= A/(R+ L) for R := L∗ := {a∗ ; a ∈ L}

4) {p}′ ∩A = N (A,R ∩ L)

5) The completely positive map V (a) := pap from A onto pA∗∗p has kernel

L∗ +L ?, i.e., ((1− p)A∗∗ +A∗∗(1− p))∩A = L∗ +L, for L := A∩ (A∗∗(1− p)) =

{a ∈ A ; ap = 0} by p closed?

6) Cite here definition of N ?????

A = L∗ + L+N (A,L∗ ∩ L)

7) D := L∗ ∩ L is ideal of N (A,D), N (A,D) = {p}′ ∩A.

8) (M := pA∗∗p 6= {0} is finite-dimensional) Ω ⊆ A The compact subset Ω of

A and the image of ψ : C0((0, 1],M) → A generate a separable C *-subalgebra B

of A.

9) Can enlarge B to a separable C *-subalgebra C of A such that B ⊆ C,

C∩(R+L) = (C∩R)+(C∩L), (C∩D)·C = L∩C, N (C,C∩D)+C∩(R+L) = C,

{p}′ ∩ C = N (C,C ∩D)

(C ∩ R) + (C ∩ L) is always closed. See Appendices ??? behind Reduction to

separable.

More ??

Now proceed as in case of separable A.

Fact list:

1. p is a closed projection with

p ∈ wcl({p}′ ∩A) ∼= {p}′ ∩A∗∗ = (1− p)A∗∗(1− p) + pA∗∗p

Needs that pa∗ap = 0 if and only if a ∈ A∗∗(1− p) .

π extends to the c.p. contraction V : A 3 a 7→ pap ∈ pA∗∗p

i.e., {p}′ ∩A is the multiplicative domain of V .

1a.

J := kernel of π is the same as D := A ∩ (1 − p)A∗∗(1 − p), because D ⊆ A0

and D ⊆ J . a ∈ J ⊆ A0 implies pa = ap = 0, thus a ∈ A and a = (1− p)a(1− p).

and

1b.

1− p ∈ A∗∗ is the open support projection of D,

???? Needs pA∗p ∼= (pA∗∗p)∗ is σ(A∗, A)-closed ???

Unit ball of pA∗p is equal to unit ball of X>, for X := {a ∈ A ; v(a) = 0, v ∈
pA∗} ???
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because J = D ⊆ (1− p)A∗∗(1− p) and the open support projection qD ∈ A∗∗

of D is contained in the weak closure of of A0 in A∗∗ by J = D and satisfies

qD + p ≤ 1, i.e., (1− qD) ≥ p. If (1− qD)− p 6= 0, then

A0/J ∼= M = pA∗∗p via implies that wcl(A0)/(qDA
∗∗qD) ∼= M .

Needs qDA
∗∗qD = wcl(D) ⊆ (1− p)A∗∗(1− p)

The map (1 − qD)A∗∗(1 − qD) → pA∗∗p given by (1 − qD)a(1 − qD) 7→ pap is

surjective, and is multiplicative for a in the weak closure of A0 in A∗∗.

because p is a closed projection ????

why it is closed??? pAp = pA∗∗p – confirmed in Part (ii).

1c.

The set L := A ·D of products a ·d is a closed left ideal of A, because the closed

linear span of L is obviously contained in A and L = L ·D by Cohen factorization.

(The arguments for this are similar to those in Part (o) in proof of Lemma

2.1.7.)

with A/(L∗ + L) ∼= M ???

To be shown.

D := L∗∩L = L∗ ·L is kernel of π : {p}′∩A→M . D = ((1−p)A∗∗(1−p))∩A
? by L = (A∗∗(1− p)) ∩A

Needs: p closed, and 1− p support of D.

q ∈ A∗∗ open then qAq ⊆ A

??? (If A is unital, then this is wrong in general, because then this implies

pinA

L = A ·D ?

The C *-morphism φ defines a linear map λ from A into L∗ + L given by

λ(a) := a− φ(V (a)).

Let {dn} ∈ D+ an approximate unit of D given by contractions

The rest is reduction to separable case.

We enlarge B0 to the still separable C *-algebra B1 := C∗(Ω∪B0) . The natural

map b 7→ pbp is a completely positive contraction that maps the unit-ball of B1 onto

the unit ball of pA∗∗p and maps φ(f0 ⊗ x) to x ∈ pA∗∗p.

But this is not enough to find in B1 the desired positive contraction g. ....????

Let J the kernel ideal of {p}′ ∩ A→ M := pA∗∗p = pAp. Then one can show

that L := A·J is a closed left ideal of A such that L∗∗ = A∗∗(1−p) (by noticing that

p is a closed projection and 1− p is an open projection), that φ : A 3 a 7→ pap ∈M
satisfies φ−1(0) = L∗+L and defines a completely positive and completely isometric

isomorphism from the C *-system A/(L∗ + L) onto M .
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If B is some separable C *-subalgebra of A such that φ maps the closed unit-ball

of B onto the closed unit-ball of M , then this does not imply that B/(φ−1(0)∩B)

is completely isometric to M .

We must do a careful selection of a bigger separable C *-algebra Be ⊇ B of

A such that the kernel ideal I of π|Be : {p}′ ∩ Be → M defines a closed left-ideal

Le := Be · I with the property that the natural map from Be/(L
∗
e +Le) onto M is

completely positive and completely isometric.

The key for this inductive selection is the Lemma B.14.1.

We get from Lemma B.14.1 a separable C *-subalgebra Be ⊇ B such that

Be ⊆ BAB, (Be∩L)∗+(Be∩L) is closed in Be, that it is the same as Be∩(L∗+L)

and that the natural map from Be/(Be ∩ (L∗ +L)) to A/(L∗ +L) ∼= pA∗∗p defines

a surjective completely positive complete isometry from ({p}′ ∩Be)/(J ∩Be) onto

pA∗∗p.

NOTICE 31.12. 2017:

If B ⊆ A is a C *-subalgebra of A and L ⊆ A is a closed left ideal and R ⊆ A is

a closed left ideal, then R+L is a closed subspace of A by Part (iv) of Proposition

A.15.2.

This implies that B ∩ (R+L), B ∩R and B ∩L are closed linear subspaces of

A. Thus, B ∩R and B ∩L are closed right and left ideals of B. Again, by Part(iv)

of Proposition A.15.2, (B ∩R) + (B ∩L) is a closed linear subspace of B, obviously

contained in the closed linear subspace B ∩ (R+ L) of B.

By our pre-assumption that (B ∩R) + (B ∩L) is dense in B ∩ (R+L), we get

the equality

B ∩ (R+ L) = (B ∩R) + (B ∩ L) .

(Without this “density assumption” the formula would be wrong: A : C ⊕ C,

B := C · (1, 1), L := C ⊕ 0, R := 0 ⊕ C. A = L + R, B ∩ L = 0, B ∩ R = 0 and

B ∩ (L+R) = B.)

But requires an additional selection process that also shows that

B/(B ∩ (R+ L))→ A/(R+ L)

is isometric, respectively, is completely isometric, by tensoring all with Mn ...

Needs to show that dist(b, R+ L) = dist(b, B ∩ (R+ L)) ...

This seems to work only with a suitable iteration process, until B⊗K ⊆ A⊗K
is relatively weakly injective.

But above procedure has to be suitably changed to an inductive procedure that

allows to construct a suitable separable C *-subalgebra B ⊆ C ⊆ A by Corollary

A.15.3.

Moreover it hold then that the natural C *-monomorphism {p}′∩Be → {p}′∩A
is surjective by separability of A/(R+ L).

???? WHERE it is SHOWN ????
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L ∩Be = Be · (J ∩Be).

Recall here that J ⊆ {p}′ ∩ A is the kernel of the surjective C *-morphism

{p}′ ∩A→ pA∗∗p.

This implies that Be · (J ∩ Be) = L ∩ Be, Be/(L ∩ Be + L∗ ∩ Be) ∼= M . and

Be/(J ∩Be) ∼= M , with all isomorphisms canonical.

It follows that the separable C *-algebra J ∩ Be contains a strictly positive

contraction and the C *-subalgebra π−1(C · 1M ) ⊆ ({p}′ ∩ Be) contains a positive

contraction a0 with π(a0) = 1M and (1− a0)a0 strictly positive in J ∩Be.

Here the set Ω ⊆ A is not considered.

Consider e.g. the separable C *-subalgebra A1 := C∗(Ω, B0) ⊆ A.

It it a question if A1 has to be suitably enlarged (still separable and “suitable”).

This bigger separable C *-algebra Be should have the property that Be plays

the same role as A.

Say, A itself is separable. M := A/(L∗ + L), D := L∗ ∩ L, N (A,D)/D ∼= M ,

{p}′ ∩A? =?N (A,D) ??

Then L1 := A1 ∩ (A∗∗(1 − p)) is a closed left-ideal of A1, D1 := L∗1 ∩ L1 is a

hereditary C *-subalgebra and

????

A1/(L
∗
1 + L1) ∼= pA1p ∼= M .

????

N (D1, A1) ⊇ A1 ∩ {p}′ contains φ(CM) and is ( in ???) the multiplicative

domain of a ∈ A1 7→ pap ∈ pA∗∗p.

N (D1, A1)/D1
∼= pA∗∗p ? p(a− φ(f0 ⊗ pap))p = 0 for all a ∈ A.

Need g ∈ A1 ∩ {p}′ with g ≥ 0, ‖g‖ = 1, pg = p, g(1 − g) strictly positive in

D1.

Then gn(X − φ(f0 ⊗ pXp))gn → 0 for X ∈ A1 and n→∞.

Needs that kernel of A1 → pA∗∗p is equal to sum L∗1 + L1 ????

Needs to construct a “regular” separable enlargement of A1 by “reduction to

separable case”.

???? By Lemma A.21.1 there exists ????

Next is OLD version?????

The proof refines the proofs of Lemmas 2.1.7 or ?? and Remark 2.1.16

Let M := pA∗∗p of finite linear dimension, C := {p}′ ∩ A and π : f ∈ C →
fp ∈ M the C *-morphism from C into M considered in Part (ii). Then π is

an epimorphism by (ii). We define ϕ : C0((0, 1],M) → M by ϕ(f) := f(1) for

f ∈ C0((0, 1],M).
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By Proposition A.8.4, C0((0, 1],M) is projective. It says that there exists a

C *-morphism ψ0 : C0((0, 1],M) → C with π ◦ ψ = ϕ, i.e., ψ(f0 ⊗ a)p = a for all

a ∈M .

The convex set Sp(A) ( = Cp(A
∗∗) ) of positive functionals ρ ∈ A∗ = (A∗∗)∗

with ρ(p) = ‖ρ‖ is σ(A∗, A)-closed, because this set is naturally isomorphic to the

compact quasi-state space of M = pA∗∗p. Thus, the projection p ∈ A∗∗ is closed,

and there is a closed left-ideal L ⊆ A such that q := 1 − p is the open support

projection of L in A∗∗, i.e., A∗∗q is the weak*-closure of L in A∗∗.

It follows, that ‖pap‖ = dist(a, qA∗∗ + A∗∗q) = dist(a, L∗ + L) . In particular,

L∗ +L is the kernel of the c.p. map a ∈ A→ pap ∈M . We get a− ψ0(f0 ⊗ pap) ∈
L∗ + L , because a− ψ0(f0 ⊗ pap) ∈ A and p(a− ψ0(f0 ⊗ pap))p = 0 for all a ∈ A.

More ????????

Since Ω is a compact subset of A, there is a separable C *-subalgebra E0 of A

with Ω ∪ ψ0(C0((0, 1],M)) ⊆ E0.

Since E0 is separable, there exist a separable C *-subalgebra E1 ⊆ A with E0 ⊆
E1, a−ψ0(f0⊗pap) ∈ (E1∩L)∗+(E1∩L) and ‖pap‖ = dist(a, (E1∩L)∗+(E1∩L))

for all a ∈ E0.

Next (commented?) comes also from Lemma B.14.1.

to be filled in

Part(iii) of Lemma 2.1.15, ??

If γ : Mnk
∼= Mqk is a *-isomorphism from Mnk onto Mqk, then there is a

natural *-isomorphism τ from Fk onto Fk,1 ⊗Mnk such that Fk,1 = yEy = y(Fk)y

for y := ψ0(f0 ⊗ γ(p11)) and τ(ψ0(f0 ⊗ γ(α))) = y ⊗ α for α ∈Mnk .

Step ?:

(Recall here that q := 1 − p is the above defined open support projection of a

hereditary C*-subalgebra of A.)

Text/Statement:

For every separable C *-subalgebra C ⊆ A, there exists a positive contraction

g ∈ {p}′ ∩A with gp = p and limn ‖gncgn‖ = ‖pcp‖ for all c ∈ C .

It is important that p ∈ A∗∗ is “closed”, – in the sense that 1− p ∈ A∗∗ is the

“open” support projection of a hereditary C *-subalgebra D ⊆ A of A.

Step ?:

More general case:

If J / B contains a strictly positive element e ∈ J+, and if the C *-morphism

ϕ : C0((0, 1],M)→ B/J

has kernel ker(ϕ) = C0((0, 1),M), – i.e., there is a *-monomorphism λ : M →
B/J with ϕ(f) = λ(f(1)) for f ∈ C0((0, 1],M) –, then the homomorphic lift

ψ : C0((0, 1],M) → B of ϕ can be chosen such that lim ‖gne‖ = 0 for g := ψ(f0 ⊗
1M ), where f0 ∈ C0(0, 1] is given by f0(t) := t. �
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Remark 2.1.16. The Parts (i,ii) of Lemma 2.1.15 show that there exist a non-

zero C *-morphism ψ : C0((0, 1],Mn) → A if a C *-algebra A has an irreducible

representation ρ : A → L(H) of dimension ≥ n . If we let fk := ψ(f
1/2
0 ⊗ pk,1),

e := ψ(f0 ⊗ p11) with f0(t) = t for t ∈ [0, 1], we get the following Part (i) and its

consequences in Parts (ii), (iii) and (iv) :

(i) If A has an irreducible representation of dimension ≥ n then there exist

elements e ∈ A+ and f1, . . . , fn ∈ A that satisfy the relations ‖e‖ = 1 and

f∗j fk = δj,ke for j, k = 1, . . . , n .

(ii) In particular, if a ∈ A and a∗Aa is not a commutative algebra, then there

exists b ∈ a∗Aa with b2 = 0 and ‖b‖ = 1. (Local Glimm halving Lemma,

cf. [616, lem. 6.7.1]).

(iii) If each non-zero hereditary C *-subalgebra D of A has no character, then

for every n ∈ N and non-zero hereditary C *-subalgebra D of A we find

e, f1, . . . , fn ∈ D with the relations listed in Part (i).

(In particular, if A is antiliminary, then each non-zero hereditary C *-

subalgebra D of A is also antiliminary, and the D contain a copy of Mn⊗
C0(0, 1] for each n ∈ N.)

(iv) If, moreover, A is strictly antiliminary (also called residually antiliminary,

cf. Definition 2.7.2) in the sense that each non-zero quotient A/J of A

is antiliminary in the sense of [616, sec. 6.1.1], then for every non-zero

hereditary C *-subalgebra D of A, every pure state ρ on D and every

n ∈ N there exists a C *-morphism ψ : C0((0, 1],Mn)→ D with

ρ(ψ(f0 ⊗ p11)) = 1 .

(And this is equivalent to the property that no hereditary C *-subalgebra

of A has a non-zero character.)

Indeed, the Parts (i,ii) of Lemma 2.1.15 apply to all non-zero hereditary C *-

subalgebras D ⊆ A, because the property that each D has no character implies that

all non-zero hereditary C *-subalgebras D 6= {0} of A can not have any irreducible

representation of finite dimension (even can not contain non-zero compact operators

in its images).

Lemma 2.1.17. Let ρ a pure state on a C*-algebra A. We denote the corre-

sponding irreducible representation with cyclic vector ξρ by Dρ : A→ L(L2(A, ρ)).

Then there exists for each a ∈ A+ and ε > 0 a contraction g := g(a, ε) ∈ A
such that

‖Dρ(a)‖ < ε + ρ(g∗ag) . (1.7)

In particular, for each (fixed) pure state ρ on a simple C*-algebra A,

‖a‖2 = sup { ρ(g∗(a∗a)g) ; g ∈ A, ‖g‖ ≤ 1} .

Here L2(A, ρ) := A/Lρ with Lρ := {a ∈ A ; ρ(a∗a) := 0 }. It satisfies for all a ∈ A
that ρ(a) = 〈Dρ(a)ξρ, ξρ〉 .
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More precisely there exists h∗ = h ∈ A with ‖h‖ ≤ π such that exp(ih) ∈
A + C · 1 ∈ A∗∗ satisfies Inequality (1.7) with exp(ih) in place of g. One can find

a contraction f ∈ A+ such that Dρ(f)ξρ = ξρ. Then g := exp(ih)f ∈ A satisfies

Inequality (1.7).

Proof. The connected component U0(Â) of 1 in the unitary group U(Â) of

the unitization

Â := A+ C · 1 ⊆M(A) ⊆ A∗∗

operates transitive on the unit sphere of the Hilbert space H := L2(A, ρ) =

Dρ(A)xρ, because the (reformulated) Kadison transitivity in Lemma 2.1.15(ii,iii)

implies that for every y ∈ H the natural c.p. contraction

V : a+ ξ1 7→ p(Dρ(a) + ξ1)p

maps the multiplicative domain of V onto pL(H)p, where p ∈ L(H) is the orthogo-

nal projection onto the complex linear span of {y, ξρ}, i.e., pH is 1-dimensional or

is 2-dimensional. If it is one-dimensional, then y = α · ξρ with α = exp(iγ) for some

γ ∈ [0, 2π) .

If ‖y‖ = 1 and U ∈ pL(H)p ∼= M2(C) is (partial) unitary with U∗U = p = UU∗

and U(ξρ) = y, then U is an exponential in pL(H)p, because all unitaries in M2(C)

are exponentials, i.e., U = p exp(ik)p = exp(ik)p for some k∗ = k ∈ pL(H)p with

‖k‖ ≤ π.

By Part (ii) of Lemma 2.1.15 there exists h∗ = h ∈ {p}′ ∩A with pDρ(h) = k.

It follows for T := Dρ(h) in L(H) that

exp(iT )p = p exp(iT ) = exp(ik)p = exp(ik)− (1− p) .

In particular, exp(iT )(ξρ) = exp(ik)(ξρ) = y.

If we extend Dρ naturally to a *-representation of A + C · 1 ⊆ M(A) then

this says that Dρ(exp(ih))ξρ = y . If we use that b exp(ih) ∈ A, then we get that

Dρ(b exp(ih))(ξρ) = Dρ(b)(y), and – therefore – that

ρ(exp(ih)∗b∗b exp(ih)) = ‖Dρ(b)y‖2 .

We apply this precise general observation to get the desired more relaxed esti-

mate:

Given 0 6= a ∈ A+ and ε ∈ (0, 1/2) we let δ := ε/µ with µ := 2(1 + ‖a‖1/2) .

Then δ2 + 2δ‖a‖1/2 < ε .

There exists y ∈ H with ‖y‖ = 1 and ‖Dρ(a
1/2)‖ ≤ δ + ‖Dρ(a

1/2)y‖ . It

implies

‖Dρ(a)‖ < ε+ 〈Dρ(a)y, y〉 .

As we have seen above, there exists h∗ = h ∈ A with ρ(exp(ih)∗a exp(ih)) =

‖Dρ(a
1/2)y‖2 . Thus,

‖Dρ(a)‖ < ε + ρ(exp(ih)∗a exp(ih)) .
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We get the “relaxed” Inequality (1.7) for g := fδ(a) exp(ih), where fδ(t) :=

min(1, δ−1 max(t− δ, 0)) with sufficiently small δ ∈ (0, 1/4). �

Remark 2.1.18. There are several other methods to prove the surjectivity of

π : ({p}′∩A) 3 a 7→ pa ∈ pA∗∗p for “closed” projections p ∈ A∗∗, e.g. by modifying

the original Kadison transitivity theorem [400, thm. 5.4.3, thm. 5.4.5], or – more

comfortable – its generalization by S. Sakai [704, thm. 1.21.16], but one can directly

use the far more general results mentioned in below given Remark 2.1.19.

Give here also reference to Appendix A!!!

Here is one of the very elementary ways: A closer inspection of there original

proofs shows that both cited original results (of Kadison or Sakai) did prove only

that the map

({p}′ ∩ (A+ C · 1)) 3 a 7→ pa ∈ pA∗∗p

is surjective for A+ C · 1 ⊆ A∗∗ .

Check this critics on the citations to Kadison or Sakai again!

Simply to avoid a mistake!

But a simple trick shows that one can replace here A+ C · 1 by A itself ( 10 ):

Let Dk : A∗∗ → L(Hk) normal and surjective with supports Qk ∈ Z(A∗∗) and

let pk := Dk(p) = Dk(Qkp), – as considered in Lemma 2.1.15(i).

Further let D0 denote the restriction of D1 ⊕ · · · ⊕ Dn to pA∗∗p . Consider a

unitary w ∈ pA∗∗p of pA∗∗p and define uk := Dk(w) ∈ pkL(Hk)pk .

The advanced forms of the Kadison transitivity theorem [704, thm. 1.21.16],

(that follows also directly from [400, thm. 5.4.5] or [616, thm. 2.7.5]) applied to the

unitization Â = A + C · 1 ⊆ A∗∗ of A and to the pairwise inequivalent irreducible

representations Dk : Â → L(Hk) show the following: There is a unitary U ∈ Â

with pkDk(U)pk = uk for k = 1, . . . , n .

Thus D0(pUp − w) = 0 for the above defined D0 . Since D0|pA∗∗p is faithful,

we get pUp = w. It implies pU∗pUp = p = pUpU∗p, pU(1 − p) = 0 = (1 − p)Up
and (pU − Up) = 0 . It shows that the C *-morphism ψ : a ∈ C1 7→ ap ∈ pA∗∗p is a

*-epimorphism from C1 := {p}′ ∩ (A+ C1) onto pA∗∗p .

On the other hand, by 1 · p = p = p · 1 , C1 = C + C1 for C := {p}′ ∩ A and

C = C1 or C1/C ∼= C. Obviously, in the second case ψ(C) is a closed ideal of pA∗∗p

of co-dimension at most one!

If we use that pA∗∗p has finite linear dimension, then the latter implies that

pA∗∗p has a character, given by a central projection q of pA∗∗p.

Now comes the “dirty trick”: We replace A by A⊗M2 and p by

p⊗ 12 ∈ A∗∗ ⊗M2
∼= (A⊗M2)∗∗ .

Then (p⊗ 12)(A⊗M2)∗∗(p⊗ 12) ∼= pA∗∗p⊗M2 has no character anymore.

10 This trick was not observed or precisely mentioned in any of the 3 above cited books.
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Above considerations (applied to A ⊗M2 instead on A) show that the image

of the natural C *-morphism

η : {p⊗ 12}′ ∩ (A⊗M2)→ pM∗∗p⊗M2

is an ideal of pA∗∗p⊗M2 of co-dimension ≤ 1. But pM∗∗p⊗M2 has no character.

Thus, η must be surjective.

The surjectivity of η implies the surjectivity of the map π defined by π(a) := ap

for a ∈ {p}′ ∩A. Indeed: Let x ∈ pA∗∗p. There exists b ∈ {p⊗ 12}′ ∩A⊗M2 with

b · (p⊗12) = x⊗e11. It follows that there is a ∈ A with (1⊗e11)b(1⊗e11) = a⊗e11

and ap = x, where e11 ∈M2 is the upper-left matrix unit. Moreover,

[a, p]⊗ e11 = (1⊗ e11)[b, p⊗ 12](1⊗ e11) = 0 .

This proves that the C *-morphism π : {p}′ ∩ A → pA∗∗p is surjective. It will be

used in the proof of Lemma 2.1.15(ii), by appying first one of the cited (older)

textbook versions of the Kadison transitivity theorem.

HERE ends Remark 2.1.18

Remark 2.1.19. One can shorten the proof of all Parts of Lemma 2.1.15 consid-

erably by using more general results that we anyway have to use for our embedding

results in Chapter 5.

First check that each projection p ∈ A∗∗ of finite rank (in the sense that pA∗∗p

has finite dimension) is a “closed” projection in A∗∗, i.e., (1− p) is the supremum

of an upward directed net of positive contractions in A, or equivalently:

The closed left ideal L := A∩(A∗∗(1−p)) of A has an open right support projection

that is equal to 1 − p. This means that the weakly closed left ideal A∗∗(1 − p) of

A∗∗ is the bi-polar of a closed ideal L := A∩ (A∗∗(1− p)) of A (that is, in our here

considered special case, the intersection of finitely many left-kernels Lρ := {a ∈
A ; ρ(a∗a) = 0} of pure states ρ on A).

This idea has been used in the proof of [704, thm. 1.21.16] ( 11 ), but in the there

considered special case it was not completely proved that the natural C *-morphism

N (A,L∗ ∩ L)→ (A/(L∗ + L)) ∩M(A/(L∗ + L)) ⊆ pA∗∗p

by using the natural isomorphism pA∗∗p ∼= A∗∗/((1 − p)A∗∗ + A∗∗(1 − p)) , is

a surjective C*-morphism with kernel Ann(A,L∗ ∩ L) – that is a closed ideal of

N (A,L∗ ∩ L) .

The reason for the surjectivity of the map from normalizers onto the multiplier

algebra of the quotient C *-space is that the closed unit ball of A maps onto the

closed unit ball of A/(R+L) if R is a closed right-ideal of A and L is closed left-ideal

of A.

It should be shortened by reference to the appendices

It comes by using the bipolar theorem for

?????

11 Rewritten here in our notation / terminology – and not as in [704]
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those convex subsets of Banach spaces that are closures of its open (again

convex) interiors and there bi-duals from the more universal (and almost trivial)

perturbation property of maps a ∈ M 7→ paq ∈ pMq for projections p, q in W*-

algebras M :

If a, b ∈ M satisfy ‖a‖, ‖b‖ < 1 and ‖paq − pbq‖ < ε then there is c ∈ M with

‖c‖ < 1, pbq = pcq, and ‖a− c‖ ≤ ε+
√

2ε .

(A study of ‖a‖u1 and ‖b‖u2 in place of a and b defined by suitably “iterated”

construction of “Halmos” unitaries ( 12 ) u1, u2 ∈ M3(M) leads to an idea of proof

of this non-obvious fairly sharp inequality.)

In the very special case considered in Lemma 2.1.15(iii) we have the particular

situation that M(A/(L∗ + L)) = pA∗∗p + (1 − p)A∗∗(1 − p) where L := A ∩
(A∗∗(1 − p)) is nothing else the intersection of the “left”-kernels of finitely many

pure states on A. The C *-subalgebra B := {p}′ ∩ A of A maps always onto

M(A/(L∗ + L)) ∩ pAp, which is in this special situation equal to pA∗∗p because p

is a closed projection.

We can then simply consider the multiplier algebra M(A//E) ∼= pA∗∗p of the

unital operator system A/(L∗ + L) =: A//E for E := L∗ ∩ L to get the desired

“precise” variant of an “advanced” Kadison transitivity theorem by the projectivity

of cones over C *-algebras of finite dimension.

HERE ends Remark 2.1.19

More precise and short references to the Appendix Section would be useful.

In the three following lemmata Cn denotes the complex Hilbert space `2(n) of

dimension n ∈ N. Next one uses an extension that reduce all to the until case:

Lemma 2.1.20. Let C a unital C*-algebra, B ⊆ C a C*-subalgebra and

V : B →Mn = L(Cn) a c.p. contraction.

There exists a unital c.p. map U : C → Mn and a positive contraction d ∈
(Mn)+ with V (b) = dU(b)d for all b ∈ B.

Moreover, d = V ∗∗(1)1/2 for 1 ∈ B∗∗ .

Proof. The “Stinespring” dilation of the c.p. map V is given by some Hilbert

space H0, a *-representation ρ : B → L(H0) and a linear map g : Cn → H0 such

that V (b) = g∗ρ(b)g .

We can suppose here that ρ is non-degenerate, i.e., H0 = ρ(B)H0, because

otherwise we can replace g by q · g and ρ by ρ(b)|qH0, where q is the orthogonal

projection from H0 onto the closure of the linear span of ρ(B)H0. Then the nor-

malization ρ : B∗∗ → L(H0) satisfies ρ(1) = idH0
and the second conjugate V ∗∗ of

V : B →Mn is given by V ∗∗ = g∗ρ( · )g. It implies V ∗∗(1B∗∗) = g∗g.

There exist a unital *-representation D : C → L(H) and an isometry I : H0 →
H such that ρ(b) = I∗D(b)I for all b ∈ B. This can be shown e.g. by using extension

12 See Remark 4.2.4 for the definition of Halmos unitaries.
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of positive functionals, cf. [616, prop. 3.1.6]. The map W (c) := I∗D(c)I is a unital

c.p. map W : C → L(H0) with W |B = ρ .

Let p ∈ Mn denote the support projection of g∗g ∈ Mn . There is partial

isometry z ∈ L(`2(n),H0) with z(g∗g)1/2 = g and z∗z = p. Let d := (g∗g)1/2. We

can define a c.p. contraction U0 : C → Mn by U0(c) := z∗W (c)z with U0(1) = p .

Then V (b) = g∗ρ(b)g = dz∗W (b)zd = dU0(b)d . Let µ : C → C a state on C and

define U1(c) := µ(c) · (1 − p). The sum U := U0 + U1 is a c.p. map from C into

Mn with U(1C) = 1n and dU(b)d = V (b) .

If 1C ∈ B then V ∗∗(1C) = dU∗∗(1C)d = dU(1C)d = d2 .

If 1C 6∈ B then the C *-subalgebra B + C · 1C of C has a non-zero character χ

with χ(B) = 0. It extends to a state µ on C with µ(B) = {0}. If we define U1 with

this state µ, then we get U(b) = U0(b) for b ∈ B and dU(b)d = V (b) = g∗ρ(b)g .

Now observe that V ∗∗(x) = g∗ρ(x)g for x ∈ B∗∗. It follows V ∗∗(1B∗∗) = g∗g =

d2, because V ∗∗(x) = dU∗∗0 (x)d for x ∈ B∗∗ . �

The following “existence” Lemma 2.1.21 is needed, because we consider e.g. in

Proposition 2.2.1 non-separable purely infinite simple C *-algebras, and then non-

separable ultra-powers and corona algebras. It requires to check some cases for

non-separable behavior.

Recall that the projections P = P ∗ = P 2 with separable PH generate (– in a

pure algebraic manner! –) a non-unital simple closed ideal J of L(H)/K(H) if the

Hilbert space H is not separable. In case n = 1 the assumptions of next Lemma

allow that λ is a state on L(H) with λ|π−1
K (J) = 0, then λ is zero on PL(H)P . It

is one of the reasons for our “local redefining” of λ on separable C *-subalgebras B

of L(H) like in next Lemma ...

Lemma 2.1.21. Let H a non-separable Hilbert space, B ⊆ L(H) a separable

C*-subalgebra, Q ∈ L(H) an orthogonal projection onto a separable subspace of H
and λ : L(H)→Mn a c.p. map with λ(K(H)) = 0 .

Then there exists an orthogonal projection P ∈ L(H), a (new) unital c.p. map

ρ : PL(H)P →Mn and an element g ∈ (Mn)+, such that PH is separable, PQ = Q,

Pb = bP for all b ∈ B, and with λ(b) = gρ(Pb)g, for all b ∈ B, and ρ(PKP ) = {0}.

Proof. Still to be checked again:

Consider the separable C *-subalgebra C of L(H) generated by {1, Q,R} ∪ B,

where R denotes the orthogonal projection onto (B ∩K) · H and let 1 := idH. (13)

The subspace RH is separable because B ∩K is separable and, therefore, con-

tains an in B ∩ K strictly positive compact operator b0. It has has above defined

R as its support projection in L(H). The C *-algebra C is unital and 1 ∈ C .

Take a sequence c1, c2, . . . in C that is dense in the unit-ball of C, and find finite-

dimensional subspaces Xn ⊆ H with the property that ‖ck|Xn‖ + 2−n ≥ ‖ck‖ for

13 Here the notation is different from that in the proof of Lemma 2.1.20.
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k ≤ n. Let X∞ denote the separable linear span of the Xn and of QH. Now take

the smallest C-invariant closed subspace H0 of H containing X∞. It is separable by

separability of C and X∞. Then QH ⊆ H0 and the restriction c|H0 of the elements

c ∈ C is a faithful unital C *-algebra morphism D from C into L(H0) given by

D(c) := c|H0 = (c · P )|H0, where we denote by P the orthogonal projection from

H onto H0.

Then K(H0) = PK(H)P , and

‖πK(H0)(D(c))‖ = ‖πK(H)(c)‖ ∀ c ∈ C ,

because D(c) ∈ K(H0), if and only if, c ∈ K(H).

Since C is a separable C *-algebra, the closed ideal C∩K of C contains a strictly

positive contraction e ∈ C+ that is a strictly positive element of C ∩ K, and the

support projection of e is equal to P and commutes with C.

It holds

D(C) ∩K(H0) = D(C ∩K) ,

and, for c ∈ C, D(c) = (c ◦ P ) ∈ PKP ∼= K(H0) if and only if c ∈ K . And this

implies that ‖πK(c)‖ = ‖πK(H0)(D(c))‖ for all c ∈ C .

Thus, C/(C ∩K) ∼= (C +K)/K ⊆ L(H)/K(H) and D(C)/(D(C) ∩K(H0)) ∼=
(D(C) + K(H0))/K(H0) are isomorphic C *-algebras, and up to natural isomor-

phisms, C/(C ∩ K) ⊆ L(H)/K(H) and D(C)/(D(C) ∩ K(H0)) contained in

L(H0)/K(H0).

Because λ : L(H) → Mn is a c.p. map with λ(K(H)) = 0 , the restriction to

C+K(H) defines a c.p. map from C+K to Mn with kernel K. Let [λ] : (C+K)/K→
Mn the c.p. map with λ = [λ] ◦ πK The above discussed isomorphism [D] from

(D(C) +K(H0))/K(H0) onto (C +K)/K allows to define a c.p. map ??????

C/(C ∩K) ∼= D(C)/(D(C) ∩K) to Mn and then from ?????

....The ρ : L(H0) → Mn comes ... later ... as unital c.p. map ρ(T ) :=????? by

use of Lemma ?? extension ... of the

Then P commutes with the elements of b ∈ C and dist(K, b) = dist(K, P · b) for

K = K(H). This distance is also identical with dist(PKP, b) and with ‖πK(b)‖ =

‖πC∩K(b)‖ for b ∈ C. Moreover C ∩K = C ∩PKP , C/C ∩K is natural isomorphic

to (C +K)/K and is isomorphic to π(D(C) +K(H0))/K(H0).

The point for the latter is: 1) b→ bP is a C *-morphism, that is faithful on B?

and K ∩ (B · P ) = (B ∩K) · P?

??? We can now the restriction λ to b ∈ B of λ given by ρ(Pb) =: λ(b), extend

to L(PH) with ρ(K ∩ L(PH)) = {0} because K ∩ L(PH) = PKP ∼= K(PH) and

λ(B) ∩ (P ·K · P ) = λ(B ∩K)

λ|(B ∩ P ·K · P )

????

Or extend ρ(Pb) to PL(H)P ∼= L(PH) with ρ(PK(H)P ) = {0} ???
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Here is used that ρ(K) = 0 ... ???

To be filled in !! ?? �

The below given Lemma 2.1.22 and its proof shows that the generalizations

of the classical Weyl–von-Neumann Theorem along the lines of D. Voiculescu is in

fact a very special case of Proposition 5.4.1 that generalizes the Weyl–von-Neumann

Theorem in an m.o.c. cone equivariant manner, – in particular in an ideal-system

preserving manner if those m.o.c. cones are suitably chosen.

The space Cn means the n-dimensional complex Hilbert space `2(n) in next

Lemma 2.1.22. Similar results can be shown also in the real case with almost

obvious modifications here and in Lemma 2.1.20.

Lemma 2.1.22 (J. Glimm, D. Voiculescu). Suppose that A ⊆ L(H) is a C*-

algebra and that S : A → Mn = L(Cn) is a completely positive contraction that

annihilates A ∩K(H) , i.e., satisfies S(A ∩K(H)) = {0}.

Then for every compact subset Ω1 ⊆ A, every compact subset Ω2 ⊆ H and

every ε > 0, there is a linear isometry ?? perhaps only: contraction ?? v : Cn → H
such that, for all a ∈ Ω1, y ∈ Ω2 and x ∈ Cn holds:

‖S(a)− v∗av‖ < ε and |〈v(x), y〉| < ε‖x‖ . (1.8)

If, moreover, idH ∈ A+K(H) and S(a) = 1n for all a ∈ A with a ∈ K(H)+idH ,

or if idH is not contained in A + K(H), then there exists an isometry v : Cn ∼=
`2(n)→ H that satisfies the inequalities (1.8).

What are the differences between this isometries? check the proof again!

Notice that idH 6∈ A+K(H) if A+K(H) is not unital. In particular A+K(H)

is not unital if A is stable or if A ⊆ K(H) .

Here Cn is the n-dimensional complex Hilbert space `2(n), and 1n ∈ Mn
∼=

L(`2(n)) is then the identity map of Cn. It is crucial for applications that the

map v can be chosen always as a contraction, respectively as an isometry in the

mentioned two special cases.

Proof of Lemma 2.1.22. We use Lemma 2.1.20 for the reductions to the

unital case and (later) reduction to the unital separable case for a unital c.p. map

T : (A+K+C · idH)/K→Mn . Here H is not necessarily separable, but restriction

to separable C *-subalgebras of A and then to separable subspaces of H allows a

reduction to separable closed subspaces of H. This reductions to the separable case

allows to use (and cite) then several places where this cases are considered (with

slightly different proofs).

The original S is then obtained by “compression” as in the Lemma 2.1.20, that

leads to the case where v : Cn → H is then only a contraction.
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In the following, K means K(H) and 1 := idH. If 1 is not contained in A+K
then A+K is a closed ideal of the C *-algebra A+K+C ·1 ⊆ L(H), and A∩K is a

closed ideal of A and is also a closed ideal of A+K with (A+K)/K ∼= A/(A ∩K).

Thus, S : A → Mn with S(A ∩ K) = {0} can be considered as a completely

positive contraction T : (A+K)→Mn with T (K) = 0 .

If 1 ∈ A + K, i.e., there exists a ∈ A with a ∈ K + 1 and S(a) = 1n for all

a ∈ A with a ∈ K+ 1 , then T is unital.

If 1 is not contained in A+K, then A+K is an essential ideal of A+K+C · 1,

and the minimal extension Te of T : A+K→Mn to a positive map from A+K+C·1
to Mn is given by the restriction to A + K + C · 1 ⊆ (A + K)∗∗ of the bi-adjoint

T ∗∗ : (A+K)∗∗ →Mn of T .

??? Compare Lemma 2.1.20 !!!

1 ∈ A+K(H) and S(a) = 1n for all a ∈ A with a ∈ K(H) + C · 1

???

that annihilates A ∩K(H) , i.e., satisfies S(A ∩K(H)) = {0} .

The Stinespring dilation of S : A→Mn
∼= L(`2(n)) with ?????

We use here the notation Cn := `2(n) , i.e., Cn is equipped with the norm

‖(α1, . . . , αn)‖2 := (
∑
k |αk|2)1/2. And “c.p.” means “completely positive”.

The estimates in the inequalities (1.8) have to be shown only for the compact

subsets Ω1 ⊆ A and Ω2 ⊆ H, and for given ε > 0. It implies that it suffices

to consider in place of A and H the separable C *-subalgebra C∗(Ω1) ⊆ A and

the closed separable subspace H0 ⊆ H that contains Ω2 and is invariant under

C∗(Ω1) . They satisfy C∗(Ω1) ∩ K(H0) ⊆ A ∩ K(H), i.e., we can suppose that

A and H are separable from now on. But there are critical points here: Possibly

we have to enlarge the separable closed subspaces H0 ⊆ H and the separable C *-

algebra A0 ⊆ A with A0H0 ⊆ H0 in the cases where idH ∈ A + K(H) to get that

idH0
∈ A0 +K(H0). We find k ∈ K(H) and a1 ∈ A with k + a1 = idH ...

Then we can ...

In case that ...

and to check that we can select the new separable C *-algebra A0 (in place of

A) and , such that the new Hilbert space H0 and the C *-algebra A0 is chosen big

enough ...

that in the cases where idH ∈ A + K(H) and S(a) = 1 for all a ∈ A with

a ∈ K(H) + idH , or where idH is not contained in A+K(H),

the new A0|H0 ⊆ L(H0) given now by

again satisfies idH0
∈ A0 + K(H0) and S(a) = 1 for all a ∈ A0 with a ∈

K(H0) + idH0
, respectively again satisfies

????????????
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and

Details ?????.

Reduction of the general case to the case where A and H are separable :

The compact sets Ω1 ⊂ A and Ω2 ⊂ H generate a separable C *-subalgebra B of

A and a B-invariant separable closed subspace H1 of H such that Ω2 ⊂ H1 and

ψ : b ∈ B 7→ b|H1 is a faithful C *-morphism and ψ(B ∩K(H)) = ψ(B) ∩K(H1) .

If idH ∈ A+K(H) and S(a) = 1 for all a ∈ A with a ∈ K(H) + idH ,

or if idH is not contained in A+K(H), ...

Notice that Ω1 and Ω2 contain for each ε finite subsets X1 and X2 such that

the ε/3 balls around them cover all of Ω1, respectively Ω2. Then all predicted

conclusions

(still to be proved !)

are reduced to the study of the case where the algebra A and the Hilbert space

H are separable and the subsets Ω1 ⊂ A and Ω2 ⊂ H are finite sets.

Further reductions of the general case with separable A and H :

We start with a reduction of all cases to the case where idH ∈ A+K(H) = A,

S(idH) = 1n and S(K(H)) = {0} .

Next step not done yet !!!

but cited 3 places where it was done for separable C *-subalgebras of

the Calkin algebra.

Below ????

Then we can give references to different nice proofs of this very special case,

i.e., where A is separable, idH = 1A and S(idH) = 1 , i.e., where n = 1 and S is the

restriction to A of a state on the Calkin algebra L(H)/K(H).

It says essentially that the restriction of a state S on the Calkin algebra to a

separable C *-subalgebra of A ⊆ L(H) is a point-wise limit on A of a net of vector

states that converges on K(H) point-wise to zero.

The reduction to the special separable unital case uses Lemma 2.1.20.

Refer to above Lemma ???

The following observation is easy to verify:

If D and E are (arbitrary) C *-algebras, T : D → E a c.p. map and J ⊆ D closed

ideal with T (J) = {0}, the the class-map [T ]J : D/J → E is a c.p. map.

We apply this observation and Lemma 2.1.20 to C := L(H)/K, B := (A +

K)/K ∼= A/(A ∩K) and the quotient map V := [S] : B →Mn .

This reduces all cases to the special case where 1 := idH ∈ A+K and S(a) = 1n

for all a ∈ 1+K, and then toH ∼= `2(N) and separable A. Now we can cite textbooks

and papers for the ???? remaining two steps: ???? Which steps???
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The proof for this special case reduces to the well-known more special case

where A and H are separable and n = 1:

Each of [798](1976), [43](1977) or [207, lem. II.5.2](1996) give a reduction of

the unital separable case with n > 1 to the case n = 1 .

Then all is reduced to the case of unital separable A and n = 1, i.e., where

Mn = C and S is a state on A that annihilates A ∩ K(H). This is the basic case,

that has been shown in each of the references Glimm [323](1960), Dixmier [217,

lem. 11.2.1](1969), [123] (1976), or [207, lem. II.5.1](1996) with slightly different

proofs requiring different basic knowledge. �

Next: Still to be checked:

Remark 2.1.23. The Part(iii) of Lemma 2.1.15 and Lemma 2.1.22 and 2.1.15

imply together in the special case of a non-elementary simple C *-algebra A the

following observation:

Let V : A → Mn a completely positive contraction. Then, for every compact

subset Ω ⊆ A, pure state ρ on A and ε > 0, there exist contractions e, b1, . . . , bn ∈ A
with the properties b∗j bk = δj,ke , ρ(e) = 1 and

‖b∗jabk − V (a)j,ke‖ < ε for j, k ∈ {1, . . . , n} and all a ∈ Ω .

!!! Wanted result:

There exists contractions b1, . . . , bn ∈ A and e ∈ A+ with ‖e‖ = ρ(e) = 1,

b∗j bk = δjke such that ‖∆(a)‖ < ε for a ∈ Ω where

∆(a) := [b1, . . . , bn]∗a[b1, . . . , bn]− V (a)⊗ e ∈Mn(A) .

It is equivalent to:

‖V (a)j,ke− b∗jabk‖ < ε/(n+ 1) for all j, k ∈ {1, . . . , n}, a ∈ Ω .

(Here one can take partial isometries bk and a projection e ∈ A if A is simple and

has real rank zero.)

Indeed:

Let dρ : A → L(H) the irreducible representation corresponding to some pure

state ρ on A.

The simplicity of A allows us to identify the elements a ∈ A with dρ(a) ∈ L(H)

for H := A/Lρ . Then dρ(A) ∩ K(H) = {0} , because A is non-elementary by

assumption.

We ?? get ?? by Lemma ?? ???

Let V be a completely positive contraction gW (·)g from L(H) to Mn, where

W is unital and 0 ≤ g ≤ 1 in g ∈ (Mn)+, ‖g‖ ≤ 1.

The Lemma 2.1.22 implies the existence of an isometry I : Cn → H with the

property that ‖I∗dρ(a)I − V (a)‖ < ε/3 for all a ∈ Ω.
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Let xj := Iej ∈ A/Lρ for the canonical ONB of Cn = `2(n) with norm

‖(α1, . . . , αn)‖2 =
∑
j |αj |2 . The Lemma 2.1.15 gives for the irreducible represen-

tation dρ the existence of contractions b1, . . . , bn ∈ A with bj + Lρ = xj , ‖b1‖ = 1

and b∗j bk = δj,kb
∗
1b1 , j, k ∈ {1, . . . , n} , such that ρ(b∗1b1) = 1.

The quotient map A → A/Lρ has the property that the closed unit-ball of A

maps onto the closed unit-ball of the Hilbert space A/Lρ , cf. Remark ??.

The point is here:

We find a C *-morphism ψ : C0((0, 1],Mn)→ A such that dρ(ψ(f0 ⊗ 1n)) = Pn for

the orthogonal projection onto the linear span of x1, . . . , xn, and

ρ(f0 ⊗ pj,j) = Iej = xj ???

Take bk := f
1/2
0 ⊗ pk,1. Could replace f0 by fn0 with the property that

ρ(ψ(fm0 ⊗ 1n)a(fm0 ⊗ 1n))− ρ(a)⊗ 1n

becomes small ?? ??????

2. Characterizations of simple purely infinite algebras

Among the simple C *-algebras, the purely infinite C *-algebras can be char-

acterized in terms of fairly different criteria but those turn out to be equivalent

in this special case. The most useful and applicable criteria are the more compli-

cate looking once. We provide a selection of those criteria in the Proposition 2.2.1

without claiming completeness or originality. The list of this equivalent properties

is the work of many hands. We tried to find the most simple explanations for

this equivalences. But notice that we give later several other different criteria that

also characterize pure infiniteness of simple C *-algebras A, see e.g. Proposition

2.2.5(iv), Corollary 2.4.6, Corollary 2.2.11, Corollary 3.2.16(ii) in conjunction with

Remark 3.2.17, and, last but not least, the most important for our applications:

a simple non-elementary C *-algebra A has the WvN-property – given in Definition

1.2.3 –, if and only if, A is purely infinite, cf. Chapters 3 and 5 for basic applications

of the WvN-property (= Weyl – von Neumann Property).

There exist fairly different properties that also characterize separable non-

elementary simple purely infinite nuclear C *-algebras A by simplicity of F (A) :=

(A′ ∩ Aω)/Ann(A,Aω) in [448, thm. 2.12], or by the “unrestricted” validity of an

analog of the Weyl–von-Neumann–Voiculescu theorem, cf. Corollary 5.7.3.

Most of the criteria in the parts of Proposition 2.2.1 itself do not imply simplic-

ity, only the properties in Parts (ii), (iv), (vi), (vii), (xv) and (xvi) of Proposition

2.2.1 imply also that A is simple. Therefore we prefer to add here the requirement

that A is simple and non-zero.

What about Part (ix)? (Same number now???)

The properties in Parts (iv), (vii) and (viii) are only equivalent if A is simple,

because weakly purely infinite C *-algebras are not necessarily simple.
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But (iv) and (vii) both imply simplicity ... Are (iv) and (vii) “formally” equiv-

alent? Formally (iv) implies (vii), and (vii) implies (viii). ...

They are almost obviously the same in case of simple C *-algebras, but (vii)

(and (iv)?) imply the simplicity of A. ?????

Several of those properties are not equivalent to each other if the C *-algebra

A is not simple as e.g. those in Parts (i) and (ii).

Part(ii) of Proposition 2.2.1 expresses only the Definition 1.2.1 of not necessarily

simple purely infinite C *-algebras in the special case of simple C *-algebras – in a

way that this new definition of a “simple purely infinite” C *-algebras A contains

also the simplicity of A and is clearly not equivalent to the property in Part(x) that

works also for non-simple C *-algebras A .

This many equivalent properties allow to say: If A is simple and has one of

the properties listed in Proposition 2.2.1, then A has each of the listed properties,

e.g. if A is p.i. in sense of J. Cuntz, then it has also all the properties listed e.g. in

(vi), (ix), (x) and (xvi). For example, by Parts (ix) and (x), a non-zero simple

C *-algebra A is p.i. if and only if every σ-unital hereditary C *-subalgebra D of A

is stable or has a properly infinite unit 1D := p , i.e., D = pAp with in A properly

infinite projection p.

We say that a simple C *-algebra A is non-elementary if A is not isomorphic

to the algebra of compact operators K(H) on a Hilbert space H of finite or infinite

dimension, in particular A 6∼= C.

Needed for Citation ?: Which parts show directly that

Property pi(1) [ pi(n) ⇐ (iv)] is equal to Property pi-1 ⇐ (ii);

pi-n ⇐ (xi), (xiv)?, ??

What about (x), (xii), (xiii)?

Proposition 2.2.1. Suppose that A is a (non-zero) simple C*-algebra. Then

the following possible properties (i)–(xvii) of A are equivalent to each other:

(i) A is purely infinite in the sense of J. Cuntz [172, p. 186], i.e., every

non-zero hereditary C*-subalgebra D of A contains an infinite projection

p ∈ D (14).

(ii) A is purely infinite in the sense of Definition 1.2.1, i.e., A 6= C, and for

each a, b ∈ A+ with ‖a‖ = ‖b‖ = 1 and ε > 0, there exists c ∈ A with

‖b− c∗ac‖ < ε (15).

(iii) A is locally purely infinite in the sense of Definition 2.0.3, i.e., every

non-zero hereditary C*-subalgebra E of A contains a non-zero stable C*-

subalgebra B ⊆ E.

14 The projection p is then properly infinite by simplicity of A, cf. Lemma 2.1.6. In par-

ticular, A has the ”small projections” property (SP) that says that every non-zero hereditary

C *-subalgebra D of A contains a non-zero projection.
15 There is c ∈ A with ‖c‖ = 1 and ‖b−c∗ac‖ < ε , cf. Proof of (iv)⇒(ii) or Proof of (iii)⇒(ii).
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(iv) The algebra A is non-elementary and, for every b ∈ A+ with ‖b‖ = 1

and every ε > 0, there exists a number m := m(b, ε) ∈ N (allowed here

to depend on both of b and ε) such that, for every a ∈ A+ with ‖a‖ =

1, there exist elements c1, . . . , cm ∈ A (depending on a, b, ε) that satisfy

‖b−
∑m
j=1 c

∗
jacj‖ < ε . (16)

(v) A is strongly purely infinite in the sense of Definition 1.2.2, i.e., for every

a1, a2 ∈ A+ and ε > 0 there exist d1, d2 ∈ A with ‖d∗i aiajdj−δijaiaj‖ < ε

for i, j = 1, 2.

(vi) A is algebraical simple in the sense that A 6= C and for every a, b ∈ A

with a 6= 0 there are x, y ∈ A with xay = b .

(vii) There exists (general, – not depending on a, b, ε –) n ∈ N such that A is not

isomorphic to Mk(C) for k = 1, . . . , n, and, for every non-zero a, b ∈ A+

and ε > 0, there exists d1, . . . , dn ∈ A such that ‖b −
∑n
j=1 d

∗
jadj‖ < ε.

(17)

(viii) A is simple and is weakly purely infinite in the sense of Definition 2.0.4.

(18)

(ix) A is non-elementary and every non-zero non-unital σ-unital hereditary

C*-subalgebra D of A is stable.

(x) A has real rank zero and every non-zero projection in A is properly infinite.

(xi) Every non-zero element a ∈ A+ is infinite (and A is non-zero and simple).

(19)

(xii) There exists n ∈ N such that A is not isomorphic to Mk(C) for each k < n

and each n-homogenous non-zero element a ∈ A+ is infinite.

(xiii) There exists n ∈ N such that a⊗ 1n is infinite in A⊗K for each non-zero

a ∈ A+.

(xiv) A has property pi-n of Definition ?? for some n ∈ N.

(xv) A is non-elementary and, for every a, b ∈ A+ with ‖a‖ = ‖b‖ = 1 and

every ε > 0, there exists ν := ν(b, a, ε) ∈ N (depending on each of a, b, ε)

such that, for every k = 1, 2, . . ., there exist contractions c1, c2, . . . , cν ∈ A

16check again, and give reference to W (A): Essentially, the assumptions of Part (iv)

say that [(b − ε)+] ≤ m(b, ε)[a] in the Cuntz semigroup W (A), and are fulfilled with a fixed

constant number m(b, ε) := n if A is simple and has Property pi(n) of Definition 2.0.4 for some

n ∈ N.
17This property follows from Property pi(n) in Definition 2.0.4 in the special case that A is

simple. It is formally NOT a special case of Part (iv).
18This Part is almost the same as in Part (vii). It is not a special case of Part (iv), because

it implies no simplicity.
19Notice here our overall pre-assumption that A is simple and non-zero. It does not directly

imply that A has Property pi(1) of Definition 2.0.4 or Property pi-1 of Definition ??.

Property pi(1) says in case of simple A, that A 6= C, and for every elements a ∈ A+, b ∈ A
and ε > 0, that there exists d1, d2 ∈ A with ‖d1ad2 − b‖ < ε.

pi-1 says: Every non-zero element is properly infinite. But since A has no non-zero non-trivial

quotients it is equivalent to require only that each 0 6= a ∈ A is infinite.

But how to formulate the latter understandable?
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(depending on k, a, b, ε, but with same number ν(b, a, ε) ∈ N) such that

‖b−
∑ν
j=1 c

∗
ja
kcj‖ < ε . (20).

(xvi) For each n ∈ N holds: If V : A → Mn and W : Mn → A are completely

positive contractions, then for each finite subset F ⊂ A and ε > 0 there

exists contractions d1, d2 ∈ A (depending on W ◦ V, F, ε) with d∗1d2 = 0

and

‖(W ◦ V )(a)− d∗kadk‖ < ε for all a ∈ F, k ∈ { 1, 2 } .

(xvii) For every non-zero e ∈ A+ there exists in C∗( eAe , 1) ⊆M(A) an element

that is left-invertible in A+ C1 but is not right-invertible.

We shorten the proof of the equivalences of conditions in (ix, x) with the other

conditions in Parts (i)–(viii), (xi)–(xiv) by using a stability criterium for σ-unital

C *-algebras of Hjelmborg and Rørdam [373] – cf. also our Corollary 5.5.1 with

an alternative proof of this criterium –, and we use the characterizations of real

rank zero C *-algebras given by L.G. Brown and G.K. Pedersen in [113] as those

C *-algebras that have the property that every σ-unital hereditary C *-subalgebra

contains an approximate unit consisting of projections. See Remark 2.2.2 concern-

ing applications of the (almost ridiculous) Part (xvii) and is applications.

Proof. All in Part (o) has to be discussed and/or shifted to

other places.

But remove or change references from (o) to more relevant!!

Needed/used? is reduction to separable case (Perhaps in Appendix A

or B)

(o): We start with this preliminary observation (o) that is related to the condi-

tions in Parts (iv) and (vii) but uses formally weaker assumptions. It has (implicit)

applications in proofs of Parts (i)–(xvi) and in the proof of Corollary 2.4.6.

TO BE DONE !!!

Define the numbers m(a, b, ε), µ(a, b, ε), n(a, b, ε) ν(b, a, ε)

and others carefully and relate them

to the reductions to separable cases ...

Do we really need for (xv)⇒(iv) the case

where the ck are required to be contractions?

Those numbers should be also discussed in Appendices !!!! ????

Let A a simple and non-elementary C *-algebra, b ∈ A+ with ‖b‖ = 1, fixed

from now on, and define maps (0, 1] 3 ε 7→ m(b, ε) ∈ N ∪ {∞} with the following

property:

Let a, b ∈ A+ and ε > 0.

20 In general, e.g. for non-simple A, the numbers ν(b, a, ε) ∈ N ∪ {+∞}, can be bigger than

the m(b, ε) ∈ N ∪ {∞} in Part (iv): The cj in (iv) are not necessarily contractions.
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We say that b can be ε-accessed from a in m := m(a, b, ε) steps if there exists

c1, . . . , cm ∈ A with ‖b−
∑m
k=1 c

∗
kack‖ < ε . If A is not simple, then we allow here

m := +∞ if b is not in the closed ideal span(AaA) generated by a ∈ A+.

(It should be almost the smallest number m with (b − ε)+ ⊗ p1,1 - a ⊗ 1m in

Mn(A) ???????????)

Compare (b − ε)+ - a ⊗ 1m, i.e., [(b − ε)+] ≤ m[a] in Cu(A), carefully

with m := m(a, b, ε). The point is that we allow that m variates with

ε considerably. So it is not at point of start the same as b - a⊗1m

with fixed m ∈ N

What is this/next ? Put it to right place!

For each a, b ∈ A+ there exists a simple separable C *-subalgebra B ⊆ A

with a, b ∈ B and n(c, d, ε;B) = n(c, d, ε;A) and ν(c, d, ε;B) = ν(c, d, ε;A) for all

c, d ∈ B+.

In case of non-simple A we allow m(a, b, ε) := ∞ if b is not in the closed ideal

of A generated by a, and can define m(a, b, ε) := m ∈ N if (b − ε/2)+ is in the

closed ideal of A generated by a.

?? with no restrictions on the values (except m(b, ε) 6=∞ in case of simple A).

Let X ⊂ A any subset.

We say that b is approximately accessible in m(b, ε)-steps from X, if for each

a ∈ X with ‖a‖ = 1 and each ε > 0 there exist c1, . . . , cm ∈ A – with m := m(b, ε)

– such that ‖b−
∑m
k=1 c

∗
kack‖ < ε . We require here no bound for the norms ‖ck‖

(k = 1, . . . ,m).

Is it then not simply, -- in case b ≥ 0 --, [(b − ε)+] ≤ m(b, ε)[a] in

Cu(A⊗K) ????

Equivalent is that there exists γ ∈ (0, ε) and d1, . . . , dm with (b − γ)+ =∑m
k=1 d

∗
kadk.

Here m := m(b, ε) depends on both of b and ε. But by our assumption this

number m is independent from a ∈ A+ \ {0}. Clearly, the c1, . . . , cm depend also

on a. It implies, by Lemma 2.1.9, in the notation of Definition 2.4.2 that, for all

0 6= a ∈ A, [(b− ε)+] ≤ m(b, ε)[a] in the large Cuntz semi-group Cu(A). Then the

below given arguments can be roughly outlined by saying that for 0 6= a ∈ A+ and

n ∈ N there exists 0 6= g ∈ A+ with n[g] ≤ [a] in case of non-elementary simple A.

The latter is wrong for “elementary” A ∼= K(H) for any Hilbert space H. There

m(b, ε) behaves almost like the rank of (b− ε)+ ∈ K(`2(N)) .

Suppose that A is a non-elementary simple C *-algebra and that a given element

b ∈ A+ with ‖b‖ = 1 is approximately accessible in m(b, ε)-steps (from every a ∈ A+

with ‖a‖ = 1).

Then we find for each a ∈ A+ with ‖a‖ = 1 and each ε ∈ (0, 1), a contraction

d := d(a, ε) ∈ A with d∗ad = (b− ε)+.
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In particular, ‖b− d∗ad‖ ≤ ε , and we can take m = 1 for the numbers m(b, ε),

i.e., m(b, ε) := 1 for all ε > 0.

Compare next blue with proof of (iv).

What is shorter or more transparent?

Indeed: Let a ∈ A+ with ‖a‖ = 1 and ε ∈ (0, 1). Define δ := ε/2, f0(t) := t,

f1(t) := max(0, t − (1 − δ)) and f2(t) := (1 − δ)−1 min(t, 1 − δ), for t ∈ [0, 1]+.

Notice ‖f0 − f2‖ = δ if 1− δ is in the spectrum of a. Thus if ‖a− f2(a)‖ ≤ δ.

Then g := (a− (1− δ))+ = f1(a) has norm ‖g‖ = δ. It implies D := gAg 6= 0.

The element a1 := (1 − δ)−1
(
a − (a − (1 − δ))+

)
= f2(a) satisfies ga1 = g = a1g

and a ≤ a1 ≤ (1− δ)−1a .

Let n := m(b, δ) ∈ N from now on in this part of proof. (Notice that we require

for the given map ε 7→ m(b, ε) no kind of regularity or general bound and require

only that m(b, ε) <∞ for all ε ∈ (0, 1).)

The hereditary C *-subalgebra D = gAg of A is simple and is non-elementary by

assumption on A and because g 6= 0. Thus, D admits an irreducible representation

ρ : D → L(H) such that ρ(D) ∩ K(H) = {0}. It implies that H is not finite-

dimensional. In particular, there exists a projection Q ∈ K(H) of rank = n. Let

λ : Mn → QK(H)Q an isomorphism from Mn onto QK(H)Q, and denote by µ : ϕ 7→
ϕ(1) the evaluation map from C0((0, 1],Mn) onto Mn .

By Lemma 2.1.15(ii), there exists a C *-morphism ψ : C0((0, 1],Mn) → D

with (ρ ◦ ψ)(ϕ) = λ(ϕ(1)) = (λ ◦ µ)(ϕ) for all ϕ ∈ C0((0, 1],Mn) → D. Let

h := ψ(f0 ⊗ p11) ∈ D. Then ‖h‖ = 1 and n = m(b, ε/2) imply that there are

elements c1, . . . , cn ∈ A with ‖ b −
∑
k c
∗
khck ‖ < δ – by the assumption that b is

approximately accessible in n := m(b, δ)-steps. The Lemma 2.1.9 shows the exis-

tence of a contraction e0 ∈ A such that (b − δ)+ =
∑
k d
∗
khdk for dk := cke0,

k ∈ {1, . . . ,m}. Notice
∑
k d
∗
khdk = e∗e with e :=

∑
k ψ(f

1/2
0 ⊗ pk,1)dk , and where

pk,` denote the matrix units of Mn.

The element e is contained in the closed left-ideal L := D · A by Lemma

2.1.7(o) because ψ(C0(0, 1] ⊗ Mn) ⊆ D, and the equation a1g = g implies that

a1x = x = xa1 for all x ∈ D = gAg, and that a1y = y for all y ∈ L . In particular,

(b− δ)+ = e∗e = e∗a1e and ‖e‖2 = ‖b‖ − δ = 1− δ.

Thus, we obtain that ‖(b − δ)+ − e∗ae‖ ≤ (1 − δ)‖a1 − a‖ ≤ (1 − δ)δ . By

Lemma 2.1.9, there exists a contraction f ∈ A such that
(
b− (1− ε/8)ε

)
+

= d∗ad

for d := ef . In particular, ‖b− d∗ad‖ < ε.

We consider in Proposition 2.2.1 also non-separable simple C *-algebras A.

Therefore we “relax” the definition of “approximately accessible” elements b ∈ A+

with ‖b‖ = 1 by considering certain separable simple C *-subalgebras B of A with

b ∈ B that we define in the following manner:

We define numbers n(b, a, ε;B) for C *-algebras B and non-zero a, b ∈ B with

b in the closed ideal J(a) of B generated by a, by letting n := n(b, a, ε;B) the
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minimal number n ∈ N such that there exist c1, . . . , cn, d1, . . . dn ∈ B with

‖ b −
n∑
j=1

d∗jacj ‖ < ε .

Here we can take dj = cj if a, b ∈ B+ by Remark B.15.1. We can define m(b, ε;B) ∈
N ∪ {+∞} as the least upper bound of the numbers n(b, a, ε;B) if B is simple.

Give ref.s to def’s of n(b, ...)! The definitions of n(b, a, ε;B) ∈ N and

m(b, ε;B) ∈ N for non-zero a, b ∈ B+ says that supa∈B+\{0} n(b, a, ε;B) =

m(b, ε;B) if B is simple, the m(b, ε;B) is defined as above Where exactly? and if

the set of numbers n(b, a, ε;B) is bounded.

Let A a simple C *-algebra. We say that b ∈ A+ with ‖b‖ = 1 is local ap-

proximately accessible if, – for every simple separable C *-subalgebra B ⊆ A with

b ∈ B and with the property that n(x, y, ε;B) = n(x, y, ε;A) for all x, y ∈ B+

– there exists a number m := m(b, ε;B) ∈ N such that, for each a ∈ B+ with

‖a‖ = 1 there exist f1, . . . , fm ∈ A with ‖b −
∑
k f
∗
kafk‖ < ε . This implies that

n(b, a, ε;A) ≤ m(b, ε;B).

Now we use that n(b, a, ε;B) = n(b, a, ε;A) for the selected B and obtain that b

is approximately accessible in m := m(b, ε;B)-steps from each a ∈ B+ with ‖a‖ = 1

(with the c1, . . . , cm inside B).

It says in particular that b is approximately accessible in B by m(b, ε, B) steps.

We have seen above that this implies that b is approximately accessible by one

step from each a ∈ B+ with ‖a‖ = 1. By Proposition B.15.2(iii,iv), there exists

for each a, b ∈ A+ a simple separable C *-subalgebra B ⊆ A with a, b ∈ B and

n(b, a, ε;B) = n(b, a, ε;A). Thus, n(b, a, ε;A) = 1 for all non-zero a ∈ A+. Where

we use that n(b, a, ε;B) ≤ m(b, ε;B) for all non-zero a ∈ B+.

(i)⇒(iii): Let D ⊆ A be a non-zero hereditary C *-subalgebra. The definition

of J. Cuntz [172, p. 186] says that D contains an infinite projection p 6= 0. It

means that pAp contains a C *-subalgebra that is isomorphic to the Toeplitz algebra

T := C∗(s ; s∗s = 1). Thus, D contains an isomorphic copy of the compact

operators K ⊆ T .

(iii)⇒(ii): Obviously A 6= C.

Let a, b ∈ A+ with ‖a‖ = ‖b‖ = 1 and 1 > ε > 0 be given, and let η := ε/3.

Then e := (a− (1− η))+ ∈ A+ and D := eAe are non-zero. By assumption, D

contains a non-zero stable C *-subalgebra E ⊆ D.

The multiplier algebra M(E) of the stable C *-algebra E contains a copy

C∗(s1, s2, . . . ; s∗i sj = δij1) ⊆ M(E) of O∞ unitally, because L(`2(N)) is unitally

contained in M(E), cf. Remark 5.1.1(8) or Lemma 2.1.7(iv).

If d ∈ E+ ⊆ D+ with norm ‖d‖ = 1, then the elements fj := sjd
1/2 (j =

1, 2, . . .) are contractions in E ⊆ D that satisfy f∗i fj = δi,jd .

Since A is simple, we find g1, . . . , gn ∈ A with ‖b −
∑
g∗kdgk‖ < η . Let

h :=
∑

1≤k≤n fkgk ∈ D · A, cf. Lemma 2.1.7(ii). Then ‖h∗h − b‖ < η and, thus,
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0 < 1 − η < ‖h‖2 < 1 + η. On the other hand, (a − e)h = (1 − η)h because

h = lim e1/nh and (a − e)e1/n = (1 − η)e1/n . Let c := ‖h‖−1 · h, then ‖c‖ = 1,

h = ‖h‖ · c and

c∗ac− b = c∗
(
a− (1− η)−1(a− e)

)
c + (c∗c− h∗h) + (h∗h− b) .

This gives the estimate

‖c∗ac− b‖ ≤ ‖a− (1− η)−1(a− e)‖ + |1− ‖h‖2| + ‖h∗h− b‖ < 3η = ε .

(ii)⇒(i): The compact operators on a Hilbert space H of dimension > 1 do not

satisfy the criteria listed under (ii), because a rank-one projection is not equivalent

to a rank-two projection.

We postpone for a moment the below given proof of the existence of a non-zero

projection p ∈ eAe ⊆ E ⊆ A for any given non-zero hereditary C *-subalgebra E of

A and a suitable non-zero e ∈ E+ with ‖e‖ = 1.

Let p ∈ A any non-zero projection. The unital C *-subalgebra D := pAp (with

unit p) contains f ∈ D+ with ‖f‖ = 1 and 0 ∈ SpecD(f), because otherwise

pAp ∼= C · p by the Gelfand-Mazur theorem, and A must be isomorphic to the

algebra K(H) of the compact operators on some Hilbert space H. But this has

been excluded above.

By assumption, we find c ∈ A with ‖c∗fc − p‖ < 1/2 . Then f1/2cp ∈
pAp is left-invertible in pAp, but is not right-invertible in pAp, because ‖c‖2b ≥
(b1/2cp)(pcb1/2) . It shows that every non-zero projection p ∈ A is infinite. (And is

then properly infinite inside pAp by Lemma 2.1.6 because A is simple.)

It remains to show that every non-zero hereditary C *-subalgebra E of A con-

tains a non-zero projection. We find a “scaling element” in E and modify the

method of J. Cuntz and B. Blackadar in [78] to produce from this element a non-

zero projection in E:

Take e ∈ E+ with ‖e‖ = 1 and define the commuting positive contractions

a := (4e−3)+, b := 4e− (4e−1)+ and g := 2e− (2e−1)+ in C∗(e)+ ⊂ E+. Notice

that ‖a‖ = ‖b‖ = ‖g‖ = 1, ga = a, bg = g and, therefore, (b− t)+g = (1− t)g and

(b− t)+a = (g − t)+a = a for all t ∈ [0, 1).

If g is a projection then this is a non-zero projection in E, and nothing has to

be shown anymore. Otherwise, 0 ≥ g − g2 = g(1 − g) 6= 0, and we can proceed

further in the following way:

By Part (ii) there exists c ∈ A with ‖c∗a2c− b‖ < (3/5)2 . Then Lemma 2.1.9

gives a contraction d ∈ A that satisfies

d∗c∗a2cd = (b− (3/5)2)+ .

It follows, by using 52 − 32 = 42, that the element z := (5/4)acd satisfies

z∗z = (1− (3/5)2)−1(b− (3/5)2)+ .

The element z is in the hereditary C *-subalgebra E because a, b ∈ E. Moreover

‖z‖ = 1, gz = z (by ga = a), and z∗zg = g = gz∗z (by (b − t)+g = (1 − t)g for
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t := 9/25). It implies (g − g2)z = 0 and (g − g2)(1 − z∗z)1/2 = 0. Notice that

(z∗z)z = z (by z = gz and z∗zg = g). Therefore, (1− z∗z)1/2z = 0. Let

u := z + (1− z∗z)1/2 ∈ Ê := E + C · 1 ⊆ M(E) .

Then (g − g2)uu∗ = 0 and

u∗u = 1 + z∗(1− z∗z)1/2 + (1− z∗z)1/2z + 1− z∗z = 1 .

This shows that u is a non-unitary isometry in Ê, and that p := 1 − uu∗ ∈ E is a

projection in E with (g − g2) ≤ p. Thus, p∗p = p 6= 0.

(iv)⇒(ii): The conditions in Part(iv) on A require that A is non-elementary

and they obviously imply that A is simple. Simple non-elementary C *-algebras are

antiliminary in the sense that each non-zero hereditary C *-subalgebra contains a

non-zero 2-homogenous element, cf. Remark 2.1.16(ii,iii).

Let a, b ∈ A+ with ‖a‖ = ‖b‖ = 1 and 1 > ε > 0 , define η := ε/3 . Then

e :=
(
a− (1− η)

)
+
∈ A+ is non-zero. Let m := m(b, η). By Remark 2.1.16(iii), we

find in the non-zero hereditary C *-subalgebra D := eAe an element d ∈ D+ and

f1, f2, . . . fm ∈ D with ‖d‖ = 1 and f∗i fj = δi,jd for i, j = 1, . . . ,m, because A is

antiliminary.

By assumption, we find c1, . . . , cm ∈ A with ‖b −
∑
c∗kdck‖ < η . Let h :=∑

1≤k≤m fkck .

Then hh∗ ∈ D, ‖h∗h − b‖ < η , 0 < 1 − η < ‖h‖2 < 1 + η and (a − e)h =

(1− η)h . We get ‖c∗ac− b‖ < 3η = ε for c := ‖h‖−1 · h , by the same calculation

as in the proof of the implication (iii)⇒(ii).

If A is simple and has Property pi(n) of Definition 2.0.4 for some n ∈ N then

we can take m(b, ε) := n for each b ∈ A+ and the Property pi(n) excludes the cases

A ∼= Mk for k ≤ n in its definition. It follows that A with Property pi(n) can not

be an elementary C *-algebra, because if A ∼= K(H) with Dim(H) > n and a, b ∈ A
are contractions with ranks (Rk)(a) = 1 and (Rk)(b) > n then there can not exist

c1, . . . , cn ∈ A with ‖b−
∑
c∗kack‖ < 1/2.

(ii)⇒(iv): The simple algebra A can not be elementary, because if p, q ∈ A are

non-zero projections with rank Rk(q) = 1 then there exists c ∈ A with ‖p−c∗qc‖ <
1/2, and this shows that all projections in A \ {0} have rank one, i.e., A ∼= C. The

case A = C has been excluded in Definition 1.2.1.

Thus A satisfies the assumptions of Part (iv) with m(b, ε) = 1 .

(i)⇒(v): We show moreover that for each a, b ∈ A+ and ε > 0 there exist

d1, d2 ∈ A with d∗1abd2 = 0 , ‖a2 − d∗1a2d1‖ ≤ ε , and ‖b2 − d∗2b2d2‖ ≤ ε .

We may suppose that max(‖a‖, ‖b‖) ≤ 1 and that ε ∈ (0, 1), because we can

start here with smaller ε > 0 if necessary.

If ab = 0, then let β := ε/2, d1 := aβ and d2 := bβ . We get ‖d∗1abd2‖ = 0 ,

‖a2 − d∗1a2d1‖ ≤ ε , and ‖b2 − d∗2b2d2‖ ≤ ε by functional calculus, because 0 ≤
t2 − t2+ε ≤ ε for t ∈ [0, 1].
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If ab 6= 0, then there is δ ∈ (0, ‖ab‖2) with c := (ab2a− δ)+ 6= 0. The non-zero

hereditary C *-subalgebra D := cAc contains a non-zero infinite projection p by

assumption (i).

The elements pcp and pab2ap are strictly positive in pAp, because p ∈ cAc and

c ≤ ab2a. Thus, pab2ap and pa2p ≥ pab2ap are invertible inside the C *-algebra

pAp with unit p.

Let f := (pab2ap)−1/2 ∈ (pAp)+. It satisfies fpab2apf = p. Since f = pfp,

and p ∈ cAc we get fab2af = p ≤ δ−1ab2a ≤ δ−1a2 .

The element v := baf is a partial isometry in A and q := vv∗ = baf2ab is a

projection in bAb. The element b2 is strictly positive in bAb, thus qb2q must be

invertible in qAq, i.e., there is η > 0 with ηq ≤ qb2q. It follows that ηp = ηv∗qv ≤
v∗qb2qv = v∗b2v , and that v∗b2v is invertible in pAp.

All infinite projections in the simple algebra pAp are properly infinite by Lemma

2.1.6. Thus, partial isometries s, t ∈ A with s∗s = p = t∗t and ss∗ + tt∗ ≤ p exist.

Let g1 := fs and g2 := baft = vt. Then g∗2bag1 = t∗fab2afs = t∗ps = 0 .

Since f , pa2p and v∗b2v are invertible positive elements of pAp, we get that g∗1a
2g2 =

s∗fpa2pfs and g∗2b
2g2 = t∗v∗b2vt are positive elements in pAp that are invertible

inside pAp. It implies the existence of h1, h2 ∈ (pAp)+ with h1(g∗1a
2g1)h1 = p

and h2(g∗2b
2g2)h2 = p. The elements ek := gkhk satisfy e∗1a

2e1 = p = e∗2b
2e2 and

e∗2bae1 = 0 .

Lemma 2.1.7(i) applies to pAp with properly infinite p. Thus, there are x1, x2 ∈
A with x∗1x1 = a2 , x∗2x2 = b2 , and x1x

∗
1, x2x

∗
2 ∈ pAp. The elements d1 := e1x1

and d2 := e2x2 in A satisfy d∗2bad1 = x∗2e2bae1x1 = 0, d∗1a
2d1 = a2 and d∗2b

2d2 = b2.

(v)⇒(xi): Let a ∈ A+. If we take a1 := a2 := a1/2 and ε > 0 in (v), then we

get d1, d2 ∈ A with ‖d∗i adj − δija‖ < ε . Thus, a is properly infinite.

(xi)⇒(vii): The algebra A is simple and non-zero – by our overall pre-

assumption. If every non-zero element a ∈ A+ is infinite and if A is simple then

each non-zero a is also properly infinite by Lemma 2.1.6. In particular, A must

be non-elementary, because rank-one projections are not infinite in the algebra of

compact operators on a Hilbert space.

We show that A satisfies the assumptions of Part (vii) with n := 1:

A is non-zero and is not one-dimensional because A is non-elementary. Let

a, b ∈ A+ non-zero and ε > 0. Since A is simple there exist a minimal m ∈ N such

that there exist elements d1, . . . , dm ∈ A with ‖b −
∑m
k=1 d

∗
kadk‖ < ε . We show

that necessarily m = 1 if a is properly infinite:

Suppose that m > 1 . Then there is δ > 0 with δ · 2(‖dm−1‖ + ‖dm‖)2 < ε −
‖b −

∑
k d
∗
kadk‖ . Since a ∈ A+ is properly infinite, there are e1, e2 ∈ A with

‖a − e∗kaek‖ < δ and ‖e∗1ae2‖ < δ . Let fm−1 := e1dm−1 + e2dm and fk := dk

for j ≤ m− 2 . Then ‖b−
∑m−1
k=1 f∗kafk‖ < ε, which contradicts the minimality of

m > 1 with this property.
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(vii)⇒(iv): Let n ∈ N such that A is not isomorphic to Mk(C) for each k ≤ n
and that, for every non-zero a, b ∈ A+ and ε > 0, there exists d1, . . . , dn ∈ A such

that ‖b−
∑n
k=1 d

∗
kadk‖ < ε .

We show that A satisfies the conditions of Part (iv) with m(b, ε) := n for all

b ∈ A+ and ε > 0 with ‖b‖ = 1 :

Suppose that A ∼= K(H) for some Hilbert space H, then each projection p ∈
K(H) has rank ≤ n. Thus, H has dimension ≤ n, and A is isomorphic to Mk

for some k ≤ n . Since the latter is excluded by the assumptions, A must be

non-elementary.

Let a, b ∈ A+ with ‖a‖ = 1 = ‖b‖ and ε > 0 . We let δ := ε/4 .

Consider f :=
(
a − (1 − δ)

)
+
∈ A+ . Then f 6= 0 and (1 − a)f ≤ δf . By

conditions in (vii), there are d1, . . . , dn ∈ A with ‖b −
∑n
k=1 d

∗
kfdk‖ ≤ δ . The

elements ek := f1/2dk satisfy ‖
∑
k e
∗
kek‖ ≤ 1 + δ and e∗k(1−a)ek ≤ δe∗kek . Thus,

‖
∑
k e
∗
k(1 − a)ek‖ ≤ (1 + δ)δ . We let ck := (1 + δ)−1/2ek . Then ‖ck‖ ≤ 1 ,

‖
∑
k c
∗
k(1− a)ck‖ ≤ δ , and ‖b−

∑
k c
∗
kck‖ ≤ 2δ .

It follows ‖b−
∑n
k=1 c

∗
kack‖ ≤ 3δ < ε .

(viii)⇒(vii): Our overall assumption is that A is simple. For simple A the

Definition 2.0.4 of weak pure infiniteness reformulates obviously as follows:

There exists (general) n ∈ N such that for each a, b ∈ A+ with a 6= 0 and every

ε > 0, there exists d1, . . . , dn ∈ A – depending on (a, b, ε) – such that

‖b−
n∑
j=1

d∗jadj‖ < ε

and the algebra `∞(A) has no irreducible representation of dimension ≤ n.

The latter implies for simple A that the algebra A can not be isomorphic to

Mk(C) for some k ≤ n, because otherwise then `∞(A) ∼= Mk(`∞) would have

irreducible representations of dimension ≤ n, which is forbidden by (viii).

(i)⇒(vi): We may suppose that ‖a‖ = 1. Then the hereditary C *-algebra

E generated by (a∗a − 1/2)+ contains an infinite projection p ∈ E. It follows

that pa∗ap is invertible in pAp, and the positive element v := (pa∗ap)−1/2 ∈ pAp
satisfies (va∗)av = p . Since p is infinite, there exists a (non-zero) stable hereditary

C *-subalgebra D ⊆ pAp.

For every (full) stable hereditary C *-subalgebra D ⊆ A and every b ∈ A there

exists d ∈ A with dd∗ ∈ D and d∗d = (b∗b)1/4 by Lemma 2.1.7. Let b = w(b∗b)1/2

the polar decomposition of b in A∗∗. The element z := w(b∗b)1/4 ∈ A∗∗ is in A,

because

z = lim
n
b(1/n+ (b∗b)1/4)−1

in norm and (1/n + (b∗b)1/4)−1 is a multiplier of A in A∗∗. Clearly zd∗d =

z(b∗b)1/4 = b.

Let x := zd∗va∗ and y := vd. Then xay = zd∗va∗avd = zd∗pd = b.
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(Alternatively one could combine Lemma 2.1.7 and [616, prop. 1.4.5] and gets

almost the same decomposition.)

(vi)⇒(ii): Let a, b ∈ A+ with ‖a‖ = ‖b‖ = 1 and ε ∈ (0, 1), and let δ := ε/3.

There are x, y ∈ A with x(a− (1− δ))+y = b1/2. It follows that x 6= 0 and e∗e ≥ b
for e := ‖x‖(a − 1 + δ)

1/2
+ y. By Lemma 2.1.9 there exists a contraction f ∈ A

with (ef)∗(ef) = (b − δ)+. The element d := ef is a contraction in A, and dd∗ is

contained in the hereditary C *-subalgebra of A that is generated by (a− (1− δ))+,

because

dd∗ ≤ ee∗ ≤ ‖x‖2‖y‖2(a− (1− δ))+ .

Thus, d∗h(a)d = d∗d and ‖d∗d − d∗ad‖ ≤ ‖h(a) − a‖ ≤ δ for the function h(t) :=

min((1 − δ)−1t, 1) with property (t − (1 − δ))+h(t) = (t − (1 − δ))+ for t ∈ [0, 1].

Since ‖d∗d− b‖ ≤ δ, we get ‖d∗ad− b‖ < ε .

(ii)⇒(viii): Clearly, if A satisfies (ii) then A satisfies Condition (i) of Definition

2.0.4 of 1-purely infinite algebras.

Let a ∈ A+ with ‖a‖ = 1, b := (b1, b2, . . .) a positive contraction in `∞(A),

and ε ∈ (0, 1). Define g := η−1(a − (1 − η))+ for η := ε/8 and let ∆(a) :=

(a, a, . . .) ∈ `∞(A) for a ∈ A. Then ‖g‖ = 1 and, by Part (ii), there exists elements

hk with ‖bk − h∗kg2hk‖ < η for k ∈ N. It implies ‖ghk‖ < (1 + η)1/2 and with

dk := (1 + η)−1/2ghk , that ‖dk‖ < 1 and ‖bk − d∗kadk‖ ≤ ε/2 for k ∈ N, because

b− d∗kadk = (b− h∗kg2hk) + (1 + η)d∗k(1− a)dk + ηd∗kadk .

This implies ‖b − d∗∆(a)d‖ < ε in `∞(A) for the contraction d := (d1, d2, . . .) ∈
`∞(A).

Since A has no non-zero character by assumption in (ii) and since ∆(A) gen-

erates `∞(A) as a closed ideal of `∞(A), it follows that `∞(A) does not have a

non-zero character. Thus, condition (ii) of the Definition 2.0.4 of 1-purely infinite

algebras is also satisfied.

(ix)⇒(iii): Let D a non-zero hereditary C *-subalgebra of A and a ∈ D+ with

‖a‖ = 1. Then the non-zero σ-unital hereditary C *-subalgebra E := aDa ⊆ D is

non-unital – or – zero is isolated in the spectrum of a. In the first case E is stable

by assumption of (ix). In the second case E = pDp is simple and unital with unit

given by the projection p := ϕ(a) using the function

ϕ(t) := min(1,max(0, αt− γ/2)) ,

where γ denotes the minimum of Spec(a) \ {0} and α := (γ+ 2)/2γ. In the second

case we can consider a maximal commutative C *-subalgebra C of the unital C *-

algebra pDp. It is not difficult to check that a unital commutative C *-algebra

C with the property that every c ∈ C+ with ‖c‖ = 1 has all spectral values t ∈
(0, 1)∩ Spec(c) isolated from 0 and 1 must be of finite (linear) dimension. But this

would cause that E must be isomorphic to Mn for some n ∈ N. And this would

imply that also D and A are elementary, but is excluded by the assumptions on A

in Part (ix).
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Thus, C ⊆ E contains at least one a ∈ C+ with ‖a‖ = 1, 0 not isolated from

the spectrum of a ∈ C and F := aAa ⊆ D . Then F is a non-zero stable hereditary

C *-subalgebra of D by assumption of Part (ix). Hence, the algebra D contains in

both cases a non-zero stable C *-subalgebra.

(x)⇒(i): Our overall pre-condition on A requires that A is simple and is non-

zero.

Suppose that A has real rank zero and every non-zero projection p ∈ A is

infinite. Then the simplicity of A implies that each projection p is properly infinite

in A by Lemma 2.1.6.

Since every non-zero projection p ∈ A is properly infinite, it suffices to show

that a given non-zero σ-unital hereditary C *-subalgebra D of A contains a non-zero

projection.

By a result of L.G. Brown and G.K. Pedersen [113], A has real rank zero

(RR(A) = 0), if and only if, every non-zero σ-unital hereditary C *-subalgebra D

of A contains an approximate unit consisting of projections. In particular, each

nonzero hereditary D contains a projection p 6= 0. That is properly infinite by our

assumptions.

(Notice here that the definition of the “real rank” in [113] – specialized to the

case RR(A) = 0 – says that A has real rank zero, if and only if, the self-adjoint

invertible elements of A + C · 1 ⊆ M(A) are dense in Asa + R · 1 . It is shown in

[113] that this implies the property (FS), i.e., that the self-adjoint elements with

finite spectrum are dense in Asa. It is proven there that this is equivalent to the

property that every nonzero hereditary C *-subalgebra D ⊆ A has an approximate

unit of D consisting of projections.)

(i)⇒(x): Let p ∈ A a non-zero projection. Then E := pAp is a non-zero

hereditary C *-subalgebra of A. Since A is purely infinite in the sense of J. Cuntz,

E contains a non-zero infinite projection q ≤ p. Thus p is also infinite. Moreover p

is properly infinite because A is simple, cf. Lemma 2.1.6.

By [113], A has real rank zero, if and only if, each non-zero σ-unital hereditary

C *-subalgebra D of A contains an approximate unit consisting of projections.

Recall that D is σ-unital, if and only if, D = eAe for some (inside D) strictly

positive contraction e ∈ D+. D is then unital, if and only if, 0 is isolated in the

spectrum of e.

Thus, to conclude, it suffices to show that every non-unital σ-unital D is stable,

because then D ∼= D ⊗ K ∼= pAp ⊗ K for each non-zero projection p ∈ D by

L.G. Brown’s stable isomorphism theorem [107], and D has an approximate unit

consisting of projections Pn ∈ D given by Pn := p ⊗ (e11 + . . . + enn), using the

natural isomorphism D ∼= pAp⊗K.

The stability of D = eAe follows from the fact that for each ε > 0 there exists

d ∈ D with ‖d∗ed‖ ≤ ε and d∗d = (e − ε)+, because the (two-sided) annihilator

F := Ann((e− ε)+, D) of (e− ε)+ in D is a non-zero hereditary C *-subalgebra of
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D, and contains a non-zero infinite projection q ∈ F by assumptions in Part (i).

Thus, there exists d ∈ D with d∗(e− ε)+d = 0 and d∗d = e, by Lemma 2.1.7. The

stability of D follows now from [373] – or alternatively from our Corollary 5.5.1 of

our generalized version of the WvN-theorem.

(i)⇒(ix): The proof of the implication (i)⇒(x) applies almost verbatim. It

shows

Can delete next ‘‘red/blue’’ to get ‘‘new version of (ix)’’

that every non-zero projection in A is infinite (even properly infinite by Lemma

2.1.6), and

that every non-zero non-unital σ-unital hereditary C *-subalgebra D of A is

stable.

Alternatively, the stability of non-zero non-unital σ-unital hereditary C *-sub-

algebras D of purely infinite C *-algebra follows also directly from [462, thm. 4.24]:

If D is σ-unital, purely infinite, and has no unital quotient, then D stable. It uses

[373]. Here we can use instead also Corollary 5.5.1 that does not use [373] for

its proof and is not circular intertwined with proofs given here in Chapter 2 or on

other places.

[Check/decide Alternative:]

A is non-elementary and every non-zero non-unital σ-unital hereditary C *-

subalgebra D of A is stable.

Still applicable for new Part (ix)?

Proof of alternative formulation of (ix) out of given (old?) formulation of Part

(ix):

By assumption A is non-elementary, i.e., A 6∼= K(H) for any Hilbert space H .

In particular pAp is not of finite (linear) dimension for each non-zero projection

p∗p = p ∈ A. It follows that every maximal commutative C *-subalgebra C of

pAp contains a positive element b ∈ C ⊆ pAp with the property that 0 is not

isolated in the spectrum of b. This implies that the non-zero σ-unital hereditary

C *-subalgebra D := bAb of A is not unital. Hence, D is stable by the assumptions

in Part (ix). By our ”overall assumption”: A is simple. Thus D generates A as

ideal of A. Then Part (ii) of Lemma 2.1.7 shows that there exists c, d ∈ A with

d∗d = p = c∗c, cc∗ = dd∗ ∈ D ⊆ pAp and c∗d = 0. Thus, p is properly infinite in

A, by assumptions.

(xii)⇒(xi): Suppose that A is simple and that there exists n ∈ N such that each

n-homogenous non-zero element a ∈ A+ is infinite, and that A is not isomorphic

to Mk(C) for k = 1, . . . , n− 1.

Since A is simple, it follows that each n-homogenous a ∈ A+ \ {0} is properly

infinite in A. The algebra A is non-elementary, because the projections of rank

equal to n in the algebra of compact operators on Hilbert spaces H of dimension

≥ n are n-homogenous, but – obviously – are not properly infinite.



2. CHARACTERIZATIONS OF SIMPLE PURELY INFINITE ALGEBRAS 157

It follows that the non-zero closed hereditary C *-subalgebras D of A are also

non-elementary. Hence, each non-zeroD contains non-zero n-homogenous elements.

It implies that every non-zero element a ∈ A+ majorizes a non-zero properly infinite

element. Thus, each non-zero a ∈ A+ is itself properly infinite by Lemma 2.1.6.

(xi)⇒(xiii): It is obvious with n := 1.

(xiii)⇒(xii): Suppose that A is simple and there exists n ∈ N with the property

that a⊗1n is infinite in A⊗K for each non-zero a ∈ A+ . Then A is non-elementary

because this can not happen for a ∈ A+ with non-zero a = a2 and aAa = C · a.

Apply Lemma 2.1.6 to the infinite elements a⊗1n and get that a⊗1n is properly

infinite in the simple C *-algebra A⊗K for each a ∈ A+.

Let a ∈ A+ an n-homogenous contraction and ϕ : C0((0, 1],Mn) → A a C *-

morphism with a = ϕ(f0 ⊗ 1n) for f0(t) := t (t ∈ [0, 1]). If pjk denote the matrix

units, then 1n := p11+. . .+pnn is the unit element ofMn. Let c := ϕ(f0⊗p11) ∈ A+.

The elements a⊗p11 = ϕ(f0⊗1n)⊗p11 and c⊗1n = ϕ(f0⊗p11)⊗1n are Murray–

von-Neumann equivalent in A ⊗Mn
∼= Mn(A), because f0 ⊗ 1n ⊗ p11 is unitarily

equivalent to f0 ⊗ p11 ⊗ 1n in C0(0, 1]⊗Mn ⊗Mn by a unitary in 1⊗Mn ⊗Mn.

It is easy to check that proper infiniteness of positive elements is invariant under

Murray–von-Neumann equivalence, because the proper infiniteness of an element a

means (a⊕ a) ≈ a with Cuntz equivalence ≈. Therefore proper infiniteness passes

to all elements b ≈ a. Use that ∼MvN implies the (weaker) equivalence ≈ to obtain

that a⊗p11 is properly infinite in A⊗K. Thus, each positive n-homogenous element

a in A ∼= A⊗ p11 is properly infinite in A⊗K. The definition of proper infiniteness

shows that the positive element a is also properly infinite in A itself, because the

definition of properly infinite elements at the beginning of Section 1 shows that

an inside A properly infinite element a is always in the hereditary C *-subalgebra

D := aAa ∼= D⊗ p11 properly infinite if a⊗ p11 is properly infinite in A⊗K, cf. the

argument in proof of Proposition 2.2.5(i).

(xiii)⇔(xiv): Suppose that there exists n ∈ N such that a ⊗ 1n is infinite in

Mn(A) for each non-zero a ∈ A+. Since Mn(A) is simple, a⊗1n is properly infinite

by Lemma 2.1.6, i.e., A has property pi-n of Definition ??.

The implication (xiv)⇒(xiii) is obvious by the Definition of property pi-n.

(ii)⇒(xv): If A satisfies (ii), then A is non-elementary and the additional

condition ‖c‖ ≤ 1 can be derived like in the proof of the implication (vi)⇒(ii).

It says that A satisfies the conditions in Part (xv) with ν(a, b, ε) := 1 for all

a, b ∈ A+ and ε > 0.

(xv)⇒(iv): The conditions on the algebra A in Part (xv) imply that A is simple,

because the existence of the numbers ν(a, b, ε) < ∞ implies that the element b is

contained in the ideal generated by a for each a, b ∈ A+ with ‖a‖ = 1.

Only non-elementary A are allowed in Part (xv) by assumptions. Thus, to

verify that the assumptions of Part (xv) imply the assumptions in Part (iv), we
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are going to show that there exists, for each b ∈ A+ with ‖b‖ = 1 and each ε > 0,

a number m := m(b, ε) ∈ N that satisfies the conditions in Part (iv), i.e., has the

property that for any a ∈ A+ with ‖a‖ = 1 there exists an “m-step inner” c.p. map

V := f∗1 (·)f1 + · · · + f∗m(·)fm with ‖b − V (a)‖ < ε. (If this is the case, then the

above proven equivalence of Parts (iv) and (ii) shows that, moreover, m(b, ε) = 1

for all b ∈ A+ with ‖b‖ = 1 and ε > 0.)

Notice that the definition of the numbers m := m(b, ε) ∈ N in Part (iv) is given

by the upper bound (over all a ∈ A+) of the numbers m := m(b, a, ε) ∈ N that are

defined as follows:

Given non-zero a ∈ A+ and ε > 0, then there exists a minimal m ∈ N such that

there exist elements f1, . . . , fm ∈ A that satisfy the inequality ‖b−
∑m
`=1 f

∗
` af`‖ < ε.

Here without any proposed bound for the norms ‖f`‖.

The reader should observe here that the number ν := ν(b, a, ε) ∈ N is differently

defined. It is the minimal number ν that satisfies the following condition:

For each power ` ∈ N there exist ν(b, a, ε) contractions c1, . . . , cν ∈ A – depending

on ε > 0, b, a ∈ A+ and ` ∈ N – such that ‖ b −
∑ν
k=1 c

∗
ka
`ck ‖ < ε . The crucial

point is here that we require here that this number ν is independent from the ` ∈ N.

We consider first the case of separable A, and discuss later the reduction to

the study of suitable simple separable C *-subalgebras B of A that have the same

values ν(b, a, ε;B) = ν(b, a, ε;A) for all a, b ∈ B .

We show for separable simple A that if ν(a, b, ε) < ∞ for all a ∈ A and ε > 0

then m(b, ε) < ∞ for all ε > 0. The latter causes that Part (iv) applies to A and

shows that m(b, ε) = 1, i.e., that A is purely infinite by the implication (iv)⇒(ii).

We use in the separable case Part (iii) of Lemma 2.1.15, Lemma 2.1.17 and the

classical “excision” Proposition A.21.4 for the proof.

Move the Excision Lemma back to Chp.2. !!?

Let b ∈ A+ with ‖b‖ = 1 and let ρ denote a pure state on A with ρ(b) = 1.

Any pure state on A would do the job!

Only the below defined c plays a role.

By the above cited Lemmata

(???? Cite more precise !!!)

there exists a positive contraction c ∈ A+ with ‖c‖ = 1 such that ρ(c) = 1, and

for all a ∈ A,

lim
n
‖c2nρ(a)− cnacn‖ = 0 .

By assumptions of Part (xv), there are numbers ν(b, c2; ε) < ∞, for every

ε > 0 with the in Part (xv) quoted properties. But for fixed b and ε > 0 they could

depend possibly on the contraction c ∈ B+ .

Let ε > 0 given and let δ := ε/(2ν(b, c2; ε/2)).
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Let a ∈ A+ non-zero, w.l.o.g. , ‖a‖ = 1 . By Inequality (1.7) in Lemma 2.1.17

there exists a contraction g ∈ A with 1 = ‖a‖ ≤ δ + ρ(g∗ag) ≤ δ + 1. Thus, there

exists n0 ∈ N with ‖ρ(g∗ag)c2n − cng∗agcn‖ < δ for all n ≥ n0 . Hence,

‖c2n − cng∗agcn‖ < 2δ for all n ∈ N, n ≥ n0 .

By assumptions of Part (xv), we find contractions d1, . . . , dν ∈ A with ν :=

ν(b, c2; ε/2) a fixed number, but with the dk also depending from the power n ∈ N
of (c2)n, such that

‖b−
ν∑
k=1

d∗kc
2ndk‖ < ε/2 .

Then ‖f∗kafk − d∗kc2ndk‖ < δ for the contractions fk := gcndk (k = 1, . . . , ν), and

therefore

‖b−
ν∑
k=1

f∗kafk‖ < ε/2 + 2ν · δ ≤ ε .

It shows that for a, b ∈ A+ and ε > 0 and ‖a‖ = ‖b‖ = 1 holds n(a, b, ε) ≤
ν(b, c2, ε/2) < ∞ , with suitable fixed c ∈ A+ and ‖c‖ = 1 . Thus m(b, ε) <∞ for

each b ∈ A+ with ‖b‖ = 1 and ε > 0 .

This means that – in case that A is separable – the conditions in Part (xv)

imply the conditions in Part (iv).

Case with separable A is ready here.

Now we discuss how to reduce to the separable case.

By Proposition B.15.2(iii,iv), there exists for each a, b ∈ A+ a separable C *-

subalgebra B ⊆ A with a, b ∈ B and the property that n(e, d, ε;B) = n(e, d, ε;A)

and m(e, d, ε;B) = m(e, d, ε;A) for all ε > 0 and d, e ∈ B+ , where for given C *-

subalgebras B ⊆ A the numbers n := n(e, d, ε;B) are defined for each d, e ∈ B+

and ε > 0 as the minimal number n ∈ N with the property that there exists n con-

tractions c1, . . . , cn ∈ B with ‖e−
∑n
k=1 c

∗
kdck‖ < ε. The above defined (possibly

infinite) numbers ν(b, a, ε;B) ∈ N ∪ {+∞} is then equal to sup`∈N n(b, a`, ε;B).

In particular this causes that B is simple if A is simple, and that ν(a, b, ε;B) =

ν(a, b, ε;A) for a, b ∈ B+.

Since we can find for each a, b ∈ A+ a separable C *-subalgebra B with

this property, we get finally that A satisfies the assumptions of Part (iv), i.e.,

n(b, a, ε;A) = 1 for all non-zero a ∈ A+ . Where we use n(b, a, ε;B) ≤ m(b, ε;B)

for all non-zero a ∈ B+ .

We start now the study of the above proposed separable case:

We reduce the general case to the separable case by Proposition B.15.2(iii,iv).

It says that, for each a, b ∈ A+, there exists a simple separable C *-subalgebra

B ⊆ A with a, b ∈ B and n(c, d, ε;B) = n(c, d, ε;A) and ν(c, d, ε;B) = ν(c, d, ε;A)

for all c, d ∈ B+.
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In particular, n(b, a, ε;A) = n(b, a, ε, B) = 1 . Thus, n(b, a, ε) = 1 for all

a, b ∈ A+ with ‖a‖ = ‖b‖ = 1 . It implies finally that Part (xv) implies Part (iv)

with n(a, b; ε) = 1 .

(xvi)⇒(ii): Let a, b ∈ A+ with ‖a‖ = ‖b‖ = 1 and ε > 0. There is a character χ

on C∗(a) with χ(a) = 1. The character χ extends to a linear functional ρ on A with

ρ(a) = 1 = ‖ρ‖ = ‖χ‖ by Hahn-Banach extension. Consider the maps V : A → C
and W : C → A defined by V (x) := ρ(x) for x ∈ A and W (ξ) := ξ · b. The maps

V and W are completely positive, have norms = 1 and satisfy W (V (a)) = b. By

assumptions of Part (xvi), there exist d1, d2 ∈ A with d∗1d2 = 0 and ‖b− d∗kadk‖ =

‖W (V (a))−d∗kadk‖ < ε for k ∈ {1, 2}. Thus, A satisfies the condition in Part (ii).

TEXT-Info (xvi):

For each finite subset F ⊂ A, each n ∈ N, ε > 0, each completely positive con-

tractions V : A→Mn, W : Mn → A there exists contractions d1, d2 ∈ A (depending

from F, V,W and ε) with d∗1d2 = 0 and

‖(W ◦ V )(x)− d∗kxdk‖ < ε for all x ∈ F, k ∈ {1, 2} .

From Proposition 3.1.9(ii) :

Suppose that A has the property, that for every positive contraction e ∈ A+ and

ε > 0 there exist contractions e1, e2 ∈ A with ‖e∗jek − δjke‖ < ε for j, k ∈ {1, 2}.

This property of e ∈ A+ has been studied also further above in Chp.2...???

Why refer to Chapter 3? Find it and compare the ref.s !!!

Then W can be “orthogonal approximated in norm” – in the sense that for

each γ > 0 there exist c.p. maps U0, U1 : Mn → A such that Uk(1n) ≤ V (1n),

‖Uk−W‖ < γ and that U0 and U1 are “elementary” and “orthogonal” in the sense

that there are column-matrices dk ∈ Mn,1(A) with Uk(β) = d∗kβdk and d∗0βd1 = 0

for all β ∈Mn
∼= Mn(C · 1) ⊆Mn(M(A)) and k ∈ {0, 1} .

(xi)⇒(xvi): Let F ⊂ A a finite subset, ε > 0, V : A → Mn, and W : Mn → A

completely positive contractions. Let b := W (1n).

Let 0 < δ := ε/????? , ρ a pure states on A and dρ : A → L(H) with H :=

L2(A, ρ) := A/Lρ the corresponding irreducible representation with cyclic vector

x0 satisfying ρ(a) = 〈dρ(a)x0, x0〉 . Here Lρ := {a ∈ A ; ρ(a∗a) = 0}.

By Lemma 2.1.22 there exist an isometry I from `2(n) into L(H) with

‖I∗dρ(a)I − V (a)‖ < δ for a ∈ F . By simplicity of A we can take any irreducible

representation ρ : A → L(`2) and find a suitable isometry T from Cn into `2 such

that ‖V (a)− T ∗ρ(a)T‖ < δ for all a ∈ F .

By assumption of Part (xi), for each a ∈ A+ there exists d, e ∈ A with d∗e = 0

and d∗d = (a− γ)+ = e∗e . This allows to apply Proposition 3.1.9(ii).

Is it better to use an elementary tool? Not from Chp.3??
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It says that each c.p. contraction W : Mn → A can be approximated in norm

by c.p. maps U : Mn → A with U(1n) ≤W (1n), that are “elementary” in the sense

that there are column-matrices d ∈Mn,1(A) with U(α) = d∗αd for α ∈Mn.

This means that we can find d ∈Mn,1(A) with ‖W (Y )− d∗Y d‖ < δ‖Y ‖ for all

Y ∈ Mn and d∗d =
∑
k d
∗
kdk ≤ W (1n) . In particular ‖d∗d‖ ≤ 1 , because W is a

c.p. contraction.

Give reference for next ‘‘blue’’

Seems to be better to factorize over a fixed copy of Mn sitting

in A itself ?

By Part (i) and Lemma 2.1.6 there exists a properly infinite projection 0 6=
p∗p = p ∈ A. Let s, t ∈ pAp partial isometries with s∗t = 0 and s∗s = t∗t = p.

Consider the partial isometry vk := tks

(i)⇒(xvii): Let D a non-zero hereditary C *-subalgebra of A and p ∈ D an

infinite projection. This means that pDp = pAp contains a non-unitary isometry,

i.e., there exists partial isometry v ∈ D with v∗v = p, vv∗ ≤ p and vv∗ 6= p. Let 1

denote the unit of M(A). Then T := (1 − p) + v ∈ D + 1M(A) is a non-unitary

isometry in the C *-algebra D + C · 1 ⊆M(A).

(xvii)⇒(iii): Let D ⊆ A a non-zero hereditary C *-subalgebra of A and 0 6= e ∈
D+. The hereditary C *-subalgebra E := eAe is non-zero. Let 1 denote the unit-

element of A if A is unital, otherwise let it denote the unit 1M(A) of the multiplier

algebra of A.

By assumptions of Part (xvii), there exists an element T ∈ E + C · 1 ⊆M(A)

that is left-invertible in A+ C · 1 but is not right-invertible in A+ C · 1.

Let L ∈ A+C ·1 a left inverse for T , i.e., LT = 1. Then ‖L‖2T ∗T ≥ T ∗L∗LT =

1. It implies that (T ∗T )−1/2 ∈ E+C ·1 exists and that S := T (T ∗T )−1/2 ∈ E+C ·1
is a non-unitary isometry in E + C · 1. The S is non-unitary, because otherwise T

would be also right-invertible.

It follows that p := 1 − SS∗ is a non-zero projection in E and the hereditary

C *-subalgebra F of E generated by p and Snp(S∗)n for n ∈ N is a non-zero stable

C *-subalgebra of E ⊆ D. �

Remark 2.2.2. The Part (xvii) of Proposition 2.2.1 is a “poor-man variant”

of a criterium of L.G. Brown, P. Friis and M. Rørdam. See [109] and [305]:

If A is simple and satisfies the Friis-Rørdam “Property IR”, then there is a

strict alternative that excludes each other:

A is purely infinite or A has “stable rank one”.

More precisely, the alternative for simple A with Property IR is: A is purely

infinite or each element of A+C · 1M(A) ⊆M(A) is contained in the norm closures

of the invertible (!) elements of A+ C · 1M(A).

See Section 9 in Appendix B for the definitions of Friies-Rørdam “Property

IR” and “stable rank one” and some explanations, in particular why Part (xvii) of
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Proposition 2.2.1 is one of the observations for the proof of the Brown-Friis-Rørdam

alternative for simple C *-algebras with Property IR between pure infiniteness and

“stable rank one”.

Next lemma will be used later to prove in some cases pure infiniteness of tensor

products of C *-algebras.

Lemma 2.2.3 ([93], lem. 2.15). Let D be a non-zero hereditary C*-subalgebra

of the minimal C*-algebra tensor product A⊗B of C*-algebras A and B.

Then there exists 0 6= z ∈ A ⊗ B with zz∗ ∈ D and z∗z = e ⊗ f for some

non-zero e ∈ A+ and f ∈ B+.

If d ∈ D+ and pure states ϕ ∈ A∗ , ψ ∈ B∗ are given with (ϕ⊗ψ)(d) > 0, then

such element z ∈ A⊗B can be found such that, moreover, ϕ(e)ψ(f) > 0.

Proof. Let d ∈ D+ with ‖d‖ = 1, and let C := A ⊗ B . The minimal C *-

algebra tensor product is the same as spatial tensor product with respect to the

direct sum of irreducible representations of A and B (cf. [704, prop. 1.22.9], [766]).

Thus, there are pure states ϕ on A and ψ on B such that (ϕ⊗ ψ)(d) > 0.

We can assume from now on, that fixed pure states ϕ and ψ and a fixed

contraction d ∈ D+ with (ϕ ⊗ ψ)(d) > 0 are given, i.e., we prove also the second

part of this Lemma (2.2.3) at the same time.

Then a := (ϕ⊗ idB)(d) ∈ B+ is a non-zero contraction and 0 < ψ(a) ≤ ‖a‖.

Let δ := ψ(a)/2 and f := (a− δ)2
+. Thus 0 < δ ≤ 1/2, f ∈ B+ and ψ(f) > 0,

because ψ(f)1/2 ≥ ψ(f1/2) ≥ ψ(a)− δ > 0.

There exists a separable C *-subalgebra G of A such that d is in the closure of

the algebraic tensor product G�B, because d is the limit of a sequence in A�B.

By Proposition A.21.4 and Lemma A.21.3 there exists b ∈ A+ with ‖b‖ = 1 = ϕ(b)

(for all m ∈ N) such that

lim
n
‖bngbn − ϕ(g)b2n‖ = 0 for all g ∈ G .

The state ϕ extends to a state ϕe on the unitization A + C1 ⊂ M(A) of A with

ϕe(1 − b) = 0. It gives ϕe(a(1 − b)) = 0 by Cauchy inequality. In particular,

ϕ(a) = ϕ(ab) for all a ∈ A and ϕ(bn) = 1 for all n ∈ N. Thus, the restriction of ϕ

to C∗(b) ⊆ A is a character on C∗(b).

The maps

Tn : y ∈ A⊗B 7→ (bn ⊗ 1)y(bn ⊗ 1)− (b2n ⊗ (ϕ⊗ id)(y))

converge on G⊗B point-wise to zero, because Tn is a difference of two completely

positive contractions on C and tends on G�B point-wise to zero.

Thus, there exists n with ‖Tn(d)‖ < δ2, i.e.,

(b2n ⊗ a)− δ2 ≤ (bn ⊗ 1)d(bn ⊗ 1)
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in the unitization of C. Let g := b2n and t := d1/2(bn ⊗ 1)((g ⊗ a)− δ2)
1/2
+ . Then

we get ((g ⊗ a)− δ2)2
+ ≤ t∗t and t C t∗ ⊆ d1/2 C d1/2 ⊆ D .

Now let e := (g − δ)+
2 ∈ A+ . Using that ϕ(g) = ‖g‖ = 1 and g ≥ 0, i.e., that

ϕ is a character on C∗(g), and that 0 < δ ≤ 1/2, we get ϕ(e) = (1− δ)2 > 0 .

Recall that f := (a − δ)2
+ . Functional calculus in C∗(g) ⊗ C∗(a) shows that

e⊗ f ≤ ((g ⊗ a)− δ2)+)2 .

If t = (tt∗)1/2v is the polar decomposition of t in the second conjugate of C,

then vxv∗ ∈ t C t∗ ⊆ D and vx1/2 ∈ C for every x ∈ C with 0 ≤ x ≤ t∗t, because

x1/2 is in the norm closure of t∗ C t and vt∗ = (tt∗)1/2 .

Since e⊗f ≤ t∗t we get that z := v((g− δ)+⊗ (a− δ)+) is in A⊗B, and e, f, z

satisfy z∗z = e⊗ f , zz∗ ∈ D and ϕ(e)ψ(f) > 0. �

Next Lemma 2.2.4 allows later applications by using suitable central sequences.

Lemma 2.2.4. Let F ⊆ A \ {0} a finite subset of non-zero elements in a C*-

algebra A.

Suppose that f∗ ∈ F for each f ∈ F and that, for every µ ∈ (0, 1), there exist

contractions s1, s2 ∈M(A) (depending on µ) with the properties that for all f ∈ F
and j ∈ {1, 2} holds:

‖sjf − fsj‖ + ‖(1− s∗jsj)f‖ + ‖(s1s
∗
1s2s

∗
2)f‖ < µ ‖f‖ . (2.1)

Then, for each finite sequence d1, d2, . . . , dn ∈ M(A) and ε > 0, there exists

elements g1, g2 ∈ A with g∗1g2 = 0 , g∗kgk ≤
∑n
`=1 d

∗
`d` for k ∈ {1, 2} and

‖g∗j fgk − δj,k ·
n∑
`=1

d∗`fd`‖ < ε · ‖ f ‖ , ∀ 0 6= f ∈ F, j, k ∈ {1, 2} . (2.2)

Proof. We show below that the existence of contractions s1, s2 ∈ M(A) sat-

isfying the inequalities (2.1) for each µ > 0 and fixed given F implies that we can

find for the given f ∈ F the following, – formally stronger –, existence property

(*):

(*) For each γ ∈ (0, 1) there exist contractions t1, . . . , t2n ∈ A with the

property that t∗j tk = 0 for j 6= k and ‖t∗jftk − δj,kf‖ < γ for all j, k ∈
{1, . . . , 2n} and f ∈ F .

If we have shown the existence (*) – for each given γ > 0 – then we can use the

contractions t1, . . . , t2n to define g1 :=
∑n
`=1 t`d` and g2 :=

∑n
`=1 t`+nd`. Clearly,

g∗1g2 = 0 and g∗kgk ≤
∑n
`=1 d

∗
`d` for k ∈ {1, 2}. This elements g1, g2 ∈ A satisfy

then the Inequalities (2.2):

Indeed, consider the matrices S[f ] := [δj,kf ] ∈ M2n(A) and T [f ] := [t∗jftk] ∈
M2n(A), and the columns Z1 := [d1, . . . , dn, 0, . . . , 0]> ∈ M2n,1(M(A)) and Z2 :=

[0, . . . , 0, d1, . . . , dn]> ∈ M2n,1(M(A)) . Then, for f ∈ F , g∗j fgk = Z∗j T [f ]Zk and



164 2. BASICS ON PURELY INFINITE C*-ALGEBRAS

δj,k
∑
d∗`fd` = Z∗j S[f ]Zk. Thus,

‖g∗j fgk − δj,k
∑
`

d∗`fd`‖ ≤ ‖S[f ]− T [f ]‖ · ‖
n∑
`=1

d∗`d`‖ .

The entries of the self-adjoint matrix S[f ] − T [f ] ∈ M2n(A) have norms ≤ γ by

Property (*). A simple matrix-norm estimate says that an operator m×m matrix

[xjk] ∈ Mm(A) has operator norm ≤ mmax{‖xj,k‖ ; 1 ≤ j, k ≤ m} in Mm(A),

cf. Section 19 of Appendix B and Remark 2.1.10, thus: ‖S[f ]− T [f ]‖ ≤ 2n · γ .

Hence, we get elements g1, g2 ∈ A that satisfy all desired properties if we

can show – for given ε ∈ (0, 1) – the existence of the contractions tk with above

properties (*) for suitable γ ∈ (0, 1) – that satisfies e.g.

2nγ ·
(
1 +

∑
`

‖d`‖2
)
≤ ε .

Now we are going to derive the existence of contractions t1, . . . , t`, t2n ∈ A for given

γ ∈ (0, 1) with the above listed property (*) for given γ ∈ (0, 1) fixed given finite

subset F ⊂ A, with f∗ ∈ F for f ∈ F .

We avoid complicate iterated estimates for commutators of polynomials and use

instead its translation into precise algebraic relations in corona spaces – together

with a sort of approximate semi-projectivity for relations like x∗jxkf = δj,kf and

‖xk‖ ≤ 1 for j, k ∈ {1, . . . , 2n} and f in a finite set.

Indeed, we derive from the existence of s1, s2 that satisfy the inequalities (2.1)

for µ = 2−m (m = 1, 2, . . .) the following observation ( 21 ):

Above are used other/same letters, give new notation!

For each n ∈ N there exists of 2n contractions T` = (t`,1, t`,2, . . .) ∈ `∞(A)

(` ∈ {1, 2, . . . , 2n}) that have the following properties :

T ∗` Tk = 0 for k 6= ` , T`f − fT` ∈ c0(A) and f −T ∗` T`f ∈ c0(A) for all f ∈ F ,

– where we identify here f ∈ F with (f, f, . . .) ∈ `∞(A) .

We can find finally the desired contractions t1, . . . , t`, . . . t2n ∈ A – with the

above discussed desired properties – by picking up entries t` := t`,n0 for suitable

(fixed) n0 ∈ N from the elements T` = (t`,1, . . . , t`,n0−1, t`,n0
, . . .) .

Thus, the proof is complete if we have shown the existence of the contractions

T` ∈ `∞(A) (` = 1, . . . , 2n) with the above proposed property,

To get such T` ∈ `∞(A), we modify the elements s1, s2 ∈M(A) that satisfy the

inequalities (2.2) with help of a quasi-central approximate unit of A in the sense of

[616, thm. 3.12.14], cf. also Part (3) of Remarks 5.1.1:

If τ ∈ (0, 1) is given, then we use that F ⊆ A is a finite set and find – in a

quasi-central approximate unit of A – a positive contraction e ∈ A+ such that, for

21 Here n ∈ N can not be replaced by “∞” because the used projectivity property does not

work for infinitely many generators! Says that the estimates are delicate and need some care.
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j ∈ {1, 2} and f ∈ F ,

‖sje− esj‖ < τ and ‖ef − f‖+ ‖fe− f‖ < τ‖f‖ .

It follows for 0 6= f ∈ F that ‖ef − fe‖ < τ‖f‖, ‖efe − f‖ < τ‖f‖ , ‖e2f − f‖ ≤
2τ‖f‖ and that ‖s1e

2s∗1s2e
2s∗2−e2s1s

∗
1s2s

∗
2e

2‖ ≤ 4τ . It allows to calculate that the

contractions s1e, s2e ∈ A satisfy, for f ∈ F and j ∈ {1, 2}, that the sum of norms

‖(sje)f − f(sje)‖ + ‖f − (sje)
∗(sje)f‖ + ‖(s1e)(s1e)

∗(s2e)(s2e)
∗f‖

is less or equal to the sum

‖sjf − fsj‖+ ‖f − s∗jsjf‖+ ‖s1s
∗
1s2s

∗
2f‖+ 7τ · ‖f‖ .

Thus, if the contraction e ∈ A+ is chosen as above for sufficiently small τ > 0, then

we obtain that the contractions s1e and s2e satisfy again the Inequality (2.1) in

place of s1 and s2. It follows that our assumptions imply that for each µ ∈ (0, 1)

there are contractions s1, s2 ∈ A that satisfy the inequalities (2.1). Thus, we can

find the s1, s2 with this properties in A itself.

Now let A∞ := `∞(A)/c0(A), consider A as C *-subalgebra of A∞ via the

natural C *-monomorphism A 3 a 7→ (a, a, . . .) + c0(A), and let C := C∗(F ) ⊆ A ⊆
A∞ the separable C *-subalgebra of A generated by the finite set F .

Let s1,n, s2,n ∈ A contractions that satisfy the inequalities (2.1) for sj,n (j ∈
{1, 2}) in place of sj and with µ := 2−n (n = 1, 2, . . .). Define contractions Sj ∈ A∞
(j ∈ {1, 2}) by Sj := (sj,1, sj,2, . . . , sj,n, . . .).

Here is ... ???

Compare above with below def.s and notations !!! ???

We use now that the universal C *-algebra

C∗(x1, . . . , xn ; ‖xk‖ ≤ 1 , x∗jxk = 0 , j 6= k , j, k = 1, . . . , n )

is projective, cf. Corollary A.8.5. It shows the existence of the above predicted

contractions T1, . . . , T2n ∈ `∞(A) with orthogonal ranges ( 22 ).

This method allows to translate the question, if contractions t1, . . . , t2n with

the above quoted properties exist, into the question, if we can find isometries

D1, . . . , D2n ∈ (C ′ ∩A∞)/Ann(C,A∞)

with mutually orthogonal ranges, i.e., with D∗jDk = δjk1 for j, k ∈ {1, . . . , 2n} .

It works well because we can lift the isometries Dj by Corollary A.8.5 to con-

tractions

HERE are the Ej defined. Somewhere below called Tj ???

22 Instead using the projectivity of this universal C *-algebra we could use – only for this part

of the proof – that the below considered subalgebras and sub-quotients of A∞ are all “locally”

sub-Stonean to get the desired lifts with pairwise orthogonal ranges. But it isn’t much simpler all

together.
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Ej := (ej,1, ej,2, . . .) + c0(A) ∈ C ′ ∩ A∞ with E∗jEk = 0 for j 6= k and

Ejf − fEj = 0 and f − E∗jEjf = 0, where we identify here the f ∈ F with

(f, f, . . .) + c0(A).

Then we can use the Corollary A.8.5 a second time to lift the contractions

Ej ∈ A∞ = `∞(A)/c0(A) to contractions Tj ∈ `∞(A) with mutually orthogonal

ranges, i.e., ‖Tj‖ = 1, T ∗kTj = 0, Tjf − fTj , f − T ∗j Tjf ∈ c0(A), where we identify

f ∈ F with (f, f, . . .) ∈ `∞(A).

Recall that C ⊆ A ⊂ A∞ denotes the separable C *-subalgebra of A generated

by F ⊆ A∞. The two-sided annihilator of C in A∞ is defined by

Ann(C,A∞) :=
{
X ∈ A∞ ; X · C = {0} = C ·X

}
.

It is easy to see that Ann(C,A∞) is a closed ideal of the relative commutant C ′∩A∞
of C ⊆ A∞, cf. [448] for similar definitions and considerations in the – perhaps for

some readers more delicate – case of ultra-powers Aω := `∞(A)/cω(A), in place of

A∞ := `∞(A)/c0(A) .

The contractions t1, . . . , t2n ∈ A, with the property that

t∗j tk = 0 and ‖t∗jftk − δj,kf‖ < γ for all j, k ∈ {1, . . . , 2n} and f ∈ F ,

can be obtained by lifting the

Where Ek !!!, Tk was defined?

to contractions Tk with pairwise orthogonal ranges in `∞(A), where we use

that F is a finite subset of A, because then we can select suitable “coordinates”

tk := Tk,n0 (n0 sufficiently large and then fixed) of Tk = (Tk,1, Tk,2, . . .) + c0(A) in

an obvious manner such that the considered inequalities are fulfilled.

Here !!! and a bit above ⇑ starts notation disorder.

New attempts below? E and T and S same?:

The assumptions allow to find for µn = 2−n, n = 2, 3, . . . sequences

(sj,1, sj,2, . . .) of contractions in A such that sj,n, j ∈ {1, 2}, define an element

Sj := (sj,1, sj,2, . . .) ∈ `∞(A) (j ∈ {1, 2}) such that, for f ∈ F and k ∈ {1, 2},

Sjf − fSj , f − (S∗j Sj)f , (S1S
∗
1S2S

∗
2 )f ∈ c0(A) .

Let A∞ := `∞(A)/c0(A) ⊃ A, and consider the bounded sequences in A

modulo c0(A) as elements of A∞, i.e., Sk := (s
(1)
k , s

(2)
k , . . .)+c0(A) where we embed

here A into A∞ by a 7→ (a, a, . . .) + c0(A).

Then it happens in the algebra A∞ that ‖Sk‖ ≤ 1, S∗1S2 = 0, Skf = fSk and

(1− S∗kSk)f = 0 for all f ∈ F and k ∈ {1, 2}.

It implies (1− S∗kSk)(f∗f + ff∗) = 0 for all f ∈ F = F ∗. Since 1− S∗kSk ≥ 0

it follows that F ∪ F · F is contained in the two-sided annihilator of the positive

element 2− S∗1S1 − S∗2S2 of A∞ . Thus, the C *-algebra C := C∗(F ) ⊆ A ⊆ A∞ is

contained in the two-sided annihilator of 2− S∗1S1 − S∗2S2.

Using that f∗ ∈ F for all f ∈ F we get that F ⊆ {S1, S
∗
1 , S2, S

∗
2}′.
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It follows that the elements of the C *-subalgebra C of B := A∞???? generated

by F commute with S1 and S2. Thus S1, S2 ∈ C ′∩B, i.e., the elements Sk commute

with all elements in the C *-subalgebra C ⊆ B generated by F .

Since F ∗ = F , we get that C is the closure of the linear span of products of

elements f∗ + f , f∗f and ff∗ with f ∈ F .

This implies that (1−S∗kSk)C = {0}, Skc−cSk = 0 for all c ∈ C, ... (k ∈ {1, 2}).

???? CHECK !!! ???

Y := Ann(1− S∗kSk, B) ⊆ B := `∞(M(A))/c0(A) ⊇ A∞ is a hereditary C *-

subalgebra of B with F ⊆ Y . It follows C := C∗(F ) ⊆ Y . Thus (1−S∗kSk) ∈ C ′∩B.

Thus we can consider first the two-sided annihilator Ann(C,B) of C in B and

the commutator C ′ ∩B of C in B.

Then Ann(C,B) is a closed ideal of C ′ ∩B. If we find isometries T1, . . . , Tn ∈
(C ′ ∩ B)/Ann(C,B) with pairwise orthogonal ranges. Then we can lift them to

contractions t1, . . . tn in C ′ ∩ B with pairwise orthogonal ranges such that t∗jctk =

δj,kc for all 1 ≤ j, k ≤ n and t∗j tk = 0 for j 6= k .

If d1, . . . , dn ∈M(A) ⊆ B are given, then g :=
∑
k tkdk satisfies g∗g ≤

∑
k d
∗
kdk

and g∗fg =
∑
d∗kfdk .

Now one can take take ??or?? find mutually orthogonal representing sequences

for the element g ∈ B and of the d1, . . . , dn .

By Corollary A.8.5, we get that the universal C *-algebra generated by n con-

tractions with orthogonal ranges is projective.

We consider first the case of isometries s1, s2 ∈ M(A) with the quoted prop-

erties, to make the idea of the proof transparent. The additional study for the

approximate version will be added at the end of the proof.

Notice that the isometries s1, s2 with s∗ks` = δk,` (k, ` ∈ {1, 2}) define isometries

by t1 := s1 and tn+1 := sn2 s1 for n = 1, 2, . . . that satisfy t∗mtn = δm,n1 for n,m ∈ N.

If a ∈ F satisfies ‖ska− ask‖ < γ (k = 1, 2) for some γ ∈ (0,∞) and k ∈ {1, 2}
then, using that t∗m(atn − tna) = t∗matn − δm,na, we get

‖t∗matn − δm,na‖ ≤ ‖atn − tna‖ < nγ .

Follows from

‖a(b1 · b2)− (b1 · b2)a‖ ≤ ‖b2‖‖[a, b1]‖+ ‖b1‖‖[a, b2]‖ .

What about working in M(A)∞

and replacing then γ by zero, e.g.

s1, s2 ∈M(A)∞ with s∗1s2 = 0, (1− s∗ksk)a = 0 and [a, sk] = 0

for a ∈ F, k ∈ {1, 2} ...

It implies (sk2s1)∗a(s`2s1) = δk,`a for a ∈ F, k, ` ∈ {0, 1, . . . , n}, with

s0
2 := 1.
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The problem is:

Does there exist a ‘‘local unit’’ e ∈ M(A)∞ with 0 ≤ e ≤ 1 for F

such that ea = a = ae for a ∈ F
and (sk2s1)∗e(s`2s1) = δk,`e ??

Let s1, s2 ∈ A contractions with s∗1s2 = 0 , ‖ska − ask‖ < γ · ‖a‖ and ‖(1 −
s∗ksk)a‖ < γ · ‖a‖ (k ∈ {1, 2}) for all a ∈ F and some γ ∈ (0, 1). We can define

contractions tn ∈ M(A) by t1 := s1 and tn+1 := sn2 s1 for n = 1, 2, . . ., and show

that, for each a ∈ F ,

‖tna− atn‖ ≤ n · γ‖a‖ and ‖t∗matn − δm,na‖ ≤ 2 min(m,n) · γ‖a‖ .

It implies that ‖(1− t∗ntn)a‖ ≤ 3n · γ‖a‖.

We use the convention s0
2 := 1 ∈ M(A). By assumptions, ‖t1a− at1‖ ≤ γ‖a‖

for t1 := s1 and a ∈ F . Then [a, xy] = x[a, y] + [a, x]y shows that tn+1a− atn+1 =

sn2 (s1a− as1) + (sn2a− asn2 )s1 and

‖sn2a− asn2‖ ≤ n‖s2‖n−1‖s2a− as2‖ ≤ n · γ‖a‖ .

Since s1 and s2 are contractions we get ‖tna− atn‖ ≤ n · γ‖a‖ for all n = 1, 2, . . . .

An estimate for ‖t∗matn − δm,na‖ :

Let s0
k := 1 for k ∈ {1, 2}. It suffices to consider the case where 1 ≤ m ≤ n because

(t∗matn)∗ = t∗na
∗tm and a∗ ∈ F for a ∈ F . If 1 ≤ m ≤ n then tm = sm−1

2 s1,

tn = sm−1
2 sn−m2 s1 and δn,m = 1 if and only if n = m.

X := (s∗2)m−1asm−1
2 − a , Y := s∗1Xs

n−m
2 s1 and Z := s∗1as

n−m
2 s1 − δm,na ,

satisfy Y + Z = t∗matn − δm,na . Thus ‖t∗matn − δm,na‖ ≤ ‖X‖+ ‖Z‖ .

If δm,n = 1 then m = n and Z = s∗1as1 − a. If δm,n = 0 then m < n,

Z = s∗1(s2a− as2)(sn−m−1
2 s1). The latter implies ‖Z‖ ≤ γ‖a‖.

The equations s∗kask − a = s∗k(ask − ska) − (1 − s∗ksk)a imply ‖s∗kask − a‖ ≤
2 · γ‖a‖ for k ∈ {1, 2}. In particular, ‖Z‖ ≤ 2 · γ‖a‖ if δn,m = 1. We show that

‖X‖ ≤ 2(m− 1) · γ‖a‖:

Let p > 1. Then (s∗2)pa(s2)p − a =
∑p
`=1(s∗2)p−`(s∗2as2 − a)(s2)p−` .

Hence, ‖(s∗2)pa(s2)p − a‖ ≤ 2p · γ‖a‖ .

Summing up, our calculations show that

‖t∗matn − δm,na‖ ≤ ‖X‖+ ‖Z‖ ≤ 2 min(m,n) · γ‖a‖ .

Consider here the easy case of isometries s1, s2 .

Let a ∈ F , ε > 0 and d1, . . . , dn ∈ A given, take µ := ‖
∑
k d
∗
kdk‖.

We find for each γ > 0 isometries s1, s2 ∈M(A) with ‖ska− ask‖ < γ???? for

k = 1, 2 and a ∈ F .

Let ?????

γ := ε /
(
1 + 2n (‖d1‖+ . . .+ ‖dn‖)2

)
.
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By assumptions, we find isometries s1, s2 ∈M(A) with s∗1s2 = 0 and ‖ska−ask‖ <
γ for k ∈ {1, 2}. The above from the s1, s2 defined isometries t1, . . . tn satisfy

‖d∗i (t∗i atj − δija)dj‖ < nγ‖di‖‖dj‖ .

Let c :=
∑
tidi. Then c∗c =

∑
i d
∗
i di, c

∗ac−
∑
i d
∗
i adi =

∑n
i,j=1 d

∗
i (t
∗
i atj − δija)dj

and

‖c∗ac−
n∑
i=1

d∗i adi‖ ≤
n∑

i,j=1

‖d∗i (t∗i atj − δija)dj‖ < ε .

Detailed calculations:

c∗ac =
∑
i,j x

∗
i t
∗
i atjxj .

‖c∗ac− b‖ ≤ ‖c∗ac−
∑
x∗i axi‖+ ‖b−

∑
x∗i axi‖ .

‖b−
∑
x∗i axi‖ < ε/2 by property of the chosen xi .∑

i x
∗
i axi =

∑
i,j x

∗
i δijaxj .

n∑
i,j=1

‖x∗i (t∗i atj − δija)xj‖ ≤
n∑

i,j=1

‖xi‖ · ‖xj‖ · ‖t∗i atj − δija‖ .

Using that ‖[a, sk]‖ ≤ γ := ε/2n(1 + (
∑
i ‖xi‖)2), and nmaxk=1,2 ‖[a, sk]‖ ≥

‖atj−tja‖ ≥ ‖t∗i atj−δija)‖ for i, j ≤ n, we get for
∑n
i,j=1 ‖xi‖·‖xj‖·‖t∗i atj−δija)‖

the estimate n(‖x1‖+ . . .+ ‖xn‖)2 · γ ≤ ε/2 .

Recall here that γ := ε/
(
2n(1 + (

∑
i ‖xi‖)2)

)
. END OF THE EASY CASE

is here !!!???

Let a ∈ F , ε > 0 and d1, . . . , dn ∈ A given, take µ := ‖
∑
k d
∗
kdk‖.

By assumptions, we find for each δ > 0 contractions s1, s2 ∈ M(A) with

s∗2s1 = 0 and ‖ska− ask‖ < δ and ‖(1− s∗ksk)a‖ < δ for k = 1, 2 and a ∈ F .

Attempt (?? !!!): g :=
∑n
k=1 tkdk for sufficiently small γ.

Calculate ‖g∗ag−
∑
k d
∗
kadk‖ for a ∈ F . Uses matrix-norm of [t∗jatk− δjka] for

contractions a ∈ F and ‖
∑
d∗kdk‖ with suitable bound. �

We list some sufficient criteria for a C *-algebra A to be simple and purely

infinite:

Proposition 2.2.5. Let A be a non-zero C*-algebra. Each one of the following

permanences or properties (i)–(v) implies that A is simple and purely infinite.

(i) A is a hereditary C*-subalgebra of a simple purely infinite C*-algebra.

(ii) A⊗K ∼= B⊗K for a simple purely infinite C*-algebra B and the compact

operators K on some Hilbert space H.

(iii) A is isomorphic to the inductive limit indlimn(hn : An → An+1) of non-

zero C*-algebras An 6= C · 1 with non-zero C*-morphisms hn that satisfy:

(*) For every positive integer n, every ε > 0 and every a, b ∈ (An)+

with ‖b‖ ≤ ‖a‖ = 1, there exists a contraction c ∈ An+1 such that

‖c∗hn(a)c− hn(b)‖ < ε .
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(In particular, the property (*) is satisfied if all An are simple and

purely infinite.)

(iv) The C*-algebra A is simple and has the following property (∆):

(∆) For every a ∈ A+ and ε > 0, the multiplier algebra M(A) contains

isometries s1, s2, depending on (a, ε), with

s∗1s2 = 0 and ‖sja− asj‖ < ε for j ∈ {1, 2} .

(v) The C*-algebra A is isomorphic to the relative commutant D′ ∩ B of D

in B, where D is a separable C*-subalgebra of a unital C*-algebra B that

satisfies following properties (α) and (β):

(α) D′ ∩B 6= C1.

(β) For every a ∈ (D′ ∩ B)+ with ‖a‖ = 1, there exists a contraction

s ∈ B with d = s∗ads for every d ∈ D.

Remark 2.2.6. It is evident that Proposition 2.2.5(iii) and Proposition 2.2.1(ii)

together imply that inductive limits of simple purely infinite C*-algebras are again

simple purely infinite C*-algebras (23).

Parts (i) and (ii) of Proposition 2.2.5 together show invariance of the class of

simple p.i. C *-algebras under Morita equivalence.

Notice also that every simple purely infinite C *-algebra A is isomorphic to each

of the types of algebras considered in Parts (i)–(iii):

Indeed, take B := A ⊗ K to fulfill the conditions in Parts (i) and (ii), and

take An := A and hn := idA for the conditions in Part (iii). The Condition (*)

in Part (iii) is satisfied for hn = idA, because if a, b ∈ A+ are contractions with

‖a‖ = 1 and ‖b‖ = 1 then there exists c ∈ A with ‖c∗ac − b‖ < ε by Part (ii) of

Proposition 2.2.1. The arguments in the proof of the implication (iv)⇒(ii) or of

the implication (iii)⇒(ii) for Proposition 2.2.1(ii,iii,iv) show that we can take here

c ∈ A with ‖c‖ ≤ 1.

That the above examples satisfy the assumptions (i–iii) can be seen from

Parts (??? to be listed !!!) of Proposition 2.2.1. (Must show for (i,ii) that A⊗K
is p.i. if A p.i. and that pi passes to non-zero hereditary C *-subalgebras. The

latter is done in the proof.)

For the general general property pi(1) (which is equal to “purely infinite” in

sense of Definition 1.2.1) the passage to M2(A) is equivalent to the (not obvious)

proof that Property pi(1) is equal to Property pi-1.

But for simple A the equivalence of pi(1) and pi-1 is given by of Parts (???)

and (???) of Proposition 2.2.1 ??? Condition (*) in Part (iii) implies injectivity

of the hn:

If the hn are non-zero (as required !) then Condition (*) causes that each hn is

injective.

23If they are “non-zero” in the sense that the all C *-morphisms ψm,n : Am → An are non-

zero!
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Indeed, since hn is non-zero there exists b ∈ (An)+ with ‖b‖ = 1 and ‖hn(b)‖ = 1.

Let a ∈ (An)+ with ‖a‖ = 1. Then condition (*) on hn provides c ∈ An+1 with

‖c∗hn(a)c− hn(b)‖ < 1/2 . It implies hn(a) 6= 0, and that each hn is faithful.

The Property (∆) of Part (iv) holds for all σ-unital purely infinite simple C *-

algebras A.

Indeed, by Proposition 2.2.1(v) all simple purely infinite C *-algebras are

strongly purely infinite, Theorem ?? (A.spi.implies.M(A).spi???.is where?) says

that the multiplier algebra M(A) of every σ-unital strongly purely infinite C *-

algebra A is again strongly purely infinite and Theorem ?? (nuclear.embed.of.exact)

says that each nuclear C *-morphism h : C → E of a separable exact C *-

algebra into a strongly purely infinite “corona” C *-algebra E – e.g. as it is the

case for E = M(A)∞ := `∞(M(A))/c0(M(A)) – extends to a C *-morphism

hext : C ⊗O∞ → E with hext(c⊗ 1) = h(c). Then apply this to

ι : C∗(a, 1)→M(A) ⊆M(A)∞ .

It gives that all (not necessary simple) σ-unital strongly purely infinite C *-algebras

A satisfy Property (∆) of Part (iv) of Proposition 2.2.5.

The approximate decomposition condition (∆) in Part (iv) of Proposition

2.2.5 is satisfied for every not necessarily simple but strongly purely infinite

σ-unital C *-algebra A, because for them C ′ ∩ M(A)ω is purely infinite for ev-

ery nuclear embedded separable exact C *-subalgebra C of Aω. This applies to

C := C∗(πω(a, a, . . .)) ∈ Aω and yields the existence of the s1, s2 ∈ M(A) with

the property in Part (iv).

Simple purely infinite C *-algebras are strongly purely infinite by Proposition

2.2.1(v). Thus, the condition in Proposition 2.2.5(iv) is moreover equivalent to pure

infiniteness of σ-unital simple C *-algebras A.

Proof of Proposition 2.2.5. The assumptions in Parts (i), (ii) or (iv) as-

sume or imply the simplicity of A. But we prove also the similar statement for

non-simple C *-algebras if possible, i.e., if the condition itself implies the simplicity.

???

It is not difficult to see that each of the properties (i)–(iv) of A in Proposition

2.2.5 implies that A is simple and that A is not isomorphic to the compact operators

on some Hilbert space. Why it is easy to see from (iv)? i.e., where A is

simple and has Property (∆): The K(H) do not satisfy (∆).

(i): Part (i) follows straight from the definition of J. Cuntz, cf. [172, p. 186]

or Part (i) of Proposition 2.2.1, in case of simple C *-algebras.

But we use here the general Definition 1.2.1, because it is also suitable for non-

simple C *-algebras B. The proof that non-zero hereditary C *-subalgebras D ⊆ B
satisfy Part (ii) of Definition 1.2.1 is easy:

If a, b ∈ D+ and ε > 0 are given with a 6= 0 and b in the closed ideal of B generated

by a, then, by Definition 1.2.1, there exists g ∈ B with ‖g∗ag− b‖ < ε/3 , because
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b ∈ D+ is in the closed ideal of D generated by a, then it is also in the closed ideal

of B generated by a.

Let γ := ‖g‖, δ := ε/(3γ2 + 3) and ψ(t) := min
(

1, δ−1 ·max(0, t− δ)
)

.

Define g1 ∈ D by g1 := ψ(a)1/2gψ(b)1/2. Then ‖g∗1ag1 − b‖ < ε .

But we must prove that quotients B/J of B can not contain non-zero projec-

tions p ∈ B/J with p(B/J)p = C · p. This requires to show first that quotients

B/J are also purely infinite in sense of Definition 1.2.1.

It is obvious from the Definition 1.2.1 that non-zero ideals J of B (respectively

non-zero quotients B/J of B) can not have a non-zero character, because otherwise

such a character extends to, respectively defines, a non-zero character of B.

If a, b ∈ B+ and πJ(b) is in the closed ideal ofB/J that is generated by πJ(a) the

for ε > 0 there exists δ > 0 and c1, . . . , cn ∈ B with (b−ε/3)+−
∑n
k=1 c

∗
k(a−δ)+ck ∈

J . By Part (ii) of Definition 1.2.1 there exists d ∈ B with

‖d∗ad−
n∑
k=1

c∗k(a− δ)+ck‖ < ε/3 .

This implies together that

‖πJ(b)− πJ(d)∗πJ(a)πJ(d)‖ < ε .

The map πJ : B → B/J is surjective. Hence B/J is again purely infinite in the

sense of Definition 1.2.1 for each closed ideal J 6= B of B.

Let D ⊆ B is a non-zero hereditary C *-subalgebra of purely infinite C *-algebra

B. We show that D can not have a non-zero character (and is therefore also purely

infinite in sense of Definition 1.2.1):

Suppose that D has a non-zero character ξ : D → C. The kernel K ⊂ D of ξ is

a closed ideal of D. The closed ideal J of B generated by K has the property that

J ∩D = K, cf. ?????

Cite here the intersection Lemma ????

The argument (for the in Definition 1.2.1 required non-existence of characters

on D) is the following – that works also in the non-simple case:

THE NEXT HERE is an application of the study of

residually anti-liminariy C *-algebras. Refere to there!!!

By assumption (i) of Definition 1.2.1, the algebra B has no characters. But the

Property (ii) of Definition 1.2.1 implies then moreover that no irreducible represen-

tation λ of B contains a non-zero compact operator in its image, because otherwise

λ must be necessarily one-dimensional representation, by Property 1.2.1(ii) and

the combination of the Kadison transitivity theorem and the semi-projectivity of

C0((0, 1],Mn) applied in Lemma 2.1.15, i.e., λ would be a character on B. (No-

tice here that the Properties 1.2.1(i,ii) pass to quotients B/J of B and hereditary

C *-subalgebras of B also in case where B is non-simple.)
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The property of a C *-algebra B having only irreducible representations that

do not contain non-zero compact operators passes as a property to all non-zero

quotients of B.

It passes also to all non-zero hereditary C *-subalgebras of B, because for here-

ditary D ⊆ B each irreducible representation ρ : D → L(H1) extends, up to unitary

equivalence, uniquely to an irreducible representation λ : B → L(H1 ⊕2 H2) such

that λ(d) = ρ(d)⊕ 0 for d ∈ D.

(ii): By Part (i), the Definition 1.2.1 of pure infiniteness passes to non-zero

hereditary C *-subalgebras. In case of simple C *-algebras it is equivalent to all

other definitions of pure infiniteness (except being only stably properly infinite !).

It remains to observe that the simple C *-algebra B⊗K is purely infinite in the

sense of J. Cuntz if B is purely infinite:

Let D ⊆ B ⊗K be any non-zero hereditary C *-subalgebra.

By Lemma 2.2.3 there exists non-zero z ∈ B⊗K with zz∗ ∈ D and z∗z = b⊗a
for some (non-zero) b ∈ B+ and a ∈ K+ . Then w = z(1⊗v) satisfies w∗w = b⊗p11

and ww∗ ∈ D for a suitable element v ∈ K . Thus, D contains the closure of

w(B ⊗ K)w∗ which is isomorphic to the (non-zero) closure of bBb (cf. Remark

2.3.1). Now use that b 6= 0 and B is purely infinite in the sense of J. Cuntz. It says

that bBb and D contain both (non-zero) infinite projections p ∈ bBb and q ∈ D,

that are Murray–von-Neumann equivalent in B⊗K. Thus, B⊗K is purely infinite

in the sense of Cuntz.

(iii): We establish here a more general necessary and sufficient condition for

inductive limits of C *-algebras to be simple and purely infinite. It is easy to see

that the assumptions of Part (iii) satisfy this condition:

Let hn : An → An+1 be a sequence of C *-morphisms. Then for m < n

hm,n := hn−1 · . . . · hm+1hm : Am → An

is a C *-morphism. We embed the inductive limit B := indlim (hn : An → An+1)

naturally in (
∏∞
n=1An)/(

⊕∞
n=1An) in the below described way.

We explain sometimes our viewpoint by use of the different notations

(

∞∏
n=1

An)/(

∞⊕
n=1

An) = `∞(A1, A2, . . .)/c0(A1, A2, . . .) ⊆ L(H)∞

if the An are considered as C *-subalgebras of L(H).

The canonical morphisms h∞n : An → B are then given by

h∞n (a) := (0, . . . , 0, a, hn,n+1(a), hn,n+2(a), . . .) +⊕∞k Ak ∀ a ∈ An.

Thus ker(hn,k) ⊆ ker(hn,k+1) ⊆ ker(h∞n ) and the kernel of h∞n is the closure of the

union of the kernels of hn,k for k = n + 1, n + 2, . . .. If the hn are injective, then

the hm,n : Am → An and the h∞n : An → B are injective. In this case it follows

dim(B) > 1 if dim(An0
) > 1 for some n0.
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In the inductive limit B holds h∞m (Am) ⊆ h∞n (An) for m < n, and B is the

closure of
⋃
h∞n (An). We show that

B is simple and purely infinite, if and only if,

(1) Dim(B) > 1 , and

(2) for every m ∈ N, ε > 0, and e, f ∈ (Am)+ with ‖f‖ ≤ 1 = ‖e‖ =

‖hm,m+k(e)‖ for k = 1, 2, . . ., there exist p > n > m and a contraction

g ∈ An such that the distance of hm,n(f) − g∗hm,n(e)g from ker(hn,p) is

less than ε.

Note that the distance from c := hm,n(f) − g∗hm,n(e)g in An to ker(h∞n ) is less

than ε, if and only if, ‖h∞n (c)‖ < ε, if and only if, there exists p > n such that c

has distance from ker(hn,p) less than ε.

For the proof of Proposition 2.2.1(ii) it suffices to consider the only elements a

and b in
⋃
n h
∞
n (An) with 0 ≤ a , 0 ≤ b and ‖a‖ = ‖b‖ = 1 . Let such a and b given

and let m ∈ N such that a, b ∈ h∞m (Am). Then there exist contractions e, f ∈ (Am)+

with h∞m (e) = a and h∞m (f) = b. It implies 1 ≤ ‖hm,m+k(e)‖ ≤ ‖e‖ ≤ 1 and

‖f‖ = 1.

By (2) there exits, for given ε > 0. indices n > m and a contraction g ∈ Am
such that ‖b− d∗ad‖ < ε for the contraction d := h∞m (g). Thus, (1) and (2) imply

together that B is simple and purely infinite.

Conversely, suppose that B is simple and purely infinite. Then Dim(B) > 1 by

Proposition 2.2.1. Let ε > 0 and e, f ∈ (Am)+ with ‖f‖ ≤ 1 = ‖hm,m+k(a)‖ =

‖a‖ .

Then a := h∞m (e) and b := h∞m (f) are in B+ and γ := ‖b‖ ≤ 1 = ‖a‖ . By

Proposition 2.2.1(ii), there exist a contraction d ∈ B such that ‖b−γd∗ad‖ < ε . If

we replace d by a small perturbation of d it satisfies the same inequality. Therefore

we can assume that d ∈ h∞n (An) for some n > m. If g ∈ An is a contraction with

h∞n (g) = γ1/2d, then there exists p > n such that (2) is satisfied for m, e, f, ε, g, n, p.

Thus (1) and (2) is satisfied if B is simple and purely infinite.

(iv): The algebra A is supposed to be simple by assumption in Part (iv). But

we show that all – not necessarily simple – non-zero C *-algebras A with Property

(∆) are purely infinite in sense of Definition 1.2.1:

If the algebra A 6= {0} satisfies Property (∆), then A can not have a character

becauseM(A) contains two isometries s1, s2 with orthogonal ranges. (In particular

A is not commutative, especially A 6= C.)

Let a, b ∈ A with ‖a‖ = 1 and let ε > 0 .

We can consider here also non-simple A with property (∆). But then we must

require in addition that b is in the closed ideal generated by a, i.e., that ‖πJ(b)‖ = 0

if ‖πJ(a)‖ = 0 for all ideals J of A. It is enough to know this for all primitive ideals

J of A.
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Since b is in the ideal generated by a (that is automatic if A is simple and a is

non-zero), there are x1, x2, . . . , xn in A such that ‖b−
∑
k x
∗
kaxk‖ < ε/2 .

The set X := {a} ⊂ A satisfies the assumptions of Lemma 2.2.4. Thus, there

exists for x1, . . . , xn an element d ∈ A with

‖d‖2 = ‖
∑
k

x∗kxk‖ and ‖d∗ad−
∑
k

x∗kaxk‖ < ε/2 .

In particular, ‖b− d∗ad‖ < ε.

Thus, Property (∆) implies that A satisfies all conditions of the Definition

1.2.1 of purely infinite C *-algebras. If A is simple, then A satisfies the criterium in

Proposition 2.2.1(ii) for A being purely infinite. It causes that A is strongly p.i. in

sense of Definition 1.2.2 if A is simple, cf. Proposition 2.2.1(v).

(v): We use criterion (ii) of Proposition 2.2.1. Notice first that A := D′∩B 6= C
by our assumptions. For a ∈ (D′∩B)+ and ‖a‖ = 1 there are unital *-epimorphisms

h1 : C(Spec(a))⊗D → C∗(a,D) and h2 : C(Spec(a))⊗D → D given by h1(f⊗d) =

f(a)d and h2(f ⊗ d) = f(1)d for f ∈ C(Spec(a)) and d ∈ D. If f ⊗ d is in the

kernel of h1, and d 6= 0, then f(a) = 0, because D is simple. Thus f = 0 on

Spec(a). Therefore, by Lemma 2.2.3, the kernel of h1 is zero. By assumption, there

exists an isometry s in B with s∗f(a)ds = h(f(a)d) = h2((h−1
1 )(f(a)d)) = f(1)d

for f ∈ C(Spec(a)) and b ∈ D . This yields s ∈ D′ ∩B and s∗as = 1. �

Corollary 2.2.7. The algebra O∞ is simple and purely infinite.

If C is a unital C*-algebra with properly infinite unit element and B is any C*-

algebra, then B⊗maxC⊗maxC⊗max · · · and its quotient B⊗minC⊗minC⊗min · · ·
are purely infinite.

In particular, B ⊗O∞ (and thus B ⊗O∞ ⊗O∞ ⊗ · · · ) are simple and purely

infinite if B is simple.

We remind our convention that ⊗ always denotes the minimal (= spatial) C *-

algebra tensor product ⊗min.

Check consistency of notations:

⊗min, ⊗min, ⊗, ⊗max, ⊗max, ⊗̂
Where used? For what?

Other tensor products will be denoted by � (= algebraic tensor product) and

⊗max (= maximal tensor product = universal in both variables short exact tensor

product functor). Notice that there exist (at least) continuously may tensor prod-

uct functors on the category of separable C *-algebra with very different partial

injectivity or (short-) exactness properties, see Ozawa and Pisier [602] if combined

with considerations in [431].

Proof. Check and sort proof again or move it or parts of it to the appendices.

Give here exact ref’s to En in Appendices !!! ??
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In proof of property (sq) for En in Chp. 4

is already said something about the ‘‘algebraic’’ version of En.
Give ref’s to all places with En and On discussion.

The C *-algebra En is the universal C *-algebra generated by n isometries with

orthogonal ranges, i.e.,

En := C∗(s1, . . . , sn ; s∗ks` = δk`1) ,

and the C *-algebra O∞ is the universal unital C *-algebra generated by a (count-

able) sequence of isometries with mutually orthogonal ranges:

O∞ := C∗(s1, s2, . . . ; s∗ks` = δk`1 , k, ` = 1, 2, . . .) .

It implies immediately that the C *-algebra O∞ is isomorphic to the inductive limit

of the sequence of the natural unital C *-morphisms hn : En → En+1 defined by

hn(sk) := sk for k = 1, . . . , n.

We are going to show that the C *-morphisms hn are injective and satisfy the

condition (*) of Proposition 2.2.5(iii). It implies that O∞ is simple and purely

infinite.

Let Tq(w) := sk1
sk2
· . . . · skq for the “word” w = k1k2 . . . kq of length q ∈ N

with k1, k2, . . . , kq ∈ {1, 2, . . . , n}.

Denote by An the (algebraic) linear span of elements 1, Tq(w), Tq(w)∗ and

Tp(v)Tq(w)∗ with p, q ∈ N, v a word of length = p and w a word of length = q.

Calculation shows that An is a *-subalgebra of En. Since An contains the canonical

generators of En the vector space An is a dense *-subalgebra of En.

Let pn := 1− (s1s
∗
1 + . . .+ sns

∗
n). Then pn is a projection in En that satisfies

pnTq(w) = 0 for “words” w in the “alphabet” {1, . . . , n} if w is not the “empty”

word (i.e., if the “lengths” q of w is not zero).

It implies that pnAnpn = C · pn and – therefore – that pn · En · pn = C · pn , i.e.,

pn is a minimal projection in En that generates a closed ideal J(pn) of En that is

isomorphic to an elementary simple C *-algebra, i.e., J(pn) ∼= K(`2(N)) .

Clearly, Tq(w)pn 6= 0 because Tq(w)∗Tq(w) = 1. But pnTr(v)∗Tq(w)pn = 0 for

w ∈ {1, . . . , n}q and v ∈ {1, . . . , n}r if r 6= q, or if r = q and v 6= w.

This shows that J(pn) ∼= K(`2(N)), i.e., the closed ideal J(pn) of the C *-algebra

En generated by pn := 1− (s1s
∗
1 + . . .+ sns

∗
n) is isomorphic to K(`2(N)), and pn is

a minimal projection of J(pn) ∼= K.

The results of J. Cuntz in [169, 172] show that the ideal J(pn) is an essential

ideal of En and that On
∼= En/J(pn) is simple.

We explore her a different method to show that J(pn) is an essential ideal of

En by using the “gauge action” action of S1 on En defined by γ(z)(sn) := zsn on

En (calculated modulo J(pn) in On) for all z ∈ S1 ⊆ C

But it shows not that On := En/J(pn) is simple, instead only the – here

sufficient – result that On contains no nontrivial closed ideal that is invariant under
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the “gauge action” of S1 defined by γ(z)(sn) := zsn on En (calculated modulo

J(pn) in On) for all z ∈ S1 ⊆ C and, of course, ( 24 ).

( 25 ).

It satisfies γ(z)(en) = en for all z ∈ S1. Therefore, the closed ideal J(en) of En
generated by pn is invariant under the action of the gauge group. To distinguish

between the gauge action on En and On we denote by [γ](z) the action on On.

The projection pn ∈ En is fixed by the natural/canonical circle action given by

γ(z)(sk) := z · sk on En for z ∈ C with |z| = 1. This action is called “gauge action”

and is well-defined by the universality of the defining relations for En. Clearly,

the ideal J(pn) generated by pn is invariant under the circle action γ(z),because

γ(z)(pn) = pn for z ∈ S1 ⊆ C. It follows immediately that also the set K of

all elements b ∈ En with b · J(pn) = {0} is a closed ideal of En that is invariant

under the gauge action, i.e., that γ(S1)(K) ⊆ K. This annihilator K of the ideal

J(pn) is a closed ideal K of En and must be γ(S1)-invariant – by γ(S1)-invariance

of J(pn). Therefore πJ(pn)(K) must be a closed ideal of On that is invariant under

the gauge action [γ] (modulo J(pn)) on On. Moreover, πJ(pn)|K is faithful on K

and is equivariant with respect to the gauge actions γ on En and [γ] on On.

The fix-point algebra of [γ] on On is isomorphic to the UHF-algebra Mn∞ as

a study of the algebraic dense subalgebra πJ(pn)(An) of On shows. In particular it

contains no non-trivial ideals. It allows to apply the following general elementary

observation: Each continuous action of a compact group G on a C *-algebra B has

a fix-point algebra that contains an approximate unit of B, this happens also for

every G-invariant closed ideal I of B, and the G-fix-point algebra of I is a closed

ideal of the fix-point subalgebra of G in B.

If we apply this to I := πJ(pn)(K) and the circle action [γ] : S1 → Aut(On)

then we get that the intersection of I with the fixed point-algebra of [γ] is an ideal

of the fix-point algebra of [γ] that contains a strictly positive element of πJ(pn)(K).

Straight forward calculation shows that the fix-point algebra of the gauge action

on On is isomorphic to the simple UHF algebra Mn∞ . It proves that the ideal

πJ(pn)(K) ∼= K of On can only be zero or all of On, i.e., K = {0} or 1 ∈ πJ(pn)(K).

Suppose that 1 ∈ πJ(pn)(K). The orthogonality K · J(pn) = 0 implies that

the quotient map πJ(pn) is faithful on K. Hence, K contains a projection Q ∈ K
with πJ(pn)(Q) = 1, and it follows that Q · J(pn) ⊆ K · J(pn) = {0} and that

24 This arguments are elementary but do not prove the simplicity of On.
25 It proves the simplicity of On not completely. A complete proof of the simplicity and

nuclearity of On can be obtained by showing that the canonical conditional expectation onto

the fix-point algebra ∼= Mn∞ of the gauge action is an approximately inner c.p. map on On.

Equivalently, by nuclearity and simplicity of Mn∞ , that the natural conditional expectation Pn

is “faithful” as c.p. map and must preserve all closed ideals, i.e., for each positive a ∈ On the

element Pn(a) ∈ Mn∞ ⊂ On is contained in the ideal generated by by a. This can be seen by

approximating a by elementary elements b and then show that Pn(b) can be approximated up to

ε > 0 by X∗bX for a suitable elementary element X. It shows that also that all positive elements

of On are purely infinite.
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πJ(pn)(1−Q) = 0, i.e., 1−Q ∈ J(pn). Since Q is a projection with Qx = 0 = xQ

for all x ∈ J(pn). It follow that P := 1 − Q is a unit element for J(pn). But we

have seen above that J(pn) ∼= K(`2(N)) is not unital. This shows that only the

case K = {0} remains, and this implies that J(pn) is an essential ideal of En (as

discussed above).

It gives us the here needed injectivity of the natural map from En into En+1

????

The [γ]-simplicity and nuclearity of On follows from the fact that Mn∞ is the

fixed point algebra of the circle action (and that S1 is a compact group), and that

the by this action define conditional expectation Pn from On onto Mn∞ defined by

the integral over this action is an approximately inner u.c.p. map. There exists an

explicit approximation by inner c.p. maps. It is a 1-step innerness that proves also

the pure infiniteness if the elements of On. It can be seen by considering “algebraic”

elements.

But we do not us it this here. See ... ... give Citation ???? to Appendix

Since, as above shown, a ∈ En 7→ L(a) ∈ M(J(pn)) with L(a)b = ab for

all b ∈ J(pn) is a faithful unital C *-morphism, we obtain for a ∈ (En)+ with

‖a‖ = 1 that there exists a partial isometry z ∈ J(pn) ∼= K with z∗z = pn and

‖pn − z∗az‖ < ε .

We define c := hn(z)sn+1hn(b1/2) ∈ En+1. Notice that hn(pn) = pn+1 +

sn+1s
∗
n+1 ∈ En+1 and pn+1sn+1 = 0 . This shows that

‖c∗hn(a)c− hn(b)‖ < ε .

It means that the canonical morphisms hn : En → En+1 satisfies the criterium (*)

of Proposition 2.2.5(iii). Thus O∞ = indlimn→∞(hn : En → En+1) is simple and

purely infinite.

Part (iv) of Proposition 2.2.5 implies that B⊗C⊗C⊗· · · is simple and purely

infinite if B is simple and C is a simple C *-algebra with properly infinite unit

element 1C , because then 1C ∈ O∞ ⊆ E2 ⊆ C (with *-monomorphism defined by

O∞ 3 sn 7→ tn−1
2 t1 ∈ E2 for O∞ = C∗(s1, s2, . . .) and E2 = C∗(t1, t2) ⊆ C.

For each a ∈ B ⊗ C ⊗ C ⊗ · · · and ε > there exists a′ ∈ B ⊗ C ⊗ · · · ⊗
C ⊗ 1C ⊗ 1C ⊗ · · · with ‖a′ − a‖ < ε/2 and a′ commutes with a copy of O∞ ∼=
1B ⊗ 1C ⊗ · · · ⊗ 1c ⊗O∞ ⊗ 1C ⊗ · · · .

The proof shows also for every (not necessarily simple) C *-algebra B that

B⊗C⊗C⊗· · · (with ⊗ := ⊗min) is strongly purely infinite if C is a unital properly

infinite C *-algebra and the argument works also for finitely many a1, . . . , an ∈
B ⊗ C ⊗ C ⊗ · · · .

Can also use dichotomy for tensor prod.s of simple C *-alg.s

if B and C are simple !!!

Then it is only needed that both are non-elementary and that one of

B or C is stably infinite. �
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Lemma 2.2.8. Let ε ∈ (0, 1/4) and a, b ∈ A+ contractions that satisfy

‖ab1/2 − b1/2a‖ < ε and ‖aba‖ > 1− ε .

Then ‖b1/2a2b1/2 − aba‖ < 2ε and the non-zero hereditary C*-subalgebra E :=

abaAaba of aAa has the property that

‖(1− b)1/2d‖ ≤
√

3ε · ‖d‖ for all d ∈ E . (2.3)

Notice here for later applications that (1− b)1/2 is a (positive) contraction.

Proof. Suppose that e ∈ A+ is a contraction with 3/4 < 1 − ε < ‖e‖ ≤ 1 ,

and let f := (e− (1− ε))+. Then 0 ≤ f 6= 0, ‖f‖ ≤ ε and E := fAf is a non-zero

hereditary C *-subalgebra of A. We use that

(1 + 2ε− t)(t− 1 + ε)1/n ≤ 3 · ε for all t ∈ [1− ε, 1] and n ∈ N ,

to obtain that ‖(1+2ε−e)f1/n‖ ≤ 3ε for all n ∈ N . Since the f1/n commute with

the positive element (1 + 2ε − e) and f is a strictly positive element in E, we get

that ‖d∗(1 + 2ε− e)d‖ ≤ 3ε · ‖d‖2 for all d ∈ E. It shows that

‖(1 + 2ε− e)1/2d‖ ≤
√

3ε‖d‖ for all d ∈ E . (2.4)

We apply this observation to our special case:

Let a, b ∈ A+ elements that satisfy the in Lemma 2.2.8 listed pre-assumptions

with 0 < ε < 1/4, and let x := b1/2a. Then ‖x‖ ≤ 1 and ‖x∗ − x‖ = ‖ab1/2 −
b1/2a‖ < ε. It gives

‖b1/2a2b1/2 − aba‖ = ‖xx∗ − x∗x‖ < 2ε .

Thus, b1/2a2b1/2 − aba ≤ 2ε · 1 . Together with 0 ≤ a2 ≤ 1 it implies

0 ≥ 1− b ≤ 1− b1/2a2b1/2 ≤ 1 + 2ε− aba .

Now let e := aba and f := (e − (1 − ε))+ build from a and b with the

listed properties. This e, f ∈ A+ have the previously considered properties 3/4 <

1− ε < ‖e‖ ≤ 1 , because a, b ∈ A+ are contractions that satisfy ‖aba‖ > 1− ε by

assumptions on a, b and ε .

The monotony of the C *-norm on positive parts of C *-algebras implies that

for all elements d ∈ E := fAf holds

‖d∗(1− b)d‖ ≤ ‖d∗(1 + 2ε− aba)d‖ .

The above shown Inequality 2.4 says that ‖d∗(1 + 2ε− e)d‖ ≤ 3ε · ‖d‖2 for all

d ∈ E := fAf , where we let here e := aba and f := (aba− (1− ε))+ .

Using again monotony of the C *-norm on A+ we get that

‖d∗(1− b)d‖ ≤ ‖d∗(1 + 2ε− aba)d‖ ≤ 3ε · ‖d‖2 ,

for all d ∈ E := fAf . This is equal to the Inequality (2.4). �
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Lemma 2.2.9. Let A a non-zero σ-unital C*-algebra, and S ∈M(A)+ a positive

contraction with norm ‖πA(S)‖ = 1 for the image πA(S) of S in the corona Q(A) :=

M(A)/A of A.

(i) There exists a positive contraction T ∈ M(A)+ with ‖πA(T )‖ = 1 and

(1− S)T ∈ A.

(ii) If A is antiliminary in the sense of [616, sec. 6.6.1], cf. our Definition

2.7.2, i.e., if a∗Aa is non-commutative for each non-zero a ∈ A, then

there exists a contraction T ∈ M(A) with T 2 = 0, ‖πA(T )‖ = 1 and

(1− S)T, T (1− S) ∈ A.

(iii) If A is simple and non-elementary then for each a ∈ A+ with ‖a‖ = 2 there

exists a sequence of contractions d1, d2, . . . ∈ A such that (a−(a−1)+)dn =

dn, ‖dn‖ = 1, d∗mdn = 0 and dn(dm)∗ = 0 for m,n ∈ N, and such

that the sum
∑
n d
∗
ndn is strictly convergent in M(A) to a contraction

T :=
∑
n d
∗
ndn ∈ M(A)+ that satisfies ‖πA(T )‖ = 1 and (1 − S)T ∈ A.

(26).

Proof. The corona algebra Q(A) := M(A)/A is non-zero (and therefore is

unital) by existence of a contraction S ∈M(A)+ with ‖πA(S)‖ = 1.

(i) and preparations for (ii): Let e ∈ A+ with ‖e‖ = 1 strictly positive in A, i.e.,

eAe = A. For every separable C *-subalgebra B ⊆ M(A), e.g. for B := C∗(e, S)

with the considered contraction S ∈ M(A)+, we find a linear filtration Xn ⊆ B

with S, e ∈ X1, dim(Xn) < ∞ and X∗n = Xn ⊆ Xn+1 – as considered in Remark

5.1.1(3) of Chapter 5 – and an approximate quasi-central unit (en)n∈N of form

en := fn(e) with continuous functions fn ∈ C0(0, 1] with f0(t) := t, fnfn+1 = fn

for n ≥ 1, ‖f0 − fnf0‖ → 0, and, for b ∈ Xn,

‖ [fn(e), b] ‖ + ‖[(fm(e)− fn(e))1/2, b] ‖ < 4−n‖b‖ .

Then, for every sub-selection gk := fnk(e), nk+1 > nk ≥ k > 0 (and g0 := 0), we

can build the completely positive unital map V : `∞(M(A))→M(A) with help of

the strictly convergence of sums

V (a1, a2, . . .) :=

∞∑
k=1

(gk − gk−1)1/2ak(gk − gk−1)1/2

for bounded sequences a1, a2, . . . in M(A). Notice that b − V (b, b, . . .) ∈ A for all

b ∈ B and that V (ba1, ba2, . . .)−bV (a1, a2, . . .) ∈ A for each sequence (a1, a2, . . .) ∈
`∞(M(A)) and every b ∈ B. This is the case because V is a unital completely

positive map from `∞(M(A)) intoM(A) with V (b, b, . . .) = b for all b ∈ B ⊆M(A),

i.e., the images (b, b, . . .) by the diagonal embedding of b ∈ B in `∞(M(A)) are

contained in the multiplicative domain of V .

(See Remarks 5.1.1(2,...,5) for more details on this standard constructions.)

If c1, c2, . . . ∈ A is a bounded sequence that satisfies the condition ck =

ck(gk − gk−1) = (gk − gk−1)ck (e.g. if ckgk = ck and ckgk−1 = 0) for k ∈ N then

26 But the sum d1 + d2 + · · · is in general not strictly convergent in M(A).
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‖πA(V (c1, c2, . . .))‖ = lim supn ‖cn‖ , ckck+1 = 0 = c∗kck+1 and the series
∑
k ck is

strictly convergent in M(A) and
∑
k ck = V (c1, c2, . . .).

If moreover limk ‖ckS−ck‖ = 0, then V (c1, c2, . . .)S−V (c1, c2, . . .) ∈ A, because

of V (a1, a2, . . .) ∈ A if lim ‖an‖ = 0.

It follows T − TS ∈ A and ‖πA(T )‖ = 1 for the contraction T := V (c1, c2, . . .)

with c1, c2, . . . ∈ A contractions that satisfy lim supn ‖cn‖ = 1 and limn ‖cnS−cn‖ =

0 and cn(gn − gn−1) = cn = (gn − gn−1)cn. Similarly also T − ST ∈ A if here in

addition the contractions cn satisfy lim ‖cn − Scn‖ = 0.

If, moreover, those cn can be fund such that c2n = 0 in addition, then T 2 = 0,

i.e., in the hereditary C *-subalgebra Ann(1 − πA(S)) of elements X ∈ Q(A) with

X(1− πA(S)) = 0 and X∗(1− πA(S)) = 0 is not Abelian.

Notice that Ann(1−πA(S)) is automatically contained in πA(S) Q(A)πA(S) ⊆
D if S ∈M(A)+ is a positive contraction with πA(S) ∈ D.

The above outlined method requires a careful inductive choice of the gk :=

enk := fnk(e) for suitable n1, . . . , nk, . . . and then of non-zero hereditary C *-

subalgebras Ek with the property that for all d ∈ Ek holds d(gk+1 − gk) = d

and ‖dS − d‖ < 1/2k .

(Those nk and Ek can be selected suitably with help of Lemma 2.2.8.)

Then all elements X = πA(V (d1, d2, . . .)) are in Ann(1 − πA(S)) if dk ∈ Ek

for k = 1, 2, . . . and lim supn ‖dk‖ = ‖X‖. If d2
k = 0 for all k ∈ N it follows that

X2 = 0.

Compare below text with above. Give precise selection rule.

Let S ∈ M(A)+ with ‖S‖ = ‖πA(S)‖ = 1 and B := C∗(S, e). Choose en :=

fn(e) for B as above described for n = 1, 2, . . ..

We select gk := enk := fnk(e) such that there exists a non-zero hereditary

C *-subalgebra Ek of A with ‖d− Sd‖ < 2−n and d(gk − gk−1) = d for all d ∈ Ek .

Then V (d1, d2, . . .) defines a C *-morphism from
∏
k Ek := `∞(E1, E2, . . .) into

M(A) with V (c0(E1, E2, . . .)) ⊆ A, and (1−S)V (d1, d2, . . .), V (d1, d2, . . .)(1−S) ∈
A for all (d1, d2, . . .) ∈ `∞(E1, E2, . . .).

We find m1 ∈ N with ‖em1
Sem1

‖ ≥ 1− 2−2 and ‖[S, em1
]‖ < 2−2 .

by Lemma 2.2.8 ??

Let E1 the hereditary C *-algebra generated by ((em1Sem1) − 1/2)+. Then

em1+1d = d for all d ∈ E1, and ‖d− Sd‖ ≤?????.

Take ????

???? with the above listed properties such that ‖ck‖ = 1 in addition. Then

T := V (c1, c2, . . .) ∈M(A) has the desired property T − ST ∈ A.

Define contractions c1, c2, . . . ∈ A+ and nk ∈ N step-wise:
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Recall that ‖(en − em)S‖ ≥????. Take g1 := e2, i.e., k1 := 2, and find in the

hereditary C *-algebra generated by e1Se1 let c1 := e1 = e1e2 for Part (i).

Find for Part (ii) in the hereditary C *-subalgebra E1 generated by e1Se1 an

element with d2
1 = 0 and ‖d1‖ = 1 if E1 6= {0}

and ????.

Then ‖c1‖ = 1 and c1(e3 − e0) = c1.

Then ‖(1− e4)S(1− e4)‖ = 1 in B ⊂M(A) and we find nk ∈ N, nk+1 ≥ 2 +nk

with ‖(enk+1−1−enk+1)1/2S1/2‖ > 1−2−nk . It follows that in the closed right ideal

Lk generated by (enk+1−1− e1+nk)1/2S1/2A contains a positive contraction ck with

‖ckS‖ ≥ 1− 2−k1 .

The c1, c2, . . . and g1, g2, . . . have the desired properties.

(ii): The pairwise orthogonal non-zero hereditary C *-subalgebras Ek consid-

ered in the proof Part (i) contain elements ck ∈ Ek with c2k = 0, ‖ck‖ = 1.

Then T =
∑
k ck = V (c1, c2, . . .) satisfies T 2 = 0, ‖T‖ = ‖πA(T )‖ = 1 and

TS − S, ST − S ∈ A.

(iii): With the hereditary C *-subalgebras Ek considered in Parts (i,ii) we need

only to find in the hereditary C *-subalgebra F := (a− 1)+A(a− 1)+ a sequence of

elements a1, a2, . . . ∈ F+ with ‖an‖ = 1, aman = 0 for m 6= n. Then the simplicity

of A allows to find d1, d2, . . . ∈ A with d∗ndn ∈ En, dn(dn)∗ ∈ anAan and ‖dn‖ = 1.

This is possible for simple non-elementary A. �

Lemma 2.2.10. Let A a σ-unital C*-algebra and let D ⊆ Q(A) a non-zero

simple hereditary C*-subalgebra of Q(A). Then D has the following properties:

(i) D is purely infinite or is “elementary” ( 27 ).

(ii) If A is antiliminary, in the sense of Definition 2.7.2, then D is non-

elementary, i.e., D can not contain a non-zero minimal projection.

(iii) The corona Q(A) of A is purely infinite if Q(A) is simple (and non-zero).

If Q(A) is simple then, for each S ∈M(A)+ with ‖πA(S)‖ = 1, there

exists a contraction d ∈M(A) with 1− d∗Sd ∈ A.

Proof. (i): The non-zero simple C *-subalgebra D ⊆ Q(A) satisfies the con-

dition (xv) of Proposition 2.2.1 if D is non-elementary:

Let a, b ∈ D+ with ‖a‖ = ‖b‖ = 1 and ε > 0. There exist R,S ∈ M(A)+ with

πA(R) = b, πA(S) = a, ‖R‖ = 1 and ‖S‖ = 1.

By Lemma 2.2.9(i) there exists T ∈ M(A)+ with ‖T‖ = ‖πA(T )‖ = 1 and

TS − T ∈ A.

Let g := πA(T ). We get g = aga ∈ D , because g = ga = ag and D is

hereditary in M(A). Since D is simple and g ∈ D+ has norm ‖g‖ = 1 we find for

every ε > 0 a number ν ∈ N such that there exists contractions d1, . . . , dν ∈ D with

27 The simple D is “elementary”, if and only if, D contains a non-zero projection p ∈ D with

pQ(A)p = C · p . Then D ∼= K(H) for some Hilbert space H .
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‖b−
∑
d∗jg

2dj‖ < ε. Define ν(b, a, ε) as this ν ∈ N. Then ‖b−
∑ν
j=1 cja

kcj‖ < ε

with contractions cj := gdj for each k ∈ N.

Thus, D is purely infinite by Proposition 2.2.1(xv).

(ii): Let p ∈ D ⊆ Q(A) a non-zero projection. There exists a positive contrac-

tion S ∈M(A)+ with πA(S) = p.

By Lemma 2.2.9(ii) there exists T ∈ M(A) such that b := πA(T ) ∈ Q(A)

satisfies ‖b‖ = 1, b2 = 0 and pb = b = bp. Thus b ∈ pQ(A)p ⊆ D and b 6∈ C · p.

(iii): Suppose that 0 6= p is a projection in Q(A) with pQ(A)p = C ·p and that

Q(A) is simple. Then there exists d1, . . . , dn ∈ Q(A) with
∑
k d
∗
kpdk = 1. It follows

that Q(A) ∼= Mm(C) for some m ≤ n.

The following argument shows that σ-unital A is unital (i.e., Q(A) = {0}) if

every Abelian C *-subalgebra of Q(A) is finite dimensional.

If a ∈ A+ is a strictly positive contraction thenM(C∗(a))/C∗(a) ⊆ Q(A) by a

natural unital *-monomorphism.

Let X ⊆ (0, 1] denote the non-zero values in the spectrum of a in C∗(a) ∼=
C0(X). If 0 is in the closure of X, then Cb(X)/C0(X) infinite dimensional (as

vector space) because then `∞(N)/c0(N) is a quotient of it.

Thus, A is unital if Q(A) has only finite dimensional abelian C *-subalgebras

(which is equal to Q(A) finite-dimensional). �

Corollary 2.2.11. Let A a non-zero C*-algebra, and K := K(`2(N)).

(i) The stable corona Qs(A) := M(A⊗K)/(A⊗K) is simple, if and only if,

(a) A is σ-unital and simple, and

(b) A is either purely infinite or is “elementary” (i.e., A⊗K ∼= K).

If Qs(A) is simple then Qs(A) is purely infinite.

(ii) The ultrapower Aω is simple, if and only if, either A is simple and purely

infinite, or A ∼= Mn for some n ∈ N.

(iii) The hereditary C*-subalgebra of Aω generated by A ⊆ Aω is simple, if and

only if, either A is simple and purely infinite or A is isomorphic to the

compact operators K(H) on some Hilbert space H.

Remarks 2.2.12. To be re-read again and sorted !!!

(1) There is an interesting observation of the author that is related to Part (iii)

of Corollary 2.2.11, but with a technically much more involved proof (cf. [448, thm.

2.12]).

HERE check "cite" (of article and of thm.) of new version !!!

It says:

If A is separable, then the algebra F (A) := (A′ ∩ Aω)/Ann(A,Aω) is simple,

if and only if, A is nuclear (sic !) and simple and, either A is purely infinite, or

A⊗K ∼= K. The isomorphism A⊗K ∼= K is equivalent to F (A) ∼= C, because only

A = Mn or A = K are isomorphic to hereditary C*-subalgebras of K.
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Here ω ∈ β(N) \ N, is a “free” ultrafilter on N, Aω := `∞(A)/Jω is the (ω-)

ultrapower of A with

Jω := {(a1, a2, . . .) ∈ `∞(A) ; lim
n→ω
‖an‖ = 0 } ,

and Ann(A,Aω) is the two-sided annihilator of A in Aω, that is obviously an ideal

in A′ ∩Aω.

(Hint: The main reason for this result is that the elements d := πω(d1, d2, . . .) ∈
Aω with the property that there exists a bounded sequence of nuclear maps Vn : A→
A such that ω− lim ‖d∗nadn−Vn(a)‖ = 0 for all a ∈ A, build a non-zero closed right

ideal of Aω. It is a left module for A′ ∩Aω, is not contained in Ann(A,Aω) and it

contains an element in A′∩Aω that is not in the two-sided annihilator Ann(A,Aω).

Now the reader can start here/his exercise by combining this with (ii).)

No other single property of separable non-elementary C *-algebras characterizes

the pi-sun C *-algebras by only one condition!

(2) ????

Compare next ‘‘blue’’ with further below

Part(i) of Corollary 2.2.11 was proved by M. Rørdam [674, thm. 3.2] for the

special case of non-elementary unital A.

(2??) The Parts (i,ii) of Corollary 2.2.11 has been proved for unital A by M.

Rørdam ([674, thm. 3.2], [681]).

Then H. Lin [517, thm. 3.8] studied the case of non-elementary σ-unital A and

observed that A must be algebraically simple. It implies that A ⊗ K contains a

scaling element.

The latter is equivalent by [78, thm. 1.2] to the existence of a projection in

A⊗K . This proves the general result by reduction to the unital case considered in

[674, thm. 3.2] by M. Rørdam.

Notice that we use a different and more elementary idea in the proof of Part

(i).

Part (i) of Corollary 2.2.11 has also been obtained by S. Zhang [842] under the

additional pre-assumptions that A is σ-unital and has real rank zero. Then H. Lin

[517, thm. 3.8] extended the result [674, thm. 3.2] of M. Rørdam by replacing the

requirement that A is unital by the requirement that A σ-unital.

The new argument of

S. Zhang ... or was it Lin? ...

is that stable σ-unital simple A with simple M(A)/A contains a “scaling”

element in the sense of B. Blackadar and J. Cuntz [78].

They show in [78] that it allows to define a non-zero projection in A, cf. proof of

the implication (iii)⇒(ii) for Proposition 2.2.1 for a similar argument. This allows

to apply [674, thm. 3.2] also for the σ-unital case without the extra assumption

that A is unital.
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Later H. Lin proved in [526] that, if A is simple, σ-unital and non-unital then

simplicity of M(A)/A is equivalent to M(A)/A being purely infinite and simple.

But he contributed also examples of

separable ??? or non-separable?? non-stable

simple non-unital C *-algebras A with M(A)/A simple but where A is not

purely infinite (but is then at least “algebraically simple”).

It follows that a non-stable version of Part (i) of Corollary 2.2.11(i) can not

exist !

Our proofs of Propositions 2.2.1 and 2.2.5 and Corollary 2.2.11 are more gen-

eral and elementary in a sense, because Remark 2.2.6, Lemma 2.2.3 and the used

technical Lemmata A.21.3 and 2.1.22 and the passage to the non-separable case in

Proposition A.21.4 are elementary basic observations in C *-algebra theory (that

we here often apply).

Our Corollary 5.7.3 characterizes the nuclear simple unital p.i. C *-algebras

A 6= C by the property that for each separable unital C *-subalgebra C ⊆M(A⊗K)

and each unital C *-morphism

h : C → M(A⊗K) with h(C ∩ (A⊗K)) = {0}

there exists a unitary U ∈M(A⊗K) such that

c ⊕ h(c)− U∗cU ∈ A⊗K for all c ∈ C .

The proof uses Proposition 2.2.5(vi) and a Weyl–von-Neumann type theorem, that

is related to an absorption result of G. Elliott and D. Kucerovsky, cf. [264] and a

correction (of what?) observed by J. Gabe [309].

Recall that the Calkin algebra C(`2) = Q(K) = L(`2)/K is simple and purely

infinite.

Proposition 2.2.5(iii) shows that any unital simple C*-algebra A that contains

an approximately central sequence of copies of O∞ is purely infinite.

We can replace O∞ in the statement of Proposition 2.2.5(iii) by E2 :=

C∗(s, t : s∗s = t∗t = 1, s∗t = 0) or any C *-algebra with properly infinite unit

because

E2 ⊆ O∞ ⊆ E2 ⊆ On

(via suitable unital monomorphisms) for every n > 1. See Chapter 10 on related

topics.

(3??) F (L(`2)/K(`2)) ∼= C. Mention here also the result of Farah and

Phillips on F
(
L(`2(N))

)
. It is simple if and only if one uses Axiom of Choice?

Proof of Corollary 2.2.11. (i): Let Qs(A) := M(A ⊗ K)/(A ⊗ K), and

a ∈ A+ with ‖a‖ = 1.

If the unital C *-algebra Qs(A) is simple then there exist c1, . . . , cn ∈M(A⊗K)

with c∗1(a⊗1)c1 + . . .+c∗n(a⊗1)cn = 1+d for some d ∈ A⊗K, – here 1 ∈M(K) ∼=
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L(`2(N)), by using that M(A) ⊗M(K) is naturally contained in M(A ⊗ K) and

identifying M(K) with 1M(A) ⊗M(K) naturally. We find a projection pn ∈ K
with ‖(1 ⊗ pn)d(1 ⊗ pn) − d‖ < 1/2 . Thus, there is an isometry s ∈ M(K) with

‖(1 ⊗ s)∗d(1 ⊗ s)‖ < 1/2 . If we let gk := ck(1 ⊗ s), then the positive element

T := g∗1(a ⊗ 1)g1 + . . . + g∗n(a ⊗ 1)gn satisfies ‖1 − T‖ < 1/2 in M(A ⊗ K),

and the elements e1, . . . , en ∈ M(A ⊗ K) given by ek := gkT
−1/2 satisfy with∑

k e
∗
k(a⊗ 1)ek = 1 .

It implies that fn :=
∑
k e
∗
k(a⊗pn)ek ∈ A⊗K is a countable approximate unit

of A⊗K if pn is an approximate unit of K (consisting of projections). In particular,

each non-zero element a ∈ A+ is not contained in a non-trivial ideal of A. It proves

that A is σ-unital and simple if Qs(A) is simple.

In case where A is the algebra of compact operators on a Hilbert space H, it

implies that H must be separable. Hence A ⊗ K ∼= K, if A is isomorphic to the

compact operators on a Hilbert space, i.e., A ∼= Mn or A ∼= K(`2(N)).

It remains to consider the case where A is not isomorphic to the compact

operators on a Hilbert space.

We show that the non-elementary simple stable σ-unital C *-algebra B := A⊗K
satisfies in this case the criteria in Part (vx) of Proposition 2.2.1 for the pure

infiniteness of B (thus also of A) if A is non-elementary:

Let a, b ∈ B+ with ‖a‖ = ‖b‖ = 1 and ε ∈ (0, 1/2), and define e := (a−(1−ε))+

and c := a− e.

Since B is again non-elementary, the non-zero hereditary C *-subalgebra

D := eBe of B contains a sequence of mutually orthogonal positive contractions

f1, f2, . . . ∈ D+ with ‖fn‖ = 1. Notice that dc = cd = (1 − ε)d for all d ∈ D.

Let s1, s2, . . . ∈ M(K) ⊂ M(B) a sequence of isometries with the property that∑
n sns

∗
n converges strictly to 1M(K) = 1M(B). Then

∑
k snf

2
ns
∗
n converges strictly

to an element S ∈M(B) with norms ‖S‖ = ‖πB(S)‖ = 1.

By Lemma 2.2.10(i) the simplicity ofM(B)/B implies thatM(B)/B is purely

infinite. Thus, there exists a contraction Z ∈ M(B) with 1− Z∗SZ ∈ B by using

Parts (ii) or(vi) of Proposition 2.2.1.

It follows that there exist m ∈ N with ‖1 − s∗mZ
∗SZsm‖ < 1/2 and 1 −

s∗mZ
∗SZsm ∈ B. It implies there exists G ∈ M(B) with G∗SG = 1 . Then

b = y∗Sy with y := Gb1/2 ∈ B. The strict convergence of
∑
k snf

2
ns
∗
n to S implies

that

b = lim
p

p∑
n=1

y∗snf
2
ns
∗
ny

in the norm of B. It means that b is the limit of the increasing sequence

x∗1x1, x
∗
2x2, . . . in B, where xp :=

∑p
n=1 fns

∗
ny ∈ B, and where we use that

fnfm = 0 for m 6= n. (The sequence x1, x2, . . . itself is not necessarily convergent

in B.)
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Now we use that fn ∈ D and get that cxp = (1−ε)xp, x∗pcxp = (1−ε)x∗pxp and

c ≤ a ≤ 1. Thus, (1− ε)x∗pxp ≤ x∗paxp ≤ x∗pxp, and ‖b− x∗paxp‖ ≤ ‖b− x∗pxp‖+ ε.

Since b = limp x
∗
pxp, we get that limp ‖xp‖ = ‖b‖1/2. Thus, B is simple and is

purely infinite if B is not elementary.

(ii,iii): If J is a non-zero closed ideal of A, then Jω is a non-zero closed ideal

of Aω that has non-trivial intersection with the hereditary C *-subalgebra D :=

D(A) := A ·Aω ·A of Aω generated by A. Thus J = A and A is simple if D is

simple.

If A = Mn, then Aω = Mn .

If A ∼= K(H) and if the Hilbert space H has infinite dimension, then D(A) is a

hereditary C *-subalgebra of the closed ideal of Aω that is generated by a rank-one

projection in A ∼= K(H) (in fact the closed ideal of Aω generated by A = K(H)

is naturally isomorphic to the compact operators K(Hω) on Hω). But the whole

ultrapower K(H)ω of the compact operators K(H) on H (with Dim(H) = ∞) is

not simple, because K(Hω) 6= K(H)ω . The latter can be seen directly or by the

fact that K(H)ω contains the CAR-algebra as a subalgebra (and, therefore, is not

of type I).

If A is not isomorphic to the compact operators on a Hilbert space, and if

D(A) = A(Aω)A is simple, then A must satisfy the criteria in Proposition 2.2.5(iv):

The element that is represented by the constant sequence (b, b, . . .) ∈ A is in the

closed ideal generated by the element with representing sequence (a3, a4, a5, . . .) ∈
A(Aω)A ⊆ Aω if a ∈ A+, ‖a‖ = 1 and there is c ∈ A+ with c a = a , ‖c‖ ≤ 1,

compare Remark 2.2.6.

Conversely, if A is simple and purely infinite, then Proposition 2.2.1(ii) implies

that for positive contractions a, b ∈ Aω with ‖a‖ = ‖b‖ = 1 there is a contraction

d ∈ Aω with d∗ad = b. This can be seen with help of representing sequences

a = πω(a1, a2, . . .), b = πω(b1, b2, . . .) and d = πω(d1, d2, . . .), because one can find

the representing sequences such that ‖an‖ = ‖bn‖ = 1 for n = 1, 2, . . .. �

3. Proof of the Dichotomy Theorem E for simple C*-algebras

The proof of the in the Introduction 1 stated Theorem E uses some elementary

observations, and from our general study of p.i. algebras only that for simple C *-

algebras pure infiniteness and local pure infiniteness are the same.

Among the needed observations is that, for every n ∈ N, every non-elementary

simple C*-algebra A and every non-zero hereditary C*-subalgebra D of A, there

exists a non-zero n-homogenous element a ∈ D+, cf. Remark 2.1.16.

We call a simple C *-algebra A non-elementary if A is simple (and non-zero)

and is not isomorphic to the algebra of compact operators on some Hilbert space

(of finite or infinite dimension). An element a ∈ D+ ⊆ A is n-homogenous if

there exists an isomorphism λ : C∗(a)⊗Mn → D with λ(a⊗ 1n) = a.

Notice that then aDa ∼= D0 ⊗Mn for the closure D0 of λ(a⊗ e11)Dλ(a⊗ e11).
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The following remark will be used in the proof of Theorem E. It is stated here

more general than needed in the proof of Theorem E, because the more general

statement will be used in Chapters 4, 5 and 7.

Remark 2.3.1. Let A ⊆ E C *-algebras, x ∈ A and v ∈ E with ‖v‖ ≤ 1,

xv∗ = (xx∗)1/2 and v∗x = (x∗x)1/2.

If D1, D2 ⊆ A denote the hereditary C*-subalgebras of A that are generated by

x∗x respectively by xx∗, then ϕ(a) := vav∗ defines an isomorphism ϕ from D1 onto

D2.

For example, if we let E := A∗∗ then such an element v ∈ A∗∗ is given by the

partial isometry v arising in the polar decomposition x = v(x∗x)1/2 of x in A∗∗.

Details for Remark 2.3.1. The mappings v(·)v∗ and v∗(·)v are completely

positive contractions on E, and map D1 into D2 respectively D2 into D1. Indeed:

vD1v
∗ = v(x∗Ax)v∗ ⊆ vx∗Axv∗ = (xx∗)1/2A(xx∗)1/2 = D2,

v∗D2v = v∗(xAx∗)v ⊆ v∗xAx∗v = (x∗x)1/2A(x∗x)1/2 = D1.

The equations xv∗vx∗ = xx∗ and x∗vv∗x = x∗x imply, that ϕ(ab) = ϕ(a)ϕ(b), for

a, b ∈ x∗Ax, and that xv∗v = x, vv∗x = x, i.e., that ϕ and v∗(.)v|D2 are inverse

to each other. �

Proof of Theorem E.. (i): By a result of M. Takesaki [767, cor. IV.4.21],

A⊗B is simple if A and B are simple, because the C *-tensor product ⊗ := ⊗min is

the completion of the algebraic tensor product A�B with respect to the minimal

C *-seminorm N(·) on A�B with the property that N(a⊗ b) 6= 0 for all non-zero

a ∈ A+ and b ∈ B+, [767, thm. IV.4.19]. It turns out that this norm is the same as

the “spatial” tensor product norm on A�B ⊆ L(H1 ⊗2 H2) given by any faithful

representations A ⊆ L(H1) and B ⊆ L(H2), cf. [767, lem. IV.4.11].

It suffices to consider the case where A is not stably finite, because for all

C *-algebras A and B holds A⊗B ∼= B ⊗A .

If A is not stably finite then for every non-zero hereditary C *-subalgebra F

of A there is a positive integer n = n(F ) such that Mn(F ) contains an infinite

projection p ∈ Mn(F ). It follows that p(Mn(F ))p contains an isomorphic copy

of the Toeplitz algebra C∗(s ; s∗s = 1) and, therefore, Mn(F ) contains a copy of

algebra of compact operators K ⊂ C∗(s ; s∗s = 1), cf. [172].

Now let D ⊆ A ⊗ B be a non-zero hereditary C *-subalgebra of A ⊗ B . By

Lemma 2.2.3 and Remark 2.3.1, there exist non-zero hereditary C *-subalgebras

E ⊆ D, F ⊆ A and G ⊆ B such that E ∼= (F ⊗ G). Here F , G and E denote

the hereditary C *-subalgebras that are generated by the elements e, f and zz∗

of Lemma 2.2.3, and the natural isomorphism is given by the partial isometry v

in the second conjugate of A ⊗ B which appears in the polar decomposition of z,

cf. Remark 2.3.1.

We show that F ⊗G contains a non-zero stable C *-subalgebra :
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The algebra F ⊗Mn
∼= Mn(F ), for the number n := n(F ) as above defined,

contains a hereditary C *-subalgebra D1 that is stable and non-zero.

By assumption, the algebra B is non-elementary, i.e., B is simple and is not

isomorphic to the compact operators on some Hilbert space. Hence, B is necessarily

antiliminary, i.e., every non-zero hereditary C *-subalgebra G of B has no finite-

dimensional irreducible representations. This applies to our above defined G:

By Remark 2.1.16, the non-zero hereditary C *-subalgebra G of B contains

a non-zero hereditary C *-subalgebra G1 which is isomorphic to Mn ⊗ G2 for a

suitable non-zero hereditary C *-subalgebra G2 of G1.

We get that

D1 ⊗G2 ⊆ F ⊗Mn ⊗G2
∼= F ⊗G1 ⊆ F ⊗G ∼= E ⊆ D ,

and the C *-algebra D1 ⊗ G2 is non-zero and stable. Thus, the given non-zero

hereditary C *-subalgebra D ⊇ E contains a non-zero stable C *-subalgebra.

In conclusion, every non-zero hereditary C *-subalgebra D ⊆ A⊗B contains a

non-zero stable C *-subalgebra. By Proposition 2.2.1(iii), this is equivalent to the

pure infiniteness of the simple C *-algebra A⊗B .

(ii): The algebras A and B are simple and nuclear, because A⊗B is simple and

nuclear by assumption in Part (i): E.g. A is nuclear, because θ ◦ idA⊗B ◦η = idA,

for the completely positive maps

η : A 3 a 7→ a⊗ b ∈ A⊗B and θ := (idA⊗ψ) : A⊗B → A

for some b ∈ B+ with ‖b‖ = 1 and a state ψ with ψ(b) = 1, and idA⊗B is nuclear.

The simplicity of A ⊗min B implies that A and B must be simple, because the

minimal tensor product is a bi-functor with respect to A and B.

Suppose that A⊗B is not purely infinite. Then A and B are both stably finite

by Part (i). By [342] (see [441] for the non-unital case) there are non-zero lower

semi-continuous semi-finite traces on A+ and B+. Thus, there is a non-zero lower

semi-continuous trace on (A ⊗ B)+, which contradicts T+(A ⊗ B) = 0 (for the

simple stably infinite A⊗B). �

4. On absence of infinitesimal sequences

The – not so deep – results of this section are mostly known to experts (since

about 1970?) and have been considered as “folklore”, but we could not find always

elementary and precise references for them.

Check here, and sort, definitions and blue discussions on

Cuntz semi-groups! e.g. ‘‘-’’ and ‘‘≈’’ given in Def. 2.5.1.

Go into opposite direction to restrict to minimal necessary pre-info

...

Move then all further details to an overview section,

e.g. to a Section 5 in Appendix A,
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or to places where they will used first time.

Check again the def.’s for CS(A).

The here considered “small” Cuntz semigroup CS(A) has not been used ever

before, despite it reflects the original version of the semigroups introduced and

considered in [170, 171] by J. Cuntz, but here we generalize it to the cases of non-

simple and non-unital C *-algebras. The different generalization of the definition of

J. Cuntz require some explanations at the beginning, because we use here the – not

so common – “smallest possible” variant of the original definition of J. Cuntz. It is

the “small Cuntz semi-group” CS(A) – near to the original definition of J. Cuntz,

??? even if in that time there was not the Pedersen ideal invented ???:

We explain it with help of the Pedersen ideal Ped(B) of a C *-algebra B: It

is the smallest dense ideal of a C *-algebra B. It is algebraical generated by the set

of all ε-cut-downs (b− ε)+ of elements b ∈ B+ with ε ∈ (0, ‖b‖).

Check next blue again!

It considers only classes of elements in the Ped(A ⊗ K) of A ⊗ K, i.e., the

minimal dense ideal of A ⊗ K. If we identify Mn(A) in the natural way with

(1⊗ pn)(A⊗K)(1⊗ pn) then Ped(A⊗K) is in general not contained in
⋃
nMn(A)

and Mn(A) 6= Mn(Ped(A)),⋃
n

Mn(A) 6⊃ Ped(A⊗K) ⊂ A⊗K .

On the other hand
⋃
nMn(Ped(A)) is contained in Ped(A ⊗ K) and contains all

representatives, but is not identical to Ped(A⊗K)...

For each element a ∈ Ped(A⊗K) there exists some element b ∈
⋃
nMn(Ped(A))

with the property that b∗b is MvN-equivalent to a∗a, i.e., b∗b ∼MvN a∗a .

There are natural semigroup morphisms

V(A)→ CS(A)→W(A)→ Cu(A) . (4.1)

They are given by the map that respects the ≈-relation between elements, cf. Def-

inition 2.4.1, for the below defined or “recalled” semigroups V(A), CS(A), W(A)

and Cu(A).

Here V(A) denote the Murray–von-Neumann equivalence (∼MvN ) classes of

projections in A ⊗ K, cf. Definition 2.0.1, that is in general considerably stronger

relation than the (≈ ) relation.

Beginning with CS(A), the natural morphisms of pre-ordered semigroups in

(4.1) are injective, but the natural semi-group morphism V(A) → CS(A) is in

general not necessarily injective, e.g. . CS(O2) = CS(O∞) = {[0], [1]} but ??????

E.g. V(O2) = {[0], [1]} and V(O∞)\{[0]} is naturally isomorphic to Z, CS(A) =

W(A) = Cu(A) = {[0], [1]} for all purely infinite simple unital C *-algebras A.

In particular their equivalence classes have nothing to do with with its K∗-

theory!
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More generally, for all simple purely infinite C *-algebras A holds CS(A) =

{[0], [p]} = Cu(A), with any non-zero projection p ∈ A ⊗ K, i.e., for each a, b ∈
(A⊗K) \ {0} there exist c, d, e, f ∈ A with cad = b and ebf = a.

If non-zero A is simple and stably projection-less then V(A) = {0} , but

CS(A) 6= {0} .

But one can adjoin a unit to A and then consider the kernel of a+ z · 1→ z · 1
...

Next ‘‘filtration’’ has to be explained -- if true

There are natural filtrations (indexed by sub-semigroups of R+ ∪ {+∞}) and

certain order topologies that allow to see that the right ones are completions of the

left ones (except V(A), where this happens only in the case where A has real rank

zero).

This does not say that the set of elements a ∈ Xb ⊆ A ⊗ K that represent

the class of b ∈
⋃
nMn(A) in A⊗K with respect to the below defined equivalence

relation a ≈ b (given by a - b and b - a in A ⊗ K ) is the same as the class of

c ∈
⋃
nMn(A) with c ≈ a

?????

This causes that it is in general not clear under what circumstances c ∈ A⊗K
and c - a ∈Mn(A) implies that c ≈ b for some b ∈

⋃
nMn(A) ( 28 ).

The point is that a ≈ b in A ⊗ K and a, b ∈ Mn(A)+ (respectively a, b ∈
Ped(A⊗K)+) implies that a ≈ b also insideMn(A) (respectively inside Ped(A⊗K) ).

The “≈” classes become in A ⊗ K much bigger. For example, in case A :=

C0(0, 1], we can take the increasing pice-wise linear functions hn ∈ C0(0, 1]+ given

by hn(t) := min(1,max(2nt− 1, 0)) for t ∈ [0, 1], (n = 0, 1, . . .). (We use them for

some constructions, see Section 22 in Appendix A.)

If we define fn(t) :=
(

2−n(hn+1(t)− hn(t))
)1/2

and let T :=
∑∞
n=1 fn ⊗ p1,n ,

then T ∈ C0(0, 1] ⊗ K and TT ∗ = (
∑
f2
n) ⊗ p11 = e0 ⊗ p11 for e0(t) := t, but

T ∗T 6∈
⋃
nMn(A).

It is not clear if in general the natural image of W(A) in Cu(A), i.e., the image

of the map that sends classes in W(A) into the corresponding – usually much

bigger classes (of ≈-equivalent elements in A ⊗ K) which are elements of Cu(A)

is a hereditary sub-semigroup in Cu(A) with respect the natural order in Abelian

semi-groups. (It has to do with variants of the so-called “radius of comparison”.)

I.e. it is unknown if W(A) “is” a “hereditary” sub-semigroup of Cu(A), i.e., it

is not known if c ∈ A ⊗ K and c - a for some a ∈ Mm(A) and m ∈ N implies the

existence of some n ∈ N and b ∈Mn(A) such that c ≈ b. See [85] for an additional

property on A (that is inspired by the “bounded radius of comparison” for vector

bundles) which implies that W(A) is “hereditary” in Cu(A).

28 It has to do with the classical idea of a “radius of comparison” for vector bundles on

compact manifolds.
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It is not difficult to see that for each element a ∈ Ped(A ⊗ K)+ there exists

n ∈ N and b ∈ (Ped(A) ⊗Mn)+ such that a ∼MvN b. But there are elements in

a ∈ Ped(A⊗K)+ that are not itself contained in the algebraic tensor product A�F ,

where here F ⊂ K means here the *-algebra of finite rank operators on `2(N).

It shows that CS(A) is isomorphic to a --hereditary sub-semigroup both of

W(A) and of Cu(A), that W(A) is in a natural manner a sub-semigroup of Cu(A)

and that CS(A) and Cu(A) are stable invariants of C *-algebras A, i.e., there are

natural isomorphisms CS(A) ∼= CS(A⊗K) and Cu(A) ∼= Cu(A⊗K). Moreover, it

is not difficult to check that W(A ⊗ K) = Cu(A) in a natural way (using the flip

on K⊗K).

This natural isomorphisms are induced by the embedding T ∈ K 7→ T ⊗ p11 ∈
K ⊗ K that extends to a *-monomorphism of A ⊗ K onto the full stable corner

A ⊗ K) ⊗ p11 of A ⊗ K ⊗ K. The *-endomorphism is unitarily homotopic to an

isomorphism from A ⊗ K onto A ⊗ K ⊗ K, because the *-monomorphism T ∈
K 7→ T ⊗ p11 ∈ K ⊗ K is unitarily homotopic in sense of Definition 5.0.1 to an

isomorphism from K onto K ⊗ K by a norm-continuous path t ∈ [0,∞) → U(t) of

unitary elements in M(K ⊗ K). (See the comments following Definition 5.0.1 for

more details.)

?? Verification discussion?:

Take an isometry S from `2(N × N) onto `2(N), that is defined by a suitable

bijection from N×N onto N×N. It defines an isomorphism from K onto K⊗K by

a 7→ S∗aS. Let p11 the upper-left minimal projection in K. There is an isometry R

from `2 onto `2⊗e1 given by R(x) = x⊗e1. It defines the map a→ RaR∗ = a⊗p11.

Then a→ SRaR∗S∗ = TaT ∗ is a C *-morphism from K into K given by an isometry

T ∈ M(K) = L(`2). If we find a norm-continuous path t 7→ U(t) in the unitaries

of M(K) with U(t)∗TaT ∗U(t)→ a for all a ∈ K then

S∗aS = lim
t→∞

(S∗U(t)S)(a⊗ p11)(S∗U(t)S)∗ .

Consider projections in K with q1 ≤ q2 ≤ · · · and limn ‖qnaqn−a‖ = 0 for all a ∈ K
and then find t 7→ U(t) norm-continuous with U(t)∗TqnT

∗U(t) = qn for t ≥ n = 1.

Compare next with comments below Def. 5.0.1

The latter holds because M(K ⊗ K) ∼= L(`2), U(L(`2)) = U0(L(`2)) and all

isometries s ∈ L(`2) with Dim((1− ss∗)`2) =∞

Are (???) unitary equivalent. Perhaps only in case that
⋃
n(1 − sn(sn)∗)`2 is

dense in `2???

Needs to study the unitary part of s for the unitary equivalence? Does the

standard part for Wold decomposition U ⊕ (T ⊗ idH3) – up to unitary equivalence

of H with H1 ⊕ (`2 ⊗H3), where T ∈ L(`2) is the Toeplitz shift (unilateral shift)

and U is a unitary on H1 – always “absorb” the unitary part?

Or try to show that there is a unitary V from `2(N) ⊗ `2(N) onto `2(N) such

that V ◦ (1⊗ S) = s ◦ V ?
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Give Ref for precise unitary equivalence!!!

But there exists also something explicit ?????

Alternatively, one can take the isometry R := 1 ⊗ s ∈ M(A ⊗ K ⊗ K) with

RR∗ = 1⊗p11 . It gives RbR∗ ∼MvN b (in A⊗K⊗K itself) and RbR∗ = h(b)⊗p11

for well-defined h(b) ∈ A ⊗ K for all b ∈ (A ⊗ K ⊗ K) . Then check that h is an

isomorphism from A⊗K⊗K onto A⊗K and that h(·)⊗ p11 is unitary homotopic

to id on A⊗K⊗K.

This monomorphism defines isomorphisms from CS(A) onto CS(A ⊗ K) and

from Cu(A) onto Cu(A⊗K), because each positive element of Ped(A⊗K) is Murray–

von-Neumann equivalent (∼MvN equivalent) to an element of
⋃
nMn(Ped(A)) by

Pedersen’s characterization of sets of generators of the minimal dense ideal Ped(B)

of a C *-algebra B, as the ε-cut-down’s (a − ε)+ for a ∈ G in any – fixed given –

subset G ⊆ B+ that generates a dense two-sided ideal of B.

The semigroup V(A) consists of the Murray–von-Neumann equivalence classes

of projections in A ⊗ K (It is zero if A is stably projection less). Projections are

always in the Pedersen ideal Ped(A ⊗ K) of A ⊗ K and p - q implies that there

exists a partial isometry v ∈ A⊗K with v∗v = p and vv∗ ≤ q. Thus, v∗qv = p.

The map from V(A) to CS(A ⊗ K) is the natural one and is not necessarily

injective, because properly infinite full projections in A ⊗ K (if exist) are all ≈-

equivalent but need not to be ∼MvN equivalent in A⊗K :

The existence of partial isometries v, w ∈ A⊗K with v∗v = p, vv∗ ≤ q, w∗w = q

and ww∗ ≤ p does not imply that p and q are MvN-equivalent. The existence of

such v, w is equivalent to the existence of projections p1 ≤ q1 ≤ p with q1 ∼MvN q

and p1 ∼MvN p. The latter does not imply q ∼MvN p because p might be an

infinite projection (e.g. p1 6= p).

The equation CS(A) = CS(A⊗K) can be seen as follows:

Notice that Ped(A⊗K) is the same as the algebraic ideal of A⊗K generated by

Ped(A)⊗ p11. Here Ped(A) denotes the Pedersen ideal of A. If a, b ∈ Ped(A)⊗Mn

with a - b in A ⊗ K are given, then a - b in Ped(A) ⊗Mn, i.e., if a = limn d
∗
nbcn

for suitable sequences cn, dn ∈ M(A ⊗ K). We can replace the cn and dn by

en := (b − 1/n)
1/n
+ cn(a − 1/n)

1/n
+ and fn := (b − 1/n)

1/n
+ dn(a − 1/n)

1/n
+ . Then

en, fn ∈ Ped(A⊗Mn) = Ped(A)⊗Mn and a = limn f
∗
nben.

The ideal Ped(A) is algebraically generated by the ε-cut-downs (a − ε)+ of

positive contractions a ∈ A+, and the ideal Ped(A) ⊗ p11 of A ⊗ p11 generates

(algebraically) a minimal dense ideal ideal of A⊗K – as one can see from Lemma

2.1.9. This implies that for each element b in the Pedersen ideal Ped(A ⊗ K)

of A ⊗ K there exists n = n(b) ∈ N, contractions e1, f1, . . . , en, fn ∈ A+ and

d1, d2 ∈ A ⊗ K with fkek = ek for k = 1, . . . , n, b∗b = d∗1 diag(e1, . . . , en)d2. It

follows that b ≈ b∗b ∼WvN cc∗ with 2cc∗ diag((f1 − 1/2)+, . . . , (fn − 1/2)+) = cc∗

for suitable c ∈ A ⊗ K. Thus, cc∗ ∈ Ped(A ⊗ Mn) = Mn(Ped(A)), and each

b ∈ Ped(A⊗K) is ≈-equivalent to some element in
⋃
nMn(Ped(A)) ⊆ Ped(A⊗K) .
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(But notice here that Ped(A⊗K) 6=
⋃
n Ped(A)⊗Mn in general, if the Mn are

considered here as PnKPn with Pn of rank = n, and Pn ≤ Pn+1 and
⋃
n PnKPn

dense in K, e.g. this happens even for A := C or A := C0(0, 1] .)

We use here the (in literature not common) small “local” hereditary sub-

semigroup CS(A) of the “larger” Cuntz-semigroups W(A) ⊆ Cu(A). for an “in-

finitesimal” characterization of simple p.i. C *-algebras. Therefore we discuss the

differences and different applications before we return to the study of p.i. simple

C *-algebras. The definition of J. Cuntz in [171] itself did not care about the pos-

sibly different definitions of the related semi-group, and that they have different

properties – even for simple ASH C *-algebras or Cuntz-Pimsner algebras.

The below displayed elements and semigroups show that ????? what ???

Z+
∼= V(C) = CS(C) = W(C) = CS(A) 6= W(A) if A = K because then

W(K) = Cu(K) ∼= Z+ ∪ {+∞} . The isomorphism Cu(K) → Z+ ∪ {+∞} is given

by [a] 7→ Rk(a) the rank of a.

Moreover W(A) 6= Cu(A) if A is unital and stably finite.

There exists a C *-algebra A with CS(A) 6= W(A)

Really? A = c0 ?, Cite ???

Above examples correct? Below considerations?

The “small” Cuntz algebras CS(A) have in particular the following extra prop-

erty:

The C *-algebra A is simple if and only if for each non-zero a, b ∈ Ped(A) there

exists m,n ∈ N with [a] ≤ m[b] and [b] ≤ n[a] in CS(A).

This is not the case for the semigroup W(A).

Example of simple A and elements a ∈ Mm(A) and b ∈ Mn(A) with the

property that [b] 6≤ k[a] for all k ∈ N : A = K, b := diag(1, 1/2, 1/3, . . .) a :=

diag(1, 0, 0, . . .).

Compare Definition 2.5.1 !!

Definition 2.4.1. Let B denote a non-zero (not necessarily simple) C *-algebra

and let b, c ∈ B. We write b - c if there exist sequences dn, en ∈ B such that

b = limn dn c en .

We say that b and c are Cuntz equivalent if b - c and c - b and denote this

by b ≈ c.

It is easy to see that a - b, and b - c implies a - c, and that the relation b ≈ c
is an equivalence relation on B. It will be also denoted sometimes by b ∼ c. The

corresponding equivalence classes, say of b ∈ B will be denoted by [b]. Thus b ≈ c

or [b] = [c] are equivalent to b - c and c - b.

In some special (notational) situation b ≈ c will be also denoted by b ∼ c or by

[b] = [c]. We write later also [b] ≤ [c] for b - c.

Decide here for ≈ or ∼ !!! ?? ??
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Then ≈ becomes an equivalence relation on B. The ≈-class of b ∈ B will be

denoted by [b] (and sometimes more precisely by [b]B).

It is easy to see that - is a transitive relation on B × B with b - b and 0 - b

for all b ∈ B. And it is not difficult to see that b - b∗b - b, and b - c for 0 ≤ b ≤ c.

There is an in some cases different equivalence relation [a] = [b] that considers

the isomorphism classes of the right Hilbert B-modules aB and bB.

Find reference for above and next red!?

The source is a bit semi-philosophic ... (Elliott and Co.)

I.e., if there exists a linear isometry T from the closed right ideal Ra := aB

generated by a onto Rb := bB that satisfies with (Tx)c = T (xc) for all c ∈ B??

Gives that T (aa∗)1/m = limn bxm,n ????? Not really understood!!!

(??? What happens with ”open” support projections P and Q in B∗∗ of aa∗

and bb∗. What gets lost in the exact or amenable case?

Seems to be that T is given by a partial isometry in B∗∗ with T = QTP and

We can here always suppose that the sequences (dn) and (en) satisfy dn ∈
(bb∗ − 1/n)

1/n
+ · B · (cc∗ − 1/n)

1/n
+ and en ∈ (c∗c − 1/n)

1/n
+ · B · (b∗b − 1/n)

1/n
+ . It

does not change the definition of “ - ” in Definition 2.4.1.

Sometimes we write more precisely b -B c (or later [b]B ≤ [c]B for its equiv-

alence classes) if b, c ∈ A ⊆ B ⊆ D, a - b in B but not b - c in A. Clearly

[b]D ≤ [c]D if [b]B ≤ [c]B and B ⊆ D.

The definition of ≈ implies that b - c, d ≈ b and c ≈ e imply d - e. Therefore

we can define on the classes [b] and [c] a pre-order [b] ≤ [c] if b - c. (29)

The MvN-equivalence b ∼MvN c of elements b, c ∈ B+ – defined by the exis-

tence of d ∈ B with d∗d = b and dd∗ = c – implies that b ≈ c, i.e., [b] = [c]. It is

also easy to see that a, b ∈ B+ and a ≤ b imply that [0] ≤ [a] ≤ [b].

If M(B) is properly infinite – as it is e.g. the case for B := A ⊗ K –, then we

can define on the ≈-classes [b] a commutative and associative addition by [b]+[c] :=

[sbs∗ + tct∗], where s, t ∈ M(B) are isometries with orthogonal ranges: s∗s = 1,

t∗t = 1 and s∗t = 0. It is easy to see that it is well-defined on the family of ≈-classes

[b] and that it is independent from the chosen isometries s and t (with s∗t = 0). See

Lemma 4.2.6 and its proof for the transformation of those generalized Cuntz-sums.

It studies the invariance for unitary equivalence classes if ss∗ + tt∗ = 1 or in

case that 1− ss∗+ tt∗ is full and infinite. But that can be carried over to ≈-classes

in case where 1− ss∗ + tt∗ is full and infinite e.g. by passage to st, t ...

Need Remark (!) to Lemma 4.2.6, that explains that in the sufficiently de-

generated case this shows also the ≈-invariance, a1 ≈ a2, b1 ≈ b2 implies that

a1 ⊕s,t b1 ≈ a1 ⊕q,r b1 if s, t, q, r ∈M(A) are isometries with s∗t = 0 and q∗r = 0.

29The classes will be sometimes also denoted by [b], 〈b〉 or [b]≈, simply because for the later

used several equivalence classes similar notations have to be used.
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We define now a large (or maximal) version of the Cuntz semigroup that con-

tains the usual used semigroup W (A) and our very small version

Definition 2.4.2. We define here a large Cuntz-semigroup Cu(A) by tak-

ing above B := A⊗K, i.e.,

Cu(A) := {[a]≈ ; a ∈ A⊗K}

consisting of the ≈-classes [a] with a ∈ A⊗K and with addition defined by

[a] + [b] := [a⊕ b]

the direct sum of representatives of the classes: [a] + [b] := [a ⊕s,t b] with help of

any unital copy of E2 = C∗(s, t) in M(A⊗K) .

We define W(A) as the sub-semigroup of Cu(A) given by the classes [a] ∈ Cu(A)

with a ≈ b for some b ∈
⋃
nMn(A) ⊆ A⊗K.

The usual definition of W (A), e.g. in ?????? is given on the disjoint union of

the sets Mn(A) and use of “canonical” unital C *-morphisms from Mm ⊕Mn into

Mm+n. This definitions of W(A) are equivalent on ≈-classes, because the cartesian

sum

Mm(A)⊕Mn(A)→Mm+n(A)

defined by

(b1, b2) 7→ b1 ⊕ b2 ∈Mm+n(A) ⊆ A⊗K for b1 ∈Mm(A) , b2 ∈Mn(A) ,

– using the natural C *-morphisms Mn(A) ∼= A ⊗Mn and Mm ⊕Mn → Mm+n –,

is unitary equivalent to the map

(b1, b2) 7→ b1 ⊕s,t b2 ∈ sMm(A)s∗ + tMn(A)t∗ ,

by a suitable unitaries Un,m ∈M(A⊗K).

But notice here that b1 ⊕s,t b2 is not necessarily in
⋃
nMn(A) – interpreted as⋃

nA ⊗Mn ⊂ A ⊗ K anymore. But there exists for given m.n ∈ N isomorphisms

of A ⊗ K that are approximately inner inside M(A ⊗ K) and define a “natural”

isomorphism from sMm(A)s∗ + tMn(A)t∗ ⊂ A⊗K onto (A⊗Mm)⊕ (A⊗Mn) ⊆
A⊗Mm+n ⊂ A⊗K.

The “large” semi-group Cu(A) is often not useful for our application, because it

contains in the case of σ-unital A always an additively absorbing “infinite” idempo-

tent [e], e.g. let f ∈ A+ a strictly positive contraction and define a strictly positive

contraction e ∈ A ⊗ K by e :=
∑
n n
−1/4f1/n ⊗ pn,n. Then [b] ≤ [b] + [e] = [e]

in Cu(A) for all b ∈ A ⊗ K . In particular, the Grothendieck group Gr(Cu(A)) is

zero for each σ-unital C *-algebra A . The reasons for [b] + [e] = [e] are that for

all C *-algebras B with strictly positive element e ∈ B holds b - e for all b ∈ B,

e⊕s,t e is again strictly positive in A⊗K, e ≈ 0⊕ e - b⊕ e, b - e and e⊕ e ≈ e.

Definition 2.4.3. We define the local Cuntz semigroup as the sub-

semigroup CS(A) of Cu(A) given by

CS(A) := {[a] ∈ Cu(A) ; a ∈
⋃
n

Mn(Ped(A)) } .
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Notice here that for the Pedersen ideals always holds
⋃
nMn(Ped(A)) ⊆

Ped(A ⊗ K), but also that for each positive element b in the Pedersen ideal

Ped(A⊗K) of A⊗K there exists n ∈ N and a positive element c ∈Mn(Ped(A))+

that is Murray–von Neumann equivalent to b. Therefore CS(A) and Cu(A) are

both invariants of the Morita equivalence classes of σ-unital C *-algebras A.

The most common sub-semigroup of the “large” Cuntz semigroup Cu(A) is its

sub-semigroup W(A) consisting of the ≈-classes of elements in
⋃
nMn(A) ⊆ A⊗K.

It does not matter if we consider in the definition
⋃
nMn(A) as “disjoint” union

of the sets Mn(A), or if we consider Mn(A) in a natural way as Mn(A) ⊕ 0p ⊂
Mn+p(A) ⊂ M(A ⊗ K) and “identify” Cuntz-equivalent elements, because (it is

easy to see that) inside A⊗K holds

SaS∗ + TbT ∗ ≈ a⊕ b ≈ diag(a, b)

for a ∈Mn(A), b ∈Mp(A) and any isometries S, T ∈M(A⊗K) with S∗T = 0.

Further notice that W(A) = CS(A) = CS(A ⊗ K) if A is unital, but that

W(A⊗K) = Cu(A) is not isomorphic to W(A) if A is stably finite.

An alternative way – inspired by [171] – to define W(A) and our version CS(A)

is the following (that is near to the original definition of J. Cuntz in [171]):

Take a unital copy of O2 given by isometries s, t ∈ M(K) with ss∗ + tt∗ = 1.

Define a copy of O2 in M(A ⊗ K) by S, T ∈ M(A) ⊗ M(K) ⊆ M(A ⊗ K) by

S := 1M(A) ⊗ s and T := 1M(A) ⊗ t (recall that ⊗ denotes here the minimal

C *-algebra tensor product, that is also called spatial tensor product).

Let F ⊂ K(`2) denote the the set of all operators of finite rank on `2(N).

It is an ideal of K(`2), because it is just the Pedersen ideal of K(`2) because it

is algebraically generated by all elements (T − ε)+ for compact positive operators

T ∈ K(`2)+ . Notice that the algebraic tensor product F�F is a dense *-subalgebra

of the C*-algebra tensor product of K(`2) ⊗ K(`2) ∼= K(`2 ⊗2 `2). But is not an

ideal of K(`2) ⊗ K(`2), because, e.g., the operator X :=
∑
n 2−nPn ⊗ Pn (with

Pn(v) :=< v, en > ·en for v ∈ `2 and {e1, e2, ..., en, ...} an orthogonal basis of `2)

is the orthogonal projection of vectors w ∈ `2 ⊗2 `2 ∼= `2 on the vector vX :=∑
n 2−nen ⊗ en. Thus X is a projection in K(`2 ⊗2 `2) but is not in the algebraic

tensor product F ⊗ F ⊆ K(`2 ⊗2 `2). But the algebraic ideal (!) of K(`2 ⊗2 `2)

generated by the algebra F ⊗ F is again the minimal dense ideal of K(`2 ⊗2 `2).

The set F is identical with the norm-dense algebraic ideal of the closed ideal

K := K(`2(N)) generated by its subset
⋃
nMn – where we identify here Mn nat-

urally with pnKpn and pn is the orthogonal projection onto the linear span of

{e1, . . . , en} for the canonical basis of `2(N).

Obviously, F is a *-ideal of M(K) ∼= L(`2), that is dense in K, and is minimal

with this properties. Thus, F is exactly the Pedersen ideal Ped(K) of K, i.e., is the

minimal dense ideal of K.

But the algebraic tensor product ???? ???
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The algebraic tensor products A � F and Ped(A) � F ⊆ A � F are dense in

the algebra A ⊗ K and are algebraic *-ideals of the algebraic (!) tensor product

M(A)⊗algM(K) that is in general strictly contained in M(A⊗K).

By the definition of the Pedersen ideal, the algebraic ideal of A⊗K generated

by Ped(A) � F contains the Pedersen ideal Ped(A ⊗ K) ( := minimal dense ideal

of A⊗K).

This follows from the general observation (that is easy to see) that Ped(A) ⊗
Ped(B) ⊆ Ped(A ⊗ B), because for positive contractions a ∈ A+ and b ∈ B+ the

products (a − ε)+ ⊗ (b − δ)+ ≤ ((a ⊗ b) − γ)+ for a ∈ A+, b ∈ B+, ε > 0, δ > 0,

and 0 < γ < (ε · δ)/2

A⊗K ???? and generates ????. Above we have seen that sometimes Ped(A)�F
is not an (algebraic) ideal of A⊗K.

Thus are in general not algebraic *-ideals of the C *-algebra M(A) ⊗M(K).

The “sum” X ⊕ Y := SXS∗ + TY T ∗ for given isometries, e.g. S := 1 ⊗ s and

T := 1 ⊗ t is well defined and preserve ≈ (and ∼MvN ) classes of the elements in

A� F , respectively in Ped(A)� F .

The classes of elements in A � F build W(A) and the classes of elements in

Ped(A)⊗ F build CS(A).

The definition of the Pedersen ideal of a C *-algebra shows that Ped(A⊗K) is

identical with the algebraic ideal of A⊗K generated by Ped(A)⊗ F , in particular

F = Ped(K).

????

The set F ·F of products f1 ·f2 is in in general not identical with F , i.e., F �F
(perhaps) generates F of A⊗B even in case A = K B = K.

Here is something wrong!!!

F = Ped(K) seems to be OK! This are all elements in K with finite ranks.

But F �F is not the Pedersen ideal of K⊗K but is contained in the Pedersen

ideal and generates the Pedersen ideal of K⊗K ∼= K.

Consider it in `2 ⊗ `2 ????

Thus, CS(A⊗K) ∼= CS(A) in a natural way. ???? Checked ???

??? Moreover (A⊗K)� F is “locally” isomorphic to A⊗K⊗K ????

The only stably invariant versions of the original Cuntz semigroups are CS(A) ∼=
CS(A⊗K) and Cu(A) ∼= Cu(A⊗K) ∼= W(A⊗K), where we take for Cu(A) “our”

– above given – Definitions.

That W(A ⊗ K) ∼= Cu(A ⊗ K) follows from A ⊗ K ⊗Mn
∼= A ⊗ K ⊗ e11 by

*-conjugating with an isometry in 1M(A) ⊗M(K⊗Mn).

The “large” Cuntz semigroup can give some sort of informations about the

countably generated Hilbert-modules over A.



4. ON ABSENCE OF INFINITESIMAL SEQUENCES 199

But notice that there are examples of C *-algebras A where CS(A), W(A) and

Cu(A) are all different, e.g. for A := c0(N) ⊗ C([0, 1]∞), the zero sequences in

C([0, 1]∞).

last example A OK ?? Check it??

But, since they are all contained in Cu(A), one can carry out all calcula-

tions inside Cu(A), – except some relations in their corresponding (pre-ordered)

Grothendieck groups, i.e. given by additional absorbing elements.

Check Def. Cuntz semi-group. Compare with that in Sec. ??? in

App. A

The difference between Cu(A) and its hereditary sub-semigroup CS(A) becomes

visible in case of simple C *-algebras A, because then CS(A) is a simple semi-group,

i.e., for any two non-zero elements [a], [b] ∈ CS(A) there exist m,n ∈ N such that

[b] ≤ m[a] (i.e., b - a⊗ 1m) and [a] ≤ n[b]. But in general, for

a ∈ Ped(A)+
∼= Ped(A)+ ⊗ p11 ⊆ Ped(A⊗K)

in the Pedersen ideal of A there does not exist a positive integer m such that

[e] ≤ m[a], i.e., e - a ⊗ 1m, for the above defined “infinite” element [e] ∈ Cu(A).

It would imply that 3m[a] ≤ m[a] and causes the existence of a scaling element

b ∈ A ⊗ K. But the existence of non-zero scaling elements causes the existence of

a non-zero projection p ∈ A⊗K and k ≥ 1 with 2k[p] ≤ k[p].

Exactly as ‘‘absorbing’’ is defined? Check this:

Thus, the “large” semi-groups Cu(A) of σ-unital A contain always a kind of

“absorbing” infinite elements by this trivial reason (and is therefore not suitable

for our purpose).

If A is simple and σ-unital then Cu(A) = CS(A) if and only if A is stably

infinite, i.e., if and only if A ⊗ K contains an infinite projection p 6= 0 (which is

then a properly infinite projection by Lemma 2.1.6) ( 30 ).

A better ‘‘defining’’ name could be:

‘‘compatibly pre-ordered additive semi-group’’

Definition 2.4.4. Let S = (S,+, 0,≤) a compatibly pre-ordered additive

semigroup (shortly named as c.p.a. semigroup) with order-minimal zero-element

0, i.e., (S,+) is a commutative semigroup, and for x, y ∈ S holds: x + 0 = x ,

y ≤ x+ y , and that x ≤ 0 implies x = 0 .

We say that S is simple if for every for every x, y ∈ S \ {0} there exist n ∈ N
with y ≤ nx.

A sequence (x1, x2, . . .) with xn ∈ S is infinitesimal (with respect to given y ∈
S \{0}) if kn →∞ (by n→∞) for each sequence of natural numbers k1, k2, . . . ∈ N
with the property that y ≤ knxn for all n ∈ N.

30 We have introduced here the “small” variant CS(A) of a Cuntz semi-group for a transparent

formulation of the proof and statement of Corollary 2.4.6.
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Clearly every infinitesimal sequence (x1, x2, . . .) satisfies that the set X :=

{x1, x2, . . .} ⊆ S is an infinite subset of S.

Indeed, consider – more general – any finite subset X of S and let y ∈ S\{0}. Then

– alternatively – there exists xn0 ∈ X such that there is no k ∈ N with y ≤ kxn0

or there exists k(y) ∈ N with y ≤ k(y)xn for all xn ∈ X. Hence, the sequence

x1, x2, . . . ∈ X is not infinitesimal (with respect to y).

Thus, finite pre-ordered additive semigroups S = (S,+, 0,≤) with order-

minimal zero-element can not contain an infinitesimal sequence.

In particular, the semi-group S = {0, y} with relations 0 ≤ y and 2y = y has

no infinitesimal sequence.

The pre-ordered semi-group (Z+,+) is simple and does not contain any infini-

tesimal sequence (x1, x2, . . .) ∈ Z∞+ , because for 0 < y ∈ Z holds that the relation

y ≤ m · x implies that m,x ∈ N = Z+ \ {0}, i.e., 1 ≤ x and y ≤ y · x. Thus, with

k(y) := y we can see that (Z+,+) contains no infinitesimal sequence.

Lemma 2.4.5. Let S = (S,+, 0,≤) a simple pre-ordered additive semi-group.

Then S \ {0} contains no infinitesimal sequence, if and only if, for each y ∈
S \ {0} there exists k(y) ∈ N such that y ≤ k(y)x for all x ∈ S \ {0}.

Proof. Suppose that for each y ∈ S \ {0} there exists k(y) ∈ N – depending

only on y – such that y ≤ k(y)x for all those x ∈ S \ {0} that have the property

that there exists `(x, y) ∈ N with y ≤ `(x, y)x.

Let (x1, x2, . . .) is a sequence in S and k1, k2, . . . a sequence in N. If y ∈ S \{0}
satisfies y ≤ knxn then xn 6= 0 and y ≤ k(y)xn for all n ∈ N, i.e., (x1, x2, . . .) is

not an infinitesimal sequence. Thus, S contains no infinitesimal sequences (with

respect to any y).

Now suppose that S contains no infinitesimal sequence (with respect to y ∈
S \ {0}) and that S is simple. We show that this implies the existence of k(y) ∈ N
with y ≤ k(y)x for all x ∈ S \ {0} .

Notice that if z ∈ S \ {0}, then there are m,n ∈ N with y ≤ mz, z ≤ ny

for suitable m,n ∈ N, and that if (x1, x2, . . .) is a sequence in S \ {0}, then this

sequence is infinitesimal with respect to z, if and only if, (x1, x2, . . .) is infinitesimal

with respect to y. This is because, e.g. z ≤ nknxn if y ≤ knxn.

The simplicity of S implies that, for each x ∈ S \ {0}, there exists n ∈ N with

y ≤ nx. Let `(y, x) ∈ N denote the minimal number n ∈ N with this property. We

show that the subset My := {`(y, x) ; 0 6= x ∈ S} is bounded:

Otherwise there exists a sequence (x1, x2, . . .) in S \ {0} with `(y, xn)→∞ for

n→∞.

Let k1, k2, . . . ∈ N with y ≤ knxn. Then kn ≥ `(y, xn) by definition of `(y, xn).

Thus, kn → ∞. It means that (x1, x2, . . .) is an infinitesimal sequence in S \ {0}.
Its existence contradicts our assumption on infinitesimal sequences.
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It implies that the number k(y) := maxMy ∈ N exists and satisfies y ≤ k(y)x

for all x ∈ S \ {0}. �

... Where is the definition of ”non-elementary” ?

Corollary 2.4.6. A non-elementary simple C*-algebras A is purely infinite,

if and only if, the “small” Cuntz semigroup CS(A) of A does not contain an infin-

itesimal sequence, in the sense of Definition 2.4.4.

If a non-elementary simple C*-algebra A has real rank zero and the natural

image of V(A) in CS(A) does not contain an infinitesimal sequence for CS(A) then

A is purely infinite.

If A is an elementary simple C*-algebra then CS(A) ∼= (Z+, 0,+), and

(Z+, 0,+) does not contain an infinitesimal sequence.

Proof. If A is elementary, then the pre-ordered semi-group CS(A) is isomor-

phic to the ordered additive semi-group of non-negative integers Z+ = { 0, 1, . . . },
given by semi-group isomorphism [a] 7→ Rk(a) for a ∈ Ped(K) (where Rk(a) denotes

the rank of a ∈ K, it is on other places also denoted by: rank(a)).

Above we have seen that the semigroup (Z+, 0,+) contains no infinitesimal

sequence – in sense of our Definition 2.4.4.

Recall that [a] = [a∗] = [a∗a] in CS(A) for a ∈ Ped(A⊗K), cf. [175], – or use

our Lemma 2.5.3(xi) and Lemma A.6.1.

If A is purely infinite and simple, then Definition 2.4.1 of Cuntz equivalence

classes [a] and Proposition 2.2.1(ii) implies that [a] = [a∗a] = [b∗b] = [b] for any non-

zero a, b ∈ A⊗K , cf. Lemma 2.5.3(xi), and that A is non-elementary (i.e., A is not

isomorphic to the compact operators on a Hilbert space). Thus, CS(A) = { [0], [a] }
for any non-zero element a ∈ A, [0] is the zero of CS(A), and 2[a] = [a] > [0] .

By the considerations on finite additive semi-groups (above here and in Lemma

2.4.5) this finite pre-ordered semi-group with zero element does not contain any

infinitesimal sequence in the sense of Definition 2.4.4.

To show the opposite direction we suppose that A is simple and non-

elementary, and that CS(A) does not contain an infinitesimal sequence.

It is easy to see that for all simple A 6= {0} the “small” Cuntz semigroup CS(A)

is simple (and vice versa).

By Lemma 2.4.5, the non-existence of infinitesimal sequences in simple semi-

groups is equivalent to the existence of – “universal” = only from y depending –

numbers ν(y) ∈ N with the property that y ≤ ν(y)x for all non-zero elements x.

Thus, for every non-zero b ∈ Ped(A) there exist ν(b) ∈ N such that [b] ≤ ν(b)·[a]

for every non-zero a ∈ Ped(A). But this implies the following:

Let a, b ∈ A+ with ‖a‖ = 1 = ‖b‖ and ε ∈ (0, 1). If we let δ := ε/3 then (a−δ)+

and (b−δ)+ are in Ped(A). Thus, there exists numbers n := n(b, ε) := ν((b−δ)+) ∈
N, – depending only from b and ε > 0 – with the property (b − δ)+ ⊗ e11 -
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(a− δ)+ ⊗ 1n in A⊗Mn. In particular, there exists c1, . . . , cn ∈ A with

‖b− (c∗1ac1 + . . .+ c∗nacn)‖ < ε .

It says that A satisfies the criteria in Part (iv) of Proposition 2.2.1. Therefore A is

purely infinite.

Now we consider the more special case where A satisfies the additional pre-

assumptions that A is a simple, non-elementary C *-algebra, that has real rank

zero, again with the additional non-degeneracy property that there exists 0 6= y ∈
Ped(A⊗K)+

with what ????

Then there exists a non-zero projection q ∈ A⊗K and m,n ∈ N with [q] ≤ m[y]

and [y] ≤ n[q].

Suppose that there are a1, a2, . . . ∈ Ped(A⊗K)+ with ‖ak‖ = 1 that represent

an infinitesimal sequence [a1], [a2], . . . ∈ CS(A), then nonzero projections

pk ∈ (ak − 1/2)+(A⊗K)+(ak − 1/2)+

build an infinitesimal sequence in [p1], [p2], . . . ∈ CS(A) with respect to [q].

By assumptions, we have excluded the existence of infinitesimal sequences de-

fined by projections in the Cuntz semigroup CS(A). Thus, CS(A) does not contain

any infinitesimal sequence, and the above considered cases apply here also to A and

prove purely infiniteness of A. �

5. Properly infinite elements in non-simple C*-algebras

The study of non-simple purely infinite algebras requires basics on majorization

in the sense of J. Cuntz and properly infinite elements as defined by M. Rørdam.

Some needed properties of the majorization relation b - c are considered here.

Others are listed and studied in Appendix A, see e.g. the Lemma A.6.1.

Our Definition 1.2.1 becomes more transparent and applicable by [462,

thm. 4.16]. It says that non-zero C *-algebras A are purely infinite in the sense of

Definition 1.2.1, if and only if, each element a ∈ A+ is properly infinite in the sense

of following Definition 2.5.1. We outline a proof of this result, because the behavior

of properly infinite elements play a fundamental role in proofs of our main results.

Versions of Cu(A) have been defined also before!!? Refer to

this Defs.!!

Compare also Definition 2.4.1 for the relation -, ...

There exist other Defs of infinite or properly infinite elements

of C *-algebras.

Even on the level elements are sometimes diferent.

Only in case of elements in s imple C *-algebras

all the definitions are equivalent ...

Definition 2.5.1. Let a, b, c elements of a C *-algebra A.
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We say that c majorizes b (denoted by b - c ) if there exist sequences of

elements dn, en ∈ A with b = limn enc dn ( 31 ). It is easy to check that for b ∈ A+

and c ∈ A holds b - c if and only if (b − εn)+ - c for a zero-sequence (εn) in

(0, ‖b‖).

Refer here to Appendix Section for - (continuity) properties.

The relation - is transitive and becomes “reflexive” with respect to the as

follows defined equivalence relation ” ≈ ” :

We write a ≈ b if a - b and b - a. The ≈-class of a ∈
⋃
nMn(A) ⊂M∞(A) will

be denoted also by [a]≈, or simply by [a] if it can not mixed up in some places with

the considerably smaller class [a]MvN of elements in
⋃
nMn(A) that are Murray–

von-Neumann equivalent to a. The definition shows that the ≈-classes of elements

in M∞(A) are (relatively) closed subsets, and that the set of b ∈M∞(A) with b ≈ a
are closed sets (relatively to M∞(A)).

Then a partial order [b] ≤ [a] can be defined by b - a.

There are natural embeddings a ∈ A 7→ a ⊕ 0 ∈ M2(A) and – more generally

– Mm(A) ⊕ 0n ⊂ Mm+n(A), consider them as a common ∗-subalgebra
⋃
nMn(A)

of M∞(A) ⊇ A ⊗ K(`2). In this way the ≈-classes become an pre-ordered abelian

semi-group with addition [a] + [b] := [a⊕ b] and the relation [a] ≤ [b] is compatible

with this addition.

We denote the corresponding pre-ordered semi-group by W(A), and call it the

Cuntz semigroup of A. In case of non-unital A the semigroup W(A) can be

bigger than the “small” local Cuntz semigroup CS(A) of Definition 2.4.3 and is

for all stably finite σ-unital C *-algebras A smaller than the in Definition 2.4.2

defined (large) general Cuntz semi-group Cu(A), because Cu(A) contains always

an “infinite” absorbing idempotent, cf. the remarks below Definition 2.4.3. If A is

unital, then obviously W(A) = CS(A).

The element a ∈ A absorbs the element b ∈ A, if a majorizes a ⊕ b, i.e., if

a ⊕ b - a ⊕ 0 in M2(A) (The matrix a ⊕ b := diag(a, b) ∈ M2(A)+ denotes the

diagonal 2× 2-matrix with diagonal entries a and b).

Let I(a) ⊆ A denote the set of b ∈ A that are absorbed by a , i.e.,

I(a) := IA(a) := {b ∈ A ; [b] + [a] ≤ [a] } .

We write I(a) if it should be clear which C *-algebra A is considered in that moment.

Notice that the natural semigroup morphism IB(a) → IA(a) for a ∈ B ⊂ A is not

necessarily injective. It was denoted by J(a) in [462, def. 3.11].

Check if notation is consistent to other use

of I(a), J(a), IA(a), ... etc.

Give an example where IB(a)→ IA(a) for some a ∈ B ⊂ A is not injective.

31 The sequences (dn) and (en) are here not necessarily required to be bounded.
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Then a ∈ A is called finite if I(a) = {0}, and infinite if I(a) 6= {0}.

We say that a ∈ A is properly infinite, if a ∈ I(a), i.e., if a ⊕ a - a ⊕ 0 in

M2(A), here we allow only a 6= 0 ( 32 ), i.e., a ∈ A is properly infinite if and only

if 2[a] ≤ [a] in the pre-ordered Abelian semi-group Cu(A) of Cuntz equivalence

classes in A⊗K with [a] corresponding naturally to the class of a⊗ p11 in Cu(A),

cf. Definition 2.4.2.

There exist several other formulations of infiniteness of elements or of Next

Remark 2.5.2 is used in the proofs of Part(viii) of Lemma 2.5.3 and of Lemma

2.5.4.

Remark 2.5.2. If d ∈ A+ and b ∈ D := dAd then b - d in D and A. But

from b - d in A one gets only that b ∈ J(d), where J(d) denotes the closed ideal

of A generated by d.

Indeed, the existence of elements en, fn ∈ D with b = limn en d fn follows

from the equation D = D · d ·D, that is implied by the equations D = d ·D and

D = D ·D ( 33 ).

Moreover, this shows that b - c if c ∈ A is properly infinite in A and b is

contained in the closed ideal of A generated by c ∈ A .

Obviously, the Murray–von-Neumann equivalence a ∼MvN b of Definition 2.0.1

implies a ≈ b.

Recall that a positive element a ∈ B+ is stable by Definition 2.1.1 if the here-

ditary C *-subalgebra aBa is stable (or zero). By Part (viii) of the following Lemma

2.5.3, every non-zero stable element is properly infinite. But properly infinite ele-

ments, e.g. projections, that are not stable.

Concerning several changes of references:

Observe changes in order of items of Lemma 2.5.3:

(ix) to (vii), (x) to (viii), (xi) to (ix), (xii) to (x), (xiii) to

(xi), ... ,

and then in (vii) to (xii) to (i), (viii) to (xiii) to (ii),

(xiv) to (iii), and (xv) to (iv), ...

Go to all places where Lemma 2.5.3 is cited, and check if ref’s are

corrected !!!

Give ref. to Def. of properly infinite "element"s

and infinite C*-algebras.

Ref.s and Cite bring ORDER !!! Is it 2.5.1 for elements ??

32We allow 0 to be a properly infinite element on some places to simplify notations!
33 Here D ·D it the set of products {ab ; a, b ∈ D}, but is equal to the closed linear span of

this products, cf. Lemma 2.1.7(o).
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Lemma 2.5.3. Let I(a) := IA(a) denote the set of elements b ∈ A that are

“absorbed” by a ∈ A, i.e., b ∈ IA(a) if and only if b ⊕ a - a inside M2(A), i.e.,

[b] + [a] ≤ [a] in W(A) .

Have we here only to consider W(A) or also the bigger Cu(A)?

(i) IA(a) is a closed ideal of A that satisfies IA(a) = IA(c) for all c ∈ A with

a ≈ c .

In particular, if a ∈ A+ and b∗ = b ∈M2(IA(a)) then |b| ∈M2(IA(a))

and, for all d, e ∈ A, |b|+ [d, e]∗a[d, e] - a in M2(A) ( 34 ).

(ii) If D ⊆ A is a hereditary C*-subalgebra of A and if a ∈ D, then ID(a) =

IA(a) ∩D.

(iii) The element πIA(a)(a) = a+ IA(a) is always finite in A/IA(a) .

(iv) Every C*-morphism ϕ : A→ B maps IA(a) into IB(ϕ(a)).

In particular, if J / A is a closed ideal and if πJ(a) is finite in A/J ,

then IA(a) ⊆ J , ( 35 ).

(v) If J is a closed ideal of A and J ⊆ IA(a), then πJ(IA(a)) = IA/J(πJ(a)).

In particular, a ∈ A is properly infinite in A, if and only if, πJ(a) is

infinite in A/J for every closed ideal J / A with a 6∈ J .

(vi) If a, b ∈ A+ are orthogonal, then I(a) + I(b) ⊆ I(a+ b).

(vii) If a ∈ A+, then a ≈ a+ b for all b ∈ I(a)+.

In particular, if a ∈ A+ is properly infinite then the elements a + x

are properly infinite for each positive element x ∈ span(AaA) .

(viii) If d ∈ A+ is non-zero and the hereditary C*-subalgebra D := dAd of

A has the property that M(D) contains isometries s1, s2 ∈ M(D) with

orthogonal ranges, i.e., s∗jsk = δj,k1, then d is properly infinite in A.

In particular, if d ∈ A+\{0} is stable in the sense of Definition 2.1.1,

i.e., D := dAd is stable, then d is properly infinite in A.

(ix) An element a ∈ A+ is properly infinite, if and only if, for every ε > 0,

there exists x = x(ε) ∈ M1,2(A) such that x∗ax = (diag(a, a)− ε)+ =

(a− ε)+ ⊗ 12 in M2(A) .

(x) If 0 6= a ∈ A+ and there exists δ > 0 such that (a−ν)+ is properly infinite

for every ν ∈ (0, δ), then a is properly infinite in A.

(xi) If a ≈ b and a is properly infinite, then b is properly infinite.

In particular, the elements a, a∗a, aa∗ and (a∗a)1/2 are all properly

infinite if one of them is properly infinite.

Proof. We use in the proof of Part (i) the precise notation X⊕0m ∈Mn+m(A)

if X ∈Mn(A), but in the proofs of other parts we write simply X for X ⊕ 0m.

(i): More generally we define In := In(a) for a ∈ A as the set of x ∈ Mn(A)

with a⊕x - a⊕0n inMn+1(A). In particular I1(a) = IA(a). Below given arguments

show that the In are closed ideals of Mn(A) and In = Mn(IA(a)) for n ∈ N. Clearly

34 Identify here a with a ⊗ p11 in A ⊗M2, or with the matrix [aj,k] given by a1,1 := a and

aj,k = 0 if j 6= 1 or k 6= 1 .
35 Case IA(a) = {0} and IA/J (πJ (a)) = A/J can appear, cf. Examples 2.5.12 and 2.5.13.
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we get the same subset of Mn(A) if we consider the elements x ∈Mn(A) with the

property x⊕ a - 0n ⊕ a in Mn+1(A) .

In the case where x ∈Mn(A)+ and a ∈ A+ this is equivalent to (x− γ− ε)+⊕
(a− ε)+ - a for all ε ∈ (0, γ) and γ ∈ (0, ‖x‖), because it implies (x− γ)+ ⊕ a - a
for every γ ∈ (0, ‖x‖) and then the relation x ⊕ a - a. Both implications follow

from the continuity properties of the relation - on M2(A), respective from the fact

that In(a) is closed in Mn(A), as shown now in more detail:

Temporarily and only here, we denote by ξ(a ⊕ 0n) the set of elements z ∈
Mn+1(A) with z - (a ⊕ 0n). We write this as z - a via identifying A with

A ⊗ e11
∼= A ⊕ 0n. Likewise, we can use here instead the identification of A with

A⊗ en+1,n+1
∼= 0n ⊕A in Mn+1(A).

By Lemma A.6.1(iv,viii), the set ξ(a⊕ 0n) is a closed subset of Mn+1(A) that

satisfies Xξ(a ⊕ 0n)Y ⊂ ξ(a ⊕ 0n) for all X,Y ∈ M(Mn+1(A)) ∼= Mn+1(M(A)).

More precisely, ξ(a⊕0n) is the closure in Mn+1(A) of the set of elements X(a⊕0n)Y

with X,Y ∈M(Mn+1(A)) ∼= Mn+1(M(A)).

The sets In(a) are closed subsets of Mn(A) because

a⊕ In(a) = (a⊕Mn(A)) ∩ ξ(a⊕ 0n) .

This equation shows also that In(a) invariant under right and left multiplications

by operators in M(Mn(A)).

In particular, IA(a) = I1(a) ⊆ A and the sets In(a) ⊆ Mn(A) are closed in

Mn(A) and satisfy cIn(a)d ⊆ In(a) for all c, d ∈M(Mn(A)).

We derive that if x ∈ Im(a) and y ∈ In(a), then x⊕ y ∈ Im+n(a) :

Notice that in Mm+n+1(A) for all v ∈Mm(A) and z ∈Mn(A) holds

(a⊕ v)⊕ z ≈ a⊕ (v ⊕ z) ≈ a⊕ (z ⊕ v) ≈ (a⊕ z)⊕ v ,

where the middle equivalence is given by 1M(A)⊕ S for some suitable inner auto-

morphism S of Mn+n. The elements x ∈ Im(a) ⊆Mm(A) and y ∈ In(a) ⊆Mn(A)

satisfy a⊕ x - a⊕ 0m in Mm+1(A) and a⊕ y - a⊕ 0n in Mn+1(A).

It follows that

a⊕ (x⊕ y) ≈ (a⊕ x)⊕ y - (a⊕ 0m)⊕ y

in Mm+n+1(A). Then

(a⊕ 0m)⊕ y ≈ (a⊕ y)⊕ 0m - (a⊕ 0n)⊕ 0m ≈ a⊕ 0m+n .

Together it gives that

a⊕ (x⊕ y) - a⊕ 0m+n

in Mm+n+1(A), i.e., x⊕ y ∈ Im+n(A). We can also use the relations

a⊕ x - a⊕ 0m , a⊕ (0m ⊕ y) - a⊕ 0m+n

and Lemma A.6.1(ii) to get the relation:

a⊕ (x⊕ y) ≈ (a⊕ x)⊕ y - (a⊕ 0m)⊕ y - a⊕ 0m+n .
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Since Mm+1(A) is naturally isomorphic to the hereditary C *-subalgebra D of b ∈
Mm+n+1(A) with b = c ⊕ 0n for some c ∈ Mm+1(A), and since a ⊕ 0m ⊕ 0n and

a ⊕ x ⊕ 0n are both in D, we get that x ∈ Mm(A) is in Im(a), if and only if,

x⊕ 0n ∈ Im+n(a), cf. Lemma A.6.1(viii).

If x, y ∈ In, then a⊕(x+y)⊕0n - a⊕(x⊕y) - a⊕02n in M2n+1(A) , because

(x+ y)⊕ 0n - x⊕ y in M2n(A), cf. Lemma A.6.1(x).

Thus, In(a) is also additively closed, i.e., is a closed ideal of Mn(A). In par-

ticular there is a unique ideal J of A such that In(a) = J ⊗Mn
∼= Mn(J) and this

ideal is determined by the equation J ⊗ e11 = (A⊗ e11) ∩ In(a).

Then I(a)⊕0n−1 = In(a)∩(A⊕0n−1) by the above gives definitions of In(a) ⊆
Mn(A) and I(a) ⊆ A . Combined with the natural isomorphism A⊕0n−1

∼= A⊗e11

it gives that In(a) = Mn(I(a)).

Alternatively one could use here that I(a) ⊕ 0n−1 is a full hereditary C *-

subalgebra of the ideal In(a) ⊆Mn(A), to obtain that In(a) = Mn(I(a)).

For all elements X ∈ In(a) = Mn(I(a)) holds X ⊕ a ≈ a ⊕X - a ⊕ 0n inside

Mn+1(A).

If a ≈ c and x ∈ I(a), then x ∈ I(c), because

c⊕ x - a⊕ x - a⊕ 0 - c⊕ 0 .

It implies then In(a) = In(c) for all n ∈ N.

It holds X + Y - X ⊕ Y for all X,Y ∈ Mn(A) by Lemma A.6.1(x), and

|Z|2 = Z2 ≈ Z for all selfadjoint Z ∈ In(a). It implies that |Z|⊕a - a if Z⊕a - a.

Thus, |b| ⊕ [d, e]∗a[d, e] - |b| ⊕ a - a for each a ∈ A+ and b∗ = b ∈M2(I(a)).

(ii): Clearly, ID(a) ⊆ IA(a) ∩ D by definitions of IA(a) and ID(a) in case of

a ∈ D. If x ∈ IA(a) ∩D, then a⊕ x - a⊕ 0 in M2(A). Since M2(D) is hereditary

in M2(A) and a⊕ x, a⊕ 0 ∈M2(D), it follows x ∈ ID(a) by Lemma A.6.1(viii).

(iii): The observation in Part (iii) is equivalent to [462, lem. 3.13]. We give an

alternative proof:

Let a ∈ A+ and denote by π := πI(a) : A → A/I(a) the quotient map, where

here I(a) := IA(a) .

Let x ∈ A+ with π(x) ⊕ π(a) - π(a), i.e., with π(x) ∈ I(π(a))+ . Here the

short notation I(π(a)) means – more precisely – the ideal IA/I(a)(π(a)) of A/I(a),

and π(x) denotes the element πI(a)(x) of A/I(a).

We show below that this implies π(x) = 0, i.e., show that x ∈ IA(a). It follows

then that I(π(a)) = 0, which means that the element π(a) is finite in A/I(a).

Since I(a) is a closed ideal of A, it suffices to show that (x − γ)+ ∈ I(a) for

each γ ∈ (0, ‖x‖), i.e., that (x− γ)+ ⊕ a - a .
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By definition of - in A/I(a), for each ε ∈ (0, γ) there exist δ := δ(ε) > 0 and

d, e ∈ A with

[π(d), π(e)]∗π((a− δ)+)[π(d), π(e)] = (π(x)− γ − ε)+ ⊕ (π(a)− ε)+ .

We can rewrite this equivalently as “Y ∈ M2(I(a))” for the selfadjoint element

Y ∈M2(A) defined by

Y :=
(
(x− γ − ε)+ ⊕ (a− ε)+

)
− [d, e]∗(a− δ)+[d, e] ∈M2(I(a)) .

It follows that

(x−γ−ε)+⊕(a−ε)+ = Y +[d, e]∗(a−δ)+[d, e] ≤ |Y |+[d, e]∗(a−δ)+[d, e] ∈M2(A) .

Since Y ∈ M2(I(a)) we get |Y | ∈ M2(I(a)) and by Part (i), this implies that

|Y |+ [d, e]∗(a− δ)+[d, e] - a .

Thus (x− γ− ε)+⊕ (a− ε)+ - a in M2(A). This happens for every ε ∈ (0, γ),

and implies (x − γ)+ ⊕ a - a, i.e., (x − γ)+ ∈ I(a) for each γ ∈ (0, ‖x‖). Thus

x ∈ I(a), because IA(a) is closed.

(iv): By Lemma A.6.1(iii), if a⊕ x - a⊕ 0 and

ψ := id⊗ϕ : M2 ⊗A → M2 ⊗B ,

then ψ(a⊕ x) - ψ(a⊕ 0) in M2(B). Thus, ϕ(IA(a)) ⊆ IB(ϕ(a)) ⊆ B.

(v): It is – up to suitable notation – an almost trivial consequence of parts (iii)

and (iv). Let J ⊆ I(a) a closed ideal. Define K := πJ(IA(a)) = IA(a)/J / A/J ,

L := IA/J(a + J) / A/J , B := A/IA(a) and b := πIA(a)(a) ∈ B (To inflate not

iterated indices).

Notice that IB(b) = 0 by Part (iii), i.e., b := πIA(a)(a) is finite in B. By Part

(iv) we get K ⊆ L in A/J .

Now, under natural identification of (A/J)/K with B := A/IA(a), we get

πK(πJ(x)) = πIA(a)(x) for all x ∈ A. Thus, Part (iv) says also that

πK : A/J → (A/J)/K ∼= B

maps L := IA/J(πJ(a)) into

IB
(
πK(πJ(a))

)
= IB

(
πIA(a)(a)

)
= IB(b) = {0} .

It implies that also L ⊆ K. Now L = K rewrites as πJ(IA(a)) = IA/J(πJ(a)).

(vi): If a, b ∈ A+ are orthogonal, and x ∈ I(a), y ∈ I(b), then (a+b)⊕0 ∼ a⊕b,
and a⊕ b⊕x⊕ y - a⊕ b, i.e., x⊕ y ∈ I(a⊕ b) = I2(a+ b) – with notations in proof

of Part(i). Then x+ y ∈ I(a+ b) follows finally from (x+ y) - x⊕ y.

(vii): a⊕ a - a implies IA(a) ⊇ spanAaA . Thus, (a+ x)⊕ 0 - a⊕ x - a⊕ 0

for positive x ∈ spanAaA . This and a ≤ a+ x imply a ∼ a+ x.

(viii): Let 0 6= d ∈ A+ a stable element in A. Then D ∼= D ⊗K for D := dAd

by Definition 2.1.1. Then M(D) contains isometries s1, s2 ∈ M(K) ⊆M(D) with

orthogonal ranges, i.e., s∗1s2 = 0.
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Let d ∈ A+ a non-zero positive element, D := dAd and suppose that s1, s2 ∈
M(D) are isometries with s∗1s2 = 0. Thus, d ∼MvN dk := skds

∗
k = g∗kgk for

gk := d1/2sk and k ∈ {1, 2}, because gkg
∗
k = d .

The element d1 + d2 = d ⊕s1,s2 d ∈ D is Cuntz-equivalent in M2(A) to

diag(d, d) = d ⊕ d. Hence diag(d, d) - d1 + d2 ∈ D in M2(D). Since d is a

strictly positive element of D we get that d⊕s1,s2 d - d by Remark 2.5.2.

Thus, d ⊕ d - d ⊕ 0 in M2(D). Hence d is properly infinite in D and in A in

the sense of Definition 2.5.1.

(ix): If a ∈ A+, then a ⊕ a - a, if and only if, for every ε > 0, there exists

x ∈M1,2(A) such that x∗ax = ((a⊕ a)− ε)+ , cf. Lemma A.6.1(vi).

(x): ((a ⊕ a) − ν)+ = (a − ν)+ ⊕ (a − ν)+ - (a − ν)+ ≤ a for all ν ∈ (0, δ)

implies a⊕ a - a by Lemma A.6.1(vii).

(xi): b ⊕ b - a ⊕ a - a - b if a ≈ b and a is properly infinite. Thus b ∈ I(b)

by Lemma A.6.1(ii,i). It applies to |a| = (a∗a)1/2 ≈ a ≈ a∗a ∼ aa∗ by Lemma

A.6.1(v). �

MORE of ABOVE? OR LESS?

A rather practical elementary sufficient criteria of – not necessarily proper –

infiniteness is contained in the following lemma:

Lemma 2.5.4. An element 0 6= a ∈ A+ is infinite in A

Where is "infinite" defined? Give Reference !!

if there exists non-zero positive c ∈ D := aAa with the property that, for each

ε > 0, there exists b ∈ D+ and d ∈ A with

More BETTER And Clear DETAILS !!!

c⊕ a - a (depending on ε) with bc = 0 and d∗bd = (a− ε)+ .

In particular, a ≥ 0 is infinite in A if there exists a non-zero projection p ∈ aAa
that is infinite in A .

Notice that the element c ≥ 0 is untouched here – in the sense that the d can

be chosen that cd = 0 –, because we can replace b by b1/3 and d by b1/3d. Recall

that the notation x⊕y denotes the the 2×2 matrix aij with entries a1,2 = 0 = a2,1,

a1,1 = x and a2,2 = y.

MORE details !!!!! ???

Proof. Let D := aAa and non-zero c ∈ D+ with proposed property: For each

ε ∈ (0, ‖a‖) there exist b ∈ D+ with bc = 0 and d ∈ A with d∗bd = (a− ε)+ .

Then c+b ∈ D+ implies that c+b - a, cf. Remark 2.5.2, and c⊕b = g∗g ∼MvN

gg∗ = c + b ⊕ 0 in M2(D) ⊆ M2(A), by the row matrix g ∈ M2(D) with entries

g11 := c1/2, g12 := b1/2 and g2,1 = 0 = g22.
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The equation d∗bd = (a − ε)+ implies then, that c ⊕ (a − ε)+ - c ⊕ b. Using

that ∼MvN implies ≈, we get that c ⊕ (a − ε)+ - a ⊕ 0 in M2(A) for each ε > 0.

But this says that c ⊕ a - a ⊕ 0 in M2(A) by lower semi-continuity of -. Thus,

c ∈ IA(a)+ and a is infinite in A by Definition 2.5.1 and Lemma 2.5.3(i).

Now we consider the case of a ∈ A+ with the property that there exists an

inside A infinite projection 0 6= p ∈ D := aAa . We show below that this implies

the existence a non-unitary isometry T ∈ M(D), with 1 − TT ∗ ∈ D. It follows

that c := (1 − TT ∗)a(1− TT ∗) 6= 0 and b := Ta1/3T ∗, d := Ta1/3 satisfy bc = 0,

d∗c = 0 = cd and d∗bd = a ( 36 ).

By Definition 2.5.1 and Lemma 2.5.3 the projection p ∈ D is infinite if ID(p) 6=
0, i.e., there exists nonzero b ∈ ID(p)+ with b ⊕ p - p. We can suppose here that

‖b‖ = 1 and b ∈ pAp ⊆ D. Then b ⊕ p - p implies that there exists G ∈ M2(D)

with

‖G∗ diag(p, 0)G− diag(p, b)‖ < 1/2 .

We apply Lemma 2.1.9 to this inequality and get a contraction d ∈ M2(D) with

(Gd)∗ diag(p, 0)(Gd) = diag((p − 1/2)+, (c − 1/2)+) . This rewrites as a row f :=

[f1, f2] := diag(p, 0)Gd ∈ M1,2(D), and the equations f∗1 pf1 = (1/2)p, f∗1 pf2 = 0

and f∗2 pf2 = (b− 1/2)+. In particular, v :=
√

2pf1 ∈ D is a partial isometry with

v∗v = p and g := pf2f
∗
2 p 6= 0. Then gv = 0 = v∗g, vv∗ ≤ p and c ≤ q := p−vv∗ ≤

p.

It gives that q 6= 0 and that p − q = vv∗, v∗v = p. The operator T :=

(1M(D)−p)+v ∈ 1+D is an isometry with T ∗T = 1 and 0 6= 1−TT ∗ = q ∈ D. �

Next: General criteria of infiniteness. Not urgent!

Question 2.5.5. What about the necessary direction of Lemma 2.5.4 for in-

finiteness?

Let a ∈ A+ with ‖a‖ = 1 and D := aAa. Consider D as a C *-subalgebra of

D∞ := `∞(D)/c0(D) by the map b ∈ D 7→ (b, b, . . .) + c0(D).

Is a infinite in A if a is infinite in D∞?

Is a infinite in A if a is infinite in the ultrapower Aω?

Suppose that a ∈ A+ is infinite in A. Does there exist in D∞ := `∞(D)/c0(D)

a (fixed) positive c ∈ D∞ with ‖c‖ = 1 such that for each ε > 0 there exists d ∈ D∞
with d∗c = 0 and d∗d = (a− ε)+?

Can we find in (D∞)+ positive contractions b, c ∈ A∞ := `∞(A)/c0(A) with

bc = 0, and for every ε > 0 some (bounded) dε ∈ A∞ with d∗bd = ψ((a− ε)+) for

ψ : A→ A∞ defined by ψ(a) := (a, a, . . .) + c0(A)?

An attempt is the following: Suppose that non-zero a ∈ A+ is infinite in A, i.e.,

IA(a) 6= 0 by Definition 2.5.1 and Lemma 2.5.3(i). Take g ∈ IA(a)+ with ‖g‖ = 1.

36 It shows also that there exists q = (1−TT ∗) ∈ pDp with a - (1−q)a(1−q) in A. So q can

play the role of c – instead the inside qAq invertible qaq –, but needs an approximation argument

... an exercise for the reader.
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Then g ⊕ a - a by definition of - in Definition 2.5.1, i.e., for every sufficiently

small ε > 0 there exist δ ∈ (0, ε) and d1, d2 ∈ A with d∗1(a − δ)+d1 = (a − ε)+,

d∗2(a − δ)+d2 = (g − 1/2)+ and d∗2(a − δ)+d1 = 0. We could consider cε := (a −
δ)

1/2
+ d2d

∗
2(a− δ)1/2

+ , and bε := ((a− δ)+d1d
∗
1(a− δ)+)1/4

?? Perhaps power 1/3 better?? Check it!

The polar decomposition of (a− δ)1/2
+ d1 is equal to BZ with a partial isometry

Z ∈ A∗∗ and B := b2ε . We can take dε := bε ·Z . Get bε · cε = 0, d∗εbεdε = (a− ε)+,

cε ≤ ‖d2‖2 · (a− δ)+ and

‖bε‖2 = ‖a‖ − ε ???,

‖cε‖ = ‖(g − 1/2)+‖.

We only know that δ ∈ (0, ε) ... no reasonable functional dependence. ?????

The cases of pi(n) are similar to pi(1)?

Notice that for all positive elements X,Y in a C *-algebra A with ‖X‖ = ‖Y ‖ =

1 and X ∈ (Y − 1/2)+A(Y − 1/2)+ holds that X(Y − (Y − 1/2)+) = (1/2)X and

for Z := 2(Y −(Y −1/2)+)−2(X−(X−1/2)+) that ‖Z‖ = 1 and Z(X−1/2)+ = 0.

If (X − 1/2)+ is in the ideal generated by Z, and if each element of this ideal is in

the closure of the set of products A ·Z ·A (not its linear span), then Z is infinite.

Corollary 2.5.6. For (non-zero) C*-algebras A following properties (1)-(4)

are equivalent:

(1) A is purely infinite in sense of Definition 1.2.1.

(2) A satisfies property pi(1) of Definition 2.0.4.

(3) A satisfies property pi-1 of Definition ??.

(4) Every non-zero element of A+ is properly infinite in A in sense of Defi-

nition 2.1.1.

Proof. (3)⇔(4): The definitions of property pi-n in Definition ?? imply in

case n = 1 that A satisfies pi-1, if and only if, each element of A is properly infinite

in the sense of Definition 2.1.1.

(4)⇒(2): (Compare Lemma 2.1.2 for more details.) Suppose that every non-

zero element a ∈ A+ is properly infinite in A in sense of Definition 2.1.1.

Then it is easy to see that each non-zero element of `∞(A)+ is properly infinite,

and that this property pass to all non-zero quotients of `∞(A). In particular, `∞(A)

can not have a non-zero character, because 1 ∈ C is not infinite in C.

If a is properly infinite and b is in the closed ideal generated by a then there

exist for ε > 0 elements c1, d1, . . . , cm, dm ∈ A with ‖b −
∑m
`=1 ckadk‖ < ε/2 . The

proper infiniteness of a causes that there exists g, h ∈M1,m(A) with

‖1m ⊗ a− g∗(a⊕ 0m−1)h‖ < ε/(2m2(max
k

(‖ck‖+ ‖dk‖))) .

Thus, there exist e, f ∈ A with ‖b − eaf‖ < ε. It shows that A satisfies property

pi(1) of Definition 2.0.4.
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(2)⇒(1): The property pi(1) in Definition 2.0.4 requires from A that `∞(A) has

no non-zero character, and that, for each element a ∈ A+ and c ∈ A+ in the closed

ideal generated by a and for each ε > 0, there exists d ∈ A with d∗ad = (c− ε)+.

It implies immediately that A is purely infinite in sense of Definition 1.2.1,

because this requires only that A has no non-zero character and that for every

a ∈ A+ and every positive c in the closed ideal generated by a, and every ε > 0,

there exists an element d ∈ A such that ‖c− d∗ad‖ < ε .

(1)⇒(4): Suppose that A has no character and that for every non-zero a ∈ A,

every b ∈ A in the closed ideal J(a) ⊆ A generated by a, and every ε > 0 there

exists d, e ∈ A (depending from a, b, ε) with ‖dae− b‖ < ε. It it easy to reformulate

this property with help of polar decomposition and Lemma 2.1.9 as follows:

The C *-algebra A has no character and, for every positive contractions in a, b ∈ A+,

with b in the closed ideal J(a) ⊆ A generated by a and ε > 0, there exists δ > 0

and d ∈ A with d∗(a− δ)+d = (b− ε)+.

The properties of A carry over to each non-zero quotient A/K of A by a closed

ideal K of A, because if A has no non-zero character then A/K can not have a

non-zero character, and if e, f ∈ (A/K)+, f ∈ J(e) in A/K and ε ∈ (0, ‖f‖) given,

then there exist a ∈ A+ with e = πK(a) and elements g1, . . . , gn ∈ A such that

πK(b) = (f − ε/2)+ for b := g∗1ag1 + . . . + g∗nagn ∈ J(a). There exists d ∈ A and

δ > 0 with d∗(a− δ)+d = (b− ε/2)+. It says that (f − ε)+ = πK(d)∗(e− δ)+πK(d)

for given ε ∈ (0, ‖f‖) and suitable δ ∈ (0, ‖e‖).

By Part (v) of Lemma 2.5.3, non-zero elements a ∈ A are properly infinite, if

and only if, πJ(a) is infinite for each closed ideal J of A with a 6∈ J .

Above we have seen that non-zero quotients A/K satisfy the same properties

as A . Therefore it suffices to show in general that each non-zero element of A+ is

infinite if A is purely infinite in sense of Definition 1.2.1.

If D ⊆ A is a non-zero hereditary C *-subalgebra of A then D can not have a

character χ : D → C:

Indeed: Suppose that a non-zero character χ on D exists and let I ⊆ D the

kernel ideal of χ.

Let J ⊆ A the closed ideal J of A generated by the kernel I of χ. Then

the ideal J has the property that C ∼= D/I ⊆ A/J is a 1-dimensional hereditary

C *-subalgebra of A/J , because J ∩D = I by Lemma ??.

Let p ∈ D/I ⊆ A/J the unique projection with C ·p = D/I, then every element

in the closed ideal K of A/J generated by p is itself in C · p. Thus, J must be the

kernel of a character on A. But this is forbidden for A in Definition 1.2.1.

It follows that each non-zero hereditary C *-subalgebra D of A has no character.

It implies by Lemma 2.1.15(ii) that the D contains a 2-homogenous element g :=

ψ(f0 ⊗ 12) for some non-zero *-morphism ψ : C0((0, 1],M2)→ D with ‖g‖ = 1.
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Now let a ∈ A+ non-zero and ‖a‖ = 1. The hereditary C *-subalgebra D :=

(a− 1/2)+A(a− 1/2)+ contains a 2-homogenous element g := ψ(f0 ⊗ 12) with

‖g‖ = 1.

Let c := ψ((f0 − 1/2)+ ⊗ p22) ∈ D, d := 2ψ((f0 − (f0 − 1/2)+) ⊗ p22, and

e := 2(a− (a− 1/2)+)− d. Then dc = c = cd, da = d = ad, a is in the ideal of aAa

generated by e, and ec = 0.

There exists a pure state ρ : A → C with ρ(a) = 1. Let dρ : A → L(H) the

corresponding irreducible representation and x ∈ L(H) with ‖x‖ = 1 and

ρ(a) = 〈dρx, x〉

Perhaps it is easier to show first that (a − 1/2)+A(a − 1/2)+ can not have a

character

By Lemma ??

NO-NO! need here a new criteria for infiniteness! Which one? ???

Part (v) of Lemma 2.5.3

to show that a (respectively πJ(a)) is infinite.

Something like:

?????????????? PROOF? �

There are places, e.g. Lemma 2.6.8(i) - or ?? -, with results

partly similar to the in Lemma 2.5.7 considered!

Lemma 2.5.7. Let p, q ∈ B projections and b ∈ B+. If (b ⊕ q) - (p ⊕ 0) in

M2(B), then for each 0 < ε < min(‖b‖, 1) there exists an element d = d(ε) ∈ B and

a partial isometry z = z(ε) ∈ B – depending both on ε –, such that for r := z(z∗)

holds r ≤ p, z∗z = q, (p− r)d = d and d∗d = (b− ε)+.

Special cases are:

( i) If, moreover, b is a projection then this implies that b ⊕ q is in M2(B)

MvN-equivalent to a sub-projection of p ⊕ 0, i.e., there are projections

p1, p2 ∈ B such that p1p2 = 0, p1 + p2 ≤ p, p1 ∼MvN b and p2 ∼MvN q .

( ii) If p, q ∈ B are projections that satisfy p - q then there exists a projection

r ≤ q that is Murray–von-Neumann equivalent to p, i.e., there exists a

partial isometry v ∈ B with v∗v = p and vv∗ =: r ≤ q.
In particular, p ≈ q, if and only if, there exist partial isometries

v, w ∈ B such that v∗v = q, vv∗ ≤ p, w∗w = p and ww∗ ≤ q ( 37 ).

(iii) If B is unital and 1 := 1B, then there exists 0 6= c ∈ B with c⊕ 1 - 1, if

and only if, B contains a non-unitary isometry.

And this is equivalent to I(1) 6= {0} by the definition of the ideal I(1)

given in Lemma 2.5.3.

37Compare Remark 2.5.8.
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(iv) The unit 1 := 1B is properly infinite in B, – in the sense that there exists

isometries S, T ∈ B with S∗T = 0 –, if and only if, 1 ⊕ 1 - 1 ⊕ 0 in

M2(B), if and only if, 1 ∈ I(1), if and only if, I(1) = B .

Proof. Recall that b ≈ b∗b ≈ (b∗b)1/2. It implies that the relation b⊕ q - p is

equivalent to (b∗b)1/2 ⊕ q - p. Thus, we can suppose that b is positive in all later

considered cases.

The relation b⊕q - p⊕0 implies by Lemma A.6.1(iv) that for each ε > 0 there

exists δ = δ(ε) > 0 and a matrix T ∈M2(B) such that

(b− ε)+ ⊕ (q − ε)+ = ((b⊕ q)− ε)+ = T ∗((p⊕ 0)− δ)+T .

Since ε < min(‖b‖, 1), it follows that the left side is non-zero, and therefore

δ < 1. Thus,

(b− ε)+ ⊕ (1− ε)p = (1− δ)S∗(p⊕ 0)S ,

where S := [x, y] is the first row of T (and we can suppose that px = x and

py = y). We get that x∗py = 0 and S∗(p⊕ 0)S = diag(x∗px, y∗py). It implies that

(b− ε)+ = (1− δ)x∗px and (1− ε)p = (1− δ)y∗py We define a partial isometry by

z := z(ε) := (1− ε)−1/2(1− δ)1/2py

and an element d := d(ε) ∈ B by

d := (1− δ)1/2px .

Straight calculation shows that z and d have the proposed properties.

Proof of the special cases:

(i): If b is a projection and ε < 1/2 then let p1 := r = z(ε) · z(ε)∗ and

p2 := (1− ε)−1d(ε) · d(ε)∗ . This works because b = (1− ε)−1d(ε)∗d(ε) .

(ii): It if moreover b = 0, then (i) says p1 = 0 and that r := p2 ⊆ p and

v := (1− ε)−1/2d(ε) satisfy v∗v = q ≤ p and vv∗ = r.

(iii): The definition of the ideal I(1) ⊆ B with 1 := 1B , given in Lemma 2.5.3,

says that c ∈ I(1) if and only if c ⊕ 1 - 1. Thus, I(1) 6= {0}, if and only if, there

exists non-zero c ∈ B with c⊕ 1 - 1 .

If there exists 0 6= c ∈ B with c ⊕ 1 - 1, then b ⊕ 1 - 1 for b := c∗c, because

b ≈ c .

Let q := 1 , p := 1 , b := c∗c and ε := ‖b‖/2 in the general case. Then

there exists elements d ∈ B and z ∈ B with z∗z = 1, d∗d = (b − ‖b‖/2)+ and

(1− zz∗)d = d. It follows that z is a non-unitary isometry in B.

If B contains a non-unitary isometry z ∈ B, then c⊕1 - 1 for c := 1−zz∗ 6= 0,

because c⊕1 ≈ c⊕zz∗ and 1−zz∗⊕zz∗ = R∗(1⊕0)R for the row R := [1−zz∗, zz∗] ,.
Thus, (1− zz∗)⊕ 1 - 1 .

(iv): The subset I(1) ⊆ B is a closed ideal of B by Lemma 2.5.3(i). Thus,

1 ∈ I(1) , if and only if, B = I(1) . By Definition of the ideal I(1) of B, 1 ∈ I(1) ,

if and only if, 1⊕ 1 - 1⊕ 0 in M2(B).



5. PROPERLY INFINITE ELEMENTS IN NON-SIMPLE C*-ALGEBRAS 215

The latter 1 ⊕ 1 - 1 is the case of Part (i) with b := 1, q := 1 and p := 1.

By Part (i), there are projections p1, p2 ∈ B such that p1p2 = 0, p1 + p2 ≤ 1,

p1 ∼MvN 1 and p2 ∼MvN 1 . It says that there exists elements S, T ∈ B with

S∗S = 1 = T ∗T with S(S∗) = p1 and T (T ∗) = p2. This are isometries with

S∗T = S∗(SS∗)(TT ∗)T = S∗p1p2T = 0. �

Remark 2.5.8. The relations v∗v = q, vv∗ ≤ p, w∗w = p and ww∗ ≤ q in

Part(ii) of Lemma 2.5.7 do not imply W-vN equivalence: This can be seen in stable

simple purely infinite C *-algebras: The W-vN equivalence classes of projections in

B ⊗ K correspond bijective to the elements of K0(B) but all non-zero projections

in p, q ∈ B ⊗K satisfy p ≈ q.

Corollary 2.5.9. Let A a unital C*-algebra. Then 1A is properly infinite in

A, if and only if, A/J contains a non-unitary isometry for each closed ideal J 6= A

of A.

Proof. Part (v) of Lemma 2.5.3 says that 1 is properly infinite in A, if and

only if, πJ(1) = 1A/J ∈ A/J is infinite in A/J for each closed ideal J 6= {0} of A.

By Part (iii) of Lemma 2.5.7, 1A/J is infinite in A/J , if and only if, there exists a

non-unitary isometry in A/J . �

Remark 2.5.10. The closed ideal IA(a) is always contained in the closed ideal

J(a) of A generated by a, and J(a) = IA(a) if and only if a is properly infinite.

Then J(a) is equal to the closure of
⋃
nA · (a∗a − 1/n)+ · A , i.e., of the set of

products b · (a∗a− 1/n) · c , with b, c ∈ A ( 38 ).

The Definition 2.0.4 of property pi(n) immediately allows to see that it implies

that each non-zero (n + 1)-homogenous element is properly infinite in A if A has

property pi(n). But the Corollary 2.7.18 of Proposition 2.7.16 gives the better result

that all non-zero n-homogenous elements are properly infinite in A with property

pi(n). It implies that `∞(A) has no irreducible representation on a Hilbert space of

dimension ≥ n, and that property pi(n) passes to `∞(A) if A has property pi(n).

Property pi-n in Definition ?? implies property pi(m) for some m ≤ n, but

no explicit lower bound for m is known. The non-trivial direction is, that each

C *-algebra with property pi(m) has property pi-n for some n ≥ m, but it seems

that some property of the ideal system of the multiplier algebra plays a certain role.

For real-rank zero C *-algebras they are all the same and say that each non-zero

projection is infinite.

Some sensible property of the definitions of infiniteness of elements can be seen

in the C *-subalgebra A ⊆ C([0, 1],O2) of operator-valued functions

f : [0, 1]→ O2 := C∗(sk ; s∗ksk = 1 = s1s
∗
1 + s2s

∗
2)

with f(1) ∈ M2∞ ⊆ O2 . There f ∈ A+ is infinite if and only if f(1) = 0. The –

inside A – properly infinite element f given by the function f(t) := (1 − t)s1s
∗
1 ∈

38 But it seems that the latter property does not imply always that a is properly infinite.

Examples for that?
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C0([0, 1),O2) has the property that no element g ∈ A+ with ‖g‖ ≤ 1 and gf = f

can be infinite in A.

Lemma 2.5.11. Let b :=
∑m
k=1 ak with a1, . . . , am ∈ A+.

If the elements ak ⊗ 1n are all properly infinite in Mn(A), i.e., if ak ⊗ 1n+1 -

ak ⊗ 1n for k = 1, . . . , n, then b⊗ 1m·n is properly infinite in Mm·n(A).

Proof. Notice that b - (a1 ⊕ . . .⊕ am) ≤ b⊗ 1m in Mm(A), and that (a1 ⊕
. . .⊕am)⊗1n+1 - (a1⊕ . . .⊕am)⊗1n in Mm·n(A), because the ak⊗1n are properly

infinite in Mn(A).

Induction over k ∈ N gives that (a1 ⊕ . . .⊕ am)⊗ 1k+n - (a1 ⊕ . . .⊕ am)⊗ 1n.

Gives b⊗ 1k+n - b⊗ 1mn. for all k ∈ N. In particular, b⊗ 11+(mn) - b⊗ 1mn,

i.e., b⊗ 1mn is properly infinite. �

Example 2.5.12. There exist a closed ideal J / A and a ∈ A+ with J ⊆ D :=

aAa, such that D is stably finite and I(d) = {0} for all d ∈ D (hence A is stably

finite), but πJ(a) = a+ J is properly infinite in A/J .

Indeed: By an “opposite version” of a theorem of Glimm in [438, cor.1.4(v)]

there exists a hereditary C *-subalgebra D of the CAR-algebra B := M2∞ such

that the unital two-sided normalizer algebra A := N (D,B) ⊆ B of D in B satisfies

A/D = O2 . Then a := 1 ∈ A satisfies that the C *-subalgebra aAa = A ⊆ B is

stably finite, i.e., I(a⊗ 1n) = {0} for all n ∈ N . But πJ(a) is the properly infinite

unit of O2 for J := D / A .

Example 2.5.13. The unit element 1 of the unitization Ã of C0((0, 1],O2) is a

stably finite element of Ã.

More generally, the unit element 1A of the “join” algebras

A := Emax(B,C) ⊆ C([0, 1], B ⊗max C)

of unital algebras B and C, or its quotient

A := E(B,C) ⊆ C([0, 1], B ⊗min C)

is stably finite if 1n ⊗ 1B finite in Mn ⊗B for all n ∈ N.

Even more generally, 1A is infinite in A if and only if 1A = T ∗T for some

non-unitary isometry T ∈ A, cf. Lemma 2.6.8(i).

In the next lemma we can replace the pair (ε, 2ε) with 0 < ε < ‖a‖/2 obviously

by any pair of positive reals 0 < δ < γ < ‖a‖ , simply by passing from a to f(a) with

a suitable strictly increasing continuous real function f ∈ C0(0, ‖a‖]+ on [0, ‖a‖]
with f(0) = 0 .

Lemma 2.5.14. Let B a C*-algebra, a ∈ B+ non-zero, ε ∈ (0, ‖a‖ /2) and

denote by J the closed ideal that is generated by the two-sided annihilator

Ann((a− 2ε)+, B) := { b ∈ B ; b (a− 2ε)+ = 0 = (a− 2ε)+ b }

of (a− 2ε)+ in B.
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(i) If (a − ε)+ is in J then J = B, i.e., then Ann((a − 2ε)+, B) is a full

hereditary C*-subalgebra of B.

(ii) The hereditary C*-subalgebra Ann((a−2ε)+, B) is full in B if there exists

b ∈ B that satisfies the equations:

b∗(a− 2ε)+ = 0 and b∗b = (a− ε)+ . (5.1)

If, moreover, the elements of Ann((a−2ε)+, B) are properly infinite, then

conversely the fullness of Ann((a−2ε)+, B) implies the existence of b ∈ B
that satisfies Equations (5.1).

More generally, Ann((a− 2ε)+, B) is full in B if there exist elements

u, v ∈ B and δ > 0 such that (vv∗ − δ)+ = (a − 2ε)+, u∗(vv∗ − δ)+ = 0,

and [u] ≥ [v] in Cu(B).

(iii) If J 6= B then B/J is unital, and πJ((a− ε)+) is invertible in B/J with

spectrum in [ ε, ‖a‖ − ε ].

In particular, πJ(a) is invertible in B/J , if and only if, πJ(a) 6= 0.

Proof. Let ε, µ > 0. Define fµ(t) := min{ 1, (t/µ − 1)+ } for t ∈ [0,∞), i.e.,

fµ(t) := 0 for t ≤ µ, fµ(t) := t/µ− 1 for t ∈ [µ, 2µ] and fµ(t) := 1 for t ∈ [2µ,∞).

Notice that µfµ(t) ≤ max(t− µ, 0) and (1− fµ(t)) max(t− 2µ, 0) = 0.

(i,iii): Let a 6= 0, 0 < ε < ‖a‖/2 and let J denote the closed ideal J of B,

generated by Ann((a− 2ε)+, B).

The ideal C∗(a) ∩ J of the C *-subalgebra C∗(a) ⊆ B contains the closed ideal

K of C∗(a) that is generated by (1− fε(a)) · C∗(a) because fε(t) = 1 for t ≥ 2ε.

It follows that the non-zero values of the spectrum of πJ((a−ε)+) are contained

in the spectrum of πK((a− ε)+) in C∗(a)/K. The latter is contained in [ε, ‖a‖− ε]
if 2ε < ‖a‖.

The elements (1−fε(a))a and fε(a)−fε(a)2 are contained in K ⊆ J . It follows

that P := πJ(fε(a)) is a projection in B/J .

The equation (1−fε(a))(a−2ε)+ = 0 implies that b−fε(a))b ∈ J for all b ∈ B,

because

(1− fε(a))B(1− fε(a)) ⊆ Ann((a− 2ε)+, B) ⊆ J .

Thus, P is the unit element of B/J if J 6= B, and then εP ≤ πJ((a − ε)+) ≤
(‖a‖−ε)P . We get that πJ((a−ε)+) and πJ(a) are invertible in B/J with inverses

of norms ≤ ε−1, respectively ≤ (2ε)−1.

The equation J = B is equivalent to (a − ε)+ ∈ J because that latter causes

P = 0.

(ii): If a ∈ J = B then there exist b1, . . . , bn ∈ B with bkb
∗
k(a− 2ε)+ = 0 and∑n

k=1 b
∗
kbk = (a− ε/2)+ .
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If the elements of Ann((a− 2ε)+, B) are properly infinite, then it follows that

there exists γ > 0 and d1, d2 ∈ B such that

n∑
k=1

(d1bkd2)∗(f − γ)+(d1bkd2) = (a− ε)+

for the element f :=
∑n
k=1 bkb

∗
k of Ann((a− 2ε)+, B).

By assumption on Ann((a − 2ε)+, B), the element f is properly infinite. It

implies that there exist g1, . . . , gn ∈ B such that g∗j fgk = δjk(f −γ)+. The element

b :=
∑n
k=1 f

1/2gkd1bkd2 satisfies bb∗(a− 2ε)+ = 0 and b∗b = (a− ε)+.

If there exists b ∈ B with bb∗(a−2ε)+ = 0 and b∗b = (a−ε)+, then (a−ε)+ ∈ J .

It implies J = B by Part (i). (This particular observation do not use an assumption

on infiniteness of elements in Ann((a− 2ε)+, B).)

Suppose, more generally, that there exist elements u, v ∈ B and δ > 0 such

that (vv∗ − δ)+ = (a− 2ε)+, u∗(vv∗ − δ)+ = 0, and [u] ≥ [v] in Cu(B).

Then vv∗ - u∗u, and there exist d ∈ B with d∗u∗ud = (vv∗ − δ/2)+ ∼MvN

(v∗v−δ/2) . The element b := ud satisfies b∗(vv∗−δ)+ = 0 and b∗b = (vv∗−δ/2)+.

Thus Ann((vv∗−δ)+, B) = Ann((a−2ε)+, B) is full in B, because we can take

(vv∗, δ/2) in place of (a, ε) in our former considerations.

In case where Ann((a − 2ε)+, B) is full and purely infinite, we can find the

above considered element b and can define u := b, v := b∗, δ := ε. They satisfy the

requirements on v, w and δ, because b∗(b∗b− ε)+ = b∗(a−2ε) = 0 and [b] ≥ [b]. �

Does there exists a ‘‘relative’’ variant

for some spectral p.i. elements in e ∈ J??

Lemma 2.5.15 ([462]). Let a ∈ A+ with A = aAa , and let J / A a closed

ideal, such that πJ(a) = a+ J is properly infinite in A/J . Then:

(i) For b, c1, c2, c3 ∈ A+ holds c1 ⊕ c2 ⊕ c3 - b⊕ 0⊕ 0 in M3(A), if and only

if, for every ε > 0, there are f1, f2, f3 ∈ bA and γ > 0 such that

f∗j (b− γ)+fk = δj,k(ck − ε)+ for j, k = 1, 2, 3 .

(ii) For every ε > 0,there exist elements a1, a2 ∈ A+, e ∈ J+ and n ∈ N, such

that a1a2 = 0, (a1 + a2)e = 0, and (a− ε)+ - ak ⊕ (e⊗ 1n) for k = 1, 2.

(iii) If each 0 6= e ∈ J+ is properly infinite, then a is properly infinite.

Proof. We give here a proof that contains more details than in [462].

(i): Let c := c1⊕c2⊕c3 and ε > 0. By Lemma A.6.1(vi), there are F ∈M3(A)

and δ > 0 with (c− ε)+ = F ∗((b− δ)+ ⊕ 0⊕ 0)F .

We define fk := ξ(b)F1,k for k ∈ {1, 2, 3}, where ξ ∈ C0(0, 1 + ‖b‖] is given by

ξ(t) := min(1, (2/δ) max(0, t− δ/2)) .

Then fk ∈ bA and the row G := [f1, f2, f3] ∈M1,3(A) ⊂ M3(A) satisfies

(c− ε)+ = F ∗((b− δ)+ ⊕ 02)F = G∗((b− δ)+ ⊕ 02)G .
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(ii): Let ε ∈ (0, ‖πJ(a)‖) and µ := ε/3. Since πJ(a) ⊗ 13 - πJ(a) by proper

infiniteness of πJ(a), and since always a ≈ a2, there exist g1, g2, g3 ∈ A/J and δ > 0

with g∗i πJ((a− δ)+)gj = δi,jπJ((a−µ)+) . If we let xk := πJ((a− δ)+)1/2gk , then

(xkx
∗
k − µ)+ ∼ (x∗kxk − µ)+ = πJ((a− 2µ)+) ,

in A/J , and there is a (unique) C *-morphism ϕ : C0(0, 1] ⊗ M3 → A/J with

ϕ(f0⊗ pij) = xi(x
∗
j ) . The C *-algebras C0(0, 1]⊗Mn are projective by Proposition

A.8.4 in the sense of Definition A.8.1 in Appendix A . It implies that there exists a

C *-morphism ψ : C0(0, 1]⊗M3 → A with πJ ◦ ψ = ϕ , cf. also Lemma 2.1.15 and

Remark 2.1.16 concerning the projectivity of C0((0, 1],M), for C *-algebras M of

finite dimension.

Let bk := ψ(f0 ⊗ pkk), for k = 1, 2, 3 and take yk ∈ A with πJ(yk) = xk. Then

b1 ∼ b2 ∼ b3 , bjbk = 0 for j 6= k, and define

zk :=
(
y∗k(bk − µ)+yk

)
−
(
(a− 2µ)+ · (a− µ)+

)
∈ J .

Thus, (a− 2µ)+ - (bk − µ)+ ⊕ v for k = 1, 2 and v := |z1|+ |z2| . It follows, that

there exists γ > 0 such that, for k = 1 and k = 2, holds

(a− ε)+ - (bk − µ)+ ⊕ (v − γ)+ .

The annihilator D := Ann((b1 + b2 − µ)+, A) is a hereditary C *-subalgebra of

A that contains b3 . It implies that b1 + b2 is in the closed ideal generated by D,

and that D is full by Lemma 2.5.14. Since D is full, also J ∩ D is full in J , i.e.,

span(J(D ∩ J)+J) is dense in J .

It follows that there exist d1, . . . , dn ∈ J and e ∈ (D ∩ J)+ with
∑
j d
∗
jedj =

(v − γ)+. In particular, (v − γ)+ - e⊗ 1n.

(iii): Let ε > 0, a1, a2, e ∈ A+ and n ∈ N as in Part (ii). Then

(a− ε)+ ⊕ (a− ε)+ - a1 ⊕ a2 ⊕ (e⊗ 12n) .

Since e is properly infinite, and since a1, a2, e are pairwise orthogonal, we get:

((a⊗ 12)− ε)+ - a1 ⊕ a2 ⊕ e ∼ a1 + a2 + e - a ,

because a is a strictly positive element of A. Since ε > 0 is arbitrary, we obtain

a⊗ 12 - a. �

Definition 2.5.16. We say that 0 6= b ∈ A+ is spectral properly infinite if

(b− t)+ is properly infinite in A for each t ∈ (0, ‖b‖). (See Section 1 or Definition

2.5.1 of properly infinite elements.)

Lemma 2.5.17. Let A a C*-algebra and ε > 0.

(o) Each b ∈ A+ \{0} is spectral properly infinite, if and only if, A is a purely

infinite C*-algebra.

(i) If b ∈ A+ is spectral properly infinite in sense of Definition 2.5.16, then

elements d1, d2 ∈ A with d∗j bdk = δj,k(b − ε)+ can be found with norm-

bound ‖dj‖2 ≤ 2 ‖b‖ /ε .
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(ii) If the positive part A+ of a C*-algebra A contains a dense subset X ⊆ A+

such that each b ∈ X is spectral properly infinite, then A is purely infinite,

i.e., each non-zero a ∈ A+ is properly infinite.

Proof. (o): By definition, A is purely infinite if each non-zero element a ∈ A+

is properly infinite. In particular (b− t)+ is properly infinite in A for each b ∈ A+

and t ∈ (0, ‖b‖).

(i): Let b ∈ A+ spectral properly infinite, and ε = 2δ ∈ (0, ‖b‖). There

exist g1, g2 ∈ A with g∗j (b − δ)+gk = δjk · (b − 2δ)+ because (b − δ)+ is properly

infinite. Then dk := b−1/2(b− δ)1/2
+ gk is in A and ‖dk‖2 ≤ δ−1‖(b−2δ)+‖ , because

δ(t − δ)+ ≤ t(t − δ)+ for t ∈ (0,∞), and A+ 3 a 7→ ‖g∗ka gk‖ ∈ R+ is order

monotone.

(ii): Let a ∈ A+ with ‖a‖ = 1 and ε > 0. There exists b ∈ X with ‖b − a‖ <
γ := ε/3 . It implies ‖(b− 2γ)+ − a‖ < 3γ, because ‖(b− 2γ)+ − b‖ ≤ 2γ.

By Lemma 2.1.9 there exists contractions d1, d2 ∈ A with d∗1ad1 = (b − γ)+

and d∗2(b− 2γ)d2 = (a− 3γ)+.

By assumption, each b ∈ X is spectral properly infinite, thus (b−γ)+ is properly

infinite for each γ ∈ (0, ‖b‖), i.e., (b − γ)+ ⊕ (b − γ)+ - (b − γ)+, and we find

e1, e2 ∈ A with e∗j (b− γ)+ek = δjk(b− 2γ)+. It follows that ck := d1ekd2 satisfies

c∗jack = δjk(a − 3γ)+. Thus, each a ∈ A+ is properly infinite and A is purely

infinite. �

Example 2.5.18. Let a1, a2, . . . ∈ K := K(`2(N))+ defined by an :=

diag(1, (n+ 1)−1, (n+ 1)−2, . . .) then each an is properly infinite, and the sequence

(a1, a2, . . .) is decreasing with norm-limit (1, 0, 0, . . .) in K. Thus, convergent

sequence of of properly infinite contractions have in general no properly infinite

limit.

Are they really properly infinite?

Does there exist dk ∈ K with

diag(1, 1, 1/n, 1, n, 1/n2, 1/n2, . . .) = lim
k
d∗k diag(1, 1/n, 1/n2, . . .)dk

in norm?

(1, 1/n, 1/n2, . . .) - (1, 1/n2, 1/n4, 1/n6, . . .) ⊕ (1/n, 1/n3, 1/n5, 1/n7 . . .)

≈ (1, 1/n, 1/n2, 1/n3, . . .) ⊕ (1, 1/n, 1/n2, 1/n3, . . .) via dk := ak ⊕ bk ak :=

(1, n1/2, n, 1/n6, ...)

The above technical lemmata on the properties of the Cuntz-relation - and ≈
yield almost immediately the following permanence properties of the class of purely

infinite C *-algebras.

Notice that A⊗ C0(0, 1] is not in this list.

Proposition 2.5.19 (Permanence of pure infiniteness). The class of (not neces-

sarily simple) purely infinite C*-algebras A is invariant under following operations:
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(i) passage to quotients A/J ,

(ii) inductive limits,

(iii) infinite direct products `∞(A1, A2, . . .) and ultrapowers Aω,

(iv) passage to hereditary C*-subalgebras D = DAD,

(v) Morita equivalence, and

(vi) extensions.

Proof. Recall that A is purely infinite, if and only if, for each a ∈ A,

a ∈ I(a) := {b ∈ A ; b⊕ a - a} ,

and recall that I(a) is a closed ideal of A by Lemma 2.5.3(i).

(i): If a ∈ A \ J is properly infinite in A, i.e., a ∈ I(a), then πJ(a) = a + J

is properly infinite in A/J , i.e., πJ(a) ∈ I(πJ(a)) because πJ(I(a)) ⊆ I(πJ(a)) by

Lemma 2.5.3(v). Thus, each quotient A/J by a closed ideal J 6= A of A is purely

infinite if the C *-algebra A is purely infinite.

(ii): If {hσ,τ : Aσ → Aτ}τ,σ∈T is a directed net of C *-morphisms,

A := indlimτ→T (hσ,τ : Aσ → Aτ )

is the (canonical) inductive limit of C *-algebras, then A is generated by the upward

directed net of the images of hσ,∞ : Aσ → A. Thus, A contains an upward directed

net of C *-subalgebras hσ,∞(Aσ) that are quotients of purely infinite C *-algebras.

By Part (i), this C *-subalgebras are purely infinite. The elements of the images

build together a dense *-subalgebra of A. The elements (a∗a− t)+ in the positive

part of this *-subalgebra are properly infinite. By Lemma 2.5.17(ii) this implies

that A is purely infinite.

(iii): Let A1, A2, . . . a sequence of purely infinite C *-algebras, an ∈ An positive

contractions (possibly an = 0), and ε > 0 .

For n ∈ N with an 6= 0 there exist by Lemma 2.5.17(i) elements d
(n)
1 , d

(n)
2 ∈ An

with

‖d(n)
k ‖

2 ≤ 2‖an‖ /ε

and

(d
(n)
j )∗and

(n)
k = δj,k(an − ε)+ .

Let a := (a1, a2, . . .) and dk := (d
(1)
k , d

(2)
k , . . .) (k = 1, 2), where we put d

(n)
k = 0 if

an = 0. Then dk ∈ `∞(A1, A2, . . .) and d∗jadk = δj,k(a− ε)+ . Hence, each positive

contraction in `∞(A1, A2, . . .) is properly infinite.

The ultrapower Aω is purely infinite by Part (i), because it is a quotient of

`∞(A).

(iv): If D is a hereditary C *-subalgebra of A, a ∈ D and a is properly infinite

in A, i.e., a ∈ IA(a), then a is properly infinite in D, i.e., a ∈ ID(a), because

ID(a) = IA(a) ∩ D by Lemma 2.5.3(ii). Hence, D is purely infinite if A is purely

infinite.
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(v): Clearly, a C *-algebra B is purely infinite if there exists a purely infinite

C *-algebra D and a *-isomorphism from D onto B,

Two C *-algebras B1 and B2 are Morita equivalent (in the category of C *-

algebras), if there exists a C *-algebra A and *-monomorphisms ϕk : Bk → A with

k ∈ {1, 2} such that Dk := ϕk(Bk) are full hereditary C *-subalgebras of A. Here

“full” means that A is the closure of the ideal in A generated by Dk.

We know from Part (iv) that a hereditary C *-subalgebra D of A is purely

infinite if A is purely infinite.

It follows that the invariance of pure infiniteness under Morita equivalence is

equivalent to the following statement:

C *-algebras A are purely infinite if they contain a full hereditary C *-subalgebra D

that is purely infinite.

We show more generally that a purely infinite hereditary C *-subalgebra D of

A generates a purely infinite closed ideal J of A.

Let D a purely infinite hereditary C *-subalgebra of A and let J := span(ADA)

the ideal J of A generated by D.

Let a ∈ J+ ⊆ A+ and ε > 0. There exist b1, . . . , bn ∈ D+ and f1, . . . , fn ∈ A
with

‖
n∑
k=1

f∗k bkfk − a‖ < ε/2 .

It follows for b := b1 + · · · + bn ∈ D+ that a ≤ ε/2 +
∑n
k=1 f

∗
k bfk , calculated in

A+ C1 ⊆M(A). Let γ := ‖
∑n
k=1 f

∗
kfk ‖ and ν := ε/(2 + 3γ).

By assumption on D, b ∈ D+ is properly infinite in D. Thus, b ⊗ 1n - b

inside D, and there exist e1, . . . , en ∈ A with e∗j bek = δjk(b − ν)+ . The element

g :=
∑
k ekdk satisfies g∗bg =

∑n
k=1 d

∗
k(b− ν)+dk and a ≤ ε/2 + g∗bg.

By Lemma 2.1.9, there exists a contraction h ∈ A such that (a− ε)+ = z∗z for

z := (
∑
k(b− ν)

1/2
+ dk)h.

Since zz∗ ∈ D and z∗z = (a − ε)+ we get [zz∗] = [z∗z] = [(a − ε)+] ≤ [a] and

[zz∗] + [zz∗] ≤ [zz∗] ≤ [a]. It follows that [(a− ε)+] + [(a− ε)+] ≤ [a] for all ε > 0.

But this is equivalent to [a] + [a] ≤ [a], i.e., to a ⊕ a - a in J , and a is properly

infinite in J . This shows that for each a ∈ J+ \ {0}, and shows that J is purely

infinite.

Alternatively expressed: Take a ∈ J+ and verify that for each ε ∈ (0, ‖a‖) the

element (a− ε)+ is M-vN-equivalent to some element in D+. The use that proper

infiniteness is invariant under M-vN equivalence.

(vi): Let J /A a purely infinite closed ideal with purely infinite quotient A/J ,

and let a ∈ A+.

We can replace A by its hereditary C *-subalgebra D := aAa . Then still D∩J
and D/(D ∩ J) ∼= πJ(a)(B/J)πJ(a) are purely infinite by Parts (i) and (iv). Then
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aDa is dense in D and πJ(a) is properly infinite in D/(D ∩ J). Thus, Lemma

2.5.15(iii) applies and a is properly infinite in A .

This applies to each a ∈ A+ and shows that A is purely infinite. �

We underline that some proofs of similar permanence properties for the classes

of weakly purely infinite and of strongly purely infinite C *-algebras are much more

involved. The latter class of C *-algebras is relevant for our classification. Up to

now (2019) it is unknown if this three infiniteness properties (locally, weakly, pi(1))

are different or not, even in the case of separable nuclear C *-algebras. It is also

unknown if C([0, 1], A) p.i. if A is p.i.

Question 2.5.20. Suppose that A is a C *-algebra with properly infinite unit

element and let a ∈ A a contraction.

Does there exist isometries s, t ∈ A with 3‖s∗at‖ < 2 ?

(The latter is the “squeezing property” of Definition 4.2.14.)

Compare next with Proof of Prop. 4.2.15(b) and with Prop. ??!!

New references give different results??

The property that for each contraction a ∈ A there exist isometries s, t ∈ A
with 3‖s∗at‖ < 2 is equivalent to the “squeezing” Property (sq) for A, cf. Definition

4.2.14.

It is easy to see that it holds for all unital strongly purely infinite C *-algebras,

because it is true for all contractions a ∈ A, if and only if, the positive 2×2-matrix

M := [bjk] with entries b11 := b22 := 1 and b∗21 = b12 := a can be approximately

diagonalized with help of a diagonal matrix D := diag(d1, d2) up to ε ∈ (0, 1/2),

i.e.,

‖ 12 − D∗MD ‖ < ε .

The Lemma 4.2.13 allows to show that all unital purely infinite (not necessarily

simple) C *-algebras A have the squeezing property, cf. Part (b) of Proposition

4.2.15.

The Property (sq) alone does not imply that a properly infinite unital C *-

algebra A is purely infinite, e.g. take A := M(B) for B := C([0, 1],K) or B :=

M2∞ ⊗ K. In the case B := M2∞ ⊗ K the corona Q(B) has Property (sq) and is

residually antiliminary, but is not weakly p.i..

Question concerning Property (sq):

What happens in case of “properly” infinite non- p.i. simple unital A ? Examples?

Relations to (Q.1) in real rank zero case?

Optional one could attempt to use

--e.g. in case of linearly ordered ideal lattice --

following Definition 2.5.21.

But it could be that it is equivalent to ‘‘residually antiliminary’’
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Definition 2.5.21. We call a C *-algebra B “locally infinite” if for every

pure state ρ on B and each hereditary C *-subalgebra D of B with ‖ρ|D‖ = 1

there exists a contraction d := d(D, ρ) ∈ D with ρ(d∗d) = 1, ρ(dd∗) = 0 and

(dd∗ − 1/3)+ ≤ d∗d.

Where is here really ”infiniteness” ??? What is it in case of simple C*-algebras

with RR=0?

Definition 2.5.21 implies:

A “locally infinite” C *-algebra B is residual antiliminary in the sense of

Definition 2.7.2, because the property of “local infiniteness”

(i) passes to each non-zero quotient and every non-zero hereditary C *-

subalgebra, and

(ii) implies that a pure state ρ on a non-zero hereditary C *-algebra D of B

can not be a non-zero character on D.

It is not difficult to see that for pure states ρ on D ⊆ B ...

Does “l.p.i.” or “pi(n)” imply this? (Both pass to hereditary C *-subalgebras

and quotients!)

If E ⊆ D is hereditary, stable and σ-unital with ρ(E) 6= {0} then there exists

an element d := d(ρ,D) ∈ E with the properties in Definition 2.5.21...

6. Cases: many projections, linear ordered ideal-lattice ...

Still to be worked out in detail!!!

Desired Main Result:

If A has the property that for each closed ideal J 6= A and any non-zero

hereditary C *-subalgebra D of A/J contains a (non-zero) projection p ∈ D, then

A is strongly purely infinite, if and only if, A is locally purely infinite, ...

Definition 2.6.1. We say that a C *-algebra A is rich of projections if, for

each closed ideal J 6= A of A and non-zero hereditary C *-subalgebra D of A/J ,

there exists a non-zero projection p ∈ D.

In particular, A has then the “small projections” property (SP) that requires

that every non-zero hereditary C *-subalgebra D of A contains a non-zero projec-

tion.

Among the C *-algebras that are “rich of projections” are the C *-algebras

A with real rank zero, a property that is equivalent to the property that each

hereditary C *-subalgebra D of A contains an approximate unit of D consisting of

projections in D, cf. [73, thm. 6.5.6].

(We do not know if C *-algebras that are “rich of projections” have real rank

zero, because projections usually do not lift to projections.
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It is also not clear if every non-zero hereditary C *-subalgebra D ⊆ A contains

an approximate unit for D consisting of convex combinations of projections ... )

Lemma 2.6.2. Let A a unital C*-algebra. If for each pure state ρ of A there

exits a stable C*-subalgebra D ⊆ A with ρ(D) 6= {0} then there exists n ∈ N such

that 1A ⊗ 1n ∈ A⊗Mn is properly infinite in A⊗Mn.

If there exists a stable C*-subalgebra D ⊆ A that generates A (in the sense that

the linear span of A ·D ·A is dense in A), then 1A itself is properly infinite.

Proof. The algebraic union V of the upward directed family of finite sums of

stably generated ideals of A is an ideal of A that is dense in A by its definition,

because V can not be in the kernel of any pure state. It implies that 1 ∈ V .

Thus, 1 is contained in an ideal that is a finite sum of stably generated ideals,

i.e., there exists – by assumptions and Part (ii) of Lemma 2.1.7 – stable hereditary

C *-subalgebras D1, . . . , Dn ⊂ A and elements dj ∈ A (j = 1, . . . , n) with d∗1d1 +

. . .+ d∗ndn = 1 and djd
∗
j ∈ Dj .

The n ∈ N with this property can be chosen minimal with the property that

the sum of ideals generated by the Dj contains 1, because if djd
∗
j and dkd

∗
k both

are in a closed ideal J that is generated by some stable C *-subalgebra D, then one

can find d ∈ A with dd∗ ∈ D and d∗d = d∗jdj + d∗kdk , because M(D) contains

isometries S1, S2 ∈M(D) with S∗1S2 = 0.

The stability of the Dj causes that its two-sided multiplier algebra M(Dj)

contains a copy Bj of E2n generated by 2n isometries Sjk ∈ Bj , k ∈ {1, . . . , 2n},
with mutually orthogonal ranges:

S∗jkSj,` = δk,`1j , where 1j denoted the unit element of M(Dj).

Consider the two n × n matrices T0 := [Tj,k,0] and T1 := [Tj,k,1] in Mn(A)

with entries Tj,k,0 := Sj,kdk and Tj,k,1 := Sj,(k+n)dk for j, k ∈ {1, . . . , n} then

T ∗xTy = δx,y · 1n for x, y ∈ {0, 1}.

Thus, 1n ∈Mn(A) is properly infinite.

In case that a single hereditary C *-subalgebra D generates A then there exist

d1, d2 ∈ A with d1d
∗
1 + d2d

∗
2 ∈ D, d∗1d2 = 0 and d∗1d1 = d∗2d2 = 1. �

Lemma 2.6.3. The class of C*-algebras A,B, . . . that are rich of projections is

invariant under following operations:

(i) passage to non-zero hereditary C*-subalgebras D ⊆ A,

(ii) passage to non-zero quotients A/J ,

(iii) extensions 0→ A→ E → B → 0,

(v) building inductive limits,

(iv) passage to a Morita equivalent algebras. In particular A is rich of projec-

tions, if and only if, A⊗K is rich of projections.

Each C*-algebra A that is rich of projections is the inductive limit of the net

of separable C*-subalgebras that are rich of projections and are relatively weakly

injective in A.
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Proof. to be filled in ?? �

Proposition 2.6.4. Suppose that a C*-algebra A is rich of projections in the

sense of Definition 2.6.1. Then the following properties (i)–(iii) are equivalent:

(i) For each closed ideal J 6= A and nonzero hereditary C*-subalgebra D ⊆
A/J the algebra D contains a (non-zero) infinite projection q ∈ D.

(ii) A is locally purely infinite in sense of Definition 2.0.3.

(iii) A is purely infinite, cf. Definition 1.2.1.

The C*-algebra A is strongly purely infinite in sense of Definition 1.2.2, if A

is purely infinite and has the stronger property that, for each closed ideal J of A

and each hereditary C*-subalgebra D ⊆ A/J there exists a projection p ∈ A\J with

πJ(p) ∈ D.

We do not know if for separable C *-algebras that are “rich of projection” in

the fairly weak sense of ?????

Compare with Proposition 2.6.5!

Notice that Part (i) of Proposition 2.6.4 is just the the definition of J. Cuntz

for pure infiniteness.

Proof. Obviously (iv) implies (iii). Part (iii) is equivalent to properties pi(1)

and pi-1 on A by Corollary 2.5.6, and property pi(n) implies that A is locally purely

infinite, i.e., Part (ii).

⇐ References?

(ii)⇒(i):

(i)⇒(iii):

(iii)⇒(ii):

Still not understood... (iii)⇒(iv): Perhaps wrong ?? ?? �

From (ii) to (i):

First step:

Suppose that A is is locally purely infinite, i.e., for each non-zero b ∈ A+ and

pure state λ on E := bAb there exists a C *-morphism ψ : C0(0, 1] ⊗ K → E with

λ ◦ ψ 6= 0.

We show that it implies that, for each closed ideal J 6= A of A, every nonzero

hereditary C *-subalgebra D ⊆ A/J and every non-zero projection p ∈ D, there

exists n ∈ N such that p ⊗ 1n is properly infinite in D ⊗Mn . (The multiplicity n

could depend here from p, D and J .)

Let J , D ⊆ A/J given and p ∈ D ⊆ A/J a non-zero projection. We are going

to show that for each pure state ρ on the unital C *-algebra pDp = p(A/J)p, – i.e.,

with ρ(p) = 1 –, there exist a stable C *-subalgebra G ⊆ pDp with ρ(G) 6= {0}.
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By Lemma 2.6.2 it follows that the upward directed net of finite sums of stably

generated ideals of pDp must contain p and this implies that p ⊗ 1n is properly

infinite in pDp⊗Mn for suitable n ∈ N .

There is a nonzero contraction b ∈ A+ with πJ(b) = p and a pure state and

ρ : A/J → C with ρ(p) = 1. The state ξ := ρ ◦ πJ satisfies ξ(b) = 1 and is a pure

state on F := bAb . Since A is w.p.i., there exists a C *-morphism ψ : C0(0, 1]⊗K→
F with ξ ◦ ψ 6= 0. Thus ρ ◦ (πJ ◦ ψ) 6= 0. Now the Lemma 2.6.2 applies, and shows

that there exists n ∈ N such that p⊗ 1n is properly infinite in pDp⊗Mn .

We combine this with the assumption that A is “rich of projections” in sense

of Definition 2.6.1, ...

Let 0 6= a ∈ A+ and J ⊆ A a closed ideal of A with a 6∈ J , δ ∈ (0, ‖πJ(a)‖),
then let E := (a− δ)+A(a− δ)+ and D := πJ(E) ∼= E/(E ∩ J). Then D is a

non-zero hereditary C *-subalgebra of A/J . By the general pre-assumption that A

is “rich of projections”, there exists a non-zero projection q ∈ D ⊆ A/J .

The above given arguments show that, for a pure state ρ on A/J with ρ(q) = 1

there exists a nonzero stable C *-subalgebra of qDq given by the image of a non-zero

morphism ψ : C0(0, 1]⊗K→ qDq = q(A/J)q with ρ ◦ψ 6= 0. Now we can consider

the non-zero hereditary C *-subalgebra F := cAc for some positive contraction

c ∈ A+ with πJ(c) = ψ(f0⊗ p11). Then G := πJ(F ) is a hereditary C *-subalgebra

of A/J .

By assumption that ... 12.11.2018, not clear which one...

Let b ∈ E+ a contraction with πJ(b) = p and ρ a pure state on A/J with

ρ(p) = 1 and ρ(b) = ‖b‖ = 1, i.e., there is a pure state ρ1 on A/J with ρ := ρ1 ◦ πJ
and ρ1(p) = 1.

sort best from below:

By Part (ii), ... there exists C *-morphism ψ : C0(0, 1] ⊗ K → F := bAb ⊆ E

with ρ ◦ ψ 6= 0.

Let F := bAb ⊆ A, then πJ(F ) = pDp. By the assumption that A is locally

purely infinite there exist a non-zero C *-morphism ψ : C0((0, 1],K) → F with

ρ ◦ ψ 6= 0 .

Thus, πJ ◦ ψ is non-zero, and its image is a non-zero stable hereditary C *-

subalgebra of πJ(F ) ⊆ pDp.

Define f0 ∈ C0(0, 1] by f0(t) := t, and let H := ψ(f0 ⊗ p11). Then G :=

H ·A ·H) ⊂ F is a hereditary C *-subalgebra of A with πJ(G) = HAH ...

check again

Then the hereditary C *-subalgebras of pDp = πJ(F ) defined by πJ(G)DπJ(G)

is a stable hereditary C *-subalgebra of pDp.

It contains the nonzero hereditary C *-subalgebra generates a non-zero stable

C *-subalgebra of pDp.
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Has then A then the additional property that for each closed ideal J of A and

hereditary C *-subalgebra D of A with πJ(D) 6= {0} there exists a projection p ∈ D
with πJ(p) infinite or zero?

Answer unknown! The assumptions say only that that there is a non-zero

projection q ∈ πJ(D). But it is not clear under which circumstances it can be lifted

to a projection in p ∈ D ...

Then A has the property that for each pure state ρ on πJ(D) ⊂ A/J there

exists a properly infinite projection p ∈ D with ρ(p) 6= 0?

For separable C *-algebras A the prime and primitive ideals are the same,

cf. [616, Prop. 4.3.6]. Thus, if one can reduce a property to (suitably selected)

separable C *-subalgebras and pure states, then separating pure states (from zero)

is the same as separating factorial states ...

It seems that one must require also that ρ(p) 6= 0 for a given nonzero pure state

ρ on D ??

Or that p = πJ(q) comes from a projection q

No! It is inclusive in case of pure state!:

One get this, if ρ is any nonzero state on A with ρ(J) = {0} and with kernel

I ≥ J of the cyclic representation defined by ρ. If ρ|D 6= 0, then πI(D) 6= 0,

and πI(D) is a non-zero hereditary C *-subalgebra of A/I. If q ∈ A is a nonzero

projection with

with by passing to E := πI(D)

Proposition 2.6.5. If a C*-algebra A has real rank zero, then following prop-

erties of A are equivalent:

(i) A is p.i.

(ii) For every non-zero projection p ∈ A there exist partial isometries u, v ∈ A
with u∗u = v∗v = p and uu∗ + vv∗ ≤ p.

(iii) Every quotient of A is purely infinite in the sense of Cuntz, i.e., for every

hereditary C*-subalgebra D and every closed ideal J of A which does not

contain D, there is a (non-zero) infinite projection in D/(D ∩ J).

(iv) A is locally purely infinite.

(v) A∞ has no non-trivial l.s.c. quasi-trace.

Compare with Proposition 2.6.4!

See [93, thm. 4.17] for the equivalence of (iii) and (iv). The equivalence of

(i), (ii) and (iii) follows from Corollaries 2.15.7(ii) and 2.15.8. Recall here that

an infinite projection p is not necessarily properly infinite. It can be shown to be

properly infinite only if all πJ(p) are infinite or zero for all closed ideals J of A.

Proposition 2.6.6. If A is a C*-algebra with linear ordered lattice I(A) of

closed ideals and A is locally purely infinite, then A strongly purely infinite.
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There exist at most one non-zero simple quotient A/J and at most one non-zero

simple closed ideal I ⊆ A .

If, in addition, A is separable (or σ-unital = A has a strictly positive element)

and has no unital quotient, then A is stable.

There are/can exist non-simple unital or stable simple quotients, and there can

be non-simple unital quotients:

Consider L(`2(N)) or any extension of a simple separable C *-algebra by the

compact operators.

Definition 2.6.7. A C *-algebra B has the small projection property if

every non-zero hereditary C *-subalgebra D of B contains a non-zero projection.

(If this happens also for all quotients, i.e., for non-zero hereditary D ⊆ B/J ,

then we say that B is rich of projections, cf. Definition 2.6.1.)

Suppose that a C *-algebra B has the small projection property. Then we say

that B “has sufficiently many locally bounded dimension functions” if for each

non-zero contraction a ∈ B+ and each non-zero projection p ∈ aBa there exists a

dimension function D : B → [0,∞] with

0 < D(p) < ∞ and sup
n∈N

D((a− 1/n)+) < ∞ .

We do not require that the dimension function D is lower semi-continuous on

aB+ a or bounded. In particular it may happen that D(a) =∞.

Are above Lemma and next two Lemmas 2.6.8 and 2.6.9 used? cited? Otherwise

put it into Appendix A/B. Eg. with title “Pure infiniteness for algebras that are

rich of projections”?.

There are in next? section some study of projections in locally p.i. algebras.

Compare!!!

Recall that I(a) is the closed ideal of A defined for a ∈ A in Definition 2.5.1

and Lemma 2.5.3(i).

Lemma 2.6.8. Let A a C*-algebra.

(i) If p ∈ A is a projection, then I(p) 6= 0, if and only if, pAp contains a non-

unitary isometry, i.e., if and only if p is Murray–von-Neumann equivalent

to a proper sub-projection q ≤ p, q 6= p in A.

In particular, a projection p is infinite with respect to the family of

projections of A, i.e., there exists a non-zero projection r ∈ A such that

p⊕ r is MvN-equivalent in M2(A) to p⊕ 0, if and only if, p is infinite as

an element of A+, i.e., if there exists non-zero a ∈ A with [p] + [a] ≤ [p]

in Cu(A).

(ii) Exists also in other lemmas: If q ∈ cAc is a properly infinite projec-

tion, then c⊕ q - c, i.e., q ∈ I(c).



230 2. BASICS ON PURELY INFINITE C*-ALGEBRAS

(iii) Exists also in other lemmas: If p is a properly infinite projection in

A and p - c ∈ A+, then p ∈ I(c), i.e., c⊕p - c. In particular c is infinite

in A.

(iv) Where is it used?: If A has the “small projection property” of Defini-

tion 2.6.7 and has “sufficiently many locally bounded dimension functions”

in the sense of Definition 2.6.7, then each non-zero element a ∈ A+ is fi-

nite, i.e., I(a) = {0}, which says for b ∈ A+ that b ⊕ a - a implies

b = 0.

Proof. (i): Let p⊕x - p with 0 6= x ∈ A+ and 0 < ε < min(‖x‖, 1), δ ∈ (0, ε)

and f = [f1, f2] ∈M1,2(A) ⊆M2(A) with f∗(p−δ)+f = (p−ε)+⊕(x−ε)+. Notice

that (p− t)+ = (1− t)p for t ∈ [0, 1]. Then (1− δ)f∗1 pf1 = (1− ε)p and f∗1 pf2 = 0,

but (1 − δ)f∗2 pf2 = (x − ε)+ 6= 0. Thus, V := (1 − ε)−1/2(1 − δ)1/2pf1p is a

non-unitary isometry in pAp.

Conversely, if V ∈ pAp is a non-unitary isometry, then p⊕ (p− V V ∗) = f∗pf

for f := [V, (p− V V ∗)].

(ii): Let c ∈ A+ and q ∈ cAc a properly infinite projection. Then the projection

q ∈ A is also properly infinite in the hereditary C *-subalgebra qAq ⊆ cAc by Part

(ii) of Lemma 2.5.3. Thus, we may suppose that c is a strictly positive element

of A. Let d := (1 − q)c(1 − q). Then d + q is also a strictly positive element of

A = cAc, and therefore, (d+ q) ≈ c.

Take u, v ∈ qAq that satisfy u∗v = 0, u∗u = v∗v = q and define

f := [(d1/2 + u), v] ∈M1,2(A) ,

then in M2(A) holds

(d+ q)⊕ q ≈ (d+ q)⊕ q = f∗f ≈ ff∗ = d+ uu∗ + vv∗ ≤ d+ q .

Thus, c⊕ q ≈ (d+ q)⊕ q - d+ q ≈ c.

(iii): If p∗ = p2 = p - c for c ∈ A+, then there is d ∈ A with d∗cd = (1/2)p,

and q = 2c1/2dd∗c1/2 is a projection in cAc with q ∼ p. If p is properly infinite (in

pAp), then q is properly infinite in cAc. Thus p ⊕ c ≈ q ⊕ c - c by Part (ii), i.e.,

p ∈ I(c).

(iv): Let a ∈ A+ and suppose that I(a) 6= {0}, i.e., that there exists non-zero

b ∈ A+ with b⊕ a - a.

Then a ⊕ b - a implies b - a. The latter says that there exists, for each

ε ∈ (0, ‖b‖), some γ ∈ (0, ε) and d ∈ A with d∗(a− γ)+d = (b− ε)+.

Since A has the “small projection” property by assumptions in (iv), there exists

a projection q ∈ A with

0 6= q ∈ (b− ε)+A(b− ε)+ .

In particular

q - (a⊕ q) - (a⊕ b) - a .
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Since q ∈ A is a projection with q - a, there are δ ∈ (0, ‖a‖), a partial isometry

v ∈ A such that vv∗ = q and p := v∗v ∈ (a− δ)+A(a− δ)+ . It follows that

a⊕ p - a inside aAa , because

(a⊕ p) ∼ (a⊕ q) - (a⊕ (b− ε)+) - a .

It implies that, for each ε ∈ (0, ‖a‖), there exists γ ∈ (0, ‖a‖) and d = [d1, d2] ∈
M1,2(A) with

d∗((a− γ)+ ⊕ 0)d = (a− ε)+ ⊕ p .

Now we apply the assumption on the (local) existence of locally bounded dimension

functions: There is a dimension function D :
⋃
nMn(aAa)→ [0,∞) with D(p) > 0

and

θ := sup
γ>0

D
(
(a− γ)+

)
= sup

k
D
(
(a− 1/k)+

)
<∞ .

We get, for each ε ∈ (0, ‖a‖), that

θ ≥ D
(
(a− γ)+

)
≥ D

(
p
)

+D
(
(a− ε)+

)
.

Since θ = sup{D((a − ε)+) ; ε ∈ (0, ‖a‖) } this contradicts D(p) > 0, and – by

assumptions on A – that a⊕ b - a. �

Lemma 2.6.9. Let A denote an AW*-algebra, a Rickart algebra , or let A the

C*-subalgebra of B∗∗ generated by the elements in the σ-up-hull of a C*-algebra B

in B∗∗.

We need “finiteness” of the projections and that each element a ∈ B+ has a

“support projection” pa := 1 − P , where PB = Ra for Ra = {b ∈ B ; ab = 0}.
Moreover we need that pa =

∨
{p(a−t)+

; t ∈ (0, ‖a‖]} .

(i) There is no (non-zero) properly infinite element in a finite Rickart C*-

algebra.

(ii) If A is an AW*-algebra and if b ∈ A+ is properly infinite, then the support

projection pb of b is a properly infinite projection.

(iii) If, for every ε > 0, there exists δ ∈ (0, ε) and a ∈ A+ with properly infinite

support projection pa such that ??????? and (b−ε)+ ≤ a ≤ (b−δ)+, then

b itself is properly infinite (in the AW*-algebra A).

Proof. (i): We use only that the Rickart C *-algebras and AW*-algebras A

have the “small projection” property because they have real rank zero as C *-

algebras.

And we claim that A has sufficiently many “locally bounded” dimension func-

tions if A is a finite Rickart algebra or finite AW*-algebras A. Then Part (iv) of

Lemma 2.6.8 applies.

Are the finite 2-q-traces on M2(A)+ separating from 0

for the non-zero projections p in

finite Rickart C *-algebra or AW*-algebras A??

If A is a finite AW*-algebra, then there is a unique center-valued 2-quasi-trace

T : A+ → Z(A) on a A+ (cf. [79, p. 320]).
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It extends to T2 : M2(A)+ → Z(M2(A)) ∼= Z(A) .

The restrictions to (the positive parts of maximal) commutative C *-subalgebras

C of M2(A) are faithful, because T2(p) 6= 0 for non-zero projections p ∈ C, see [64,

Chap. 6]. Thus, 0 ≤ T2(a) 6= 0 for 0 6= a ∈ A+.

Let diag(a, p) - diag(a, 0) ?????

Let χ : Z(A)→ C a character with χ(T (a)) = ‖T (a)‖. The dimension function

D : M∞(A) → [0,∞) corresponding to the 2-quasi-trace χ ◦ T : A+ → [0,∞) must

satisfy D(a) 6= 0. Hence, a can not be properly infinite.

Check above and below arguments for Rickart algebras again.

The Z-bimodule A is not a Z-bundle ??!!!

The fibers are not simple in general.

And [χ ◦ T ] need not to be faithful on the fibers.

(ii): The element b is properly infinite inside the Rickart C *-algebra or AW*-

algebra B := pbApb.

Now let q ∈ Z(B) a central projection that is finite in B.

Then every element of qB is finite, because otherwise there exists

– by the consideration in proof of Part (i) ??? –

an infinite projection r in qB and q = r+ (q− r) is infinite in rBr+C · (q− r).

The element qb is zero or properly infinite in qB if b is properly infinite, by

Lemma A.6.1(iii), ?????

Since qB is finite, it follows that qb = 0. Only 0 is orthogonal to b in pbBpb.

This implies that the support projection pb is properly infinite in the AW*-algebra

A.

Same argument applies for Rickart algebras etc.

(iii): Suppose that, for every ε > 0, there exists δ > 0 and a ∈ A+ with

properly infinite support projection pa such that

?????? and (b− ε)+ ≤ a ≤ (b− δ)+. Then

(b− ε)+ ⊗ 12 ≤ ‖b‖(pa ⊗ 12) - pa ≤ p(b−δ)+
≤ δ−1b .

Thus, b is properly infinite, by Part (ix) of Lemma 2.5.3. �

End of Rickart-algebra considerations!!!

Cited below? ??

HERE ENDS PART 1 of Chp. 2

7. Residually antiliminary C*-algebras

We define here the class of “residual antiliminary” C *-algebras A and obtain

for this particular class of (not necessarily simple) C *-algebras A some relations

between the there formally different definitions (and classes) of pure infiniteness.
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In a not obvious sense the class of residually antiliminary C *-algebras is the

“strict opposite” of the class of C *-algebras of type I, – that are also called “post-

liminal” C *-algebras ( 39 ).

Lemma 2.7.1. Let K(H) denote the algebra of compact operators on a Hilbert

space H, and let A ⊆ K(H) a C*-subalgebra of of K(H).

If A is irreducible on H, – in the sense that Ax is dense in H for every non-zero

x ∈ H –, then it follows that A = K(H).

Proof. The C *-subalgebras A of K(H) are generated by projections p ∈ A

of finite rank, because each T ∗ = T ∈ A ⊆ K(H) has discrete spectrum that

related to operators P ∈ A of finite rank. The transitivity of A on H of PAP in

PK(H)P shows that PAP = PK(H)P . In particular, this shows that A contains

projections of rank = 1. The transitivity of A in H implies that A contains all rank-

one projections in K(H). Since K(H) is generated as C*-algebra from its rank-one

projection, this shows that A = K(H). �

Definition 2.7.2. A (non-zero) C *-algebra A is residual antiliminary if,

for each closed ideal I 6= A of A and each non-zero b ∈ A/I the hereditary C *-

subalgebra E := b∗(A/I)b of A/I is not commutative.

Is it not identical to the property that each non-zero hereditary

C *-subalgebra D ⊆ A of A has not a character?

(= D has not a 1-dimensional quotient-algebra)

What is perhaps different?

Here there is also a good place for my separate notes on the ultra-power prop-

erty: If c0(A1, A2, ...) has no quotient of dimension = n, then `∞(A1, A2, . . .) has

no quotient of dimension = n. (Same with ultra -powers.)

A C *-algebra B (as e.g. B := A/I) is antiliminary if B contains no non-

zero hereditary Abelian C *-subalgebra, i.e., b∗Bb is not Abelian for every non-zero

b ∈ B, compare [616, sec. 6.1.1].

Notice that Definition 2.7.2 equivalently says that a C *-algebra B is (only)

antiliminary, if and only if, the hereditary C *-subalgebra b∗Bb of B is not Abelian

for every non-zero b ∈ B, and the Definition says that a C *-algebra A is residual

antiliminary, if and only if, for every non-zero a ∈ A the hereditary C *-subalgebra

D := a∗Aa of A has no non-zero character.

List of topics to be considered:

(0.1) Each irreducible representation of A comes fro a pure state of ρ of A. If A

is residually anti-liminary then the image dρ(A) of every irreducible representation

dρ : A→ L(Hρ) does not contain a non-zero compact operator. Here dρ is defined

by (some suitable) pure state ρ on A.

39Could be called also “residual liminal” by some intuition based on old history of math ...



234 2. BASICS ON PURELY INFINITE C*-ALGEBRAS

(Proof: A non-zero intersection of dρ(A) with the algebra K(Hρ) of compact

operators on Hρ must necessarily be the image dρ(I) of a non-zero closed ideal I

of A, e.g. I := (dρ)
−1(dρ(A) ∩K(Hρ).

If the C *-subalgebra J := K∩dρ(A) of K acts irreducible onHρ then necessarily

J = K. Every

again an irreducible C*-subalgebra of the compact operators, because otherwise

?????????

This can only happen if dρ(A) contains all compact operators.)

(0.2) If A has the property that dρ(A) for every irreducible representation dρ

of A does not contain a non-zero compact operator, then this property passes to

all non-zero hereditary C *-subalgebras D ⊆ A of A.

In particular, then all non-zero hereditary C *-subalgebras D of A have no

characters.

And this implies that no non-zero hereditary C *-subalgebra D of A has a non-

zero quotient C *-algebra D/J with finite dimension.

(????? Fist attempt of proof ... : ????)

Suppose that d0 : D 7→ L(H) is an irreducible *-representation such that d0(D)

contains a non-zero compact operator.

Let x0 ∈ H with ‖x0‖ = 1, and let ρ0 denote the pure state of D given by

ρ0(a) :=< ax0, x0 >, and suppose that the corresponding irreducible representation

d0 : D 7→ L(H) contains nonzero compact operators in its image.

The inverse image I := (d0)−1(d0(D)∩K(H)) of the ideal of compact operators

defines a closed ideal I of D.

The closed ideal J of A generated by I and I itself have the following properties:

(0.2. i) The set I ⊆ A is also a hereditary closed C *-subalgebra of A, because

I is hereditary in D as every closed ideal of D. (And the hereditary C*-subalgebras

have a lattice order given by its open support projections in A∗∗.)

(0.2. ii) We show that I = J∩D, that the support projections of the hereditary

C *-subalgebras J , D and I of A are open projections in A∗∗, and that the support

projection of J is in the centre of A∗∗ and the support projections of I in the centre

of D∗∗ – here considered as hereditary W*-subalgebra of A∗∗.

(We obtain implicit that pJ · pD = pI for the corresponding open questions in

A∗∗.)

Proof of I = J ∩D:

The ideal J is the closed linear span of AIA. The intersection J ∩ D is an

ideal of D, obviously with I ⊆ J ∩D. The latter because I = I · I · I (as for every

C *-algebra) and I3 ⊆ AIA ⊆ J .
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The closed linear span L of A ·I is a left ideal of A with bi-polar (here = second

conjugate) L∗∗ = A∗∗pL, where pL is an open projection in A∗∗ (with respect to

σ(A∗∗, A∗) - topology on A∗∗).

and more ???????? what is needed below ????

The element d ∈ D is in J∩D if there exists for each ε > 0 elements a1, . . . , an ∈
A, b1, . . . , bn ∈ A and c1, . . . , cn ∈ I with the property

‖d−
∑
k

akckbk‖ < ε .

If we use an approximate quasi-central unit (eτ ) of D and an approximate quasi-

central unit (fτ ) of I, then the sum
∑
k akckbk can be replaced by suitable sum-

mands ∑
k

(eτakfτ ckfτ bkeτ )

with suitable index τ such that also eτdeτ − d is sufficiently small. The elements

eτakfτ and ckfτ bkeτ are then in DAI respectively in IAD.

(0.3) Question:

Does for every separable C *-subalgebra B ⊆ A of A exists a separable C *-

subalgebra C ⊆ A, such that C has the property in (0.1) – for irreducible d(C) –,

if A has the property in (0.1)?

(0.4) Suppose that A is separable and satisfies the conditions (0.1). Can then

M(A) have an irreducible representation of finite dimension? e.g. a character?

(0.5a) ?????????

(0.5b) If M(A) has no irreducible representation of dimension ≤ n then, A,

`∞(A) and `∞(M(A)) (and all non-zero quotient C*-algebras and ideals of them)

have no irreducible representation of dimension ≤ n.

Suppose that one of A, `∞(A) or `∞(M(A)) have an irreducible representation

ρ of dimension k ≤ n (here k = dimension of the corresponding Hilbert space).

Thus, suppose that one of the cases ρ(A) = Mk, ρ(`∞(M(A))) = Mk, or

ρ(`∞(A)) = Mk with some k ≤ n appears.

In the first case ρ extend a normal unital morphism from A∗∗ onto Mk with

k ≤ n. Since A ⊆ M(A) ⊆ A∗∗, this shows that, in the case ρ(A) = Mk with

k ≤ n, there must exists an irreducible representation of M(A) of some dimension

k ≤ n.

In the case of an irreducible representation ρ : `∞(M(A)) → Mk it is always

ρ(1, 1, . . .) = 1k in Mk. The natural diagonal embedding ∆ given by y ∈ M(A) 7→
(y, y, . . .) ∈ `∞(M(A)) is unital and ρ ◦ ∆: M(A) → Mk is a unital C*-algebra

morphism from M(A) into Mk.

(0.6) Question:

Suppose that A is separable and M(A) has an irreducible representation of finite

dimension. Has then A∞ (or Aω) an irreducible representation of finite dimension?
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Hope? Question: Are elements ofM(A)/A expressible as sum of two commut-

ing elements of A∞? (perhaps then with a shift of one those 2 elements?)

Are separable parts of M(A)/A contained in sums of suitable separable ?????

Using a quasi-diagonal approximate unit of A, we can find 2 hereditary C *-

subalgebras of `∞(A) that have irreducible ????

If M(A) has no irreducible representation of finite dimension, then M(A)/A

(??? and ???? `∞(A) ????) have no irreducible representation of finite dimension.

Suppose that `∞(A) has no irreducible representation of finite dimension. Does

it imply that M(A) has no irreducible representation of finite dimension (at least

in case that A is σ-unital, or separable)?

(0.7) If any irreducible representation of A does not contain non-zero compact

operators in its image, then each hereditary C *-subalgebra of A has this property.

(1) l.p.i, weakly p.i., p.i., and strongly p.i. C *-algebras are all residually antil-

iminary.

(1.0) It suffices to show that locally p.i. C *-algebras are residual antiliminary.

This can be seen as follows:

Foe each non-zero quotients D/(D ∩ J), where J is a closed ideal of A and

D ⊆ A is a hereditary C *-subalgebra of A, there exist a pure state ρ on D with

ρ(D ∩ J) = {0} and a positive contraction d ∈ D+ with ρ(d) = 1 (by using

Kadison transitivity theorem, or Lemma ??). By Definition 2.0.3 of locally purely

infinite C *-algebras, there exists a C *-morphism h : C0((0, 1],K)→ dAd ⊆ D with

ρ · h 6= 0. It shows that D/(D ∩ J) can not be one-dimensional (i.e., is 6∼= C). This

shows that A must be residual antiliminary. )

The implications “strongly p.i. ⇒ p.i. ⇒ weakly p.i. ⇒ locally p.i. ” show

then that the all sorts of “purely infinite” C *-algebras are residually antiliminary.

(2) ??? The free product A of countably many algebras An, An ∼=
C0((0, 1],K(`2(N)) has no finite-dimensional irreducible representation, but `∞(A)

has a character (and moreover irreducible representations of every dimension n for

each n ∈ N).

This is not proven completely, because we have only an example where represen-

tations ρn : A→ K “converge” to a character on some *-subalgebra of `∞(A)/c0(A)

that contains in its kernel an ideal J of A such that A/J is commutative.

But A itself has no character. Thus, ??? ρ∞(A) ⊆ c0(A) ???...

It is not clear if ρω itself has abelian image on all elements of `∞(A)/c0(A).

It is not clear if this A is residually antiliminary, or can be used to construct a

residually antiliminary C *-algebra B with the property that `∞(B) has a character.

(3) Mn has the n×n-matrix [ajk] with 1 = a12 = a23 = · · · = an−1,n (and zero

at all other places) as generator.
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(4) Let In denote the ideal of A that is generated by all homomorphisms of

C0((0, 1],Mn) into A,

Then A/In has only irreducible representations of dimension ≤ n− 1 :

Suppose that A/In has an irreducible representation d : A/In → L(H) with

dimension of H being ≥ n . Let P ∈ K(H) a projection of rank = n, then, by the

generalized Kadison transitivity Lemma ?? and semi-projectivity of C0((0, 1],Mn),

cf. by Proposition ??, there exist a C *-morphism h : C0((0, 1],Mn) → A with

d ◦ πIn(f0 ⊗ 1n) = P . But h(C0((0, 1],Mn)) ⊆ In by definition of In and therefore

d ◦ πIn(f0 ⊗ 1n) = 0 (with f0(t) = t on (0, 1]). This contradicts the existence of

P ∈ K(H) of rank = n and shows that the dimension of H is ≤ n− 1 .

Moreover the ideal In has no irreducible representations of dimension < n :

Indeed, there would be an irreducible representation d : A → L(H) with k :=

dim(H) < n and d|In 6= 0. But, by definition of In, there exists a C *-morphism

h : C0((0, 1],Mn) → In such that d ◦ h : C0((0, 1],Mn) → L(H) is not = 0. But

there does not exist a C *-morphism from C0((0, 1],Mn) onto onto Mk for k < n .

What is with the (perhaps bigger) ideal Jn generated by contractions a in A

with ‖an−1‖ = 1 and an = 0? (Notice that Jn contains In!)

The universal C *-algebra An := C∗(a∗, a ; ‖an−1‖ = 1 ≥ ‖a‖, an = 0) has no

irreducible representations of dimension ≤ n− 1.

A2 := C∗(b∗, b ; ‖b‖ = 1, b2 = 0) has a C *-morphism ϕ into An give by

ϕ(b) := an−1, or by ϕ(b) := a` with ` ≥ n/2.

There must be an irreducible representation on a Hilbert space H and x ∈
H with ‖x‖ = 1, ‖an−1x‖ = 1 , because ‖an−1‖ = 1. Consider the vectors

{x, ax, a2x, . . . , an−1x} . They have all the norm = 1. It generates an a-invariant

(i.e., with aL ⊆ L) linear subspace L ⊆ H of dimension ≤ n. It contains the a-

invariant subspaces akL generated by {akx, ak+1x, . . . , an−1x} of dimension ≤ n−k:

{C · an−1x} = an−1L ⊆ an−2L ⊆ . . . ⊆ . . . ⊆ a2L ⊆ aL .

If k ∈ {1, . . . , n−2} exists with Dim(akL) = Dim(ak−1L) then a|ak−1L is bijec-

tive on ak−1L. Hence, ak−1L = akL and a|akL is again bijective. This contradicts

anL = {0}, and shows that linear span of {x, ax, a2x, . . . , an−1x} is vector space

of dimension = n.

In particular, Mn−1(C) can not contain a contraction a with ‖an−1‖ = 1 and

an = 0.

Beginning from here, above considerations are not (!) integrated

so far.

Let H of dimension m < n, a ∈ L(H), with ‖a‖ ≤ 1, ‖an−1‖ = 1 and an =

0. Can suppose that C∗(a∗, a ; ‖an−1‖ = 1 ≥ ‖a‖, an = 0) is there irreducible

represented. The above considerations show that H must have dimension ≥ n.

Find x ∈ H with ‖x‖ = 1, ‖an−1x‖ = 1. It must exists because ‖an−1‖ = 1.

It follows that the vectors x, ax, a2x, . . . , an−1x necessarily have all the norm = 1.



238 2. BASICS ON PURELY INFINITE C*-ALGEBRAS

They can not be linearly independent, because the dimension of H is = m < n.

Let H0 denote the linear span of {x, ax, a2x, . . . , an−1x}. It has some dimension

=: m < n.

There is a linear map T : Cn → H defined by T (e1) := x and T (ek) := ak−1x

for k = 2, . . . , n . The linear map T satisfies TSn = aT for the linear map a ∈ L(H)

and the map Sn ∈ L(Cn) defined by Sn(ek) := ek+1 (k = 1, . . . , n − 1) and

Sn(en) := 0 . The map Sn satisfies S`n(ek) = ek+` for k+ ` ≤ n and S`n(ek) = 0 for

k + ` > n. In particular, Sn−1
n (e1) = en, Sn−1

n (ek) = 0 for 1 < k ≤ n and Snn = 0.

It implies T (Sn(ek)) = T (ek+1) = akx = aT (ek), for k < n and T (Sn(en)) =

0 = anx = aT (en), because T (en) = an−1x and an = 0. Thus TSn = aT and

T : Cn → H0 is surjective.

More?

Move it to some Appendix ??.

(5) The ideal In is identical with the hereditary C *-subalgebra Dn of A that is

build by convex combinations of all positive n-homogenous elements of A. (Because

the Dn is invariant under inner automorphisms of A induced by unitaries in U0(A+

C1).)

(6) Conjecture: If A is σ-unital and its asymptotic central sequence algebra

F (A) := (A′∩Aω)/Ann(A,Aω) has no characters, then Aω is residual anti-liminary.

Attempt:

Let h ∈ Aω a positive contraction. D := hAωh. Then there is a unital C *-

morphism from F (A) into M(D) (? To be checked !!!?). The D can not have a

character.

Thus Aω is residual antiliminary.

(7) If A has only l.s.c. 2-quasi-traces that take the values 0 and +∞ then A is

residually antiliminary.

(8) All simple non-elementary C *-algebras are residually antiliminary.

Equivalently expressed, cf. [616, sec. 6.1.1], B is “antiliminary” if B does not

contain a non-zero “abelian element” b ∈ B+. The element b ∈ B+ is called

“abelian” if bBb is a commutative subalgebra of B, cf. [616, sec. 5.5.1].

The following Proposition 2.7.7 and the Lemmata 2.7.3 and 2.7.13 will be used

for the recognition and applications of residual antiliminary C *-algebras.

Compare Remark A.5.8 and Lemma 2.1.7(o,v) with next Lemma and its proof.

Lemma 2.7.3. Let D a hereditary C*-subalgebra of a C*-algebra A . Then the

map J 7→ J ∩D is a surjective map from the lattice I(A) of closed ideals of A onto

I(D) . In particular, I = D ∩ Span(AIA) for each closed ideal of D .

Proof. The latter identity can be seen easily with help of an approximate unit

{eτ} of D, by using that DAD = D , cf. Lemma 2.1.7(o). It shows the surjectivity



7. RESIDUALLY ANTILIMINARY C*-ALGEBRAS 239

of the map J 7→ J ∩ D, because D ∩ J = I for J := Span(AIA) if I is a closed

ideal I of D ⊆ A . �

Why should this non-zero character exist???

Lemma 2.7.4. Let D a C*-algebra and c ∈ D+ with ‖c‖ = 1 and suppose that

χ : E := cDc→ C

is a non-zero character.

Then 0 < χ(c) ≤ 1 , and, for each non-zero positive contraction b ∈ D+

with ‖c − b‖ < χ(c)/3 and δ ∈ (‖c − b‖, χ(c)/3), the hereditary C*-subalgebra

(b− δ)+D(b− δ)+ of D has a non-zero character.

Proof. By assumptions, the hereditary C *-subalgebra E := cDc of D has

non-zero character χ : E → C with kernel ideal I ⊂ cDc, and ‖c‖ = 1. Since c is a

strictly positive element of E it follows that 0 < χ(c) ≤ 1.

Let I ⊆ E the kernel ideal of the character χ, and let J ⊆ D the closed ideal

of D generated by I, i.e., J := Span(D · I ·D). It can be shown that J ∩E = I by

using an approximate unit of I, cf. Lemma 2.7.3.

It implies that πJ(I) = C ·p for some non-zero projection p ∈ D/J that satisfies

p(D/J)p = C · p and πJ(c) = χ(c) · p. In particular, ‖πJ(c)‖ = χ(c).

The ideal K of D/J generated by the 1-dimensional hereditary C *-subalgebra

πJ(E) = E/(J ∩ E) = E/I = C · p = p(D/J)p

is equal to πJ(Span(DcD)). The ideal K is also equal to the closure of the linear

span Span((D/J)p(D/J)). Thus, K is isomorphic to the algebra of compact oper-

ators K(H) on some Hilbert space H. The projection p ∈ K has rank equal to one

if considered as element in K(H) ∼= K because pKp = C · p.

Let b ∈ D+ a with ‖b‖ ≤ 1, ‖b− c‖ < χ(c)/3 and δ ∈ (‖b− c‖, χ(c)/3).

HERE XXX check again !!!

There exists a contraction d ∈ D with d∗cd = (b − δ)+ by Lemma 2.1.9. It

implies that in the ideal K of D/J the element πJ((b − δ)+) = χ(c)πJ(d)∗pπJ(d)

has at most the rank one. It means that, if πJ((b − δ)+) 6= 0, then there exists a

projection q ∈ K ⊆ D/J with q(D/J)q = C · q and

πJ((b− δ)+) = ‖πJ((b− δ)+)‖q .

Thus, if πJ((b− δ)+) 6= 0 then the πJ defines a C *-algebra epimorphism from the

hereditary C *-subalgebra (b− δ)+D(b− δ)+ of D onto the algebra C · q in D/J .

This shows that (b− δ)+D(b− δ)+ has a non-zero character if I(πJ((b− δ))‖ > 0 .

We finish the proof by showing that I(πJ((b− δ))‖ > 0 :

We have ‖(πJ((b− δ)+)‖ = ‖(πJ(b)− δ)+‖ ≥ ‖πJ(b)‖− δ and ‖πJ(b)‖ ≥ ‖πJ(c)‖−
‖πJ(c− b)‖ ≥ χ(c)− ‖c− b‖. Thus,

‖(πJ((b− δ)+)‖ ≥ χ(c)− ‖c− b‖ − δ > χ(c)/3 .
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In particular, ‖(πJ((b− δ)+)‖ > 0. �

The next Lemma 2.7.5 could be improved with respect to the possible estimates,

but it is good enough for our applications.

Lemma 2.7.5. Let A a C*-algebra and B ⊆ A a C*-subalgebra. If A contains

a non-zero projection p with the properties pAp = C · p and that the distance of p

to B is less than 1/9, i.e., dist(p,B) < 1/9, then there exists a projection q ∈ B
with ‖p− q‖ < 1 and qBq = Cq.

Moreover, there is a unitary U ∈ U0(M(A)) ∩ (1 +A) with q := U∗pU ∈ B.

Proof. Recall here that U0(M(A)) denotes the in operator-norm connected

component of 1 in the unitaries U(M(A)). There is a positive linear functional ψ

on A with ψ(a)p = pap for all a ∈ A, because pAp = C · p. It shows that ψ must be

a pure state on A. Notice that there exists only one state on A with this property,

and the property that the closed ideal J ⊆ A of A generated by p is isomorphic to

the compact operators K(H) of some Hilbert space H, i.e., J ∼= K(H).

By assumption, there exist b ∈ B with ‖b − p‖ < 1/9 . The selfadjoint f :=

(1/2)(b∗ + b) ∈ B is the real part of b and satisfies again ‖f − p‖ < 1/9 . It says,

for δ ∈ (0, 1/9− ‖s− p‖) and the unit 1 ∈ B∗∗, that

−(1/9− δ)1 ≤ p+ f− − f+ ≤ (1/9− δ)1 .

Let χ a character on C∗(f) ⊆ B ⊆ A with χ(f−) = ‖f−‖ and χ(f+) = 0. It extends

to a pure state on B and then, – further on –, to a pure state on ρ : A → C with

the properties that ρ(f−) = ‖f−‖ and ρ(f+) = 0. If we apply it to above inequality,

then we get ρ(p) + ‖f−‖ ≤ (1/9 − δ)+ and 0 ≤ ρ(p) ≤ 1 . Thus, ‖f−‖ < 1/9 and

positive part c := f+ satisfies ‖c− p‖ < 2/9, and c ≥ 0 .

Let ξ ∈ (‖c − p‖, 2/9) . It satisfies the inequalities ‖c − p‖ < ξ and, therefore,

1− ξ < ‖c‖ < 1 + ξ. In particular, 0 < ξ < ‖c‖ because 9 ξ < 2 .

Lemma 2.1.9 gives a contraction d ∈ A with d∗pd = (c − ξ)+ 6= 0, because

‖c− p‖ < ξ and ‖c‖ > ξ .

It implies that q := (‖c‖ − ξ)−1(c − ξ)+ ∈ B is a rank-one projection in the

ideal J ∼= K of A generated by p.

They imply following identities and estimates: (‖c‖− ξ) · q = (c− ξ)+, 1− ξ <
‖c‖ < 1 + ξ,

‖q − (c− ξ)+‖ = |1− (‖c‖ − ξ)| = 1 + ξ − ‖c‖ < 2ξ ,

and

‖(c− ξ)+ − p‖ ≤ ‖c− p‖+ ‖c− (c− ξ)+‖ < 2ξ .

It gives the desired estimate:

‖q − p‖ ≤ ‖q − (c− ξ)+‖+ ‖(c− ξ)+ − p‖ < 4ξ < 1 .
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The inequality ‖p − q‖ < 1 implies for the two rank-one projections p, q ∈ J ∼=
K(H) that they are identical if they are linear dependent. But if they are not

linear dependent then the support project Q of p + q in J has rank two, i.e.,

p, q ∈ QJQ ∼= M2. Then there exists a unitary V ∈ U0(QJQ) with V ∗pV = q. The

unitary U := V + (1−Q) ∈ 1M(A) +A has the proposed properties. �

Corollary 2.7.6. Let A a C*-algebra and b1, b2, . . . ∈ A+ a sequence contrac-

tions that converge to a contraction c ∈ A+ with ‖c‖ = 1, i.e., limn ‖c− bn‖ = 0.

If the hereditary C*-subalgebras (bn − ρ)+A(bn − ρ)+ have no non-zero charac-

ters for every n ∈ N and every rational number ρ ∈ (0, ‖bn‖), then the hereditary

C*-subalgebra (cAc)+ can not have a non-zero character.

Proof. If cAc has a non-zero character then infinitely many of the hereditary

C *-subalgebras (bn − ρ)+A(bn − ρ)+ must have a character, by Lemma 2.7.4. It

would contradict the assumptions. �

Proposition 2.7.7. Following properties of a C*-algebras A are equivalent:

(i) A is residual antiliminary in the sense of Definition 2.7.2.

(ii) Each hereditary C*-subalgebra D of A does not have a non-zero character.

(iii) Each non-zero hereditary C*-subalgebra D of A does not have irreducible

representations that contain non-zero compact operators in its image.

(iv) No irreducible representation ρ : A→ L(H) of A contains a non-zero com-

pact operator in its image.

(v) There exists a norm-dense subset S ⊆ {a ∈ A+ ; ‖a‖ = 1} with the prop-

erty that for each b ∈ S and each rational numbers ρ ∈ (0, 1) the hereditary

C*-subalgebra (b− ρ)+A(b− ρ)+ of A has no non-zero character.

Proof. We give indirect proofs for all implications, except for the trivial im-

plications (ii)⇒(v) and (iii)⇒(iv).

(i)⇒(ii): Suppose that D is a hereditary C *-subalgebra of A that has a non-

zero character character χ : D → C and let I denote the kernel of χ. By Lemma 2.7.3

there exists a closed ideal J of A that satisfies J ∩D = I. Then E := πJ(D) ∼= C is

a hereditary C *-subalgebra of A/J and there is a unique non-zero projection p ∈ E
with E = C ·p. Then E = p∗(A/J)p is a non-zero commutative and hereditary C *-

subalgebra of the quotient A/J of A. It contradicts that A is residual antiliminary.

(ii)⇒(iii): Suppose that there exists a hereditary C *-subalgebra D of A that

admits an irreducible ρ : D → L(H) with the property that ρ(D) contains a non-

zero compact operator T ∈ ρ(D). Let I ⊂ D denote the kernel of ρ.

Since irreducible representations of C *-algebras are cyclic with respect to each

non-zero vector, one can show that the non-zero C *-subalgebra ρ(D) ∩ K(H) of

K(H) is an irreducible C *-subalgebra of K(H). It implies that K(H) ⊆ ρ(D).

Thus, there exist a projection p ∈ K(H) of rank one with the property p ∈ ρ(D) . It

implies pρ(D)p = C · p . The C *-subalgebra E := ρ−1(C · p) = ρ−1(pρ(D)p) of D is

a hereditary C *-subalgebra of D, – hence is also hereditary in A –, and E/(I ∩E)
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is one-dimensional, i.e., E is a hereditary C *-subalgebra of A that has a character.

It contradicts that E can not have a character by (ii).

(iii)⇒(i): Suppose that A is not residual antiliminary in in the sense of Defi-

nition 2.7.2.

Then there exists a closed ideal I 6= A of A and a non-zero element b ∈ A/I
such that the hereditary C *-subalgebra E := b∗(A/I)b of A/I is commutative. Let

D := π−1
I (E) and ξ : E → C a non-zero character of E. Then D is a non-zero

hereditary C *-subalgebra of A, and χ := ξ ◦ (πI |D) is a non-zero character on D,

contradicting Property (iii) on A.

(iii)⇒(iv): Consider D := A.

(iv)⇒(iii): Suppose that D is a hereditary C *-subalgebra of A, ρ0 : D → L(H0)

an irreducible representation and that T ∈ ρ0(D) is a non-zero compact operator

on H0. Take e ∈ D with ρ0(e) = T . We can suppose that e ≥ 0 and T ≥ 0 by

replacing them otherwise by e∗e and T ∗T .

The irreducible representation ρ0 of D “extends” to an irreducible representa-

tion ρ1 : A → L(H1) in the sense that there exists an isometry I : H0 → H1 such

that ρ1(d) ◦ I = I ◦ ρ0(d) and ρ1(d)x = 0 for all x ∈ H1>I(H0) and for all d ∈ D.

Thus, e ∈ D ⊆ A satisfies that ρ1(e) is a non-zero compact operator on H1. This

contradicts (iv).

(v)⇒(ii): The assumptions of Part (v) imply by Corollary 2.7.6 that bAb has

no non-zero character for all b ∈ A+ with ‖b‖ = 1.

It follows that each hereditary C *-subalgebra D of A does not have a non-zero

character:

Suppose that there exists a non-zero character ξ on D. Then there exists some

a ∈ D with ξ(a) = 1. Let b := a∗a−(a∗a−1)+, then b ∈ D+, ‖b‖ = 1 and ξ(b) = 1.

Thus, the restriction of ξ to bAb is a non-zero character. But this impossible. �

Lemma 2.7.8. A C*-algebra B has no irreducible representation of dimension

≤ n, if and only if, the closed ideal Jn of B generated by all elements b ∈ B with

the property bm−1 6= 0 and bm = 0 and m ≥ n, is equal to B.

If B has an irreducible representation of dimension ≥ n then B contains an

element with bn−1 6= 0 and bn = 0.

If B contains an element with b ∈ B with bn−1 6= 0 and bn = 0, then B has an

irreducible representation with dimension ≥ n.

Thus, if B has only irreducible representations of dimension < n, then B can

not contain b with bn−1 6= 0 and bn = 0.

If B does not contain elements b ∈ B with bn−1 6= 0 and bn = 0 then every

irreducible representation of B has dimension < n.

Let Jn denote the closed ideal of B generated by all elements b ∈ B with

bn−1 6= 0 and bn = 0.
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(1) B/Jn has only irreducible representation on Hilbert spaces of dimension

≤ n.

It is equivalent to the property that for every irreducible representation ρ : B →
L(H) of dimension dim(H) > n there exists a contraction b ∈ B with bn+1 = 0,

bn 6= 0 and ρ(b) 6= 0. (Because this implies that ρ|Jn is an irreducible representation

of the Jn.)

Proof of (1):

Let ρ : B → L(H) an irreducible representation and dim(H) > n.

By (sharpened form of) the generalized Kadison transitivity theorem there

exists C *-algebra homomorphism ϕ : C0((0, 1],Mn+1)→ B such that f → ρ ◦ϕ(f)

has kernel C0((0, 1),Mn+1), and defines a (non-zero) C *-morphism η : Mn+1 →
K(H) of Mn+1 into K(H). Let d := e1,2 +e2,3 +· · ·+en−1,n Then b := ϕ(f0⊗d) ∈ B
satisfies bn−1 6= 0 and bn = 0.

(2) Every irreducible representation ρ : B → L(H) of dimension dim(H) ≤ n

contains Jn in its kernel ideal.

This is equivalent to the property of Jn that says that Jn is contained in the

intersection of the kernels of all irreducible representations ρ : B → L(H) with

Dim(H) ≤ n.

To show this, we have to prove that there does not exist an irreducible repre-

sentation ρ : B → L(H) on a Hilbert space H such that ρ(b) 6= 0 for some b ∈ B in

the given set of generators for Jn.

The generators of Jn are the elements b ∈ B with the property bn−1 6= 0 and

bn = 0.

Thus we have to determine: What is the dimension of a Hilbert space H if

L(H) contains a contraction T with Tn = 0 and Tn−1 6= 0.

We show that for a Hilbert space H holds:

Dim(H) ≥ n, if and only if, L(H) contains an operator of finite rank T ∈ L(H)

with the property Tn = 0 and Tn−1 6= 0.

Equivalently this says that if Dim(H) ≤ n then there does not exists an operator

T ∈ L(H) with Tm−1 6= 0 and Tm = 0 if m > n.

(There exists T with Tn−1 6= 0 and Tn = 0 if Dim(H) = n, but no T with

Tm−1 6= 0 and Tm = 0 if Dim(H) < m <∞)

The images Hk := T kH are linear subspaces for k ∈ {0, . . .m}, where we let

T 0 := idH. They are closed subspaces of H, because Dim(H) ≤ n. Obviously

Hk+1 ⊆ Hk, and the Hk are invariant subspaces of T , i.e., THk ⊆ Hk.

If there is k ∈ {0, . . . ,m − 1} with Hk = Hk+1 and Hk then is T |Hk is a

bijective linear map on Hk. It implies that T ` 6= 0 for all ` ∈ N, if Hk = Hk+1 for

some k ∈ {0, 1, . . . ,m− 1}. It would contradict the assumption that Tm = 0.
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Thus, Dim(Hk+1) < Dim(Hk) 6= {0} for k ∈ {0, 1, . . . ,m − 1} and Hm =

TmH = {0}, because Tm−1 6= 0 and Tm = 0.

It follows that ????????????

Since Tm = 0, by assumption, this can not happen. Thus, Dim(T k+1H) <

Dim(T kH) for all k ∈ {0, . . . ,m}. {0} = Hm and Dim(Hk+1) < Dim(Hk) for

k ∈ {0, 1, . . . ,m}.

It follows that Dim(Hi) ≥ m− 1 ???

(2) If B has an irreducible representation ρ of dimension m > n then there

exists an element

????????

If B/Jn has an irreducible representation ρ : B/Jn →Mn

of dimension m or n here ?????

then the semi-projectivity of C0((0, 1],Mm) shows that there is a C *-morphism

ψ : C0((0, 1],Mm) → B with (ρ ◦ ψ)(f) = f(1) for f ∈ C0((0, 1],Mm) . Then

b := ψ(f0 ⊗ (p1,2 + p2,3 + . . .+ pn1,n) satisfies bm−1 6= 0 and bm = 0 . Thus, m < n

if b 6∈ Jn.

Need also to show that Jn has no irreducible representation of dimension < n

B/Jn has only irreducible representation of dimension < n. It is NOT clear if it is

so!

We know only that if B has an irreducible representation D : B → Mk of

dimension k < n then B contains a contraction b ∈ B with ‖b`‖ = 1 for ` < k

and bk = 0, because B contains then an image ψ(Mk(C0(0, 1])) of Mk(C0(0, 1]) by

some C *-morphism ψ with D ◦ ψ(f0 ⊗ 1n) = 1k . In this (very special) situation

one has moreover that D(b)` 6= 0 for 1 ≤ ` < k. The b is given by ψ(f0 ⊗ Q) for

Q :=
∑k−1
`=1 p`,1+` .

But b ∈ B with this properties can be found if B has any irreducible representa-

tion D of dimension ≥ k. Simply by considering the the hereditary C *-subalgebra

that maps onto Mk ⊕ 0n−k ⊆Mk ⊕Mn−k ⊆Mn.

If B does not contain an element b ∈ B with bn−1 6= 0 and bn = 0 then B can

not have any irreducible representation of dimension ≥ n.

The problem is, if the relations are “liftable”, i.e., if B/J does not contain an

element c ∈ B/J with cn−1 6= 0 and cn = 0

(in particular B/J can not have an irreducible representation of dimension

≥ n),

is then every element b ∈ B with bn−1 6= 0 and bn = 0 contained in J?

The problem is, that it can be that πJ(b) 6= 0, but also πJ(b`) = 0 for some

1 < ` < n− 1. This can happen in case B = B1 ⊕B2 if b = b1 ⊕ b2 and

????. bn = 0 for n := max(n1, n2) if
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?????

Remark 2.7.9. The property that the closed ideal Jn(B), generated by all

elements b ∈ B with bn−1 6= 0 and bn = 0, is equal to B, like considered in Lemma

2.7.8 does not pass in general to `∞(B) or its quotients, as e.g. the ultrapowers Bω.

It is still not clear if this is a true counter examples!

Can a sequence of surjective (!) C *-morphisms hn : B → K
produce a morphism from Bω into Kω that is not surjective?

The ultrapower Bω of the free product B of countably many copies of

C0((0, 1],K(`2)) could have a character, even if B has no irreducible representation

of finite dimension?

It is only known that the restriction to B ⊂ Bω is a character.

Is the ideal Jn different from the ideal generated by all n-homogenous positive

elements?

Case n = 2, i.e., general C∗(b∗, b) with b2 = 0?

Then C∗(b∗, b) ∼= M2 ⊗ C∗(b∗b) by letting b correspond to p1,2 ⊗ (b∗b)1/2 :

The polar decomposition b = v(b∗b)1/2 in C∗(b∗, b)∗∗ has the property that

b = (bb∗)1/2v. In particular, b∗ = v∗(bb∗)1/2 is the polar decomposition of b∗,

v(b∗b)v∗ = bb∗ and v∗(bb∗)v = b∗b.

Let f := (b∗b+ bb∗)1/2 = (b∗b)1/2 + (bb∗)1/2 in C∗(b∗, b). The partial isometry

v commutes with f : vf = v(v∗v)(b∗b)1/2 = b and fv = (bb∗)1/2v = b . Notice that

the non-zero values in the spectra of f and (b∗b)1/2 are the same.

Thus, there is a C *-morphisms ρ from C∗(v∗, v) ⊗ C∗(f) onto C∗(b∗, b) with

the property that ρ(v ⊗ f) = b and ρ((vv∗ + v∗v)⊗ f) = f . Since C∗(v∗, v) ∼= M2,

we get an isomorphism from M2(C∗(f)) onto C∗(b∗, b).

Proof. Let Dn ∈ Mn denote the matrix with entries dk,k+1 = 1 for k =

1, . . . , n− 1 and dk,` = 0 on all other places. Then Dn−1
n 6= 0 but Dn

n = 0.

Let Jn ⊆ B the closed ideal of B that is generated by all elements b ∈ B with

bn = 0 and bn−1 6= 0.

We show that B/Jn is sub-homogenous with irreducible *-representations of

dimension < n, and that Jn has only irreducible representation of dimension ≥ n.

Let ρ : B → Mm a *-morphism, and b ∈ B with bn−1 6= 0 but bn = 0 with

ρ(bn−1) 6= 0...

Need: C∗(b∗, b) is n-homogenous (or n-sub-homogenous C *-subalgebra) if bn =

0 and bn−1 6= 0???

Suppose that ρ : Jn → L(H) has an irreducible representation of dimension

m < n, then exists an element b ∈ B with bn = 0 and bn−1 6= 0, and ρ(b) 6= 0 ...

HERE IS SOMETHING wrong??
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We need also to show that each irreducible representation with ρ|Jn 6= 0 has

dimension ≥ n .

This could be shown by proving directly that Jn is also generated by all n-

homogenous elements of B.

At least, it is easy to see that the image of all non-zero C *-morphisms

ψ : C0((0, 1],Mn)→ B is contained in Jn, because ψ(f0 ⊗Dn) is contained in Jn,

where Dn means the matrix with entries d
(n)
j,k = 1 for k := j+1 and j = 1, . . . , n−1

and let d
(n)
j,` := 0 if ` − j 6= 1 . The element f0 ⊗ Dn generates C0((0, 1],Mn) as

a C *-algebra, because t · Dn generates Mn as C *-algebra for each t ∈ (0, 1] (Use

here the variant of the classical Stone-Weierstrass theorem for type-I C *-algebras,

e.g. [704, cor. 4.7.8]).

The question is, if b ∈ B with bn = 0 and bn−1 6= 0 generates an n-homogenous

C *-subalgebra?

What about b− bn−1? Has it a good polar decomposition?

(1− b)(b+ b2 + . . .+ bn−1) = b− bn and bn = 0 if b is as above.

How about explicit construction?

b(bn−1H) = {0}.

Let ρ : B → L(H) and irreducible with ρ(Jn) = {0}. Then the dimension of H
is < n :

Suppose that the dimension of H is ≥ n. Then there exists a subspace L ⊆ H of

dimension n, a C *-morphism λ from Mn into L(H) with λ(1n) = PL the orthogonal

projection onto L, and a C *-morphism ψ from C0((0, 1],Mn) into B with the

property ρ ◦ψ = λ (by Kadison transitivity theorem and projectivity of cones over

finite-dimensional C *-algebras).

We take in B the element C := ψ(f0 ⊗Dn). It satisfies Cn−1 6= 0 but Cn = 0.

Thus, C ∈ Jn and ρ(C) 6= 0, in contradiction to the requirement ρ(Jn) = {0}.

The family of elements b ∈ B with bn = 0 and bn−1 6= 0 is invariant under all

automorphisms of B ... Thus, the hereditary C *-algebra generated by them is an

ideal. The same happens with n-homogenous elements.

Use Lemma 2.1.15(iii)

The case n = 1, i.e., b2 = 0 is the interesting case.

Is the C *-subalgebra generated by them an ideal of B? �

Lemma 2.7.10. The following properties of C*-algebras A are equivalent:

( i) For every irreducible representation d : A → L(H) the image d(A) does

not contain a nonzero compact operator on H, i.e., d(A)∩ (C)(H) = {0}.
( ii) Every non-zero hereditary C*-subalgebra D of A has no character.

(iii) For every non-zero hereditary C*-subalgebra D of A, k ∈ N and state

ρ on D there exists a C*-algebra morphism h : C0((0, 1],Mk) → D with

ρ(h((0, 1]⊗ 1k)) = 1.
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Lemma 2.7.11. Let A a C*-algebra. Following observations are nearly obvious:

( i) If B ⊆ C ⊆ A are C*-subalgebras of A and if an element b ∈ B+ has the

property that bBb has no non-zero character, then bCb and bAb have no

non-zero characters.

( ii) If c ∈ A+ and cAc has no non-zero character, C ⊆ A is a separable C*-

subalgebra of A with c ∈ C, then there exists a separable C*-subalgebra

B ⊆ A such that C ⊆ B and cBc has no non-zero character.

(iii) Let X ⊆ A+ be a countable subset of elements with the property that xAx

has no non-zero character for each x ∈ X. Then there exists a separable

C*-subalgebra C ⊆ A with X ⊆ C and the property that xCx has no

non-zero characters for each x ∈ X.

(iv) Let C a C*-algebra and let X ⊆ C+ a countable subset of contractions

that is norm-dense in the set of positive contractions of C. If all elements

x ∈ X have the property that (x− ρ)+C(x− ρ)+ has no nonzero character

for all ρ ∈ (0, ‖x‖), then C*-algebra C is residually antiliminary (and

separable).

Proof. Part (i) is obvious, because the restriction to bBb of a character on

bCb or bAb would be a (non-zero) character on bBb.

(ii): TEXT(ii): If c ∈ A+ and cAc has no non-zero character, C ⊆ A is a

separable C *-subalgebra of A with c ∈ C, then there exists a separable C *-sub-

algebra B ⊆ A such that C ⊆ B and cBc has no non-zero character.

If c ∈ A+ and D := cAc has no non-zero character, then cAc is – as a C *-

algebra – generated by its 2-homogenous elements. They are determined by the

elements a ∈ cAc with a2 = 0 and ‖a‖ = 1. This is, because C∗(a∗, a) ⊆ A is then

a 2-homogenous C *-algebra. And for every pure state ρ on cAc there is contraction

a ∈ cAc with ρ(a∗a) = 1 and a2 = 0. Indeed, let ρ ∈ A∗ a pure state with ρ(c) 6= 0

then the irreducible representation dρ : A → L(H) with cyclic vector x ∈ L(H),

i.e., dρ(A)x = H, ‖x‖ = 1 and 〈dρ(a)x, x〉 = ρ(a) is not a character if an only if

dim(H) > 1. Thus there exists y ∈ H with ‖y‖ = 1 and 〈x, y〉 = 0.

By ???? some of above lemmata ???

Let E ⊆ A a separable C *-subalgebra of A that contains c, let C := cEc ⊆ D .

If ????

C *-subalgebra with c ∈ C+ ???

(iii): remember TEXT(iii): Let X ⊆ A+ be a countable subset of elements

with the property that xAx has no non-zero character for each x ∈ X. Then there

exists a separable C *-subalgebra C ⊆ A with X ⊆ C and the property that xCx

has no non-zero characters for each x ∈ X.

(iv): Let c ∈ C+ with ‖c‖ = 1. Then there exists a sequence x1, x2, . . . ∈ X
such that limn ‖xn − c‖ = 0. The assumption that (xn − ρ)+C(xn − ρ)+ has no
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non-zero character for all rational numbers ρ ∈ (0, ‖xn‖) implies that cCc has no

non-zero character, cf. Corollary 2.7.6.

Complete proof be filled in ... ??

�

Proposition 2.7.12. The class RAL of the ‘ residual anti-liminary’ C*-

algebras, defined in Definition 2.7.2, is invariant under each of following opera-

tions:

( i) Passage to non-zero quotients,

( ii) Passage to non-zero hereditary C*-subalgebras (including closed ideals),

( iii) Forming of finite direct sums,

( iv) Inductive limits,

( v) Maximal tensor products A⊗max B, ????,

( vi) Infinite direct c0-sums A1 ⊕A2 ⊕ · · · ,
(Follows from (iii) and (iv))

( v) Passage from A to `∞(A).

If A is residual anti-liminary, then for each countable subset S of A there exists

a separable C*-subalgebra B ⊆ A such that S ⊆ B and B is residual anti-liminary.

In particular, each residual anti-liminary C*-algebra A is the inductive limit

of its separable residual anti-liminary C*-subalgebras (in its natural containment

order as indices of the order).

WHAT ABOUT: tensor products?,

Proof. The proposed permanence properties of the class of residual anti-

liminary C *-algebras A can be seen by following indirect arguments:

If A/J is a non-zero quotient of A and E ⊆ A/J a closed hereditary C *-

subalgebra of A/J and has a non-zero character χ : E → C (i.e., if A/J does not

satisfy (ii) in place of A), then D := π−1
J (E) is a non-zero hereditary C *-subalgebra

of A, and D has the non-zero character χ ◦ πJ . But this is impossible by property

(ii) of A.

Thus, E must satisfies Part(ii) if A satisfies Part(ii), i.e., E must be residual

anti-liminary if A is residually anti-liminary. �

Very important open Question:

Is `∞(A) residual anti-liminary if A is residually anti-liminary?

(It seems to be very difficult to decide, despite it can be reduced to the case of

separable A.)

Ques: Is every separable subset of a residual anti-liminary C *-algebra A con-

tained in a residual anti-liminary separable C *-subalgebra of A?

Is a C *-subalgebra of a residual anti-liminary separable C *-algebra again resid-

ual anti-liminary?
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Is the inductive limit of a sequence of residual antiliminary separable C *-

algebras again residual anti-liminary?

Has positive answer, using following obvious fact:

(The C can be generated by a countable family of – inside C – 2-homogenous

contractions ????)

Combine this with following observation:

If b ∈ A+ is an element such that bAb has no non-zero character, then there

exists a separable C *-subalgebra B ⊆ A such that b ∈ B and bBb has no character.

It shows then by countability of a dense subset of the positive contractions in

a separable C *-algebra C:

If C is a separable C *-subalgebra of A and X ⊂ C+ is a countable subset of

the positive contractions that is dense in {c ∈ C+ ; ‖c‖ = 1} then there exists a

separable C *-subalgebra D of A such that C ⊆ D and for each x ∈ X and each

rational number ρ ∈ (0, ‖x‖) the hereditary C *-subalgebra (x− ρ)+D(x− ρ)+ has

no non-zero character.

??? To be shown !!! ???

One can show that this implies that cDc has no non-zero character for every

c ∈ C+.

In this way we find a sequence C1 := C ⊆ C2 ⊆ C3 . . . of separable C *-

subalgebras Cn of A, and a countable subset S of the positive contractions D :=⋂
n Cn ⊆ A that is dense in {d ∈ D+ ; ‖d‖ = 1} and has the property that cDc has

no non-zero character for each c ∈ S.

Ques: Is the inductive limit of residual antiliminary C *-algebras again residu-

ally anti-liminary?

(Seems to be: D ⊂ E hereditary, E =
⋃
τ Eτ with Eτ residual anti-liminary, τ

in upward directed net, Eτ ≤ Eσ if τ < σ... D with character ξ.

Then by Remark/Lemma ?? ???: If D ⊆ E is a hereditary C *-subalgebra of E

and J is a closed ideal of D, the the ideal I of E generated by J satisfies D∩I = J .

We consider ideal I of E generated by kernel of ξ (on D), and then the ideal

J generated by the image of D in E/I. It would show that ‖πI(f)‖ = ‖πJ(f)‖ for

every f ∈ Eτ . This leads to a contradiction. Thus, D can not have a character.

Thus, we can consider the quotient E/I ⊇ D/J . But D/J is one-dimensional:

there is a projection p ∈ D/J ⊆ E/I with C · p = D/J . and p(E/I)p = D/J

Thus E/I contains a minimal projection p with p(E/I)p = C · p.

The ideal K of E/I generated by p is necessarily isomorphic to K(H) of some

Hilbert space.

The C *-algebras πI(Eτ ) ∼= Eτ/(Eτ ∩ I) are again residual anti-liminary by

Prop. ????(??).
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Therefore there intersections with K must be = {0}. It follows that

‖πK(πI(e))‖ = ‖πI(e)‖ for all e ∈ Eτ for each τ .

We use now that
⋃
τ πI(Eτ ) is dense in πI(E):

There exists τ and e ∈ πI(Eτ )+ with ‖e‖ ≤ 1 and ‖p− e‖ < 1/4 . This implies

that ‖e‖ = ‖πK(e)‖ < 1/4 but ‖e‖ ≥ ‖p‖ − ‖p − e‖ ≥ 1 − 1/4 = 3/4 (because

1/2 = ‖e‖+ ‖p− e‖ ≥ ‖p‖ = 1) a contradiction.

Compare Remark 2.1.16(iv):

Item(iv):

If, moreover, A is strictly antiliminary (also called residually antiliminary, cf. Def-

inition 2.7.2) in the sense that each non-zero quotient A/J of A is antiliminary in

the sense of [616, sec. 6.1.1]

(Here footnote:

It is equivalent to the formally stronger assumption that no hereditary C *-

subalgebra of A has a non-zero character.),

then for every non-zero hereditary C *-subalgebra D of A, every pure state ρ

on D and every n ∈ N there exists a C *-morphism ψ : C0((0, 1],Mn) → D with

ρ(ψ(f0 ⊗ p11)) = 1.

Big big QUESTION:

Does here exists a non-zero element e ∈ A+ such that the hereditary C *-subalgebra

Ann(e) := {a ∈ A ; ae = 0} of A generates A as an ideal of A if A is residually

antiliminary ????

In the case of separable A one could look to e := (ϕ(f0 ⊗ p11)− ε) with ϕ and

ε suitable...?

Lemma 2.7.13. Let ρ : D → L(H) an irreducible representation that does not

contain a non-zero compact operator in its image ρ(D), and (p1, p2, . . . , pm) a se-

quence of orthogonal projections pn ∈ L(H) of finite rank kn ∈ N, 1 ≤ n ≤ m.

Then D contains kn-homogenous positive contraction en ∈ D+ with pnρ(en) =

ρ(en)pn = pn.

If the p1, . . . , pm are mutually orthogonal, then the en can be found mutually

orthogonal.

Proof. Use the “advanced version” of Kadison transitivity in Lemma

2.1.15(ii).

The case of mutually orthogonal p1, . . . , pm can be studied by considering the

projection p1 + · · ·+ pm. �

The following Lemma 2.7.14 lists some later used reformulations of the Defini-

tion 2.7.2.

It could be that some items are only one-sided implications... Check it!
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Lemma 2.7.14. Following properties of a C*-algebra A 6= {0} are equivalent

(???):

(i) Any irreducible representation of A does not contain a non-zero compact

operator in its image, i.e., for every irreducible representation ρ : A →
L(H) holds that ρ(A) ∩K(H) = {0} .

(ii) A is residual antiliminary in sense of Definition 2.7.2.

(iii) Each hereditary C*-subalgebra D of A has no (non-zero) character.

(iv*) [Definition 2.7.2 of “residual antiliminary” !!!] Every non-zero quotient

A/I of A is antiliminary for each closed ideal I 6= A of A .

[??? Follows immediately from [616, prop. 6.2.8]. ????

???? Take J := π−1(K(H)). If x ∈ J then how to find an other

representation ???] .

(v) For each closed ideal I 6= A and x ∈ A \ I there exists an irreducible

representation π : A→ L(H) with π(I) = {0} and π(x) 6∈ K(H) .

(vi) All non-zero quotients A/I of A do not contain a “minimal” projection

p ∈ A/I (i.e., with the property p(A/I)p = Cp 6= {0} ).

(viii) Each non-zero hereditary C*-subalgebra D of A has no non-zero quotient

of Type I.

What means Type I here?

(It implies (iii): D has no character.)

(Implies: Each non-zero quotient of D contains a non-zero n-

homogenous positive contraction.)

(ix) For each non-zero hereditary C*-subalgebra D of A and each pure state

λ on A with λ(D) 6= 0 and each n ∈ N there exists an n-homogenous

element e ∈ D+ with λ(e) > 0 .

(x) For every n ∈ N, every closed ideal I of A, and every hereditary C*-

subalgebra D of A with πI(D) 6= {0} there exists an n-homogenous positive

contraction a ∈ D with ‖πI(a)‖ = 1.

(xi ???) More needed ???

Proof. To be filled in ??

The problems are ?: Given a non-zero hereditary Abelian C *-subalgebra D

of A. Does there exists an irreducible representation ρ of A such that ρ(D) is

1-dimensional ????

(extend a character ξ of D to a pure state on A/I and use that D ∩ I the the

ideal I of A generated by the kernel of the character ???????

Let D any hereditary C *-subalgebra of A and ξ a character of D, K ⊆ D the

kernel of ξ.

Citation of Lemma for next is where ???:

The closed ideal of ideal J of A generated byK has the property that J∩D = K.

Thus, πJ(D) ∼= D/K ∼= C, and therefore, πJ(D) = C · p for some projection

p ∈ A/K with p(A/K)p = C · p.
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?(x)⇒(ix): trivial.

?(ix)⇒(x): indirect.

The equivalence of (?v) and (?vi) (= old ???) follows immediately from [616,

prop. 6.2.8].

The other implications follow from the fact that for each closed ideal J of a

hereditary C *-subalgebra D of A the closed ideal I := Span(AJA) of A satisfies

I ∩D ⊇ J .

latter OK ????? �

Lemma 2.7.15. Let A a C*-algebra, Cn := C0((0, 1],Mn) = Mn(C0((0, 1]) for

n > 1, C∞ := C0((0, 1],K(`2(N)) and D a hereditary C*-subalgebra of A.

Let κ ∈ {2, 3, . . .} or κ = ∞. Then the following properties (i) and (ii) of A

and D are equivalent (for the same fixed κ).

(i) For every pure state ρ on A with ρ|D 6= 0 there exists a C*-morphism

ϕ : Cκ → D with ρ(ϕ(Cκ)) 6= {0}.
(ii) For every non-zero positive functional ρ on A (or on D) with ρ|D 6= 0

there exists a C*-morphism ϕ : Cκ → D with ρ(ϕ(Cκ)) 6= {0}.

Moreover, if Part (i) holds then D has no irreducible representation π : D →
L(H) with dimension Dim(H) < κ.

In case of κ ∈ N, i.e., with κ < ∞, this property of D is moreover equivalent

to Part (i).

Proof. For the following we use that for each closed ideal J of D the ideal I

of A generated by J satisfies J = I ∩D, cf. Lemma ??.

Consider the closed ideal Jκ of D generated by the images ϕ(Cκ) of all possible

C *-algebra morphisms ϕ : Cκ → D.

If J = D then clearly Part(ii) holds, – and implies Part(i).

Conversely, if Part (i) holds then Jκ = D because, otherwise, there would exists

a pure state λ on D with λ(Jκ) = {0}. The pure state λ has a unique extension to

a pure state ρ on A.

This shows the equivalence of Parts (i) and (ii).

If Part (i) holds, then D has no irreducible representation π : D → L(H) with

dimension Dim(H) < κ :

Indeed, if π : D → L(H) is an irreducible representation, then the vector state

λ(d) := 〈π(d)x, x〉, for given x ∈ H with ‖x‖ = 1, is a pure state on D that uniquely

extends to a pure state ρ on A. By Part (i) there exists a C *-morphism ϕ : Cκ → D

with ρ(ϕ(Cκ)) 6= {0}.

The positive functionals ρ and λ coincide on ϕ(Cκ) ⊆ D. Thus π(ϕ(Cκ)) ⊆
L(H) is isomorphic to a non-zero quotient C *-algebra of C0((0, 1],Mκ) and has a
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dimension≥ κ2, considered as vector space. Thus, L(H) has vector-space dimension

≥ κ2. But this me means that Dim(H) ≥ κ .

In case κ =∞ this should be read as: H must be of infinite dimension, because

then ρ(ϕ(Cκ))x is as a vector space infinite dimensional for each x ∈ H with

ρ(ϕ(Cκ))x 6= {0} ( 40 ).

Above we have seen that the property of D ⊆ A and 2 ≤ κ ≤ ∞, as stated in

Part (i), implies that D has no quotient that is isomorphic to Mκ if 2 ≤ κ < ∞,

i.e., D has no irreducible representation on a Hilbert space of dimension < κ.

The opposite direction of this implication holds in case of 1 < κ ∈ N, i.e., if D

has no irreducible representation π : D → L(H) with dimension Dim(H) < κ, then

the hereditary subalgebra D ⊆ A satisfies Part (i):

Let ρ a pure state on A with ρ|D 6= 0. Then there is an irreducible representa-

tion π : A→ L(H) with cyclic vector x such that H = π(A)x and ρ(a) = 〈π(a)x, x〉
for a ∈ A. The closed linear subspace H0 := π(D)x is invariant under π(D) and

the restrictions ψ(d) := π(d)|H0 of π(d) to H0 for d ∈ D define an irreducible

*-representation ot D on H0. We denote by P the orthogonal projection from H to

H0 and let y := ‖Px‖−1/2 · Px. Then ‖Px‖ = ‖ρ|D‖ > 0 and λ(d) := 〈ψ(d)y, y〉
is pure state on D of norm = 1.

Now we use the assumption that D has no irreducible representation on a

Hilbert space of dimension < κ, i.e., that D has no quotient D/I that is isomorphic

to Mm for some m < κ. It follows that Dim(H0) ≥ κ. Let P ∈ L(H0) ⊆ L(H) a

projection with Dim(PH) = κ. By Lemma ??

there exists a C *-morphism ϕ : Cκ → D with ϕ(Cκ) = PL(H0)P = PL(H)P

and ψ ◦ ϕ(f0 ⊗ P ) = P . Thus, ρ(ϕ(Cκ)) 6= {0} and D ⊆ A fulfill Part (i).

Thus, in case where 2 ≤ κ <∞, the non-existence of irreducible representations

ρ : D → L(H) with Dim(H) < κ is equivalent to Part (i) with this κ. �

The following equivalent formulations l.p.i.(1) and l.p.i(2) of local pure in-

finiteness imply that l.p.i. C *-algebras A are residually antiliminary in the sense of

Definition 2.7.2 ????? where ????? :

l.p.i.(1):

The C*-algebra A is locally purely infinite if, for every non-zero hereditary C*-sub-

algebra B of A and every pure state ρ of B, there exists a σ-unital stable C*-sub-

algebra D ⊆ B with ρ|D 6= 0 .

Indeed, if B ⊆ A is a hereditary C *-subalgebra of A and ρ is a pure state of

B, then ρ can be uniquely extended to a pure state ρext on A with ρext|B = ρ and

there exists a positive contraction e ∈ B+ with ρ(e) = 1.

Let D := eAe. Then D ⊆ B and ρext(a) = ρ(eae) for all a ∈ A.

By assumption there exists a a stable C *-subalgebra D ⊆ E with ρ(D) 6= {0}.

40 Notice here that ρ ◦ϕ is non-zero, but is not necessarily cyclic or even irreducible, because

ϕ(Cκ) is in general not necessarily hereditary in D.
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It follows that ????

for every non-zero a ∈ A+ and pure state ρ on A with ρ(a) > 0, there exists a

stable C *-subalgebra D ⊆ aAa with ρ(D) 6= {0}.

Thus, ?????

Conclusion:

This property implies in particular that every nonzero hereditary C *-

subalgebra B of A can not have a character ρ, because the non-zero restriction ρ|D
to any stable non-zero D ⊆ B can not be character.

Thus, locally purely infinite C *-algebras are residual antiliminary in sense of

Definition 2.7.2.

l.p.i.(2): The C *-algebra A is locally purely infinite if, for every d ∈ A+ with

‖d‖ = 1 and every state ρ of A with ρ(d) 6= 0, there exists b ∈ D := dAd with the

properties that 0 ≤ b , ρ(b) > ‖ρ|D‖/2 , ‖b‖ = 1 and bAb is stable.

Here: One of the (old! last) estimate is not clear ?!

Question: Carries the latter property over to A∞ := `∞(A)/c0(A) ?

Can one at least show that A∞ is residually antiliminary if A is residual antil-

iminary?

It can be reduced to the separable case, because one can consider finite free pro-

ducts of C0((0, 1],Mn), n = 2, 3, . . .. And build suitable inductive limits ...? Look

if ultrapowers of this inductive limits have ultra-powers with non-zero characters.

One could try to construct an inductive limit of free products of C0((0, 1],Mn)

that is “universal” for residual antiliminary separable C *-algebras.

Proof of l.p.i. ⇒ l.p.i.(1):

Definition 2.0.3 implies l.p.i.(1): If ρ is a pure state on E then there exists,

e.g. by cf. Lemma 2.1.15(ii), a contraction a ∈ E+ with ρ(a) = 1. We can extend

ρ to a pure state on A. Thus, there exists a stable C *-subalgebra D ⊆ aAa ⊆ E

with ρ|D 6= 0 by Definition 2.0.3.

Next ques should be somewhere discussed

Question:

Let A a residually antiliminary C *-algebra and b ∈ A+ with ‖b‖ = 1 and ρ a

state on A with ρ(b) > 2/3. Does there exist a general continuous function f(t) > 0

with limt→0 f(t) > 0 such that there exist always an n-homogenous element a ∈ A+

with amin((1 + 1/n)b, 1) = a and ρ(a) > f(1/n) ?????

Sort above Lemmata and its Proofs!

Until here some are on wrong place ??

The following Proposition 2.7.16 shows that possible differences between the

definitions of Properties pi-n and pi(n) disappear if the multiplier algebra M(A)

of A has a properly infinite unit.
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Proposition 2.7.16.

Suppose that A satisfies the following properties (i) and (ii) :

(i) For each n-homogenous element a ∈ A+ and each b ≥ 0 in the closed ideal

J(a) of A generated by a there exists a sequence of elements d1, d2, . . . ∈ A
with a+ b = limn d

∗
nadn .

(ii) A has no irreducible representations ρ : A → L(H) of dimension ≤ n (of

the Hilbert space H).

Then every non-zero n-homogenous positive element is properly infinite inside

the C*-algebra A .

We do not require in Part (i) that ab = 0 for the in Part (i) considered sums

a+ b .

The property in Part (i) holds for A if each n-homogenous element of A is

properly infinite, but Part (ii) does not follow from Part (i), e.g. for the C *-algebra

A := O2⊕Mn−1. (Each non-zero n-homogenous element a = x⊕y satisfies a = x⊕0

with x 6= 0 and J(a) = O2 ⊕ 0. Then there exists d with d∗ad = 1⊕ 0.)

A trivial example is A := Mn−1, it satisfies condition (i) trivially, because only

0n−1 is n-homogenous in Mn−1, but A satisfies not (ii).

Proof. The idea of the proof are the following:

(α) The assumptions (i) and (ii) pass to all non-zero quotients of all non-zero

hereditary C *-subalgebras of A.

(In particular, A is residually antiliminary in sense of Definition 2.7.2, because

this permanence implies that non-zero hereditary C *-subalgebras can not have

contractions.)

(β) It follows from this permanence properties that it suffices to show that

each non-zero n-homogenous positive contraction X ∈ A+ is not finite in A (i.e., is

infinite in A).

(γ) To show (β) we shall find for the given X non-zero n-homogenous positive

contractions T ≤ S ≤ X and R ≤ X such that R + S = X, TS = T 6= 0, S in the

ideal generated by R and TR = 0.

Then it follows that X - R, because X = R + S is in the ideal generated by

the n-homogenous R. This implies together with R+T ≤ R+S = X, that X ≈ R
and then that R ≈ T +R.

The relations R ≈ T + R, T 6= 0 and TR = 0 imply that R is infinite in A.

Thus X is infinite in A.

Now we prove this claims and carry out this constructions explicitly:

The Part(i) says that if ϕ : C0(0, 1] ⊗Mn → A is a C *-morphism, then for

c := ϕ(f0 ⊗ 1n) holds: If b is in the closed ideal generated by a := ϕ(f0 ⊗ p11)

then b - c. Notice that c is MvN-equivalent in Mn(A) ⊂M∞(A) to the n-fold sum

diag(a, a, . . . , a) = a⊕ a⊕ · · · ⊕ a .
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If expressed in W (A) it says:

If b ∈ A satisfies [b] ≤ m[a] then this implies [b] ≤ min(m,n)[a].

It implies that for every nonzero n+ 1-homogenous element b := ψ(f0 ⊗ 1n+1)

the n-homogenous element c := ψ(f0⊗1n) is properly infinite in A, because it says

in W (A) that [b] = n[a] + [a] = [c] + [a] ≤ n[a] = [c] and then inductively (over k)

that [c] + k[a] ≤ [c] and finally that [c] + [c] ≤ [c], i.e., that c is properly infinite in

A.

The arguments show also that A has the property that all n-homogenous ele-

ments c = ψ(f0⊗1n) of A “absorb” all elements b ∈ A+ – in the sense that b⊕c - c
- with bc = 0 and and b is in the closed ideal of A that is generated by c ( 41 ).

It is easy to see that this property passes to all non-zero hereditary C *-

subalgebras D ⊆ A of A.

The passage to the quotient goes as follows: Every selfadjoint contraction b−c ∈
A/J (with bc = 0, and 0 ≤ b ≤ 1 and 0 ≤ c ≤ 1) can be lifted to a selfadjoint

contraction in A, and every n-homogenous positive contraction in A/J can be lifted

to an n-homogenous contraction in A, cf. Proposition A.8.4 (or [540, cor. 3.8]).

Now we show by an indirect argument that this implies that the C *-algebra A

is residually antiliminary in the sense of Definition 2.7.2 using the characterization

in Part (iv) of Proposition 2.7.7:

Let ρ : A→ L(H) an irreducible representation of A. Suppose that there exists

a positive contraction in a ∈ A+ with 0 6= ρ(a) ∈ K(H). Then the dimension

of H is ≥ n + 1 by assumption in Part (ii) of Proposition 2.7.16. Moreover then

ρ(A)∩K(H) is a non-zero C *-subalgebra of K(H) that acts irreducibly on H. Thus,

ρ(A) ∩K(H) = K(H), and we find an projection P = P ∗P ∈ K(H) of rank n+ 1.

It follows that there exists a C *-subalgebra B of A such that ρ|B is a epi-

morphism from B onto PK(H)P ∼= Mn+1. The projectivity of C0((0, 1],Mn+1),

cf. Proposition A.8.4 (or [540, cor. 3.8]), shows that there exists an (n + 1)-

homogenous element b := ψ(f0 ⊗ 1n+1) ∈ B ⊆ A with ρ(b) = P . But above

we have seen that [b] = (n+ 1)[ψ(f0⊗ p11)] satisfies 2[b] ≤ [b], i.e., the b is properly

infinite in A. It is easy to see that non-zero image P of the properly infinite element

b ∈ A are properly infinite. Since P is not properly infinite this contradicts the

existence of P and that of non-zero elements in ρ(A) ∩K(H).

Hence, ρ(A) ∩ K(H) = {0} for every irreducible representation ρ : A → L(H)

of A, i.e., A is residually antiliminary.

Change notation, use only two functions f1, f2.!?

Remove blue repeat of assumptions?

Suppose that each n-homogenous element a ∈ A+ has the following property:

41 It seems that this property is not equivalent to the stated assumptions on A.
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For every positive element b ∈ span(AaA) =: J(a) there exist d1, d2, . . . ∈ A
with limk d

∗
kadk = a+ b, and that A has no irreducible representation of dimension

≤ n.

We show the following observations (1.0)-(1.3), (2.1) and (2.2), and get finally

in (3.0) the desired conclusion.

(1.0) The C *-algebra A is residual antiliminary in sense of Definition 2.7.2.

(1.1) The properties (i) and (ii) of A pass to each non-zero hereditary C *-

subalgebra D of A, and to all quotients A/I for closed ideals I 6= A .

(It is done at the beginning ?)

(1.2) All non-zero (n+ 1)-homogenous elements of (A/I)+ are infinite in A/I .

(It is done at the beginning ?)

(1.3) Non-zero quotients A/I of A can not contain a “minimal” projection p ∈
A/I with p(A/I)p = Cp. (Should be equivalent to “A is residual antiliminary”???)

In particular, any irreducible representation of A does not contain a non-zero

compact operator in its image, and each non-zero hereditary C *-subalgebra D of

A has no character.

(1.3) has been discussed further above or below. Synchronize!

(2.1) Every non-zero n-homogenous a ∈ A+ is infinite in A.

(2.2) Every non-zero n-homogenous a ∈ (A/I)+ is infinite in A/I for every

closed ideal I 6= A of A. [Follows immediately from (2.1) and (1.1) by replacing A

by A/I.]

(3) Final conclusion from (2.1) and (2.2): Every non-zero n-homogenous ele-

ment a ∈ A+ is properly infinite in A, because it says equivalently – by Lemma

2.5.3(v) – that πI(a) is infinite in A/I or a ∈ I for every closed ideal I of A.

Ad(1.1): Let {0} 6= D ⊆ A a hereditary C *-subalgebra of A and 0 6= a ∈ D+,

b ∈ D+ in the closed ideal span(DaD) of D generated by a. Then b ∈ span(AaA)

and there exist d1, d2, . . . ∈ A with limk d
∗
kadk = a + b. The elements ek :=

a1/mkdk(a + b)1/k are in D and satisfy limk e
∗
kaek = a + b if the mk > k are

chosen such that ‖a1/2a1/mk − a1/2‖ < 2−n · (‖dk‖2 + 1)−1 .

If ρ : D → L(H) is an irreducible representation ??????????

properties (i) and (ii) of A pass to each non-zero

?? hereditary ??

C *-subalgebras D of A :

Let I 6= A a closed ideal of A. Then A/I can not have an irreducible represen-

tation ρ of dimension ≤ n, because ρ ◦πI would be an irreducible representation of

A on a Hilbert space of dimension ≤ n, that we have excluded by assumption (ii).
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Now let 0 6= c ∈ (A/I)+ an n-homogenous element and g ∈ (A/I)+ in the ideal

generated by c. We can suppose that ‖c‖ = 1, otherwise replace c by ‖c‖−1c. Then

there exists a C *-morphism ψ : C0((0, 1],Mn)→ A/I with c := ψ(f0 ⊗ 1n).

The C *-algebra C0((0, 1],Mn) is projective, cf. Proposition A.8.4. Thus there

exists a C *-morphism ϕ : C0((0, 1],Mn) → A with πI ◦ ϕ = ψ. The element

a := ϕ(f0 ⊗ 1n) ∈ A+ satisfies πI(a) = c.

Let ε ∈ (0, 1). There are h1, h2, . . . , hm ∈ A with ‖g −
∑
k πI(hk)∗cπI(hk)‖ <

ε/2 , because the element g is contained in the ideal generated by c.

Property (i) of n-homogenous a ∈ A+ and that b :=
∑
k h
∗
kahk give the exis-

tence of d ∈ A with ‖(a+ b)− d∗ad‖ < ε/2 . Thus ‖(c+ g)− πI(d)∗cπI(d)‖ < ε .

This shows Part (1.1), i.e., that A/I satisfies the assumptions (i) and (ii) – with

c and A/I in place of a and A.

Ad(1.2): Let c ∈ A+ an (n + 1)-homogenous element. By Lemma 2.5.3(v) it

suffices to show that πI(c) is infinite in A/I for all closed ideals I of A with c 6∈ I.

By (1.1) the non-zero quotients A/I of A satisfy again conditions (i) and (ii) with

0 6= πI(a) ∈ (A/I)+ in place of 0 6= a ∈ A+. Therefore, it suffices to show that

each non-zero (n+ 1)-homogenous element in A+ is infinite in A:

If ψ : C0(0, 1]⊗Mn+1 → A is a non-zero C *-morphism and c := ψ(f0⊗1), then

a := ψ(f0⊗(1−p11) is an n-homogenous element and b := ψ(f0⊗p11) is in the ideal

generated by a, because b = zz∗ and z∗z = ψ(f0 ⊗ p22) ≤ a for z := ψ(f
1/2
0 ⊗ p12).

Thus, b+ a = limn d
∗
nadn for a suitable sequence d1, d2, . . . ∈ A by assumptions on

A and a. In particular c = b + a - a, ab = ba = 0 and b 6= 0, i.e., a is infinite in

sense of Definition 2.5.1. Then a ≤ c - a shows that c ≈ a, and c is infinite in A.

Ad(1.3): Suppose that p ∈ A/I is a projection with p(A/I)p = C · p. Then the

closed ideal K of A/I generated by p is isomorphic to K(H) ∼= K for some Hilbert

space H .

Suppose that Dim(H) > n . Then there exists an n + 1-homogenous element

in K (given by any projection p ∈ K of rank = n + 1). But this is not possible,

because all n+ 1-homogenous elements in A/I are properly infinite by Step (1.2).

It follows that Dim(H) ≤ n. Then K(H) ∼= K is unital and its unit is in

the center of A/I. It would define an irreducible representation of A of dimension

≤ n. But this has been excluded by the assumption (ii) on A. Hence, a minimal

projection p can not exist in any quotient of A.

If D is a non-zero hereditary C *-subalgebra of A ?????

Ad(1.4): Let {0} 6= D ⊆ A a hereditary C *-subalgebra of A and 0 6= Y ∈ D+

an n-homogenous element and b ∈ D+ in the ideal J(Y ) generated by Y .

(1.4.a) An element b ∈ D is in the ideal of D generated by Y inside D, if and

only if, b is in the ideal J(Y ) of A generated by Y , i.e., D ∩ J(Y ) = I(Y ) for the

ideal of I(Y ) of D generated by Y .

Compare here also Remark A.5.8 or Lemma 2.7.3!
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This is because if f1, . . . , fm ∈ A satisfy ‖b−
∑
k f
∗
kY fk‖ < ε then for suitable

β ∈ (0, 1/2) and gk := Y βfkb
β holds ‖b−

∑
k g
∗
kY gk‖ < ε .

Moreover then there exists a sequence of elements dn ∈ A with limn d
∗
nY dn =

Y +b. Again we can suppose that the dn are in D, by replacing the dn by Y βndn(Y +

b)βn for a suitable zero sequence βn ∈ (0, 1/2) .

(1.4.b)

D has no irreducible representation of dimension ≤ n:

An irreducible representation of D of finite dimension extends to an irreducible

representation ρ of A that contains the compact operators in its image. Let I denote

the kernel of ρ. It would imply that a quotient A/I of A contains a projection p

with p(A/I)p = C · p. We have seen in

Ad(1.2)

that this is impossible.

Thus, D has no irreducible representation of finite dimension. In particular, D

has no character.

Ad(2): Every nonzero n-homogenous Y ∈ A+ is infinite in A:

Let Y ∈ A+ non-zero and n-homogenous. Since Y ≈ ‖Y ‖−1Y , we can suppose

that ‖Y ‖ = 1. Then there exists ψ : C0(0, 1] ⊗Mn → A with ψ(f0 ⊗ 1n) = Y ,

where f0(t) = t on [0, 1].

Consider the functions f1(t) := min(3t, 1), f2(t) := min(max(3t− 1, 0), 1), and

f3(t) := max(3t−2, 0) in C0(0, 1]+. They are increasing with fk(1) = 1 and fk(0) =

0 (k = 1, 2, 3) and satisfy f0 ≤ f1 ≤ 3f0, f2f1 = f2, f3f2 = f3, f1 + f2 + f3 = 3f0,

f3 = (3f0 − 2)+, f2 = (3f0 − 1)+ − (3f0 − 2)+ and f1 = 3f0 − (3f0 − 1)+.

LetX1 := 3Y−(3Y−1)+ = ψ(f1⊗1n), X2 := (3Y−1)+−(3X−2)+ = ψ(f2⊗1n)

and X3 := (3Y − 2)+ = ψ(f3 ⊗ 1n). Then the Xk are all n-homogenous, have

norms ‖Xk‖ = 1, and Xk+1 = Xk+1Xk (for k = 1, 2). Moreover Y ≤ X1 ≤ 3Y , in

particular Y ≈ X1.

The element Z := ψ(f3⊗p11) has norm ‖Z‖ = ‖X3‖ = 1, because the elements

ψ(f3 ⊗ pjj) (j = 1, . . . , n) are pairwise orthogonal, are MvN-equivalent and their

sum is X3 = ψ(f3 ⊗ 1n). It implies ‖ψ(f3 ⊗ pjj)‖ = ‖X3‖ = 1 for 1 ≤ j ≤ n.

Moreover we get that Zψ(f2 ⊗ p11) = Z = Zψ(f1 ⊗ p11) because f3f2 = f3 =

f3f1. Let D := ZAZ the hereditary C *-subalgebra of A generated by Z.

In Ad(2) we have seen that D has no character. In particular D is not Abelian.

A non-abelian C *-algebra D contains a nonzero element x ∈ D with ‖x‖ = 1

and x2 = 0. I.e., D contains a 2-homogenous element ϕ : C0(0, 1]⊗M2 → D with

ϕ(f0 ⊗ p12) = x. In particular ‖ϕ(f0 ⊗ 12)‖ = 1.

(It can be seen from the existence of an irreducible representation of dimension

≥ 2 and a strong variant of the Kadison transitivity theorem, - Lemma 2.1.15(ii)-,

and projectivity of C0(0, 1]⊗M2.
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Give ref’s or cite!?)

Now we use the natural isomorphism X3AX3
∼= D ⊗Mn for X3 := ψ(f3 ⊗ 1n)

in a way that ψ(f3 ⊗ pjk) corresponds to to Z ⊗ pjk ∈ D ⊗ Mn. Notice that

X2(Z ⊗ pjk) = (Z ⊗ pjk) = (Z ⊗ pjk)X2 under this natural identification.

We build the elements g1, g2 ∈ C0(0, 1] by g1 := 2f0− (2f0− 1)+ = min(2f0, 1)

and g2 := 2f0 − min(2f0, 1) = max(2f0 − 1, 0). Notice that g1 + g2 = 2f0, g2 =

(2f0 − 1)+, g1g2 = g2 and g1(1) = g2(1) = 1. In particular ‖ϕ(g1 ⊗ ejk)‖ = 1 =

‖ϕ(g1 ⊗ 12)‖, ‖ϕ(g2 ⊗ 12)‖ = 1 and ϕ(g1 ⊗ 12)ϕ(g2 ⊗ 12) = ϕ(g1 ⊗ 12).

Let E ⊆ A the hereditary C *-subalgebra of A defined by

E := ψ(f1 ⊗ 1n)Aψ(f1 ⊗ 1n) .

There is a natural isomorphism γ from E onto the C *-algebra F ⊗Mn, where F is

the hereditary C *-subalgebra of A given by

F := ψ(f1 ⊗ p11)Aψ(f1 ⊗ p11) .

Notice that ψ(f1⊗p11)ϕ(h) = ϕ(h) for all h ∈ C0(0, 1]⊗M2, because ψ(f1⊗p11)d =

d for all d ∈ D.

We define S := ϕ(g2⊗ e11)⊗ 1n, T1 := ϕ(g1⊗ e11)⊗ 1n, T2 := ϕ(g1⊗ e22)⊗ 1n,

R := X1 − T1 = [ψ(f1 ⊗ p11) − ϕ(g1 ⊗ e11)] ⊗ 1n. Notice that T1S = S implies

RS = 0, that S ≤ T1 ∼MvN T2 and T2 ≤ R. It follows that T1 and S are in closed

ideal generated by R. Since ψ(f1 ⊗ p11)ϕ(g1 ⊗ ejj) = ϕ(g1 ⊗ ejj) it follows that R

is a positive n-homogenous element in A and that RT2 = T2 = T2R implies that

T2 ≤ R and ‖R‖ = 1.

Clearly R ≤ X1 and X1 = R + T1. Thus R - X1. Since R is n-homogenous

and T1 ≈ T2 ≤ R it follows by assumption on n-homogenous elements in A that

X1 = R+ T1 - R.

Thus, X1 ≈ R. It implies that the X1 is infinite in A if and only if R is infinite

in A. Since Y ≈ X1 (by Y ≤ X1 = 3Y − (3Y − 1)+ ≤ 3Y ) this would cause also

that Y is infinite in A.

Since RS = 0, ‖S‖ = 1 and S ≤ T1 ≈ T2 ≤ R we have by assumption on

n-homogenous elements R ∈ A+ that there exist d1, d2, . . . ∈ A with S + R =

limn d
∗
nRdn. This implies S + R - R. On the other hand (S + R) ⊕ 0 =

[S1/2, R1/2][S1/2, R1/2]∗ and S ⊕ R = diag(S,R) = [S1/2, R1/2]∗[S1/2, R1/2] in

M2(A), i.e., (S +R)⊕ 0 ∼MvN S ⊕R in M2(A). It implies that S ⊕R - R⊕ 0 in

M2(A). Thus R, X1 and Y are infinite elements of A+.

Since the considered property of Y pass to each quotient A/I of A with Y 6∈ I,

it follows finally that Y is properly infinite in A by Lemma 2.5.3(v). �

The following Corollaries 2.7.18 and 2.7.19 are consequences of Proposition

2.7.16.

But we have here inserted also other permanence properties.

Move this to other places.
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Proposition 2.7.17. The Property pi-n of a C*-algebra A implies that A has

Property pi(n).

Both properties imply that all non-zero n-homogenous elements in A are prop-

erly infinite.

Both properties pass to non-zero hereditary C*-subalgebras and to non-zero quo-

tients.

If, for each a ∈ A+ and ε ∈ (0, ‖a‖), there exists elements d1, . . . , dn ∈ A with

d∗jdk = δjk(a− ε)+, then Property pi(n) implies also Property pi-n.

Not verified, needs special topology of prime(A)!:

??? And then both are equivalent to the property that A has no irreducible

representation of dimension ≤ n and all n-homogenous elements are properly infi-

nite.???

The Property pi(n) (and therefore also the Property pi-n) implies that A is

residually antiliminary in sense of Definition ??.

The algebra K(H) of compact operators in any Hilbert space H can not have

one of the properties pi-n or pi(n). In particular, C*-algebras with this properties

have no irreducible representations of finite dimension.

Proof. The Property pi-n implies Property pi(n):

Let a ∈ A+, b ∈ A+ in the closed ideal generated by a, and ε > 0, then there

exists δ > 0 and d1, . . . , dm ∈ A with
∑m
k=1 dk(a−2δ)+(dk)∗ = (b−ε)+. Let ` ∈ N

with n ≤ (` − 1) · n ≤ m ≤ ` · n. Then the row-matrix D ∈ M1,m with entries

[d1, . . . , dm] in M1,m satisfies D((a− 2δ)+ ⊗ 1m)D∗ = (b− ε)+.

By assumption of Property pi-n, the diagonal matrix

diag((a− γ)+, . . . , (a− γ)+) = (a− γ)+ ⊗ 1n

is properly infinite inside Mn(A) for each γ ∈ (0, ‖a‖). Thus, there exists an

operator matrix R ∈Mm,n(A) with

R((a− δ)+ ⊗ 1n)R∗ = (a− 2δ)+ ⊗ 1m .

The row matrix D ·R ∈M1,n(A) satisfies (D ·R)((a− δ)+⊗1n)(D ·R)∗ = (b− ε)+.

This shows that an element b in the in the in closed ideal generated by a non-zero

element a ∈ A can be approximated by sums of n products cad ∈ A · a ·A.

The Properties pi-n and pi(n) pass to non-zero hereditary C *-subalgebras D,

in particular to non-zero closed ideals J , and they pass to all non-zero quotients.

What happens with stabilizations? A⊗Mn?

The algebra K(H) of compact operators in any Hilbert space H can not have

one of the properties pi-n or pi(n). In particular, C *-algebras with this properties

have no irreducible representations of finite dimension. �
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Corollary 2.7.18. If the C*-algebra A has Property pi-n of Definition ?? or

Property pi(n) of Definition 2.0.4, then every non-zero n-homogenous element of

A+ is properly infinite.

Proof. The Property pi-n implies Property pi(n) by Lemma 2.1.2

Let a ∈ A+, b ∈ A+ in the closed ideal generated by a, and ε > 0, then there

exists δ > 0 and d1, . . . , dm ∈ A with
∑m
k=1 dk(a−2δ)+(dk)∗ = (b−ε)+. Let ` ∈ N

with n ≤ (` − 1) · n ≤ m ≤ ` · n. Then the row-matrix D ∈ M1,m with entries

[d1, . . . , dm] in M1,m satisfies D((a− 2δ)+ ⊗ 1m)D∗ = (b− ε)+ .

By assumption of Property pi-n, the diagonal matrix

diag((a− γ)+, . . . , (a− γ)+) = (a− γ)+ ⊗ 1n

is properly infinite inside Mn(A) for each γ ∈ (0, ‖a‖). Thus, there exists an

operator matrix R ∈Mm,n(A) with

R((a− δ)+ ⊗ 1n)R∗ = (a− 2δ)+ ⊗ 1m .

The row matrix D ·R ∈M1,n(A) satisfies (D ·R)((a− δ)+⊗1n)(D ·R)∗ = (b− ε)+.

This shows that an element b in the closed ideal generated by a non-zero element

a ∈ A can be approximated by sums of n elements cad in A · a ·A.

The Properties pi-n and pi(n) pass to non-zero hereditary C *-subalgebras D,

in particular to non-zero closed ideals J , and they pass to all non-zero quotients.

What happens with stabilizations? A⊗Mn?

The algebra K(H) of compact operators in any Hilbert space H can not have

one of the properties pi-n or pi(n). In particular, C *-algebras with this properties

have no irreducible representations of finite dimension.

Let ρ a pure state on A, L := {a ∈ A ; ρ(a∗a) = 0}, H := A/L, and D : A →
L(H) the corresponding irreducible representation. Then there exists a contraction

e ∈ A+ with ρ(e) = 1 = ‖ρ‖. By Property pi-n, the diagonal matrix diag(e, . . . , e)

is infinite in Mn(A).

In case of Property pi-n, the Definition ?? rather directly implies that all n-

homogenous non-zero elements in A with Property pi-n are properly infinite in

A:

If a ∈ A+ is n-homogenous and ‖a‖ = 1, then there exists a C *-morphism

ψ : C0(0, 1]⊗Mn → A with ψ(f0 ⊗ 1n) = a, where f0(t) = t for t ∈ [0, 1].

Let F := f0 ⊗ 1n G := f0 ⊗ e11 in C0(0, 1] ⊗Mn, the equivalence ψ(F ) ⊗
e11 ∼MvN ψ(G)⊗ 1n in A⊗Mn and an isomorphism

A ⊇ ψ(F )Aψ(F ) ∼= Mn(ψ(G)Aψ(G) ) ⊆ Mn(A)

that maps the n-homogenous element ψ(F ) ∈ ψ(F )Aψ(F ) ⊆ A to the element

ψ(G) ⊗ 1n ∈ A ⊗ Mn. The element ψ(G) ⊗ 1n is properly infinite in A ⊗ Mn

by Definition ??. It is then automatic also properly infinite inside the heredi-

tary C *-subalgebra ψ(G)Aψ(G) ⊗Mn of A ⊗Mn generated by ψ(G) ⊗ 1n. But
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there is an isomorphism from the C *-algebra Mn(ψ(G)Aψ(G) onto the heredi-

tary C *-subalgebra aAa = ψ(F )Aψ(F ) with the n-homogenous element ψ(F ) = a

corresponding to the in ψ(G)Aψ(G) ⊗Mn properly infinite ψ(G) ⊗ 1n. Thus, the

n-homogenous a ∈ A+ is properly infinite in A, and this shows that the property

pi-n of A implies that each non-zero n-homogenous element ψ(F ) ∈ A is properly

infinite in A.

In the case of Property pi(n) the proper infiniteness of non-zero n-homogenous

elements can be derived with help of the (not so trivial) Proposition 2.7.16:

The Definition 2.0.4 requires (!) that A has no irreducible representation on a

Hilbert space of dimension ≤ n and that A has the property that each element c

in the closed ideal J(a) generated by a ∈ A satisfies [c] ≤ n[a] in the (large) Cuntz

algebra Cu(A) .

If moreover a, c ∈ A+ are non-zero then the latter means that, for each ε > 0

there exists δ ∈ (0, ‖a‖) and d1, . . . , dn such that

(c− ε)+ = d∗1(a− δ)+d1 + . . .+ d∗n(a− δ)+dn .

In special case where a ∈ A+ is n-homogenous and ‖a‖ = 1, there ex-

ists ψ : C0(0, 1] ⊗ Mn → A such that a = ψ(F ) for F := f0 ⊗ 1n . Let

b := ψ(f0 ⊗ p11) ∈ A+. Then the element c ∈ J(a) = J(b) satisfies also that

c ∈ J(b) and now [c] ≤ n[b] = [a].

Thus, we can in this special case the above defined n-homogenous element a :=

ψ(F ), the element b := ψ(G) and get for every c ∈ J(a)+ , that c+a ∈ J(a) = J(b)

and [c + a] ≤ n[b] = [a]. It gives that c + a - a in A for all n-homogenous

a ∈ A+ and c ∈ J(a)+. The additional requirement that A has no irreducible

representation of dimension ≤ n allows to apply Proposition 2.7.16 to get that all

non-zero n-homogenous elements of A are properly infinite in A. �

The Corollary 2.7.18 implies immediately the following Corollary:

Corollary 2.7.19. If the unit element 1M(A) of the multiplier algebra is prop-

erly infinite, i.e., if there exists isometries S, T ∈M(A) with S∗T = 0, then A has

Property pi-n of Definition ??, if and only if, A has Property pi(n) of Definition

2.0.4.

Check next proof again. Something not clear?

Proof. SinceM(A) is unitally contained inM(`∞(A)),M(A∞) andM(Aω),

it follow that this algebras have no finite-dimensional quotient C *-algebras.

In fact, the properties pi-n and pi(n) are equivalent if for every element a ∈ A+

and ε ∈ (0, ‖a‖) there exist elements b1, . . . , bn ∈ A with b∗j bk = δj,k(a − ε)+. In

case of Corollary 2.7.19 one can use bk := SkT · (a− ε)1/2
+ , for k = 1, . . . , n .

The b :=
∑n
k=1 bkb

∗
k ∈ A+ is a properly infinite n-homogenous element and

b ⊗ p11 is approximately equivalent in Mn(A) to the diagonal n × n-matrix C :=

diag((a− ε)+, . . . , (a− ε)+) ∈Mn(A).
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But the question is if C is properly infinite in Mn(A), i.e., if C⊕0 ≈ C⊕(a−ε)+

in Mn+1(A).

If c =
∑m
k=1 d

∗
kadk, then for every ε > 0 there exists δ > 0 and ej ∈ A such

that (c− ε)+ =
∑n
j=1 e

∗
j (a− δ)+ej .

Thus ??????

Then
∑
k(bk)∗bk = n · (a − δ)+ and

∑
k bk(bk)∗ is an n-homogenous element

that is equivalent to (a− ε)+ ⊗ 1n in Mn(A).

???? �

Next BLUE is not proven yet. Perhaps it is wrong ...

The free product A := C1 ∗ C2 ∗ · · · of a sequence of C1, C2, . . ., where the Cn

are copies Cn ∼= C0((0, 1],K(`2(N))) of the cones over the compact operators, has

no irreducible representation of finite dimension but the ultrapower Aω of A has

a character (and has irreducible representation of each finite dimension). But this

example A is not residually antiliminary:

A has e.g. the compact operators K on `2(N) as its quotient, because K is the

quotient of one of the freely generating copies Cn of C0((0, 1],K).

If there is an example of a separable C *-algebra A that has no characters but

A∞ has (non-zero) characters then the free product F of countably many copies

of M2(C0(0, 1]) must have this property: The algebra A must be a quotient of

F , because the C *-subalgebra B of A generated by a dense sequence in the set

of all 2-homogenous contractions contains all 2-homogenous elements in A+. It is

then not difficult to see that for each a ∈ A+ the closed hereditary C *-subalgebra

aAa contains a positive contraction b ∈ B+ such that B ∩ aAa = bBb and that

alternatively bAb = aAa or bAb is an ideal of aAa with the property that aAa/bAb

is commutative.

The convex cone K2 in A+ generated by all 2-homogenous positive contractions

in A should be identical with A+ , and F has no characters.

It follows from the invariance of K2 under automorphisms of A and that the

(norm-) closure of K2 is hereditary and K2 separates the pure states of A (by

Kadison transitivity theorem, cf. Lemma ??).

It needs a Lemma that says if aAa has no characters and 0 ≤ a ≤ b1 + . . .+ bn,

with bk all 2-homogenous and positive, than a can be approximated by convex

combinations of positive 2-homogenous elements in aAa (In case that A is residually

antiliminary this happens for every non-zero a ∈ A+).

8. Basics on quasi-traces

Begin of eksec2-Part2.tex !!!

The main destinations are:
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1) If A⊗C∗red(F ) has no non-trivial l.s.c. (additive) trace, then A⊗C∗red(F ) is

s.p.i., if F is one of the free groups Fn, n ∈ {2, 3, . . .} ∪ {∞} .

(The exactness of the reduced group C *-algebra C∗red(F ) ensures that the ques-

tions are reduced to the observation that all quasi-ideals of M ⊗C∗red(F ) are ideals

and to the non-existence of central states on M if M ⊗ C∗red(F ) has no non-zero

central state.)

2) If Aω has no non-trivial l.s.c. 2-quasi-trace then Aω is weakly purely infinite

(it implies that A is weakly p.i.).

3) If A⊗Z has no non-trivial l.s.c. quasi-trace, then A⊗Z is s.p.i.

Work here with Rørdam condition on the Cuntz semi-group Cu(A) and using

central sequences of the join algebra E(Mp,Mq) in Z .

4) Permanence properties for s.p.i. algebras (including extensions, coronas etc.)

tensor with exact C *-algebras ...

5) Special cases of continuous fields with s.p.i. fibres ...

6) A⊗O∞ ∼= A if A is separable, nuclear and s.p.i.

More ?????

Before we give in the next section some results concerning the relations between

2-quasi-traceless C *-algebras and purely infinite C *-algebras, we report some basic

knowledge on 2-quasi-traces, give necessary definitions and explain results that we

apply here.

We have all the Definitions in the first section

of Chapter 2 or in the Introduction

Definition 2.8.1. A map τ : A+ → [0,∞] is a quasi-trace if τ(0) = 0 and

τ(a + b) = τ(a) + τ(b) for all commuting a, b ∈ A+ , and τ(a∗a) = τ(aa∗) for all

a ∈ A . It is lower semi-continuous (l.s.c.) if τ(a) = supδ>0 τ((a− δ)+) for each

a ∈ A+ ( 42 ). If µ : A+ → [0,∞] is any quasi-trace then µ∗(a) := supδ>0 µ
(
(a−δ)+

)
is an l.s.c. quasi-trace. It satisfies µ∗ ≤ µ

Check this: and µ(a) = µ∗(a) for all a ∈ A+ with µ(a) <∞ .

The quasi-trace τ is a 2-quasi-trace if there is a quasi-trace

τ2 : M2(A)+ → [0,∞]

such that τ(a) = τ2(a⊗ p11) for all a ∈ A.

We say that A is (2-quasi-) traceless (respectively A is traceless) if all lower

semi-continuous 2-quasi-traces (respectively all l.s.c. and additive τ) on A+ take

only the values 0 and +∞.

42 Then τ is an l.s.c. function from A+ into [0,+∞] in the ordinary sense with respect to the

norm-topology on A+ and the Hausdorff topology on [0,+∞] ∼= [0, 1].
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Hold next ready for later needed reference!

But shift all further explanations to Appendix B.

Including all hints for proofs.

Proposition 2.8.2. Let τ : A+ → [0,∞] a lower semi-continuous 2-quasi-trace.

Then

(1) τ : A+ → [0,∞] is an order-monotone map on A+,

(2) τ(a+ b) ≤ 2(τ(a) + τ(b)) for all a, b ∈ A+,

(3) {a ∈ A ; τ(a∗a) = 0} is a closed ideal of A,

(4) {a ∈ A ; τ(a∗a) <∞} is an algebraic *-ideal of A.

(5) If U := M2⊗M3⊗· · · denotes the universal UHF algebra then there exists

a unique l.s.c. “local” quasi-trace µ : (U ⊗ A)+ → [0,∞] with µ(1 ⊗ a) =

τ(a) for all a ∈ A+ .

(6) For each n ∈ N there exists a unique lower s.c. quasi-trace

τn : (A⊗Mn)+ → [0,∞]

with τ(a) = τn(a⊗ e11) for all a ∈ A.

Every l.s.c. “local” quasi-trace on a C *-algebra A of real rank zero, e.g. on an

AW*-algebra or a Rickard algebra, is a 2-quasi-trace. (And it can be interpreted

as some sort of evaluations on the J. von Neumann “perspectives” for the related

affine geometry.)

It is (2019?) a still open question if unital 2-quasi-traces on AW*-algebras are

always additive, i.e., are unital traces.

The minimal requirements on a C *-algebra A for having the property that all

quasi-traces on A are 2-quasi-traces has to do with the question if all quasi-ideals

of `∞(A)/c0(A) are ideals ... (Consider here also the quasi-traces that take only

the values 0 and ∞ ...

But there exists a unital l.s.c. quasi-traces on C([0, 1]) ∗ C([0, 1]) and on

C∗(F2) = C(S1) ∗C(S1) that are not a 2-quasi-traces, – do not mix it up here with

the reduced group C *-algebra C∗red(F2), which is an exact C *-algebra.

Notice here that e.g. t ∈ [0, 1] → eit ∈ S1 defines a unital epimorphism from

C(S1) onto C([0, 1]). Thus we have only to give a ???

The τ2-existence condition in Definition 2.8.1 of 2-quasi-trace τ is equivalent

to each of the two following inequalities for all a, b ∈ A+:

τ(a+ b)1/2 ≤ τ(a)1/2 + τ(b)1/2 ,

(which was 1991 observed by U. Haagerup [342]), and the 2-sub-additivity:

τ(a+ b) ≤ 2(τ(a) + τ(b)) .

The 2-sub-additivity follows from Haagerup’s inequality, because for x, y, z ∈
[0,+∞] the inequality x ≤ y + z implies x2 ≤ 2(y2 + z2). But it can be seen also

directly from the τ2-existence by considering the matrix C := a1/2⊗p11 +b1/2⊗p21
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by using that C∗C = (a + b) ⊗ p11 , CC∗ ≤ 2(a ⊗ p11 + b ⊗ p22) and that τ2(a ⊗
p11 + a⊗ p22) = τ(a) + τ(b) for all a, b ∈ A+ .

A now classical result of U. Haagerup [342], says that all 2-sub-additive states

on exact C *-algebra are additive.

The question if every l.s.c. 2-quasi-trace on a C *-algebra A is additive is an

open question. A possible positive answer is equivalent to the likely more than 65

(?) years old conjecture of I. Kaplansky that every finite AW*-factor is a W*-factor.

Next requires details ...

J.F. Aarnes [3] has described a rather natural quasi-state τ on C([0, 1]2)+ that

has the property that τ |C∗(1, f)+ is additive if all winding numbers w(σ, f, z) of

f ∈ C([0, 1]2) are zero for all Jordan curves σ : S1 → [0, 1]2 and all z ∈ C \ f(S1).

There exists unital type-I C *-algebras A, given by a suitable extension 0 →
c0(K) → A → C([0, 1]2) → 0, and a unital map µ : A+ → [0,∞), defined by the

Aarnes quasi-state on C([0, 1]2), that has the property that the restriction µ|C+ for

each commutative C *-subalgebra C ⊂ A is additive on C+, µ(a∗a) = µ(aa∗) for

all a ∈ A, but there exists a, b ∈ A+ with µ(a) = 0, µ(b) = 0 and µ(a+ b) > 2. In

particular this implies that µ is a quasi-trace state that is not a 2-quasi-trace.

An other example is the free unital product B := C([0, 1]) ? C([0, 1]) and the

unital quasi-trace given by τA ◦π, π denotes here the canonical unital epimorphism

π : B → C([0, 1]2) and τA is the Aarnes quasi-state on C([0, 1]2), cf. [3].

(Compare Section ?? for more information on the existence of non-2-sub-

additive quasi-traces!)

In general an l.s.c. quasi-trace τ : A+ → [0,∞] is sub-additive ( = 1-sub-

additive), if and only if, τ is additive, if and only if, τ “extends” to A ⊗ C∗red(F2)

in the sense that there exists an l.s.c. quasi-trace ρ on (A ⊗ C∗red(F2))+ with

ρ(a ⊗ b) = τ(a)tr(b), where tr is the unique trace state on the reduced group

C *-algebra C∗red(F2)+ of the free group F2 on two generators.

(Here it is important to remind that C∗red(Fn), for n = 2, 3, . . . and C∗red(F∞)

contain the Jiang-Su algebra Z unitally, cf. [667, section 6.3].)

Give reference for above

Every l.s.c. 2-quasi-trace τ : A+ → [0,∞] on an exact C *-algebras A is additive,

because it “extends” to an l.s.c. quasi-trace ρ on (A⊗ C∗red(F2))+ with ρ(a⊗ b) =

τ(a)tr(b). (Here we use only that C∗red(F2) is simple, has a unique trace state and

is unitally contained in Mω.)

Where is Mω defined?

Give example for next blue text??

Notice that on traceless C *-algebras A there can still exist non-zero 2-quasi-

traces τ on the positive part D+ of some hereditary C *-subalgebras D of A that

have also non-zero finite values on D+, but those 2-quasi-traces can not have lower

semi-continuous extensions to A+ as 2-quasi-traces.



268 2. BASICS ON PURELY INFINITE C*-ALGEBRAS

Examples for above green text? Case of ideal?

IS IT REALLY TRUE, e.g. for simple C *-algebras and degenerate quasi-traces?

If D is a hereditary C *-subalgebra of A with l.s.c. 2-quasi-trace τ on D+ ∩A,

then τ should extend to A.

First extend to E := I(D)+ for the ideal E := I(D) generated by D by

extending to D ⊗ K and then using that D ⊗ K ∼= E ⊗ K for σ-unital hereditary

C *-subalgebras D and E that generate the same closed ideal of A.

Is it really on D ∼= D ⊗ p11 the same 2-q-trace?

We recall here that not necessarily bounded lower semi-continuous 2-quasi-

traces are in one-to-one correspondence to lower semi-continuous dimension func-

tions D (= sub additive rank functions), and, therefore, are always order monotone

maps.

(what we can see directly from the definition???) See Section 7 in Appendix

A, ????? e.g. [342] and [93, sec. 2.9] more precise in BlanKir2 ???? or Appendix

A??? for more details.

Remark 2.8.3. The C *-algebra A is (2-quasi-) traceless, if and only if, A has

the property that

(∗) for every a ∈ A+ and ε > 0 there exists n := n(a, ε) ∈ N with

(a− ε)+ ⊗ 12n - a⊗ 1n for all n ≥ n(a, ε) .

.

Compare Corollaries A.13.10 and A.7.3, or [462, prop. 5.7] for a proof.

Notice that this can be expressed equivalently in the Cuntz semigroup W (A)

as 2n · [(a− ε)+] ≤ n · [a] for all n ≥ n(a, ε).

Variation of ε and using that ((a− ε)+ − δ)+ = (a− (ε+ δ))+ shows that

(∗∗) for each a ∈ A+, ε > 0 and k > 1 there exist a number n(a, ε, k) such that

kn · [(a− ε)+] ≤ n[a] for all n ≥ n(a, ε, k).

In particular there exists, for n ≥ n(a, ε, k), an element d ∈M1,k(A⊗Mn) with

d∗(a⊗ 1n)d = ((a− 2ε)+ ⊗ 1n)⊗ 1k .

9. Pure infiniteness versus (2-quasi-) traceless.

Lemma 2.9.1. Let A and B C*-algebras, and denote by A⊗B the minimal C*-

algebra tensor product, and by P× the natural continuous map from the cartesian

product of T0-spaces prime(A)× prime(B) into the T0-space prime(A⊗B), that is

defined by

P×(I, J) := (I ⊗A) + (B ⊗ J) .

(i) If A or B is exact, then P× is a (surjective) homeomorphism.
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(ii) Suppose that P× is surjective, D is a hereditary C*-subalgebra of A ⊗ B
and I ∈ I(A⊗B) is a prime ideal

Or I must it be primitive ?? Check original!

that does not contain D.

Then there exist a ∈ A+, b ∈ B+, c ∈ A⊗B, pure states λ on A, and

ρ on B such that

(α) λ⊗ ρ(I) = {0} ,

(β) c c∗ ∈ D and c∗c = a⊗ b ,

(γ) λ(a) = ‖a‖ = 1 and ρ(b) = ‖b‖ = 1 .

(iii) Suppose that the C*-algebras A and B have the property that P× is sur-

jective.

If A or B is (2-quasi-)-traceless then A⊗B is (2-quasi-)-traceless.

Notice that Part (ii) implies that – in case where P× is surjective – the set of

elements F := {a ⊗ b ; a ∈ A+ , b ∈ B+ } is a filling family for A ⊗ B in sense of

[469, def. 4.2].

Not.published? No!: It is now published, see [469]. But one

has to pay 30 British pound.

But arXiv:1503.08519v2 is fairly readable... Check typos again?

Check new references !!!

Proof. (i): See [93, prop. 2.16 and prop.2.17(2)].

(ii): See Lemma 2.2.3 (cf. also [93, lem. 2.18]),

Lemma 2.2:

Let D be a non-zero hereditary C *-subalgebra of the minimal C *-algebra tensor

product A⊗B of C *-algebras A and B.

Then there exists 0 6= z ∈ A ⊗ B with zz∗ ∈ D and z∗z = e ⊗ f for some

non-zero e ∈ A+ and f ∈ B+.

If d ∈ D+ and pure states ϕ ∈ A∗ , ψ ∈ B∗ are given with (ϕ⊗ψ)(d) > 0, then

the element z ∈ A⊗B can be found such that, moreover, ϕ(e)ψ(f) > 0.

(iii): By symmetry it suffices to consider the case where B is (2-quasi-) trace-

less. For each fixed a ∈ A+, the map

τa : b ∈ B+ 7→ τ(a⊗ b) ∈ [0,∞]

is an l.s.c. 2-quasi-trace on B+. The τa can only take the values 0 and +∞, because

B is (2-quasi-) traceless. We show that this implies that τ can take only the values

0 and +∞ by lower semi-continuity of τ :

The set of g ∈ (A⊗B)+ with τ(g) = 0 is the positive part J+ of a closed ideal

J of A⊗B by Proposition 2.8.2.

Let e ∈ (A ⊗ B)+ with τ(e) < ∞. To prove that τ(e) = 0 it suffices by lower

semi-continuity of τ to show that, for each ε > 0, the hereditary C *-subalgebra D

generated by (e− ε)+ is contained in J .
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Suppose that D is not contained in J . Then there exists a primitive ideal of I

A⊗B such that J ⊆ I and D 6⊆ I.

Let a ∈ A+, b ∈ B+, c ∈ A ⊗ B, λ ∈ A∗, and ρ ∈ B∗ as in Part (ii). Then

a ⊗ b = c∗c 6∈ I but cc∗ ∈ D, in particular a ⊗ b 6∈ J , i.e., 0 < τ(a ⊗ b) ≤ ∞ and

τa : x ∈ B+ 7→ τ(a⊗ x) is an l.s.c. 2-quasi-trace on B+.

The latter contradicts the assumption that B is traceless. Thus, D ⊆ J and

τ(e) = 0 for each e ∈ (A⊗B)+ with τ(e) <∞. �

The Remark 2.8.3 has the following consequences for tensor products of A with

UHF algebras, and for algebras A with (2-quasi-) traceless ultra-powers of A:

Corollary 2.9.2. Let A a ( 2-quasi- ) traceless C*-algebra, E an exact C*-

algebra and B an UHF algebra (of infinite dimension) then E ⊗A⊗B is a purely

infinite C*-algebra.

In fact E ⊗ A⊗ B is also strongly purely infinite, because one can decompose

B into a tensor product B = B1 ⊗ B2 with B1 and B2 UHF-algebras of infinite

dimensions, cf. Proposition ??.

Proof. By Lemma 2.9.1(iii) E⊗A is (2-quasi-) traceless. Thus we can rename

E ⊗A by A for the following.

We express B as a tensor product B = C1⊗C2⊗· · · with Ck = Mnk such that

nk+1 > 2 · n1 · n2 · . . . · nk. The union of the increasing sequence of C *-subalgebras

Am := A⊗ C1 ⊗ C2 ⊗ · · · ⊗ Cm ⊗ 1nm+1 ⊗ 1nm+2 ⊗ · · ·

of A⊗B is dense in A⊗B. To simplify notation we write simply Cm for

1M(A) ⊗ 1n1
⊗ · · · 1nm−1

⊗ Cm ⊗ 1nm+1
⊗ · · · .

The algebras Am are matrix algebras over A and are q-trace-less because A is q-

trace-less. Thus A⊗B must be q-trace-less. (We can use here also exactness of B

and Part (iii) of Lemma 2.9.1.)

By Remark 2.8.3 we get that for each positive a ∈ Am and ε > 0 there exists

n(a, ε) ∈ N with (a− ε)+ ⊗ 12n - a⊗ 1n for all n ≥ n(a, ε).

It implies 2n[(a− ε)+] ≤ n[a] for all n ≥ n(a, ε).

One needs here that the numbers n(a, ε) for given ε > 0 can be chosen in

the list of finite products of “remaining” numbers nk = Dim(Ck)1/2 starting from

k := m+ 1.

???? Next not correct !!! ???

For each a ∈ Am there exists n ≥ m such that (n + 1)[a] ≤ n[a] in Cu(Am).

Then for all k ≥ n and ` > 1 holds k[a] ≥ k`[a].

Indeed: We get by induction (n+r)[a] ≤ n[a] for all r ∈ N. Let r := (k ·`)−n.

Then k`[a] ≤ n[a] ≤ k[a].
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In particular, it follows that for each ε > 0 there exist sufficiently big k :=

k(a, ε) ∈ N, δ > 0 and d1, d2 ∈ Ak ⊂ A⊗B such that d∗i adj = δij(a− ε)+ .

This is the case because the relative commutant

(Am)′ ∩M(A)⊗B ⊆ (Am)′ ∩M(A⊗B)

of Am ⊆ A⊗ B in M(A)⊗ B contains sufficiently big unital matrix algebras Cm,

and there is n ∈ N with a⊗ 12k - a⊗ 1k for all k ≥ n.

It follows that A⊗B is purely infinite by Lemma 2.5.17(ii), because the positive

elements in
⋃
m∈NAm are dense in (A ⊗ B)+ and are spectral properly infinite in

A⊗B. �

M. Rørdam [690, prop. 2.2] gets the following observation using results in the

Jiang-Su paper [391]: There is a unital embedding of E(m,n) := E(Mm,Mn) into

Z for every pair of natural numbers m < n that are relatively prime.

Recall that a C *-algebra B is called “(2-quasi)-traceless” if every l.s.c. 2-

quasitrace τ : B+ → [0,∞] takes only the values 0 or +∞ . The lower semi-

continuity of the 2-quasitrace and the 2-sub-additivity are important ingredients

of this terminology, because the l.s.c. 2-sub-additive maps τ on A+ with values in

{0,∞} and τ(a∗a) = τ(aa∗) correspond one-to-one to the lattice of closed ideals

J/A. The bijection is given by τJ(a) := ‖πJ(a)‖·∞ and Jτ := {a ∈ A ; τ(a∗a) = 0}.

Proposition 2.9.3 ([463]). The ultra-power Aω of a C*-algebra A is (2-quasi)-

traceless, if and only if, there exists general n ∈ N such that a ⊗ 1n is properly

infinite in A⊗Mn for every non-zero a ∈ A+, i.e., A has property pi-n in sense of

Definition ??.

In this case A is also pi(m) in sense of Definition 2.0.4, with m ≤ n (cf. Propo-

sition ?? NO other !).

??? Strange formulation:

Recall that A has property pi-n if and only if A is m-purely infinite for some

m ≤ n

and that pi-n implies pi(n),

but nothing is known over the converse ...

or m ≤ n2?

by Proposition ??, i.e., A is pi(m) in sense of Definitions 2.0.4 with m ≤ n.

Proof. Suppose that Aω has no non-zero 2-quasitrace. By Remark 2.8.3 we

get that for each positive b ∈ Aω and ε > 0 there exists n(b, ε) ∈ N with (b− ε)+⊗
12n - b⊗ 1n for all n ≥ n(b, ε).

Give reference

Suppose that there does not exist an n ∈ N such that a⊗1n is properly infinite

in A⊗Mn for every a ∈ A+.
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Then there exists a sequence of positive contractions ak ∈ A+ and and nk ∈ N
such that nk < nk+1, and ak ⊗ 1nk is not properly infinite in A ⊗Mnk for each

k ∈ N.

If we use observation (x) of Lemma 2.5.3 then we find εk ∈ (0, 1) with εk+1 < εk

such that

(ak ⊗ 12nk − εk)+ 6- ak ⊗ 1nk .

There are mk ∈ N such that (εk)1/mk > 1/2 for each k ∈ N. Let bk := a
1/mk
k ∈ A

and b := πω(b1, b2, . . .) in Aω. It satisfies

(b− 1/4)+ ⊗ 12n 6- b⊗ 1n .

This contradicts that Aω admits no l.s.c. 2-quasi-trace. �

It is not clear if the following Definition 2.9.4 is useful for general study:

Definition 2.9.4. Let C a unital C *-algebra and suppose that there exist

contractions e1, e2 ∈ C+ and d1,1, . . . , d1,m, d2,1, . . . , d2,m ∈ C such that e1e2 = 0

and
∑m
k=1 d

∗
j,kejdj,k = 1 for j = 1, 2 .

The smallest number m ∈ N with the property that such (ej , dj,k) exist will be

denoted by m(C) ∈ N ∪ {+∞}. We call m(C) the “minimal orthogonality” of

C.

And we define a universal unital C *-algebra

Gm := C∗(ej , dj,1, . . . , dj,m; j = 1, 2, 〈R〉 )

with above considered relations (R) on the ej and dj,k.

Next Lemma 2.9.5 and its proof are wrong because we can take V := idMn
,

but there does not exist a unitary U ∈Mn with U∗p11U = (1/n)1n, because the of

norms (1, 1/n) and ranks (1, n) are different.

Lemma 2.9.5. Let V : Mn → A a completely positive map.

Then there exists a unitary U ∈ Mn such that V (U∗p11U) = 1/nV (1n) ,

V (U∗p22U) = 1/(n− 1)V (1n − p11) for 1 ≤ k ≤ n.

Lemma 2.9.6. Let A a unital C*-algebra. Then A has no character, if and

only if, there exists m ∈ N and contractions ej,k ∈ A, j = 1, . . . ,m, k ∈ {1, 2}, that

satisfy the relations:
∑
j e
∗
j,kej,k = 1 , e∗j,1ej,2 = 0 = e∗j,2ej,1 and

????? Look also to centalseq. paper with M.Rordam!// Perhaps

this can not be realized?:

e∗j,1ej,1 = e∗j,2ej,2 ????? because it is likely that

T−1/2p1,1T
−1/2 6= T−1/2p2,2T

−1/2

It is even not an estimate available !!!

( 43 ).

43 The relations do not imply – or require – that e∗i,kej,k = 0 for i 6= j.
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Proof. To be filled in ! ??

Let S denote the set of all finite sums n−1
∑n
k=1 ak ∈ A+ of ak := ψk(f0 ⊗ 12)

where ψk denote any non-zero *-homomorphism from C0((0, 1],M2) ∼= M2(C0(0, 1])

into A. The set S ⊆ A+ is a convex subset of the contractions in A that is invariant

under automorphisms of A. In particular the hereditary convex sub-cone of A+,

i.e., the set of a ∈ A+ with the property that there exists b ∈ A+ and γ ∈ [0,∞)

with a+b ∈ γ ·S, i.e., is generated by S, has as its norm-closure a hereditary closed

convex cone that invariant under all automorphisms of A and is generated by all

2-homogenous elements of A+.

By Lemma ??

Says/should say:

(1) the closures C of a hereditary sub-cone of A+, defined by a subset X ⊂ A+

of contractions in A+, is a hereditary (!!) sub-cone of A+. It is the positive part

D+ = C of a hereditary C *-subalgebra D of A.

The D is invariant under conjugation by all unitaries of A (= inner automor-

phisms) if C it is invariant under conjugation by all exp(ih) with h∗ = h ∈ A and

‖h‖ < 1.

(2) If a hereditary C *-subalgebra D is invariant under conjugation by all

exp(ih) with h∗ = h ∈ A and ‖h‖ < 1 then D is a closed ideal of A.

(3) For every element d ∈ D+ and ε > 0 there exists f in the convex span of

X and λ ∈ (0,∞) with (d− ε)+ ≤ λx. ???? (at least if X is invariant under inner

automorphisms of A.)

It is the positive part of the closed ideal of A generated by all images ψ(f0⊗12).

The quotient A/J can not contain a non-zero 2-homogenous element, because

C0((0, 1],Mk) is a projective C *-algebra for all k ∈ N, cf. Proposition A.8.4 or [540,

cor. 3.8].

Thus, J is also the closed ideal of A generated by all commutators ab− ba, i.e.,

is the intersection of the kernels of all characters on A.

By assumption, A has no character. It shows that A = J and 1 ∈ J .

By the above study of J+ there exists r ∈ N and a finite sum
∑r
q=1 aq ∈ A+ of

2-homogenous positive elements aq := ψq(f0 ⊗ 12) = ψq(f0 ⊗ p11) + ψq(f0 ⊗ p22)

such that

1A ≤
∑r
q=1 aq =: T . Then

∑r
q=1 T

−1/2aqT
−1/2 = 1 .

But this T is imbalanced with respect to the entries ψq(f0 ⊗ pj,k) if aq =

ψq(f0 ⊗ p1,1).

ψq(f
1/2
0 ⊗ p11) + ψq(f

1/2
0 ⊗ p12) = ψq(f

1/2
0 , p11 + p12)

Let x := (1/
√

2)(p11 +p12) gives x∗ 6= x x∗x = 1/2(p11 +p12 +p2,1 +p2,2), and

for y := (1/
√

2)(p22 − p21) gives y∗y = 1/2(p11 − p12 − p2,1 + p2,2) and y∗x = 0 .
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Can we find some estimate for x∗x ? x∗x ≤ p11 + p22 because x∗x + y∗y =

p11 + p22

The elements T−1/2ψq(f0⊗12)T−1/2 ∈ A with properties ψq : C0((0, 1],M2)→
A, 1 ≤ q ≤ r imply the statement ... ???

(Likely ???: m := 2r, ???? ej,1 := ψj(f
1/2
0 ⊗ p11)T−1/2 for 1 ≤ j ≤ n and

en+j,1 := ψj−n(f0 ⊗ p22)T−1/2 for n+ 1 ≤ j ≤ 2r ????)

But, what can we show ??? It is:

If unital A has no non-zero character, then there exist m contractions

z1, . . . , zm ∈ A with the properties z2
k = 0 and

m∑
k=1

(zk(zk)∗ + z∗kzk) ≥ 1 .

In case of only σ-unital A, with strictly positive element e ∈ A+ that satisfies

‖e‖ = 1 and has no non-zero character, this should have similar properties:

Likewise this:

For every ε > 0 there exists δ ∈ (0, ε), and m ∈ N such that there are exist m

contractions z1, . . . , zm ∈ (e− δ)+A(e− δ)+ with the properties z2
k = 0 , and

m∑
k=1

(zk(zk)∗ + z∗kzk) ≥ (e− ε)+ .

There exists m ∈ N and contractions ej,k ∈ A, j = 1, . . . ,m, k ∈ {1, 2}, that

satisfy the relations:
∑
j e
∗
j,kej,k ≥ 1 , e∗j,kej,` = 0 and e∗j,kej,k = e∗j,`ej,` for k 6= `,

(The relations do not imply or require that e∗i,kej,k = 0 for i 6= j). �

Remarks: The Lemma 2.9.6 implies immediately the following ??????

If B is a σ-unital C *-algebra, then the unital C *-algebra

F (B) := (B′ ∩Bω)/Ann(B,Bω)

has no character, if and only if there exist dj,k ∈ B′ ∩Bω j = 1, . . . ,m, k ∈ {1, 2},
d∗j,kdj,` = 0 and d∗j,kdj,k = d∗j,`dj,` for k 6= ` and

∑
j d
∗
j,kdj,k ∈ 1 + Ann(B,Bω).

Notice that for E(M2,M3) ⊆ Z ⊆ O∞ we get m(E(M2,M3)) ≤ 3.

Or m(...) ≤ 2 ???

One can see that the infinite unital free product C ∗1C ∗1C ∗1 · · · of the unital

cones C := {f ∈ C([0, 1],M2) ; f(0) = 12} (with unit element 1C(t) := 12 for all

t ∈ [0, 1]) has only one character χ given by f 7→ f(0) ∈ C · 12.

It has to be considered in a natural way as the C *-algebra inductive limit by

the injective maps

C 7→ C ∗1 1 ⊂ C ∗ C 7→ C ∗1 C ∗1 1 ⊂ C ∗1 C ∗1 C...
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The unital character χ then extends step by step to a character of

C ∗1 C ∗1 C ∗ · · · .

This should be the only character on it ???

Let D denote the kernel ideal of the character χ. Then D ∗1 1C and 1C ∗1 D
together generate C ∗1 C .....????

Proposition 2.9.7. Let A a purely infinite C*-algebra. If there exists m ∈ N
such that for every finite subset F ⊆ A and δ > 0 there exists a unital C*-morphism

φ : Gm → M(A) with ‖[x, φ(ej)]‖ < δ and ‖[x, φ(dj,k)]‖ < δ for x ∈ F , j = 1, 2

and k = 1, . . . ,m. Then A is strongly p.i.

Proof. In the general case, e.g. where A is only pi-n, we get at least that all

matrices with n-homogenous diagonal entries are approximately diagonalizable by

n-homogenous entries in the diagonal.

The assumptions imply that, for every separable C *-subalgebra B of A, there

exist a unital C *-morphism ψ : Gm →M(A)ω with zero commutators [b, ψ(ej)] = 0

and [b, ψ(dj,k)] = 0 for all b ∈ B.

Let a, b ∈ A+ properly infinite elements and consider the C *-subalgebra

C∗(a, b) of A generated by a and b . Find in A a separable C *-subalgebra B with

the following properties:

(1) a, b ∈ B+ and a, b are inside B properly infinite.

(2) B contains sequences that represent the generating elements of ψ(Gm) such

that ψ(Gm) commutes with B and is in Bω.

Now we consider the 2×2-matrix C := [cp,q] = [a, b]>[a, b] with entries c11 = a2,

c22 = b2, c1,2 = ab and c2,1 = ba. If a and b are properly infinite in A, then they

are also properly infinite in Aω.

This happens also for elements be1 and ae2 in Aω if be1 = e1b and ae2 = e2a if

?????.

?????? IS THE LATTER TRUE ??

More generally let dj,k ∈ B′ ∩ Bω j = 1, . . . ,m, k ∈ {1, 2}, d∗j,kdj,` = 0 and

d∗j,kdj,k = d∗j,`dj,` for k 6= ` and
∑
j d
∗
j,kdj,k ∈ 1 + Ann(B,Bω).

Define properly infinite a, b ∈ A+ by elements f1, . . . , fm, g1, . . . gm ∈ A with

f∗j a
2fk = δj,k(a2 − ε)+ and g∗j b

2gk = δj,k(b2 − ε)+.

Then define h1 :=
∑m
j=1 fjdj,1 ∈ Bω and h2 :=

∑m
j=1 gjdj,2 ∈ Bω

????

Notice that h∗1a
2h1 = (a2− ε)+ and h∗2b

2h2 = (b2− ε)+, but to get h∗1abh2 = 0,

one needs in addition that d∗j,kdi,` = 0 for all j 6= i and all k, ` ∈ {1, 2}.

To be filled in ?? �
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Corollary 2.9.8. Let Z denote the Jiang-Su algebra. If A is a ( 2-quasi-)

traceless C*-algebra, then A⊗Z is strongly purely infinite.

Proof. By Proposition n?? A⊗Z is purely infinite.

By [391], the algebra Z contains E(M2,M3) and Z ∼= Z ⊗ Z ⊗ · · · . Since

m(E(M2,M3)) ≤ 3 it follows that there is a unital C *-morphism from G3 into Z.

The isomorphism Z ∼= Z⊗Z⊗· · · implies that there exists a “central” sequence

of unital C *-morphisms from G3 into M(A) ⊗ Z ⊂ M(A ⊗ Z). Now Proposition

2.9.7 applies and shows that A⊗Z is strongly purely infinite.

Alternatively one can Z represent as inductive limit of E(M2∞ ,M3∞) given by a

suitable endomorphism of E(M2∞ ,M3∞). The latter can be described as inductive

limit of E(M2n ,M3n). But E(M2n ,M3n) contains obviously a central sequence of

copies of E(M2,M3).

�

Definition 2.9.9. Let A,B unital C *-algebras. The tensorial joint algebra

(also called joining algebra , or winding around algebra) of A and B is defined

in [448, following Prop. 1.17] as the C *-subalgebra of C([0, 1], A ⊗max B) defined

by:

E(A,B) := { f ∈ C([0, 1], A⊗max B) ; f(0) ∈ A⊗ 1 , f(1) ∈ 1⊗B } (9.1)

In cases where A := Mm and B := Mn, this algebras also are called dimension-drop

C *-algebras.

Corollary 2.9.10. If A is a (2-quasi-) traceless C*-algebra, and if B := Mp

and C := Mq are UHF-algebras with infinite supernatural numbers p and q, then

the tensor product

A⊗ E(B,C) ⊆ A⊗ C([0, 1], B ⊗ C)

of A with the “tensorial joint” algebra E(B,C) of Definition 2.9.9 is strongly purely

infinite.

Proof. Consider unital C *-algebras B and C. Let H1 denote the sub-algebra

of C[0, 1/2] ⊗ C defined by the maps f ∈ C([0, 1/2], C) with f(0) = 1, and H2

the sub-algebra of maps g ∈ C[1/2, 1] ⊗ B with g(1) = 1 . Then there are natural

C *-epimorphisms φ1 from B ⊗ H1 onto B ⊗ C with φ1(b ⊗ f) = b ⊗ f(1/2) and

φ2 : H2 ⊗ C → B ⊗ C with φ2(g ⊗ c) = g(1/2)⊗ c.

It is easy to see that E(B,C) ⊆ C([0, 1], B ⊗ C) is naturally isomorphic to the

pull-back of φ1 and φ2.

It follows that A ⊗ E(B,C) is the pull-back of the epimorphisms idA⊗φ1 and

idA⊗φ2 onto A⊗B⊗C. In particular, it is an extension of A⊗B⊗C by the ideal

(A⊗ φ−1
1 (0))⊕ (A⊗ φ−1

2 (0)) of A⊗ E(B,C).

Notice that E(C, B) is the C *-subalgebra of C([0, 1], B) of continuos functions

f : [0, 1] → B wit f(0) = 1B . Notice that φ−1
1 (0) ∼= B ⊗ E(C, C) and φ−1

2 (0) ∼=
E(C, B)⊗ C.
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For this ideals and for the A ⊗ B ⊗ C the Lemma ?? applies if B := M2∞

and C := M3∞ , because all tensorial absorb UHF algebras. Thus they are purely

infinite infinite if A is (2-quasi-) traceless.

By Proposition 2.9.12 they are moreover strongly purely infinite because they

have central sequences of matrix algebras.

Thus, A⊗E(B,C) is an extension of strongly p.i. C *-algebras if A is (2-quasi-)

traceless. By Proposition ?? it follows that A ⊗ E(B,C) is p.i., because the class

of purely infinite C *-algebras is invariant under extensions.

next Ext.part of Thm. is not present here. Only cited.

Since extensions of s.p.i. algebras are s.p.i. by Theorem 2.9.13, we get moreover

that A⊗ E(B,C) is strongly p.i.

�

Corollary 2.9.11. Let A a (2-quasi-) traceless C*-algebra and Z the Jiang-Su

algebra, then A⊗Z is strongly purely infinite.

Proof. If B is a unital C *-algebra and ψ : B → B a unital C *-morphism.

The map ψ is called “trace-collapsing” if τ1 ◦ ψ = τ2 ◦ ψ for any trace state on B,

i.e., ψ∗(T (A)) consists of a fix-point of T (A).

By [693, thm. 3.4], Z is the inductive limit

indlimn

(
φn : E(M2∞ ,M3∞)→ E(M2∞ ,M3∞)

)
,

where φn := φ is a suitable fixed “trace-collapsing” unital endomorphism φ

of E(M2∞ ,M3∞). “Trace-collapsing” means here that for each trace state

ρ on E(M2∞ ,M3∞) the state ρ ◦ φ is identical with the state induced on

E(M2∞ ,M3∞) ⊆ C([0, 1],M2∞ ⊗ M3∞) by µ(f) =
∫ 1

0
τ(f(t)) dt, where τ is

the unique trace state on M2∞ ⊗M3∞ .

We have seen above (in a more general case) that A ⊗ E(M2∞ ,M3∞) is s.p.i.

because there exists a “central” sequence of unital C *-morphisms ψk : E(Mp,Mq)→
E(M2∞ ,M3∞), where p := 2k and q := 3` for suitable k, ` ∈ N.

?????????

The classes of the purely infinite C *-algebras and of the strongly purely infinite

C *-algebras are both invariant under inductive limits.

By Theorem ??(????) the class of s.p.i. algebras is invariant under inductive

limits. �

Proposition 2.9.12. If A is (2-quasi-) traceless and B is a UHF algebra (of

infinite dimension), then A⊗B is s.p.i.

Proof. We can split B into a tensor-product B = B1 ⊗ B2 where B1 and

B2 are UHF-algebras of infinite dimension. Then A ⊗ B1 is purely infinite by

Lemma ??. Thus we can suppose that A is purely infinite. Let a, b ∈ (A ⊗ B)+
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contractions and ε > 0 There exist contractions c, d ∈ (A⊗B)+ with ‖a− c‖ < ε/2

and ‖b− d‖ < ε/2

???? ???? �

Theorem 2.9.13. The class of s.p.i. C*-algebras is permanent under exten-

sions.

(But only citation. The known proof is complicate.)

Other operations.?

Proof. ??? �

Corollary 2.9.14. If A is (2-quasi)-trace-less then A⊗Z is strongly p.i.

Proof. Use that Z has central sequences of copies of E(M2,M3). �

Below we give later some results on tensor products that are farer going than

those in Corollaries 2.9.2 and 2.9.10, e.g. we show that the tensor products A⊗B
and A⊗ E(M2∞ ,M3∞) considered in this corollaries are moreover strongly p.i.

Proof. to be filled in ?? �

Synchronize below given Def’s and statements with further above!!

Some from Paper with Blanchard.

Give extra Definitions (!) for all sorts of pure infiniteness!!!

Remarks 2.9.15.

(i) If a ∈ A+, b ∈ Mn(A)+ and suppose that there is a matrix e ∈ Mm,n(A)

with ‖b− e∗(a⊗ 1m)e‖ < ε for some ε > 0, then

(b− ε)+ = f∗((a− 2η)+ ⊗ 1m)f

for some matrix f ∈Mm,n(A) with ‖f‖ ≤ ‖e‖ and some η ∈ (0, ε/2) .

The def’s (ii) of p.i. etc. are given earlier in Section 1,

later again !!! where???

(ii) An element a ∈ A+ \ {0} in a (not necessarily purely infinite) C *-algebra

A is properly infinite if, for every ε > 0, there exists a row d = [d1, d2] ∈M1,2(A)

(depending on a and ε) such that ‖d∗ad− a⊗ 12‖ < ε, cf. [462, def. 3.2].

This property of a is equivalent to [a] + [a] ≤ [a] in Cu(A), i.e., a ⊕ a - a, or

to a ∈ I(a) by definition of I(a) in Definition 2.5.1, cf. also Lemma 2.5.3(i).

An element a ∈ A+ is properly infinite if for every closed ideal J of A – that

does not contain a – there is an element h 6= 0 in (A/J)+ such that for every δ > 0

there exists a row matrix d = [d1, d2] ∈M1,2(A/J) with ‖d∗πJ(a)d−(πJ(a)⊕h)‖ <
δ, cf. Part (v) of Lemma 2.5.3 or [462, prop. 3.14].

The latter says that [h] + [πJ(a)] ≤ [πJ(a)] in Cu(A/J), i.e., I(πJ(a)) 6= 0 for

all J ∈ I(A) with a 6∈ J , where I(b) for b ∈ πJ(A) is defined by Definition 2.5.1.
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This definition of properly infinite infinite (positive) elements coincides with

Definition 2.5.1 of a properly element a ∈ A by a⊕ a - a.

(iii) A C *-algebra A is purely infinite in the sense of Definition 1.2.1, if and

only if, every element a ∈ A+ \ {0} is properly infinite, [462, thm. 4.16].

there is also Ref. in ???? to place here!!

(iv) All purely infinite C *-algebras A have the global Glimm halving property

of Definition 2.15.9.

Proof. (i): We find η ∈ (0, ε/2) such that we have ‖b−e∗((a−η)+⊗1m)e‖ < ε .

By Lemma 2.1.9 there is a contraction d ∈Mn(A) such that f := ed is as desired.

(ii?): ??

The element πI(a)(a) = a + I(a) is always finite in A/I(a) by Part (iii) of

Lemma 2.5.3. Thus above property of a ∈ A+ implies that a ∈ I(a), i.e., a⊕a - a.

(ii?): ?? If one applies (i) with m = 1, n = 2 then one finds u, v ∈ aAa with

u∗u = v∗v = (a − ε)+ and u∗v = 0 ([462, prop. 3.3(v)]), i.e., there exists a row

w = [u, v] ∈M1,2(aAa) satisfying

w∗w = (a− ε)+ ⊗ 12 in A⊗M2 ,

cf. also Lemma 2.5.3(ix,xi)

(iv): ??

For each a ∈ A+ \ {0} and ε > 0, then b = vu∗ ∈ aAa with u, v from (ii??)

verifies b2 = 0 and
(
(a− ε)+

)2
= v∗bu , so that (a− ε)+ ∈ AbA . �

How often is fε defined and mentioned??

In the following, recall that fε(t) := min(1,max(0, 2t/ε − 1)) for t ≥ 0 and

ε > 0. Those special pice-wise linear functions have been used fist in Glimm’s

paper [324] for his pioneering study of C *-algebras of Type I.

Notice that the Part (i) of the next Lemma 2.9.16 applies in particular to all

non-zero elements a ∈ A+ that are spectral properly infinite in sense of Definition

2.5.16.

Later appears a similar remark!!!

Lemma 2.9.16. Let a ∈ A+ with ‖a‖ = 1, 0 < δ < ε < 1 , and let B := aAa .

Suppose that for every ν ∈ (δ, ε) , the element (a − ν)+ is properly infinite in

the sense of Definition 2.5.1.

(i) There exists an infinite sequence w1, w2, . . . ∈ (a − δ)+A(a − ε)1/3
+ such

that

w∗nwm = δn,m (a− ε)+ for all m,n ∈ N .
The element d :=

∑
n∈N 2−nwnw

∗
n ∈ B generates a stable hereditary C*-

subalgebra Eε := dAd of (a− δ)+A(a− δ)+ that is naturally isomorphic

to D ⊗K for D := (a− ε)+A(a− ε)+ .
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In particular the algebra Eε is a full hereditary C*-subalgebra of the

closed ideal of A that is generated by (a− ε)+.

(ii) If, moreover, every non-zero element of B is properly infinite, then there

are elements wn ∈ B such that w∗nwm = δn,m · (a − 2−n)+ for all n ≥
m ∈ N.

(iii) Let d :=
∑
n∈N 2−nwnw

∗
n ∈ B := aAa where the elements w1, w2, . . . ∈

B are the elements from Part (ii).

The hereditary C*-subalgebra D := dAd is contained in B, and there

exist elements z1, z2, . . . ∈ B with z∗j zk = δj,ka and zkz
∗
j ∈ D.

In particular, the contraction e :=
∑
n 2−n zn z

∗
n generates a heredi-

tary C*-subalgebra E := eD e = eA e of D that is full in B.

(iv) The hereditary C*-subalgebra B := aAa is itself stable if each element of

B is properly infinite and the annihilators Ann((a−1/n)+, B) of (a−1/n)+

are full in B for each n ∈ N.

(v) The annihilators Ann((a − 1/n)+, B) are full in B for each n ∈ N if B

has no unital quotient.

(vi) The hereditary C*-subalgebra B := aAa is stable if B has no unital

quotient and a is “spectral” properly infinite, i.e., ψ(a) is properly infinite

or zero for every function ψ ∈ C0(0, ‖a‖]+ .

Proof. Recall that an element a itself is properly infinite if (a− ν)+ is prop-

erly infinite for every ν ∈ (0, δ) for some δ > 0, and that the elements b∗b, bb∗

and (b∗b)1/2 are all properly infinite if one of its is properly infinite, cf. Lemma

2.5.3(xi,xii).

by Remark 2.9.15(ii) ?

Find precise Ref.s for next.

(i): We can take δ < δ′ < ε′ < ε, replace a by (a−δ′)+ and then show moreover

that there are elements c1, c2, . . . in the closure of (a − δ′)+A(a − ε′)+ such that

c∗ncm = δn,m (a−ε′)+ for m,n ∈ N . We get the desired wn as wn := cn ·ϕ(c∗ncn)1/2

for the function ϕ(t) := (t− ε)/(t− ε′) for t ≥ ε and ϕ(t) = 0 for t < ε .

Hence, we can rename (a − δ′)+ by a and ε′ − δ′ by ε and show only the

existence of wk ∈ aA(a− ε)+ with w∗kwj = δj,k(a− ε)+.

For n ∈ N , let εn := 2−n−1ε and µn :=
∑

0≤k≤n εk = (1− 2−n−1) · ε < ε .

Recall that, if (a − δ)+ is properly infinite, then, for each µ > δ, there exist

τ ∈ (δ, µ) and u, v ∈ A with

u∗v = 0 , u∗u = v∗v = (a− µ)+ and uu∗ + vv∗ ∈ (a− τ)+A(a− τ)+ . (9.2)

Compare Remark 2.9.15(ii) or Lemma 2.5.3(ix,xi). or other reference ?

If we let v−1 := a1/2 , then we can find for each n ∈ N inductively – by repeated

use of Equation (9.2) – elements un, vn ∈ aAa such that

(1) un, vn in vn−1Av
∗
n−1 ⊆ aAa (n ∈ N)
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(2) for every ν ∈ (0, ε−νn) , the element (v∗nvn−ν)+ is either zero or properly

infinite,

(3) u∗nun = v∗nvn = (v∗n−1vn−1 − εn)+ = (a− µn)+ ≥ (a− ε)+ and

(4) u∗nvn = 0 ,

Induction over m shows that condition (1) implies that vn−1Av
∗
n−1 ⊆

vm+1Av
∗
m+1 ⊆ vmAv∗m for m = 1, . . . , n− 2.

Thus, u∗mvn−1Av
∗
n−1 = 0 and u∗mun = 0 for m < n by (1) and (4). Hence,

u∗mun = δm,n(a− µn)+ for m,n ∈ N by (3).

Notice that (1) and (3) imply un, vn ∈ vn−1A(a− µn−1)+ ⊆ aAa.

For n ∈ N , let ϕn : R+ → [0, 1] be the continuous function with ϕn(t) := 0 for

t < ε and ϕn(t) := (t− ε)/(t− µn) for t ≥ ε.

The elements wn = unfn(a)1/2 ∈ aA(a− ε)+ satisfy the requested relations,

because (t− µn)+ϕn(t) = (t− ε)+.

Let B := (a− ε)+A(a− ε)+ . The relations w∗kw` = δk,`(a − ε)+ imply that

the polar decomposition of the wk define a natural isomorphism B ∼= w1Aw∗1 and

that the C *-subalgebra D := C∗(wmbw
∗
n ; n,m ∈ N, b ∈ A) of aAa is naturally

isomorphic to B ⊗K. In particular D is stable.

The algebra D contains d :=
∑
n∈N 2−nwnw

∗
n and is identical with the heredi-

tary C *-subalgebra dAd ⊆ B, with d as strictly positive element.

The hereditary subalgebraD generates the same closed ideal of A as the element

(a− ε)+ because 2w∗1dw1 = (w∗1w1)2 = (a− ε)2
+ .

(ii): Let a ∈ A+ with ‖a‖ = 1, and suppose that every non-zero element of

B := aAa is properly infinite and let D ⊆ B (any) full hereditary C *-subalgebra

of B.

(α) Suppose that D ⊆ B := aAa (with a ∈ A+, ‖a‖ = 1) is a full hereditary

C *-subalgebra of B and that each non-zero e ∈ D+ is properly infinite.

Then for each γ ∈ (0, 1) there exists elements u, v ∈ B with u∗u =

v∗v = (a− γ/2)+, v∗u = 0 and vv∗, uu∗ ∈ D.

(β) If D is any full hereditary C *-subalgebra of B := aAa , where a ∈ A+

with ‖a‖ = 1, and if

check here if a weaker property also works!

every element of D+ is properly infinite, then for each γ ∈ (0, 1) there

exists an element w ∈ B that satisfies w∗w = (a − γ)+, ww∗ ∈ D, and

that the annihilator Ann(ww∗, D) of ww∗ in D is again a full hereditary

C *-subalgebra of B.

We postpone the proof of (α) and (β) and show that (β) allows to construct

the in Part (ii) requested elements w1, w2, . . . ∈ B := aAa with the relations

w∗nwm = δn,m · (a− 2n)+ for n ≥ m.

We proceed by induction using (β):
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We find by (β) an element w1 ∈ D0 := B with w∗1w1 = (a − 1/2)+ such that

D1 := Ann(w1w
∗
1 , B) is a full hereditary C *-subalgebra of B.

Suppose we have selected w1, . . . , wn ∈ B that satisfy

w∗kw` = δk,` · (a− 2−`)+

for k ≤ ` ≤ n, and that

Dn := Ann(w1w
∗
1 + · · ·+ wnw

∗
n, B) = Ann(wnw

∗
n, Dn−1)

is full in B.

Recall here that Ann(e,D) = Ann(e,B)∩D for hereditary D ⊆ B and e ∈ D+.

Thus, we can apply (β) to D := Dn and γ := 1/2n+1 and get wn+1 ∈ Dn with

w∗n+1wn+1 = (a− 2−(n+1))+ and

Dn+1 := Ann(wn+1wn+1, Dn) = Ann(w1w
∗
1 + · · ·+ wn+1w

∗
n+1, B)

is full in B. It implies that

w∗n+1wk = δn+1,k(a− 2−(n+1))+ for k = 1, . . . , n+ 1 .

Proof of observation (α): Let γ ∈ (0, 1). Since D is full in B and a ∈ B+ there

exists d1, · · · , dn ∈ B with dkd
∗
k ∈ D for k = 1, . . . n and

d∗1d1 + · · ·+ d∗ndn = (a− γ/4)+ .

It follows n[e] ≥ [(a− γ/4)+] in Cu(B), for e := d1d
∗
1 + · · ·+ dnd

∗ ∈ D.

Since, by assumptions, e ∈ D+ is a properly infinite element of B, we get

[e] ≥ 2n[e] ≥ 2[(a− γ/4)+], i.e.,

(a− γ/4)+ ⊕ (a− γ/4)+ - e⊕ 0 .

In particular there exists f1, f2 ∈ B and µ > 0 with

[f∗1 , f
∗
2 ](e− µ)+[f1, f2]> = diag(a− γ/2)+ ⊕ (a− γ/2)+ .

The elements u := (e−µ)
1/2
+ f1 and v := (e−µ)

1/2
+ f2 satisfy uu∗, vv∗ ∈ D, u∗v = 0

and u∗u = v∗v = (a− γ/2)+ .

Proof of observation (β): Each hereditary C *-subalgebra D of B := aAa that

is full in B and is purely infinite fulfills the assumptions for Part (α).

Let γ ∈ (0, 1) and let u, v ∈ B the elements from Part (α), i.e., u∗u = v∗v =

(a− γ/2)+, u∗v = 0 and uu∗, vv∗ ∈ D.

The function ψγ defined by ψγ(t) := (t− γ)/(t− γ/2) for t ≥ γ and ψγ(t) := 0

for t ≤ γ is in C0(0, 1]+ and satisfies ψγ(t) ≤ 1. Clearly

ψγ(a)(a− γ/2)+ = (a− γ)+ = ((a− γ/2)+ − γ/2)+ .

Define w := vψγ(a)1/2 ∈ B. It satisfies w∗w = (a − γ)+ = (v∗v − γ/2)+

and ww∗ = (vv∗ − γ/2)+. The latter equation can be seen with help of the polar

decomposition v = zv(v
∗v)1/2 = zv(a − γ/2)+ using that f(vv∗)zv = zvf(v∗v) for

f ∈ C0(0, ‖v‖2].
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The elements ww∗, vv∗ and d := uv∗ are in D and satisfy ww∗ = (vv∗−γ/2)+,

d∗(vv∗ − γ/2)+ = vu∗ww∗ = 0 and [d] = [vv∗] in Cu(D). The latter because

d∗d = vu∗uv∗ = v(a − γ/2)+v
∗ = (vv∗)2. Thus, the hereditary C *-subalgebra

Ann(ww∗, D) is full in D by the last observation in Part (ii) of Lemma 2.5.14.

Since D is full in B it implies that Ann(ww∗, D) is a hereditary C *-subalgebra of

B that is full in B.

(iii): TEXT:

Let d :=
∑
n∈N 2−nwnw

∗
n ∈ B := aAa where the elements w1, w2, . . . ∈ B are

the elements found in Part (ii).

The hereditary C *-subalgebra D := dAd is contained in B, and there exist

elements z1, z2, . . . ∈ B with z∗j zk = δj,ka and zkz
∗
j ∈ D.

In particular, the contraction e :=
∑
n 2−n zn z

∗
n ∈ B generates a hereditary

C *-subalgebra E := eD e = eA e of D that is full in B.

We define for t ≥ 0 and m,n ∈ N, m < n, the increasing function ϕ(m,n; ·) ∈
C0(0, 1] with ϕ(m,n; t) := 0 on [0, 2−m] and ϕ(m,n; t) := max(t−2−m, 0)/max(t−
2−n, 0) for t ≥ 2−m.

Let λ : N→ N×N a bijective map from N onto N→ N and let Mk := λ−1({k}×
N).

Notation Mk is not good,

NEXT property HERE necessary?

We can re-index the infinite subsets Mk of N such that they have the property

that min(Mk) < min(Mk+1) for k ∈ N.

The map λ defines a unique increasing injective map µk : N→ N with µk(N) =

Mk.

We let a[k, 1] := 1 ∈ C∗(a, 1) ⊆M(B),

a[k, n+ 1] := 1− ϕ(µk(n), µk(n+ 1); a) ∈ C∗(a, 1)+ ,

and define elements vk ∈ B for k ∈ N by

vk :=
∑
n∈N

wµk(n) · a[k, n]1/2 .

The sum converges in B, because w∗µk(n)wµk(m) = δm,n(a− 2−n)+ and, for n > 1,

a[k, n]1/2 · w∗µk(n)wµk(n) · a[k, n]1/2 = (a− 2−µk(n))+ − (a− 2−µk(n−1))+ .

It has norm ≤ 2−µk(n−1) − 2−µk(n) < 2−µk(n−1). The series
∑
n>1(2−µk(n−1) −

2−µk(n)) is absolutely convergent with sum = 2−µk(1).

One gets from w∗`wm = 0 for ` 6= m that

vk[n]∗vk[n] = (a− 2−µk(n))+

for the partial sums

vk[n] :=

n∑
m=1

wµk(m) · a[k,m]1/2 .
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It follows that

v∗kvk =
∑
n

(a− 2−µk(n))+a[k, n] = a .

Since w∗mwn = 0 and wnw
∗
m ∈ D for m 6= n and µk(N) ∩ µ`(N) = ∅ for k 6= `, it

follows that v∗kv` = δk,`a. and v`v
∗
k ∈ D.

(iv):

TEXT:

The hereditary C *-subalgebra B := aAa is itself stable if each element of B

is properly infinite and the annihilators Ann((a− 1/n)+, B) of (a− 1/n)+ are full

in B for each n ∈ N.

to be filled in ??

We show that it implies that there exists a zero sequence ‖a‖ > γ1 > γ2 >

· · · > 0 and elements un ∈ B with

(1) u∗nun = (a− γn)+,

(2) u∗n+1(a− γn)+ = 0, and

(3) un = limn→∞ un(a− γn+1)
1/n
+ .

What can be done with it ?

Since a is a strictly positive element of B it follows that the criteria for stability

of B is satisfied for B. Alone from (1) and (2)?

Indeed we can define for the exhausting family of order preserving injective

maps ???k : N→Mk := λ−1({k} × N) from a partition λ : N→ N× N

(v): Let J denote the closed ideal of B generated by Ann((a− 1/n)+, B). By

Lemma 2.5.14, B/J is unital and πJ(a) is invertible in B/J if J 6= B. Thus, J = B

if B has no unital quotients. �

Remark 2.9.17. Let a ∈ A+ with ‖a‖ = 1. The hereditary C *-subalgebra

aAa contains a full stable hereditary C *-subalgebra D, if and only if, there exists

a sequence of elements bn ∈ aAa with b∗mbn = δm,n(a− 2−n)+ for m,n ∈ N.

Here “full” – equivalently – means that a is in the closed ideal generated by D,

i.e., that a ∈ A ·D ·A = span(ADA) by stability of D.

It implies that there are g1, g2, . . . ∈ A with g∗mgn = δm,na and gmg
∗
m ∈ D.

It is not clear when C∗(bnb
∗
m ; m,n ∈ N) itself is stable.

Proof. The existence of the quoted sequence d1, d2, . . . is necessary:

If D is a stable and full hereditary C *-subalgebra of B := aAa then there exists

d ∈ B with d∗d = a and dd∗ ∈ D, cf. Lemma ??(ii).

Since D is stable, its multiplier algebraM(D) contains a unital copy of L(`2) ⊃
O∞ = C∗(s1, s2, . . . ; s∗msn = δm,n1), cf. Remark 5.1.1(8). We can take bn :=

sndgn(a), where gn(0) := 0 and gn(t) := ((t − 2−n)+/t)
1/2 with (t − µ)+ :=

max(0, t− µ) for t > 0.
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Conversely, the existence of elements bn ∈ aAa with b∗mbn = δm,n(a − 2−n)

(for m ≤ n) is sufficient for the existence of a full stable hereditary C *-subalgebra

D ⊆ aAa that contains a in the ideal ADA of A, because by the below given

calculations C∗(bmb
∗
n ; m,n ∈ N ) is isomorphic to the hereditary C *-subalgebra

E := d(C∗(a)⊗K)d of C∗(a)⊗K where

d := diag((a− 1/2)+, (a− 1/4)+, . . .)
1/2 ∈ `∞(C∗(a)) ⊂M(C∗(a)⊗K) ,

i.e., e := diag(1/2(a− 1/2)+, . . . , 2
−n(a− 2−n)+, . . .) is a strictly positive element

of C∗(a)⊗K.

An isomorphism from E onto C∗(bmb
∗
n ; m,n ∈ N ) can be defined as follows:

First define λ : C∗(a) ⊗ K → B ⊗ K as the natural embedding. The λ

is non-degenerate because B = aB a . Therefore the strictly continuous

M(λ) : M(C∗(a) ⊗ K) → M(B ⊗ K) exists and is injective natural inclu-

sion of M(C∗(a) ⊗ K) into M(B ⊗ K). Let g := M(λ)(d) and h := λ(e) =

1/2(a− 1/2)+ ⊗ p1,1 + 1/4(a− 1/4)+ ⊗ p2,2 + · · · . Then λ(E) is a non-degenerate

C *-subalgebra of the hereditary C *-subalgebra g(B ⊗K)g = h(B ⊗K)h =: F . It

is easy to see that λ(E) := F ∩λ(C∗(a)⊗K), because it is generated by the elements

(a− 2−m)1/2(a− 2−n)
1/2
+ ⊗ pm,n, and, even by definition of h, h = λ(e) ∈ F+ is a

strictly positive contraction of F and λ(E).

The element P :=
∑
n 2−nbnb

∗
n ∈ B is a strictly positive contraction of

C∗(bmb
∗
n ; n,m ∈ N).

Let T :=
∑
n 2−n/2bn ⊗ p1,n ∈ B ⊗K. Then TT ∗ = P ⊗ p1,1 and

T ∗T =
∑
n

2−n(a− 2−n)+ ⊗ pn,n = h .

The polar decomposition T = U(T ∗T )1/2 of T is given by the partial isometry

U :=
∑
n

vn ⊗ p1,n ∈ B∗∗⊗L(`2) ∼= (B ⊗K)∗∗ ,

where (T ∗T )1/2 = h1/2 and (bnb
∗
n)1/2vn = vn(b∗nbn)1/2 = bn. Notice that U∗U =∑

n v
∗
nvn ⊗ pn,n, and UU∗ =

∑
n vnv

∗
n ⊗ p1,1, the element v∗nvn ∈ B∗∗ is equal

to the open support projection Pn of (a− 2−n)+ in B∗∗, vn(a− 2−n)
1/2
+ = bn and

v∗mvn = δm,nPn. In particular U∗(bnb
∗
m⊗p1,1)U = (a−2−n)

1/2
+ (a−2−m)

1/2
+ ⊗pn,m.

Thus

U∗(C∗(bnb
∗
m ; m,n ∈ N)⊗ p1,1)U = λ(E) .

The C *-algebra E is isomorphic to a C *-subalgebra of C∗(a)⊗K of the sort consid-

ered in Lemma 2.9.18 and contains therefore a full stable C *-subalgebra by Lemma

2.9.18. �

Lemma 2.9.18. Let µ1 > µ2 > · · · a strictly decreasing zero sequence in (0, 1)

and define a positive contraction d ∈ C0(0, 1]⊗K by

d := diag(2−1(f0 − µ1)+ , 2−2(f0 − µ2)+ , . . .)
1/2 ∈ C0(0, 1]⊗ c0 ⊂ C0(0, 1]⊗K ,

where f0 ∈ C0(0, 1] is given by f0(t) := t.
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The hereditary C*-subalgebra E := d (C0(0, 1]⊗K) d of C0(0, 1] ⊗ K contains

a full stable C*-subalgebra D of E.

Proof. Let λ : N→ N× N a bijective map from N onto N× N.

Then λ defines a decomposition of N into countably many pairwise disjoint

infinite subsets Mn := λ−1({n} × N). The natural order in Mn leads to bijective

order-preserving surjective maps ψn : N→Mn from N ontoMn. Let n0, n1 ∈ N with

1 ∈Mn0
and with min(N\Mn0

) ∈Mn1
. Then ψn0

(k) = k for k = 1, . . . , ψn1
(1)−1

and ψn(k) > k for all other pairs (n, k).

We define isometries Tn ∈ L(`2) ∼=M(K) by Tn(ηk) := ηψn(k) for the canonical

ONB {η1, η2, . . .} of `2(N). The Tn satisfy the relations T ∗mTn = δm,n1 and
∑
n TnT

∗
n

converges strictly to 1 ∈M(K) .

We define dk := (1⊗ Tk)d, then d∗jdk = δj,kd
2 ∈ E and Check next

dkd
∗
k =

∑
n

2−n(f0 − µn)+ ⊗ eψk(n),ψk(n) .

Since 2−n(f0 − µn)+ ≤ 2−ψk(n)(f0 − µψk(n)) ???

dkd
∗
k =?????

We get dkd
∗
k ∈ E and dk ∈ E, because always n ≤ ψk(n), E is hereditary and

d∗kdk = d2 ∈ E.

Thus D := C∗(djd
∗
k ; j, k ∈ N) is a full and stable C *-subalgebra of E. �

Remark 2.9.19. The algebra E := d(C0(0, 1]⊗K)d of Lemma 2.9.18 is the

inductive limit of the hereditary C *-subalgebras

En := gn(C0(0, 1]⊗K)gn with positive contractions gn ∈ `∞(C0(0, 1] ⊗ K) ⊂
M(C0(0, 1]⊗K) given by the sequences

gn := diag(2−1(f0 − µ1)+ , . . . , 2−n(f0 − µn)+ , 2−n(f0 − µn)+ , . . .)
1/2 ,

that are stationary beginning from n-th entry.

It is likely that the En are stable because each M(En) is properly infinite and

En+1 is a extensions of K by

En ⊕ (0n ⊕ C0(µn+1, µn)⊗K) .

Remark 2.9.20. The algebra D := dAd of Part (iii) of Lemma 2.9.16

give reason for

‘‘HAS NO UNITAL QUOTIENT’’

has no unital quotient and, for each element b ∈ D+ and ε > 0, there exist

c := c(b, ε) ∈ D such that ‖c∗bc‖ < ε and ‖c∗c − b‖ < ε. By a criterium of J.

Hjelmborg and M. Rørdam in [373], this properties of D imply that D itself is a

stable σ-unital full C *-subalgebra of aAa . (Compare also Corollary 5.5.2 for an

alternative proof of this stability criterium.)
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It follows that every σ-unital purely infinite C*-algebra A contains a stable σ-

unital hereditary C*-subalgebra D that is full in A. (cf. J. Hjelmborg, M. Rørdam,

[373], [688, prop. 5.4]).

10. Local stability and properly infinite full projections

Recall that a non-zero element a ∈ A is stable if a∗Aa is stable, cf. Definition

2.1.1 of stable elements and Definition 2.0.3 of locally purely infinite C *-algebras.

(Perhaps one can here moreover take 1-stable elements or even n-stable ele-

ments in sense of Definition 2.1.3?)

Lemma 2.10.1. A C*-algebra B is locally purely infinite in the sense of Def-

inition 2.0.3, if and only if, for every non-zero b ∈ B+ and ε ∈ (0, ‖b‖), there

exist n = n(b, ε) ∈ N and stable positive elements a1, . . . , an in the hereditary

C*-subalgebra bBb such that (b− ε)+ is in the ideal of B generated by {a1, . . . , an}.

Proof. Consider the algebraic ideal J0 that is generated by all stable positive

element of bBb. The closure J of the *-ideal J0 is an ideal of B. We show that

b ∈ J :

Suppose γ := ‖πJ(b)‖ > 0. Then there is a pure state ρ on B/J with ρ(πJ(b)) =

γ, simply by extending a character χ on C∗(πJ(b)) with χ(πJ(b)) = ‖πJ(b)‖ to a

pure state ρ on B/J .

Then λ := ρ◦πJ is a pure state on B that satisfies λ(b) = γ > 0 and λ(J) = {0}.

Let K the kernel of the irreducible representation Dλ : B → L(L2(B, λ)) cor-

responding to λ. Clearly J ⊆ K follows from λ(J) = 0.

By Definition 2.0.3 there is a non-zero stable hereditary C *-subalgebra D ⊆
bBb which is not contained in K. Therefore, D is not contained in J . The iso-

morphism D ∼= F ⊗ K (for some C *-algebra F ) shows that there is a separable

stable C *-subalgebra D1 ⊆ D with D1 6⊆ J . Then a strictly positive contraction

a ∈ (D1)+ is not in J , but a is stable, because aBa = D1. This contradicts the

assumption b 6∈ J .

The algebraic ideal J0 generated by the positive stable elements a ∈ bBb is

dense in J ⊃ bBb and (therefore) contains the Pedersen ideal of bBb. In particular,

(b− ε)+ ∈ J0 for all ε > 0. �

Lemma 2.10.2. Each non-zero locally purely infinite C*-algebra A (in the sense

of Definition 2.0.3) is ( 2-quasi-) traceless.

Proof. Let τ : A+ → [0,∞] a lower s.c. 2-quasi-trace. If a ∈ A+ is a non-zero

contraction with τ(a) 6= ∞ and if δ ∈ (0, ‖a‖) then D := (a− δ)+A(a− δ)+ is a

hereditary C *-subalgebra of A with (a − δ)+ ∈ D+, dϕδ(a) = ϕδ(a)d = d for all

d ∈ D, where

ϕδ(t) := min(1,max(0, 2t/δ − 1)) ≤ 2t/δ ,
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and

τ(d) ≤ ‖d‖ · 2τ(a)/δ for all d ∈ D+ . (10.1)

We show below that the Inequalities (10.1) yield that τ(d) = 0 for all d ∈ D+,

in particular that τ((a − δ)+) = 0. The lower semi-continuity of τ shows then in

general that τ(a) = 0 if τ(a) < ∞, i.e., that τ takes only the values 0 and +∞ on

A+. This holds for all l.s.c. 2-quasi-traces τ on A+ and means that A is traceless.

The Inequalities (10.1) show that τ is bounded on the set of contractions in

D+ 6= {0}.

Next similar to above said!!?

The Inequalities 10.1 hold because d ≤ ‖d‖ϕδ(a) ≤ ‖d‖(2/δ)a for ϕδ(t) :=

min((2/δ)(t − δ/2)+, 1), and C∗(d, ϕδ(a)) and C∗(a) are commutative C *-

subalgebras of A.

Compare next with above

and Lemma on stably generated C *-alg’s.

If b ∈ D+ is a non-zero stable contraction, then the multiplier algebra of bDb

contains a copy of O∞ unitally. Thus, there are d1, d2, . . . ∈ bDb with d∗jdi = δi,jb.

It implies that nτ(d) = τ(
∑n
j=1(dj)(dj)

∗) ≤ (2/δ)τ(a) for each n ∈ N. Thus

τ(d) = 0.

Since the set of d ∈ D+ with τ(d) = 0 is the positive part of some closed ideal

of D, and since the ideal generated by the stable elements in D+ is dense in D

by Lemma 2.10.1, we get that τ(D+) = {0}. It shows that, τ((a − δ)+) = 0 for

every δ > 0. Since τ is lower semi-continuous, we get τ(a) = 0 for all a ∈ A+ with

τ(a) 6=∞. �

Lemma 2.10.3. The primitive ideal space Prim(A) can be covered by a countable

family of quasi-compact subsets – i.e., Prim(A) is σ-compact –, if and only if, there

exists a ∈ A+ with J(a) := span(AaA) = A (i.e., if and only if, A contains a full

σ-unital hereditary C*-subalgebra D := aAa ).

The space Prim(A) is quasi-compact, if and only if, there exists a ∈ A+ with

‖a+ J‖ = 1 for all primitive ideals J ∈ Prim(A)

Proof. For b ∈ A+ with ‖b‖ ≤ 1, the generalized Gelfand transformation

b̂ : Prim(A)→ R+ is defined by b̂(J) := ‖b+ J‖ for all J ∈ Prim(A). (It is called

b̌ and Ǎ in [616].)

Notice here that the function b̂ is lower semi-continuous on the topological space

Prim(A), i.e., the J ∈ Prim(A) with b̂(J) > s ≥ 0 build an open subset of Prim(A).

Let b ∈ A and t ∈ (0,∞). We denote by Ct(b) ⊆ Prim(A) the set of J ∈
Prim(A) with (‖b+ J‖ =)‖πJ(b)‖ ≥ t.

Relate next together:

It is known that Ct(b) is a (quasi-) compact subset of Prim(A), cf. [217,

prop. 3.3.7], [616, prop. 4.4.4].
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Then b̂−1[t, ‖b‖] = Ct(b), and, therefore, Ct(b) is a quasi-compact subset of

Prim(A).

Let a ∈ A with I(a) = A, then ‖ a + J ‖ := ‖πJ(a) ‖ > 0 for any closed ideal

J of A with J 6= A.

It follows Prim(A) =
⋃
n C1/n(a). Now use that the sets C1/n(a) are quasi-

compact. Thus, Prim(A) is σ-quasi-compact.

Conversely: Let Kn quasi-compact subsets of Prim(A) such that Prim(A) =⋃
nKn. The supports in Prim(A) of the functions b̂ with b ∈ A+ and ‖b‖ < 1 build

an upward directed system of open subsets of Prim(A), because for b1, b2 ∈ A+ with

‖bi‖ < 1 there is b3 ∈ A+ with ‖b3‖ < 1 and bi ≤ b3 (i = 1, 2), cf. proof of [616,

thm. 1.4.2], and the generalized Gelfand transformation b 7→ b̂ is monotone on A+.

For each primitive ideal J of A there is b ∈ A+ with ‖b‖ < 1 and b̂(J) = ‖b+J‖ > 0.

Thus, by quasi-compactness of Kn, there are bn ∈ A+ with ‖bn‖ < 1 such that Kn

is contained in the support of b̂n . It follows that a :=
∑
n 2−nbn ∈ A+ satisfies

‖a + J‖ > 0 for all J ∈ Prim(A), i.e., J(a) is not contained in any primitive ideal

of A. Thus J(a) = A.

Notation overlap:

former notation I(a) had two different meanings!!!

Here we have changed to J(a) := span(AaA) .

If, moreover, Prim(A) is quasi-compact, then the open subsets Un :=

â−1(1/n,∞) of Prim(A) cover Prim(A). It follows that Up = Prim(A) for

some p ∈ N. We can replace a by f(a) for the function f(t) := min(p · t, 1). Then

â = 1. �

Is here the right place to show semi-projectivity of En?
Better put it in the appendices. Near to other En stuff?

For later applications of the next result, recall that locally p.i. algebra are

traceless, cf. Lemma 2.10.2.

Proposition 2.10.4. Suppose that A is traceless (respectively that A is purely

infinite) and that Prim(A) is quasi-compact.

Give ref. to Def. of "quasi-compact" (T0 spaces)

Then there exists n ∈ N and a full properly infinite projection p ∈ Mn(A)

(respectively a full properly infinite projection p ∈ A).

Proof. At first, we consider the case where A is purely infinite, i.e., we con-

sider case where the element a is properly infinite for all non-zero a ∈ A. Later we

reduce the case of traceless A to the case of p.i. A.

Since Prim(A) is quasi-compact (by assumption), there exists a positive con-

traction a ∈ A+ with ‖a+ I‖ = 1 for all primitive ideals I ∈ Prim(A) (cf. Lemma

2.10.3).
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It follows that (a− t)+ is a full positive contraction in A for all t ∈ [0, 1), i.e.,

J((a− t)+) := span(A(a− t)+A) = A.

Since every (a − t)+ is properly infinite and full, there are d1, d2 ∈ A with

d∗k(a− 2/3)+dk = (a− 1/4)+ (k = 0, 1) and d∗1(a− 2/3)+d2 = 0.

Let e := (a − 2/3)
1/2
+ d2d

∗
2(a − 2/3)

1/2
+ and z := (a − 2/3)

1/2
+ d1h(a)1/2 for the

continuous function h(t) with h(t) := 8t for 0 ≤ t ≤ 1/2, and h(t) =: (t− 1/4)−1

for 1/2 ≤ t ≤ 1. It follows, (z∗z)(zz∗) = zz∗, e ≥ 0, zz∗ + e ≤ 1, and J(e) =

J((a − 1/4)+) = A. Let V := z + (1 − z∗z)1/2. Then V is an isometry in the

unitization Ã of A with V ∗eV = 0, i.e., e ≤ p := 1 − V V ∗ ∈ A. We get that p is

a full projection in A.

Since p is properly infinite, there exists a C *-morphism ψ : E2 → A with ψ(1) =

p.

We consider now the general case where A itself is only traceless:

The algebra A ⊗ M2∞ is purely infinite if A is traceless (cf. [462, thm. 5.9], or

Theorem ??).

Thm. on p.i. tensor products ?!

Above we have seen that there exists a C *-morphism ψ : E2 → A⊗M2∞ such

that ψ(1) =: p is a full projection of A⊗M2∞ .

Since the union of the C *-subalgebras A ⊗M2n is dense in A ⊗M2∞ , we get

from Lemma A.2.1 that there are n ∈ N, a C *-morphism ψn : E2 → A ⊗M2n and

a partial isometry vn ∈ A⊗M2∞ with vnv
∗
n = ψ(1) and v∗nvn = ψn(1).

Let I denote the closed ideal of A⊗M2n generated by v∗nvn. Then I = J⊗M2n

for some closed ideal J of A, and ψ(1) = vnv
∗
n is in the closed ideal J ⊗M2∞ of

A ⊗M2∞ . Since ψ(1) is a full projection of A ⊗M2∞ , it follows J = A and that

ψn(1) = v∗nvn must be a full projection of A⊗M2n . �

Corollary 2.10.5. If A is locally purely infinite and unital, then there is n ∈ N
such that the unit element 1A ⊗ 1n of Mn(A) is properly infinite.

Proof. Locally p.i. algebras are traceless by Lemma 2.10.2. If A is unital, then

Prim(A) is quasi-compact. Thus, by Proposition 2.10.4, there exists n ∈ N such

that Mn(A) contains a properly infinite full projection p. It follows p ≤ 1A⊗1n - p,

i.e., 1A ⊗ 1n ≈ p is properly infinite in Mn(A). �

Lemma 2.10.6. If A is locally purely infinite, then for a ∈ A+ and ε > 0 there

exist n := n(ε) ∈ N and a σ-unital stable hereditary C*-subalgebra D ⊆ A⊗Mn with

ed = d for all d ∈ D and e := fε(a)⊗1n, such that (a−2ε)+ ∈ (A⊗Mn)D(A⊗Mn).

If A has property pi-m, then one can find the n(ε) such that n(ε) ≤ m.

In particular, if A is purely infinite, then there is a stable σ-unital hereditary

C*-subalgebra D ⊆ A with (a− 2ε)+ ∈ ADA and fε(a)d = d for d ∈ D.
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Proof. Let B := Bε := (a− ε)+A(a− ε)+ . By definition of l.p.i. algebras,

there are n ∈ N and stable hereditary C *-subalgebras Dk ⊆ B, k = 1, . . . , n, such

that (a− (3/2)ε)+ is in the closed ideal J generated by D1 ∪D2 ∪ · · · ∪Dn.

The direct sum F := D1 ⊕D2 ⊕ · · · ⊕Dn is stable and is naturally contained

in Mn(B) ∼= B ⊗Mn ⊆ A⊗Mn.

The algebra D := F (A⊗Mn)F ⊆ B⊗Mn is a stable hereditary C *-subalgebra

of A ⊗Mn, and D generates the closed ideal J ⊗Mn of A ⊗Mn. The element

(a−(3/2)ε)+⊗1n is contained in J⊗Mn, and (fε(a)⊗1n)x = x for all x ∈ B⊗Mn.

If A has property pi-m, then g(a) ⊗ 1m = g(a ⊗ 1m) is properly infinite for

all non-zero g ∈ C0(0, ‖a‖]. Then Lemma ?? says that there is a stable hereditary

C *-subalgebra D ⊆ B ⊗Mm such that the ideal J ⊗Mm generated by D contains

(a− (3/2)ε)+ ⊗ 1n.

to be filled in ?? �

Lemma 2.10.7. If A is p.i. then for each a ∈ A+, ε > 0, n ∈ N there exists a

row d ∈M1,n(A) with dd∗fε(a) = dd∗ and d∗d = (a− ε)+ ⊗ 1n.

Here fε(t) is the continuous function on [0,∞) with fε(t) = 1 on [ε,∞), fε(t) =

0 on [0, ε/2] and fε(t) = 2t/ε− 1 on [ε/2, ε].

Proof. Recall fε(t) := min
(
1, (2/ε) max(0, t− ε/2)

)
for t ≥ 0 and ε > 0.

Then (a − ε)+ is contained in the annihilator Ann(D) of the hereditary C *-

subalgebra D := (1− fε(a))A(1− fε(a)) of A.

?? By the observation of M. Rørdam [688, prop. 5.4], see also Proposition

??, there is a σ-unital stable hereditary C *-subalgebra E in (a− ε)+A(a− ε)+ ⊆
Ann(D), such that (a − ε)+ is contained in the closed ideal of Ann(D) generated

by E.

It follows from Lemma ?? that there exists d1, d2 ∈ Ann(D) with d1d
∗
1 +d2d

∗
2 ∈

E, d∗1d2 = 0 and d∗1d1 = (a− ε)+ = d∗2d2. �

Move to suitable places !!!

11. Weak pure infiniteness for non-simple C*-algebras

We have seen in Part ( ?????) ???? The properties pi(n) and pi-n are the same

for C *-algebras A with the additional property that 1M(A) is properly infinite in

M(A), e.g. as it isthe case if A is stable. Moreover, then both properties coincide

with the property that all non-zero n-homogenous elements a ∈ A+ are properly

infinite. This is because,

a) the algebra `∞(A) is an ideal of `∞(M(A)) and – therefore – has no quotient

of finite dimension if O∞ is unitally contained in M(A) (– more general if M(A)

has no quotient of finite dimension –) and
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b) the property pi(n) always implies that an element a ∈ A+ is properly infinite

(as defined in Section ?? ) if a is n-homogenous.

Give ref’s to ‘‘new’’ places where it (= which ??) is proved !

There could be a considerable shift between the numbers n and them in general.

Notice here that the numbers m and n are only upper estimates. Even in case of

separable amenable (non-simple) C *-algebras we do not know the possible minimal

values, except in special cases, e.g. if the algebras absorb the Jiang-Su algebra

tensorial.

An estimate for the n ∈ N of property pi-n for A⊗K for A with property pi-m

was given by n ≤ m2 in [463, prop. 4.5(vi)]. But it is unknown for which n ∈ N
the stabilization A⊗K is pi(n) (and is then there equal to pi-n) if A has property

pi(m). It seems to be related to topological properties of the space prime(A) of

prime ideals of A.

If A is pi(k) or pi-` for some k, ` ∈ N then there exist a number n ∈ N with

n ≤ min(k, `) such that every quasi-compact subset X of the space of prime ideals

prime(A) is covered by (finitely many) open subsets that are dense in prime(A)

and correspond to (stable) closed ideals J / A ⊗ K that are generated by an n2-

homogenous element of A such that J has property pi(n) and pi-n at the same

time as stated in Proposition 2.11.1. It indicates that the relation between between

pi(n) and pi-n has something to do with the topology of prime(A) (= prim-ideal

space = point-wise completion of Prim(A)).

A partial converse and the passage to stabilization is given in Proposition 2.11.1.

Unfortunately we get only “local” equality, despite of the different focus of the

definitions.

Next is in parts only a conjecture!!

Proposition 2.11.1. Let A a non-zero C*-algebra.

Consider the following properties

(i,a) A is a pi(n) algebra in sense of Definition 2.0.4.

(i,b) A ⊗ K is “locally” a pi(n) algebra, i.e., for each n-homogenous element

b ∈ A+ the ideal J(b) := span(AbA) of A generated by b has the property

that J(b)⊗K has property pi-n.

It is known that it is true if b is instead n2-homogenous in A.

Suppose that A has property pi(n). And that b ∈ A+ is n-homogenous.

Then (b− δ)+ is n-homogenous for every δ ∈ [0, ‖c‖) and is properly infi-

nite. Thus, for every ε ∈ (0, ‖c‖) there exists in D := (b− ε)+A(b− ε)+

an n2-homogenous element c ∈ D+ such that (b−2ε)+ is contained in the

ideal J(c)AbA of A. Thus J((b−2ε)+) ⊆ J(c) ⊆ J(b) and J((b−2ε)+)⊗K
has property pi-n. (The latter because property pi-n passes to hereditary

C*-subalgebras.) Property pi-n is preserved under inductive limits and

J(b)⊗K is the inductive limit of J((b− 1/n)+)⊗K, n ∈ N.

Thus:
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If A has property pi(n) and b ∈ A+ is n-homogenous then than J(b)⊗
K has property pi-n.

(ii) A⊗K has property pi(n).

(iii) A⊗K has property pi-n in sense of Definition ??.

(iv) A has property pi-n.

(v) `∞(A) has property pi-n.

(vi) `∞(A) is locally p.i. in sense of Definition 2.0.3.

(vii) If J / A is a closed ideal of A, then A has pi-n (respectively pi(n)) with

n ≤ k+ ` if J and A/J have pi-k (respectively pi-k) and pi-` (respectively

pi-`).

Then (ii) and (iii) are equivalent and imply both of (i,a) and (iv).

If A has property pi-n then `∞(A), all non-zero quotients of A and all non-zero

hereditary C*-subalgebra of A have Property pi-n.

In particular, A is purely infinite in the sense of Definition 1.2.1, if and only

if, each non-zero element 0 6= a ∈ A is properly infinite, i.e., a ⊕ a - a for each

a ∈ A (and means that A has property pi-1).

Ideas of a proof of Proposition 2.11.1 will be given farer below after we have

stated and proven the needed lemmata.

Clearly ???? the trivial implications are ??? (ii)⇔(iii), ??? ??? (ii)⇒(i), and

??? (iii)⇒(iv), the implication (iv)⇒(i) requires only some simple and obvious

matrix reformulation of the property pi(n) in Definition 2.0.4.

The nontrivial implication ??? (i)⇒(ii)? need some more work and preparation.

Lemma 2.11.2. Suppose that A has no irreducible representation of dimension

≤ n.

If A satisfies Part ( i ) of property pi(n), then each non-zero element a ∈ A+

in the ideal J generated by some (n+ 1)-homogenous element b ∈ A+ satisfies that

a⊗ 1n is properly infinite in A⊗Mn.

(Alternatively, we could require here that b ∈ A+ is n-homogenous and that for

each ε > 0 the ideal generated by Ann((b − ε)+, A)+ := {c ∈ A+ ; c(b − ε)+ = 0 }
contains (b− 2ε)+.)

There is (somewhere farer below) a new result that says every non-zero n-

homogenous element b ∈ A+ is properly infinite in A if A is pi(n). I.e., the latter

annihilator condition on (b− ε)+ is not needed.

If A is pi-n, then for each element a ∈ (A⊗K)+ and ε > 0 there exists b ∈ A+,

d ∈ A ⊗ K such that d∗(b ⊗ 1n)d = (a − ε)+. It follows that c := a ⊗ 1n2 is

“spectrally properly infinite” for each a ∈ A⊗K, i.e., ϕ(c∗c) is properly infinite for

each ϕ ∈ C0((0, ‖c‖2]).

Properties pi(n) and pi-n coincide on stable C*-algebras.
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Holds in general for all C*-algebras

A with properly infinite 1 in M(A).

If A has Property pi(n) ϕ : B := C0((0, 1],Mn2+1) → A is a C*-morphism,

then the closed ideal J of A generated by ϕ(B) has the property that J ⊗ K has

property pi-n and this property coincide there with property pi(n), as for all stable

C*-algebras.

In Proposition ?? we list some permanence properties of the class of weakly

purely infinite C *-algebras. We consider weak versions of pure infiniteness because

it is usually easier to recognize if a C *-algebra A is locally or weakly purely infinite

in the sense of Definitions 2.0.3 and 2.0.4 e.g. if one considers tensor products,

crossed products or continuous fields. Only strongly purely infinite algebras have

properties that in good cases allow to classify them by functors into Abelian types

of categories. Usually one gets the needed stronger assumptions by combination

– say of weak pure infiniteness with corona factorization properties or with the

existence of reasonable central sequences.

A basic open question is if property pi(n) or even property l.p.i. for A im-

plies that A has property pi(1) or moreover that A has the in applications needed

property that A is strongly purely infinite in sense of Definition 1.2.2.

We do not know any example where A is weakly purely infinite but is not

pi(1) or where A is l.p.i. but is not weakly purely infinite, and we do not know an

example where A is purely infinite in sense of Definition 1.2.1, i.e., is pi(1) in sense

of Definition 2.0.4 but is not strongly purely infinite.

It is not difficult to see that C([0, 1], A) is pi(2) if A is purely infinite. More

generally, C0(X,A) is pi(n) with n ≤ m+ dim(X) if A is pi(m) and X is a finite-

dimensional and locally compact.

Reference for above? Formula OK?

For the following we need a definition and two lemmata:

Definition 2.11.3. An element a ∈ A is spectral properly infinite inside A if

for each ε > 0 the cut down (a∗a− ε)+ of a∗a is properly infinite in A.

ESpec(A) ⊆ A (or simply ESp) will denote the set of all spectral properly infinite

elements in A.

EFunct(A) ⊆ A (or simply EFunct) denotes the set of all elements a ∈ A with the

property ψ(a∗a) ∈ ESpec(A) for all functions ψ ∈ C0(0, ‖a‖2)+ with ψ(a∗a) 6= 0 .

Lemma 2.11.4. Let Espec(A) ⊆ A, (respectively Efunct(A) ⊆ A) the sets of all

“spectral” (respectively “functional”) properly infinite elements in sense of Defini-

tion 2.11.3.

Then ESpec(A) and EFunct(A) are closed subsets of A \ {0}.

Proof. To be filled in ?? �
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Next is still a conjecture ... !!!

Good for what? ... replace by other idea !!!

Lemma 2.11.5. Let a, b ∈ A elements such that ψ(a∗a) is properly infinite

in A for every ψ ∈ C0(0, ‖a‖2]+ with ψ(a∗a) 6= 0. Let a = v(a∗a)1/2 the polar

decomposition of a in A∗∗. Then there exists for each δ ∈ (0, ‖a‖2) a continuous

path of elements t ∈ [0, 1] 7→ b(t) ∈ A with b(t)∗b(t) = ((a∗a)− δ)+ for all t ∈ [0, 1],

b(0) = v((a∗a)− δ)1/2
+ and b(1) = ((a∗a)− δ)1/2

+ .

It is wrong in this formulation:

Let A := O2 = C∗(s, t ; s∗t = 0, ss∗ + tt∗ = 1, s∗s = 1 = t∗t)

and a := s, δ = 1/2. Then v((a∗a− 1/2)
1/2
+ = 2−1/2s. There is no continuous

path t → b(t) with b(t)∗b(t) = 1/2, b(0) = 2−1/2s and b(1) = 2−1/2, because there

is no continuous path from s to 1 inside the the set of isometries of O2.

But if there enough “stable room” orthogonal to (a∗a − δ)+ and (aa∗ − δ)+

(perhaps moving with the parameter) then there is some hope.

Proof. (The definition of gδ has to made precise.) The idea is: For each µ, γ ∈
(0, ‖a‖2) there exist contractions s1, s2 ∈ A with s∗1s2 = 0, s∗1s1 = g2δ(a

∗a) = s∗2s2

and s1s
∗
1 + s2s

∗
2 ≤ gδ(a

∗a) (a “soft” version of E2 with gδ(t) = 1 for t ≥ δ and

gδ(t) = 0 for t ≤ δ/2 linear on [δ/2, δ].) and

(a∗a− γ)µ+s
∗
ksk(a∗a− γ)µ+ = (a∗a− γ)2µ

+ g2δ(a
∗a) .

Now consider (with suitable δ), X := v ·((a∗a)1/2−δ)1/2
+ s∗1, Y := ((a∗a)1/2−δ)1/2

+ s∗2
and Z1 := s2s

∗
1 − s1s

∗
2 (or + ?) XZ1Y

∗ = v((a∗a)1/2 − δ)1/2
+ s∗1s1s

∗
2s2((a∗a)1/2 −

δ)
1/2
+ =

= v((a∗a)1/2 − δ)+gδ/2(a∗a)2 (“nearly” XY ∗)

Z2 := s1s
∗
1 + s2s

∗
2

Has to study (X + Y )ZkX
∗ =??????

Idea does not work??

To be filled in ?? �

We do not know (2019) if A is purely infinite for separable A if A has the

property that there exists a unital C *-morphism ψ : C[0, 1] → M(A) into the

center of M(A) such that the “fibers” At := A/It are all purely infinite. Here the

the ideal It of A is the closed linear span of ψ(C0([0, 1] \ {t})) ·A).

(Perhaps, one gets an answer if A has the “corona factorization” property

(CFP) in addition? But what have they to do with (CFP)?)

But we know that C0(X,A) (∼= A ⊗ C0(X)) is pi-n if A is pi-n and X is any

locally compact Hausdorff space:

It reduces to the case of C([0, 1], A), because then one can step up by induc-

tion over m ∈ N to C([0, 1]2m+1, A). C0(X,A) with dim(X) ≤ m is an ideal of a
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quotient of C([0, 1]2m+1, A), and C0(X,A) of an arbitrary (not necessarily metriz-

able) l.c. Hausdorff spaces X is an inductive limit of an upward directed net of

C *-subalgebras isomorphic to C0(Xλ, A) with Xλ of finite dimension.

Thus, it reduces to the case of C([0, 1], A), and it is easy to see that is suffices to

consider only those elements of C([0, 1], A) that are given by pice-wise linear map

φ from [0, 1] into A+ with ‖φ(t)‖ ≤ 1, i.e., have to check pice-wise linear maps φ

from [0, 1] into positive contractions in A. In fact it suffices to consider those maps

φ : [0, 1] → A+ for given δ > 0 with break points t` ∈ [0, 1] with t` < t`+1, t1 = 0,

tm = 1 and ‖φ(t`)−φ(t`+1)‖ < δ, but it suffices to consider those paths that satisfy

moreover φ(t2k) = φ(t2k+1) for n = 2k, i.e., with φ(t) = φ(t2k) for t ∈ [t2k, t2k+1]

and only φ(t2k−1) 6= φ(t2k) . This is because any continuous map ψ from [0, 1] into

the contractions in A+ can be approximated by such continuous maps φ arbitrarily

well.

We can go with φ(t) to the next break point with a constant pice of “path”

between.

Let Ik := [t2k−1, t2k] ⊆ [0, 1]. Then we can “compress” the path φ(Ik) by a

continuous map c : Ik → A, given by a path {c(t) ; t ∈ Ik} ⊆ A for Ik of contractions

in A to

Xk :=
(

2−1(φ(t2k−1) + φ(t2k))− δ/2
)

+
,

i.e., find a contraction ck ∈ C(Ik, A) such that ck(t)∗φ(t)ck(t) = Xk for t ∈ Ik. Here

we can apply Lemma 2.1.9 to the elements a := φ|Ik and b := 2−1(φ(t2k−1)+φ(t2k))

in the C *-algebra C(Ik, A) because

‖φ(t)− 2−1(φ(t2k−1) + φ(t2k))‖ < δ/2 for all t ∈ Ik .

Then ‖Xk − φ(t)‖ < δ for t ∈ Ik = [t2k−1, t2k].

Then we can go back “up to δ” from the “constant” path (Xk − δ)+ on Ik

to φ(Ik) ∈ C(Ik, A), i.e., find by a contraction in e = {e(t)} ∈ C(Ik, A) with

e(t)∗(Xk − δ)+e(t) = (φ(t) − 2δ)+ for t ∈ [t2k−1, t2k]. This is possible by Lemma

2.1.9 because ‖(Xk − δ)+ − φ(t)‖ < 2δ.

We find for the properly infinite element 1n ⊗ Xk ∈ Mn(A) elements dk ∈
M2n(A) with d∗k((1n ⊗ Xk) ⊕ 0n)dk = 12n ⊗ (Xk − δ)+, because A has property

pi-n.

We define Dk(t) := ((1n ⊗ c(t))⊕ 0)dk(12n ⊗ ek(t)) .

Then Dk ∈ C([t2k−1, t2k],M2n(A)) and

Dk(t)∗(1n ⊗ φ(t)⊕ 0n)Dk(t) = 12n ⊗ (φ(t)− 2δ)+ .

But we do not know if C([0, 1], A) is pi(1) if A is pi(1). By Proposition ?? for

every compact space X the algebra C(X,A) is pi-n (respectively is s.p.i.) if and

only if A is pi-n (respectively is s.p.i.). For simple A all up to now given definitions

of pure infiniteness coincide with strong pure infiniteness.
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But for A with property pi(n) we get only that C(X,A) has pi(m) with estimate

m ≤ n · (Dim(X) + 1). ???? (If X = [0, 1] then m ≤ 2n.)

It would be sufficient to prove that C([0, 1], A) is pi-n if A is pi-n, cf. proof of

Proposition ??.

OLD or NEW or REMAINING?: The question, if C([0, 1], A) is pi(1) for

purely infinite A, is equivalent to the following:

Let A a purely infinite C *-algebra, a, b ∈ A+ positive contraction, ε > 0, τ > 0

and d1, d2 ∈ A with d∗jadk = δjk(a− ε)+ (j, k ∈ {1, 2}).

Try to find e1, e2 ∈ C([0, 1], A) with ‖dj − ej(0)‖ < τ for j ∈ {1, 2} and

ej(t)
∗((1− t)a + tb)ek(t) = δjk

(
((1− t)a + tb)− ε

)
+

for t ∈ [0, 1] .

One can separate the question into the intervals [0, 1/2] and [1/2, 1]. a ≤ a+ b,

there exist contractions T, S ∈ C([0, 1/2], A) with T (t)∗((1−t)a+tb)T (t) = (1−t)a
and S(t)∗((1− t)a+ tb)S(t) = tb, as e.g. the

Not ready?

strict ??? limit in ??? Cb([0, 1/2], A)

T (t) := lim
n

((1− t)a+ tb+ 1/n)−1/2(1− t)1/2a1/2

More likely is that one can find a contraction T ∈ C([0, 1/2], A) with T (t)∗(a +

t/(1− t)b)T (t) = (a− ε)+ and use this locally ???

It suffices to consider the case of small ‖a− b‖.

Given f ∈ C([0, 1], A)+ with ‖f‖ < 1, we find for each ε > 0 and t ∈ [0, 1],

some δ ∈ (0, 1) such that ‖f(t)− f(s)‖ < ε for all s ∈ [t− δ, t+ δ]∩ [0, 1]. There we

take γ ∈ (0,min(δ, ε)) and a contractions d1, d2 ∈ C([0, 1], A) with

d1(s)∗(f(s)− γ)+d1(s) = (f(t)− ε)+

and

d2(s)∗(f(t)− 2ε)+d2(s) = (f(s)− 3ε)+ .

One gets at the end-points f(t − δ) and f(t + δ) different rows D, e.g. with

D∗f(t− δ)D = diag((f(t− δ)− 3ε)+, (f(t− δ)− 3ε)+) . ????

For simple locally purely infinite A the algebra C([0, 1], A) is strongly purely

infinite because simple l.p.i. algebras are strongly p.i. by Proposition 2.2.1(v). The

later considered applications requires strong pure infiniteness in sense of Definition

1.2.2 for the algebras in question.

We apply permanence properties of the considered class of strongly purely

infinite algebras, and sometimes additional properties of A ( 44 ), to obtain that

a particular class of C *-algebras A has the property that the locally or weakly

purely infinite algebras in this particular class are automatically strongly purely

infinite. This unsolved verification problem restricts the applications of the notion

44E.g., that A ∼= A⊗D for some tensorial self-absorbing unital algebra D 6= C.
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of purely infinite algebras considerably. It is still unknown if all the definitions of

pure infiniteness coincide at least in case of (non-simple) nuclear C *-algebras A.

In case of non-elementary simple C *-algebras A, i.e., A 6∼= K(H) for any Hilbert

space H, the algebra A is locally p.i. (i.e., is l.p.i. in sense of Definition 2.0.3) if and

only if A is strongly p.i. in sense of Definition 1.2.2.

It could be that topological properties of the primitive ideal space Prim(A) of

A plays a role in a final answer. It could also be that non-existence or existence

of characters for the C *-algebras F (B,A) := (B′ ∩ Aω)/Ann(B,Aω) for B any

character-less sub-homogenous C *-subalgebra of Aω plays a role in a final answer.

Unfortunately only rather partial results exist and are not obvious. Possibly related

properties could be ideal system equivariant versions of the corona factorization

property (CFP), but that is not clear.

In principle, all what we must require for the classification works only for

“target” algebras B that are strongly purely infinite, e.g. the construction of suitable

nuclear *-monomorphisms A ↪→ B of separable exact A into a C *-algebra B needs

that B is strongly purely infinite. One can do really nothing with the algebra B if

one can only prove pure infiniteness, weak pure infiniteness or even only local pure

infiniteness. But sometimes additional properties of B allow to conclude later that

B or “sufficiently big” C *-subalgebras of B are strongly purely infinite. This is the

true reason for our study of the “non-strong” versions of pure infiniteness, and that

this “weak” properties are easier to check.

12. Non-simple purely infinite algebras

There are several definitions of “pure infiniteness” for C *-algebras between

“locally purely infinite” and “strongly purely infinite”. Their interrelations and

permanence properties have been studied in [462], [463], [92], [93] and [443]. The

properties are equivalent in the case of algebras of real rank zero or in the case

of algebras with finite-dimensional Hausdorff primitive ideal spaces. It is still an

open question, whether or not all this properties are equivalent in general. We

get some partial results in this direction (cf. also [443]). Open problems will be

listed in Section ??. We generalize some methods of Section 2 for the study of pure

infiniteness of non-simple algebras.

HERE comes imported text from other places!

Move next blue discussion to later place!

Replace citations by similarities ??? here!

Property pi-n implies property pi(n) on A. Conversely if A has property pi(m)

for some m then there exists n ≥ m such that A has property pi-n, but no general

function f : N→ N is known yet with the property that n ≤ f(m) , such that A has

property pi-f(m) if A has property pi(m). Moreover, there exists for every factorial

state ρ on A a closed ideal J of A with the properties

(i) ρ|J 6= 0,
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(ii) J is “essential” in A, i.e., a ∈ A and a · J = {0} implies a = 0, and

(iii) the ideal J has property pi-n (if A has property pi(n)).

If A has property pi(m) then there exists n ≥ m such that A has property pi-n.

But until now no estimating function function n(t) is known with the property that

n(m) ≥ m if A has property pi(m). It seems to depend from topological properties

of Prim(A).

We give an overview about the known results and open questions concerning

non-simple (locally, weakly or strongly) purely infinite algebras in Section ?? – with

some parts of the needed proofs postponed to later sections and chapters.

By [463, lem. 4.4]):

Let a be a non-zero positive element in a C *-algebra A and let n be a natural

number. The following conditions are equivalent:

(i) a⊗ 1n is properly infinite,

(ii) a⊗ 1m - a⊗ 1n for all (natural numbers) m ∈ N,

(iii) a⊗ 1m - a⊗ 1r for all natural numbers r,m with r ≥ n,

(iv) a⊗ 1n+1 - a⊗ 1n,

(v) for each ε > 0 and for each m in N there is x in Mm,n(A) such that x∗x belongs

to Mn(aAa) and xx∗ = (a− ε)+ ⊗ 1m .

Permanence properties of property pi-n:

The property pi-n on A passes to non-zero hereditary C *-subalgebras D ⊆ A,

non-zero quotients A/J , and to A∞ := `∞(A)/c0(A) and the ultrapowers Aω and

(that are special quotients of `∞(A)).

If A and B have property pi-n, then A⊕ B has property pi-n, `∞(A1, A2, . . .)

is pi-n for sequences A1, A2, . . . of C *-algebras.

Both of pi-n and pi(n) pass from A to ultra-powers Aω.

All n-homogenous elements of A are properly infinite in A itself, if A has

property pi-n or pi(n).

The property pi(n) is equal to property pi-n on each closed ideal J of A that

is generated by a hereditary C *-subalgebra D of A with the property that D is

n-homogenous in the sense that there exists a hereditary C *-subalgebra E ⊆ D

such that Mn(E) ∼= D. The maximal closed ideals J with this property have in

Prim(A) and prime(A) open supports that are there dense, i.e. there is no non-zero

closed ideal orthogonal to J .

Thus, all is reduced to an extension problem for the sum of two ideals ...

The Property pi-n will be preserved by inductive limits,

passes to M2(A), – and then to stabilizations of A, – ...???

If A+ 3 b =
∑m
k=1 d

∗
kadk for a ∈ A+, then for each ε > 0, there exists

e1, . . . , en ∈ A with the property (b − ε)+ =
∑n
j=1 e

∗
jaej . The algebra A has

no non-zero quotient A/J of finite dimension, because property pi-n carries over to
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non-zero quotients, and all non-zero hereditary C *-subalgebras of A/J . Certainly

C is not pi-n.

More generally, all C *-algebras with property pi(n) or pi-n are residually an-

tiliminary.

??? Why???

Part (iv) shows only that an n-homogenous element in A is infinite in A itself

if there exist something orthogonal to this element...

Needs to to show that the infiniteness in A itself is the same as infiniteness in

Mn(A).

A ∈ a ≈ a⊗ e11 in A⊗Mn and a⊗ e11 ≈ b⊗ 1n and (b⊗ 1n)⊕ 0 ≈ (b⊗ 1n)⊕ c
in A⊗Mn+1, then there must be shown that

a⊗ e11 ≈ a⊕ c = a⊗ e11 + c⊗ e22

in A⊗M2
∼= M2(A). Here A⊕A is identified with the diagonal matrices in M2(A).

It is not difficult to see that `∞(A) is pi-n if A is pi-n. Therefore it implies

that `∞(A) can not have a finite dimensional quotient, i.e., that property pi-n

implies property pi(m) for some m ≤ n. This unknown m ∈ N could depend from

the topology of Prim(A). This could be because for T0 (non-Hausdorff) spaces the

covering dimension and the decomposition dimension can be very different. Perhaps

also the lattice structure of the family of hereditary C *-subalgebras (or closed left

ideals) could play some role ...

It is easy to see that property pi(n) implies that each non-zero (n + 1)-

homogenous element is properly infinite in A. tion ?? provides the non-trivial

fact that in general all n-homogenous elements in A are properly infinite if A has

property pi(n).

It implies properties pi(n) and pi-n are the same for C *-algebras A with the

property that 1M(A) is properly infinite in M(A), e.g. in case where A is stable.

Moreover, then both properties coincide with the property that all non-zero n-

homogenous elements a ∈ A+ are properly infinite, cf. Proposition 2.7.16.

The above given Definitions 2.0.4, ?? of local, weak pure infiniteness coincide

for simple C *-algebras, cf. Proposition 2.2.1.

(Was mentioned earlier)

Definition 2.12.1. We call a C *-algebra A hyper-antiliminary if each non-

zero quotient C *-algebra `∞(A)/J of `∞(A) is antiliminary (= NGCR).

Is it equivalent to the property that no hereditary C*-subalgebra D of `∞(A)

has a character?

It should be equivalent to the property that `∞(A) is “residual antiliminary”

in the sense of Definition 2.7.2

FIND or Give general Definition



12. NON-SIMPLE PURELY INFINITE ALGEBRAS 301

The in next Lemma used term “antiliminary” should be recalled “residual an-

tiliminary” ??

Lemma 2.12.2. The C*-algebra A is hyper-antiliminary, if and only if, there

exist an universal constant n := n(A, 2) ∈ N such that for each contractions

a1, a2, a3 ∈ A+ with a1a2 = a1 and a2a3 = a2 there are n contractions d1, . . . , dn ∈
a3Aa3 and 2-homogenous positive contractions e1, . . . , en ∈ a2Aa2 such that a1 =∑n
j=1 d

∗
jejdj.

If A is hyper-antiliminary then there exist numbers n(A, k) ∈ N, k = 2, 3, . . .,

n(A, k+1) ≥ n(A, k), such that the same holds with n := n(A, k) and k-homogenous

contractions ej ∈ A+.

The C*-algebra A is hyper-antiliminary if no non-zero hereditary C*-subalgebra

of `∞(A) has a character.

The latter is the case if and only if D(`∞(A))∩K(H) = {0} for every irreducible

representation D : `∞(A)→ L(H) of `∞(A).

Proof. It is not difficult to see that a C *-algebra B is antiliminary if and only

if bB b has no non-zero character for each positive contraction b ∈ B.

Indeed: If bB b has a character, then this character extends to a pure state ρ

on B that defines an irreducible representation D of B that contains the compact

operators in the image of B.

Conversely, if D is an irreducible representation and D(B) contains the compact

operators, then there exists a contraction b ∈ B+ such that D(b) is a projection

with rank one. Then bB b has a non-zero character.

Moreover, if J / B is a closed ideal such that B/J contains a non-zero Abelian

hereditary C *-subalgebra E, then π−1
J (E) is a hereditary C *-subalgebra of B that

has a non-zero character.

Take now B := `∞(A) and let b := (b1, b2, . . .) with contractions bn ∈ A+ .

Consider the Abelian C *-subalgebras C∗(cn) ⊆ A generated by cn :=∑
k 2−kbn+k.

to be filled in... ??

lem:Char.A.hyper.antilim �

Proposition 2.12.3. Suppose that A locally purely infinite (l.p.i.). Then A

has following properties:

(1) Every hereditary C*-subalgebra D ⊆ A is l.p.i.

(2) Every quotient A/J is l.p.i.

(3) A⊗B is l.p.i. for every exact B.

(4) A is (2-quasi-) traceless, cf. Lemma 2.10.2.

(5) If A is l.p.i. then A is residually antiliminary.

Moreover:
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All inductive limits of l.p.i. algebras are l.p.i.

It is not known if `∞(A) is l.p.i. if A is l.p.i. It would show that “l.p.i.” implies

“w.p.i.” (in some sense).

Proof. ?? Where is the Def. of ”residually anti-liminary”

(Is it the same as: Every hereditary �

Lemma 2.12.4. Suppose that A satisfies condition (i) of Definition 2.0.4 of the

property pi(n). Then:

(i) Property (i) of Definition 2.0.4 for pi(n), i.e., that each element b ∈ J(a)

can be approximated by n-term sums
∑

1≤k≤n ekadk, passes to quotients

A/J of A, hereditary C*-subalgebras of A and to `∞(A).

(ii) This has been improved in between (time?):

Each non-zero n-homogenous a ∈ A+ is properly infinite inside D :=

aAa if A satisfies Property (i) of Definition 2.0.4 for pi(n) and A has no

irreducible representation of dimension ≤ n. –

It carries over to n-homogenous elements of `∞(A) but excludes not

irreducible representations of `∞(A) with dimension ≤ (n− 1)... ????

One point here is that we do not know if characters χ on h`∞(A)h

with χ(h) = 1 for h = (h1, h2, . . .) ∈ `∞(A)+ with ‖h‖ = 1 (can moreover

take here h with ‖hn‖ = 1 for all n ∈ N). can be represented on all

separable C*-subalgebras C ⊆ `∞(A) with h ∈ C by a sequence ρn of pure

(!) states on A such that V : `∞(A)→ `∞(C) given by

V ((a1, a2, . . .)) := (ρ1(a1), ρ2(a2), . . .)

and a character ψ on `∞(C) have the property that for all c ∈ C holds

χ(c) = ψ(V (c)).

The point is that all bigger separable C*-sub-algebras in h`∞(A)h must

have the same representation of χ.

Then still all is rather complicate: Have to show that there exists

2-homogenous elements gn ∈ A+ with ‖gn‖ = 1 and ρn(h
1/2
n gnh

1/2
n ) ≥

2/3ρn(hn).

(Perhaps even a stable element gn if in question for other topics?)

Then χ can not be a character on h`∞(A)h, provided that χ = ψ ◦ V
holds also on the hereditary C*-algebra generated by the element

(h1, h2, . . .) ...

A lot to check!

Suppose that non-zero a ∈ A+ is n-homogenous ( 45 ).

Let J := J(a) := Span(AaA) denote the closed ideal of A that is

generated by {a}, and let Ann(a, J) := {b ∈ J ; ab = 0 = ba} , i.e.,

Ann(a, J) = J ∩Ann(a,A).

45i.e., there exists a C *-morphism ψ : C0(0, ‖a‖]⊗Mn → A with a = ψ(f0⊗1n) for f0(t) := t
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If the closed two-sided ideal of A generated by Ann(a, J) contains a,

then a is properly infinite.

In particular, if c ∈ A+ with ‖c‖ = 1 is an (n+1)-homogenous element

of A, then (c− δ)+ is properly infinite for each δ ∈ [ 0 , ‖c‖ ).

The dimension of H is ≤ n, if there exists an irreducible representa-

tion D : A→ L(H) with D(A) ∩K(H) 6= {0}.
(iii) If A has no non-zero quotient A/J of dimension ≤ n2, then a∗Aa is pi(n)

for each a ∈ Ped(A) (:= Pedersen ideal, the minimal dense ideal of A).

(iv) If M(A) has no non-zero quotient of dimension ≤ n2, then A is pi(n).

(v) If A is σ-unital, then, for every S, T ∈ Q(A) := M(A)/A (respectively

S, T ∈M(A)) with S in the closed ideal generated by T , and every ε > 0,

there exist X1, . . . , X2n ∈ Q(A) (respectively X1, . . . , X3n ∈ M(A)) with

‖S −
∑
j X
∗
j TXj‖ < ε.

(vi) If A is σ-unital and is pi(n), thenM(A) has no finite-dimensional quotient

and is pi(k) (for some k ≤ 3n).

(vii) If A (itself) has no irreducible representations of dimension ≤ n, then A

is locally purely infinite (cf. Def. 2.0.3).

In particular, then A is traceless (in sense of Def. 2.8.1).

Proof. (i): The passage to hereditary C *-subalgebras and to quotients A/J

is almost obvious from the definition.

The passage of property pi(n) to `∞(A) requires an uniform estimate for prop-

erty (i) of Definition 2.0.4:

If bk := SkakS
∗
k , for ak, bk ∈ A+, Sk ∈ M1,m(A) (for some fixed m ∈ N) with

‖ak‖ ≤ 1 and γ := supk ‖Sk‖ <∞ , then ‖bk −Sk(ak − δ)+S
∗
k‖ ≤ γ2δ . This allows

to find Tk ∈M1,n(A) with supk ‖Tk‖ ≤ 2/
√
ε, such that ‖bk − TkakT ∗k ‖ < ε for all

k ∈ N. Now use that M1,n(`∞(A)) = `∞(M1,n(A)).

(ii): Let b := ψ(f0 ⊗ p1,1). The elements a and b generate the same closed

ideal J , and b ⊗ 1n ∼ a ⊕ 0n−1 in Mn(A). For x ∈ Ann(a, J) holds a + x ∈ J .

Thus (a + x) ⊕ 0n−1 - b ⊗ 1n, . Since ax = xa = 0, also a ⊕ x ∼ (a + x) ⊕ 0.

Together: a⊕ x⊕ 0n−2 - a⊕ 0n−1, i.e., x is in I(a) := {x ∈ A ; a⊕ x - a} for all

x ∈ Ann(a, J). By Lemma 2.5.3(i), I(a) is a closed ideal of A. By assumptions, a

is in the closed ideal of A that is generated by Ann(a, J)+. Thus, a ⊕ a - a ⊕ 0

follows from Ann(a, J) ⊆ I(a).

If ψ : C0(0, γ] ⊗Mm → A is given with γ := ‖c‖ , m > n and ψ(f0 ⊗ 1m) = c

for f0(t) := t, then, for each 0 ≤ δ < γ , the element (a− δ)+ = ψ((f0 − δ)+ ⊗ en)

(where en := p11 +p22 + · · ·+pnn) satisfies the above considered assumptions on a.

Thus, (a− δ)+ is properly infinite. The element (c− δ)+ is in the ideal generated

by {(a− δ)+}. We get (c− δ)+ - (a− δ)+ ≤ (c− δ)+ .

Thus (c− δ)+ is properly infinite for all δ ∈ [0, ‖c‖) ...????

If D : A → L(H) is an irreducible representation, then the compact operators

K(H) are contained in the image of D, and K(H) becomes isomorphic to a quotient
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of an ideal of A. K(H) satisfies property (i) of Definition 2.0.4, if and only if H has

dimension ≤ n, because K(H) contains no properly infinite element, but contains

n+ 1-homogenous elements if the dimension of H is > n.

(iii): All finite-dimensional irreducible representations of A are of dimension

≤ n, by our assumptions on A. But this sort of irreducible representations can not

exist by our assumption that A has no non-zero quotient of dimension ≤ n2. It

implies that fMn(A)f has no finite-dimensional quotient if 0 6= f ∈Mn(A)+.

Let a ∈ Ped(A). Then b := a∗a ∈ Ped(A) and B := a∗Aa = bAb. The

(minimal dense) Pedersen ideal of A is algebraically generated by the elements

{(e− ε)+ ; e ∈ A+, ε > 0} . Hence, there are e ∈ A+, ε > δ > 0 and d1, . . . , dn with

b = d∗1(e− δ)+d1 + · · ·+ d∗n(e− δ)+dn (the n comes from property (i) of Definition

2.0.4).

There are contractions f, x ∈ Mn(A) and x ∈ Mn(A) such that fxx∗ = xx∗

and f ≥ 0 and B ⊗ p11 = xMn(A)x∗.

It follows that `∞(B) is isomorphic to a hereditary C *-subalgebra of

Mn(`∞(A)) that is contained in gMn(Aω)g for g := (f, f, . . .), where we use

`∞(Mn(A)) ∼= Mn(`∞(A)).

Since, by Part (i), B, `∞(B) and `∞(A) satisfy the condition (i) of Defini-

tion 2.0.4, all irreducible representation of `∞(B) that contain non-zero compact

operators in its image are of dimension ≤ n, and all irreducible representation of

Mn(`∞(B)) that contain non-zero compact operators in its image are of dimen-

sion ≤ n2. Therefore, each irreducible representation of `∞(B) of finite dimension

extends to an irreducible representation of Mn(`∞(A)), that contains compact op-

erators in its image, thus is of dimension ≤ n2.

But gMn(Aω)g can not have an irreducible representation of finite dimension,

because otherwise, fMn(A)f has a non-zero quotient of finite dimension.

Thus, `∞(B) has no quotient of dimension ≤ n2, i.e., satisfies also condition

(ii) of Definition 2.0.4, i.e., B is pi(n).

(iv): If M(A) has no non-zero quotient of dimension ≤ n2, then `∞(M(A))

can not have a non-zero quotient C *-algebra of dimension ≤ n2, because M(A) is

unitally contained in `∞(M(A)).

The same happens with the (essential) ideal `∞(A) of `∞(M(A)) .

(v): like in [463] ??

Next considers relations between separable C *-subalgebras in Q(A) and in A∞

?

Lemma 2.12.5. Suppose that A is σ-unital. Then, for every separable C*-

subalgebra D ⊆ M(A), there exist a sequence a0, a1, . . . ∈ A+ of commuting con-

tractions such that
∑
an = 1 (strictly in M(A)) anam = 0 for |n − m| > 1,

T −
∑
n a

1/2
n Ta

1/2
n ∈ A, and MT − TM ∈ A for M :=

∑
n∈X an, for all T ∈ D

and all X ⊆ N.
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??????????????

to be filled in

In particular, for each separable C*-subalgebra C ∈ Q(A), there exist hereditary

C*-subalgebras E1, E2 ⊆ `∞(A) and mono-morphisms ψj : Ej → M(A) such that

C ⊆ πA(ψ1(E1)) + πA(ψ2(E2)). ??????

Proof. ?? �

(???): If A is σ-unital, then, for each separable C *-subalgebra C ∈ Q(A), there

exist hereditary C *-subalgebras E1, E2 ⊆ `∞(A) and monomorphisms ψj : Ej →
M(A) such that C ⊆ πA(ψ1(E1)) + πA(ψ2(E2)). See 2.12.5.

If A is pi(n), then every hereditary C *-subalgebra E of `∞(A) does not have

non-zero quotient algebras of finite dimension.

Suppose now that M(A) has an irreducible representation D : M(A)→ L(H)

of finite dimension, then necessarily D(A) = {0} , i.e., D = d◦πA for an irreducible

representation d of Q(A). Let C ⊆ Q(A) a separable C *-subalgebra with d(C) =

L(H), and E1, E2 as above.

?????????????

Then D◦ψ1 or D◦ψ2 is non-zero. Thus, there exists a hereditary C *-subalgebra

E of `∞(A) that has a non-zero quotient of finite dimension. This contradicts the

existence

of

???????????????????????????

a non-zero hereditary C *-algebra E of `∞(A) and a C *-morphism ψ : E →
M(A) with D(ψ(E)) 6= 0.

(???): to be filled in

?? �

Recall that a C *-algebra A Check definitions!! has property pi-n (or A is

pi-n) if, for each a ∈ A, the n-fold sum a⊕ a⊕ · · · ⊕ a = a⊗ 1n is properly infinite

in Mn(A), cf. Definition ??.

There are other places where this result is discussed and partly proven. Com-

pare and unite them!

Lemma 2.12.6. The C*-algebra A is pi-n, if and only if, `∞(A) is pi-n, if and

only if, Aω is pi-n.

If A is pi-n, then all non-zero quotients and non-zero hereditary C*-subalgebra

are pi-n.

If A is pi-n then A is traceless. (In particular, A contains no non-zero here-

ditary C*-subalgebra D that has a non-zero character. In particular, A admits no

irreducible representation of finite dimension.)
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If A is pi-n, then A has property pi(m) for some m ≤ n.

If A is stable then A has property pi(n), if and only if, A is pi-n. More general,

this holds if the unit element of M(A) is properly infinite.

More general:

A has property pi-n if A has property pi(n) and for each element a ∈ A+ and ε > 0

there exists an n-homogenous element b ∈ A+ with the property that b is the closed

ideal generated by a and (a− ε)+ is contained in the closed ideal of A generated by

b.

In between, question for further studies:

If a, b ∈ A+ are residually properly infinite in A, is then a+ b infinite in A?

Give Ref. to residually p.i. elements in A+ !!!

(What about counterexamples?

A can be supposed separable?

Where is the Definition of residually properly infinite elements in A+ ?)

If this is the case, then all pi(n) and pi-n are are equivalent to pi-1.!!! Why

that ???

If J ⊆ A is a closed ideal with property pi-n and suppose that A/J has pi-n.

It is then known that A has property pi-m for some m ≤ 2n. can it be improved

to m = n?

Proof. to be filled in ??

If A is stable, then its multiplier algebra M(A) contains isometries S, T with

S∗T = 0. Suppose from now on that A has the property that M(A) contains

isometries S, T ∈ M(A) with S∗T = 0. The isometries Tk := T kS have mutually

orthogonal ranges: S∗(T ∗)`T kS = δk,`1 .

Let a, b ∈Mn(A). Clearly a - b in Mn(A) if and only if a - b in Mn(M(A)).

????????? �

It is sometimes useful and easier, to consider local properties of the ultrapower

Aω of A, instead of local properties of the algebra A itself.

Let a ∈ A+, t ∈ (0,∞) and V : A→ A an inner completely positive contraction

( 46 ). We define µ(a, V, t) as the smallest m ∈ N of contractions d1, . . . , dm ∈ A such

that
∑m
j=1 d

∗
jadj = (V (a)− t)+. Here we do not require that ‖

∑m
j=1 d

∗
jdj‖ ≤ 1.

Add remark/def concerning control of CPin(A) from notes (which

one ????). ??

Lemma 2.12.7. A C*-algebra A satisfies condition (i) of the Definition 2.0.4

of property pi(n) for some n ∈ N, if and only if, µ(t) := supa,V µ(a, V, t) <∞ for

46 A c.p. map V is inner, if there exist d1, . . . , dm ∈M(A) with V (a) :=
∑
d∗jadj .
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each t ∈ (0, 1), where (a, V ) runs over all inner c.p. contractions V ∈ CP(A,A)

and over all positive contractions a ∈ A+.

Proof. Suppose that n := µ(1/4) < ∞. Let 0 6= b ∈ A+ a contraction and

ε ∈ (0, 1/2) such that b ∈ span(AaA) =: Ja. We show that there are contractions

d1, . . . , dn ∈ A and δ > 0 such that

(2/δ)

n∑
j=1

d∗jadj ≥ (b− ε)+ .

It implies then condition (i) of Definition 2.0.4 by Lemma 2.1.9.

Let c := bα for 0 < α := − log(2)/ log(ε) < 1 , i.e., for α ∈ (0, 1) with εα = 1/2.

Then (c − 1/2)+ = (bα − 1/2)+ ≥ (1/2)(b − ε)+ and c ∈ Ja . Thus, there exists

e1, . . . , em ∈ A and δ > 0 with
m∑
k=1

e∗k(a− δ)+ek = (c− 1/4)+ .

It holds a ≥ δfδ(a) for the fδ(t) := min(2/δ(t − δ/2)+, 1) for t ∈ [0,∞). Define

V : A→ A for x ∈ A by

V (x) :=

m∑
k=1

e∗k(a− δ)1/2
+ x(a− δ)1/2

+ ek .

Then ‖V ‖ ≤ 3/4 and V (fδ(a)) = (c−1/4)+ . Thus (V (fδ(a))−1/4)+ = (c−1/2)+ .

It follows, that there are contractions d1, . . . , dn ∈ A with n ≤ µ(1/4) and

n∑
j=1

d∗jfδ(a)dj = (c− 1/2)+ ≥ (1/2)(b− ε)+ .

�

Proposition 2.12.8. Let A denote a non-zero C*-algebra and Aω its ultra-

power with respect to some free ultrafilter ω ∈ γ(N) := β(N)\N. Then the following

properties of A are equivalent:

(i) A is weakly purely infinite (i.e., A has property pi(n) for some n ∈ N ).

(ii) Aω is locally p.i.

(iii) Every lower semi-continuous 2-quasi-trace of (Aω)+ is trivial, i.e., takes

only the values 0 and ∞.

(iv) There exists m ∈ N, such that a ⊗ 1m is a properly infinite element of

Mm(A) for every non-zero a ∈ A+, i.e., A is pi-m.

(v) The ultrapower Aω has no finite-dimensional irreducible representation,

and, for every sequence of approximately inner completely positive con-

tractions Vn : A → A, the ultrapower Vω :=
∏
ω(Vn) of (V1, V2, . . .) is an

ideal-system preserving c.p. map on Aω , i.e., Vω satisfies Vω(J) ⊆ J for

every closed ideal J of Aω .

(vi) Aω is pi-m for some m ∈ N.

Question: What happens if no closed hereditary C *-subalgebra of Aω has a

character?
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The part (v) says equivalently that ?????

(v): The ultrapower Aω has no finite-dimensional irreducible representation,

and, for every sequence of approximately inner completely positive contractions

Vn : A → A, the ultrapower Vω :=
∏
ω(Vn) of (V1, V2, . . .) is an ideal-system equi-

variant c.p. map on Aω , i.e., Vω satisfies Vω(J) ⊆ J for every closed ideal J of

Aω .

(vi): Aω is pi-m for some m ∈ N.

The new result says: If A is stable then pi(n) = pi-n and pi(n)

requires only

that span(AaA) can be approximated in n steps and that

A has no irreducible representations of dimension ≤ n.

Proof. (iv)⇒(i): By Lemma ??, A is pi(n) for some n ≤ m.

(i)⇒(ii): By Lemma ??, `∞(A) and its quotient Aω are pi(n). By Lemma ??,

pi(n) implies local p.i.

(ii)⇒(iii): local p.i. implies traceless

(iii)⇒(iv): By Remark 2.8.3, Aω is traceless, if and only if,

(*) for every a ∈ (Aω)+ and ε > 0 there is n(a, ε) ∈ N such that (a − ε)+ ⊗
12n - a⊗ 1n for all n ≥ n(a, ε).

For b, c ∈ Mk(A)+ holds b - c in Mk(A), if and only if, b - c in Mk(Aω) =

(Mk(A))ω. Thus, for every a ∈ A+ and ε > 0 there is n ∈ N with (a− ε)+ ⊗ 12n -

a⊗ 1n in M2n(A). We denote from now on by n(a, ε) the minimal n ∈ N with this

property.

Suppose that there exists ε > 0 and a sequence of contractions a1, a2, . . . ∈
A+ such that n(ak, ε/2) → ∞ if k → ∞. Then the positive contraction a :=

πω(a1, a2, . . .) ∈ Aω satisfies

check: ????????????

(a− ε/4)+ ⊗ 12n 6- a⊗ 1n for all n ∈ N. The latter contradicts property (*) of

Aω.

Thus, there is “universal”m ∈ N with the property that (a−1/2)+⊗12n - a⊗1n

in M2n(A) for each contractions a ∈ A+ for some n = n(a, 1/2) ≤ m.

????????????????

(iv)⇒(v): Property (ii) passes to `∞(A), to its quotient Aω, and to any non-

zero quotients of Aω. In particular, Aω cannot have any finite dimensional irre-

ducible representation.

If A satisfies (ii) and if a = (a1, a2, . . .) ∈ `∞(A)+ is a representative of b ∈
(Aω)+, then (Vω(b)− 2ε)+ = πω(c1, c2, . . .) with cn = (Vn(an)− 2ε)+ .

Since an ⊗ 1m is properly infinite for some fixed m ∈ N, and since Vn(an) is in

the ideal generated by an, we find, as in the last step of the proof of Proposition
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2.15.11, dn,1, . . . , dn,m ∈ A with ‖(dn,1)∗dn,1 + · · · + (dn,m)∗dn,m‖ ≤ 2‖an‖
ε , such

that cn = (dn,1)∗andn,1 + · · · + (dn,m)∗andn,m. Thus (Vω(b)− 2ε)+ is in the ideal

generated by b.

(v)⇒(iv): An indirect argument shows that (v) implies the existence of (uni-

versal) m ∈ N, such that, for contractions a, b ∈ A+ with b in the ideal generated by

a, there are d1, . . . , dm ∈ A with
∑
d∗jadj = (b− 1/2)+. Then 1/2 can be replaced

by any ε > 0 if we replace b by bα with α := −2 log 2/ log ε.

Moreover, this implies that for every ε > 0 and b ∈ A+ in the closed ideal

generated by a ∈ A+ there is δ > 0 such that there are

??????????

If such m ∈ N exists, then

??????????

passes to Aω with the same number m.

It implies that a lower semi-continuous 2-quasi-trace τ on Aω annihilates the

closed ideal J(B) of Aω, which is generated by the image B := h(C0((0, 1],M2m))

of a C *-morphism h from C0((0, 1],M2m) into Aω, so far as τ |B+ is semi-finite.

Since Aω has no irreducible representation of finite dimension, the Pedersen ideal

of every closed ideal of Aω is contained in the union of the direct sums of ideals

J(B). Now we use again, that τ is lower semi-continuous, and get that τ can only

take the values 0 and ∞. �

It is obvious, that (iii), equivalently, means, that all singly generated ideals of

Aω are closed unions of ultrapowers of sequences of singly generated closed ideals

of A and that those ultrapowers are singly generated, and that Aω has no finite-

dimensional quotient.

Corollary 2.12.9. Let n ∈ N. Suppose that A satisfies condition (i) in the

Definition 2.0.4 of the property pi(n), i.e., for each a ∈ A+, b ∈ J(a) := span(AaA)

and ε > 0 there exist d1, . . . , dn ∈ A with ‖b−
∑
k d
∗
kadk‖ < ε.

This property passes to quotients A/J of A and to `∞(A).

The following properties (i)–(v) of A are equivalent under condition (i) of Def-

inition 2.0.4:

(i) A is pi(n) .

(ii) There exists some free ultrafilter ω such that Aω has no irreducible repre-

sentation of dimension ≤ n.

(iii) `∞(A) is pi(n) .

(iv) Aω is pi(n) for any free ultrafilter ω.

(v) `∞(A) has no irreducible representation of dimension ≤ n.

A sufficient condition for Part (v) is that M(A) has no irreducible representa-

tion of dimension ≤ n.

And this condition is equivalent to Part (v) if A is σ-unital.
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Proof. (i) ⇔ (v): By Definition 2.0.4 A is pi(n) if and only if it satisfies

Condition (i) of Definition 2.0.4 and its Condition (ii), which says that `∞(A) has

no irreducible representation of dimension ≤ n.

(v)⇒(iv): Each Aω is a quotient of `∞(A).

(v)⇒(i): By Lemma 2.12.4(i), the quotient Aω of `∞(A) has also property (i)

of Definition 2.0.4.

If ω ∈ β(N) \N is given with the property that Aω has no non-zero irreducible

representation of dimension ≤ n, then Aω is pi(n) by Part (iii) of

?????????????, to be filled in ??

because, for each positive a ∈ Aω, there is a positive contraction e ∈ Aω with

ea = a, in particular, Ped(Aω) = Aω.

By Proposition 2.12.8, there exists m ∈ N such that A is pi-m (for some m ≥ n).

Then `∞(A) is pi-m by Lemma 2.12.6.

In particular, `∞(A) can not have a finite-dimensional quotient.

�

Remark 2.12.10. If σ-unital A satisfies condition (i) of Definition 2.0.4, then

condition 2.0.4(ii) of `∞(A)/c0(A) is equivalent to:

M(A) has no irreducible representation of dimension ≤ n.

This happens, because – otherwise – a suitable hereditary C *-subalgebra D of

`∞(A)/c0(A) has a C *-morphism into Q(A) := M(A)/A with image that is not in

the kernel of that irreducible representation.

One can see:

If Aω has no irreducible representation of dimension ≤ n, then, for each δ > 0

there is m = m(δ) ∈ N such that, for every contraction a ∈ A+, there are n + 1-

homogenous contractions e1, . . . , em ∈ A+ and contractions d1, . . . , dm ∈ A with∑
k d
∗
kekfk = (a− δ)+.

Question: Is each element b ∈ Q(A)+ a sum of 4 commuting positive elements

that are in the closed ideal generated by the n+ 1-homogenous elements?

The closed ideal Jn+1 of Q(A) generated by the n + 1-homogenous elements

of Q(A) is the intersection of all kernels of the C*-morphisms from Q(A) into Mk

with k < n+ 2. The minimal requirement is therefore that Q(A) has no irreducible

representation into Mk for k ≤ n+ 1. ...

The possible differences between properties pi(n) and pi-n can be seen by the

following Proposition 2.12.11 (see also Question ??). Here Ped(A) denotes the

minimal dense algebraic ideal of A, the “Pedersen-ideal”.

Proposition 2.12.11. Let A an inductive limit of algebras A1, A2, . . ..

(i) If each Ak is pi(n), then, for every non-zero a ∈ Ped(A), the algebra a∗Aa

is pi(n).
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(ii) If each Ak has property pi(n) and if M(A) has no non-zero finite-

dimensional quotient C*-algebra, then A is pi(n).

(iii) If each Ak has property pi-n, then A has property pi-n.

(iv) If each Ak is locally p.i., then A is locally p.i.

The next proposition lists some elementary implications of the properties Xpi

of C *-algebras.

Proposition 2.12.12. If A has Property pi-n, then A is pi(n) (thus is weakly

purely infinite).

If A is pi(n) (respectively has Property pi-n), then `∞(A), Aω, every hereditary

C*-subalgebra D of A and every quotient of A are pi(n) (respectively have Property

pi-n).

This is somewhere below also shown?!

The C*-algebra A is purely infinite (in sense of Definition 1.2.1, i.e., A is

pi(1)), if and only if, A has property pi-1, i.e., each non-zero a ∈ A+ is properly

infinite.

If A is weakly purely infinite, then A is locally purely infinite.

Locally purely infinite algebras are traceless.

Proof. To be filled in ?? �

Proposition 2.12.13. We have the implications: A ∼= A⊗O∞ implies A s.p.i.

implies C ′ ∩Aω p.i. for all separable commutative subalgebras C ⊆ Aω

implies A pi(1) = A pi-1 = A p.i. = Aω p.i. implies A pi-n (“ has property

p.i.-n ”) = Aω is p.i.-n implies A⊗K p.i.-n2 and A is pi(n) (including absence of

quotients of Aω of dimension ≤ n2). = Aω pi(n) implies Aω has property p.i.-m

for some m ≥ n implies Aω “traceless” = Aω w.p.i. (:= pi(n) for some n ∈ N)

= Aω locally p.i.

= Aω satisfies: No non-trivial hereditary C*-subalgebra of Aω has a non-zero

character, and for each sequence of inner c.p. contractions Vn : A → A holds

Vω(I) ⊆ I for each closed ideal I of Aω.

= Aω satisfies:

No non-trivial hereditary C*-subalgebra of Aω has a non-zero character, and,

for each separable C*-subalgebra B of Aω and each commutative C*-subalgebra

C ⊆ B, there is a separable commutative C*-algebra D with C ⊆ D ⊆ Aω and

an (in Aω) approximately inner c.p. contraction T : B → D with T |C = idC .

=

C ′ ∩Aω is w.p.i. for every finitely generated Abelian C*-subalgebra C of Aω

=

{a}′ ∩Aω is “traceless” for every positive a ∈ Aω.
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implies

A l.p.i.

implies

A is “traces-less”

implies

A⊗B is locally p.i. for every non-elementary simple exact C*-algebra B.

Proposition 2.12.14. Every Xpi-algebra A is the inductive limit of its sep-

arable relative weakly injective C*-subalgebras B ⊆ A with property Xpi, and the

property that for each closed ideal I of B there exists a closed ideal J of A with

I = B ∩ J . Moreover, for every non-zero b ∈ A+ and separable C*-subalgebra

C ⊆ bAb of A with b ∈ C there exists a separable C*-subalgebra B ⊆ bAb with the

properties C ⊆ B, b ∈ B and c -B d for c, d ∈ B, if and only if, c -A d.

Here ”Xpi” stands for l.p.i., pi(n), pi-n, p.i., semi-s.p.i.( concerning commu-

tants of special??) or s.p.i.

and the W-vN-property?

Proof. We have to verify that all the definitions of pure infiniteness are “local”

in nature. It requires to generalize the properties as relative properties given by

certain countable families of semi-metrics on pairs of elements in C *-subalgebras.

The metrics are: to be filled in. See Appendix A or B? give Ref’s

??

Use uniform local-global m-almost-halving for n-p.i. permanences.

Use description of l.p.i. by morphisms h : C0((0, 1],K)→ A. �

Give here references of the xpi-definitions !!!

Proposition 2.12.15. Permanences:

If A is weakly purely infinite and σ-unital then M(A) is weakly purely infinite.

(More precisely, M(A) is pi(2n) or pi(3n)???? if A is pi(n) and is σ-unital.)

Passage to hereditary subalgebras.

Stabilization (by K).

Quotients.

Extensions.

But do here not forget that

extensions of stable C*-algebras are

in general not (!) stable again.

`∞(A), Aω, C ′ ∩ Aω for C ⊆ Aω commutative with character space of finite

dimension.

continuous fields
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C(X)-algebras

C0(X,A) w.p.i. for A w.p.i. and Dim(X) <∞

tensor products (min?)

Proof. to be filled in ?? �

13. Singly generated ideals of coronas

Collect here all about ideals of M(B) and Q(B).

Also from Chps. 5, 6, 12!!! ?? The notation K for closed ideals of

M(B) is irritating ...

Important! Check ideal characterization carefully again!!!

Lemma 2.13.1. Let B a σ-unital stable C*-algebra, and b ∈ M(B)+. Then

there exists a sequence (a1, a2, . . .) ∈ `∞(B)+ such that

(1/2)‖ b+B +K ‖ ≤ ‖ (
∑
n

snans
∗
n) +B +K ‖ ≤ ‖ b+B +K ‖ ,

for every norm-closed ideal K of M(B) ( 47 ). In particular,

I(b) +B = I(
∑
n

snans
∗
n) +B

for the norm-closed ideals I(b) and I(
∑
n snans

∗
n) of M(B) generated by b respec-

tively by
∑
n snans

∗
n.

Proof. Recall that ‖b + B + K‖ = ‖πB+K(b)‖ in M(B)/(B + K) ∼=
Q(B)/πB(K) .

If we use a suitable, approximately with b commuting, commutative approx-

imate unit e1, e2, . . . ∈ B+ with enen+1 = en, then we can manage that for

g0 := 0, gn := (en − en−1)1/2 and b0 :=
∑
n g2nbg2n, b1 =

∑
n g2n−1bg2n−1,

holds
∑
g2
n = 1, b0 − (

∑
n g

2
2n)b ∈ B, b1 − (

∑
n g

2
2n−1)b ∈ B, b0 + b1 − b ∈ B

and ‖bj + K + B‖ ≤ ‖b + K + B‖ for every closed ideal K of M(B). Now let

X :=
∑
g2nb

1/2s2n, Y :=
∑
g2n−1b

1/2s2n−1. Then XX∗ = b0, Y Y ∗ = b1 and

Y X∗ = 0. Let A := X∗X + Y ∗Y . It follows,

‖A+K‖ = max(‖X∗X +K‖, ‖Y ∗Y +K‖) = max(‖b0 +K‖, ‖b1 +K‖)

and ‖b0 + b1 + K‖ ≤ ‖b0 + K‖ + ‖b1 + K‖ ≤ 2‖A + K‖ for every closed ideal

K of M(B). In particular, (1/2)‖b + K + B‖ = ‖A + K + B‖ ≤ ‖b + K + B‖,
because b+B = b0 + b1 +B. Thus, the sequence an := b1/2g2

nb
1/2 has the desired

properties. �

The following Proposition 2.13.2 has applications to ideal-equivariant extension

and lifting problems. The stable corona Q(B) of (general) σ-unital and stable B has

usually many ideals that are very different from the special ideals πB(M(B, J)), –

47 Here, the s1, s2, . . . ∈ M(B) are isometries with the property that
∑
n sn(sn)∗ converges

strictly to 1, cf. Remark 5.1.1(8).



314 2. BASICS ON PURELY INFINITE C*-ALGEBRAS

even if B is stable and separable. Notice that the corona algebra Q(B) of the stable

(not w.p.i.) C *-algebra B := C0((0, 1] × [0, 1]∞,K) does not have the property

derived in Proposition 2.13.2 for s.p.i. algebras.

Proposition 2.13.2. Suppose that B is a σ-unital and weakly purely infinite

C*-algebra. Let a, b ∈ Q(B) := M(B)/B. Then

‖a+ πB(M(B, J))‖ ≤ ‖b+ πB(M(B, J))‖ , for every J ∈ I(B) ,

implies that the element a is in the closed ideal I(b) of Q(B) generated by b.

General ideals should be J,K, ..., because I(b) is reserved for the by b absorbed

ideal...

Proof. We may suppose that B is stable, because B ⊗ K is again weakly

purely infinite and σ-unital, and there is an isomorphism ϕ from Q(B) onto the

corner πQ⊗K(M(B)⊗ p11) of Q(B ⊗K), that satisfies

ϕ(πB(M(B, J))) = ϕ(Q(B)) ∩ πQ⊗K(M(B ⊗K, J ⊗K)) .

Now suppose that B is stable, σ-unital and is weakly p.i.

Why B ⊗ K is again weakly purely infinite? Answer: pi-n of B implies pi-n2

of B ⊗K, see paper with Rørdam .

With pi(n) could be difficulties !!!.

Needs: If X ∈M2(B)+ is given. Then all entries of diag(X, . . . ,X) ∈M2n(B) can

be considered as properly infinite elements in M2(Mn(B)), i.e., it needs some sort

of “almost” strong pure infiniteness!

Give Ref for next!: By Definition ?? and Proposition ?? there exists n ∈ N
such that B is pi-n in the sense of Definition ??, i.e., b⊗ 1n is properly infinite (in

Mn(B)) for each b ∈ B, cf. Proposition 2.12.8(iv).

Since B is stable, M(B) contains a copy of On, i.e., there are isometries

T1, . . . , Tn ∈ M(B) such that T1T
∗
1 + · · · + TnT

∗
n = 1. Let δn(b) := T1bT

∗
1 +

· · · + TnbT
∗
n for b ∈ M(B). Then δn(J) = J ∩ δn(M(B)) and ‖δn(b) + J‖ =

‖b + J‖ for every closed ideal J of M(B) and every b ∈ M(B). Moreover,

δn(b) ⊗ p11 = Z(b ⊗ 1n)Z∗ ∼MvN b ⊗ 1n in Mn(M(B)), by the isometry Z =

T1 ⊗ p11 + · · ·+ Tn ⊗ p1n ∈M(B)⊗Mn. Thus, δn(b) is properly infinite for every

0 6= b ∈ B.

Let s1, s2, . . . ∈M(B) a sequence of isometries such that
∑
n sn(sn)∗ converges

strictly and unconditionally to 1 ∈M(B), cf. Remark 5.1.1(8). This applies also to

the sequences of isometries tn := Tj(n)sk(n) and tn := sk(n)Tj(n). Therefore U :=∑
j,k TjskT

∗
j s
∗
k converges strictly and unconditionally, cf. Remark 5.1.1(2). The sum

U is a unitary in M(B) by Lemma 5.1.2(i) and satisfies U
∑
k sk(δn(bk))s∗kU

∗ =

δn(
∑
k skbks

∗
k) for every sequence (b1, b2, . . .) ∈ M(B). In summary, we get ‖J +∑

k skbks
∗
k‖ = ‖J +

∑
k skδn(bk)s∗k‖ for every (norm-)closed ideal J of B and every

sequence (b1, b2, . . .) ∈ `∞(B).
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By Lemma 2.13.1, for each Y ∈ M(B)+ there is a sequence (y1, y2, . . .) ∈
`∞(B)+ such that and

(1/2) dist(Y,B + J) ≤ dist(
∑
n

snyns
∗
n, B + J) ≤ dist(Y,B + J)

for each closed ideal J of M(B).

It implies, that I(
∑
n snyns

∗
n) + B = I(Y ) + B. The new sequence,

(δn(y1), δn(y2), . . .) ∈ `∞(B) has the same properties as (y1, y2, . . .), but sat-

isfies in addition that f(δn(yn)) = δn(f(yn)) is properly infinite or zero for every

continuous function f : R+ → R+ with f(0) = 0.

We have seen above:

There are sequences (c1, c2, . . .), (d1, d2, . . .) ∈ `∞(B)+ such that f(cn) and f(dn)

are properly infinite or zero for each n ∈ N and every f ∈ C0(0, 1], and such that,

for c := πB(
∑
n sncns

∗
n) and d := πB(

∑
n sndns

∗
n), holds I(c) = I(a), I(d) = I(b),

‖c+K‖ ≤ ‖a+K‖ and ‖b+K‖ ≤ 2‖d+K‖ for all closed ideals K of Q(B).

Let e := 2d, en := 2dn and E :=
∑
n snens

∗
n. Notice that e = π(E) and

πB(
∑
n snans

∗
n) generate the same ideal of Q(B) if there is a surjective map λ : N→

N such that an = eλ(n) and λ−1(k) is finite for all k ∈ N. Indeed: If σ is a

permutation N, then
∑
n snaσ−1(n)s

∗
n =

∑
n sσ(n)an(sσ(n))

∗ is unitarily equivalent

to
∑
n snans

∗
n in M(B) by the unitary

∑
n sσ(n)s

∗
n, cf. Lemma 5.1.2(i). After

a suitable permutation (of indices) of the sequence (a1, a2, . . .) we may suppose

that there is a strictly increasing sequence 1 = m1 < m2 < · · · ∈ N such that

ek = amk = amk+1 = · · · = amk+1−1 for k = 1, 2, . . ., i.e., that the sets λ−1(k) are

now disjoint intervals with j < i for all j ∈ λ−1(k) and i ∈ λ−1(`) if k < `. Let

Ak :=
∑mk+1−1
j=mk

sjeks
∗
j , R :=

∑
k smkek(smk)∗ and Pk :=

∑mk+1−1
j=mk

sjs
∗
j . Then∑

k Pk = 1, Ak ∈ B, A :=
∑
n snans

∗
n =

∑
k Ak ≥ R, and there is an isometry

T ∈ M(B) with TT ∗ =
∑
k smks

∗
mk

and T ∗AT = T ∗RT = E :=
∑
n snens

∗
n. Let

δ > 0. Since (ek − δ)+ is zero or properly infinite, there is gk ∈ BPk such that

‖gk‖2 ≤ 2/δ and g∗kekgk = (Ak − δ)+. The sequence
∑
k skgk is strictly convergent

to an element G ∈M(B) with G∗EG = (A− δ)+, cf. Remark 5.1.1(2).

Further notice, that ‖f(e) + πB(M(B, J))‖ = f(‖e + πB(M(B, J))‖)
for increasing continuous functions f : R+ → R+ with f(0) = 0, because

‖f(e) + πB(M(B, J))‖ is the norm of the natural image of e ∈ Q(B) in Q(B/J).

Now we show that, if ‖c+πB(M(B, J))‖ ≤ ‖e+πB(M(B, J))‖ for all J ∈ I(B),

then C :=
∑
n sncns

∗
n is contained in I(E) +B :

We have, for δ > 0,

‖(c−δ)++πB(M(B, J))‖ = (‖c+πB(M(B, J))‖−δ)+ ≤ ‖(e−δ)++πB(M(B, J))‖ .

It follows, that (C − δ)+ =
∑
n sn(cn − δ)+s

∗
n ∈ B +M(B, Jk) for each k ∈ N,

where Jk denotes the closed ideal of B generated by {(en− δ)+ ; n = k, k+ 1, . . . }.

Let
∑
n sn(cn−δ)+s

∗
n = x+y with x ∈ B and y ∈M(B, Jk), then lim s∗nxsn = 0

implies that there exists m ∈ N (depending on k) such that ‖(cn − δ)+ − s∗nysn‖ <
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δ/2 for all n ≥ m(k). Thus, there exist contractions zn ∈ B with z∗ns
∗
nysnzn =

(cn − 2δ)+. It follows that (cn − 2δ)+ ∈ Jk for all n ≥ m.

We define m(k) ∈ N inductively: Let m(0) = 1, and let m(k) denote the

smallest m ≥ max(k + 2,m(k − 1) + 2) with the property (cn − 2δ)+ ∈ Jk for all

n ≥ m.

For each n ≥ m(k), there are `(n, k) ≥ k and hn,k ∈ B such that

(cn − 3δ)+ = h∗n,k
(`(n,k)∑
j=k

snsj(ej − δ)+s
∗
js
∗
n

)
hn,k .

This `(n, k) and hn,k exists, because the sums
∑`
j=k sj(ej − δ)+s

∗
j are properly

infinite, generate Jk, and (cn − 3δ)+ is in the Pedersen ideal Ped(Jk) of Jk. Now

let Yn := sn(
∑`(n,k)
j=k sjejs

∗
j )s
∗
n for n ≥ m1, ψ(t) := (max(t− δ, 0)/t)1/2, and Hn :=

ψ(Yn)hn,ks
∗
n. The operators Hn satisfy H∗nYnHn = sn(cn − 3δ)+s

∗
n and ‖Hn‖2 ≤

2/δ. The sums
∑
n Yn =

∑
n sn(s∗nYnsn)s∗n and

∑
Hn =

∑
sn(s∗nψ(Yn)hn,k)s∗n

converge strictly to elements Y ∈ M(B)+, H ∈ M(B) and satisfy H∗Y H =∑
n≥m1

sn(cn− 3δ)+s
∗
n, cf. Remark 5.1.1(2). Thus, (C− 3δ)+−H∗Y H ∈ B+. The

construction of Y and H depends on δ > 0.

We are going to show that Y - A inM(B) for some suitable A =
∑
m smams

∗
m

(of the above considered type). It implies Y ∈ I(A) = I(E) and, finally, C ∈
I(E) +B.

Consider the subsets

Xk := {(n, j) ; mk ≤ n < mk+1, k ≤ j ≤ `(n, k) } ⊆ N× N .

The sets Xk are pairwise disjoint and X :=
⋃
kXk ⊆ N× N has the property, that

the map p2 : X 3 (n, j) 7→ j ∈ N is surjective with finite (p2)−1(n) for each n ∈ N.

The map p1 : X 3 (n, j) 7→ n ∈ N maps X onto N \ {1, . . . ,m1 − 1}, and λ−1
1 (n)

is finite for each n ≥ m1. We find a bijective map ξ : N → X from N onto X.

Now let λ := p1 ◦ ξ and consider the sequence (a1, a2, . . .) with am = eλ(m), and let

A :=
∑
m smams

∗
m Furthermore, consider the map (n, j) 7→ T(n,j) := snsj . Then

Y =
∑
n≥m1

Yn =
∑
n≥m1

∑
j∈p−1

1 (n)

T(n,j)cjT(n,j) =
∑
m≥1

Tξ(m)amT
∗
ξ(m) .

Thus Y = Z∗AZ for the isometry Z :=
∑
snT

∗
ξ(m). The latter sum converges

strictly by Remark 5.1.1(2), because T ∗ξ(m)Tξ(n) = δm,n1 and
∑
m Tξ(m)T

∗
ξ(m) =∑∞

n,j=1 snsjχn,j(snsj)
∗ for (χn,j) ∈ `∞(N × N) ⊆ `∞(M(N)) the characteristic

function χ := χ(X) of X. �

Lemma 2.13.3. Suppose that S is a family of closed ideals of a C*-algebra A,

and that a, b ∈ A+ are positive contractions. The following properties (i) and (ii)

are equivalent.

(i) For every ε > 0 there exists δ = δ(ε,S) > 0 such that (a − ε)+ ∈ J for

every J ∈ S with (b− δ)+ ∈ J .
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(ii) There exists a continuous strictly increasing function f : [0, 1]→ [0, 2] with

f(0) = 0 such that ‖f(b) + J‖ ≥ ‖a+ J‖ for all J ∈ S.

The property (i) is satisfied for all closed ideals J of A if the element a ∈ A+ is

contained in the closed ideal I(b) of A that is generated by b.

Proof. If a ∈ span(AbA), then, for every ε > 0, there are d1, . . . , dn ∈ A and

δ := δ(ε) > 0, depending on a, b, ε, such that
∑
j d
∗
j (b − δ)+dj = (a − ε)+ . It

implies that (a− ε)+ ∈ J if (b− δ)+ ∈ J .

Now we can proof the equivalence of (i) and (ii):

(ii)⇒(i): Let ε > 0 and

δ := δ(ε,S) := f−1(min(ε, f(1))) ,

then (f(b)−ε)+ ≈ (b−δ)+. In particular, (b−δ)+ ∈ J , if and only if, (f(b)−ε)+ ∈ J ,

if and only if, ε ≥ ‖πJ(f(b)‖ = ‖f(b) + J‖ .

Since ‖f(b) + J‖ ≥ ‖a+ J‖, we get ε ≥ ‖πJ(a)‖, i.e., (a− ε)+ ∈ J .

(i)⇒(ii): Let ε ∈ (0, 1], consider the non-empty set X(ε) ⊆ (0, 1] of δ ∈ (0, 1]

with the property that J ∈ S and (b − δ)+ ∈ J together imply (a − ε)+ ∈ J .

Clearly, X(ε) is an interval (0, ξ(ε)) or (0, ξ(ε)], and X(ε) ⊆ X(ε1) if ε ≤ ε1.

Define g(ε) := supX(ε) = ξ(ε). Then g : (0, 1]→ (0, 1] is a positive and increasing

function with g(1) = 1 and with following property:

If g(ε) > ‖b+ J‖ and J ∈ S, then ε ≥ ‖a+ J‖. (Because t ≥ ‖b+ J‖ is equivalent

to (b− t)+ ∈ J .)

Since g is increasing and positive, there exists a strictly increasing continuous

function h : [0, 1] → [0, 1] with h(0) = 0 and h(ε) < g(ε) for all ε ∈ (0, 1]. If

h(1) < 1, then we extend h to [0, 2 − h(1)] by letting h(t) := h(1) + (t − 1) for

t ∈ (1, 2 − h(1)], and get h([0, 2 − h(1)]) = [0, 1]. Now define f : [0, 1] → [0, 2] by

f := h−1.

Then, ε ≥ ‖f(b) + J‖ = f(‖b + J‖), if and only if, h(ε) ≥ ‖b + J‖, which

implies g(ε) > ‖b + J‖. It follows that ε ≥ ‖f(b) + J‖ and J ∈ S together imply

ε ≥ ‖a+ J‖. In particular, there is no ideal J ∈ S with ‖a+ J‖ > ‖f(b) + J‖. �

Corollary 2.13.4. Suppose that B is a σ-unital, stable and weakly purely

infinite C*-algebra, and that b ∈ Q(B)+.

Let δ > 0, and let J (b, δ) denote the family of ideals πB(M(B, J)) with (b −
δ)+ ∈ πB(M(B, J)). Define I(b, δ) as the intersection of all ideals in J (b, δ).

Then the closed ideal of Q(B) generated by b is the same as the closure of the

union
⋃
δ>0 I(b, δ).

Especially all countably generated ideals of Q(B) are of this type.

If, in addition, B is simple, then Q(B) is simple and purely infinite.

Notice that the particular final conclusion says:

Q(B) is simple and p.i. if B is simple stable and p.i.
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The more difficult opposite direction, namely that simplicity of Q(B) for stable

σ-unital B implies that B is simple and p.i., is shown in

reference or cite ??????

Proof. We combine Proposition 2.13.2 and Lemma 2.13.3, where the system

of all ideals πB(M(B, J)) plays the role of S.

All countably generated ideals are singly generated.

If, in addition, B is simple (and is weakly p.i. by assumptions !), then Q(B) is

simple, because every singly generated ideal coincides with Q(B), cf. ?????

By Lemma 2.12.4(vi), Q(B) is again weakly purely infinite. The simplicity and

the weak pure infiniteness of Q(B) implies the strong pure infiniteness of Q(B) by

Proposition 2.2.1. �

14. Point-wise approximately inner maps

The technicalities of our proves have to do with the different infiniteness proper-

ties of the prime quotients of the considered C *-algebras, or the properties of their

multiplier algebras and corona algebras. Only in very comfortable situations exists

a sort of local triviality with the respect to prime quotients that have reasonable

infiniteness, factorial or prime properties. We try to describe such problems.

Definition 2.14.1. Let X a locally compact space. We call a c.p. map

V : Cb(X,B) → Cb(X,B) point-wise approximately inner, if there is point-

norm continuous map x ∈ X 7→ Vx from X into the approximately inner c.p. maps

on C *-algebras B such that V (f)(x) = Vx(f(x)) for all x ∈ X and f ∈ Cb(X,B).

Notice here that the positive map V is defined on all f ∈ Cb(X,B), if and only

if, there is a general bound given by supx∈X ‖Vx‖ < ∞ on the “fibres” Vx. (We

start here with some very elementary stuff!)

Definition 2.14.2. A c.p. map V : A→ A is called ideal system preserv-

ing (or I(A)-equivariant) if V (J) ⊆ J for all closed ideals J of A.

One of the critical points is: Let a, b ∈ A+ contractions with ab = a and

suppose that a is infinite (in some suitable sense). Is b infinite? Is it the case if

(a− δ)+ is infinite for each δ ∈ [0, ‖a‖)?

( Notice that ab = a for a, b ∈ A+ implies that a = (c− 1)+ for c := (b− (b−
1)+) + a. And then a(c− a) = a. But b can not been reconstructed from c and a,

because (b− 1)+ is then lost be this construction of c.)

What means ”infinite” here? One definition is: There exists non-zero 0 ≤ eδ ∈
(a− δ)+A+(a− δ)+ with

eδ ⊕ (a− δ/2)+ - (a− δ/2)+ .

It depends here from the answer to the question if (a−δ/2)+⊕(b−(a−δ/2)+) -

b . This don’t happen if A is commutative!
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But something like (a − δ/2)+ ⊕ (b − (a − δ)+) - b in M2(C0(a, b)) ??? and

(a− δ/2)+ + (b− (a− δ)+) ≥?????

Theorem 2.14.3. Let X is a σ-compact l.c. space, and suppose that the C*-

algebra C0(X,B) is weakly p.i.

Then each point-wise approximately inner c.p. map

V : Cb(X,B)→ Cb(X,B)

in sense of Definition 2.14.1 is ideal system preserving (in sense of Definition

2.14.2) completely positive map.

Proof. It is not difficult to see that positivity preserving linear maps T : C →
D from C *-algebras C into C *-algebras D that are defined on all elements of

C *-algebras C are always norm-continuous.

Thus, our map V is bounded and supx∈X ‖Vx‖ ≤ ‖V ‖ <∞. The assumption of

point-norm continuity of x 7→ Vx and the obvious estimate ‖Vx‖ ≤ ‖V ‖ implies that

the map x 7→ Vx(b(x)) ∈ B is continuous on X for each continuous map b : X → B.

Since X is σ-compact, there is a function γ ∈ C0(X) with 0 < γ(x) ≤ 1 for all

x ∈ X and maxx∈X γ(x) = 1.

We define compact sets Yn ⊆ X with the properties Yn ⊆ Y ◦n+1 and X =
⋃
n Yn

and functions αn ∈ C0(X) by

αn := 2n+1(γ − 2−(n+1))+ − 2n(γ − 2−n)+

and Yn := α−1
n (1). Notice αn+1αn = αn and that the support of αn is contained

in Yn.

Then β0 := 0 and βn := αn − αn−1 for n ∈ N satisfy βn+kβn = 0 for k > 1

and
∑
n βn = 1 on X. The support of βn is contained Yn+1.

By assumption, there is k ∈ N such that C0(X,B) is pi(k). This passes to the

quotients C(Y,B) of C0(X,B) for compact subsets Y ⊆ X. Let a ∈ Cb(X,B)+,

ε > 0 and y ∈ Y ⊆ X. There exists n(y) ∈ N, b1, . . . , bn ∈ B such that

‖Vy(a(y))−
∑

b∗ja(y)bj‖ < ε ,

because Vy : B → B is approximately inner. The continuity of the function

x 7→ ‖Vx(a(x))−
∑

b∗ja(x)bj‖

implies that there is an open neighborhood U(y) of y such that

‖Vx(a(x))−
∑

b∗ja(x)bj‖ < ε ∀ x ∈ U(y) .

By compactness of Y , thus implies the existence of finitely many U1, . . . , Um and

n(i) ∈ N, b
(i)
j ∈ B, i = 1, . . . ,m, j = 1, . . . , n(m) such that the Ui cover Y and

‖Vx(a(x)) −
∑
j(b

(i)
j )∗a(x)b

(i)
j ‖ < ε for x ∈ Ui. If we take a partition of unit
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f1, . . . , fm ∈ C(Y )+ with supports of fi in Ui and
∑
i fi = 1, and let c` ∈ C(Y,B)

for ` = 1, . . . , n(1) + · · ·+ n(m) denote one and only one of the f
1/2
i · b(i)j , then

‖Vx(a(x))−
∑
`

c`(x)∗a(x)c`(x)‖ < ε ∀ x ∈ Y .

This shows that the restriction of x 7→ Vx(a(x)) to Y is in the closed ideal generated

by a|Y , for each a ∈ Cb(X). It follows that for δ > 0 and compact Y ⊆ X there

exists d1, . . . , dk with

‖Vx((a(x)− δ)+)−
k∑
j=1

dj(x)∗(a(x)− δ)+dj(x)‖ < δ for x ∈ Y .

We get for each of the above constructed Yn elements d
(n)
1 , . . . , d

(n)
k ∈ C(Yn, B)

such that the last inequality holds for x ∈ Yn with dj replaced by d
(n)
j . We define

elements ej , fj ∈ Cb(X,B) for j = 1, . . . , k by

ej(x) :=

∞∑
n=1

β2n−1(x)1/2(a(x)− δ)1/2
+ d

(2n)
j ,

fj(x) :=

∞∑
n=1

β2n(x)1/2(a(x)− δ)1/2
+ d

(2n+1)
j .

Then ‖
∑k
j=1 e

∗
jej‖ ≤ ‖a‖‖V ‖ + δ, ‖

∑k
j=1 f

∗
j fj‖ ≤ ‖a‖‖V ‖ + δ, gδ(a)ej = ej , and

gδ(a)fj = fj for j = 1, . . . , k, where gδ(t) := min(δ−1t, 1). Since the functions β2n

(respectively the β2n−1) have mutually orthogonal supports and
∑
βn = 1, one can

see that

‖V ((a− δ)+)−
k∑
j=1

e∗jgδ(a)ej + f∗j gδ(a)fj‖ ≤ δ .

Since gδ(a) ≤ δ−1a, the element (V ((a − δ)+) − 2δ)+ is in the closed ideal I(a)

of B that is generated by a. The δ > 0 can be taken arbitrarily small with ej , fj

(j = 1, . . . , k) depending on δ. Hence, V (a) ∈ I(a). �

The Theorem 2.14.3 is needed, because even the answer to following questions

are still open.

Questions 2.14.4. Is C([0, 1]∞, A) weakly purely infinite if A is purely infinite?

A positive answer would follow from a positive answer of the question: Is

C([0, 1], A) purely infinite if A is purely infinite? (In fact a positive answer would

imply that C0(X) ⊗ A is purely infinite if A is purely infinite and X is a locally

compact Hausdorff space.)

To understand the non-triviality of this question recall here:

A is purely infinite⇔ A is pi(1)⇔ A is 1-purely infinite (i.e., A has property pi-1).

We know only that C([0, 1], A) has property pi-2 if A is p.i. So the zoological

garden of really different pi-n or pi(n) could be bigger than we hope for. What is

the secret behind such possible differences?
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Corollary 2.14.5. Suppose that X is a σ-compact, non-compact, locally com-

pact Hausdorff space, and B is a C*-algebra. Let Y ⊆ β(X) \X a closed subset of

the corona of X, A ⊆ Cb(X,B)|Y a separable C*-subalgebra of Cb(X,B)|Y and let

C ⊆ A a commutative C*-subalgebra of A.

If the C*-algebra C0(X,B) is weakly p.i., then there exists a continuous map

V : X 3 x→ Vx ∈ CP(B)

from X into the approximately inner c.p. contractions CPin(B), such that the cor-

responding c.p. map VY := V |Y : Cb(X,B)|Y → Cb(X,B)|Y maps A into a com-

mutative C*-subalgebra C∗((VY (A)) of Cb(X,B)|Y , fixes the elements of C, and

has the property, that VY (b) is in the closed ideal of Cb(X,B)|Y that is generated

by b for each positive b ∈ Cb(X,B) |Y .

Proof. to be filled in, use w.p.i. of ???? ?? �

Recall that Sin(B) is the set of all inner c.p. maps V defined by V (b) :=∑n
k=1 d

∗
kbdk for some n := n(V ) ∈ N and some finite sequence d1, . . . , dn ∈ B. The

elements of Sin(B) is an algebraic matrix operator-convex cone. Its point-norm

closure will be denoted by CPin(B).

Corollary 2.14.6. Let X be a non-compact locally compact σ-compact Haus-

dorff space, and let ∅ 6= Y ⊆ (βX) \X denote a (non-empty) closed subset of the

corona of X.

Suppose that, for every point-norm continuous family x ∈ X 7→ Vx ∈ CPin(B)

with ‖Vx ‖ ≤ 1, the completely positive contractions

V |Y : Cb(X,B) |Y → Cb(X,B) |Y

are ideal-system equivariant, i.e., V |Y (J) ⊆ J , for each closed ideal of J of

Cb(X,B) |Y .

Then B has the following property:

There exists ω ∈ β(R+) \ R+ such that, for every continuous path t ∈ R+ 7→
a(t) ∈ B+ with ‖a(t)‖ ≤ 1 and for every ε > 0, there exists an open subset U =

U(ε) ⊆ R+, in the ultrafilter of O(R+) defined by ω, with the property that the

values µ(t) := µ(a(t),Sin(B), ε) remain bounded on U (i.e., there is n(U) ∈ N such

that µ(t) ≤ n(U) for all t ∈ U).

In particular, there exists a sequence n < tn < tn+1 such that supn µ(tn) <∞.

If, in addition, X is “disconnected at ∞”, i.e., X =
⋃
Un for compact open

subsets U1 ⊆ U2 ⊆ · · · ⊆ X, then B has the stronger property (i) of Definition 2.0.4

for some n ∈ N.

Is the existence of the sequence (tn)n equivalent to Property (i) of Definition

2.0.4 for pi(n) in ???? for some n ∈ N?
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Proof. Recall that the notation a |Y for a ∈ Cb(X,B) refers to the fact that

Cb(X,B) is a Cb(X)-algebra, i.e., Cb(X) is unitally contained in Cb(X,M(B)) ⊆
M(Cb(X,B)), and that C(βX) ∼= Cb(X) (both in a natural way).

By Lemma ??, it sufficed to show that the convex set Sin(B) ⊆ CPin(B) of

inner c.p. contraction is controlled in the sense of Definition ??, because this implies

the existence of n ∈ N such that B satisfies the property (i) of Definition 2.0.4.

Suppose that Sin is not controlled.

Then there is ε > 0 and a sequence of contractions a1, a2, · · · ∈ B+ such that

µ(an,Sin(B), 3ε) > 2n, i.e., there are Vn ∈ Sin such that the equation
∑m
j=1 d

∗
jadj =

(Vn(an)− 3ε)+ with contraction d1, . . . , dm ∈ B implies m ≥ 2n.

??

Change text and proof of cor. 2.14.6 !!!

Reduction to case: B separable, X = R+, Y = {ω}, ω ∈ γ(R+) .

???

?? proof has to be revised: Consider the case X = [1,∞).

Need following stronger result:

There exist ε ∈ (0, 1/4), a continuous path t ∈ [1,∞) 7→ a(t) ∈ B+ with

‖a(t)‖ ≤ 1, and a point-norm continuous path t ∈ [1,∞) 7→ St ∈ Sin(B), such that

St(a(t))− 3ε ≤
m∑
j=1

d∗jadj ,

with contractions d1, . . . , dm ∈ B, implies m ≥ t (for each fixed t ∈ [1,∞)).

Remark: If B is separable and all non-zero σ-unital hereditary ????

Following seems NOT to work:

We define continuous gn(t) on [1,∞) by gn(t) := 0 for t ∈ [1, n] and t ≥ n+ 2,

gn(n+1) := 1, and gn linear on [n, n+1] and on [n+1, n+2]. Then we define a(t) :=∑∞
n=1 gn(t)an ∈ B+ and St(a) :=

∑∞
n=1 gn(t)Sn(a) for t ∈ [1,∞). The function

a(t) defines a positive contraction a ∈ Cb([1,∞), B)+, the map t ∈ [1,∞) 7→ St(a)

is continuous for each a ∈ B and ‖St‖ ≤ 1. Therefore, S(f)(t) := St(f(t)) for

f ∈ Cb([1,∞), B) defines a positive contraction S ∈ CP(Cb([1,∞), B)).

We proceed with better definition of a(x) and Vx,

given further above. (or below?)

End: suggestion for revision.

Since X is σ-compact and locally compact, there is a continuous function

h : X → (0, 1] such that h−1[δ, 1] is compact for each δ ∈ (0, 1]. We let Vx(a) :=

St(a) and b(x) := a(t) for t := h(x)−1 .

By definition of V |Y , the equation (V |Y )(b |Y ) = c |Y holds for the map

x ∈ X 7→ c(x) := Vx(b(x)) in Cb(X,B)+ with ‖c‖ ≤ 1. Notice that ((c |Y )−ε)+ =

(c− ε)+|Y , because a ∈ Cb(X,B) 7→ a |Y ∈ Cb(X,B) |Y is a *-epimorphism.
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By our assumption, (c |Y ) is in the ideal generated by b |Y .

It follows, that there are m ∈ N and contractions e1, . . . , em ∈ Cb(X,B) |Y ,

such that
∑
j e
∗
j (b |Y )ej = (c−ε)+|Y . Let fj ∈ Cb(X,B) contractions with fj |Y =

ej , then

r(x) :=

 m∑
j=1

fj(x)∗b(x)fj(x)

 − (Vx(b(x))− ε)+

defines a selfadjoint element r ∈ Cb(X,B) with r |Y = 0.This means for the

bounded continuous non-negative function λ ∈ Cb(X) ∼= C(βX) with λ(x) :=

‖r(x)‖ for x ∈ X that λ |Y = 0.

The subset Z := {x ∈ βX ; λ(x) < ε} is an open subset of βX with Z ⊃ Y . In

particular, Z 6= ∅. Since X is a dense open subset of βX, it follows that U := X∩Z
is a non-empty open subset of X. The set U can not be contained in a compact

subset K ⊆ X, because, otherwise, λ(x) ≥ ε for all x ∈ (βX) \ X, which is

impossible by ∅ 6= Y ⊆ (βX) \X and λ |Y = 0.

Thus, inf{h(x) ; x ∈ U } = 0, and there exists a sequence x1, x2, . . . ∈ U with

limh(xn) = 0, such that λ(xn) = ‖r(xn)‖ < ε .

Let x ∈ U with t := h(x)−1 > 2m. Then a(t) = b(x) and, with dj := fj(x),

St(a(t))− 2ε = Vx(b(x))− 2ε ≤
m∑
j=1

d∗ja(t)dj .

The latter inequality contradicts the property m ≥ t for a(t), St and contractions

d1, . . . , dn ∈ B. �

15. More on pi(n)-algebras

Recall here for the following Lemma 2.15.1, that an element ... ????

Lemma 2.15.1. Let A a C*-algebra, D ⊆ A a hereditary C*-subalgebra of A,

λ : A → L(H) an irreducible representation such that λ(D) 6= {0} and such that

λ(A) does not contain a non-zero operator of finite rank.

Let x ∈ H with ‖x‖ = 1 and λ(D)x 6= 0, and denote by Q the orthogonal

projection from H onto λ(D)x.

Then, for each n ∈ N , there exists an n-homogenous positive contraction an ∈
D+ with 2‖λ(an)x‖ ≥ ‖Qx‖ ≥ ‖λ(an)x‖.

Proof. The restriction of λ to D and to λ(D)x ⊆ H is an irreducible repre-

sentation of D that does not contain any non-zero compact operators in its image,

because otherwise it would contain also non-zero operators of finite rank in its image

λ(D) ⊆ L(H).

Since λ(D)x is a dense vector space in QH, we find for each given n ∈ N a linear

subspace Ln ⊆ Ln+1 of λ(D)x of dimension = n such that dist(Qx,Ln) ≤ ‖Qx‖/2.
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Let Pn denote the orthogonal projection onto Ln. The variant of the Kadison

transitivity theorem given in Lemma 2.1.15 gives that there is a closed projection

qn ∈ D∗∗ of rank = n such that the normal surjective extension λ|D : D∗∗ → L(QH)

of the restriction λ|D : D → L(QH) defines an isomorphism Ψn from qnD
∗∗qn onto

L(PnH) with Ψn(PndPn) = qnD(d)qn for d ∈ D. In particular Mn
∼= qnD

∗∗qn

for some isomorphism γ of Mn with qnD
∗∗qn. By Lemma 2.1.15 there exists a

C *-morphism h from Mn ⊗ C0(0, 1] into D with qnh(Mn ⊗ C0(0, 1))qn = 0 and

qnh(T⊗f0)qn = γ(T ) for T ∈Mn. In particular a := h(1n⊗f0) is an n-homogenous

element in D+ with λ(a) = Ψn(γ(1n)) = Pn.

Check it again! :

We get λ(an)x = Ψn(qn)x = Pnx, Ln = PnH = PnQH, and Qx = Pnx +

(Q−Pn)x is an orthogonal decomposition for Qx. It follows dist(Qx,Ln) = ‖Qx−
Pnx‖ ≤ ‖Qx‖/2 by construction of Ln = PnH.

The orthogonal decomposition Qx = Pnx+ (Q− Pn)x leads to

‖Qx‖2 = ‖Pnx‖2 + ‖Qx− Pnx‖2 ≤ ‖Pnx‖2 + (‖Qx‖/2)2

and gives that ‖Qx‖2(3/4) ≤ ‖Pnx‖2. It implies that ‖Qx‖ ≤ 2‖Pnx‖. �

Proposition 2.15.2. If A is a pi(n) C*-algebra then, for each non-zero here-

ditary C*-subalgebra D ⊆ A and each pure state λ on A with λ(D) 6= {0}, there

exists a hereditary C*-subalgebra E ⊆ D with λ(E) 6= {0} such that all non-zero

positive elements b ∈ JE in the closed ideal JE := span(AEA) of A generated by

E have the property that b⊗ 1n is properly infinite in JE ⊗Mn.

Moreover there exist hereditary C*-subalgebras E ⊆ D with the above properties

that satisfy moreover that the ideal JE ⊗ K of A ⊗ K generated by E has property

pi-n.

The primitive ideal space Prim(A) ∼= Prim(A ⊗ K) has a base of its topology

that is generated the open subsets that correspond to closed ideals J of A such that

J ⊗K has property pi-n.

Maximal open subsets with this property have the property that ... ????

Idea of proof: Take a maximal family of pairwise orthogonal n2-homogenous

contraction in A+. The ideal generated by them has this property.

Recall here that the positive integer n for pi(n)-algebras or for the C *-algebras

with property pi-n is only an upper bound. We do not know if there exists for

each n ∈ N a pi(n)-algebra that is not a pi(n− 1)-algebra. And it is only for pi(1)-

algebras (i.e., for the ordinary “purely infinite” C *-algebras) known that this class

of algebras remains invariant under extensions.

Where it is shown that extensions of pi(1) algebras gives pi(1) algebras. Give

cite or ref !!!

But we know only that C([0, 1], A) is pi-2 if A is p.i. ( = pi-1). This, and the

above Proposition 2.15.2 indicates that some sort of “decomposition dimension”
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of the saturated quasi-compact subsets of Prim(A) plays a role (it means not the

covering dimension which is only for Hausdorff spaces the same as the decomposition

dimension).

Corollary 2.15.3. The following properties (i), (ii), (iii) and (iv) are equiv-

alent for a (non-zero) C*-algebra A.

(i) A is purely infinite in sense of Definition 1.2.1 – which is equal to the

property pi(1) in Definition 2.0.4 –, i.e., A has no character, and, for

each a, b ∈ A+, with b in the closed ideal of A generated by a, and given

ε > 0 there exist d ∈ A with d∗ad = (b− ε)+.

(ii) A has property pi-1 as defined in Definition ??, i.e., each non-zero element

of A+ is properly infinite, i.e., for each nonzero a ∈ A+ and δ > 0 there

exist b, c ∈ A with ‖b∗ac‖ < δ, ‖b∗ab− a‖ < ε and ‖c∗ac− a‖ < ε.

(iii) For each a ∈ A+ and ε > 0 there exist d, e ∈ aAa with e∗d = 0 and

d∗d = e∗e = (a− ε)+.

(iv) For each a ∈ A+ and each closed ideal J of A with a 6∈ J the element

πJ(a) ∈ A/J is infinite in A/J , i.e., there exists non-zero b ∈ (A/J)+

with πJ(a)⊕ b - πJ(a).

Refer below to general pi(n) and - rules, where it is possible?!

The part (iv) seems to be the suitable definition of for all non-simple C*-algebras.

Proof. Notice that the definition of -A for C *-algebras A is a local property

in the sense that that the relation a -A b holds for a, b ∈ A+, if and only if, a -D b

in the hereditary C *-subalgebra D := (a+ b)A(a+ b) of A.

(i)⇒(ii): If a ∈ A+ is a non-zero 2-homogenous element then each element in

the hereditary C *-subalgebra D := aAa is properly infinite in D.

Since a is 2-homogenous there exits ????

Then D ∼= M2(E), where E is a hereditary C *-subalgebra of A that has the

property that all elements ???????

Indeed, by definition of 2-homogenous elements there is C *-morphism ψ : M2⊗
C0(0, 1]→ D with ψ(1⊗ f0) = a. The element b := ψ(p11⊗ f1/3

0 ) has the property

that b ≤ a1/3 and and d∗1bd1 + d∗2bd2 = a for d1 := ψ(p11 ⊗ f
1/3
0 ) ∈ A and

d2 := ψ(p12⊗ f1/3
0 ) ∈ A. By Definition 1.2.1 of purely infinite algebras we get that

there exists a sequence cn ∈ A with a = lim c∗nbcn.

We define E := bAb. If e ∈ E+ then e⊕ e - e, because ‖gnegn− 12⊗ e‖ → 0 in

M2⊗E for n→∞, where gn := ψ(p11⊗ f1/n
0 )h1,n +ψ(p12⊗ f1/n

0 )h2,n with ??????

It follows that E is a non-zero hereditary C *-subalgebra of D ⊆ A with the

property that each element of E is properly infinite in A (an thus also in D).

Let D ⊆ A a hereditary C *-subalgebra such that every non-zero elements

d ∈ D+ is properly infinite in A. Then each d ∈ D+ is also properly infinite in D

by Remark ??.
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We show that each c ∈ J+ := spanADA+ is properly infinite. Indeed, for

each ε > 0 there exist d1, . . . , dn ∈ D+ and f1, . . . , fn ∈ A with (c − ε/2)+ =∑n
k=1 f

∗
kdkfk . It follows that there is g ∈ A with g∗dg = (c − ε)+ for d :=

d1 + · · ·+ dn. Thus, the element (c− ε)+ satisfies d1/2gg∗d1/2 ∼MvN (c− ε)2
+, and,

hence, is Murray–von-Neumann equivalent to a properly infinite element of D+. It

follows that c is properly infinite in A by Lemma ??.

If a ∈ A+ is the limit of elements an ∈ A+, and there exists γ > 0 such

that for each δ ∈ (0, γ) and n ∈ N the elements (an − δ)+ are properly infinite

in A+, then a is properly infinite in A : Given ε ∈ (0, γ) then there exist n0 ∈ N
with ‖an − a‖ < ε/3 for all n ≥ n0. By Lemma 2.1.9 there exist contractions

dn, en ∈ A with d∗nadn = (an − ε/3)+ and e∗n(an − 2ε/3)+en = (a − ε)+. Since

(an − 2ε/3)+ ⊕ (an − 2ε/3)+ - (an − ε/3) it follows that (a− ε)+ ⊕ (a− ε)+ - a.

It implies that a is properly infinite in aAa.

Thus, if Jτ is an upward directed family of closed ideals of A with the property

that all non-zero positive elements of
⋃
τ Jτ are properly infinite, then all non-zero

positive elements in the closed ideal J :=
⋃
τ Jτ are properly infinite.

It follows that A contains a maximal ideal J with the property that all nonzero

positive elements a ∈ J+ are properly infinite.

The maximality implies that J is closed in A.

Suppose that J 6= A. Since A has no characters, the quotient A/J can not

have a character. Thus, there exists a 2-homogenous element b = ϕ(12 ⊗ f0) for

some non-zero C *-morphism ϕ : M2 ⊗ C0(0, 1] → A/J . Since M2 ⊗ C0(0, 1] is a

projective C *-algebra, there exists a C *-morphism ψ : M2 ⊗ C0(0, 1] → A with

πJψ(12 ⊗ f0) = b. The element a := ψ(12 ⊗ f0) is a 2-homogenous element in A

that is not in J .

Let h : A→ L(H) an irreducible representation of A, ?????

(ii)⇒(iii):

(iii)⇒(i):

(ii)⇒(iv): The property (ii) says a ⊕ a - a for each a ∈ A. If J is a closed

ideal of A with a 6∈ J , then this implies that πJ(a)⊕ πJ(a) - πJ(a)

??????

(iv)⇒(???): The part (iv) says that for each a ∈ A+ and closed ideal J of A

with πJ(a) 6= 0 there exists non-zero b ∈ (A/J)+ with πJ(a)⊕ b - πJ(a).

This implies that a is properly infinite in A, i.e., a⊕ a - a in A by Lemma ??

???

Let J := {b ∈ A; a ⊕ b - a}. The set J is by an observation of J. Cuntz [?] a

closed ideal of A with the property that πJ(a) ”finite” in A/J , i.e. the only element

c ∈ A/J with with πJ(a)⊕ c - πJ(a) is

�
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Compare next Rem. with Def. 1.2.1 or Def. of pi-1 or pi in 1st

Sect. in Chp. 2!!

Remark 2.15.4. We recall that a (not necessarily simple) C *-algebra A is

purely infinite in the sense of Definition 1.2.1, that is equal to property pi(1) in

Definition 2.0.4, if

(i) A is non-zero and has no character, i.e., every irreducible representation

has dimension > 1, and

(ii) for every positive a in A, every positive b in the ideal generated by a, and

every ε > 0 there exists d ∈ A such that ‖b− d∗ad‖ < ε.

We write sometimes ‘p.i.’ for ‘purely infinite’.

From the definition it is easy to see that non-zero quotients of p.i. algebras are

p.i.

A hereditary C *-subalgebra D ⊆ A can not have a (non-zero) character χ.

Indeed, otherwise a character χ would extend to a pure state ρ on A such that the

GNS construction defines an irreducible representation dρ : A→ L(L2(ρ)) with the

property that the algebra of compact operators K(L2(ρ)) is contained in dρ(A). But

this is impossible, because the quotient A/d−1
ρ (0) ∼= dρ(A) is again purely infinite.

But a rank-one projection can not be properly infinite.

Since every positive element in the ideal generated by a is in the norm-closure

of elements
∑
n c
∗
nacn, we can express (ii) equivalently:

For a ∈ A+, c1, c2 ∈ A and ε > 0, there is d ∈ A with ‖c∗1ac1 + c∗2ac2 − d∗ad‖ < ε.

One can see that it suffices to consider here c1, c2 in a dense subset of the unit-

ball of A and a in a dense subset S of A+ with the property that (a − 1/n)+ ∈ S
for all a ∈ S and n ∈ N.

There is no essentially better reduction to dense subsets of A+, because e.g. for

any unital A the set A+ + (0, 1) · 1A is dense in A+ and always
∑
j c
∗
jacj = d∗ad

for given c1, . . . cn ∈ A if a ∈ A+ + (0, 1) · 1A and d := a−1/2(
∑
c∗jacj)

1/2. And this

is certainly not equivalent to pure infiniteness.

The reader can see from Definition 1.2.1, e.g. that the algebras of compact

operators on a Hilbert space can not be purely infinite, and, more generally, that any

quotient A/J of a p.i. algebra A can not contain a (non-zero) Abelian hereditary C *-

subalgebra, i.e., A is strictly antiliminary (equivalently expressed: no irreducible

representation of A contains a non-zero compact operator in its image).

We list in Proposition 2.15.5 some elementary facts on purely infinite non-simple

C *-algebras. The proofs follow in the given order step by step almost trivially

from the foregoing result. The reader can find the proofs of the propositions and

corollaries 2.15.5–2.6.5 also in [462], [463] and [93]. The results on extensions and

passage to stabilizations are not trivial.

Is it good to use ‘‘stably p.i.’’ ?
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Proposition 2.15.5. Let A 6= {0} a C*-algebra.

(o) A is p.i. , if and only if, Mn(A) is p.i. , if and only if, A⊗K is p.i.

Compare with other places e.g. Part (iv)

(i) Let J is a closed ideal of A, with {0} 6= J 6= A. Then A is p.i. if and only

if, J and A/J are p.i.

(ii) Every p.i. algebra A has no irreducible representation that contains a (no-

zero) compact operator in its image.

In particular, A is strictly antiliminary (i.e., each non-zero quotient

of A is NGCR).

(iii) Non-zero hereditary C*-subalgebras of a p.i. algebra are p.i.

(iv) The inductive limit of p.i. algebras is p.i.

(v) The C*-algebra
∏
nBn of bounded sequences (a1, a2, . . .) with an ∈ Bn is

p.i. if Bn is p.i. for every n = 1, 2, . . ..

In particular, the ultrapowers Bω of B are p.i. if M2(B) is p.i.

(vi) M2(A) is p.i. if and only if A is p.i. and, for every a ∈ A+ and ε > 0,

there exist b, c ∈ A with b∗c = 0 and b∗b = c∗c = (a− ε)+.

(vii) If A is p.i. and σ-unital, and has no unital quotient, then A is stable.

(viii) Zero is the only semi-finite lower semi-continuous 2-quasi-trace on

Ped(A)+ if A is p.i.

Part (vii) generalizes Zhang’s dichotomy for simple p.i. algebras. Its proof

reduces to a special case of [373, prop. 5.1], cf. our Corollaries 5.5.1 and 5.5.3.

The next result shows that the class of p.i. algebras is closed under extensions.

Temporary we call A stably p.i. if M2(A) is p.i. This is equivalent to the

property that A⊗K is p.i. by Proposition 2.15.5(vi).

Proposition 2.15.6. Suppose that A is a C*-algebra, and J is a closed ideal

of A, such that J and A/J are both stably p.i. Then A is stably p.i.

Corollary 2.15.7. Every p.i. C*-algebra is stably p.i. This means:

(i) A⊗K is p.i. , if and only if, A is p.i.

(ii) A is p.i. if and only if for every b ∈ A+ and ε > 0 there exists c, d ∈ bAb
with c∗d = 0 and c∗c = d∗d = (b− ε)+.

Corollary 2.15.8. Let A a unital C*-algebra. Every non-zero quotient A/J

of A contains a non-unitary isometry, if and only if, 1A is properly infinite, i.e., if

and only if, there exists a unital C*-morphism ϕ : O∞ → A.

Proof. Easy direction: Suppose that 1A is properly infinite, – i.e., that there

is a unital C *-morphism ψ : E2 = C∗(s, t ; s∗t = 0, s∗s = 1 = t∗t)→ A –, then the

compositions πJ ◦ ψ with the C *-epimorphisms πJ deliver non-unitary isometries

in A/J for all closed ideals J 6= A of A.

The less trivial opposite direction is an evident consequence of Part (iii) of

Lemma 2.5.3: Let a := 1 and J := I(a). Then πJ(a) is finite in A/J by 2.5.3(iii).
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By assumption on the quotients, it means that A/J = {0} and J = I(a) = A, i.e.,

there exist d ∈M2(A) with d∗(1⊕0)d = 1⊕1. This gives that 1 is properly infinite

in A: s∗s = 1, s∗t = 0 and t∗t = 1 for s := d1,1 , t := d1,2 .

There is also a different looking “amazing” elementary argument for a proof of

the non-trivial direction. We carry it out in any detail (!) – otherwise it would take

only three lines. It goes as follows:

Since A itself contains at least one non-unitary isometry t by our assumptions,

the set of the projections pt := 1−tt∗ for all isometries t ∈ A is not empty. Consider

now the well-defined non-zero closed ideal J of A that is generated by all (co-range)

projections pt, where t runs through all non-unitary isometries in A. All positive

elements of the ideal J can be approximated by elements of the form d∗ptd, because

the family of elements of this type is hereditary and d∗psd + e∗pte = f∗ps·tf for

f := psd+ se. (Use here that ps·t = ps + spts
∗.)

If J = A then we are ready, because then there exist t, d ∈ A with t∗t = 1

and ‖d∗ptd− 1‖ < 1/2 . The isometries s := ptd(d∗ptd)−1/2 and t have orthogonal

ranges s∗t = 0 .

We show now that A/J does not contain a non-unitary isometry (in every

generality for all unital C *-algebras A that contain a non-unitary isometry). It

implies that J = A, i.e., A/J = {0} if each non-zero quotient of A contains a

non-unitary isometry.

Notice for the following, that a unital C *-algebra B does not contain any

non-unitary isometry, if and only if, every left-invertible element of B is also right-

invertible (and vice versa).

By definition of J , the image πJ(t) ∈ A/J of each isometry t ∈ A is a unitary

element in A/J because pt := 1− tt∗ ∈ J . It implies that also the image πJ(b) of

each right-invertible or left-invertible element b ∈ A is invertible in A/J , because

t := b(b∗b)−1/2 (respectively t := b∗(bb∗)−1/2 ) is an isometry.

We show now that – moreover – for every contraction a ∈ A with 1− a∗a ∈ J
there exists an isometry t ∈ A and d ∈ A such that b := ta−ptd satisfies ‖1−b∗b‖ <
1/2 . Then pt ∈ J and πJ(t)∗πJ(b) = πJ(a) is invertible in A/J by above remarks.

Indeed, as shown above, there exists d ∈ A and an isometry t ∈ A with

‖(1− a∗a)− d∗(1− tt∗)d‖ < 1/2

but this means for b := ta− ptd that ‖1− b∗b‖ < 1/2 .

Thus, for every unital C *-algebra A, the quotient A/J has the property that

each isometry in A/J is unitary, if J denotes the closed ideal of A that is generated

by {1 − tt∗ ; t ∈ A, t∗t = 1}. Moreover, above considerations show that this ideal

J is equal to the ideal I(1) for 1 ∈ A defined in Lemma 2.5.3(iii). �

Definition 2.15.9. We say that A has the Global Glimm halving property

if, for each b ∈ A+ and δ > 0, there exist e ∈ A with e2 = 0 and e∗e + ee∗ ∈ bAb
such that (b− δ)+ is in the ideal generated by e.
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Equivalently expressed:

For each b ≥ 0 and δ > 0, there is a C *-morphism

ϕ : M2(C0(0, 1])→ bAb

such that (b − δ)+ is contained in the closed ideal of A generated by the image of

ϕ.

Here seems to be a wrong definition?: The original “halving property”

says that, for given X ∈ A+ and ε > 0, there exist d1, d2 ∈ A such that ‖d∗1Xd2‖ < ε

and (X−ε)+ is in the closed ideal J1∩J2 of A, where Jk := J(d∗kXdk) is the closed

ideal generated by d∗kXdk.

Is it the same? CHECK!

Remark 2.15.10. Every purely infinite C *-algebra has the global Glimm halv-

ing property by Proposition 2.15.11.

The other sorts of infinity of C *-algebras are in a sense of local nature that

does not shows any understandable relation to “Glimm having” ...

Proposition 2.15.11. For every non-zero C*-algebra A the following proper-

ties (i) and (ii) are equivalent:

(i) The algebra A has the Global Glimm halving property (Def. 2.15.9), and,

for every b ∈ A+ and every ε > 0, there is an m = m(b, ε) ∈ N, –

depending only on b and ε (and not on a) –, such that:

If b is in the closed ideal generated by a ∈ A+, then there are d1, . . . , dm ∈
A with

‖b−
∑

1≤j≤m

d∗jadj‖ < ε .

(ii) The algebra A is purely infinite.

Proof. (ii)⇒(i): If A is purely infinite, then we can take m(b, ε) := 1 for all

b ∈ A+ and ε > 0. We use Lemma 2.5.15

Corollary 2.15.7 to check the global Glimm halving property:

There are τ ∈ (0, δ) and d1, d2 ∈ A with d∗1(a − τ)+d2 = 0 and (a − δ)+ = d∗j (a −
τ)+dj (j = 1, 2). Let e := (a− τ)

1/2
+ d2d

∗
1(a− τ)

1/2
+ , then e2 = 0, ee∗ + e∗e ∈ aAa,

and d∗2(a− τ)
1/2
+ e(a− τ)1/2d1 = (a− δ)2

+ .

(i)⇒(ii): The proof is an adaptation of the proof of Proposition 2.2.1(iv):

By induction, we see from condition (ii), that, for every a ∈ A+, δ > 0, and

m ∈ N, there exist f1, . . . , fm in the closure of (a − 2δ)+A(a − 2δ)+, such that

f∗j fi = δijf
∗
1 f1, and (a − 3δ)+ is in the closed ideal of A which is generated by

f0 := f∗1 f1. In particular, A can not have a non-zero character.

Now let a, b ∈ A+, such that b is in the closed ideal generated by a. Let ε > 0

be given. We define ρ := ε/3, and let m := m((b− ρ)+, ρ) .
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There exist δ > 0 and c1, . . . , cn ∈ A, such that∑
1≤k≤n

c∗k(a− 3δ)+ck = (b− ρ)+ .

Let f1, . . . , fm as above and f0 := (f1)∗f1. Then (b− ρ)+ is in the ideal generated

by f0. By definition of m, there exist d1, . . . , dm ∈ A, such that

‖
∑

1≤j≤m

d∗jf0dj − (b− ρ)+‖ < ρ .

We define g ∈ C0((0, ‖a‖]) by g(t) := 0 for t ∈ [0, δ], g(t) := t/δ − 1 for

t ∈ [δ, 2δ], and g(t) = 1 for t ∈ [2δ, ‖a‖]. Let h(t) := (g(t)/t)1/2.

Then d := h(a) ·
∑

1≤j≤m fjdj satisfies ‖d∗ad− b‖ < ε . �

Remark 2.15.12. In joint works with Étienne Blanchard and Mikael Rørdam

the above observation was used to show the following:

Suppose that A is a separable C*-algebra and that the primitive ideal space

Prim(A) is Hausdorff, i.e., A is the algebra of continuous sections vanishing at ∞
of a continuous field of simple C∗-algebras in the sense of [471] (48).

If, in addition, dim(Prim(A)) < ∞, then A is p.i. if and only if every simple

quotient of A is p.i. (i.e., if every fiber Ax of the continuous field on Prim(A)

associated to A is p.i.)

The criteria (i) and (ii) for p.i. algebras applies, because there is a “global”

version of the “local ” Glimm halving lemma, cf. Remark 2.1.16(ii).

The condition (i) comes from the finite dimension of Prim(A) if the fibers are

simple and p.i. A “global” version of the “halving” in Remark 2.1.16(ii) probably

does not extend to C *-bundles with non-simple fibers.

It could be conjectured that also continuous fields of C *-algebras over a Haus-

dorff space, and with strongly purely infinite fibers are strongly purely infinite,

in particular if the algebra of continuous sections again has a Hausdorff space as

primitive ideal space.

16. Characterizations of non-simple strongly p.i. algebras

The strongly purely infinite C *-algebras A, as defined in Definition 1.2.2, are

the C *-algebras that are later used for our variant of the classification program.

We need several equivalent characterizations that allow in special cases to verify

the strong pure infiniteness of given C *-algebras. So far it seems that the study

of the zoological garden of possibly different versions of pure infiniteness becomes

not easier to study in case of separable nuclear C *-algebras. And this is obvious,

because we have to work also with its ultra-powers and corona algebras that are in

general not nuclear.

48 I.e., A is the algebra of continuous sections vanishing at infinity of a continuous field of

simple C *-algebras over a Polish l.c. space.
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We do not use here the later proven results of Chapters 9 or 10 right now (just

to underline logical consistency), instead we work formally with the “decoy” version

D∞ := O∞ ⊗ O∞ ⊗ · · · of O∞, to emphasis that we use here only above proved

material and results from Appendices A and B.

!!! compare notations in the following with new names

coming from notation in extra papers (started at 2002, now 2018--2021)

We recall here the inequalities (2.2) for the definition of strongly pure infinite

C *-algebras A:

For any given a, b ∈ A+ and ε > 0 there exist d, e ∈ A that satisfy following

inequalities 16.1.

‖ a2 − d∗a2d ‖ < ε , ‖b2 − e∗b2e‖ < ε and ‖d∗abe‖ < ε . (16.1)

If we find for given non-zero a, b ∈ A+, δ ∈ (0,max(‖a‖, ‖b‖)) and ε ∈ (0, δ2),

some elements d, e ∈ A that satisfy the inequality (16.1) with (a− δ)+ and (b− δ)+

in place of a and b, then we can find “solutions” d, e of the original inequality

(16.1) for a, b itself – but now with the additional upper estimate of the norms

max{‖d‖ , ‖e‖} ≤ (2/ε) ·max(‖a‖, ‖b‖) for d and e.

Improvement ??:

Take in M2(A) the diagonal matrix G with diagonal entries d and e and then the

matrix F := [fjk] with entries f11 = a, f12 = b and f21 = 0 = f22 and diagonal H

in M2(A) with h11 = a2, h22 = b2 and h12 = 0 = h21 then ‖G∗(F ∗F )G−H‖ < 2ε.

One has here to find an estimate of the norm ‖G‖ of G !!!

We need a better estimate to get the formaly stronger matrix diagonalisation

property:

For each positive matrix T = [tjk] ∈Mn(A)+ and ε > 0 there exists a diagonal

matrix G with ‖G ∗ TG − D‖ < ε where D is the diagonal of T , i.e. D is the

diagonal matrix with entries djk := δjk · tjk .

To find an estimate of ‖G‖ for G, one could use here that, for example,

‖d∗(a− ε)2
+d− (a− ε)2

+‖ < γ2

with ε ≤ ‖a‖ and γ ∈ (0, ε) implies

‖(a− ε)+d‖ ≤ (γ2 + (‖a‖ − ε)2)1/2 ≤ ‖a‖ .

Then notice that ‖a−1(a− ε)+d‖ ≤ ε−1‖(a− ε)+d‖ .

Remark 2.16.1. If A is a strongly purely infinite, J a closed ideal of A and D

a non-zero hereditary C *-subalgebra of A, then A/J and D are again strongly p.i.

To see this, take for a1, b1 ∈ (A/J)+ elements a, b ∈ A+ with πJ(a) = a1 and

πJ(b) = b1. Find d, e ∈ A that satisfy inequality (2.2) for a and b then d1 := πJ(d)

and e1 := πJ(e) fulfill the Inequality (2.2) for a1 and b1 (in place of a, b and d, e).
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Let a, b ∈ D+ and d, e ∈ A that satisfy the Inequality (2.2). Let c := a2 + b2

and γ := ‖a‖2 + ‖b‖2, then, for sufficiently large n ∈ N, en := c1/ndc1/n and

fn := c1/nec1/n satisfy the Inequality (2.2) with en, fn ∈ D in place of e, f . It is

clear that ‖c‖ ≤ γ and it is easy to see that

max(‖a− c1/na‖ , ‖b− c1/nb‖) ≤ ‖(1− c1/n)c‖ ≤ max{ 1/(n+ 1) , γ · |1− γ1/n| } .

It follows that D is again strongly purely infinite.

Uses: lim c1/na = a for each 0 ≤ a ≤ c: Indeed, it implies 0 ≤ a1/n ≤ c

a2 ≤ ‖a‖a ≤ ‖a‖c, and therefore

‖(1−c1/n)a‖2 = ‖(1−c1/n)a2(1−c1/n)‖ ≤ ‖a‖ ·‖(1−c1/n)2c‖ ≤ sup{(t− t1+1/n)2 ,

and

sup{|t− t1+1/n| ; t ∈ [0, γ] } = max{ 1/(n+ 1) , γ · |1− γ1/n| } .

Lemma 2.16.2. Suppose that a C*-algebra A contains a dense *-subalgebra B

with the properties that (b∗b− ε)+ ∈ B for each b ∈ B and ε > 0.

Then A is strongly purely infinite, if and only if, for each f, g ∈ B and ε > 0,

there exist d, e ∈ A with

max{ ‖ (f∗f)2 − d∗(f∗f)2d ‖ , ‖(g∗g)2 − e∗(g∗g)2e‖ , ‖d∗(g∗g)(f∗f)e‖ } < ε .

(16.2)

The elements d, e ∈ A in the inequalities (16.2) can be chosen with norms

≤ ε−1 · 2 max{ ‖f‖4, ‖g‖4 } .

In particular, inductive limits of strongly purely infinite algebras are strongly

purely infinite.

Proof. If we take in Definition 1.2.2 of s.p.i. C *-algebras A the elements

a := f∗f and b := g∗g then we find d, e ∈ A that satisfy inequalities (16.2).

Conversely, if a, b ∈ A+ with ‖a‖ = ‖b‖ = 1 and ε ∈ (0, 1) are given, then let

δ := ??? · ε???. We find f = f∗, g = g∗ ∈ B with ‖f − a1/2‖ < δ and ‖g− b1/2‖ < δ.

There exist d, e ∈ A with ‖d‖ ≤ (2/ε)????, .... ‖d∗f4d − f4‖ < ε/2, ‖e∗g4e −
g4‖ < ε/2, ... and ‖d∗f4g4e − f4‖ < ε/2, ... It follows existence of contractions

x, y ∈ A with x∗f2x = (a− γ)+ and y∗g2y = (b− γ)+ ...

By Lemma 2.1.9, there exists contractions x, y ∈ A with x∗f+x = (a1/2−ε2/4)+

By assumption, there exist exist d, e ∈ A that satisfy Inequalities (16.2). �

Definition 2.16.3. We say that a C *-algebra A has the (m.d.) matrix di-

agonalization property if for every matrix M = [bij ] ∈M2(A)+ and ε > 0 there

exists a diagonal matrix D := diag(d1, d2) ∈M2(A) with

‖D∗MD − diag(b11, b22)‖ < ε .

Proposition 2.16.4. The C*-algebra A is strongly purely infinite, if and only

if, A has the matrix diagonalization property (m.d.), cf. Definition 2.16.3.
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Proof. ??

Suppose that A has the matrix diagonalization property of Definition 2.16.3.

We show that it implies that A is strongly purely infinite in sense of Definition

1.2.2, i.e., that, for every a, b ∈ A+ and ε > 0, there exist d, e ∈ A such that

‖ a2 − d∗a2d ‖ < ε , ‖b2 − e∗b2e‖ < ε and ‖d∗abe‖ < ε . (16.3)

Here we can apply this formula with non-zero a, b ∈ A+ replaced by (a − γ)+

and (b − γ)+ for some γ ∈ (0,min(‖a‖, ‖b‖)) we can find a solution (d, e) of the

inequalities (16.3) for ε := γ2 . Then ‖(a − γ)+d‖2 ≤ γ2 + (‖a‖ − γ)2 ≤ ‖a‖2 ,

and similarly ‖(b− γ)+e‖ ≤ ‖b‖.

If a, b ∈ A+ satisfy ‖a‖ = 1 = ‖b‖ and if ε ∈ (0, 1), then this gives the general

estimate for a solution (d, e) of the inequalities (16.3) with max(‖e‖, ‖d‖) ≤ 1/ε,

where one uses that e.g. ‖a−1(a− γ)+d‖ ≤ ‖(a− γ)+d‖ /γ .

Let a, b ∈ A+ and consider the 2×2-matrix [aik] = [a, b]>[a, b] in M2(A)+ with

entries a11 := a2, a22 := b2, a∗21 = a12 = ab, and let ε > 0.

By assumption we find d1, d2 ∈ A with

‖ diag(d1, d2)∗[aik] diag(d1, d2)− diag(a, b)‖ < ε .

But this implies the Inequalities (16.3) with d := d1 and e := d2 .

Conversely suppose that A is strongly purely infinite. Let c ∈ A+ and take

a := b := c1/2 in (16.3) for given ε > 0. We observe that the there proposed

d, e ∈ A satisfy ‖d∗cd − c‖ < ε, ‖e∗ce − c‖ < ε and ‖d∗ce‖ < ε. Which says

‖[d, e]∗ diag(c, 0)[d, e]− diag(c, c)‖ < ε in M2(A) with [d, e] := d⊗ p11 + e⊗ p12.

This can be rewritten also as

‖ diag(d, e)∗(c⊗ E) diag(d, e)− diag(c, c)‖ < ε ,

where E denotes the 2× 2-matrix with all entries = 1.

Now let M = [bij ] ∈M2(A)+ a positive 2× 2-matrix and f := b11 + b22. Then

M ≤ 2 diag(b11, b22) ≤ 2 diag(f, f)

By operator monotony of the function t1/2 this implies that

M1/2 ≤ 21/2 diag(f1/2, f1/2)

It follow that

M = lim
n→∞

M1/2 diag(f1/n, f1/n)M1/2 ,

thus, for δ > 0 there exists n ∈ N and d, e ∈ A such that for c := f1/n (with suitable

n ∈ N) the row matrix

[g, h] := [c1/2d, c1/2e]M1/2

satisfies

‖M − [g, h]∗[g, h]‖ < δ

That means, that a given positive matrix M ∈ M2(A)+ can be arbitrary well

approximated by matrices that are products [g, h]∗[g, h].
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Let u(g∗g)1/2 = g and v(h∗h)1/2 = h the polar decompositions and α ∈
(0, 1/2) sufficiently small. Define S := (g∗g)αu∗ = u∗(gg∗)α, T := (h∗h)αv∗,

a := (gg∗)1/2+α and b := (hh∗)1/2+α. Then

diag(S, T )∗[g, h]∗[g, h] diag(S, T ) = [a, b]∗[a, b]

and there exist d, e ∈ A that satisfy the Inequalities (16.3) for a, b with

max(‖d‖, ‖e‖) < 4/ε .

Thus, if we have for fixed ε the given 2 × 2-matrix M = [bij ] ∈ M2(A)+

approximated well enough by a matrix [g, h]∗[g, h] and take the α in the above

formula small enough then we get

‖ diag(d, e)∗M diag(d, e)− diag(b11, b22)‖ < ε .

�

Remark 2.16.5. Property (m.d.) of a C *-algebra A implies the (formally

stronger) property of A that, for every m,n ∈ N with n > 1, every positive ele-

ments a1, . . . , am ∈ A+ and arbitrary elements x` ∈ A (` = 1, . . . , n) there exist

contractions d1, . . . , dm ∈ A such that ‖d∗jajdj − aj‖ < ε for j = 1, . . . ,m and

‖d∗jx`dk‖ < ε for ` = 1, . . . , n and j 6= k, 1 ≤ j, k ≤ m.

?? [the cite is KirRor2] Compare [463, ????], but there are misleading typos

that should be read: ?????

Definition 2.16.6. The following properties of C *-algebras A are between

pure infiniteness and strong pure infiniteness.

(lsp) The algebra A is purely infinite and for every non-zero contraction a ∈
A there exist isometries s, t in the multiplier algebra M(D) of D :=

(a a∗ + a∗a)A (a a∗ + a∗a) with s∗t = 0 and 3 · ‖s∗at‖ < 2 .

(Then we call A sq-pi.)

Why not ”(lsp)” ? Anyway, it seems to be a bit difficult to use or to

compare with others ...

(labs) For every positive contraction a ∈ (Aω)+, there exists a *-monomorphism

ψ : C∗(a)⊗O∞ → Aω with ψ(a⊗ 1) = a. (Then we say that A is locally

O∞-absorbing.)

(lcpi) {a}′ ∩Aω is p.i. for every positive element a ∈ (Aω)+ .

(A is locally commutant-p.i..)

(cpi) For every separable commutative C *-subalgebra C of Aω, there exists a

*-monomorphism ψ : C ⊗O∞ → Aω with ψ(a⊗ 1) = a for a ∈ C.

Then A is commutant purely infinite or c.p.i..

Remark 2.16.7. We have following two rows of implications:

s.p.i. ⇔ m.d.p. ⇒ (lsp) ⇒ p.i.

s.p.i. ⇒ (cpi) ⇒ (lcpi) ⇒ (labs) ⇒ p.i.
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Here is an equivalent formulations of (c.p.i):

There exist increasing continuous functions fn : [0, 2] → [0, 3] with fn(0) = 0

with the property that for n contractions a1, . . . , an ∈ A+, there are contractions

d1, d2 ∈ A such that

‖diak − akdi‖ + ‖d∗i akdj − δi,jak‖ ≤ fn(γ(a1, . . . , an))

for 1 ≤ k ≤ n, i, j ∈ {1, 2}, where we let γ(a1, . . . , an) := sup1≤p,q≤ ‖ apaq−aqap ‖ .

For every separable and commutative C *-subalgebra C ⊆ Aω, the relative com-

mutant C ′ ∩Aω is purely infinite.

(Equivalently: F (C,A) := (C ′ ∩ Aω)/Ann(C,Aω) is p.i. for every separable com-

mutative C *-subalgebra C of Aω.)

Proposition 2.16.8. We have the implications:

A ∼= A⊗D∞

implies that

A is s.p.i. , if and only if, Aω is s.p.i. ,

and this implies that

C ′ ∩Aω is p.i. for all separable commutative subalgebras C ⊆ Aω.

The latter implies that A is pi(1), iff A pi-1, iff A is p.i. Aω is p.i.

Remark 2.16.9. “Strongly” p.i. algebras in the sense of Definition 1.2.2 are

p.i.

But it needs some work to see that strongly p.i. algebras in the sense of Defi-

nition 1.2.2 have the WvN-property of Definition 1.2.3.

The WvN-property is needed for our classification results. We give in Chapter

3 a proof (based on [443] and the joint paper with M. Rørdam [463]) that strongly

p.i. algebras have the WvN-property.

Compare the remarks at the end of Chapter 3.

A ⊗ F is strongly p.i. for F := O∞ ⊗ O∞ ⊗ . . . and for every C *-algebra A.

Notice that F ∼= O∞ because O∞ ⊗O∞ ∼= O∞ and

Give precise citations (!!!) of the work with E. Blanchard and M. Rørdam:

In joint works with E. Blanchard and M. Rørdam about p.i. algebras there are

some sufficient criteria for p.i. algebras to be strongly p.i. and the study of some

cases where p.i. implies “strongly” p.i. in some cases, e.g.:

If A is p.i. and Prim(A) is Hausdorff, then A is strongly p.i.

If A is locally p.i. and Prim(A) is a Hausdorff space of finite dimension, then

A is p.i. (and therefore is s.p.i.).

If A is exact and “approximately divisible”, ...
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Where is the definition of “approximately divisible”? Are they criteria con-

cerning F (A) ???

... then A is strongly purely infinite if every (additive) lower semi-continuous

traces τ : A+ → [0,∞] takes only the values {0,∞}. The same happens if A ∼=
A⊗Z, where Z is the Jiang-Su algebra.

The algebras A⊗O∞ are always s.p.i. Separable nuclear s.p.i. algebras A are

isomorphic to A⊗O∞ ( 49 )

Since O∞ is approximately divisible, cf. Remark B.5.1, this implies that a

separable nuclear C *-algebra A is s.p.i., if and only if, A is approximately divisible

and has only trivial lower semi-continuous traces.

give Refs or Cites:

An other equivalent to s.p.i. for separable nuclear A is that A tensorial absorbs the

Jiang-Su algebra Z and that A has only trivial l.s.c. traces. (The proof is more

engaged then the case of ”approximate divisibility”.)

If A has real rank zero and is locally p.i., then A is strongly p.i. (More generally,

for each projection p in a locally p.i. algebra A there is n = n(p,A) ∈ N such that

p ⊗ 1n is infinite in Mn(A). This property holds also for each projection r in

each quotient A/J of A – with n(πJ(a), A/J) possibly different from n(p,A) –,

because A/J is locally p.i. too. Since p ∈ J for projection p ∈ A, or there is stable

hereditary C *-subalgebra D of pAp that is not contained in J . Then πJ(D) is

non-zero and stable and contains a non-zero projection r ∈ πJ(D) ⊆ A/J . Now

let n := n(r,A/J). The stability of π(D) allows to define a monomorphism from

r(A/J)r⊗Mn into π(D). Thus πJ(D) contains an infinite projection. The argument

works also if each non-zero hereditary C *-subalgebra E of each quotient A/J of A

contains a non-zero projection r. This projection must be properly infinite by the

above arguments (applied to r and the quotients A/I for J ≤ I ≤ A). It again

follows that every non-zero a ∈ A+ is properly infinite, i.e., that A is purely infinite,

One gets that A is strongly p.i. if A has real rank zero case, because algebras of

real rank zero contain sufficiently many locally central elements: namely just the

projections.)

If A is weakly p.i. or ifM(A) is (itself) locally p.i., then there is n ∈ N such that

Mn(M(A)) has a properly infinite unit. (The first case has an estimate n ≤ 1 + 2k

if A is pi(k).)

Remark 2.16.10. If X is any (non-empty) locally compact Hausdorff space

and ω ∈ β(X).

Where is β(X) defined?

49 The stable and the unital case follow from Theorem M or from [463, thm. 8.6], this passes

to the general case by the extension property of s.p.i. algebras, which implies that the unit of

M(A) is properly infinite for s.p.i. A and that E(O∞,O∞) is s.p.i. Alternatively one can use the

arguments in Chapter 10.
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Let Iω the kernel of the character χω associated to ω. It is given by

f ∈ Cb(X) ∼= C(β(X)) 7→ f(ω) := χω(f) .

We define (similar to the case X = N) the C *-algebra Aω := Cb(X,A)/Jω, where

Jω := Iω · Cb(X,B)

It is not immediate but similar to the arguments used in case ω ∈ β(N)\N that

we have that A is strongly p.i. if Aω is strongly p.i.

Clearly the case ω ∈ X is trivial, because s.p.i. passes to quotients, cf. Propo-

sition ?? or Proposition 2.17.1.

The proof that strong pure infiniteness of A implies strong pure infiniteness

of Cb(X,A) (at least for σ-compact X) and of its quotient Aω follows from the

the strong pure infiniteness of A and factorizes over the strong pure infiniteness of

C0(X,A) and its multiplier algebra M(C0(X,A)) = Cb,st(X,M(A)) with σ-unital

A and σ-compact X.

(Here, Cb,st(X,M(A)) denotes the C *-algebra of bounded maps f : X 7→
M(A) with the property that x 7→ f(x)a and x 7→ af(x) are in Cb(X,A) for

all a ∈ A.)

Proof. to be filled in ??

We use the norm-function N : Cb(X,A) → Cb(X)+, that is defined as

N(f)(x) := ‖f(x)‖. The norm of πω(f) ∈ Aω is then given by χω(N(f)) = ‖πω(f)‖.
If χω(N(f)) = 0 then N(f) ∈ (Iω)+. We get infx∈X G(x) = 0 for all G ∈ (Iω)+ if

we use now that Iω ∼= C0(β(X) \ {ω}), and that X is dense in β(X).

Let a1, a2 ∈ A positive contractions and ε > 0. Since Aω is s.p.i., there exist

contractions f1, f2 ∈ Cb(X,A) such that the functions

gj,k := N(f∗j a
∗
jakfk − δj,ka∗jak) ∈ Cb(X)+

satisfy χω(gj,k) < ε/2 for j, k ∈ {1, 2}.

Let G(x) :=
∑
j,k(gj,k(x) − ε/2)+ . Then χω(G) = 0, i.e., G ∈ Iω. Thus,

infx∈X G(x) = 0. This implies the existence of x0 ∈ X with G(x0) < ε/2. But this

yields gj,k(x0) < ε for j, k ∈ {1, 2}, and d1 := f1(x0) and d2 := f2(x0) satisfy for

j, k ∈ {1, 2} the inequalities

‖d∗ja∗jakdk − δj,ka∗jak‖ < ε .

�

Question 2.16.11. Let A := C0((1/2, 1],K) and F ⊆ C∗((0, 1],M(A)) the

C *-subalgebra that is generated by A and f : t ∈ (0, 1] 7→ ψ(t) · 1M(A) with ψ(t) :=

min(2t, 1).

Is f an infinite element in F? (certainly not properly infinite).

( It seems not to be such ???, even if one tensors again...??? )
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17. Permanence properties of strongly p.i. algebras

We list some permanence properties of the class of strongly p.i. C *-algebras A

(i.e., where A is ”s.p.i.”, as defined in Definition ????? ):

Passage to non-zero hereditary C *-subalgebras D of A

A is s.p.i. if A contains a full hereditary C *-subalgebra D such that D is s.p.i.

Morita-equivalence,

Extensions,

passage to quotients

inductive limits

Each s.p.i. A is the inductive limit of the net of separable C *-subalgebras that

are s.p.i. and are relatively weakly injective in A.

Infinite direct products, Π∞(A1, A2, . . .), (and passage to its quotients, e.g. Aω

if An := A)

Commutator algebras of separable amenable C *-subalgebras of Aω if A is s.p.i.

spatial tensor product with arbitrary C *-algebras in case that prime-ideals are

cartesian. (Is exactness necessary?)

Some crossed products by quantum groups??

Proposition 2.17.1. If A is strongly p.i., then every hereditary C*-subalgebra

and every non-zero quotient A/J is strongly p.i.

Proof. Let D ⊆ A a hereditary C *-subalgebra, a1, a2 ∈ D+ positive contrac-

tions and ε > 0.

Since ‖a4γa2 − a2‖ ≤ 2γ for positive contractions a ∈ A+, we get, for γ := ε/4

and k, j ∈ {1, 2}, that

δj,k‖ajak − a2γ
j ajaka

2γ
k ‖ ≤ ε/2 .

There exist e1, e2 ∈ A such that, for j, k ∈ {1, 2} ,

‖e∗ja
γ
j ajaka

γ
kek − δjka

γ
j ajaka

γ
k‖ < ε/2 .

Because aγ1 and aγ2 are positive contractions in D, we obtain that the elements d1 :=

aγ1e1a
γ
1 and d2 := aγ2e2a

γ
2 are in D and satisfy, for j, k ∈ {1, 2}, the inequalities

‖d∗jajakdk − δjkajak‖ < ε/2 + ε/2 .

If J /A is a closed ideal, b1, b2 ∈ (A/J)+ and ε > 0, then there are a1, a2 ∈ A+ and

e1, e2 ∈ A such that πJ(ak) = bk and ‖e∗jajakek − δjkajak‖ < ε for j, k ∈ {1, 2} .

Thus, dj := πJ(ej), j = 1, 2 satisfy ‖d∗j bjbkdk − δjkbjbk‖ < ε for j, k ∈ {1, 2} . �

Proposition 2.17.2. If A is a purely infinite C*-algebra and B is a simple

non-elementary C*-algebra and at least one of A or B is exact, then A ⊗ B is

strongly purely infinite.
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Proof. Where is the general definition of ” non-elementary C *-algebra ” ???

Does it work well if B is UHF?

What is the bound if for every finite sequence y1, . . . , yn ∈ B, b1, b2 ∈ B+

and δ > 0 there exist contractions z1, z2, g1, g2, h1, h2 ∈ B such that ‖z∗1z2‖ ≤ δ,

‖[zk, y1]‖ ≤ δ for k = 1, . . . , n g∗k(z∗kbkzk)gk + h∗k(z∗kbkzk)hk = (bk − δ)+.

Since one of A or B is exact, we get from Lemma ?? that

F := {a⊗ b ; 0 6= a ∈ A+, 0 6= b ∈ B+}

is a “filling family” for A⊗B.

Definition of “filling family” for a C *-algebra ???

The non-zero elements a⊗b ∈ F are properly infinite in A⊗B and a⊗b ∼ a⊗c
in A⊗B for b, c ∈ B+ \ {0}.

Moreover we find for δ > 0 elements g1, . . . , gn ∈ B with
∑
g∗` bg` = (c − δ)+ .

h1, . . . , hn with

diag((a− δ)+, . . . , (a− δ)+) = [h1, . . . , hn]∗a[h1, . . . , hn] .

Then D :=
∑
` h` ⊗ g` ∈ satisfies D∗(a⊗ b)D = (a− δ)+ ⊗ (c− δ)+ .

Give controlling bound !!

If follows that it is enough to prove that for each δ > 0, elements

a1, a2, c1, . . . , cn ∈ A+, b1, b2, d1, . . . , dn ∈ B+, y :=
∑n
k=1 ck ⊗ dk there exist

non-zero contractions x1, x2 ∈ B+ with ‖xjbjxj‖ ≥ ‖bj‖ − δ and x1b1dkb2x2 = 0

for k = 1, . . . , n.

Provided one has a controlling bound for the xj and/or D depending on δ > 0.

... �

Theorem 2.17.3. The minimal (= spatial) C*-algebra tensor product A ⊗ B
is strongly p.i. if A and B satisfy at least one of the following conditions:

(1) A is strongly p.i. and the natural map (I, J) 7→ A ⊗ J + I ⊗ B from

prime(A)× prime(B) into prime(A⊗B) is surjective.

(2) A is weakly p.i, and B is exact, simple and non-elementary.

(??) ?????????????? If A is (quasi-)traceless, B is exact and tensorial absorbs

a tensorial self-absorbing separable unital C*-algebra D 6∼= C.

Proof. to be filled in ?? �

Corollary 2.17.4. Let A and B C*-algebras. The algebra A ⊗ B is strongly

p.i. if A is strongly p.i. and at least one of the C*-algebras A or B is exact.

Proof. Recall that, by our convention, A ⊗ B denotes the completion of the

algebraic tensor product A � B with respect to the spatial C *-norm. This is the

minimal C *-norm on the algebraic tensor product A�B of C *-algebras A and B,
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cf. [766], [767, thm. IV.4.19]. In particular each non-zero closed ideal of A ⊗ B
has non-zero intersection with A�B.

More precisely, it is shown in [766], but is not explicitly stated there, that if a

C *-semi-norm N on A � B has the property that N(a ⊗ b) > 0 for each non-zero

a ∈ A+ and non-zero b ∈ B+, then ‖x‖max ≥ N(x) ≥ ‖x‖∗ for each x ∈ A � B,

where we here (temporary and only here) denote by ‖x‖∗ the spatial norm. This

shows that ‖x‖∗ is the minimal possible C *-norm on A�B, from now on denoted

by ‖x‖min := ‖x‖∗ or simply by ‖x‖.

But this shows even more: If K is a non-zero closed ideal of A⊗B then there

exist non-zero positive contractions a ∈ A+ and b ∈ B+ such that a ⊗ b ∈ K,

because otherwise for the quotient map A⊗B → (A⊗B)/K would hold ‖x‖min ≥
‖πK(x)‖ ≥ ‖x‖min for all x ∈ A � B, which implies K = {0}. Compare also the

stronger result of Lemma A.24.1, in Section 24 of Appendix A.

Thus, every non-zero closed ideal K of the spatial tensor product A⊗B contains

a tensor product I ⊗ J of non-zero ideals I / A and J / B.

Exactness of a C *-algebra A means that for every C *-algebra B and each

closed ideal J / B the sequence

0→ A⊗ J → A⊗B → A⊗ (B/J)→ 0

is short exact. The exactness property of A induces the exactness of I and A/I for

each closed ideal I / A of A. Moreover the exactness of A yields the local lifting

property for its quotients A/I. The latter yields also the short exactness of the

sequences

0→ I ⊗B → A⊗B → (A/I)⊗B → 0 ,

and all together imply – now by the 3 × 3-lemma (also called “5 of 6 lemma”) of

category theory – the short exactness of

0→ A⊗ J +B ⊗ I → A⊗B → (A/I)⊗ (B/J)→ 0 ,

i.e., if A or B is exact then for each I /A and J /B there are natural isomorphisms

(A⊗B)/(A⊗ J +B ⊗ I) ∼= (A/I)⊗ (B/J) .

Recall that a closed ideal K / C of a C *-algebra is prime, K ∈ prime(C), if

K1 ∩ K2 ⊆ K implies always that at least one of K1 and K2 is contained in K

for ideals K1 / C and K2 / C. The original definition says only that K1 ∩ K2 =

K implies K1 = K or K1 = K, but one can change this into the above more

flexible formulation if we replace Kj by K + Kj for j = 1, 2. Then it means that

πK(K1) ∩ πK(K2) = 0 implies that πK(K1) = 0 or πK(K2) = 0.

Note that all primitive ideals are prime [616, prop. 3.13.10], and in case of

separable C *-algebras all prime ideals are primitive, cf. [616, prop. 4.3.6.]. For

non-separable A the space of prime ideals prime(A) is the “sobrification” or “point-

wise completion” of the space Prim(A) of primitive ideals. It means that the lattice

of open subsets of Prim(A) is the same as the lattice of open subsets of prime(A).
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If one of A or B is exact, then the map (I, J) 7→ A⊗J+I⊗B from prime(A)×
prime(B) into prime(A⊗B) is surjective. To see this, observe that, for a prime ideal

K of A⊗B, the maximal possible ideals I ∈ I(A) and J ∈ I(B) with A⊗J+I⊗B ⊆
K are prime, and that the exactness implies then that K = A ⊗ J + I ⊗ B. The

maximal I and J with the properties I ⊗B ⊆ K and A⊗ J ⊆ K are well-defined,

because, e.g. the set of all algebraic *-ideals I ∈ A with I ⊗B ⊆ K is closed under

finite and infinite algebraic sums and under taking the closure.

Indeed, the epimorphism A⊗B → A/I⊗B/J has, – by exactness of A or of B –,

precisely the kernel A⊗J+I⊗B, as we have seen above. If π : A⊗B → A/I⊗B/J
denotes the quotient map, then π(K) becomes an ideal of A/I⊗B/J that must have

trivial intersection π(K) ∩ (A/I � B/J) = {0} with the algebraic tensor product

A/I�B/J , because otherwise our above considerations on the minimal (= spatial)

C *-norm (here on A/I � B/J) show that there would be elements c ∈ A+ and

d ∈ B+ with c⊗ d 6∈ A⊗ J + I ⊗B and c⊗ d ∈ K. But the latter would imply, by

primeness of K, that also the one of the ideals A⊗ J1 + I ⊗ B or A⊗ J + I1 ⊗ B
is contained in K, where I1 := I + span(AcA) and J1 := J + span(BdB). This

contradicts the maximality of the above defined ideals I and J with the property

A⊗ J + I ⊗B ⊆ K.

In fact, the map

(I, J) ∈ prime(A)× prime(B) 7→ A⊗ J + I ⊗B ∈ prime(A⊗B)

is moreover a homeomorphism of (sober) locally quasi-compact T0 spaces if one of

A or B is exact.

Thus, Theorem 2.17.3(i) applies. �

Since C0(X,A) ∼= C0(X)⊗A and C0(X) is exact, we get from Theorem 2.17.3,

Corollary 2.17.4 and Proposition ??:

Corollary 2.17.5. For every locally compact Hausdorff space X, C0(X,A) is

strongly purely infinite, if and only if, A is strongly purely infinite.

Theorem 2.17.6. Suppose that A is σ-unital. Then M(A) is strongly p.i., if

and only if, A is strongly p.i.

Proof. By Proposition 2.17.1 the ideal A of M(A) is strongly p.i., if M(A)

is strongly p.i.

to be filled in, see extra SPI-paper ?? �

Corollary 2.17.7. Let X a non-empty σ-compact locally compact Hausdorff

space. The algebra Cb(X,A) is strongly p.i., if and only if, A is strongly p.i., if and

only if, Q(X,A) := Cb(X,A)/C0(X,A) is strongly p.i., if and only if, Q(X,A)|F
is strongly p.i. for a non-empty closed subset F of β(X) \X.

Proof. The algebra A is s.p.i. if and only if A⊗C0(X) is s.p.i., by Corollary

2.17.5.
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If X is σ-compact, A is s.p.i. and D ⊆ A is a σ-unital hereditary C *-subalgebra,

the algebra C0(X,D) ∼= D ⊗ C0(X) is σ-unital and s.p.i. By Theorem 2.17.6, it

follows that M(D ⊗ C0(X)) is s.p.i. if and only if D ⊗ C0(X) is s.p.i.

The algebra Cb(X,D) is an ideal of the algebra M(C0(X,D)). It implies that

Cb(X,D) is s.p.i. if C0(X,D) is s.p.i. (and σ-unital).

Since X is σ-compact, the C *-algebra Cb(X,A) is the inductive limit of its

C *-subalgebras Cb(X,D) with D ⊆ A σ-unital hereditary C *-subalgebras of A,

we obtain that Cb(X,A) is s.p.i. if A is s.p.i.,

Now use that Q(X,A)|F is a quotient of Cb(X,A).

Thus, Q(X,A) (case F = β(X) \ X), Q(X,A)|F and, in particular,

Q(X,A)|{ω} =: Aω for a point ω ∈ F ⊆ β(X) \X are strongly p.i. by Proposition

2.17.1.

If Aω is s.p.i. for some ω ∈ β(X) then A is s.p.i. by Remark 2.16.10. �

We do not know if it is necessary to suppose that X is σ-compact in Corollary

2.17.7.

If X is not σ-compact then in general Cb(X,A) is not anymore the inductive

limit of its C *-subalgebras Cb(X,D) with hereditary σ-unital D ⊆ E, andM(D⊗
C0(X)) is possibly not s.p.i.

The class of strongly purely infinite C *-algebras is closed under extension by

the following:

Theorem 2.17.8. Let J /A a closed ideal. The C*-algebra A is strongly purely

infinite if and only if J and A/J are strongly purely infinite.

Proof. We know that A is purely infinite by Theorem ??.

The proof can easily reduced to the case, where A is separable and unital

(thus contains a copy of O∞ unitally), and where J is stable. The proof uses the

K1-injectivity of A as an important tool.

See [443] for a proof of Theorem 2.17.8. �

18. Strongly p.i. crossed products and generalized Toeplitz algebras

change whole section.

Proposition 2.18.1. Suppose that A is a C*-algebra and that α ∈ Aut(A) has

the property that {0} and A are the only α-invariant ideals.

simple and p.i. crossed products appear in following cases:

If, for every a ∈ A+ \ {0} and n ∈ N there exist b ∈ A+ \ {0} such that b ≤ a

and αk(b) are pairwise orthogonal, then Aoα Z is simple and purely infinite.

above this is wrongly stated

Full-corner endomorphisms, ...????
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There is a projection p ∈ Z(A∗∗) such that
∨
n∈Z α

n(p) is faithful for A

(or: is not contained in any α-invariant open central projection of A∗∗ ????)

and αm(p) ⊥ αn(p) for m 6= n.

For every non-zero α-invariant closed central projection p and every n ∈ N,

a ∈ A+, ε > 0 there is a non-zero central projection q ≤ p with αj(q)αk(q) = 0 for

−n ≤ j, k ≤ n and ‖ra‖+ ε ≥ ‖pa‖. Then Aoα Z is simple.

A simple and p.i., for every n ∈ N there is a unitary Un ∈ F (A) such that

α(Un) = e2πi/nUn. Then Aoα Z is simple.

The action F (α) on F (A) has full spectrum.

Proof. ??

(Reduction to separable case?) �

Corollary 2.18.2. Suppose that A is purely infinite and simple, and α ∈
Aut(A) is such that α∗ has infinite order in Aut(K∗(A)). Then A oα Z is purely

infinite and simple.

Proof. to be filled in ?? �

Corollary 2.18.3. Suppose that B is a simple C*-algebra and ψ : B → B is

an endomorphism from B into B, such that for each a, b ∈ B+ with ‖b‖ = 1 ≥ ‖a‖
and for each ε > 0 there are k ∈ N and d ∈ B with ‖ψk(a)−d∗bd‖ < ε (respectively

‖a− d∗ψk(b)d‖ < ε).

Then the semi-crossed product B oψ N is purely infinite.

Proof. Consider the natural circle action on B oψ N ...

to be filled in ??

�

Corollary 2.18.4. Suppose that B is stable and σ-unital and that

h : B ↪→M(B)

is a non-degenerate *-monomorphism.

Let s, t ∈M(B) isometries that are canonical generators of a copy of O2.

Suppose that the following conditions (i)–(iii) are satisfied:

(i) h(B) ∩B = {0} .

(ii) For each 0 6= b ∈ B the closed ideal of B generated by h(b)B is equal to

B.

(iii) The C*-morphism h is approximately unitarily equivalent to the C*-

morphism δ2 ◦ h := sh(·)s∗ + th(·)t∗.

Then the Toeplitz algebra TE of the Hilbert B-B bi-module E defined by the

left-action of B on B – given by h : B →M(B) – is KK-equivalent to B.
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?????????????

Proof. Consider the endomorphism β : C → C on C := S for S :=

span(
⋃
nM(h)n(B)), given by β := M(h)|C. Then (indlim(β : S → S)) o Z is

simple and purely infinite, because Corollary 2.18.3 applies to (C, β). �

Next Def.s should be quoted... give them precise !...

Definition 2.18.5. Let H denote a Hilbert A-B bi-module.

Let A a separable C *-algebra and H a Hilbert A-A bi-module.

T (H) (generalized) Toeplitz-Fock C *-algebra corresponding to H.

Let OH denote the Cuntz-Pimsner C *-algebra corresponding to T (H).

The gauge group is available ...

(where is Def. of ”gauge group” ???)

The natural action of bi-module automorphisms and its generalizations. ...

Remark 2.18.6. Automorphisms of H act on T (H).

Special case: circle action. (Def. of ”Circle action” ?)

Moreover: epimorphisms and other constructions.

On, A = C, H ∼= Cn

O∞, A = C, H = separable Hilbert space of countable dimension.

Compare Appendix A.

Corollary 2.18.7. Let A a separable C*-algebra and H a

countably generated

Hilbert A-A bi-module. Then T (H) is separable.

Quotients of T (H) can be found by invariant ideals of H.

If A is nuclear (respectively is exact, has WEP = is weakly injective, etc. ...)

then T (H) is nuclear (respectively exact, has WEP = is weakly injective ???,

etc....).

If d(A) ∩K(H) = {0} and d is injective then T (H) = OH

OH is simple if ??????.

T (H) is simple, separable, stable and nuclear if A is separable, stable and nu-

clear, d(A) ∩K(H) = {0} and there are no-invariant ideals (modular quotients).

Proof. Use Lemma ??

(ref. is:: ” lem:App.A.fix-algebra.of.compact.group”)

and the gauge circle action on T (H) for nuclearity, exactness and WEP ( =

weak injectivity ).

(here WEP means ”weak expectation property” ??) �
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Definition 2.18.8. An automorphism α of a C *-algebra A is properly outer,

if for every a ∈ Ã = A + C1 and every non-zero hereditary C *-subalgebra B of A

holds that

inf{ ‖xaα(x)‖ ; 0 ≤ x ∈ B, ‖x‖ = 1 } = 0 .

Remark 2.18.9. Suppose that A is separable.

(1) By [578, thm. 6.6], the automorphism α is properly outer, if and only if, for

every non-zero α-invariant closed ideal I / A and every unitary u in the multiplier

algebra M(I) holds ‖α|I −Adu‖ = 2.

This is also equivalent to:

There is no non-zero α-invariant I / A such that there is a *-derivation δ of I and

a unitary u ∈M(I), with α|I = Adu ◦ exp δ.

Check next again

(2) Proper outer-ness of α is implied by the property that for each primitive

ideal J of Aoα Z the group T̃(α, J) of λ ∈ T (= S1) with α̂λ(J) = J is non-trivial,

where α̂ : T → Aut(A oα Z) means the dual action of the Z-action n ∈ Z 7→ αn.

(See proof of [478, lem.1.1].)

(3) If A is separable and simple, then

{1} 6= T̃(α) :=
⋂
J

T̃(α, J)

implies that α is inner, cf. [577].

(4) The subgroup T̃(α) ⊆ T is called the strong Connes spectrum of α, cf. [477].

Theorem 2.18.10. Suppose that G 6= {e} is a countable discrete group, that

A is a separable C*-algebra A of infinite dimension, and that α : G → Aut(A) is

an action of G on A such that the automorphism α(g) of A is a properly outer for

each g ∈ G \ {e} (cf. Definition 2.18.8).

If there is (fixed) n ∈ N such that, for each a, b ∈ A+ with ‖a‖ ≤ 1 = ‖b‖ and

ε > 0, there are g1, . . . , gn ∈ G and d1, . . . , dn ∈ A with ‖a−
∑
k d
∗
kα(gk)(b)dk‖ < ε ,

then the reduced crossed product Aoα,r G is simple and purely infinite.

Proof. Let {0} 6= I / A invariant under α(G), and let b ∈ I+ with ‖b‖ =

1. Furthermore, let a ∈ A+ with ‖a‖ = 1 and ε > 0. By assumption, we find

g1, . . . , gn ∈ G and d1, . . . , dn ∈ A with ‖a + I‖ ≤ ‖a −
∑
k d
∗
kα(gn)(b)dk‖ < ε.

Thus a ∈ I and I = A. It follows now from the proof of [478, thm. 3.1] or

by [578, thm. 7.2] that C := A oα,r G is simple. It can not be (linearly) one-

dimensional, because A is (isomorphic to) a C *-subalgebra of C. We can consider

A as a subalgebra of C. Suppose that C is of finite dimension, then A is unital and

the reduced group C *-algebra of G is contained in C

...??? further?

We show that the simple C *-algebra Aoα,r G is locally purely infinite.

To be filled in ?? �
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Definition 2.18.11. Let α : G → Aut(A) an action of a discrete group G on

a C *-algebra A. We write also α(g) for the natural extension α(g)∗∗ to the second

conjugate A∗∗ of A.

The action α has the weak Rokhlin property if the center of A∗∗ contains

a projection p with the properties

(i) pα(g)(p) = 0 for all g ∈ G \ {e}, and

(ii) supg∈G ‖p · α(g)(a)‖ > 0 for all nonzero a ∈ A.

The action α has the residual weak Rokhlin property if the projection p ∈
Z(A∗∗) satisfies (i) and the following stronger property (ii*) instead of (ii):

(ii*) For each a ∈ A and every α(G)-invariant closed ideal J / A (with central

support qJ in A∗∗) ‖a+ J‖ = supg∈G ‖(1− qJ)p · α(g)(a)‖.

The action α of a locally compact group G on A is exact if Joα|,rG is the kernel

of the natural epimorphism A oα,r G → (A/J) o[α],r G for every α(G)-invariant

ideal J / A.

An l.c. group G is exact if every action of G on C *-algebras is exact.

Lemma 2.18.12. The weak Rokhlin property passes to subgroups H of G.

The weak Rokhlin property for G = Z or G = Zn implies that α(g) is properly

outer for each g ∈ G \ {e}.

The residual Rokhlin property passes to quotients.

Proof. to be filled in ?? �

Theorem 2.18.13. Suppose that A is a separable C*-algebra, G a countable

discrete exact group, and α : G→ Aut(A) is an action that satisfies (I) and (II):

(I) α satisfies the residual Rohklin∗ property, i.e., the center Z(A∗∗) of the

second conjugate of A contains a projection P with the following properties

(a) Pα(g)(P ) = 0 for all g ∈ G \ {eG}
(b) If R ≤ S are α(G)-invariant A-open central projections with R 6= S,

then there is g ∈ G with (S −R)α(g)(P ) 6= 0.

(II) For any a, b ∈ A+, c ∈ A and ε > 0 there ared1, d2 ∈ A and g1, g2 ∈ G
with ‖d∗1ad1 − α(g1)(a)‖ < ε, ‖d∗2bd2 − α(g2)(b)‖ < ε, and ‖d∗1cd2‖ < ε.

Then Aoα,r G is strongly purely infinite.

compare the following with the new observations on HarKir and

KirSira

Corollary 2.18.14. Suppose that A is stable and separable, that

h : A→M(A) is non-degenerate, faithful, and satisfies

(i) h and its infinite repeat δ∞ ◦ h are approximately unitarily equivalent in

M(A). (In particular, h(A) ∩A = {0}.)
(iii) a ∈ span(Ah(a)A) for all a ∈ A+.
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(ii) if J ∈ I(A) and h(J)A ⊆ J , then h(J) = h(A) ∩M(A, J).

(iv) M(h) ◦ h is approximately unitarily equivalent to h in M(A). Check!!!

Then T (H) = OH for the Hilbert A–A bi-module H := A defined by h : A→M(A),

and T (H) is strongly purely infinite.

check: Moreover, h : A→M(A) defines a KK(C ; A,M(A)) equivalence of A

and T (H) = OH with respect to the matrix operator convex cone C generated by h.

This seems strange? Because M(A) is often KK-trivial?



CHAPTER 3

Nuclear c.p. maps and operator-convex cones

We have seen in Chapter 2, among others, that simple purely infinite algebras in

the sense of J. Cuntz are purely infinite in the sense of Definition 1.2.1. Moreover we

have shown that locally purely infinite (i.e., l..p.i.) simple C *-algebras are strongly

purely infinite in the sense of Definition 1.2.2. Now we study the effect of the

property of strong pure infiniteness for C *-algebras on residual nuclear c.p. maps

between them. (Notice that strong pure infiniteness of C *-algebras and residual

nuclearity of C *-morphisms are in general completely unrelated properties.)

We prove in this Chapter 3, among others, that the ultrapower Dω and asymp-

totic corona Q(R+, D) of strongly purely infinite algebras D (cf. Definition 1.2.2)

satisfy a local version of Weyl–von-Neumann property (WvN-property of Definition

1.2.3), cf. Proposition 3.2.15. It implies that the algebras Q(R+, D) are strongly

purely infinite in the sense of Definition 1.2.2, because they are rich of approximately

inner completely positive maps from separable C *-subalgebras A into commutative

C *-subalgebras C that fix given elements of A∩C. It is a basic observation for the

later applications with help of our cone-related KK-theory and to the proof of its

equivalence with cone-related un-suspended E-theory.

The WvN-property allows to prove in Chapter 5 variants of generalized Weyl-

von Neumann theorems. We use the results of Chapters 3 and 5 in Chapter 6 for

the proof of Theorem A and for the proof of Theorem 6.3.1 that is a special case

of the, in the last Chapter 12 finally proven, Theorem K.

Remark 3.0.1. We get later results of the following form, that one can consider

as an approximate factorization over the cones of sums of matrix algebras.

Let A and B C *-algebras, U : A → B a nuclear map, X ⊂ A+ a finite subset

of the positive contractions in A and ε > 0.

Then there exist following

(a) a finite dimensional C *-algebra F ,

(b) a c.p. map V : F → B with ‖V ‖ = ‖U‖,
(c) a C *-morphism φ : C0((0, 1], F )→ A

(d) a contraction d ∈ A+ (almost commuting with φ(C0((0, 1], F )) ?)

such that ‖U(dad)−U(a)‖ < ε for all a ∈ X, and dist(dad, φ(C0((0, 1], F ))) < ε

for all a ∈ X, and ‖V (g(1))− U(dnφ(g)dn)‖ < ε for all g ∈ C0((0, 1], F ).

349
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This means: We can locally “compress” X ⊂ A – by some approximately inner

c.p. map – into a suitable C *-subalgebra φ(C0((0, 1], F )) of A and then apply the

given nuclear map U to this compressed subset of φ(C0((0, 1], F )).

This is then in a sense “almost” the restriction U to X.

HERE IS NEEDED a list of “corona” type algebras:

Q(R+, B) (!!!), Q(X,B) (X with finite dimension??), Qs(B) (!!!), some quo-

tients of those, e.g. ultrapowers ...

FIND list of defining properties! Certainly more than sub-Stonean!?

(At present state, in the terminology of Ilijas Farah ... ).

B∞ and Bω among them?,

Desire: Should be σ-sub-Stonean.

Moreover, should satisfy Kasparov’s Technical Lemma (KTL).

It should also require that they all have a property that there are sufficiently

many “good” Abelian C *-subalgebras that allows to get approximate factorization

of separable C *-subalgebras through algebras with regular abelian C *-algebras.

Would be interesting to see how is the interplay... σ-sub-Stonean versus (KTL).

Where is the Definition ”def:res.nuc.cp.map” ?? ???: of residual nuclear (or

”residually nuclear”) c.p. maps V : A→ B that are “ideal system preserving”, i.e.,

V (A ∩ J) ⊆ J for all J ∈ I(B) (in case A ⊆ B).

Or that (more generally) an map λ : J ∈ I(B)→ λ(J) ∈ I(A) from the system

of ideals J ∈ I(B) of B to the system of ideals I(A) is given and we require that

V (λ(J)) ⊆ J . ????

The proof of next Theorem needs:

Lemma 3.0.2. Let A ⊆ B C*-algebras, and suppose that A or B strongly p.i.

Then each residually nuclear c.p. contraction V : A→ B ( 1 ) is approximately

1-step inner, i.e., for each finite subset F ⊂ A and ε > 0 there exists a contraction

d ∈ B with ‖V (a)− d∗ad‖ < ε for all a ∈ F .

Proof. WHERE is the Def. of to be filled in ?? �

Need for later applications the following 1-step inner-ness

(in blue, to be moved to suitable place).

But perhaps we must suppose that ϕ is itself nuclear?

Define the notion of ‘‘corona type C *-algebra’’

Theorem 3.0.3. Let A an exact C*-algebra and ϕ : A ⊗ O∞ → B a C*-

morphism, and suppose that V : A→ B is a nuclear c.p. map that has the following

Property (*):

1 The Definition ?? of residual nuclear c.p. maps includes that V is “ideal system preserving”,

i.e., V (A ∩ J) ⊆ J for all J ∈ I(B).
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(*) For every a ∈ A+, its image V (a) is contained in the closure of the alge-

braic ideal span(Bϕ(a⊗ 1)B) of B that is generated by ϕ(a⊗ 1).

Then there exist for every finite subset X ⊆ A and ε > 0 an element b ∈ B with

‖b‖2 ≤ ‖V ‖ and

‖b∗ϕ(a⊗ 1)b− V (a)‖ < ε for all a ∈ X .

If, in addition, A is separable and B is a “corona” type algebra, then V is

one-step “inner”, i.e., V (a) = b∗ϕ(a ⊗ 1)b for all a ∈ A for some b ∈ B with

‖b‖2 ≤ ‖V ‖.

Proposition 3.0.4. If A is separable and exact, B is strongly purely infinite

(or if B is not necessarily s.p.i., but A is strongly p.i.) and ϕ : A→ B is a nuclear

C*-morphism, then ϕ “extends” to a C*-morphism

ϕe : A⊗O∞ → Bω := `∞(B)/cω(B)

with ϕe(a⊗ 1) = ι(ϕ(a)) for a ∈ A and ι(b) = (b, b, . . .) + Jω for b ∈ B.

If B is a strongly purely infinite “corona” algebra

? Precise Def. of ‘‘corona C*-algebra’’ C?

Perhaps in Chp. 5, or extra section in Appendices?

There should be σ-unital D such that C is a non-zero hereditary

subalgebra of M(D)/D,

Characterize coronas by ‘‘better than sub-Stonean’’? ,

then ϕ itself extends to a C*-morphism ψ : A⊗O∞ → B with ψ(a⊗ 1) = ϕ(a)

for a ∈ A.

Transfer Remark 3.0.5 to suitable place?!

Remark 3.0.5. Operator-matrix calculations appear in most chapters. We

identify often the ternary rings Mp,q(A) ⊆ Mn(A) with max(p, q) ≤ n with the

tensor productsMp,q⊗A. The results of calculations in both of them look sometimes

different if we do not care about different interpretations of this calculations.

This difference between this two conventions appears because the correct mul-

tiplication r · c ∈ e11 ⊗ A of r ∈M1,n ⊗ A and c ∈Mn,1 ⊗ A comes from the iden-

tification of columns in Mn,1(A) with tensors in Mn,1 ⊗A and of rows in M1,n(A)

with tensors in M1,n ⊗A.

Then M1,n(A) ·Mn,1(A) = M1,1(A) = A but (M1,n⊗A) · (Mn,1⊗A) = e1,1⊗A
considered in Mn⊗A. If we use in applications both of them, then we have in some

cases to observe that we must identify a ∈ A with e11 ⊗ a ∈ e11 ⊗A.

In other calculation we have to identify a ∈ A with 1n⊗ a in Mn⊗A. and Mn

with Mn(C · 1M(A)) ⊆M(Mn(A)) .

If the multiplier algebraM(A) contains a copy of O2 with 1M(A) ∈ O2, and all

elements have to be considered only up to MvN-equivalence, then such differences

are usually not important.
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1. Exact C*-algebras and nuclear maps

We recall some definitions and basic facts concerning nuclear maps, exact C *-

algebras and nuclear C *-algebras. A C *-algebra B is called nuclear if its algebraic

tensor B � C product with any other C *-algebra C admits only one C *-algebra

norm ( 2 ).

U. Haagerup showed in [340] with help of results of A. Connes in [159] that

a C *-algebra is nuclear if and only if it is amenable ( 3 ). We don’t use the (co-

homological) amenability here, because we work here with special classes of nuclear

maps, and therefore, we use characterizations of nuclear maps and nuclear C *-

algebras that we recall in Remark 3.1.2(i).

A C *-algebra B is called exact if, for every short exact sequence of C *-

algebras,

0→ J → A→ A/J → 0 ,

the spatial (or “minimal”) tensor products with B of this sequence,

0→ J ⊗B → A⊗B → (A/J)⊗B → 0

is again exact, i.e., if the closure J⊗B of the algebraic tensor product J�B in A⊗B
is the same as the kernel of the natural C *-algebra epimorphism A⊗B → (A/J)⊗B.

With other words: The algebra B is exact if the functor A 7→ A ⊗ B is a short

exact functor in the category of C*-algebras.

Every nuclear C *-algebra B is exact, because the functor A 7→ A ⊗max B is

short-exact for every C *-algebra B by the “universality” of the maximal C *-tensor

product A⊗max B ( 4 ).

Definition 3.1.1. Let A and B be C *-algebras and let V : A → B be a

completely positive map. The map V will be called factorable if it factorizes

through Mn for some n, i.e., if there exist completely positive maps S : A → Mn

and T : Mn → B such that the diagram

A
V //

S   

B

Mn

T

>>

commutes.

By definition, a map V : A→ B is nuclear if V can be approximated in point-

norm topology by factorable maps (i.e., is the point-wise limit of a net of factorable

maps).

2 It was called property (T) by Takesaki [766].
3 The C *-algebra B is amenable if every derivation of an dual Banach B-bi-module X∗ is

inner, i.e., if X is a Banach B-bi-module and if ∂ : B → X∗ satisfies ∂(ab)(x) = ∂(b)(xa)+∂(a)(bx)

for all a, b ∈ B and x ∈ X, then there is ρ ∈ X∗ with ∂(a)(x) = ρ(ax− xa) for all a ∈ B, x ∈ X.
4 The algebraic sequence 0→ J �B → A�B → (A/J)�B → 0 of algebraic tensor products

is always exact, and the same holds then automatic for the maximal C *-algebra tensor product

⊗max – in place of � – by universality and uniqueness of bi-functor �.
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We say that a completely positive map V : A → M from a C *-algebra into a

von-Neumann algebra M is weakly nuclear if it can be approximated in point-

σ(M,M∗) topology by factorable maps.

The next remark collects a few key observations concerning nuclearity and

exactness.

Remark 3.1.2. In the following denotes CP(A,B) the (point-norm) closed

convex cone of completely positive maps from A into B. The algebraic tensor

product and the minimal (respectively maximal) C *-algebra tensor product of C *-

algebras will be denoted respectively by A�B and A⊗B (respectively by A⊗maxB),

corresponding to the minimal C *-norm ‖ · ‖min (respectively to the maximal C *-

norm ‖ · ‖max on A�B).

(o) The set CPf (A,B) of factorable c.p. maps V : A → B is a convex cone in

the space L(A,B), – the bounded linear maps from A to B with finite-dimensional

image in B –, but with the important additional property that the map a 7→ c∗
(
V ⊗

idk(r∗(a)r)
)
c is in CPf (A,B) for every k ∈ N, every row matrix r ∈ M1,k(M(A))

and every column matrix c ∈Mk,1(M(B)) :

Indeed: Let k = 1, 2, Vk = TkSk with c.p. maps Sk : A→Mnk and Tk : Mnk → B.

Then V1 + V2 = T3S3 with

S3 : A 3 a 7→ S1(a)⊕ S2(a) ∈Mn1 ⊕Mn2 ⊆Mn3 ,

and suitable c.p. maps T3 : Mn3 → B for n3 := n1 + n2, e.g. for T3 := R ◦ P
where P denotes the conditional expectation from Mn3 onto Mn1 ⊕Mn2 ⊂ Mn3 ,

and R(c⊕ d) := V1(c) + V2(d) for c⊕ d ∈Mn1
⊕Mn2

).

The set CPf (A,B) is a matrix operator-convex cone in sense of Definition 3.2.2

and can be described as follows:

If V = TS, then V ⊗ idm = (T ⊗ idm)(S ⊗ idm) is in CPf (A ⊗Mm, B ⊗Mm) ,

(S ⊗ idm)(r∗(·)r) is in CP(A,Mnm) for r ∈ A ⊗ Mn and c(T ⊗ idm)(·)c∗ is in

CP(Mnm, B) for c ∈ B.

Notice that CPf (A,B) is contained in the set CPf.r.(A,B) ⊆ CP(A,B) of

c.p. maps of finite rank inside CP(A,B). (But it is still not clear if all c.p. maps

V : A → B of finite vector space dimension dim(V (A)) < ∞ are contained in

CPf (A,B)).

The operator-norm closure of CPf (A,B) in the Banach space of general

bounded linear maps L(A,B) ( 5 ) contains all c.p. maps V : A 7→ B of finite rank

cf. Lemma 3.1.11(iv).

The finite rank self-adjoint linear maps from A to B are differences of c.p. maps

of finite rank (using Lemma 3.1.4).

(i) Simple Hahn-Banach separation arguments (cf. proof of [426, lem. 2] or similar

arguments in Section 7) show, that a completely positive map V : A→ B is nuclear,

5 This “uniform” closure of CPf (A,B) is usually smaller than the point-norm closure, and

therefore does not contain all nuclear maps in general.
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if and only if, for every C *-algebra D,

V ⊗max idD : A⊗max D → B ⊗max D

annihilates the kernel of the natural epimorphism A⊗maxD → A⊗minD, (cf. [140],

[726, prop. 1.2]). I.e., V ∈ CP(A,B) is nuclear, if and only if, V ⊗maxidD naturally

factorizes over the spatial (= minmal) C*-algebra tensor product A⊗D.

It suffices to consider unital singly generated D (e.g. by taking stabilization

and unitization). If we let G := C∗(F2), the full group C *-algebra of the free group

F2 on two generators. Then D ∼= G/J for a suitable closed ideal J . G.

Every C *-semi-norm µ on the algebraic tensor product A�G with µ(a⊗1) > 0

for a 6= 0 is given on c ∈ A � G by µ(c) = ‖(id⊗πJ)(c)‖β for suitable J . G and

some C *-norm ‖ · ‖β on A � (G/J) with ‖ · ‖min ≤ ‖ · ‖β ≤ ‖ · ‖max , i.e., the

kernel of A⊗max D → A⊗β D is contained in the kernel of A⊗max D → A⊗min D

for D = G/J ( 6 ). Now notice that B ⊗max (·) is always a short exact functor, i.e.,

that B ⊗max (J) is the kernel of B ⊗max G → B ⊗max (G/J). If we combine the

above observations using a diagram check, then we can reformulate the tensorial

nuclearity criterion equivalently by the following more flexible criterion:

A map V ∈ CP(A,B) is nuclear, if and only if, (V ⊗max id)(I) is contained in

B⊗max J for every closed ideal I of A⊗max C∗(F2) with I ∩ (A⊗ 1) = {0} and the

largest ideal J of C∗(F2) with A⊗max J ⊆ I. ( 7 ).

In particular, the identity map idA on a C*-algebra A is nuclear if and only if

A is nuclear ([140], [426], [145]).

(ii) A C *-algebra A ⊆ L(H) is exact, if and only if, the inclusion map A ↪→ L(H)

is nuclear. We gave two different proofs in [432] and in [438]. The proof in [432]

uses part(i), a simple intersection result (less general than the “distance” lemma

[438, lem. 3.6]), an inspection of kernels in certain commutative diagrams, and the

fact that on the algebraic tensor product L(H)�C∗(F ) of L(H) with the full group

C *-algebra C∗(F ) of the free groups F on countably many generators there is only

one C *-norm. The authors proof in [432] of the uniqueness of the C *-norm on

L(H)� C∗(F ) has been simplified considerably by G. Pisier [640].

(iii) The composition of a nuclear map with any other completely positive map is

again nuclear. In particular:

(a) W = b∗V (·)b is nuclear if V is nuclear.

(b) The restriction V |D : D → C is nuclear if D ⊆ A is a C *-subalgebra and

V : A→ C is nuclear.

Therefore from (i) and (ii) we see, that nuclear C*-algebras are exact

and that C*-subalgebras of exact C*-algebras are again exact.

6 It follows from [766]: A C *-seminorm ν on A�D satisfies ν(c) ≥ ‖c‖min for all c ∈ A�D ,

if and only if, ν(a⊗ d) > 0 for each non-zero a ∈ A+ and d ∈ D+. See also [767, thm. IV.4.19].
7 It is a special case of a characterization of point-norm closed m.o.c. cones C ⊆ CP(A,B)

by its associated action ΨC : A⊗max C∗(F2) 7→ A⊗max C∗(F2) cf. Section 7.
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(c) Every completely positive map from A to B is nuclear if A or B is nuclear,

cf. Part (i).

(d) Every completely positive map from A to B is nuclear if A is exact and B

has the weak expectation property (i.e., equivalently, B is weakly injective

in the sense: ψ⊗maxidC : B⊗maxC → D⊗maxC for every *-monomorphism

ψ : B → D and every C *-algebra C).

Indeed, let A ⊆ L(H) and B ⊆ L(H) (for sufficiently large H and with

embedding maps ηA and ηB), then a c.p. contractions V : A→ B extends

to a c.p. contraction T : L(H)→ L(H) by the Arveson extension theorem

(complete injectivity of L(H), cf. [42]), i.e., T ◦ ηA = ηB ◦ V for the

inclusion maps ηA and ηB . Then T ◦ ηA is nuclear by (ii). The nuclearity

criteria in part (i) and the above given criteria for the weak injectivity of

B show that V : A→ B is nuclear.

(e) In general a completely positive map V : A → B ⊆ C is not nuclear as a

map from A to B if V ∈ CPnuc(A,C), i.e., where V becomes nuclear if

considered as a map from A to C.

(Use part (ii) and the existence of non-nuclear exact C *-algebras A, as

e.g. V := idA , A = B = C∗red(G) ⊆ L(`2(G)) =: C for G := SL2(Z).)

(f) Every c.p. map V : A → B of finite rank, i.e., with Dim(V (A)) < ∞, is

the limit in operator-norm of factorable maps, i.e., there exists a sequence

of factorable maps Tn : A → B with limn ‖Tn − V ‖ = 0 in the norm of

L(A,B), cf. [426], see also Lemma 3.1.11(iv).

(g) It follows from part (f) that the definition of nuclear c.p. maps given in

[426] and that of M.D. Choi and E.G. Effros in [140] define the same

class of maps.

(iv) There exist c.p. maps W : A/J → B such that V := W ◦πJ : A→ B is nuclear,

but the map W itself is not nuclear.

This follows from the existence of W*-algebras that are not weakly exact (compare

Remark B.7.4, [436], [597]).

It is a problem to find non-trivial sufficient criteria on (A, J /A,B) that allow

to conclude the nuclearity of W : A/J → B from the nuclearity of W ◦πJ : A→ B.

We use non-exact subalgebras of the asymptotic corona B = Q(R+, D), – e.g. in our

proofs on the classification of nuclear algebras. Those algebras are often not locally

reflexive, because Q(R+, D) is locally reflexive, if and only if, D is sub-homogenous.

Local reflexivity is formally weaker than exactness of a C *-algebra A, i.e.,

exactness implies that A is locally reflexive. But it was still unknown (June 2019)

if local reflexivity implies exactness.

Therefore, we must bypass the problem concerning the nuclearity of [V ]J =

W : A/J → B for nuclear V : A → B with V (J) = {0}, and have introduced

the notion of Ψ-residually nuclear maps, cf. Definition 1.2.8, and recognize that

it is of interest for us (!) to know when Ψ-equivariant and nuclear c.p. maps are

automatically Ψ-residually nuclear maps.
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(v) Here is a very special case, where one has a positive answer to the problem

discussed in Part(iv):

Let J / A a closed ideal and suppose that J ⊗D → A ⊗D → (A/J) ⊗D is exact

for every unital separable C *-algebra D ( 8 ), then it holds:

(∗) If W ∈ CP(A/J,B) and W ◦ πJ is nuclear – i.e., W ◦ πJ ∈ CPnuc(A,B),

then W is nuclear.

Local lifting results of [238] for locally reflexive C *-algebras A show that the

sequence

J ⊗D → A⊗D → (A/J)⊗D

is exact for every locally reflexive C *-algebra A, every ideal J . A and every C *-

algebra D. Hence:

W ∈ CP(A/J,B) is nuclear if A is locally reflexive and W ◦ πJ : A → B is

nuclear.

One can see that exact C *-algebras are locally reflexive, because the separable

exact C *-algebras are quotients of subalgebras of the nuclear CAR-algebra M2∞

by [438, cor. 1.4(v)], and sub-quotients of locally reflexive C *-algebras are locally

reflexive by [238].

In the mean time the author has obtained the following ?????

Proof of (∗). If W ◦ πJ is nuclear, then, by Part(i),

(W ◦ πJ)⊗max id : A⊗max D → B ⊗max D

(naturally) factorizes over A⊗D, in the sense that (W ◦πJ)⊗max id maps the kernel

ideal of A⊗maxD → A⊗D to zero. Thus, there is a c.p. map V : A⊗D → B⊗maxD

with V ◦λA,D = (W ◦πJ)⊗max id for the natural *-epimorphism λA,D : A⊗maxD →
A ⊗D . It follows that V (a ⊗ d) = W (a + J) ⊗ d for a ∈ A and d ∈ D. It yields

V (J ⊗ D) = {0}. The exactness of J ⊗ D → A ⊗ D → (A/J) ⊗ D implies that

there is a C *-morphism β : (A/J)⊗D → B ⊗max D with β ◦ (πJ ⊗ idD) = α, i.e.,

β((a + J) ⊗ d) = W (a + J) ⊗ d for a ∈ A, d ∈ D. Thus, the natural c.p. map

W ⊗max id : (A/J)⊗max D → B ⊗max D factorizes over (A/J)⊗D.

It implies that W : A/J → B is nuclear by Part(i). �

(vi) Quotients A/J of exact C *-algebras A are exact.

Indeed: If A/J ⊆ L(K) and A ⊆ L(H), then, by the Arveson extension theorem,

cf. [42], there is a complete contraction T : L(H)→ L(K) with T (a) = πJ(a), i.e.,

T ◦ηA = ηA/J ◦πJ , where η indicates the inclusion map. The map ηA : A ↪→ L(H) is

nuclear by (ii), the maps ηA/J ◦πJ and ηA/J : A/J ↪→ L(K) are nuclear by Remark

(v). See [436] for a different proof of exactness for quotients of exact C *-algebras.

(vii) A C *-algebra B is nuclear, if and only if, A is exact and the natural *-

epimorphism A⊗max C∗(F2)→ A⊗min C∗(F2) is an isomorphism.

8 The sequence J ⊗D → A⊗D → (A/J)⊗D is exact for D := L(`2) if and only if idA/J is

locally completely contractive liftable, cf. [238].
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Indeed: It induces that A ⊗max D → A ⊗min D is an isomorphism for for every

hereditary C *-subalgebra D of C∗(F2). The exactness of A⊗min (·) and the general

exactness of (·) ⊗max (·) imply that the natural C *-morphisms A ⊗min D/J →
A ⊗max D/J are isomorphisms for each closed ideal of D. It is not difficult to see

that each separable C *-algebra is isomorphic to a quotient of a hereditary C *-

subalgebra C∗(F2). Thus, A ⊗max B → A ⊗min B is an isomorphism for every

separable C *-algebra B. This carries over to all C *-algebras B, i.e., A is nuclear.

Remark 3.1.3. In in late 2015 the author has obtained the following character-

ization of locally reflexive separable C *-algebras B by the following “co-exactness

criterium” (unpublished but presented in talks of the author):

A separable C*-algebra B is locally reflexive, if and only if, for every closed left

ideal L ⊆ K⊗B and every separable C*-algebra C the sequence

L⊗min C → (K⊗B)⊗min C → ((K⊗B)/L)⊗min C

is exact. That means equivalently that the natural linear contraction

((K⊗B)⊗min C)/(L⊗min C) 7→ ((K⊗B)/L)⊗min C

is an isomorphism of Banach spaces.

So far no example of a non-exact separable locally reflexive C *-algebra has

been found. But it is important to check this.

For completeness we give the almost obvious separation on finite sets of linear

functionals on C *-algebras.

Lemma 3.1.4 (Separation lemma). If ρ1, . . . , ρn are continuous linear function-

als on a C*-algebra A, then there is a cyclic *-representation d : A → L(H) with

cyclic vector ξ ∈ H of norm ‖ξ‖ = 1, and operators t1, . . . , tn ∈ d(A)′, such that

ρk(a) = 〈d(a)ξ, tkξ〉 for a ∈ A and k = 1, . . . , n .

The operators tk ∈ d(A)′ are uniquely determined by (d, ξ, ρk).

If A is a W*-algebra and if ρ1, . . . , ρn are normal, then d : A→ L(H) and can

be taken normal, i.e., such that the functionals 〈d(·)x, y〉 are in the predual A∗ of

A.

Proof. Since A∗ is the linear span of the positive linear functionals on A,

we may suppose that the ρk are positive and ρk 6= 0. Let λ :=
∑
k ρk. The

cyclic GNS-representation d : A → L(H) of A with respect to λ has cyclic vector

y ∈ H with ‖y‖2 = ‖λ‖ and satisfies λ(a) = 〈d(a)y, y〉 for a ∈ A. In particular,

ρk(a∗a) ≤ ‖d(a)y‖2. It follows, that there are unique positive contractions Ck ∈
L(H) with ρk(c∗b) = 〈d(b)y, Ckd(c)y〉, and the uniqueness of the Ck implies that

Ckd(a) = d(a)Ck for a ∈ A, (cf. [217, prop. 2.5.1]). Now let ξ := ‖λ‖−1/2y and

tk := ‖λ‖Ck.

If A is a W*-algebra and the ρj are normal, then we can apply the same

arguments to the ρ1, . . . , ρn inside the predual A∗ of A. �
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The next lemma contains a useful criteria for the nuclearity of a c.p. map

V : A→ B, that will be used later (e.g. in Chapter 6).

Say precisely where is it used and cited ? in chp.6 ? Give, or cite, or define

here what means ”essential” here.

Lemma 3.1.5. Suppose that D ⊆ B is an essential hereditary C*-subalgebra of

B with (open) support projection pD ∈ B∗∗, and that V : A → B is a completely

positive map.

If (1 − pD)B∗∗(1 − pD) is an injective W*-algebra and if a ∈ A 7→ Vd(a) :=

dV (a)d ∈ D is a nuclear map for all d ∈ D+, then V : A→ B is nuclear.

Proof. We use that every c.p. map W : A→M from a C *-algebra A to an

injective W*-algebra M is weakly nuclear, because

??? the identity map idM is weakly nuclear for all injective W*-algebras M ,

??? only for all ???

and that a c.p. map V : A→ B is nuclear if V : A→ B∗∗ is weakly nuclear.

The inclusion map for A ⊆ L(H) is always weakly nuclear ??? Here is some

misunderstanding ...

A better argument should be: If (1 − pD)B∗∗(1 − pD) is injective (as vN-

algebra), then there exists a central projection Q ≥ (1 − pD) in B∗∗ such that

B∗∗Q is injective. Then the kernel of b 7→ bQ in a closed ideal J of B with J ⊆ D.

But it is not clear if ?????

Indeed, by Definition 3.1.1, each weakly nuclear map is in the point-σ(B∗∗, B∗)

topology the point-wise limit of factorable maps from A to B∗∗ and those can be

again point-wise approximated in σ(B∗∗, B∗) topology by factorable maps from A

to B . Thus, we can then use a Hahn-Banach separation argument to see that

V : A→ B can be approximated in point-norm by factorable maps from A to B.

We show the weak nuclearity of V : A→ B∗∗:

Let Q denote the smallest central projection of B∗∗ with (1 − pD) ≤ Q. Then

(1−Q) ≤ pD and B∗∗Q is an injective W*-algebra.

Thus, V (a) = (1 − Q)V (a) + QV (a) is the sum of the weakly nuclear maps

a 7→ QV (a) (by injectivity of B∗∗Q) and of (1−Q)V (a) = (1−Q)pDV (a)pD (that

is an weak limit of a 7→ (1−Q)dV (a)d with contractions d ∈ D+).

Hence, V is weakly nuclear – if considered as a c.p. map from A to B∗∗. �

Remark 3.1.6. Any positive linear map V from a unital complex C *-algebra

B into a C *-algebra C ⊆ L(H) has norm ‖V ‖ = ‖V (1B)‖, cf. [402, exercise

10.5.10] (using [402, exercise 10.5.4]), or use the original Russo-Dye theorem [222]

for complex C *-algebras to reduce the calculation of the norm ‖V ‖ to the case of

the special complex C *-algebra B := C(S1), where all positive V are automatically

completely positive. The proof of [207, thm. I.8.4] shows the stronger result that
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set of all convex combinations of finitely many unitaries in a unital C *-algebra A

contains all a ∈ A with ‖a‖ < 1. This is also shown in [402, exercise 10.5.92].

In the case of real C *-algebras C acting on real Hilbert spaces one has at

least ‖V ‖ ≤ ‖V2(1B ⊗ 12)‖ in the case that V2 := V ⊗ idM2(R) is positive, because

V is “real” 2-positive, and it suffices for real C *-algebras B to consider the case

C := M2(R) .

If a map V is moreover completely positive then this implies that ‖V (1)‖ =

‖V ‖ = ‖ idn⊗V ‖ = ‖V ‖cb := supn ‖ idn⊗V ‖ . Here idn denotes the identity map

on Mn and the norm on Mn ⊗ C ⊆ Mn ⊗ L(H) ∼= L(`2(n) ⊗ H) is the operator

norm.

The complete positivity of a map V ∈ CP(Mn, A) implies that (idn⊗V )(X) ≥ 0

for all X ∈ (Mn ⊗A)+, where we naturally identify Mn(A) with Mn ⊗A.

The generalized Schwarz inequality (of R.V. Kadison [399]) says that, if a

linear map η : A → B is positive (i.e., if η(A+) ⊆ B+) and ‖η∗∗(1A)‖ ≤ 1, then

η(a)2 ≤ η(a2) for all a ∈ As.a. .

!! Compare with other remarks above/below !! e.g next.

Remark 3.1.7. We have often to do with positive maps T : C → A between

C *-algebras. This maps T are bounded:

Indeed, otherwise for each n ∈ N there would exist cn ∈ C+ with ‖cn‖ = 1 and

‖T (cn)‖ ≥ 4n , and the well-defined element S :=
∑
n 2−ncn ∈ C+ must have the

– impossible – property ‖T (S)‖ ≥ 2−n‖T (cn)‖ ≥ 2n for all n ∈ N.

Another often used elementary fact for approximations of positive maps

T : C → A used special case is the following property:

Let C ⊆M(A) a C *-subalgebra, S a set of positive maps from C into A with

the property that S(e(·)e) ∈ S for all S ∈ S and e ∈ C+. If T : C → A can

be approximated in point-norm topology by S ∈ S, then T is positive and one

finds also a point-norm approximation of T by S ∈ S with the additional property

‖S‖ ≤ ‖T‖, cf. Lemma 3.1.8.

The following Lemma 3.1.8 applies to to the particular case of the family of n-

step approximately inner c.p. maps V : C → A and to the approximation of nuclear

maps by more special factorable maps.

See also Lemma B.16.5(i) in Appendix B.

Lemma 3.1.8. Suppose that C is a C*-algebra and B is a C*-algebra (respec-

tively that B is a von-Neumann algebra). Denote by S a set of positive linear maps

from a C*-algebra C into B.

If V : C → B is a contraction in the closure of S with respect to the point-

norm topology (respectively with respect to the point-strong topology), then V is in

the closure of the set of positive maps

S1 := {S(e(·)e) ; S ∈ S, e ∈ C+ , ‖e‖ < 1 , ‖S(e2)‖ ≤ 1 }
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with respect to the point-norm topology

(respectively then V is in the closure of the set of positive maps

S2 := {fS(e(·)e)f ; S ∈ S, e ∈ C+, ‖e‖ < 1, f ∈ B+, ‖f‖ ≤ 1 ‖fS(e2)f‖ ≤ 1 }

with respect to the point-*strong topology).

Notice for later applications of Lemma 3.1.8 that the maps in S1 and S2 are

contractions, but that we do not assume any sort convexity for the given set S.

But in cases where we can consider convex sets S, the following general fact in

Functional analysis applies and improves Lemma 3.1.8 a bit:

If the point-norm closure of S ⊆ L(C,B) is convex, then the point-σ(B,B∗) closure

of S coincides with its point-norm closure, (respectively the point-σ(M,M∗) closure

of bounded convex S ⊆ L(C,M) coincides with its point-*strong closure of S).

Proof. Case, where B is a C *-algebra and V : C → B is in the point-norm

closure of S:

Let c1, . . . , cn ∈ C and ε > 0, M := max(‖c1‖, . . . , ‖cn‖), and η := ε/(2 + M).

There exists d ∈ C+ with ‖d‖ < 1 such that ‖dcjd − cj‖ < η for j = 1, . . . , n.

There is S ∈ S with ‖S(d2)‖ ≤ ‖V (d2)‖ + η and ‖S(dcjd) − V (dcjd)‖ < η. Let

t := (1 + η)−1/2, e := td and T (b) := S(ebe) for b ∈ C + C · 1. Then ‖T‖ =

‖T (1)‖ = t2‖S(e2)‖ ≤ 1, because T is positive. The map T |C is in S1 and

‖T (cj)− V (cj)‖ ≤ 2t2η + (1− t2)M ≤ ε for j = 1, . . . , n .

Case, where B ⊆ L(H) is a von-Neumann algebra and V : C → B is in the

point-strong closure of S:

Suppose that B ⊆ L(H), x1, . . . , xm ∈ H, c1, . . . , cn ∈ C, and ε > 0. Let µ :=

2 max(1, ‖x1‖, . . . , ‖xm‖), and c0 := 1 ∈ B. There are e ∈ C+ with ‖e‖ < 1 and

‖ck − ecke‖ < ε/µ. By assumption, there is a directed net (Sγ) of elements of S
such that Sγ(ecke) converges strongly to V (ecke) for k = 0, 1, . . . , n.

The function h : t ∈ R→ (0,∞) with h(0) := 1 and h(t) := min(|t|−1/2, 1) for

t 6= 0 is in C0(R)+. Thus, fγ := h(Sγ(e2)) ≤ 1 converges strongly to h(Vγ(e2)) =

1 by [400, thm. 5.3.4]. Moreover, fγSγ(e2)fγ ≤ 1 . It follows that the map

Tγ(c) := fγSγ(ece)fγ (for c ∈ C + C · 1) is in the set S2, and has the property

that Tγ(ck) converges strongly to V (ecke) for k = 1, . . . ,m. Thus there is T ∈ S2

with ‖T (ck)xj − V (ck)xj‖ ≤ ε/2 + ‖ck − ecke‖‖xj‖ < ε for j = 1, . . . ,m and

k = 1, . . . , n. �

Proposition 3.1.9. Let ejk ∈ Mn denote the matrix units of Mn for n ∈ N
and let A denote a C*-algebra.

There is a bijective and additive relation between the cone of positive matrices

[ajk] ∈Mn(A)+ and the matrix operator-convex cone of all completely positive maps

V : Mn → A :
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If [ajk] ∈ Mn(A)+ is given then a completely positive map V ∈ CP(Mn , A) is

defined by

V (β) :=

n∑
j,k=1

βjkajk for all β ∈Mn .

If a completely positive map V ∈ CP(Mn , A) is given, then a positive matrix

[aj,k] ∈ Mn(A)+ is defined by its entries ajk := V (ejk). Their norms estimate

each other by

‖V ‖cb = ‖V ‖ = ‖a11 + a22 + · · ·+ ann‖ and ‖[ajk]‖ ≤ n‖V ‖ .

Following Parts (o)-(iv) show more details:

(o) If ejk ∈ Mn denote the n2 canonical matrix-units and if V : Mn → A is

a completely positive map from Mn into a C*-algebra A , then the linear

map idn⊗V ∈ L(Mn ⊗Mn,Mn ⊗A) is a positive map from Mn ⊗Mn to

Mn ⊗ A . In particular, the matrix [V (ejk)] = (idn⊗V )([ejk]) =: [ajk] is

positive in the C*-algebra Mn(A).

(i) If [ajk] ∈ Mn(A) is a positive element in the C*-algebra Mn(A), then

there exists column matrices c1, . . . , cn ∈Mn,1(A) such that the completely

positive map V ∈ CP(Mn, A) defined by

V (β) :=

n∑
k=1

c∗kβck for all β ∈Mn

satisfies V (ejk) = ajk for j, k ∈ {1, . . . , n} . Thus, V (β) =
∑
j,k βj,kajk

and ‖V ‖ = ‖V ‖cb = ‖a11 + · · ·+ ann‖ .

It implies that ‖
∑n
k=1 c

∗
kck ‖ = ‖V ‖ ( 9 ).

(ii) Suppose that A has the property that for every positive contraction a ∈ A+

and ε > 0 there exist elements b1, b2 ∈ A with ‖b∗j bk − δjka‖ < ε for

j, k ∈ {1, 2} ( 10 ).

Then each V ∈ CP(Mn , A) can be “orthogonal and elementary ap-

proximated in norm” – in the sense that for each γ ∈ (0, 1) there exist

columns d0, d1 ∈ Mn,1(A) with d∗0βd1 = 0 and d∗0βd0 = d∗1βd1 for all

β ∈ Mn, and with the property that the completely positive map U(β) :=

d∗0βd0 (β ∈ Mn) satisfies that V − U is a completely positive map with

‖V −U‖ < γ . In particular, U(1n) ≤ V (1n) and ‖d0‖ = ‖d1‖ ≤ ‖V ‖1/2 .

(iii) If A = D/J for a C*-algebra D and a closed ideal J of D, then there

exists a c.p. map T : Mn → D with πJ ◦ T = V and ‖T‖ = ‖V ‖.
(iv) Let A ⊆ N a C*-subalgebra of a W*-algebra N that is weakly dense in N

and let T : Mn → N a c.p. contraction.

Then there exists a net {Vρ} of c.p. contractions Vρ : Mn → A that

converges in point-*ultrastrong topology to T .

Part (ii) applies e.g. if the unit element of M(A) is properly infinite or if A

is purely infinite, cf. Lemma 2.1.7(ii). Equivalent formulations of the additional

9 Here we identify Mn naturally with Mn(C · 1) ⊆Mn(M(A)).
10 We don’t require here that bjb

∗
j ∈ aAa .
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assumption in Part (ii) can be found in Parts (b, i) and (b,iii) of Lemma 2.1.12.

We use in our proof also the equivalence of Parts (a, i) and (a,ii) of Lemma 2.1.12.

Proof. Let M(A) denote the C *-algebra of two-sided multipliers of A. We

identify naturally Mn(A) ⊆ Mn(M(A)) with Mn ⊗ A ⊆ Mn ⊗M(A) and Mn =

Mn(C) with Mn ⊗ 1 ⊆Mn ⊗M(A). ( 11 ).

(o): We identify sometimes Mn(A) with Mn ⊗ A naturally. By Remark 3.1.6,

the complete positivity of V ∈ CP(Mn, A) implies that ‖V (1n)‖ = ‖V ‖ = ‖ idn⊗V ‖
and (idn⊗V )(X) ≥ 0 for all X ∈ (Mn ⊗A)+.

Recall that the matrix units eij := e∗i ej ∈ Mn, for i, j = 1, . . . , n, are build

from row-matrices

e1 := [1, 0, 0, . . . , 0] , e2 := [0, 1, 0, . . . , 0] , . . . , en := [0, 0, . . . , 0, 1]

that are the elements of the canonical basis of M1,n(C) ∼= Cn .

The n2×n2 matrix E ∈Mn(Mn) with the n×n matrices eij ∈Mn as its entries

is given by E := [eij ] ∈ Mn(Mn) and can be expressed as E =
∑
ij eij ⊗ eij ∈

Mn ⊗Mn
∼= Mn(Mn). It is positive in Mn2 ∼= Mn ⊗Mn because E = R∗R for

the row-matrix R := [e1, e2, . . . , en] ∈ M1,n2 , the norm of E is ‖E‖ = n because

P := n−1E is an orthogonal projection.

We define a matrix F = [fjk] ∈ Mn(A) ∼= Mn ⊗ A by taking its entries fij :=

V (eij), i.e., define

F := (idn⊗V )(E) =
∑
i,j

eij ⊗ V (eij) ∈Mn ⊗A .

Then F ∈Mn(A)+ is a positive matrix by the assumption of complete positivity of

V , and V (β) =
∑n
j,k=1 βjkfj,k for β ∈ Mn , because P := n−1E is an orthogonal

projection in Mn ⊗Mn . The norm of F can be estimated roughly by

‖F‖ ≤ n‖ idn⊗V ‖ = n‖V (1n)‖ = n‖f11 + · · ·+ fnn‖ .

(i): Let F any positive matrix in Mn(A)+ with entries fjk ∈ A, and let

G := F 1/2 ∈ Mn(A)+ with entries gij ∈ A. We define a map V : Mn → A by

V (ejk) := fj,k , i.e., V (β) :=
∑n
j,k=1 βj,kfj,k . The complete positivity of the below

shown alternative expression for the above defined map V : Mn → A, – as sum of

elementary c.p. maps β 7→ c∗βc with some c ∈Mn,1(A) –, implies then that V must

be completely positive.

In conjunction with Part (i), this shows moreover:

Each completely positive map V ∈ CP(Mn, A) can be expressed as sum of n maps

of the form β 7→ c∗βc with columns c ∈Mn,1(A).

(The ck ∈Mn,1(A) are not uniquely determined by this property.)

We can rewrite the matrix G ∈Mn(A)+ in the notation for elements of Mn⊗A
as G =

∑
i,j eij ⊗ gij ∈ Mn ⊗ A . The equations G∗ = G and G2 = F imply that

11Matrices b = [bjk] ∈ Mn(M(A)) with entries bjk ∈ C · 1 can be written as b = β ⊗ 1 with

unique β ∈Mn .
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g∗ij = gji and
∑n
k=1 eij ⊗ gikgkj = eij ⊗ V (eij), i.e.,

fij = V (eij) =

n∑
k=1

g∗kigkj .

We define columns c1, c2, . . . , cn ∈Mn,1(A) ∼= Mn,1 ⊗A ⊆Mn ⊗A by

ck := [gk,1, gk,2, . . . , gk,n]> ∈ Mn,1(A) ,

i.e., take here the transposes of the rows rk = [gk,1, gk,2, . . . , gk,n] in M1,n(A) of the

n× n-matrix G ∈Mn(A) ( 12 ).

In the tensorial terminology with a ∈ A identified with e11⊗a it can be rewritten

as ck =
∑
j ej1 ⊗ gk,j .

It gives that c∗k(eij ⊗ 1)ck = e11⊗ (g∗k,igk,j) = e11⊗ gikgk,j for k ∈ {1, . . . , n},
and implies e11 ⊗ V (eij) =

∑n
k=1 c

∗
k(eij ⊗ 1)ck for i, j ∈ {1, . . . , n} .

Notice that the products c∗jXck are in e11⊗A for all X ∈Mn(A) ∼= Mn⊗A if we

consider columns cj as element of Mn,1⊗A, i.e., as the element
∑
j ej1⊗gk,j ∈Mn .

Then c∗k
(
eij ⊗ 1M(A)

)
ck = e11 ⊗ gi,kgk,j and, therefore,∑

k

c∗k
(
β ⊗ 1M(A)

)
ck = e11 ⊗ V (β) .

Hence e11 ⊗ V (β) =
∑n
k=1 c

∗
k(β ⊗ 1M(A))ck for β ∈Mn .

If we identify Mn with Mn(C1) ⊆ Mn(M(A)) = M(Mn(A)), then c∗keijck =

g∗k,igk,j = gi,kgk,j . Thus,
∑
k c
∗
keijck =

∑
k gi,kgk,j = V (eij), which implies that∑

k c
∗
kβck = V (β) for all β ∈ Mn, i.e., the conventional interpretation says that

there are columns c1, . . . , cn ∈Mn,1(A) that satisfy:

V (β) =

n∑
k=1

c∗kβck for all β ∈Mn .

(ii): We identify Mn with Mn(C1) = Mn⊗1 ⊆Mn(M(A)), where 1 := 1M(A) .

By Part (i) there exists columns c1, . . . , cn ∈ Mn,1(A) ∼= Mn,1 ⊗ A that satisfy

V (β) =
∑
k c
∗
kβck. The entries of ck are given by c

(k)
`,1 := gk,` i.e.,

ck := [gk,1, gk,2, . . . , gk,n]> ,

and the gj,k are entries of a positive matrix G = [gj,k]2 = [V (ejk)]. It suffices to

consider the case where ‖V ‖ = ‖V (1n)‖ = 1, because in case V = 0 nothing is to

prove and non-zero V can be replaced by ‖V ‖−1V if necessary.

We get norm estimates for the gk,` (k, ` ∈ {1, . . . , n}) by

‖gk,`g∗k,`‖ = ‖g∗k,`gk,`‖ ≤ ‖c∗kck‖ ≤ ‖V (1n)‖ ≤ 1 .

Let h := n−2
∑
k,` gk,`g

∗
k,` ∈ A+ . Then ‖h‖ ≤ 1, and gk,`g

∗
k,` ≤ n2 ·h implies that

gk,` ∈ hA for k, ` ∈ {1, . . . , n} .

12 This are not the columns of the adjoint matrix. Even for positive complex 2× 2-matrices,

e.g. [αj,k] with αj,k := ij−k. Only for matrices with self-adjoint entries is this the same as the

columns of the adjoint matrix.
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Consider the functions ψm(t) := min
(
1,max((m + 1)t − 1/m, 0)

)
for m ∈ N

and t ∈ [0,∞]. Then ψm(t) = 0 for t ∈ [0, 1/(m2 +m)], ψm(t) = 1 for all t ≥ 1/m

and ψm is linear in between. Thus, limm→∞ ‖x∗(1− ψm(h))x‖ = 0 for all x ∈ hA .

In particular, there exists m ∈ N with

‖(1− ψm(h))1/2gk,`‖2 < γ/(1 + n2) for all k, ` ∈ {1, . . . , n} .

Let ϕ := ψm and Q := 1− ϕ(h) ≥ 0 from now on.

We write 1n ⊗ Q for the diagonal matrix in Mn(M(A)) with entries Q in the

main diagonal.

The function ϕ is an increasing non-negative function ϕ ∈ C0(0, 1] with

ϕ|[0, δ] = 0 for δ = (m2 +m)−1 and ϕ has the properties that ‖ϕ‖ ≤ 1 and

‖Q1/2gk,`‖2 = ‖(1− ϕ(h))1/2gk,`‖2 < γ/(1 + n2) for all k, ` ∈ {1, . . . , n} .

Since ‖c∗k(1n ⊗Q)ck‖ ≤
∑
` ‖g∗k,`Qgk,`‖ it implies that

‖
n∑
k=1

c∗k(1n ⊗Q)ck ‖ < γ . (1.1)

By assumptions in Part (ii), the C *-algebra A has the property that for every

positive contraction h ∈ A+ and ε > 0 there exist contractions b1, b2 ∈ A with

‖b∗j bk − δj,kh‖ < ε for j, k ∈ {1, 2} . It causes that Lemma 2.1.12 applies to h ∈
A+. The equivalences (b,i) ⇐⇒ (b,ii) and (a,i) ⇐⇒ (a,ii) in Lemma 2.1.12 imply

together immediately that there exist b1, b2, . . . , b2n−1, b2n ∈ A with

b∗i bj = δi,jϕ(h) for all i, j ∈ {1, . . . , 2n} .

The diagonal matrices 1n ⊗ bj ∈ Mn(A) (j ∈ {1, . . . , 2n}) and all β ∈ Mn

satisfy (1n ⊗ bj)∗β(1n ⊗ bk) = δjk · β ⊗ ϕ(h) and

(1n ⊗Q)1/2β(1n ⊗Q)1/2 = β ⊗Q = β ⊗ (1− ϕ(h)) .

Thus, β = (1n ⊗ bj)
∗β(1n ⊗ bj) + (1n ⊗ Q)1/2β(1n ⊗ Q)1/2 for β ∈ Mn and

j ∈ {1, . . . , 2n} . If we conjugate this with the columns ck ∈ Mn,1(A) then this

shows that the completely positive maps Vk,j and Wk defined by

Vk,j : Mn 3 β 7→ ((1n ⊗ bj)ck)∗β((1n ⊗ bj)ck) ∈ A

and

Wk : Mn 3 β 7→ ((1n ⊗Q)1/2ck)∗β((1n ⊗Q)1/2ck) ∈ A

have the property that Vk,j(β)+Wk(β) = c∗kβck for all β ∈Mn and j ∈ {1, . . . , 2n}

It implies Vk,i(β) = Vk,j(β) for all i, j ∈ {1, 2, . . . , 2n− 1, 2n}, and the estimate

(1.1) implies for the completely positive map W :=
∑n
k=1Wk the estimate

‖W‖ = ‖W (1n)‖ = ‖
n∑
k=1

c∗k(1n ⊗Q)ck‖ < γ .

Calculation shows for µ, ν ∈ {1, . . . , 2n} and i, j, k, ` ∈ {1, . . . , n} that

((1n ⊗ bµ)ck)∗(ei,j ⊗ 1)((1n ⊗ bν)c`) = δµ,ν · c∗k(ei,j ⊗ ϕ(h))c` .
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We define for ` ∈ {0, 1} the columns

d` :=

n∑
k=1

(1n ⊗ bk+n`)ck =

n∑
k,j

ej,1 ⊗ (bk+n`gk,j) ∈Mn,1(A) .

Above considerations show that the columns dj , j ∈ {0, 1} satisfy (
∑n
k=1 c

∗
kβck)−

d∗jβdj =
∑n
k=1 c

∗
k(1n ⊗Q)1/2β(1n ⊗Q)1/2ck , and that the c.b.-norm on the right

side is ≤ γ · ‖β‖ .

The orthogonality (1⊗ bj)∗β(1⊗ bk) = δjkβ ⊗ ϕ(h) causes that d∗1βd0 = 0 for

β ∈Mn .

It follows that dj (j ∈ {0, 1}) are column matrices in Mn,1(A) with d∗0βd1 = 0

and d∗0βd0 = d∗1βd1 such that the c.p. map U(α) := d∗0αd0 satisfies that W := V −U
is c.p. and ‖W‖ < γ and U(1n) ≤ V (1n) .

(iii): It suffices to consider the case where ‖V ‖ = 1. Let [ajk] ∈ Mn(A)+

associated to V ∈ CP(Mn, A) by ajk = V (ej,k). Denote by πJ : D → A = D/J

the quotient map. By Parts (o) and (i) it suffices to find in Mn(D)+ a matrix [djk]

with πJ(dj,k) = aj,k and ‖d1,1 + d2,2 + · · ·+ dn,n‖ ≤ 1 .

It is possible to find [cj,k] ∈ Mn(D)+ with πJ(cj,k) = aj,k because the map

Mn(D) 3 [dj,k] 7→ [πJ(dj,k)] ∈Mn(A) is an C *-algebra epimorphism onto Mn(A).

Then let e := c1,1 + · · · + cn,n and define f := (1 + (e − 1)+)−1/2 ∈ M(D)

and the desired matrix [dj,k] ∈ Mn(D) by dj,k := fcj,kf . The corresponding map

T : Mn → D has norm ‖T‖ = ‖fef‖ ≤ 1 and satisfies πJ ◦ T = V .

(iv): It suffices to consider the case where ‖V ‖ = ‖
∑
k bk,k‖ = 1 for completely

positive V : Mn → N and the corresponding matrix B := [bjk] ∈ Mn(N)+ with

bj,k := V (ej,k). Then ‖B‖ = ‖[bj,k]‖ ≤ n . Let C = [cj,k] ∈ Mn(N)+ the square

root of B. Then ‖C‖ ≤ n1/2.

Since A ⊆ N is weakly dense in N , the C *-subalgebra Mn(A) is weakly dense

in the W*-algebra Mn(N). By the Kaplansky density theorem [616, thm. 2.3.3],

(or [704, thm. 1.9.1], [400, thm. 5.3.5]) the unit-ball of the C *-algebra Mn(A) is

dense in the unit-ball of Mn(N) with respect to the *-ultra-strong topology (i.e.,

is τ(Mn(N),Mn(N)∗)-dense in the unit-ball of Mn(N)), because Mn(A) is weakly

dense (i.e., is σ(Mn(N),Mn(N)∗)-dense) in Mn(N) if A is weakly dense in N . It

follows that there exists a net of elements {Cρ} ⊆ Mn(A) with ‖Cρ‖ ≤ n1/2 that

converges to C with respect to the *-ultra-strong topology on Mn(N).

Let eρ :=
∑
j,k c

∗
k,jck,j and let f (ρ) ∈Mn(M(A))+ the positive diagonal matrix

with entries (f (ρ))j,k := δj,k(1 + (eρ − 1)+)−1/2 ∈M(D) .

The obvious *-ultra-strong continuity of addition, multiplication and involution

on bounded parts of Mn(N), cf. [616, sec. 2], shows that the directed net {Dρ}
defined by

D(ρ) := f (ρ)C∗ρCρf
(ρ) ∈Mn(A)+

satisfies that ‖
∑n
k=1D

(ρ)
k,k‖ ≤ 1 and converges to [bjk] in Mn(N) with respect to

the *-ultra-strong topology. It implies for the related c.p. maps Vρ ∈ CP(Mn, A)
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that ‖Vρ‖ ≤ 1 and that the net {Vρ} converges to V : Mn → N with respect to the

point–*-ultra-strong topology. �

Remarks 3.1.10. The last here mentioned criteria seems to be the

relevant issue! But check it again!

The arguments in the proof of Part(ii) of Proposition 3.1.9 show that we could

find moreover elements b1, b2, . . . , b2n−1, bkn ∈ A with b∗i bj = δi,jϕ(h) and the other

properties of the bj ∈ A. Then we obtain from them columns d0, d1, . . . , dk ∈Mn,1

with d∗jβdk = δj,kU(β) with U and V − U c.p. with norm ‖V − U‖ < γ.

But the proof of Proposition 3.1.9 shows a bit more:

If A is a C *-subalgebra of a C *-algebra B such that for each element a ∈ A+

and ε > 0 there exists d1, d2 ∈ B with ‖d∗i dj − δi,ja‖ < ε, then the columns

d0, d1, . . . , dk ∈ B can be found with above properties and such that the c.p. con-

traction U ∈ CP(Mn, B) – defined by the dj via δi,j · U(β) = d∗i βdj – is also

contained in CP(Mn, A) . It does not require thatM(A) contains any properly in-

finite elements, and it does not require that all elements in B are properly infinite.

One could suppose that the elements of A are “large” in B in the sense that

the multiplier algebra of the hereditary C *-subalgebra ABωA of Bω has a properly

infinite unit.

But the weakened condition on A and B simply is equivalent to the property

that A is contained in a stably generated ideal of Bω or likewise of B∞.

Lemma 3.1.11. Let V : A → B a completely positive map, and A ⊆ D where

D is a unital C*-algebra.

(i) If V is factorable, then there is always a factorization V = T ◦ S through

some matrix algebra Mn such that S∗∗ : A∗∗ → Mn is unital, and (there-

fore) ‖T‖ = ‖T (1)‖ = ‖V ‖ . There exists a u.c.p. map Se : D →Mn with

Se|A = S ( 13 ).

(ii) If V is nuclear, then V can be approximated in point norm by factorable

maps TS where S : A → Mn and T : Mn → B are completely positive

maps such that S∗∗ : A∗∗ →Mn is unital and ‖T‖ ≤ ‖V ‖.
If A, B and V are unital then S is unital and T can be chosen with

T (1) = 1.

(iii) The map V : A → B is nuclear, if and only if, V : A → B∗∗ is weakly

nuclear – considered as a map into the W*-algebra B∗∗.

(iv) Every completely positive map V : A → B of finite rank can be approxi-

mated in operator-norm on CP(A,B) by factorable maps.

Proof. (i): This is evident if x = S∗∗(1) is invertible, because we can replace

S with x−1/2S(·)x−1/2 and T with T (x1/2(·)x1/2). If S∗∗(1) is not invertible then,

13 The extension Se is an special case of the Arveson extension theorem [42]. Since the

identity map of L(`2) factorizes over `∞(M2,M3, . . .) this special cases imply conversely the

general Arveson extension.



1. EXACT C*-ALGEBRAS AND NUCLEAR MAPS 367

since 0 ≤ a ≤ 1 implies 0 ≤ S∗∗(a) ≤ S∗∗(1), S∗∗ must take its values in a corner

of Mn. Replacing Mn with this corner and adjusting S, T accordingly, we may

assume that S∗∗(1) is invertible, and use the above transformations.

Since T (S∗∗) : A∗∗ → B ⊆ B∗∗ is normal, (TS)∗∗ = T (S∗∗), and thus ‖T (1)‖ =

‖(TS)∗∗(1)‖. But ‖TS‖ = ‖(TS)∗∗‖ = ‖(TS)∗∗(1)‖ and ‖T‖ = ‖T (1)‖, because T

and TS are positive.

It is easy to verify that a map R : D → Mn is completely positive, if and only

if, the linear functional ρe : D ⊗Mn → C with ρe(d ⊗ α) = (1/n)Tr(α>R(d)) is

positive (Consider R as a map from D into Mn ⊆ L(L2(Mn, (1/n)Tr)) ∼= L(Cn2

)).

Since A ⊆ D, we have A∗∗ ⊆ D∗∗ and D is a unital C *-subalgebra of D∗∗. Let

p ∈ D∗∗ denote the unit element of A∗∗. We extend S : A∗∗ →Mn to a unital c.p.

map S0 from C := A∗∗+(1−p)D∗∗(1−p) into Mn by S0(c) := S∗∗(pcp) for c ∈ C.

The n2-positivity of S0 implies that the (well-defined) unital linear functional

ρ on C ⊗ Mn with ρ(c ⊗ α) = (1/n)Tr(α>S0(c)) is positive, i.e., is a state on

C⊗Mn . By Hahn–Banach extension theorem, it extends to a state ρe on D∗∗⊗Mn

with ρe(1 ⊗ α) = (1/n)Tr(α). Thus, the unique linear map Se : D → Mn with

ρe(d ⊗ α) = (1/n)Tr(α>Se(d)) for all d ∈ D and α ∈ Mn must be unital and

extends S0.

(ii): Let Ã the unitization of A. V is the point norm limit of completely

positive maps Ve|A where Ve : Ã→ B is defined by Ve(a+ γ1) := V (eae+ γe2) for

e ∈ A+, ‖e‖ ≤ 1 (Take an approximate unit {e} of A). Ve is completely positive

and ‖Ve‖ ≤ ‖V ‖. Every point-norm approximation of V by a net of factorable

maps Wλ = TλSλ defines a point-norm approximation of Ve by the factorable

maps (Wλ)e. Thus it suffices to consider the case where A is unital. But then

the approximation satisfies ‖V (1)−Wλ(1)‖ → 0. Thus, eventually we find a small

perturbation of the Tλ with the desired properties.

(iii): By Remark 3.1.2(o), the set CPf (A,B) of factorable c.p. mapsW : A→ B

is an operator-convex cone in CP(A,B). It follows that V : A→ B is in the point-

norm closure of CPf (A,B) if and only if V is in the point-σ(B,B∗) closure of

CPf (A,B).

Every factorable c.p. map U = T ◦ S : A → B∗∗, T : Mn → B∗∗, S : A → Mn

with S∗∗(1) = 1 and ‖T‖ = ‖T (1)‖ = ‖U‖ is the point–*-strong limit of a net of

maps Uµ = Tµ ◦ S by part (i) and Proposition 3.1.9(iv), where Tµ : Mn → B is a

contraction with ‖Tµ‖ ≤ ‖T‖ .

Thus, V : A→ B is in the point-σ(B,B∗) closure of CPf (A,B), if and only if,

V is in the point-σ(B∗∗, B∗) closure of CPf (A,B∗∗).

The latter means that V : A→ B ⊆ B∗∗ is a weakly nuclear map from A into

B∗∗.

(An alternative proof can be given by means of Remark 3.1.2(i) and its counterpart

for weakly nuclear maps.)
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(iv): We consider B as a C *-subalgebra of L(H1) for some Hilbert space

H1. Since V : A → B has finite rank, there are functionals ρ1, . . . , ρn ∈ A∗ and

operators b1, . . . , bn ∈ B with V (a) =
∑
k ρk(a)bk. By Lemma 3.1.4 there exists a

cyclic representation d : A → L(H0), with cyclic vector ξ ∈ H0 of norm ‖ξ‖ = 1,

and operators tk ∈ d(A)′ with ρk(a) = 〈d(a)ξ, tkξ〉 for a ∈ A.

Let C := d(A)′, T :=
∑
k t
∗
k ⊗ bk ∈ C � B ⊆ C ⊗ B and let λa denote the

linear functional on C given by λa(c) := 〈cd(a)ξ, ξ〉 for a ∈ A and c ∈ C. It has

norm ‖λa‖ ≤ ‖a‖. Then V (a) = (λa ⊗ id)(T ) for a ∈ A. Since the algebraic tensor

product d(A)ξ�H1 is dense in the Hilbert-space tensor product H0⊗H1, a straight

calculation shows that the complete positivity of V implies that T is positive in

L(H0 ⊗ H1). It follows that T is also positive in C ⊗ B (by spectral permanence

on the class of C *-algebras).

Let ε > 0, then there is S ∈ C � B with ‖T − S∗S‖ < ε in C ⊗ B. Let

W (a) := (λa ⊗ id)(S∗S) then, for all a ∈ A,

‖W (a)− V (a)‖ = ‖(λa ⊗ id)(T − S∗S)‖ ≤ ‖λa‖‖T − S∗S‖ < ε‖a‖ ,

i.e., ‖W − V ‖ < ε in L(A,B). Since d : A→ L(H0) has a cyclic vector ξ, the map

γ : C = d(A)′ → H0 given by γ : c 7→ cξ is injective, and we can write S =
∑
j cj⊗dj

(j = 1, . . . ,m) with 〈γ(ci), γ(cj)〉 = δi,j . Let un : Cm → H0 the isometry with

un(ej) = γ(cj), W1 : A → Mm the c.p. contraction W1(a) := u∗nd(a)un ∈ L(Cm),

and D ∈ M1,m(B) the row matrix D = [d1, . . . , dm] . We define W2 : Mm → B

by W2(α) := DαD∗, where Mm is considered as subalgebra of Mm(M(B)) ∼=
M(Mm(B)). Straight calculation shows that W = W2 ◦ W1. Thus, V can be

approximated in operator-norm by factorable maps. �

Compare below Proof with that of Part(iv) above! Take the better

one! Notations have then to be adapted/changed.

Details to Part (iii,f) of Remarks 3.1.2, see also Lemma 3.1.11(iv):

Consider V (a) :=
∑
j fj(a)bj ∈ B ⊆ L(H) and find ϕ ∈ A∗+, Tj ∈ Dϕ(A)′ , such

that fj(a) = 〈Dϕ(a)x0, Tjx0〉 , cf. Lemma 3.1.4. Then S :=
∑
Tj ⊗ bj ≥ 0 in the

C *-algebra Dϕ(A)′ ⊗ B. Thus, S1/2 can be approximated in operator norm by

elements dn in the algebraic tensor product Dϕ(A)′ �B . The maps

a 7→ (ϕ⊗ idB)
(
d∗n(Dϕ(a)⊗ 1)dn

)
are factorable c.p. maps from A into B that approximate V with respect to the

operator norm of L(A,B). �

We denote by socle(A) the algebraic ideal of A generated by the projections

p ∈ A with pAp = Cp. See [210], [388, p. 64] and [661, pp. 46,261–267] for notation

and properties.

Compare
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Lemma 3.1.12. Suppose that W : A → Mm is a completely positive map with

W ∗∗(1) = 1m, and that Γ is a set of pure states on A, such that the irreducible rep-

resentations ρj : A → L2(A,µj) corresponding to µj ∈ Γ are pairwise inequivalent

and build a separating family for A. Then:

(i) For every compact subset Ω of A and every ε > 0, there exist pure states

µ1, . . . µk ∈ Γ, k,m1, . . . ,mk ∈ N, isometries Ij : Cmj → L2(A,µj), and a

unital completely positive map T : F := Mm1
⊕ · · · ⊕Mmk → Mm, such

that

‖T ◦ S(a)−W (a)‖ ≤ ε ∀ a ∈ Ω ,

where S : A→Mm1
⊕· · ·⊕Mmk denotes the completely positive contraction

S(a) := I∗1ρ1(a)I1 ⊕ · · · ⊕ I∗kρk(a)Ik for a ∈ A.

(ii) If, in addition, W (socle(A)) = 0, then one can manage that m1, . . . ,mk ≤
m, and that T (f) =

∑
j d
∗
jfjdj for f = f1 ⊕ · · · ⊕ fk ∈ F , for suitable

dj ∈Mmj ,m, with
∑
d∗jdj = 1m.

(iii) If, in addition, W (socle(A)) = 0 and the irreducible representations dµ

with µ ∈ Γ and dµ(socle(A)) = 0 build a separating family for A/socle(A),

then in Part(i) the µ1, . . . , µk ∈ Γ can be taken such that µj(socle(A)) = 0

and S(socle(A)) = 0.

Note that S satisfies S∗∗(1) = 1. Part (iii) does not say that F , T and S can be

found such that the properties of µj , Ij and T in (i), (ii) and (iii) hold at the same

time (but this can be managed if socle(A) = 0 or, at least, if socle(A/socle(A)) = 0

and W (socle(A)) = 0).

Proof. (i): Let H :=
⊕

µ∈Γ L2(A,µ) and ρ : A → L(H) be the direct sum

of irreducible representations which are defined by pure states in Γ. Then ρ is

faithful. We denote by R : A → L(`2(H)) the infinite repeat of ρ (i.e., R(a) :=

ρ(a)⊕ ρ(a)⊕ · · · ). Then R(A) ∩K(H) = 0, and, by Lemma 2.1.22, there exists an

isometry v : Cm → H with ‖W (a)− v∗R(a)v‖ < ε/3 for a ∈ Ω.

By definition of R, a small perturbation of v yields q ∈ N, µ1, . . . , µq ∈ Γ (not

necessarily different) and an isometry t : Cm → L2(A,µ1) ⊕ · · · ⊕ L2(A,µq) with

‖ v∗R(a)v − t∗(ρ1(a)⊕ · · · ⊕ ρq(a))t ‖ < ε/3 for a ∈ Ω, where ρj : A→ L2(A,µj)

are the representations corresponding to µj . We can arrange that µ1, . . . , µk are

different and {µk+1, . . . , µq} ⊆ {µ1, . . . , µk} if k ∈ N denotes the maximal number

of different elements of {µ1, . . . , µq}. There are contractions sj : Cm → L2(A,µj)

(j = 1, . . . , q) such that t(x) = s1(x)⊕ · · · ⊕ sq(x) for x ∈ Cn,
∑
s∗jsj = 1m, and

‖ v∗R(a)v −
q∑
j=1

s∗jρj(a)sj ‖ < ε/3 ∀ a ∈ Ω .

For 1 ≤ j ≤ k, we denote by Lj the linear subspace of L2(A,µj) generated by

the image of sj and the images si(Cm) for i ∈ {k + 1, . . . , q} with µi = µj . Let

mj := Dim(Lj) and Ij : Cmj → Lj ⊆ L2(A,µj) an isometry (j = 1, . . . , 0). Let

1 ≤ j ≤ k and X(j) := {1 ≤ i ≤ q ; µi = µj} . We define Tj : Mmj → Mm by
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Tj(g) :=
∑
i∈X(j) s

∗
i IjgI

∗
j si for g ∈ Mmj and 1 ≤ j ≤ k, and then define S : A →

F := Mm1
⊕ · · · ⊕Mmk and T : F → Mm by S(a) := I∗1ρ1(a)I1 ⊕ · · · ⊕ I∗kρk(a)Ik

respectively T (f1, . . . , fk) := T1(f1) + · · · + Tk(fk) for a ∈ A and fj ∈ Mmj .

Straight calculation shows that
∑q
j=1 s

∗
jρj(a)sj = T (S(a)) for all a ∈ A.

(ii): Let H and ρ : A → L(H) as above. Then J := ρ−1(ρ(A) ∩ K(H)) is the

closed ideal generated by the projections p ∈ A with pAp of finite dimension, i.e., J

is the closure of socle(A). Since W (socle(A)) = 0 by assumption, we get W (J) = 0.

Now we can repeat the arguments for part (i) with ρ in place of R. Then, k = q

and Dim(Lj) ≤ m for 1 ≤ j ≤ k. It follows that the map t(x) := s1(x)⊕· · ·⊕sk(x)

is an isometry from Cm into I(Cm1 ⊕ . . . ⊕ Cmk) and that Tj(g) = s∗jIjgI
∗
j sj for

all g ∈ Mmj . Let dj := I∗j sj ∈ L(Cm,Cmj ) ∼= Mmj ,m. Let pj : Cn → Cmj

denote the orthogonal projection onto Cmj ⊆ Cn . Then T (f) =
∑
d∗jfjdj for

f := f1 ⊕ · · · ⊕ fk ∈ F , in particular,
∑
d∗jdj = 1m .

(iii): Apply part (i) to A/socle(A) and [W ] : A/socle(A)→Mm . �

Lemma 3.1.13. Let A a C*-algebra and W : A → Mm a completely positive

contraction with W ∗∗(1) = 1, Ω ⊆ A+ a norm-compact subset, f0(t) := t (t ∈ [0, 1])

and let ε > 0.

(I) There exist

(i) a finite-dimensional C*-algebra F := Mn1 ⊕ · · · ⊕Mnk

(ii) a C*-morphism ψ : C0((0, 1], F )→ A ,

(iii) a completely positive contraction S : A→ F with S(ψ(f)) = f(1) for

all f ∈ C0((0, 1], F ), and

(iv) a unital completely positive map T : F →Mm,

such, that for g := ψ(f0 ⊗ 1) and each a ∈ Ω,

‖T ◦ S(a)−W (a)‖ < ε and lim sup
n
‖gn+1agn+1 − gnψ

(
f2

0 ⊗ S(a)
)
gn‖ < ε .

(II) If W (socle(A)) = {0} then F , ψ, S and T can be found such that, more-

over, for every η ∈ (0, 1) the hereditary algebras

(fj − (1− η))+ ·A · (fj − (1− η))+

contain n2
j non-zero pairwise orthogonal positive elements for j = 1, . . . , k

(where fj := ψ(f0 ⊗ p(j)
11 )).

(III) If W (socle(A)) = {0} then one can find F , ψ, S and T such that nj ≤ m
and that S : F → Mn is given by S(f1, . . . , fn) =

∑
j s
∗
jfjsj for suitable

sj ∈Mmj ,m.

Proof. Apply Lemma 2.1.15. To be filled in ?? �

Question 3.1.14.

Let A ⊆ B a separable C *-subalgebra of a unital C *-algebra B.

Under what conditions is every nuclear c.p. map T : A → B approximately

1-step inner inside B?
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I.e., when does there exists for each c.p. contractions T ∈ CP(Mn, B) and

S ∈ CP(A,Mn) a sequence s1, s2, . . . of contractions in B such that T ◦ S(a) =

limk→∞ s∗kask for all a ∈ A?

A necessary condition (for the case n = 1) is that for each nonzero a ∈ A+

with ‖a‖ = 1 and every c ∈ B+ there exists d ∈ B – depending on c – with

d∗ad = (c− 1/2)+.

This implies that A is “relatively to B simple” (or A = {0}) and that the right

ideal R := AB satisfies R∗R = B.

Is this also sufficient?

Compare the result of Elliott and Kucerovsky [264] and its improvements in

[309] in the case where B is a corona algebra M(C)/C.

Following proposition is a non-commutative version of the Tietze extension

theorem.

Proposition 3.1.15. Let A a σ-unital C*-algebra and J ⊆ A a closed ideal.

Then the natural unital C*-morphism M(πJ) : M(A) → M(A/J) has kernel

M(A, J) := {T ∈M(A) ; AT ∪ TA ⊆ J}.

This natural C*-morphism is surjective if J is σ-unital.

Proof. Let h : A →M(B), – e.g. for B := A/J –, a C *-morphism with the

property that the hereditary C *-subalgebra h(A)Bh(A) of B contains an approxi-

mate unit of B .

This is equivalent to B = h(A)B . Thus, there is a unique unital W*-morphism

H : A∗∗ → B∗∗ that maps M(A) ⊆ A∗∗ into M(B) ⊆ B∗∗ and satisfies H(a)b =

h(a)b for all a ∈ A and b ∈ B. The kernel of H|M(A) is easily seen as the operators

T ∈M(A) with TA ∪ T ∗A ⊆ J , where J is here the kernel of h : A→M(B).

This covers the special case B := A/J and h := πJ , where here simply H =

h∗∗.

To get surjectivity for M(h) = h∗∗|M(A) one can reduce the situation to

suitable separable C *-subalgebras if J and B = A/J are σ-unital: We can find

for given positive T ∈ M(B) a separable C *-subalgebra C ⊆ B that contains a

strictly positive element f of B and 1M(B), T ∈M(C) ⊆M(B) . Then we can find

a separable C *-subalgebra D of A that contains a strictly positive element of J and

satisfies πJ(D) = C. Thus, D contains a strictly positive element of A, satisfies

M(D) ⊆M(A), andM(D) contains the unit element ofM(A). Notice that under

this conditions on D and C we get that

M(πJ)|M(D) =M(πJ∩D) : M(D)→M(C) ⊆M(B) .

This reduces in the case where J and B = A/J are σ-unital the question on

the surjectivity of M(πJ) to the case where B is separable. There the answer is

affirmative, cf. [616, prop. 3.12.10]. �
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Proposition 3.1.15 could be used to prove the following proposition:

Proposition 3.1.16. If A is a σ-unital C*-algebra, then Q(A) := M(A)/A

is σ-sub-Stonean, i.e., for each separable C*-subalgebra B ⊂ Q(A) and each c, d ∈
(B′ ∩Q(A))+ with cd = 0 there exist contractions e, f ∈ (B′ ∩Q(A))+ with ef = 0,

ec = c and fd = d.

I.e., Q(A) is σ-sub-Stonean in the sense of [448, def. 1.4].

Compare Chapter 5 for more general study

and compare with the -- possibly stronger -- Kasparov’s technical

theorem:

M(A⊗K)/(A⊗K) = Qs(A) satisfies Kasparov’s technical theorem. It implies

that Qs(A) and Q(A) ∼= P Qs(A)P are sub-Stonean. Here P := πA⊗K(1M(A)⊗p11).

Check below proof again. Compare this with Chapter 5.

Proof. We can suppose that 1 ∈ B and ‖c−d‖ = 1 without loss of generality.

Let g∗ = g ∈M(A) with πA(g) = c−d and ‖g‖ = 1, and let a0 ∈ A+ a strictly

positive contraction in A. We find a separable unital C *-subalgebra D ⊂ M(A)

with πA(D) = B. Consider the separable unital C *-subalgebra E := C∗(a0, g,D)

of M(A) that is generated by a0, g ∈ A and the C *-subalgebra D ⊆ E.

Take dense sequence e1, e2, . . . in the unit ball of E containing e1 := g+ and

e2 := g− in the first places.

Build from a0 via functional calculus with increasing functions f1, f2, . . . in

C0(0, 1]+ (with properties ‖fn‖ = 1, fn+1fn = fn and fn([0, αn]) = {0} for some

suitable zero sequence αn > αn+1 > 0) a sequence of positive contractions an =

fn(a0) ∈ A+ that have the property

‖anek − ekan‖+ ‖a1/2
n ek − eka1/2

n ‖ ≤ 8−n .

Parallel selection of ‖[g1/kn
+ , ek]‖ and its commutator norms is

needed:

We know that [g
1/kn
+ , ek] ∈ A. The next kn+1 can be found after the [(an+1 −

an)1/2, ek] and ??? becomes small enough and ????

Then we define a map V on T ∈M(A) by

V (T ) := a
1/2
1 Ta

1/2
1 +

∞∑
n=1

(an+1 − an)1/2T (an+1 − an)1/2 .

The right side is convergent with respect to the strict convergence inM(A). Then

V is a unital completely positive unital map from M(A) into M(A).

It has the property that V (en)− en ∈ A for all n ∈ N. Thus V (x)− x ∈ A for

all x ∈ E ⊆M(A).
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We define a positive contraction Y ∈M(A)+ by

Y :=

∞∑
n=1

:= a
1/2
1 g+a

1/2
1 +

∞∑
n=1

(an+1 − an)1/2g
1/n
+ (an+1 − an)1/2 .

Here could be a problem with Y x− xY ∈ A
It could be that one has to select some

of the akn and g
1/`n
+ more careful !! :

We have [g
1/n
+ , ek] ∈ A for all n, k ∈ N, but need further control of

the selection!!

The n has to go slowly enough to ∞??

The positive contraction Y has the properties Y g+ − Y ∈ A, Y g− ∈ A and

Y x− xY ∈ A for all x ∈ E = C∗(a0, g,D).

Thus, e := πA(Y ) ∈ Q(A) is a positive contraction with ec = e, ed = 0 and

e ∈ B′ ∩Q(A).

Now we can repeat the arguments, but starting now with e in place of former

d and with d in place of former c and get a positive contraction f ∈ B′∩Q(A) with

fe = 0 and fd = d.

�

Remarks/Conjectures:

It is known that Aω is σ-sub-Stonean for every non-zero C *-algebra A.

Is A∞ σ-sub-Stonean for non-zero A?

Suppose we could prove the following (1) and (2) then Qs(A) is σ-sub-Stonean

for each non-zero σ-unital C *-algebra :

(1) A∞ is σ-sub-Stonean.

(2) If A is σ-unital and stable, then, for every separable C *-subalgebra B of

Q(A) there exist a c.p. contraction V : Q(A)→ A∞ that is orthogonality preserving

on B and a c.p. contraction W : A∞ → Q(A) that is multiplicative on C∗(V (B))

such that W ◦ V (b) = b for all b ∈ B.

Indeed: Suppose that A is σ-unital and stable, C ⊂ Q(A) separable, and that

e, f ∈ C ′ ∩Q(A) are positive contractions with ef = 0 .

Suppose (2) is valid:

Let B := C∗(C∪{e, f}), V : Q(A)→ A∞ a c.p. contraction that is orthogonal-

ity preserving on B, and let W : A∞ → Q(A) that is multiplicative on C∗(V (B))

such that W ◦ V (b) = b for all b ∈ B.

Since V is orthogonality preserving, we get that V (e) · V (f) = 0 .

Perhaps V preserves commutativity? Leads to question (Let T : C0(X) → D

an orthogonality preserving c.p. contraction with D a C *-algebra, X a closed

subset of R2, and T is “completely” isometric. Is C∗(T (C0(X))) a commutative
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C *-algebra? We can not expect that T is multiplicative because f 7→ f ⊗ g is c.i.

and c.p. if ‖g‖ = 1 and g ≥ 0.)

Now suppose that (2) implies that V respects commutativity and is orthogo-

nality preserving.

Then V (e)V (f) = 0 and V (e), V (f) commute with all elements from C∗(V (B)).

(If comm. is respected!)

Now, if (1) is valid, then there exist g, h ∈ C∗(V (B))′ ∩ A∞ with g · h = 0,

gV (f) = 0 gV (e) = V (e) and hV (f) = V (f).

If we apply W : A∞ → Q(A), then we get that W (g)e = e, W (g)f = 0 W (g)b =

bW (g) for all b ∈ C, and W (g)f = 0. This implies then finally that Q(A) is σ-sub-

Stonean.

2. On approximate inner nuclear maps

The following Lemma 3.2.1 gives a necessary and sufficient criteria for the

containment CPnuc(A,B) ⊆ C for point-norm closed subsets C ⊆ CP(A,B) of the

c.p. maps from a C *-algebra A into a C *-algebra B.

Lemma 3.2.1. Let C a point-norm closed subset of CP(A,B) with the property

that S(a∗(·)a) ∈ C for S ∈ C and a ∈ A, and denote by f0 ∈ C0(0, 1] the generator

f0(t) := t.

Then the following are equivalent:

(i) The set C contains all nuclear c.p. maps U : A→ B.

(ii) For every C*-morphism ψ : C0((0, 1], F ) → A of the cone C0((0, 1], F )

over a finite-dimensional C*-algebra F with the property ‖ψ(f0 ⊗ p)‖ = 1

for all non-zero projections p ∈ F and for every completely positive map

V : F → B, there exists a sequence Sn ∈ C with limn Sn(ψ(f)) = V (f(1))

for all f ∈ C0((0, 1], F ).

Proof. The condition on C implies that tC ⊆ C for t ∈ R+ (use an approximate

unit of A). Thus, it suffices to show that every factorable contraction U from A

into B can be approximated in point-norm topology by elements of C. Suppose that

U = V ◦W with c.p. contractions W : A→Mm and V : Mm → B with W ∗∗(1) = 1,

cf. Lemma 3.1.11(i).

Let ε > 0 and Ω ⊆ A a compact subset. We find F , ψ : C0((0, 1], F ) → A,

T : F →Mm, and S : A→ F as in Lemma 3.1.13(I). Then 1 ≥ ‖ψ(f0 ⊗ p)‖ ≥ ‖p‖,
because p = T (ψ(f0 ⊗ p)). Thus, by assumptions, there is a sequence Sn ∈ C with

limn Sn(ψ(f)) = V ◦T (f(1)) for all f ∈ C0((0, 1], F ). Let G := ψ(C0((0, 1], F )) ⊆ A
and let D denote the hereditary C *-subalgebra of A that is generated by G. Lemma

3.1.8 applies to the set C|G, because ψ is a C *-morphism and V (a∗(·)a) ∈ C for

V ∈ C and a ∈ A. Hence, we can select the sequence Sn ∈ C such that, in addition,

‖Sn|G‖ ≤ ‖V ◦ T‖ ≤ 1 . But this implies that ‖Sn|D‖ ≤ 1, because G contains an
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approximate unit of D. It follows limn Sn(gkψ(f0 ⊗ S(a))gk) = V (T (S(a))) and

inf
n,k
‖Sn(gk+1agk+1)− V ◦W (a)‖ < 3ε ∀ a ∈ Ω .

Conversely, suppose that CPnuc(A,B) ⊆ C. Let F a finite-dimensional algebra

and ψ : C0((0, 1], F ) → A a *-morphism with ‖ψ(f0 ⊗ p)‖ = 1 for all non-zero

projections p ∈ F . The image ψ
(
C0((0, 1], F )

)
is contained in the normalizer al-

gebra N (D) ⊆ A of the hereditary C *-subalgebra D ⊆ A that is generated by

ψ(f0(1 − f0) ⊗ 1). The condition ‖ψ(f0 ⊗ p)‖ = 1 for non-zero projections p ∈ F
is equivalent to the injectivity of [πD ◦ ψ] : F → N (D)/D where πD : N (D) →
N (D)/D is the quotient map. Since F is an injective algebra, we can use the Arve-

son extension to obtain completely positive contractions W1 : N (D)→ F with

???????

and then W : A → F with W (ψ(f)) = W1(ψ(f)) = f(1) for all f ∈
C0((0, 1], F ). If V : F → B is completely positive, then Sn := V ◦W is nuclear

and is contained in C by assumption. �

Definition 3.2.2. Let A and B C *-algebras and CP(A,B) the cone of com-

pletely positive maps from A into B.

A subset C of CP(A,B) is a matrix operator-convex cone of c.p. maps, if

C has the following properties (i) and (ii):

(OC1) d∗1V1(.)d1 + d∗2V2(.)d2 ∈ C for V1, V2 ∈ C, d1, d2 ∈ B ( 14 )

(OC2) The map a ∈ A 7→ c∗
(
V ⊗ idn(r∗ar)

)
c is in C for every V ∈ C, every

row-matrix r ∈M1,n(A) and every column-matrix c ∈Mn,1(B).

(I.e., for every V ∈ C, n ∈ N, r1, . . . , rn ∈ A and c1, . . . , cn ∈ B, the

completely positive map W (a) :=
∑
ij c
∗
i V (r∗i arj)cj is again in C.)

We abridge “matrix operator convex cone” as “m.o.c. cone” .

The m.o.c. cone C closed if C ⊆ CP(A,B) ⊆ L(A,B) is closed with respect

to topology of point-norm convergence on L(A,B) (= strong operator topology on

L(A,B)).

An m.o.c. cone C is non-degenerate if, for every b ∈ B+ and ε > 0, there are

V ∈ C and a ∈ A+ with ‖V (a)− b‖ < ε .

The cone C is faithful if a ∈ A+ and V (a) = 0 for all V ∈ C implies a = 0.

Let S be a subset of CP(A,B). We denote by Calg(S) the smallest subset of

CP(A,B) that is invariant under the operationsin (OC1) and (OC2), and by C(S)

the point-norm closure of Calg(S) (i.e., the closure of Calg(S) in L(A,B) w.r.t. the

strong operator topology). Then Calg(S) and C(S) are operator-convex cones of

completely positive maps.

We say that S generates a closed m.o.c. cone C if C = C(S).

14 Thus
∑
b∗i Vi(.)bi ∈ C if V1, . . . , Vn ∈ C and b1, . . . , bn ∈ B.
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One can see, with help of approximate units in A or B, that every point-norm

closed subset V of of CP(A,B) is a convex cone in the usual sense if it satisfies

(OC1), and that V satisfies tV ⊆ V for t ∈ [0,∞) if V satisfies (OC2).

Remark 3.2.3. Let S ⊆ CP(A,B) any set of c.p. maps. We define the (OC2)–

hull 〈S〉2 of S as smallest set 〈S〉2 ⊂ CP(A,B) of c.p. maps containing S and being

invariant under the operations in (OC2) of Definition 3.2.2.

The point norm-closure C2 := 〈S〉2 in CP(A,B) of the (OC2)-hull of S is in

general not convex.

In particular such C2 does not satisfy the (operator convexity) property (OC1)

of Definition 3.2.2 in general, and this even if S itself is convex :

Consider e.g. S := R+ · η for η : A := C∗(p11 − p22) ↪→ B := M2. Then

〈S〉2 = {X∗η(·)X ; X ∈ M2 } has non-convex closure in CP(A,B), because the

set {X∗p11X ; X ∈M2} is the closed set that contains 02 and all positive matrices

in M2 of rank one. It is certainly not convex.

Definition 3.2.4. A Hilbert (A,B)-module (E, φ : A → L(E)), with right

Hilbert B-module E, generates the closed m.o.c. cone C, if C := C(S) for the set

S of completely positive maps Vx : a ∈ A 7→ 〈φ(a)x, x〉 ∈ B.

We say that (E, φ : A→ L(E)) defines a closed m.o.c. cone C if (E, φ) generates

C and, moreover, (E, φ) is unitarily equivalent to (E ⊕B E, φ⊕ φ).

(Does the latter mean that φ(A)′ ∩ L(E) contains a copy of O2 unitally?)

Need but have not the following:

Let V,W ∈ CP(A,B) with separable C *-algebra A.

To be shown: Then V and W are in the m.o.c. cone generated by V + W .

(Could work with the tensor V ⊗max idC∗(F∞) criterium ?)

Direct way ??

Question: Are V and W “coefficients” of the Hilbert A-B–module generated by

V + W ? Need an absorption theorem for Hilbert A-B-bi-module, like for Hilbert

B-modules [73, thm. 13.6.2].

Suppose that E is a Hilbert B-module and that φ : A→ L(E) a C *-morphism.

Let C ⊆ CP(A,B) denote the point-norm closed m.o.c. cone generated by the

“coefficients” Vx : a ∈ A 7→ 〈φ(a)x, x〉 ∈ B for x ∈ E.

Let E∞ the Hilbert-B-module given by the sequences (x1, x2, . . .) with xk ∈ E
and

∑∞
k=1〈xk, xk〉 ∈ B .

Define φ∞ : A→ L(E∞) by φ∞(a)(x1, x2, . . .) := (φ(a)x1, φ(a)x2, . . .)

Then the set of “coefficient” maps A 3 a 7→ 〈φ∞(a)y, y〉 ∈ B for y ∈ E∞ is an

m.o.c. cone C(φ∞) ⊆ CP(A,B).

This cone is in particular σ-additively and “homogenous ??” closed.
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(not so likely) CONJECTURE (1):

The family of “coefficients” is hereditary in the following sense:

If V : A → B is a c.p. map and has the property that there exists a c.p. map

W : A→ B such that V +W is a “coefficient” of a representation ϕ : A→ L(HB) ∼=
M(B ⊗K) , then V and W are “coefficients” of ϕ.

(very likely) CONJECTURE (2):

Suppose that A and B are stable C *-algebras, where A is separable and B

is σ-unital. φ1, φ2 : A → M(B) C *-morphisms such that there exists a unitary

u ∈M(B) such that δ∞(φ1(a))u− uδ∞(φ1(a)) ∈ B for all a ∈ A.

Then the “coefficients” b∗φ1(·)b and b∗φ2(·)b (for all b ∈ B together!) generate

the same point norm closed m.o.c. cone C ⊆ CP(A,B).

(By a result in Chp. 5 one gets – conversely ??? – that δ∞ ◦ φ1 and δ∞ ◦ φ2

are unitarily homotopic in M(B).)

Urgently needed / speculative Conjectures:

If A is σ-unital then C(φ∞) is closed with respect to the point-norm topology.

This is not true? Counterexample: Let A := C([0, 1]), B := C and φ : A→
L(`2) =M(B⊗K) the representation generated by φ(f) =

∑
n f(ρ(n))en for some

map ρ from N onto the rational numbers in [0, 1]. Then the point-norm closure

of of the algebraic C(φ∞) defined by the set of “coefficients” does not contain the

c.p. map f ∈ A 7→
∫ 1

0
f(t)dt ∈ C. But this map is in the point norm closure of

C(φ∞) ⊆ CP(A,C).

Need here more precise definitions !!

Perhaps use the following 3 lemmata (if true !):

1. Let K a convex cone in C(Cn, B)+ that satisfies that b∗Kb ⊆ K for all

b ∈ B and that K is σ-additive in the sense that if V1, V2, . . . ∈ K and W (a) :=∑
n Vn(a) ∈ B for all a ∈ Cn then W ∈ K. Then K is point-norm closed.

2. Let A a separable C *-algebra, C ⊆ CP(A,B) an m.o.c. cone with the

additional property that C is σ-additive – in the sense that if V1, V2, . . . ∈ C and

W ⊗ id2(a) :=
∑
n

Vn ⊗ id2(a) ∈ B ⊗M2 for all a ∈ A⊗M2 ,

then W ∈ C.

Then C is point-norm closed.

(Unfortunately it is not true in case A = C([0, 1]), B := C ???)

3. Something like this being “almost hereditary”:

Let C ⊆ CP(A,B) a point-norm closed m.o.c. cone, W ∈ CP(A,B) and V ∈ C
such that for each T ∈ (A⊗Mn)+ there exists γT,n ∈ (0,∞) with (W ⊗ idn)(T ) ≤
γT,nV (T )

and ???? then W ∈ C ???? or?
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Remark 3.2.5. Suppose that A is separable and stable, B is σ-unital and stable

and that S ⊆ CP(A,B) ⊆ L(A,B) is

a separable subset of L(A,B) with respect to point-norm topology ????, ????

or is “countably generated as m.o.c. cone”

in CP(A,B) ????

in the strong operator topology on L(A,B) ( 15 ).

Then, by Corollary 5.4.4, there is a C *-morphism H0 : A→M(B) such that

(i) H0 is unitarily equivalent to its infinite repeat δ∞ ◦H0,

(ii) the “coefficients” A 3 a 7→ b∗H0(a)b ∈ B are all in the point-norm closed

m.o.c. cone C(S) ⊆ CP(A,B) generated by S, and

(iii) for each V ∈ S there exists x ∈ B with V (a) = 〈H0(a)x, x〉 for all a ∈ A.

more ????:

Need: (But have only weaker results !)

All V ∈ C(S) have this property !

Means:

The set of “coefficients” is closed in the topology of point-norm con-

vergence.

(But this is not satisfied in general ... e.g. in case S ⊆ CP(A,C) is

generated by algebraical by a σ(A∗, A) dense subset of the pure states of

A.)

In particular, H0(A)∩B = {0}, and V ∈ C(S) if and only if there is a sequence

b1, b2, . . . in B with ‖bn‖2 ≤ ‖V ‖ such that V (a) = limn b
∗
nH0(a)bn for all a ∈ A.

(This is a better property !!! But it does not say that V is itself a coefficient of of

δ∞◦H0. (The infinite repeat δ∞ onM(B) is given by δ∞(a) :=
∑
n sna(sn)∗ where

s1, s2, . . . is a sequence of isometries in M(B) with
∑
n sn(sn)∗ strictly convergent

to 1M(B), cf. Remark 5.1.1(8).)

H0 is determined up to unitary homotopy in the sense of Definition 5.0.1,

cf. Corollary 5.4.4.

(One has H0 = 0 if S = {0}.)

If A and B are separable then every m.o.c. cone C ⊆ CP(A,B) ⊂ L(A,B) is

separable with respect to the point-norm operator topology (– given by the semi-

norms V 7→ ‖V (a)b‖ on L(A,B) –), because L(A,B) is separable in the point-norm

operator topology.

Question: Is the point-norm closure identical with the cone defined by the

related kernel ideal of A⊗max C∗(F∞)→ B ⊗max C∗(F∞) ?

Lemma 3.2.6. Suppose that m1, . . . ,ms ∈ N and X1, . . . , Xs are closed subsets

of (0, 1] with 1 ∈ Xj , j = 1, . . . , s .

15 It is equal to the topology of point-norm convergence of L(A,B).
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Let A := C0(X1,Mm1
) ⊕ · · · ⊕ C0(Xn,Mms) , F := Mm1

⊕ · · · ⊕ Mms , let

λ : C0((0, 1]⊗ F )→ A the natural epimorphism given by

λ(f ⊗ (α1 ⊕ · · · ⊕ αs)) := ((f |X1)⊗ α1)⊕ · · · ⊕ ((f |Xn)⊗ αs) ,

let π1 : A → F the epimorphism given by π1(g1 ⊕ · · · ⊕ gs) := g1(1) ⊕ · · · ⊕ gs(1),

and let S ⊆ CP(A,B) a subset with the property that

for mutually orthogonal a1, . . . , ak ∈ A+ with ‖ai‖ = 1, b ∈ B+ with ‖b‖ = 1 and

ε > 0, there are d1, . . . , dk ∈ B and S ∈ S with

‖d∗iS(aj)di − b‖ < ε for i = 1, . . . , k .

Let C denote the point-norm closure of the set of c.p. maps T : A → B such that

there are S ∈ S, n ∈ N, a row r ∈ M1,n(A) and a column c ∈ Mn,1(B) with

T (·) = c∗S(r∗(·)r)c.

(o) C contains the c.p. map T = V ◦ π1 if V : F → B is of elementary type,

i.e., V ◦ ηj : Mj → B is given by a column b ∈ Mn,1(B) in the sense

V ◦ ηj(α) = b∗αb, where ηj(α) := 0⊕ · · · ⊕ α⊕ · · · ⊕ 0 with α at position

j.

(i) If, for every positive contraction b ∈ B+ and ε > 0, there are contractions

b1, b2 ∈ B with b∗2b1 = 0 and ‖b∗j bjb − b‖ < ε, then CP(F,B) ◦ π1 ⊆ C,

i.e., C contains all c.p. maps T : A → B with T (λ(f0(1 − f0))) = 0, i.e.,

V ◦ π1 ∈ C for all V ∈ CP(F,B) .

(ii) If C is convex, then CP(F,B) ◦ π1 ⊆ C.

(iii) If 1 is not isolated in Xj for every j = 1, . . . , k, then CP(F,B) ◦ π1 ⊆ C.

For the parts (o)–(ii) one needs only the assumption on S with k = 1. The

assumption with k = max(m1, . . . ,ms) is needed for the proof of part (iii).

Proof. We consider the point-norm closed subset C1 of CP(F,B), consisting

of the maps V ∈ CP(F,B) with the property that there is a sequence Tn ∈ C such

that limn Tn(f) = V (f(1)) for all f ∈ C0((0, 1], F ) .

The set C1 is invariant under the operations (OC2) of Definition 3.2.2, because C
is invariant under the operations (OC2) and π1 : f 7→ f(1) is an epimorphism. With

other words, V = c∗W (r∗(·)r)c ∈ C1 if W ∈ C1 and c ∈Mn,1(B) and r ∈M1,n(F ) .

In particular, we have that V (p(·)) ∈ C1 and V1(p1(·)) + V2(p2(·)) ∈ C1 for

central projections p, p1, p2 ∈ F with p1p2 = 0, and for V, V1;V2 ∈ C1. (This

reduces also the proof to the case where F is a full matrix algebra, i.e., to the case

s = 1.)

(o): We denote the (upper left corner) minimal projection of ηj(Mmj )
∼= Mmj

by qj ∈ F , and let ρj : F → C denote the (unique) pure state with ρj(qj) = 1.

Recall that ρj(g)qj = qjgqj for g ∈ F . Let ρ = ρ1 + . . .+ ρs. (The qj have pairwise

orthogonal central supports pj .)

If V : F → B is an
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Def. of ‘‘elementary’’ in Part(o):

“ V ◦ ηj : Mj → B is given by a column b ∈Mn,1(B) in the sense V ◦ ηj(α) = b∗αb,

where ηj(α) := 0⊕ · · · ⊕ α⊕ · · · ⊕ 0 with α at position j.”

elementary c.p. map and δ > 0, then there exists a contraction e ∈ B+, such

that V = c∗W (r∗(·)r)c for W = ρ(·)e some c ∈Mt,1(B) and r ∈M1,t(F )

Why? More precise? Part? (cf. Prop. 3.1.9).

Prop. 3.1.9 has been changed!!!

Thus, it suffices to show that, for b ∈ B+ with ‖b‖ = 1, ε > 0 and j ∈ {1, . . . , s},
there exists Vj ∈ C1 and cj ∈ B with ‖c∗jVj(pj)cj−e‖ < ε. Indeed, this implies that

the point-norm closed C1 actually “contains” ρj(·)b, and then W,V ∈ C1, because

the central supports pj of the qj are orthogonal.

Define a c.p. map W : F → C0((0, 1], F ) by W (g) := f0 ⊗ g for g ∈ F , where

f0(t) = t for t ∈ [0, 1]. Let q := qj and define

hδ := δ−1((f0 − (1− δ))+)⊗ 1 ∈ C0((0, 1], F )+ .

Then aδ := W (q)hδ is positive and ‖aδ‖ = 1 , thus, there is Sδ ∈ S and dδ ∈ B
with ‖d∗δSδ(a2

δ)dδ − b‖ < δ . Note that

Tδ(g) := (dδ)
∗Sδ(aδgaδ)dδ for g ∈ C0((0, 1], F )

defines a map in C and that limδ→0 ‖Tδ(g)−ρj(g(1))b‖ = 0 for all g ∈ C0((0, 1], F ).

Hence ρj(·)b ∈ C1.

(i): By part (o), all

Why the Lemma applies? ??? Definition? of :

“elementary”

c.p. maps V : F → B are contained in C1. The supposed property of B implies

that the elementary c.p. maps are dense in CP(F,B) by Proposition 3.1.9(ii). ???

Prop. 3.1.9(ii) = Old lem:3.3(ii) has been changed

(ii): This follows from part (o), because the set of V ∈ CP(F,B) with V ◦π1 ∈ C
contains all elementary maps V and is convex by the proposed convexity of C.

(iii): If 1 is not isolated in Xj (for j ∈ {1, . . . , s}), then we can find a strictly

increasing sequence 0 =: t0 < t1 < t2 < · · · in Xj such that lim tn = 1. Let

q := qj ∈ F , m := mj and p := pj the central support of q.

Revise proof!

Prop. 3.1.9(i) has been changed!!

We show that our general assumptions (with k ≥ m) implies that C1 contains

V (p(·)) = V ◦ πj for every V ∈ CP(Mm, B) :

By Proposition 3.1.9(i) there are columns c1 = [c11, c12, . . . , c1n]>, . . . , cn ∈
Mn,1(B) such that V (α) =

∑n
i=1 c

∗
i βci . There are contractions en ∈ B+ with

‖ci − (en ⊗ 1n)ci‖ < 1/n.
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We identify C0(0, 1] naturally with the center C0(0, 1]⊗ 1 of C0((0, 1],Mm) ⊆
C0((0, 1], F ). We find (pice-wise linear) non-negative functions fn ∈ C0(0, 1]+ with

support in [(tn−1 + tn)/2, (tn + tn+1)/2] such that ‖fn‖ ≤ 1 and f(tn) = 1.

Further there are functions bn ∈ C0(0, 1]+ with support in [tn−1, 1] such that

0 ≤ bn ≤ 1 and bn|[(tn−1 + tn)/2, 1] = 1. Then bnbn+1 = bn+1 and bnfn+j = fn+j

for all j ≥ 0.

Let W (g) := f0 ⊗ g

Where/ What was Part (o) ???

(as in proof of (o))

and an := W (q)fn ∈ C0(0, 1] ⊗ q. Then ‖an‖ = tn and the an are mutu-

ally orthogonal. Therefore (and by assumptions on S), there exist Sn ∈ S and

dn,0, . . . , dn,m−1 ∈ B with

‖(dn,j)∗Sn
(
(an+j)

2
)
dn,j − (tn+j)

2en‖ < 1/n ∀ j ∈ {0, . . . , n− 1} .

Consider the c.p. maps Tn(g) := Z∗nSn(R∗ngRn)Zn with column Zn ∈
Mm2,1(B) with transposed row (Zn)> given by

(Zn)> := [dn,0 · (c1)>, . . . , dn,m−1 · (cm)>] = [dn,0c11, dn,0c21, . . . , dn,m−1cmm]

and row Rn ∈M1,m2(C0((0, 1],Mm)) given by

Rn := [r
(n)
1 , . . . , r(n)

m ] ,

where r
(n)
j := [(1⊗ e1,1) · an+j−1, . . . , (1⊗ em,1) · an+j−1] which is equal to

fn+j−1 · [(f0 ⊗ e1,1), . . . , f0 ⊗ en,1] .

Here ei,k denote the matrix units of Mm. Note that q = e1,1 and [αijq] =

x∗αx ∈Mm(Mm) for α ∈Mm and x := [e1,1, . . . , em,1] ∈M1,m(Mm). It follows

Tn(f ⊗ α) =
∑
j

(
∑
i,k

αikc
∗
ijd
∗
n+j−1Sn(an+j−1(f ⊗ q)an+j−1)dn+j−1ckj)

for f ∈ C0(0, 1] and α ∈Mm. check? to be filled in

??

The c.p. maps d∗nSn(an(·)an)dn have norms ≤ 1 + 1/n ≤ 2. Since 0 ≤ g ≤
f ⊗ 1m ≤ ‖g‖ for f(t) = ‖g(t)‖ if g ∈ C0((0, 1], F )+, we can see that ‖Tn‖ ≤
2m‖V ‖. For ε > 0 there is n0 with ‖fbn − f(1)bn‖ < ε/(2m)3 for n ≥ n0. Since

Tn((fbn)⊗α) = Tn(f ⊗α) and Sn(an+j−1(bn⊗ q)an+j−1) = Sn(a2
n+j−1), it follows

that, for n ≥ n0,

‖Tn(f ⊗ α)− f(1)
∑
j

∑
ik

αikc
∗
ijen+j−1ckj‖ ≤ max(|αik|) ·m3(1/n+ 2ε/(2m)3)

Thus limn ‖Tn(f ⊗ α) − f(1)V (α)‖ = 0 for all f ∈ C0(0, 1] and α ∈ Mm. Since

sup ‖Tn‖ < ∞, it follows limn ‖Tn(g) − V (g(1))‖ = 0 for every g ∈ C0((0, 1], F ) .

By our construction, Tn ∈ C. Hence V ∈ C1. �
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Lemma 3.2.7. Suppose that S ⊆ CP(A,B) is a set of completely positive maps

such that, for every k ∈ N, a1, . . . , ak ∈ A+ with ‖aj‖ = 1 and aiaj = 0 for i 6= j,

every b ∈ B+ with ‖b‖ ≤ 1 and every ε > 0, there exist d1, . . . , dk ∈ B and S ∈ S
with ‖d∗jS(aj)dj − b‖ < ε for j = 1, . . . k .

Let C ⊆ CP(A,B) denote the point-norm closure of the (OC2)-hull 〈S〉2 of S,

i.e., let C denote the point-norm closure of the set of c.p. maps T : A → B such

that there are S ∈ S, n ∈ N, a row r ∈ M1,n(A) and a column c ∈ Mn,1(B) with

T (·) = c∗S(r∗(·)r)c .

Then we get that ????

CPnuc(A,B) ⊆ C, i.e., each nuclear c.p. map V : A → B can be approximated

in point-norm by maps T := c∗S(r∗(·)r)c with S ∈ S .

in each of the following cases (i), (ii) or (iii):

(i) If, for every b ∈ B and ε > 0, there exist e1, e2 ∈ B with e∗1e2 = 0 and

‖b− e∗jej‖ < ε for j = 1, 2.

(ii) If C is convex.

(iii) If socle(A) = {0} .

The condition (i) is e.g. satisfied if B stable, or if B contains an approximate

unit {eα} of properly infinite contractions.

The proofs of the cases (i), (ii), and (iii) are rather different, e.g. in the proof

of (i) and (ii), we use only the case k = 1. In a sense the assumption on S
is almost necessary, because if b ∈ B+ and orthogonal a1, . . . , ak ∈ A+ of norm

one are given, then there are pure states ρ1, . . . , ρk on A with ρj(aj) = 1. Then

S(a) := (
∑
j ρj(a))b1/3 and dj := b1/3 satisfy the assumptions on S, e.g. in case

S := {f(·)b ; f ∈ A∗+ , b ∈ B+}.

Proof. (i, ii): We check the criteria for CPnuc(A,B) ⊆ C of Lemma 3.2.1.

Let F finite-dimensional and ψ : C0((0, 1], F )→ A a *-morphism such that ‖ψ(f0⊗
p)‖ = 1 for all non-zero projections p ∈ F . Then the quotient ψ(C0((0, 1], F )) of

C0((0, 1], F ) and the restrictions of V ∈ S satisfy the assumptions of Lemma 3.2.6,

because (OC2)-hull of S ◦ ψ is point-norm dense in C ◦ ψ for the (OC2)-hull of

S ⊆ CP(A,B).

Thus the criteria is satisfied in the cases (i) and (ii) by Lemma 3.2.6(i,ii).

Hence, CPnuc(A,B) ⊆ C under the additional assumptions of parts (i) and (ii) by

This proves (i) and (ii).

(iii): We use Lemma 3.2.6(iii) to show that the criteria of Lemma 3.2.1 is

satisfied. Again let F finite-dimensional and ψ : C0((0, 1], F ) → A a *-morphism

such that ‖ψ(f0⊗p)‖ = 1 for all non-zero projections p ∈ F . Unfortunately, 1 could

be isolated in the spectrum of ψ(f0⊗p) for some minimal non-zero projection p ∈ F .
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Let F ∼= Mm1
⊕ · · · ⊕Mmk and let ψj : C0((0, 1],Mmj )→ A the *-morphisms

with ψ(g) = ψj ◦ πj(g) for j = 1, . . . , k, where πj denotes the natural epimorphism

πj : F →Mmj .

The hereditary C *-subalgebras Dj of A generated by ψj(C0((0, 1],Mmj )) are

mutually orthogonal. Since socle(A) = 0 (by assumption), socle(Dj) = 0 and

Lemma A.10.3 says that there exist increasing continuous maps λj : [0, 1] → [0, 1]

with λj(0) = 0 and λj(1) = 1, *-morphisms ϕj : C0((0, 1],Mmj )→ Dj with ϕj(f ◦
λj) = ψj(f) for f ∈ C0((0, 1],Mmj ), such that 1 is not isolated in the spectrum

of ϕj(f0 ⊗ 1) and ϕj(f0 ⊗ 1)ϕi(f0 ⊗ 1) = 0 for i 6= j. Then the image of ϕ(g) :=∑
ϕj(πj(g)) satisfies the assumptions of Lemma 3.2.6(iii), i.e., 1 is not isolated in

X1, . . . , Xn ⊆ (0, 1] with ϕ(C0((0, 1] ⊗ F )) ∼= C0(X1,Mm1
) ⊕ · · · ⊕ C0(Xk,Mmk).

Thus Lemma 3.2.6(iii) applies to ϕ, and for every V ∈ CP(F,B) there is a sequence

Sn ∈ C with limn Sn(ϕ(g)) = V (g(1)) for all g ∈ C0((0, 1], F ). By Lemma 3.1.8,

it follows from the (OC2)-invariance of C that sequence Sn can be chosen with

‖Sn‖ ≤ ‖V ‖ . Thus Sn|D has norm ≤ ‖V ‖, where D denotes the hereditary C *-

algebra generated by ϕ(f0 ⊗ 1). In particular, limn Sn(ϕ((f0(1 − f0) ⊗ 1)) = 0.

Since Sn is positive, it follows limn Sn(a) = 0 for all a ∈ E, where E denote the

hereditary C *-subalgebra of A generated by ϕ((f0(1− f0)⊗ 1). By Lemma A.10.3,

ψ(g) − ϕ(g) =
∑
j ϕj(πj(g ◦ λj) − πj(g)) ∈ E for g ∈ C0((0, 1], F ). It follows

limn Sn(ψ(g)) = limn Sn(ϕ(g) + e) = V (g(1)). Thus, the criteria of Lemma 3.2.1 is

satisfied. �

Corollary 3.2.8. The set CPnuc(A,B) of nuclear c.p. maps is a point-norm

closed m.o.c. cone in the sense of Definition 3.2.2.

It is the point-norm closure of the smallest subset S ⊆ CP(A,B), that

(a) contains all maps a 7→
∑n
j=1 ρj(a)bj with pure sates ρj on A (j = 1, . . . , n)

and bj ∈ B+, and

(b) is closed under the operation (OC2) in Definition 3.2.2.

If socle(A) = {0}, then it suffices to consider only pure states ρj on A that have

pairwise non-equivalent irreducible representations Dj : A→ L2(A, ρj).

Proof. The set of the maps a 7→
∑n
j=1 ρj(a)bj is convex and satisfies the

assumptions of Lemma 3.2.7(ii). �

Remark 3.2.9. A first application of Lemma 3.2.7(ii) is the following observa-

tion:

Suppose that C,D ⊆ M(B) are C*-subalgebras of the multiplier algebra M(B) of

B, such that DB is dense in B and CD ⊆ D, and that D is simple. Then every

nuclear map V : C → B is approximately inner, i.e., can be approximated in point-

norm topology by inner c.p. maps c ∈ C 7→
∑
j b
∗
jcbj ∈ B (with b1, . . . , bn ∈ B).

(Indeed, the cone CPin(C,B) of inner c.p. maps c 7→
∑
j b
∗
jcbj satisfies (OC1)

and (OC2). The assumptions of Lemma 3.2.7(ii) are satisfied, because D is a simple

non-degenerate C *-subalgebra of M(B) and C ⊆M(D) ⊆M(B):
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Indeed, if a1, . . . , ak ∈ C+ are non-zero, pair-wise orthogonal and have norms

‖aj‖ = 1, b ∈ B+, then, for ε > 0, there are e0, e1, . . . , ek ∈ D with e∗i ajei =

δije0, ‖e0‖ = 1 and f1, . . . , fm ∈ C with ‖b −
∑
b1/2f∗j e0fjb

1/2‖ < ε (because

C ⊆ M(D) ⊆ M(B), D is simple and DB is dense in B). Thus, T (c) :=∑
i,j(eifjb

1/4)∗c(eifjb
1/2) and di = b1/4 satisfy the assumptions of Lemma 3.2.7.)

Next related to WvN-Thm. form Elliott and Kucerovsky .

Give precise reference to it!!!

Lemma 3.2.10. Suppose that C ⊆ M(B) is a C*-subalgebra, J / C is a closed

ideal and that for every c ∈ C+ with ‖c + J‖ = 1, every b ∈ B+ and ε > 0 there

exists d = d(c, b, ε) ∈ B with d∗cd ≥ (b− ε)+ .

Let V : C → B a c.p. map with V (J) = 0 such that [V ]J : C/J → B is nuclear.

Then V is approximately one-step inner in M(B).

?...in the sense that there exists a net of elements {dτ} ⊆ B with V (c) =

limτ d
∗
τ cdτ for each c ∈ C. In particular, limτ d

∗
τ cdτ = 0 for all c ∈ J ....?

Proof. We let A := C/J and let C ⊆ CP(A,B) denote the set of c.p. maps

V : A→ B with the property that V ◦πJ : C → B is one-step approximately inner,

i.e., that for c1, . . . , ck ∈ C+ and ε > 0 there is d ∈ B with ‖d‖2 ≤ ‖V ‖ and

‖V (πJ(cj))− d∗cjd‖ < ε for j = 1, . . . , k. Clearly, C is closed under the operations

(OC2) of Definition 3.2.2.

If A := C/J ∼= C then A = C · q. Let V : A → B completely positive, W :=

V ◦ πJ , b := V (q), and f ∈ C+ a contraction with πJ(f) = q. For c1, . . . , cn ∈ C+

and δ > 0 there is a contraction e ∈ J+ with ‖(1− e)(fckf − αkf2)(1− e)‖ < δ if

αkp = πJ(ck), because fckf−αkf2 is in J . Let d ∈ B with ‖b−d∗(1−e)f2(1−e)d‖ <
δ, then ‖W (ck)− g∗ckg‖ < 2δ for k = 1, . . . , n.

Suppose now that A := C/J has (linear) dimension ≥ 2, then a maximal

commutative C *-subalgebra F of A has dimension ≥ 2. Thus there are a1, a2 ∈ A+

with a1a2 = 0 and ‖ai‖ = 1 for i = 1, 2. There is c ∈ C with c∗ = c, ‖c‖ = 1 and

π(c) = a1 − a2. Let c1 := c+ and c2 := c−. Then πJ(ci) = ai for i = 1, 2.

Let b ∈ B and ε > 0, then there are (by assumptions) di ∈ B with d∗i (ci)
2di ≥

(b − δ)+ for δ := ε/3. By Lemma 2.1.9 there are contractions fi ∈ B such that

e∗i ei = (b− 2δ)+ for ei = cidifi ∈ B (i = 1, 2), and e∗1e2 = 0.

Thus suffices to show, that A, B and S satisfy the assumptions of Lemma

3.2.7(i) (where the case k = 1 is sufficient as the proof of Lemmas 3.2.6(i) and

3.2.7(i) shows), i.e., it suffices to show that, for (given) a0 ∈ A+ with ‖a0‖ = 1,

b ∈ B+ with ‖b‖ ≤ 1 and ε > 0, there is S ∈ C with ‖S(a0)− b‖ < ε.

Let c0 ∈ C+ a contraction with πJ(c0) = a0, and let ϕ ∈ A∗ a pure state on

A with ϕ(a0) = 1. Then ψ := ϕ ◦ πJ is a pure state on C with ψ(J) = 0. Let

V (a) := ψ(a)b . It suffices to show that W := V ◦ πJ is approximately inner. Note

that W (c) = ψ(c)b .
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By Lemma ??, there exists a directed net G ⊆ C of positive contractions

g ∈ G with ψ(g) = 1 such that limg→G ‖gcg − ψ(c)g2‖ = 0 for all c ∈ C. Thus, for

c1, c2, . . . , cn ∈ C and ε > 0 (and δ := ε/M for M := (2+2 maxj ‖cj‖)) there exists

a contraction g ∈ C+ with ψ(g) = 1 and ‖gcjg − ψ(cj)g
2‖ < δ for j = 1, . . . , n.

Since ‖πJ(g)‖ ≥ ψ(g) = 1, there is d ∈ B with δ−1d∗(g2− (1−δ))+d = (b−δ)+ (by

assumption and by Lemma 2.1.9). Let f := δ−1/2(g2 − (1− δ))+d. Then ‖f‖ ≤ 1,

and for j = 1, . . . , n,

‖(gf)∗cj(gf)− ψ(cj)b‖ ≤ δ(1 + 2 max
j
‖cj‖) < ε .

�

HERE in next lem.: ‘‘compact’’ and ‘‘nuclear’’ in what sense?

The point is the question what kind of approximation by factorable

maps is required,

i.e., what kind of topology in the set of c.p. contractions has to be

taken,

and what kind of c.p. maps S into Mn are accepted?

Strictly continuous S?,

uniformly continuous on which kind of subsets?

all compact subsets, ... norm-continuous anyway ...

Minimal: approx on finite subsets ...,

but ‘‘uniformly’’ continuous on the base sets of the topology.

Classic: point-wise uniform on finite sets.

Lemma 3.2.11. Let C be a separable C*-subalgebra of the multiplier algebra

M(D) of a C*-algebra D (respectively of a von-Neumann algebra M) and V : C →
B a nuclear completely positive contraction into a C*-algebra B.

Then for every compact subset Ω ⊆ C, every ε > 0 there exist n ∈ N and

completely positive contractions S : M(D) → Mn (respectively S : M → Mn),

T : Mn → B, such that

‖V (c)− TS(c)‖ < ε for c ∈ Ω ,

and S is unital and continuous w.r.t. the strict topology on M(D) (respectively S

is unital and σ(M,M∗)-norm continuous).

Proof. The multiplier algebraM(D) is unitally contained in the W*-algebra

D∗∗ with pre-dual D∗ = (D∗∗)∗ . The natural embedding is continuous w.r.t. to the

strict topology on M(D) on bounded parts and w.r.t. the σ(D∗∗, D∗)-topology on

D∗∗. In particular, S|M(D) is unital and strictly continuous for every ultra-weakly

continuous u.c.p. map S : D∗∗ →Mn. Thus, we can restrict to the case of C ⊆M ,

where M is a von-Neumann subalgebra of L(H) for some Hilbert space H. Notice

that Su(a) := u∗(a⊗ 1)u ∈ L(Cn) ∼= Mn defines an ultra-weakly continuous u.c.p.

map Su : M →Mn if u : Cn → H⊗ `2(N) is an isometry.
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Let {c1, . . . , cm} ⊆ Ω a δ-dense subset of Ω for δ := ε/4. By Definition 3.1.1,

Lemma 3.1.8 and Lemma 3.1.11(ii), there are m ∈ N and completely positive con-

tractions S0 : C → Mm and T0 : Mm → B, such that ‖V (cj)− T0(S0(cj))‖ < δ for

j = 1, . . . ,m.

Since C ⊆M ⊆ L(H) we can extend S0 to a c.p. contraction W : L(H)→Mn

(e.g. by the Arveson extension theorem [42]).

The natural extensions of the irreducible representations of D to irreducible

representations of M(D) are strictly continuous if one considers them with the

*strong operator topology. The family of this particular irreducible representations

of M(D) is separating for M(D). If we apply Lemma 3.1.12(i) to this class of

irreducible representations of M(D), then we get a strictly continuous unital c.p.

map S1 : M(D) → Mm1
⊕ · · · ⊕Mmk =: F and a c.p. contraction T1 : F → Mn

with ‖W (cj) − T1(S1(cj))‖ < δ for j = 1, . . . , n. Thus ‖V (c) − T (S(c))‖ < ε for

c ∈ Ω and S := T1 ◦ S1. �

The following Lemma 3.2.12 is only 1× really cited and used in

the proof of Lemma ??. Formulations and proofs have to be improved

in both cases.

In the next proofs we use the property of non-elementary simple C *-algebras

stated in the following Lemma 3.2.12. Here [ · ] denotes matrices of operators,

and ‖ · ‖ means their norms. In part (iv) we put two consecutive rows [fik]i

(i = 1, . . . , kn, k = n, n+ 1) together to a row [hin]i of length kn + kn+1.

Recall that a simple C *-algebra A is “non-elementary” if A is not isomorphic to

the algebra of compact operators on a Hilbert space (and is non-zero). The point

of the following Lemma 3.2.12 is that the irreducible representation Dϕ : A →
L(A/Lϕ) is faithful on A but has the property that A ∩K(A/Lϕ) = {0}.

Lemma 3.2.12. Let A be a non-elementary simple C*-algebra, ϕ be a pure state

on A and Y1 ⊆ Y2 ⊆ . . . a sequence of subsets of the contractions in the multiplier

algebra M(A) such that each Yn is compact with respect to the strict topology on

M(A).

(This topology on M(A) is given by the semi-norms T ∈ M(A) 7→ ‖Ta‖ for

a ∈ A?

Check by Def.’s given in Chp. 5.

If A s unital then we could take Xn = {1} ??? What is here Xn? Is it Yn?)

Where the simplicity plays a role?

Are ‘‘strictly’’ compact subsets of the unit ball of M(A)

(i.e., compact with respect to the strict topology)

separable subsets of M(A) in norm topology?

It seems that this is supposed implicit below.

Have only that this sets are separable w.r.t. strict topology on

M(D) if D isσ-unital.
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Is the unit ball of L(`2) in the strong* operator topology compact?

It is at least weakly compact ...

Let Sn : M(A)→Mkn a sequence of strictly continuous unital completely pos-

itive maps from M(A) into Mkn .

Does it say that the Sn are ‘‘supported’’ in A?

And that the Sn are the unique strictly continuous extensions of

Sn|A?
If ‘‘yes’’ then we find positive contractions em,n ∈ A+ with

‖1kn − Sn(em,n)‖ < 2−(m+n),

This could the lead to the a reduction to the case

where A is σ-unital?

Then there exist contractions fin ∈ A (n = 1, 2, . . . , i = 1, . . . , kn), b ∈ A+ and

a sequence m1 < m2 < . . . of positive integers such that

(i) ‖[ϕ(f∗inafjn)]ij − Sn(a)‖ < 4−n for a ∈ Yn,

(ii) ‖[ϕ(f∗imafjn)]ij‖ < 4−m for a ∈ Yn and m < n, i = 1, . . . , km, j =

1, . . . , kn,

(iii) ‖b‖ = 1 and ϕ(b) = 1,

(iv) ‖[b`h∗inahjnb`]ij − [b2`ϕ(h∗inahjn)]ij‖ < 4−n for a ∈ Yn and mn ≤ ` where

hjn = fim with i = j, m = n if j ≤ kn, and with i = j − kn, m = n+ 1 if

kn < j ≤ kn+1.

Proof. (i) and (ii): We can suppose that 1 ∈ Yn .

Since the unital completely positive maps Sn are strictly continuous, there are

sequences d`,n ∈ A+ such that ‖d`,n‖ = 1 and lim`→∞ Sn(d`,n) = 1kn .

This implies that all Sn are supported on a σ-unital C *-subalgebra eAe of A

with {d`,n ; `, n ∈ N} ⊆ eAe.

Moreover, the Sn are restrictions to M(A) ⊆ A∗∗ of its unique normalizations

(i.e., weakly continuous extensions to A∗∗) of its restrictions Sn|A to A.

The compactness of the sets Yn with respect to the strict topology on M(A)

implies that the set Z := {e} ∪ {d`,n ; n, ` ∈ N} and the union
⋃
n,m∈N YnZYm

generates a separable C *-subalgebra E of A, such that YnE + EYn ⊆ E for n =

1, 2, . . . .

Above we claimed that there is and invariant separable C *-subalgebra E of A,

such that
⋃
n Yn contained in the two-sided normalizer N (E,M(A)) ⊆M(A) of E

in M(A).

At least we could find a σ-unital C *-subalgebra E of A such that the Sn are

supported on E, i.e., lim` ‖Sn(e1/`)−1kn‖ = 0 for each n ∈ N if e ∈ E+ is a strictly

positive contraction in E.

(That would be sufficiant for the rest of the proof.)
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If e ∈ E+ is a strictly positive contraction, then necessarily lim`→∞ Sn(e1/`) =

1kn for n = 1, 2, . . . by strict continuity of the Sn : A→Mkn , i.e., lim` ‖Sn(e1/`)−
1kn)‖ = 0 in Mkn for each n ∈ N.

It follows that limk→∞ Sn(e1/kae1/k) = Sn(a) for a ∈ M(A) and n = 1, 2, . . . ,

because

‖S(fbf)− S(b)‖2 ≤ 8‖b‖2‖1C − S(f)‖

for every unital completely positive map S : B → C and f ∈ B+ with ‖f‖ ≤ 1.

The verification of the latter inequality can be reduced to the case C := C:

For every state ρ on (general unital) C and contraction c ∈ C+, holds |1 −
ρ(c)| ≤ ‖1 − c‖ and there exists a pure state ρ on C with |ρ(S(fbf) − S(b))| =

‖S(fbf) − S(b)‖ and such that the restriction of ρ to the Abelian C *-subalgebra

generated by S(fbf)− S(b) is a character.

But if λ (e.g. λ := ρ ◦ S) is a positive functional on B with norm ‖λ‖ ≤ 1 and

b, f ∈ B+ with ‖f‖ ≤ 1 then

|λ(fbf)− λ(b)|2 ≤ 8‖b‖2|1− λ(f)| .

Proof of latter inequality:

We can suppose that B ⊆ L(H) and λ is defined by x ∈ H as λ(b) :=< bx, x >.

We let y := f1/2x and z := fx = f1/2y. Have ‖x‖ ≤ 1 and ‖z‖ ≤ 1. λ(f) =<

y, y >, x− z = (1− f)x

| < bx, x > − < bz, z > | = |λ(fbf)− λ(b)|

|(< bx, x > − < bx, z >) + (< x, bz > − < z, bz >)| ≤ ‖b‖‖x‖‖x − z‖ +

‖b‖‖z‖‖x− z‖

≤ 2‖b‖(‖(1− f)x‖) .

‖x − fx‖2 =< x, x > + < fx, fx > −2 < fx, x > = ‖(1 − f)x‖2 =< (1 −
f)2x, x >=< x, x > −2 < fx, x > + < f2x, x >≤ 2(‖x‖2− < fx, x >).

≤ 2(1− < fx, x >) if 0 ≤ f ≤ 1 and ‖x‖ ≤ 1.

Obtain estimate:

|λ(fbf)− λ(b)| ≤ 2‖b‖(2(1− λ(f)))1/2

From the Banach-Steinhaus (uniform boundedness) theorem we get the exis-

tence of constants Cn < ∞ with ‖a‖ ≤ Cn for all a ∈ Yn. Thus we find gn ∈ N
such that ‖Sn(enaen)− Sn(a)‖ ≤ 8−n for en = e1/gn , a ∈ Yn.

It seems that here a quasi-central approximate unit en

would do on all places a much better job!

Ωn := e1Y1e1 ∪ · · · ∪ enYnen is a compact subset of E ⊆ A.

We consider Mkn as naturally realized on Ckn . The irreducible representation

Rϕ defined by ϕ on H := L2(A,ϕ) (with canonical cyclic vector x) is faithful and
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Rϕ(A) ∩ K = 0, because A is simple. By Lemma 2.1.22, there is a sequence of

isometries vn : Cn → H such that ‖Sn(a) − v∗navn‖ ≤ 8−n and ‖v∗navm‖ < 8−n

for a ∈ Ωn, m < n. By the Kadison transitivity theorem, we get contractions

pin ∈ A such that Rϕ(pin)x = vn(ei,kn). Thus [ϕ(p∗jnapin)]ij = v∗navn in Mkn and

[ϕ(p∗jmapin)]ij = v∗navm in Mkn,km = L(Ckm ,Ckn) for a ∈ M(A) and m < n,

where i = 1, . . . , kn, j = 1, . . . , km . The elements fin := enpin are as desired.

(iii) and (iv): The existence of b ∈ A+ with (iii) and (iv) follows from Lemma

??, because the union of the sets f∗imYkfjn generate a separable C *-subalgebra of

A by compactness of the sets Yk with respect to the strict topology. �

next Prop. and others overlap with chp. 5?

Proposition 3.2.13. Suppose that B is a C*-algebra, and that D ⊆ M(B)

is a simple, purely infinite, and non-degenerate C*-subalgebra of the multiplier

algebra M(B) of B, (i.e., DB = B).

Let C a separable C*-subalgebra of M(B) that satisfies CD ⊆ D.

If V : C → B is a nuclear completely positive contraction, then V can be approx-

imated by 1-step inner c.p. maps in the sense of following property (i), respectively

properties (i,ii) if B is unital:

(i) There exist sequences of contractions d
(i)
n ∈ B (i = 1, 2, n = 1, 2, . . .) with

limn→∞(d
(i)
n )∗ad

(i)
n = V (a) for i = 1, 2, a ∈ C, and limn→∞(d

(i)
n )∗ad

(j)
n =

0 , for i 6= j, a ∈ C + C1 .

(ii) If, moreover, B is unital, 1B ∈ C and V (1) = 1, then the sequences

(d
(i)
n ) (i = 1, 2) in (i) can be chosen as isometries with orthogonal ranges:

(d
(i)
n )∗d

(j)
n = δij1 .

Proof. The crucial role plays here that we have the intermediate simple purely

infinite C *-subalgebra D ⊆M(B).

(i): We prove a more precise and general result: Let C ⊆M(D), D ⊆M(B)

with DB = B (i.e., 1M(B) ∈ M(D) ⊆ M(B)), D simple and purely infinite,

and let Ω1 ⊆ Ω2 ⊆ . . . ⊆ C be a sequence of norm compact subsets of C and

Wn : C → B nuclear completely positive contractions, then there exist contractions

d1, d2, . . . ∈ B such that ‖d∗ndn+1‖ ≤ 2−n and ‖d∗nbdn −Wn(b)‖ < 2−n for b ∈ Ωn

and ‖d∗nbdn+1‖ < 2−n for b ∈ Ωn, n = 1, 2, . . ..

Let V1 = . . . = V8 := W1, Vn+8 := Wn. At first we find by Lemma 3.2.11

completely positive contractions Sn : M(D) → Mkn and Tn : Mkn → B such that

Sn is unital and strictly continuous, and ‖Tn(Sn(b))− Vn(b)‖ < 8−n for b ∈ Ωn.

Prop. 3.1.9(i) (was old a Lemma) has been changed!!

Moreover we can assume that Tn is of the form described in Proposition 3.1.9(i)

(by passing, if necessary, to Mkn ⊗ Mkn and Sn(.) ⊗ 1). That is, there exist
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e
(n)
1 . . . e

(n)
kn
∈ B with Tn(α) = EnαE

∗
n for α ∈ Mkn where En is the row matrix

[(e
(n)
1 )∗, . . . , (e

(n)
kn

)∗] and EnE
∗
n =

∑kn
j=1(e

(n)
j )∗e

(n)
j is a contraction.

The Lemma 3.2.12 is imprecise formulated and is used only here!!

Find a better source or an other proof here or there?

By Lemma 3.2.12 there exist row matrices Fn = [f
(n)
1 , . . . , f

(n)
kn

] with elements

in D, b ∈ D+ and a sequence m1 < m2 < . . . of positive integers such that (with

bn := bmn)

‖(1kn ⊗ bn)F ∗naFn(1kn ⊗ bn)− Sn(a)⊗ b2n‖ < 4−n2

and

‖(1kn ⊗ bn)F ∗naFn+1(1kn+1 ⊗ bn+1)‖ < 4−n2 ∀ a ∈ Ωn ∪ {1}.

Let δn := (sup{‖Sn(a)‖ : a ∈ Ωn ∪ {1}})−1 and γn := δn/(5kn). Consider

the separable C *-subalgebra B1 of B which is generated by the e
(n)
j , n = 1, 2, . . .,

j = 1, . . . , kn. B1 contains a strictly positive element e ≥ 0 with ‖e‖ = 1. We find

a sequence of positive integers pn < pn+1 < . . . such that, with en := e1/pn , we get

‖ene(n)
j − e(n)

j ‖ < 16−nγn for j = 1, . . . , kn, n = 1, 2, . . .. Then from B = DB we

get contractions gn ∈ D with ‖gnen − en‖ < 16−nγn.

The separable C *-subalgebra D1 of D generated by gn contains a strictly pos-

itive element h ∈ D+ with ‖h‖ = 1, and we find positive integers rn < rn+1 < . . .

such that (with hn := h1/rn) ‖hngn − gn‖ < 16−nγn.

It follows

‖hne(n)
j − e(n)

j ‖ < 16−n5γn = 16−nδn/kn and ‖E∗n − (1kn ⊗ hn)E∗n‖ < 16−nδn.

Since D is purely infinite and simple, bn, hn ∈ D+ and ‖bn‖ = ‖hn‖ = 1, we

find (by Proposition 2.2.1(ii)) cn ∈ D with ‖cn‖ = 1 and ‖c∗nb2ncn − hn‖ < 16−nδn.

Then

‖En(α⊗ c∗nb2ncn)E∗n − EnαE∗n‖ < 4−n‖α‖δn
for α ∈Mkn , because En is a contraction.

Here Mkn is embedded in Mkn(M(D)) ∼= Mkn ⊗M(D) by α 7→ α⊗ 1.

Now let zn := Fn(1kn ⊗ (bncn))E∗n ∈ B, i.e. zn :=
∑kn
j=1 f

(n)
j bncne

(n)
j . Then

‖z∗nazn − TnSn(a)‖ < 4−n2 + ‖En(Sn(a)⊗ c∗nb2ncn)E∗n − EnSn(a)E∗n‖.

‖z∗nazn+1‖ ≤ ‖(1kn ⊗ bn)F ∗naFn+1(1kn+1 ⊗ bn+1)‖,

because ‖(1⊗ cn)E∗n‖ = ‖cn‖ · ‖En‖ ≤ 1. It follows that

‖z∗nazn+1‖ < 4−n2 and ‖z∗nazn − TnSn(a)‖ < 4−n3 ∀ a ∈ Ωn ∪ {1}.

In particular ‖zn‖2 ≤ 1 + 4−n3.

Let dn := (max(1, ‖zn‖))−1zn, then dn is as desired.

(ii): We have limn→∞(d
(i)
n )∗d

(j)
n = 0 and limn→∞(d

(i)
n )∗d

(i)
n = 1 (i 6= j and

i, j = 1, 2) from part (i). Thus, eventually small perturbations of the d
(i)
n ’s (i=1,2)

are as desired. �

Next remark sort of pre-version of the WvN-theorem in chp.5?
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Remark 3.2.14. There is a more delicate counterpart of Proposition 3.2.13 for

the case D ∼= K (which is implicitly contained in [?]):

Suppose that B is a C *-algebra, and that C,D ⊆M(B) are C *-subalgebras of

the multiplier algebra M(B) of B, such that D is non-degenerate, i.e., D ·B = B,

and D ∼= K . Let C be a separable C *-subalgebra ofM(B) such that CD ⊆ D, and

let V : C → B a completely positive map such that V (C ∩D) = {0} and suppose

that the c.p. map [V ] : C/(D ∩ C)→ B on the “classes”

[c] := c mod (D ∩ C) = c+D ∩ C

is a nuclear completely positive map.

Then V is approximately 1-step inner. More precisely, there exists a sequences

of contractions dn ∈ B with limn→∞ d∗nadn+k = δ0,kV (a) for a ∈ C.

The proof uses Lemma 2.2.3 and modifications of arguments from the proof of

Proposition 3.2.13.

In the following proposition Cb(X,B) means the C *-algebra of continuous func-

tions on a locally compact space X with values in B, and C0(X,B) is the closed

ideal in Cb(X,B) formed by the functions f ∈ Cb(X,B) with x ∈ X 7→ ‖f(x)‖
vanishing at infinity.

Proposition 3.2.15. Let D ⊆ B be C*-algebras, where D is simple and purely

infinite and DB = B . Let X be a locally compact and σ-compact space, C a sep-

arable C*-subalgebra of Cb(X,D), and x ∈ X 7→ (Vx : D → B) ∈ CP(D,B) a

point-norm continuous map from X into the nuclear completely positive contrac-

tions from D to B, i.e., Vx ∈ CPnuc(D,B) for all x ∈ X.

Consider the c.p. contraction V : Cb(X,D)→ Cb(X,B) defined by V (d)(x) :=

Vx(d(x)) for x ∈ X and d ∈ Cb(X,D) .

(i) There exists a contraction d ∈ Cb(X,B) such that d∗cd−V (c) ∈ C0(X,B)

for c ∈ C .

(ii) If moreover B and D are unital, then 1D = 1B. If then 1D ∈ C, i.e., if

C contains the unit element of the C*-algebra Cb(X,D), and nuclear c.p.

map Vx : D → B is unital for every x ∈ X, then the element d in Part(i)

can be chosen such that d is moreover an isometry in Cb(X,B).

Notice that the Cb(X)-modular c.p. map c ∈ Cb(X,D) → V (c) ∈ Cb(X,B)

is in general not nuclear, but it is easy to see with help of the “tensor product

criterium” that the c.p. maps c 7→ f∗V (c)f ∈ C0(X,B) with f ∈ C0(X,B) are all

nuclear.

Proof. We reduce the proof essentially to the proof of Part(i) by adding to C

a special constant positive contraction e ∈ D+ ⊆ Cb(X,D)+ that makes the larger

C∗(C, e) ⊇ C a separable σ-unital C *-subalgebra of Cb(X,D), and then select the

proposed contraction d ∈ Cb(X,B) such that it satisfies in addition the inequality

‖d∗ed− V (e)‖ < 1/3 .
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(i): By local compactness and σ-compactness of X, there exist an increasing

sequence X1 ⊆ X2 . . . ⊆ X of open subsets of X with compact closures Xn ⊆ Xn+1

such that X =
⋃
Xn.

If we use the Tietze-Urysohn extension theorem then we find continuous func-

tions fn : X → [0, 1] with fn(x) = 1 for x ∈ Xn and fn(x) = 0 for x ∈ X \Xn+1.

Let g1 := f
1/2
1 , gn := (fn − fn−1)1/2 for n > 1 . Then fnfn+1 = fn, and therefore

gngm = 0 if |n−m| > 1 .

Since C is separable by our assumptions, we find separable C *-subalgebras

Dn ⊆ D such that the evaluation epimorphisms πx : Cb(Xn, D) → D for x ∈ Xn

map the separable C *-algebra C|Xn into the separable C *-subalgebra Dn, i.e.,

πx(C) ⊆ Dn . Thus, the separable C *-subalgebra D∞ :=
⋃
nDn has the property

that C ⊆ Cb(X,D∞). Let e ∈ D∞ a strictly positive contraction in D∞. Consider

it as constant element of Cb(X,D) and replace C by C∗(e, C) ⊆ Cb(X,D). Then

e ∈ C∗(e, C) is a strictly positive element of C∗(e, C). If D is unital then we can

likewise also take here 1D in place of e. From now on we suppose that C contains a

“distinguished” strictly positive contraction e. Likewise this is the unit of Cb(X,D)

if D is unital.

Now let Y1 ⊆ Y2 ⊆ . . . ⊆ C be finite-dimensional linear subspaces of C, such

that C is the closure of the union of the Yn. Since C ⊆ Cb(X,D), we find compact

subsets Ω1 ⊆ Ω2 ⊆ . . . ⊆ D such that y(x) ∈ Ωn for points x ∈ Xn+1 and elements

y ∈ Yn with ‖y‖ ≤ n + 1. Consider the nuclear completely positive contractions

Vn : D → C0(X,B) given by Vn(b)(x) := (fn+1V (b)fn+1)(x) for x ∈ X and b ∈ D,

where the fn ∈ C0(X)+ are as above defined.

Recall that D ⊆ B ⊆ Cb(X,B) and Cb(X,B) ⊆M(C0(X,B)) naturally.

C0(X,B) is the closure of DC0(X,B), because is the closure of B C0(X,B)

and B is the closure of DB by the assumptions.

We have shown – under this assumptions of non-degeneracy – in the proof of

Proposition 3.2.13 that there exist contractions d1, d2, · · · ∈ C0(X,B) with ‖d∗nbdn−
Vn(b)‖ < 2−n−1, ‖d∗nbdn+1‖ < 2−n−1 for b ∈ Ωn and ‖d∗ndn+1‖ < 2−n−1 .

Let h :=
∑∞
n=1 gn+1dn . Now use the above listed properties of gn, dn, and the

definitions of Ωn and Yn.

Then a simple calculation shows, that h ∈ Cb(X,B), ‖h(x)‖ ≤ 1 + 2−n for

x ∈ X \Xn, ‖h(x)∗b(x)h(x)− Vx(b(x))‖ ≤ 2−n‖b‖ for b ∈ Yn and x ∈ X \Xn and

n > 1, or n = 1 and y ∈ X.

Need that ‖d(x)∗ed(x)− e‖ < 1/4 ... ????

Thus d(x) := (max(1, ‖h(x)‖))−1h(x) is a contraction d in Cb(X,B) with the

desired properties.

(ii): If B is unital, then DB = B implies 1B ∈ D.

If then 1B ∈ C and the Vx(·) are unital, then the element we can assume that
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1 ∈ Y1 and have d(x)∗d(x) ≤ 1 and 1 − d∗d ∈ C0(X,B). Thus we can re-

place d(x) := h(x)(h(x)∗h(x))−1/2 is an isometry in Cb(X,B) with the desired

properties. �

Corollary 3.2.16. Suppose that B is purely infinite and simple.

(i) Let C be a C*-subalgebra ofM(B). Then every nuclear completely positive

contraction V from C to B can be approximated point-wise by maps of the

form c ∈ C 7→ d∗cd ∈ B, where d ∈ B and ‖d‖ ≤ 1.

(ii) If C is a separable C*-subalgebra of `∞(B) and if Vn : B → B (n =

1, 2, . . .) is a sequence of nuclear completely positive contractions, then

there exist sequences d1, d2, . . . and e1, e2, . . . of contractions in B such

that lim e∗ndn = 0 for n = 1, 2, . . ., lim ‖d∗nπn(c)dn − Vn(πn(c))‖ = 0 and

lim ‖e∗nπn(c)en − Vn(πn(c))‖ = 0.

Proof. (i): Let Y ⊆ C a finite subset and ε > 0. By Proposition 3.2.13 (with

B = D) there exists a contraction d ∈ B with ‖d∗ad− Vn(a)‖ < ε for a ∈ Z.

(ii): Let Y1 ⊆ Y2 ⊆ . . . ⊆ C be a linear filtration of C. By Proposition

3.2.13 (with B = D) there exist contractions dn, en ∈ B with ‖e∗ndn‖ ≤ 1/n,

‖d∗nadn − Vn(a)‖ < 1/n and ‖e∗naen − Vn(a)‖ < 1/n for every a in the compact set

{πn(c) : c ∈ Yn, ‖c‖ ≤ n}. �

Remark 3.2.17. Corollary 3.2.16(ii) has a converse, which is easily established

(using Proposition 2.2.1(ii) and the nuclear contractions a 7→ ψ(a)b for suitable

states ψ):

If every nuclear contraction from an arbitrary subalgebra B of A 6= {0} into A can

be approximated by maps b 7→ d∗bd, d ∈ A and ‖d‖ ≤ 1, then either A is simple

and purely infinite or A ∼= C.

Remark 3.2.18. As noted in Remark 3.2.17, the assumption that A is purely

infinite is quite essential to approximate nuclear maps on subalgebras by maps

b 7→ d∗bd .

However, Haagerup and Zsido [351] published a proof of the Dixmier conjecture

that every simple unital C *-algebra A with a unique trace state ρ has the so-called

“Dixmier property”: There exists a net {Vτ} in the convex combination of the inner

automorphisms on A that converges point-wise to the map ρ(·)1.

Remark 3.2.19. For contractions a and b in a C *-algebra B and ε ∈ [0, 1)

with ‖a∗b‖ < ε2 there exist contractions c, d ∈ B such that c∗d = 0, ‖a−c‖ < ε1/2

and ‖b− d‖ < ε1/2.

In the case of positive contractions a, b ∈ C0(X,M2)+ with ‖ab‖ < ε2 one can

find contractions c, d ∈ C0(X,M2)+ with c∗d = 0 and ‖c−a‖ < 2ε and ‖d−b‖ < 2ε.

This is also the general conjecture for contractions a, b ∈ C∗(a, b) ⊆ L(`2) .

It is easy to see that in case of any functions a, b ∈ C0(X) with ‖ab‖ ≤ ε there

exists functions c, d ∈ C0(X) with cd = 0, ‖c− a‖ ≤ ε and ‖d− b‖ ≤ ε.
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In case of projections a = p and b = q we can take c := p and d := (1 − p)q
with ‖a− c‖ = 0 and ‖b− d‖ = ‖ab‖.

The estimates allow us to show that the proofs of Proposition 3.2.13(i) and

Corollary 3.2.16(i) can be arranged such that, moreover, (d
(i)
n )∗d

(j)
n = 0 for i 6= j

(respectively that e∗ndn = 0).

More details for Remark 3.2.19 : We can replace the contractions a and

b by the positive contractions e := (aa∗)1/2 and f := (bb∗)1/2 . Then a = ev =

v(a∗a)1/2 and b = fw = w(b∗b)1/2 for the polar decompositions. They satisfy

‖ef‖ = ‖a∗b‖. Let γ := ‖ef‖.

An estimate of the infimum of the distances max(‖e−ge1/2‖, ‖f−hf1/2‖) to all

contractions g, h ∈ A with g∗h = 0 then we get also the desired estimate, because

c := ge1/2v and d := hf1/2w satisfy ‖c−a‖ = ‖e−ge1/2‖ and ‖d−b‖ = ‖f−hf1/2‖.

Thus it suffices to consider the special case where ‖e− ge1/2‖ and ‖f − hf1/2‖
with g := (e− f)

1/2
+ and h := (f − e)1/2

+ = (e− f)
1/2
− . Then (f − e)+ = (e− f)−

implies g∗h = 0.

Recall 2(f−e)+ = |f−e| +(f−e) and 2(e−f)+ = |f−e| −(f−e) = 2(f−e)−.

It implies e− (e− f)+ = 2−1(e+ f − |e− f |) = f − (f − e)+.

Since ‖e‖ ≤ 1 and the square root is operator convex, we get

‖e−ge1/2‖ ≤ ‖e1/2−g‖ ≤ ‖e−g2‖1/2 = ‖e−(e−f)+‖1/2 = 2−1/2·‖e+f−|e−f |‖1/2 .

Now we use again that square root is operator convex and and that |e−f |2 = (e−f)2

to obtain ‖e+ f − |e− f |‖ ≤ ‖(e+ f)2 − (e− f)2‖1/2 . Using (e+ f)2 − (e− f)2 =

2(ef + fe) and ‖ef‖ = ‖fe‖ we obtain ‖e+ f − |e− f |‖ ≤ 21/2‖ef‖1/2 and finally

that

‖e− ge1/2‖ ≤ ‖ef‖1/4 .

Similar calculation shows that

‖f − hf1/2‖ ≤ ‖ef‖1/4 .

Corollary 3.2.20. Suppose that B is a simple C*-algebra and A is a C*-

subalgebra of M(B).

Then for every nuclear contraction V : A → B, every compact subset Ω of A

and every ε > 0 there are b1, . . . , bn in B such that ‖
∑
b∗i bi‖ ≤ 1 and∥∥∥V (a)−

∑
b∗i abi

∥∥∥ < ε for all a ∈ Ω .

It is an idea from ‘‘3rd draft’’.

It is true for all ideal-system preserving residually nuclear maps

V : A→ B from A ⊆M(B) to B, i.e., if

V (A ∩M(B, J)) ⊆ J and [V ]J : A/(A ∩M(B, J)) → B/J is nuclear for all

closed ideals J ⊆ B.
Thus, residually nuclear maps are approximately sums of inner c.p.

maps ...
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It comes from the generalized separation theorem for m.o.c. cones.

Derive it as a Corollary from the general result for those

C *-algebras where every ideal-respecting nuclear map is automatic

residual nuclear??

E.g. where all ideals are ‘‘locally semi-split’’.

???Are all exact C *-algebras locally semi-split ???

Proof. Consider the nuclear map V ⊗ id from A ⊗ O∞ ⊆ M(B ⊗ O∞) into

B ⊗ O∞ (that is again nuclear because O∞ is a nuclear C *-algebra; i.e., V ⊗ id

is nuclear). By Theorem E, the C *-algebra B ⊗O∞ is simple and purely infinite,

because B is simple and O∞ is simple and purely infinite, cf. [169, 172]. By

Corollary 3.2.16, V ⊗id can be approximated by maps of the form a⊗ξ 7→ x∗(a⊗ξ)x
for a suitable contraction x ∈ B ⊗ O∞ . In particular, for a given ε > 0, we can

find x ∈ B ⊗ O∞ , ‖x‖ ≤ 1 such that ‖V (b) ⊗ 1 − x∗(b ⊗ 1)x‖ < ε/2 for b ∈ Ω .

Approximating x by elementary tensors, we can achieve

‖V (b)⊗ 1− (
∑

ai ⊗ di)∗(b⊗ 1)(
∑

ai ⊗ di)‖ < ε

and

‖
∑

ai ⊗ di‖ ≤ 1

for suitable elements ai ∈ B and di ∈ O∞. Now let ρ be a pure state on O∞.

Applying the Gram-Schmidt orthogonalization procedure we may suppose that

ρ(d∗i dj) = δij for all i, j, and obtain suitable new
∑
ai ⊗ di. But then (apply-

ing id⊗ρ) we get

‖V (b)−
∑

a∗i bai‖ < ε

for b ∈ Ω. Now ‖
∑
a∗i ai‖ ≤ 1 because ‖

∑
ai ⊗ di‖ ≤ 1. �

Next follows from s.p.i. permanences:

A s.p.i. and B exact

(e.g. B nuclear, B = C0(X) for l.c. space X)

then A⊗B s.p.i.

Result and Proof should be given somewhere in Chp. 2.

Corollary 3.2.21. If D is simple and purely infinite, Y a compact space,

ε > 0 and a, b ∈ C(Y,D)+ such that ‖b‖ ≤ 1 and ‖a(y)‖ = 1 for every y ∈ Y then

there exists a contraction d ∈ C(Y,D) such that ‖b− d∗ad‖ < ε.

Proof. For every y ∈ Y we find a state λy on D such that λy(a(y)) = 1. In

an open neighborhood U(y) of y we have |1− λy(a(x))| < ε/2 for x ∈ U(y). Since

Y is compact, we find a finite sequence y1, . . . , yn ∈ Y such that the union of the

U(yk) equals Y . We may assume that the system is minimal with this property.

Let ek : Y → [0, 1] (k = 1, . . . , n) a finite decomposition of 1 such that the support

of ek is contained in U(yk).

Let λk := λyk and Ty(c) := (
∑
ek(y)λk(c))b(y).
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Then ‖Ty(a(y)) − b(y)‖ ≤ ε/2 for every y ∈ Y and y 7→ Ty is a strongly

continuous map from Y into the nuclear completely positive contractions from D

into D. Since {a(y) : y ∈ Y } is norm compact, there exists a contraction d ∈
C(Y,D) with ‖Ty(a(x)) − d(y)∗a(x)d(y)‖ < ε/2 for all x, y ∈ Y , by Proposition

3.2.15. To obtain this estimate from Proposition 3.2.15, let B := D, X := Y × N,

i.e. X is the countable disjoint union of copies of Y , define V by V (a)(y, n) := Ty(a),

and let C be the separable C *-subalgebra of D ⊆ Cb(X,B) = `∞(C(Y,D)) which

is generated by {a(x) : x ∈ Y }.

Thus ‖b− d∗ad‖ < ε . �

Lemma 3.2.22. Let A := C(X1, D1) ⊕ . . . ⊕ C(Xn, Dn) , where the Xk (k =

1, . . . , n) are compact metric spaces and Dk (k = 1, . . . , n) are simple purely infinite

C*-algebras and ε > 0.

If a, b ∈ A, b∗ = b, 0 ≤ a, ‖a‖ ≤ 1 and there are contractions c1, . . . , cm ∈ A
such that ‖b −

∑
c∗jacj‖ < ε and ‖

∑
c∗jcj‖ ≤ 1, then there is a contraction d ∈ A

with ‖b− d∗ad‖ < 3ε .

Better use here:

Direct sums of s.p.i. algebras Ak are s.p.i.

and C(X,D) = C(X)⊗D is s.p.i. if D is s.p.i.

⇐ follows from s.p.i. permanences in Chapter 2.

Find -- give -- references!

In other words: A is a non-simple strongly purely infinite C*-algebra in the

sense of Definition 1.2.2.

Proof. We have b = b1 ⊕ . . . ⊕ bn, a = a1 ⊕ . . . ⊕ an. Thus, it suffices to

consider the case A = C(X,D) for simple purely infinite D and compact X. But

then

‖b−
∑

c∗jacj‖ < ε

implies ‖b− b+‖ < ε and

‖b(y)‖ < ε+ ‖a(y)‖

for y ∈ X, because a→
∑
c∗jacj is a completely positive contraction.

Let Y := {y ∈ X : 2ε ≤ ‖b(y)‖ } . By functional calculus, for y ∈ Y , we have

‖b(y)‖ = ‖b(y)+‖, ε ≤ ‖(b(y) − ε)+‖ = ‖b(y)‖ − ε and ‖(b(y) − ε)−‖ ≤ 2ε, i.e.,

‖b(y)− (b(y)− ε)+‖ ≤ 2ε.

On the other hand ε < ‖a(y)‖ and 0 < ‖a(y)‖−1(‖b(y)‖ − ε) < 1 for y ∈ Y .

Let c(y) := (‖b(y)‖ − ε)−1(b(y)− ε)+

By Corollary 3.2.21, there exists a contraction d1 ∈ C(Y,D) such that

‖c(y)− d1(y)∗(‖a(y)‖−1a(y))d1(y)‖ < ε ∀ y ∈ Y .

g(y) := ((‖b(y)‖ − ε)/‖a(y)‖)1/2 has norm ≤ 1 on Y . The contraction d2(y) =

g(y)d1(y) in C(Y,D) satisfies ‖((b|Y )−ε)+−d∗2(a|Y )d2‖ < ε and therefore ‖(b|Y )−
d∗2(a|Y )d2‖ < 3ε.
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Now let d3 ∈ C(X,D) a contraction with d3(y) = d2(y) for y ∈ Y . Then there

is an open neighborhood U of Y with ‖b(x)−d3(x)∗a(x)d3(x)‖ < 3ε for x ∈ U . We

find h : X → [0, 1] continuous with h(y) = 1 for y ∈ Y and h(x) = 0 for x ∈ X \ U .

The map d(x) := h(x)1/2d2(x) defines a contraction d ∈ C(X,D) such that

‖b(x)− d(x)∗a(x)d(x)‖ ≤ (1− h(x))‖b(x)‖+ h(x)‖b(x)− d3(x)∗a(x)d3(x)‖ < 3ε .

�

B in next Corollary is s.p.i. because the An are s.p.i.

and inductive limits of s.p.i. C *-algebras are s.p.i.

Corollary 3.2.23. Let hn : An → An+1 a sequence of C*-algebra morphisms.

Suppose that

(i) B := indlim(hn : An → An+1) is non-zero, and

(ii) each An is a finite direct sum of algebras C(Xj , Dj) of continuous func-

tions from compact spaces Xj into a simple purely infinite C*-algebra Dj

(j = 1, . . . , kn).

Then B is strongly purely infinite.

Proof. By Lemma 3.2.22, the algebras An are strongly purely infinite in the

sense of Definition 1.2.2. Therefore, B is strongly purely infinite by Proposition

??(??) (See Proposition 2.15.5(iv) for the p.i. case.) �

3. From m.o.c. cones to morphisms in general position

We need a good metric on m.o.c. cones,

that gives the point-norm convergence topology

in case of separable A and countably generated C ⊆ CP(A,B).

And have to describe the natural transformations and extensions with

respect to Morita equivalence.

Need

KK(C; A,B) ∼= KK(C ⊗ CP(K,K); A⊗K, B ⊗K) .

Need

Ext(C; A,B) ∼= Ext(C ⊗ CP(K,K); A⊗K, B ⊗K) .

Compare with related sections on m.o.c.c’s versus bi-modules !!

Definition 3.3.1. Let B a stable σ-unital C *-algebra and A a σ-unital C *-

algebra. A C *-morphism H : A→M(B) is in general position if H is unitarily

homotopic to its infinite repeat δ∞ ◦H
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By Definition 5.0.1 and Remark 5.1.1(8) this means that there exists a norm-

continuous path of unitaries t ∈ [0,∞)→ U(t) ∈M(B) such that U(t)∗H(a)U(t)−
δ∞(H(a)) ∈ B and, for all a ∈ A ,

lim
t→∞

‖U(t)∗H(a)U(t) − δ∞(H(a))‖ = 0 .

It is not clear if the condition U(t)∗H(a)U(t)−δ∞(H(a)) ∈ B (for all a ∈ A) in

Definition 3.3.1 implies that for the norm-continuous map t ∈ [0,∞)→ X(t) given

by X(t) := U(t)∗H(a)U(t)− δ∞(H(a)) ∈ B holds that X(t) converges strictly to

0 if and only if t → ‖X(t)‖ converges to 0 for t → ∞. If it is true, then it does

not matter if we require that limt→∞X(t) = 0 in the strict topology on M(B)

or in norm topology on M(B). Here “strictly” says that limt ‖X(t)b‖ = 0 for

each b ∈ B, and “in norm-topology” means that limt ‖X(t)‖2 = 0 for the bounded

norm-continuous path t 7→ X(t) ∈ B.

But it is not clear if one can here replace the strictly continuous path t ∈ R+ →
U(t) ∈ U(M(B)) by a norm-continuous path.

It is known ???? by definition ???? that each C *-morphism H : A → M(B)

“ in sufficiently general position”, i.e., where H is unitary equivalent modulo B to

δ∞ ◦ H, is unitarily homotopic to its infinite repeat – in the sense of Definition

5.0.1, cf. Remark 5.1.1(8).

4. M.o.c. cones and Hilbert bi-modules

Remark 3.4.1. For every point-norm closed m.o.c. cone C ⊆ CP(A,B) there

is a (right) Hilbert B-module H and a *-representation d : A→ L(H) such that for

every x ∈ H the map a ∈ A 7→ 〈d(a)x, x〉 ∈ B is in C and for every V ∈ C there

exists x ∈ H such that V (a) = 〈d(a)x, x〉 for a ∈ A.

But even for separable A and B the needed “multiplicity” of H over B can be

much bigger than the cardinality of a subset of C that is dense in C with respect to

the matricial point-norm topology on CP(A,B). This can be seen even in the – for

us not important – easy case where A := C([0, 1]), B := C and C := CP(A,B) ∼=
C([0, 1])∗+.

Suppose, in addition, that A is separable, B is σ-unital and stable and that

C ⊆ CP(A,B) ⊆ L(A,B) is countably generated, faithful and non-degenerate.

Then an other module is given by a C *-morphism HC : A →M(B) such that HC

is unitarily equivalent to its infinite repeat δ∞ ◦ HC , that b∗HC(·)b ∈ C for each

b ∈ B, and that for each V ∈ C with ‖V ‖ ≤ 1 there exist a sequence of contractions

b1, b2, . . . ∈ B such that V (a) := limn b
∗
nHC(a)bn for all a ∈ A.

The HC with this properties is uniquely determined by C up to unitary homo-

topy.

(Uses general W-vN-theorem: Sums of two of them will be asymptotic unitarily

absorbed by each of them ...?).

(See Corollary 5.4.4 and Remark 5.4.5.)



4. M.O.C. CONES AND HILBERT BI-MODULES 399

Compare next with Parts (xvi) of Proposition 2.2.1 in Chp. 2 !

There it is the non-unital case.

Lemma 3.4.2. Suppose that 1E ∈ A ⊆ E are C*-algebras, where A is sepa-

rable and for every a ∈ A+ with ‖a‖ = 1 there exists a sequence of contractions

T1, T2, . . . ∈ E with limn T
∗
naTn = 1E . (In particular, each nonzero a ∈ A+ is

properly infinite inside E and generates E as closed ideal.)

Then every factorable c.p. contraction U ◦V with V : A→Mn and U : Mn → E

is approximately 1-step inner in E, i.e., there exists a sequence of contractions

S1, S2, . . . ∈ E such that limn S
∗
naSn = U(V (a)) for all a ∈ A.

Proof. Should be part of Chapter 2 ?? �

More general alternative formulation for non-unital and not necessarily simple

E :

Lemma 3.4.3. Suppose that A ⊆ E are C*-algebras, where A is separable and

for every a ∈ A+ with ‖a‖ = 1 and every contraction b ∈ E+ in the closed ideal

of E generated by a there exists a sequence of contractions T1, T2, . . . ∈ E with

limn T
∗
naTn = b.

Then every c.p. contraction U ◦ V given by c.p. contractions V : A→Mn and

U : Mn → E such that U ◦ V is ideal-system preserving

Should work only for E with finitely many ideals???

We need case of simple A or simple E!

is approximately 1-step inner in E, i.e., there exists a sequence of contractions

S1, S2, . . . ∈ E such that limn S
∗
naSn = U(V (a)) for all a ∈ A.

Proof. ?? �

Remarks 3.4.4. Let A a separable C *-algebra and B a σ-unital stable C *-

algebra. Take any faithful non-degenerate *-representation ϕ : A → M(K) ∼=
L(`2(N)) and any non-degenerate *-representation λ : K→M(B).

Then the H0 for CPnuc(A,B) is up to unitary homotopy given by H0 := δ∞ ◦
M(λ) ◦M(ϕ).

If D is non-unital, then πB ◦H0 dominates zero.

If a C *-morphism ψ : A→ Q(B) := M(B)/B has the property that for every

a ∈ A+ and ε > 0 there exists a contraction Ta ∈ Q(B) with T ∗aψ(a)Ta = ‖a‖(1−
ε)1, then ψ and ψ ⊕ πB ◦H0 are unitarily equivalent by a unitary in U0(Q(B)) if

B is non-unital. If A and ψ are both unital then ψ and ψ⊕ πB ◦H0 are equivalent

by unitary in U(Q(B)).

The existence of the Ta is equivalent to the property that for each a ∈ A+,

δ ∈ (0, ‖a‖) and c ∈M(B) with πB(c∗c) = ψ((a−δ)+) the hereditary *-subalgebra

cBc∗ of B contains a full stable C *-subalgebra of B.

(Compare also [264] and [310].)
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Definition 3.4.5. Let C ⊆ CP(A,B) a matrix o.c. cone. A Hilbert A-B-

module (H, φ) is C-compatible if the c.p. maps

A 3 a 7→ 〈x, φ(a)x〉 ∈ B

are in C for all x ∈ H.

Definition 3.4.6. A point-norm closed matrix o.c. cone C ⊆ CP(A,B) is

countably generated if C = C(S) for some countable subset S ⊆ C. We say that

C is singly generated if C = C({V }) for some V ∈ C.

Remark 3.4.7. If a point-norm closed m.o.c.c. C ⊆ CP(A,B) is countably

generated, say by c.p. contractions {V1, V2, . . .} ⊆ C, then C is also singly generated,

e.g. by V :=
∑
n 2−nVn, because C is hereditary in CP(A,B) by Corollary ??.

If B is σ-unital (with strictly positive element b0 ∈ B+) and if A admits a

faithful positive functional f0 ∈ A∗+, then CPnuc(A,B) is singly generated by V =

f0(·)b0.

If A and B are separable, then each point-norm closed m.o.c. cone C ⊆
CP(A,B) is singly generated.

Proposition 3.4.8. Suppose that a compact metric group G acts on A and

B (by α and β), where A is separable and B is σ-unital. Let C ⊆ CP(A,B) a

countably generated m.o.c. cone with β(g) ◦ C ◦ α(g−1) = C for all g ∈ G.

Then there is a “universal” C-compatible Hilbert A-B-module (H, φ) with a G-

action γ : G→ Iso(H), such that γ(g)(φ(a)xb) = φ(α(g)(a))γ(x)β(g)(b) for a ∈ A,

b ∈ B, x ∈ H, and that G 3 g 7→ 〈y, γ(g)(x)〉 ∈ B is continuous for all x, y ∈ H.

Proof. Use G-invariant V ∈ C for construction. Then use that m.o.c. cones

are hereditary in CP(A,B).

to be filled in ?? �

Question 3.4.9. Remains Proposition 3.4.8 true if G is a second countable l.c.

group?

5. Operator-convex cones of c.p. maps (2)

This section explains the reason for our study of commutative subalgebras in ul-

trapowers of w.p.i. and s.p.i. C *-algebras, i.e., it shows that asymptotic and approx-

imate versions of generalized Weyl–von-Neumann theorems for “residually nuclear”

maps can be obtained from the corresponding results on c.p. maps from separable

C *-subalgebras of ultrapowers (or, more generally, corona algebras) into commu-

tative C *-subalgebras of the ultrapower or corona algebra in question. One has to

apply the below outlined theory of (matrix) operator-convex cones of c.p. maps (in

conjunction with Property (3) in Remark 3.11.3).



5. OPERATOR-CONVEX CONES OF C.P. MAPS (2) 401

We introduce a useful duality between point-norm closed operator-convex cones

C of completely positive maps in CP(A,B) and intersection-preserving maps (“ac-

tions”) of the Hausdorff lattice I(B ⊗ C∗(F∞)) of closed ideals of B ⊗ C∗(F∞) on

A⊗ C∗(F∞).

This in an operator theoretic version of the Hahn-Banach separation theorem

for m.o.c. cones.

It implies a duality between m.o.c. cones C of “residually nuclear” maps and

actions Ψ of Prim(B) on A. Global operations with residually nuclear maps are

functorial in a natural manner.

Definition 3.5.1. Suppose that A and B are C *-algebras. Let CP(A,B)

denote the cone of completely positive maps from A into B. A subset C of CP(A,B)

is an operator-convex cone of c.p. maps if C has the following properties (i) and (ii):

(i) d∗1V1(.)d1 + d∗2V2(.)d2 ∈ C for V1, V2 ∈ C, d1, d2 ∈ B.

(ii) a ∈ A 7→ c∗(V ⊗ idn)(r∗ar)c is in C for every V ∈ C, every row-matrix

r ∈M1,n(A) and every column-matrix c ∈Mn,1(B).

Let S be a subset of CP(A,B). We denote by Calg(S) the smallest subset of

CP(A,B) which is invariant under the operations in (i) and (ii), and by C(S) the

point-norm closure of Calg(S) (i.e., the closure of Calg(S) in L(A,B) w.r.t. the strong

operator topology). Then Calg(S) and C(S) are operator-convex cones of completely

positive maps.

We call S the generating set for the operator convex cone C if C = C(S).

One can see with help of approximate units in A and B that every point-norm

closed subset C of CP(A,B) is a convex cone in the usual sense if it satisfies Part(i)

of Definition 3.5.1, and that C satisfies tC ⊆ C for t ∈ [0,∞) if C satisfies Definition

3.5.1(ii).

We introduce a useful duality between closed m.o.c. cones C of completely pos-

itive maps in CP(A,B) and intersection-preserving maps (“actions”) of the Haus-

dorff lattice I(B⊗C∗(F∞)) of closed ideals of B⊗C∗(F∞) on A⊗C∗(F∞). It leads

to a duality of m.o.c. cones of “residually nuclear” maps and actions of Prim(B)

on A. Operations with residually nuclear maps are functorial in a natural manner.

First we characterize the c.p. maps V in C(S) by the values V ⊗max id(c) of

elements c ∈ A ⊗max C∗(F∞). Here C∗(F∞) denotes the full group C *-algebra of

the free group F∞ on infinitely many generators, and ⊗max denotes the maximal

C *-algebra tensor product. In the following theorem the ideal-kernel of a positive

functional λ on D := B ⊗max C∗(F∞) means the maximal ideal of D in the kernel

of λ, i.e., the set of elements d ∈ D with λ(edf) = 0 for all e, f ∈ D. This is also

the kernel of the cyclic representation ρ : D → L(L2(D,λ)) defined by λ on D.

Here is some relation between Part(v) of Theorem 3.5.2 to and the

later considered Separation Theorem.
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Theorem 3.5.2. Suppose that S is a subset of CP(A,B) and that V : A → B

is completely positive. Then the following properties (i)–(v) of V are equivalent.

(i) V ∈ C(S) := the point-norm closed m.o.c. cone generated by S.

(ii) For every c ∈ A⊗max C∗(F∞), the element V ⊗max id(c) is in the closed

ideal of B ⊗max C∗(F∞) that is generated by the c.p. maps

{W ⊗max id((a∗ ⊗ 1)c(a⊗ 1)) ; W ∈ S, a ∈ A } .

(iii) For every factorial representation ρ : B → L(H) of B, ρ ◦ V is in the

point-weak closure of C( { ρ ◦W ; W ∈ S } ).

(iv) For every pure state λ of B ⊗max C∗(F∞), the kernel of λ ◦ (V ⊗max id)

contains the intersection of all ideal-kernels of λ ◦ (b∗Wb ⊗max id) for

W ∈ S, b ∈ B.

(v) For every factorial cyclic representation ρ : B → L(H) (with cyclic vector

η ∈ H) and every unital C*-morphism h : C∗(F∞)→ ρ(B)′, the kernel of

the positive linear functional λ ◦ (V ⊗max id) contains the intersection of

all ideal-kernels of λ ◦ ((b∗W (·)b)⊗max id) for W ∈ S, b ∈ B.

(Here λ is the positive functional on B ⊗max C∗(F∞) with λ(b ⊗ f) =

〈ρ(b)h(f)η, η〉.)

If one wants to apply the result easier for some sort of cone-related KK-theory,

then one could replace C∗(F∞) ⊆ C∗(F2) = C(S1) ∗ C(S1) by the unital free

product C *-algebra C([0, 1]) ∗C([0, 1]) ⊃ C∗(F2) . The proofs are almost verbatim

the same as the below given, but with C∗(F∞) replaced by C([0, 1]) ∗ C([0, 1]).

The point is that this shows that no extra homotopy invariant is involved by this

reduction to the study of ideals of tensor products.

Alternatively we can formulate the for applications important equivalence be-

tween Parts (i) and (ii) as follows:

Let T ⊆ CP
(
A⊗max C∗(F2), B ⊗max C∗(F2)

)
denote the set of c.p. maps

T := {W ⊗max id ; W ∈ S } .

And define a lower semi-continuous action

Ψ := Ψ[T ] : I
(
B ⊗max C∗(F2)

)
→ I

(
A⊗max C∗(F2)

)
by

Ψ(J) := biggest I ∈ I(A⊗max C∗(F2)) with W ⊗max id(I) ⊆ J ∀ W ∈ S .

I.e., Ψ is the lower semi-continuous action of Prim
(
B⊗maxC∗(F2)

)
onA⊗maxC∗(F2)

that attaches to a closed ideal J /B⊗maxC∗(F2) the largest ideal I /A⊗maxC∗(F2)

with the property that (W ⊗ id)(I) ⊆ J for all W ∈ S.

This is just the natural l.s.c. action ΨC(T ) defined by the point-norm closed

m.o.c. cone C(T ) that is generated by T := S ⊗max id.

The property of V in part (ii) is equivalent to:

V ⊗max id(ΨC(T )(J)) ⊆ J for all J ∈ I(B ⊗max C∗(F2)) .
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Thus the equivalence of (i) and (ii) can be expressed as

V ∈ C(S) ⇐⇒ V ⊗max id(ΨC(S⊗maxid)(J)) ⊆ J ∀ J ∈ I(B ⊗max C∗(F2)) .

If we let Ψ := ΨC(S⊗maxid) , where “id” means the identity automorphism

of C∗(F∞), and if we define, more generally, for C *-algebras E, F and actions

Ψ: I(F )→ I(E) the point-norm closed m.o.c. cone CΨ ⊆ CP(E,F ) by

CΨ := {V ∈ CP(E,F ) ; V (Ψ(J)) ⊆ J ∀ J ∈ I(F )} ,

then we can express the equivalence of (i) and (ii) by

C(S)⊗max id = (CP(A,B)⊗max id) ∩ CΨ . (5.1)

Proof. (i)⇒(ii): Let c ∈ B ⊗max C∗(F∞) positive and let I(S, c) denote the

closed ideal of B ⊗max C∗(F∞) which is generated by

I(S, c) := {W ⊗max id((a∗ ⊗ 1)c(a⊗ 1)) ; W ∈ S, a ∈ A } .

If T : A→ B is a completely positive map such that T ⊗max id((a∗⊗1)c(a⊗1))

is in I(S, c) for all a ∈ A, then T ⊗max id((b∗ ⊗ 1)c(a ⊗ 1)) is in I(S, c) for all

a, b ∈ A, as polar-decomposition of Hermitian forms shows. It follows that the set

of all c.p. maps T : A→ B with T ⊗max id((a∗ ⊗ 1)c(a⊗ 1)) ∈ I(S, c) for all a ∈ A
contains S and is closed under the operations (OC1) and (OC2) of Definition 3.2.2,

and is point-norm closed. Thus it contains C(S).

(ii)⇒(i): Suppose that V is not in C(S) . Then there are

(α) a cyclic representation ρ : B → L(H) with cyclic vector η ∈ H ,

(β) elements e1, . . . , en ∈ ρ(B)′ ,

(γ) elements a1, . . . , an ∈ A , and

(δ) a *-epimorphism h from C∗(F∞) onto C∗(1, e1, . . . , en) ∈ ρ(B)′ and ele-

ments f1, . . . , fn ∈ C∗(F∞) with h(fk) = ek ,

such that the complex number λ((V ⊗max id)(c)) is not in the closure of the set of

complex numbers {λ((W ⊗max id)(c)) ; W ∈ C(S) }, where

c := a1 ⊗ f1 + . . .+ an ⊗ fn ∈ A⊗max C∗(F∞)

and λ is the positive functional on B⊗maxC∗(F∞) with λ(b⊗f) := 〈ρ(b)h(f)η, η〉 .
(See proof of [463, lem. 7.18], and notice that the Part (δ) is obvious.)

Thus, the positive functional λV := λ ◦ (V ⊗max id) is not in the weak closure

of the convex cone κ of positive functionals λW := λ ◦ (W ⊗max id) for W ∈ C(S).

Since η is cyclic for ρ, one can see (as in the proof of [463, lem. 7.18]) that

the functionals d∗(λW )d is in the weak closure of κ for W ∈ C(S) and d ∈ A⊗max

C∗(F∞).

Let J denote the closed ideal of d ∈ A⊗max C∗(F∞) with λW (d∗d) = 0 for all

W ∈ C(S).
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It follows from [463, lem. 7.17(ii)] that there is d0 ∈ J with λV (d∗0d0) > 0. On

the other hand, I(S, d∗0d0) is contained in the kernel of λ by definition of J . Hence

V ⊗max id(d∗0d0) is not in I(S, d∗0d0) .

(i)⇒(v): Let J(S) ⊆ A⊗maxC∗(F∞) denote the intersection of all ideal-kernels

of all functionals λ ◦ ((b∗Wb)⊗max id) on A⊗max C∗(F∞) with W ∈ S, b ∈ B. We

show that J(S) is the intersection of all ideal-kernels of all functionals λ◦(V ⊗max id)

with V ∈ C(S) :

Let T ∈ CP(A,B) with J(S) in the kernel of λ ◦ ((b∗Tb) ⊗max id) for all b ∈ B,

then, using the polar-formula for Hermitian forms,

λ((b∗2 ⊗ 1)T ⊗max id((a∗2 ⊗ 1)c(a1 ⊗ 1))(b1 ⊗ 1)) = 0

for c ∈ J , a1, a2 ∈ A and b1, b2 ∈ B. It follows that the set of c.p. maps V : A→ B

with J(S) in the kernel of λ ◦ ((b∗Tb) ⊗max id) for all b ∈ B is closed under the

operations (OC1) and (OC2) of Definition 3.2.2 and under pont-norm convergence,

i.e., is a closed operator-convex cone, which contains the set S. Note that b∗V (.)b

is in C(S) for V ∈ C(S) and b ∈ B.

(v)⇒(iii): Suppose that ρ ◦ V : A → L(H) is not in the point-weak closure of

the operator-convex cone C({ρ ◦W ; W ∈ S}).
Then there is n ∈ N and η ∈ Hn, such that ρ1 ◦ V : A → L(H1) is not in the

point-weak closure of C({ρ1 ◦ W ; W ∈ S}) for the (again factorial) cyclic sub-

representation ρ1 of

ρ⊗ 1n : b ∈ B 7→ ρ(b)⊗ 1n ∈ L(Hn) ∼= L(H)⊗Mn

obtained by restriction of ρ ⊗ 1n to H1 := (ρ(B)⊗ 1n)η. The rest of the proof is

similar to the proof of the implication (ii)⇒(i).

(iii)⇒(iv): Let ι : B⊗max C∗(F∞)→ L(H) the irreducible representation with

cyclic state η corresponding to λ. Let ρ(b) := ι(b ⊗ 1). Then ρ : B → L(H) is

factorial, and there is a representation h : C∗(F∞) → ρ(B)′ such that ι(b ⊗ f) =

ρ(b)h(f).

The elements c in the intersection J of the ideal-kernels of λ◦
(
(b∗Wb)⊗max id

)
with W ∈ S, b ∈ B satisfy ι

(
W ⊗max id(dce)

)
= 0 for all d, e ∈ A⊗maxC∗(F∞) and

W ∈ S.

If c ∈ A ⊗max C∗(F∞) satisfies ι
(
W ⊗max id(dce)

)
= 0 for all d, e ∈ A ⊗max

C∗(F∞) and W ∈ S, then ι
(
T ⊗max id(c)

)
= 0 for all T ∈ C(S) . Since ρ◦V is in the

point-weak closure of the maps { ρ◦W ; W ∈ C(S) }, we get that ι◦(T⊗max id) is in

the point weak closure of the cone of maps ι◦(W⊗max id). Thus λ
(
W⊗max id(c)

)
=

0.

(iv)⇒(ii): Suppose that there is c ∈ A⊗maxC∗(F∞), such that V ⊗max id(c) is

not in I(S, c). Then there is a pure state λ on B ⊗max C∗(F∞) with λ(I(S, c)) = 0

and λ(V ⊗max id(c)) 6= 0.

(b∗ ⊗ 1)W ⊗max id(gch)(b ⊗ 1) ∈ I(S, c) for W ∈ S, g, h ∈ A ⊗max C∗(F∞)

and b ∈ B, because W ⊗max id
(
(a∗ ⊗ 1)c(a ⊗ 1)

)
is in the ideal I(S, c) for a ∈ A.
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Thus, the closed ideal J of A ⊗max C∗(F∞) generated by c is contained in all

kernels of λ ◦ ((b∗Wb) ⊗max id) for W ∈ S, b ∈ B. But c is not in the kernel of

λ ◦ (V ⊗max id). �

We derive in good cases 1-step approximately inner approximation for the mem-

bers of C(S) if the elements of S are 1-step-approximately inner.

Proposition 3.5.3. Suppose that A and B are C*-algebras and that S is a set

of c.p. maps V : A→ B.

(i) Suppose that, for V1, V2 ∈ S, the multiplier algebra M(B) contains

contractions e1, e2 with e∗1e2 = 0 such that e1V1(.)e∗1 + e2V2(.)e∗2 ∈ S,

e∗kekVk(a) = Vk(a) for all a ∈ A and k = 1, 2.

(a local property of J.Cuntz)??

Then C(S) is the point-norm closure of the set of all maps

V : a ∈ A 7→ c∗
(
(W ⊗ idn)(r∗ar)

)
c ∈ B

with W ∈ S, rows r ∈M1,n(A) and columns c ∈Mn,1(B), n ∈ N.

(ii) If, in addition to part (i), A ⊆M(B) and there is (fixed) m ∈ N such that

every W ∈ S is approximately m-step-inner, then every c.p. contraction

V ∈ C(S) can be approximated in point-norm by maps

T : a ∈ A 7→ d∗1ad1 + d∗2ad2 + . . .+ d∗madm ∈ B

with d1, . . . , dm ∈ B and ‖d∗1d1 + . . .+ d∗mdm‖ ≤ 1.

(iii) If, in addition to (ii), A is separable and for every W ∈ S there exists a

bounded sequence of elements d1, d2, · · · ∈ B such that limk→∞ d∗kadk+n =

δ0,nW (a) for n = 0, 1, . . ., a ∈ A, then, for every V ∈ C(S), there exists a

sequence e1, e2, . . . ∈ B with ‖e∗kek‖ ≤ ‖V ‖, limk→∞ e∗kaek+n = δ0,nV (a)

for n = 0, 1, . . ., a ∈ A, and limk→∞ ‖e∗kek+n‖ = 0 for n > 0.

Proof. (i): For V1, V2 ∈ S, r1 ∈ M1,n(A), r2 ∈ M1,m(A), c1 ∈ Mn,1(B),

c2 ∈ Mm,1(B) and d1, d2 ∈ B, let V (a) := e1V1(a)e∗1 + e2V2(a)e∗2 (a ∈ A), r :=

(r1, r2) ∈ M1,n+m(A), and d := (d∗1c
∗
1(e1 ⊗ 1n), d∗2c

∗
2(e2 ⊗ 1m))∗ ∈ Mn+m,1(A),

where e1, e2 ∈M(B) are the elements as descibed in (i).

Then d∗1(c∗1V1 ⊗ idn(r∗1ar1)c1)d1 + d∗2(c∗2V2 ⊗ idm(r∗2ar2)c2)d2 = c∗V ⊗
idn+m(r∗ar)c. Thus the minimal matrix operator-convex hull Calg(S) of S is

identical with the set of maps c∗V ⊗ idn(r∗(.)r)c with V ∈ S, r ∈ M1,n(A),

c ∈Mn,1(A), n = 1, 2, . . .. C(S) is then the point-norm closure of Calg(S).

(ii): By [463, lem. 7.2], a suitable modification of the maps T (with help

of an approximate unit of A) leads to a net of m-step inner c.p. maps T with

‖d∗1d1 + . . .+d∗mdm‖ ≤ 1 (in addition) such that the net converges in point-norm to

V , if V ∈ CB(A,B) can be approximated in point-norm by m-step inner c.p. maps

T .
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If V ∈ S can be approximated in point-norm by a net of m-step inner c.p. maps

T = d∗1(.)d1 + . . .+d∗m(.)dm, then c∗V ⊗ idn(r∗(.)r)c can be approximated in point-

norm by the net with elements T ′ = c∗T ⊗ idn(r∗(.)r)c = e∗1(.)e1 + . . . + e∗m(.)em

where ej = r(dj ⊗ 1n)c for j = 1, . . . ,m.

(iii): If V = c∗W ⊗ idn(r∗ar)c and d1, d2, . . . satisfies limk→∞ d∗kadk+n =

δ0,nW (a) for n = 0, 1, . . ., then fk := r(dk ⊗ 1n)c satisfies limk→∞ f∗kafk+n =

δ0,nV (a) for n = 0, 1, . . ..

If we multiply the sequence fk from the left by the elements in a suitable

countable approximate unit a1, a2, . . . of A then ek := akfk satisfies ‖e∗kek‖ < ‖V ‖,
limk→∞ e∗kaek+n = δ0,nV (a) for n = 0, 1, . . ., and limk→∞ ‖e∗kek+n‖ = 0 for n >

0. �

Remark 3.5.4. Suppose that A is separable and A ⊆ B, and that D ⊆M(B)

is a unital C *-subalgebra of M(B) with B ⊆ D such that for every b ∈ B there is

an isometry t ∈ D with bt = 0, and that D contains two isometries with orthogonal

ranges.

Then one gets for (ii) and (iii) of Proposition 3.5.3:

(α) for T in (i) holds T (a) = f∗1 af1 + . . . + f∗mafm for all a ∈ A with

f1, . . . , fm ∈ D such that f∗1 f1 + . . . + f∗mfm = ‖V ‖ · 1 (in particular,

f1 is an isometry in case m = 1 and V contractive),

(β) the elements e1, e2, . . . in (iii) can be replaced by isometries t1, t2, . . . ∈ D
with t∗j tk = δj,k1 and limk ‖V ‖t∗katn+k = δ0,nV (a) for a ∈ A.

Proof. (α): Let a0 ∈ A+ a strictly positive element of A, g := a0 + d1d
∗
1 +

. . . dmd
∗
m, h := (‖V ‖ · 1 − (d∗1d1 + . . . + d∗mdm))1/2 ∈ D, t an isometry in D with

gt = 0. Then fk := dk + (1/m)th ∈ D satisfies d∗kadk = f∗kafk for a ∈ A and

f∗1 f1 + . . .+ f∗mfm = ‖V ‖.1.

(β): Let g := a0 +
∑
k 2−keke

∗
k and t ∈ D an isometry with gt = 0. If

D contains two isometries with orthogonal ranges, then D contains a countable

sequence s1, s2, . . . ∈ D of isometries with pair-wise orthogonal ranges: s∗jsk = δj,k.

If V = 0 then tk = tsk is as desired. If V 6= 0, let rk := ek + tsk(‖V ‖ − e∗kek)1/2,

then rk ∈ D, r∗j rk = e∗jek + δj,k(‖V ‖ − e∗kek) and r∗jark = e∗jaek for a ∈ A,

j, k = 1, 2, . . .. It follows that there is a sequence u1, u2, . . . of unitaries in D such

that limk ‖uk − 1‖ = 0 and sk := ‖V ‖−1/2ukrk is a sequence of isometries in D

with s∗jsk = δi,k1. It must satisfy limk ‖V ‖s∗kask+n = δ0,nV (a) for a ∈ A. �

Definition 3.5.5. Let Y a T0 space (e.g. Y ∼= Prim(D) for some algebra D),

and O(Y ) its lattice of closed ideals (e.g. O(Y ) ∼= I(D)).

We call a map Ψ: O(Y )→ O(Prim(A)) ∼= I(A) an action or Ψ-action of Y on

a C *-algebra A, if Ψ(U) ⊆ Ψ(V ) for U ⊆ V . (More generally, one can consider

increasing maps from down-ward directed partially ordered sets in place of O(Y )

into the set I(A) of closed ideals of A.)
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Ψ is by definition lower semi-continuous if Ψ((
⋂
Uτ )◦) = (

⋂
τ Ψ(Uτ ))◦ for every

family of open subsets of Y . (We use this name because the intersection property

implies that Ψ transforms l.s.c. functions on Prim(A) into l.s.c. functions on Y in

a natural manner.)

If ΨA : O(Y )→ I(A) and ΨB : O(Y )→ I(B) are two actions, then a c.p. map

V : A → B is Ψ-equivariant if V (ΨA(U)) ⊆ ΨB(U) for all U ∈ O(Y ). The set of

Ψ-equivariant maps will be denoted by C(ΨA,ΨB). Clearly, C(ΨA,ΨB) is a point-

norm closed operator-convex cone of c.p. maps, i.e., C(ΨA,ΨB)) = Calg(ΨA,ΨB).

If Y = Prim(B) and ΨB is the identity map idI(B) of O(Y ), then we write

C(ΨA) for C(ΨA,ΨB). Clearly V ∈ C(ΨA) if and only if V (a) ∈ J for J ∈ I(B)

and a ∈ ΨA(UJ).

If S is a subset of CP(A,B) let

ΨS(J) := {a ∈ A ; V (b∗ab) ∈ J ∀V ∈ S, ∀ b ∈ A }

It is a lower semi-continuous action of Prim(B) on A, because O(Prim(B)) ∼= I(B)

naturally, and, obviously,

ΨS(
⋂
τ

Jτ ) =
⋂
τ

ΨS(Jτ )

for every family {Jτ}τ of closed ideals of B. The action ΨS is possibly degenerate,

e.g. if S = {0}.

Obviously, ΨS = ΨC(S) and C(S) ⊆ C(ΨS). Clearly V ∈ C(ΨS) if and only if,

for every a ∈ A, V (a) is contained in the closed ideal of B generated by W (a) for

all W ∈ S.

Example 3.5.6. If B,C ⊆ Aω, then Y := Prim(Aω) acts on B and C by

the maps from ΨB and ΨC from O(Y ) ∼= I(Aω) into I(B) (respectively I(C)) by

ΨB(J) := B ∩ J (respectively ΨC(J) := C ∩ J). The corresponding action of

Prim(C) on B is in general not l.s.c.

The equivalence of (i) and (ii) of Theorem 3.5.2 gives the following characteri-

zation of m.o.c. cones by actions:

Corollary 3.5.7. Let S ⊆ CP(A,B), V : A → B completely positive, and

consider the set T of completely positive maps W ⊗max id from A ⊗max C∗(F∞)

into B ⊗max C∗(F∞) for W ∈ S.

Then V ∈ C(S) if and only if V ⊗max id ∈ C(ΨS).

there is a similar result later on

compare results and notations ??

Remark 3.5.8. An action ΨB naturally extends to stabilizations or to tensor-

products: ΨB⊗E(Z) = ΨB(Z)⊗ E.

If E is simple and nuclear then this extension is unique (as e.g. in the often

considered cases where E is one of O∞, O2, K, Mn or the Jiang-Su algebra Z).
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A natural extension of ΨB to C0(X,B), e.g. for X = [0, 1] or X = (0, 1], is

given by ΨC0(X,B)(Z) := C0(X,ΨB(Z)).

Also it extends naturally to Hilbert–B-modules H and to L(H) by ΨH(Z) :=

HΨB(Z),

Next Def. o.k.? ΨL(H)(Z) := {T ∈ L(H) ; TH ⊆ ΨH(Z) } and so on ...

In particular, ΨM(B)(Z) = M(B,ΨB(Z)) = strict closure of ΨB(Z), that is

T ∈ ΨM(B)(Z) if and only if d∗Td ∈ ΨB(Z). (Note that ΨB(Z) is an ideal of B.)

Definition 3.5.9. If ΨA and ΨB are actions of Y on A and B, then a c.p. map

V ∈ CP(A,B) is called Ψ-residually nuclear if

(i) V is Ψ-equivariant, i.e., V (ΨA(U)) ⊆ ΨB(U) for every U ∈ O(Y ), and

(ii) the completely positive class map

[V ] : A/ΨA(U)→ B/ΨB(U)

is nuclear for every U ∈ O(Y ).

Crn(ΨA,ΨB) denotes the cone of Ψ-residually nuclear maps . It is a point-norm

closed (matrix) operator-convex cone of completely positive maps.

If A ⊆M(B), then Y = Prim(B) acts naturally on A by

Same notation Ψ for ΨA and ΨB ???

ΨA(J) := A ∩M(B, J) and ΨB(J) = J

(????)

for J ∈ I(B) ∼= O(Prim(B)), then we write “residually nuclear” instead of

“Ψ-residually nuclear”.

We use the notation Crn(A ⊆ M(B)) or Crn(Ψ) for the operator-convex cone

of residually nuclear maps V : A→ B.

That means V (Ψ(J) ∩ A) ⊂ J and [V ]J : A/Ψ(J) → B/J is nuclear for each

J / B.

Note, that, for the natural action of Prim(B) on A ⊆ M(B), a c.p. map

V : A → B is equivariant if and only if V (a) is contained in the closed ideal of B

generated by BaB for every a ∈ A+.

Remark 3.5.10. A Ψ-equivariant map V : A → B is Ψ-residually nuclear, if

and only if, for every U ∈ O(Y ) and every separable C *-algebra F , the completely

positive map

[V ]⊗max id : (A/ΨA(U))⊗max F → (B/ΨB(U))⊗max F

factorizes over A/ΨA(U)⊗min F , i.e., the kernel of

(A/ΨA(U))⊗max F → (A/ΨA(U))⊗min F

is contained in the kernel of [V ]⊗max id.
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The reason is that a c.p. map T : D → E is nuclear if and only if

T ⊗max id : D ⊗max F → E ⊗max F

factorizes over D⊗min F for every separable C *-algebra F . The latter can be seen

by a simple Hahn-Banach separation argument using [463, lem. 7.17(i)], the proof

is implicitly contained in the proof of a less general result in [426].

Since the containment of ideals can be checked with help of primitive ideals

and since the maximal tensor product on C *-algebras is short-exact, we get the

following equivalent characterizations of Ψ-residually nuclear maps:

V ∈ CB(A,B) is Ψ-residually nuclear if and only if for every irreducible repre-

sentation

ρ : B ⊗max C∗(F∞)→ L(H) ,

every U ∈ O(Y ) with ρ(ΨB(U) ⊗max C∗(F∞)) = 0 and every closed ideal J of

C∗(F∞) with ρ(B ⊗max J) = 0, the completely positive map

ρ ◦ (V ⊗max id) : A⊗max C∗(F∞)→ L(H)

factorizes over (A/ΨA(U))⊗min (C∗(F∞)/J).

By the above cited separation arguments this can be easily seen to be equivalent

to the following:

V ∈ CP(A,B) is Ψ-residually nuclear, if and only if, for every C *-morphism h

from B into a von-Neumann factor N with h(B)′′ = N and every U ∈ O(Y ) with

h(ΨB(U)) = 0, holds h(V (ΨA(U))) = (h ◦ V )(ΨA(U)) = 0 and that the c.p. map

[h ◦ V ] : A/ΨA(U)→ N is weakly nuclear.

Question 3.5.11. Suppose that A is separable. Is Crn(ΨS) = C(S)rn for

S = C(ΨA,ΨB) ? I.e., Crn(ΨC(ΨA,ΨB)) = Crn(ΨA,ΨB) ? This would show that

all operator-convex cones of Ψ-residually nuclear maps from A to B are cones of

residually nuclear maps for suitable lower semi-continuous actions Ψ of Prim(B) on

A.

Question has now (since 2015, unpublished) a positive answer

for separable A and B,

because each stable separable C *-algebra B has

‘‘Abelian’’ factorization.

Lemma 3.5.12. Suppose that A is a C*-algebra, N a von-Neumann factor and

C ⊆ CP(A,N) an operator-convex cone of completely positive maps.

If C is separating for A, i.e., if W (a) = 0 for all W ∈ C implies a = 0, then

every nuclear c.p. map V : A→ N is contained in the point-weak closure of C.

Proof. One can reduce all to the particular case where N is a von-Neumann

subalgebra of L(H), and H contains a cyclic vector η for N , in a way that it suffices

to show that the positive linear functional λ ◦ (V ⊗max id) on A ⊗max M is in the
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point-weak closure of the convex cone κ of linear functionals λ ◦ (W ⊗max id) with

W ∈ C (compare the arguments in proofs of [463, lem. 7.17, 7.18]).

Here M := N ′ ⊆ L(H) is the commutant of N , and let λ the partially normal

positive functional on N ⊗max M given by λ(n⊗m) = 〈mnη, η〉.

The functional λ ◦ (V ⊗max id) factorizes over A ⊗minM , i.e., annihilates the

elements in the kernel of the epimorphism A⊗maxM → A⊗minM , because V : A→
N is weakly nuclear.

Since η is an cyclic vector for N , one gets (as in the proof of the implication

(ii)⇒(i) for Theorem 3.5.2) that [463, lem. 7.17(ii)] applies to weak closure of κ, i.e.,

every positive linear functional ϕ on A⊗maxM which annihilates the intersection J

of the ideal-kernels of the functionals in κ is in the point-weak closure of κ. J does

not contain a non-zero elementary element a ⊗ m, because M and N are factors

and C is separating for A.

It follows that J is contained in in the kernel of A⊗maxM → A⊗minM . Hence

λ ◦ (V ⊗max id) is in the point-weak closure of κ. �

Remark 3.5.13. Let A ⊆M(D) ⊆ D∗∗ such that A ↪→ D∗∗ is weakly nuclear.

Then V : A→ D is residually nuclear if and only if V is approximately inner.

In particular, the identity map of every nuclear C *-subalgebra A ⊆ M(D) is

residually nuclear for the natural action of Prim(D) on A.

The following corollaries are combinations of special cases of the above results

combined with some of the results of Sections 4–8.

Corollary 3.5.14. Suppose that A and B are C*-algebras and that S is a set

of c.p. maps V : A→ B.

(i) For every J ∈ I(B) holds

ΨS(J) =
⋂

V ∈C(S)

V −1(J)

where ΨS is the lower semi-continuous action of Prim(B) on A as defined

in Definition 3.5.5.

(ii) Every ΨS-residually nuclear map W : A→ B is in C(S).

Proof. (i) follows from b∗V (a∗(.)a)b ∈ C(S) for V ∈ C(S).

(ii): Combine Theorem 3.5.2(iii), Remark 3.5.10 and Lemma 3.5.12. �

Corollary 3.5.15. Suppose that B,C ⊆ A are C*-subalgebras of a C*-algebra

A and that V : B → A is a c.p. map with V (B) ⊆ C.

(i) V is a.i. in A, – i.e., V can be approximated inside CP(B,A) in point

norm by restrictions to B of inside A inner completely positive maps b ∈
A 7→

∑
j(aj)

∗baj –, if and only if, V (B ∩ J) ⊆ J for every closed ideal J

of A and [h ◦ V ] : B/(B ∩ J) ∼= h(B)→ h(C) ⊆ N is weakly a.i. in N for

every von-Neumann factor representation h : A→ N ⊆ L(H) of A.
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(ii) If B or C is nuclear then V is a.i. in A, if and only if, for every b ∈ B+,

V (b) is in the closed ideal span(AbA) of A generated by b.

Corollary 3.5.16. Suppose that A is an exact C*-subalgebra of a C*-algebra

B, and that V : A→ B is a c.p. map. We consider the natural action Ψ of Prim(B)

on A given by

Ψ: J ∈ I(B) ∼= O(Prim(B)) 7→ J ∩A ∈ I(A) .

(i) V is residually nuclear, if and only if, V is nuclear and Ψ-equivariant with

respect to the natural action of Prim(B) on A, if and only if, V is nuclear

and (finite-step-) a.i. in B.

(ii) Moreover, if B is s.p.i. and , V is 1-step-approximately inner, if V is

residually nuclear.

(iii) Suppose that S ⊆ CP(A,B) satisfies that, for every a ∈ A and ε > 0,

there exists W ∈ S, u ∈ A and v ∈ B such that ‖v∗W (u∗au)v − a‖ < ε.

Then every Ψ-residually nuclear map is in C(S). In particular, every

nuclear Ψ-equivariant map V : A → B is approximately one-step inner if

the elements of S are approximately one-step inner.

(iv) If B = Dω for some s.p.i. algebra D, V is a residually nuclear contraction

and A is separable, then there is a contraction d in B with V (b) = d∗bd

for all b ∈ A.

(v) If, in addition to (iv), D is stable, then there is an isometry S ∈
(M(D))ω ⊆M(B) such that V (b) = S∗bS for b ∈ A.

Proof. To be filled in ?? �

6. Approximate decomposition of residually nuclear maps

We derive now an important later used sufficient condition for approximate

decompositions and for one-step innerness of residually nuclear maps inside ultra-

powers Bω. Recall that D ⊆M(B) is “non-degenerate” if D ·B = B.

Proposition 3.6.1. Suppose that D is a strongly purely infinite non-degenerate

C*-subalgebra ofM(B) and that C ⊆M(D) ⊆M(B) is a separable C*-subalgebra.

Let X := Prim(D), and define actions of X on C and B by

ΨC := Ψup
D,C : I(D) ∼= O(X)→ I(C)

and

ΨB := ΨD,B
down : I(D) ∼= O(X)→ I(B) ,

as in Definition 1.2.7. Then:

(i) A map V : C → B is Ψup
B,C- idI(B)–residually nuclear, if and only if, V is

ΨC-ΨB–residually nuclear, if and only if, V is idI(C)- ΨC,B
down–residually

nuclear.
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(ii) Every ΨC-ΨB–residually nuclear contraction V : C → B ⊆ Bω can be ap-

proximated in point-norm topology by compositions T ◦S, where T : Dω →
Bω is a one-step-approximately inner completely positive contraction, and

S : C → Dω is a residually nuclear contraction with respect to the action

Ψup
Dω,C

of Prim(Dω) on C, where we consider the embeddings

C ⊆M(D) ⊆M(D)ω ⊆M(Dω) .

(iii) The maps S◦T of Part (ii) can be approximated by 1-step-inner completely

positive contractions.

In particular, V : C → B is approximately inner inM(B) if V is ΨC-ΨB–residually

nuclear.

We use the following Lemma 3.6.2 for the proof of Proposition 3.6.1.

Lemma 3.6.2. Let A ⊆M(D) and D ⊆M(B) non-degenerate. Then:

(i) M(B, J) is the strict closure of J / B, and, for every strictly closed ideal

I of M(B) holds I =M(B, J) for J := I ∩B / B.

(ii) Ψup
D,A(Ψup

B,D(J)) = Ψup
B,A(J) for all J ∈ I(B).

(iii) ΨA,B
down(Ψup

D,A(K)) ⊆ ΨD,B
down(K) for all K ∈ I(D).

(iv) ΨA,B
down(Ψup

B,A(J)) ⊆ ΨD,B
down(Ψup

B,D(J)) ⊆ J for all J ∈ I(B).

(v) L ⊆ Ψup
B,A(ΨA,B

down(L)) for all L ∈ I(A).

Proof. (i): If s ∈M(B) and sB ⊆ J , then bs ∈ B and bse ∈ J for all e ∈ B+,

which implies that Bs ⊆ J , i.e., s ∈ M(B, J). For t ∈ M(B), s ∈ M(B, J) holds

tsB ⊆ tJ = tBJ ⊆ J and stB ⊆ sB ⊆ J . Thus M(B, J) an ideal of M(B).

If (tα) ⊆ M(B, J) converges strictly to s ∈ M(B) then sb = lim tαb ∈ J for

all b ∈ B, i.e., s ∈ M(B, J). Thus M(B, J) is a strictly closed ideal of M(B). In

particular, M(B, J) is norm-closed in M(B). Therefore it is a *-ideal of M(B).

For s ∈ M(B, J) and a bounded approximate unit {eα} of B holds that seα ∈ J
converges strictly to s in M(B).

It holds IB ⊆ B ∩ I and J := B ∩ I is a closed ideal of B, thus I ⊆M(B, J)

and J ⊆ I. It follows M(B, J) = I because M(B, J) is the strict closure of J in

M(B).

(ii): Since D ⊆ M(B) is non-degenerate, there is a unique strictly continuous

and unital embedding ι : M(D) ↪→M(B) with ι(d) = d for all d ∈ D ( 16 ), and we

can identify M(D) with ι(M(D)).

Let K := Ψup
B,D(J) = D ∩ M(B, J) . Then M(D,K) ⊆ M(D) ∩ M(B, J),

because M(D,K) is the strict closure of K in M(D) by (i), M(D) ↪→ M(B) is

strictly continuous and M(D) ∩M(B, J) is strictly closed in M(D). The same

arguments show that M(D) ∩ M(B, J) is a strictly closed ideal of M(D). By

(i), there is a closed ideal L of D with M(D,L) = M(D) ∩M(B, J). It follows

16In general, ι(M(D)) is not strictly closed inM(B), even if D ↪→M(B) is non-degenerate.
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L ⊆ K and M(D,K) ⊆ M(D,L), ie K = KD ⊆ L. Thus, A ∩ M(B, J) =

A∩M(D)∩M(B, J) = A∩M(D,K), i.e., Ψup
B,A(J) = Ψup

D,A(K) for K = Ψup
B,D(J).

(iii): Let K / D. Then I := Ψup
D,A(K) ⊆ M(D,K) Thus BDIDB ⊆

BDM(D,K)DB ⊆ BKB . Since DB is dense in B, we get ΨA,B
down(Ψup

D,A(K)) ⊆
ΨD,B

down(K).

(vi): Let J / B. Consider K := Ψup
B,D(J) and L := Ψup

D,A(K). We have

ΨD,B
down(K) ⊆ J , because K = Ψup

B,D(J) ⊆ M(B, J) and BM(B, J)B ⊆ J . On

the other hand, Ψup
B,A(J) = L by (ii), and DLD ⊆ DM(D,K)D ⊆ K. Thus

BDLDB ⊆ BKB. Since DB = B, it follows ΨA,B
down(L) ⊆ ΨD,B

down(K).

(v): Let L / A, and let J := span(BLB) = ΨA,B
down(L)). For x ∈ L, bx∗xb is in

J := span(BLB), which implies xb ∈ J . Thus LB ⊆ J and BL = (LB)∗ ⊆ J , i.e.,

L ⊆ Ψup
B,A(J). �

Proof of Proposition 3.6.1. Recall that ΨC(K) := Ψup
D,C(K) := C ∩

M(D,K) and that ΨB(K) = ΨD,B
down(K) is defined as the closure of span(BKB)

for K ∈ I(D).

(i): Suppose that V : C → B is Ψup
B,C-idI(B)– residually nuclear, and let I

a closed ideal of D. Then M(D, I) ⊆ M(B,BIB) (because IB + BI ⊆ BIB

and DB = B = BD), and C ∩ M(D, I) = ΨC(I) ⊆ Ψup
B,C(BIB). It follows

V (ΨC(I)) ⊆ BIB = ΨB(I). Furthermore, [V ]I : C/ΨC(I) → B/BIB satisfies

[V ]I((C ∩M(B,BIB))/ΨC(I)) = 0, because V (C ∩M(B,BIB)) ⊆ BIB. Thus,

[V ]I factorizes [V ]I = [V ]J ◦π for the nuclear map [V ]J : C/Ψup
B,C(J)→ B/J where

J := BIB. It follows that V is ΨC-ΨB–residually nuclear.

Suppose that V is ΨC-ΨB–residually nuclear, and let K a closed ideal of C.

Then ΨC,B
down(K) = span(BKB) = BDKDB = BIB for I := DCD. Then K ⊆

C ∩M(D, I) = ΨC(I) and

V (K) ⊆ V (ΨC(I)) ⊆ ΨB(I) = ΨC,B
down(K) ,

and [V ]K : C/K → B/ span(BKB) = B/ΨB(I) factorizes through the nuclear map

[V ]I : C/ΨC(I)→ B/ΨB(I) because K ⊆ ΨC(I). It follows that V is idI(C)-Ψ
C,B
down–

residually nuclear.

Suppose that V is idI(C)-Ψ
C,B
down– residually nuclear, and let J a closed ideal of

B. Then K := C ∩M(B, J) = Ψup
B,C(J) is a closed ideal of C with

ΨC,B
down(K) = span(BKB) ⊆ J ,

because cB+Bc ⊆ J for all c ∈M(B, J). It follows that V (K) ⊆ span(BKB) ⊆ J ,

and that [V ] : C/K → C/span(BKB) is nuclear. Thus [V ] : C/K → C/J is also

nuclear and K = Ψup
B,C(J) .

Thus, V : C → B is Ψup
B,C-idI(B)– residually nuclear.

(ii)+(iii): First we consider all maps S : C → Dω with the property that the

C *-subalgebra AS := C∗(S(C)) of Dω is abelian and that there exist contractions
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s1, s2, . . . ∈ Dω with s∗n(C + C1)sm = {0} for n 6= m and s∗ncsn = S(c) for all

c ∈ C and n ∈ N. Clearly, the maps S are Ψup
Dω,C

-residually nuclear, and, for all

contraction b ∈ Bω, the maps c ∈ C 7→ b∗S(c)b ∈ Bω are Ψup
Bω,C

-residually nuclear

in C ⊆ M(Dω) ⊆ M(Bω). By definition, the maps c 7→ b∗S(c)b are one-step

approximately inner in M(B)ω ⊆ M(Bω). (Here we use that Dω ⊆ M(B)ω ⊆
M(Bω) is non-degenerate, i.e., DωBω = Bω.)

We are going to show:

(α) The above considered maps c 7→ b∗S(c)b are point-norm dense in the set

of contractions of a matrix operator-convex cone C ⊆ CPin(C,Bω).

(β) For every c0 ∈ C+ and b1, . . . , bn ∈ Bω with ‖
∑
j b
∗
j bj‖ ≤ 1 there exist

S : C → Dω as above descibed and a contraction b ∈ Bω with b∗S(c)b =∑
j b
∗
jcbk .

By (α) and (β), the operator-convex cone C is a sub-cone of the cone of approxi-

mately inner c.p. maps from C ⊆ M(Bω) to Bω which has the property that the

action ΨC of I(Bω) ∼= O(Prim(Bω)) on C defined by C is the same as Ψup
Bω,C

(which

is the action defined by the cone of approximately inner c.p. maps). It follows from

Corollary 3.5.14(ii) that all Ψup
Bω,C

-residually nuclear contractions V from C into

Bω are in the point-norm closure of the set of maps c 7→ b∗S(c)b as described above.

The Ψup
B,C-residually nuclear contractions V : C → B define Ψup

Bω,C
-residually nu-

clear contractions V : C → B ⊆ Bω. By (i) this shows that (α) and (β) imply (ii)

and (iii).

For the proof of (α) and (β) we list the following facts (1)-(4) on ultrapowers

Dω of strongly purely infinite C *-algebras D (taken from [463] and [443]):

(1) If X is a separable subset of Dω+Bω, then there exists positive contraction

e ∈ Dω with ex = xe = x for all x ∈ X, and with ec = ce and ‖ce‖ = ‖c‖ for all

c ∈ C.

(2) For every separable C *-subalgebra A ⊆ Dω and every commutative sep-

arable C *-subalgebra F ⊆ Dω there exists a contraction d ∈ Dω with df = fd,

fd∗d = f , d∗adf = fd∗ad, d∗a∗dd∗ad = d∗add∗a∗d for all f ∈ F and a ∈ A.

(3) For every separable commutative C *-subalgebra F ⊆ Dω there exists a

*-morphism h : F ⊗O∞ → Dω with h(f ⊗ 1) = f for all f ∈ F .

(4) For every separable C *-subalgebra A ⊆ Dω and every approximately inner

completely positive map T : A → Dω with commutative C∗(T (A)) there exists

d ∈ Dω with ‖d‖2 ≤ ‖T‖ and d∗ad = T (a) for a ∈ A.

(α): to be filled in ??

(β): There are positive contractions e, f ∈ C ′∩Dω with ebj = bj and fe = e for

j = 1, . . . , n by (1), used twice. By (2), there is a contraction d ∈ {c0e, e, f}′ ∩Dω

with H := C∗(d∗fCfd∪{c0e, e, f}) commutative and d∗df = f . Note ed∗fcfde =

d∗eced = ed∗cde for c ∈ C and d∗e(ec0)ed = c0e
3. There is *-monomorphism

k : H ⊗ O∞ → Dω with k(h ⊗ 1) = h for h ∈ H by (3). Let t1, t2, . . . denote
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the canonical generators of O∞ and let S(c) := d∗eced, sn := edk(f ⊗ tn), b :=∑
j k(f ⊗ tj)bj ∈ Bω. Then s∗ncsm = δn,mS(c), S(c0) = c0e

3, C∗(S(C)) ⊆ H is

commutative, b∗b =
∑
j b
∗
j bj and b∗S(c)b =

∑
b∗jS(c)bj . Thus S and b ∈ Bω are as

stipulated. �

Definition 3.6.3. Suppose that C ⊆ CP(A,B) a point-norm closed matrix

operator-convex sub-cone of CP(A,B), and that E,F are nuclear C *-algebras.

We define CP(E,F )⊗ C ⊆ CP(E ⊗A,F ⊗B) as the point-norm closure C(S)

of Calg(S), where S := {V ⊗ S ; S ∈ C, V ∈ CP(E,F )} .

Notice the m.o.c. cone CP(E,F ) ⊗ C is not the completion of some algebraic

tensor product.

Corollary 3.6.4. Suppose that C ⊆ CP(A,B) is a point-norm closed operator-

convex cone of completely positive maps, that E and F are nuclear C*-algebras, and

T ∈ CP(E ⊗A,F ⊗B). Then:

(i) If S2 is a generating set for C and S1 is a generating set for CP(E,F ),

then S := {U⊗V ; U ∈ S1, V ∈ S2} is a generating set for CP(E,F )⊗C.

In particular, CP(Mn,Mn) ⊗ C is the point-norm closure of Calg(S) for

S := {id⊗V ; V ∈ C}.
(ii) T1T2 ∈ CP(E,F ) ⊗ C, if T1 ∈ CP(G,F ) ⊗ C1 and T2 ∈ CP(E,G) ⊗ C2

for a nuclear C*-algebra G and operator-convex cones C1 ⊆ CP(A,C) and

C2 ⊆ CP(C,B) with S2 ◦ S1 ⊆ C for generating subsets S1 ⊆ C1 and

S2 ⊆ C2.

(iii) The union (over n = 1, 2, . . .) of the compositions S1S2S3 with S2 ∈
CP(Mn,Mn)⊗C, S1 ∈ CP(Mn, F )⊗CPin(B,B), and S3 ∈ CP(E,Mn)⊗
CPin(A,A) is point-norm dense in CP(E,F )⊗ C .

(iv) T ∈ CP(E,F )⊗ C, if and only if, the c.p. maps

a ∈ A 7→ (χ⊗ idB)(T (e⊗ a)) ∈ B

are in C for every e ∈ E+ and for every pure state χ on F .

(v) The action Ψ: I(F ⊗B) ∼= O(Prim(F ⊗B)) of Prim(F ⊗B) ∼= Prim(F )⊗
Prim(B) on E ⊗A satisfies

Ψ(J) = E ⊗ΨC(JB)

for J /F ⊗B in I(F ⊗B), where JB is the biggest of the ideals I /B with

F ⊗ I ⊆ J .

(vi) The natural map Φ from I((F ⊗ B) ⊗max C∗(F2)) into I((F ⊗ A) ⊗max

C∗(F2)) defined by CP(E,F )⊗C satisfies Φ(J) = F ⊗Φ1(I(J)), where Φ1

denotes the natural map from I(B ⊗max C∗(F2)) into I(A ⊗max C∗(F2))

defined by C and I(J) is the biggest ideal I of B⊗maxC∗(F2) with F ⊗I ⊆
J .

Recall that the operator-convex cone CPin(A,A) of approximately inner

c.p. maps from A into A is nothing else C(idA), and that every nuclear map

V ∈ CPnuc(C,C) is approximately inner if C is simple, e.g. CP(Mn,Mn) = Calg(id).
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Proof. Let H2 a Hilbert A-B–module with infinite repeats, that is naturally

related to C in the sense of Proposition ??, i.e., C is the point-norm closure of

the c.p. coefficient maps a ∈ A 7→ 〈x, ax〉 ∈ B for x ∈ H2 . Further let H1 a

Hilbert E-F–module (with infinite repeats) that corresponds to CP(E,F ) in the

same way. Then H1⊗H2 is an Hilbert E⊗A-F ⊗B–module (with infinite repeats),

corresponding to the m.o.c. cone CP(E,F )⊗ C, cf. Proposition ??.

(i): If S2 ⊆ C is a generating subset of C than a suitable Hilbert A-B–module

H2 can be constructed by infinitely often repeated Hilbert A-B–module sums of

the Stinespring dilations of the V ∈ S1. We can elaborate a suitable Hilbert E-F -

module H1 from S2 in the same way. Then H1⊗H2 is just the Hilbert E⊗A-F⊗B–

module sum of the dilations of the maps U ⊗V with U ∈ S1 and V ∈ S2 (infinitely

often repeated). Thus CP(E,F )⊗ C is generated by {U ⊗ V ; U ∈ S1 , V ∈ S2 }.

Here end of proof of (i)? ??

Let J/(F⊗B)⊗maxC∗(F2) a closed ideal and let Ψ(J) := I/(E⊗A)⊗maxC∗(F2)

the maximal closed ideal with T ⊗max id(I) ⊆ J for all generators T = V ⊗ S of

CP(E,F )⊗C, where S ∈ C and V ∈ CP(E,F ) = CPnuc(E,F ). By Proposition ?? ,

then T is in the operator-convex cone C⊗CP(E,F ), if and only if, T⊗maxid(Ψ(J)) ⊆
J for all J /(F⊗B)⊗maxC∗(F2). Recall here, that it is enough to consider primitive

ideals J of (F ⊗B)⊗max C∗(F2) = F ⊗ (B ⊗max C∗(F2)). Since F is nuclear, they

are sums

J = JF ⊗ (B ⊗max C∗(F2)) + F ⊗ J1 ,

where J1 is a primitive ideal of B ⊗max C∗(F2) and JF is a primitive ideal of F .

Now note that CP(E,F ) = CPnuc(E,F ) is generated as an operator-convex

point-norm closed cone by maps e ∈ E 7→ ξ(e)f , for f ∈ F+ and ξ is a pure state

on E. Thus, ΨCP(E,F )(J) = 0 if J / F and J 6= F and, trivially, ΨCP(E,F )(F ) = E.

(iv): Let e ∈ E+ and χ : F → C a pure state on F . Let C3 ⊆ CP(A,A)

and C1 ⊆ CP(B,B) denote the approximately inner c.p. maps. Then C ◦ C3 = C
and C1 ◦ C = C. Consider the maps V3 : z ∈ C → ze ∈ E and V1 := χ : F →
C . Then V3 ⊗ idA ∈ CP(C, E) ⊗ C3 and V1 ⊗ idB ∈ CP(F,C) ⊗ C1 . It follows

(V1 ⊗ idB) ◦ T ◦ (V3 ⊗ idA) ∈ C = C ⊗ CP(C,C) by (ii).

If U ∈ CP(E,F ), V ∈ C, h ∈ M1,m(E � A), and k ∈ Mm,1(F � B), then

S0(a) := χ⊗ idB
(
k∗(U ⊗V ⊗ idm(h∗(e⊗a)h))k

)
defines a completely positive map

that is in C :

orthogonalize the ei,j-components of hi

and the fi,j-components of ki

Now let T ∈ CP(E,F )⊗ C, a1, . . . , am ∈ A, and ε > 0. Then there are n ∈ N,

Uj ∈ CP(E,F ), Vj ∈ C, fj ∈M1,n(E �A), gj ∈Mn,1(F �B), j = 1, . . . , n with

‖T (e⊗ ak)−
∑
j

g∗j (Uj ⊗ Vj)⊗ idn(f∗j (e⊗ ak)fj)gj‖ < ε .

It follows that there is S ∈ C with

‖χ⊗ idB(T (e⊗ ak))− S(ak)‖ < ε for k = 1, . . . ,m .
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Thus (χ⊗ id)T (e⊗ (·)) ∈ C.

try again?

(idB ⊗χ) ◦ T ◦ ((·)⊗ e) ∈ C, because this happens if T is one of the generators

where S ∈ C and V ∈ CP(E,F ) = CPnuc(E,F ), and because

???????????????????

The set of T ∈ CP(A⊗E,B⊗F ) with (idB ⊗χ)◦T ◦ ((·)⊗e) ∈ C for all e ∈ E+

and pure states χ on F does not change the ???????

??

Conversely, suppose that (idB ⊗χ) ◦ T ◦ ((·)⊗ e) ∈ C for every pure state χ on

F and e ∈ E+ . Since idB ⊗χ is in the point-norm closure of the cone generated by

???? It suffices to show that (id⊗UW ) ◦ V ∈ C ⊗ CP(C, F ) for c.p. contractions

W : Mn → F and U : F →Mn.

Now, (id⊗U)◦C⊗CP(C,Mn) ⊆ C⊗CP(C, F ) as one can see on the generating

sets.

to be filled in ?? �

Next question has a positive answer:

Question 3.6.5. Suppose that Cj ⊆ CP(Bj , Bj+1) (j = 1, 2) and C3 ⊆
CP(B1, B3) are point-norm closed matrix-operator convex cones, and that Sj ⊆ Cj
a generating set for Cj (j = 1, 2) in sense of Definition ??.

Let V ∈ CP(B2, B3) such that V ◦ (b∗W (·)b) ∈ C3 for all W ∈ S1 and b ∈ B2.

Is V ◦ C2 ⊆ C3 ?

Let W ∈ CP(B1, B2) and V ◦ (b∗W (·)b) ∈ C3 for all V ∈ S2. Is C1 ◦W ⊆ C3 ?

What about situation of ⊕-closed generating system?

Remark 3.6.6. ?? Suppose that X and Y are T0-spaces, Ψ0 : O(Y ) → O(X)

lower semi-continuous and Ψ0 : O(X)→ O(Y ) upper semi-continuous.

There are maps Φ0 : O(X)→ O(Y ) and Φ0 : O(Y )→ O(X), determined by

Φ0(U) ⊆ V ⇔ Ψ0(V ) ⊆ U ,

respectively

Φ0(V ) ⊆ U ⇔ Ψ0(U) ⊆ V .

The map Φ0 is upper semi-continuous, and Φ0 is lower semi-continuous.

Question 3.6.7. Suppose that A is separable, J / A is a closed ideal and that

idA/J is not locally liftable (i.e., that J ⊗ L(`2) → A ⊗ L(`2) → (A/J) ⊗ L(`2) is

not exact), and let B := L(`2) (or at least B := L(`2)/K).

Does there exist a non-nuclear c.p. contraction W : A/J → B such that W◦πJ : A→
B is nuclear?

The question for B := L(`2)/K seems to be less difficult.
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Question 3.6.8. Let C ⊆ CP(A,B) a point-norm closed operator-convex cone,

A and B separable. Let ΨA,C denote the action of Prim(B) on A induced by C.
Recall, that ΨA,C(J) :=

⋂
V ∈C V

−1(J) for J ∈ I(B).

Denote by Crn ⊆ CP(A,B) the point-norm closed operator-convex cone of Ψ-

residually nuclear maps. (Then Crn ⊆ C.)

Is Crn ⊆ (Crn)rn ?

(Note here that ΨA,C(J) ⊆ ΨA,Crn(J) for J ∈ I(B).)

Is the answer positive if A locally reflexive?

Question 3.6.9. Suppose that S1 ⊆ CP(A,B) is point-norm closed and is

invariant under the operations (OC1) of Definition 3.2.2. Let S2 denote the point-

norm closure of the smallest subset of CP(A,B) that contains S1 and is invariant

under the operations (OC2).

Is S2 konvex ?

(Examples show that the convexity of S1 alone is not enough to get convexity of

S2.)

Lemma 3.6.10. Suppose that C ⊆ CP (A,B) is the matrix operator-convex cone

of completely positive maps that is generated by a subset S ⊆ C .

Then every contraction T ∈ C can be approximated in point norm by maps

S :=
∑n
j=1 c

∗
jVj(r

∗
j (·)rj)cj with suitable m,n ∈ N, Vj ∈ S, rows rj ∈M1,m(A), and

columns cj ∈Mm,1(B), such that ‖
∑n
j=1 c

∗
jVj(r

∗
j rj)cj‖ ≤ 1 .

Proof. to be filled in ?? �

Lemma 3.6.11. Separation from cone C ??

Definition 3.6.12. A subset S ⊆ CP(A,B) is invariant under ε-

generalized Cuntz addition, if d∗1V (e(·)e)d1 + d∗2W (e(·)e)d2 ∈ S for ev-

ery V,W ∈ CP(A,B), e ∈ A+, ε > 0, and d1, d2 ∈ B with d∗1d2 = 0 and

d∗jdj = (V (e2) +W (e2)− ε)+.

Lemma 3.6.13. Suppose that for every b ∈ B+ and ε > 0 there exist d1, d2 ∈ B
with d∗1d2 = 0 and ‖b− d∗jdj‖ < ε for j = 1, 2 (17).

If S ⊆ CP(A,B) is invariant under ε-generalized Cuntz addition, then the

operator-convex cone generated by S is contained in the point-norm closure of the

smallest subset of CP(A,B) that invariant under the operations (OC2) of Definition

3.2.2 and contains S .

Proof. ?? �

Definition 3.6.14. Let S ⊆ CP(A,B) a subset. Then the smallest subset

Calg(S) of CP(A,B) that contains S and is invariant under the operations (OC1)

and (OC2) of Definition 3.2.2 will be called the operator-convex cone alge-

braically generated by S.

17 It does not say that b itself is infinite, e.g. every stable B has this property.
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The point-norm closure C(S) of Calg(S) is called the point-norm closed

operator-convex cone generated by S.

Lemma 3.6.15. Let S ⊆ CP(A,B) a set of completely positive maps, and let

Calg(S) denote the the smallest subset of CP(A,B) that contains S and is invariant

under the operations (OC1) and (OC2) of Definition 3.2.2.

(i) The point-norm closure C of Calg(S) is again a matrix operator-convex

cone.

(ii) Every contraction in C can be approximated in point-norm topology

by maps of the form
∑n
k=1 c

∗
k(Vk ⊗ idnk)(r∗k( · )rk)ck with Vk ∈ S,

row-matrices rk ∈ M1,nk(A), and column-matrices ck ∈ Mnk,1(B),

k = 1, . . . , n, that satisfy

‖
n∑
k=1

c∗k(Vk ⊗ idnk)(r∗krk)ck‖ ≤ 1 .

(iii) In particular, C is the point-norm closure of the convex hull of the set

of maps c∗(V ⊗ idn)(r∗( · )r)c with V ∈ S, row-matrix r ∈ M1,n(A) and

column-matrix c ∈Mn,1(B).

Proof. (i): The operations (x, y) ∈ B ⊕B 7→ b∗1xb1 + b∗2yb2, a ∈ A 7→ r∗ar ∈
A ⊗Mn, x ∈ B ⊗Mn 7→ c∗xc ∈ B are bounded and V ∈ CP(A,B) 7→ V ⊗ idn ∈
CP(A ⊗Mn, B ⊗Mn) is continuous with respect to point-norm topology. Thus,

the point-norm closure of a subset K ⊆ CP(A,B) that is invariant under the

operations (OC1) and (OC2) is again invariant under the operations (OC1) and

(OC2) in Definition 3.2.2.

(iii): Let X denote the set of maps c∗(V ⊗ idn)(r∗(·)r)c with V ∈ S, r ∈
M1,n(A), c ∈ Mn,1(B), n ∈ N. Then X is invariant under the operations (OC2),

because, if W := c∗1(V ⊗idm)(r∗1(·)r1)c1, then c∗2(W⊗idn)(r∗2(·)r2)c2 for is equal the

map c∗3(V ⊗ idmn)(r∗3(·)r3)c3, with r3 ∈M1,mn(A) given by (r3)1,` := (r1)1,j(r2)1,k

for ` = (j − 1)n + k ∈ {1 . . .mn} and the entries (ri)1,p of ri (i = 1, 2, 3), and,

similar, with c3 ∈M1,mn(B) given by (c3)`,1 := (c1)j,1(c2)k,1 for ` = (j − 1)m+ k.

If a subset X ⊆ CP(A,B) is invariant under the operations (OC2), then (in

particular) f∗b∗V (a∗e∗(·)ea)bf ∈ X for every a ∈ M(A), e ∈ A, b ∈ M(B) and

f ∈ B. If we use approximate units {eα} of A and {fβ} of B, then this shows

that the point-norm closure Y := X of X contains all maps b∗V (·)b with b ∈ B
and V ∈ X . With the arguments in proof of part(i), we obtain that S ⊆ Y,

R+ · Y ⊆ Y and that Y contains c∗(W ⊗ idn)(r∗(·)r)c if W ∈ Y, r ∈M1,n(M(A)),

c ∈Mn,1(M(B)), n ∈ N.

Thus, the set Z of finite sums W1 + · · · + Wm with Wj ∈ Y is a cone that is

invariant under the operations (OC1) and contains S ∪X ⊆ Y. Since Y is invariant

under (OC1) and since c∗((W1 + · · · + Wm) ⊗ idn)(r∗(·)r)c = U1 + · · · + Um for

Uj := c∗(Wj ⊗ idn)(r∗(·)r)c, we get moreover that Z is also invariant under the

operations (OC2).
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It follows that Calg(S) ⊆ Z. On the other hand, X ⊆ Calg(S) and Z is contained

in the point-norm closure of the set W of finite sums V1 + · · ·+ Vm with Vj ∈ X .

It follows that every element of the point-norm closure C(S) of Calg(S) can

be approximated in point-norm by maps W ∈ W, where W :=
∑n
k=1 c

∗
k(Vk ⊗

idnk)(r∗k( · )rk)ck with Vk ∈ S, row-matrices rk ∈ M1,nk(A), column-matrices ck ∈
Mnk,1(B), k = 1, . . . , n. Obviously, W ⊆ Calg(S) ⊆ C.

(ii): The norm ‖W‖ of W ∈ W is given by sup{‖W (e)‖ ; e ∈ A+, ‖e‖ ≤ 1}
which is equal to ‖

∑n
k=1 c

∗
k(Vk ⊗ idnk)(r∗krk)ck‖ . Since W (e(·)e) ∈ W for W ∈ W,

we get from Lemma 3.1.8 that the contractions in the point-norm closure C ofW can

be approximated in point-norm by contractions in W. It proves also part(ii). �

Definition 3.6.16. Let C1 ⊆ CP(A,B) and C2 ⊆ CP(E,F ) point-norm closed

matrix operator-convex cones.

We define the point-norm closed m.o.c. cone C1 ⊗ C2 ⊆ CP(A ⊗ E,B ⊗ F )

as the smallest point-norm closed m.o.c. cone that contains all tensor products

S ⊗ T ∈ CP(A⊗ E,B ⊗ F ) of S ∈ C1 and T ∈ C2.

The m.o.c. cone C1 ⊗ C2 ⊆ CP(A⊗ E,B ⊗ F ) is called the “minimal tensor

product” of the m.o.c. cones C1 and C2.

If A = C0(X) and F = C, respectively E = C and B = C0(Y ), then we write

sometimes also [X]C, respectively C[Y ], to simplify notation.

The m.o.c. cone C1 ⊗ C2 is not a tensor product in the usual sense because it

contains usually elements that can not be approximated in point-norm by convex

combinations of elementary tensors S ⊗ T .

Corollary 3.6.17. Suppose that S1 ⊆ CP(A,B), S2 ⊆ CP(E,F ) are subsets

and that C1 ⊆ CP(A,B), C2 ⊆ CP(E,F ) are the point-norm closed matrix operator-

convex cones generated by S1 respectively S2.

Then the point-norm closed matrix operator-convex cone C1 ⊗ C2 ⊆ CP(A ⊗
E,B ⊗ F ) that is generated by {V ⊗W ; V ∈ C1 , W ∈ C2 } is also generated by

{S ⊗ T ; S ∈ S1 , T ∈ S2 }.

Proof. Let C3 ⊆ CP(A ⊗ E,B ⊗ F ) denote the point-norm closure of the

operator-convex cone generated by {S ⊗ T ; S ∈ S1 , T ∈ S2 }. Then C3 ⊆ C1 ⊗
C2 and C3 is point-norm closed, is convex and is invariant under the operations

(OC1) and (OC2) by Lemma 3.6.15(i). Thus, C1 ⊗ C2 = C3 if C3 contains every

tensor product V ⊗ W with V ∈ C1 and W ∈ C2. By Lemma 3.6.15(ii,iii) and

the convexity of the cone C3 is suffices to show that (c∗1(S ⊗ idm)(r∗1(·)r1)c1) ⊗
(c∗2(T ⊗ idn)(r∗2(·)r2)c2) is in C3 if S ∈ S1, T ∈ S2, c1 ∈ Mm,1(B), r1 ∈ M1,m(A),

c2 ∈Mn,1(F ) and r2 ∈M1,m(E). We have

(c∗1(S ⊗ idm)(r∗1(·)r1)c1)⊗ (c∗2(T ⊗ idn)(r∗2(·)r2)c2) = c∗3((S ⊗ T )⊗ idmn)(r∗3(·)r3)c3

for c3 = c1 ⊗ c2 ∈Mmn,1(B ⊗ F ) and r3 := r1 ⊗ r2 ∈M1,mn(A⊗E) where we use

the natural isomorphisms Mmn,1(B ⊗ F ) ∼= Mm,1(B)⊗Mn,1(F ), M1,mn(A⊗E) ∼=
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M1,m(A)⊗M1,n(E), (A⊗E)⊗Mmn
∼= (A⊗Mm)⊗(E⊗Mn) and (A⊗E)⊗Mmn

∼=
(A⊗Mm)⊗ (E ⊗Mn) ( 18 ). Thus, C3 = C1 ⊗ C2. �

Definition 3.6.18. Let A and B C *-algebras. We define a matrix-order

S ≤ T on the cone of completely positive maps S, T ∈ CP(A,B) by

S ≤ T if and only if T − S ∈ CP(A,B) .

Obviously, this definition says that: S ≤ T if and only if there exists R ∈
CP(A,B) with T = S + R. It is not enough to have S(a) ≤ T (a) for all a ∈ A+.

But S ≤ T is equivalent to the property that for each n ∈ N and all positive

matrices a ∈Mn(A)+ holds Sn(a) ≤ Tn(a), where Sn and Tn apply to a = [ajk] as

Sn(a) = [S(ajk)].

Corollary 3.6.19. Every, with respect to the point-norm convergence topology

closed, matrix operator-convex cone C ⊆ CP(A,B) is hereditary with respect to the

matrix-order on CP(A,B) in sense of Definition 3.6.18, i.e., if S, T ∈ CP(A,B)

and S + T ∈ C then S, T ∈ C.

If C ⊆ CP(A,B) is a point-norm closed hereditary convex sub-cone of CP(A,B),

then C is matrix operator-convex, if and only if, the maps U∗2V (U∗1 (·)U1)U2 are in C
for every V ∈ C, and for all unitaries U1 := exp(ih) ∈ A+C1 and U2 := exp(ik) ∈
B + C1 with h∗ = h ∈ A, ‖h‖ < π, k∗ = k ∈ B and ‖k‖ < π .

Proof. If I ⊆ A⊗max C∗(F2) and J ⊆ B ⊗max C∗(F2) are closed ideals with

V ⊗max id(I) ⊆ J for all V ∈ C, then ((S+T )⊗max id)(I) ⊆ J for S, T ∈ CP(A,B)

with S + T ∈ C. Let e ∈ I+, f := S ⊗max id(e) and g := T ⊗max id(e) in

(B ⊗max C∗(F2))+. Since f + g ∈ J and f, g ≥ 0, it follows that f, g ∈ J+,i.e.,

S⊗max id(I) ⊆ J and T ⊗max id(I) ⊆ J for all closed ideals I ⊆ A⊗maxC∗(F2) and

J ⊆ B ⊗max C∗(F2) with the property V ⊗max id(I) ⊆ J for all V ∈ C. It implies

S, T ∈ C by Theorem 3.8.4.

Every point-norm closed matrix operator-convex cone C is convex, because

V1 + V2 and λV1 are in C by condition (OC1), as one can see with help of an

approximate unit of B. The maps b∗V (a∗(·)a)b are in C for every V ∈ C, a ∈ A
and b ∈ B, by condition (OC2).

Suppose now that C is a hereditary point-norm closed convex sub-cone of

CP (A,B) such that the maps U∗2V (U∗1 (·)U1)U2 are in C for every V ∈ C, and for

all unitaries U1 := exp(ih) ∈ A+C1 and U2 := exp(ik) ∈ B+C1 with h∗ = h ∈ A,

‖h‖ < π, k∗ = k ∈ B and ‖k‖ < π. Since c+ i(1− c2)1/2 = exp(ih) with h∗ = h of

norm ‖h‖ ≤ 2π/3 for c∗ = c with ‖c‖ ≤ 1/2, and since d∗xd+dxd∗ = 2(hxh+kxk)

for d = h+ ik with h∗ = h, k∗ = k in every C *-algebra, we can use that the convex

cone C is hereditary and that the c.p. maps b∗V (a∗(·)a)b are in C for every V ∈ C,
a ∈ A and b ∈ B.

18The isomorphisms are ( – up to the associativity transformation maps – ) induced by the

isomorphism Cmn ∼= Cm ⊗ Cn given by writing the rows of the tensors (on on the right side) as

consecutive row (on the left side).
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If V ∈ C, r = [a1, . . . , an] ∈M1,n(A) and c = [b1, . . . , bn]> ∈Mn,1(B), then the

map Z(a) := (n(
∑
j a
∗
jaaj)⊗ 1n)− r∗ar from A into Mn(A) is completely positive

by Lemma A.5.6. The maps c∗(V ⊗ idn)(a∗j (·)aj ⊗ 1n)c =
∑
k b
∗
kV (aj(· · · )aj)bk

are in C (by additivity of C). Since a 7→ n(
∑
j a
∗
jaaj) ⊗ 1n is the sum of the c.p.

maps Z and a 7→ r∗ar, we get that c∗(V ⊗ idn)(r∗(·)r)c ∈ C , i.e., C is invariant

under the operations (OC2) of Definition 3.2.2. It is also closed with respect to the

operations (OC1), because C is point-norm closed, is convex and b∗V (·)b is in C for

every b ∈ B. �

Corollary 3.6.20. Suppose that C1 ⊆ CP(A,B) and C2 ⊆ CP(B,C) are point-

norm closed operator convex cones, that S1 ⊆ C1 and S2 ⊆ C2 are generating sets

and that X ⊆ B is a subset of B with dense linear span.

(i) Then the set

{W (b∗V (·)b) ; V ∈ S1, W ∈ S1, b ∈ X}

of c.p. maps generates the m.o.c. cone C2 ◦ C1 ⊆ CP(A,C).

(ii) CPin(B) ◦ C1 ◦ CPin(A) = C1.

(iii) If ???????????????????

Proof. to be filled in ?? �

Lemma 3.6.21. Let S ⊆ CP(A,B) and let C denote the closure of the smallest

subset of CP(A,B) that contains S and is invariant under the operations (OC2) of

Definition 3.2.2.

Suppose that, for every V1, V2 ∈ S and b1, b2 ∈ B, there is a subset X ∈ S, such

that

(i) the set of maps c∗(V ⊗ idn)(r∗(.)r)c with V ∈ X , r ∈ M1,n(A) and c ∈
Mn,1(B) has convex point-norm closure Y := X ,

(ii) there is W ∈ CP(A,B) such that b∗1V1(·)b1 + b∗2V2(·)b2 +W is in Y.

Then C satisfies automatic also (OC1) of Definition 3.2.2.

Proof. to be filled in ?? �

Proposition 3.6.22. Suppose that C ⊆ CP(A,B) is point-norm closed matrix

operator-convex cone, and that E and F are nuclear C*-algebras.

(i) If S ⊆ CP(A,B) generates C, then the set of maps S ⊗ T for S ∈ S and

T := ρ(·)f with f ∈ F+ and ρ a pure state on E generate C ⊗ CP(E,F ).

Check proof and statement of Part (i) !? ??????????? ??

(ii) If R ∈ C ⊗ CP(Mm,Mn) W1 ∈ CP(E,Mm), and W2 ∈ CP(Mn, F ), then

V := (idB ⊗W2) ◦R ◦ (idA⊗W1) is contained in C ⊗ CP(E,F ).

(iii) T ∈ CP(A ⊗ E,B ⊗ F ) is in C ⊗ CP(E,F ), if and only if, the map

a ∈ A 7→ (id⊗ρ)(T (a⊗ e)) ∈ B is in C for all e ∈ E+ and all pure states

ρ on F .
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Proof. (i): The set of c.p. maps ρ(·)f with f ∈ F+ and ρ a pure state on E

generate CPnuc(E,F ) = CP(E,F ), by Corollary ??. Thus, the S ⊗ T with S ∈ S
and those T = ρ(·)f generate C ⊗ CP(E,F ) as an m.o.c. cone by Corollary 3.6.17.

(ii,iii): It suffices to compare the corresponding actions of Prim((B⊗F )⊗maxC)

on (A⊗ E)⊗max C.

By part (i) and Lemma 3.6.15(ii), it suffices to consider the case where R =

c∗(S ⊗ T ⊗ idp)(r
∗(·)r)c with S ∈ C, T := ψ(·)f0, r ∈ M1,p(A ⊗Mm) and c ∈

Mp,1(B⊗Mn), f0 ∈ (Mn)+, ψ pure state on Mm. If U is a suitable unitary in Mm,

then T (U∗αU) = α1,1f0

????????????????????

By Lemma 3.1.9(i), there are columns c1, . . . , cn ∈ Mn,1(F ) with W2(β) =∑n
j=1 c

∗
jβcj for all β ∈Mn.

Let r = (r1, . . . , rp) with ????

It follows that id⊗W2(R(a⊗ d)) =
∑

????

and ???????????

to be filled in ?? �

Lemma 3.6.23. Let C ⊆ CP(A,B) a point-norm closed matrix operator-convex

cone, A,B,E, F C*-algebras.

(i) Every W ∈ C ⊗ CPnuc(E,F ) can be approximated in point-norm by sums

of maps

W ′ = (idB ⊗U2) ◦ I2 ◦ (V ⊗ idn) ◦ I1 ◦ (idA⊗U1)

where V ∈ C, U1 ∈ CP(E,Mn), U2 ∈ CP(Mn, F ), and the maps

I1 : A⊗Mn → A⊗Mn and I2 : B ⊗Mn → B ⊗Mn

are both 1-step-inner c.p. maps.

(ii) If W ′ ∈ CP(A⊗ E,B ⊗ F ) is as in (i) then W ′ ∈ C ⊗ CPnuc(E,F ).

Proof. (i): Let T = S2 ◦ S1 : E → F with S1 : E → C S2 : C → F given by

S1(e) := ρ(e) for some pure state ρ on E, and S2 : z ∈ C → zf0 ∈ F for some

f0 ∈ F . We know from Remark ??// from Corollary ??// that CPnuc(E,F ) is

generated by maps T of this kind. It implies by Corollary 3.6.17 that the maps

V ⊗ T with V ∈ C and T = S2 ◦ S1 ∈ CP(E,F ) generate C ⊗ CP(E,F ).

Thus, by Lemma ??, every W ∈ C⊗CPnuc(E,F ) can be approximated by finite

sums of maps

W ′(a) :=
∑

1≤j,k≤m

(cj)
∗ (V ⊗ T )((rj)

∗ark) ck

where a ∈ A ⊗Mm, V ∈ C, T = S2 ◦ S2 is of the above type, r1, . . . , rm ∈ A � E,

c1, . . . , cm ∈ B � F .

We have rj =
∑pj
i=1 xij ⊗ eij and

S1((eij)
∗eei′k) = ρ((eij)

∗eei′k) = 〈D(e)(D(ei′k)x), D(eij))x〉
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for the irreducible representation D : E → L(L2(E, ρ)) with cyclic vector x ∈
L2(E, ρ) corresponding to ρ. Thus we may suppose that pj = p, eij = ei and

that {D(ei)x}1≤i≤p is an orthonormal basis of of the linear span of {D(eij)x}, i.e.,

it suffices to consider the case, where rj =
∑p
i=1 aij ⊗ ei (some of the aij can be

zero). Then

(idA⊗S1 ⊗ idm)(r∗(·)r) = J1 ◦ (idA⊗R1)(·) ,

where r := [r1, . . . , rm] ∈ M1,m(A ⊗ E) ⊆ A ⊗ E ⊗ Mm , J1 : A ⊗ Mp →
A ⊗ Mm given by J1(·) := X∗(·)X with X := [aij ] ∈ Mp,n(A), and R1(e) :=

[ρ(e∗i eei′)]i,i′ = κ∗D(e)κ is defined by the isometry κ : Cp ↪→ L2(E, ρ) with

κ(z1, . . . , zp) :=
∑
zieix. The map J1 ◦ (idA⊗R1) maps A⊗ E to A⊗Mm.

Consider cj :=
∑qj
i=1 yji ⊗ fij ∈ B � F for j = 1, . . . ,m. Let f1, . . . , fq a basis

of the linear span of {fij}, then there are unique bji ∈ B with cj =
∑q
i=1 bji ⊗ bi.

Let Y := [bji]j,i ∈ Mm,q(B), then J2(·) := Y ∗(·)Y maps B ⊗ Mm into B ⊗
Mq. Now we define R2 : Mq → E by R2(·) := g∗(·)g for the column-matrix g :=

[f
1/2
0 f1, . . . , f

1/2
0 fq]

> ∈Mq,1(F ) .

We get

c∗((idB ⊗S2)⊗ idp(·))c = (idB ⊗R2) ◦ J2 ,

thus

W ′ = c∗((V ⊗S2 ◦S1)⊗ idm(r∗(·)r)c = (idB ⊗R2)◦J2 ◦ (V ⊗ idm)◦J1 ◦ (idA⊗R1) .

If we let n := max(m, p, q) and consider Mm, Mp and Mq as corners of Mn,

then X ∈ A ⊗ Mn, Y ∈ B ⊗ Mn, J1 (respectively J2) can be considered as 1-

step-inner c.p. map of A ⊗ Mn (respectively B ⊗ Mn) R1 becomes a c.p. map

U1 : E → Mn, and R2 extends naturally to a c.p. map U2 : Mn → F . Hence,

W ′ = (idB ⊗U2) ◦ I2 ◦ (V ⊗ idn) ◦ I1 ◦ (idA⊗U2) is as desired.

(ii): We show that W ′ ∈ C ⊗ CPnuc(E,F ):

If I1 = idA⊗ idn and I2 = idB ⊗ idn then W0 = V ⊗ (U2 ◦U1) ∈ C ⊗CPnuc(E,F ) .

??????????????

Since, W1 := I2 ◦ (V ⊗ idn) ◦ I1 ∈ C ⊗ CP(Mn) is suffices to show that W2 =

W1◦(idA⊗U1) ∈ (C⊗CP(A,Mn))◦(CPin(A)⊗CP(E,Mn)) is in C⊗CPnuc(E,Mn),

and that W ′ = (idB ⊗U2) ◦W2 ∈ CPin(B)⊗CP(Mn, F ) ◦ (C ⊗CPnuc(E,Mn)) is in

C ⊗ CPnuc(E,F ).

to be filled in ?? �

Next needed in Chapter 8: ??

Suppose that C1 ⊆ CP(A,B) and C2 ⊆ CP(B,C) are point-norm closed matrix

operator-convex cones, that (E1, φ1) is a C1-compatible Hilbert (A,B)-module and

(E2, φ2) is a C2-compatible Hilbert (B,C)-module.

Then the Hilbert (A,C)-module (E3, φ3) := (E1 ⊗B E2, φ1(·)⊗B 1) is C2 ◦ C1-

compatible.
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The module (E3, φ3) is generating for C2 ◦ C1 if – moreover – (E1, φ1) and

(E2, φ2) are generating for C1 respectively C2.

next needed in chp:5 and chp:8,

Stinespring-Kasparov dilation inside C
perhaps shift to the appendix:

Lemma 3.6.24. Suppose that E is a (right) Hilbert B-module and V : A→ L(E)

is a completely positive contraction.

Let C ⊆ CP(A,B) denote the point-norm closed m.o.c. cone that is generated

by the c.p. maps Ve : a ∈ A 7→ 〈V (a)e, e〉 ∈ B with e ∈ E.

Then there is a (left) Hilbert B-module F and a *-morphism φ : A→ L(E⊕BF )

such that for the natural projection π1 : E ⊕B F → E holds

(i) V (a)e = π1(φ(a)(e, 0)) for all e ∈ E and a ∈ A.

(ii) 〈φ(·)(e, f), (e, f)〉 ∈ C for all (e, f) ∈ E ⊕B F .

If A is separable, B is σ-unital and E is countably generated over B then F

and φ : A→ L(E⊕B F ) can be found such that F is again countably generated over

B.

If, furthermore, B is stable and E = B (as right Hilbert B-module), then

there is a *-morphisms ψ : A → M(B) and isometries s, t ∈ M(B) such that

ss∗ + tt∗ = 1, V = s∗φ(·)s, and b∗φ(·)b ∈ C for all b ∈ B.

Proof. to be filled in ?? �

Definition 3.6.25. Let A and B graded C *-algebras with gradings βA ∈
Aut(A) and βB ∈ Aut(B) and C ⊆ CP(A,B) a m.o.c.cone with C ◦ βA ⊆ C and

βB ◦ C ⊆ C.

We say that a (graded) Hilbert (A,B)-module (E, φ) generates C if (E, φ) is

C-compatible and the vector states

Vx : a ∈ A 7→ 〈φ(a)x, x〉 ∈ B

generate C.

Next: What about (OC1)? ??

Remark 3.6.26. One can show that a set V of c.p. maps that is closed under

operations (OC2) and under “local” generalized Cuntz addition has a point-norm

closure that also satisfies (OC1).

Corollary 3.6.27. Suppose that A 6= C is simple and purely infinite and that

X is locally compact.

Then for every a, b ∈ C0(X,A)+ with ‖b(x)‖ ≤ ‖a(x)‖ for all x ∈ X and

ε ∈ (0, 1) there exists a contraction d ∈ C0(X,A) with ‖b− d∗ad‖ < ε.



426 3. NUCLEAR C.P. MAPS AND OPERATOR-CONVEX CONES

Proof. Since A is simple, it follows that b(x) is in the ideal generated by c(x),

where c(x) := (a(x)− δ‖a(x)‖)+ 6= 0 for δ := ε/2.

Since A 6= C is simple and purely infinite the algebra A is strongly purely

infinite, by Proposition 2.2.1(v). The strong pure infiniteness of A implies that

C0(X,A) is strongly purely infinite (cf. Corollary 2.17.5), in particular C0(X,A) is

purely infinite. Thus, there is e ∈ C0(X,A) with e∗ce = (b− ε)+. �

Corollary 3.6.28. A point-norm closed convex subcone C of CP(A,B) is

matrix operator-convex, if and only if, C is invariant under compositions with inner

automorphisms Ad(U) for unitary elements U ∈ M(A) or U ∈ M(B), and C is a

hereditary sub-cone of CP(A,B) , i.e., T1 + T2 ∈ C implies T1, T2 ∈ C .

Proof. ?? Use Hahn-Banach separation for C
and for the point-norm closed m.o.c. cone

generated by C. �

Lemma 3.6.29. Suppose that J is a closed ideal of B, (X, ρ) a separable metric

space, and S is a set of continuous maps f : X → B that has the following properties

(i) and (ii).

(i) There exists a continuous function µ(t) on R+ with µ(0) = 0 such that

‖f(x)− f(y)‖ ≤ µ(ρ(x, y)) for all x, y ∈ X and f ∈ S.

(ii) For every f ∈ S, every finite subset Y ⊆ X, every ε > 0 and g ∈ S,

there exists h ∈ S with ‖πJ(h(y)) − πJ(g(y))‖ < ε and ‖f(y) − h(y)‖ <
ε+ ‖πJ(f(y))− πJ(g(y))‖ for all y ∈ Y .

Then for every map F : X → B/J in the point-norm closure of πJ ◦ S there is

point-wise convergent sequence fn ∈ S such that F (x) = πJ(limn fn(x)).

The condition (ii) is automatically satisfied if the map

h(x) := e1/2f(x)e1/2 + (1− e)1/2g(x)(1− e)1/2

is in S, for every positive contraction e ∈ J+ with ‖e‖ < 1 and for every f, g ∈ S.

Proof. Let (x1, x2, . . .) a dense sequence in X. Suppose that F : X → B/J

is in the point-norm closure of πJ ◦ S . Then, for fixed x, y ∈ X , ‖F (x)− F (y)‖ ≤
supf∈S ‖f(x) − f(y)‖ ≤ µ(ρ(x, y)), and there is a sequence fn ∈ S such that

‖F (xk)− πJ(fn(xk))‖ < 2−n−2 for k ≤ n. By property (ii) and induction, we find

hn ∈ S with h1 := f1,

‖hn(xk)− hn+1(xk)‖ ≤ 2−n−2 + ‖πJ(hn(xk))− πJ(fn+1(xk))‖

and ‖πJ(hn+1(xk))−πJ(fn+1(xk))‖ < 2−n−3 for k ≤ n+1. Then limn πJ(hn(xk)) =

F (xk) for all k ∈ N, and ‖hn(xk) − hn+1(xk)‖ ≤ 2−n for k ≤ n. Thus, H(xk) =

limn hn(xk) exists for all k ∈ N. It follows, ‖H(xk) − H(xj)‖ ≤ µ(ρ(xk, xj)) for

k, j ∈ N. Since {x1, x2, . . .} is dense in X, we get that H extends uniquely to a

continuous map G from X into B with ‖G(x) − G(y)‖ ≤ µ(ρ(x, y)). For x ∈ X
and ε > 0 there exist xk with µ(ρ(x, xk)) < ε/3. Then ‖G(x)−hn(x)‖ ≤ ‖H(xk)−
hn(xk)‖+ 2ε/3. Thus G(x) = limn hn(x) for all x ∈ X. Since πJ(G(xk)) = F (xk)
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and F is continuous, it follows πJ ◦G = F . In particular, F (x) = πJ(limn hn(x))

for all x ∈ X, and (hn) is a sequence in S that converges point-wise to G.

We show that the condition (ii) is satisfied if the map

h(x) := e1/2f(x)e1/2 + (1− e)1/2g(x)(1− e)1/2

is in S, for every positive contraction e ∈ J+ with ‖e‖ < 1 and for every f, g ∈ S :

Consider the continuous function ψ(ξ) := (1− ξ2)1/2 for ξ ∈ [0, 1]. Let Y ⊂ X
a finite subset, ε ∈ (0, 1) and δ := ε/4.

If we let e := d2 for d ∈ J+ with ‖d‖ < 1 then h(·) becomes

h(·) := hd(·) := df(·)d+ ψ(d)g(·)ψ(d)

depending on d. Then πJ(h(x)) = πJ(g(x)) for all x ∈ X. Notice here that

πJ(d) = 1 because ψ(d) ∈ C∗(d, 1). It follows

‖f(y)− h(y)‖ ≤ ‖[f(y), d]‖+ ‖[f(y), ψ(d)]‖+ ‖ψ(d)(f(y)− g(y))ψ(d)‖ .

Since B/J is a Banach quotient of B by J , there exists for each y ∈ Y an element

c(y) ∈ J with

‖f(y)− g(y) + c(y)‖ ≤ δ + ‖πJ(f(y))− πJ(g(y))‖ .

Consider the finite setsQ := {c(y) ; y ∈ Y } ⊂ J and R := {f(y) ; y ∈ Y } ⊂ B.

The ideal J contains sequence of elements dn ∈ J+ with ‖dn‖ < 1 and

lim
n

(‖q − dnq‖+ ‖dnq − q‖) = 0

for all q ∈ Q and limn ‖[r, dn]‖ = 0 for all r ∈ R by the existence of a quasi-

central approximate unit in J+ for B, cf. [616][thms. 1.4.2, 3.12.14]. It follows that

limn ‖ψ(dn)qψ(dn)‖ = 0 for q ∈ Q and limn ‖[r, ψ(dn)]‖ = 0 for r ∈ R. Thus, we

find n ∈ N such that for d := dn the inequalities

‖ψ(d)(f(y)− g(y))ψ(d)‖ ≤ δ + ‖ψ(d)(f(y)− g(y) + c(y))ψ(d)‖ .

and

‖[f(y), d]‖+ ‖[f(y), ψ(d)]‖ < 2δ .

Notice that

‖ψ(d)(f(y)− g(y) + c(y))ψ(d)‖ ≤ 2δ + ‖πJ(f(y))− πJ(g(y))‖ .

Summing up gives ‖f(y)− h(y)‖ < ε+ ‖πJ(f(y))− πJ(g(y))‖ for all y ∈ Y . �

Proposition 3.6.30. Suppose that A is separable, that C ⊆ CP(A,B) is a

matrix operator-convex cone in sense of Definition 3.2.2, and that J is a closed

ideal of B.

Then πJ ◦ C := {πJ ◦ V ; V ∈ C} ⊆ CP(A,B/J) is a matrix operator-convex

cone.

The m.o.c. cone πJ ◦ C is closed with respect to the point-norm topology in

L(A,B/J) if C is closed with respect to the point-norm topology in L(A,B).
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Moreover, for every W ∈ πJ ◦ C there exists V ∈ C with ‖V ‖ = ‖W‖ and

W = πJ ◦ V if C is point-norm closed.

Proof. Clearly, πJ ◦ C ⊆ CP(A,B/J). By Definition 3.2.2 of m.o.c. cones C
we have to check that for V1, V2, V ∈ C, elements s, t ∈ B/J , rows r = [r1, . . . , rn] ∈
M1,n(A) and columns c = [c1, . . . , cn]> ∈ Mn,1(B/J) there exist W0,W ∈ C such

that πJ(W0(a)) = s∗πJ(V1(a))s + t∗πJ(V2(a))t and πJ(W (a)) = c∗((πJ ◦ V ) ⊗
idn)(r∗ar)c for a ∈ A.

Since πJ is surjective, we find b1, b2, dk ∈ B with πJ(b1) = s, πJ(b2) = t

and πJ(dk) = ck for k = 1, . . . , n. Let W0(a) := b∗1V1(a)b1 + b∗2V1(a)b2 and

W (a) := d∗(V ⊗ idn)(r∗ar)d for the column d := [d1, . . . , dn]> ∈ Mn,1(B) with

(πJ ⊗ idn)(d) = c.

Then W0 and W are in in C and have the desired properties, i.e., πJ ◦ C is a

(not necessarily closed) m.o.c. cone.

It follows that the point-norm closure C′ of πJ ◦ C is again an m.o.c. cone, and

that every element of of T ∈ C′ is the limit in point-norm convergence of a sequence

πJ ◦ Vn ∈ πJ ◦ C with ‖πJ ◦ Vn‖ ≤ ‖T‖, cf. Lemma 3.1.8.

We show that πJ ◦ C itself is closed in point-norm topology if C is closed in

point norm topology, i.e., that the set πJ ◦ C of images of c.p. maps V ∈ C under

the map C 3 V → πJ ◦ V ∈ CP(A,B/J) is closed under point-wise convergence.

Notice first that V := e1/2V1(·)e1/2 + (1 − e)1/2V2(·)(1 − e)1/2 is in C for

contractions e ∈ J+ with ‖e‖ ≤ 1 and V1, V2 ∈ C, and that ‖V ‖ ≤ max(‖V1‖, ‖V2‖).

To see that V is in the point-norm closure of C it suffices to observe that for an

approximative unit {cτ} ⊂ B+ of B the maps a ∈ A 7→ (1−e)1/2cτV2(a)cτ (1−e)1/2

converge point-wise to (1− e)1/2V2(·)(1− e)1/2.

Thus the condition (ii) of Lemma 3.6.29 is satisfied for X := A, ρ(x, y) =

‖x−y‖, the set C of c.p. maps V ∈ C ⊂ CP(A,B) (in place of S there) and the map

f : V 7→ π ◦ V . The condition (i) of Lemma 3.6.29 is also satisfied, with µ(t) := t.

Thus, πJ ◦ C ⊆ CP(A,B/J) is point-norm closed by Lemma 3.6.29.

The same arguments apply if we apply Lemma 3.6.29 to the set S of V ∈ C ⊂
with ‖V ‖ ≤ 1: This S is closed in the point-norm topology (if C is closed in point-

norm topology), X := A is separable and

V := e1/2V1(·)e1/2 + (1− e)1/2V2(·)(1− e)1/2 ∈ S

for V1, V2 ∈ S and e ∈ J+ with ‖e‖ ≤ 1.

Thus the image πJ ◦ S is closed in the topology of point-norm convergence on

A.

Since πJ ◦ S is closed under point-wise convergence, it suffices to show that

πJ ◦S is dense in the set of W ∈ πJ ◦ C with ‖W‖ ≤ 1, to get that each W ∈ πJ ◦ C
with ‖W‖ ≤ 1 is in πJ ◦ S itself.
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Let W ∈ πJ ◦ S with ‖W‖ ≤ 1. Above we have shown that there exists V ∈ C
with π ◦ V = W . Since A is separable, there exists a strictly positive contraction

c ∈ A+. It satisfies for all n ∈ N that

dist(V (c2/n), J) = ‖πJ(V (c2/n))‖ = ‖W (c2/n)‖ ≤ ‖c‖2/n ≤ 1 .

The sequence of c.p. contractions a ∈ A 7→ W (c1/nac1/n) converge point-wise to

W , because a = limn→∞ c1/nac1/n for each a ∈ A.

Thus, it suffices to find for each contraction c ∈ A+ a sequence of positive

contractions bm ∈ B+ such that ‖bmV (c2)bm‖ ≤ 1 and

lim
m
‖πJ(bm)W (cac)πJ(bm)−W (cac)‖ = 0 for each a ∈ A .

Since W (cAc) is contained in the hereditary C *-subalgebra of B/J generated by

W (c2), it suffices to find contractions bm ∈ C∗(V (c2))+ with πJ(bm) = W (c2)1/m

and ‖b2mV (c2)‖ ≤ 1, e.g. we can take bm := ϕ(V (c2)1/m) for the function ϕ(ξ) :=

min(ξ, 1). �

Proposition 3.6.30 and the surjectivity in Proposition 3.1.9(iii) together imply

the following equivalent formulation of the Choi-Effros lifting theorem for nuclear

maps [140], cf. also [43].

Corollary 3.6.31. If A is separable, and J is a closed ideal of B, then

πJ ◦ CPnuc(A,B) = CPnuc(A,B/J) .

Proof. Clearly, πJ ◦ CPnuc(A,B) ⊆ CPnuc(A,B/J) . Proposition 3.1.9(iii)

says that πJ ◦ CPf (A,B) = CPf (A,B/J). The m.o.c. cones CPnuc(A,B)

and CPnuc(A,B/J) are the point-norm closures of CPf (A,B) respectively of

CPf (A,B/J). It follows

CPf (A,B/J) ⊆ πJ ◦ CPnuc(A,B) ⊆ CPnuc(A,B/J) .

But πJ ◦ CPnuc(A,B) is point-norm closed by Proposition 3.6.30. �

7. Operator-convex Cones versus Actions by topological Spaces

Lemma 3.7.1. Suppose that C ⊆ CP(B,A) is an m.o.c. cone and that

Φ: I(B) → I(A) is the related upper s.c. action defined by C (i.e., Φ(J) := the

closed ideal of A, that is generated by {V (b) ; b ∈ J+, V ∈ C }).

Let Jb := span(BbB) . Then {V (b) ; b ∈ J+, V ∈ C } = Φ(J)+, and, for every

b ∈ B+, a ∈ Φ(Jb)+ and ε > 0, there exist V ∈ C with ‖V (b)− a‖ < ε.

Conversely:

Let Φ: I(B) → I(A) an upper semi-continuous action, and Ψ: I(A) → I(B) its

lower semi-continuous Galois adjoint. Suppose that C := CPrn(Ψ; B,A) realizes

Ψ, in the sense that Ψ = ΨC. Then ΦC = Φ.

Proof. ?? �
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Give (or refer to) definitions of CPrn(Ψ; B,A), CPrn(Prim(B),Ψ, id;A,B),

CPrn(Prim(A), id,Φ;A,B), CPrn(Prim(B), id, id;B,B), CPin(B,B) = C(idB),

CP(Prim(B); B,B).

Lemma 3.7.2. Let Ψ: I(B) → I(A) a lower s.c. action and Φ: I(A) → I(B)

its upper s.c. Galois adjoint. Then

CPrn(Prim(B),Ψ, id;A,B) = CPrn(Prim(A), id,Φ;A,B)

and

CP(Prim(B),Ψ, id;A,B) = CP(Prim(A), id,Φ;A,B) .

Proof. ?? �

Remark 3.7.3. Let CPrn(B) := CPrn(B,B) := CPrn(Prim(B), id, id;B,B).

Then

CPrn(B) ⊆ CPin(B,B) = C(idB) ⊆ CP(Prim(B); B,B) .

If B is separable and nuclear, then all this 3 m.o.c. cones are identical. (For

the proof one can use that then B⊗O2 contains a regular Abelian C *-subalgebra,

cf. [359], and – therefore – can apply Proposition ?? about non-commutative se-

lection.)

The content of ref. to missing Prop. should be:

If B is separable and nuclear, and B ⊗ O2 contains a “regular Abelian C *-

subalgebra” (here only cited) then this implies the existence of sufficient many

“n.c. selections” that generate CP(Prim(B); B,B) ???

If separable B 6= {0} is simple and is not nuclear, then CPrn(B), CPin(B,B)

and CP(B,B) are all different m.o.c. cones, but define the same lower s.c. action

of Prim(B) = {{0}} on B. This happens e.g. for the exact simple C *-algebra

B := C∗red(SL(2,Z)).

Proposition 3.7.4. If B is separable and B⊗O2 contains a regular abelian C*-

subalgebra (cf. Definition B.4.1) C ⊆ B⊗O2, then, for every lower semi-continuous

action Ψ: I(B) → I(A) of Prim(B) on a separable C*-algebra A is realizable by

CPrn(Ψ; A,B), i.e., Ψ = ΨC for C := CPrn(Prim(B),Ψ, id;A,B).

Proof. to be filled in ??

transfer proof from chp. 12 to here ! �

Proposition 3.7.4 implies immediately:

Corollary 3.7.5. If B is separable and B ⊗ O2 contains a regular abelian

C*-subalgebra (cf. Definition B.4.1) C ⊆ B ⊗ O2, then B has residual nuclear

separation (cf. Definition 1.2.3).

Proposition 3.7.6. Suppose that B has residually nuclear separation (cf. Def-

inition 1.2.3). Then B has the Weyl–von-Neumann property (cf. Definition 1.2.3),

if and only if, B is strongly purely infinite (cf. Definition 1.2.2).
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Proof. To be filled in ??

Proof was somewhere outlined, perhaps in Chp. 1 ? �

8. Separation of m.o.c. cones by actions

There are proofs of some of the following corollaries, that are more elementary

than given below. But we want to invite the reader to use (and think about) the

conceptional ideas presented here. For possible future classification of some classes

of stably finite algebras with non-trivial traces, one has to produce more refined

tools, that give a “applicable” answers e.g. to the following more difficult question:

When is a given completely positive map V in a given cone C ⊆ CP(A,B) of

completely positive maps compatible with a given map T (B)→ T (A)?

Here T (B) means the set of lower semi-continuous 2-quasi-traces τ : B+ →
[0,∞] – possibly with values only in {0,∞}. Our results together contain an an-

swer in the special case where τ(B+) ⊆ {0,∞} for all τ ∈ T (B), because then

the problem reduces to to the determination of CPnuc(Ψ; A,B) for a lower semi-

continuous action Ψ: I(B) ∼= O(Prim(B)) → I(A), if we identify a {0,∞}-valued

lower semi-continuous 2-quasi-trace τ : B+ → [0,∞] by its kernel J := span{a ∈
B+ ; τ(a) = 0}. Notice that we do not require operator convexity in the following

definition.

Compare for next Def. also Def. 3.12.1

Definition 3.8.1. Let S ⊆ CP(A,B) any subset and J ∈ I(B).

We define the ideal ΨS(J) ∈ I(A) by its positive part ΨS(J)+ as the set of all

a ∈ A+ with V (exp(−ih)a exp(ih)) ∈ J for all h∗ = h ∈ A with ‖h‖ < π and for all

V ∈ S. Then ΨS(J)+ is the positive part of a closed ideal ΨS(J) of A, and

ΨS : I(B) ∼= O(Prim(B)) ∼= O(prime(B))→ I(A)

is a lower semi-continuous action of Prim(B) on A, cf. Lemma 3.12.2(iv).

Let I any closed ideal of A. We denote by ΨS(I) ∈ I(B) the smallest closed

ideal of B that contains {V (a) ; a ∈ I, V ∈ S}. The map

ΨS : I(A) ∼= O(Prim(A)) ∼= O(prime(B))→ I(B)

is an upper semi-continuous action, cf. Lemma 3.12.2 (xii).

Let X a topological space, and let ΨA : O(X) → I(A) and ΨB : O(X) →
I(B) increasing maps, i.e., actions of X on A and B. We define the cone of Ψ-

equivariant c.p. maps as the set CΨ := CP(ΨA,ΨB ;A,B) ⊆ CP(A,B) of maps

V ∈ CP(A,B) with V (ΨA(U)) ⊆ ΨB(U) for all open subsets U ⊆ X. In the special

case, where X := Prim(B) and ΨB : O(Prim(B)) → I(B) is given by the natural

identification of the open subsets U of Prim(B) with the corresponding closed ideal

JU of B, where JU denotes the intersection of all primitive ideals I ∈ Prim(B) \U ,

we write Ψ := ΨA and drop ΨB , i.e., write CΨ := CP(Ψ; A,B) ⊆ CP(A,B) where

Ψ: O(Prim(B))→ I(A) is a lower semi-continuous action.
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The use of the notation CΨ, in place of CΨA,ΨB , becomes justified in a different

way in part (i) of Lemma 3.12.2.

Compare next with Lemma 3.12.2 in eksec3-Part2 .tex

Lemma 3.8.2. Let A and B C*-algebras, S ⊆ CP(A,B) a set of completely

positive maps, C ⊆ CP(A,B) a m.o.c. cone, X a topological space, ΨA : O(X) →
I(A) and ΨB : O(X)→ I(B) actions of X on A respectively B,

Suppose that ?????????????

List of necessary assumptions? ??

Look for minimal m.o.c. cone assumptions!!!

Part (i) is only lattice stuff?

(i) There exists a lower semi-continuous action Ψ′ : O(Prim(B)) ∼= I(B) →
I(A) with Ψ′(ΨB(U)) ⊇ ΨA(U)), which is minimal in the sense that

Φ(J) ⊃ Ψ′(J) for every J ∈ I(B) if Φ: I(B) → I(A) is lower semi-

continuous and Φ(ΨB(U)) ⊃ ΨA(U).

This (minimal) action satisfies CΨ′ = CΨ.

(ii) The point-norm closure of an m.o.c. cone (in the algebraic sense) is a

matrix operator-convex cone.

The intersection of a family of m.o.c. cones is am m.o.c. cone.

(iii) Let Calg(S) denote the smallest “algebraic” m.o.c. cone that contains a

subset S ⊆ CP(A,B).

Every contraction V in the point-norm closure C(S) of can be

approximated by maps W ∈ Calg(S) of the particular form W :=∑
k c
∗
k(Vk⊗ idn)(r∗k(·)rk)ck with Vk ∈ S, rk ∈M1,n(A), ck ∈Mn,1(B) and

‖
∑
k c
∗
kVk(r∗krk)ck‖ ≤ 1.

(iv) ΨS(J)+ is the positive part of the closed ideal ΨS(J) of A defined in

Definition 3.8.1, and

ΨS : O(Prim(B)) ∼= I(B) 3 J 7→ ΨS(J) ∈ I(A)

is a lower semi-continuous action of Prim(B) on A.

The action ΨS satisfies ΨS(B) = A and V (ΨS(J)) ⊆ J for all J ∈ I(B)

and V ∈ S.

(v) ΨS = ΨC for C := C(S).

(vi) If S1 ⊆ S then ΨS(J) ⊆ ΨS1
(J) for all J ∈ I(B).

(vii) The set CΨ is a point norm-closed m.o.c. cone of completely positive maps.

(viii) CΨ1 ⊆ CΨ if Ψ(J) ⊆ Ψ1(J) for all J ∈ I(B).

(ix) C ⊆ CΨC .

(x) ΨCΨ(J) ⊃ Ψ(J) for J ∈ I(B) ∼= O(Prim(B)).

(xi) If C′ ⊆ CP(A ⊗max D,B ⊗max D) is a point-norm closed m.o.c. cone,

then the set C ⊆ CP(A,B) of T ∈ CP(A,B) with T ⊗max idD ∈ C′ is a

point-norm closed m.o.c. cone.
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(xii) Let M a W*-algebra and B ⊆M a σ(M,M∗)-dense C*-subalgebra of M ,

and let C ⊆ CP(A,B) ⊆ CP(A,M) an m.o.c. cone. Then the point-*ultra-

strong closure C ⊆ CP(A,M) of C is an m.o.c. cone that is also closed in

the point-ultra-weak topology (σ(M,M∗)-topology on M).

(xiii) ΨS : I(A) → I(B) is an upper semi-continuous action of Prim(A) on

B. I ⊆ ΨS(ΨS(I)) for every closed ideal I of A and every subset S ⊆
CP(A,B). It says that ΨS is the Galois adjoint of ΨS and vice-versa

(ix) What about ΨS ◦ΨS ?

Proof. (iv): Let J a closed ideal of B and T : A → B a positive map. The

set of a ∈ A+ with (πJ ◦ T )(a) = 0 is a hereditary closed convex sub-cone CT,J of

A+. Thus, the set CS,J of a ∈ A+ with T (a) ∈ J for all T ∈ S is a hereditary

closed convex sub-cone of A+, and ΨS(J)+ ⊆ A+ of Definition 3.8.1 is the set of

a ∈ A+ with exp(ih)a exp(−ih) ∈ CS,J .

By Lemma A.25.1, ΨS(J)+ is the positive part of a closed ideal ΨS(J) of A.

Clearly, ΨS(B) = A, and V (ΨS(J)+) ⊆ J for J ∈ I(B) and V ∈ S, by definition

of ΨS .

If {Jσ}σ∈Σ is a family of closed ideals and a ∈ A+ and let J :=
⋂
σ Jσ. then

V (exp(ih)a exp(−ih)) ∈ J for all V ∈ S and h∗ = h ∈ A with ‖h‖ < π, if and only

if, V (exp(ih)a exp(−ih)) ∈ Jσ for all V ∈ S and h∗ = h ∈ A with ‖h‖ < π, i.e.,

a ∈ ΨS(J)+ if and only if a ∈
⋂
σ ΨS(Jσ)+ = (

⋂
σ ΨS(Jσ))+. Thus,

ΨS : O(Prim(B)) ∼= I(B) 3 J 7→ ΨS(J) ∈ I(A)

is a lower semi-continuous map. The lower semi-continuity of the map ΨS implies

that ΨS is monotone. Thus, ΨS is a lower s.c. action of Prim(B) on A.

(vii): Since ΨB(U) is a closed ideal, the set of maps V ∈ CP(A,B) with

V (a) ∈ ΨB(U) for all a ∈ ΨA(U) is point-norm closed. Thus, CΨ is point-norm

closed. Similar arguments show:

Let V1, V2 ∈ CP(A,B) with Vk(ΨA(U)) ⊆ ΨB(U) for all U ∈ O(X) (k = 1, 2),

t ∈ [0,∞), and r ∈ M1,n(A), c ∈ Mn,1(B). Then (V1 + tV2)(a) ∈ ΨB(U) and

c∗(V1 ⊗ idn)(r∗ar)c ∈ ΨB(U) for U ∈ O(X) and a ∈ ΨA(U) . Thus CΨ is a point-

norm closed m.o.c. cone of c.p. maps.

(i): If we use the natural isomorphisms I(A) ∼= O(Prim(A)) and I(B) ∼=
O(Prim(B)), and Lemma ??, then we get that there is a unique minimal lower semi-

continuous action Ψ′ : I(B) → I(A) of O(Prim(B)) on I(A) with Ψ′(ΨB(U)) ⊃
ΨA(U).

If V ∈ CΨ′ , then V (ΨA(U)) ⊆ V (Ψ′(ΨB(U))) ⊆ ΨB(U) for U ∈ O(X) , because

ΨA(U) ⊆ Ψ′(ΨB(U)) . Thus, CΨ′ ⊆ CΨ = CΨA,ΨB .

Let S := CΨ , then ΨS : I(B) ∼= O(Prim(B))→ I(A) is a lower semi-continuous

action by part (iv) with V (ΨS(J)) ⊆ J for all V ∈ S .

Since V (exp(ih)a exp(−ih)) ∈ ΨB(U) for all a ∈ ΨA(U)+ and h∗ = h ∈ A,

ΨS(ΨB(U))+ ⊃ ΨA(U)+ for U ∈ O(X). Thus ΨS(J) ⊃ Ψ′(J) for every J ∈ I(B)
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by minimality of Ψ′. It implies that V (Ψ′(J)) ⊆ V (ΨS(J)) ⊆ J , i.e., V ∈ CΨ′ , for

all V ∈ CΨ = CΨA,ΨB .

(ii): The point-norm closure C of an m.o.c. cone C0 is an m.o.c. cone, because

the topology of point-norm convergence on L(A,B) coincides with the strong oper-

ator topology, and because Vα ⊗ idn converges in point-norm to V ⊗ idn if Vα ∈ C0
converges to V .

(iii): Let n ∈ N and let C(n) denote the set of completely positive maps W :=∑
k c
∗
k(Vk ⊗ idn)(r∗k(·)rk)ck with Vk ∈ S, rk ∈ M1,n(A) and ck ∈ Mn,1(B), and

let C0 :=
⋃
n C(n). Clearly, C(n) ⊆ C for every matrix operator-convex cone C ⊆

CP(A,B) with S ⊆ C, and the set C(n) is closed under multiplication with positive

scalars and under addition.

Moreover, c∗(W ⊗ idm)(r∗(·)r)c ∈ C(mn) if W ∈ C(n), r ∈ M1,m(A) and c ∈
Mn,1(B), because

c∗(Wk ⊗ idm)(r∗(·)r)c = C∗Vk ⊗ idmn(R∗(·)R)C

for Wk := c∗k(Vk ⊗ idn)(r∗k(·)rk)ck, R = [R1, . . . , Rmn] ∈ M1,mn(A) and C =

[C1, . . . , Cmn]> ∈ Mmn,1(B), where Rjm+y := ryr
(k)
j and Cjm+y := c

(k)
j cy with

rk = [r
(k)
1 , . . . , r

(k)
n ] ∈M1,n(A), r = [r1, . . . , rm] ∈M1,m(A), ck = [c

(k)
1 , . . . , c

(k)
n ]> ∈

Mn,1(B), and c = [c1, . . . , cm]> ∈Mm,1(B).

If we fill the rows rk ∈ M1,n(A) and columns ck ∈ Mn,1(B) with zeros, then

we see that C(n) ⊆ C(n+k) for all n, k ∈ N. Thus C0 =
⋃
n C(n) is a (not necessarily

closed) m.o.c. cone that is contained in every matrix operator convex cone C with

S ⊆ C.

Since A has an approximate unit {eτ} of positive contractions, we get ‖W‖ =

‖
∑
k c
∗
kVk(r∗krk)ck‖ for W ∈ C0, and that every element V ∈ S is in the point-norm

closure of C(1) ⊆ C0.

By part (ii), the point-norm closure C1 of C0 is an m.o.c. cone that contains S.

Since C0 is contained in every point-norm closed m.o.c. cone C with S ⊆ C, we get

C(S) = C1. The contractions T in the point-norm closure of C0 can be approximated

by contractions W ∈ C0 with ‖W‖ ≤ 1 by Lemma 3.1.8.

(v): Since S ⊆ C(S) =: C, it holds ΨC(J) ⊆ ΨS(J) for all J ∈ I(B), cf. part

(vi).

If a ∈ ΨS(J)+ then V (exp(ih)a exp(−ih)) ∈ J for all h∗ = h ∈ A with ‖h‖ < π

and all V ∈ S .

By part (iv), this implies that c∗`V (r∗` exp(ih)a exp(−ih)rk)ck ∈ J for V ∈ S,

h∗ = h ∈ A, r1, . . . , rn ∈ A, c1, . . . , cn ∈ B. Thus, W (exp(ih)a exp(−ih)) ∈ J for

all W ∈ C := C(S) and h∗ = h by part (iii), i.e., a ∈ ΨC(J)+, and ΨS = ΨC for

C := C(S).

(vi): Straight from definition of ΨS .

(viii): If V ∈ CΨ1
and Ψ(J) ⊆ Ψ1(J), then V (Ψ(J)) ⊆ V (Ψ1(J)) ⊆ J . Thus,

V ∈ CΨ if Ψ(J) ⊆ Ψ1(J) for all J ∈ I(B).
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(ix): For J ∈ I(B) and a ∈ ΨC(J) holds V (a) ∈ J for all V ∈ C by definition

of ΨC .

(x): Let J ∈ I(B), and let a ∈ Ψ(J)+ ⊆ A+, V ∈ CΨ and h∗ = h ∈ A. Then

V (exp(ih)a exp(−ih)) ∈ J by definition of CΨ, i.e., a ∈ ΨCΨ(J)+ by definition of

ΨC . Thus, Ψ(J) ⊆ ΨCΨ(J).

(xi): If {Tγ}γ∈Γ ⊆ CP(A,B) is a (norm-)bounded net that converges in point-

norm to T ∈ L(A,B), then T ∈ CP(A,B) and the net

{Tγ ⊗max id}γ∈Γ ⊆ CP(A⊗max D,B ⊗max D)

converges point-wise to Tγ ⊗max id, because A�D is dense in A⊗max D. Thus, if

Tγ⊗max id ∈ C′ for all γ ∈ Γ, then T⊗max id ∈ C′. Clearly, the set C of T ∈ CP(A,B)

with T ⊗max id ∈ C′ is convex. If T ⊗max id ∈ C′, r ∈M1n(A), c ∈Mn1(B), e ∈ D+,

then R := r ⊗ e ∈M1n(A⊗D), C := c⊗ e ∈Mn1(B ⊗D), and

R∗((T ⊗max id)⊗ (idn))(C∗(·)C)R = T ′ ⊗max Se

for T ′ := r∗(T ⊗ idn)(c(·)c∗)r Se(d) := e2de2 (d ∈ D). Since C′ is matrix operator

convex and is point-norm closed,it follows that T ′ ⊗max id ∈ C′. Thus, the set

C ⊆ CP(A,B) of T ∈ CP(A,B) with T ⊗max idD ∈ C′ is a point-norm closed m.o.c.

cone.

(xii): The point-norm closure C0 := Cnorm
of C is a convex cone with c∗(V ⊗

idn)(r∗(·)r)c ∈ C0 for r ∈ Mn,1(A), c ∈ M1,n(B) and V ∈ C0. Since the point-

*strong closures of C and C0 in L(A,M) coincide, and since Vγ ⊗ idn → W ⊗
idn point-*strongly if Vγ → W point-*strongly , we obtain that the point-*strong

closure C ⊆ L(A,M) is a convex cone that satisfies c∗(W ⊗ idn)(r∗(·)r)c ∈ C0 for

r ∈ Mn,1(A), c ∈ M1,n(B) and W ∈ C. The unit-ball of Mn(B) is *-ultra-strongly

dense in the unit-ball of Mn(M) by Kaplansky density theorem ([616, Thm. 2.3.3]).

Thus, for c ∈ M1,n(M), there exists a net cγ ∈ M1,n(B) with ‖cγ‖ ≤ ‖c‖ that

*strongly converges to c. Hence, the point-*strong closure C satisfies (OC2).

If {Vγ} ⊆ C is a directed net that converges in point-σ(M,M∗) topology to

W ∈ Lin(A,M), then W (e2) ≥ 0 for every e ∈ A+. In particular, W is positive

and bounded, thus lim supγ ‖Vγ(e)‖ =: µ(e) < ∞ for every e ∈ A+, and µ :=

lim supγ ‖Vγ‖ < ∞ by two-fold application of the Banach-Steinhaus theorem. It

implies that W is also in the point-σ(M,M∗) closure of the convex set of V ∈ C
with ‖V ‖ ≤ 1 + ν. Now a Hahn-Banach separation argument shows that W ∈ C.

(xiii): ΨS(
∑
γ Iγ) =

∑
γ ΨS(Iγ) and a ∈ ΨS(ΨS(I)) for a ∈ I / A follow

straight from the definitions of ΨS and ΨS . �

Compare also Example 3.12.3!!!

Example 3.8.3. We consider the action Ψnuc : I(B) → I(A) defined by

CPnuc(A,B) and examine some possible generating subsets S0 ⊆ CP(A,B) for

CPnuc(A,B).

Let S ⊆ A∗+ denote an “almost separating” set of positive functionals on A

that is invariant under inner automorphisms of A, more precisely:
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for each a ∈ A+ there is ϕ ∈ S and h∗ = h ∈ A with ‖h‖ < π such that with

ϕ(exp(ih)a exp(−ih)) > 0.

For example we can take as S the set of pure states of A, or any set S of

pure-states ϕ of A such that the family {dϕ}ϕ∈S of irreducible representations of

A is separating for A.

Furthermore, let P ⊆ B+ a set of positive elements of B that generates B as a closed

ideal of B, i.e., for each c ∈ B+ and ε > 0, there is n ∈ N and are b1, . . . , bn ∈ P
and d1, . . . , dn ∈ B with ‖c−

∑
k d
∗
kbkdk‖ < ε.

We consider the set of S0 := SS,P ⊆ CP(A,B) of c.p. maps Vϕ,b(a) := ϕ(a)b,

where ϕ ∈ S and b ∈ P , and calculate the action Ψ0 : I(B)→ I(A) defined by S0:

Lemma 3.12.2(iv) shows that ΨS0(B) = A. Let J 6= B a closed ideal of B. Then

there is b ∈ P that is not in J . If 0 6= a ∈ A+ then there is h∗ = h ∈ A with ‖h‖ < π

and ϕ ∈ S with ϕ(exp(ih)a exp(−ih)) > 0. It follows that Vϕ,b(exp(ih)a exp(−ih))

is not contained in J .

Thus ΨS0
(J) = {0} for every closed ideal J 6= B and ΨS0

(B) = A.

Since S0 ⊆ CPf (A,B) ⊆ CPnuc(A,B) ⊆ CP(A,B) we get

ΨCP(A,B) = ΨCPnuc(A,B)(J) ⊆ ΨC0(J)

for all closed ideals J of B. It says that the possibly different m.o.c. cones induce

the same action

ΨCP(A,B) = ΨCPnuc(A,B) = ΨS0
.

The special case where A = B is not nuclear shows that,

in general, the lower semi-continuous action ΨC : I(B) ∼= O(Prim(B)) → I(A)

defined by an m.o.c. cone C ⊆ CP(A,B) does not identify C itself.

In particular, different non-degenerate m.o.c. cones can define the same corre-

sponding l.s.c. action.

It implies that there is not a unique way to define KK-theory corresponding to

a given lattice action, e.g. as defined for O(X) on C(X)-algebras.

The situation of example 3.8.3 changes considerably if we consider, instead of

ΨC , the action Ψ′ : I(B ⊗max C) → I(A ⊗max C) that is defined by the point-

norm closed m.o.c.c. C ⊗max CPin(C,C) ⊆ CP(A ⊗max C,B ⊗max C), where C :=

C∗(F∞) denotes the full group C *-algebra over the free group F∞ on countably

many generators and where C ⊗max CPin(C,C) is generated by the tensor products

V ⊗max idC with V ∈ C. Then the following separation theorem of “Hahn-Banach

type” holds for all point-norm closed m.o.c. cones.

Compare Thm. 3.8.4

Theorem 3.8.4 (Separation of m.o.c. cones). Let C := C∗(F∞) and S ⊆
CP(A,B) a set of c.p. maps, and denote by Ψ′ : I(B ⊗max C)→ I(A⊗max C) the

action on the ideal that is defined by the set S ′ of c.p. maps

{V ⊗max idC : A⊗max C → B ⊗max C ; V ∈ S } .
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Then a c.p. map T : A→ B is in the point-norm closed matrix operator-convex

cone C(S) generated by S, if and only if, T ⊗max idC is Ψ′-equivariant.

It implies that we can “essentially” define point-norm-closed m.o.c. cones C ⊆
CP(A,B) with help of suitable lower semi-continuous actions Ψ of prime(B ⊗max

C∗max(F2)) on A⊗maxC∗max(F2). But this does not say (and is wrong) that a point-

norm-closed m.o.c. cone C is defined by the action ΨC : I(B) → I(A) defined by

C. Only for the later considered “residual nuclear” case there is really some sort of

bijective duality.

Proof. Let Ψ′ := ΨS′ : I(B ⊗max C) → I(A ⊗max C) be the l.s.c. action of

Prim(B ⊗max C) on A⊗max C defined by the set S ′ of c.p. maps

V ⊗max idC : A⊗max C → B ⊗max C

with V ∈ S, cf. Lemma 3.12.2(iv). We denote by

C′ ⊆ CP(A⊗max C , B ⊗max C)

the m.o.c. cone

C′ := CΨ′ = CP(Ψ′;A⊗max C,B ⊗max C)

of Ψ′-equivariant maps.

Then C′ is a point-norm closed matrix operator convex cone by Lemma

3.12.2(vii).

The set C ⊆ CP(A,B) of all T ∈ CP(A,B) with T ⊗max idD ∈ C′ is a point-

norm closed matrix operator convex cone that contains S, cf. Lemma 3.12.2(xi),

i.e., C(S) ⊆ C and

(V ⊗max idC)(Ψ′(J)) ⊆ J

for all closed ideals J of B ⊗max C.

Let T ∈ C. We want to show that T ∈ C(S). Since C(S) ⊆ L(A,B) is

point-norm closed (by definition of C(S)), it suffices to show that for (contractions)

a′1, . . . , a
′
n ∈ A and ε > 0 there is V ∈ C(S) with maxk ‖V (a′k) − T (a′k)‖ < ε.

Since C(S) is convex, the Hahn-Banach separation applied to the convex cone K :=

{(V (a′1), . . . , V (a′n)) ; V ∈ C(S) } in B ⊗ `∞(1, . . . , n) says that (T (a′1), . . . , T (a′n))

is in the closure of K, if and only if,

<
∑
k

fk(T (a′k)) ≥ 0

for every linear functionals f1, . . . , fn ∈ B∗ on B with <
∑
k fk(V (a′k)) ≥ 0 for all

V ∈ C(S).

Now let f1, . . . , fn ∈ B∗ such that 0 ≤ <(
∑
k fk(V (a′k))) for all V ∈ C(S).

By Lemma 3.1.4 there is a cyclic representation d : B → L(H) with cyclic

vector ξ ∈ H (we can suppose that ‖ξ‖ = 1) and r1, . . . , rn ∈ d(B)′ with fk(b) =

〈d(b)ξ, r∗kξ〉 . We find unitary operators in v1, . . . , vm ∈ C∗(1, r1, . . . , rm) ⊆ d(B)′

such that {r1, . . . , rn} is contained in the linear span of {v1, . . . , vm}. Let G :=
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C∗(v1, . . . vm) = C∗(1, r1, . . . , rm) ⊆ d(B)′. It implies, that there are a1, . . . , am ∈
A such that

∑
k a
′
k ⊗ rk =

∑
j aj ⊗ vj in the algebraic tensor product A � G. In

particular, ∑
j

〈d(L(aj))ξ, v
∗
j ξ〉 =

∑
k

〈d(L(a′k))ξ, r∗kξ〉 =
∑
k

fk(L(a′k))

for every linear map L : A→ B.

Consider the unital *-epimorphism λ : C → G with λ(uj) = vj for j = 1, . . . ,m

and λ(uj) = 1 for j > m. (Here the unitaries u1, u2, . . . ∈ F∞ are canonical

generators of F∞.)

It defines a C *-morphism D : B ⊗max C → L(H) with D(b⊗ c) = d(b)λ(c) for

b ∈ B, c ∈ C. We let J ⊆ B ⊗max C denote the kernel of D. The cyclic vector

ξ ∈ H defines a positive state ρ(y) := 〈D(y)ξ, ξ〉 with ρ(J) = {0} and

ρ((W ⊗max id)(x)) =
∑
j

〈d(W (aj))ξ, v
∗
j ξ〉 =

∑
k

fk(W (a′k))

for x :=
∑
j aj ⊗ uj ∈ A ⊗ C and every completely positive map W : A → B. In

particular, we get for the real part < the inequalities

<(ρ((V ⊗max id)(x)) ≥ 0 for all V ∈ C(S) .

Next we show that the property <(ρ((V ⊗max id)(x)) ≥ 0 for all V ∈ C(S)

implies that (x∗+x)+Ψ′(J) is positive in (A⊗maxC)/Ψ′(J). It is the crucial point

of the proof.

Let P denote the set of positive functionals gV ∈ (A ⊗max C)∗ with gV :=

ρ((V ⊗max idC)(·)) (V ∈ C(S)). The set P of the positive linear functionals gV has

the following properties:

(α) gV (y) = 0 for all gV ∈ P (i.e., for V ∈ C(S)), if and only if, y ∈ Ψ′(J).

(β) gV (z∗(·)z) is in the point-σ(A∗, A) closure of P for every z ∈ A⊗max C

(γ) (y∗+y)+Ψ′(J) is positive in (A⊗maxC)/Ψ′(J), if and only if, <(gV (y)) ≥ 0

for all V ∈ C(S).

(α): If V ∈ C(S), y ∈ Ψ′(J) then V ⊗max id(y) ∈ J and gV (y) = ρ(V ⊗max

id(y)) = 0, i.e., gV (Ψ′(J)) = {0} for all gV ∈ P .

If y ∈ A⊗max C, V ∈ CP(A,B) and ρ
(
(b∗ ⊗ 1)(V ⊗max id)(y)(b⊗ 1)

)
= 0 for

all b ∈ B, then (V ⊗max id)(y) ∈ J . Indeed, ρ((b⊗ 1)∗z(b⊗ 1)) = 〈D(z)d(b)ξ, d(b)ξ〉
for z ∈ B⊗maxC, d(B)ξ is dense in H and J is the kernel of D : B⊗maxC → L(H).

We have that W := b∗V (·)b ∈ C(S) and gW (y) = ρ((b∗ ⊗ 1)(V ⊗max id)(y)(b⊗
1) for V ∈ C(S) and b ∈ B. Thus, gV (y) = 0 for all V ∈ C(S) implies that

(V ⊗max id)(y) ∈ J for all V ∈ C(S). Conversely, gV (y) = ρ((V ⊗max id)(y)) = 0 if

(V⊗maxid)(y) ∈ J . Thus, gV (y) = 0 for all gV ∈ P , if and only if, (V⊗maxid)(y) ∈ J
for all V ∈ C(S).

For y ∈ A ⊗max C, a ∈ A, c ∈ C and V ∈ CP(A,B) holds (V ⊗max id)((a ⊗
c)∗y(a⊗c)) = (1⊗c)∗W ⊗max id(y)(1⊗c) where W = V (a∗(·)a). Since V (a∗(·)a) ∈
C(S) for V ∈ C(S), it follows that the closed linear subspace K of y ∈ A ⊗max C
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with (V ⊗max id)(y) ∈ J for all V ∈ C(S) (i.e., with gV (y) = 0 for all gV ∈ P )

satisfies (a⊗c)∗K(a⊗c) ⊆ K. If we use the polar formula for bilinear maps (several

times) and the linearity of K, we get that that the closed subspace K is a two-sided

ideal of A ⊗max C. Since (V ⊗max id)(K) ⊆ J for all V ∈ S ⊆ C(S) and since

Ψ′(J) ⊆ K, we get K = Ψ′(J) (cf. definition of Ψ′(J)).

(β): Since the algebraic tensor product A�C is dense in A⊗max C, it suffices

to consider z =
∑m
k=1 ak ⊗ ck ∈ A� C ( 19 ). Then

gV (z∗yz) =

m∑
k,j=1

〈D(V ⊗max id((a∗j ⊗ 1)y(ak ⊗ 1)))λ(ck)ξ, λ(cj)ξ〉 .

Let Fn := [b
(n)
1 , . . . , b

(n)
m ]> ∈ Mm1(B) such that limn d(b

(n)
k )ξ = λ(ck)ξ in H for

every k = 1, . . . ,m. If we let E := [a1, . . . , am] ∈M1m(A) and take Vn := F ∗n
(
V ⊗

id`)(E
∗(·)E

)
Fn ∈ C(S) , then gV (z∗yz) = limn gVn(y) for every y ∈ A⊗max C.

(γ): Let y = (` − k) + ih with h∗ = h, k ≥ 0, ` ≥ 0, and k` = 0, W ∈ C(S) .

Then <gW (kyk) = −gV (k3) and y∗ + y = `− k.

By (β), we get that gW (k(·)k) is a point-wise limit of gV (V ∈ C(S)). Thus,

<gV (y) ≥ 0 for all V ∈ C(S) implies gW (k3) = 0 for all W ∈ C(S), which means

k3 ∈ Ψ′(J) by (α). It follows that (y∗ + y) + Ψ′(J) = ` + Ψ′(J) is positive in

(A⊗max C)/Ψ′(J).

Conversely, we have <(gV (y)) = gV (y∗ + y) ≥ 0 if (y∗ + y) + Ψ′(J) is positive

in (A⊗max C)/Ψ′(J), because gV (Ψ′(J)) = {0} by (α).

Above we have shown that there exist a1, . . . , am ∈ A, a closed ideal J of

B⊗maxC, and a state ρ on B⊗maxC, such that ρ and the element x :=
∑
k ak⊗uk ∈

A⊗max C satisfy the following conditions (i)–(iii):

(i) ρ((W ⊗max idC)(x)) =
∑
k fk(W (ak)) for all W ∈ CP(A,B),

(ii) ρ(J) = {0}, and

(iii) (x∗ + x) + Ψ′(J) is positive in (A⊗max C)/Ψ′(J).

Notice that the property in (iii) follows from property (γ), because

<(gV (x)) = <(ρ((V ⊗max id)(x))) ≥ 0 for all V ∈ C(S) .

The properties (i)–(iii) imply, that T ∈ CP(A,B) with T ⊗max id(Ψ′(J)) ⊆ J

satisfies

2<
∑
k

fk(T (a′k)) = ρ((T ⊗max idC)(x∗ + x)) ≥ 0 ,

because then (T ⊗max id)(x∗ + x) + J is positive in (B ⊗max C)/J . (Notice here,

that if E and F are C *-algebras, I /E and J /F are closed ideals, and if L : E → F

a is positive map with L(I) ⊆ J , then L(y)+J is positive in F/J if y+I is positive

in E/I.) �

19 Here m ∈ N and ak ∈ A, ck ∈ C are arbitrary, i.e., are not the specific ones for the

definition of the element x above.
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Example 3.8.5. Let A, B and C denote C *-algebras. We describe the action

Ψ′ := ΨC′ : I(B ⊗max C)→ I(A⊗max C)

that is induced from C′ := CPnuc(A,B)⊗max CPin(C,C) :

More generally, we consider Ψ′ := ΨC′ induced from C′ = C(S ′), where S ′ :=

{V ⊗max idC ; V ∈ S0} with S0 := SS,P ⊆ CP(A,B) the set SS,P of c.p. maps

Vϕ,b(a) := ϕ(a)b, where ϕ ∈ S and b ∈ P , S ⊆ A∗+ and P ⊆ B+ as in Example

3.8.3.

Let πA,C : A⊗max C → A⊗C := A⊗min C the natural epimorphism from the

maximal C *-tensor product to the minimal C *-tensor product of A with C, let IA,C

denote its kernel, and let Sϕ : A⊗max C → C = C⊗ C the map Sϕ := (ϕ⊗ idC) ◦
πA,C . We denote by K(J) the biggest closed ideal of C with B ⊗max K(J) ⊆ J .

(It can happen that K(J) = {0}.)

Let Y ⊆ C a closed linear subspace. The space F (A, Y ;A ⊗ C) ⊆ A ⊗ C

is defined as the set of z ∈ A ⊗ C such that ϕ ⊗ id(z) ∈ Y for all ϕ ∈ A∗.

Since M⊗N1 = Fσ(M,N1;M⊗N) (by the tensorial bi-commutation theorem for

vN-algebras) for the weakly continuous W*-algebra analog and all W*-subalgebras

N1 ⊆ N , one has F (A, Y ; A ⊗ C) = (A ⊗ C) ∩ (A∗∗⊗Y ∗∗) in A∗∗⊗C∗∗ if Y is a

C *-subalgebra of C. Thus F (A, Y ; A ⊗ C) is a C *-subalgebra (respectively is a

closed ideal) of A⊗C if Y is a C *-subalgebra (respectively a closed ideal) of C. It

is not difficult to see that z ∈ F (A, Y ;A⊗C) if ϕ⊗ id((a∗⊗ 1)z(a⊗ 1)) ∈ Y for all

a ∈ A and ϕ ∈ S ⊆ A∗+, where span(a∗Sa) is σ(A∗, A) dense in A∗ (which is the

case if S is separates all non-zero positive elements of A from zero).

An element x ∈ (A ⊗max C)+ is in Ψ′(J)+ , if and only if, (Vϕ,b ⊗ id)(y) =

b⊗ Sϕ(y) ∈ J for all y := exp(ih)x exp(−ih) (h∗ = h ∈ A� C), ϕ ∈ S and b ∈ P .

Since Ψ′(J)+ is the positive part of a closed ideal of A ⊗max C, this happens also

for (a ⊗ c)∗x(a ⊗ c) (in place of x, and for all a ∈ A and c ∈ C). If we apply

the property that P ⊆ B+ generates B as a two-sided ideal, then we obtain – for

x ∈ (A⊗max C)+ – that x ∈ Ψ′(J)+ if and only if Sϕ((a⊗ 1)∗x(a⊗ 1)) ∈ K(J) for

all ϕ ∈ S, a ∈ A and , i.e., πA,C(x) ∈ F (A,K(J);A⊗ C).

We get Ψ′(J) = π−1
A,B(F (A,K(J);A⊗C)) for every closed ideal J of B⊗maxC.

We see that Ψ′(J) does not depend from from the special choice of P ⊆ B+ and

S ⊆ A∗+.

If I is a closed ideal of C, then K(B ⊗max I) = I, in particular, Ψ′(J) =

Ψ′(B ⊗max K(J)) for all closed ideals J of B ⊗max C.

It follows that T ⊗max idC is Ψ′-residually equivariant, i.e., T ⊗max id ∈ CΨ′ =

CP(Ψ′, A⊗max C,B ⊗max C), if and only if, for every closed ideal I of C,

T ⊗max id(π−1
A,B(F (A, I;A⊗ C))) ⊆ B ⊗max I .

Every linear map T : A → B of finite rank has this property, because T =∑
k αkϕk(·)bk with ϕk ∈ A∗+, bk ∈ B+, αk ∈ C. If we let C = C∗(F∞), then
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Theorem 3.8.4 implies

C(SS,P ) = CPf (A,B) =: CPnuc(A,B) ,

for all S ⊆ A∗+ and P ⊆ B+ as in Example 3.8.3.

One can also say something in the case of C := CP(A,B)⊗max CPin(C,C):

We obtain from the above considered nuclear case, and from the trivial inclusions

V · id(A ·K(J)) ⊆ B ·K(J) ⊆ J that – for all closed ideals J of B ⊗max C –,

A⊗max K(J) ⊆ ΨC(J) ⊆ π−1
A,B(F (A,K(J);A⊗ C)) .

The general study of actions J ∈ I(B) 7→ ΨC(J) ∈ I(A) defined by C ⊆
CP(A,B) seems to be difficult, because related slice map problems for non-exact

C *-algebras have no suitable answer.

Corollary 3.8.6. Each point-norm closed m.o.c. cone C ⊆ CP(A,B) is here-

ditary inside CP(A,B), i.e., if V,W ∈ CP(A,B) and V +W ∈ C then V,W ∈ C.

Proof. By Theorem 3.8.4 the action

Ψ′ : I(B ⊗max C∗(F2))→ I(A⊗max C∗(F2))

determines the elements of C by being Ψ′-equivariant in the sense that T ∈ C if

and only if (T ⊗ id)(Ψ′(J)) ⊆ J for all J ∈ I(B ⊗max C∗(F2)). If we let here

T := V +W then this implies that the c.p. maps V and W satisfy this condition,

because ((V +W )⊗ id) = (V ⊗ id) + (W ⊗ id) and all are completely positive maps

on A ⊗max C∗(F2). Use here that x + y ∈ J+ for x ≥ 0 and y ≥ 0 implies that

x, y ∈ J+. �

9. Temporary demands from other places

Prove and Move next blue to reasonable place !!!

Corollary 3.9.1. Let A and B stable and separable C*-algebras and let

Ψ: I(B) → I(A) a lower semi-continuous action of Prim(B) on A, such that

Ψ(0) = 0 and Ψ−1(A) = {B} .

And let C(Ψ) ⊆ CP(A,B) the point-norm closed m.o.c. cone of “all Ψ-

equivariant c.p. maps V ∈ CP(A,B)”, i.e., of all that satisfy V (Ψ(J)) ⊆ J for

all J ∈ I(B) and V ∈ C, and suppose that C(Ψ) is separating for the action

Ψ: I(B)→ I(A), – i.e., that for each J ∈ I(B),

Ψ(J) = { a ∈ A ; V (a) ∈ J, for all V ∈ C } .

If C ⊆ C(Ψ) is a point-norm closed m.o.c. cone that defines Ψ.

Then C contains all Ψ-residually nuclear c.p. maps V : A → B, i.e., all V ∈
Cb(A,B) with the property that V (Ψ(J)) ⊆ J for all J ∈ I(B), and that all the

quotient maps [V ] : A/Ψ(J)→ B/J are again nuclear.

I.e., C contains the m.o.c. cone Cnuc(Ψ) of all Ψ-residually nuclear c.p. maps

V : A→ B with V (Ψ(J)) ⊆ J for all J ∈ I(B) and [V ] : A/Ψ(J)→ B/J is nuclear.
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Proof. ??

Idea of proof:

Consider the closed ideal J of A⊗maxC∗(F∞) that is defined by the intersection

of the kernels of the c.p. maps V ⊗max idC∗(F∞) into B ⊗max C∗(F∞).

?????????? �

Citation: Corollary 3.9.2

For the following Corollary 3.9.2 we refere to Remark 5.1.1(8) for the existence

– and uniqueness up to unitary equivalence – of the “infinite repeat” endomorphism

δ∞ : M(B)→M(B) for stable C *-algebras B.

Corollary 3.9.2. Let A and B stable σ-unital C*-algebras and let Hk : A→
M(B), k ∈ {1, 2}, two non-degenerate C*-morphisms, i.e., Hk(A)B is dense in B.

If A is separable and if C(H1) = C(H2) for the point-norm closed m.o.c. cones

C(Hk) ⊆ CP(A,B), generated by the coefficient maps A 3 a 7→ b∗Hk(a)b ∈ B, then

there exists a norm-continuous path t ∈ [0,∞) → U(t) of unitaries in M(B) such

that, for all a ∈ A, δ∞ ◦ H1(a)U(t) − U(t)δ∞ ◦ H2(a) ∈ B for all t ∈ [0,∞) and

limt→∞ ‖δ∞ ◦H1(a)U(t) − U(t)δ∞ ◦H2(a)‖ = 0 , i.e., δ∞ ◦H1 and δ∞ ◦H2 are

unitary homotopic in the sense of Definition 5.0.1.

Proof. ?? �

HERE ENDS eksec3-Part.1.tex

10. Non-simple algebras and the WvN-property

HERE STARTS eksec3-Part2.tex !!

We generalize some parts of the above results on simple C *-algebras to non-

simple C *-algebras. In fact, we replace some of the above considered general prop-

erties of simple p.i. algebras by more useful suitable definitions in the non-simple

situation. See, for example, the WvN-property in Definition 1.2.3.

Definition 3.10.1. Let C be a C *-subalgebra of the multiplier algebraM(B)

of a C *-algebra B and V : C → B a completely positive map. We call the map V

inner if there are m ∈ N and di ∈ B, i = 1, . . . ,m, such that

V (a) =

m∑
i=1

d∗i adi .

The c.p. map V is 1-step inner if we can take here m = 1, i.e., V := d∗(·)d.

A completely positive map V : C ⊆M(B)→ B is approximately inner if V

is the point-norm limit of inner completely positive maps. The map V is 1-step

approximately inner if V can be approximated by 1-step inner c.p. maps.

Let J denote a closed ideal of a C *-algebra B, then define

M(B, J) := {T ∈M(B) : TB +BT ⊆ J} .
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Let C ⊆ M(B) a C *-subalgebra of the multiplier algebra of a C *-algebra B.

We call a completely positive map V : C → B residually nuclear if

V (C ∩M(B, J)) ⊆ J and [V ] : C/(C ∩M(B, J))→ B/J is nuclear for every closed

ideal J of B.

Let h : C → M a C *-morphism into a von-Neumann algebra. The morphism

h weak-approximately majorizes a c.p. contraction W : C → M if there is a

net (Tγ) of inner completely positive maps from M into M such that W is the

point-weak limit of the net (Tγ ◦ h).

A C *-morphism h : D →M(B) approximately majorizes a completely pos-

itive map V : D → B if there exists a net (dγ) of elements dγ ∈ B, such that V is

the point-norm limit of the net of maps d∗γh(·)dγ .

The morphism h majorizes a completely positive contraction V : D → B if

there is a contraction d ∈ B with V = d∗h(·)d.

The homomorphism h : D →M(B) approximately-inner majorizes a com-

pletely positive contraction V : D → B if h weak-approximately majorizes V in the

von-Neumann algebra M := B∗∗ ⊃M(B).

If one uses an approximate unit of C, then one can see that one can choose the

dj and Tγ in Definition 3.10.1 such that ‖
∑
d∗jdj‖ ≤ ‖V ‖ respectively ‖Tγ‖ ≤ ‖W‖,

cf. Lemma 3.1.8. Recall Definition 3.1.1

Lemma 3.10.2. Suppose that A ⊆M a C*-subalgebra of a von-Neumann factor

M , and that W : A → M a weakly nuclear contraction, i.e., ‖W‖ ≤ 1 and W can

be approximated in the point-σ(M,M∗) topology by a net of maps

(Wγ : A→M)γ∈Γ ,

that are factorable maps in the sense of Definition 3.1.1. Then there is a net

(Vλ : M → M)λ∈L of inner completely positive contractions on M , such that W is

the point-σ(M,M∗)-limit of the net (Vλ|A : A→M).

Proof. There is even a net (Wγ : A→ M) of factorable maps that converges

in point-strong topology to W , because the set of factorable maps from A into M

is convex by Remark 3.1.2(o). The Lemma 3.1.8 shows that we can suppose that

the net (Wγ : A → M) consists of contractions. Therefore, again by Lemma 3.1.8,

it suffices to show that every factorable contraction W = T ◦ S : A → M can be

approximated in point-σ(M,M∗) topology by inner c.p. maps on M .

If M is of type In, II1 or if M is countably decomposable and of type III,

then M is simple, and Corollary 3.2.20 gives that W can be approximated by inner

completely positive contractions (even in point norm topology).

If M is a semi-finite II∞-factor, then the Breuer ideal D of M is simple. (Recall

that the Breuer ideal of M is generated as C *-algebra by the finite projections in

M .) If M is of type III, then the ideal D generated by the countably decomposable

projections is simple.
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In both cases M is the multiplier algebra M(D) of a simple C *-algebra D

which contains an approximating unit consisting of projections.

For every projection q ∈ D, the factorable c.p. contraction Wq : a ∈ A ⊆
M(D) 7→ qW (a)q ∈ D is the point-norm limit of a net of inner completely positive

contractions by Corollary 3.2.20, i.e., Wq is approximately inner on D in the sense

of Definition 3.10.1.

Since Wq converges point-strongly to W for q ↗ 1 strongly, also W is the

point-strong limit of a net of inner completely positive contractions. �

The following Lemma 3.10.3 shows that we can replace in the above definition

of the residually nuclear completely positive maps the set I(B) of all closed ideals

J of B by the factorial ideals I of B.

Recall that I /B is factorial if it is the kernel of a factorial representation of B.

All primitive ideals are factorial ideals, and factorial ideals are prime (with respect

to intersection in the lattice of closed ideals), as one can easily see, cf. e.g. proof of

[616, prop. 3.13.10]. Since Prim(B) has the Baire property for C *-algebras B, all

prime ideals of separable C *-algebras B are primitive if B is separable, cf. [616,

prop. 4.3.6]. (This does not hold for non-separable C *-algebras B, cf. [815].)

Lemma 3.10.3. Let C a C*-subalgebra of M(B).

(i) For every family {Jγ} of closed ideals of B holds

M(B,
⋂
Jγ) =

⋂
M(B, Jγ) and

(ii) dist(a,M(B,
⋂
Jγ)) = supγ dist(a,M(B, Jγ)) for a ∈M(B).

(iii) If B is σ-unital then M(B, J1) +M(B, J2) = M(B, J1 + J2) for every

pair of closed ideals J1 and J2 of B.

(iv) Suppose that J0 ⊆ B is a closed ideal and that V : C → B is a completely

positive map, such that V (C ∩M(B, J)) ⊆ J and

[V ]J := [πJ ◦ V ] : C/(C ∩M(B, J)) → B/J

is nuclear for every factorial ideal J of B with J0 ⊆ J , then

[V ]J0
: C/(C ∩M(B, J0))→ B/J0

is nuclear.

(v) If V : C → B is residually nuclear, then for every non-degenerate factorial

*-representation ρ : B → N of B holds:

M(B, ker(ρ)) = kerM(ρ), V (C ∩ kerM(ρ)) ⊆ ker(ρ) and the restricted

map M(ρ)|C : C → N majorizes ρ ◦ V approximately with respect to the

weak topology.

Proof. The easy proofs of (i)-(iii) are left to the reader: Use an approximate

unit of B for the straight calculations.

(iv): We have V (C ∩M(B, J0)) ⊆ V (C ∩M(B, J)) ⊆ J for all primitive ideals

J of B with J ⊇ J0. The closed ideal J0 is the intersection of the primitive ideals

J that contain J0 (cf. [616, cor. 3.13.8]). Hence V (C ∩M(B, J0)) ⊆ J0.
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By Remark 3.1.2(i), a map T : D → E is nuclear, if and only if,

T ⊗max id : D ⊗max C∗(F )→ E ⊗max C∗(F )

annihilates the kernel I of the natural epimorphism D⊗max C∗(F )→ D⊗C∗(F ) .

It is easy to see that an irreducible representations ρ of E⊗maxC∗(F ) factorizes

over (E/K)⊗max C∗(F ) for some factorial ideal K of E.

In particular, the family of quotient maps πK ⊗maxC∗(F ) from E⊗maxC∗(F )

to (E/K) ⊗max C∗(F ) is separating for E ⊗max C∗(F ) ( 20 ). Hence, T is nuclear,

if and only if, (πKT ) ⊗max id(I) = 0 for all factorial ideals K of E, if and only if,

πK ◦ T : D → E/K is nuclear for all factorial ideals J of E.

Now apply this to D := C/(C ∩M(B, J0)), E := B/J0, T := [V ]J0
, and use

that πJ/J0
◦ [V ]J0 = [V ]J ◦ηJ for ηJ : D → C/(C ∩M(B, J0)), and that K := J/J0

runs through all factorial ideals of E if J runs through all factorial ideals J ⊃ J0

of B.

(v): Let E := ρ(B) ⊆ N ⊆ L(H). Since ρ : B → L(H) is non-degenerate, the

normalizer algebra N (E) := {t ∈ L(H) ; tE +Et ⊆ E} of E in L(H) is unital and

can be identified with the multiplier algebra M(E) of E in a natural way. It is

easy to see that N (E) ⊆ E′′ ⊆ N . The representation ρ defines a *-epimorphism

from B onto E. Thus, ρ uniquely extends to a unital strictly continuous map

M(ρ) : M(B)→M(E) = N (E) ⊆ N such thatM(ρ)(c)ρ(b) = ρ(cb) for c ∈M(B)

and b ∈ B. It follows that the kernel ker(M(ρ)) of M(ρ) is M(B, J) := {c ∈
M(B) ; cB+Bc ⊆ J} for J := ker(ρ). Let Ψ(J) := C∩M(B, J) = C∩ker(M(ρ)).

If we let A := M(ρ)(C) ⊆ N , thenM(ρ) defines a natural isomorphism γ from

C/Ψ(J) onto A with h := M(ρ)|C = γ ◦ πΨ(J), i.e., γ(c + Ψ(J)) = M(ρ)(c) for

c ∈ C .

We define W : A → N by W := [ρ]J ◦ [V ]J ◦ γ−1 : A → E ⊆ N . Here [ρ]J

denotes the natural isomorphism from B/ ker(ρ) = B/J onto E = ρ(B) ⊆ N with

[ρ]J(b+J) = ρ(b) for b ∈ B, i.e., [ρ]J ◦πJ = ρ. The map [V ]J : C/Ψ(J)→ B/J with

[V ]J ◦πΨ(J) = πJ ◦V is nuclear, because V is residually nuclear. Therefore W : A→
N is nuclear. By Lemma 3.10.2, there is a net of inner c.p. maps (Vλ : N → N)

with ‖Vλ‖ ≤ 1 such that (Vλ|A) converges in point-σ(N,N∗) topology to W .

Thus the net Vλ ◦ h tends in point-σ(N,N∗) topology to W ◦ h = [ρ]J ◦ [V ]J ◦
πΨ(J) = ρ ◦ V . It means that h weak-approximately majorizes ρ ◦ V (in the sense

of Definition 3.10.1). �

Proposition 3.10.4. Suppose that C is a C*-subalgebra of M(B) and that

V : C → B is a completely positive contraction. Then the following are equivalent:

(i) V is approximately inner (in the sense of Def. 3.10.1).

20 Moreover, by an reduction to certain separable C *-subalgebras of E with an argument in

Chapter 12, one can show that the family of maps πK ⊗max id is separating for E ⊗max C∗(F ) if

K runs through all primitive ideals of E. Therefore one can replace the factorial or prime ideals

by primitive ideals in Lemma 3.10.3(iv) and in Proposition 3.10.4(ii).
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(ii) For every prime ideal J of B, V (Ψ(J)) ⊆ J and [V ] : C/Ψ(J) → B/J is

approximately inner (cf. Def. 3.10.1), where Ψ(J) := C ∩M(B, J) and

C/Ψ(J) ⊆M(B)/M(B, J) ⊆M(B/J) . ( 21 )

(iii) For every non-degenerate factorial representation ρ : B → N , the natural

extension h := M(ρ)|C : C → N of ρ to C weak-approximately majorizes

W := ρ ◦ V , where N := ρ(B)′′ in the sense of Definition 3.10.1.

Proof. From Definition 3.10.1 we can see that (i) implies (ii) and that (ii)

implies (iii). The latter, because the kernel of each factorial representation of B is

a prime ideal J of B.

(iii)⇒(i): Suppose that (iii) holds, but that V is not approximately inner.

Let η : C ↪→ M(B) denote the inclusion map. The Hahn-Banach separation

argument in the proofs of [426, lem.2,lem.3] shows that there exist c1, . . . , cn ∈ C
and a cyclic representation d : B → L(H) with cyclic vector x ∈ H and f1, . . . , fn ∈
d(B)′, such that:

(*) The positive linear functional ψ◦d1◦(V ⊗max idF ) is not weakly contained

in the representation k := d1 ◦ (η ⊗max idF ) of C ⊗max F on H.

Here F := C∗(1, f1, . . . , fn) ⊆ L(H), d1 denotes the natural extension of d to a

unital *-representation ofM(B)⊗maxF into L(H) such that d1(c⊗f)d(b) = d(cb)f

for c ∈M(B), b ∈ B, f ∈ F , and where ψ is the vector state on L(H) given by x.

Since there is p ∈ (C ⊗max F )+ with 0 = k(p) = d1((η ⊗max idF )(p)) and

0 6= d((V ⊗max idF )(p)) ∈ d(B ⊗max F ) , there is a pure state ϕ on d(B ⊗max F )

with ϕ(d((V ⊗max idF )(p))) > 0, and we obtain:

(**) There is a pure state ϕ on d(B ⊗max F ) which is weakly contained in

d : B ⊗max F → H such that the positive functional ϕ ◦ d ◦ (V ⊗max idF )

on C ⊗max F is not weakly contained in k.

There is a unique extension λ of the pure state ϕ to a pure state of d1(M(B)⊗maxF ),

because d(B⊗maxF ) is an ideal of d1(M(B)⊗maxF ). Thus, λ◦k is weakly contained

in k.

But, ϕ is the cyclic vector of an irreducible representation d2 of B⊗max F over

a Hilbert space H1 with corresponding cyclic vector y such that ϕd1 = 〈d2(.)y, y〉.

The irreducible representation d2 decomposes into a commuting pair of factorial

representations ρ and d3 of B and F respectively.

If d4 denotes the natural extension of d2 toM(B)⊗maxF then λ(.) = 〈d4(.)y, y〉,
and c 7→ d4(c⊗ 1) is the natural extension M(ρ) of ρ to M(B).

The representation d4 is weakly contained in d1, because d2 is weakly contained

in d and is non-degenerate. Thus d4(η ⊗max idF ) is weakly contained in k.

21 The inclusions are defined by the natural monomorphisms.
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By the assumptions of (iii), h := M(ρ)|C weak-approximately majorizes ρV

in N := ρ(B)′′. Thus, ϕ ◦ d ◦ V ⊗max idF ) is weakly contained in d4(η ⊗max idF ),

and, therefore, it is weakly contained in k.

We have derived a contradiction to (**), which was implied from the assumption

that V is not approximately inner. �

Suppose that h1, h2 : A → B are C *-morphisms and that s, t ∈ M(B) are

two isometries with orthogonal ranges. Then we define for this chapter the Cuntz

addition by

(h1 ⊕ h2)(a) := (h1 ⊕s,t h2)(a) := sh1(a)s∗ + th2(a)t∗ , for a ∈ A

defines a C *-morphism from A into B ( 22 ). The C *-algebra generated by s and t

contains a unital copy of O∞. Therefore one can define in a similar way the k-fold

sum h ⊕ h ⊕ · · · ⊕ h of k copies of h, k = 2, 3, . . .. (Compare Chapter 4 for more

details in the particular situation where B contains a copy of O2 unitally.)

Lemma 3.10.5. Suppose that A is a separable C*-algebra, E is a C*-algebra such

that M(E) contains isometries s, t with ortogonal ranges (i.e., s∗t = 0), h : A→ E

is a C*-morphism, and that (Vk : E → E)k is a sequence of approximately inner

c.p. contraction.

(i) If h majorizes (respectively approximately majorizes) the C*-morphism

h⊕ h := sh(·)s∗ + th(·)t∗ ,

then there exists a C*-morphism g from A ⊗ O∞ into E, – respectively

into E∞ := `∞(E)/c0(E) –, with g(a⊗ 1) = h(a) for a ∈ A.

(ii) If there is a C*-morphism g from A ⊗ O∞ into E (respectively into

E∞) with g(a ⊗ 1) = h(a) for a ∈ A, then there exists a sequence

dn of contractions in E such with the properties d∗nbdn+m = 0 (re-

spectively limn→∞ d∗nbdn+m = 0) for b ∈ h(A) + C1, m > 0, and

limn→∞ ‖d∗nh(a)dn − Vn(h(a))‖ = 0 for a ∈ A.

Note that in general (i) does not imply the existence of isometries s1, s2, . . . ∈
h(A)′ ∩ E with orthogonal ranges. But this could happen modulo the two-sided

annihilator of h(A) in E.

Proof. (i): If there is a contraction d ∈ E with d∗h(·)d = h⊕h, then the proof

of Proposition 4.3.5(v) works and gives that there is a C *-morphism g : A⊗O∞ → E

with g(a⊗ 1) = h(a) for a ∈ A.

Suppose that h approximately majorizes h ⊕ h. The C *-morphism h ⊕ h is a

contraction. By Lemma 3.1.8 h⊕ h is in the point-norm closure of the set of maps

d∗h(·)d with contractions d ∈ E. Since A is separable, we can select a sequence

(d1, d2, . . .) of contractions in E such that h(a)⊕ h(a) = limn d
∗
nh(a)dn for a ∈ A .

Thus h⊕h = d∗∞h(·)d∞ in E∞ for the contraction d∞ := (d1, d2, . . .)+c0(E) ∈ E∞.

22 The here given definition of h1 ⊕ h2 is a bit more general than the definition of the Cuntz

Addition in Chapters 1 and 4, where we require that moreover ss∗ + tt∗ = 1.



448 3. NUCLEAR C.P. MAPS AND OPERATOR-CONVEX CONES

(ii): We fix a strictly positive contraction c ∈ A+ . Let X1 ⊆ X2 ⊆ · · · ⊆ A

an approximate filtration of A by finite-dimensional linear subspaces Xn, and let

s1, s2, . . . the canonical generators of O∞. By Lemma 3.1.8, for each n ∈ N we find

k(n) ∈ N and f
(n)
1 , . . . , f

(n)
k(n) ∈ E with

‖
k(n)∑
j=1

(f
(n)
j )∗f

(n)
j ‖ ≤ 1

and ‖Vn(h(a))−Wn(h(a))‖ ≤ 2−n‖a‖ for a ∈ Xn, where Wn is the inner c.p. con-

traction on E given by

Wn(b) :=
∑
j

(f
(n)
j )∗b(f

(n)
j ) for b ∈ E .

We find p(n) ∈ N such that ‖c1/p(n)ac1/p(n) − a‖ ≤ 2−n‖a‖ for a ∈ Xn. Now let

cn := c1/p(n), r(n) := k(1) + k(2) + · · · + k(n − 1) for n > 1 and r(1) := 0. We

define en :=
∑
j g(cn⊗ sr(n)+j)f

(n)
j for n = 1, 2, . . .. Then en ∈ E∞ , e∗nbem = 0 for

m 6= n and e∗nben = Wn(cnbcn) for b ∈ h(A) + C · 1. In particular, ‖en‖ ≤ 1 and,

for a ∈ Xn,

‖e∗nh(a)en − Vn(h(a))‖ ≤ 3 · 2−n‖a‖ .

If g(A⊗O∞) ⊆ E, then the elements dn := en are contractions in E and have the

desired properties.

In the case where g(A ⊗ O∞) ⊆ E∞, we can select from the representing

sequences of contractions for en suitable elements dn that have the in part (ii)

desired properties. �

Corollary 3.10.6.

(I) If C ⊆ M(B) and T : C → B is residually nuclear, then T is approxi-

mately inner in the sense of Definition 3.10.1.

(II) Suppose h : A→M(B) is a C*-morphism and V : A→ B is a completely

positive contraction that satisfy the following conditions:

(α) h(A) commutes elementwise with a unital copy of O∞ in M(B),

(β) V (Ψ(J)) ⊆ J , and

(γ) [V ] : A/Ψ(J)→ B/J is nuclear for every factorial ideal J ⊆ B, where

Ψ(J) := h−1(h(A) ∩M(B, J)).

Then h approximately majorizes V in the sense of Definition 3.10.1.

Proof. (I) follows from Proposition 3.10.4(iii) and Lemma 3.10.3(v).

(II): Let C := h(A). For J = 0, JA is the kernel of h. Thus there is a

completely positive map T : C → B such that Th = V . Then (β) and (γ) say that

T is residually nuclear. By (I), T is approximately inner. But since C commutes

with a copy of O∞, we get that T is moreover one-step approximately inner. This

means that h approximately majorizes V . �

By Remark 3.1.2(iv), Corollary 3.10.6 implies:
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Corollary 3.10.7. Suppose that C ⊆ M(B), C is exact, V : C → B is

nuclear, and V (C ∩M(B, J)) ⊆ J for every closed ideal J of B, then V is approx-

imately inner in the sense of Definition 3.10.1.

Corollary 3.10.8. Suppose that M(B) contains two isometries with orthog-

onal ranges, A is separable, h : A → B is a C*-morphism that approximately ma-

jorizes h⊕ h and that T : A→ B is a completely positive contraction.

Assume that T is nuclear and A is exact, or that [T ] : A/J → B/JT is nuclear

for every closed ideal J of A, where JT denotes the closed ideal of B which is

generated by T (J).

Then the following are equivalent:

(i) h approximately majorizes T .

(ii) T (J) is contained in the closure of Bh(J)B for every closed ideal J of A.

(iii) T (h−1(h(A) ∩ K)) ⊆ K, i.e., a 7→ V (a) + K annihilates the kernel of

a 7→ h(a) +K, for every primitive ideal K of B.

Proof. The implication (i)⇒(ii) is trivial. (ii)⇒(iii), because, with J :=

h−1(h(A) ∩K), h(J) ⊆ K and, therefore, T (J) ⊆ K.

(iii) ⇒ (i): By induction, h approximately majorizes the k-fold sum of h for

k = 1, 2, . . .. Therefore, and since A is separable, it suffices to show that T is in the

point norm closure of the convex set of maps S ◦ h, where the S runs through the

inner complete contractions on B. For the kernel J of h we have T (J) = 0, because

J ⊆ h−1(h(A) ∩K and, therefore, T (J) ⊆ K for every primitive ideal K of B.

Let C := h(A) and let V be the unique completely positive contraction with

V h = T . Then, for every primitive ideal K of B, J := C ∩K is a closed ideal of C

and V (J) is contained in K. If K0 is any closed ideal, then V (C∩K0) ⊆ V (C∩K) ⊆
K for every primitive ideal K of B with K0 ⊆ K. Thus V (C ∩K0) ⊆ K0.

If A is exact and T is nuclear, then C is exact and V is nuclear by Remark

3.1.2(iv). Thus V is approximately inner by Corollary 3.10.7.

If A is not exact, but [T ] : A/J → B/JT is nuclear for every closed ideal J

of A, then with J := h−1(C ∩K) we get V (C ∩K) ⊆ T (J) ⊆ K and, therefore,

T (J) ⊆ JT ⊆ K, [T ] : A/J → B/K is nuclear. Under the natural isomorphism

A/J ∼= C/(C ∩K), [V ] : C ∩K → B/K is the same as [T ]. Thus V is residually

nuclear, and is approximately inner by Corollary 3.10.6(I).

Since V is a contraction, it is then, moreover, in the point-norm closure of the

convex set of restrictions S|C of inner complete contractions on B. �

Let us recall here the Definition 1.2.3 of : ??????

Remark 3.10.9.

(i) We shall see in Chapter 5 that σ-unital C *-algebras B with the WvN–property

satisfy a generalized Weyl–von-Neumann–Voiculescu type theorem for weakly resid-

ually nuclear completely positive contractions.
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(ii) Proposition 3.2.13 says that simple purely infinite C *-algebras have the WvN–

property.

(iii) C *-algebras B with the WvN-property are p.i. in the sense of Definition 1.2.1:

Let a ∈ B+. We consider C = C∗(diag(a, 0)) and the *-monomorphism V

from C into M2(B) which sends diag(a, 0) to diag(a, a). V is residually nuclear.

Therefore, by the WvN-property, for every ε > 0, there exists a contraction d ∈
M2(B) with d∗ diag(a, 0)d = (diag(a, a)− ε)+ . This implies that B is p.i.

(iv) It follows from joint work with M. Rørdam and from [443] that all strongly

p.i. algebras (in the sense of Definition 1.2.2) have the WvN–property, and that

in several particular cases p.i. algebras are strongly p.i., see the Remarks 2.15.12,

3.11.1, 3.11.6 and 12.2.9.

(v) Residually nuclear separation passes to hereditary C *-subalgebras.

(vi) It is easy to see that the non-commutative Michael selection principle for B⊗K
in Conjecture 12.3.6 implies residually nuclear separation for B in the sense of

Definition 1.2.3, cf. Remarks 12.3.7, 12.3.8.

(Every simple stable C *-algebra trivially satisfies the non-commutative Michael

selection principle.)

(vii) It follows from [463] and [443] that C *-algebras with the WvN–property and

residually nuclear separation are strongly p.i. in the sense of Definition 1.2.2.

(viii) Since all separable C *-algebras have Abelian factorization, each C *-algebra

has residually nuclear separation.

Since every separable C *-algebra has abelian factorization,

we get that they all also have residually nuclear separation

??

Corollary 3.10.10. Suppose that B has the WvN–property.

(i) If C is an exact subalgebra of M(B) such that that V : C → B is nuclear

and V (C ∩M(B, J)) ⊆ J for every primitive ideal of B, then V is 1-step

approximately inner, i.e. if V is approximately majorized by idC in the

sense of Definition 3.10.1.

(ii) If A is exact, h : A → B is a nuclear C*-morphism, and M(B) contains

two isometries s, t with orthogonal ranges, then h approximately majorizes

h⊕s,t h .

Proof. (i) follows from Corollary 3.10.7 and Definition 1.2.3.

(ii): Let C := h(A). C is exact and εC : C ↪→ B is nuclear by Remark 3.1.2(iv).

Since h and h ⊕ h have the same kernel, there is a C *-morphism V : C → B such

that V h = h⊕h, in fact V = εC⊕εC , which is nuclear with εC . Thus (i) applies. �

Corollary 3.10.11. Let c ∈ (O2)+ be an element with Spec(c) = [0, 1]. If

a, b ∈ A+ and % ≥ 0 satisfy ‖b + J‖ ≤ ‖a + J‖ + % for all primitive ideals J
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of A, then, for every δ > 0 there exist an isometry s ∈ M(A ⊗ O2) such that

‖s∗(a⊗ c)ks− ((b⊗ c)− %)k+‖ < δ for k = 1, 2.

Thus ‖s∗(a⊗ c)ks− (b⊗ c)k‖ < δ + %max(1, 2‖b‖) for k = 1, 2.

Proof. The assumptions imply that ‖b⊗ c‖ = ‖b‖ and, for every closed ideal

I of A,

‖b+ I‖ = sup{ ‖b+ J‖ : J ∈ Prim(A), I ⊆ J } ≤ ‖a+ I‖+ % .

In particular, ‖d‖ ≤ ‖a‖ where d := ((b⊗ c)− %)+.

Let h0 : C([0, 1])→ O2 denote the unital *-monomorphism with h0(f) := f(c)

for f ∈ C([0, 1]). By Corollary 3.10.10, h0 approximately majorizes h0⊕h0, because

C([0, 1]) is nuclear, O2 is a simple p.i. algebra and, therefore, by Proposition 3.2.13,

O2 has the WvN–property.

Let C := C([0, ‖a‖]), and γ : C → C ⊗ C([0, 1]) the unital *-monomorphism

given by γ(f)(x, y) := f(xy). We define C *-morphisms h and k from C into the

unitization of A⊗O2, and h1 from C into the unitization of A, by h(f) := f(a⊗c),
k(f) := f(d) and h1(f) := f(a).

Then h1 ⊗ h0 and, therefore, h = (h1 ⊗ h0)γ approximately majorizes their

two-fold sums (h1 ⊗ h0)⊕ (h1 ⊕ h0) = h1 ⊗ (h0 ⊕ h0) and h⊕ h.

Note that, for every closed ideal J of A and e ∈ A+, the spectrum of πJ(e)⊗ c
is the closed interval [0, ‖e+ J‖]. By Proposition B.4.2, for every closed ideal K of

A⊗O2 there exist a closed ideal J of A with K = J ⊗O2.

Thus, for every factorial ideal K = J ⊗O2 of A ⊗O2, the spectrum of πK(d)

is [0, (‖b+ J‖ − %)+], which is contained in the spectrum [0, ‖a+ J‖] of πK(a⊗ c).

Hence, by Corollary 3.10.8, h approximately majorizes k. This implies easily

the stated result. �

Corollary 3.10.12. Let κ(a) denote the convex set of elements c =
∑
d∗kadk

in A+, where the dk are in the unitization of A with
∑
d∗kdk = 1 in M(A), k =

1, . . . , n, n ∈ N.

Then, for a, b ∈ A+,

dist(b, κ(a)) = max(0, sup{‖b+ J‖ − ‖a+ J‖ : J ∈ Prim(A)}) .

Proof. Let δ > 0.

There exists V =
∑
d∗k( · )dk, such that ‖b− V (a)‖ < δ + dist(b, κ(a)).

For every closed ideal J , ‖V (a)+J‖ ≤ ‖a+J‖ and ‖b−V (a)+J‖ ≤ ‖b−V (a)‖.

Thus, ‖b+ J‖ − ‖a+ J‖ ≤ δ + dist(b, κ(a)).

The other direction, i.e.,

dist(b, κ(a)) ≤ % for every % > 0 with ‖b+J‖−‖a+J‖ ≤ % for all primitive ideals J

of A, follows from Corollary 3.10.11 by the method in the proof of Corollary 3.2.20,
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because there exists by Proposition 3.2.13 a sequence of isometries dn ∈ O2 with

d∗ncdn → 1. �

Remark 3.10.13. There are strictly continuous versions of Corollaries 3.10.11

and 3.10.12 for a, b ∈M(A)+ and weakly continuous versions for a, b in the positive

part of a von Neumann algebra N . Of course, one has to modify all what is needed,

beginning with Definition 3.10.1, but in a very straightforward way. The outcome

is, e.g., the following modifications of Corollary 3.10.12:

Let κ(a)st and κ(a)s denote the strict closure of κ(a) in M(A) and the strong

closure of κ(a) in N , respectively. Then, for a, b ∈M(A)+,

dist(b, κ(a)st) = max
(
0, sup{‖b+M(A, J)‖ − ‖a+M(A, J)‖ ; J ∈ Prim(A)}

)
.

Let PZ denote the set of projections in the center of N . Then, for a, b ∈ N+,

dist(b, κ(a)s) = max(0, sup{‖bp‖ − ‖ap‖ ; p ∈ PZ}).

Corollary 3.10.14. Suppose that B and D ⊆M(B) are σ-unital and stable,

where D has the WvN–property and DB is dense in B.

Let A ⊆ M(D) ⊆ M(B) a separable C*-subalgebra. Suppose that there exists

a *-monomorphism h : A ↪→M(D) such that, for every closed ideal J of D,

h(A ∩M(D,J)) = h(A) ∩M(D,J)

and, for every d ∈ D, the c.p. map a ∈ A 7→ d∗h(a)d is residually nuclear.

with respect to which action? l.s.c. from I(B) to I(D) and then from I(D) to

A???

Furthermore, let V : A→ B a completely positive contraction such that

(i) V (A ∩M(D,J)) is contained in the closed linear span of BJB, and

(ii) [V ] : A/(A ∩M(D,J))→ B/JB is nuclear for every closed ideal J of D.

Then V is 1-step approximately inner in the sense of Definition 3.10.1, i.e., there

exists a sequence of contractions bn ∈ B such that V (a) = lim b∗nabn for every

a ∈ A.

Proof. First we show, that V is approximately majorized by an infinite repeat

of h, – cf. Remark 5.1.1(8) and Lemma 5.1.2(i,ii) in Chapter 5 concerning infinite

repeats δ∞ ◦ h .

Let s1, s2, . . . be a sequence of isometries in M(D) such that s∗nsm = δnm and∑
sns
∗
n strictly converges to the unit element of M(D). We define an infinite

repeat δ∞ on M(B) by δ∞(a) :=
∑
snas

∗
n.

Since δ∞(M(D,J)) = δ∞(M(D)) ∩ M(D,J) for every closed ideal J of D,

the infinite repeat δ∞ ◦ h of h satisfies that (δ∞ ◦ h)(A ∩M(D,J)) coincides with

((δ∞ ◦ h)(A)) ∩M(D,J) h : A ↪→M(D) for every closed ideal J of D,

and that δ∞ ◦ h is again residually nuclear ???? For which action of what

lattice?
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Therefore, we can assume that the image C := h(A) of A in M(D) commutes

elementwise with a unital copy of O∞ inM(D). (It is not the copy that is defined

by the isometries s1, s2, . . ..)

Let us denote by ΨD,B
down(J) the closed linear span of BJB in B for ideals J of

D.

We also use the notations Ψup
D,A(J) := A ∩M(D,J), and, similarly Ψup

D,C(J),

for closed ideals J ⊆ D, and Ψup
B,C(I) := C ∩M(B, I), Ψup

B,D(I), for closed ideals

I ⊆ B, as introduced at the end of Chapter 1.

Let IA := h−1(Ψup
B,C(I)) and JA := h−1(Ψup

D,C(J)).

Our assumptions say that, in particular, Ψup
D,A(J) =: JA, V maps Ψup

D,A(J)

into ΨD,B
down(J) and that [V ] : A/JA → B/ΨD,B

down(J) is nuclear.

Suppose that I is an ideal of B, then

Ψup
B,C(I) ⊆ Ψup

D,C(Ψup
B,D(I)) ,

because t ∈M(D) and tB ⊆ I imply tDB ⊆ I and, therefore, tD ⊆M(B, I) ∩D.

Further ΨD,B
down(Ψup

B,D(I)) ⊆ I, because B(D ∩M(B, I))B ⊆ I.

Thus we get h−1(Ψup
B,C(I)) ⊆ JA and ΨD,B

down(J) ⊆ I for J := D ∩M(B, I).

Therefore, the conditions (α)-(γ) of Corollary 3.10.6(ii) are satisfied for A, h

and V . Thus, there exists a sequence of contractions dn in B such that d∗nh(.)dn

converges in point-norm to V .

Since DB is dense in B, we find a net en of contractions in D+ such that

endn − dn converges to zero.

But, by assumption, enh(·)en is residually nuclear on A ⊆ M(D), and D has

the WvN–property. Thus, there is a sequence fn of contractions in D such that

f∗nafn − enh(a)en tends to zero for every a ∈ A.

Let bn := fndn, then V (a) = lim b∗nabn for every a ∈ A. The bn are contractions

in B. �

Proposition 3.10.15. For every σ-unital C*-algebra B, F := B⊗O∞⊗O∞⊗
. . . and Cb(R+, F )/C0(R+, F ) have both the WvN–property.

Proof. Let D be a stable hereditary σ-unital C *-subalgebra of F ⊗K (respec-

tively of E ⊗K).

It is not difficult to see that such D have the property that we can find, for given

η > 0, f1, . . . , fn ∈ D and m ∈ N, isometries s1, . . . , sm in the multiplier algebra

M(D) of D such that ‖[si, fj ]‖ < η and s∗ksi = δi,k for j = 1, . . . , n, i, k = 1, . . . ,m.

To see this, e.g. for D ⊆ E ⊗ K, one can at first show that the unital *-

monomorphisms b 7→ 1 ⊗ b and b 7→ 1 ⊗ b from O∞ to O∞ ⊗ O∞ are homotopic

in O∞ ⊗ O∞. This can be seen by examination of finite subsets t1, . . . , tn of the

generators of O∞ by Theorem E, [172] and Künneth theorem applied to K∗(O∞⊗
O∞).
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This can be used to show that there is a unital copy of O∞ in the multiplier

algebra of (F ⊗K)ω (respectively of Q(R+, F ⊗K)) that commutes with D. Since

D is hereditary, we get such a copy of O∞ also in M(Dω).

Let C ⊆M(D) and suppose that V : C → D is residually nuclear. By Corollary

3.10.6, for 1 > ε > 0 and c1, . . . , cn ∈ C, there exist d1, . . . , dm ∈ D such that

‖V (cj)−
∑
d∗i cjdi‖ < ε/3 for j = 1, . . . , n .

Let γ := 1 + ‖
∑
d∗i di‖+ max{‖cj‖}2 and η := ε/(3m2γ).

There is a contraction e ∈ D+ with ‖edi − di‖ < η for i = 1, . . . ,m. We

find isometries s1, . . . , sm in the multiplier algebra of D such that ‖[si, ecje]‖ < η

and s∗ksi = δi,k for j = 1, . . . , n, i, k = 1, . . . ,m . Then ‖V (cj) − d∗cjd‖ < ε for

d := e
∑
sidi, j = 1, . . . , n. �

11. More on strongly purely infinite algebras

The following remarks give an outline of some of the results of joint work with

M. Rørdam and E. Blanchard on purely infinite algebras. See also end of Chapter

2.

Remark 3.11.1. Let (An) be a sequence of unital C *-algebras that contain a

copy of O∞ unitally.

Let F := B ⊗ A1 ⊗ A2 ⊗ . . ., then the same arguments as in the proof of

Proposition 3.10.15 show that F , Fω and Q(R+, F ) have the WvN–property. An

approximately commuting copy of O∞ can also be used to show that F , Fω and

Q(R+, F ) are strongly purely infinite.

Since in the middle of Chapter 10 we finish the proof of Theorem B, we can

then use Corollary H and see from Proposition 3.10.15 and its proof that B ⊗O∞
always has the WvN–property and is strongly purely infinite. This yields a proof

that B ⊗ C has the WvN–property and is strongly purely infinite if C is a simple

purely infinite separable nuclear C *-algebra.

Conversely, B ∼= B ⊗O∞ if B has the WvN–property and is separable, stable

and nuclear, by Corollary 10.3.8.

It is an open question whether or not (non-simple) purely infinite separable

stable nuclear C *-algebras B tensorial absorb O∞. (It is the case if and only if B

is s.p.i.).

Lemma 3.2.22 shows, that C(X,D) has the WvN–property for compact X and

simple purely infinite D.

Remark 3.11.2. A stable C*-algebra D has the WvN–property, if for every

separable subalgebra A of the ultrapower Dω of D, every approximately inner com-

pletely positive contraction V : A → Dω into a commutative subalgebra C∗(V (A))

of Dω is 1-step approximately inner.
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Proof. The following observations (1)–(6) together prove the sufficiency

criterium for the WvN-property:

(1) The assumption immediately implies that Dω is purely infinite, by the

argument in Definition 1.2.3.

(2) This implies that D is purely infinite.

(3) For every separable C *-subalgebra A of the ultrapower Dω of a p.i. algebra

D and every separable commutative C *-subalgebra C of A there is a completely

positive residually nuclear contraction V from A into a commutative C *-subalgebra

C∗(V (A)) of Dω, such that V |C = id |C. (see [443], compare also Lemma 12.1.6

for the first step in this direction, and use the semigroup structure argument of the

proof of Lemma 12.1.6).

(4) The set CA of approximately inner completely positive contractions V : A→
Dω with commutative C∗(V (A)) is closed under Cuntz addition (see Chapter 4 or

the remark before Corollary 3.10.8), and, therefore, by the observation (3) and the

below given generalization of Lemma 3.2.7, CA generates a dense subset of the

convex set X of the residually nuclear completely positive contractions from A into

Dω, where one gets X if one applies to the set CA only Cuntz addition and the

operations in part (OC2) of Definition 3.2.2.

(5) The set of 1-step approximately inner completely positive maps is stable

under point-norm limits and under the operations in part (OC2) of Definition 3.2.2,

and, therefore, the assumptions and observation (4) together imply that all resid-

ually nuclear completely positive maps from A into Dω are 1-step approximately

inner.

(6) Stable D (and moreover Dω) has the WvN–property if, for every separable

C *-subalgebra A of Dω, every residually nuclear completely positive contraction V

from A into Dω is 1-step approximately inner:

if C is a separable C *-subalgebra of M(D) and V : C → D is a residually nu-

clear completely positive contraction, then V is approximately inner by Corollary

3.10.6(I). If we use a suitable, approximately with C commuting, approximate unit

en of D, we get a contraction e ∈ (Dω)+ with ec = ce for c ∈ C and an approxi-

mately inner completely positive contraction W : A→ Dω from the C *-subalgebra

A of Dω, which is generated by {enc : c ∈ C, n ∈ N}, such that V (c) = W (anc) for

c ∈ C and n ∈ N. The residual nuclearity of V then implies the residual nuclear-

ity of W , see Proposition 2.12.8 for a step in this direction. If (dk) is a sequence

of contractions in Dω such that d∗k(.)dk converges to W in point norm, then one

can pick up from the representing sequences (endkn) of edk elements fm such that

f∗mcfm converges to V (c) for every c ∈ C. �

A generalization of the sixth observation shows that Dω has the WvN–property

if every approximately inner map is

locally 1-step approximately inner.
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Since Dω has residually nuclear separation in the sense of Definition 1.2.3, it

follows that Dω is strongly purely infinite.

Therefore, D is strongly purely infinite if, for every separable C *-subalgebra

A of Dω, every residually nuclear contraction V : A→ Dω is 1-step approximately

inner.

We replace the assumption of Lemma 3.2.7 and its conclusion in the following

manner to get a generalization of Lemma 3.2.7 :

We suppose that A ⊆M(B) and replace the assumption of Lemma 3.2.7 by the

following strict non-degeneracy criteria where C ⊆ CP(A,B) denotes a point-norm

closed m.o.c. cone:

Property (OC-snd):

Let A ⊆M(B). Consider the following property of a subset C ⊆ CP(A,B):

For every a ∈ A+ ⊆M(B)+, and every b ∈ B+ with the property that

‖b+ J‖ ≤ ‖a+M(B, J)‖

holds for every closed ideal J of B, there exists for every ε > 0 a c.p. contraction

T ∈ C, that satisfies ‖T (a)− b‖ < ε and has the property that T (A∩M(B, J)) ⊆ J
for every closed ideal J of B.

If A ·B is dense in B and C contains all inner c.p. maps a 7→ c∗ac with c ∈ B,

then condition (OC-snd) is satisfied:

Indeed, if ‖b+J‖ ≤ ‖a+M(B, J)‖ for all J ∈ I(B), then b ∈ J0 := span(BaB),

because a ∈M(B, J0).

Thus, for given ε ∈ (0, 1), let γ := γ(ε) := (2‖b‖1/2 + 1)−1ε there are

c1, . . . , cn, d1, . . . , dn ∈ B with ‖b1/2 − e‖ < γ for e :=
∑
k dka

1/2ck. This im-

plies ‖b− e∗e‖ < ε.

Notice that

e = [d1, . . . , dn] · diag(a, . . . , a)1/2 · [c1, . . . , cn]> .

Therefore,

e∗e ≤ ‖
∑
k

dkd
∗
k‖ ·

∑
k

c∗kack .

It follows that there is f ∈ B such that V (a) :=
∑
k(ckf)∗a(ckf) satisfies (b−ε)+ =

V (a).

The question is, if property (OC-snd) also implies that C contains all c.p. maps

V (a) := c∗ac with c ∈ B. This seems to be the case if A ⊆M(B), A is exact and

B is weakly injective.

But it would be sufficient that B has residual nuclear separation and

CPnuc(A,B) ⊆ C.

We would get that C ⊆ CP(A,B) satisfies property (OC-snd) in case A ⊆
M(B), if and only if, CPnuc(A,B) ⊆ C.
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Modified version of Lemma 3.2.7:

If A ⊆M(B) satisfies (OC-snd), and if ΨA(J) = A∩M(B, J) denotes the l.s.c. ac-

tion of Prim(B) on A, then every Ψ-residually nuclear contraction V : A→ B can

be approximated in point norm by contractions in C := CPin(A,B).

The proof is similar to the proof of Lemma 3.2.7. But one has to use the

arguments in the proof of Lemma 3.10.3 and of Proposition 3.10.4. In fact, it is

easier to use Stinespring-Kasparov dilation directly. Then, by (OC1), (OC2) and

(OC-snd), for an residually nuclear contraction V : A → B, one finds a σ-unital

hereditary subalgebra E ⊆ B and a *-monomorphism h : A ↪→ M(E ⊗ K) such

that A∪V (A) ⊆ E, and, for every contraction d ∈ E⊗K, (1⊗ p11)d∗h(.)d(1⊗ p11)

is of form T (·)⊗ p11 for some

approximately inner???

T

in the point norm closure of K =?????,

and h(A∩J) = h(A)∩M(E⊗K, J⊗K) for every closed ideal J of E. Moreover,

we can replace h by its infinite repeat δ∞ ◦ h. Thus, we may assume that h(A)′ ∩
M(E ⊗K) contains a copy of O2 unitally.

Now we are in position to apply Corollary 3.10.6(II) on A, h and a ∈ A 7→
V (a)⊗ p11 to get a proof of the above given generalization of Lemma 3.2.7.

The general idea of the application of the above modified Lemma 3.2.7 is the

following observation:

Suppose that, for every separable C *-subalgebra A of the ultrapower B = Dω

of a stable σ-unital C *-algebra D, there exists a set S of 1-step approximately inner

completely positive contractions V : A → B into commutative C *-subalgebras of

B, such that S is closed under Cuntz addition, and for every a ∈ A+ there exist V

in S and d ∈ B such that ‖a− d∗V (a)d‖ < 1.

Then, by the modified version of Lemma 3.2.7, every residually nuclear T : A→
B is 1-step approximately inner.

As we have seen above, this implies that D and its ultrapower Dω have the

WvN–property and are strongly p.i.

The above given third, fourth and fifth observations also show that the modified

version of Lemma 3.2.7 yields the following result:

Suppose that A is a separable C*-subalgebra of Dω, and that for every residually

nuclear contraction V : A → Dω with commutative image C∗(V (A)), there is a

sequence of contractions dn ∈ Dω such that, for a ∈ A+ and k > 0,

lim d∗nadn = V (a), and

lim d∗nadn+k = 0.

Then such a sequence (dn) exists also for every residually nuclear contractions

V : A→ Dω with non-commutative image V (A).
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Note that, with help of a countable approximate unit of A, we can modify the

sequence dn such that it also satisfies lim d∗ndn+k = 0 for k > 0.

Proof. Consider the set IA of all contractions V : A → Dω such that there

exist a sequence dn with the above properties.

It is easy to see, that the operations (OC2) in Definition 3.2.2 let IA invariant.

The assumption says that CA of the above fourth observation is contained in

IA.

By the third and fourth observation, the smallest subset of IA, that contains

CA and is invariant under the operations (OC2) in Definition 3.2.2, satisfies the

assumptions of the above given modified version of Lemma 3.2.7.

It is not very hard to check that IA is closed under point norm limits. Thus, by

the modified version of Lemma 3.2.7, every residually nuclear contraction V from

A into Dω is in IA. �

FIND END OF NEXT REMARK !!!

Remark 3.11.3. We list here some later needed properties of strongly purely

infinite C *–algebras. (See [463] for details of the here outlined proofs.)

In the following let [x, y] denote the commutator xy − yx.

Suppose that A is strongly purely infinite.

Let b, a1, . . . , an ∈ A+ commuting elements, c ∈ A+, F := [fjk] ∈ Mm(A)+ a

positive m×m matrix, and let ε > 0.

(i) Aω and A⊗K are strongly purely infinite.

Every quotient and every hereditary C *-subalgebra of A is strongly

purely infinite.

(ii) There exist contractions d1, . . . , dm ∈ A, such that

‖D∗FD − diag(f11, . . . , fmm) ‖ < ε ,

where D := diag(d1, . . . , dm).

(iii) There exist contractions v1, v2 ∈ A with

‖[vi, ak]‖ < ε and ‖v∗i bvj − δi,jb‖ < ε for i, j ∈ {1, 2}, k = 1, . . . , n.

(iv) There exist contractions s1, s2 ∈ A with

‖s∗i aksi − ak‖ < ε, ‖[si, ak]‖ < ε, ‖s∗1s2‖ < ε, ‖s∗1cs2‖ < ε, and

‖[s∗i csi, ak]‖ < ε, for i = 1, 2, k = 1, . . . , n.

Property (ii) is an inductive repeat of the defining property of ‘strongly p.i.’ in

Definition 1.2.2. (ii) implies (iii) and (iv). The proof of this implication is not trivial.

It uses appropriate decompositions of the unit of the unitization of C∗(a1, . . . , an, b)

respectively of C∗(a1, . . . , an), to translate (iii) and (iv) to problems, which are

solvable by property (ii). The proofs can be found in [463].

It follows from [463] that p.i. algebras with (iii) and (iv) have the WvN-property

of Definition 1.2.3.
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In fact we show that properties (iii) and (iv), applied to the strongly p.i. algebra

Aω, yield the following stronger results (v)-(vii).

Suppose that A is strongly p.i., that C is a separable commutative C *-

subalgebra of Aω, that B is a separable C *-subalgebra of Aω, and that V is a

residually nuclear contraction from B into C. Then:

(v) There is a *-monomorphism h from C⊗O∞ into Aω with h((.)⊗1) = id |C,

(vi) For pairwise commuting a1, . . . , an ∈ (Aω)+, arbitrary y1, . . . , ym ∈ Aω

and ε > 0, there is a contraction d ∈ Aω, such that ‖d∗aid − ai‖ < ε

for 1 ≤ i ≤ n and that {d∗a1d, . . . , d
∗and, d

∗y1d, . . . , d
∗ymd} generates a

commutative C *-subalgebra of Aω.

(vii) There is a sequence of contractions dn ∈ Aω with lim d∗nbdn = V (b) and

lim d∗nbdn+k = {0} for b ∈ B, k > 0.

Here (vii) follows from (v) and (vi).

Now we can apply the ideas of Remark 3.11.2:

In [463] it is shown that for a C *-algebra A the following properties (1)–(4)

and (8) are equivalent. The equivalence of (1) and (5)–(7) follows from [443] and

the results of Chapter 7.

(1) A is strongly purely infinite in the sense of Definition 1.2.2.

(2) The ultrapower Aω of A is strongly purely infinite.

(3) A admits no non-zero character, and, for every separable C*-subalgebra

B of Aω and every approximately inner completely positive contraction

V : B → Aω into a commutative C*-subalgebra C of Aω there is a con-

traction d ∈ Aω with V (b) = d∗bd for b ∈ B.

(4) For every residually nuclear contraction V from a separable C*-subalgebra

C of Aω into Aω there is a sequence of contractions dn ∈ Aω with d∗ncdn =

V (c) for c ∈ C, d∗mdn = 0, and d∗mCdn = {0} for m 6= n, m,n = 1, 2, . . . .

(5) The asymptotic corona Q(R+, A) of A is strongly purely infinite.

(6) Q(R+, A) has the WvN-property of Definition 1.2.3.

(7) A admits no non-zero character, and for every separable C*-subalgebra

B of Q(R+, A) the following property holds:

Let t ∈ R+ 7→ V (t) a strongly continuous map from R+ into the

approximately inner completely positive contractions from A into A and

let T the completely positive contraction from Q(R+, A) into Q(R+, A)

given by

T (a+ C0(R+, A)) := V (a) + C0(R+, A) ,

where a ∈ Cb(R+, A) and V (a)(t) := V (t)(a(t)) .

The property of A in question is:

If T |B is residually nuclear, then there exists a contraction d ∈ Q(R+, A)

such that T (b) = d∗bd for b ∈ B.

(8) For every a, b ∈ A+ and ε > 0 there exist contractions s, t ∈ A such that

‖a2 − s∗a2s‖, ‖b2 − t∗b2t‖ and ‖s∗abt‖ are all less than ε.
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The property in (8) implies that the class of strongly purely infinite algebras is

closed under inductive limits.

Remark 3.11.4. Propositions 3.2.13 and 3.2.15 are used to prove a Weyl-von

Neumann–Voiculescu type theorem in Chapter 5 and its asymptotic version in

Chapter 7.

The reader can observe that our proofs of Propositions 3.2.13 and 3.2.15 works

also in the following more general and non-simple case:

Suppose that D is σ-unital, stable and strongly purely infinite, and that for

every separable C *-subalgebra A of D there exists a *-monomorphism h : A ↪→
M(D), such that:

(1) h(A ∩ J) = h(A) ∩M(D,J), and

(2) [h]J : A/(A ∩ J)→M(D/J) is weakly nuclear for every closed ideal J of

D.

(3) The closures of DKD and Dh(K)D in D coincide for every closed ideal

K of A.

(4) For every sequence Ωn of compact subsets of A, and for every approxi-

mately commutative unit of D for h(A) with enen+1 = en, there exists a

sequence fn of contractions in D such that ‖f∗nafn − enh(a)en‖ < 2−n,

‖f∗nafn+k‖ < 2−n and ‖f∗nfn+k‖ < 2−n for a ∈ Ωn, k > 0.

From Corollary 3.10.6(I) we get, that if we assume (1) and (2), then (3) is

equivalent to:

(3’) Dh(A)D is dense in DAD.

It follows from a result with M. Rørdam [463] that the property (4) in Remark

3.11.3 implies, that a σ-unital stable purely infinite C *-algebra D has residually

nuclear separation in the sense of definition 1.2.3, if and only if, for every separa-

ble C *-subalgebra A ⊆ D, there exists a *-monomorphism h : A ↪→ M(D) with

properties (1)-(4) of Remark 3.11.4.

The modifications in the assumptions of Propositions 3.2.13 and 3.2.15 are then:

B is σ-unital, D ⊆M(B) with D ·B dense in B, and D has the above considered

property.

In the general version of Proposition 3.2.13, C has to be a separable C *-

subalgebra ofM(D) ⊆M(B), and V : C → B is a completely positive contraction

such that V (Ψup
D,C(J)) ⊆ ΨD,B

down(J) and [V ] : C/Ψup
D,C(J)→ B/ΨD,B

down(J) is nuclear

for every closed ideal J ⊆ D. See the last part of the introduction or the proof of

Corollary 3.10.14 for the definition of the Ψ’s.

In the modified version of Proposition 3.2.15, C has to be a separable C *-

subalgebra of Cb(X,D) and the point-norm continuous family of complete contrac-

tions Vy from D into B must consist of residually nuclear maps.

Note that (1)-(4) imply also the assumptions of Corollary 3.10.14.
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Proposition 3.11.5. Let B a stable σ-unital strongly p.i. algebra, A a separable

exact algebra, and h : A → Q(B) := M(B)/B a nuclear C*-morphism. Then

A′ ∩Q(B) is strongly p.i.

Proof. ?? to be filled in �

Remark 3.11.6. In [462], [463], [92], [93] and [443] it is shown, that p.i. al-

gebras in several cases are strongly p.i. (and thus have the WvN–property). We

list some related results:

(i) Locally purely infinite C *-algebras of real rank zero are strongly purely

infinite, cf. [463] and [93].

(ii) The algebra A of sections of a continuous field of C *-algebras over a locally

compact space is strongly purely infinite, if it is purely infinite and if the

field has simple fibers. This is just the case where A is purely infinite and

Prim(A) is Hausdorff. (Joint work with E. Blanchard, [92], [93].)

In particular, C0(X,D) is strongly purely infinite, if D is simple and

purely infinite.

(iii) C0(X,D) is strongly purely infinite if D is strongly purely infinite and X

is locally compact ([443]).

(iv) M(D) is strongly purely infinite if D is strongly purely infinite and σ-

unital ([443]).

(v) Extension of strongly purely infinite algebras are strongly purely infinite

([443]).

It follows that Q(R+, B) is strongly purely infinite if B is strongly purely infi-

nite.

12. Collection of some topics

Next: from old proof of Proposition 3.6.1

????? (i):

Let J / B and C ⊆M(B) a C *-subalgebra of M(B). Recall that Ψup
B,C(J) :=

C ∩M(B, J), that M(B, J) := {t ∈ M(B) ; tB + Bt ⊆ J} is the same as the

closure of J /B in the strict topology onM(B), and that every strictly closed ideal

I of M(D) coincides with M(D, I ∩D).

Since DB and BD are dense in B (by assumption), we get that the natural

unital *-monomorphism M(D) ↪→M(B) is strictly continuous. Thus, M(B, J) ∩
M(D) = M(D,D ∩ M(B, J)) and Ψup

B,C(J) = Ψup
C,D(K) =: ΨC(K) for K :=

D ∩M(B, J). The ideal J1 := ΨB(K) := ΨD,B
down(K) of B is defined as the closure

of span(BKB) and is contained in B ∩ M(B, J) = J . Indeed, span(BKB) ⊆
M(B, J), because K ⊆M(B, J).

Ψup
D,B(ΨD(I)) =??????
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something missing ???

Suppose that V is ΨC-ΨB–residually nuclear, and J ∈ I(B). Let K :=

Ψup
B,D(J). Then L := ΨC(K) = Ψup

B,C(J) by Lemma 3.6.2(ii).

Thus, V (L) = V (ΨC(K)) ⊆ ΨB(K), and [V ] : C/ΨC(K) → B/ΨB(K) is nu-

clear. Since ΨB(K) ⊆ J (by Lemma 3.6.2(iv)), it follows that V (Ψup
B,C(J)) ⊆ J ,

and that [V ]J : C/Ψup
B,C(J)→ B/J is nuclear. Hence, V is Ψup

B,C-residually nuclear.

Conversely, suppose that V is Ψup
B,C–residually nuclear, and let N/D. Consider

the ideal J := ΨB(N) := span(BNB). We get N ⊆ K := D ∩ M(B, J) and

J = BNB ⊆ BKB ⊆ J . Thus M(D,N) ⊆ M(D,K) = M(D) ∩M(B, J) and

ΨC(N) ⊆ Ψup
B,C(J).

Since V (Ψup
B,C(J)) ⊆ J and [V ]J : C/Ψup

B,C(J) → B/J is nuclear, we get that

V (ΨC(N)) ⊆ J = ΨB(N) and [V ] = [V ]J ◦ π : C/ΨC(N)→ B/J is nuclear, where

π : C/ΨC(N) → C/Ψup
B,C(J) is the natural epimorphism. Hence, V is ΨC-ΨB–

residually nuclear.

End of old proof-parts. Missing somewhere? Remove above??

Used in Remark ?? and quoted to Chapter 3:

Suppose that B is strongly purely infinite. Then, for every finitely generated

Abelian C*-subalgebra A ⊆ Bω with at most 1-dimensional maximal ideal space

Prim(A), there exists a C*-morphism

h : A⊗O∞ → Bω with h(a⊗ 1) = a ∀ a ∈ B .

Overlap with Chp.3 Part 2 beginning here

Compare below with Section 7

See also begin of Section 8 for next:

There are proofs of some the following corollaries, that are more elementary

than given below. But we want to invite the reader to use (and think about)

the more conceptional ideas presented here. For the classification of stably finite

algebras with non-trivial traces, one has to produce refined tools, that answer

e.g. the more difficult question (by a non-trivial and applicable answer):

When there is a given completely positive map V in a given cone C of completely

positive maps C ⊆ CP(A,B) that are compatible with a given map T (B)→ T (A)?

Here T (B) means the set of lower semi-continuous (unbounded) 2-quasi-traces

τ : B+ → [0∞]. Our results together contain an answer in a special case where

τ(B+) ⊆ {0,∞} for all τ ∈ T (B) , because then the problem reduces to the study

of CPnuc(Ψ; A,B) for a lower semi-continuous action Ψ: I(B) ∼= O(Prim)(B) →
I(A), if we identify a {0,∞}-valued lower semi-continuous 2-quasi-trace τ : B+ →
[0,∞] by its kernel J := span{a ∈ B+ ; τ(a) = 0}.

Compare for next Def. also Def. 3.8.1
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Definition 3.12.1. Let S ⊆ CP(A,B).

We define ΨS(J)+ as the set of a ∈ A+ with V (exp(−ih)a exp(ih)) ∈ J for all

h∗ = h ∈ A with ‖h‖ < π and for all V ∈ S. Then ΨS(J)+ is the positive part of

a closed ideal ΨS(J) of A, and

ΨS : I(B) ∼= O(Prim(B))→ I(A)

is a lower semi-continuous action of Prim(B) on A, cf. Lemma 3.12.2(iv).

Let I a closed ideal of A. We denote by ΨS(I)) the smallest closed ideal of B

that is contains {V (a) ; a ∈ I, V ∈ S}. The map

ΨS : I(A) ∼= O(Prim(A))→ I(B)

is an upper semi-continuous action, cf. Lemma 3.12.2(xii).

Let X a topological space, and let ΨA : O(X) → I(A) and ΨB : O(X) →
I(B) increasing maps, i.e., actions of X on A and B. We define the cone of Ψ-

equivariant c.p. maps as the set CΨ := CP(ΨA,ΨB ;A,B) ⊆ CP(A,B) of maps

V ∈ CP(A,B) with V (ΨA(U)) ⊆ ΨB(U) for all open subsets U ⊆ X. In the special

case, where X := Prim(B) and ΨB : O(Prim(B)) → I(B) is given by the natural

identification of the open subsets U of Prim(B) with the corresponding closed ideal

JU of B, where JU denotes the intersection of all primitive ideals I ∈ Prim(B) \U ,

we write Ψ := ΨA and drop ΨB , i.e., write CΨ := CP(Ψ; A,B) ⊆ CP(A,B) for

Ψ: O(Prim(B))→ I(A) .

The use of the notation CΨ , in place of CΨA,ΨB , becomes justified in a different

way in part (i) of Lemma 3.12.2.

Compare with Lemma 3.8.2

Lemma 3.12.2. Let A and B C*–algebras, S ⊆ CP(A,B) a set of completely

positive maps, C ⊆ CP(A,B) a matrix operator convex cone, X a topological space,

ΨA : O(X)→ I(A) and ΨB : O(X)→ I(B) actions of X on A respectively B,

Suppose that ???????????? ??

(i) There exists a lower semi-continuous action Ψ′ : O(Prim(B)) ∼= I(B) →
I(A) with Ψ′(ΨB(U)) ⊃ ΨA(U)), which is minimal in the sense that

Φ(J) ⊃ Ψ′(J) for every J ∈ I(B) if Φ: I(B) → I(A) is lower semi-

continuous and Φ(ΨB(U)) ⊃ ΨA(U).

It holds CΨ′ = CΨ.

(ii) The point-norm closure of a matrix operator-convex cone (in the algebraic

sense) is a matrix operator-convex cone.

The intersection of a family of matrix operator-convex cones is a matrix

operator-convex cone.

(iii) Let C(S) denote the smallest point-norm closed matrix operator-convex

cone that contains a subset S ⊆ CP(A,B). Then every contraction V in

the point-norm closure C(S) of can be approximated by maps W ∈ Calg(S)
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of the particular form W :=
∑
k c
∗
k(Vk ⊗ idn)(r∗k(·)rk)ck with Vk ∈ S,

rk ∈M1,n(A), ck ∈Mn,1(B) and ‖
∑
k c
∗
kVk(r∗krk)ck‖ ≤ 1 .

(iv) ΨS(J)+ is the positive part of a closed ideal ΨS(J) of A, and

ΨS : O(Prim(B)) ∼= I(B) 3 J 7→ ΨS(J) ∈ I(A)

is a lower semi-continuous action of Prim(B) on A.

The action ΨS satisfies ΨS(B) = A and V (ΨS(J)) ⊆ J for all J ∈ I(B)

and V ∈ S.

(v) ΨS = ΨC for C := C(S).

(vi) ΨS(J) ⊆ ΨS1(J) for all J ∈ I(B), if S1 ⊆ S.

(vii) The set CΨ is a point norm-closed matrix operator convex cone of com-

pletely positive maps.

(viii) CΨ1
⊆ CΨ if Ψ(J) ⊆ Ψ1(J) for all J ∈ I(B).

(ix) C ⊆ CΨC .

(x) ΨCΨ(J) ⊃ Ψ(J) for J ∈ I(B) ∼= O(Prim(B)).

(xi) If C′ ⊆ CP(A⊗max D,B ⊗max D) is a point-norm closed matrix operator

convex cone, then the set C ⊆ CP(A,B) of T ∈ CP(A,B) with T ⊗max

idD ∈ C′ is a point-norm closed matrix operator convex cone.

(xii) Let M a W*-algebra and B ⊆M a σ(M,M∗)-dense C*-subalgebra of M ,

and let C ⊆ CP(A,B) ⊆ CP(A,M) a matrix operator-convex cone. Then

the point-*ultra-strong closure C ⊆ CP(A,M) of C is a point-σ(M,M∗)

closed matrix operator convex cone.

(xiii) ΨS : I(A) → I(B) is an upper semi-continuous action of Prim(A) on

B. I ⊆ ΨS(ΨS(I)) for every closed ideal I of A and every subset S ⊆
CP(A,B).

Proof. (iv): Let J a closed ideal of B and T : A→ B a positive map. The set

of a ∈ A+ with (πJ ◦ T )(a) = 0 is a hereditary closed convex sub-cone CT,J of A+.

Thus, the set CS,J of a ∈ A+ with T (a) ∈ J for all T ∈ S is a hereditary closed

convex sub-cone of A+, and ΨS(J)+ ⊆ A+ of Definition 3.12.1 is the set of a ∈ A+

with exp(ih)a exp(−ih) ∈ CS,J . By Lemma ??, ΨS(J)+ is the positive part of a

closed ideal ΨS(J) of A. Clearly, ΨS(B) = A, and V (ΨS(J)+) ⊆ J for J ∈ I(B)

and V ∈ S, by definition of ΨS .

If {Jσ}σ∈Σ is a family of closed ideals and a ∈ A+ and let J :=
⋂
σ Jσ. then

V (exp(ih)a exp(−ih)) ∈ J for all V ∈ S and h∗ = h ∈ A with ‖h‖ < π, if and only

if, V (exp(ih)a exp(−ih)) ∈ Jσ for all V ∈ S and h∗ = h ∈ A with ‖h‖ < π, i.e.,

a ∈ ΨS(J)+ if and only if a ∈
⋂
σ ΨS(Jσ)+ = (

⋂
σ ΨS(Jσ))+. Thus,

ΨS : O(Prim(B)) ∼= I(B) 3 J 7→ ΨS(J) ∈ I(A)

is a lower semi-continuous map. The lower semi-continuity of the map ΨS implies

that ΨS is monotone. Thus, ΨS is a lower s.c. action of Prim(B) on A.

(vii): Since ΨB(U) is a closed ideal, the set of maps V ∈ CP(A,B) with

V (a) ∈ ΨB(U) for all a ∈ ΨA(U) is point-norm closed. Thus, CΨ is point-norm

closed. Similar arguments show:
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Let V1, V2 ∈ CP(A,B) with Vk(ΨA(U)) ⊆ ΨB(U) for all U ∈ O(X) (k = 1, 2),

t ∈ [0,∞), and r ∈ M1,n(A), c ∈ Mn,1(B). Then (V1 + tV2)(a) ∈ ΨB(U) and

c∗(V1 ⊗ idn)(r∗ar)c ∈ ΨB(U) for U ∈ O(X) and a ∈ ΨA(U). Thus CΨ is a point-

norm closed matrix operator convex cone of c.p. maps.

(i): If we use the natural isomorphisms I(A) ∼= O(Prim(A)) and I(B) ∼=
O(Prim(B)), and Lemma ??, then we get that there is a minimal lower semi-

continuous action Ψ′ : O(Prim(B))→ I(A) with Ψ′(ΨB(U)) ⊃ ΨA(U).

If V ∈ CΨ′ , then V (ΨA(U)) ⊆ V (Ψ′(ΨB(U))) ⊆ ΨB(U) for U ∈ O(X), because

ΨA(U) ⊆ Ψ′(ΨB(U)). Thus, CΨ′ ⊆ CΨ = CΨA,ΨB .

Let S := CΨ, then ΨS : I(B) ∼= O(Prim(B))→ I(A) is a lower semi-continuous

action by part (iv) with V (ΨS(J)) ⊆ J for all V ∈ S.

We have ΨS(ΨB(U))+ ⊃ ΨA(U)+ for U ∈ O(X), because V (e−ihaeih) ∈
ΨB(U) for a ∈ ΨA(U)+ and h∗ = h ∈ A. Thus, ΨS(J) ⊃ Ψ′(J) for every J ∈ I(B)

by minimality of Ψ′. It implies that V (Ψ′(J)) ⊆ V (ΨS(J)) ⊆ J , i.e., V ∈ CΨ′ , for

all V ∈ CΨ = CΨA,ΨB .

(ii): The point-norm closure C of a matrix operator-convex cone C0 is a matrix

operator-convex cone, because the topology of point-norm convergence on L(A,B)

coincides with the strong operator topology, and because Vα ⊗ idn converges in

point-norm to V ⊗ idn if Vα ∈ C0 converges to V .

(iii): Let n ∈ N and let C(n) denote the set of completely positive maps W :=∑
k c
∗
k(Vk ⊗ idn)(r∗k(·)rk)ck with Vk ∈ S, rk ∈ M1,n(A) and ck ∈ Mn,1(B), and

let C0 =
⋂
n C(n). Clearly, C(n) ⊆ C for every matrix operator-convex cone C ⊆

CP(A,B) with S ⊆ C, and the set C(n) is closed under multiplication with positive

scalars and under addition.

Moreover, c∗(W ⊗ idm)(r∗(·)r)c ∈ C(mn) if W ∈ C(n), r ∈ M1,m(A) and c ∈
Mn,1(B), because

c∗(Wk ⊗ idm)(r∗(·)r)c = C∗Vk ⊗ idmn(R∗(·)R)C

for Wk := c∗k(Vk ⊗ idn)(r∗k(·)rk)ck, R = [R1, . . . , Rmn] ∈ M1,mn(A) and C =

[C1, . . . , Cmn]> ∈ Mmn,1(B), where Rjm+y := ryr
(k)
j and Cjm+y := c

(k)
j cy with

rk = [r
(k)
1 , . . . , r

(k)
n ] ∈M1,n(A), r = [r1, . . . , rm] ∈M1,m(A), ck = [c

(k)
1 , . . . , c

(k)
n ]> ∈

Mn,1(B), and c = [c1, . . . , cm]> ∈Mm,1(B).

If we fill the rows rk ∈ M1,n(A) and columns ck ∈ Mn,1(B) with zeros, then

we see that C(n) ⊆ C(n+k) for all n, k ∈ N. Thus C0 :=
⋃
n C(n) is a (not necessarily

closed) matrix operator convex cone that is contained in every matrix operator

convex cone C with S ⊆ C.

Since A has an approximate unit {eτ} of positive contractions, we get ‖W‖ =

‖
∑
k c
∗
kVk(r∗krk)ck‖ for W ∈ C0, and that every element V ∈ S is in the point-norm

closure of C(1) ⊆ C0.

By part (ii), the point-norm closure C1 of C0 is a m.o.c. cone that contains

S. Since C0 is contained in every point-norm closed m.o.c. cone C with S ⊆ C,
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we get C(S) = C1 . The contractions T in the point-norm closure of C0 can be

approximated by contractions W ∈ C0 with ‖W‖ ≤ 1 by Lemma 3.1.8.

(v): Since S ⊆ C(S) =: C, it holds ΨC(J) ⊆ ΨS(J) for all J ∈ I(B), cf. part

(vi).

If a ∈ ΨS(J)+ then V (exp(ih)a exp(−ih)) ∈ J for all h∗ = h ∈ A with ‖h‖ < π

and for all V ∈ S.

By part (iv), this implies that c∗`V (r∗` exp(ih)a exp(−ih)rk)ck ∈ J for V ∈ S,

h∗ = h ∈ A, r1, . . . , rn ∈ A and c1, . . . , cn ∈ B. Thus, W (exp(ih)a exp(−ih)) ∈ J
for all W ∈ C := C(S) and h∗ = h by part (iii), i.e., a ∈ ΨC(J)+, and ΨS = ΨC for

C := C(S).

(vi): Straight from definition of ΨS .

(viii): If V ∈ CΨ1 and Ψ(J) ⊆ Ψ1(J), then V (Ψ(J)) ⊆ V (Ψ1(J)) ⊆ J . Thus,

V ∈ CΨ if Ψ(J) ⊆ Ψ1(J) for all J ∈ I(B).

(ix): For J ∈ I(B) and a ∈ ΨC(J) holds V (a) ∈ J for all V ∈ C by definition

of ΨC .

(x): Let J ∈ I(B), and let a ∈ Ψ(J)+ ⊆ A+, V ∈ CΨ and h∗ = h ∈ A. Then

V (exp(ih)a exp(−ih)) ∈ J by definition of CΨ, i.e., a ∈ ΨCΨ(J)+ by definition of

ΨC . Thus, Ψ(J) ⊆ ΨCΨ(J).

(xi): If {Tγ}γ∈Γ ⊆ CP(A,B) is a (norm-)bounded net that converges in point-

norm to T ∈ L(A,B), then T ∈ CP(A,B) and the net

{Tγ ⊗max id}γ∈Γ ⊆ CP(A⊗max D,B ⊗max D)

converges point-wise to Tγ ⊗max id, because A�D is dense in A⊗max D. Thus, if

Tγ⊗max id ∈ C′ for all γ ∈ Γ, then T⊗max id ∈ C′. Clearly, the set C of T ∈ CP(A,B)

with T ⊗max id ∈ C′ is convex. If T ⊗max id ∈ C′, r ∈M1n(A), c ∈Mn1(B), e ∈ D+,

then R := r ⊗ e ∈M1n(A⊗D), C := c⊗ e ∈Mn1(B ⊗D), and

R∗((T ⊗max id)⊗ (idn))(C∗(·)C)R = T ′ ⊗max Se

for T ′ := r∗(T ⊗ idn)(c(·)c∗)r and Se(d) := e2de2 (d ∈ D). Since C′ is matrix

operator convex and is point-norm closed,it follows that T ′⊗max id ∈ C′. Thus, the

set C ⊆ CP(A,B) of T ∈ CP(A,B) with T ⊗max idD ∈ C′ is a point-norm closed

matrix operator convex cone.

(xii): The point-norm closure C0 := Cnorm
closure of C is a convex cone with

c∗(V ⊗ idn)(r∗(·)r)c ∈ C0 for r ∈ Mn,1(A), c ∈ M1,n(B) and V ∈ C0. Since the

point-*strong closures of C and C0 in L(A,M) coincide, and since Vγ ⊗ idn →
W ⊗ idn point-*strongly if Vγ → W point-*strongly , we obtain that the point-

*strong closure C ⊆ L(A,M) is a convex cone that satisfies c∗(W⊗idn)(r∗(·)r)c ∈ C0
for r ∈Mn,1(A), c ∈M1,n(B) andW ∈ C. The unit-ball ofMn(B) is *-ultrastrongly

dense in the unit-ball of Mn(M) by Kaplansky density theorem ([616, Thm. 2.3.3]).

Thus, for c ∈ M1,n(M) there exists a net cγ ∈ M1,n(B) with ‖cγ‖ ≤ ‖c‖ that

*strongly converges to c. Thus, the point-*strong closure C satisfies (OC2).
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check next argument ??(xii) If Vγ ∈ C converges in point-σ(M,M∗) topology

to W ∈ Lin(A,M), then W (e2) ≥ 0 for every e ∈ A+. In particular, W is positive

and bounded, thus lim supγ ‖Vγ(e2)‖ =: µ < ∞ by uniform boundedness theorem

(Banach-Steinhaus). It implies that W is also in the point-σ(M,M∗) closure of the

convex set of V ∈ C with ‖V ‖ ≤ µ. An Hahn-Banach separation argument shows

now that W ∈ C.

(xiii): ΨS(
∑
γ Iγ) =

∑
γ ΨS(Iγ) and a ∈ ΨS(ΨS(I)) for a ∈ I / A follow

straight from the definitions of ΨS and ΨS . �

Compare also Example 3.8.3!!!

Example 3.12.3. We consider the action Ψnuc : I(B) → I(A) defined by

CPnuc(A,B) and examine some possible generating subsets S0 ⊆ CP(A,B) for

CPnuc(A,B).

Let S ⊆ A∗+ denote an “almost separating” set of positive functionals on A

that is invariant under inner automorphisms of A, more precisely:

for each a ∈ A+ there is ϕ ∈ S and h∗ = h ∈ A with ‖h‖ < π such that with

ϕ(exp(ih)a exp(−ih)) > 0. For example we can take as S the set of pure states of

A, or any set S of pure-states ϕ of A such that the family {dϕ}ϕ∈S of irreducible

representations of A is separating for A.

Furthermore, let P ⊆ B+ a set of positive elements of B that generates B as a

closed ideal of B, i.e., for each c ∈ B+ and ε > 0, there are b1, . . . , bn ∈ P and

d1, . . . , dn ∈ B with ‖c−
∑
k d
∗
kbkdk‖ < ε .

We consider the set of S0 := SS,P ⊆ CP(A,B) of c.p. maps Vϕ,b(a) := ϕ(a)b,

where ϕ ∈ S and b ∈ P , and calculate the action Ψ0 : I(B)→ I(A) defined by S0:

We have Ψ(S0)(B) = A by Lemma 3.12.2(iv). Let J 6= B a close ideal of B. Then

there is b ∈ P that is not in J . If 0 6= a ∈ A+ then there is h∗ = h ∈ A with ‖h‖ < π

and ϕ ∈ S with ϕ(exp(ih)a exp(−ih)) > 0. It follows that Vϕ,b(exp(ih)a exp(−ih))

is not contained in J .

Thus ΨS0(J) = {0} for every closed ideal J 6= B and ΨS0(B) = A.

Since S0 ⊆ CPf (A,B) ⊆ CPnuc(A,B) ⊆ CP(A,B) we get ΨCP(A,B) =

ΨCPnuc(A,B)(J) ⊆ ΨC0(J) for all closed ideals J of B. Thus,

ΨCP(A,B) = ΨCPnuc(A,B) = ΨS0
.

The special case where A = B is not nuclear shows that,

in general, the lower semi-continuous action ΨC : O(Prim(B)) → I(A) defined by

a m.o.c.c. C ⊆ CP(A,B) does identify C itself.

The situation of example 3.12.3 changes considerably if we consider, instead

of ΨC , the action Ψ′ : I(B ⊗max C) → I(A ⊗max C) that is defined by the point-

norm closed m.o.c.c. C ⊗max CPin(C,C) ⊆ CP(A ⊗max C,B ⊗max C), where C :=

C∗(F∞) denotes the full group C *-algebra over the free group F∞ on countably

many generators and where C ⊗max CPin(C,C) is generated by the tensor products

V ⊗max idC with V ∈ C. Then the following theorem holds:
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Theorem 3.12.4 (Separation of m.o.c.c.’s). Let S ⊆ CP(A,B) a set of c.p.

maps, and denote by Ψ′ : I(B ⊗max C) → I(A ⊗max C) the action that is defined

by the set S ′ of c.p. maps V ⊗max idC : A⊗max C → B ⊗max C.

Then a c.p. map T : A→ B is in the point-norm closed matrix operator-convex

cone C(S) generated by S, if and only if, T ⊗max idC is Ψ′-equivariant.

Compare also Thm. 3.8.4

Proof. Let Ψ′ := ΨS′ : I(B ⊗max C) → I(A ⊗max C) be the l.s.c. action of

Prim(B⊗maxC) on A⊗maxC defined by the set S ′ of c.p. maps V ⊗max idC : A⊗max

C → B ⊗max C for V ∈ S, cf. Lemma 3.12.2(iv).

We denote by C′ ⊆ CP(A⊗maxC,B⊗maxC) the cone C′ := CΨ′ = CP(Ψ′;A⊗max

C,B ⊗max C) of Ψ′-equivariant maps.

Then C′ is a point-norm closed matrix operator convex cone by Lemma

3.12.2(vii).

The set C ⊆ CP(A,B) of all T ∈ CP(A,B) with T ⊗max idD ∈ C′ is a point-

norm closed matrix operator convex cone that contains S, cf. Lemma 3.12.2(xi),

i.e., C(S) ⊆ C and (V ⊗max idC)(Ψ′(J)) ⊆ J for all closed ideals J of B ⊗max C.

?????????

�

13. Graded m.o.c. cones

Needed topics:

Graded Hilbert B-modules E and interplay with grading on B.

Opposite Eop module: Interchange of the Z2 “eigen” spaces.

Opposite grading on B for Eop?

Gradings on Eop. Induced grading on L(E) is given by conjugation with the

grading operator α on E :

T ∈ L(E)(0) if and only if T commutes with α.

T ∈ L(E)(1) if and only if T anti-commutes with αTα = −T , i.e., αT +Tα = 0.

Notation on graded C *-algebras A :

α or αA is a C *-automorphism of order 2.

A(0) := {a ∈ A ; αA(a) = a}, A(1) := {a ∈ A ; αA(a) = −a},

(also denoted by A0, A1)

a ∈ A(0) ∪ A(1) are “homogeneous”. Depending if a ∈ A(0) or a ∈ A(1) for

homogeneous a ∈ A is defined a degree deg(a) := j =: ∂a if a ∈ A(j).

The graded commutator [a, b]gr in a graded algebra A with grading automor-

phism α ∈ Aut(A) is defined by [a, b] = ab − ba if α(a) = a or α(b) = b i.e., if
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a, b ∈ A0. Defined in general by:

[a, b]gr := ab− (−1)deg(a)·deg(b)ba

It gives [a, b]gr = ab − ba if at least one of a, b has degree zero. if both have

degree one, i.e., deg(a) = 1 = deg(b), then [a, b]gr := ab+ ba ∈ A(0) .

Gradings on m.o.c. cones C. ĤB for graded B. Effect to passage to opposite

grading on B, HB and ĤB := HB ⊕HopB .

Related grading on HC : A→ L(HB) ???

Interplay of grading with on A and B with CP(A,B) ⊂ L(A,B)? What kind

of compatibility of m.o.c. cones C ⊆ CP(A,B) is necessary to get that HC : A →
L(ĤB) becomes grading preserving?

Change on E the “eigen” spaces but not the grading on L(E)?

E = E(0) ⊕ E(1) (Is this really the orthogonal sum ?)

The action of graded B should be (all calculated modulo 2):

E(m)B(n) ⊆ E(m+n)

and

E(m), E(n) ⊆ B(m+n)

Eop = (Eop)(0)⊕ (Eop)(1) is same E, but with (Eop)(0) := E(1) and (Eop)(1) :=

E(0).

Means replacing the order-2 grading isomorphism α by (−1) · α.

(Don’t know what happens if E(1) = 0, then only 0 is fixed?)

See sec. 14.2 of Blackadar K-theory.

Standard odd grading on A⊕ A is given by (A⊕ A)(0) = {(a, a) ; a ∈ A} and

(A⊕A)(1) = {(a,−a) ; a ∈ A} .

If A = C then C1 is a Clifford algebra, isomorphic to the group C *-algebra of

Z2 .

Standard even grading on M2(A) is given by conjugation with diag(1,−1),

i.e., M2(A)(0) are the diagonal matrices, and M2(A)(1) are the matrices with zero

diagonal.

If α is grading on A and β grading on Hilbert B-module E and φ : A→ L(B)

is grading preserving. Then:

(0.) β := −α is the opposite grading on E.

(1.) ψ := φ ◦ β : A → L(E) is grading preserving for Eop if φ was grading

preserving for for the grading on L(E).

(2.) If (E, φ, F ) is a Kasparov module then (Eop, ψ,−F ), (E⊕Eop, φ⊕ψ,G(t))

are Kasparov module for the 2× 2-matrix G(t) with entries G(t)11 := cos(tπ/2)F ,

G(t)22 := − cos(tπ/2)F , G(t)12 := sin(tπ/2) and G(t)12 := sin(tπ/2) .
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The G(t) is a linear combination of diag(F,−F ) = G(1) and G(0) . Both have

degree 1 under the grading diag(α,−α)(·) diag(α,−α) in Lin(E ⊕Eop). The G(0)

commutes with φ(a) ⊕ ψ(a) = diag(φ(a), ψ(a)) for all a ∈ A with αA(a) = a, and

“anti-commutes” for all a ∈ A with αA(a) = −a . This is because deg(G(0)) = 1,

A ∈ a 7→ diag(φ(a), ψ(a)) is grading preserving, i.e., deg(diag(φ(a), ψ(a))) = 1 in

M2(L(E)) if deg(diag(φ(a), ψ(a))) = 1 and

[G(0),diag(φ(a), ψ(a)) ]gr = G(0) · diag(φ(a), ψ(a)) + diag(φ(a), ψ(a)) ·G(0) = 0

In a the graded C *-algebra L(E ⊕ Eop) we have the grading automorphism

α(·)α for the grading α := αE ⊕ (−αE) coming from the grading on E ⊕ Eop :

And α ·G(1) · α = −G(1) ???



CHAPTER 4

Comparison and Addition of some C*-morphisms

Actual plan:

(A) Remove 2-fold explanations/definitions

(B) Finish proof of Thm. 4.4.6.

(C) Outline ‘‘germ’’ of un-suspended but stable variant of E-theory.

In particular:

(C1) Derive central sequences of copies of O2 for O2

(C2) Derive approximate unitary equivalence of all unital

endomorphisms of O2 and of O∞.
(C3) Derive needed central sequences from this.

(C4) Also quasi-central asymptotic paths of copies of O2 and of O∞
... ??

(C?? from Into 1.)

“Squeezing Property” implies K1-injectivity. See Chp. 4. for definitions!

Here a question remains:

When K1-injectivity implies the Squeezing Property?

At least in unital separable nuclear case ??

(Would be very nice ! But have no idea about this)

We study here some properties of Cuntz addition, that is, a “sum” of mor-

phisms in the category of C *-algebras, more generally we consider “sums” of general

maps between C *-algebras. This idea of an addition has been used implicitly in the

topological K-theory of C *-algebras since a long time, but without precise descrip-

tion e.g. of the “almost ridiculous ” relationship between the isomorphisms of K
with M2(K) and unital representations of the Cuntz algebra O2 in M(K) = L(H),

needed for precise algebraic definition of equivalence classes of asymptotic and

in some sense “equivariant” C *-morphisms. It was J. Cuntz ([172], [169]) who

pointed out in a more general context that a unital copy of O2 or at least of O∞ is

needed to adjust them carefully. The natural transformations between those copies

of O2 are present for our definitions of sorts of equivariant theories by actions of

groups, ideal-lattices or categories of matrix-convex cones.

The point is that we use them later to describe the constructive aspects of the

used Ext-, KK-theories and unsuspended variants of cone-depending E-theory that

corresponds to them.

471
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The general notion of Cuntz addition is related to K∗-theory (cf. Lemma 4.2.6

and Proposition 4.4.3). It is taylor-made for our study of nuclear asymptotic C *-

morphisms into non-simple purely infinite algebras in Chapters 3, 5 and 7. And

it helps to describe the construction of our more general KK(C ; ·, ·)-theory for

operator-convex cones C in Chapter 8. The Cuntz addition is neither a direct

product nor a direct sum in the usual sense of category theory – here on the category

of C *-algebras. This restricts “straight borrowing” from category theory analogies.

The considered situations and constructed objects appear only modulo various

ideals in its applications in Chapters 5, 7, 8 and 9. We apply the here proved

results, after dividing by suitable ideals in question. But this has to be done with

some care:

Two C *-morphisms h1, h2 : D → E into a unital C *-algebra E can become

unitarily equivalent after dividing out an ideal J of E. In general, then there is no

unitary u in the original algebra with h1(a)− u∗h2(a)u ∈ J for all a ∈ D . But in

the particular situation where this unitary equivalence in E/J can be realized by a

unitary in the connected component U0(E/J) of 1 in U(E/J) , then this unitary can

be lifted to a unitary in E. This is, for example, the case if there exists an isometry

r ∈ E/J with r∗πJ(h1(d) + h2(d))r = 0 for d ∈ D, cf. Proposition 4.3.6(iv). It

applies e.g. to equivalence of stable extensions, cf. Chapter 5, and to asymptotic

C *-morphisms into stable σ-unital algebras, cf. Chapter 7 and Corollary 4.6.7.

Recall here that U(E) denotes the unitary group of a unital C *-algebra E and

U0(E) ⊆ U(E) the connected component of 1 ∈ U(E).

We consider also some real C *-algebras and real versions E = ER of C *-

algebras E, e.g. the real versions (O2)R, (E2)R and C∗(P,Q, 1)R of O2, E2 and

the universal unital (complex) C *-algebra C∗(P,Q, 1)R ⊗R C generated by two

projections.

We do not discuss KK-theory of real C *-algebras here, but it seems natural

to use the real basic algebras, because the complex versions are often just natural

complexification of the real version. In the real cases E = ER, (O2)R and (E2)R we

use also the notations “unitary”, U(E) and U0(E) instead of “orthogonal operator”,

O(E) and SO(E), for the orthogonal operators u ∈ E, respectively for u ∈ E in

the connected component of 1 in O(E).

Formulas that cover also the “real” case look sometimes more complicate.

If the reader wants simpler formulas for complex C *-algebras E then he can

replace e.g. the order 4 unitary

(1− zz∗ − z∗z) + (z∗ − z) = exp((π/2)(z∗ − z)) ∈ U0(E)

for partial isometries z with z2 = 0 by the symmetry (1 − zz∗ − z∗z) + (z∗ + z).

Symmetries are not necessarily in U0(E) if E is a real C *-algebra. But there are

also real C *-algebras where every symmetry is connected inside the orthogonal

operators with 1 by a path of orthogonal operators. Examples are all real unital



4. COMPARISON AND ADDITION OF SOME C*-MORPHISMS 473

C *-algebras that have a central sequence of unital copies of M2(R), i.e., that absorb

the real UHF algebra M2(R)⊗M2(R)⊗ · · · tensorial.

This is one of the reasons that we try to express canonical transformations as

products of Halmos unitaries (defined in Remark 4.2.4), because those are also for

real unital C *-algebras A connected to 1 in U(A).

We need the verification of the homotopy invariance for definitions and con-

structions, those “soft” homotopy invariances will be later used to prove “hard”

unitary homotopy in the sense of Definition 5.0.1. The passage to unitary homo-

topy is a basic tool in our proofs of classification results from stable homotopy

coming from KKX -equivalences or from the more general KK(C; ·, ·)-equivalences.

The results of Lemmata 4.2.6, 4.2.10 and Propositions 4.2.11, 4.2.15, 4.3.6 and

4.4.3 will be used in the proofs in Chapters 5, 7, 8, 9 and 11. Theorem 4.4.6 plays

a crucial role in the proof of the first parts of Theorems B and M, that are given in

Chapters 6 and 9 – in case of Theorem M with an additional separation assumption

that will be removed later in Chapter 12 by the last step in the proof of Theorem

K that uses the very special case of Theorem M proven before in Chapter 6.

Definition 4.0.1. Let E a C *-algebra such that its multiplier algebraM(E)

contains a copy of O2 unitally. For a fixed pair of generators s1, s2 of O2 inM(E),

we define the Cuntz addition ⊕s1,s2 in E as follows:

a⊕s1,s2 b = s1as
∗
1 + s2bs

∗
2 ; a, b ∈ E .

We define and use in the “overview” Lemma 4.2.6 also a generalization of this

addition, that is more natural, up to certain transformations and up to unique-

ness depending from K1-injectivity. A careful study of all transformations is in

particular necessary if one wants to go into further research concerning equivariant

actions of lattices, groups, quantum groups, groupoids, etc. After discussing some

basic material on absorbing elements in Abelian semigroups and compatibility of

projections, we study some less trivial properties of the generalized Cuntz addi-

tion of C *-morphisms. This is not new, but gives a constructive “algebraic” base

for our in applications used versions of K-theory, cone-depending KK-theory and

unsuspended “continuous” E-theory.

Remark 4.0.2. The above defined Cuntz addition is a unital *-monomorphism

from E⊕E into E. It is, up to unitary equivalence in E, independent of the choice

of copies of O2: If s1, s2 and t1, t2 are generators of two copies of O2 in E, then

a⊕s1,s2 b := u(a⊕t1,t2 b)u∗ for all a, b ∈ E

where u := s1t
∗
1 + s2t

∗
2 ∈ E is a unitary.

More generally, one can add n elements of E along generators of a unitally

contained copy of On in E with generators s1, . . . , sn in the natural way:

(a1, a2, . . . , an) 7→
∑

siais
∗
i .
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As before the sum is independent of the choice of generators – up to unitary equiv-

alence by a fixed unitary. Notice that O2 contains all Cuntz algebras On, n ∈ N,

unitally, e.g. O3
∼= C∗(s1, s2s1, s

2
2). (In fact every separable unital exact C *-algebra

is isomorphic to a unital C *-subalgebra of On by – cite: Kirchberg-Phillips.)

Computation shows that adding along On is the same as successively adding

along O2 – up to unitary equivalence. In particular, Cuntz addition is associative

and commutative up to (global) unitary equivalence.

The uniqueness up to unitary equivalence allows us to write sometimes simply

⊕ instead of ⊕s1,s2 if we consider unitary equivalence classes and different unital

copies of O2 in a given C *-subalgebra of E.

The generators of a copy of O2 define an “almost inner” *-isomorphism ψ from

M2(E) onto E, by

ψ : [aik] ∈M2(E) 7→ v[aik]v> =
∑
ik

siaiks
∗
k ∈ E ,

where v is the row matrix v := [s1, s2] ∈M1,2(E) .

There exists a unitary matrix V ∈ M4(E) (a Halmos unitary as in Remark

4.2.4) such that V ∗ diag(p; 0, 0)V = diag(ψ(p), 0; 0, 0) for all projections p ∈M2(E)

and V ∗ diag(u; 1, 1)V = diag(ψ(u), 1; 1, 1) for all unitaries u ∈ M2(E), cf. proof of

Lemma 4.2.6(v,2).

Therefore, equivalence and homotopy in M2n(E) can be over-carried to equiv-

alence and homotopy in E itself.

In some calculations it plays a role if this can be made only up to unitary

equivalence or, moreover, up to unitary homotopy. This difference has usually to

do with problems related to K1-injectivity and has forced us to show at least all (not

necessarily simple) purely infinite unital C *-algebras are K1-injective, cf. Proposi-

tion 4.2.15(b), respectively Lemma 4.2.13 for the “squeezing property” of Definition

4.2.14 that induces K1-injectivity by Proposition 4.2.15(?).

discover what???

!!! HIER BIN ICH !!!!

KUERZE DAS ZEUG ODER GEBE GENAUE DEF’S, FORMELN AN ...

A detailed discussion of the required transformation and precise conditions for

uniqueness – up to unitary homotopy – will be given in the proofs of Lemma 4.2.6,

that considers a generalized version of Cuntz addition on A in the case where here

E := M(A) is properly infinite.

The below given Lemmata 4.1.3, 4.2.3 and 4.2.6 collect some basic facts con-

cerning the description of K∗(E) for properly infinite unital C *-algebras E by

Murray–von Neumann equivalence classes of properly infinite projections in E (re-

spectively by homotopy classes of unitaries in E), and they rephrase some technics

appearing in proofs of [172] and of [180]. In particular the notions of absorption
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and domination will be discussed in connection with some technics to surround a

possibly missing K1-injectivity for some properly infinite C *-algebra.

We show that all purely infinite unital C *-algebras have the more general

“squeezing property” of Definition 4.2.14 that induces K1-injectivity by ???????

1. Two projections in C*-algebras

We have often, but sometimes only “implicit”, to do with two projections and

their relative positions, e.g. with the open support projections of two closed left

ideals, or with positions of two hereditary C *-subalgebras of a C *-algebra A. We

consider in this Section 4.1 only selfadjoint projections, i.e. in the following a

“projection” p in a C *-algebra A ⊆ L(H) means always an orthogonal projection

on a real or complex Hilbert space H, i.e., p = p∗p. Then 0 ≤ p = p2 and we

denote the set of projections in A by Proj(A). The group of unitary elements in

the unitization Ã will be denoted by

Or if we study orthogonality of positive elements of A ...

This ??????

Projections p, q ∈ A (respectively unitaries u, v in the unitization Ã of A) are

homotopic — denoted by p ∼h q (respectively u ∼h v ) —, if there is a (continuous)

path t ∈ [0, 1] 7→ p(t) ∈ Proj(A) (respectively t ∈ [0, 1] 7→ u(t) ∈ U(Ã) ) such that

p(0) = p and p(1) = q (respectively u(0) = u and u(1) = v).

Here a ∼MvN b for a, b ∈ A+ means Murray–von-Neumann equivalence

– also denoted by [a]MvN = [b]MvN or simply by a ∼ b – and is defined as the

existence of d ∈ A with d∗d = a and dd∗ = b.

The notation p ∼ q (more precisely p ∼MvN q) for projections p, q ∈ A denotes

Murray–von-Neumann equivalence, i.e., the existence of v ∈ A with v∗v = p and

vv∗ = q. Recall that this implies [p] = [q] in K0(A).

Beginning from HERE some text of old Appendix has to be integrated

!!!

Ends up ????

Integrate next into the further below considerations!!!

Lemma 4.1.1. Suppose that A is a C*-algebra, and let p, q ∈ A projections.

(i) If ‖pq‖ < 1, then 0 is isolated in Spec(p + q). And q ∼h (1B − p) inside

the unital C*-subalgebra B := C∗(p, q) ⊆ (p+ q)A(p+ q).

(Is identical with (p+q)−ξ1M(A) invertible inM(A) for all non-zero

ξ ∈ C with 0 < |ξ| <???? for small ????. Explicit bound ???? )

(ii ???) There is a (norm-continuous) path [0, 1] 3 t 7→ u(t) ∈ U(Ã) with u(0) = 1

and u(1)∗pu(1) = q, if and only if, p ∼h q in A.

(If A is unital, then a path t 7→ u(t) with u(0) = 1 and u(1)∗pu(1) = q.

can be found in U(A) itself.)



476 4. COMPARISON AND ADDITION OF SOME C*-MORPHISMS

(ii,iii): See [692, prop. 2.2.6], or [73, prop. 4.3.3, prop. 4.6.3], or

[207, prop. IV.1.2, lem.IV.1.4].

(iii ???) If ‖pq‖ < 1, and if there exists a partial isometry z ∈ A with z∗z = p and

zz∗ = q, then p ∼h q.

Proof: (ii,iii): See [692, prop. 2.2.6], or [73, prop. 4.3.3, prop. 4.6.3], or [207,

prop. IV.1.2, lem.IV.1.4].

(iii): By (i), there is a path t 7→ q(t) ∈ Proj(A) with q(0) = q and q(1)p = 0,

and by (ii), there is a unitary u ∈ U0(Ã) with u∗qu = q(1). Then w := u∗z satisfies

w∗w = p and ww∗ = q(1). Thus, s := w∗+w+(1−p−q(1)) is a self-adjoint unitary

in Ã with sps = q(1). Hence, (us)p(us)∗ = q and us ∈ U0(Ã). If t 7→ U(t) ∈ U(Ã)

is a path with U(0) = 1 and U(1) = (us)∗, then t → p(t) := U(t)∗pU(t) is the

desired path, and p ∼h q .

Recall that a hereditary C *-subalgebra D ⊆ A is full in A if the ideal of A

generated by D is dense in A. An element b ∈ A is full in A if the linear span of

AbA is dense in A, i.e., if A = J(b) for the closed ideal J(b) of A generated by {b}.
In particular, a projection p∗p = p ∈ A is a full projection of A if the hereditary

C *-subalgebra pAp of A is full in A.

Remark 4.1.2. Let D ⊆ A a full hereditary C *-subalgebra of A, then the

inclusion map η : a ∈ D 7→ a ∈ A defines an isomorphism η∗ from K∗(D) onto

K∗(A) .

In particular, [q1] = [q2] in K0(D) if q1, q2 ∈ Mn(D) and there are projections

p1, p2 ∈ A with [p1] = [p2] in K0(A) and pk ∼MvN qk in Mn(A) for k = 1, 2.

The study of sufficient and necessary criteria for K1-injectivity of a given prop-

erly infinite unital C *-algebra A requires some basics on pairs of projections p, q ∈ A
that are “almost compatible” in the sense that min(‖(1−q)p‖, ‖(1−p)q‖) < 1. The

notation M2 means in the following lemma the algebras M2(R) or M2(C) – depend-

ing if we consider a real or complex C *-algebra C∗(p, q, 1) generated by projections

p, q. The Lemma itself should be “folklore”, but since we use it in several proofs

for estimates and check of “controlled” homotopy we give a careful detailed and

elementary proof. Some of it can be also obtained by observing first that the

“universal” unital C *-algebra C∗(P,Q, 1) := C∗(P,Q, 1 ; P ∗P = P, Q∗Q = Q) is

naturally isomorphic to the group C *-algebra C∗(ZoZ2). The viewpoint of Lemma

4.1.3 is to derive algebraic and geometric informations from the behaviour of the

norms (i.e., the “distance”) about the kind of algebra they generate and how looks

a unitary that transforms the symmetries into each other. We extract rules for

moving near elements with help of a path in the inner automorphisms. A mainly

operator theoretic and algebraic big overview is contained in [101], but there with

some different terminology.

Lemma 4.1.3. Let A a real or complex unital C*-algebra and p, q ∈ A projec-

tions.
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(i) The C*-algebra C∗(p, q, 1) has a character χ with |χ(p − q)| = 1 and

χ(pq) = 0, if and only if, ‖p − q‖ = 1, if and only if, ‖(1 − q)p‖ = 1 or

‖(1− p)q‖ = 1.

If ‖p− q‖ < 1 then ‖p− q‖ = ‖(1− q)p‖ = ‖(1− p)q‖ . In particular,

always ‖p− q‖ = max
(
‖(1− q)p‖ , ‖(1− p)q‖

)
.

In more detail: If ‖(1− q)p‖ < 1 then the following properties (a)–(d)

are equivalent:

(a) ‖(1− p)q‖ = 1.

(b) ‖p− q‖ = 1.

(c) There exist a projection p0 6= 0 in C∗(p, q) with q0 ≤ 1− p, q0 ≤ q.
(d) There exists a character χ on C∗(p, q, 1) with χ(q) = 1 and χ(p) = 0.

(ii) Always Spec(p+ q) ⊆ {0} ∪ [1− ‖pq‖, 1 + ‖pq‖] .

In particular, if ‖pq‖ < 1 then 0 is isolated in Spec(p+ q), and q ∼h
(1B−p) inside the unital C*-subalgebra B := C∗(p, q) ⊆ (p+ q)A(p+ q).

The hereditary C*-subalgebra (p+ q)A(p+ q) of A – generated by p+ q –

is unital and coincides with the algebraic *-algebra (p + q)A(p + q) with

unit gδ(p + q) ≤ δ−1 · (p + q), where δ := (1 − ‖pq‖)/2 and gδ(t) :=

min(1,max(0, t− δ)).
(iii) The universal unital real (or complex) C*-algebra C∗(P,Q, 1) generated

by two projections P,Q is naturally isomorphic to the C*-subalgebra of

C([0, π/2],M2), that is generated by 1 := 12 ∈M2, P =: e11 = [ηjk] ∈M2

with η11 = 1 and ηjk = 0 for (j, k) 6= (1, 1), and Q := exp(−H)P exp(H),

where H ∈ C([0, π/2],M2) is given by H(ϕ) := ϕ · Z (ϕ ∈ [0, π/2]) for

Z := [ζjk] ∈M2 with ζjk := j − k, j, k ∈ {1, 2}.
(iv) If A is unital and ‖(1 − q)p‖ < 1, then exist h ∈ C∗(p, q) ⊆ A and

a projection q0 ∈ C∗(p, q) with q0p = 0, php = 0 = (1 − p)h(1 − p),

h∗ = −h ( 1 ), and ‖h‖ = arcsin ‖(1 − q)p‖ < π/2, such that hq0 = q0h

and

exp(−h)p exp(h) + q0 = exp(−h)(p+ q0) exp(h) = q .

The projection q0 is non-zero if and only if ‖(1− p)q‖ = 1.

(v) If A is unital and ‖p − q‖ < 1 then there exists h ∈ C∗(p, q) ⊆
(p+ q)A(p+ q) with h∗ = −h such that exp(−h)p exp(h) = q, ‖h‖ =

arcsin ‖p− q‖ < π/2 and php = 0 = (1− p)h(1− p).
(vi) If ‖pq‖ < 1 and ‖p − q‖ < 1, then there exists h ∈ (p + q)A(p + q) with

h∗ = −h, php = 0 = (1 − p)h(1 − p) and ‖h‖ = arcsin ‖p − q‖ such that

exp(h) ∈ (p+ q)A(p+ q) and q = exp(−h)p exp(h).

(old i) If ‖pq‖ < 1, then 0 is isolated in Spec(p + q). And q ∼h (1B − p) inside

the unital C*-subalgebra B := C∗(p, q) ⊆ (p+ q)A(p+ q).

(Is identical with (p+q)−ξ1M(A) invertible inM(A) for all non-zero

ξ ∈ C with 0 < |ξ| <???? for small ????. Explicit bound???? )

(old i and ii ???) There is a (norm-continuous) path [0, 1] 3 t 7→ u(t) ∈ U(Ã) with u(0) = 1

and u(1)∗pu(1) = q, if and only if, p ∼h q in A.

1 Thus, if A is complex then (ih)∗ = ih.
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(If A is unital, then a path t 7→ u(t) with u(0) = 1 and u(1)∗pu(1) = q.

can be found in U(A) itself.)

The elementary realization C∗(P,Q, 1) ⊂ C([0, π/2],M2) of the universal unital

C *-algebra generated by two projections – as defined in Part (iii) – and its proper-

ties will be used in the proofs of Parts (iv) and (vi) and on other places, e.g. Remark

4.5.7. Compare Remark 4.5.8 for an alternative approach if A is complex.

Proof of Lemma 4.1.3. (i): The C *-subalgebra C∗(p, q) ⊆ A generated by

p and q is an ideal of C∗(p, q, 1). If p+q is not invertible in C∗(p, q, 1) then C∗(p, q)

is the kernel of the character χ0 on C∗(p, q, 1) with χ0(p) = χ0(q) = 0. Notice that

(p+ q)/2 is a strictly positive contraction of the C *-algebra C∗(p, q).

The W*-algebras generated by two projections p∗ = p = p2 and q∗ = q = q2

are described in [767, chp.V, thm. 1.41]. It implies in particular the below listed

observations concerning the characters and the irreducible representations of any

unital C *-algebras C∗(p, q, 1) generated by two projections p, q.

It does not matter here if we consider here real or complex C *-algebras.

Real or complex unital C *-algebras C∗(p, q, 1) generated by (self-adjoint) pro-

jections p, q have only 1- or 2-dimensional irreducible *-representations.

The algebra C∗(p, q, 1) admits at most 4 different characters.

Alternatively, one can obtain the above and below listed properties of C∗(p, q, 1)

by straight calculation from the identities (p − q)2p = p(p − q)2 and (p − q)2q =

q(p − q)2, i.e., from the fact that the positive self-adjoint contraction (p − q)2 is

always in the center of C∗(p, q, 1).

The selfadjoint contraction (D(p)−D(q))2 is necessarily a non-negative scalar

for each irreducible representation D : C∗(p, q, 1) → L(H), which implies immedi-

ately that the Hilbert space H has dimension ≤ 2. It has dimension = 2 if and only

if the projections D(p) and D(q) do not commute. The latter can only happen if the

projections D(p) and D(p) have rank one and D(pqp) = αD(p) for some α ∈ (0, 1).

The scalar α defines our parameter ϕ := arccos(α1/2) = arcsin ‖D(p − q)‖ that

determines D up to unitary equivalence (respectively orthogonal equivalence in the

real case).

The parameter

ϕ := arcsin ‖D(p(1− q))‖ = arccos ‖D(pq)‖ ∈ (0, π/2)

determines all unitary equivalence classes of 2-dimensional irreducible *-represent-

ations D : C∗(p, q, 1)→M2 uniquely, because arccos ‖rs‖ determines all pairs (r, s)

of non-commuting orthogonal projections r, s ∈ M2 (necessarily both of rank one)

up to unitary equivalence in M2:

If r, s ∈ M2 are projections that do not commute, there exists u ∈ O(2) (re-

spectively u ∈ U(2)) such that u∗ru = P := e11 := [ηjk] with η11 = 1 and ηjk = 0

for (j, k) 6= (1, 1) and that u∗su = [αjk] with real α12 < 0.
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It follows that there is unique ϕ ∈ (0, π/2) such that

u∗su = Q(ϕ) := [cos(ϕ),− sin(ϕ)]> · [cos(ϕ),− sin(ϕ)] .

Thus, P −Q(ϕ) = sin(ϕ) · T where T ∗ = T = [tjk] with t11 = sin(ϕ) = −t22, t1,2 =

t2,1 = cos(ϕ) for some ϕ ∈ (0, π/2). It follows T 2 = 12 and (P−Q(ϕ))2 = sin(ϕ)212 ,

u∗(r− rsr)u = P −PQ(ϕ)P = sin(ϕ)2P and u∗(1− r)s(1− r)u = sin(ϕ)2(1−P ) .

Thus, if r, s ∈ M2 are projections with rs 6= sr then 0 < ‖r − s‖ < 1 and ϕ :=

arcsin(‖r − s‖) ∈ (0, π/2) satisfies

sin(ϕ) = ‖r − s‖ = ‖(1− s)r‖ = ‖(1− r)s‖ .

Let p, q ∈ A projections with p 6= q. Since e.g. (1 − q)(p − q) = (1 − q)p, we get

that ‖p− q‖ ≥ max
(
‖(1− q)p‖ , ‖(1− p)q‖

)
. If ‖(1− q)p‖ = 0 = ‖(1− p)q‖, then

p ≤ q and q ≤ p, i.e., ‖p− q‖ = 0.

If 0 < ‖p−q‖ < 1, then there exists a pure state ρ on C∗(p, q, 1) with |ρ(p−q)| =
‖p− q‖.

Since 0 < |ρ(p− q)| < 1, the state ρ can not be multiplicative on C∗(p, q), i.e.,

the corresponding irreducible representation is necessarily 2-dimensional.

Let D : C∗(p, q, 1) → M2 the irreducible GNS representation of C∗(p, q, 1) de-

fined by ρ and let λ a state on M2 with ρ = λ ◦ D. Then we get that r := D(p)

and s := D(q) satisfy

|λ(r − s)| ≤ ‖r − s‖ ≤ ‖p− q‖ = |ρ(p− q)| = |λ(r − s)| ,

i.e., ‖r − s‖ = ‖p− q‖ < 1. It leads to

‖(1− q)p‖ ≤ ‖p− q‖ = ‖r − s‖ = ‖(1− s)r‖ ≤ ‖(1− q)p‖

and

‖(1− p)q‖ ≤ ‖p− q‖ = ‖r − s‖ = ‖(1− r)s‖ ≤ ‖(1− p)q‖

by the above mentioned properties of non-commuting projections (r, s) in M2.

If ‖p − q‖ = 1 then C∗(p − q, 1) has a character ρ with |ρ(p − q)| = 1 . Since

χ(1) = 1 and ‖χ‖ ≤ 1, the character ρ extends to a state χ on C∗(p, q, 1) by Hahn-

Banach extension. The state χ satisfies χ(p), χ(q) ∈ [0, 1] and |χ(p)− χ(q)| = 1. It

follows that χ(p), χ(q) ∈ {0, 1} and χ(p)χ(q) = 0. In particular, 1, p and q are in

the multiplicative domain of the unital completely positive map χ from C∗(p, q, 1)

into R (respectively into C), because in both cases χ(p)2 = χ(p) = χ(p2) and

χ(q)2 = χ(q2).

It follows that χ is a character on C∗(p, q, 1) with |χ(p)− χ(q)| = 1.

Thus, χ is a character on C∗(p, q, 1) with χ(p − q) ∈ {+1,−1}. This implies

that (χ(p), χ(q)) is equal to (1, 0) or to (0, 1). In particular, 1 = χ(p − pqp) or

1 = χ(p− qpq). The latter implies 1 = ‖p− pqp‖ = ‖(1− q)p‖2 or 1 = ‖q − qpq‖ =

‖(1− p)q‖2 .

It yields that ‖p − q‖ = max(‖(1 − p)q‖, ‖(1 − q)p‖) and that ‖(1 − p)q‖ =

‖(1− q)p‖ if ‖p− q‖ < 1.
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We show the equivalence of the properties (a)–(d) in Part (i) under the pre-

assumption ‖(1− q)p‖ < 1, in row (a)→(b)→(d)→(a)→(c)→(a), where (b)→(d) is

a consequence of the pre-assumption, and only (a)→(c) is non-trivial.

(a)⇒(b): Since (1 − p)q = −(1 − p)(p − q), 1 ≥ ‖p − q‖ ≥ ‖(1 − p)q‖. Thus

‖(1− p)q‖ = 1 implies ‖p− q‖ = 1.

(b)⇒(d): Above we have seen that ‖p − q‖ = 1 implies the existence of a

character χ on C∗(p, q, 1) with |χ(p) − χ(q)| = 1. It follows that (χ(p), χ(q)) is

equal to (0, 1) or to (1, 0) and implies that max(χ(p), χ(q)) = 1 and χ(qp) = 0.

Since

1 > ‖(1− q)p‖ ≥ |χ((1− q)p)| = |χ(p)| ,

only the cases χ(p) = 0 and χ(q) = 1 remain.

(d)⇒(a): Suppose that there exists a character χ on C∗(p, q) with χ(p) = 0

and χ(q) = 1. Then ‖(1− p)q‖ = 1, because

1 = 1− χ(p) = χ(q − qpq) ≤ ‖q − qpq‖ = ‖(1− p)q‖2 ≤ 1 .

(a)⇒(c): Suppose that ‖(1 − p)q‖ = 1. Then ‖q − qpq‖ = ‖(1 − p)q‖2 = 1

and the positive element qpq of the C *-algebra qC∗(p, q, 1)q has necessarily 0 in its

spectrum:

0 ∈ Spec(qpq, qC∗(p, q, 1)q) .

Since our pre-assumption is equivalent to ‖1− (pqp+(1−p))‖ = ‖(1− q)p‖2 < 1, it

follows that the positive elements T := pqp+ (1− p) and Tp = pTp are invertible

in C∗(p, q, 1) respectively in pC∗(p, q, 1)p. Then S := T−1/2 ∈ C∗(p, q, 1) is a

(bounded) positive invertible element with

‖T‖−1 · 1 ≤ S2 ≤ ‖T−1‖ · 1 .

Since T (1− p) = (1− p) = (1− p)T , the positive operator S commutes with p and

S(1− p) = 1− p.

The element v := qpS satisfies v∗v = p and r := vv∗ ≤ q, i.e., v is a partial

isometry and r a projection in qC∗(p, q, 1)q.

Moreover, using that ‖T‖−1 ≤ S2 ≤ ‖T−1‖ by definition of S,

‖T‖−1qpq ≤ vv∗ ≤ ‖T−1‖qpq .

Thus qpq ≤ r and qpq is invertible in rC∗(p, q, 0)r and 0 is isolated in the spectrum

of qpq in qC∗(p, q, 1)q with non-zero support projection q0 := q−r. The projection

q0 satisfies q0p = 0, because T−1pqp = p and v = qpS satisfy

pq0p = p(q − vv∗)p = pqp− pqpS2pqp = pqp− pqpT−1pqp = 0 .

(c)⇒(a): If p0 ∈ C∗(p, q) is a non-zero projection with q0 ≤ 1− p and q0 ≤ q,

then q0(1− p)q = q0. It follows that 1 ≥ ‖(1− p)q‖ ≥ ‖q0‖ = 1.

(ii): Spec(p + q) ⊆ {0} ∪ [1 − ‖pq‖, 1 + ‖pq‖] can be seen from the spectrum

of the Murray–von-Neumann equivalent 2 × 2-matrix X := [p, q]> · [p, q], because

[p, q] · [p, q]> = (p+ q)⊕ 0 in M2(C∗(p, q)) . The projection Y := diag(1− p, 1− q)
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satisfies Y X = 0 = XY and X + Y = 12 + T for the self-adjoint 2 × 2-matrix

T := [βjk] with β11 = β22 = 0 and off-diagonal entries β12 := pq, β21 := qp. Thus

p+ q has – up to the possible spectral values {0 , 1} – the same spectrum as 12 +T .

Clearly Spec(12 + T ) ⊆ [1− ‖T‖, 1 + ‖T‖] and ‖T‖ = ‖pq‖.

(iii): Each unital C *-algebra C∗(p, q, 1) generated by projections p, q is in

a natural way a quotient of the universal unital C *-algebra C∗(Pu, Qu, 1) with

defining relations P ∗u = Pu = P 2
u and Q∗u = Qu = Q2

u .

In particular, there is a unique unital C *-morphism Φ with Φ(Pu) = P and

Φ(Qu) = Q from the universal unital C *-algebra C∗(Pu, Qu, 1) onto the unital C *-

subalgebra C∗(P,Q, 1) of C([0, π/2],M2) generated by 1, P ∈M2 ⊂ C([0, π/2],M2)

andQ := exp(−H)P exp(H) ∈ C([0, π/2],M2), withH ∈ C([0, π/2],M2) as defined

in Part (iii).

The natural *-epimorphism Φ from C∗(Pu, Qu, 1) onto C∗(P,Q, 1) =

Φ(C∗(Pu, Qu, 1)) is faithful because C∗(P,Q, 1) has 4 different characters and

every irreducible 2-dimensional representation D factorizes over Φ. The factoriza-

tion property for the irreducible representations D of C∗(Pu, Qu, 1) can be seen by

using the parameter ϕ of the unitary equivalence class of D:

arcsin ‖(P −Q)|{ϕ}‖ = arcsin ‖P −Q(ϕ)‖ = ϕ := arcsin ‖D(Pu)−D(Qu)‖

for Q(ϕ) := exp(−H(ϕ))P exp(H(ϕ)) = exp(−ϕZ)P exp(ϕZ). Notice that

exp(ϕZ) =: [αjk(ϕ)] is an orientation preserving rotation with angle ϕ, i.e.,

α11(ϕ) = α22(ϕ) = cos(ϕ) and α21(ϕ) = sin(ϕ) = −α12(ϕ) .

Since C∗(P,Q, 1) is naturally isomorphic to the universal unital C *-algebra

C∗(Pu, Qu, 1) generated by two projections, each unital C *-algebra C∗(p, q, 1)

generated by two self-adjoint projections p, q is in a natural way a quotient of

C∗(P,Q, 1) by the unique unital *-epimorphism η : C∗(P,Q, 1) → C∗(p, q, 1) that

satisfies η(P ) = p and η(Q) = q. This completes the proof of Part (iii).

We add here some additional information on the realisation C∗(P,Q, 1) ⊂
C([0, π/2],M2) that can be useful to get alternative and less abstract proofs of

Parts (iv)–(vi):

There is no essential difference in the properties of the real or complex version of

the universal algebra C∗(P,Q, 1), i.e., we can define it as the real C *-subalgebra of

C([0, π/2],M2(R)) or as the complex C *-subalgebra of C([0, π/2],M2(C)) generated

by {P,Q, 1} : Simply replace R by C and the in Part (iii) defined order 4 orthogonal

operator Z with Z = −Z∗ by the self-adjoint (unitary) symmetry −iZ = (−iZ)∗ ∈
M2(C) to get the complex case.

The definition of (P,Q, 1) shows that C∗(P,Q, 1) is the C *-subalgebra of

C([0, π/2],M2) given by all continuous sections of the continuous field on [0, π/2]

with full fibers M2 at ϕ ∈ (0, π/2), “diagonal” fibers C∗(12, P ) = C∗(P, 12 − P ) ⊂
M2 at ϕ = 0 and the fiber generated by {P,Q(π/2)} = {P, 12 − P} ⊂ M2 at

ϕ = π/2. I.e., the C *-algebra C∗(P,Q, 1) consists of all continuous matrix-valued
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functions f : [0, π/2] → M2 in C([0, π/2],M2) that take values f(0) and f(π/2) in

the diagonal matrices of M2

An element f ∈ C([0, π/2],M2) is in C∗(P,Q), if and only if, f ∈ C∗(P,Q, 1)

and f(0) = αP for some α ∈ R (respectively α ∈ C). Therefore the in Part (iii)

above defined elements Z ∈ M2, H, exp(H) ∈ C([0, π/2],M2) are not contained in

C∗(P,Q, 1), but the restrictions H|[0, ψ] are in C∗(P,Q)|[0, ψ] for each ψ ∈ [0, π/2).

Moreover, exp(H)|[ψ1, ψ2] is in C∗(P,Q)|[ψ1, ψ2] for 0 < ψ1 ≤ ψ2 < π/2.

The quotient C∗(P,Q)|[ψ, π/2] ⊂ C([ψ, π/2],M2) of C∗(P,Q) (given by restric-

tion to [ψ, π/2]) is unital for 0 < ψ ≤ π/2, because (P +Q)|[ψ, π/2] is invertible in

C([ψ, π/2],M2).

The ideal C0((0, π/2),M2) of C([0, π/2],M2) is the intersection of the kernels

of the 4 characters of C∗(P,Q, 1) and is strictly contained in C∗(P,Q), because the

C *-algebra C∗(P,Q) has 3 characters.

Let ψ ∈ (0, π/2) and define a function

fψ(ϕ) := (ϕ− ψ)+ := max(0, ϕ− ψ) ∈ C0(0, π/2]+ .

The element fψ · P ∈ C∗(P,Q) generates the closed ideal Jψ of C∗(P,Q) ⊂
C([0, π/2],M2). The closed subspace Jψ is also an ideal of C∗(P,Q, 1), because

C∗(P,Q) is an ideal of C∗(P,Q, 1).

If 0 < ψ < π/2, then the quotient C∗(P,Q, 1)/Jψ of C∗(P,Q, 1) is naturally

isomorphic to

C∗(P,Q, 1)|[0, ψ] ⊕ (R ·Q|{π/2}) ⊂ C([0, ψ] ∪ {π/2} ,M2) ,

and the algebra C∗(P,Q, 1)|[0, ψ] is equal to

R · P + R · (1− P ) + C0((0, ψ],M2) ⊂ C([0, ψ],M2) .

The parameter ϕ for Q(ϕ) is natural in the sense that the restrictions P = P |{ϕ} =

P |{0} and Q(ϕ) := Q|{ϕ} satisfy ‖(1−Q(ϕ))P‖ = sin(ϕ), ‖(1−P )Q(ϕ)‖ = sin(ϕ),

‖Q(ϕ)P‖ = cos(ϕ) and ‖P −Q(ϕ)‖ = sin(ϕ). Thus, for all ϕ ∈ [0, π/2],

‖P (1−Q(ϕ))P‖+ ‖PQ(ϕ)P‖ = 1 .

E.g., the matrix (P−Q)|{ϕ} ∈M2 is given by [αjk] := P−exp(−ϕZ)P exp(ϕZ) and

has entries α11 := sin2(ϕ), α12 := α21 := − sin(ϕ) cos(ϕ) and α22 := − sin2(ϕ). It

is sin(ϕ)-times an orthogonal matrix, thus ‖ (P −Q)|{ϕ} ‖ = sin(ϕ) .

Since the norms of (1−Q(ϕ))P , (1−P )Q(ϕ) and P −Q(ϕ) are increasing and

since the norms of Q(ϕ)P are decreasing with respect to the parameter ϕ, we get

the equal value sin(ϕ) for the norms of restrictions of (1−Q)P , (1−P )Q and P −Q
to [0, ϕ], and that ‖PQ|[ϕ, π/2]‖ = cos(ϕ).

(iv): Recall that Ã := A+ R · 1 ⊆M(A) (respectively Ã := A+ C · 1) if A is

not unital and Ã := A if A is unital.

Let γ : C∗(P,Q, 1)→ Ã denote the canonical C *-morphism from the universal

C *-algebra C∗(P,Q, 1) onto C∗(p, q, 1) ⊆ Ã. The kernel of γ is the intersection of

the kernels of ρ◦γ, where ρ runs through all irreducible representations of C∗(p, q, 1).
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The natural C *-morphism

γ : C∗(P,Q, 1)→ C∗(p, q, 1) ⊆ A

satisfies γ((P (1−Q)P−‖(1−q)p‖2)+) = 0 if ‖(1−q)p‖ < 1. Since P (1−Q(ϕ))P =

sin(ϕ)2P , this implies that the element (P (1 − Q)P − ‖(1 − q)p‖2)+ ∈ C∗(P,Q)

and the in proof of Part (iii) defined element fψ · P ∈ C∗(P,Q) ⊂ C([0, π/2],M2)

generate the same ideal of C∗(P,Q, 1) for ψ := arcsin ‖(1− q)p‖ .

Thus, γ factorizes over the restriction C∗(P,Q, 1)|([0, ϕ1] ∪ {π/2}) with ϕ1 :=

arcsin ‖(1− q)p‖ < π/2 and maps P |{π/2} = P (1−Q)P |{π/2} to zero.

The projection Q0 ∈ C∗(P,Q, 1)|([0, ϕ1] ∪ {π/2}) defined by Q0(ϕ) = 0 on

[0, ϕ1] and by Q0(π/2) = 1 − P = Q|{π/2} at {π/2} is not in the kernel of γ, if

and only if, C∗(p, q, 1) has a character χ with χ(p) = 0 and χ(q) = 1 . Compare

the equivalence of (c) and (d) in Part(i).

This character χ is “isolated” in the sense that the image C∗(p, q) of the C *-

morphism γ : C∗(P,Q) → A is isomorphic to a direct sum C∗(p, q) ∼= B ⊕ C such

that q corresponds to q1⊕ 1, q0 to 0⊕ 1 and p to p⊕ 0. It shows that the character

χ is given by the projection of B ⊕ C onto 0⊕ C ∼= C.

The restriction H ′ := H|[0, ϕ1] is contained in the non-unital C *-subalgebra

C∗(P,Q)|[0, ϕ1] , the restriction exp(H ′)|[0, ϕ1] of the unitary exponential exp(H ′)

to [0, ϕ1] is contained in C∗(P,Q, 1)|[0, ϕ1] and

exp(−H ′)P |[0, ϕ1] exp(H ′) = Q|[0, ϕ1] ≤ Q|([0, ϕ1] ∪ {π/2}) .

If C∗(p, q, 1) has a character χ with χ(p) = 0 and χ(q) = 1, then the character χ◦γ
on C∗(P,Q, 1)|[0, ϕ1]∪ {π/2} is necessarily supported at the isolated one-point set

{π/2}, and is given on C∗(P,Q, 1)|{π/2} ∼= diag(M2) by χ ◦ γ(diag(1, 0)) = 0 and

χ ◦ γ(diag(0, 1)) = 1. It follows that in this case, and only in this case, γ contains

in its support ⊆ [0, π/2] also the isolated point π/2, and P |{π/2} is in the kernel

of γ .

Thus h := γ(H ′) is a skew adjoint element that is contained in C∗(p, q).

The elements h and q0 := γ(Q0) ≤ q := γ(Q) fulfill the quoted properties in

Part (iv), because q0 exp(h) = exp(h)q0 = q0, q0 ≤ q and q0p = 0.

This completes the proof of Part (iv).

(v): By Part (i), ‖p−q‖ < 1 implies that 1 > ‖p−q‖ = ‖(1−p)q‖ = ‖(1−q)p‖.
Thus, Part (iv) applies with ‖h‖ = arcsin ‖p− q‖ and q0 = 0.

(vi): By Part (ii), the inequality ‖pq‖ < 1 implies that the algebraic *-algebra

(p+ q)A(p+ q) is a unital C *-algebra. Since we require also that ‖p− q‖ < 1, the

Part (v) applies to p, q ∈ (p + q)A(p + q) and the, in this case unital, C *-algebra

(p + q)A(p + q) in place of A. Then h (= −h∗) and the unitary exp(h) can be

defined inside the unital C *-algebra (p+ q)A(p+ q).

(old ?? ii,iii ??): See [692, prop. 2.2.6], or [73, prop. 4.3.3, prop. 4.6.3], or

[207, prop. IV.1.2, lem.IV.1.4].
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Remarks 4.1.4. Following remarks about the natural Z2-grading α of the

universal algebra C∗(P,Q, 1) can be easily deduced from Lemma 4.1.3:

There is a unique grading automorphism β : C∗(P,Q, 1) → C∗(P,Q, 1) with

β(P ) := 1−P and β(Q) := 1−Q that is well-defined by universality of C∗(P,Q, 1).

If we use the canonical embedding C∗(P,Q, 1) ⊆ C([0, 1],M2) then β extends

to C([0, 1],M2) by the “odd”, not “inner” in C∗(P,Q, 1), grading of M2, here by the

order 2 outer automorphism β(a)(t) := −Za(t)Z = Z−1a(t)Z for the orthogonal

matrix Z = exp((π/2)Z) in M2(R) of order 4, as defined in Part (iii) of Lemma

4.1.3, i.e., with Z := [ζj,k] ∈M2 where ζj,k := j − k, j, k ∈ {1, 2}.

The elements of degree = 0 are given by f · 12 + g · Z (f, g ∈ C[0, 1]) and the

elements of degree = 1 by f ·X + g · ZX (f, g ∈ C[0, 1]) with X := diag(1,−1).

Thus, in the case of real M2(R) and f, g ∈ C([0, 1],R) the elements of degree = 0

are just the natural images of complex-valued continuous functions t 7→ f1(t)+if2(t)

in its “real” interpretation.

Let B a unital C *-algebra, α ∈ Aut(B) a grading of B, i.e., α2 = idB and let

p, q ∈ B projections. Then 1− 2p is of degree = 1, i.e., α(1− 2p) = 2p− 1, if and

only if, α(p) = 1− p.

Notice that ‖(1− 2q)− (1− 2p)‖ < 2 if and only if ‖p− q‖ < 1.

If A := C∗(p, q, 1) ⊂ B is the unital C *-subalgebra of B generated by p, q

that satisfy α(1 − 2p) = −(1 − 2p) and α(1 − 2q) = −(1 − 2q), then the natural

C *-morphism ϕ from C∗(P,Q, 1) onto C∗(p, q, 1) satisfies ϕ ◦ β = α ◦ ϕ.

In particular, α(C∗(p, q, 1)) = C∗(p, q, 1).

If ‖(1 − 2q) − (1 − 2p)‖ < 2 then ‖p − q‖ < 1 and there exists H ∈ C∗(p, q)
with α(H) = H, H∗ = −H, ‖H‖ < π/2 and q = exp(−H)p exp(H).

The grading α|C∗(p, q, 1) itself is given by an inner automorphism of C∗(p, q, 1),

if and only if, ‖p− q‖ < 1 and ‖pq‖ < 1, i.e., both inequalities must be valid.

Remark 4.1.5. Let A a not-necessarily unital C *-algebra. Consider in the non-

unital case A + C · 1M(A) ⊆ M(A). Each u ∈ U0(A) with πA(u) = 1 is a product

u = exp(h1) · exp(h2) · . . . exp(hn) of exponentials of elements −h∗k = hk ∈ A. We

can here suppose that ‖hk‖ < π/2. If p, q ∈ A projections, then p ∼h q in A, i.e.,

p and q are (norm-) homotopic inside the metric space of of projections in A, then

Lemma 4.1.3(v) shows that there exists a unitary u ∈ U0(A+C · 1) ∩ (A+ 1) with

u∗pu = q. Clearly, for each u ∈ U0(A+C · 1) the projection q := u∗pu ∼h p in the

projections of A.
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2. On K-theory of properly infinite C*-algebras

Recall that a projection p 6= 0 in a (not necessarily unital) C *-algebra A is

properly infinite if there are projections r ≤ p and s ≤ p such that r+ s ≤ p and

r, s are both Murray–von-Neumann equivalent to p.

A unital C *-algebra E is called properly infinite if its unit element 1E is

properly infinite.

We can reduce our calculations related to K∗-theory and KK(C; ·, ·) to the case

of properly infinite unital C *-algebras E or to C *-algebras A with properly infinite

E := M(A) by using – among others – the following lemmata and remarks.

Compare other places with next topic !?

Rewrite shorter on places with repeats. Observations (C0), (Cu) ?

Better explanation? ...

This observation ???? has a partial converse in the class of full properly infinite

projections, as the following lemma of J. Cuntz [172] shows.

Recall that projections p ∈ A are full in A if the linear span of ApA is dense

in A. Some elementary observations on properly infinite projections – considered

first by J. Cuntz [172] – are collected in the following Lemma:

Lemma 4.2.1. Let p ∈ A a properly infinite projection in a C*-algebra A, i.e.,

there exist partial isometries u, v ∈ A with

u∗u = v∗v = p and uu∗ + vv∗ ≤ p .

Let B := span(ApA) (the closed ideal of A generated by p) and q ∈ B ⊗Mn
∼=

Mn(B) a projection, then there exist a partial isometry z ∈ Mn(B) ⊆ Mn(A) with

zz∗ ≤ p⊗ e11 and z∗z = q.

Let r := p − vv∗. There exist partial isometries s, t ∈ rAr with s∗s = t∗t = r

and s∗t = 0.

The projection r := p−vv∗ is a full projection in B and the elements of K0(B)

are the classes [q] ∈ K0(B) given by properly infinite projections q ≤ r that are full

in B and have the property that r − q is also properly infinite and full in B.

The addition can be carried out inside the classes of Murray–von-Neumann

equivalent projections of rBr = rAr itself via the operation [q1] + [q2] = [q1 ⊕ q2]

(where ⊕ = ⊕s,t, i.e., q1 ⊕ q2 := sq1s
∗ + tq2t

∗).

If, in addition, q ∈ A is also properly infinite, [q] = [p] ∈ K0(A) and p ∈
span(AqA), then there exists a partial isometry w ∈ span(ApA) with w∗w = p and

ww∗ = q.

In particular, full properly infinite projections p, q ∈ A satisfy [p] = [q] ∈ K0(A)

if and only if p and q are M-vN-equivalent, i.e., if there exists a partial isometry

v ∈ A with v∗v = p and vv∗ = q.



486 4. COMPARISON AND ADDITION OF SOME C*-MORPHISMS

If A contains a full properly infinite projection p ∈ A then for each x ∈ K0(A)

there exists a properly infinite full projection q ∈ A with q ≤ p and x = [q] ∈ K0(A).

We omit the proof of Lemma 4.2.1. It is easy to see, except that for each unital

C *-algebra A with properly infinite unit element 1 ∈ A and [1] = 0 in K0(A) there

exist isometries s, t ∈ A with s∗t = 0 and ss∗ + tt∗ = 1A, see the “basic property”

(Cu) of full properly infinite projections in the proof of Lemma 4.2.6(i,ii). Combined

with Lemma 4.2.3 it delivers all other statements. Plus+ some extra service for the

reader concerning of pairs of near odd graded isometries and others.

If A is unital (with properly infinite unit), then a projection p ∈ A is (called)

splitting if p and 1− p are both full and properly infinite.

Recall that A is K1-injective, if u ∈ U(Ã) and 0 = [u] ∈ K1(Ã) together

always imply that u ∈ U0(Ã) , i.e., u ∼h 1 in U(Ã). It implies that unitaries u1

and u2 in Ã are homotopic inside U(Ã), if and only if, [u1] = [u2] in K1(Ã).

There is a natural group-morphism U(E) 3 u 7→ [u] ∈ K1(E) from the unitary

group U(E) of E into K1(E) if E is unital. Its kernel contains the connected

component U0(E) of the identity element 1 ∈ E.

Definition 4.2.2. A unital C *-algebra E is called K1-surjective if the natural

group-morphism u 7→ [u] is a surjective map from U(E) onto K1(E).

The C *-algebra E is K1-injective if the connected component U0(E) of 1E

in U(E) is equal to the kernel of U(E) → K1(E), i.e., the induced map from

U(E)/U0(E) to K1(E) is faithful (= injective).

The C *-algebra E is K1-bijective if E is K1-surjective and K1-injective, i.e.,

U(E)/U0(E) ∼= K1(E) by the natural group morphism.

The K1-bijectivity of stable coronas obtained in Proposition 4.2.15 with help

of the “squeezing” property defined in Definition 4.2.14 plays later a role in some

of our computations.

It is (Feb 2021) not known if the unital (full) free product C *-algebrasO∞∗O∞,

C(S1) ∗ O2
∼= O2 ∗ O2 or C(S1) ∗ E2 are K1-injective.

Where is a proof of C(S1) ∗ O2
∼= O2 ∗ O2 ?

The proof of Lemma 4.2.10(i) shows that the question “Is every unital C*-

algebra with properly infinite unit K1-bijective?” is equivalent to the question – if

the unitary U∗ · (1− s1s
∗
1 + s1Us

∗
1) in the unital full free product A := C(S1) ∗ E2

is in U0(A), where U denotes the canonical unitary generator of C(S1) and the

s1, s2 ∈ E2 denote the generating isometries of E2 ( 2 )

If S is an Abelian semigroup then we denote by Gr(S) the Grothendieck group

of S, i.e., the formally defined group of “formal differences” of elements of the

cancellation semi-group build by stable equivalence classes of elements in S. The

2 This was also mentioned in a talk of B. Blackadar in Barcelona (2007). Compare also

Lemma 4.2.10(iii).
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natural semigroup morphism from S into Gr(S) is given by x 7→ [x] and maps

onto the cancellation semi-group [S] ⊆ Gr(S), where [x] ⊆ S denotes the stable

equivalence class of x in S given by

[x] := { y ∈ S ; ∃ s ∈ S with x+ s = y + s } .

In general the natural injective additive morphism from the Abelian cancellation

semigroup [S] of S into the Grothendieck group Gr(S) is not surjective, [S] is not

identical with Gr(S), i.e., [S] is not itself a group.

The proof of the following Lemma 4.2.3 is straight calculation and is left to the

reader. It gives some sufficient conditions for cases where [S] = Gr(S), i.e., where

[S] is itself is a group .

Lemma 4.2.3. Let S a commutative semigroup and denote, for z ∈ S, by

S(z) ⊆ S the set of all elements x ∈ S with the property that there exists y ∈ S
with x+ y = z .

(i) If e ∈ S satisfies e + e = e, and that for every x ∈ S there exists some

y ∈ S with x+ y = e, i.e., S(e) = S, then e is the only element of S with

this property and the sub-semigroup G := S + e is a subgroup of S.

An element x ∈ S is in G, if and only if, x absorbs e, i.e., if x = x+e.

The map x ∈ S 7→ x + e ∈ S is a semigroup homomorphism that

extends to a natural isomorphism from G onto the Grothendieck group

Gr(S) of S in the following manner:

By universality of Gr(S) there is a well-defined natural group homo-

morphism ϕ from Gr(S) into G, given by ϕ([x]) := x+ e on the classes

[x] ∈ Gr(S) for x ∈ S.

This homomorphism is a group isomorphism from Gr(S) onto G with

inverse isomorphism x+ e 7→ [x+ e] ∈ Gr(S).

(ii) More generally, if S contains a element z0 ∈ S such that for each x ∈ S
there exists y ∈ S with x + y = z0, i.e., S = S(z0), then there exists an

element y0 ∈ S with 2z0 + y0 = z0.

The element e := z0+y0 and pair (S, e) have the in Part (i) considered

properties.

(iii) If z0 ∈ S is an element that satisfies only 2z0 ∈ S(z0), i.e., if there

exists y0 ∈ S with 2z0 + y0 = z0, then e := e(z0) := z0 + y0 satisfies

S(e(z0)) = S(z0) and e+ e = e.

The subset S(z0) of S is a sub-semigroup of S such that G(e(z0)) :=

S(z0) + e(z0) ⊆ S(z0) and G(e(z0)) is a subgroup of S, that is natural

isomorphic to the Grothendieck group of S(z0).

(iv) If z0, z1 ∈ S satisfy z0 ∈ S(z1) and 2zj ∈ S(zj) for j = 0, 1, then

e(z1) = e(z0) + e(z1) and the mapping

y ∈ S(z0) + e(z0) 7→ y + e(z1) ∈ S(z1) + e(z1)

is a group homomorphism from G(e(z0)) into G(e(z1)).

�
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There are examples of group homomorphism of the type described in Part (iv)

of Lemma 4.2.3 that are neither injective nor surjective.

An element a ∈ A+ of a (not-necessarily unital) C *-algebra A will be called

full in A if span(AaA) is dense in A, i.e., if aAa is full hereditary C *-subalgebra

of A. (For example, all strictly positive elements of A are full in A.)

Recall that the unit element 1E of a unital C *-algebra E is properly infinite in

E, if and only if, there are isometries s1, s2 ∈ E with s∗1s2 = 0. Then we say that

E is a properly infinite unital C *-algebra.

We let p[−1] := 1−s1s
∗
1−s2s

∗
2. This projection becomes zero if and only if s1, s2

are the canonical generators of a unital copy of O2 in E. It holds [p[−1]] = −[1] in

K0(E).

Then a generalized variant of the Cuntz addition using isometries s1, s2

with s∗1s2 = 0 is defined by

a⊕ b := a⊕s1,s2 b := s1as
∗
1 + s2bs

∗
2 for a, b ∈ E .

If we consider unitaries u, v ∈ U(E) then we can use the corrected version of

generalized Cuntz addition given with p[−1] := 1− s1s
∗
1 − s2s

∗
2 by

u⊕′ v := u⊕′s1,s2 v := s1us
∗
1 + s2vs

∗
2 + p[−1] .

We say that a projection p ∈ E in a unital C *-algebra E is splitting if p and 1− p
are both properly infinite projections and are full elements of E.

The definitions of proper infiniteness and fullness yield that this property is

equivalent to the property that there exist isometries t1, t2 ∈ E with t1t
∗
1 ≤ p and

t∗2t2 ≤ 1− p.

The notion of splitting projections generalizes the notion of a proper projec-

tion p defined by the property that p and 1 − p are both MvN-equivalent to 1.

Most of the following results on splitting projections have been obtained before by

J. Cuntz and N. Higson for the special case of proper projections in place of the

more general “splitting” projections (introduced by B. Blackadar, 2007).

It is easy to see, e.g. using Lemma 4.1.3(v), that projections p, q ∈ E are

homotopic inside the subset of projections in E, if and only if, there is a unitary

u ∈ U0(E) with u∗pu = q.

Remark 4.2.4. The Halmos unitary U(c) in M2(E), build from a contraction

c ∈ E, is an “orientation-preserving rotation” given by the unitary matrix (respec-

tively by the “special orthogonal” matrix if E is a real C *-algebra) U(c) := [ajk(c)]

with entries a11(c) := c, a12(c) := −(1 − cc∗)1/2, a21(c) := (1 − c∗c)1/2 and

a22(c) := c∗.

Each Halmos unitary U(c) is in U0(M2(E)) because U(1) = 12 and c 7→ U(c) is

uniformly Hölder continuous on the closed unit ball of E with very rough estimate

(?????? see commented lines !!!?)
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‖U(c1)− U(c2)‖ ≤ (2‖c1 − c2‖)1/2 + ‖c1 − c2‖ ≤ 3‖c1 − c2‖1/2 (2.1)

It shows that each Halmos unitary U(c) is in U0

(
M2(C∗(c, 1))

)
and has an

exponential length cel(U(c)), – i.e., the “geodesic” distance of U(c) from 12 inside

the metric space U0(M2(E)) –, of value cel(U(c)) < 3π/2 .

If one considers the very special case E := C([0, 1]) then it cuts down to the

case of E := C. And in this case one can use the estimates of cel(U(c)) for c ∈ C
with |c| ≤ 1.

check this estimate 3π/2 again!!

How long is the path t ∈ [0, 1] 7→ U(tc+ (1− t)) in U0(E)

for fixed c ∈ E with c ∈ E with ‖c‖ < 1?

How good is the estimate for positive contraction?

Very important:

Give precise citation/reference to definition of cel of a unitary

or change and DEFINE notation !!!

In the special case of U(T ) for an isometry T ∈ E we can take a new

parametrization ϕ ∈ [0, π/2] 7→ U(cos(ϕ) · T ) ∈ M2(E) and get a continuously

differentiable curve of length ≤ π/2.

For h∗ = h ∈ E with 0 ≤ h ≤ π ·1, the matrix Z = [zij ] ∈M2 with zij := i− j,
and Xh := h⊗Z ∈M2(E) holds exp(Xh) = U(cos(h)). Therefore we have changed

the original definition of P. Halmos [352] into our formula for U(c) to make it fitting

to other terminology used for the terms in our estimates.

The original definition given by Halmos was diag(1,−1) · U(c) · diag(1,−1), if

we express it with our definition of U(c). Some authors define the matrix U(c) ·
diag(1,−1) as Halmos unitary.

Compare above text about estimates and arc-length

with below blue - including blue text in proof of Lemma 4.2.6!!!

The estimate (2.1) follows from

‖U(c1)−U(c2)‖ ≤ ‖c1−c2‖+
(
max{‖c∗1c1−c∗2c2‖, ‖c1c∗1−c2c∗2‖}

)1/2 ≤ 3‖c1−c2‖1/2 ,

where we have used that ‖a1/2 − b1/2‖ ≤ ‖a − b‖1/2 for a, b ∈ E+. More precise

is ‖U(c1) − U(c2)‖ ≤ γ(‖c1 − c2‖) with the function γ(ξ) := ξ + (2ξ)1/2 for ξ ∈
[0, 2]. This estimate can be applied to the special pairs of contractions (c1, c2) :=

((1/2)c, 0) and (c, (1/2)c). It shows that U(c) = U(0) exp(H1) exp(H2) for H1, H2 ∈
E with H∗k = −Hk and ‖Hk‖ < π/2. Since U(0) is a 90◦ rotation, it implies that

U(c) has exponential length bounded by 3π/2.

But this estimate (with this parametrization) does not imply that the arc

[0, 1] 3 t 7→ U(tc) is a rectifiable path (of finite length), that requires Lips-

chitz continuity (and not only this obtained Hölder continuity). In more detail:

‖U(tc)− U(sc)‖ ≤ (t− s) + (t2 − s2)1/2 for 0 ≤ s < t ≤ 1.
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Recall here | exp(iϕ)−1| ≤ x < 2 for ϕ ∈ [−π, π] if and only if 2−x2 ≤ 2 cos(ϕ),

i.e., |ϕ| ≤ arccos(1− x2/2) < π.

Thus, ‖U(tc) − U(0)‖ ≤ 2t < 2 for t ∈ [0, 1), implies that there is a unique

H ∈ E with U(tc) = U(0) exp(H), H∗ = −H, and ‖H‖ ≤ arccos(1 − 2t2) < π

and U(tc) = U(0) exp(H) if t ∈ [0, 1), i.e., ‖H‖ ≤ arccos(1/2) < π/2 if t = 1/2. If

δ ∈ [0, 1), then

‖U(c)− U((1− δ)c)‖ ≤ δ + (1− (1− δ)2)1/2 ≤ 3δ < π ,

and we get for δ := 1/2, that ‖U(c)−U((1/2)c)‖ ≤ x with 1 < x := (1 +
√

3)/2 <√
2 and 1 − x2/2 = (2 −

√
3)/4 > 0 and there exists K ∈ E with K∗ = −K,

U(c) = U((1/2)c) exp(K) and ‖K‖ ≤ arccos((2−
√

3)/4) < π/2.

(It seems that the Hölder continuous map t ∈ [0, 1] → U(t · c) ∈ U0(M2(E))

itself is not always rectifiable, because it is not Lipschitz continuous for arbitrary

contractions c ∈ E.)

In case of U(T ) for an isometry T ∈ E we can take a parametrization ϕ ∈
[0, π/2] 7→ U(cos(ϕ) · T ) ∈ M2(E) and get a continuously differentiable curve of

length ≤ π/2, because, for s ∈ [0, 1],

U(s · T ) = diag(T, 1)U(s · 1) diag(1, T ∗) +X ,

where X = [xjk] is given by x12 := 1− TT ∗ and x11 = x21 = x22 := 0.

We use often the following general equation for isometries t ∈ E and unitaries

v ∈ U(E) :

[(1− tt∗) + tvt∗] = [v] in K1(E) . (2.2)

Indeed, the diagonal matrices diag(v, 1) and diag
(
(1 − tt∗) + tvt∗ , 1

)
are unitary

and are unitary equivalent in M2(E) by the Halmos unitary U(t) ∈ U0(M2(E)),

i.e.,

U(t) diag(v, 1) = diag
(
(1− tt∗) + tvt∗ , 1

)
U(t) .

Remark 4.2.5. Recall that C *-algebra E has a properly infinite unit, if and

only if, E contains two isometries t1, t2 with orthogonal ranges, i.e., with relations

t∗i tj = δi,j1E .

Obviously the elements sn := (t1)n−1t2 satisfy s∗ks` = δk,`1E , i.e., generate a

copy of O∞ that is unitally contained in E , cf. the proof of Proposition 4.2.11.

It implies that for every contraction a ∈ E there exists a unitary u ∈ U0(E)

such that s∗1us2 = a with the isometries s1, s2 are taken from this fixed copy of E3.

It shows that any separable C *-algebra E with a properly infinite unit element

is a quotient of the unital free product C(S1)∗E2 , because all separable C *-algebras

with properly infinite unit are singly generated by Proposition B.17.2.

Indeed, we can use the Halmos unitary U(a) ∈ M2(a) and the projection

p := 1 − s1s
∗
1 − s2s

∗
2 ∈ E. Then the unitary u := p + [s1, s2]U(a)[s2,−s1]∗ ∈ E

has this properties, because U(a) ∈ U0(A) is connected in U0(A) to U(0) and

[s1, s2]U(0)[s2,−s1]∗ = 1− p.
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Lemma 4.2.6. Let E a unital C*-algebra with properly infinite unit 1E. Then

there exist isometries s1, s2 ∈ E with orthogonal ranges, i.e., with s∗1s2 = 0, such

that s1 and s2 satisfy the following non-degeneracy condition (ND):

(ND) The projection

p[−1] := 1− s1s
∗
1 − s2s

∗
2 = 1− (1⊕ 1)

is either full and properly infinite or p[−1] = 0.

The s1, s2 can be always found such that p[−1] is full and properly infinite, s1, s2

with p[−1] = 0 exists if and only if [1] = 0 in K0(E).

The (generalized) Cuntz addition ⊕s1,s2 defined by isometries s1, s2 ∈ E, that

satisfy s∗1s2 = 0 and condition (ND), has following properties and connections to

unitary operators and splitting projections:

(o) Commutativity and Associativity of ⊕ up to unitary homotopy:

There exist Uc, Ud ∈ U0(C∗(s1, s2)) ⊆ U0(E) with exponential length

cel(Uc) ≤ π/2 and cel(Ud) ≤ π
Look up definition of ‘‘cel’’ in published papers, change

notation?

Give Citation!!!

that satisfy p[−1]Uc = p[−1] = p[−1]Ud , U∗c (a ⊕ b)Uc = (b ⊕ a) , for

a, b ∈ E, and

U∗d
(
a⊕s1,s2 (b⊕s1,s2 c)

)
Ud =

(
(a⊕s1,s2 b)⊕s1,s2 c

)
for a, b, c ∈ E .

(i) The map (p, q) 7→ p ⊕s1,s2 q is a commutative and associative operation

up to unitary equivalence by unitary elements u ∈ U0(E), i.e., up to ho-

motopy in the projections of E. It is compatible with unitary equivalence,

homotopy and Murray–von Neumann equivalence.

If p, q ∈ E are projections then diag(p ⊕ q, 0) is MvN-equivalent to

diag(p, q) in M2(E). The projection p ⊕ q is MvN-equivalent to p + q if

pq = 0.

In particular, [p⊕ q] = [p] + [q] ∈ K0(E) for projections p, q ∈ E, and

[p⊕ q] = [p+ q] if pq = 0.

(ii) Suppose that p, q ∈ E are projections and that there exist isometries s, t ∈
E with ss∗ ≤ p and tt∗ ≤ q, i.e., p and q are full and properly infinite.

Then p and q are Murray–von Neumann equivalent in E if and only

if [p] = [q] ∈ K0(E).

If p and q are splitting projections, – i.e., if each of the projections p,

1−p, q and 1− q are full and properly infinite –, then p and q are unitary

equivalent in E if and only if [p] = [q] ∈ K0(E).

If p, q ∈ E are unitary equivalent projections and p is full and properly

infinite then there exists u ∈ U(E) with 0 = [u] ∈ K1(E) and u∗pu = q.
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Any projection q ∈ Mn(E) is MvN-equivalent to a projection q′ ∈ E
such that q′ ≤ p for some splitting projection p ∈ E ( 3 ).

(iii) The unitary equivalence classes [p]u of splitting projections p ∈ E build

a group with generalized Cuntz addition [p]u + [q]u := [p ⊕ q]u, and the

natural map [p]u → [p] ∈ K0(E) defines an isomorphism from this group

onto K0(E).

(iv) (a) (cf. [94, prop. 2.5]) If p and q are full and properly infinite projections

with [p] = [q] ∈ K0(E), and if there exists an isometry t ∈ E with

t∗(p+ q)t = 0 , then there exists a unitary u ∈ U0(E) such that u∗pu = q,

i.e., p and q are homotopic in the projections of E.

(b) Special case: Two projections p, q ∈ E represent the same element

[p] = [q] of K0(E), if and only if, there exists a unitary u ∈ U0(E) such

that u∗(p⊕ 1⊕ 0)u = q ⊕ 1⊕ 0 . (4)

(v) Let u ∼h v denote homotopy of u, v ∈ U(E) inside the unitary group U(E)

of E, and let U0(E) the connected component of 1 in U(E).

The natural map u 7→ [u] from the group of unitary operators U(E)

of E into K1(E) is an epimorphism, i.e., E is K1-surjective. It has

following properties – expressed with the “corrected” Cuntz sum u⊕′ v :=

(u⊕ v) + p[−1] on the unitary group:

(1) [u⊕′ v] = [u] + [v] = [uv] in K1(E),

(2) [u] = [v] ∈ K1(E), if and only if, u⊕′ 1 ∼h v ⊕′ 1.

In particular, u⊕′ 1 ∈ U0(E) if [u] = 0 ∈ K1(E).

(Recall u⊕′ 1 := s1us
∗
1 + (1− s1s

∗
1) .)

(3) The unitary operators u∗ ⊕′ u are in U0(E).

(4) u⊕′ v ∼h vu⊕′ 1 ∼h v ⊕′ u .

(5) Let p ∈ E a projection such that 1− p is full and properly infinite.

If u ∈ U(pEp) is a unitary with [u + (1 − p)] = 0 in K1(U(E)) then

u+ (1− p) ∈ U0(E).

If p ∈ E is moreover a splitting projection, then η : pEp ↪→ E defines

an isomorphism η∗ from K∗(pEp) onto K∗(E).

It satisfies η1([u]) = [u + (1 − p)] for u ∈ U(pEp) and η0([q]) = [q]

for projections q ∈ pEp.

In particular, for splitting p ∈ E and u ∈ U(pEp) holds:

0 = [u] ∈ K1(pEp) ⇐⇒ u+ (1− p) ∈ U0(E) .

(6) If z ∈ E is a partial isometry with z2 = 0 then the “rotation” unitary

R(z) := z − z∗ + (1− z∗z − zz∗) = exp((π/2)(z − z∗))

is in U0(E). If E is a complex C*-algebra, then the “symmetry”

S(z) := z + z∗ + (1− z∗z − zz∗)

3 Identify p ∈ E with p⊗ e11 ∈ E ⊗Mn
∼= Mn(E).

4 (1⊕ 1)⊕ 0 and 1⊕ 1 are MvN-equivalent but are not unitarily equivalent.
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is in U0(E).

It holds R(z)∗aR(z) = zaz∗ = S(z)aS(z) for all a ∈ z∗zEz∗z.

(vi) (cf. [94, lem. 2.4(ii)]. ) Let p ∈ E a splitting projection in E.

If u1, u2 ∈ U(E) satisfy [u1] = [u2] ∈ K1(E) and ‖ukp− puk‖ < 1 for

k = 1, 2, then u1 ∼h u2 in U(E).

Special cases are:

(α) u ∈ U0(E) if ‖up− pu‖ < 1 and 0 = [u] ∈ K1(E).

Thus, u ∈ U0(E) if up = pu and [u] = 0 in K1(E) .

COMPARE, also clever:

(iv,old): If u ∈ U(A), p ∈ A is a splitting (!!!) projection, and

‖up− pu‖ < 1, then there exists a unitary v ∈ U(pAp) such that u is

homotopic to v + (1− p) in U(A).

(Proof: iv,old): If w is unitary with wp = pw, and z ∈ A with

zz∗ = (1 − p) and z∗z ≤ p, then p + (1 − p)w is unitary and is

homotopic to z∗wz+(p−z∗z)+(1−p) (using that C∗(z, 1−p) ∼= M2

has unit z∗z + (1− p)).

Thus, w ∼h v + (1− p) with v := pw(z∗uz + (p− z∗z)) ∈ U(pAp).

If ‖up − pu‖ < 1, then ‖u − a‖ < 1 for a := pup + (1 − p)u(1 − p).
The polar decomposition a = w(a∗a)1/2 in pAp + (1 − p)A(1 − p)

gives a unitary w ∈ A with −1 6∈ Spec(w∗u) and wp = pw. Thus,

u ∼h w ∼h v + (1− p) for suitable v ∈ U(pAp) .

(β) If t1, t2 ∈ E are isometries with ‖t∗1t2‖ < 1 and if u ∈ U(E) satisfies

‖t∗1ut2‖ < 1 and [u] = 0 ∈ K1(E), then u ∈ U0(E).

(v,old) FROM: lem:old.A.K-basic1:

If u ∈ U(A) with 0 = [u] ∈ K1(A), and if there exists a splitting

projection p ∈ A with ‖up− pu‖ < 1, then u ∈ U0(A).

In particular, A is K1-injective if this is the case for every u ∈ U(A)

with 0 = [u] ∈ K1(A).

[Above is now contained in in new (vi,β)!!!]

(v,old): Let u ∈ U(A) with 0 = [u] ∈ K1(A), and suppose that

there is a splitting projection p ∈ A with ‖pu − up‖ < 1. By (iv),

u ∼h v+(1−p) for some unitary v ∈ U(pAp). It follows [v+(1−p)] =

[u] = 0 in K1(A). Since [v + (1 − p)] = 0, there exists n ∈ N such

that (v + (1 − p)) ⊕ 1n ∈ U0(Mn+1(A)), i.e., there is a path W (t) ∈
U(Mn+1(A)) with W (0) = 1n+1 and W (1) = (v+(1−p))⊕1n. Since

1−p is full and properly infinite in A, the projection (1−p)⊕0n is full

and properly infinite in Mn+1(A). Thus, there is a partial isometry

Z ∈Mn+1(A) with Z∗Z = (1− p)⊕ 1n and ZZ∗ ≤ (1− p)⊕ 0n. Let

w(t) := (p+Z)W (t)(Z∗+p)+((1−p)⊕0n−ZZ∗). Then w(t)∗w(t) =

1 ⊕ 0n = w(t)w(t)∗, w(0) = 1 ⊕ 0n and w(1) = (v + (1 − p)) ⊕ 0n.

If we naturally identify A with the corner A ⊕ 0n of Mn+1(A), then

w(t) becomes a continuous path in U(A) that connects v+(1−p) with

1. Thus, u ∼h 1.
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(vii) Independence of ⊕ from the isometries s1, s2 ∈ E with ⊕ := ⊕s1,s2 and

non-degeneracy property (NP) up to unitary equivalence:

Suppose that t1, t2 ∈ E are isometries with orthogonal ranges such

that q[−1] := 1− t1t∗1 − t2t∗2 is full and properly infinite if p[−1] 6= 0 and is

q[−1] = 0 if p[−1] = 0.

Then there exists a unitary U ∈ U(E) such that Usk = tk (k = 1, 2),

and U(a⊕s1,s2 b)U∗ = a⊕t1,t2 b and Up[−1]U
∗ = q[−1] for a, b ∈ E.

If p[−1] and q[−1] are full and properly infinite, then the unitary U ∈
U(E) can be chosen such that [U ] = 0 in K1(E).

In the cases where p[−1] 6= 0 and E is K1-injective, or where there

exists a full and properly infinite projection r ∈ E with r ≤ p[−1] and

r ≤ q[−1], one can find U ∈ U0(E) with Usk = tk.

Before we start with the proofs of the part ???? of Lemma ?? here hint of one

of its limited applicability: ?????

This comes from old appendix!!! Transfer old Lemma partly into

other Lemmata. Trash remains.

Lemma 4.2.7. (v) FROM: lem:old.A.K-basic1:

If u ∈ U(A) with 0 = [u] ∈ K1(A), and if there exists a splitting

projection p ∈ A with ‖up− pu‖ < 1, then u ∈ U0(A).

In particular, A is K1-injective if for every u ∈ U(A) with 0 = [u] ∈
K1(A) there exists a splitting projection p ∈ A with ‖up − pu‖ < 1, then

u ∈ U0(A).

(v): Let u ∈ U(A) with 0 = [u] ∈ K1(A), and suppose that there is a

splitting projection p ∈ A with ‖pu− up‖ < 1. By (iv), u ∼h v + (1− p)
for some unitary v ∈ U(pAp). It follows [v + (1− p)] = [u] = 0 in K1(A).

Since [v + (1− p)] = 0, there exists n ∈ N such that (v + (1− p))⊕ 1n ∈
U0(Mn+1(A)), i.e., there is a path W (t) ∈ U(Mn+1(A)) with W (0) = 1n+1

and W (1) = (v + (1 − p)) ⊕ 1n. Since 1 − p is full and properly infinite

in A, the projection (1− p)⊕ 0n is full and properly infinite in Mn+1(A).

Thus, there is a partial isometry Z ∈ Mn+1(A) with Z∗Z = (1− p)⊕ 1n

and ZZ∗ ≤ (1 − p) ⊕ 0n. Let w(t) := (p + Z)W (t)(Z∗ + p) + ((1 − p) ⊕
0n − ZZ∗). Then w(t)∗w(t) = 1 ⊕ 0n = w(t)w(t)∗, w(0) = 1 ⊕ 0n and

w(1) = (v+(1−p))⊕0n. If we naturally identify A with the corner A⊕0n

of Mn+1(A), then w(t) becomes a continuous path in U(A) that connects

v + (1− p) with 1. Thus, u ∼h 1.

(vi) If, for any two splitting projection p, q ∈ A, there are splitting projections

r, s ∈ A with r ≤ p, s ≤ q and ‖rs‖ < 1, then all splitting projections with

same class [p] = [q] in K0(A) are homotopic.

(vi): If A does not contain splitting projections then (vi) is true.

Suppose that A contains splitting projections. (Then the unit of A is

properly infinite, and if S, T ∈ A are isometries with S∗T = 0, then SS∗

and TT ∗ are splitting projections.)

Let p, q ∈ A splitting projections with [p] = [q] in K0(A).
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By assumptions, there are splitting projections r ≤ p and s ≤ q with

‖rs‖ < 1. Since, r and s are properly infinite and full, there exists partial

isometries y, z ∈ A with y∗y = p, r1 := yy∗ ≤ r, z∗z = q, and s1 :=

zz∗ ≤ s. It implies, that r1 and s1 are splitting projections, and that

‖r1s1‖ ≤ ‖rs‖ < 1.

Since [p] = [q], we get [r1] = [s1]. Thus, the properly infinite projec-

tions r1 and s1 are MvN-equivalent (cf. [172]), i.e., there is x ∈ A with

x∗x = r1 and xx∗ = s1. Now parts (iii) gives that r1 ∼h s1.

Since p is splitting, 1 − p is full and properly infinite, and there is

w ∈ A with w∗w = p and ww∗ ≤ 1− p. It follows ww∗ ∼h p by part (iii).

Part (iii) applies also to ww∗ = (yw∗)∗(yw∗) and r1 = (yw∗)(yw∗)∗, and

gives ww∗ ∼h r1. Thus, p ∼h r1. Similar arguments show q ∼h s1. It

follows p ∼h q.
(vii) If A has a properly infinite unit, then A is K1-injective, if and only if, all

splitting projections with same class [p] = [q] in K0(A) are homotopic.

(viii) ????? For every isometries s and t with orthogonal ranges (i.e., s∗t = 0)

and every unitary u ∈ U(A) the projections tt∗ and u∗tt∗u are homotopic

inside the projections of A, noted by tt∗ ∼h u∗tt∗u.

(Requires K1-injectivity !!!???)

(ix) For every isometries s and t with orthogonal ranges (i.e., s∗t = 0) and

every unitary u ∈ U(A) the projections tt∗ and u∗tt∗u are homotopic

inside the projections of A, – noted by tt∗ ∼h u∗tt∗u –, for every unitary

u ∈ A , if and only if, A is K1-injective.

Remark 4.2.8. The Part (v,5) of Lemma 4.2.6 has to be considered with some

care, because it can happen for some u ∈ U(pEp) that u + (1 − p) ∈ U0(E) but

0 6= [u] ∈ K1(pEp) if the projection p is not full in E, e.g. :

Let E = M(C(S1) ⊗ K), u0 ∈ U(C(S1)) the canonical generator of C(S1),

p = 1⊗ e11 ∈ C(S1)⊗K. Then pEp ∼= C(S1). If u := u0 ⊗ e11, then u+ (1− p) ∈
U0(E) = U(E) by the generalized Kuiper theorem [180], but 0 6= [u] ∈ K1(pEp).

Proof. (vii): By assumption, the unit 1 is properly infinite in A, i.e., there

are isometries s, t ∈ A with s∗t = 0. Thus A contains a splitting projection p,

e.g. p := ss∗.

Suppose that all splitting projections with same class in K0(A) are homotopic,

and let u ∈ U(A) with [u] = 0 in K1(A). The projection u∗pu is again splitting, and

is MvN-equivalent to p. Thus, [p] = [u∗pu] in K0(A), and p ∼h u∗pu. By part(ii),

there is v ∈ U0(A) with v∗u∗puv = p. We have [uv] = [u] + [v] = 0. The arguments

in the proof of part (vi) show that uv ∈ U0(A). Thus u ∼h 1.

Suppose, conversely, that A is K1-injective. Let p, q ∈ A splitting projections

with [p] = [q] in K0(A). It follows [1−p] = [1]−[p] = [1−q]. Since p, q, 1−p and 1−q
are all full and properly infinite (by definition of splitting projections), it follows

from “an observation in [172]”, that p ∼ q and 1− p ∼ 1− q (WvN-equivalence).
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Thus, there exists a unitary W ∈ A with W ∗pW = q. Since 1 − p is full and

properly infinite, there exists an isometry s ∈ A with ss∗ ≤ 1− p. The projection

1 − ss∗ satisfies [1 − ss∗] = 0. Thus, the properly infinite full projections 0 ⊕ 1

and (1 − ss∗) ⊕ 1 are MvN-equivalent in M2(A), and there is a partial isometry

Z ∈ M2(A) with Z∗Z = 0 ⊕ 1 and ZZ∗ = (1 − ss∗) ⊕ 1. Let V := (s ⊕ 0) + Z,

then V is unitary and ((1 − ss∗) + sWs∗) ⊕ 1 = V (W ⊕ 1)V ∗ . In particular,

[(1 − ss∗) + sWs∗] = [W ] in K1(A). The operator u := ((1 − ss∗) + sW ∗s∗)W is

unitary, satisfies u∗pu = q, and [u] = [W ]− [(1− ss∗) + sWs∗] = 0 in K1(A). Since

A is K1-injective, we get u ∈ U0(A), i.e., p ∼h q.

(ix): If s, t ∈ A are isometries with s∗t = 0, then p := tt∗ is a splitting

projection. Now suppose that u ∈ U(A) satisfies 0 = [u] ∈ K1(A), and that

p ∼h u∗pu. Then, by part (ii), there is w ∈ U0(A) with p = w∗(u∗pu)w, i.e.,

vp = pv for the unitary v = uw. We get [v] = [u] + [w] = 0, because, [u] = 0 = [w].

It follows v ∈ U0(A) by part (iv). Hence, u = vw∗ ∈ U0(A).

If A is K1-injective and u ∈ A unitary, then u∗tt∗u = v∗tt∗v ∼h tt∗ for v :=

((1− ss∗) + su∗s∗)u, because [v] = 0 in K1(A), which implies v ∈ U0(A) . �

Proof. The Lemmata 4.2.1 and 4.2.6 are also valid for real C *-algebras E.

Some definitions have to be done with some care, see e.g. proof of Part (v,6) or

proofs in preliminary Observation (o).

Suppose that 1E is properly infinite, then there are isometries t1, t2 ∈ E with

t∗1t2 = 0. We can take the isometries s1 := t1 and s2 := t2t1, then s∗1s2 = 0 and

p[−1] := 1− (s1s
∗
1 + s2s

∗
2) ≥ t22(t22)∗

is full and properly infinite with [p[−1]] = [1] − 2[1] = −[1] in K0(E). Thus here

s1 := ψ(T1) and s2 := ψ(T2) come from from a unital C *-morphism from E3 :=

C∗(T1, T2, T3 ; T ∗j Tk = δj,k1 ) into E.

The more special case is where we can find isometries t1, t2 ∈ E with t1t
∗
1 +

t2t
∗
2 = 1 then [1] = [t1t

∗
1] + [t2t

∗
2] = 2[1] in K0(E), i.e., [1] = 0 in K0(E), and the

s1 := t1, s2 := t2 come from a unital C *-morphism of O2 := C∗(T1, T2 ; T ∗j Tk =

δj,k1, T1T
∗
1 + T2T

∗
2 = 1 ) . This is exactly the case where [1] = 0 in K0(E): Then

1 − t2t∗2 is a properly infinite and full projection in E with 0 = [1] = [1 − t2t∗2] ∈
K0(E). By the below proved Part (ii), or by [172, thm. 1.4], there is an isometry

s1 ∈ E with s1s
∗
1 + t∗2t2 = 1. Let s2 := t2 and get p[−1] = 0 for this s1, s2, that

generate copy of O2.

Recall that MvN-equivalence of projections p, q ∈ Mn(A) means that there is

a partial isometry v ∈ Mn(A) such that v∗v = p and vv∗ = q. The equivalence

definition does not require that A is unital.

Part (i) can be seen from the definitions regarding the arguments in preliminary

Part (o) of our proof and Lemmata 4.1.3 and 4.2.1.

Part (ii) is contained essentially in [172, thm. 1.4], which says – in our termi-

nology – that the Murray–von-Neumann equivalence classes of full properly infinite
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projections in a properly infinite unital C *-algebra E build a group with (general-

ized) Cuntz addition and that this group is naturally isomorphic to K0(E).

If we combine this with the below considered observation (C0) and Remark

4.1.2 then we get the following basic property (Cu) that generalizes [172, thm. 1.4]

(for simple unital C *-algebras A) to the case of general C *-algebras A:

Basic property of full properly infinite projections:

(Cu) Full and properly infinite projections p, q in a C *-algebra A are Murray–

von-Neumann equivalent if and only if [p] = [q] ∈ K0(A) . (Here A is not

necessarily unital.)

If A contains a full and properly infinite projection e ∈ A, then each

element x ∈ K0(A) is the class [p] = x of a properly infinite and full

projection p ∈ A with p ≤ e.

The observation (Cu) of J. Cuntz is almost equivalent to Part (ii). Our proof

uses the Parts (i) and (ii) of the “innocent” abstract Lemma 4.2.3. It shows at

first that the sub-semigroup of MvN-equivalence classes of full and properly infinite

projections build a group under Cuntz sum and that the natural morphism of this

group into K0(A) is surjective. Then we compare the defining relations and obtain

from Lemma 4.2.3(ii) that this morphism must be a group isomorphism. This proof

of observation (Cu) is only slightly different from that of [172, thm. 1.4]. It is useful

to prove the below considered Observation (o) and Parts (i)–(iii) together.

The below stated basic observation (C0) in the proof of (i,ii,iii) reduces the

proof of observation (Cu) to the case of the unital properly infinite E = eAe, using

the natural isomorphism K0(E) ∼= K0(A) of Remark 4.1.2, cf. also Part (v,5).

(o): Let

Uc := s1s
∗
2 − s2s

∗
1 + p[−1] = exp

(
(π/2)(s1s

∗
2 − s2s

∗
1)
)
. (2.3)

Then Uc ∈ U0(C∗R(s1, s2)), U2
c = p[−1] − (s1s

∗
1 + s2s

∗
2), Uc has “geodesic” distance

cel(Uc) ≤ (π/2)‖s1s
∗
2 − s2s

∗
1‖ = π/2

to 1 inside the metric space U0(E), and

Ucs1 = −s2 , Ucs2 = s1 , Ucp[−1] = p[−1] .

Hence, U∗c (a⊕s1,s2 b)Uc = b⊕s1,s2 a for a, b ∈ E and Uc ∈ U0(E) for real or complex

C *-algebras E.

We define a partial unitary Z with Z∗Z = 1− p[−1] = ZZ∗ by

Z := s2
1s
∗
1 + s2(s∗2)2 + (s1s2)(s2s1)∗ − s1p[−1]s

∗
2 ∈ C∗(s1, s2) ⊆ E .

Straight calculation gives Z
(
a ⊕ (b ⊕ c)

)
=
(
(a ⊕ b) ⊕ c

)
Z for a, b, c ∈ E, and

Zs2p[−1]s
∗
2 = s1p[−1]s

∗
1Z.

If U(s1) ∈ U0

(
M2(C∗(s1, s2))

)
⊆ U0(M2(E)) denotes the Halmos unitary of

the isometry s1 (cf. Remark 4.2.4), then

Z = [s1, s2]
(
U(s2) · diag(1, Uc)

)
[s1, s2]∗ .
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Thus Z ∈ U0

(
(1− p[−1])C

∗(s1, s2)(1− p[−1])
)
, and the unitary

Ud := Z + p[−1] = s2
1s
∗
1 + (s1s2)(s2s1)∗ + s2(s∗2)2 − s1p[−1]s

∗
2 + p[−1] (2.4)

is in U0(C∗(s1, s2)) ⊆ U0(E), and that Ud “realizes” the distributive law for ⊕s1,s2
as unitary equivalence via Ud.

By Remark 4.2.4, cel(U(s2)) ≤ π/2. If we apply this to the above given decom-

positions of Z and Ud, then we get that the unitary Ud has “exponential length”,

i.e., “geodesic” distance

cel(Ud) ≤ cel(U(s2)) + cel(Uc) ≤ π

from 1 inside the metric space U0(E).

Calculation shows that the unitary equivalence by Uc and Ud includes also the

“un-truncated” or “corrected” version ⊕′ of ⊕s1,s2 given by

u⊕′ v := s1us
∗
1 + s2vs

∗
2 + p[−1]

on the group of unitary operators or the semi-group of isometries u, v, w ∈ E :

U∗c (u⊕′ v)Uc = v ⊕′ u

and

U∗d ((u⊕′ v)⊕′ w))Ud = u⊕′ (v ⊕′ w) .

This can be seen from Uc p[−1] = p[−1] and Zs2p[−1]s
∗
2 = s1p[−1]s

∗
1Z.

(i,ii,iii): The commutative and associative law for ⊕ = ⊕s1,s2 , up to unitary

equivalence with a unitary in U0(E), follows from Part (o). The other formulae by

simple calculations, e.g. u∗(a⊕ b)u = (u∗1au1)⊕ (u∗2au2) for u := (u1⊕u2) +p[−1],

and is in U0(E) if u1, u2 ∈ U0(E), ...

Old Lemma form Appendix A, now somewhere above contained:

Suppose that p, q ∈ A are full properly infinite projections.

If [p] = [q] in K0(A) then there exists v ∈ A with v∗v = p and vv∗ = q.

If A contains a full and properly infinite projection p then for each x ∈ K0(A)

there exists a full properly infinite projection q ≤ p with x = [q].

If p, r ∈ A are full and properly infinite projections that have the same class

[p] = [q] ∈ K0(A) then there exists a partial isometry z ∈ A with z∗z = p and

zz∗ = q.

The proof of the observation (Cu) of J. Cuntz uses following elementary observa-

tion (C0), given below, but the proofs of (Cu), (ii) and (iii) follows not immediately

from (C0):

(C0) If A is a (not necessarily unital) C *-algebra and e ∈ A is a full and

properly infinite projection, then for every n ∈ N and every projection

p ∈ Mn(A) there is a projection p′ ∈ A such that p and p′ ⊕ 0n−1 =

diag(p′, 0, . . . , 0) are MvN-equivalent in Mn(A), p′ ≤ e and e − p′ is full

and properly infinite in A.
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The observation (C0) reduces the proof of observation (Cu) to the case of

properly infinite unital algebras.

In fact it is formally more general, and is easy to see, that the following holds:

If e, p are projections in a C *-algebra B such that e is properly infinite and p is

in the closed ideal BeB generated by e, then there exists a partial isometry z ∈ B
with z∗z = p and zz∗ ≤ e. Below we outline this in case B = Mn(eAe).

The proof of (C0) goes as follows: E := eAe has a properly infinite unit

1E := e, i.e., there are isometries s1, s2 ∈ E with s∗1s2 = 0. Define isometries

tk := sk−1
2 s1 ∈ E for k = 1, 2, . . . with t∗ktj = δj,k1E . Let zk := tk ⊕ 0n−1 =

diag(tk, 0, . . . , 0) ∈Mn(E) ⊆Mn(A). Then z∗j zk = δjk diag(e, 0, . . . , 0).

Since the projection e ∈ A is full in A and is properly infinite and since the

direct sum A ⊕ {0n−1} ∼= A ⊗ p11 is full in Mn(A) ∼= A ⊗ Mn, the projection

p := diag(e, 0, . . . , 0) = e⊕ 0n−1 is full and properly infinite in Mn(A).

It follows that, for each projection q ∈Mn(A) and ε ∈ (0, 1/4], there are m ∈ N
and elements a1, . . . , am, b1, . . . , bm ∈ A such that ‖q −

∑
k akpbk‖ ≤ ε . We get

‖q − x∗py‖ ≤ ε for x :=
∑
j zjaj and y :=

∑
k zkbk. It implies the existence of an

element c ∈Mn(A) with c∗pc = q. The projection r = pcc∗p ≤ p = (e, 0, . . . , 0) has

form r = (p′′, 0, . . . , 0) for a projection p′′ ≤ e. The projection p′ := s1p
′′s∗1 ≤ e

has the quoted property that e− p′ ≥ s2s
∗
2 is full and properly infinite in E = eAe

and the given projection r ∈ Mn(A) is Murray–von-Neumann equivalent to p′ ∈
E ∼= E ⊕ 0n−1 inside Mn(A).

Therefore it suffices to consider only the MvN-equivalence classes [p] of pro-

jections p ∈ E := eAe, because each MvN-equivalence class [q] of a projection q

in
⋃
nMn(A) is identical with the MvN-class [p] of some projection p ∈ E, and

we restrict later our considerations to C *-algebras E with properly infinite unit

element.

The projections in E build a commutative semi-group S under Cuntz addi-

tion [p]MvN + [q]MvN := [p ⊕s1,s2 q]MvN . See Parts (o) and (i) for the additive

and associative law modulo unitary homotopy, i.e., modulo unitary equivalence by

unitaries in U0(E).

If we consider E as a full corner of Mn(E) by a ∈ E 7→ diag(a, 0, . . . , 0), then

the sum p ⊕ q is MvN-equivalent to p′ + q′ if p′, q′ ∈ Mn(E) are projections with

p′q′ = 0, and are MvN-equivalent in Mn(E) to p respectively q. It follows that the

natural map [p]MvN 7→ [p] ∈ K0(E) becomes a semi-group epimorphism from the

semi-group S of the MvN-equivalence classes of projections p ∈ E onto K0(E).

Since, by definition of K0, [p] = [q] ∈ K0(E) if and only if there exists n ∈ N
and a projection r′ ∈ Mn(E) and such that diag(p, r′) and diag(q, r′) are MvN-

equivalent in Mn+1(E), we can find a projection r ∈ E that is MvN-equivalent to

r′ and such that p ⊕s1,s2 r and q ⊕s1,s2 r are MvN-equivalent. It follows that the

map from the semi-group S of MvN-classes of projections in E into K0(E) defines
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just the same equivalence relations on S as the canonical semi-group morphism

from S into its Grothendieck group Gr(S).

In conclusion, the natural group epimorphism from Gr(S) onto K0(E) is an

isomorphism.

By observations (C0), the element z0 := [1E ]MvN ∈ S can play the role of z0 in

Lemma 4.2.3(ii) for the semi-group S of MvN-equivalence classes of projections in

E with Cuntz addition, because for every p ∈ E, p⊕(1−p) is MvN-equivalent to 1E ,

cf. rules in Part (i), i.e., [p] + [1− p] = [1] = z0 in S. If we let y0 := [1− (1⊕ 1)] =

[p[−1]], then 2z0 + y0 = z0 in S, and e := z0 + y0 = [1 ⊕ p[−1]] is a dominate

zero element of S by Lemma 4.2.3. Thus, the “splitting” projection 1 ⊕ p[−1] ⊕ 0

represents the “absorbing” zero element of e + S ∼= Gr(S) via e + s 7→ [s]Gr by

Lemma 4.2.3. Since e + e = e in S, the natural map from S onto K0(E) maps e

into the zero element and defines an isomorphism from the subgroup e + S of S

onto K0(E), because it induces an isomorphism of the Grothendieck group Gr(S)

with K0(E) by Lemma 4.2.3(i).

It implies that p and q are MvN-equivalent, if p, q ∈ E if [p] = [q] in K0(E)

and are MvN-equivalent to projections in E ⊕ (1 ⊕ p[−1]), i.e., have MvN-class in

S + e. Since 1 ⊕ p[−1] ≥ s1s
∗
1 is full and properly infinite, each projection that is

MvN-equivalent to projections in E ⊕ (1 ⊕ p[−1]) is necessarily full and properly

infinite.

The observation (C0) gives that full and properly infinite projections p ∈ E

are MvN-equivalent to projections in E ⊕ (1⊕ p[−1]), because there exist a partial

isometry z ∈ E with z∗z = 1 ⊕ p[−1] and zz∗ ≤ p, thus p is MvN-equivalent to

(p − zz∗) ⊕ (1 ⊕ p[−1]). The projections in E ⊕ (1 ⊕ p[−1]) itself are all splitting

because its complements majorize s2(1 − p[−1])s
∗
2 + p[−1] ∼MvN 1 . This finishes

the proof of observation (Cu), and shows that the elements of S+ e can be realized

all as MvN-equivalence classes of splitting projections in E.

It is clear that the full and properly infinite projections p are all MvN-equivalent

to splitting projections, e.g. take s1ps
∗
1 in the MvN-equivalence class of p.

Sums p⊕ q with full and properly infinite p are again full and properly infinite,

and if at least one of 1− p or 1− q is full and properly infinite then p⊕ q becomes

a splitting projection.

The observation (Cu) implies that full and properly infinite projections p, q ∈ E
are MvN-equivalent if and only if [p] = [q] in K0(E).

If [p] = [q] then also [1 − p] = [1] − [p] = [1] − [q] = [1 − q]. If p and q are

splitting then 1−p and 1− q are again full and properly infinite. Thus, there exists

a partial isometry z with z∗z = 1 − p and zz∗ = 1 − q. The unitary u := v + z

satisfies up = qu if vv∗ = q and v∗v = p.

If p, q ∈ E are properly infinite full projections then there exists an isometry

t ∈ E with tt∗ ≤ p. With this isometry it holds: If v ∈ E is a unitary with v∗pv = q
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then u := (tv∗t∗ + (1 − tt∗))v is a unitary with 0 = [u] ∈ K1(E) and u∗pu = q,

because tv∗t∗ + (1− tt∗) commutes with p.

(iv,a): Let p, q ∈ E full and properly infinite projections with [p] = [q] ∈ K0(E),

and suppose that there exists an isometry t ∈ E with t∗(p + q)t = 0. Then p, q

and r := tpt∗ are splitting projections and [p] = [q] = [r] in K0(E). Since this

projections are full and properly infinite, there exist by Part (ii) partial isometries

z1, z2 ∈ U(E) with z∗1z1 = r = z∗2z2 and z1z
∗
1 = p and z2z

∗
2 = q. We get from

t∗(p+ q)t = 0 that t∗(p+ q) = 0 and r(p+ q) = 0. Thus z2
k = 0 for k = 1, 2.

The unitary elements

uk := (1− z∗kzk − zkz∗k) + (z∗k − zk) = exp((π/2)(z∗k − zk)) ,

are in U0(E) and satisfy u∗k(zkz
∗
k)uk = z∗kzk = r for k = 1, 2 by Part (v,6). Hence

u∗1pu1 = r = u∗2qu2, and the unitary u := u1u
∗
2 with u∗pu = q is in U0(E).

(iv,b): Let p, q ∈ E projections, and define P := (p ⊕ 1) ⊕ 0 = s2
1p(s

∗
1)2 +

s1s2(s1s2)∗ and Q := (q ⊕ 1) ⊕ 0 = s2
1q(s

∗
1)2 + s1s2(s1s2)∗ . Then [p] = [q] in

K0(E), if and only if,

[P ] = [(p⊕ 1)⊕ 0] = [p] + [1] = [q] + [1] = [(q ⊕ 1)⊕ 0] = [Q] .

The projections P and Q are full and properly infinite because s1s2(s1s2)∗ ≤ P and

s1s2(s1s2)∗ ≤ Q. They are also splitting projections and satisfy the assumptions

of Part (iv,a), because s∗2(P +Q)s2 = 0.

Thus, [p] = [q], if and only if, [P ] = [Q], if and only if, there exist u ∈ U0(E)

with u∗Pu = Q.

(v): We show first (v,2) and that u ∈ U(E) 7→ [u] ∈ K1(E) is surjective. Since

(v,6) is obvious, this allows to verify (v,1) and (v,4) easily by using (v,3) and (v,6).

Therefore we display only the proofs of (v,2), (v,5) and (v,3) in more detail.

(v,2): Recall that K1(E) for unital C *-algebras E can be described as the in-

ductive limit of the discrete groups U(Mn(E))/U0(Mn(E)) by the group morphisms

u ∈ U(Mn(E)) 7→ u⊕ 1 ∈ U(Mn+1(E)) ,

where on this place ⊕ means the direct sum (despite that the original definition of

the topological K1(B) for unital Banach algebras is formally different).

Let s1, s2 ∈ E isometries with s∗1s2 = 0 (e.g. as above chosen). We define

isometries tk := sk−1
2 s1 ∈ E for k = 1, 2, . . ..

The tn satisfy t∗ntm = δn,m1. Let T (more precisely Tn) denote the row

[t1, t2, . . . , tn, tn] ∈ M1,n(E). The row T defines a partial isometry in Mn(E) with

T ∗T = 1n and TT ∗ ≤ diag(1, 0, . . . , 0). We define a C *-morphism

ϕ : Mn(E) 3 [ajk] 7→ T [ajk]nnT
∗ =

∑
jk

tjajkt
∗
k

from Mn(E) onto enEen, where

en := TT ∗ = t1t
∗
1 + · · ·+ tnt

∗
n ≤ 1 .
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The restriction to diagonal elements is given by

ϕ
(
diag(a1, a2, . . . , an)

)
= Tn diag(a1, a2, . . . , an)T ∗n =

∑
1≤j≤n

tjajt
∗
j .

That u ∈ U(E) 7→ [u] ∈ K1(E) is surjective follows from the fact that V ⊕ 1n

and

diag(ϕ(V ) + 1− ϕ(1n) , 1, . . . , 1) := (ϕ(V ) + 1− ϕ(1n))⊕ 12n−1

are unitarily equivalent in M2n(E) for each unitary V ∈ Mn(E) by the Halmos

unitary U(Tn) ∈ M2(Mn(E)) ∼= M2n(E) of the contraction Tn (cf. Remark 4.2.4),

i.e., U(Tn) = [ajk] is given by a11 := Tn (considered as matrix in Mn(E) with 2-nd

to n-th rows equal to zero), a21 := 0, a22 := a∗11 and a12 := −(1 − a11a
∗
11). The

matrix U(Tn) is a Halmos unitary in U0(M2n(E)), and

U(Tn)(V ⊕ 1n )U(Tn)∗ = a11 V a
∗
11 + 1n − a11a

∗
11

The right side of the latter formula is the same as diag(ϕ(V )+1−ϕ(1) , 1, . . . , 1) .

Thus, [ϕ(V ) + 1 − ϕ(1)] = [V ] in K1(E) and the natural map u ∈ U(E) 7→ [u] ∈
K1(E) is surjective.

Let u0, u1 ∈ U(E) and u ∈ U(pEp) with [u0] = [u1] in K1(E).

By (topological) definition of K1-groups, cf. [692, def. 8.1.3], [u0] = [u1] in

K1(E), if and only if, there is n ∈ N such that the unitaries diag(u0, 1, . . . , 1) and

diag(u1, 1, . . . , 1) are homotopic in U(Mn(E)), i.e., W := diag(u∗1u0, 1, . . . , 1) ∈
U0(Mn(E)) for sufficiently big n ∈ N. It follows that

s1(u∗1u0)s∗1 + (1− s1s
∗
1) = ϕ(W ) + (1− en) ∈ U0(E) .

It gives the desired homotopy in U(E):

(u1 ⊕ 1) + p[−1] = s1u1s
∗
1 + (1− s1s

∗
1) ∼h s1u0s

∗
1 + (1− s1s

∗
1) = (u0 ⊕ 1) + p[−1] .

(v,5): The difference between the case where p is not full and the here consid-

ered case where p is full can be seen in Example 4.2.9.

Let p ∈ E a projection such that 1− p is full and properly infinite in E and let

u ∈ U(pEp) a unitary that satisfies [u+ (1− p)] = 0 in K1(E).

Since 1− p is full and properly infinite, the unit of E must be properly infinite.

Thus, there are isometries s1, s2 ∈ E that satisfy the non-degeneracy property (ND)

on p[−1].

We define below unitary operators W, v ∈ E that satisfy

(v ⊕s1,s2 1) + p[−1] = s1vs
∗
1 + (1− s1s

∗
1) = W ∗(u+ (1− p)W .

It follows [(v⊕1)+p[−1]] = [u+(1−p)] = 0 in K1(E). We get (v⊕1)+p[−1] ∈ U0(E)

by Part (v,2), and can conclude that u+ (1− p) = W ((v⊕ 1) + p[−1])W
∗ ∈ U0(E).

There is an isometry t ∈ E with tt∗ ≤ (1−p), because (1−p) is full and properly

infinite. The projection r := t(s2s
∗
2 + p[−1])t

∗ is splitting, because ts2(ts2)∗ ≤ r

and ts1(ts1)∗ ≤ 1− r. Obviously, s2s
∗
2 + p[−1] is a splitting projection.
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The Weyl–von-Neumann equivalence r ∼WvN s2s
∗
2 + p[−1] , and the unitary

equivalence of splitting projections with same class in K0(E) – as established in Part

(iii) – imply the existence of a unitary W ∈ U(E) with W ∗rW = s2s
∗
2 + p[−1] =

1− s1s
∗
1.

Since r ≤ (1−p), the element e := 1− (p+ r) ≤ 1−p is a projection in E with

p+ e = 1− r and u+ e is a unitary in (p+ e)E(p+ e) = (1− r)E(1− r).

For every u ∈ U(pEp), we can define an element v ∈ E by

v := s∗1W
∗(u+ e)Ws1 = s∗1W

∗(u+ (1− p))Ws1 .

The element v ∈ E is unitary, because u + e ∈ U((p + e)E(p + e)), Ws1s
∗
1 =

(1− r)W = (p+ e)W and s∗1W
∗Ws1 = 1. Then 1− p = e+ r and

(v ⊕ 1) + p[−1] = s1vs
∗
1 + (1− s1s

∗
1) = W ∗((u+ e) + r)W = W ∗(u+ (1− p))W .

We consider now the case where the projection p ∈ E is splitting in E:

If p ∈ E is a splitting projection, then the inclusion map η : pEp ↪→ E defines

an isomorphism η∗ from K∗(pEp) onto K∗(E), because pEp and E are in a natural

way stably equivalent: There exists an isometry T inM(E⊗K) with TT ∗ = p⊗ 1.

Explicitly the group homomorphisms η∗ are given for the classes of splitting

projections e ∈ pEp by η0([e]) := [e] and by η1([u]) := [u + (1 − p)] for unitary

u ∈ U(pEp).

The (generalized) Cuntz addition ⊕s1,s2 can be chosen such that η∗ is compati-

ble with the splitting projection, e.g. such that s1s
∗
1+s2s

∗
2 ≤ p and and p−s1s

∗
1−s2s

∗
2

is a splitting projection in pEp.

This isometries s1, s2 can be used to describe the inverse θ∗ := (η∗)
−1 of the

η∗ on classes [e] ∈ K0(E) and [u] ∈ K1(E) by θ0([e]) := [s1es
∗
1] and θ1([u]) :=

[s1us
∗
1 + (p− s1s

∗
1)]. Elementary verifications of η1 ◦ θ1 = id and θ1 ◦ η1 = id follow

then from the identities

s1us
∗
1 + (p− s1s

∗
1) + (1− p) = s1us

∗
1 + (1− s1s

∗
1)

and [u] = [s1us
∗
1 + (1− s1s

∗
1)] in K1(E), and of [s1(u+ (1− p))s∗1 + (p− s1s

∗
1)] = [u]

in K1(pEp). The identities η0 ◦ θ0 = id and θ0 ◦ η0 = id come from [s1es
∗
1] = [e] for

e ∈ E in K0(E) and for e ∈ pEp inside K0(pEp).

One of the consequences for splitting p ∈ E and u ∈ U(pEp) is:

[u + (1 − p)] = 0 in K1(E), if and only if, [u] = 0 in K1(pEp), if and only if,

u+ (1− p) ∈ U0(E).

(v,3): (u∗ ⊕ u) + p[−1] = V ∗U∗c V Uc, for V := s1us
∗
1 + (1− s1s1) = u⊕′ 1 and

with Uc ∈ U0(E) defined by Equation (2.3) in the proof of Part (o).

(vi): We prove first the result for the special case in sub-part (vi, α), where u

commutes with p:

If p is splitting, i.e., if p and 1− p are both full and properly infinite projections in
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E then there exist isometries t1, t2 ∈ E with t1t
∗
1 ≤ p and t2t

∗
2 ≤ 1−p. The unitary

R := t1t
∗
2 − t2t∗1 + (1− t1t∗1 − t2t∗2) = exp((π/2)(t1t

∗
2 − t2t∗1))

is in U0(E). Obviously t∗1R = t∗2, pt1t
∗
1 = t1t

∗
1, (1−p)t2t∗2 = t2t

∗
2 and R∗t1t

∗
1R = t2t

∗
2.

Thus,

R∗pRt2t
∗
2 = R∗pt1t

∗
1R = R∗t1t

∗
1R = t2t

∗
2 .

It implies that R∗(1− p)R t2t∗2 = 0, u(1− p)R t2t∗2 = 0 and that

R∗(p+ u(1− p))R t2t∗2 = t2t
∗
2

Since (1− p)t2t∗2 = t2t
∗
2, we get finally that

(up+ (1− p))R∗(p+ u(1− p))Rt2t∗2 = t2t
∗
2 .

We let q := 1− t2t∗2 and V := (up+ (1− p))R∗(p+ u(1− p))R. Then 1− q = t2t
∗
2

is full and properly infinite in E and V (1− q) = (1− q). Hence, there is a unitary

w ∈ qEq such that w + (1− q) = V . Since R ∈ U0(E), the unitary V is homotopic

in U(E) to u = (up+ (1− p))(p+ u(1− p)). By assumption, [u] = 0 in K1(E). It

follows [w + (1− q)] = [V ] = [u] = 0.

We can apply Part (v,5) to w + (1− q) (in place of u+ (1− p) of Part (v,5)),

because (1− q) = s2s
∗
2 is full and properly infinite in E, and w ∈ U(qEq) satisfies

[w + (1− q)] = 0 in K1(E). Part (v,5) implies that V = w + (1− q) is in U0(E).

Since u ∼h V , it follows that u ∈ U0(E). This proves case (α).

Now suppose, more generally, that u1, u2 ∈ U(E) and a splitting projection

p ∈ E satisfy ‖ukp − puk‖ < 1, for k = 1, 2 and that [u1] = [u2] ∈ K1(E). Then

qk := ukpku
∗
k satisfy ‖qk − p‖ < 1 for k = 1, 2.

By Lemma 4.1.3(v), if p, q ∈ E are two projections with ‖p−q‖ < 1, then there

exists a unitary v ∈ U0(A) with v∗pv = q in the connected component U0(A) of 1

in U(A), where A := C∗(1, p, q) ⊆ E.

This applies to the projections p and qk := ukpu
∗
k (k = 1, 2), and gives

v1, v2 ∈ U0(E) with vkqkv
∗
k = p. Thus, v1u1pu

∗
1v
∗
1 = v2u2pu

∗
2v
∗
2 and u := u∗2v

∗
2v1u1

commutes with p = t1t
∗
1. Since [u1] = [u2] and [vk] = 0 we get [u] = [v1] + [u1] −

[v2]− [u2] = 0.

By the above considered special case (α), we get that u ∈ U0(E). The unitary

u is homotopic to u∗2u1 in U(E) because v∗2v1 ∈ U0(E). Hence, u∗2u1 ∈ U0(E) and

u1 ∼h u2 in U(E).

(vi,β): Let t1, t2 ∈ E isometries with ‖t∗1t2‖ < 1 and u ∈ U(E) such that

‖t∗1ut2‖ < 1 and [u] = 0 ∈ K1(E).

We consider the projection q := 1 − t2t
∗
2 and unitarily equivalent properly

infinite full projections p1 := t1t
∗
1 and p2 := u∗p1u. Then p1 and p2 are unitarily

equivalent and, for k = 1, 2,

‖(1− q)pk‖ = ‖pkt2‖ ≤ max
(
‖t∗1t2‖, ‖t∗1ut2‖

)
< 1 .
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Hence, Lemma 4.1.3(iv) applies and gives skew-adjoint operators hk = −h∗k ∈ E
with ‖hk‖ ≤ arcsin ‖(1− q)pk‖ < π/2 such that rk := exp(−hk)pk exp(hk) ≤ q .

The definition of the projections pk shows that p1 and p2 are unitarily equivalent

properly infinite and full projections in E. The same follows for the rk. Moreover

the rk satisfy t∗2(r1 + r2)t2 = 0 because rk ≤ q = 1 − tt∗. By Part (iv,a), there

exists a unitary v ∈ U0(E) such that v∗r1v = r2. It follows that

v∗ exp(−h1)p1 exp(h1)v = v∗r1v = r2 = exp(−h2)u∗p1u exp(h2) ,

i.e., the unitary w = u exp(h2)v∗ exp(−h1) commutes with the projection p1. The

projection p1 = exp(h1)r1 exp(−h1) is splitting, because p1 ≤ 1 − SS∗ for the

isometry S := exp(h1)t2.

The K1(E)-class [w] of w is zero, because [u] = 0 by assumption, v, exp(hk) ∈
U0(E) and [w] = [u] + [exp(h1)] − [v] − [exp(h2)] = 0 . Thus, Part (vi,α) applies

to w and p1. It proves that w ∈ U0(E), and that u = w exp(h1)v exp(−h2) is in

U0(E).

(vii): The observation (Cu), applied to p := 1 − s1s
∗
1 and q := 1 − t1t

∗
1,

gives immediately that for two pairs s1, s2 ∈ E and t1, t2 ∈ E of isometries with

orthogonal ranges there exist a unitary u ∈ E such that us1 = t1 and [u] = 0 ∈
K1(E). It can appear that there does not exist any unitary u with us1 = t1 that

satisfies also us2 = t2. This is e.g. the case if p[−1] and q[−1] are not both zero or

are not both properly infinite and full projections.

If p[−1] = q[−1] = 0, then u := t2s
∗
2 + t1s

∗
1 is the unique unitary in E with

usk = tk. Therefore, e.g. if K1(E) 6= {0} and 0 = [1] ∈ K0(E), it can happen that

u ∈ U(E) and usk = tk imply [u] 6= 0.

But one can always find a unitary v that satisfies vs1 = t1 and 0 = [u] ∈ K1(E)

(but not necessarily vs2 = t2), e.g. let v := u(1⊕s1,s2 u∗) in case p[−1] = 0.

In the general case of given pairs of isometries (s1, s2) and (t1, t2) with orthog-

onal ranges let v := t1s
∗
1 + z for some partial isometry z with z∗z = p := 1− s1s

∗
1

and zz∗ = q := 1− t1t∗1, existing by Part (ii), because p and q are full and properly

infinite. The unitary u := w∗v with w := (1 − t2t
∗
2) + t2vt

∗
2 is a unitary with

us1 = t1 and [u] = 0 ∈ K1(E).

We can proceed as in the above consideration for the finding of a unitary if p[−1]

and q[−1] are both full and properly infinite: Use that [p[−1]] = −[1E ] = [q[−1]] and

get from Part (ii) that there is a partial isometry z with z∗z = p[−1] and zz∗ = q[−1].

Then v := t1s
∗
1 + t2s

∗
2 + z is a unitary with vsk = tk .

Since p[−1] is full and properly infinite, we get that there exists an isometry

S ∈ E with SS∗ ≤ p[−1]. Then u := v ·
(
(1 − SS∗) + Sv∗S

)
is a unitary with

usk = tk and [u] = 0 in K1(E).

The general observation is the following: Let s1, . . . , sn and t1, . . . , tn isometries

in E with s∗jsk = δjk1 = t∗j tk, i.e., the sk and tk correspond to unital C *-morphisms
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h0 and h1 from En into E. Let p[1−n] := 1−
∑n
k=1 sks

∗
k and q[1−n] := 1−

∑n
k=1 tkt

∗
k.

Clearly [p[1−n]] = (1− n)[1] = [q[1−n]] in K0(E).

If p[1−n] = q[1−n] = 0 then u :=
∑n
k=1 tks

∗
k is the unique unitary with usk = tk

and it can happen that [u] 6= 0.

The projections p[1−n] and q[1−n] are MvN-equivalent in E, if and only if, there

exists a u ∈ U(E) with usk = tk. This unitary induces a unitary equivalence of

p[1−n] and q[1−n] by up[1−n]u
∗ = q[1−n]. In particular, p[1−n] ∼MvN q[1−n].

The latter is always the case if p[1−n] and q[1−n] are both full and properly

infinite:

If p[1−n] and q[1−n] are both full and properly infinite, then they are MvN-

equivalent by Part (ii), and there exist isometries sn+k (k = 1, 2, . . .) with

s∗n+ksn+` = 0 for k 6= ` and sn+ks
∗
n+k ≤ p[1−n].

The unitary u ∈ U(E) with usk = tk is determined up to multiplication with

elements in G := (1 − p[1−n]) + U(p[1−n]Ep[1−n]) from the right side. It is the

same as the multiplication with elements in (1 − q[1−n]) + U(q[1−n]Eq[1−n]) from

the left side – because up[1−n] = q[1−n]u. Since v := sn+1u
∗s∗n+1 + (1− sn+1s

∗
n+1)

is in the group G, it follows that uG contains unitaries w with [w] = 0 in K1(E),

e.g. w := uv. Our below explained method and Part (vi,β) indicates that it suffices

to find an isometry t ∈ E such that ‖(1 − p[1−n])t‖ < 1 and ‖(1 − p[1−n])u
∗t‖ < 1

to show that uG ∩ U0(E) is not empty.

The consideration of the case n = 2 explains the ideas and appearing problems

in the general case of missing K1-injectivity. We discuss here only the case n = 2

in any detail:

The case – where a properly infinite and full projection r ∈ E with r ≤ p[−1]

and r ≤ q[−1] exists – uses Part (v,5), or likewise Part (vi,α). (Notice that the

above given proofs of Parts (v) and (vi) are independent from our considerations

given here.)

Suppose that a properly infinite and full projection r ∈ E exists with r ≤ p[−1]

and r ≤ q[−1] . We find an isometry T ∈ E such that TT ∗ ≤ r. Define s3 := t3 :=

Ts1, and the partial isometry V := t1s
∗
1 + t2s

∗
2 + t3s

∗
3. Then 1 − V ∗V =: p[−2] =

p[−1]−Ts1s
∗
1T and 1−V V ∗ =: q[−2] = q[−1]−Ts1s

∗
1T are full and properly infinite

projections, because each of it dominates the range Ts2s
∗
2T
∗ of the isometry Ts2

and E is properly infinite. The projections p[−2] and q[−2] are properly infinite and

[p[−2]] = [1] − [V ∗V ] = [1] − [V V ∗] = [q[−2]]. Thus, there exists a partial isometry

Z with Z∗Z = p[−2] and ZZ∗ = q[−2]. We obtain that

U := (T + Z)(1− Ts2s
∗
2T
∗ + Ts2(T + Z)∗s∗2T

∗)

satisfies Usk = tk (k = 1, 2, 3) and [U ] = 0 in K1(E). Since s3 = t3, we get

U = W + (1 − P ) with P := 1 − Ts1s
∗
1T
∗ = 1 − s3s

∗
3 and W := UP ∈ U(PEP ).

The facts that (1−P ) is full and properly infinite and [W + (1−P )] = 0 in K1(E)

imply that U = W +(1−P ) ∈ U0(E) by Part (v,5) or Part (vi,α). Clearly Usk = tk

and Up[−1] = q[−1]U . �
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Example 4.2.9. The difference between the use of splitting or non-splitting

properly infinite projection p in the formulation of Lemma 4.2.6(v,5) can be seen

from the following example of a strongly purely infinite C *-algebra E with U0(E) =

U(E) and a non-splitting properly infinite projection p ∈ E that satisfies the first

assumption in Lemma 4.2.6(v,5) such that 1−p properly infinite and full in E, but

K1(pEp) 6= {0}:

Consider E := M(P∞ ⊗K) and p := 1⊗ p11, where P∞ denotes here the (up

to isomorphisms) unique unital pi-sun algebra in the UCT-class with K0(P∞) = 0

and K1(P∞) ∼= Z . Thus, [u] = 0 implies in this case [u + (1 − p)] = 0, but the

opposite direction is wrong.

Recall that all properly infinite unital C *-algebras are K1-surjective by Lemma

4.2.6(ii). The following Lemma 4.2.10 collects necessary and sufficient conditions

for the K1-injectivity of properly infinite unital C *-algebras. (But the squizing

property of Definition allowes more sufficiant cases for K1-injectivity.)

Lemma 4.2.10. Let E a properly infinite unital C*-algebra. Each of the fol-

lowing conditions (i)–(iv) is equivalent to the K1-injectivity of E :

(i) For every unitary u ∈ E with [u] = 0 in K1(E) there exist isometries

t1, t2 ∈ E and a unitary v ∈ U0(E) with ‖t∗1ut2‖ < 1 and ‖t∗1vt2‖ < 1.

(ii) For every unitary u ∈ E with [u] = 0 in K0(E), there exist isometries

r1, r2 ∈ E and a unitary v ∈ U0(E) with r∗1vr2 = 0 and r∗1ur2 = 0.

(iii) For every isometry s ∈ E with full and properly infinite 1 − ss∗ and for

every unitary u ∈ E one can find isometries t1, t2 ∈ E and a unitary

v ∈ U0(E) with ust1 = vst2.

(iv) Splitting projections p, q ∈ E with [p] = [q] ∈ K0(E) are unitarily equiva-

lent by a unitary in U0(E).

(v) For every isometries s and t with orthogonal ranges (i.e., s∗t = 0) and

every unitary u ∈ U(E) the projections tt∗ and u∗tt∗u are homotopic

inside the projections of E (denoted by tt∗ ∼h u∗tt∗u).

A sufficient condition for the K1-injectivity of E is the following (possibly

stronger) property (vi):

(vi) For every u ∈ U(E) with 0 = [u] ∈ K1(E) there exists a splitting projection

p ∈ E with ‖up− pu‖ < 1 .

For example, this is the case for each fixed given u ∈ U(E), if there

exists a C*-morphism

Hu : C∗(u)⊗O∞ → E∞ := `∞(E)/c0(E)

with Hu(u⊗ 1) = (u, u, . . .) + c0(E) ∈ E∞ .

Those C *-morphisms Hu : C∗(u)⊗O∞ → E∞ exist for example if E is strongly

purely infinite, cf. Chapter 3. It is not known if such morphisms Hu exist for all uni-

tal purely infinite C *-algebras E and u ∈ U(E). An answer to this question could
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be interesting for the open question if every purely infinite C *-algebra is strongly

purely infinite. But notice here that all unital p.i. C *-algebras are K1-injective

because they satisfy the formally stronger “squeezing” property (sq) defined in

Definition 4.2.14.

Proof. The equivalence of each of (i)–(v) with K1-injectivity:

K1-injectivity ⇒ (iii): Let s ∈ E an isometry with full and properly infinite

1 − ss∗ and u ∈ E unitary. There exists an isometry t ∈ E with t∗s = 0. Let

v := u(tu∗t∗ + 1− tt∗) and t1 := t2 := t. Then ust1 = vst2 and v is a unitary with

[v] = 0 in K1(E). The K1-injectivity implies v ∈ U0(E).

(iii)⇒ (ii): Let u ∈ U(E) with [u] = 0 in K0(E). Since 1E is properly infinite,

there exists an isometry s ∈ E with full and properly infinite 1− ss∗. By assump-

tions of (iii), there exist isometries t1, t2 ∈ E and a unitary u0 ∈ U0(E) such that

ust1 = u0st2.

There exists an isometry t ∈ E with t∗s = 0, because 1−ss∗ is full and properly

infinite by assumptions on s.

The element

w := 1− ss∗ − tt∗ + st2s
∗ + tt∗2t

∗ − s(1− t2t∗2)t∗ = (1− ss∗ − tt∗) + [s, t]U(t2)[s, t]∗

is a unitary in U0(E), because the Halmos unitary U(t2) is in U0(M2(E)), cf. Remark

4.2.4.

Obviously, ws = st2. Since ust1 = u0st2, we obtain that (u0t)
∗(u0w)st1 =

t∗st2t1 = 0 and (u0t)
∗u(st1) = (u0t)

∗u0st2 = 0.

If we take r1 := u0t, r2 := st1 and v := u0w then v ∈ U0(E), and r1, r2 are

isometries with r∗1vr2 = 0 and r∗1ur2 = 0, i.e., the elements v, r1, r2 fulfill condition

(ii) for the given unitary u with [u] = 0.

The implication (ii)⇒ (i) is obvious.

(i)⇒ K1-injectivity: Let u ∈ U(E) with 0 = [u] ∈ K1(E) and suppose that

(i) holds, i.e., that there exist isometries t1, t2 ∈ E and a unitary v ∈ U0(E) with

‖t∗1vt2‖ < 1 and ‖t∗1ut2‖ < 1.

We can apply Part (vi,β) of Lemma 4.2.6 to (t1, vt2, uv
∗) (in place of the triple

(t1, t2, u) in Part (vi,β) of Lemma 4.2.6), because [uv∗] = [u] − [v] and [u] = 0,

v ∈ U0(E), and get uv∗ ∈ U0(E) and finally u ∈ U0(E). Thus every unitary u ∈ E
with 0 = [u] ∈ K1(E) is in U0(E).

K1-injectivity⇒(iv): Let p, q ∈ E splitting projections with [p] = [q] ∈ K0(E).

By Part (ii) of Lemma 4.2.6, there exists a unitary u ∈ E with u∗pu = q and

0 = [u] ∈ K1(E). If E is K1-injective this implies u ∈ U0(E).

(iv)⇒ K1-injectivity: Let v ∈ E a unitary with 0 = [v] ∈ K1(E). The projec-

tion p := s1s
∗
1 ∈ E is splitting, because s2s

∗
2 ≤ 1 − p. Clearly q := v∗pv is also a

splitting projection that has same class [q] = [p] in K0(E).
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By assumption of (iv) there exists a unitary u ∈ U0(E) with p = u∗qu. Then

vu commutes with the splitting projection p = s1s
∗
1 and 0 = [v] + [u] = [vu]. The

Part (vi,α) of Lemma 4.2.6 shows that vu ∈ U0(E). Thus v ∈ U0(E).

K1-injectivity ⇒(v): Suppose that E is K1-injective. Let s, t ∈ E isometries

with t∗s = 0 and u ∈ U(E). Define v := ((1−ss∗)+su∗s∗)u, then [v] = 0 in K1(A).

It implies v ∈ U0(A), because E is K1-injective. It follows u∗tt∗u = v∗tt∗v ∼h tt∗.

(v)⇒ K1-injectivity: If s, t ∈ E are isometries with s∗t = 0, then p := tt∗ is a

splitting projection. Let u ∈ U(A) with 0 = [u] ∈ K1(E). By assumption of (v),

p ∼h u∗pu. Remark 4.1.5 says that there exists w ∈ U0(A) with p = w∗(u∗pu)w, i.e.,

vp = pv for the unitary v = uw. We have [v] = [u] + [w] = 0, because [u] = 0 = [w].

It follows v ∈ U0(A) by Lemma 4.2.6(vi,α). Hence, u = vw∗ ∈ U0(A).

This finish the proof of the equivalences of (i)–(v).

(vi)⇒(i): Suppose that for each u ∈ U(E) there exists a C *-morphisms

Hu : C∗(u)⊗O∞ → E∞ with Hu(u⊗ 1) = u ∈ E ⊆ E∞ .

Let u ∈ U(E) with [u] = 0 in K1(E) and

Hu : C∗(u)⊗O∞ → E∞ := `∞(E)/c0(E)

a C *-morphism with Hu(u⊗ 1) = u ∈ E ⊆ E∞ .

Let s1, s2, . . . canonical generators of O∞. Hu(1⊗ sk) ⊆ E∞ for k ∈ {1, 2} lift

to a sequence of contractions (sk,1, sk,2, . . .) ∈ `∞(E) that satisfy, for j, k ∈ {1, 2},
the equations limn ‖s∗j,nsk,n − δj,k1‖ = 0 and limn ‖[u, sk,n]‖ = 0 .

Replace, for sufficiently big n ∈ N, the sk,n (k ∈ {1, 2}) by its small perturba-

tions tk,n ∈ E that are isometries and satisfy ‖[u, tk,n]‖ < 1/4 and ‖t∗1,nt2,n‖ < 1/4.

If we let v := 1, tk := tk,n, then u, v, t1 and t2 satisfy the condition in Part (i).

Thus, E is K1-injective if it has the property in Part (v). �

In the following Proposition 4.2.11 the elements s1, s2, . . . denote the canonical

generators of O∞ := C∗(s1, s2, . . . ; s∗jsk = δjk1) . Recall that C *-morphisms

h0, h1 : A → E are homotopic, if there exists a point-norm continuous path ξ ∈
[0, 1] 7→ Hξ ∈ Hom(A,E) of C *-morphisms with h0 = H0 and h1 = H1.

Proposition 4.2.11. Suppose that E is a C*-algebra with properly infinite unit

element.

Then, for any unital C*-morphisms h0, h2 : O∞ → E, there exists a unitary

u0 ∈ U(E) with u0h2(s1) = h0(s1) and 0 = [u0] ∈ K1(E) such that h0 is homotopic

to h1 in Hom(O∞, E) with point-norm topology, where we build h1 : O∞ → E from

h2 by h1(sn) := u0h2(sn) for n ∈ N.

The algebra E is K1-injective if and only if any two unital C*-morphisms from

O∞ into E are homotopic.
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Proof. The unital C *-morphisms h0, h2 : O∞ → E are injective because O∞
is simple (and purely infinite) by Corollary 2.2.7, cf. also [169, thm. 1.13, thm. 3.4]

and [172, prop. 1.6].

We use this to simplify notations, because we can now suppose that O∞ is

unitally contained in E (via h0) by identifying the canonical generators sn of O∞
with its images h0(sn), and get a reference copy of O∞ inside E. Hence, we can

suppose without loss of generality that O∞ ⊆ E and that h0(sn) = sn, i.e., that h0

is the identity map of O∞.

Let Z := h2(s1)s∗1. Then Zs1 = h2(s1), and the projections Z∗Z = s1s
∗
1,

ZZ∗ = h2(s1s
∗
1), 1−Z∗Z = 1−s1s

∗
1 and 1−ZZ∗ = h2(1−s1s

∗
1) are full and properly

infinite projections with [1−Z∗Z] = [1−ZZ∗] in K0(E). By Lemma 4.2.6(ii), cf. also

[172, thm. 1.4], there exists a partial isometry Y ∈ E with Y ∗Y = 1 − Z∗Z and

Y Y ∗ = 1 − ZZ∗. Since Y ∗Z = 0 = ZY ∗, the sum W := Y + Z is a unitary with

Ws1 = h2(s1). The element V := W ((1− s2s
∗
2) + s2W

∗s∗2) is again a unitary with

V s1 = h2(s1), but now with class [V ] = 0 in K1(E).

Let u0 := V ∗. It satisfies [u0] = 0 and u0h2(s1) = s1 = h0(s1). We define a

new C *-morphism h1 : O∞ → E by h1(sn) := u0h2(sn) for n = 1, 2, . . .. It has the

property h1(s1) = s1.

The arguments used above (for h2, Z and construction of V ) work also for h1

in place of h2 and the partial isometries Zn :=
∑n
k=1 h1(sk)s∗k :

The Zn satisfy Pn := Z∗nZn =
∑n
k=1 sks

∗
k and

ZnZ
∗
n = h1(

n∑
k=1

sks
∗
k) = h1(Pn) .

The full and properly infinite projections 1−Z∗nZn and 1−ZnZ∗n = h1(1−Z∗nZn)

are MvN-equivalent because they have have same K0(E)-class. Let Yn ∈ E a partial

isometry with Y ∗n Yn = 1− Z∗nZn and YnY
∗
n = 1− ZnZ∗n. The sum Wn := Yn + Zn

is unitary and the unitary

Vn := Wn(1− sn+1s
∗
n+1 + sn+1W

∗
ns
∗
n+1)

satisfies 0 = [Vn] ∈ K1(E) and Vnsk = h1(sk) for k ≤ n. In particular, V1P1 = P1

and V1(1− s1s
∗
1) is a unitary in U((1− s1s

∗
1)E(1− s1s

∗
1)). Since s1s

∗
1 is a splitting

projection and [V1] = 0, this implies by Lemma 4.2.6(v,5) that V1(1 − s1s
∗
1) has

class [V1(1− s1s
∗
1)] = 0 in K1((1− s1s

∗
1)E(1− s1s

∗
1)), and that V1 ∈ U0(E).

It follows that there is a continuous path λ ∈ [0, 1] 7→ Vλ ∈ U0(E) that connects

V0 := 1 and the above defined unitary V1 ∈ U(E).

Similar arguments apply for n ≥ 1 to the unitary Qn := V ∗n Vn+1 and the

projection Pn = Z∗nZn :

We get that QnPn = Pn and that Pn is splitting. Hence, [Qn] = [Vn+1]− [Vn] =

0 in K1(E) implies that [Qn(1−Pn)] = 0 in K1((1−Pn)E(1−Pn)) because 1−Pn
is a full projection in E, see Lemma 4.2.6(v,5) with Qn(1−Pn) and 1−Pn in place

of u and p.
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If we let P0 := 0 and P1 = s1s
∗
1, then by Lemma 4.2.6(v,5),

Qn(1− Pn−1) = Qn(1− Pn) + sns
∗
n ∈ U0((1− Pn−1)E(1− Pn−1)) .

We obtain a continuous path λ ∈ [0, 1] 7→ R
(n)
λ ∈ U((1 − Pn−1)E(1 − Pn−1)) with

R
(n)
0 = (1− Pn−1) and

Rn+1
1 = Qn(1− Pn) + sns

∗
n .

Notice that Vn+1 = VnQn = Vn · (R(n)
1 + Pn−1).

We combine the above defined maps λ ∈ [0, 1] 7→ Vλ and n ∈ N 7→ Vn to a

continuos path λ ∈ [0,∞) 7→ Vλ ∈ U0(E) for λ ∈ [n, n+ 1] (n ≥ 1) by

Vλ := Vn · (R(n)
λ−n + Pn−1) .

Since Vnsk = h1(sk) for k ≤ n and Pn−1sk = sk for k ≤ n − 1, it follows that

Vλsk = h1(sk) for all k ≤ λ− 1.

The above defined path λ ∈ [0,∞)→ Vλ ∈ U0(E) defines a point-norm contin-

uous path ξ ∈ [0, 1] 7→ Hξ in the unital C *-morphisms from O∞ into E by assigning

to the generators s1, s2, . . . ∈ h0(O∞) and ξ ∈ [0, 1) the values

Hξ(sn) := V(1−ξ)−1ξ · sn = uξ · sn

where we let uξ := V(1−ξ)−1ξ and H1 := h1. Then H0 = h0, and the path is

continuous at ξ = 1, because

lim
ξ→1

uξsn = h1(sn) for all n ∈ N .

Moreover, Hξ(sk) = uξsk = sk if k + 1 ≤ (1− ξ)−1 by our construction.

Suppose that E is K1-injective, i.e., that [u] = 0 ∈ K1(E) implies u ∈ U0(E).

Then above considered u0 is in U0(E) and we find a path ξ ∈ [1, 2] 7→ u(ξ) ∈ U(E)

with u(1) = u0 and u(2) = 1. We can define a point-norm continuous path

ξ ∈ [0, 2] 7→ Hξ : O∞ → E

by Hξ := hξ for ξ ∈ [0, 1], and by Hξ(sn) := u(ξ)h1(sn) for ξ ∈ [1, 2]. This path

satisfies H0 = h0 and H2 = h2.

Suppose that 1E is properly infinite and that any two unital C *-morphisms

h1, h2 : O∞ → E are homotopic. Let u ∈ U(E) with 0 = [u] in K1(E).

Since 1 is properly infinite there exist isometries t1, t2 ∈ E with orthogonal

ranges, i.e., t∗j tk = δjk1 for j, k ∈ {1, 2}. The sequence sn := tn−1
2 t1 with t02 := 1

defines a unital C *-morphism H(0) from O∞ into E, because s∗jsk = δjk1 for

j, k ∈ N, and O∞ is the universal C *-algebra with this defining relations. Since

O∞ is simple, cf. Corollary 2.2.7, the C *-morphisms are injective.

We get another *-monomorphism H(1) fromO∞ into E that maps the canonical

generators s1, s2, . . . of O∞ ∼= H(0)(O∞) to H(1)(sn) := usn for n ∈ N.

By assumption there exists a point-norm continuous path ξ ∈ [0, 1] 7→ Hξ into

the unital C *-morphisms Hξ : O∞ → E, such that Hk = H(k) for k ∈ {0, 1}.
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Then pξ := Hξ(s1s
∗
1) is a continuous path in the projections with p0 = s1s

∗
1

and p1 = H(1)(p0). Thus, there exists V ∈ U0(E) with V ∗p0V = p1 = up0u
∗,

cf. Lemma 4.1.3(v).

We get V up0 = p0V u for the splitting projection p0 = s1s
∗
1. Now V ∈ U0(E)

implies that [V u] = [u] = 0 in K1(E). It follows that V u ∈ U0(E) by Part (vi,β) of

Lemma 4.2.6. Using again V ∈ U0(E), we obtain u ∈ V ∗U0(E) = U0(E). �

Remark 4.2.12. The proof of Proposition 4.2.11 shows that two unital C *-

morphisms h1, h2 : O∞ → E are homotopic if h1(s1) = h2(s1).

Notice that following Lemma 4.2.13 is not trivial, because it does not require

that A is simple.

Lemma 4.2.13. Let A a purely infinite unital C*-algebra, let e, f ∈ A+ with

0 ≤ f ≤ e ≤ 1 and S ∈ A an isometry such that S∗fS is contained in the closed

ideal J := I(1− e) generated by (1− e).

Then there exists an isometry T ∈ A and δ ∈ (0, 1] that satisfy ‖T ∗fT‖ =

1− δ < 1.

Proof. The inequality 0 ≤ (1− e) ≤ (1− f) implies that I(1− e) ⊆ I(1− f).

Thus, S∗fS ∈ I(1− f), and for each ε > 0 there exist g1, . . . , gn ∈ A such that

‖S∗fS −
n∑
k=1

g∗k(1− f)gk‖ < ε

Combined with the equation S∗fS = 1− S∗(1− f)S it shows that 1A is contained

in the closed ideal I(1− f) generated by 1− f .

If A is purely infinite then this is equivalent to the existence of dε ∈ A with

‖1− d∗ε(1− f)dε‖ < ε for each ε ∈ (0, 1/2) .

CHECK AGAIN THE ESTIMATES!! :

There exists δ ∈ (0, 1), – depending on the norm ‖d1/4‖ –, with

‖1− d∗1/4(1− δ − f)+d1/4‖ < 1/4 .

The element T := C(C∗C)−1/2 with C := (1 − δ − f)
1/2
+ d1/4 is an isometry in A

with ‖T ∗fT‖ ≤ 1− δ < 1, because ‖T ∗fT‖ ≤ supn ‖(1− δ − f)
1/n
+ f‖ . �

Definition 4.2.14. We say that a unital C *-algebra A has the “squeezing”

property if A satisfies following Property (sq):

(sq) For each a ∈ A there exist isometries r1, r2 ∈ A (depending on a) with

‖r∗1ar2‖ ≤ 2‖a‖/3.

It is still not known if C *-algebras with properly infinite units are K1-injective,

even in case of weakly purely infinite C *-algebras. Almost all cases where one could

prove ( 5 ) the K1-injectivity have implicitly to do with the now defined “squeezing”

Property (sq) that implies K1-bijectivity.

5 – up to August 2018 –
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Proposition 4.2.15. If a unital C*-algebra A has the “squeezing” Property

(sq) of Definition 4.2.14 then A is K1-bijective in sense of Definition 4.2.2.

Following examples (a - c) of C*-algebras satisfy Property (sq):

(a) En := C∗(s1, . . . , sn ; s∗i sj = δij1 ) , for n = 2, . . . ,∞.

(b) each unital purely infinite C*-algebra A, and

(c) the multiplier algebra A := M(B) of every stable σ-unital C*-algebra B.

The class of C*-algebras A,A1, A2, . . . with Property (sq) is invariant under

following constructions (i-vii):

(i) Infinite direct sums `∞(A1, A2, · · · ),

(ii) tensor products A⊗max B with any unital C*-algebra B,

(iii) Cb(X,A) for locally compact σ-compact Hausdorff spaces X,

(iv) quotients A/J , for closed ideals J 6= A of A,

(v) inductive limits with unital C*-morphisms,

(vi) fix-point algebras of permutation actions on the n-times tensor product

with n ≥ 2 : A⊗
n

:= A⊗A⊗ · · · ⊗A , and

(vii) B + ϕ(O∞), for every unital C*-morphism ϕ : O∞ →M(B) if B is a σ-

unital C*-algebra and its multiplier algebra M(B) has the Property (sq)

(e.g. if B is stable – by Part (c) ).

In particular it follows:

If a unital C*-algebra A satisfies Property (sq) then the asymptotic corona

Cb([0,∞), A)/C0([0,∞), A) and the C*-algebras E := (A ⊗max C)/J , for every

unital C*-algebra C and every closed ideal J 63 1 of A⊗max C, have Property (sq)

and are all K1-bijective.

Stable coronas Qs(B) of σ-unital C*-algebras B have Property (sq) and are

K1-bijective.

Examples (a) and permanence property (v) show that O∞ = indlimn En has

Property (sq) and is K1-bijective.

Proof. We divide the proof into 3 groups.

(1st) shows that unital A with Property (sq) of Definition 4.2.14 contains isome-

tries s, t ∈ A with s∗t = 0 – which implies K1-surjectivity by Part (v) of Lemma

4.2.6 –, and that Property (sq) implies that A satisfies the necessary and sufficient

condition (i) of Lemma 4.2.10 for K1-bijectivity. Moreover we reformulate Property

(sq) in a more applicable form.

(2nd) the Property (sq) has the quoted permanence properties (i-vii), and

(3rd) the under (a,b,c) listed classes of C *-algebras have Property (sq).

Ad(1st): The Property (sq) implies that A contains two isometries s1, s2 with

“orthogonal ranges”, i.e., with s∗1s2 = 0 . Indeed, for a := 1 exist by Property (sq)

isometries r1, r2 ∈ A with ‖r∗1r2‖ ≤ 2/3. Let p := r1r
∗
1 and q := 1 − r2r

∗
2 . The

projections p, q satisfy ‖p(1− q)‖ = ‖r∗1r2‖ ≤ 2/3. By Lemma 4.1.3(iv) there exists
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a unitary w ∈ U0(A) with p ≤ wqw∗ = 1 − (wr2)(wr2)∗, i.e., r∗1(wr2) = 0. Thus,

s∗1s2 = 0 for the isometries s1 := r1 and s2 := wr2, and A has a properly infinite

unit element. It implies that A is K1-surjective by Lemma 4.2.6(v).

We derive a stronger and more flexible formulation of Property (sq):

If there exists δ0 ∈ (0, 1) with the property that, for each a ∈ A, there exist

isometries r1, r2 ∈ A – depending on a – with ‖r∗1ar2‖ ≤ (1 − δ0) · ‖a‖ , then we

can replace a by r∗1ar2 and get isometries t1, t2 ∈ A – depending on r∗1ar2 – with

‖(r1t1)∗a(r2t2)‖ ≤ ‖a‖ · (1− δ0)2 .

Repeats of this argument show that the Property (sq) is equivalent to the

property that for each element a ∈ A and given ε > 0 there exists isometries

r1, r2 ∈ A with ‖r∗1ar2‖ < ε .

If we replace in Definition 4.2.14 the element a by s∗1as2 with isometries s1, s2 ∈
A with orthogonal ranges, i.e., s∗jsk = δjk1, then we find isometries r1, r2 ∈ A with

‖r∗1(s∗1as2)r2‖ < ε. The element t1 := s1r1 and t2 := s2r2 are isometries in A that

satisfy

‖t∗1at2‖ < ε, and t∗j tk = δjk1 . (2.5)

It implies immediately that A fulfills the sufficient condition for K1-injectivity in

Lemma 4.2.10(i) with v := 1 for each u ∈ U(A) . Indeed, take a := u and tk := rk

(k ∈ {1, 2}) for some isometries r1, r2 ∈ A with ‖r∗1ar2‖ < 1/2 and r∗1r2 = 0.

Induction over n in Inequality (2.5) shows that, for any finite subset F =

{a1, . . . , an} ⊂ A and ε > 0, there exist isometries r1, r2 ∈ A with ‖r∗1xr2‖ < ε for

all x ∈ F , and r∗1r2 = 0.

The induction step from n to n + 1 uses that isometries s, t ∈ A exist with

‖s∗(r∗1an+1r2)t‖ < ε. Then (r1s)
∗(r2t) = 0 and ‖(r1s)

∗ak(r2t)‖ < ε for k =

1, . . . , n.

Ad(2nd): C *-algebras A with the above derived formally stronger property, –

but that is equivalent to Property (sq) –, have the permanence properties (i-vi):

(i): If A1, A2, . . . are unital C *-algebras with Property (sq), then the algebra

`∞(A1, A2, · · · ) of bounded sequences a := (a1, a2, . . .) with ak ∈ Ak is a unital

C *-algebra. If ε > 0 is given then we find isometries j ∈ {1, 2}, rk,j ∈ Ak such that

‖r∗n,1anrn,2‖ < ε/2. The rj := (r1,j , r2,j , . . .) are isometries in `∞(A1, A2, . . .) and

satisfy ‖r∗1ar2‖ < ε.

(ii): If A has Property (sq) and B is a unital C *-algebra, then the tensor

product A⊗max B has Property (sq).

Indeed, let c ∈ A ⊗max B and ε > 0. There exist n ∈ N, a1, . . . , an ∈ A and

b1, . . . , bn ∈ B with ‖bk‖ ≤ 1 such that in A⊗max B holds

‖ c− (a1 ⊗ b1 + . . .+ an ⊗ bn) ‖ < ε/2 .

By the (2nd) observation there exist isometries t1, t2 ∈ A with t∗1t2 = 0 and

‖t∗1akt2‖ < ε/2n for k = 1, . . . , n . Then r` := t` ⊗ 1 ∈ A ⊗max B (` = 1, 2)

are isometries that satisfy ‖r∗1cr2‖ < ε .
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Induction shows that moreover for every finite sequence c1, . . . , cn ∈ A⊗max B

and ε > 0 there exists isometries t1, t2 ∈ A with t∗1t2 = 0 that satisfy the inequalities

‖(t∗1 ⊗ 1)ck(t2 ⊗ 1)‖ < ε for 1 ≤ k ≤ n .

(iii): Suppose that A is unital and has property (sq), and that X is a locally

compact σ-compact Hausdorff space. The σ-compactness of X is equivalent to the

property that C0(X)+ contains a function x 7→ e(x) ∈ [0, 1] that defines a strictly

positive element e of the C *-algebra C0(X) with ‖e‖ = 1. We fix such a function

e(x).

Let X 3 x 7→ a(x) ∈ A a continuous map with ‖a(x)‖ ≤ 1 for all x ∈ X. We

show the existence of isometries S, T ∈ Cb(X,A) with T ∗S = 0, and

‖T (x)∗a(x)S(x)‖ ≤ e(x)/2 for all x ∈ X .

In particular, ‖T ∗aS‖ ≤ 1/2 and T ∗aS ∈ C0(X,A).

We consider A as the C *-subalgebra of Cb(X,A) consisting of constant A-

valued functions from X to A. The subsets

Kn := e−1[2−n, 1] = {x ∈ X ; e(x) ≥ 2−n}

build an increasing family of compact “reference” subsets of X with the properties:

Kn−1 ⊆ K◦n and
⋃
n

Kn = X ,

that follow from

Kn−1 = e−1([2−(n−1), 1]) ⊆ e−1
(
(2−n, 1]

)
⊆ K◦n ⊆ Kn = e−1([2−n, 1]) .

The arguments need some care because we can not suppose that the interior of

e−1(2−n) is empty, – different to the case e.g. of the function f0(τ) := τ on (0, 1] –

in place of e for (0, 1] in place of X.

We use the functions hn ∈ C0(0, 1]+ considered in Section 22 of Appendix A

to build a suitable decomposition of 1 ∈ Cb(X,A) inside Cb(X)+ :

The increasing functions hn ∈ C0(0, 1]+ are given by

hn(τ) := min
(
1,max(2nτ − 1, 0)

)
, for τ ∈ [0, 1] , n = 0, 1, . . . .

The set (2−n, 1] is the open support of hn, contained in h−1
n+1(1) = [2−n, 1] . Thus,

hnhn+1 = hn and the non-negative function hn+1 − hn has support in the open

interval (2−(n+1), 2−(n−1)). It implies that the below used functions ψn := (hn −
hn−1)1/2 (applied to the values e(x) of e) are well-defined and have the property

that ψnψm = 0 for |n−m| > 1. Notice that h0 := 0 , h1 = (2f0 − 1)+ , . . ., and in

general hn = (2nf0 − 1)+ − (2n−1f0 − 1)+ in the algebra C0(0, 1] and for n ∈ N.

It follows that for each γ ∈ (0, 1] only finitely many functions hn − hn−1 have

support in [γ, 1]. In particular,
∑
n≥1(hn − hn−1) converges on each interval [γ, 1]

uniformly to 1. Notice that

(hn ◦ e)−1(0, 1] = e−1(h−1
n (0, 1]) = e−1

(
(2−n, 1]

)
⊆ K◦n ⊆ Kn .
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It shows that (hn+1 ◦e)(x) = 1 if and only if x ∈ e−1([2−n, 1]) = Kn . The support

of hn ◦ e is contained in the interior K◦n of Kn because hn+1hn = hn.

Hence, the open support of the non-negative function hn(e(x))− hn−1(e(x)) is

contained in Vn := K◦n \Kn−2. It says that the support of (hn ◦ e)− (hn−1 ◦ e) is

an open subset of X that is contained in the open subset Vn of X. Obviously Vn is

contained in the closed subset Fn := Kn \ K◦n−2 of X. Summing up, the functions

ϕn(x) :=
(
hn(e(x)) − hn−1(e(x))

)1/2
:= ψn(e(x)) with ψn := (hn − hn−1)1/2 for

n = 1, 2, . . . earn from the hn − hn−1 ≥ 0 the properties (I), (II) and (III) :

(I) ϕnϕm = 0 if |n−m| > 1 ,

(II) The open supports Un := ϕ−1
n ((0, 1]) of ϕn are contained in the open

subsets Vn := K◦n \ Kn−2. And Vn is contained in the closed subset

Fn := Kn \ (K◦n−2) .

(III)
∑∞
n=1 ϕn(x)2 converges on each compact subset Y of X uniformly to

1. More precisely: There exists ν(Y ) ∈ N such that ϕn|Y = 0 for all

n > ν(Y ).

Parts (II) of this property list shows that
∑
n ϕn(x)an is a well-defined element

in Cb(X,A) of norm ≤ 2 if a1, a2, . . . ∈ A is an arbitrary sequence of contractions.

We define isometries S, T ∈ Cb(X,A) by the sums

S(x) :=

∞∑
n=1

ϕn(x)sn and T (x) :=

∞∑
n=1

ϕn(x)tn ,

Here sn, tn are the below constructed isometries in A with mutually orthogonal

ranges, i.e., with s∗mtn = 0 and s∗msn = δm,n1 = s∗msn for all m,n ∈ N . The in

this way defined S and T are always in Cb(X,A), and satisfy S∗S = 1 = T ∗T ,

S∗T = 0.

We complete the proof by an inductive selection of isometries sn, tn ∈ A with

above orthogonality properties and such that the corresponding isometries T and

S satisfy

‖T (x)∗a(x)S(x)‖ ≤ 4−n for all x ∈ K◦n \Kn−2 .

This implies ‖T (x)∗a(x)S(x)‖ ≤ e(x)/2 for all x ∈ X because e(x) ∈ [2−n, 4 · 2−n )

on Kn \Kn−2.

In the (1st) step it was shown that A has a properly infinite unit if A has

Property (sq). Let r1, r2 ∈ A isometries in A with r∗1r2 = 0, and let yn := rn1 r2

and zn := rn2 r1. Then y∗myn = δm,n1 = z∗mzn and y∗mzn = 0 for all m,n ∈ N .

We define by induction sequences of isometries (g1, g2, . . .) and (h1, h2, . . .) with

gn, hn ∈ A, and build from them and from yn, zn new sequences (s1, s2, . . .) and

(t1, t2, . . .) of isometries in A with the desired property by the following rules:

(α) s1 := r1r2 · g1 and t1 := r2r1 · h1 ,

(β) sn+1 := r1sngn+1 and tn+1 := r2tnhn+1 .

Then s1 = y1g1 , s2 = y2g1g2 , sn = yng1 · . . . · gn and tn = znh1 · . . . · hn . To

get the desired estimate we have to require that the isometries gn, hn ∈ A satisfy



2. ON K-THEORY OF PROPERLY INFINITE C*-ALGEBRAS 517

the following inequalities, where an := a|Kn. We must consider also the overlap for

the x ∈ X with ϕn(x)ϕn+1(x) 6= 0 .

It implies that we must find in each step pairs of isometries (g1, h1), respectively

(gn+1, hn+1), in A that fulfill the three inequalities ‖h∗1c1,kg1‖ < 4−1 (k = 1, 2, 3)

for given elements c1,1, c1,2, c1,3 ∈ C(K2, A), respectively ‖h∗n+1cn,kgn+1‖ < 4−1 for

– in induction process new defined – given elements cn,1, cn,2, cn,3 ∈ C(Kn+2, A).

In our case here we have to take in C(K2, A) the 3 elements

c1,1 := r∗1r
∗
2a2r1r2 , c1,2 := r∗1(r∗2)2a2r1r2 and c1,3 := r∗1r

∗
2a2(r1)2r2 .

In the induction step we have to consider in C(Kn+2, A) the elements

cn,1 := t∗nr
∗
2an+2r1sn , cn,2 := t∗n(r∗2)2an+2r1sn and cn,3 := t∗nr

∗
2an+2(r1)2sn .

If A has Property (sq) and B := C(K) for a compact space K then the proof

of Part (2nd,ii) shows moreover that – for c1, . . . , cn ∈ C(K,A) and ε > 0 – there

exist isometries s, t ∈ A ⊆ C(K,A) with t∗s = 0 and ‖t∗cks‖ < ε for k = 1, . . . , n .

This implies the existence of the desired gn+1, hn+1 ∈ A :

Simply put here ε := 4−n and take for c1, c2 and c3 the above considered elements

in C(Kn+2, A). Then we can take gn+1 := s and hn+1 := t. This finishes the proof

of the existence of the proposed isometries gn+1 and hn+1 in A, that define together

with r1, r2 the desired new isometries sn+1 and tn+1 in A by composition rules (α)

and (β).

(iv): If A is unital and has property (sq) and J 6= A is a closed ideal of A,

then A/J is unital. Let b ∈ A/J and ε > 0. There exists a ∈ A with πJ(a) = b and

isometries r1, r2 ∈ A with ‖r∗1ar2‖ < ε . The isometries tj := πJ(rj) ∈ A/J satisfy

‖t∗1bt2‖ < ε .

(v): If A is the inductive limit of a directed net of unital morphisms between

C *-algebras, then A has the “local” property that for each contraction a ∈ A and

ν ∈ (0, 1/4) there exists a unital C *-algebra B with property (sq), an element b ∈ B
with ‖b‖ ≤ 1, isometries r1, r2 ∈ B that satisfy r∗1r2 = 0 and ‖r∗1br2‖ ≤ ν, and a

unital C *-morphism ψ : B → A with ‖ψ(b) − a‖ < ν. Then t1 := ψ(s1) and t2 :=

ψ(s2) are isometries in A with orthogonal ranges that satisfy ‖t∗1at2‖ ≤ 2ν < 1/2.

(vi): Suppose that the unital C *-algebra A has property (sq), and let

φ : A⊗
n → A⊗

n

a permutation *-automorphism that is defined via

φ(a1 ⊗ a2 ⊗ · · · ⊗ an) := aπ(1) ⊗ aπ(2) ⊗ · · · ⊗ aπ(n)

by a permutation π of {1, . . . , n}.

As we have seen in (1st) Part and Part (ii) that for every b ∈ A⊗n and ε > 0

there exist isometries t1, t2 ∈ A such that t∗1t2 = 0 and

‖ (t∗1 ⊗ 1⊗ · · · ⊗ 1)b(t2 ⊗ 1⊗ · · · ⊗ 1) ‖ < ε .
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Thus sk := tk ⊗ tk ⊗ · · · ⊗ tk , k ∈ {1, 2} are isometries with φ(sk) = sk , s∗1s2 = 0

and ‖s∗1bs2‖ < ε . The s1 and s2 are contained in the fix-point algebra of all actions

of permutation automorphisms of A⊗
n

.

(vii): The C *-algebraM(B) has a properly infinite 1, i.e., contains isometries

S, T ∈ M(B) with T ∗S = 0, and M(B) is K1-bijective by (1st) Part. For each

b ∈ B and ε ∈ (0, 1) there exists isometries r1, r2 ∈ M(B) with r∗2r1 = 0 and

‖r∗2br1‖ < ε by proof of (1st) Part. We may suppose here that 1− r1r
∗
1 − r2r

∗
2 is a

full and properly infinite projection, otherwise replace r2 by r2r1.

Let ϕ : O∞ →M(B) a unital C *-morphism, X ∈ B+ϕ(O∞) and ε ∈ (0, 1/8).

Then X = c + ϕ(d) with c ∈ B and d ∈ O∞. O∞ has Property (sq) because

it is the inductive limit of the En in Part (a) and Part (v) applies (or use Part

(b) because O∞ is purely infinite by Corollary 2.2.7). If follows that there exists

isometries t1, t2 ∈ O∞ with t∗2t1 = 0 and ‖t∗2dt1‖ < ε. Here 1 − (t1t
∗
1 + t2t

∗
2)

is a full and properly infinite projection ( 6 ). Define b := ϕ(t2)∗dϕ(t1) ∈ B.

Then ‖(ϕ(t2)S2)∗X(ϕ(t1)S1)‖ < ε + ‖S∗2bS1‖ for all isometries S1, S2 ∈ M(B).

The Property (sq) of M(B) implies that we find isometries S1, S2 ∈ M(B) with

‖S∗2bS1‖ < ε and S∗2S1 = 0. Here we can replace S2 by S2S1 to make sure that

1−S1S
∗
1 −S2S

∗
2 is full and properly infinite. Then we find a unitary v ∈ U(M(B))

with vϕ(t1) = S1, vϕ(t2) = S2 and [v] = 0 ∈ K1(M(B)). The Property (sq) of

M(B) causes the K1-injectivity of M(B), by (1st) Part. Thus, v ∈ U0(M(B))

and there exist f1, . . . , fn ∈ M(B) with f∗k = −fk and v = exp(f1) · . . . · exp(fn).

Let {ej} ⊂ B+ (j ∈ N) a quasi-central approximate unit in B, build e.g. by func-

tional calculus from a strictly positive contraction in B+. The unitaries Uj :=

exp(ejf1ej) · . . . ·exp(ejfnej)) are in 1M(B) +B and limj→∞ ‖U∗j xUj−vxv‖ = 0 for

each x ∈ B. Thus, there exists U ∈ U(B+C ·1)∩ (1+B) with ‖U∗bU −v∗bv‖ < ε.

We get ‖(Uϕ(t1))∗b(Uϕ(t2))‖ ≤ 2ε. Then Tk := ϕ(tk)Uϕ(tk) (k = 1, 2) are isome-

tries in B + ϕ(O∞) with ‖T ∗2XT1‖ < 3ε < 1/2.

(Ad 3rd) Some algebras with Property (sq):

The argument at the beginning of the proof of (1st) shows also that is suffices

to require for all elements a in a dense subset X of A that there exists a constant

γ ∈ (0, 1) such that for each a ∈ X there exist isometries r1, r2 (depending from

a) with ‖r∗1ar2‖ < γ‖a‖, e.g. we could start with the property that there exist for

each a ∈ X isometries r1, r2 ∈ A with 3‖r∗1ar2‖ ≤ 2‖a‖.

(a): En := C∗( s1, . . . , sn ; s∗i sj = δij ) , n = 2, . . . ,∞ , satisfy Property (sq):

Indeed, let w := k1k2 . . . kp, v := `1`2 . . . `q, “words” of length p, q ∈ N with

“letters” kj , `i ∈ {1, . . . , n} from the “alphabet” {1, . . . , n}. Define T0 := 1 and an

isometry by the product

Tp(w) := sk1
sk2
· . . . · skp .

6 Use here that [1] = 1 by K0(O∞) ∼= Z, or simply replace t2 by t2t1 to make sure that

1− t1t∗1 − t2t∗2 is full and properly infinite.
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It is easy to see that the linear span of the element 1 and of the “elementary”

products Tq(w), Tq(w)∗ and Tq(w)(Tr(v)∗) is dense in the C *-algebra En (in both

of real or complex case), because the product Tq(v)∗Tp(w) is equal to 1 if v = w, is

equal to zero if there exists g ≤ r := min(p, q) with kg 6= `g, is equal to T(p−q)(u1)

if q < p and w = vu1 and is equal to T(q−p)(u2)∗ if p < q and v = wu2.

We denote by G one of this elementary products or let G = 1. A sort of “length”

L(G) is defined by L(1) := 0, L(Tq) := q, L((Tq)
∗) := q and L(Tq · (Tr)∗) := q + r.

Clearly, s∗kTp(w) = δk,k1
Tp−1(v) for all k = 1, . . . , n with word v := k2k3 . . . kn for

w = k1k2 . . . kn.

Let G = Tp(w)Tq(v)∗ with w = k1 . . . kp, v = `1 . . . `q (p, q ≥ 1), then,

L(s∗kGs`) = L(G) − 2 if and only if k1 = k and `1 = `, otherwise only s∗kGs` = 0

can happen.

In case G = Tp(w), w = k1 . . . kp, we get s∗kGs` 6= 0 if and only if k = k1

and then L(s∗kGs`) = L(G), because then G = Tp(u) with u = k2 . . . kp`. Since

L(G∗) = L(G) the same holds for G = Tp(w)∗ with the role of k and ` interchanged.

Therefore, one can find, for each linear combination C = α01 +
∑m
j=1 αjGj

(with scalars αj), an index 1 ≤ j0 ≤ m and suitable k, ` ∈ {1, . . . , n} such that

k 6= `, s∗kGj0s` = 0 for at least one j0 ∈ {1, . . . ,m} and L(s∗kGjs`) ≤ L(Gj) for

j 6= j0. Thus s∗kCs` =
∑
j 6=0,j 6=j0 αjs

∗
kGjs` with elementary products s∗kGjs` (it

can be equal to 1).

Iteration – say m-times – of this operation leads to words w and v in the alpha-

bet {1, . . . , n} such that for the isometries Tm(w) and Tm(v) holds Tm(w)∗Tm(v) =

0 and Tm(w)∗CTm(v) = 0. It says that En has Property (sq).

(b): The proof for purely infinite unital C *-algebras is much more engaged

than the proof for strongly purely infinite unital C *-algebras. The latter class

contains all simple unital purely infinite C *-algebras by Proposition 2.2.1(v).

The question whether or not pure infiniteness implies the – for our considera-

tions important – strong pure infiniteness is still unsolved (June 2017).

Let us give first, for the readers convenience, the obvious and easy proof for

strongly purely infinite C *-algebras. This algebras have the “matrix diagonaliza-

tion” property, cf. Definition 2.16.3 and Proposition 2.16.4:

If a ∈ A is a contraction then we can build the positive 2×2-matrix b = [bjk] ∈
M2(A)+ with diagonal entries b11 := 1 =: b22 and b∗21 := b12 := a. By the matrix

diagonalization property of A there exists a diagonal matrix D := diag(d1, d2) with

‖D∗bD − 12‖ < 1/4 , i.e., ‖d∗1ad2‖ < 1/4 and ‖d∗jdj − 1‖ < 1/4 for j = 1, 2. Thus,

the positive elements d∗jdj are invertible with spectrum Spec(d∗jdj) ⊆ (3/4, 5/4)

and sj := dj(d
∗
jdj)

−1/2 are isometries with ‖s∗1as2‖ ≤ (1/4)(4/3) = 1/3.

The different and more engaged proof of Part (b) for the general case of purely

infinite unital C *-algebras A goes as follows:
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Since 1 ∈ A is properly infinite for purely infinite A there exists isometries

S1, S2 ∈ A with orthogonal ranges, i.e., S∗j Sk = δjk1:

The isometries Tk := Sk2S1 ∈ A satisfy T ∗kT` = δjk1, and C∗(T1, T2, . . . ) ⊂ A is

a copy O∞ in A .

Let a ∈ A an element of norm ‖a‖ = 1 . We are going to show that there exist

isometries s, t ∈ A such that ‖t∗as‖ < 1 :

If ‖T ∗2 aT1‖ < 1 , then we can take s := T1 and t := T2 . If ‖T ∗2 aT1‖ = 1, then

we consider (from now on) the closed ideal J := I(1−T ∗1 a∗T2T
∗
2 aT1) of A generated

by 1− T ∗1 a∗T2T
∗
2 aT1 ∈ A+ :

If 1A is contained in J , then Lemma 4.2.13 applies with e := f := T ∗1 a
∗T2T

∗
2 aT1

and S := 1, and implies that there exists an isometry T ∈ A and δ ∈ (0, 1] with

‖T ∗fT‖ = 1 − δ < 1 . Thus, ‖T ∗2 a(T1T )‖ = (1 − δ)1/2 < 1 , and we can take

s := T1T and t := T2.

If 1A is not contained in J , then πJ(T ∗1 a
∗T2T

∗
2 aT1) = 1. Thus πJ(T ∗2 aT1) is

an isometry in A/J . Then πJ(T ∗2 aT1T3) = πJ(T ∗2 aT1)πJ(T3) is again an isometry

in A/J . The contraction Z := T ∗2 aT1T2 ∈ A satisfies πJ(Z∗)πJ(T ∗2 aT1T3) = 0 and

πJ(Z∗Z) = 1.

We define a closed left ideal of A by

L := { b ∈ A ; b · T ∗2 aT1T3 ∈ J } .

It contains Z∗ and all elements of J , i.e., J ∪ {Z∗} ⊆ L.

Let K denote the closed ideal of A that is generated by the hereditary C *-

subalgebra D := L∗ ∩ L. Then L∗ · L ⊆ D, and D contains J and the contraction

ZZ∗. It follows that the closed ideal K of A contains J and Z∗(ZZ∗)Z. The

equation πJ(Z∗)πJ(ZZ∗)πJ(Z) = πJ(1) shows that 1 − Z∗(ZZ∗)Z ∈ J . Hence,

1 ∈ K and K = A.

The C *-algebra A and its full hereditary C *-subalgebra D are purely infinite,

and the ideal generated by D contains 1A. It implies the existence of elements

g ∈ A and d ∈ D+ such that g∗dg = 1.

The isometry V := d1/2g ∈ A satisfies V ∗ ∈ L because V V ∗ ∈ D. Thus,

V ∗T ∗2 aT1T3 ∈ J by definitions of L and D = L∗ ∩ L.

The positive contractions f := T ∗1 a
∗T2V V

∗T ∗2 aT1 , e := T ∗1 a
∗T2T

∗
2 aT1 and

isometry S := T3 satisfy the assumptions of Lemma 4.2.13, i.e., 0 ≤ f ≤ e and

S∗fS ∈ I(1− e) = J .

By Lemma 4.2.13 there exists an isometry T ∈ A with ‖T ∗fT‖ < 1. Thus,

‖V ∗T ∗2 aT1T‖ = ‖T ∗fT‖1/2 < 1 . It says that the isometries s := T1T and t := T2V

satisfy ‖t∗as‖ < 1.

We have seen above that for each unital purely infinite A and a ∈ A with

‖a‖ = 1 there exists isometries s, t ∈ A such that ‖t∗as‖ < 1 and t∗s = 0. This

argument does not give immediately a fixed general constant γ0 ∈ (0, 1) with the
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property that we for every a ∈ A there exist isometries s, t ∈ A (depending on a)

with ‖t∗as‖ ≤ (1 − γ0) · ‖a‖ . So that the iteration argument in the (1st) Part of

the proof does not apply here.

But we can give an indirect argument that proves that for each a ∈ A and

ε > 0 there are isometries s, t ∈ A (depending on a and ε) with ‖t∗as‖ < ε:

Define for a ∈ A the number

γ(a) := inf{ ‖t∗2at1‖ ; t1, t2 ∈ A , t∗j tk = δj,k1 , } .

Obviously 0 ≤ γ(a) ≤ ‖a‖ and γ(ξa) = |ξ| · γ(a). We show that γ(a) = 0 for all

a ∈ A :

Suppose – to derive a contradiction – that γ(a) > 0 for some a ∈ A with

‖a‖ = 1. Then we can find sequences tk,1, tk,2, . . . , tk,n, . . . ∈ A (k ∈ {1, 2}) with

t∗j,ntk,n = δj,k1 and limn ‖t∗2,nat1,n‖ = γ(a). Let

bn := ‖t∗2,nat1,n‖−1t∗2,nat1,n .

Then b := (b1, b2, . . .) is a contraction in `∞(A) that has the property that for every

isometries S, T ∈ `∞(A) holds ‖T ∗bS‖ = 1.

It is easy to see that C *-algebra `∞(A) is again purely infinite if A is purely

infinite in sense of Definition 1.2.1, cf. the permanence properties of purely infinite

C *-algebras listed in Proposition 2.5.19. Hence, our above “individual” squeezing

result is also true for elements b ∈ `∞(A).

But this general fact contradicts the existence of a contraction b ∈ `∞(A) with

the property that ‖T ∗bS‖ ≥ 1 for all isometries S, T ∈ `∞(A).

It follows that the above defined number γ(a) ∈ [0, ‖a‖] is zero for all a ∈ A if

A is a unital purely infinite C *-algebra. In particular, we find then for each a ∈ A
isometries s, t ∈ A with 3‖t∗as‖ ≤ 2.

– (c): Let B a stable σ-unital C *-algebra and A :=M(B). By Lemma A.23.1,

for every separable C *-subalgebra C ⊂M(B) there exist isometries S, T ∈ M(B)

with the property that T ∗CS ⊆ B and T ∗S = 0 .

By Remark 5.1.1(8) we find a sequence of isometries sk ∈ M(B) with the

property that
∑
k sks

∗
k converges strictly to 1 with respect of the strict topology on

M(B). If we select suitable skn from the sequence s1, s2, . . . then we can manage

that Tn := Tskn and Tn := Tskn satisfy limn ‖T ∗ncSn‖ = 0 and T ∗nSn = 0 for all

c ∈ C. Thus, A :=M(B) has Property (sq). �

Now we turn to the generalization of K1-injectivity and K1-surjectivity to the

case of non-unital σ-unital C *-algebras :

Definition 4.2.16. If A is a not necessarily unital C *-algebra, then we can

consider the natural unitization Ã := A + C1 ⊆ M(A) of A, and then use the

definitions of K1-surjectivity and K1-injectivity for Ã in place of E in Definition

4.2.2, where we notice that K1(Ã) = K1(A) and each unitary u ∈ A + C1 is
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homotopic in U(Ã) to a unitary v ∈ U(Ã) ∩ (1 + A). Notice that our definition of

Ã entails that Ã = A if A is unital.

I.e., A is K1-surjective (respectively is K1-injective) if the natural map

u = 1 + a ∈ U(Ã) 7→ [u] ∈ K1(A)

from (1 +A)∩U(A+C · 1) to K1(A) is surjective (respectively has kernel equal to

(1 +A) ∩ U0(Ã)).

The C *-algebra A is K1-bijective if A is K1-surjective and K1-injective.

Following Remark 4.2.17 lists some sufficient criteria for K1-surjectivity and K1-

injectivity of some special non-unital C *-algebras. It will be used for our “construc-

tive” version of K∗-theory and the study of Cuntz semi-groups of C *-morphisms.

Remark 4.2.17. C *-algebras A with the property that the unit element of

M(A) is properly infinite appear often in our considerations.

Suppose that A is a σ-unital non-unital C *-algebra. The multiplier algebra

M(A) has a properly infinite unit, if and only if, there exists a unital C *-morphism

O∞ →M(A), and this is the case if and only if A is isomorphic to an ideal of some

C *-algebra E with properly infinite unit.

The class of C *-algebras A with properly infinite 1 ∈M(A) is invariant under

passage to non-zero ideals and non-zero quotients.

If M(A) has a properly infinite unit, then A is K1-surjective in the sense of

Definition 4.2.16.

If the multiplier algebraM(A) has a properly infinite unit, then the algebra A

is K1-injective in the sense of Definition 4.2.16, if and only if, A+O∞ ⊆M(A) is

a K1-injective C *-algebra.

Every σ-unital stable C *-algebra A is K1-bijective, because M(A) has the

“squeezing” Property (sq), and this property carries over to A + ψ(O∞) for every

unital C *-morphism ψ : O∞ →M(A), cf. Parts (c) and (vii) of Proposition 4.2.15.

Details for Remark 4.2.17. Let E a C *-algebra, J a closed ideal of E and

ψ : J → A an isomorphism from J onto A. Then M(ψ) is an isomorphism from

M(J) onto M(A) and there exists a unital C *-morphism ϕ : E → M(A). If the

unit of E is properly infinite then the unit 1M(A) = ϕ(1E) of M(A) is properly

infinite. Conversely, if 1M(A) is properly infinite in M(A), then one can take

E :=M(A) and J = A.

If A is a non-zero ideal of a C *-algebra E with properly infinite unit 1E then

every closed ideal {0} 6= J of A is a closed ideal E. If J 6= A, then A/J is a non-zero

closed ideal of E/J and E/J has again a properly infinite unit.

If B is unital and O∞ ⊆ M(B) = B, then B = 1 + B is K1-surjective, by

Lemma 4.2.6(v).
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If A is non-unital and 1 ∈M(A) is properly infinite, then there is copy of O∞
unitally contained in M(A) with O∞ ∩A = {0}. With this copy there are natural

isomorphisms K1(A) = K1(A+C·1) ∼= K1(A+O∞), and U(A+C·1)/U0(A+C·1) ∼=
U(A+O∞)/U0(A+O∞) and

(
(A+ 1)∩U(A+C · 1)

)
/
(
(A+ 1)∩U0(A+C · 1)

) ∼=
U(A+ C · 1)/U0(A+ C · 1) .

The proposed K1-injectivity of M(A) implies that unital C *-morphisms

ϕ1, ϕ2 : O∞ →M(A) are point-norm homotopic, cf. Proposition 4.2.11 i.e., there is

a norm-continuous path of unitaries u(ξ) ∈ U(M(A)) ξ ∈ [0,∞) with u(1) = 1 and

limξ→∞ u(ξ)ϕ1(sn) = ϕ2(sn) for all n ∈ N. Such unitaries can be in strict topology

approximated by products of of exponentials with exponents −x∗ = x ∈ A. That

shows that the interaction with elements in A can be done by correction with

products by u1, . . . , un ∈ (A+ 1) ∩ U0(A+C · 1). This gives hope for over carry of

Property (sq).

If A is stable and σ-unital, then the multiplier algebraM(A) has Property (sq)

and K∗(M(A)) = 0, which implies U(M(A)) = U0(M(A)) by K1-bijectivity.

If A is not unital, but 1M(A) is properly infinite in M(A), then A + O∞ ⊂
M(A) is unital and K1-surjective and the inclusion A + C · 1 ↪→ A + O∞ defines

a natural isomorphism K1(A) = K1(A+ C · 1) ∼= K1(A+O∞) that coincides with

the isomorphism K1(A) ∼= K1(A+O∞) given by splitting of the 6-term exact K∗-

sequence for the (right-)split exact sequence 0→ A→ A+O∞ → O∞ → 0, because

A ∩ O∞ = {0} if A is not unital, and K1(O∞) = K1(C) = 0.

Since A+O∞ is K1-surjective by Lemma 4.2.6(v), for each x ∈ K1(A+O∞) ∼=
K1(A+C ·1) there is a unitary u = a+v ∈ U(A+O∞) with a ∈ A and v ∈ U(O∞)

such that x = [u] = [v]+[v∗a+1]. But U(O∞) = U0(O∞) ⊂ U0(A+O∞) by [172,

cor. 3.12], cf. also Section 1 of Appendix A. Thus [v] = [1] = 0 ∈ K1(A+O∞) and

x = [v∗a+1] ∈ K1(A+O∞) ∼= K1(A+C·1) is the class of the unitary v∗a+1 ∈ A+1.

This establishes the K1-surjectivity of A, i.e., shows the surjectivity of the map

u := a+ 1 ∈ U(A+ C · 1) ∩ (A+ 1) 7→ [u] ∈ K1(A) .

Suppose that A + O∞ (⊆ M(A)) is K1-injective. If 0 = [a + 1] ∈ K1(A) for

a+ 1 ∈ U(A+C · 1), then 0 = [a+ 1] ∈ K1(A+O∞) and a+ 1 ∈ U0(A+O∞). Let

π : A+O∞ → O∞ the natural *-epimorphism π(a+ b) = b for a ∈ A and b ∈ O∞.

By the proposed K1-injectivity of A + O∞, there exist a continuous path ξ ∈
[0, 1] 7→ v(ξ) ∈ U(A + O∞) such that v(0) = 1 and v(1) = a + 1. Then u(ξ) :=

π(v(ξ)∗) · v(ξ) is a continuous path in U(A + C · 1) ∩ (A + 1) with u(0) = 1 and

u(1) = a+ 1, i.e., a+ 1 ∈ U0(A+ C · 1). Thus, A+ C · 1 is K1-injective.

Now suppose conversely that A+C·1 is K1-injective and u = a+v ∈ U(A+O∞)

satisfies 0 = [u] ∈ K1(A + O∞). Notice π(u) = v ∈ U0(O∞) = U(O∞). Then

π(u∗)u = v∗a + 1 satisfies 0 = [v∗a + 1] ∈ K1(A + C · 1) ∼= K1(A + O∞). Thus,

v∗a+ 1 ∈ U0(A+ C1) ⊂ U0(A+O∞) and u = v · (v∗a+ 1) ∈ U0(A+O∞).

Every σ-unital stable C *-algebra A is K1-bijective:
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If A is stable, then there is a non-degenerate C *-morphism ψ : K → M(A)

with ψ(K) ∩ A = {0}. It extends to a strictly continuous unital *-monomorphism

M(ψ) : L(`2) ∼= M(K) → M(A). Let T1, T2, . . . ∈ L(`2) isometries such that∑
n TnT

∗
n converge to id`2 in L(`2) with respect to the *strong operator topology.

Then sn := M(ψ)(Tn) have the property that
∑
n sns

∗
n converges strictly to 1 in

M(A).

If O∞ = C∗(s1, s2, . . .) ⊆M(A) is a copy of O∞ with the additional property

that
∑
n sns

∗
n converges strictly to 1 in M(A), then A + O∞ ⊆ M(A) satisfies

the squeezing condition (sq) of Definition 4.2.14 and is K1-injective by Proposition

4.2.15 :

Indeed, let a + X ∈ A + O∞ with a ∈ A and X ∈ O∞, and ε > 0. We find

snk ∈ O∞ with ‖s∗nkasnk+1
‖ < ε/2, by strict convergence to 1M(A) of

∑
s∗nsn.

Proposition 4.2.15(a,iii) provide isometries S, T ∈ O∞ that satisfy

‖S∗(s∗nkXsnk+1
)T‖ < ε/2 .

The isometries (snkS, snk+1
T ) are ε-squeezing for a+X.

Thus if ψ : O∞ →M(A) is a unital C *-morphism with the additional property

that
∑
n sns

∗
n converges strictly to 1 inM(A), then A+ψ(O∞) has the “squeezing”

Property (sq) of Definition 4.2.14. It implies by Proposition 4.2.15 that A+ψ(O∞)

is K1-bijective.

If ϕ : O∞ → M(A) is any unital C *-morphism with the property that there

exists a unitary u ∈ M(A such that u∗ϕ(b)u − ψ(b) ∈ A for all b ∈ O∞, then the

C *-subalgebra A + ϕ(O∞) ⊆ M(A) satisfies again the “squeezing” Property (sq)

of Definition 4.2.14 and is therefore K1-bijective. �

Notice here that the proof of Proposition 4.2.15(vii) shows that A+ϕ1(O∞) has

Property (sq), if and only if, A+ ϕ2(O∞) has Property (sq) under the assumption

that M(A) is K1-injective.

If ϕ : O∞ → M(A) is any unital C *-morphism then the C *-subalgebra A +

ϕ(O∞) ⊆M(A) satisfies again the “squeezing” Property (sq) of Definition 4.2.14.

Remark 4.2.18. Let A be a σ-unital non-unital C *-algebra such thatM(A) is

K1-injective, as e.g. in case where A is stable, and let ϕk : O∞ →M(A), k ∈ {1, 2},
unital C *-morphisms.

( i) A+ ϕ1(O∞) has Property (sq), if and only if, A+ ϕ2(O∞) has Property

(sq).

(ii) If ϕ : O∞ → M(A) is any unital C *-morphism then the C *-subalgebra

A + ϕ(O∞) ⊆ M(A) satisfies again the “squeezing” Property (sq) of

Definition 4.2.14.

Details for Remark 4.2.18. Then ϕ1 and ϕ2 are homotopic by Proposition

4.2.11.
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(i): Is true and provable, because arguments in the proof of Proposition

4.2.15(vii) apply here.

(ii): It follows from Proposition 4.2.15(vii), becauseM(A) satisfies the “squeez-

ing” Property (sq) of Definition 4.2.14 if A is σ-unital and stable. �

It would be useful for the above considerations if the following Conjectures

4.2.19 can be verified. Are there similar results for O2 in place of O∞ ?

Conjecture 4.2.19. Let A a separable stable C*-algebra and ϕk : O∞ →
M(A) (k = 1, 2) unital C*-morphisms.

(C. 1) The C*-subalgebras A+ ϕ1(O∞) and A+ ϕ2(O∞) are isomorphic.

(C. 2) There exist a unitary U ∈ M(A) such that U∗ϕ1(b)U − ϕ2(b) ∈ A for all

b ∈ O∞.

(C. 3) The C*-morphisms ϕ1, ϕ2 : O∞ → M(A) are approximately unitary

equivalent by a sequence of unitaries u1, u2, . . . ∈ M(A) with the addi-

tional property u∗kϕ2(b)uk − ϕ1(b) ∈ A for all b ∈ O∞.

Clearly (C. 3) implies (C. 2), and (C. 2) implies (C. 1).

Is (C. 1) also true for non-stable σ-unital non-unital separable A if it is true

for all stable separable A?

The following lemma explains the equivalence of rather different looking defin-

ing relations that are used for definitions of Ext-groups or KK-groups (in particular

that here in this book versus those given by other authors).

Lemma 4.2.20. Suppose that E is unital, D is a full hereditary C*-subalgebra

of E, and that A is a unital C*-subalgebra of E such that D is an ideal of A.

(o) There are isomorphisms

K∗(A/D) ∼= kernel(K∗(A)→ K∗(E)) ,

which split the 6-term exact sequence into split exact sequences

0→ K∗(D)→ K∗(A)→ K∗(A/D)→ 0 .

(i) Let p1 and p2 projections in A, such that p2 − p1 ∈ D and [p1]E = [p2]E

in K0(E). Then [p1]A = [p2]A in K0(A).

(ii) Let u1 and u2 unitaries in A, such that u2− u1 ∈ D and [u1]E = [u2]E in

K1(E). Then [u1]A = [u2]A in K1(A).

(iii) If A is K1-surjective, then A/D is K1-surjective.

The equations [p1]A = [p2]A in (i), or [u1]A = [u2]A in (ii), can fail if D / A is

not hereditary in E or is hereditary in E but is not full in E.

Give example!
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This obstruction plays a role for the classifications of non-stable and non-unital

extensions, or unital extensions that do not dominate a unital “zero” extension. See

the ????

Give example for the latter !! Gabe’s remarks ???

Is A/D K1-bijective if A and E (hence D ??) are K1-bijective?

Proof. (o): The inclusion maps ηD : D ↪→ A and ηA : A ↪→ E define group

homomorphisms [ηD]∗ : K∗(D)→ K∗(A) and [ηA]∗ : K∗(A)→ K∗(E). The compo-

sition α := ηA ◦ ηD : d ∈ D 7→ d ∈ E of this homomorphisms defines isomorphisms

[α]∗ = [ηA]∗ ◦ [ηD]∗ from K∗(D) onto K∗(E), because D is full and hereditary in E.

It follows that [ηD]∗ must be injective and that [ηA]∗ is a surjective group

homomorphism from K∗(A) onto K∗(E). Thus, the boundary maps

∂ : K(∗+1) mod 2(A/D)→ K∗(D)

of the natural 6-term exact sequence must be trivial, i.e.,

0→ K∗(D)→ K∗(A)→ K∗(A/D)→ 0

are exact sequences with group morphisms [ηD]∗ and [πD]∗ : K∗(A) → K∗(A/D)

defined by the quotient map πD : A→ A/D.

In particular, the maps [πD]∗ are epimorphisms with kernels [ηD]∗(K∗(D)).

Natural “splitting” epimorphisms from K∗(A) onto K∗(D) can be defined by

β∗ := [α]−1
∗ ◦ [ηA]∗ : K∗(A)→ K∗(D) .

We define a group endomorphisms γ∗ : K∗(A)→ K∗(A) with (γ∗)
2 = γ∗ by

γ∗ := [idA]∗ − [ηD]∗ ◦ β∗ .

The endomorphism γ∗ maps K∗(A) onto the kernel of [ηA]∗ : K∗(A)→ K∗(E). The

“orthogonal” idempotent group endomorphism [idA]∗−γ∗ = [ηD]∗ ◦ [α]−1
∗ ◦ [ηA]∗ of

K∗(A) maps K∗(A) onto [ηD]∗(K∗(D)).

The restriction of [πD]∗ onto the kernel γ∗(K∗(A)) of [ηA]∗ : K∗(A) → K∗(E)

defines an isomorphism [πD]∗ ◦ γ∗ from the kernel of [ηA]∗ : K∗(A) → K∗(E) onto

K∗(A/D).

Thus, the kernel of [ηA]∗ : K∗(A) → K∗(E) is isomorphic to K∗(A/D) in a

natural way by [πD]∗ ◦ γ∗.

We get in particular that

[ηA]∗ ⊕ [πD]∗ : K∗(A)→ K∗(E)⊕K∗(A/D)

are group isomorphisms from K∗(A) onto K∗(E)⊕K∗(A/D) that realize the split-

ting of K∗(D)→ K∗(A)→ K∗(A/D).

(i,ii): Let p1, p2 ∈ A projections (respectively u1, u2 ∈ U(A)). Consider x0 :=

[p2]− [p1] ∈ K0(A) (respectively x1 := [u2]− [u1] ∈ K1(A)).
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If p2−p1 ∈ D (respectively u2−u1 ∈ D) then [πD]∗(x∗) = 0. If [p1]E = [p2]E in

K0(E) (respectively [u1]E = [u2]E in K1(E)), then [ηA]∗(x∗) = 0 in K∗(E). Above

we have seen that [ηA]∗ ⊕ [πD]∗ is faithful on K∗(A). Thus, the assumptions of

Parts (ii) or (iii) imply that x∗ = 0 in K∗(A).

(iii): If u ∈ U(A) 7→ [u] ∈ K1(A) and [πD]1 : K1(A)→ K1(A/D) are surjective,

then for each x ∈ K1(A/D) there exist u ∈ U(A) with x = [πD]1([u]) = [πD(u)].

Thus, Part (iii) follows from πD(U(A)) ⊆ U(A/D). �

3. Addition of C*-morphisms

We apply the above definition of ⊕s1,s2 to C *-morphisms and completely posi-

tive maps, and study later associated commutative semigroups and the correspond-

ing Grothendieck groups. Throughout this section we consider two C *-algebras D

and E such that E is unital and contains a copy of O2 unitally.

Definition 4.3.1. Let h1, h2 : D → E be two C *-morphisms (or completely

positive maps) and let s1, s2 be generators of a unital copy of O2 in E. Then the

Cuntz addition of h1 and h2 (with respect to s1, s2) is defined by:

(h1 ⊕s1,s2 h2)(b) := s1h1(b)s∗1 + s2h2(b)s∗2, ∀ b ∈ D .

Two C *-morphisms h, k : D → E are said to be unitarily equivalent (nota-

tion: [h] = [k]) if there exists a unitary u in E such that k(b) = u∗h(b)u for all

b ∈ D (notation: k = u∗h(·)u).

Sometimes one has to consider only unitary equivalences k = u∗h(·)u with

unitaries u in a subgroup G of the unitary group U(E) of E, where G often contains

the connected component U0(E) of the unit element 1E in U(E) (notation: h ≈G k).

We write h ≈ k or [h]≈ = [k]≈ if here G := U0(E), i.e.,

h ≈ k ⇔ k ∈ [h]≈ ⇔ ∃u ∈ U0(E) with k = u∗h(·)u .

Cuntz addition defines the structure of a commutative semigroup on the set

[Hom(D,E)] of unitary equivalence classes of C *-morphisms from D into E, by

setting

[h1] + [h2] := [h1 ⊕s1,s2 h2]

for arbitrary choice of generators {s1, s2} of O2 in E. The correctness of this

definition can be verified using the following Proposition 4.3.2.

It shows moreover that the more refined addition

[h1]G + [h2]G := [h1 ⊕s1,s2 h2]G

is well-defined if U0(E) ⊆ G ⊆ U(E) and defines the structure of a commutative

semigroup on the set of all equivalence classes [h]G . We write [Hom(D,E)]≈ in case

G = U0(E).



528 4. COMPARISON AND ADDITION OF SOME C*-MORPHISMS

Proposition 4.3.2. Let hi : D → E, i = 1, 2, 3 be C*-morphisms and let

{s1, s2} and {t1, t2} be canonical generators of copies of O2 in E. The Cuntz-

addition [h1] + [h2] := n[h1 ⊕s1,s1 h2] on unitary equivalence classes [h] of C*-

morphisms h : D → E is well-defined, independent from the chosen canonical gen-

erators s1, s2 of O2 ⊆ E, commutative and associative:

(i) (⊕ is well-defined) For any unitary operators v and w in E,

vh1v
∗ ⊕s1,s2 wh2w

∗ = u(h1 ⊕s1,s2 h2)u∗,

where u := s1vs
∗
1 + s2ws

∗
2 is a unitary operator in E.

(ii) (Consistency)

u∗((h1 ⊕s1,s2 h2)(b))u = (h1 ⊕t1,t2 h2)(b), b ∈ D,

where u := s1t
∗
1 + s2t

∗
2 is a unitary operator in E;

(iii) (Commutativity)

Uc(h1 ⊕s1,s2 h2)U∗c = h2 ⊕s1,s2 h1,

where Uc := s2s
∗
1 − s1s

∗
2 is a unitary operator in the connected component

U0(E) of 1E in U(E);

(iv) (Associativity)

Ud(h1 ⊕ (h2 ⊕ h3))U∗d = (h1 ⊕ h2)⊕ h3,

where ⊕ means ⊕s1,s2 and Ud := s2
1s
∗
1 +s2(s∗2)2 +s1s2(s2s1)∗ is in U0(E).

Proof. Each of Parts (i)–(iv) can be seen by straight calculation – compare

introductory remarks in the

proof of Lemma 4.2.6 and the

proofs of Parts (o) and (vii) of Lemma 4.2.6. The unitaries Uc and Ud are in

U0(C∗(s1, s2)), cf. proof of Part (o) of Lemma 4.2.6. �

The observation that Uc, Ud ∈ U0(C∗(s1, s2)) follows also from the less ele-

mentary observation that U(O2) = U0(O2), cf. [172, thm. 1.9, thm. 3.7] in case

of complex C *-algebras. It is possible to show it also for the “real” version (O2)R

of O2 that each “orthogonal” operator in (O2)R is inside the orthogonal operators

connected to 1 by a continuous path, but the proofs of [172, thms. 1.9, 3.7] have

to be modified slightly, cf. Section 1 of Appendix A. We say this here because it

implies that some parts of our results remain valid in the case of real C *-algebras.

Definition 4.3.3. Let h1, h2 : D → E be C *-morphisms. Then h1 will be said

to n-dominate h2 if there exist a1, . . . , an in E such that a∗1a1+. . .+a∗nan = 1 and

h2(b) = a∗1h1(b)a1 + . . .+a∗nh1(b)an for all b ∈ D . We shall say that h1 dominates

h2 if h1 1-dominates h2, i.e., if h2(b) = s∗h1(b)s, b ∈ D, for some isometry s in E.

Note that for unital D a non-unital h1 can dominate a unital h2. But a unital

h1 can not dominate a non-unital h2 by (iii) of the following Lemma 4.3.4.
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Lemma 4.3.4. Suppose that h1 : D → E is a C*-morphism, that s, t ∈ E are

isometries and that g ∈ E is a contraction. Define completely positive contractions

h2, h3, T : D → E by h2 := s∗h1(·)s, h3 := t∗h1(·)t and T := g∗h1(·)g.

(i) The c.p. map T : D → E is a C*-morphism if and only if gg∗ ∈ h1(D)′∩E
and (gg∗ − gg∗gg∗)h1(D) = {0}.
Moreover, T = h1 if and only if g ∈ h1(D)′∩E and (1−g∗g)h1(D) = {0}.
In particular, h2 is a C*-morphism if and only if ss∗ ∈ h1(D)′ ∩ E. It

holds h2 = h1 if and only if s ∈ h1(D)′ ∩ E.

(ii) If h2 is a C*-morphism, then h3 is unitarily equivalent to h2, if and only

if, tt∗ is Murray–von Neumann equivalent to ss∗ in h1(D)′ ∩ E.

Moreover, h2 = h3 if and only if ts∗ ∈ h1(D)′ ∩ E.

(iii) h2 is unital if h1 is unital.

(iv) h1 dominates zero if and only if there is an isometry v ∈ E which range

vv∗ orthogonal to the image of h1, i.e., vv∗h1(D) = 0.

(v) Suppose that there exists a unital C*-morphism from O2 into E that is

given by isometries s1, s2 ∈ E as canonical generators, that h1⊕s1,s2 h1 =

r∗h1(·)r for an isometry r ∈ E, and that h2 := s∗h1(·)s and h3 := t∗h1(·)t.
Then h2 ⊕s1,s2 h3 = q∗h1(·)q for the isometry q := r(s⊕s1,s2 t).

Proof. (i): Let g ∈ E with ‖g‖ ≤ 1 and a∗ = a ∈ E (likewise a = h1(d) for

some d∗ = d ∈ D).

Clearly, g∗agg∗bg = g∗abg and g∗bgg∗ag = g∗bag for all b ∈ E, if gg∗ commutes

with a and if x = 0 for x := g∗(1− gg∗)a. That means gg∗a = agg∗ and 0 = x∗x =

(gg∗ − gg∗gg∗)a(gg∗a) = 0.

Conversely, if g∗a2g = g∗agg∗ag, then (1 − gg∗)1/2ag = 0. It implies gg∗a =

gg∗agg∗ = agg∗, because a∗ = a and (1 − gg∗)agg∗ = 0. It follows that gg∗

commutes with a and (gg∗ − gg∗gg∗)a = 0.

Hence, gg∗ ∈ h1(D)′ ∩ E and (gg∗ − gg∗gg∗)h1(D) = {0}, if and only if, the

map T := g∗h1(·)g from D into E satisfies T (dc) = T (d)T (c) for all d∗ = d, c ∈ D,

i.e., if and only if T is a C *-morphism.

If g∗ag = a and g∗a2g = a2, then 0 ≤ (ag− ga)∗(ag− ga) = −a(1− g∗g)a ≤ 0.

Thus, ga = ag and (1 − g∗g)a = 0 for all a∗ = a ∈ h0(D) if h1 = g∗h1(·)g =: T .

The converse is obvious.

If g is an isometry g = s then only the necessary and sufficient condition

ss∗ ∈ h0(D)′ ∩ E remains, and the condition s ∈ h0(D)′ ∩ E for the case h0 = h2.

(ii): If u ∈ E is a unitary in E with u∗h2(·)u = h3(·), then v = sut∗ is a partial

isometry in E with vv∗ = ss∗, v∗v = tt∗ and v∗h1(·)v = tt∗h1(·)tt∗ = tt∗h1(·).
Thus h1(b)v = ss∗h1(b)v = vv∗h1(b)v = vtt∗h1(b) = vh1(b) for every b ∈ D.

Conversely, if there is a partial isometry v ∈ h1(D)′ ∩ E with vv∗ = ss∗ and

v∗v = tt∗, then u = s∗vt is a unitary in E such that u∗h2(·)u = h3.

(iii): s∗h1(1)s = s∗s = 1.
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(iv): Suppose that h1 dominates zero. Then there is an isometry v ∈ E

with v∗h1(a)v = 0 for all a ∈ D. Thus vv∗h1(a)(vv∗h1(a))∗ = 0 for all a ∈ D.

Conversely, v∗h1(a)v = v∗(vv∗h1(a))v = 0 if v ∈ E is an isometry with range

orthogonal to h1(D).

(v): by straight calculation. �

Proposition 4.3.5. Let D and E be C*-algebras and suppose that E contains

a copy of O2 = C∗(s1, s2) unitally. Let hi : D → E, i = 1, 2 be C*-morphisms.

(i) If h1 dominates h2 and h2(D)′ ∩ E contains a copy of O2 unitally, then

h1 ⊕ h2 and h1 are unitarily equivalent.

(ii) If h1 n-dominates h2 and h1(D)′∩E contains two isometries with orthog-

onal range, then h1 dominates h2.

(iii) [h1] + [h1] = [h1] if and only if h1(D)′ ∩E contains a copy of O2 unitally.

(iv) h1 dominates h1 ⊕ h1 if and only if h1(D)′ ∩ E contains a copy of O∞
unitally.

For every non-zero projection p in this copy of O∞ in h1(D)′∩E with

[p] = 0 in K0(O∞) there exists an isometry s ∈ E with ss∗ = p. The c.p.

map h0 := s∗h1(·)s is a C*-morphism from D into E with [h0] + [h0] =

[h0], and h0 dominates h1.

(v) If there is a contraction f ∈ E such that h1 ⊕ h1 = f∗h1(·)f , then there

exists a C*-morphism k from D ⊗O∞ into E such that h1 = k((·)⊗ 1).

The copies of O2 considered in the assumptions and in Parts (i) and (iii), or

the copies of O∞ appearing in Parts (ii), (iv) and (v) can be different, are even

not necessarily homotopic. In the situation of Part (v) it can happen that there is

no copy of O∞ unitally contained in E itself that commutes with the elements of

h1(D).

Proof. (i): Suppose h2(·) = t∗h1(·)t, for t ∈ E with t∗t = 1. Then tt∗

commutes with the images of h1 by Lemma 4.3.4(i). If r1, r2 ∈ h2(D)′ ∩ E are

isometrics with r1r
∗
1 + r2r

∗
2 = 1, then t1 := (1 − tt∗) + tr1t

∗ and t2 := tr2 are

isometries that satisfy t1t
∗
1 + t2t

∗
2 = 1. Thus, V := t1r

∗
1 + t2r

∗
2 is a unitary. The

unitary V realizes the unitary equivalence V (h1 ⊕r1,r2 h2)V ∗ = h1 ⊕t1,t2 h2. Then

th2(·)t∗ = t(t∗h1(·)t)t∗ = tt∗h1(·) implies h1 ⊕t1,t2 h2 = h1 because

(1− tt∗)h1(·) + tr1h2(·)r∗1t∗ + tr2h2(·)r∗2t∗ = (1− tt∗)h1(·) + th2(·)t∗ = h1 .

The unitary equivalence of h1 and h1 ⊕s1,s2 h2 with the before given isometries

s1, s2 can be realized by u∗h1(·)u = h1 ⊕s1,s2 h2 where u := s1t
∗
1 + s2t

∗
2. This

unitary u can be replaced here by any unitary v0 · u · (v1 ⊕s1,s2 v2) with unitaries

v0, v1 ∈ h1(D)′ ∩ E and v2 ∈ h2(D)′ ∩ E.

(ii): By assumption, there are isometries t1, t2 ∈ h1(D)′∩E satisfying t∗1t2 = 0.

The isometries sj := tj2t1, j = 1, . . . , n , are in h1(D)′ ∩ E and satisfy s∗i sj = δij ,

1 ≤ i, j ≤ n. Now suppose h2 =
∑n
j=1 a

∗
jh1(·)aj , with aj ∈ E and

∑
a∗jaj = 1.
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Then, by taking b :=
∑
j sjaj , we have

h2 =
∑

a∗jh1(·)aj =
∑

i,k
a∗i s
∗
i h1(·)skak = b∗h1(·)b.

Moreover,

b∗b =
∑

i,k
a∗i s
∗
i skak =

∑
a∗jaj = 1.

(iii): By definition [h1] + [h1] = [h1] means that there is a unitary u ∈ E

such that u∗h1(·)u = s1h1(·)s∗1 + s2h1(·)s∗2 for isometries s1, s2 ∈ E which are the

canonical generators of a copy of O2. Then ti := usi, i = 1, 2, are generators of O2

in h1(D)′ ∩ E, because, for a ∈ D and i ∈ {1, 2},

h1(a)ti = t1h1(a)t∗1ti + t2h1(a)t∗2ti = tih(a) .

Conversely, h1 ⊕t1,t2 h1 = h1 if t1, t2 ∈ h1(D)′ ∩E are isometries and generators of

a copy of O2. Now apply Proposition 4.3.2(i).

(iv): If h1 dominates h1 ⊕ h1, then there is an isometry t ∈ E such that

t∗h1(·)t = s1h1(·)s∗1 +s2h1(·)s∗2. The elements ti := tsi, i = 1, 2, are isometries with

orthogonal ranges such that h1 = t∗i h1(·)ti for i = 1, 2. We get t1, t2 ∈ h(D)′∩E by

Lemma 4.3.4(i). Thus C∗(t1, t2) is unitally contained in h1(D)′ ∩ E and contains

the copy C∗(tn2 t1 ; n = 1, 2, . . .) of O∞ unitally.

Conversely, suppose that h1(D)′ ∩ E contains a copy of O∞ unitally. Then

there are isometries t1 and t2 in h1(D)′ ∩ E with orthogonal ranges. The element

t := t1s
∗
1 + t2s

∗
2 ∈ E is an isometry and satisfies t∗h1(·)t = s1h1(·)s∗1 + s2h1(·)s∗2.

Suppose that p 6= 0 is a projection in a given copy of O∞ ⊆ h1(D)′ ∩ E with

[p] = 0 in K0(O∞) and 1E ∈ O∞, e.g. p = 1− (t2t1)(t2t1)∗ if O∞ ∼= C∗(tn2 t1 ; n =

1, 2, . . .) ⊆ E. It implies that also [p] = 0 in K0(E) and that p is properly infinite

in O∞ and E, because O∞ is simple and purely infinite by Corollary 2.2.7, (cf. also

[169, thm. 3.4]).

Thus, by Lemma 4.2.6(ii), p is Murray–von-Neumann equivalent to 1 in E, i.e.,

there exists an isometry s ∈ E with ss∗ = p. The map h0 := s∗h1(·)s is a C *-

morphism from D into E, because p = ss∗ commutes with h1(D). The commutant

h0(D)′ ∩ E of h0(D) contains s∗pO∞ps unitally, and s∗pO∞ps is isomorphic to

pO∞p. By [172], O∞ is a simple purely infinite C *-algebra. It follows for non-zero

projections p ∈ O∞ with [p] = 0 in K0(O∞) that the hereditary C *-subalgebra

pO∞p of O∞ (with unit p) contains a copy of O2 unitally. Thus [h0] + [h0] = [h0]

by Part (iii).

The C *-morphism h0 dominates h1, because there exists an isometry t ∈ O∞ ⊆
h1(D)′∩E with tt∗ ≤ p = ss∗. Then ss∗t = t, s∗t is an isometry in E, h1 = t∗h1(·)t
and t∗sh0(·)s∗t = t∗ss∗h1(·)ss∗t.

(v): Let {s1, s2} denote the canonical generators of the given copy of O2 in E.

We define C *-subalgebras C,N ⊆ E by

N := Ann(h1(D)) := { e ∈ E ; h1(D)e ∪ eh1(D) = {0} }
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and by C := h1(D)′∩E. Then N is an ideal of C and C/N is a unital C *-algebra. It

is not difficult to see that there exists a unique C *-morphism λ : D⊗maxC/N → E

with the property

λ(d⊗ (g +N)) = dg for all d ∈ D and all g ∈ C .

If f∗h1(·)f = h1 ⊕s1,s2 h1 for a contraction f ∈ E, then the elements fs1 and

fs2 are in C and tj := fsj + N (j = 1, 2) are isometries in C/N with t∗1t2 = 0,

i.e., h1(a)fsk = fskh1(a), (1 − s∗kf
∗fsk)h1(a) = 0 for a ∈ D for k = 1, 2, and

s∗1f
∗fs1 + s∗2f

∗fs2 = f∗f ⊕ f∗f ≤ 1. The latter is obvious, and the first two

equations follow from s∗kfh1(·)fsk = h1 by Lemma 4.3.4(i).

The isometries Tn := tn2 t1 for n ∈ N build a sequence of isometries in C/N with

T ∗nTm = 0 for m 6= n. Thus, there is a unital *-monomorphism γ : O∞ → C/N .

Then k := λ◦(idD ⊗γ) is a C *-morphism from D⊗O∞ into E with k(d⊗1) = h1(d)

for d ∈ D. �

The Cuntz addition [h] + [k] of unitary equivalence classes of morphisms

h, k : D → E is far away from the sum of linear maps, e.g. [h] + [0] 6= [h] if h is

unital.

If we consider the zero-absorbing maps h⊕0 then the following proposition gives

additional later useful sufficient conditions on domination and unitary equivalence

by unitaries in U0(E). Here U0(E) denotes the connected component of 1E in the

group U(E) of unitaries in E with operator-norm topology.

Proposition 4.3.6. Suppose that E is unital and contains a copy of O2 uni-

tally with canonical generators s1, s2 ∈ O2 ⊆ E. Let h1 : D → E be a C*-morphism

and h2 : D → E a contractive linear map.

(i) h1 dominates zero, if and only if, [h1] + [0] = [h1].

This is the case, if and only if, there exists u ∈ U(E) such that t1 :=

us1, t2 := us2 and u satisfy t1h1(a) = h1(a) = h1(a)t1 , h1(a)t2 = 0 for

a ∈ D.

The unitary u can be taken such that [u] = 0 ∈ K1(E) in addition.

(ii) If h1 dominates zero and x ∈ E is a contraction, then the element s :=

t1x+ t2(1− x∗x)1/2 – with t1, t2 as in Part(i) – is an isometry in E that

satisfies h1(·)x = h1(·)s and x∗h1(·) = s∗h1(·).

In particular, s∗h1(·)s = h2 for an isometry s ∈ E if h1 dominates

zero and x∗h1(·)x = h2 for some contraction x ∈ E.

(iii) Suppose that

(α) h1 dominates zero,

(β) the inclusion map C∗(h2(D)) ↪→ E dominates zero, and

(γ) there are contractions x, y ∈ E such that h2(·) = x∗h1(·)y and

xx∗h1(·)yy∗ = h1, i.e., also xh2(·)y∗ = h1.

Then there exist U, V ∈ U(E) such that h2(·) = U∗h1(·)V .

If, moreover, x = 1, then one can find U and V such that U = 1.
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In particular, h1 is unitarily equivalent to h2, if h1 and h2 dominate

both zero and there exists x ∈ E with ‖x‖ ≤ 1 , x∗h1(·)x = h2 and

xh2(·)x∗ = h1 .

(iv) Suppose that h1 dominates zero and that h2 is unitarily equivalent to h1

in E.

(a) There exists v ∈ U(E) with h2 = v∗h1(·)v and [v] = 0 in K1(E).

(b) If E is K1-injective, then there is a unitary v ∈ U0(E) with h2 =

v∗h1(·)v.

(c) If there exists an isometry r ∈ E with r∗(h1(a) + h2(a))r = 0 for all

a ∈ D, then there exists v ∈ U0(E) with h2 = v∗h1(·)v.

(d) If E has moreover the property that for every unitary u ∈ E and

every isometry t ∈ E there are isometries r, s ∈ E and w ∈ U0(E)

with utr = wts then there is v ∈ U0(E) with h2 = v∗h1(·)v .

(v) If R ∈ E is an isometry with R∗h1(·)R = 0 and p ∈ E is a projection

with pR = 0, then the u ∈ U(E) in Part(i) can be chosen such that

0 = [u] ∈ K1(E) and t1 = us1 satisfies t1h1(a) = h1(a) = h1(a)t1 for

a ∈ D and p t1 = p = t1 p.

Proof. (i): If h1 dominates zero, then [h1]+[0] = [h1] by Proposition 4.3.5(i),

because the copy of O2 in E commutes with the zero morphism 0(a) := 0.

Conversely, if [h1] + [0] = [h1], then, by definition of Cuntz Addition, there is a

unitary v ∈ E with vs1h1(·)s∗1v∗ = h1. Then rj := vsj (j = 1, 2) are isometries with

r1h1(·)r∗1 = h1 and r1r
∗
1 + r2r

∗
2 = 1. In particular, h1(·)r2 = 0, i.e., h1 dominates

zero. It follows h1(·)r1r
∗
1 = h1(·) and h1(D)r2Er

∗
2 = {0}.

Let q2 := r2r1 and q1 := r1r
∗
1 + r2r1r

∗
2 , then q1 and q2 are isometries in E

with q1q
∗
1 + q2q

∗
2 = 1, h1(·)q2 = 0 and q1h1(·) = h1(·) = h1(·)q1 . The unitary

v := q1s
∗
1 + q2s

∗
2 ∈ U(E) satisfies vsj = qj . Let w := q1q

∗
1 + q2v

∗q∗2 , u := wv,

t1 := us1 = q1 and t2 := us2 = q2v
∗. Then u, t1, t2 have the desired properties,

because h1(·)q2 = 0 and [u] = [w] + [v] = [1] + [v∗] + [v] = [1] = 0 in K1(E).

(ii): Obviously s := t1x+ t2(1−x∗x)1/2 is an isometry and h1(·)s = h1(·)t1x =

h1(·)x by Part (i).

If h2 = x∗h1(·)x then h2 = s∗h1(·)s, because x∗h1(a) = (h1(a∗)x)∗ and D2 =

D.

(iii): Let a ∈ D+, d1 := xx∗, d2 := yy∗ and b := h1(a).

Then b ≥ 0, 0 ≤ di ≤ 1 (i = 1, 2) and d1b
1/nd2 = b1/n (n = 1, 2, . . .). This

implies d1pd2 = p for the support p of b in E∗∗, because p is the weak limit of b1/n.

Thus pd1pd2p = p. Since 0 ≤ di ≤ 1, we get pdip = p, p(1 − di)p = 0,

(1 − di)
1/2p = 0 = p(1 − di)

1/2, and (1 − d1)1/2b = 0 = b(1 − d2)1/2, because

pb = b = bp. for i = 1, 2. That means

(1− d1)1/2h1(·) = 0 = h1(·)(1− d2)1/2 .
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Let k : C∗(h2(D)) → E the inclusion map. By Part (i) there exist isometries

τ1, τ2 ∈ E such that 1 = τ1τ
∗
1 + τ2τ

∗
2 , k(·)τ1 = τ1k(·) = k(·) and k(·)τ2 = 0. Let

t1, t2 ∈ E for h1 as in (i). It follows from Part (i) and from the above equations for

d1, d2 and h1 that

U := t1xτ
∗
1 − t2x∗τ∗2 + t1(1− d1)1/2τ∗2 + t2(1− x∗x)1/2τ∗1

and

V := t1yτ
∗
1 − t2y∗τ∗2 + t1(1− d2)1/2τ∗2 + t2(1− y∗y)1/2τ∗1

are unitaries in E with

U∗h1(·)V = τ1(x∗h1(·)y)τ∗1 = τ1h2(·)τ∗1 = h2.

If x = 1, then, with a := c1/2 for c ∈ D+,

U∗h1(c)U = h2(a)(h2(a)∗) = h1(a)d2h1(a) = h1(a2) = h1(c).

Thus, U commutes with the elements of h1(D), and h2(·) = h1(·)U∗V .

Suppose that h1 and h2 both dominate zero and that there is a contraction

x ∈ E with x∗h1(·)x = h2 and xh2(·)x∗ = h1. Then there is an isometry t ∈ E
with t∗h2(·)t = 0, i.e., h2(D) = span(h2(D+)) is contained (1 − tt∗)E(1 − tt∗).

Thus, t∗bt = 0 for all b ∈ C∗(h2(D)), and the above construction of U and V works

for x and y := x. It gives d2 = d1 and V = U . Hence, h2 = U∗h1(·)U .

(iv): Let U ∈ U(E) with U∗h1(·)U = h2. In particular, [h2] = [h1] = [h1] +

[0] = [h2] + [0], i.e., h2 dominates zero.

(iv,a): Let t1, t2 ∈ E the isometries with the properties given in (i), then

V := (1 ⊕t1,t2 U∗)U is unitary and satisfies V ∗h1(·)V = U∗h1(·)U = h2 . [V ] =

[1] + [U∗] + [U ] = 0 in K1(E), cf. Lemma 4.2.6(v,1).

(iv,b): If U0(E) is the kernel of U(E)→ K1(E) (i.e., if E is K1-injective) then

V ∈ U0(E) for the V as in Part (iv, a).

(iv,c): Suppose that there is an isometry r ∈ E with r∗(h1(a) + h2(a))r = 0

for all a ∈ D. Then hk(D) ⊆ (1 − rr∗)E(1 − rr∗) for k = 1, 2. We consider the

C *-subalgebra F := C∗(h1(D) + h2(D)) ⊆ E generated by

h1(D) + h2(D) ⊆ (1− rr∗)E(1− rr∗) .

The inclusion morphism f ∈ F 7→ f ∈ E dominates zero, because r∗Fr = 0.

By Part (i) there are canonical generators t1, t2 of a copy of O2 in E such that

t1f = f = ft1 and ft2 = 0 = t∗2f for f ∈ F . Let V = t1Ut
∗
1 + t2U

∗t∗2. Then V is

in U0(E) by Lemma 4.2.6(v,3), and V ∗h1(·)V = t1U
∗h1(·)Ut∗1 = t1h2(·)t∗1 = h2 .

(iv,d): The property in Part (iv,d) implies that U0(E) is the kernel of U(E) 3
u 7→ [u] ∈ K1(E), cf. Lemma 4.2.10(iii). Thus Part (iv, b) applies.

(v): Since pR = 0 and R∗h1(D)R = {0}, the C *-subalgebra F :=

C∗(h1(D), p) ⊆ E is contained in (1 − RR∗)E(1 − RR∗). The identity map

f ∈ F 7→ f ∈ E dominates zero because R∗fR = 0 for all f ∈ (1−RR∗)E(1−RR∗).
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Application of Part (i) to (F, idF ) – in place of (D,h1) – gives that there is a

unitary u ∈ U(E) with 0 = [u] ∈ K0(E) and t1f = f = ft1 for t1 := us1 and f ∈ F .

In particular t1p = p = pt1 and t1h1(a) = h1(a) = h1(a)t1 for a ∈ D. �

Corollary 4.3.7. Suppose that A and E are unital C*-algebras, h1, h2 : A→
E, unital C*-morphisms, and that unital C*-morphisms ψ1, ψ2 : O2 → E exist with

ψk(O2) ∈ hk(A)′ ∩ E for k = 1, 2.

If h1 and h2 one-step dominate each other, i.e., if there exist contractions

S, T ∈ E with h2 := S∗h1(·)S and h1 := T ∗h2(·)T , then h1 and h2 are unitary

equivalent in E.

Proof. By Proposition 4.3.5(i), h1 is unitarily equivalent to h1⊕h2 and h2 is

unitarily equivalent to h2 ⊕ h1.

The symmetry T := s2s
∗
1 + s1s

∗
2 satisfies T ∗(h1 ⊕s1,s2 h2)T = h2 ⊕s1,s2 h1 . �

Corollary 4.3.8. Two unital C*-morphisms h0, h1 : O2 → E are approxi-

mately unitary equivalent.

They are homotopic if and only if the unitary u := h1(s1)h0(s∗1)+h1(s2)h0(s∗2)

is in U0(E).

Proof. In fact h1 and h2 are unitary equivalent in E∞ := `∞(E)/c0(E) if we

use here the later in Chapter 5 proven result that O2 ⊗O2 is unitally contained in

O2, (or could use here that O2
∼= O2⊗O2 by the later proven Corollary F(iii)), and

that this unital imbedding ψ : O2⊗O2 → O2 has the property that a 7→ ψ(a⊗1) is

approximately unitarily equivalent to the identity map of O2 by the approximate

innerness of δ2 : O2 → O2. gives the ψ (In fact, the morphisms δ2 : O2 → O2 and

a 7→ ψ(a⊗1) are moreover unitarily homotopic to the identity map of O2.) This and

the nuclearity of O2 ensures that that any two unital C *-morphisms from O2 into

E∞ 1-step dominate each other. Hence Corollary 4.3.7 applies to h1, h2 : O2 → E∞.

The homotopy of h1 and h2 with h1(sk) = u(1)h0(sk) for a continuous map

[0, 1] 3 t 7→ u(t) ∈ U(A) with u(0) = 1 is given by ht : O2 → U(A) with ht(sk) :=

u(t)sk. �

Remark 4.3.9. If h0, h1 : O2 → E are homotopic, then one can show that they

are moreover “unitarily homotopic”, cf. Corollary 4.6.4, i.e., are unitary equivalent

in Cb([0,∞), E)/C0([0,∞), E). (It does not imply that, conversely, h0 and h1 itself

are unitarily equivalent or are homotopic in E.)

4. Groups defined by absorbing C*-morphisms

Suppose that h0 : D → E is a C *-morphism such that h0(D)′ ∩ E contains

O2 unitally. Proposition 4.3.5(iii) says that this is equivalent to the existence of a

unital C *-morphism from O2 into E and the equation [h0] + [h0] = [h0].

Definition 4.4.1. We define then the semigroup

S(h0 ; D,E) := { [h] ; h ∈ Hom(D,E) , h is dominated by h0 }
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and

G(h0 ; D,E) := { [h] + [h0] ; [h] ∈ S(h0 ; D,E) } .

Notice that G(h0 ; D,E) = [h0] + S(h0 ; D,E) ⊆ S(h0 ; D,E) .

Due to the terminology used in the abstract Lemma 4.2.3, we call sometimes

the morphisms h ∈ Hom(D,E) with the property [h] ∈ G(h0 ; D,E) the absorbing

morphisms in the class of those morphisms k ∈ Hom(D,E), that are dominated by

h0 .

G. Kasparov has introduced a similar notion of absorption in his early paper

[405] on Ext-groups. By Proposition 4.3.5(i), a unitary equivalence class [h] ∈
S(h0 ; D,E) is in G(h0 ; D,E) if and only if h dominates h0.

The definitions, the above listed properties and Remark 3.1.2(iii) together im-

mediately imply the following consequences of “[k] ∈ S(h0 ; D,E)”:

(i) k(D) ⊆ J if [k] ∈ S(h0 ; D,E), h0(D) ⊆ J and J is an ideal of E.

(ii) k is nuclear if [k] ∈ S(h0 ; D,E) and h0 is nuclear.

More general, it is obvious that k ∈ C if h0 ∈ C for some matrix operator-convex

cone C ⊆ CP(D,E). This applies in particular to the m.o.c. cone C(h0) that is

generated by h0.

Proposition 4.4.2. Suppose that E contains a copy of O2 unitally and

h0 : D → E is a C*-morphism with [h0] + [h0] = [h0].

(i) S(h0 ; D,E) is a commutative semigroup under Cuntz addition of unitary

equivalence classes, and

(ii) G(h0 ; D,E) is a subgroup of S(h0 ; D,E), and [h] → [h] + [h0] is a

semigroup epimorphism from S(h0 ; D,E) onto G(h0 ; D,E). It identi-

fies G(h0 ; D,E) naturally with the Grothendieck group of S(h0 ; D,E),

in the sense that every semi-group morphism ϕ : S(h0 ; D,E)→ Γ into a

group Γ satisfies ϕ([h]) = ϕ([h] + [h0]) for all [h] ∈ S(h0 ; D,E).

Proof. Let s1, s2 ∈ h0(D)′ ∩ E isometries with s1s
∗
1 + s2s

∗
2 = 1, as given by

Proposition 4.3.5(iii).

(i): If h1 is dominated by h0 then the same property holds for every map in

the unitary equivalence class [h1]. Suppose that [h1] and [h2] are in S(h0;D,E).

Then [h1]+[h2] ∈ S(h0 ; D,E), because h1⊕s1,s2 h2 is dominated by h0, cf. Lemma

4.3.4(v). The semigroup structure follows now from Proposition 4.3.2(i).

(ii): Since [h0] + [h0] = [h0], the subset G(h0 ; D,E) is a subgroup of the semi-

group S(h0 ; D,E), and [h0] is the neutral element (zero element) of G(h0 ; D,E).

The inverse element of [h] in G(h0 ; D,E) can be detected as follows: Since h ∈
S(h0 ; D,E), there is an isometry t ∈ E with h = t∗h0t. Then p = tt∗ is a projection

in h0(D)′ ∩ E by Lemma 4.3.4(i), and (1− p)t = 0 = t∗(1− p). Hence,

k := (1− p)h0(·) + th0(·)t∗
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is a C *-morphism. The morphism h0 dominates k by Proposition 4.3.5(ii) because

h0 2-dominates k.

Now it is easy to verify that k⊕s1,s2 h = u∗h0(·)u, where {s1, s2} are generators

of O2 in h0(D)′ ∩ E, and u is the unitary operator s1ts
∗
2 + s1(1 − p)s∗1 + s2t

∗s∗1.

Then [(h ⊕ h0) ⊕ (k ⊕ h0)] = [h0 ⊕ h0 ⊕ h0] = [h0]. Hence [k ⊕ h0] is the inverse

of [h⊕ h0] in G(h0 ; D,E). This shows that Lemma 4.2.3 applies to the semigroup

S(h0 ; D,E) and G(h0 ; D,E) = [h0] + S(h0 ; D,E). �

The following Proposition 4.4.3 identifies G(h0 ; D,E) with a subgroup of the

K0 group K0(h0(D)′∩E) and gives the later used characterizations of the elements

of this subgroup, and it describes the K∗-theoretic picture of our Ext(C; ·, ·)- and

R(C; ·, ·)-groups studied in Chapters 5 and 7. Here the Cuntz addition ⊕ in Parts

(ii) and (iii) has to be defined with help of the canonical generators of a fixed copy

of O2 that is unitally contained in h0(D)′ ∩ E.

Proposition 4.4.3. Let h0 : D → E a C*-morphism, such that h0(D)′ ∩ E
contains a copy of O2 unitally, and let p and p′ projections in h0(D)′ ∩ E.

(i) The group G(h0 ; D,E) is naturally isomorphic to the kernel of the natural

K∗-theory map

i0 : K0(h0(D)′ ∩ E)→ K0(E),

where i0 := K0(i) for the inclusion map i : h0(D)′ ∩ E ↪→ E .

(ii) The element [p] ∈ K0(h0(D)′ ∩ E) is in the kernel of i0, if and only if,

there is a unitary v in the connected component U0(E) of 1E in U(E) such

that v∗(p⊕ 1⊕ 0)v = 1⊕ 0.

The equation [p] = [p′] holds in K0(h0(D)′ ∩ E), if and only if, there

is a unitary u ∈ U0(h0(D)′ ∩ E) such that u∗(p⊕ 1⊕ 0)u = p′ ⊕ 1⊕ 0 .

(iii) If h0 dominates zero, then projections p and p′ in h0(D)′ ∩ E define the

same element of K0(h0(D)′ ∩ E), if and only if, [p] = [p′] in K0(E) and

there is a unitary u ∈ h0(D)′∩E such that ∆ := (p′⊕1⊕0)−u∗(p⊕1⊕0)u

is in the (two-sided) annihilator of h0(D), i.e., h0(a)∆ = 0 for all a ∈ D.

Proof. We let C := h0(D)′∩E and define the Cuntz addition ⊕ by isometries

s1, s2 ∈ C with s1s
∗
1 + s2s

∗
2 = 1E , i.e., ⊕ = ⊕s1,s2 .

(i): A C *-morphism h : D → E has unitary equivalence class [h] in S(h0 ; D,E)

if and only if there is an isometry t ∈ E with h = t∗h0(·)t (cf. Definition 4.3.3).

Then tt∗ ∈ C by Lemma 4.3.4(i). If s ∈ E is an other isometry with s∗h0(·)s = h,

then z = ts∗ is a partial isometry in C by Lemma 4.3.4(ii). We have tt∗ = zz∗

and z∗z = ss∗, i.e., tt∗ and ss∗ are Murray–von-Neumann equivalent in C. Let

k : D → E a C *-morphism in the unitary equivalence class [h] of h. Then there is

a unitary u ∈ E with k = u∗h(·)u = u∗t∗h0(·)tu . Thus k is a C *-morphism that is

dominated by h0, and [k] = [h]. Note that (tu)(tu)∗ = tt∗ .

It follows that the map θ from S(h0 ; D,E) into K0(C), defined by

θ([h]) := [tt∗] ∈ K0(C)
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for h = t∗h0(·)t, with t∗t = 1 is well-defined, because [s∗h0(·)s] = [t∗h0(·)t] = [h]

implies that the projections tt∗ and ss∗ are Murray–von Neumann equivalent in C.

By Lemma 4.3.4(v), h1⊕h2 = r∗h0(·)r with r = t1⊕ t2 where hi(·) = t∗i h0(·)ti
for i = 1, 2. Thus, θ([h1] + [h2]) = [t1t

∗
1 ⊕ t2t

∗
2] ∈ K0(C) . This is the same as

[t1t
∗
1] + [t2t

∗
2] = θ([h1]) + θ([h2]) by Lemma 4.2.6(i). In particular θ([h0]) = 0,

because 2θ([h0]) = θ([h0]). Since K0(C) is a group, [h] + [h0] 7→ θ([h]) is a well-

defined group homomorphism from G(h0 ; D,E) into K0(C).

As 1E ∈ O2 ⊆ E, we get for h = t∗h0(·)t with t∗t = 1,

[0]E = [1]E = [t∗t]E = [tt∗]E ∈ K0(E),

so that θ maps S(h0 ; D,E) into the kernel of i0.

Let h1 = s∗h0(·)s, h2 = t∗h0(·)t and θ([h1]) = θ([h2]), i.e., [ss∗] = [tt∗] in

K0(C). The projections 1⊕ ss∗ (= (1⊕ s)(1⊕ s)∗) and 1⊕ tt∗ are full and properly

infinite in C, thus are MvN-equivalent in C by Lemma 4.2.6(ii). But this means that

h0⊕h1 and h0⊕h2 are unitarily equivalent, by Lemma 4.3.4(ii). Thus [h1]+ [h0] =

[h2] + [h0] if θ([h1]) = θ([h2]), and θ|G(h0 ; D,E) is a monomorphism.

Now let x ∈ K0(C) with i0(x) = 0. Since C is properly infinite, it follows from

Lemma 4.2.6(iii), that there exists a projection p ∈ C, and isometries s, t ∈ C ⊆ E,

such that x = [p], ss∗ ≤ p and tt∗ ≤ 1−p. Then i0(x) = [p] = 0 = [1] in K0(E), and,

by Lemma 4.2.6(ii), there is r ∈ E with rr∗ = p ∈ C and r∗r = 1. The completely

positive map h := r∗h0(·)r is a C *-morphism from D into E by Lemma 4.3.4(i) and

h0 dominates h, i.e., [h] ∈ S(h0 ; D,E). Moreover, θ([h] + [h0]) = θ([h]) = [rr∗] =

[p] = x. Hence, [h] + [h0] 7→ θ([h]) is a group isomorphism from G(h0 ; D,E) onto

ker(i0) ⊆ K0(C).

(ii): Recall that 1⊕ 0 = s1s
∗
1 is unitarily equivalent to 1⊕ 1⊕ 0 by a unitary

in U(O2) = U0(O2), cf. Proposition 4.3.2. Thus, (ii) is a special case of Lemma

4.2.6(iv,b) (with C in place of E for the equation [p] = [p′] ∈ K0(C)).

(iii): Let p, p′ are projections in C. If [p] = [p′] in K0(C), then [p] = [p′] in

K0(E) and, by (ii), there is a unitary u ∈ C with u∗(p⊕ 1⊕ 0)u = p′ ⊕ 1⊕ 0.

Conversely, suppose that [p] = [p′] in K0(E) and that there is a unitary u ∈ C
such that ∆ := (p′ ⊕ 1⊕ 0)− u∗(p⊕ 1⊕ 0)u satisfies ∆ · h0(D) = {0}.

Let p1 := u∗(p⊕ 1⊕ 0)u and p2 := p′ ⊕ 1⊕ 0. Then [p1] = [p] + [1] + [0] = [p]

and [p2] = [p′] as well in K0(C) as in K0(E). Therefore, p1 and p2 are projections in

C with [p1] = [p2] in K0(E) and p2−p1 ∈ N , where N ⊆ E denotes the (two-sided)

annihilator of h0(D) in E.

The two-sided annihilator N of h0(D) is a hereditary C *-subalgebra of E and

is an ideal of C = h0(D)′ ∩ E. The hereditary C *-subalgebra N of E is full in E,

because h0 dominates zero by assumptions of Part (iii), i.e., there is an isometry

t ∈ E with tt∗ ∈ N . By Lemma 4.2.20(i), we get [p1] = [p2] ∈ K0(C) from

p2 − p1 ∈ N and [p1] = [p2] ∈ K0(E). �

REVISE HISTORIC REMARKS:
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The assumptions in the following Theorem 4.4.6 are the same as of Lemma [442,

lem. 3.8], but with assumption [442, lem. 3.8(vi)] removed, because it can be derived

from the other assumptions, cf. Lemma 4.4.7(vii). An old outline of the proof of

Lemma [442, lem. 3.8] – displayed in beamer presentations – incorrectly claimed

that the natural surjective group homomorphism ϕ : G(h0 ; D,E)→ G(H0 ; D,E)

is always injective. This is still unknown, and Professor Claire Anantharaman-

Delaroche mentioned her concerns about the injectivity claim for the natural group

homomorphism ϕ to the author (likely around 1996). And she suggested that the

homotopy invariance of the “unsuspended” but stable E-theory (respectively the

slightly different O2-unital E-theory in the approach of N. Ch. Phillips) should

show the equivalence to KK-theory.

It turns out that the Grothendieck groups of some kinds of unsuspended but

stable E-theories are homotopy invariant, but that gives not a proof for the co-

incidence with the related sort of KK-theories if equipped with certain additional

“equivariant” behavior.

At the actual state we have two different proofs of the homotopy invariance of

the continuous Rørdam groups R(C ; A,B) that are defined in Chapter 7 for stable

separable A and B and non-degenerate m.o.c. cone C := C(h0), – which is in this

special case isomorphic to the below considered group G(h0 ; D,E):

One way is to prove first independently that the groups R(C ; A,B) are

homotopy invariant itself by a generalization and modification of the ideas of

N.Ch. Phillips in his proof of the homotopy invariance of the generalized unsus-

pended E-theory for pi-sun algebras in [627].

See Section ?? concerning a similar but more general sort of stable, but

unsuspended, E-semigroups and an outline of the homotopy invariance of its

Grothendieck group. It is not clear if one can use a “controlled” homotopy

invariance of R(C ; A,B) to establish the injectivity of the natural epimor-

phism ϕ : G(h0 ; D,E) → G(H0 ; D,E), in the special case where naturally

R(C ; A,B) = G(h0 ; D,E) with D := A⊗K, E := M(C0(R, B))/C0(R, B) and

h0 : D → B ⊂ J := Cb(R+, B)/C0(R+, B) ⊂ E ,

a generating homomorphism for the given m.o.c. cone C ⊂ CP(A,B), cf. Chp. 7.

Notice that G(h0 ; D,E) is in this particular case the same as Ext(C ; A,SB) ∼=
KK(C ; A,B) .

Until now:

We have only that (DC) is valid for our special applications,

that (DC) implies functorial equivalence of R(C; ., .) with KK(C; ., .).
The injectivity criteria of the following Theorem 4.4.6

and arguments in Chapters 7,

8 and 9 show that the injectivity of the

group epimorphism ϕ implies also homotopy invariance of R(C ; A,B).
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An ‘‘independent proof’’ from the natural isomorphism

between R(C ; A,B[0, 1]) and R(C ; A,B)

to the injectivity of ϕ is not found or written up!!!

So far, until now.

An isomorphism R(CPnuc ;A,B[0, 1]) ∼= R(CPnuc ;A,B))

was shown first by N.Ch. Phillips in [627] (for A and B in Cuntz

standard form?).

Then he used the characterization of N. Higson [364].

We do not know if we can also go this way

but the general problem is that it is not known if U(0) = 1 and

U∗(k ⊕H0)(a)U −H0(a) ∈ C0([0,∞), B) for all a ∈ A

always implies that h0 ⊗ k and h0

are asymptotical homotopic,

i.e., if there exists gs,t ∈ S(h0; A,B) with

s, t ∈ [0, 1]× [0,∞) point-norm continuous

and g0,t = h0 ⊕ k and g1,t = h0.

We generalize in Section ?? an idea of N.Ch. Phillips that shows that the

Grothendieck groups of certain semigroups of asymptotic morphisms are homotopy

invariant, in a way that covers also the case of our (!) more general types of Rørdam

groups.

But we underline that in our special case the injectivity criteria (DC) of The-

orem 4.4.6 follows from the homotopy invariance of KK(C ; A,B), where it is very

important that this holds for arbitrary m.o.c. cones. It allows a precise explanation

for the sketched and a bit imprecise arguments outlined at the end of the Preprint

[434], cf. also [442].

We describe in Theorem 4.4.6 the hypothetical elements in the kernel of the

homomorphism ϕ, and give an applicable sufficient criteria (DC) for the injectivity

of ϕ.

We show in Section 3 of Chapter 9 that in the later used special case of the

canonical surjection R(C ; A,B)→ Ext(C ; A, SB) ∼= KK(C ; A,B) the decomposi-

tion condition (DC) of Theorem 4.4.6 is a consequence of

KK(C(0, 1] ; A; C0((0, 1], B)) = 0 ,

i.e., the homotopy invariance of KK(C , A,B) allows to proof for our applications

the property (DC) that implies finally the needed bijectivity.

( 7 ).

It shows that the homotopy invariance of the Kasparov groups alone imply

that of C-related Rørdam groups and KK-groups are isomorphic. As claimed in the

appendix of the Preprint [434], there not really proved.

7 The author regrets for his remarks “Es ist ein Gradeaus-Beweis.” below [442, lem. 3.8],

and ”... should be able to work out the details” in the appendix of [434].
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We need for the description of the kernel of the group homomorphism

ϕ : G(h0 ; D,E) → G(H0 ; D,E) in the following Theorem 4.4.6 and in Lemma

4.4.15, some basic notations and definitions of algebraic nature:

Definition 4.4.4. Let A ⊆ E a C *-subalgebra, I / E an closed ideal of E,

C := A′ ∩ E the commutant (or “centralizer”) of A in E, and define by

Ann(A) := Ann(A,E) := { e ∈ E ; eA ∪Ae = {0} } . (4.1)

the annihilator of A in E. We consider following C *-subalgebras of E:

Der(A, I) := { e ∈ E ; ea− ae ∈ I, ∀ a ∈ A } = π−1
I

(
πI(A)′ ∩ (E/I)

)
, (4.2)

N (A, I) := { e ∈ E ; ea, ae ∈ I, ∀ a ∈ A } = π−1
I

(
Ann(πI(A), E/I)

)
. (4.3)

Compare Remarks 6.1.2 for further details on Ann( · ) and N ( · , · ). Notice that

C = Der(A, {0}) ⊆ Der(A, I) and that N (A, I) is a closed ideal of Der(A, I).

Definition 4.4.5. We define a discrete abelian group Γ
(
A, I,E

)
by

Γ
(
A, I,E

)
:= K1

(
Der(A, I)

)
/ µ
(
K1(C)

)
(4.4)

where the group morphism µ := [η]1 : K1(C) → K1(Der(A, I)) comes from the

inclusion map η : C ↪→ Der(A, I) .

The formulation “later specified” used in Parts (iii) and (iv) of the following

Theorem means that different possible choices of the (non-unital) C *-subalgebra

F ⊆ C with the properties in Part (iii) and of isometries s0, t0 ∈ E with the

properties in Part (iv) are not uniquely determined, but have to exist and can

be be chosen/adjusted such that they interplay in the manner that is described

in Parts (iii,iv). Their existence with the required interplay is a property of the

system (J ⊆ E, β, h0, H0) .

Theorem 4.4.6. Suppose that h0 : D → E and H0 : D → E are *-monomor-

phisms, where D is a separable C*-algebra and E is a unital C*-algebra. Further

let J be a closed ideal of E and β a *-automorphism of E, such that h0(D) ⊆ J ,

β2 = id, βH0 = H0 and β(J) ∩ J = 0.

We require that E, J , D, H0, h0, and β satisfy the following assumptions

(i)-(vi), with C := H0(D)′ ∩ E.

(i) The algebra h0(D)′ ∩H0(D)′ ∩E ⊆ C contains β-invariant isometries s, t

with ss∗ + tt∗ = 1.

(ii) If H0 dominates k : D → E, then there exists a unitary u ∈ E such that

u∗(k ⊕H0)(a)u−H0(a) ∈ J for all a ∈ D.

(iii) There exists a (later specified) C*-subalgebra F ⊆ C with following prop-

erties:

(a) F ·H0(D) ⊆ J + β(J),

(b) β(F ) = F , and

(c) for every f ∈ J + β(J) and every projection q ∈ F , there is a projec-

tion p ∈ F with pf = fp = f , q ≤ p and q 6= p.
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(iv) There are (later specified) β-invariant isometries s0, t0 ∈ E that interplay

with F , C, H0 and h0 in the following manner

p0 := s0s
∗
0 ∈ F , t0 ∈ C , s0s

∗
0 + t0t

∗
0 = 1

and

s∗0H0(a)s0 = h0(a) + β(h0(a)) for all a ∈ D .

(v) Every non-zero projection in F is unitarily equivalent to p0 by a unitary

in 1 + F .

(vi) There exists a unitary u1 in J ′ ∩ E such that u1βh0(·)ss∗ = tt∗βh0(·)u1.

If assumptions (i)-(vi) are satisfied, then h0 ⊕H0 is unitarily equivalent to H0

and the mapping ϕ : [k] + [h0] 7→ [k] + [H0] is a (well-defined) group epimorphism

from G(h0 ; D,E) onto G(H0 ; D,E).

The kernel of this epimorphism is naturally isomorphic to Γ(H0(D), J, E).

The natural group epimorphism ϕ : [k] + [h0] 7→ [k] + [H0] from G(h0 ; D,E)

onto G(H0 ; D,E) is injective, if and only if, E, J , β, D, and H0 satisfy the

following decomposition condition (DC):

(DC) For each u ∈ U0(E) ∩Der(H0(D), J) there exists v ∈ U(C) such that

v(u⊕s,t 1) ∈ N (H0(D), J + β(J)) + C · 1 .

The condition (DC) is equivalent to the following (formally weaker) property

(wDC):

(wDC) If u ∈ U0(E) ∩Der(H0(D), J) and k ∈ S(h0 ; D,E) satisfy

(k + βh0)⊕s0,t0 H0 = u∗H0(·)u ,

then

[k] + [h0] = [h0] .

Compare below with above concerning R(...) to KK(...).

The group homomorphism G(h0 ; D,E) → G(H0 ; D,E) is a “minimal”

abstract version of the natural group epimorphism from the generalized Rør-

dam groups R(C ; D,B), cf. Chapter 7, to the C-equivariant extension groups

Ext(C(R); D,SB) ∼= KK(C; D,B) introduced in Chapter 5 and compared with

KK-groups in Chapter 8.

The criteria (wDC) shows that the injectivity of this group epimorphism is

equivalent ???

to a suitable version of homotopy invariance for the groups R(C ; D,B).

Not proved until now !!! Imprecise idea exists?

The Rørdam groups are unsuspended – but stable – versions of, from a cone

C depending, E-theory groups. The definition of R(C ; D,B) is entirely algebraic

and does not require any sort of homotopy invariance in its formulation, even not

implicitly.
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A cited condition (vwDC) is not defined somewhere!!!

In fact we show that a below given formally weaker condition (vwDC) implies that

Γ(H0(D), J, E) = 0.

We have used in the formulation of Parts (iii) and (iv) in Theorem 4.4.6 the

terminus “specified”, that should say the following (together with Part (v)): We

demand that our “given” natural system (E, J,D,H0, h0, β) has the property that

F , s0 and t0 exist with the properties listed in Parts (iii). But then we fix one of the

possible systems (F, s0, t0) and add it to the structure given by (E, J,D,H0, h0, β)

simply for further references in the proof. The additional (F, s0, t0) are not uniquely

determined by (E, J,D,H0, h0, β). The F in most of our applications satisfies in

addition that K1(F ) = 0, that can not be derived from the assumptions of Theorem

4.4.6.

The difference to Part (v) is that this is an additional requirement on F , and

we need from Part (vi) only that such u0 exists in later proofs it not necessary to

use always the same u0 with the in (vi) quoted property.

The Parts (i)–(v) of following Lemma 4.4.7 are not obvious because [ϕ] =

[ϕ + 0] 6= [ϕ] + [0] = [ϕ ⊕ 0] for C *-morphisms ϕ that do not dominate zero. The

used isometry s0 and p0 := s0s
∗
0 are given by assumption (iv) of Theorem 4.4.6.

Recall that C := H0(D)′ ∩ E in Theorem 4.4.6.

Lemma 4.4.7. The assumptions (i)–(vi) on h0 and H0 in Theorem 4.4.6 imply

the following properties (i)-(xii):

(i) Let Bj, j = 1, 2, separable C*-algebras, kj : Bj → J ⊆ E C*-morphisms,

and use u1 ∈ U(E) from assumption (vi) in Theorem 4.4.6. Then, for all

b ∈ B1, c ∈ B2 and d ∈ D,

u1

(
(k1(b) + βh0(d))⊕s,t k2(c)

)
u∗1 = k1(b)⊕s,t (k2(c) + βh0(d)) .

In particular, for all C*-morphisms k1, k2 : D → J ⊆ E ,

[k1 + βh0] + [k2] = [k1] + [k2 + βh0] .

For each σ-unital C*-algebra B and C*-morphism k : B → J + βJ

holds [k] = [k] + [0]. Moreover, for every isometry T ∈ E there exists a

unitary u ∈ U0(E) such that k(b)u = k(b)T ∗ for all b ∈ B. In particular,

u∗k(·)u = Tk(·)T ∗.
Special cases are [k1 + βk3] = [k1 + βk3] + [0], for all C*-morphisms

k1, k3 : D → J ⊆ E, and – with k2 := 0, k3 := h0 –,

[k1 + βh0] = [k1 + βh0] + [0] = [k1] + [βh0] .

(ii) [h0] + [βh0] = [h0 + βh0] = [h0 + βh0] + [h0] = [h0 + βh0] + [0].

(iii) [H0] + [h0 + βh0] = [H0].

(iv) [H0] + [h0] = [H0] = [H0] + [βh0].

(v) Each of H0, h0 + βh0, βh0 and h0 dominates zero.
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(vi) There exist isometries s1, t1 ∈ E with s1s
∗
1 + t1t

∗
1 = 1 , p0t1 = p0 = t1p0

and t1H0(·) = H0(·) = H0(·)t1 . In particular, t1 ∈ C, s1s
∗
1 ≤ 1 − p0,

s1s
∗
1H0(·) = 0 and s1s

∗
1Es1s

∗
1 = s1Es

∗
1 ⊆ Ann(H0(D), E) ⊆ C.

(vii) If [h] ∈ S(H0 ; D,E) and h(D) ⊆ J + βJ , then h has a unique decom-

position h = k1 + βk2 with C*-morphisms k1, k2 : D → J that satisfy

[k1], [k2] ∈ S(h0 ; D,E).

In particular, [k] ∈ S(h0 ; D,E) if [k + βh0] ∈ S(H0 ; D,E) and

k(D) ⊆ J .

If x ∈ E is a contraction, such that (1 − xx∗)H0(D)x = {0} and

x∗H0(D)x ⊂ J + βJ , then there are unique k1, k2 ∈ S(h0 ; D,E) with

k1 + βk2 = x∗H0(·)x.

This applies to projections x := P ∈ C with H0(D)P ⊆ J + βJ .

(viii) Let B a σ-unital C*-algebra and k1, k2 : B → J C*-morphisms. Then

[k1] = [k2], if and only if, there exists a unitary u ∈ U0(βh0(D)′ ∩E) with

βh0(d)u = βh0(d) for all d ∈ D and and k2(b) = u∗k1(b)u for all b ∈ B.

In particular, then u ∈ U0(E) and β(u) ∈ h0(D)′ ∩ E.

If B := D then [k1 + βh0] = [k2 + βh0] implies [k1] = [k2].

If B is a σ-unital C*-algebra, k : B → J a C*-morphism and T ∈
E is an isometry, then there exists u ∈ U0(βh0(D)′ ∩ E) that satisfies

u∗k(·)u = Tk(·)T ∗ and βh0(d)u = βh0(d) for all d ∈ D.

(ix) Let q1, q2 ∈ F denote non-zero commuting projections in F . Then there

exists a unitary u ∈ (F + 1) ∩ U0(F + C · 1) ⊆ C with u∗q1u = q2 .

For every separable subset X ⊆ J+βJ there exists a projection p ∈ F
and an isometry R ∈ C with pR = 0 and pxp = x for all x ∈ X.

For each isometry V ∈ E (or unitary V ) there exists U ∈ U0(E) with

xV ∗ = xU for all x ∈ X.

(x) There exist isometries s2, s3 ∈ E that satisfy

s∗2H0(·)s2 = h0 , s∗3H0(·)s3 = βh0 , and s2s
∗
2 + s3s

∗
3 = p0 .

The projection p2 := s2s
∗
2 is in C, and and p2, s2 and s3 satisfy s2h0s

∗
2 =

p2H0(·) = s0h0s
∗
0 and

s3βh0s
∗
3 = (p0 − p2)H0(·) = s0βh0s

∗
0 = β(s0h0s

∗
0) .

In particular, p2H0(D) ⊆ J and (p0 − p2)H0(D) ⊆ βJ .

If s, t ∈ C are the isometries in Theorem 4.4.6(i), then the partial

isometries s2ss
∗
2, s2ts

∗
2, s3ss

∗
3, s3ts

∗
3, s0ss

∗
0 and s0ts

∗
0 are in C.

In particular, the projections p2 = s2s
∗
2, p0 − p2 = s3s

∗
3 and p0 are

properly infinite in C, satisfy 0 = [p2] ∈ K0(p2Cp2),

??? 0 = [p0−p2] ∈ K0((p0−p2)C(p0−p2)) ??? or = 0 in K0(p0Cp0)

???

and [p0] = 0 in K0(p0Cp0).

There exists an isometry t2 ∈ C with t2t
∗
2 = 1 − p2 and unitary

elements u, v ∈ U(C) such that

u∗p2u = p2 + t2p2t
∗
2 and v∗p2v = p2 ⊕s,t p2 .
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The elements s∗0s2, s
∗
0s3 ∈ E are isometries with (s∗2s0)(s∗0s3) = 0.

If B is a σ-unital C*-algebra and h : B → J a C*-morphism then there

exists uh ∈ U0((βh0)(D)′ ∩ E) such that βh0(·)uh = βh0 and eh(b)uh =

eh(b)s∗2s0 for all b ∈ B and e ∈ E.

(xi) For every non-zero projection p ∈ F there exists properly infinite pro-

jections q, r ∈ C with q + r = p, qr = 0, q ∈ N (H0(D), J) and

r ∈ N (H0(D), βJ). Each decomposition p = q + r of this kind satisfies

[qH0(·)] = [h0] and [rH0(·)] = [βh0].

(xii) If p ∈ F is a projection with p ≥ p0 and p 6= p0, then there exist V ∈ U(C)

and W ∈ U0(E) such that W ∗(h0 + βh0)W = p0H0(·), V p0 = p0 = p0V

and

V ∗(p− p0)H0(·)V = t0W
∗(h0 + βh0)Wt∗0 .

Proof. We give a pre-information in Point (o) and prove Part (ix) before the

other Parts of Lemma 4.4.7.

(o): Assumptions (iii) and (iv) of Theorem 4.4.6 together imply p0H0(d) =

s0h0(d)s∗0 + s0βh0(d)s∗0 and t0H0(d)t∗0 = (1− p0)H0(d) for d ∈ D. Thus

H0 = (h0 + βh0)⊕s0,t0 H0 .

(ix): Let q1, q2 ∈ F non-zero commuting projections. We show the existence

of u ∈ U0(F + C · 1) ∩ (1 + F ) with u∗q1u = q2 :

If q1, q2 ∈ F are projections with q1q2 = q2q1, then

qj ≤ q3 := (q1 + q2)− (q1q2) ∈ F for j ∈ {1, 2} ,

and q3 is a projection. The unitaries in (1+F )∩U0(F +C ·1) build a group. Thus,

it suffices to consider the special cases where 0 6= q1 ≤ q2 :

By assumption (iii) of Theorem 4.4.6 with f = 0, there is a projection p ∈ F ⊆
C := H0(D)′ ∩ E such that p ≥ q2 and p 6= q2.

Any non-zero projection q ∈ F is unitary equivalent to p0 by a unitary w ∈
1 + F by assumption (v) of Theorem 4.4.6. Thus, there are unitaries wk, w ∈
1 + F , k ∈ {1, 2}, with w∗kp0wk = qk and w∗p0w = p − q2. The partial isometries

vk := w∗kp0w ∈ F , satisfy vkv
∗
k = qk, v∗kvk = p − q2 and v2

k = 0. It follows that

qk + (p− q2) = vkv
∗
k + v∗kvk and

Uk := v∗k + vk + (1− vkv∗k + v∗kvk)

are selfadjoint unitaries in U0(F +C ·1) with Ukqk = (p−q2)Uk for k = 1, 2. Hence,

u∗q2u = q1 and u ∈ (F + 1) ∩ U0(F + C · 1) for u := U∗2U1.

(If E is a real C *-algebra E then we can take here u := V ∗2 V1 with unitaries

Vk := exp((π/2)(v∗k − vk)) = v∗k − vk + (1− vkv∗k − v∗kvk)

because also Vkqk = (p− q2)Vk.)
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Let p ∈ F is a projection with p ≥ p0. We show the existence of isometries

R, T ∈ C, that satisfy pR = 0, pT = Tp = p and TT ∗+SS∗ = 1 for S := Rs0 ∈ E
(not necessarily in C):

Let u ∈ U0(F + C · 1) ⊆ U0(C) with u∗p0u = p ≥ p0.

If p := p0, then we can take the isometries R0, T0 ∈ C and S0 ∈ E defined by

R0 := t0, T0 := p0 + t20t
∗
0 and S0 := R0s0 = t0s0.

The assumptions s0s
∗
0 = p0, s0s

∗
0 + t0t

∗
0 = 1, p0 ∈ F ⊆ C, t0 ∈ C in parts

(iii,iv) of Theorem 4.4.6, show that S0 ∈ E and R0, T0 ∈ C are isometries with

R0R
∗
0 = 1− p0, p0R0 = 0, p0S0 = 0, and T0T

∗
0 + S0S

∗
0 = 1.

It follows that R := u∗R0, S := Rs0 = u∗S0 and T := u∗T0u have the desired

properties with respect to p = u∗p0u.

For every separable subset X ⊆ J + βJ there exists a projection p ∈ F and an

isometry R ∈ C with pxp = x and xR = 0 for all x ∈ X:

Let A := C∗(X) ⊆ J + βJ the separable C *-subalgebra generated by X and

f ∈ A+ a strictly positive contraction for A. By assumptions (iii,c) and (iv) of

Theorem 4.4.6 there exists a projection p ∈ F with pf = f = fp and p ≥ p0 =

s0s
∗
0 ∈ F . Since fAf is dense in A, we get pxp = x for all x ∈ X ⊆ A.

Let p ∈ F with p ≥ p0 and pxp = x for all x ∈ X.

There exists u ∈ U0(C) with u∗p0u = p as shown above. The isometry R = u∗t0

is in C and satisfies pR = 0. It follows that xR = xpR = 0 for all x ∈ X.

Let X ⊆ J + βJ a separable subset, and V ∈ E an isometry. We show the

existence of U ∈ U0(E) with xV ∗ = xU for all x ∈ X :

If we replace the above considered separable subset X ⊆ J+βJ by the separable

subset XV ∗ ∪X ⊆ J + βJ , then the above observations lead to a projection p ∈ F
with p ≥ p0, xp = x and xV ∗p = xV ∗ for all x ∈ X.

Take a unitary u ∈ U0(F + C · 1) ∩ (1 + F ) with u∗p0u = p. Let R := u∗t0,

S := Rs0 and T := p+Rt0R
∗ as above considered with pS = 0, pT = p = Tp and

SS∗ + TT ∗ = 1.

Thus, for x ∈ X, xS = xpS = 0, xT = xpT = xp = x and

xV ∗T ∗ = xV ∗pT ∗ = xV ∗p = xV ∗ .

It implies that xTV ∗T ∗ = xV ∗ and xSe = 0 for all x ∈ X and e ∈ E. We define

U ∈ E by

U := TV ∗T ∗ + SV S∗ + S(1− V V ∗)T ∗ .

Since xS = 0 we get

xU = xTV ∗T = xV ∗ for all x ∈ X .

It remains to prove that U ∈ U0(E) :
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The operator Z := [T, S] ∈ M1,2(E) ⊂ M2(E) satisfies ZZ∗ = 1 and Z∗Z =

12 := diag(1, 1), i.e.,

ψ : a ∈M2(E) 7→ ZaZ∗ ∈ E

is a *-algebra isomorphism ψ from M2(E) onto E. Obviously, the above defined

unitary U ∈ U(E) is the image U = ψ(U(V ∗)) of the Halmos unitary U(V ∗) ∈
M2(E) built from the contraction V ∗, as defined in Remark 4.2.4. The Halmos

unitaries are all in U0(M2(E)). Hence, U = ψ(U(V ∗)) ∈ U0(E).

(i): Let kj : Bj → J C *-morphisms of C *-algebras Bj , j ∈ {1, 2, 3, 4}. The

property β(J) ∩ J = {0} shows that the linear maps (a, b) 7→ ki(b) + βkj(c) from

Bi ⊕Bj into J + βJ are C *-morphisms.

If Bj := B for j ∈ {1, 2, 3, 4} then this implies that the linear maps b ∈ B 7→
kj(b) + βkj+2(b) (j ∈ {1, 2}) are C *-morphism form B into J + βJ . The equality

[k1 + βk3] = [k2 + βk4] in [Hom(B, J + βJ)] implies [k1] = [k2] and [k3] = [k4],

because there exists a unitary u ∈ E that satisfies for v := β(u) and all b ∈ B that

J 3 (u∗k1(b)u− k2(b)) = −β(vk3(b)v∗ − k4(b)) ∈ βJ ,

which implies that u∗k1(·)u = k2 and v∗k3(·)v = k4 by assumption J ∩ βJ = {0}
of Theorem 4.4.6.

In particular kj + βh0 for j = 1, 2 are C *-morphisms from D into J + βJ if

B1 := B2 := D and k3 := h0, because h0(D) ⊆ J .

If we use the Cuntz sum ⊕s,t with s, t in Theorem 4.4.6(i), then

u1

(
(e+ βh0(d))⊕s,t f

)
u∗1 = e⊕s,t (f + βh0(d)) for all d ∈ D, e, f ∈ J , (4.5)

where u1 ∈ U(E) comes from assumption (vi) of Theorem 4.4.6. We use here that

u1 ∈ U(J ′∩E) by assumption 4.4.6(vi), that β(s) = s and β(t) = t are in h0(D)′∩E
by assumption (i) of Theorem 4.4.6, and that – therefore – assumption 4.4.6(vi)

implies moreover

u1sβh0(·)s∗u∗1 = tβh0(·)t∗ . (4.6)

Equation (4.5) says that (k1(b) + βh0(d)) ⊕s,t k2(c) is unitarily equivalent to

k1(b)⊕s,t (βh0(d) + k2(c)) by the unitary u1 for all b ∈ B1, c ∈ B2 and d ∈ D.

If B1 = B2 = D we get especially

[k1 + βh0] + [k2] = [k1] + [k2 + βh0] .

An other special case is k2 := 0, k1 := k and B1 := B for σ-unital C *-

algebras B and C *-morphisms k : B → J . We get that the C *-morphisms (b, d) 7→
(k(b) + βh0(d))⊕s,t 0 and (b, d) 7→ k(b)⊕s,t βh0(d) are unitary equivalent.

It implies [k + βh0] + [0] = [k] + [βh0] for k : D → J .

Let B any σ-unital C *-algebra, k : B → J + βJ a C *-morphism and T ∈ E an

isometry. There exists a strictly positive contraction b0 ∈ B+ for B if B is σ-unital.

If we apply the above proven Part (ix) to the subset X := {k(b0)} of J + βJ ,

then we see that there exists u ∈ U0(E) with k(b)T ∗ = k(b)u for all b ∈ Bb0. We get
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k(b)T = k(b)u for all b ∈ B = Bb0. Thus Tk(b∗a)T ∗ = u∗k(b∗a)u for all a, b ∈ B.

It yields Tk(·)T ∗ = u∗k(·)u, because both sides are bounded linear maps and the

linear span of B∗ ·B is dense in B (actually B ·B = B by [616, prop. 1.4.5]).

If we take T := s ∈ C with s from assumption (i) of Theorem 4.4.6, then we

get [k] + [0] = [k ⊕s,t 0] = [Tk(·)T ∗] and [sk(·)s∗] = [k].

(ii): We get [h0] + [βh0] = [h0 + βh0] + [0] = [h0 + βh0], if we let k1 := h0,

k2 := 0 and k3 := h0 in Part (i). By Theorem 4.4.6(i), s, t ∈ h0(D)′ ∩ E and

ss∗ + tt∗ = 1. It implies that [h0] + [h0] = [h0]. We obtain:

[h0 + βh0] + [h0] = [h0] + [βh0] + [h0] = [h0] + [βh0] .

(iii): Info (o) shows that [H0] = [h0 + βh0] + [H0] as elements of S(H0 ; D,E).

(iv): [H0] + [h0] = [H0] + [h0 + βh0] + [h0] = [H0] + [h0 + βh0] = [H0] in

S(H0 ; D,E), by Parts (iii) and (ii).

[H0] + [βh0] = [H0] + [h0] + [βh0] = [H0] + [h0 + βh0] = [H0] by Parts (ii, iii).

(v): By Part (i), with k3 := h0 and k1 = 0, we get [βh0] = [βh0] + [0], and,

with k3 := 0 and k1 = h0, [h0] = [h0] + [0], i.e., that each of βh0 and h0 dominate

zero. Part (ii) implies that h0 + βh0 dominates zero. This and Part (iv) together

imply that H0 dominates zero, i.e., that [H0] = [H0] + [0].

(vi): By Proposition 4.3.6(v), it suffices to show that there exists an isometry

R ∈ E with p0R = 0 and R∗H0(·)R = 0.

Part (v), – i.e., [H0] = [0] + [H0] by Proposition 4.3.5(i) –, and assumptions

(i,iv) of Theorem 4.4.6 imply the existence of a unitary u ∈ E with

u∗H0(·)u = 0⊕s0,t0 H0(·) = t0H0(·)t∗0 = (1− p0)H0(·) .

Let R := t0us0. Then R∗R = 1, p0R = 0 and t∗0H0(·)R = H0(·)us0, because s0

and t0 are isometries with p0 = s0s
∗
0, s∗0t0 = 0 and t0 ∈ C – by assumptions (iv) in

Theorem 4.4.6. It follows for a ∈ D that

R∗H0(a)R = s∗0u
∗H0(a)us0 = s∗0t0H0(a)t∗0s0 = 0 .

(vii): If [h] ∈ S(H0 ; D,E) then there exists an isometry T ∈ E with h =

T ∗H0(·)T by definition of S(H0 ; D,E).

If h(D) ⊆ J + βJ , then the bounded linear map λ(d) := H0(d)T (d ∈ D)

maps D into J + βJ . The C *-subalgebra A = C∗(λ(D)) of J + βJ generated by

the image λ(D) of the separable D by the linear contraction λ is separable. Let

f ∈ A+ a strictly positive contraction. By assumptions (iii) and (iv) of Theorem

4.4.6, there is a projection p ∈ F ⊆ C := H0(D)′ ∩E such that pf = f and p ≥ p0.

In particular T ∗pH0(d)T = T ∗H0(d)T = h(a) for d ∈ D. The above proven Part

(ix) provides a unitary u ∈ (F + 1) ∩ U0(F + C · 1) ⊆ U0(C) with upu∗ = p0. It

follows that h = T ∗0 p0H0(·)T0 for the isometry T0 := uT . Let k1 := T ∗0 s0h0(·)s∗0T0

and k2 := β(T0)∗s0h0(·)s∗0β(T0) . Then kj(D) ⊆ J for j = 1, 2 and k1, k2 are
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C *-morphisms from D into J with h = k1 + βk2, because p0H0 = s0(h0 + βh0)s∗0,

h0(D) ⊆ J , β(s0) = s0 and J ∩ βJ = {0}.

By Part (v), h0 dominates zero, i.e., [h0] = [0] + [h0] and there exists a unitary

v ∈ E such that such that v∗h0(·)v = s0h0(·)s∗0. Then T1 := vT0 = vuT and

T2 := vβ(T0) are isometries in E such that h = k1 + βk2 for kj := T ∗j h0(·)Tj
(j = 1, 2). In particular, [k1], [k2] ∈ S(h0 ; D,E).

The property J · β(J) = J ∩ β(J) = {0} of J in Theorem 4.4.6 implies that

arbitrary maps k1, k2 : B → J of any C *-algebra B must be automatically C *-

morphisms if h := k1 + βk2 is a C *-morphism and that k1 + βk2 is the unique

decomposition of h as sum h = k1 + βk2 by maps k1, k2 : B → J .

Thus, h = k1 + βk2 with [k1], [k2] ∈ S(h0 ; D,E) is the unique decomposition

of h := T ∗H0(·)T with h(D) ⊆ J + βJ .

The C *-morphism H0 dominates zero by Part (v). Hence Proposition 4.3.6(ii)

applies and gives that [h] ∈ S(H0 ; D,E) for h := x∗H0(·)x if x ∈ E is a contraction

with (1− xx∗)H0(D)x = {0}.

It happens in particular for all projections x := P ∈ C.

If, in addition, x∗H0(D)x ⊂ J + βJ , then above arguments show that h =

k1 + βk2 for unique k1, k2 : D → J , that satisfy [k1], [k2] ∈ S(h0 ; D,E).

(viii): Let k, ` : B → J + βJ C *-morphisms with [k] = [`] for a σ-unital C *-

algebra B, i.e., suppose that there exists V ∈ U(E) with V k(·)V ∗ = `(·).

If we apply the before proven Part (ix) to X := {k(b0)} then we get u ∈ U0(E)

with k(b)V ∗ = k(b)u for all b ∈ B, as in the proof of Part (i). Thus u∗k(·)u =

V k(·)V ∗ = `(·).

This shows that if B is σ-unital and k1, k2 : B → J satisfy [k1] = [k2] then

there exists a (norm-) continuous path ξ ∈ [0, 1] 7→ Uξ ∈ U(E) with U0 = 1 and

U∗1 k1(·)U1 = k2.

Let b0 ∈ B a strictly positive contraction in B, and let A0 denote the separable

C *-subalgebra of J + βJ generated by βh0(D) and by the elements k1(b0)Uξ ∈ J
for n ∈ N and ξ ∈ [0, 1]. Notice that A0 = (A0∩J)+βh0(D), because J∩βJ = {0}.
Let a0 a strictly positive contraction of A0∩J and d0 a strictly positive contraction

of D. It follows that the C *-subalgebra A of J + βJ generated by βh0(D) and

k1(b)Uξ ∈ J for b ∈ B and ξ ∈ [0, 1] is σ-unital with strictly positive contraction

a0 + βh0(d0), because again A = (A ∩ J) + βh0(D), A0 ⊂ A, and each k1(b)Uξ is

contained in the closed left-ideal generated by k1(b0)Uξ, i.e., a0 ∈ A ∩ J ⊆ J · a0.

If we let h : A → J + βJ denote the identity map on the σ-unital C *-algebra

A, then Part (i) applies to A and h. The Part (i) shows that there exists a unitary

W ∈ U0(E) with aW ∗ = as∗ for all a ∈ A, where we consider the isometries s, t ∈ E
from assumption (i) of Theorem 4.4.6. It implies Wa = sa and WaW ∗ = sas∗ for

a ∈ A, because A = A ·A as set.
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Equation (4.5) yields

(u1W )(e+ βh0(d))(u1W )∗ = ses∗ + tβh0(d)t∗ for all d ∈ D, e ∈ A ∩ J . (4.7)

In particular, tβh0(·)t∗(u1W ) = u1Wβh0(·) . Equation (4.7) holds more generally

for all d ∈ D and all b ∈ J with the property that WbW ∗ = sbs∗.

We define a norm-continuous group-morphism λW : U(E)→ U(E) by

λW (U) := W ∗u∗1(U ⊕s,t 1)u1W for U ∈ U(E) .

Clearly λW (U∗) = λW (U)∗. Straight calculation shows that λW (U) · βh0(d) =

βh0(d) for d ∈ D and all U ∈ U(E). The property u1 ∈ J ′ ∩ E implies that

λW (U∗)aλW (U) = U∗aU if a ∈ J and U ∈ U(E) satisfy that WaW ∗ = sas∗ and

WU∗aUW ∗ = sU∗aUs∗.

By our above construction of A = (A∩ J) + βh0(D) we get a norm-continuous

path ξ ∈ [0, 1] 7→ Vξ ∈ U(E) with V0 = 1, V ∗ξ k1(·)Vξ = U∗ξ k1(·)Uξ and

Vξ · βh0(·) = h0(·) = βh0(·) · Vξ

if we define Vξ by

Vξ := λW (Uξ) .

In particular, Vξ ∈ βh0(D)′ ∩ E for each ξ ∈ [0, 1], because βh0(d)Vξ = βh0(d) for

all d ∈ D. Thus, u := V1 ∈ U0(βh0(D)′ ∩ E) satisfies u∗k1(b)u = k2(b) for b ∈ B
and uβh0(d) = h0(d) = βh0(d)u.

If k : B → J is a C *-morphism, B is separable and T ∈ E an isometry then

there exists a unitary v ∈ U0(E) with v∗k(·)v = Tk(·)T ∗ by Part (i) (proven via

Part (ix)).

If we apply above observations to k1 := k and k2 := Tk(·)T ∗ with k2 =

v∗k1(·)v, then we obtain the existence of a unitary u ∈ U0(β(h0(D))′ ∩ E) that

satisfies βh0(·)u = βh0 and u∗k(·)u = Tk(·)T ∗.

(x): Recall that s∗0H0(·)s0 = h0 + βh0. By Part (ii), [h0 + βh0] = [h0] + [βh0].

Thus, there is a unitary V ∈ U(E) such that

V (h0 + βh0)V ∗ = sh0s
∗ + tβh0t

∗ ,

where the isometries s, t come from Theorem 4.4.6(i,vi). If we apply the assumption

(i) of Theorem 4.4.6 to k := h0 + βh0 and T := V , we get some u ∈ U0(E) with

u∗s∗0H0(·)s0u = sh0s
∗ + tβh0t

∗ .

Thus, s2 := s0us and s3 := s0ut are isometries in E that satisfy s2s
∗
2+s3s

∗
3 = p0,

s∗2H0(·)s2 = h0 and s∗3H0(·)s3 = βh0.

By Lemma 4.3.4(i), the equation s∗2H0(·)s2 = h0 implies that p2 := s2s
∗
2 ∈ C

and p0 − p2 = s3s
∗
3 ∈ C because p0 ∈ F ⊆ C by Theorem 4.4.6(iv,iii).

Since p0, p2 ∈ C, we get p2H0(a) = s2h0(a)s∗2 ∈ J , and (p0 − p2)H0(a) =

s3βh0(a)s∗3 ∈ βJ for a ∈ D.



4. GROUPS DEFINED BY ABSORBING C*-MORPHISMS 551

To compare e.g. s2h0s
∗
2 with s0h0s

∗
0, we define linear maps L1, L2 : D → E by

L1(a) := (p2H0(a))− s0h0(a)s∗0 and L2(a) := ((p0 − p2)H0(a))− s0βh0(a)s∗0 .

Then L1 + L2 = 0, i.e., L1(a) = −L2(a) for a ∈ D, L1(D) ⊆ J and L2(D) ⊆ βJ .

The orthogonality J · βJ = J ∩ βJ = {0} yields L1(a) = 0 and L2(a) = 0 for

a ∈ D. Thus, p2H0(·) = s0h0s
∗
0 and (p0 − p2)H0(·) = s0(βh0)s∗0, i.e., s2h0s

∗
2 =

s0h0s
∗
0 and s3(βh0)s∗3 = s0(βh0)s∗0.

We let G1 := h0(D)′ ∩ E and G2 := βG1, then s0Gjs
∗
0 ⊆ C for j = 1, 2,

s2G1s
∗
2 ⊆ C and s3G2s

∗
3 ⊆ C as the following calculations show:

The elements p0 = s0s
∗
0, p2 := s2s

∗
2 and p0− p2 := s3s

∗
3 are in C, i.e., commute

with the elements of H0(D). The definitions of s0, s2 and s3 give us that

s∗0H0s0 = h0 + βh0 , s∗2H0s2 = h0 and s∗3H0s3 = βh0 .

Thus,

H0s0 = s0(h0 + βh0) , H0s2 = s2h0 , and H0s3 = s3βh0 .

It implies also

(h0 + βh0)s∗0 = s∗0H0 , h0s
∗
2 = s∗2H0 , and βh0s

∗
3 = s∗3H0 .

Let x ∈ G1, d ∈ D, then

H0(d)s2xs
∗
2 = s2h0(d)xs∗2 = s2xh0(d)s∗2 = s2xs

∗
2H0(d) .

The verifications of s3G2s
∗
3 ⊆ C and s0Gjs

∗
0 ⊆ C (j = 1, 2) are similar.

The isometries s, t ∈ E commute element-wise with h0(D) ∪ H0(D) and are

β-invariant by Theorem 4.4.6(i), and since t0 ∈ C by Theorem 4.4.6(iv), the partial

isometries s2ss
∗
2, s2ts

∗
2, s3ss

∗
3, s3ts

∗
3, s0ss

∗
0, s0ts

∗
0, t0st

∗
0 and t0tt

∗
0. are all in C.

It shows that the projections p2 = s2s
∗
2 ≤ p0, p0−p2 and p0 are properly infinite

in p2Cp2, (p0 − p2)C(p0 − p2) and p0Cp0 and there (!) [p2] = 0, [p0 − p2] = 0 and

[p0] = 0, i.e., this hereditary C *-subalgebras of C contain copies of O2 unital.

Since 1 − p2 ≥ 1 − p0 = t0t
∗
0 and p2, t0 ∈ C it follows that 1 − p2, 1 − p0 and

1 = 1C are full and properly infinite projections in C with same class in K0(C).

Thus, by Lemma 4.2.6(ii), there exists an isometry t2 ∈ C with t2t
∗
2 = 1− p2.

There exist u2, v2 ∈ U(C) such that

u∗2p2u2 = p2 + t2p2t
∗
2 and v∗2p2v2 = p2 ⊕s,t p2 .

This happens because p2 is properly infinite with [p2] = 0 in K0(p2Cp2), because

the projections p2 + t2p2t
∗
2 and p2⊕s,t p2 are in the ideal of C generated by p2, and

the complementary projections 1 − p2, 1 − (p2 + t2p2t
∗
2) and 1 − (p2 ⊕s,t p2) are

respectively the ranges of the isometries t2, t22 and t2 ⊕ t2.

The Murray–von-Neumann equivalences

q0 := p0 + t0p0t
∗
0 ∼ p0 ∼ p0 ⊕s,t p0 =: r0
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and

q2 := p2 + t2p2t
∗
2 ∼ p2 ∼ p2 ⊕s,t p2 =: r2

can be given in C explicitly by the partial isometries z0 := s0ss
∗
0+s0ts

∗
0t
∗
0 , and z2 :=

s2ss
∗
2 + s2ts

∗
2t
∗
2 , respectively by y0 := (s0 ⊕s,t s0)s∗0 and y2 := (s2 ⊕s,t s2)s∗2. Thus,

below listed unitary elements u0, u2, v0, v2 ∈ U(C) satisfy u0q0 = p0u0, u2q2 = p2u2,

v0p0 = r0v0 and v2p2 = r2v2.

u0 := s0ss
∗
0 + s0ts

∗
0t
∗
0 + t0(t∗0)2 , (4.8)

u2 := s2ss
∗
2 + s2ts

∗
2t
∗
2 + t2(t∗2)2 , (4.9)

v0 := ss0s
∗s∗0 + ts0t

∗s∗0 + st0s
∗t∗0 + tt0t

∗t∗0 , (4.10)

v2 := ss2s
∗s∗2 + ts2t

∗s∗2 + st2s
∗t∗2 + tt2t

∗t∗2 . (4.11)

The MvN-equivalences can be seen also from

p0 = (1⊕s,t 1)⊕s0,t0 0 ,

p0 + t0p0t
∗
0 = 1⊕s0,t0 (1⊕s0,t0 0)

p0 ⊕s,t p0 = (1⊕s0,t0 0)⊕s,t (1⊕s0,t0 0) ,

because the below given Lemma 4.4.8 recognizes that u0, u2 v0 and v2 conjugate

the used iterations of Cuntz addition.

The elements S := s∗0s2 and T := s∗0s3 are isometries in E with S∗T = 0,

because s2 and s3 are isometries with s2s
∗
2 + s3s

∗
3 = p0 = s0s

∗
0.

If B is σ-unital and h : B → J is a C *-morphism then there exists a unitary

U ∈ U0(βh0(D)′ ∩ E) with U∗k(·)U = Sk(·)S∗ and βh0(d)U = h0(d) for d ∈ D by

Part (viii). Take uh := U .

(xi): By assumption (v) of Theorem 4.4.6, there exists a unitary u ∈ 1+F ⊆ C
such that u∗p0u = p. Let q := u∗p2u and r := u∗(p0 − p2)u with p0 ≥ p2 ∈ C the

projection from Part (x).

Since F ⊆ C and p0, p2 ∈ C, also q, r ∈ C and q + r = p.

The projections satisfy q ∈ N (H0(D), J) and r ∈ N (H0(D), βJ), because

u ∈ C and p2H0(·) = s0h0s
∗
0 ∈ J and (p0 − p2)H0(·) = β(s0h0s

∗
0) ∈ J .

More generally, suppose that are given a non-zero projection p ∈ F and pro-

jections p, r ∈ C with p = q + r with qH0(D) ⊆ J and rH0(D) ⊆ βJ .

By assumption 4.4.6(v), there exists u ∈ U(1 + F ) ⊆ C with u∗p0u = p. Let

p3 := uqu∗ ∈ C. Then p3H0(a) = u(qH0(a))u∗ ∈ J and (p0 − p3)H0(a) ∈ βJ for

a ∈ D.

Thus, [p3H0(·)] = [qH0(·)] and [(p0 − p3)H0(·)] = [rH0(·)].

The same calculation as in proof of Part (x) with p2 replaced by p3 shows that

p3H0(·) = s0h0s
∗
0 and (p0 − p3)H0(·) = s0βh0s0. Thus [qH0(·)] = [h0] + [0] = [h0]

and [rH0(·)] = [βh0] + [0] = [βh0] by Part (i).
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(xii): Let p ∈ F a projection with p ≥ p0 and p 6= p0, where p0 = s0s
∗
0 for

the isometries s0, t0 in assumption (iv) of Theorem 4.4.6 with p0 ∈ F , t0 ∈ C and

t0t
∗
0 = 1− p0.

If we let B := D, k := h0 + βh0 and T := s0 in Part (i), we get a unitary

W ∈ U0(E) with

W ∗(h0 + βh0)W = s0(h0 + βh0)s∗0 = p0H0(·) .

The elements t0, p0 and p− p0 are in C. Thus, the proof of Part (xii) reduces

to to the construction of V ∈ U(C) that satisfies

p0V = p0 = V p0 and V ∗(p− p0)V = t0p0t
∗
0 (4.12)

Since p0, p − p0 and p are non-zero commuting projections in F , we find by Part

(ix) unitaries

V1, V2 ∈ U0(F + C · 1) ⊆ U0(C)

with V ∗1 p0V1 = p− p0 and V ∗2 p0V2 = p, and define V ∈ E by

V := p0 + V ∗1 p0t
∗
0 + V ∗2 (1− p0)t∗0 .

Straight calculation shows that V is unitary and fulfills Equations (4.12). The

unitary V is in C because p0, t0, V1 and V2 are in C. �

Proof of Theorem 4.4.6 ( Part 1: ϕ is surjective ).

The C *-morphism H0 dominates h0 by the equation [h0] + [H0] = [H0] in Lemma

4.4.7(iv). Thus

S(h0 ; D,E) ⊆ S(H0 ; D,E) ,

and [k] + [h0] = [h] + [h0] implies [k] + [H0] = [h] + [H0]. Since [h0] = [h0] + [h0]

and [H0] = [H0] + [H0], the mapping

ϕ : [k] + [h0] 7→ [k] + [H0]

is well-defined and additive, i.e., is a group homomorphism from G(h0 ; D,E) =

S(h0 ; D,E)+[h0] into G(H0 ; D,E) = S(H0 ; D,E)+[H0]. It is useful to consider

G(h0 ; D,E) and G(H0 ; D,E) as subgroups of the big commutative semigroup

[Hom(D,E)] of all unitary equivalence classes of C *-morphisms from D into E

with Cuntz addition, as introduced below Definition 4.3.1. This kind of subgroups

of [Hom(D,E)] have natural morphism that are considered in parts (iii) and (iv)

of the Lemma 4.2.3 in more generality on semi-groups.

We show that the group homomorphism ϕ is surjective:

Let [g] ∈ S(H0 ; D,E). By assumption (ii) of Theorem 4.4.6, there exists a unitary

u ∈ E with

T (a) := u∗(g(a)⊕s0,t0 H0(a))u−H0(a) ∈ J for all a ∈ D .
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We use here the isometries s0, t0 from assumption (iv) of Theorem 4.4.6 to realize

the Cuntz sum ⊕ := ⊕s0,t0 , simply to make calculations more transparent. Com-

pare Proposition 4.3.2(ii) for the change of u if one takes another realization of ⊕
by other copies of O2 in E.

The image T (D) of the linear map T generates a separable C *-subalgebra

B ⊆ J , because D is separable. Let f ∈ J be a strictly positive element of B.

By assumption 4.4.6(iii), there exists a non-zero projection p ∈ F ⊆ C with

pf = fp = f . It follows that (1 − p)c = c(1 − p) = 0 for every c ∈ B, and that p

commutes element-wise with H0(D). In particular, (1 − p)T (·) = 0 = T (·)(1 − p),
i.e., pT (a) = T (a) = T (a)p for all a ∈ D.

Since F · H0(D) ⊆ J + βJ and F ⊆ C by assumption (iii) of Theorem 4.4.6,

we get for a ∈ D that

pu∗(g(a)⊕s0,t0 H0(a))u = pT (a) + pH0(a) ∈ J + βJ ,

pu∗(g(a)⊕s0,t0 H0(a))u = u∗(g(a)⊕s0,t0 H0(a))up

and

(1− p)u∗(g ⊕s0,t0 H0)u = (1− p)H0 .

Let s0, t0 the isometries from Theorem 4.4.6(iv) with t0 ∈ C := H0(D)′ ∩ E
and s0s

∗
0 = p0 = 1 − t0t∗0 with p0 ∈ F ⊆ C. By assumption (v) of Theorem 4.4.6,

there is a unitary v ∈ 1 + F ⊆ C with v∗pv = p0.

We get pv = vp0 and that W := uvs0 is an isometry in E such that the

projection WW ∗ = uvp0v
∗u∗ = upu∗ commutes element-wise with (g⊕s0,t0H0)(D).

It implies that p0 = s0s
∗
0 commutes element-wise with the image of

(uv)∗ (g ⊕s0,t0 H0)uv.

We define a C *-morphism h : D → J + βJ by

h := W ∗(g ⊕H0)W = s∗0(uv)∗ (g ⊕s0,t0 H0)uvs0 .

The commutation properties of p0 = s0s
∗
0 implies that

s0h(·)s∗0 = p0(uv)∗ (g ⊕s0,t0 H0)uv = v∗(pV (·) + pH(·))v∗ .

The equations

(1−p0)(uv)∗ (g⊕s0,t0H0)uv = v∗(1−p)(T (·)+H0(·))v = (1−p0)H0(·) = t0H0(·)t∗0

and

s0h(·)s∗0 = p0(uv)∗ (g ⊕s0,t0 H0)uv ,

together lead to

v(h⊕s0,t0 H0)v∗ = u∗(g ⊕s0,t0 H0)u .

If we use that s0s
∗
0 = p0 ∈ F ⊆ C, t0 ∈ C and s0s

∗
0 + t0t

∗
0 = 1 by assumptions

(iii) and (iv) of Theorem 4.4.6, we get

t0H0(·)t∗0 = (1− p0)H0(·) == (1− p0)(uv)∗(g ⊕H0)uv
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and

h⊕s0,t0 H0 = s0h(·)s∗0 + (1− p0)H0(·) = (uv)∗(g ⊕s0,t0 H0)uv .

Thus,

[h] + [H0] = [g] + [H0] ∈ S(H0 ; D,E) .

It says that H0 dominates h⊕s0,t0 H0 by Definition 4.4.1. (Compare also Definition

4.3.3, Lemma 4.3.4(iv) and Proposition 4.3.6.)

The equation h = s∗0(h ⊕s0,t0 H0)s0 shows that H0 dominates also h, i.e.,

[h] ∈ S(H0 ; D,E).

Since v ∈ F + 1 ⊆ C is unitary, we get that v∗H0(·)v = H0, and, by definition

of T and v, that p0v
∗T (a)v = v∗T (a)v ∈ J for a ∈ D. It implies

s0h(a)s∗0 − p0H0(a) = p0

(
(vu∗(g(a)⊕s1,t1 H0(a))uv)−H0(a)

)
= p0v

∗T (a)v .

By assumption 4.4.6(iv), s∗0H0(a)s0 = h0(a) + βh0(a) and s∗0s0 = 1. Thus,

h(a)− h0(a)− β(h0(a)) = s∗0v
∗T (a)vs0 ∈ J for a ∈ D .

Since h0(D) ⊆ J it follows that h(D) ⊆ J + β(J) and h = k + βh0 for a unique

C *-morphism k : D → J , because h0(D) ⊆ J and J ∩ β(J) = {0}.

Now [h] = [k + βh0] ∈ S(H0 ; D,E) and h(D) ⊆ J + βJ implies that the

homomorphism h0 dominates k by Lemma 4.4.7(vii), i.e., [k] ∈ S(h0 ; D,E).

By Lemma 4.4.7(iii,i,iv),

[k] + [H0] = [k] + [h0 + βh0] + [H0] = [h] + [h0] + [H0] = [h] + [H0] .

It follows [k] + [H0] = [h] + [H0] = [g] + [H0] . Thus, the group morphism

ϕ : [k] + [h0] ∈ G(h0 ; D,E) 7→ [k] + [H0] ∈ G(H0 ; D,E)

is surjective. �

We start here the collection of observations that will be used in the proof of the

necessity and sufficiency of the Condition (DC) for the injectivity of the natural

epimorphism from G(h0 ; D,E) onto G(H0 ; D,E). It is essentially a detailed study

of its possibly existing kernel.

Lemma 4.4.8. Let (s, t) and (s0, t0) the isometries from assumptions (i) respec-

tively (iv) of Theorem 4.4.6 and (s2, t2) the isometries in Lemma 4.4.7(x).

The elements u0, u2, v0 and v2 – as defined by equations (4.8), (4.9), (4.10)

and (4.11) in the proof of Lemma 4.4.7(x) – are in U(C) and have the properties

that, for a, b, c, d ∈ E and k ∈ {0, 1},

u∗k
(
(a⊕s,t b)⊕sk,tk c

)
uk = a⊕sk,tk (b⊕sk,tk c) ,

and

v∗k
(
(a⊕sk,tk c)⊕s,t (b⊕sk,tk d)

)
vk = (a⊕s,t b)⊕sk,tk (c⊕s,t d) .

In particular, for all C*-morphisms k, ` : D → J and h := k + β`,

u∗0
(
(h⊕s,t (h0 + βh0))⊕s0,t0 H0

)
u0 = h⊕s0,t0 H0 ,
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u∗2
(
(k ⊕s,t h0)⊕s2,t2 H0

)
u2 = k ⊕s2,t2 H0 ,

and

v∗0
(
((k+βh0)⊕s0,t0 H0)⊕s,t ((`+βh0)⊕s0,t0 H0)

)
v0 = ((k⊕s,t `) +βh0)⊕s0,t0 H0 .

Proof. The elements u0, u2, v0 and v1 of E are in C because s, t ∈ C by

assumption (i) of Theorem 4.4.6, t0, t2, s0ss
∗
0, s0ts

∗
0, s2ss

∗
2 and s2ts

∗
2 are in C by

assumption (iv) of Theorem 4.4.6 and Lemma 4.4.7(x).

Straight calculation shows that uk and vk are unitary for k ∈ {0, 2} and have

the quoted transformation properties.

Use (h0 +βh0)⊕s0,t0 H0 = H0 and h0⊕s2,t2 H0 = H0 in the last equations. �

Lemma 4.4.9. Let A := H0(D), U ∈ U
(
N (A, J+βJ)+C ·1

)
and q∗q = q ∈ F .

There exists a projection p ∈ F with p ≥ q, p 6= q and

U∗(H0(·)p)U = U∗H0(·)Up , (4.13)

U∗(H0(·)(1− p))U = H0(·)(1− p) . (4.14)

More generally we find for each separable subset X ⊆ N (A, J + βJ) and each

projection q ∈ F a projection p ∈ F with p ≥ q and p 6= q and H0(·)x = H0(·)pxp
for all x ∈ X.

Proof. Multiplying U by suitable ξ ∈ C we may suppose that U = 1 + y with

y ∈ N (A, J + βJ)).

More generally, let Y a separable C *-subalgebra of N (A, J + βJ)). Then the

separable subset X := (A·Y)∪(Y·A) of J+βJ , generates a separable C *-subalgebra

B of J + βJ .

Let f ∈ B+ ∈ β(J) + J a strictly positive contraction for B. By assumption

(iii,c) of Theorem 4.4.6 there exists a projection p ∈ F with f = pfp, p ≥ q and

p 6= q. Thus pb = b = bp for all b ∈ B. In particular, (1− p)B = {0} = B(1− p).

Since A = H0(D) and p ∈ F ⊆ C, it follows all y ∈ Y that H0(·)py = H0(·)y =

H0(·)yp, pyH0(·) = yH0(·) = ypH0(·) and (1 − p)H0(·)y = 0 = H0(·)y(1 − p).

H0(·)y = H0(·)pyp

If we let U := 1 + y then we get H0(·)pU = H0(·)Up and

H0(·)(1− p)U = (1− p)H0(·)U = (1− p)H0(·) .

In particular, U∗pH0(·)U = U∗H0(·)Up.

Notice that (1− p)2 = 1− p ∈ C. It implies for all c, b ∈ D that

U∗H0(c∗b)(1− p)U = ((1− p)H0(c)U)∗(1− p)H0(b)U = H0(c∗b)(1− p) .

�

Lemma 4.4.10. Let A := H0(D). The maps

λ0 : U(βh0(D)′ ∩ E) 3 u 7→ s0us
∗
0 + (1− p0) ∈ U(E)
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and

λ2 : U(E) 3 u 7→ s2us
∗
2 + (1− p2) ∈ U(E)

are norm-continuous group morphisms into U(Der(A, J)) ∩ (p0Ep0 + (1− p0)) .

If moreover βh0(·)u = βh0, then 1− λ0(u) ∈ N (A, J) ∩ p0Ep0.

For each u ∈ U(E) , 1− λ2(u) ∈ p2N (A, J)p2 = p2Ep2 ⊆ N (A, J) .

For every σ-unital hereditary C*-subalgebra B of J there exists a unitary wB ∈
U0(βh0(D)′ ∩ E) that satisfies βh0(·)wB = βh0 and

bwB = bs∗2s0 for all b ∈ B .

In particular, for each C*-morphism k : D → J with k(D) ⊆ B and the unitary

W := wB ⊕s0,t0 1 ∈ U0(Der(A, J)) holds (1−W ) ∈ N (A, J) ∩ p0Ep0 and(
(k + βh0)⊕s0,t0 H0

)
W = W

(
k ⊕s2,t2 H0

)
.

Proof. Recall that s0(βh0)s∗0 = (p0 − p2)H0 = s3(βh0)s∗3 and (1 − p2)H0 =

t2H0t
∗
2 by Lemma 4.4.7(x). By assumption (iv) of Theorem 4.4.6, t0 ∈ C and

t0t
∗
0 = 1− p0. We obtain

s0(βh0)s∗0 + t0H0t
∗
0 = t2H0t

∗
2 = (1− p2)H0 .

It follows that

λ0(u) := s0us
∗
0 + (1− p0) ∈ p0Ep0 + (1− p0)

is a unitary in E.

The λ0(u) commute elementwise with s0βh0(D)s∗0 ∪ (1 − p0)H0(D) if u ∈
U(βh0(D)′ ∩ E).

In particular, λ0(u) commutes with the elements of (1 − p2)H0(D) if u ∈
U(βh0(D)′ ∩ E). It follows that λ0(u)− 1 ∈ Der(A, J) ∩ p0Ep0

If u satisfies moreover that βh0(·) · u = βh0 then (1− λ0(u))H0(·)(1− p2) = 0

and (1− λ0(u)∗)H0(·)(1− p2) = 0. It implies

1− λ0(u) ∈ N (A, J) ,

because H0(D)p2 = s2h0(D)s∗2 ⊆ p2Jp2.

The element 1 − λ2(u) is in p2N (A, J)p2 for every u ∈ U(E) because p2 =

s2s
∗
2 ∈ N (A, J) implies s2Es

∗
2 = p2N (A, J)p2.

If only u ∈ U(βh0(D)′ ∩ E) we see at least that the unitaries 1 − λ0(u) and

1 − λ2(u) are in Der(A, J) ∩ p0Ep0 , because they commute with the elements in

(1− p2)H0(D) and p2H0 = s2h0s
∗
2 takes values in J .

The map λ0 satisfies λ0(1) = 1 and is a norm-continuous group homomorphism

from U(βh0(D)′ ∩ E) into the intersection of U(Der(A, J)) with p0Ep0 + (1− p0).

In particular, λ0 maps U0(βh0(D)′ ∩E) into the intersection of U0(Der(A, J)) and

p0U0(E)p0 + (1− p0).
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Since p2H0 = s2h0s
∗
2 has image in J we get that p2Ep2 = s2Es

∗
2 ⊂ N (A, J) ⊆

Der(A, J), and that λ2 maps U(E) into the unitaries of p2Ep2 + (1 − p2). Thus,

λ2(U0(E)) is contained in U0(N (A, J) + C · 1) ⊆ U0(Der(A, J)).

Notice that p2Ep2 + (p0 − p2) ⊂ p0Ep0.

Let B a σ-unital hereditary C *-subalgebra of J , and h : B ↪→ J the inclusion

map h(b) = b.

By Lemma 4.4.7(x), there exists a unitary uh ∈ U0(βh0(D)′ ∩ E) with

uhβh0(·) = βh0 = βh0(·)uh and buh = h(b)uh = h(b)s∗2s0 = bs∗2s0 for b ∈ B .

Thus u∗hbuh = s∗0s2bs
∗
2s0 for b ∈ B, and we get that wB := uh has the claimed

additional properties, i.e., bwB = bs∗2s0 for b ∈ B, wB ∈ U0(βh0(D)′ ∩ E) and

βh0(·)wB = βh0. Then W := λ0(wB) ∈ U0(Der(A, J)), (1−W ) ∈ N (A, J)∩p0Ep0

and (k ⊕s2,t2 H0)W = W (k ⊕s0,t0 H0) for each k : D → J with k(D) ⊆ B:

By definition of wB , we have bwB = bs∗2s0 for b ∈ B and wB ∈ U0(βh0(D)′∩E)

and βh0(·)wB = βh0.

Let W := λ0(wB) = wB ⊕s0,t0 1. Then W ∈ U0(Der(A, J)), (1 − W ) ∈
N (A, J) ∩ p0Ep0 and

s∗0(b⊕s0,t0 0)W = bs∗0s0wBs
∗
0 = bwBs

∗
0 = bs∗2s0s

∗
0 = bs∗2

for b ∈ B, because s0s
∗
0 = p0 and s2s

∗
2 ≤ p0 by Lemma 4.4.7(x).

We combine this with

p0 · (bj ⊕s0,t0 0) = bj ⊕s0,t0 0 ,

for j ∈ {1, 2}, and obtain for b := b∗2b1 that

W ∗(b⊕s0,t0 0)W = b⊕s2,t2 0 .

Since λ0(wB)(D) commutes element-wise with elements in the image of the map

s0βh0s
∗
0 + t0H0t

∗
0 = t2H0t

∗
2 , we get for C *-morphisms k : D → E with the property

k(D) ⊆ B ⊆ J that W (k ⊕s2,t2 H0) =
(
(k + βh0)⊕s0,t0 H0

)
W . �

Lemma 4.4.11. Let A := H0(D) and u ∈ U(Der(A, J + βJ)).

There exist v ∈ U0(F + C · 1) ⊆ U0(C) and C*-morphisms k1, k2 : D → J with

(1− v) ∈ F ⊂ C ∩N (A, J + βJ) , [k1], [k2] ∈ S(h0 ; D,J) and

(k1 + βk2)⊕s0,t0 H0 = vu∗H0(·)uv∗ .

If moreover u ∈ U(Der(A, J)), then necessarily k2 = h0, and there exists W ∈
U0(Der(A, J)) such that (1−W ) ∈ N (A, J) ∩ p0Ep0 and

k1 ⊕s2,t2 H0 = W ∗
(
(k1 + βh0)⊕s0,t0 H0

)
W = W ∗vu∗H0(·)uv∗W .

Proof. Let u ∈ U(Der(A, J + βJ)). The image of the corresponding H0-

derivation

δu : d ∈ D 7→ uH0(d)−H0(d)u

is contained in a separable C *-subalgebra B ⊂ J+βJ . Let f ∈ B a strictly positive

contraction in B.
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By assumptions (iii) of Theorem 4.4.6, there exists a projection p ∈ F ⊂ C

with p ≥ p0, pf = f and p 6= p0. It follows that pb = b = bp for all b ∈ B.

In particular, u∗δu(d) = u∗δu(d)p for d ∈ D. It implies for d ∈ D that

u∗H0(d)up = H0(d)p− u∗(uH0(d)−H0(d)u) ∈ J + βJ

because u ∈ Der(A, J + βJ), F ·H0(D) ⊂ J + βJ and F ⊆ C by assumptions (iii)

of Theorem 4.4.6.

Moreover, (1 − p)δu(d) = 0 and δu(d)(1 − p) = 0 imply (1 − p)uH0(d) =

(1− p)H0(d)u, and uH0(d)(1− p) = H0(d)u(1− p).

Thus, H0(d)(1− p) = u∗H0(d)u(1− p) and u∗H0(d)up ∈ J + βJ for all d ∈ D.

It follows that 1− p and p commute with the elements of u∗H0(D)u and that

k : D 3 d 7→ u∗H0(d)up

is a C *-morphism from D into J + βJ .

Part (ix) of Lemma 4.4.7 provides a unitary v ∈ (1 + F ) ∩ U0(F + C · 1) with

vpv∗ = p0.

Since F ⊂ C by assumption (iii) of Theorem 4.4.6, we get that

t0H0(d)t∗0 = H0(d)(1− p0) = (uv∗)∗H0(d)uv∗(1− p0) .

In particular, 1 − p0 and p0 commute element-wise with (uv∗)∗H0(D)uv∗. Recall

that pv∗ = v∗p0. We use that p0 = s0s
∗
0 by assumption (iv) of Theorem 4.4.6 and

define a C *-morphism h : D → E by

h(d) := s∗0(uv∗)∗H0(d)uv∗s0 = (v∗s0)∗k(d)(v∗s0) .

Then h(D) ⊆ J + βJ and

h⊕s0,t0 H0 = (uv∗)∗H0(·)uv∗ .

Hence, h = T ∗H0(·)T for the isometry T := uv∗s0 and [h] ∈ S(H0 ;D,E).

Moreover, h(D) ⊆ J + βJ because k(D) ⊆ J + βJ . Thus Lemma 4.4.7(vii)

applies to h and shows that there are unique C *-morphisms k1, k2 : D → J with

[k1], [k2] ∈ S(h0 ;D,E) and h = k1 + βk2.

Finally, we obtain that

(k1 + βk2)⊕s0,t0 H0 = v(u∗H0(·)u)v∗ .

Suppose now that u ∈ U(Der(A, J)). Then, uv∗ ∈ U(Der(A, J)) for v ∈ U(C),

because C ⊆ Der(A, J), and, for d ∈ D holds

s0

(
k1(d)− h0(d) + β(k2(d)− h0(d))

)
s∗0 = v∗u∗H0(d)uv −H0(d) , (4.15)

because 0⊕s0,t0 H0 = (1− p0)H0(·) and p0H0 = s0(h0 + βh0)s∗0.

The element s0(k1(d)−h0(d))s∗0 and the right side of Equation (4.15) are in J ,

but the element s0β(k2(d)− h0(d))s∗0 is in βJ for all d ∈ D. Thus, k2 = h0 by the

assumption J ∩ βJ = {0} in Theorem 4.4.6.
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Suppose now that k2 = h0. By Lemma 4.4.10 there exists W ∈ U0(Der(A, J))

such that W ∈ p0Ep0 + (1− p0) and

W (k1 ⊕s2,t2 H0) = ((k1 + βh0)⊕s0,t0 H0)W .

Hence, k1 ⊕s2,t2 H0 = W ∗vu∗H0(·)uv∗W . �

We do not suppose that k1, k2 ∈ S(h0 ; D,E) in the following lemma.

Lemma 4.4.12. Let A := H0(D) and k1, k2 : D → J C*-morphisms – not

necessarily in S(H0 ; D,E). The following are equivalent:

(i) [k1] + [h0] = [k2] + [h0] in the semi-group [Hom(D,J)].

(ii) There exists U0 ∈ U
(
N (A, J + βJ) + C · 1

)
such that(

(k1 + βh0)⊕s0,t0 H0

)
U0 = U0

(
(k2 + βh0)⊕s0,t0 H0

)
. (4.16)

(iii) There exists U1 ∈ U
(
N (A, J) + C · 1

)
such that U1 ∈ U0

(
Der(A, J)

)
and(

(k1 + βh0)⊕s0,t0 H0

)
U1 = U1

(
(k2 + βh0)⊕s0,t0 H0

)
. (4.17)

(iv) There exists U2 ∈ U0

(
N (A, J) + C · 1

)
such that

(k1 ⊕s2,t2 H0)U2 = U2(k2 ⊕s2,t2 H0) . (4.18)

In particular, a C*-morphism k : D → E satisfies [k] + [h0] = [h0] in

[Hom(D,E)], if and only if, k(D) ⊆ J and there exists u ∈ U
(
N (A, J+βJ)+C ·1

)
and v ∈ U(C) such that

(k + βh0)⊕s0,t0 H0 = vu∗H0(·)uv∗ .

If [k0] + [h0] = [h0] then there exists U3 ∈ U0

(
Der(A, J)

)
with (1 − U3) ∈ N (A, J)

and

(k + βh0)⊕s0,t0 H0 = U∗3H0(·)U3 .

Proof. Let A := H0(D). Part (iii) implies Part (ii) with U0 := U1 because

N (A, J) ⊆ N (A, J + βJ).

(iv)⇒(iii): If we apply Lemma 4.4.10 to the separable C *-subalgebra B of J

that is generated by k1(D)∪ k2(D), then we get a unitary W ∈ U0(Der(A, J)) such

that for i ∈ {0, 1} holds(
(ki + βh0)⊕s0,t0 H0

)
W = W

(
ki ⊕s2,t2 H0

)
.

Let U1 := WU2W
∗. The C *-algebra N (A, J) is a closed ideal of the C *-subalgebra

Der(A, J) ⊂ E with 1E ∈ Der(A, J). It implies that U0

(
N (A, J)+C ·1

)
is a normal

subgroup of U
(
Der(A, J)

)
. Thus U2 ∈ U0

(
N (A, J) + C · 1

)
. This implies together

with W ∈ U
(
Der(A, J)

)
that U1 ∈ U0

(
N (A, J) + C · 1

)
.

Straight calculation shows that U1 fulfills the equation (4.17).

(ii)⇒(i): Suppose that U0 ∈ U
(
N (H0(D), J + βJ) + C · 1

)
satisfies Equation

(4.16).
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By Lemma 4.4.9 with U := U0 and q := p0, there exists a projection p ∈ F
with p ≥ p0 and p 6= p0 such that U∗0

(
H0(·)(1 − p)

)
U0 = H0(·)(1 − p). If we use

that t0H0t
∗
0 = (1− p0)H0 we get:

U∗0
(
s0(k1 + βh0)s∗0 + (p− p0)H0(·)

)
U0 = s0(k2 + βh0)s∗0 + (p− p0)H0(·)

By Part (xii) of Lemma 4.4.7 there exists unitaries V ∈ U(C) and W ∈ U0(E) such

that W ∗(h0 + βh0)W = p0H0, V p0 = p0 = p0V and

V ∗(p− p0)H0V = t0W
∗(h0 + βh0)Wt∗0 .

We define a unitaries

V0 := s0s
∗ + t0W

∗t∗ and V1 := V ∗0 V
∗U0V V0 .

Straight calculation, using assumptions (i) of Theorem 4.4.6, shows that

V ∗1
(
(k1 ⊕s,t h0) + β(h0)

)
V1 = (k2 ⊕s,t h0) + β(h0) .

If we use that J · βJ = {0} then we get finally

V ∗1 (k1 ⊕s,t h0)V1 = (k2 ⊕s,t h0) ,

that yields [k1] + [h0] = [k2] + [h0].

(i)⇒(iv): Suppose that [k1]+[h0] = [k2]+[h0]. Let hi := ki⊕s,th0 for i ∈ {1, 2}.
Then [h1] = [h2] in [Hom(D,J)] and there exists v ∈ U(E) with v∗h1v = h2.

Since hi(D) ⊆ J , we can find even a unitary u ∈ U0(E) with u∗h1u = h2 by

Lemma 4.4.7(viii). We define a unitary W := u ⊕s2,t2 1 in s2U0(E)s∗2 + (1 − p2).

Then 1−W ∈ N (A, J) and W is contained in U0(N (A, J)+C ·1) ⊂ U0(Der(A, J)),

because p2H0(·) = s2h0s
∗
2 by Lemma 4.4.7(x) and because x∗H0(D) ⊂ J implies

xEx∗ ⊆ N (A, J). Obviously, W ∗(h1 ⊕s2,t2 H0)W = h2 ⊕s2,t2 H0.

By Lemma 4.4.8, the element u2 := s2ss
∗
2 + s2ts

∗
2t
∗
2 + t2(t22)∗ from equation

(4.9) is in U(C) and satisfies(
(a⊕s,t b)⊕s2,t2 c)

)
u2 = u2

(
a⊕s2,t2 (b⊕s2,t2 c)

)
for a, b, c ∈ E .

Part (x) of Lemma 4.4.7 shows that h0⊕s2,t2 H0 = p2H0 + (1− p2)H0 = H0. Thus,

ki ⊕s2,t2 H0 = u∗2(hi ⊕s2,t2 H0)u2 for i ∈ {1, 2}, and with U2 := u∗2Wu2 we get

U∗2 (k1 ⊕s2,t2 H0)U2 = k2 ⊕s2,t2 H0 .

The algebra N (A, J) is an ideal of Der(A, J). This implies that the group

U0(N (A, J) + C · 1) is a normal subgroup of U(Der(A, J)) that is contained in

U0(Der(A, J)).

If we use that W is contained in U0(N (A, J) + C · 1) and C ⊆ Der(A, J) then

we can see that the above defined U2 is an element of U0(N (A, J) + C · 1).

Moreover (1−W )H0(·)(1−p2) = 0 implies that also (1−W ∗)H0(·)(1−p2) = 0,

and thus (1−W ) ∈ N (A, J). It follows (1− U2) ∈ N (A, J).

Finally we consider the special case k1 := k and k2 := h0 :
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If a C *-morphism k : D → E satisfies [k] + [h0] = [h0] in [Hom(D,E)], then

there exists V ∈ U(E) with k ⊕s,t h0 = V ∗h0(·)V . Thus k = T ∗h0(·)T for the

isometry T := V s, i.e., [k] ∈ S(h0 ; D,E) and k(D) ⊆ J .

Recall that [h0] = [h0] + [h0] and H0 = (h0 + βh0) ⊕s0,t0 H0 by assumptions

(i,iv) of Theorem 4.4.6.

Therefore, the equivalence of Parts (i), (ii) and (iii) shows that [k] + [h0] = [h0]

is equivalent to k(D) ⊆ J and the existence of U0 ∈ U
(
N (A, J + βJ) + C · 1

)
,

respectively of U1 ∈ U
(
N (A, J) + C · 1

)
with U1 ∈ U0

(
Der(A, J)

)
, such that, for

j ∈ {0, 1}:
(k + βh0)⊕s0,t0 H0 = U∗jH0Uj .

(Notice that necessarily U∗0U1 ∈ C.)

We find ξ ∈ C with |ξ| = 1 such that 1 − ξU1N (A, J) and can replace U1 by

ξU1 in Part (iii).

If u ∈ U
(
N (A, J + βJ) + C · 1

)
and v ∈ U(C) are given such that

(k + βh0)⊕s0,t0 H0 = vu∗H0(·)uv∗ ,

then we can take U0 := vuv∗ to satisfy Formula (4.16) in Part (ii). �

Next Lemma 4.4.13 true? To be checked: ??

But it could work with kind of “stabilization”?

Lemma 4.4.13. Let A := H0(D) ⊆ E, C := A′ ∩ E and I := J + βJ as in

Theorem 4.4.6.

For each separable C*-subalgebra B ⊆ N (A, I) ⊂ Der(A, I) there exist u ∈
(F + 1) ∩ U0(F + C · 1) ⊆ U0(C) and an isometry T ∈ E such that

u∗bu− s0T
∗bTs∗0 ∈ Ann(A,E) for all b ∈ B .

In particular, for each contraction e ∈ 1 +N (A, I) with 1− e∗e ∈ Ann(A) and

1− ee∗ ∈ Ann(A) there exists a unitary in u ∈ N (A, I) + 1 with u− e ∈ Ann(A).

We do not know if this also holds with I := J / E (replacing J + βJ) and

u∗bu − s2T
∗bTs∗2 ∈ Ann(A,E) for b ∈ B (in place of the known weak conclusion

u∗bu− s0T
∗bTs∗0 ∈ Ann(A,E)).

Is it used or needed somewhere?

It needs certainly a more elaborate proof if it is true.

Proof. In other words, we have to show that for each separable C *-subalgebra

B ⊆ E with the property B ·H0(D) ⊆ I := J + βJ there exists an isometry T ∈ E
and a unitary u ∈ 1+F with u ∈ U0(F+C·1) such that (u∗bu−s0T

∗bTs∗0)·H0(D) =

{0} for every b ∈ B.

Let B ⊆ N (A, I) a separable C *-subalgebra and b0 ∈ B a strictly positive

contraction in B.
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Then let e ∈ G+ ⊆ I+ a strictly positive contraction for the separable C *-sub-

algebra G of I generated by B ·A (recall A := H0(D)).

Notice that the linear span of all elements in (BA)n, (AB)n, A(BA)n =

(ABBA)n and B(AB)n = (BAAB)n for n = 1, 2, . . . is dense in G. It follows

that BG ∪GB ⊆ G and AG ∪GA ⊆ G, i.e., that A ∪B ⊂ N (G,E).

The elements x := b1a1 + a2b2 with a1, a2 ∈ A and b1, b2 ∈ B build a set of

generators of G, that is invariant under involution.

Check next:

b0x, a0x ∈ G for b0 ∈ B and the linear span

AB ∪BA ∪AB2A ∪BA2B ∪ (AB)n ∪ (BA)n ∪A(BA)n generates C∗(A ∪B)

????

Let fn ∈ I+ a sequence of positive contractions such that fnfn+1 = fn,

limn fne = e = limn efn, limn ‖(1 − fn)b(1 − fn)a‖ = 0, limn ‖[b, fn]‖ = 0 and

limn ‖[a, fn]‖ = 0 for b ∈ B and a ∈ A

????

Let g :=
∑
n 2−nfn. There exists a projection p ∈ F ⊆ C with p ≥ p0 and

p 6= p0 such that pg = g = gp by assumption (iii,c) of Theorem 4.4.6.

(And there exist projections q, r ∈ E, but not in F , with p = q + r and

q, β(r) ∈ N (A, J) by Lemma 4.4.7(xi).)

Write below new proof

fitting to above!!

If BA ⊆ J , then e, fn, g ∈ J and

??? rg, gr ∈ Ann(A,E),

because Ar = 0 = rA and rgA = 0 ??? Using an with respect to C∗(A, r)

approximately central approximate unit (cτ ) ∈ J+ of J , we get cτg → g ...

Thus, (1− p)BA = {0} and BA(1− p) = B(1− p)A = {0}. It follows also that

AB(1 − p) = {0} and A(1 − p)B = {0}. Thus (b − pbp) ∈ Ann(A) for all b ∈ B,

because b− pbp = b(1− p) + (1− p)bp.

Moreover pb∗(1 − p)cp ∈ Ann(A) for all b, c ∈ B, because (pb∗(1 − p)cp)∗ =

(pc∗(1 − p)bp) and (pb∗(1 − p)cp)∗(pb∗(1 − p)cp)A = {0}. We get pBp ⊆ N (A, I)

because p ∈ C ⊆ Der(A, I) and N (A, I) is an ideal of Der(A, I).

There exists u ∈ (1 + F ) ∩ U0(F + C · 1) with u∗pu = p0.

Let γ0(b) := p0u
∗bup0. Then u∗γ0(b)u = pbp.

Is b − qbq = (b − up2u
∗bup2u

∗)H0(d) = 0 for all b ∈ B? Likely not! More

general open:

Is there in case I = J a decomposition

u∗bu− s2γ(b)s∗2 ∈ Ann(A,E)???



564 4. COMPARISON AND ADDITION OF SOME C*-MORPHISMS

Let T := us0 and γ(b) := T ∗bT . Then pbp = us0γ(b)s∗0u
∗. Thus u∗bu −

s0γ(b)s∗0 ∈ Ann(A) for all b ∈ B.

H0(d)T = us0s
∗
0H0(d)s0 = us0(h0(d) + βh0(d)).

There exist u ∈ (F + 1) ∩ U0(F + C · 1) ⊆ U0(C) and an isometry T ∈ E

such that, for all b ∈ B, u∗bu − s2T
∗bTs∗2 ∈ Ann(A) in case I = J (respectively

u∗bu− s0T
∗bTs∗0 ∈ Ann(A) in case I = J + βJ):

To be filled in

There exists an isometry T ∈ E with T ∗H0(·)T = 0 and TT ∗ + p0 ≤ 1 :

By Lemma 4.4.7(vi), there exists an isometry s1 ∈ E with s1s
∗
1 ≤ 1 − p0 and

s1s
∗
1H0(·) = 0. Thus T := s1 is as desired. (One could also use directly T := R for

R in the proof of Lemma 4.4.7(vi).)

To be filled in. Check. ?? The “naive” definition should be the following

definition:

Let U(e) the Halmos unitary of e defined in Remark 4.2.4 and s1, t1 ∈ E the

isometries from Lemma 4.4.7(vi), and define

u := [t1, s1]U(e)[t1, s1]∗ = t1et
∗
1 + s1e

∗s∗1 − t1(1− ee∗)1/2s∗1 + s1(1− e∗e)1/2t∗1

Then s1e
∗s∗1, t1(1 − ee∗)1/2s∗1, s1(1 − e∗e)1/2t∗1 ∈ Ann(A) and t1a = a = at1 = t∗1a

for all a ∈ A.

Thus ua = t1et
∗
1a = t1ea and au = aet∗1 for a ∈ A. Need modification of s1, t1

such that t1ea = ea for a ∈ A and aet∗1 = ae for a ∈ A.

Notice that ea − ae = g is contained in a separable C *-subalgebra G of I,

t1ea = t1(g + ae) = t1g + ae = ea + (t1 − 1)g . aet∗1 = (t1ea)∗ = ((t1 − 1)g)∗ + ae

for suitable g ∈ G

Thus we have to find a unitary V in C := A′ ∩ E such that s∗1V g = 0 for all

g ∈ G. Then still V ∗s1s
∗
1V ≤ 1 − p0 and V ∗s1s

∗
1V a = V ∗s1s

∗
1aV = 0 for a ∈ A.

We can rename V ∗s1 by R and use it to construct a suitable correction of s1, t1:

To find V ∈ F , we take q ∈ F with q ≥ p0, q 6= p0 and qg = g = gq for all

g ∈ G (is possible by Parts (iii,iv) of Theorem 4.4.6). Then s1V has the property

V ∗s1s
∗
1V ≤ (1− q) = V ∗(1− p0)V ≤ (1− p0) .

Let R := V ∗s1. Then R∗A = {0} and R∗G = {0} for V ∈ U0(F ) with

V ∗p0V = q as defined above. Since E is properly infinite there exists isometries S, T

with SS∗ ≤ RR∗, SS∗ + TT ∗ = 1 and Ta = a = aT = aT ∗, Tg = g = gT = gT ∗

for a ∈ A and g ∈ G.

Now define u := [T, S]U(e)[T, S]∗. Then we get that (e−u)A = {0} = A(e−u).

A construction of u in the special case that e := s2fs
∗
2 + 1 − p2 in case I = J

(respectively e := s0fs
∗
0+1−p0 in case I = J+βJ) where f ∈ E is a contraction such

that 2p2−s2f
∗fs∗2−s2ff

∗s∗2 ∈ Ann(A,E) (respectively 2p0−s0f
∗fs∗0−s0ff

∗s∗0 ∈
Ann(A,E)).



4. GROUPS DEFINED BY ABSORBING C*-MORPHISMS 565

Let Z := [s2, T, 1 − p2 − TT ∗] ∈ M1,3(E) if I = J (respectively let Z :=

[s0, T, 1− p0 − TT ∗] if I = J + βJ) and U(f) ∈M2(E) the Halmos unitary of f as

defined in Remark 4.2.4.

Then ZZ∗ = 1 and u := Z(U(f)⊕1)Z∗ is a unitary that satisfies u ∈ N (A, I)+1

and u− e ∈ Ann(A,E). �

Remark 4.4.14. Let A := H0(D), I := J + βJ and u ∈ U(Der(A, I)). By

Lemma 4.4.11 there exist v ∈ U(C) and a C *-morphism k : D → I, i.e., k = k1+βk2

with C *-morphisms k1, k2 : D → J , that satisfy

k ⊕s0,t0 H0 = v∗u∗H0(·)uv .

The following are equivalent:

(i) [k] + [h0 + βh0] = [h0 + βh0] .

(ii) There are w1, w2 ∈ U(C) such that 1− w1uw2 ∈ N (A, I).

(iii) There exist w ∈ U(C) such that wuv ∈ U0(N (A, I) + C · 1).

Proof. The proof of the equivalences in Parts (i)–(iii) of Remark 4.4.14 is

similar to the proof of Lemma 4.4.12 with ⊕s2,t2 and V := u2 replaced by ⊕s0,t0
and V := u0 in Lemma 4.4.8 and in proof of Lemma 4.4.7(x). �

Let C, Ann(A,E), Der(A, I), N (A, I), µ : K1(C) → K1(Der(A, I)) and

Γ
(
A, I,E

)
as introduced in Definitions 4.4.4 and 4.4.5.

Notice that Der(A, I0) ⊆ Der(A, I) if I0 ⊆ I for an ideal I0 / E. In particular,

C := A′ ∩ E = Der(A, {0}) ⊆ Der(A, I).

Recall that N (A, I) is an ideal of Der(A, I) and that N (A, I0) ⊆ N (A, I) if

I0 ⊆ I. In particular, Ann(A,E) := N (A, {0}) ⊆ C ∩N (A, I).

We use below the group morphisms

µ : K1(C)→ K1(Der(A, I)) and µ′ : K1(N (A, I))→ K1(Der(A, I))

given by the inclusion maps C ↪→ Der(A, I) and N (A, I) ↪→ Der(A, I). Recall that

Γ(A, J,E) := K1(Der(A, J))/µ(K1(C)) .

Lemma 4.4.15. Let A := H0(D), C := A′ ∩ E and I := J + βJ (respectively

I := J). Let Ann(A,E) := N (A, {0}), Der(A, I) and N (A, I) as in Definition

4.4.4.

(i) N (A, I) is a closed ideal of Der(A, I) and a full hereditary C*-subalgebra

of E. It holds

Der(A, I) = C +N (A, I) .

In particular there is a natural isomorphism

C/(C ∩N (A, I)) ∼= Der(A, I)/N (A, I) ,
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(ii) The annihilator Ann(A,E) of A in E is a closed ideal of C and is a full

hereditary C*-subalgebra of E.

It satisfies

Ann(A,E) = N (A, J) ∩ β(N (A, J)) ⊆ N (A, I) .

In particular, the quotient maps π : C → C/Ann(A,E) and

Der(A, I) → C/(C ∩ N (A, I)) induce surjective maps on the K∗-groups,

e.g. [π]1(K1(C)) = K1(C/Ann(A,E)) :

For every contraction c ∈ C with 1 − c∗c, 1 − cc∗ ∈ Ann(A,E) there

exists a unitary u ∈ C such that

1− u(c⊕s,t 1) ∈ Ann(A,E) .

(iii) The C*-algebras Der(A, I), C, N (A, I)+C·1 and all its non-zero quotients

and unifications of closed non-zero ideals are K1-surjective C*-algebras.

(iv) U(N (A, I)+C ·1 ) is a closed normal subgroup of U(Der(A, I)) and U(C)

is a closed subgroup of U(Der(A, I)) .

(v) Let G(I) denote the set U(C) · U(N (A, I) + C · 1) of products u · v with

u ∈ U(C) and v ∈ U(N (A, I) + C · 1) .

The set G(I) is an open subgroup of U(Der(A, I)) that satisfies

G(I)⊕s,t 1 ⊆ G(I) .

In particular, U0(Der(A, I)) ⊆ G(I) .

(vi) For each u ∈ U(E) there exists a unitary v ∈ 1 + Ann(A,E) ⊂ C such

that [v · u] = 0 in K1(E).

For each unitary in u ∈ U(N (A, J + βJ) + C · 1) with the additional

property u ∈ Der(A, J) there exists unitaries v, w ∈ U(C) such that

v uw ∈ U0(N (A, J) + C · 1) ⊆ U0(Der(A, J)) .

In particular, the image µ′(K1(N (A, J))) ⊆ K1(Der(A, J)) of

K1(N (A, J)) is contained in the image µ(K1(C)) in K1(Der(A, J)),

and the mapping

G(J) 3 u 7→ [u] ∈ K1(Der(A, J))

maps G(J) onto µ(K1(C)) ⊆ K1(Der(A, J)).

(vii) The natural group morphisms K1(C)→ K1(C/Ann(A,E)) and

K1

(
Der(A, I)

)
→ K1

(
Der(A, I)/N (A, I)

)
are surjective.

(viii) The natural group epimorphism ϕ : [k]+[h0] 7→ [k]+[H0] from G(h0 ; D,E)

onto G(H0 ; D,E) is injective, if and only if, the natural group morphism

K1(C/Ann(A,E))→ K1

(
C/(C ∩N (A, J))

)
is surjective.

(ix) This map ϕ : [k] + [h0] 7→ [k] + [H0] is injective, if and only if,

u⊕s,t 1 ∈ G(J) for all u ∈ U(Der(A, I)) ∩ U0(E) . (4.19)
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(x) A sufficient condition for the injectivity of ϕ is that the natural group

morphism

U
(
C/Ann(A,E)

)
→ U

(
C/(C ∩N (A, I))

)
contains 1⊕ U

(
C/(C ∩N (A, I))

)
in its image.

Proof. Recall that A := H0(D), and that we let alternatively I := J or

I := J +βJ to avoid repeats. We need sometimes additional considerations for the

case I := J .

(i): Clearly, Der(A, I) = π−1
I

(
πI(A)′ ∩ (E/I)

)
. Thus, Der(A, I) is a C *-

subalgebra of E and

C := A′ ∩ E = Der(A, {0}) ⊆ Der(A, I) .

In the same way N (A, I) = π−1
I (Ann(πI(A), E/I)), where Ann(πI(A), E/I) means

the two-sided annihilators in E/I of the elements of πI(A).

Since Ann(πI(A), E/I) is a closed ideal of πI(A)′ ∩ (E/I) , the C *-algebra

N (A, I) is a closed ideal of Der(A, I).

In particular, C + N (A, I) is a C *-subalgebra of Der(A, I) in general for all

closed ideals I of E.

Let e ∈ E+ with eH0(d) − H0(d)e ∈ I := J + βJ for all d ∈ D, i.e., e ∈
Der(A, I). Since D is separable, the image T (D) of T (d) := eH0(d) − H0(d)e is

contained in a separable C *-subalgebra B of J+βJ . Let f ∈ B+ a strictly positive

contraction for B. By assumption (iii) of Theorem 4.4.6, there is a projection p ∈ F
with pf = f = fp, p0 ≤ p and p0 6= p.

Since F ⊆ C by assumption (iii) of Theorem 4.4.6, it follows for d ∈ D that

0 = (1− p)T (d) = (1− p)eH0(d)−H0(d)(1− p)e and 0 = T (d)(1− p) .

Thus, (1 − p)e, pe(1 − p) ∈ C and e − pep = (1 − p)e + pe(1 − p) ∈ C. By

assumptions (iii,v) of Theorem 4.4.6, pH0(D) = H0(D)p ⊂ J + βJ . Thus, pep ∈
N (H0(D), J + βJ).

It also shows that Der(A, I) = C +N (A, I) in the case where I = J + βJ :

We can use that Der(A, J) ⊂ Der(A, J + βJ) in the case where I = J :

If e ∈ Der(A, J)+, then e ∈ Der(A, J +βJ) and there exists a projection p ∈ F
with e− pep ∈ C by our above considerations. Since C = Der(A, {0}) ⊂ Der(A, J)

and F ⊆ N (A, J + βJ) it follows that

pep = e− (e− pep) ∈ Der(A, J) ∩N (A, J + βJ) .

It turns out that the latter implies that pep is in N (A, J) :

By Part (xi) of Lemma 4.4.7 there exist projections q, r ∈ C with the properties

p = q + r, [qH0(·)] = [h0] and [rH0(·)] = [βh0]. In particular q ∈ C ∩ N (A, J) and

r ∈ C ∩N (A, βJ).
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For d ∈ D holds rH0(d) = H0(d)r ∈ βJ . Thus,

β(J) 3 rerH0(d)−H0(d)rer = r(eH0(d)−H0(d)e)r ∈ J .

Since J ∩ βJ = {0} it follows that rer ∈ C. Hence, pep− rer ∈ Der(A, J) and

e− (pep− rer) = (e− pep) + rer ∈ C .

We show that the element pep− rer = qer + req + qeq is in N (A, J), and get that

e ∈ C +N (A, J):

Since q, r ∈ C, we get e.g. from qerH0(d) −H0(d)qer = q(eH0(d) −H0(d)e)r

and e ∈ Der(A, J)+ that qer, req, rer ∈ Der(A, J). It follows from J ∩ βJ = {0},
H0(d)r ∈ βJ , qH0(d) ∈ J and reqH0(d)−H0(d)req ∈ J that necessarilyH0(d)req =

0 for all d ∈ D. Since (qer)∗ = req ∈ Der(A, J) it follows qerH0(d) = 0 for all

d ∈ D.

(re+ qe)(qH0(d)) ∈ J and qer H0(d) = 0 imply (qer + req + qeq)H0(d) ∈ J .

Since pep− rer is self-adjoint it follows that pep− rer ∈ N (A, J).

Summing up we get e = x+y with x = (e+rer)−(pep) ∈ C and y = pep−rer ∈
N (A, J).

Thus, Der(A, I)+ ⊆ C + N (A, I). Since C + N (A, I) is a C *-subalgebra of

the C *-algebra Der(A, I) it follows Der(A, I) = C +N (A, I) for A := H0(D) and

I := J + βJ (respectively A := H0(D) and I := J).

The ideal C ∩ N (A, I) of C is the kernel of the restriction to C of the epi-

morphism Der(A, I) → Der(A, I)/N (A, I). Since Der(A, I) = C + N (A, I), this

quotient map defines an isomorphism

Der(A, I)/N (A, I) ∼= C/(C ∩N (A, I)) .

(ii): The (two-sided) annihilator Ann(A,E) is a closed ideal of C, because

c1ec2a = c1eac2 = 0 and ac1ec2 = c1aec2 = 0

if e ∈ Ann(A,E), a ∈ A and c1, c2 ∈ C.

The C *-subalgebra Ann(A,E) is hereditary in E, because e1Ee2 ⊆ Ann(A,E)

if e1, e2 ∈ Ann(A,E).

If e ∈ Ann(A,E), i.e., if ea = 0 = ae for all a ∈ A ⊆ E, then e ∈ N (A, J) ⊆
N (A, I) and e ∈ C = A′ ∩ E. Thus Ann(A,E)

Since βH0 = H0, it follows βA = A and β(Ann(A,E)) = Ann(A,E).

Thus, Ann(A,E) ⊆ N (A, J) ∩ βN (A, J).

We get βN (A, J) = N (A, βJ) from β(A) = A.

If e ∈ E satisfies eH0(D) ⊆ J and eH0(D) ⊆ βJ , then eH0(D) ⊆ J∩βJ = {0}.

Thus, N (A, J) ∩ βN (A, J) = Ann(A,E).
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The *-monomorphism H0 dominates zero by Lemma 4.4.7(vi), i.e., there exists

an isometry s1 ∈ E with s∗1H0(·)s1 = {0}. It implies that s1s
∗
1 ∈ Ann(A,E) if

A := H0(D), i.e., Ann(A,E) is full in E.

(iii): The unital algebra C := A′ ∩ E ⊆ Der(A, I) contains the isometries

s, t with orthogonal ranges by assumption (i) of Theorem 4.4.6, and N (A, I) is a

non-zero ideal of Der(A, I) by Part (i).

All non-zero quotients of C and of Der(A, I) and all (unitization of) non-zero

ideals of this quotients are K1-surjective by Remark 4.2.17.

(iv): The groups U(N (A, I) + C · 1) and U(C) are norm-closed subgroups of

U(Der(A, I)), because unitary groups of C *-algebras are norm-closed.

The group U(N (A, I) +C · 1) is normal in U(Der(A, I)) because N (A, I) is an

ideal of Der(A, I) = C +N (A, I).

(v): The set G(I) of products U(C) · U(N (A, I) + C · 1) is a subgroup of

U(Der(A, I)) because U(N (A, I) + C · 1) is a normal subgroup of U(Der(A, I)) by

Part (iv).

If u ∈ U0(Der(A, I)) then u is a product of exponentials, i.e., there exist tm ∈
Der(A, I) (m = 1, · · · , n) such that t∗m = −tm and u = exp(t1)·. . .·exp(tn). We find

cm ∈ C (m = 1, . . . , n) with c∗m = −cm and tm−cm ∈ N (A, I), because Der(A, I) =

C +N (A, I) by Part (i). If we define v ∈ U0(C) by v := exp(c1) · . . . · exp(cn), then

v∗u ∈ 1+N (A, I), because U(N (A, I)+C ·1) is a normal subgroup of U(Der(A, I))

and exp(−cm) exp(tm) ∈ 1 +N (A, I) for m = 1, . . . , n.

It follows that G(I) is an open subgroup of U(Der(A, I)).

Recall that every open subgroup G2 of a topological group G1 is also closed

in G1, because G2 is the complement in G1 of the union of open sets G2 · g with

g ∈ G1 \G2.

If u, v ∈ U(C) then u⊕s,t v = sus∗ + tvt∗ ∈ U(C) because s, t ∈ C.

If w ∈ U(N (A, I) + C · 1) then w = (ξ1) · (e + 1) for some ξ ∈ C with |ξ| = 1

and e ∈ N (A, I).

The unitary s∗ws+tt∗ = (ξ ·ss∗+tt∗)(ses∗+1) is in G(I), because ξ ·ss∗+tt∗ ∈
U0(C) and ses∗ ∈ N (A, I).

Thus G(I)⊕s,t 1 ⊆ G(I).

(vi): By Lemma 4.4.7(vi) there exist isometries s1, t1 ∈ E with s1s
∗
1 + t1t

∗
1 = 1

and s1 satisfies s∗1A = {0} = As1. It implies that s1E s
∗
1 ⊆ Ann(A,E). If u ∈ U(E)

then [u] = [u⊕′ 1] = [(1− s1s
∗
1) + s1us

∗
1] in K1(E) by Lemma 4.2.6(v,2).

Thus v := (1 − s1s
∗
1) + s1u

∗s∗1 is a unitary in 1 + Ann(A,E) with [vu] = 0 in

K1(E).

Remaining TEXT:
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For each unitary in u ∈ U(N (A, I) + C · 1) with the additional property u ∈
Der(A, J) there exists unitaries v, w ∈ U(C) such that

v uw ∈ U0(N (A, J) + C · 1) ⊆ U0(Der(A, J)) .

In particular, the image µ′( K1(N (A, J)) ) ⊆ K1( Der(A, J) ) of K1(N (A, J) )

is contained in the image µ( K1(C) ) in K1( Der(A, J) ), and the mapping

G(J) 3 u 7→ [u] ∈ K1(Der(A, J))

maps G(J) onto µ(K1(C)) ⊆ K1(Der(A, J)).

??

(old ?) TEXT:

This ref part is only granted modulo Ann(A, I)

or only in K1(N (A, I))?

Next text is different to ORIGINAL.

For each unitary in u ∈ U(N (A, I) +C · 1) (respectively u ∈ U(E)) there exists

a unitary v ∈ U(C) ∩ (1 +N (A, I)) (respectively only v ∈ U(C))

OR ?: v ∈ 1 + Ann(A,E) ???

such that v u ∈ U0(N (A, I) + C · 1)

Respectively only (minimal possible): vu ∈ U0(Der(A, I)) · U(C).

(respectively v ∈ U(C) such that vu ∈ U0(E) and a unitary w ∈ 1 +

Ann(A,E) ⊆ C with [wu] = 0 in K1(E)).

In particular, the image µ′(K1(N (A, I))) in K1(Der(A, I)) is contained in the

image µ(K1(C)) of K1(C) in K1(Der(A, I)), and the image of the map

G(I) 3 u 7→ [u] ∈ K1(Der(A, I))

coincides with µ(K1(C)) ⊆ K1(Der(A, I)).

END TEXT

Use in next proof lem. 4.4.7(vi)? in place of 4.4.7(iv)??

By Lemma 4.4.7(vi), there exist isometries s1, t1 ∈ E with s1s
∗
1 + t1t

∗
1 = 1 and

s∗1H0(D) = {0}, i.e., s1Es
∗
1 ⊆ Ann(A,E).

CASE u ∈ U(E) :

Let u ∈ U(E). Define v := (u⊕R,T 1)∗ ∈ Ann(A,E). Then v ∈ C and [v] = −[u]

in K1(E), i.e., [vu] = 0 in K1(E) and (vu)∗H0(·)vu = u∗H0(·)u.

NEXT ??????

There exists a unitary v ∈ U(C)∩ (1+Ann(A, I)) such that vu ∈ U0(N (A, I)+

C · 1).

????

(vi): New approach:
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Next to PROOF of a Lemma ??:

Let u ∈ U(N (A, I) + C · 1). Then u ∈ Der(A, I) and by Lemma 4.4.11 there

exist k : D → I and v ∈ U(C) such that

k ⊕s0,t0 H0 = v∗u∗H0(·)uv ,

where k = k1 + βk2 for C *-morphisms k1, k2 : D → J . Moreover, k2 = h0 in case

I = J .

Lemma 4.4.8 (in case I = J) and Remark 4.4.14 (in case I = J + βJ) show

that v∗uv ∈ U(N (A, I) +C · 1) implies that [k] + [h0 + βh0] = [h0 + βh0] (which is

equivalent to [k1]+[h0] = [h0] in case I = J), that this is equivalent to the existence

of a unitary U ∈ U0(N (A, I) + C · 1) with

k ⊕s0,t0 H0 = U∗H0(·)U .

It follows that w := uv · U∗ ∈ U(C), and w∗uv = U∗ ∈ U0(N (A, I) + C · 1).

(vii): Clearly Ann(A,E) is a closed ideal of C and is a hereditary C *-subalgebra

Ann(A,E) of E. It is full in E because there exist an isometry s1 ∈ E with

s∗1H0(·)s1 = 0 by Lemma 4.4.7(vi).

Since N (A, I) = π−1
J (Ann(πJ(A), E/J)), it is a hereditary C *-subalgebra of

E that contains Ann(A,E). Thus N (A, I) is full in E. By Part (i), N (A, I) is a

closed ideal of Der(A, I) that is hereditary and full in E.

Since Ann(A,E) is a closed ideal of C and N (A,E) is a closed ideal of

Der(A,E), and both are full and hereditary in E, Part (vii) follows from Lemma

4.2.20(o).

END Proofs (i)-(vii).

TEXT OF GENERAL CONCLUSIONS:

Finally, the K∗-theory 6-term exact sequence

0→ (C ∩N (A, I))→ C → C/(C ∩N (A, I))→ 0 .

shows that the group morhism K1(C)→ K1(C/(C ∩N (A, I))) is surjective, if and

only if, K0(C ∩N (A, I)))→ K0(C) is injective.

The latter is related to the injectivity of ϕ : [k] + [h0] 7→ [k] + [H0].

???????

END TEXT

BEGIN TEXT OF GENERAL Conclusion:

The group morphism ϕ : [k] + [h0] 7→ [k] + [H0] is injective, if and only if, the

natural group morphism

K1

(
C/Ann(A,E)

)
→ K1

(
C/(C ∩N (A, I))

)
is surjective.

This is the case if and only if u⊕s,t 1 ∈ G for all u ∈ U(Der(A, I)).
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A sufficient condition for the latter is that the natural group morphism

U
(
C/Ann(A,E)

)
→ U

(
C/(C ∩N (A, I))

)
is surjective.

Notice that Ann(A,E) ⊆ C ∩ N (A, I) are ideals of C and that Ann(A, I) is a

full hereditary C *-subalgebra of E. By Lemma 4.2.20, K∗(C/Ann(A, I)) is natural

isomorphic to the kernel of K∗(C)→ K∗(E), and the natural sequences

K∗(Ann(A, I))→ K∗(C)→ K∗(C/Ann(A, I))

are split-exact sequences.

Recall that G(H0 ; D,E) (respectively G(h0 ; D,E)) is isomorphic to the kernel

of K0(C)→ K0(E) (respectively of K0(h0(D)′ ∩ E)→ K0(E)).

�

Proof of Theorem 4.4.6 (Part 2: kernel of ϕ in G(h0, D,E)).

Let A (temporary) denote the set of k ∈ Hom(D,E) with k(D) ⊆ J and the

property that k ⊕ H0 is unitary equivalent to H0 by a unitary in E, i.e., with

[k] + [H0] = [H0] in [Hom(D,E)]u. Recall that [k] + [H0] is the unitary equivalence

class of k⊕H0 in the elements in Hom(D,E), which is independent from the chosen

isometries S, T ∈ E with SS∗ + TT ∗ = 1 for the sum ⊕ := ⊕S,T .

If k ∈ Hom(D,E) is in A, i.e., k(D) ⊆ J and and [k] + [H0] = [H0], then k

satisfies

(1a) [k] ∈ S(h0 ; D,E), (by Lemma 4.4.7(vii)), and

(1b) [k] + [h0] is in the kernel of ϕ : G(h0 ; D,E) → G(H0 ; D,E) . (Because

([k] + [h0]) + [H0] = [k] + ([h0] + [H0]) = [k] + [H0] by Lemma 4.4.7(iv).)

(2) [k+βh0]+[H0] = [H0]. (Because [k+βh0] = [k]+[βh0] for k ∈ Hom(D,E)

with k(D) ⊆ J and [βh0] + [H0] = [H0] by Lemma 4.4.7(i, iv).)

Conversely properties (1a) and (1b) or properties (1a) and (2) imply for k ∈
Hom(D,E) that k ∈ A.

Indeed: (1a) implies k(D) = T ∗h0(D)T ∈ J for some isometry T ∈ E and

ϕ([k] + [h0]) = [H0] says by definition of ϕ that ([k] + [h0]) + [H0] = [H0], i.e., that

[k] + [H0] = [k] + ([h0] + [H0]) = ([k] + [h0]) + [H0] = [H0] by Lemma 4.4.7(iv).

Thus, the set of unitary equivalence classes [k] ∈ [Hom(D,E)] of the elements

k ∈ A is identical with the set of elements [k] in the semi-group S(h0 ; D,E) that

satisfy ϕ([k] + [h0]) = [H0].

The set A contains h0 by Lemma 4.4.7(iv). If k ∈ A and [h] = [k] then h ∈ A
(here [·] denotes the unitary equivalence classes of elements of Hom(D,E)). If

k1, k2 ∈ A then k1 ⊕ k2 ∈ A.

This is because [??????] =?.
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Let k ∈ Hom(D,J) ⊂ Hom(D,E), then

[k] + [H0] = [H0] ⇔ [k + βh0] + [H0] = [H0] ,

because, by Lemma 4.4.7(iv,i,iii),

[k + βh0] + [H0] = [k + βh0] + [0] + [H0] = [k] + [βh0] + [H0] = [k] + [H0] .

Thus, if we take s0 and t0 as in assumption (iv) of Theorem 4.4.6, then [H0] =

[k] + [H0] becomes equivalent to [H0] = [(k + βh0)⊕s0,t0 H0] , i.e., is equivalent to

the existence u ∈ U(E) that satisfies following equation:

s0(k(·) + βh0(·))s∗0 + (1− p0)H0(·) = (k + βh0)⊕s0,t0 H0 = u∗H0(·)u . (4.20)

The equation shows that u ∈ Der(H0(D), J) and that the unitary u is deter-

mined by k in the right side of the equation up to multiplications V u by unitaries

V ∈ U(C).

We can also use the isometries s2, t2 of Lemma 4.4.7(x) and get directly v ∈
U(E) with

k ⊕s2,t2 H0 = v∗H0(·)v (4.21)

This unitary v is again in Der(H0(D), J) and is determined by the left side, i.e., by

k, only up to multiplications Uv with U ∈ U(C).

By Lemma 4.4.10 there exists a unitary W ∈ U0(Der(H0(D), J)) ∩ (p0Ep0 +

(1− p0)) with ((k + βh0)⊕s0,t0 H0)W = W (k ⊕s2,t2 H0) .

It follows that W ∗u∗H0(·)uW = v∗H0(·)v, i.e., U(C)uW = U(C)v. In partic-

ular, µ(K1(C)) + [u] = µ(K1(C)) + [v] in K1(Der(H0(D), J)), because [W ] = 0 in

K1

(
Der(H0(D), J)

)
.

Recall here, that we have defined µ : K1(C) → K1

(
Der(H0(D), J)

)
by the

natural *-monomorphism C ↪→ Der(H0(D), J).

The above considerations show that the class of the unitaries u and v in Equa-

tions (4.20) and (4.21) define for k ∈ A the same class

γ0(k) := [u] + µ(K1(C)) = [v] + µ(K1(C)) (4.22)

in K1(Der(H0(D), J))/µ(K1(C)).

We get that that γ0(h0) = µ(K1(C)), because s0(h0 + βh0)s∗0 = p0H0 and

t0H0t
∗
0 = (1− p0)H0 by Assumptions (iii) and (iv) of Theorem 4.4.6.

If we use the definition of the unitary v in Equation (4.21) then we obtain that

γ0(k) = γ0(U∗kU) for all unitaries U ∈ E:

Indeed, the property k(D) ⊆ J implies that there exists a unitary V ∈ U0(E) with

U∗k(·)U = V ∗k(·)V , cf. Lemma ??(????).

Let v ∈ U(Der(H0(D), J) as in Equation (4.21) and W := v(V ⊕s2,t2 1) then

(U∗k(·)U)⊕s2,t2 H0 = W ∗H0(·)W .
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It implies that U(C)W = U(C)v(V ⊕s2,t2 1). The unitary V ⊕s2,t2 1 is in s2U0(E)s∗2+

t2t
∗
2. The group s2U0(E)s∗2 + t2t

∗
2 is contained in the connected component of

U(Ann(H0(D), J) + C1) ⊆ U(Der(H0(D), J)).

It implies [W ] = [v] ∈ U(Der(H0(D), J)) and γ0(U∗k(·)U) = γ0(k) , by the

defining equation (4.22) of γ0.

It follows that there is a unique mapping γ from the set [A] of elements [k] ∈
S(h0 ; D,E) with the property that [k] + [h0] is in the kernel of

S(h0 ; D,E)→ G(h0 ; D,E)→ G(H0 ; D,E)

to K1

(
Der(H0(D), J)

)
/µ
(
K1(C)

)
, such that γ satisfies γ0(k) = γ([k]) for k ∈ A

and γ([h0]) = µ(K1(C)).

We show now that γ is additive:

Let k1, k2 ∈ A and take u1, u2 ∈ U(Der(H0(D), J)) with kj ⊕s2,t2 H0 = u∗jH0uj for

j ∈ {1, 2}.

By Lemma 4.4.8, if (s2, t2) are the isometries in Lemma 4.4.7(x) and the unitary

v2 ∈ C is defined by Equation (4.11) given in proof of Lemma 4.4.7(x), then for

a, b, c, d ∈ E holds:

v∗2
(
(a⊕s2,t2 c)⊕s,t (b⊕s2,t2 d)

)
v2 = (a⊕s,t b)⊕s2,t2 (c⊕s,t d) .

If we let a := k1(d), b := k2(d), c = d := H0(d) then we get for kj ⊕s2,t2 H0 =

u∗jH0uj and the unitary U := (u1 ⊕s,t u2) · v2 the equation

U∗H0U = v∗2
(
(u∗1H0u1)⊕s,t (u∗2H0u2)

)
v2 = (k1 ⊕s,t k2)⊕s2,t2 H0 .

It follows that γ0(k1 ⊕s,t k2) = µ(K1(C)) + [U ] Since [U ] = [u1] + [u2] + [v2] and

v2 ∈ C, it follows that

γ0(k1 ⊕s,t k2) = γ0(k1) + γ0(k2)

in K1(Der(H0(D)), J)/µ(K1(C)) =: Γ
(
H0(D), J, E

)
.

Thus, γ0 is additive with respect to Cuntz addition on A with γ0(h0) =

µ(K1(C)) and defines an additive map γ1 from the sub-semigroup of those elements

[k] of S(h0 ; D,E) with [k] + [h0] in the kernel of ϕ.

NEXT steps:

Step (next 1):

TEXT:

Let k ∈ A then γ0(k) = µ(K1(C))

if and only if [k] + [h0] = [h0]:

It shows that γ1([k]) = µ(K1(C)) and k ⊕s2,t2 H0 = u∗H0u if and only if

[u] ∈ µ(K1(C)).

Notice that [A] + [h0] is a subgroup of G(h0 ; D,E) and is identical with the

kernel of ϕ.
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It will be shown below that k ∈ A and γ0(k) = 0 together imply that [k]+[h0] =

[h0]. It follows that γ1|[A] + [h0] “restricted” to the kernel of ϕ in G(h0 ; D,E) is

faithful on the kernel ϕ−1([H0]) of ϕ.

The neutral element “0” of K1(Der(H0(D), J))/µ(K1(C)) is γ0(h0) = µ(K1(C))

and the invariance under unitary equivalence that [k] + [h0] = [h0] implies

γ0(k) = γ1([k]) = µ(K1(C)) .

Suppose that k ∈ A and γ0(k) = µ(K1(C)). It follows that there exists

v ∈ U(C) and w ∈ U0(Der(H0(D), J)) with (v ⊕ s, t1)w = (u ⊕s,t 1) (cf. Lemma

4.2.6(v,2)).

Each w ∈ U0(Der(H0(D), J)) decomposes by Lemma 4.4.15(v) into a product

w = w1w2 with w1 ∈ U(C) and w2 ∈ U(C · 1 +N (H0(D), J)).

Is it not U(C1 +N (H0(D), J)) ???

It follows that (k ⊕s,t h0)⊕s2,t2 H0 = w∗2H0w2 .

This causes by Lemma ?? that [k⊕h0] = [h0] provided that in addition ???????

Step (next 2): γ1 is surjective:

(a) Der(H0(D), J) and C are K1-surjective.

i.e., For x ∈ K1(Der(H0(D), J)) exists u ∈ U(Der(H0(D), J)) with x = [u].

compare next with places above!

We define for k ∈ A a class U(k) = U(C)u ⊂ U(Der(H0(D), J)) of

U(C)\U(Der(H0(D), J)) by u ∈ U(k) if and only if u satisfies Equation (4.20).

If k ∈ A, then the set U(k) ⊆ U(Der(H0(D), J)) is an element of the right

homogenous space

U(C)\U(Der(H0(D), J))

given by right multiplication of elements of U(Der(H0(D), J)) by elements of

U(C) ⊆ U(Der(H0(D), J)) .

Clearly, the unitary u in Equation (??) is determined by k only up to multipli-

cations vu with v ∈ U(C). We denote this subset of U(E) by

U(k) := U(C)u

if a C *-morphism k : D → J satisfies [k] + [H0] = [H0]. Thus, U(k) = U(C) · U(k).

U(k) ⊆ U(Der(H(D), J)):

The elements of U(k) are contained in Der(H(D), J), because

p0H(·) = s0(h0 + βh0)s∗0 ,

by assumption 4.4.6(iv), and this together with Equation (??) implies

H0(a)u− uH0(a) = us0(k(a)− h0(a))s∗0 ∈ J for all a ∈ D .

Thus u ∈ Der(H0(D), J). Since C ⊆ Der(H0(D), J) it follows that

U(C)u =: U(k) ⊆ U(Der(H0(D), J))
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The class

U(k) ∈ U(C) \U(Der(H0(D), J))

defines a class

γ0(k) := [u] + µ(K0(C)) ∈ Γ := Γ(H0(D), J, E) := K0(Der(H0(D), J))/µ(K0(C)) .

Next steps:

(next 1)

γ0(k1) = γ0(k2) if [k1] = [k2], i.e., γ0(k) is invariant under unitary equivalence.

Let w ∈ U(E) with w∗k2(·)w = k1.

If [k1] = [k2] then there exists by Lemma 4.4.7(viii) a unitary w ∈ U0(βh0(D)′∩
E) such k1 + βh0 = w∗(k2 + βh0)w.

Let ξ ∈ [0, 1] 7→ w(ξ) ∈ U(βh0(D)′ ∩ E) a continuous path with w(0) = 1 and

w(1) = w. The continuous path

v(ξ) := s0w(ξ)s∗0 + t0t
∗
0 ∈ U(E)

satisfies v(ξ) = 1 and for d ∈ D that

v(ξ)H0(d)−H0(d)v(ξ) = s0(w(ξ)h0(d)− h0(d)w(ξ))s∗0 ∈ J ,

i.e., v(ξ) ∈ Der(H0(D), J). It follows that v(1) ∈ U0(Der(H0(D), J)). Thus,

[v(1)] = 0 in K1(Der(H0(D), J)) and

γ0(k2) = γ0(k1) + (µ(K1(C)) + [v(1)]) = γ0(k1) .

Notice that w ∈ U0(E) also implies that v ∈ U0

(
N (H0(D), J + βJ) + C · 1

)
.

An alternative proof of the equivalence of γ0 with respect to unitary equivalence

can be given directly by Lemma 4.4.7(i):

The equality [k1] = [k2] yields by ???????????

Consequence of the invariance:

We can define

γ1([k]) := γ0(k)

for a representative k ∈ Hom(D,J) of the class [k] ∈ S(h0 ; D,E).

(next 2)

γ1([k1] + [k2]) = γ1([k1]) + γ1([k2]), i.e., the mapping

γ1 : S(h0 ; D,E)→ Γ := Γ(H0(D), J, E) := K1(Der(H0(D), J))/µ(K1(C))

is an additive map from the semi-group S(h0 ; D,E) into the group Γ.

Use Lemma 4.4.8 and that s = β(s), t = β(t) ∈ (h0(D) ∪ H0(D))′ ∩ E by

assumptions of Theorem 4.4.6, both cases of definitions with ⊕s0,t0 or with ⊕s2,t2 .

(next 3)

U(h0) = U(C), i.e., γ1([h0]) = γ0(h0) = 0.
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In particular, γ1([k] + [h0]) = γ1([k]) for all k : D → J with [k] + [H0] = [H0].

Thus, γ([k]) := γ1([k]) defines a group homomorphism from the ker-

nel ϕ−1([H0]) ⊆ G(h0 ; D,E) of ϕ : G(h0 ; D,E) → G(H0 ; D,E) into Γ :=

Γ(H0(D), J, E).

(next 4)

The homomorphism γ is surjective:

For every x ∈ K1(Der(H0(D), J)) there exists u ∈ U(Der(H0(D), J)) with

[u] = x, because C ⊆ Der(H0(D), J) is properly infinite and this implies that

Der(H0(D), J) (respectively C) is K1-surjective by Lemma 4.2.6(v).

It suffices to find k : D → J , v ∈ U(C) and w ∈ U0(Der(H0(D), J)) with

(k + βh0)⊕s0,t0 H0 = w∗v∗u∗H0(·)uvw .

Give Ref’s for next blue!!

In fact, there exists v ∈ U0(F + C · 1) ∩ (1 + F ) such that uv ∈ U(k) for some

C *-morphism k : D → J with [k] + [H0] = [H0].

Thus, [uv] = [u] + [v] = [u] in K1(Der(H0(D), J)), and γ([k] + [h0]) =

µ(K1(C)) + [u] in Γ. It shows that γ is surjective.

(next 5)

If k : D → J is a C *-morphism, y ∈ N (J + βJ), 1 + y ∈ U(E) and

s0(k + βh0)s∗0 + (1− p0)H0(·) = (1 + y∗)H0(·)(1 + y) ,

then [k] + [h0] = [h0]:

Indeed, by Lemma 4.4.9 there exists a projection p ∈ F with p ≥ p0, p 6= p0

and

(1 + y∗)(1− p)H0(·)(1 + y) = (1− p)H0(·) ,

because it implies that

(1 + y∗)pH0(·)(1 + y) = s0(k + βh0)s∗0 + (p− p0)H0(·) .

By Part (xii) of Lemma 4.4.7, there exists a unitary V ∈ C and u2 ∈ U0(E)

with up0 = p0 = p0u and

V ∗(p− p0)H0(·)V = t0u
∗
2(h0 + βh0)u2t

∗
0 .

It follows for W := V (p0 + t0u
∗
2t
∗
0) that

(k + βh0)⊕s0,t0 (h0 + βh0) = W ∗(1 + y∗)pH0(·)(1 + y)W .

By part (ix) of Lemma 4.4.7 there exists a unitary u3 ∈ U0(F + C · 1) ⊂ C with

u∗3pu3 = p0 = s0s
∗
0 and, by assumption (iv) of Theorem 4.4.6, p0H0(·) = s0(h0 +

βh0)s∗0. We obtain with the unitary U := u3(1 + y)W ∈ U(E) that

(k + βh0)⊕s0,t0 (h0 + βh0) = U∗
(
(h0 + βh0)⊕s0,t0 0)

)
U .

If we use now that J ∩ βJ = 0 and h0(D) ∪ k(D) ⊂ J then we get
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k ⊕s0,t0 h0 = U∗
(
(h0 ⊕s0,t0 0)

)
U ,

which is up to multiplication of U by unitaries in (s0h0(D)s∗0)′ ∩ E equivalent to

[k] + [h0] = [h0] + [0]. But we know from Part (ii) of Lemma 4.4.7 that [h0] =

[h0] + [0].

(next 6)

The kernel of γ is {[h0]}:

If γ([k]) = µ(K1(C)), and u ∈ U(k) ⊆ Der(H0(D), J), then there exist V ∈
U(C) and W ∈ U0(Der(H0(D), J)) such that u⊕S,T 1 = VW .

Definition of S, T ??

It follows that

((k ⊕s,t h0) + βh0)⊕s0,t0 H0 = (u⊕S,T 1)∗H0(·)(u⊕S,T 1) = W ∗H0(·)W .

By Lemma 4.4.15(iv ????) ????, W = V1W1 with V1 ∈ C and W1 = y + 1 ∈
U(N (H0(D), J) + C · 1) with y ∈ N (H0(D), J). Thus, for W1 := y + 1,

s0((k ⊕s,t h0) + βh0)s∗0 + (1− p0)H0(·) = W ∗1H0(·)W1 .

Since

C = H0(D)′ ∩ E = Der(H0(D), {0}) ⊆ Der(H0(D), J) ,

we can define for k ∈ Hom(D,J) with [k] ∈ S(h0 ; D,E) in the kernel of ϕ an

element U(k) of the (right-sided) homogenous space U(C)\U(Der(H0(D), J)) by

U(k) := {vu ; v ∈ U(C) }

where is u some unitary satisfying Equation (??).

Obvious examples are U(h0) = U(C) and U(0) = U(C)uℵ, where uℵ := s1s
∗
0 +

t1t
∗
0 with the isometries s1, t1 of Lemma 4.4.7(vi).

If [k] = [k′], then [k + βh0] = [k′ + βh0] by Lemma 4.4.7(viii), and the unitary

equivalence can be realized by a unitary w ∈ U0(E) with w∗(k+βh0)w = k′+βh0.

It implies that

U(k′) = U(k) · (w ⊕s0,t0 1) .

Notice that w⊕s0,t0 1 is a unitary in 1 +N (H0(D), J) and is in U0(N (H0(D), J) +

C · 1). In particular, U(k) and U(k′) are contained in the same two-sided class of

U(C)\U(Der(H0(D), J))/U0(N (H0(D), J) + C · 1) .

It follows that U(k) ⊆ U(C) · U(N (H0(D), J)) if [k] = [h0].

The isometries s1, t1 of Lemma 4.4.7(vi) satisfy p0t1 = t1p0 = p0, t1 ∈ C,

H0(·)s1 = 0, s∗1H0(·) = 0, H0(·)t1 = H0, and t∗1H0(·) = H0. It yields t1at
∗
1 = a for

all a ∈ s0Es
∗
0, and t1(1− p0)H0(·)t∗1 = (1− p0)H0(·).

Let u ∈ U(E), then

u1 := u∗ ⊕s1,t1 u := s1u
∗s∗1 + t1ut

∗
1 (4.23)
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has the properties

u∗1H0(·)u1 = t1u
∗H0(·)ut∗1 and u1 ∈ U0(E) .

The above equations together imply for u ∈ U(k) ⊆ U(E) in Equation (??), that

the unitary u1 ∈ U0(E) defined by (4.23) again satisfies Equation (??):

(k + βh0)⊕s0,t0 H0 = u∗1H0(·)u1 .

It follows that u1 ∈ U(k) ∩ U0(E) 6= ∅ if [k] ∈ S(h0 ; D,E) and [k] + [H0] = [H0].

We seek for an estimate of the set U(k1⊕s,tk2) ⊆ U(Der(H0(D), J)) for kj : D →
E with [kj ] ∈ S(h0 ; D,E) and [kj ] + [H0] = [H0], j = 1, 2.

New generators S, T of O2 come from the generators (s, t) and (s0, t0) in The-

orem 4.4.6(i,iv) by

S := s0ss
∗
0 + t0st

∗
0 and T := s0ts

∗
0 + t0tt

∗
0 (4.24)

Then S, T ∈ C: use β(s) = s, β(t) = t, s, t ∈ h0(D)′ ∩H0(D)′ ∩ E,

SH0 = Ss0(h0 + βh0)s∗0 + St0H0t
∗
0 = s0(sh0 + sβh0)s∗0 + t0sH0t

∗
0 = s0(h0s+

(βh0)s)s∗0 + t0H0st
∗
0 = H0S . Similarly, TH0 = H0T .

Since Ss0 = s0s, Ts0 = s0t, Sp0 = p0S, Tp0 = p0T and

(βh0)⊕s,t (βh0) = β(h0 ⊕s,t h0) = βh0 ,

we get for k1, k2 : D → J that(
(k1 +βh0)⊕s0,t0 H0

)
⊕S,T

(
(k2 +βh0)⊕s0,t0 H0

)
=
(
(k1⊕s,t k2) +βh0

)
⊕s0,t0 H0 .

If k1, k2 ∈ S(h0 ; D,E) with [k] + [H0] = [H0] and [k′] + [H0] = [H0], then for

k3 := k1 ⊕s,t k2 holds [k3] = [k1] + [k2] and [k3] + [H0] = [H0].

The class U(k3) is given by

U(k1 ⊕s,t k2) = U(C) · (U(k1)⊕S,T U(k2)) ,

because, for u1 ∈ U(k1) and u2 ∈ U(k2)(
k1 ⊕s,t k2) + βh0

)
⊕s0,t0 H0 = (u1 ⊕S,T u2)∗H0(·)(u1 ⊕S,T u2) .

It follows that

U(k ⊕s,t h0) = U(C) · (U(k)⊕S,T 1) ,

and, if [k] + [h0] = [k′] + [h0], that there is a unitary u0 ∈ U0(E) with

u∗0(k ⊕s,t h0) + βh0)u0 = k′ ⊕s,t h0) + βh0,

i.e., then

U(k′ ⊕s,t h0) = U(C) · (U(k)⊕S,T 1) · (u0 ⊕s0,t0 1) .

Since

u0 ⊕s0,t0 1 ∈ U0(E)⊕s0,t0 1 ⊆ U0(N (H0(D), J) + C · 1) ,

this implies in particular

U(k′ ⊕s,t h0) ⊆ U(C) · (U(k)⊕S,T 1) · U0(N (H0(D), J) + C · 1) .
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We show below that the weaker condition

U(k′) ⊆ U(C) · (U(k)⊕S,T 1) · U0(N (H0(D), J + βJ) + C · 1) ,

implies conversely that

[k] + [h0] = [k′] + [h0] .

It follows the equivalence of

[k] + [h0] = [h0] = [h0] + [h0]

and

U(k) ⊆ U(C) · U0(N (H0(D), J + βJ) + C · 1) .

If we let ????????, then we can find a unitary u ∈ E that satisfies Equation

(??) with the additional condition

1⊕S,T u ∈ U0(E) .

Next also mentioned above ?

Let (k + βh0) ⊕s0,t0 H0 = u∗H0(·)u. Since p0H0(·) = s0(h0(·) + βh0(·))s∗0 by

assumption (iv) of Theorem 4.4.6, we get that

u∗H0(a)u−H0(a) = s0(k(a)− h0(a))s∗0 ∈ J for all a ∈ D .

It follows that u ∈ U(Der(H0(D), J)), u(1−p0) ∈ C and up0u
∗H0(D) ⊆ J+βJ .

Since 1− up0u
∗ = u(1− p0)2u∗ ∈ C, the map

a ∈ D 7→ up0u
∗H0(a)

is a C *-morphism from D into J + β(J), because p0u
∗H0(a)u − p0H0(a) ∈ J and

p0H0(a) ∈ J + β(J) for all a ∈ D.

Let (k + βh0)⊕s0,t0 H0 = u∗H0(·)u. It implies u ∈ Der(H0(D), J).

We get (see above)

((k ⊕s,t h0)?????βh0)⊕s0,t0 H0 = U∗H0(·)U

with U := u⊕S,T 1.

Suppose now more generally that u ∈ Der(H0(D), J + βJ) is given with the

additional property and u ⊕s,t 1 = wv with unitaries w ∈ C and v = 1 + x with

x ∈ N (H0(D), J + βJ).

Let W := sS∗+ tT ∗. Since s, t, S, T ∈ C it follows that W ∈ C and u⊕S,T 1 =

W ∗(u⊕s,t 1)W .

We get u⊕S,T 1 = W ∗wW ·W ∗vW , and W ∗vW = 1 + y with W ∗wW ∈ C and

y = W ∗xW ∈ N (H0(D), J + βJ).

Thus, U∗H0(a)U = (1 + y∗)H0(a)(1 + y). Since H0(D)y ⊆ J + βJ and D is

separable, there is a separable C *-subalgebra B ⊆ J + βJ that contains H0(D)y.

Let f ∈ B+ is a strictly positive contraction B. By assumptions (iii), (iv) and (v) of
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Theorem 4.4.6 there exists a projection q ∈ F ⊆ C with qf = f , q ≥ p0 and q 6= p0.

It follows that qH0(a)y = H0(a)y = H0(a)yq. Thus qH0(a)(1 + y) = H0(a)(1 + y)q

and qU∗H0(a)U = (W ∗vW )∗qH0(a)W ∗vW .

Since q = p0 + r with r = q − p0 = q(1− p0) ≤ t0t∗0, r ∈ E, it follows for

???????

that

s0((k ⊕s,t h0) + βh0)s∗0 + rH0(·) = (W ∗vW )∗qH0(a)W ∗vW .

There are unitaries u1, u2 ∈ 1 + F such that u1ru
∗
1 = p0 and u2qu

∗
2 = p0. We get

rH0(·) = u∗1p0H0(·)u1 and qH0(·) = u∗2p0H0(·)u2. Since p0H0(·) = s0(h0+βh0)s∗0 =

(h0 + βh0) ⊕s0,t0 0 and J · βJ = 0 = J ∩ βJ , we obtain for the summands with

values in J that

s0(k ⊕s,t h0)s∗0 + u∗1s0h0(·)s∗0u1 = (W ∗vW )∗u∗2s0h0(a)s∗0u2W
∗vW ,

with p0u
∗
1s0 = 0. Can define V1 ∈ U(E) such that

t1V
∗
1 s0h0(·)s∗0V1t

∗
1 = u∗1s0h0(·)s∗0u1 = rH0(·)

It follows that

[k ⊕s,t h0] + [h0] + [0] = [h0] + [0] .

From u ∈ U(Der(H0(D), J)) to (k, uw):

Recall that F ⊆ C ∩N (H0(D), J) in the following calculations.

SURJECTIVITY:

Let u ∈ U(Der(H0(D), J)), then there exists an element g ∈ F and a C *-

morphism k : D → J with [k] ∈ S(h0 ; D,E), such that w := 1 + g ∈ U0(F + C · 1)

and

(uw)∗H0(·)uw = (k + βh0)⊕s0,t0 H0 .

Indeed: Let ∂u(x) := ux−xu for x ∈ E. Then u∗∂u(H0(D)) ⊆ J . and generates

a separable C *-subalgebra B of J . Let b0 ∈ B+ a strictly positive contraction of B

and f := b0 + β(b0). By assumptions 4.4.6(iii,iv,v) there are projections p, q ∈ F
with p0 ≤ q ≤ p with qf = f , p0 6= q, q 6= p. By Lemma 4.4.7(ix) there exists

w ∈ U0(F + C1) such that q = wp0w
∗. Since w ∈ U0(C) ⊆ Der(H0(D), J), we get

uw ∈ Der(H0(D), J) and [uw] = [u] ∈ K1(Der(H0(D), J)).

Then (1 − q)u∗H0(a)u = (1 − q)H0(a) and w ∈ U0(C). Thus (1 −
p0)(uw)∗H0(a)(uw) = (1− p0)H0(a) and

h(a) := s∗0p0(uw)∗H0(a)(uw)s0

is a C *-morphism. Since uws0 is an isometry we get [h] ∈ S(H0 ; D,E). The

C *-morphism h satisfies

h⊕s0,t0 H0 = (uw)∗H0(·)(uw) ,
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and h(a)−s∗0H0(a)s0 ∈ J for a ∈ D. Since s∗0H0(a)s0 = h0(a)+βh0(a) by Theorem

4.4.6(iv), h = k + βh0 with [k] ∈ S(H0 ; D,E) and k(D) ⊆ J , and by Lemma

4.4.7(vii) that [k] ∈ S(h0 ; D,E), uw ∈ U(k), and [uw] = [u] ∈ K1(Der(H0(D), J)).

In particular,

(k + βh0)⊕s0,t0 H0 = (uw)∗H0(·)(uw) .

Where is next needed??

The C *-morphism h′ : a ∈ D 7→ h′(a) := upu∗H0(a) = us0h(·)s∗0u∗ maps D

into J , therefore it satisfies [h′] = [h] + [0] = [h], [h′] = [k+βh0] and h′⊕s0,t0 H0 =

u∗1H0(·)u1 for some unitary u1 ∈ Der(H0(D), J + β(J)) such that u1 := v1uw1 for

some v1 ∈ C and w1 ∈ N (H0(D), J + β(J)).

Next: From (DC) to (wDC)?

We consider now the special case, where u ∈ U0(E) and k ∈ S(h0;D,E) satisfy

(k + βh0)⊕s0,t0 H0 = u∗H0(·)u ,

and suppose in addition that u ∈ U(C) · U(N (H0(D), J + βJ)).

Let B0 the separable C *-algebra of J that is generated by k(D)∪h0(D), g ∈ B0

a strictly positive contraction of B0. By assumption (iii) of Theorem 4.4.6 there

exists q1 ∈ F , q1 ≥ p0 with q1(g + βg) = g + βg and q1 6= p0.

Above we have seen that (k + βh0) ⊕s0,t0 H0 = u∗H0(·)u . implies u ∈
Der(H0(D), J).

We suppose now that a given u ∈ U(Der(H0(D), J)) satisfies the assumption

of the decomposition condition (DC), i.e., that there is v ∈ C such that w :=

v(u⊕s,t 1) ∈ 1 +N (H0(D), J + β(J)).

This implies (u⊕s,t 1) ∈ U(C) · U(N (H0(D), J + βJ)).

We show that the latter implies that [k] + [h0] = [h0]:

Recall:

(DC) If u ∈ U0(E) satisfies uH0(a)−H0(a)u ∈ J for all a ∈ D, then there exists

a unitary v ∈ C := H0(D)′ ∩ E such that

v(u⊕s,t 1) ∈ N (H0(D), J + β(J)) + C · 1 .

THIS IMPLIES:

If u ∈ U0(E) and u ∈ Der(H0(D), J) then

[u] = [u⊕ 1] = [w]− [v] with v ∈ U(C) and w ∈ U(N (H0(D), J)).

Thus, the kernel of K1(Der(H0(D), J))→ K1(E) is contained in γ(K1(C)).

We know that K1(C) → K1(E) is surjective, cf. . ?????????, because H0

dominates (absorbs) zero.

Let q1 ≥ p0 as above. Then w = 1+y for some y ∈ N (H0(D), J+β(J)). There

is a separable C *-algebra B ⊆ J such that B+β(B) contains H0(D)y∪yH0(D). If



4. GROUPS DEFINED BY ABSORBING C*-MORPHISMS 583

b0 ∈ B+ is a strictly positive contraction for B, then there exists a projection q2 ∈
F ⊆ C with q2 ≥ q1, q2 6= q1 and q2(b0 + β(b0)) = b0 + β(b0) by Theorem 4.4.6(iii).

It follows q2H0(a)y = H0(a)y = H0(a)yq2, q2H0(a)w = H0(a)q2 + q2H0(a)y =

H0(a)wq2 and q2wH0(a) = wH0(a)q2 in the same way. Moreover q2 − q1 ∈ F is

a non-zero projection and there is a unitary z3 ∈ (1 + F ) ∩ U0(F + C · 1) with

z∗3(q2 − q1)z3 = p0.

Let z1, z2 ∈ 1 + F unitaries with z∗1q1z1 = p0 and z∗2q2z2 = p0, cf. assumption

(v) of Theorem 4.4.6.

We get:

??? Then p0H0(·)z∗wz = H0(·)z∗wzp0.

New approach:

The crucial points are:

q2u
∗H0u = q2w

∗H0w = w∗q2H0(·)w

and

q2((k + βh0)⊕s0,t0 H0) = s0(k + βh0)s∗0 + (q2 − p0)H0

and that q2H0 and (q2 − p0)H0 are unitarily equivalent to p0H0 = s0(h0 + βh0)s∗0
by unitaries v1, v2 ∈ C: Say q2H0 = v∗1p0Hv1 and (q2 − p0)H0 = v∗2p0Hv2.

Since h0 dominates zero, we get that [q2u
∗H0u] = [h0 + βh0]. Let

h1(a) := t∗0(q2 − p0)H0(a)t0 = t∗0v1p0H0(a)v∗1t0 .

Then t0h1(a)t∗0 = (q2 − p0)H0(a). Thus [k + βh0] + [h1] = [h0 + βh0].

We show that h1 dominates zero:

By Theorem 4.4.6(iii) – with f := 0 – there is a projection q3 ∈ F with q2 ≤ q3

and 0 6= q4 = q3 − q2 ≤ 1 − p0 = t0t
∗
0. It follows that the projection q5 := t∗0q4t0

is Murray–von-Neumann equivalent to q4 = t0q5t
∗
0 and satisfies h1(·)q5 = 0. The

assumption (v) of Theorem 4.4.6 allows to find a unitary u4 ∈ 1 + F ⊆ C with

u∗q4u = q0 = s0s
∗
0. The element T := s∗0u

∗t0q5 ∈ E satisfies T ∗T = 1 and

TT ∗ = q5. Thus, T ∗h1(·)T = 0, and h1 dominates zero.

It follows [0] + [h1] = [h1], i.e.,

t0h1(·)t∗0 = (q2 − p0)H0(·) = v∗2p0H0(·)v2

is unitarily equivalent to h1 by Proposition 4.3.5(i). We obtain

[h1] = [p0H0(·)] = [0] + [h0 + βh0] = [h0 + βh0]

by Lemma 4.4.7(ii). It yields [k+ βh0] + [h0 + βh0] = [h0 + βh0]. Summing up, we

get the existence of a unitary U ∈ E with

s0(k + βh0)s∗0 + t0(h0 + βh0)t∗0 = U∗(h0 + βh0)U .

Since k(D)∪h0(D) ⊆ J and J ∩ β(J) = {0}, it follows that s0k(a)s∗0 + t0h0(a)t∗0 =

U∗h0(a)U for all a ∈ D, i.e., [k] + [h0] = [h0].

Next Part of proof not complete !!! ??
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The plan (!!!) is to apply assumption 4.4.6(iii) to suitable separable C *-

subalgebras M ⊆ J + βJ to get projection p, q ∈ F with p0 ≤ p, p0 ≤ q and

p0 6= p, such that there exists a unitary V ∈ E with the (needed) property

V ∗H0(·)qV = s0(k(·) + βh0(·))s∗0 + (p− p0)H0(·) .

By Part (v), there are unitaries U1, U2 and U3 in 1 + F ⊆ C with U∗1 p0U1 = q,

U∗2 p0U2 = p− p0 and U∗3 p0U3 = p. We get that

U∗4 (H0(·)p0)U4 = (k + βh0)⊕s0,R ((U∗2 (H0(·)p0)U2 ⊕R,s0 0)

where U4 := U1V , R ∈ C is an isometry with with RR∗ = 1− p0 and R(p− p0) =

(p− p0)R = (p− p0), e.g. R := U∗3 (1− p0)U2 + (p− p0). It implies

[h0 + βh0] + [0] = [k + βh0] + [h0 + βh0] + [0] .

Since h0 + βh0 absorbs zero, we get [h0 + βh0] = [k + βh0] + [h0 + βh0] on uni-

taries equivalence classes (with Cuntz addition outside the brackets [.] and ordi-

nary addition of linear maps inside [.]). The unitary equivalence of h0 + βh0 and

(k + βh0)⊕ (h0 + βh0) = (k ⊕ h0) + (βh0 ⊕ βh0) induces a unitary equivalence of

h0 and k ⊕ h0 because J ∩ β(J) = 0. This means [k] + [h0] = [h0].

�

Lemma 4.4.16. The assumptions (i)–(vi) in Theorem 4.4.6 imply the following

properties (i)-(iv).

(i) There exist isometries s2, t2 ∈ E with s2s
∗
2 +t2t

∗
2 = 1, t2 ∈ C, s∗2H0(·)s2 =

h0, p2 := s2s
∗
2 ≤ p0 .

Moreover, p2 is a properly infinite projection in the ideal C ∩
N (H0(D), J) of C with 0 = [p2] in K0(C ∩ N (H0(D), J)), i.e., there

exists a unital C*-morphism from O2 into p2Cp2.

The isometry s2 satisfies also β(s2)∗H0(·)β(s2) = βh0 .

(ii) The projection p0 is the sum p0 = q + r of properly infinite projections

q, r ∈ C with q ∈ N (H0(D), J) and r ∈ N (H0(D), βJ). For each decom-

position p0 = q+ r of this kind holds [qH0(·)] = [h0] and [rH0(·)] = [βh0].

(iii) If e ∈ E satisfies e∗H0(D)e ⊆ J+βJ then there exist elements x, y, z ∈ E
with max{‖x‖, ‖y‖, ‖z‖} ≤ ‖e‖ and a unitary w ∈ 1 + F such that e =

wqx + wry + z , H0(D)z = {0} , z∗(wqx) = 0 and z∗(wqy) = 0, where

q, r ∈ C are projections with p0 = q + r and q, β(r) ∈ N (H0(D), J).

(iv) Let T1, . . . , Tn ∈ E such that k(a) :=
∑n
j=1 T

∗
j H0(a)Tj ∈ J + βJ for

all a ∈ D. Then there exist S1, S2 ∈ E, such that k = k1 + βk2 with

k`(a) = S∗` h0(a)S` for a ∈ D, ` ∈ {1, 2}.
In particular, if [k] ∈ S(H0 ; D,E) and k(D) ⊆ J + βJ , then k =

k1 + βk2 with unique k1, k2 ∈ S(h0 ; D,E).

New numbers X-6
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Proof. (i): By Lemma 4.4.7(ii), there exists a unitary w ∈ E with

w∗(h0 + βh0)w = sh0s
∗ + tβh0t

∗ .

The isometry T := ws ∈ E satisfies T ∗(h0 + βh0)T = h0. Let s2 := s0T . Then

p2 := s2s
∗
2 ≤ p0 = s0s

∗
0 and s∗2H0(·)s2 = h0 . Thus p2H0(D) = s2h0(D)s∗2 ⊆ J ,

p2 ∈ C, p2Cp2 = s2(h0(D)′ ∩ E)s∗2 and p2 ∈ N (H0(D), J).

We get p2Cp2 ⊆ C ∩ N (H0(D), J), because p2cp2 ≤ ‖c‖p2 for c ∈ C+, p2 ∈
C ∩ N (H0(D), J) and because N (H0(D), J) = (πJ)−1(Ann(πJ(H0(D)), J)) is a

hereditary C *-subalgebra of E.

In particular, s2ss
∗
2 and s2ts

∗
2 generate a unital copy s2C

∗(s, t)s∗2 of O2 that is

unitally contained in the corner p2Cp2 of the closed ideal C ∩N (H0(D), J) of C.

Since there is a unital C *-morphism from O2 into p2Cp2 – with unit p2 –, p2

is properly infinite in C ∩N (H0(D), J) and [p2] = 0 in K0(C ∩N (H0(D), J)).

It follows that [1− p2] = [1] = 0 in K0(C).

Since t0t
∗
0 ≤ 1− p2 and t0 ∈ C, we get that 1− p2 is full and properly infinite

in C. By Lemma 4.2.6(ii), 1 and 1− p2 are MvN-equivalent in C, i.e., there exists

an isometry t2 ∈ C with t2t
∗
2 = 1− s2s

∗
2.

The equation β(s2)∗H0(·)β(s2) = βh0 holds, because βH0 = H0. The corner

β(p2)Cβ(p2) of C is a corner of the ideal C ∩N (H0(D), β(J)) of C.

(ii): Let s2 as in Part (i). Since

[h0] + [βh0] = [h0 ⊕s,t βh0] = [h0 + βh0]

by Lemma 4.4.7(ii), and since s∗0H0(·)s0 = h0 +βh0 by assumption (iv) of Theorem

4.4.6, there exists a unitary w ∈ E such that z = (s2 ⊕s,t β(s2))ws∗0 is a partial

isometry in C with z∗z = p0 and zz∗ = sp2s
∗+tβ(p2)t∗ – compare Lemma 4.3.4(ii)

and proof of Proposition 4.4.3(i).

The inequality ss∗ + tβ(p2)t∗ ≤ 1, implies s(1 − p2)s∗ ≤ 1 − zz∗. Using that

p2 ≤ p0 , and that 1 − p0 = t0t
∗
0 and s(1 − p0)s∗ = st0t

∗
0s
∗ are properly infinite

projections in C, we obtain that 1− zz∗ is properly infinite in C. Since 1− zz∗ is

properly infinite and [1 − zz∗] = [1 − p0] = [t0t
∗
0] = [1] in K0(C), Lemma 4.2.6(ii)

applies to 1− zz∗, 1 ∈ C, and there exists an isometry T ∈ C with TT ∗ = 1− zz∗.

The element W := z + Tt∗0 is a unitary in C with

p0 = (z∗z)2 = W ∗zz∗W = W ∗(sp2s
∗ + tβ(p2)t∗)W .

Hence q := W ∗sp2s
∗W = (W ∗ss2)(W ∗ss2)∗ and r := W ∗tβ(p2)t∗W are properly

infinite projections in C that are MvN-equivalent in C to p2 and β(p2), and satisfy

p0 = q + r.

Since βH0 = H0 and s∗W, t∗W ∈ C, we get q ∈ N (H0(D), J) and r ∈
N (H0(D), βJ), because p2 ∈ N (H0(D), J).

If p0 = q+ r with q ∈ N (H0(D), J) and r ∈ C ∩N (H0(D), βJ) are given, then

k1(a) := qH0(a) and k2(a) := rH0(a) satisfy, by assumption (iv) of Theorem 4.4.6,
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that

k1(a) + k2(a) = p0H0(a) = s0(h0(a) + βh0(a))s∗0 .

Since J ∩ βJ = {0} and β(s0) = s0 it follows that k1 = s0h0(·)s∗0 = βk2, i.e.,

[k1] = [βk2] = [h0] + [0] = [h0] .

(iii): Let e ∈ E and e∗H0(a∗a)e ∈ J+βJ for all a ∈ D. Then H0(D)e ⊆ J+βJ .

Let f ∈ J+βJ a strictly positive element of the separable C *-subalgebra A of J+βJ

that is generated by H0(D)e.

There exists a projection p ∈ F with p0 ≤ p and pf = f by assumption (iii) of

Theorem 4.4.6. In particular H0(D)(1− p)e = {0}.

By assumption (v) of Theorem 4.4.6, there is a unitary w ∈ 1+F with wp0w
∗ =

p. Let z := (1−p)e, x := qw∗e, and y := rw∗e for projections q, r ∈ C with p0 = q+

r, q, β(r) ∈ N (H0(D), J). Then max{ ‖x‖, ‖y‖, ‖z‖ } ≤ ‖e‖ and wqx+wry+z = e,

and z∗wq = 0 = z∗wr follows from (1− p)wp0 = 0.

(iv): Let k : D → E with [k] ∈ S(H0 ; D,E) and k(D) ⊆ J +βJ . By definition

of S(H0 ; D,E), there exists an isometry T ∈ E with T ∗H0(·)T = k .

More generally, if T1, . . . , Tn ∈ E such that k(a) :=
∑n
j=1 T

∗
j H0(a)Tj ∈ J +

βJ for all a ∈ D, then k(a) = T ∗H0(a)T for T :=
∑n
j=1 SjTj with isometries

S1, . . . , Sn ∈ C∗(s, t) ⊆ H0(D)′ ∩ E. In particular, T ∗H0(D)T ⊆ J + βJ . By Part

(ix), there exists a unitary w ∈ 1 + F ⊆ C, and x, y, z ∈ E with norms ≤ ‖T‖ such

that T = wqx + wry + z and H0(D)z = {0}, where q, r ∈ C are projections with

q, β(r) ∈ N (H(D), J). It follows T ∗H0(·)T = x∗qH0(·)x+ y∗rH0(·)y .

The c.p. maps k1 := x∗qH0(·)x and k0 := y∗rH0(·)y satisfy k = k0 + k1. Let

k2 := βk0, then k = k1 + βk2. Since J ∩ β(J) = {0} and β2 = id, the maps k1 and

k2 are uniquely determined by the map k = k1 + βk2.

Now use that [qH0(·)] = [h0], [rH0(·)] = [βh0] by Lemma 4.4.16(ii).

It means that there are unitaries u1, u2 ∈ E with qH0(·) = u∗1h0(·)u1 and

rH0(·) = u∗2βh0(·)u2 .

It follows that k1 = S∗1h0(·)S1 with S1 := u1x and k2 = S∗2h0(·)S2 with

S2 = β(u2y).

If ‖T‖ ≤ 1 then ‖Sj‖ ≤ 1 for j = 1, 2, and k is a c.p. contraction. If k is

moreover multiplicative then k1 and k2 must be multiplicative, because J · βJ =

J ∩ βJ = {0}. If k is multiplicative, then we can use that h0 dominates zero

by Lemma 4.4.7(v), and find, by Proposition 4.3.6(ii), isometries T1, T2 ∈ E with

T ∗1 h0(·)T1 = k1 and T ∗2 h0(·)T2 = k2. This means that k1, k2 ∈ S(h0 ; D,E), if,

moreover, ‖T‖ ≤ 1 and k is multiplicative. �

Lemma 4.4.17. The following properties of Der(H0(D), J), C = H0(D)′ ∩ E
and N (H0(D), J) follow from assumptions (i)-(vi) of Theorem 4.4.6.

(o) If Q ∈ C is a projection and k(a) := Q · H0(a) for a ∈ D, then [k] ∈
S(H0 ;D,E).
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If, in addition, k(D) ⊆ J + β(J), then k = k1 + βk2 for unique

C*-morphisms kj : D → E with [kj ] ∈ S(h0 ; D,E).

(i) The two-sided normalizer algebra N (H0(D), J) is a full hereditary C*-

subalgebra of E and is an ideal of the C*-algebra Der(H0(D), J) of deriva-

tions of H0(D) into J . It holds Der(H0(D), J) = C +N (H0(D), J) .

All this is also true for the ideal J + β(J) in place of J .

(ii) If k : D → J is given with [k] + [H0] = [H0], then there exists u ∈ U(E)

with

u∗H0(·)u = s2k(·)s∗2 + (1− p2)H0(·) ,

u− p2up2 ∈ C and u ∈ Der(H0(D), J).

With v := u(s2s
∗
0 + t2t

∗
0) holds v∗H0(a)v = s0k(a)s∗0 + (1− p0)H0(a)

for all a ∈ D, and v − p0vp0 ∈ C and v ∈ Der(H0(D), J + βJ), i.e.,

v∗H0(a)v −H0(a) ∈ J + β(J) ∀a ∈ D .

The above described u and v in U(E) are uniquely defined by k : D → J

up to left-multiplication by unitaries in C.

Compare with (xv) ???

If [k] + [h0] = [h0] in S(h0 ; D,E), then u = w1u1 with u1 ∈ 1 +

N (H0(D), J) and w1 ∈ C.

(iii) If G ⊆ U(Der(H0(D), J + βJ)) is a separable subgroup of the unitaries

in Der(H0(D), J + βJ), then there exist a projection p ∈ F ⊆ C and a

unitary w ∈ 1 +F , such that p ≥ p0, p 6= p0, w∗pw = p0 and (1−p)u ∈ C
for all u ∈ G.

For each u ∈ G there are C*-morphisms k
(u)
1 , k

(u)
2 ∈ S(h1 ; D,E) such

that

w∗u∗H0(·)uw = (k
(u)
1 + βk

(u)
2 )⊕s0,t0 H0 .

If u ∈ Der(H0(D), J) then k
(u)
2 = h0.

(iv) If G is a separable subgroup of U(Der(H0(D), J)) then there exist isome-

tries S, T ∈ E with TT ∗ + SS∗ = 1, S∗u∗H0(·)uS = 0 and Tu∗H0(·)u =

u∗H0(·)u = u∗H0(·)uT for all u ∈ G.

(v) If u ∈ Der(H0(D), J) is unitary, and S, T ∈ E are the isometries from

Part (iv) for a separable subgroup G of U(Der(H0(D), J)) that contains u,

then the unitary W := Su∗S∗+TuT ∗ ∈ U0(E) satisfies (W ∗)kH0(·)W k =

(u∗)kH0(·)uk for all k ∈ Z.

In particular, W k(u∗)k ∈ C for all k ∈ Z and [W ]E = 0 in K1(E).

(vi) Next calculation needed?

For u ∈ Der(H0(D), J) and S, T from (iii) – depending on a chosen

closed separable subgroup G of U(Der(H0(D), J)) that contains u – holds

v[u]∗H0(·)v[u] = u∗H0(·)u, where

v[u] := (TuT ∗ + SS∗) .

Two unitaries u1 and u2 in G ⊆ Der(H0(D), J) have same class [u1] =

[u2] in K1(Der(H0(D), J)), if and only if, v[u1] and v[u2] are homotopic

in U(Der(H0(D), J))
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????

Is it at least true modulo the closed ideal of Der(H0(D), J) generated

by the annihilators of H0(D)?

Homotopy not in U(Der(H0(D), J)) ??

Because the S is not in Der(H0(D), J).

I.e., the (multiple-valued) map u 7→ v[u] ∈ U(E) has the prop-

erty that v[u1]∗v[u2] ∈ U0(Der(H0(D), J)), if and only if, u1, u2 ∈
U(Der(H0(D), J)) have the same K1-class in K1(Der(H0(D), J)).

(vii) If u ∈ U(Der(H0(D), J)), then there exists a unitary w ∈ 1 + F ⊆ C and

k ∈ S(h0 ; D,E), such that (uw)∗H0(·)uw = k ⊕s0,t0 H0.

Why not s2, t2 in place of s0, t0?

So far it is only shown that

(uw)∗H0(·)uv = (k + βh0)⊕s0,t0 H0

for suitable v ∈ U(C) and k ∈ S(h0 ;D,E).

Notice that then one can replace uv by v∗uv. Is u∗v∗uv ∈ U(C) ·
U(N (H0(D), J)).

Is 1⊕ w ∈ U(C) · U(N (H0(D), J)) if [w] = 0 ∈ K1(Der(H0(D), J))?

What about next? Typo?

(viii) For every u ∈ U(Der(H0(D), J)) there exist w ∈ U(C) and k ∈
S(h0;D,E) with w∗(u∗H0(·)u)w = k ⊕s0,t0 H0, such that 1 − uw ∈
N (H0(D), J)u

?????

?? What is required above? Typos?

(ix) The unitary group of Der(H0(D), J) is invariant under forming u1⊕s,t u2

(modulo multiplication with unitaries in N (H0(D), J) + 1 or in C).

The sum u1 ⊕s,t u2 corresponds to

(k1 ⊕s,t k2) + βh0

up to multiplication by a unitary v ∈ U(C) · U(N (H0(D), J)) if k1, k2 ∈
S(h0 ; D,E) are morphisms with

u∗jH0(·)uj = (kj + βh0)⊕s0,t0 H0 .

(x) If [v1] = [v2] ∈ K1(Der(H0(D), J)), then [k1+βh0]+[h0] = [k2+βh0]+[h0].

(xi) A C*-morphism k : D → J satisfies [k+ βh0] + [h0 + βh0] = [h0 + βh0] if

and only if there exists a unitary v in 1 +N (H0(D), J) such that

s2k(·)s∗2 + (1− p2)H0(·) = v∗H0(·)v .

It implies [k] + [H0] = [H0].

(xii) πJ(u) ∈ U0

(
πJ(H0(D))′ ∩ (E/J)

)
, if and only if, there is path v(t) in

U0(Der(H0(D), J)) with v(0) ∈ 1 + J ⊆ 1 +N (H0(D), J) and v(1) = u.

(xiii) If u = u1u2 with u1 a unitary in C and u2 a unitary in the unitization

of N (H0(D), J) then u∗H0(·)u = s2k(·)s∗2 + (1− p2)H0(·) for k : D → J

implies that [k + βh0] + [h0] = [h0 + βh0] .

(xiv) If k : D → J and [k + βh0] + [h0] = [h0 + βh0] , then [k] + [h0] = [h0] .
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(xv) If k : D → J and u ∈ U(E) are given with u∗H0(·)u = k(·) ⊕s2,t2 H0(·),
then u ∈ Der(H0(D), J).

What about the unitary W0 := s∗2s0 + t∗2t0 that transforms

k(·)⊕s2,t2 H0(·)

into k(·)⊕s0,t0 H0(·) ??

Is NOT useful as transformation

If u ∈ Der(H0(D), J) then there exists a unitary w ∈ C := H0(D)′∩E
with 0 = [wu] ∈ K1(E) ( 8 ).

Then [k] + [h0] = [h0] if and only if there exist v ∈ C with vu ∈
N (H0(D), J) + 1.

Part (xv) is shown in the below ????? given proof of Theorem 4.4.6.

What about the general relations between u, u′ ∈ U(E) for k and k′

with [k′] + [h0] = [k] + [h0]?

What about the unitary for [k1 + βh0] + [k2 + βh0]?

(xvi) The set P := U(C) · U(N (H0(D), J) + C · 1) is an open subgroup of

U(Der(H0(D), J)). U(N (H0(D), J) + C · 1) is a closed normal subgroup

of U(Der(H0(D), J)).

The set of u ∈ U(Der(H0(D), J)) with the property that u⊕s,t 1 ∈ P
is an open subgroup of U(Der(H0(D), J)).

Each element of Der(H0(D), J), N (H0(D), J) + C · 1 and C are K1-

surjective and satisfy that [u1] = [u2] if and only if (u∗1u2) ⊕s,t 1 is in

U0(Der(H0(D), J)) (respectively in U0(N (H0(D), J)), or U0(C)).

In particular:

If x = [u] ∈ K1(Der(H0(D), J)) for some u ∈ U(Der(H0(D), J))

and if x = µ1(y) + µ2(z) for some y = [v1] ∈ K1(C) and z =

[v2] ∈ K1(N (H0(D), J)), where µ1 : K1(C) → K1(Der(H0(D), J))

and µ2 : K1(N (H0(D), J)) → K1(Der(H0(D), J)) are induced by the

canonical inclusion. Then (u∗v1v2)⊕s,t 1 ∈ U0(Der(H0(D), J)).

more details? others? ??

Since N (H0(D), J) is an ideal of Der(H0(D), J) and is a full hereditary C *-

subalgebra of E and since C := H0(D)′ ∩ E ⊆ Der(H0(D), J) contains the copy

of C∗(s, t) ⊆ C of O2, the natural maps from U(Der(H0(D), J)) and U(E) into

K1(Der(H0(D), J)) and K1(E) are surjective. We can use Lemma 4.2.20(ii) to

obtain that [u1] = [u2] ∈ K1(Der(H0(D), J)) if [u1] = [u2] ∈ K1(E) and u∗2u1 ∈
1 +N (H0(D), J).

Proof. (o): Let T := s1(1 − Q) + t1Q for the isometries s1, t1 as in Lemma

4.4.7(vi). Then T ∗T = 1 and T ∗H0(·)T = QH0(·) = k. Thus, [k] ∈ S(H0 ; D,E).

If moreover k(D) ⊆ J + βJ , then Lemma 4.4.16(iv) applies and k = k1 + βk2

with unique k1, k2 ∈ S(h0 ; D,E).

8 Notice here that (wu)∗H0(·)wu = u∗H0(·)u.
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(i): Let A := H0(D) ⊆ E. Clearly Der(A, J) = π−1
J

(
πJ(A)′ ∩ (E/J)

)
. Thus,

it is a C *-subalgebra of E and C := A′ ∩ E ⊃ Der(A, J). In the same way

N (A, J) = π−1
J (Ann(πJ(A), E/J)), where Ann(πJ(A), E/J) means the two-sided

annihilators of the elements of πJ(A). Since Ann(πJ(A), E/J) is a closed ideal of

πJ(A)′ ∩ (E/J) , the C *-algebra N (A, J) is a closed ideal of Der(A, J).

Similar arguments work with J + β(J) in place of J . Thus, N (A, J + β(J)) is

a closed ideal of Der(A, J + β(J)).

Let e ∈ E with ea−ae ∈ J for all a ∈ A, i.e., e ∈ Der(A, J). Since A := H0(D)

is separable, the C *-algebra M ⊆ J generated by the image of a ∈ A 7→ ea − ae
is separable, and M contains a strictly positive element f . Assumption (iii) of

Theorem 4.4.6, gives a projection p ∈ F ⊆ C with p0 ≤ p and pf = f = fp. Thus

px = x = xp for all x ∈M , and it follows that e(1− p), (1− p)e ∈ C. Since p ∈ C
we get that e− pep ∈ C, and pepa− apep ∈ J for all a ∈ A.

Let u ∈ 1 + F ⊆ C with u∗pu = p0. Then pep = ugu∗ for g := p0u
∗eup0

and g satisfies ∂g(a) = p0u
∗(ea − ae)up0 ∈ J for ∂g(a) := ga − ag and a ∈ A, i.e.,

g ∈ Der(A, J).

By Lemma 4.4.16(ii), p0 is the sum p0 = q + r of properly infinite projections

q, r ∈ C with q ∈ N (A, J) and r ∈ N (A, βJ).

Since N (A, J) is an ideal of Der(A, J) ⊃ C and q ∈ N (A, J), we get that

gq = g(1− r), qg = (1− r)g, (1− r)gr = qgr ∈ N (A, J) .

It follows g − rgr ∈ N (A, J) and rgr = g − (g − rgr) ∈ Der(A, J).

The C *-algebra N (A, β(J)) is a hereditary C *-subalgebra of E, and r ∈
N (A, β(J)). Thus, rgr ∈ N (A, β(J)). Since rgra − argr ∈ J ∩ βJ = {0} for

all a ∈ A, we get rgr ∈ C. Since u ∈ 1 + F ⊆ C, it follows urgru∗ ∈ C.

Let e1 := (e − pep) + urgru∗ and e2 := u(g − rgr)u∗. Since pep = ugu∗, we

get e = e1 + e2. Above we have seen that e1 ∈ C and e2 ∈ N (A, J).

We consider Der(A, J + βJ) and – more generally – the case where X is a

countable subset of Der(A, J+βJ): Every e ∈ X satisfies ∂e(a) := ea−ae ∈ J+βJ

for all a ∈ A, and the linear map ∂e is the sum ∂e = Te+βSe, where Te, Se : A→ J

are bounded linear maps, because J ∩βJ = {0}. Let G denote a separable C *-sub-

algebra of J ⊆ βJ that contains the separable subsets Te(A) ∪ Se(A) for all e ∈ X
and satisfies β(G) = G. Let f ∈ G+ a strictly positive contraction of G. There

is a projection p ∈ F ⊆ C with p ≥ p0 and pf = f by 4.4.6(iii). It follows that

ea−ae = pepa−apep and e−pep ∈ C for all e ∈ X. By 4.4.6(v), there is a unitary

w ∈ 1 + F ⊆ C = A′ ∩ E with w∗pw = p0 .

It follows that p∂e(a) = ∂e(a) = ∂e(a)p = p∂e(a)p = ∂pep for a ∈ A and e ∈ X.

In particular, (1− p)∂e(A) = {0} = ∂e(A)(1− p) for all e ∈ X.

Recall that F ⊆ N (A, J + βJ) ∩ C and that N (A, J + βJ) is a hereditary

C *-subalgebra of E. Thus pep ∈ N (A, J + βJ) for each orthogonal projection
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p ∈ N (A, J + βJ) and e ∈ E. Since p ∈ F ⊆ N (A, J + βJ) and w ∈ 1 + F ⊆ C,

we get that e − pep ∈ C and pep ∈ N (A, J + βJ) for all e ∈ X. In particular,

Der(A, J + βJ) = C +N (A, J + βJ).

(ii): If [k] + [H0] = [H0] then [k⊕s2,t2 H0] = [H0]. There exists u ∈ U(E) with

u∗H0(·)u = k ⊕s2,t2 H0 = s2k(·)s∗2 + (1− p2)H0(·) ,

where p2, s2 and t2 are as in Lemma 4.4.16(i). It follows ut2 ∈ C, because t2 ∈ C,

(1−p2) = t2t
∗
2 and H0(·)u(1−p2) = u(1−p2)H(·) . Furthermore, up2u

∗ commutes

with H0(D) and, for a ∈ D, up2u
∗H0(a) = us2k(a)s∗2u

∗ ⊆ J . In particular,

k(a) = s∗2u
∗H0(a)us2. Recall that p2H0(·) = s2h0(·)s∗2.

We get u∗H0(a)u − H0(a) = s2(k(a) − h0(a))s∗2 ∈ J for all a ∈ D, because

k(D) ⊆ J . Thus, u ∈ Der(H0(D), J).

Clearly v∗H0(·)v = s0k(·)s∗0 + (1 − p0)H0(·) with v := u(s2s
∗
0 + t2t

∗
0) . Then

vt0 ∈ C and v ∈ Der(H0(D), J + β(J)).

Since p2, p0 ∈ N (H0(D), J + βJ) and s2s
∗
0 = p2(s2s

∗
0)p0, the partial isometry

s2s
∗
0 is in Der(H0(D), J + β(J)) but is not in Der(H0(D), J), because p0 = s0s

∗
0 =

(s2s
∗
0)∗s2s

∗
0 is not in Der(H0(D), J).

Next also (xv):

If [k] + [h0] = [h0] in S(h0 ; D,E), then u = w1u1 with u1 ∈ 1 +N (H0(D), J)

and w1 ∈ C.

(iii): Let Y ⊆ U(E) an at most countable subset of the unitaries in E, and

suppose that u ∈ Der(H0(D), J + βJ) for all u ∈ Y . If G is the (norm-)closure

of the subgroup of U(E) generated by Y , then G ⊆ Der(H0(D), J + βJ), because

Der(H0(D), J + βJ) is a C *-algebra by Part (i).

If we take for X in the proof of Part (i) the sub-group of G that is algebraical

generated by Y , then we get a projection p ∈ F ⊆ C and a unitary w ∈ 1 + F ,

such that p ≥ p0, u − pup ∈ C for all u ∈ G, and w∗pw = p0. Moreover pup ∈
N (H0(D), J + βJ) for all u ∈ G, because w ∈ C, p0 ∈ N (H0(D), J + βJ) and

N (H0(D), J + βJ) is an ideal of Der(H0(D), J + βJ).

It follows that (1 − p)u∗H0(·)u = (1 − p)H0(·) for all u ∈ G. This implies

that (1 − p0)(uw)∗H0(·)uw = (1 − p0)H0(·), and Q := uwp0(uw)∗ is a projection

in C, i.e., p0 commutes with (uw)∗H0(·)uw . Let k(a) := s∗0(uw)∗H0(a)uws0, i.e.,

s0k(a)s∗0 = p0(uw)∗H0(a)uw, then k ∈ S(H0 ; D,E) by Part (o) and

(uw)∗H0(·)uw = k ⊕s0,t0 H0 .

Since

(1− p0) ·
(
(uw)∗H0(·)uw −H0(·)

)
= (1− p0)(wu)∗∂wuH0(·) = 0 ,

p0H0(·) = s0

(
h0(·) + βh0(·)

)
s∗0 and uw ∈ Der(H0(D), J + βJ) it follows that, for

a ∈ D,

s0

(
k(a)− h0(a)− βh0(a)

)
s∗0 = (uw)∗∂uw(H0(a)) ∈ J + βJ .
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Thus, k(a) ∈ J + βJ for a ∈ D. Since k ∈ S(H0 ; D,E) it implies k = k1 + βk2 for

unique k1, k2 ∈ S(h0 ; D,E) by Lemma 4.4.7(x).

If moreover u ∈ Der(H0(D), J), then the above arguments show that k(a) −
h0(a)− βh0(a) ∈ J for each a ∈ D. This implies k2 = h0 because J ∩ βJ = {0}.

(iv): Let G a separable (norm-) closed subgroup of U(Der(H0(D), J + βJ)).

By the proof of Part (iii) there exist a projection p ∈ F ⊆ C, and a unitary

w ∈ 1 + F such that p ≥ p0, u− pup ∈ C for all u ∈ G, and w∗pw = p0. Moreover

pup ∈ N (A, J + βJ) for all u ∈ G. It follows that (1 − p)u∗H0(·)u = (1 − p)H0(·)
for all u ∈ G. It follows that there exists an isometry R with R∗(1− p)R = 1, i.e.,

RR∗ ≤ 1− p, and with H0(D)RR∗ = {0}:

Indeed, by Lemma 4.4.7(vi), there exist isometries s1, t1 ∈ E with t1 ∈ C,

s1s
∗
1 + t1t

∗
1 = 1, p0t1 = p0 = t1p0, s1s

∗
1H0(·) = 0 and t1H0(·) = H0 = H0(·)t1 .

It implies s1s
∗
1 = 1 − t1t∗1 ≤ 1 − p0. Since w ∈ C and wp0w

∗ = p, the isometry

R := ws1 satisfies RR∗ ≤ 1 − p = w(1 − p0)w∗, and R∗H0(·)R = s∗1H0(·)s1 = 0.

Then RER∗⊥H0(D), and for all u ∈ G,

R∗u∗H0(·)uR = R∗(1− p)u∗H0(·)uR = R∗(1− p)H0(·)R = 0 .

Let S := Rs and T := (1 − RR∗) + RtR∗ . Then S and T are isometries in

E, TT ∗ = (1 − RR∗) + Rtt∗R∗, and SS∗ ≤ RR∗⊥u∗H0(D)u, Tu∗H0(·) = (1 −
RR∗)u∗H0(·) = u∗H0(·), H0(·)uT = H0(·)u for all u ∈ G, and SS∗ + TT ∗ =

(1−RR∗) +Rss∗R∗ +Rtt∗R∗ = 1.

(v): Let S, T ∈ E the isometries from Part (iv). It is well-known that Wu :=

Su∗S∗+TuT ∗ is in U0(E), and straight calculation shows W ∗uH0(·)Wu = u∗H0(·)u
for all u ∈ G. It follows uW ∗u ∈ C and [Wu]E = 0 in K1(E).

(vi): For any u ∈ E holds v∗H0(a)v = u∗H0(a)u for v := (SuS∗ + TT ∗).

Then w := vu∗ = SuS∗u∗ + TT ∗u∗ is in C.

TYPO ????????

Unitaries u1 and u2 in Der(H0(D), J) have same class in K1(Der(H0(D), J)),

if and only if, the corresponding – in this way defined – v1 and v2 are homotopic

in U(Der(H0(D), J)).

(I.e., the new sort of v ∈ U0(E) has the property that, any two of

them are homotopic in U(Der(H0(D), J)) if they have the same K1-class in

K1(Der(H0(D), J)).)

This implies ????

(vii): To be shown: If u ∈ U(Der(H0(D), J)), then there exists a unitary

v ∈ 1 + F ⊆ C and k ∈ S(h0 ; D,E), such that with w = uv holds

w∗H0(·)w = (k + βh0)⊕s0,t0 H0 .

Compare with k ⊕s2,t2 H0 ??

(viii): To be shown: ??????



4. GROUPS DEFINED BY ABSORBING C*-MORPHISMS 593

For every u ∈ U(Der(H0(D), J)) there exist w ∈ U(C) and k ∈ S(h0;D,E)

with w∗(u∗H0(·)u)w = k ⊕s0,t0 H0, such that 1− uw ∈ N (H0(D), J)u ?????.

It would imply: u∗ − w ∈ u∗N (H0(D), J)u = N (H0(D), J). It is desirable,

but still not prove-able. ????

(xiv): [k+βh0] + [h0] = [h0 +βh0], is the same as [k] + [h0 +βh0] = [h0 +βh0]

by Lemma 4.4.7(i). Since [k]+[h0 +βh0] = [k⊕s,t (h0 +βh0)], there exists a unitary

u ∈ E with

(u∗sk(a)s∗u+ u∗th0(a)t∗u− h0(a)) + (u∗tβh0(a)tu− βh0(a)) = 0

for all a ∈ D. Since J ∩β(J) = Jβ(J) = {0} it follows u∗
(
sk(·)s∗+ th0(·)t∗

)
u = h0,

i.e., [k] + [h0] = [h0] .

(xv): Let k : D → J and u ∈ U(E) with u∗H0(·)u = k(·)⊕s2,t2 H0(·) .

Then k = s∗2u
∗H0(·)us2 ∈ S(H0 ; D,E) and k ∈ S(h0 ; D,E) by Lemma

4.4.7(x).

Suppose [k] + [h0] = [h0], ....?????

Since s, t ∈ h0(D)′ ∩ E for the isometries s, t in Theorem 4.4.6(i), we get

W0(h0 ⊕s2,t2 h0)W ∗0 = h0 for the unitary W0 := ss∗2 + tt∗2.

If [k] + [h0] = [h0], then there is a unitary V0 ∈ E with V ∗0 (k ⊕s2,t2 h0)V0 =

h0 = p2H0(·) . The unitary V1 := V0W0 satisfies

V ∗1 (k ⊕s2,t2 h0)V1 = h0 ⊕s2,t2 h0 .

The unitary T := (s2)2s∗2 + s2t2s
∗
2t
∗
2 + t2(t∗2)2 satisfies for all X,Y, Z ∈ E that

T
(
X ⊕s2,t2 (Y ⊕s2,t2 Z)

)
=
(
(X ⊕s2,t2 Y )⊕s2,t2 Z

)
T .

Notice that H0 = h0 ⊕s2,t2 H0. It implies

H0 = h0 ⊕ (h0 ⊕H0) = T ∗((h0 ⊕ h0)⊕H0)T

Let W1 := V1 ⊕ 1 and v := T ∗W ∗1 T = T ∗(V ∗1 ⊕ 1)T . Then rv = r = vr for

r := T ∗t2t
∗
2T = t22(t22)∗ = t2(1− p2)t∗2, 1− r = p2 + t2p2t

∗
2 is in C ∩ N (H0(D), J),

because the latter is an ideal of C and t2 ∈ C. It implies t2H0(D)p2t
∗
2 ⊆ J . Thus

v ∈ 1 + (1− r)E(1− r) ⊆ 1 +N (H0(D), J), and satisfies:

v∗H0v = v∗T ∗((h0 ⊕ h0)⊕H0)Tv = T ∗W1((h0 ⊕ h0)⊕H0)W ∗1 T =

T ∗
(
(k ⊕ h0)⊕H0

)
T =

(
k ⊕ (h0 ⊕H0)

)
= k ⊕s2,t2 H0 .

It follows that uv∗ = w ∈ C, i.e., that u is the product wv of a unitary v ∈
1 +N (H0(D), J) and a unitary w ∈ C.

Check again:

Now we consider the opposite direction: Suppose that u = wv with v a unitary

in 1 +N (H0(D), J) and w ∈ U(C). Then

v∗H0(·)v = k(·)⊕s2,t2 H0(·) .

and there is normal g ∈ N (H0(D), J) with v = g + 1. The sets H0(D)g and

∂v(H0(D)) = ∂g(H0(D)) together generate a separable C *-subalgebra of J . By
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Theorem 4.4.6(ii) there exists p ∈ F with p ≥ p0, p 6= p0 such that p(H0(a)g −
gH0(a))p = H0(a)g−gH0(a) and H0(·)gp = H0(·)g = H0(·)pg. If we add to the last

equation H0(·)p, then we get H0(·)vp = H0(·)pv. It follows v∗H0(·)vp = v∗H0(·)pv,

H0(·)pvp− pvpH0(·) = H0(·)v − vH0(·) and v∗H0(·)v(1− p) = H0(·)(1− p). Since

p = p0 + r for some r 6= 0, it follows r = rt0t
∗
0, v∗H0(·)pv = v∗H0(·)vp = s2k(·)s∗2 +

rH0(·). By Theorem 4.4.6(v), there exist unitaries W1,W2 ∈ 1 +F with W ∗1 pW1 =

p0 and W ∗2 rW2 = p0. Then H0(·)p = W1H0(·)p0W
∗
1 and H0(·)r = W2(H0(·)p0)W ∗2 .

Recall that H0(·)p0 = s0(h0 + βh0)s∗0. It gives

[h0 + βh0] + [0] = [k] + [h0 + βh0] + [0] .W2H0(·)p0W
∗
2 t2)t∗2

By Lemma 4.4.7(ii,i), this is equivalent to [h0 + βh0] = [k + βh0] + [h0] It follows

[h0] = [k] + [h0] by Part (xiv).

?? to be filled in �

We study at first the case, where the OLD !!!! assumptions (I) and (II)

are satisfied (in addition to (i)-(vii)):

If u ∈ Der(H0(D), J) is unitary, then, by Lemma 4.4.17(v), there exists w ∈ C
such that u∗H0(a)u = (wu)∗H0(a)(wu) for all a ∈ A and wu ∈ U0(E).

Then by assumption (I) there exists a unitary v ∈ C ∩ U0(E) such that for

u′ = wuv ∈ U0(E)

(u′ − 1)β(J) = {0} .

to be filled in ?? ??????????????????????

Start:

towards isomorphism of kernel and Γ

Now we take a more K-theoretic approach for the study of the general situ-

ation:

Let C2 := h0(D)′ ∩ E. Then G(h0 ; D,E) ∼= ker(K0(C2) → K0(E)) by

??????????? ?? from Lemma 4.2.20 ???

It holds C2
∼= p2Cp2 via the *-isomorphism b ∈ C2 7→ s2bs

∗
2.

The subalgebras Ann(H0(D), E) and C ∩ N (H0(D), J) are ideals of C, and

Ann(H0(D), E) ⊆ C ∩N (H0(D), J).

The projection p2 + Ann(H0(D), E) is properly infinite in C/Ann(H0(D), E),

which is a full C *-subalgebra of

J2 := (C ∩N (H0(D), J))/Ann(H0(D), E) .

Since H0 dominates zero, we get that Ann(H0(D), E) is a full hereditary C *-

subalgebra of E. Now Lemma 4.2.20 shows that

G(H0 ; D,E) ∼= K0(C/Ann(H0(D))) ∼= ker(K0(C)→ K0(E)) .
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The same happens with Ann(h0(D), E) ⊆ C2 in E. Moreover, s2bs
∗
2 ∈

Ann(H0(D), E), if and only if, b ∈ Ann(h0(D), E). Let

A := C/Ann(H0(D), E) .

The algebra J2 is a closed ideal of A with A/J2
∼= C/(C ∩ N (H0(D), J)) and the

natural map G(h0 ; D,E)→ G(H0 ; D,E) transforms to

K0(C2/Ann(h0(D), E)) ∼= K0(J2)→ K0(A) .

The surjectivity of G(h0 ; D,E)→ G(H0 ; D,E) is equivalent to the exactness

of the sequence

K1(A)→ K1(A/J2)→∂ K0(J2)→ K0(A)→ 0 .

One can use the identity Der(H0(D), J) = C +N (H0(D), J), i.e., that

A/J2
∼= Der(H0(D), J)/N (H0(D), J) ,

the natural map K1(C)→ K1(Der(H0(D), J)) and the splitting (by Lemma 4.2.20)

of the exact sequence

0→ K1(N (H0(D), J))→ K1(Der(H0(D), J))→ K1(A/J2)→ 0 ,

to verify that the quotient K1(A/J2)/∂(K1(A)) of K1(A/J2) by the image of

∂ : K1(A)→ K1(A/J2) is isomorphic to Γ(H0(D), J, E) as defined before Theorem

4.4.6.

It seems likely that the following argument gives that the natural map K1(A)→
K1(A/J2) is zero, i.e., that K1(J2) → K1(A) is surjective too. The only difficult

point in such an attempt is the verification of assumption (ii) of Theorem 4.4.6 for

the “new” system.

Let P∞ denote the unique pi-sun algebra in the UCT-class with K0(P∞) ∼= {0}
and K1(P∞) ∼= Z If we repeat all arguments above with E, J , β, F , H0, h0, s,

t, s0, t0, and u1, but replaced by E ⊗ P∞, J ⊗ P∞, F ⊗ 1, β ⊗ id, H0(·) ⊗ 1,

h0(·)⊗ 1, s⊗ 1, . . ., then one gets also that K1(J2)→ K1(A) is surjective, provided

assumption (ii) of Theorem 4.4.6 can be verified by the new system, at least in a

suitable approximate or asymptotic sense.

Remark 4.4.18. One can show that the following conditions (I) and (II) to-

gether imply that [k ⊕ h0] 7→ [k ⊕H0] is injective.

(I) If u ∈ U0(E) is in C + N (H0(D), J) then there exists a unitary w ∈
C ∩ U0(E) such that (wu− 1)β(J) = {0}.

Alternatively(?): ... such that vu ∈ 1 + N (H0(D), J +

β(J)).

(II) If v ∈ U0(E) is in C + N (H0(D), J), vp0v
∗ ∈ C ∩ N (H0(D), J) and

(v − 1)β(J) = {0}, then k(·) := (vp0v
∗)H0(·) satisfies

[k] + [h0 + βh0] = [h0 + βh0] .
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5. Generalizations and limitations

The following remarks and corollaries discuss some limitations of the arguments

in above given proofs and generalize them partly for “soft” asymptotic considera-

tions.

We need in later chapters local estimates for an approximate version of Propo-

sition 4.3.5(i). The following remark and corollary give estimates in very special

situations, well applicable e.g. to singly generated C *-algebras D.

Remark 4.5.1. Let h1 : D → E a C *-morphism and s1, s2, t ∈ E isometries

with s1s
∗
1 + s2s

∗
2 = 1.

Define a c.p. contraction h2 : D → E by h2(a) := t∗h1(a)t for a ∈ D and

isometries t1 := (1− tt∗) + ts1t
∗, t2 := ts2 in E.

Let C(s1, s2; y) := ‖ [s1, y] ‖ + ‖ [s2, y] ‖ denote the sum of norms of the

commutators of y ∈ E with s1 and s2, and define by

curv(h2, a) := max
(
‖h2(a∗a)− h2(a∗)h2(a) ‖ , ‖h2(aa∗)− h2(a)h2(a∗) ‖

)1/2
the local curvature of the completely positive contraction h2 at a ∈ D, i.e., the

failure of h2 to be multiplicative at the elements a and a∗.

Then the isometries t1, t2 satisfy t1t
∗
1 + t2t

∗
2 = 1 and for the Cuntz sum holds

‖h1(a)− (h1 ⊕t1,t2 h2)(a)‖ ≤ C
(
s1, s2;h2(a)

)
+ curv(h2, a) .

If h3 : D → E is another C *-morphism, then we denote by

var(h2, h3; a) := max{ ‖h2(x)− h3(x)‖ ; x = a, a∗a, aa∗ } ,

the local variation of h2 and h3 at a ∈ D, i.e., the distance of h2 and h3 on

{a, a∗, a∗a, aa∗} .

The C *-morphism h1 ⊕t1,t2 h3 : D → E satisfies, for a contraction a ∈ E, that

‖h1(a)− (h1 ⊕t1,t2 h3)(a)‖

≤ C
(
s1, s2;h3(a)

)
+ C

(
s1, s2;h3(a)− h2(a)

)
+ 4 · var(h2, h3; a)1/2

≤ C
(
s1, s2;h3(a)

)
+ 10 · var(h2, h3; a)1/2 .

Proof. Obviously, the elements t1 := (1− tt∗) + ts1t
∗ and t2 := ts2 of E are

isometries with t1t
∗
1 + t2t

∗
2 = 1. Let p := tt∗,

X(a) := h1(a)−
(
h1(a)⊕t1,t2 h2(a)

)
and recall that h2 := t∗h1(·)t.

Thus, ph1(a)p = th2(a)t∗, pt1h1(a)t∗1p = ts1h2(a)s∗1t
∗ and

pX(a)p = th2(a)t∗ − ts1h2(a)s∗1t
∗ − ts2h2(a)s∗2t = t∆(a)t∗

for ∆(a) := h2(a)− (h2 ⊕s1,s2 h2)(a). Clearly, for y ∈ E and qk := sks
∗
k,

‖y−(y⊕s1,s2 y)‖ ≤ ‖yq1−s1ys
∗
1‖+‖yq2−s1ys

∗
1‖ = ‖ys1−s1y‖+‖ys2−s2y‖ ≤ 4‖y‖ ,
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because q1 + q2 = 1, s∗jqk = δj,ksj and ‖ys∗j‖ = ‖y‖. It follows that

‖pX(a)p‖ ≤ ‖∆(a)‖ ≤ C
(
s1, s2;h2(a)

)
.

The equations (1 − p)t1 = (1 − p) = t∗1(1 − p) and pt1 = ts1, pt2 = t2 = ts2 show

that

p · (h1(a)−X(a)) = t(h2(a)−∆(a))t∗ = (h1(a)−X(a)) · p ,

(1− p)X(a)(1− p) = (1− p)(h1(a)− t1h1(a)t∗1)(1− p) = 0, and that

pX(a)(1− p) + (1− p)X(a)p = ph1(a)(1− p) + (1− p)h1(a)p .

If we use that ‖x ± y‖ = max(‖x‖, ‖y‖) if x∗y = 0 = xy∗, then we get for z ∈ E
that

‖[z, p]‖ = ‖pz(1− p)− (1− p)zp‖ =

‖pz(1− p) + (1− p)zp‖ = max( ‖pz(1− p)‖ , ‖(1− p)zp‖ ) .

It follows that above estimates sum up to

‖X(a)‖ ≤ C
(
s1, s2;h2(a)

)
+ max

(
‖ph1(a)(1− p)‖, ‖(1− p)h1(a)p‖

)
.

Use now that for p := tt∗ and h2 := t∗h1(·)t holds

‖h2(a∗a)− h2(a)∗h2(a)‖ = ‖(1− p)h1(a)p‖2 .

We obtain

curv(h2, a) = max
(
‖ ph1(a)(1− p) ‖ , ‖ (1− p)h1(a)p ‖

)
= ‖[h1(a), tt∗]‖ .

This implies the proposed estimate C
(
s1, s2;h2(a)

)
+ curv(h2, a) of ‖h1(a) −

(h1 ⊕t1,t2 h2)(a)‖ .

To verify the estimate of the norm of h1(a)−(h1⊕t1,t2 h3)(a) consider following

inequalities:

‖h1(a)− (h1 ⊕t1,t2 h3)(a)‖ ≤ ‖h3(a)− h2(a)‖+ ‖h1(a)− (h1 ⊕t1,t2 h2)(a)‖ ,

C
(
s1, s2;h2(a)

)
≤ C

(
s1, s2;h3(a)

)
+ C

(
s1, s2;h2(a)− h3(a)

)
and C

(
s1, s2;h2(a)− h3(a)

)
≤ 4‖h2(a)− h3(a)‖ .

A rough estimate of curv(h2, a)2 can be seen from

‖h2(a∗a)− h2(a)∗h2(a)‖ ≤ ‖h3(a∗a)− h2(a∗a)‖+ ‖h3(a)∗h3(a)− h2(a)∗h2(a)‖

≤ (2‖a‖+ 1) · var(h2, h3; a) .

Since var(h2, h3; a∗) = var(h2, h3; a), we get curv(h2, a)2 ≤ 3 · var(h2, h3; a) for

‖a‖ ≤ 1.

Notice that

‖h3(a)− h2(a)‖ ≤
√

2 · ‖h3(a)− h2(a)‖1/2 ≤
√

2 · var(h2, h3; a)1/2 ,

for all contractions a ∈ E, in particular, 4‖h3(a)− h2(a)‖ ≤ 6 · var(h2, h3; a)1/2 .

It leads in case ‖a‖ ≤ 1 to the proposed estimates

C
(
s1, s2;h3(a)

)
+ C

(
s1, s2;h3(a)− h2(a)

)
+ 4 · var(h2, h3; a)1/2
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and the bigger upper estimate

C
(
s1, s2;h3(a)

)
+ 10 · var(h2, h3; a)1/2

for the norm of h1(a)− (h1 ⊕t1,t2 h3)(a) . �

The proof of the following corollary is based on the estimates in Remark 4.5.1.

Corollary 4.5.2. If T, S ∈ E are isometries and h, k : D → E are C*-

morphisms, then there exists a unitary U ∈ E ⊗O2 such that

‖U∗(h(a)⊗ 1)U − k(a)⊗ 1‖ ≤ 8 · µ(S, T ; h, k; a)1/2 , ∀ a ∈ D , (5.1)

where µ(S, T ; h, k; a) denotes – for fixed a ∈ D – the maximum of

{‖S∗h(x)S − k(x)‖ , ‖T ∗k(x)T − h(x)‖ ; x = a, a∗a, aa∗} .

The Inequality (5.1) holds even if the unit element of E is not necessarily

properly infinite, i.e., no orthogonality of SS∗ and TT ∗ is required, i.e., it is not

necessary that C∗(S, T ) is an image of E2.

Proof. Given h, k, S, T , consider the C *-morphisms

h1 := h(·)⊗ 1 and k1 := k(·)⊗ 1 ,

and define the “linking” completely positive contractions

h2 := (S∗h(·)S)⊗ 1 and k2 := (T ∗k(·)T )⊗ 1 .

We can take s1 := 1⊗r1 ∈ E⊗O2 and s2 := 1⊗r2 in Remark 4.5.1 for the canonical

generators r1, r2 of O2 = C∗(r1, r2). Then s1 and s2 commute with the elements

of hi(D) ∪ kj(D), i, j ∈ {1, 2}, and the estimates in Remark 4.5.1 apply to the

C *-morphisms h1, h3 := k1 and the c.p. contraction h2 = t∗h1(·)t for t := S ⊗ 1,

respectively to k1, k2 = t∗k1(·)t for t := T ⊗ 1 and k3 := h1 (in place of h1, t, h2, h3

in Remark 4.5.1).

Notice that C
(
s1, s2;hi(a)

)
, C
(
s1, s2; kj(a)

)
and C

(
s1, s2;hi(a) − kj(a)

)
are

zero for i, j = 1, 2, and that the estimates in Remark 4.5.1 changes therefore to

simpler ones, as e.g. to

‖h1(a)− (h1 ⊕t1,t2 k1)(a)‖ ≤ 4 · var(h2, k1; a)1/2 ,

and – with interchanged roles –

‖k1(a)− (k1 ⊕t3,t4 h1)(a)‖ ≤ 4 · var(k2, h1; a)1/2 ,

where we let t1 := (1− SS∗)⊗ 1 + SS∗ ⊗ r1, and t2 := S ⊗ r2 (build by t := S ⊗ 1

from sk := 1⊗ rk), and t3 := (1− TT ∗)⊗ 1 + TT ∗ ⊗ r1 and t4 := T ⊗ r2 (build by

t := T ⊗ 1 from sk := 1⊗ rk).
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If U := t1t
∗
4 + t2t

∗
3 then U(k1 ⊕t3,t4 h1) = (h1 ⊕t1,t2 k1)U , and we obtain the

estimate

‖U∗h1(a)U − k1(a)‖ ≤

‖h1(a)− (h1 ⊕t1,t2 k1)(a)‖+ ‖k1(a)− (k1 ⊕t3,t4 h1)(a)‖ ≤

4 · var(h2, k1; a)1/2 + 4 · var(k2, h1; a)1/2 ≤

8 · µ(S, T ; h, k; a)1/2 .

Here we have used that

µ(S, T ; h, k; a) = max( ‖k2(x)− h1(x)‖, ‖h2(x)− k1(x)‖ ; x = a, a∗a, aa∗ ) ,

i.e., that

µ(S, T ; h, k; a) = max
(
var(h2, k1; a), var(k2, h1; a)

)
.

Notice finally that ‖U∗(h(a)⊗ 1)U − k(a)⊗ 1‖ = ‖U∗h1(a)U − k1(a)‖ . �

Remark 4.5.3. The methods of estimates in the proofs of Remark 4.5.1 and

Corollary 4.5.2 can be generalized to prove the following more flexible and general

result (with different U ∈ E):

If s1, s2, s
′
1, s
′
2 ∈ E are isometries, s1s

∗
1+s2s

∗
2 = 1 = s′1(s′1)∗+s′2(s′2)∗, h, k : D →

E are C *-morphisms, and S, T ∈ E are isometries, then there exists a unitary

U ∈ E that satisfies for all contractions a ∈ D the inequality

‖U∗h(a)U − k(a)‖ ≤ C
(
s1, s2;h(a)

)
+ C

(
s′1, s

′
2; k(a)

)
+ 20 · µ(S, T ; h, k; a)1/2 ,

where µ(S, T ; h, k; a) is the maximum of

{‖S∗h(x)S − k(x)‖ , ‖T ∗k(x)T − h(x)‖ ; x = a, a∗a, aa∗} ,

as defined in Corollary 4.5.2.

Proof. Let h1 := h, h2 := S∗h(·)S, and h3 := k and use the Cuntz addition

⊕′ := ⊕t1,t2 with isometries t1, t2 build by (s′1, s
′
2, S) in place of (s1, s2, t) in Remark

4.5.1, then we get that

‖h(a)− (h(a)⊕′ k(a))‖ ≤ C
(
s′1, s

′
2; k(a)

)
+ 10 · var(S∗hS, k; a)1/2 .

If we take for Remark 4.5.1 h1 := k, h2 := T ∗k(·)T , h3 := h and use ⊕ := ⊕t1,t2
with t1, t2 build by (s1, s2, T ) in place of (s1, s2, t) in Remark 4.5.1, then we obtain

the estimate:

‖k(a)− (k(a)⊕ h(a))‖ ≤ C
(
s1, s2;h(a)

)
+ 10 · var(T ∗kT, h; a)1/2 .

Now we use that

µ(S, T ; h, k; a) = max
(
var(S∗hS, k; a), var(T ∗kT, h; a)

)
and take a unitary U ∈ E with U∗(x⊕′ y)U = y ⊕ x for x, y ∈ E, then we get the

upper estimate

C
(
s′1, s

′
2; k(a)

)
+ C

(
s1, s2;h(a)

)
+ 20 · µ(S, T ; h, k; a)1/2

of ‖U∗h(a)U − k(a)‖. �
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Remark 4.5.4. Let A := H0(D) and C := A′ ∩ E. The algebras N (A, J),

β(N (A, J)) = N (A, βJ) and N (A, J + βJ) are hereditary C *-subalgebras of E,

N (A, J)∩N (A, βJ) = Ann(A,E) (because J∩βJ = 0), and N (A, J)∪N (A, βJ) ⊆
N (A, J + βJ) .

The elements s2, s3 ∈ E defined check ref!! Part (x) of Lemma 4.4.7 have

the property that the partial isometry Z := s2s
∗
3 satisfies Z∗Z ∈ N (A, βJ), ZZ∗ ∈

N (A, J), and Z∗Z,ZZ∗ 6∈ Ann(A, J). Thus, Z ∈ N (A, J + βJ) \Ann(A, J).

Conjecture: The partial isometry Z is not contained in the smallest β-invariant

C *-subalgebra of N (A, J + βJ) generated by N (A, J), i.e.,

Z 6∈ C∗(N (A, J) ∪N (A, βJ)) .

A positive answer seems likely, because otherwise there exist n ∈ N,

a1, . . . , an, b1, . . . , bn ∈ N (A, J) such that Z = b∗1β(a1) + . . .+ b∗nβ(an).

Remark 4.5.5. The observations in Part (i) of Lemma 4.4.7 and the assump-

tions of Theorem 4.4.6 together are not enough to to give a general proof that

[k1] = [k2] and k1(B) ⊆ J imply [k1 + βk3] = [k2 + βk3] for all C *-morphisms

kj : B → J , j ∈ {1, 2, 3}, of an arbitrary separable C *-algebra B.

But, since [k1] = [k2] and k1(B) ⊆ J together imply that there exists u ∈
U0(E) with u∗k1(·)u = k2 by Lemma 4.4.7(i), one can construct, with help of

suitable paths of positive contraction in J+ , a norm-continuous path of unitaries

U(ξ) ∈ U0(J + C1) ⊂ U0(E) for ξ ∈ [0,∞) such that U(0) = 1 and

lim
ξ→∞

U(ξ)∗k1(b)U(ξ) = k2(b) for all b ∈ B .

Then U(ξ)c = c = cU(ξ) for all c ∈ βJ ⊂ Ann(J,E) and

lim
ξ→∞

U(ξ)∗(k1(b) + βk3(b))U(ξ) = k2(b) + βk3(b) for all b ∈ B ,

i.e., k1 + βk3 and k2 + βk3 are unitarily homotopic in E in the sense of Defini-

tion 5.0.1, which is sometimes weaker than k1 and k2 being homotopic or unitary

equivalent.

By symmetry – given by β – this shows also that for C *-morphisms kj : B → J ,

j ∈ {1, 2, 3, 4}, the equations [k1] = [k2] and [k3] = [k4] imply that k1 + βk3 and

k2 + βk4 are unitarily homotopic in E.

We apply Theorem 4.4.6 mainly to special cases where the ideal J is moreover

sub-Stonean, i.e., has the property that, for each a, b ∈ J+ with ab = 0, there exist

contractions c, d ∈ J+ with ac = a, bd = b and cd = 0.

One can show that [k1] = [k2] and kj(B) ⊂ J for j ∈ {1, 2} imply [k1 + βk3] =

[k2 + βk3] for all C *-morphisms k3 : B → J if J is sub-Stonean in addition to the

other assumptions of Theorem 4.4.6.

It is not clear if the assumptions of Theorem 4.4.6 allow to deduce from [kj ] +

[h0] = [h0] (j ∈ {1, 2}) that [k1 + βk2] + [h0 + βh0] = [h0 + βh0] in the case where

J is not sub-Stonean.
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Proof. If [k1] = [k2] and k1(B) ⊆ J then there exists u ∈ U0(E) with

u∗k1(·)u = k2 by Lemma 4.4.7(i).

There are T1, . . . , Tn ∈ E with T ∗m = −Tm for m = 1, . . . , n, i.e., with (iTm)∗ =

iTm in case of complex E, such that u = exp(T1) · . . . · exp(Tn) .

We can define C *-morphisms hm : B → J (m = 1, . . . , n − 1) by h1 := k1,

hm+1(·) := exp(−Tm)hm(·) exp(Tm). Notice that k2 = hn+1.

Something unclear here!

Unitary homotopy, as defined in Definition 5.0.1 is an equivalence relation (in

particular is transitive) and it suffices to show that of

????? of Theorem 4.4.6 ????

i.e., k1+βk3 and k2+βk3 are unitarily homotopic in E in the sense of Definition

5.0.1, which is sometimes weaker than being homotopic or unitary equivalent.

hm+βk3 and hm+1+βk3 are unitarily homotopic for m = 1, . . . , n (respectively

are unitary equivalent by a unitary in U0(J + C · 1) if J is sub-Stonean).

Thus, we may suppose that n = 1 and that k2 = exp(−T )k1(·) exp(T ) with

T ∗ = −T .

Let T ∈ E with T ∗ = −T , and suppose first that J is a sub-Stonean C *-

algebra. In fact, we need only the weaker property of J that for every g ∈ J+ there

exists f ∈ J+ with ‖f‖ ≤ 1 and gf = g. Then we find a positive contraction f ∈ J+

with xf = x for all x ∈ k1(B) and a positive contraction e ∈ J+ with fe = e and

fT ` = f(eTe)` for all ` ∈ N.

Indeed:

k1(B) contains a strictly positive contraction g1, and there exists a contraction

f ∈ J+ with fg1 = g1. The C *-subalgebra of J , generated by the countable subset

Y := { f, fTn ; n ∈ N } of J , contains a strictly positive contraction g2. We find a

positive contraction e ∈ J+ with g2e = g2. It satisfies ye = y for all y ∈ Y , which

implies fT = fTe = (fe)(Te) = f(eTe) , and that

fTn+1 = fTn+1e = (fTn)Te = (fTne)Te = fTn(eTe) .

It follows by induction that fTn = f(eTe)n. Thus, f exp(T ) = f exp(eTe) and

k1(b) exp(T ) = k1(b)f exp(T ) = k1(b)f exp(eTe) = k1(b) exp(eTe) for all b ∈ B .

If we use that (eTe)∗ = eT ∗e = − eTe and B∗ · B = B, then we obtain that

exp(eTe) ∈ U0(J + C · 1) ⊂ U0(E) and, for all b ∈ B,

exp(−eTe)(k1(b) + βk3(b)) exp(eTe) = (exp(−T )k1(b) exp(T )) + βk3(b) .

We can reduce the proof of the general unitary homotopy to the sub-Stonean case if

we consider k1 and exp(−T )k1(·) exp(T ) as maps into suitable sub-Stonean ideals,

e.g. if we use that
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(1) I := Cb([0,∞), J)/C0([0,∞), J) is naturally isomorphic to a closed ideal

of

Cb([0,∞), E)/C0([0,∞), E) ⊃ E ,

(2) J = E ∩ I is a C *-subalgebra of I, and

(3) I is a sub-Stonean C *-algebra.

Property (3) is easy to see. The above considerations show that, for given T ∈ E
with T ∗ = −T , there is a positive contraction e ∈ I+ such that

exp(−T )k1(·) exp(T ) = exp(−eTe)k1(·) exp(eTe) .

It means equivalently that exp(−T )k1(b) exp(T ) = limξ→∞ U(ξ)∗k1(b)U(ξ) for all

b ∈ B, where we define

U(ξ) := exp(g(ξ)Tg(ξ)) ∈ U0(J + C · 1) ⊂ U0(E)

with g ∈ Cb([0,∞), J) a positive contraction that satisfies g+C0([0,∞), J) = e. In

particular, ξ 7→ U(ξ) is norm-continuous and U(ξ) ∈ U0(βJ ′ ∩ E). It follows that

k1 + βk3 and exp(−T )k1(·) exp(T ) + βk3 are unitarily homotopic via ξ 7→ U(ξ) for

T ∈ E with T ∗ = −T .

This proves finally that [k1] = [k2] and kj(B) ⊆ J for j = 1, 2, 3 imply the

unitary homotopy of k1 + βk3 and k2 + βk3 . �

Remark 4.5.6. There are also isometries s1 and t1 with s1s
∗
1 + t1t

∗
1 = 1 and

t1H0(·) = H0 = H0(·)t1 as proposed in Part (vi) of Lemma 4.4.7, but with inter-

changed role of p0 and 1 − p0, i.e., we find those isometries s1, t1 ∈ E with the

additional properties s∗1p0s1 = 1, (1 − p0)t1 = (1 − p0) = t1(1 − p0) instead of

s∗1(1− p0)s1 = 1, p0t1 = p0 = t1p0.

We do not know if in some applications (!) for given g ∈ (J+βJ)+ there exists

isometries s1, t1 with above properties and the additional property that t1g = g =

gt1, i.e., that in addition to p0s1 = s1 holds gs1 = 0. It means that there exists a

full properly infinite projection q ∈ p0Ep0 with qg = 0.

Proof. By Proposition 4.3.6(v), it suffices to find an isometry R ∈ E with

(1− p0)R = 0 and R∗H0(·)R = 0, i.e., with R∗p0H0(·)R = 0.

There exists u ∈ U(E) with s0(h0 +βh0)s∗0 = u∗(h0 +βh0)u by Lemma 4.4.7(i).

Let R := s0ut0. Then p0 = s0s
∗
0, s∗0H0s0 = h0 + βh0 and s∗0t0 = 0 imply p0R = R,

and R∗H0(·)R = 0. �

Here are some additional remarks concerning the C *-subalgebras C∗(p, q) and

C∗(p, q, 1) generated by projections p, q ∈ A.

Remark 4.5.7. Let A a unital C *-algebra that is Z2-graded by βA ∈ Aut(A)

and let F1, F2 ∈ A symmetries (i.e., F ∗k = Fk and F 2
k = 1) of degree one (i.e.,

βA(Fk) = −Fk).

Then the unital C *-subalgebra B := C∗(F1, F2) of A satisfies βA(B) = B.
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It follows from Parts (iii) and (v) of Lemma 4.1.3 that there exists a grading pre-

serving unital C *-epimorphism ϕ from the universal (real or complex) C *-algebra

C∗(P,Q, 1) ⊂ C([0, π/2],M2) onto B with ϕ(1− 2P ) = F1 and ϕ(1− 2Q) = F2 .

Here we take the odd Z2-grading on C∗(P,Q, 1) given as the restriction to

C∗(P,Q, 1) of the Z2-grading β on C([0, π/2],M2) defined by β(f)(ϕ) := Z∗f(ϕ)Z

for f ∈ C([0, π/2],M2) with Z := [ζjk] ∈ M2 ⊂ C([0, 1],M2) with ζjk := j − k,

j, k ∈ {1, 2}.

In particular, if ‖F1 − F2‖ < 2 then there exists h ∈ C∗(F1, F2) of degree zero

(i.e., βA(h) = h), with h∗ = −h, and ‖h‖ < π/2 such that F2 = exp(−h)F1 exp(h).

The Z2-grading β of C([0, π/2],M2) is odd in case M2 := M2(R) and is even if

M2 := M2(C), because there is no symmetry S in M2(R) and µ ∈ R with Z = µS,

but (iZ)∗ = iZ =: S is a symmetry in M2(C).

Remark 4.5.8. A continuous path ξ ∈ [0, 1] 7→ pξ ∈ A of projections pξ with

p0 = p and p1 = q for projections p, q ∈ A with ‖p − q‖ < 1, can be defined by

pξ := (U(ξ) + 1)/2 with symmetries U(ξ) := |T (ξ)|−1T (ξ) obtained from the path

T (ξ) := sin(ξπ/2)(2q − 1) + cos(ξπ/2)(2p− 1)

of self-adjoint invertible operators T (ξ) with T (ξ)2 ≥ 2(1− ‖p− q‖2) in A+ C · 1,

cf. [73, prop. 4.6.6] and proof of [816, prop. 5.2.6].

Parts (v) and (vi) of Lemma 4.1.3 show that the minimal length of a continuous

path ξ 7→ u(ξ) ∈ U(A) of unitary operators with u(0) = 1 and u(1)∗pu(1) = q is

exactly arcsin ‖p − q‖, because the lower bound for this length can be seen in M2

itself.

Remark 4.5.9. There is an alternative way in the complex case to get the pa-

rameters for the C *-morphisms of the universal unital C *-algebra C∗(P,Q, 1) gen-

erated by projections P,Q into M2 by considering the isomorphism of C∗(P,Q, 1)

with universal C *-algebras

C∗(P,Q, 1) = C∗(s, t) ∼= C∗(Z2 ∗ Z2) ∼= C∗(Z o Z2) ∼= C(S1)o Z2

with self-adjoint isometries s := 1 − 2P , t := 1 − 2Q, Z ⊂ Z2 ∗ Z2 given by

n ∈ Z 7→ (st)n ∈ Z2 ∗ Z2 and the Z2-action n 7→ −n on Z realized by (st)n 7→
s(st)ns = (st)−n. Finally, C∗(Z) will be naturally identified with C(Ẑ) = C(S1).

We get a parametrization by ϕ ∈ (0, π/2) of the simple quotients of C(S1) o Z2

with the 4 characters attached at 0 and π/2 in the same way as the parametrization

given by the embedding of C∗(P,Q, 1) into C([0, π/2],M2) with the 4 characters

attached at 0 and π/2.

Let F := [fjk] = diag(−1, 1)Z ∈ M2 the flip-symmetry with fjk := |1 − δjk| .
Then the inner automorphism U∗(·)U of M2(C) given e.g. by the unitary U :=

[ujk] ∈ M2(C) with entries u11 := −i/
√

2 =: −u21 and u12 := u22 := 1/
√

2

transforms all pairs of unitary elements diag(e2iϕ, e−2iϕ), F ∈M2(C) into the pairs

t(ϕ), s defined in our case as

(1− 2P )(1− 2Q(ϕ)) , 1− 2p ∈ O(2) ⊂M2(R) .
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Notice here that

st(ϕ) = (1− 2P )(1− 2Q(ϕ)) = (1− 2P ) exp(−ϕZ)(1− 2P ) exp(ϕZ) = exp(2ϕZ)

with P,Z,Q as in Lemma 4.1.3(iii). Then it suffices to check that U∗U = 12, FU =

U diag(−1, 1) and diag(i,−i)U = UZ, to obtain that the parameter ϕ ∈ [0, π/2]

defines the same C *-morphism from C∗(P,Q, 1) into M2.

6. On K-theory of corona C*-algebras

The homotopy of id and δ2 and that O2 is a pi-sun algebra

can be used to derive that they are unitary equivalent in

`∞(O2)/c0(O2) .

It turns out that this property implies that O2 has a central sequence

of unital copies of O2...

Some almost E-theory results:

Suppose thatB is a σ-unital C *-algebra and thatM(B) is properly infinite, i.e.,

that O∞ is unitally contained inM(B), let A a separable C *-subalgebra of B, and

suppose that there is a sequence of point-norm continuous paths of c.p. contractions

Vn,ξ : A → B (n ∈ N, ξ ∈ [0, 1]) given, where M(B) is properly infinite, i.e., there

are isometries S, T ∈M(B) with S∗T = 0.

Is this the Def. of ”properly infinite” C*-algebras?

We can manage that SS∗ + TT ∗ = 1 if [1M(B)] = 0 in K0(M(B)) (e.g. this

is the case if B is stable) and other-wise we find the isometries S, T ∈ M(B) such

that 1 − SS∗ + TT ∗ is a properly infinite full projection, e.g. we can replace S, T

by TS, ST and have T 2(T 2)∗ ≤ 1− (TSS∗T ∗ + STT ∗S∗).

Notice that [1− SS∗ + TT ∗] = −[1] in K0(M(B)).

We define

(i) a unital C *-morphism λ : O∞ →M(B) by λ(Tn) := Sn := Tn−1S (with

T 0 := 1) and

(ii) V∞,α : A→ B∞ := `∞(B)/c0(B) for α ∈ {0, 1} by

V∞,α(a) := (V1,α(a), V2,α(a), . . .) + c0(B) .

Now fix a linear filtration X1 ⊆ X2 ⊆ of A by finite-dimensional subsets with⋃
nXn dense in A.

Then there exists “Cuntz-averages”

Wn :=

kn∑
k=1

SkVn,ξkS
∗
k

of the Vn,ξ (ξ ∈ [0, 1]) with suitable 0 = ξ1 < ξ2 < . . . < ξkn = 1 and unitaries

Un ∈M(B) with

(iii) ‖Vn,τk(a)− Vn,τk+1
(a)‖ < 2−n for a ∈ Xn, and
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(iv) S∗Un = S∗1S
∗, S∗kT

∗Un = S∗k+1S
∗ for k = 1, . . . , kn − 1 and S∗knT

∗Un =

T ∗, i.e., with suitable partial isometry Zn ∈M(B) the unitary Un is given

by

Un := SS∗1S
∗ + TS1S

∗
2S
∗ + . . .+ TSkS

∗
k+1S

∗ + TSkn−1S
∗
knS

∗ + TSknT
∗ + Zn .

The partial isometry Zn ∈M(B) used in the definition of the unitary Un exists

by our assumptions on the isometries S, T , because Sk = T k−1S.

Y := SS∗1S
∗ + TXS∗ + TSknT

∗ ,

with

X :=

kn−1∑
k=1

SkS
∗
k+1 .

Then X∗Skn = 0 = S∗knX , X∗X =
∑kn−1
k=1 Sk+1S

∗
k+1 and

XX∗ =???? =
∑

k = 1kn−1SkS
∗
k .

SkS
∗
k+1S`+1S

∗
` = δk,`SkS

∗
k

kn−1∑
k,`=1

SkS
∗
k+1 S`+1S

∗
` =

kn−1∑
k=1

SkS
∗
k

It follows

Y ∗Y = (

kn∑
j=1

SjS
∗
j )⊕S,T 1

and

Y Y ∗ = 1⊕S,T (

kn∑
j=1

SjS
∗
j )

The projection Pkn := 1−
∑kn
j=1 SjS

∗
j is full and properly infinite by construction

of the Sk, because PknS` = S` for ` > kn.

Then W∞(a) := (W1(a),W2(a), . . .) + c0(B) is a c.p.c. map from A into B∞

and U∞ = (U1, U2, . . .) + c0(B) is a unitary in M(B∞) that satisfies

U∗∞(V∞,0 ⊕S,T W∞)U∞ = W∞ ⊕S,T V∞,1

in B∞ := `∞(B)/c0(B).

The same happens for Bω in place of B∞, simply by passing to the quotient Bω

of B∞ and by observing that this epimorphism mapsM(B∞) unitally intoM(Bω).

A bit more technical work is needed for the construction of ?????

The key trick of N.Ch. Phillips in [627] is the construction of suitable interpola-

tions between the above defined “Cuntz averages” for point norm continuous maps

Vt,ξ ∈ CP(A,B) (t ∈ [0,∞), ξ ∈ [0, 1]), i.e., construct fitting strictly continuous

paths A 3 a 7→ Wt(a) ∈ B in the approximately inner c.p.c. maps Wt ∈ CP(A,B)
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that satisfy that Vt,0 ⊕Wt and Wt ⊕ Vt,0 are asymptotic unitarily equivalent by a

norm-continuous path t→ U(t) of unitaries in M(B).

We do this in case of special classes of Vt,ξ ∈ C ⊆ CP(A,B) that cover the cases

considered by N.Ch. Phillips.

Further plan for topics:

Applications to unital endomorphisms of O∞
(all are unitarily homotopic),

permutation C *-morphisms of O∞ ⊗O∞, O∞ ⊗O∞ ⊗ · · ·
(are all unitarily homotopic)

and to the n-repeat δn : On → On

(δn unitarily homotopic to idOn,

unital endomorphisms are all unitarily homotopic to id

existence of asymptotic central path of copy of O2 in O2).

Following should be a remark in Chp.4?

But with target O2 replaced by Q(R+,O2) ? Partly some appears

even in ?? Chp.1.!. But at beginning of Chp.5

there are some calculations in this direction

All unital C *-morphisms h : O2 → A are unitarily homotopic to each other,

if and only if, they are homotopic, – and in “good cases” of A (e.g. if A is K1-

injective)– if and only if, the related unitaries are in U0(A) ?

h1, h2 : O2 → Q(R+, A) both are in “general position” and represent the zero

element of [Homu(O2,Q(R+, A))], because they dominate each other. In general

the unitary equivalence can not be given by a unitary in U0(Q(R+, A)). Example:

The unital free product O2 ∗ C(S1) ∼= O2 ∗ O2.

The latter could be deduced from a very special case of Theorem A: There is a

unital g : O2⊗O2 → O2, and a 7→ h(a) := g(a⊗1) is unitarily homotopic inside O2

to idO2
. Then h1(g((·)⊗ 1)) and h2(g((·)⊗ 1)) dominate each other asymptotically

by

Corollary ?? (on the asymptotic domination of residually nuclear C *-

morphisms hk : A→ B of stable separable C *-algebras A and B, where A is exact

and separable and B is s.p.i.).

Suppose that E is strongly purely infinite, and that A is separable and exact,

(or if E is not s.p.i., that A is separable, s.p.i. and exact). Then every nuclear

C *-morphism ϕ : A → E extends to a C *-morphism ψ : A ⊗O∞ → Q(R+, E), by

Proposition 3.0.4.

Let gk : A ⊗ O∞ → E (k = 1, 2) C *-morphisms such that the C *-morphisms

hk(a) := gk(a ⊗ 1) generate the same m.o.c. cone in CP(A,E), then h1 and h2

1-step-dominate each other in Hom(A,E∞) or Hom(A,Q(R+, E)).

If the hk are injective and nuclear, then they generate the same m.o.c. cone, if

and only if, for each a ∈ A+, the elements h1(a) and h2(a) generate the same ideal

of E.
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In particular, for any two injective unital nuclear C *-morphisms g1, g2 : A ⊗
O2 → E that induce the same action of Prim(E) on A the C *-morphisms h1 and

h2 are unitarily homotopic.

Because one finds isometries S, T ∈ Q(R+, E) with S∗h1(·)S = h2 and

T ∗h2(·)T = h1 by simplicity and nuclearity of the hk and the pure algebraic fact

that there commutant algebras contain (possibly different) copies of O2 unitally.

Then we get from Chapter 4 that h1 and h2 both are unitarily equivalent in

Q(R+, E) to h1 ⊕ h2.

The situation of unital C *-morphisms form O2 into the stable corona Qs(B) is

different:

The (usual) homotopy classes of the unital h : O2 → Qs(B) are in bijective

correspondence to K0(B) ∼= K1(Qs(B)) by the K1-bijectivity of stable coronas by

Proposition ??, but there is only one (sic !) class of unitary homotopy.

More generally, for every unital C *-algebra E with properly infinite unit that

satisfies 0 = [1E ] ∈ K0(E) there is up to unitary homotopy only one unital C *-

morphism h : O2 → E, cf. Section ??, but the homotopy classes of unital h ∈
Hom(O2, E) is identical with U(E)/U0(E), which is isomorphic to K1(E) if and

only if E is K1-injective in addition (As is e.g. the case where E stable corona

E = Qs(A) of a σ-unital C *-algebra A or where E is strongly purely infinite.)

An example is the Calkin algebra C := C(`2) := L(`2)/K(`2) . Then each

unital C *-morphism ψ : O2 → C is up to unitary equivalence given by multiplying

the πK ◦ ρ(sj) with a unitary in C from the left. The multiplication with images of

Toeplitz operators Tn or (T ∗)m exhausts all cases (up to unitary equivalence in C
?).

Corollary 4.6.1. There is a copy of On unitally contained in On
′∩Q(R+,On),

i.e., there exists a point-norm continuous path of u.c.p. maps Vt : On ⊗On → On

such that limt→∞ ‖Vt(a ⊗ 1) − a‖ = 0 for all a ∈ On, limt→∞ ‖[a, Vt(1 ⊗ b)]‖ = 0

for all a, b ∈ On and

lim
t→∞

‖Vt(1⊗ b∗b)− Vt(1⊗ b)∗Vt(1⊗ b)‖ = 0 for all b ∈ On .

The proof should follow from a “unsuspended” E-theory argument concerning

asymptotic homotopy of id and δn considered in Q(R+ × [0, 1],On), respectively

the then unitary equivalence δn(a) = U∗aU in Q(R+,On) for a ∈ On ⊆ Q(R+,On).

The unital embedding On → On
′ ∩ Q(R+,On) is defined by the elements Usj

(j = 1, . . . , n).

Corollary 4.6.2. For every strongly purely infinite, unital, separable and

nuclear C*-algebra A there is a copy of O∞ ⊗ O∞ ⊗ · · · unitally contained in

A′ ∩Q(R+, A).
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It uses that O∞ ⊆ M(A) (unitally) and the nuclear map a → s1as
∗
1 + s2as

∗
2

is asymptotical 1-step dominated by idA, because every nuclear ideal system pre-

serving c.p. map is approximately 1-step inner. (See study of nuclear c.p. maps in

s.p.i. algebras).

Find contraction T ∈ Q(R+,M(A)) with s1as
∗
1 + s2as

∗
2 = T ∗aT it implies that

δjk · a = s∗jT
∗aTsk = t∗jatk for the contractions tk := Tsk .

More ???? Tensor by K first or not? ...

We shall see in Chapter 10 that this implies that A ⊗ O∞ ∼= A for every

purely infinite separable nuclear A, using that there exists a unital C *-morphism

η : O∞ → C([0, 1],O∞ ⊗ O∞) with π0(η(b)) = b ⊗ 1 and π1(η(b)) = 1 ⊗ b by

η(sn)(t) :=????? ?????????????? exact formulations needed!!! And where is

the proof? of .

Corollary 4.6.3. If B is separable, nuclear and strongly purely infinite then

there exists a norm-continuous path of *-monomorphisms ht : B ⊗ O∞ → B such

that limt→∞ ‖ht(b⊗ 1)− b‖ = 0.

Next corollary will be used in Chapter 5.

Corollary 4.6.4. Suppose that A is a unital C*-algebra and h1, h2 ∈
Hom(O2, A) are unital C*-morphisms, then there exists a norm-continuous path

t ∈ [0,∞) 7→ u(t) ∈ U(A) such that h2(x) = limt→∞ u(t)∗h1(x)u(t) for all x ∈ O2.

Proof. There exist a unital C *-morphism k0 : O2 → O2
′ ∩ Q(R+,O2), by

Corollary 4.6.1.

Give exact and precise reference!

We write O2 := C∗(s1, s2), s∗1s1 = 1 = s∗2s2, s1s
∗
1 + s2s

∗
2 = 1.

The unital C *-morphisms h1, h2 : O2 → A extend to unital C *-morphisms H1

and H2 from Q(R+,O2) to Q(R+, A) with H`|O2 = h` (` ∈ {1, 2}).

Then k` := H` ◦ k0 are unital C *-morphisms from O2 into h`(O2)′ ∩Q(R+, A)

(` ∈ {1, 2}).

It suffices to show that there exists a unitary U ∈ Q(R+, A) with U∗h1(sj)U =

h2(sj), j ∈ {1, 2}.

To be filled in ?? �

?? Is next Lemma 4.6.5 in a good position? Move it to Chapter 5?

Lemma 4.6.5. Suppose that B is a stable C*-algebra and that ψ : D →M(B)

is a C*-morphism from separable D to M(B).

The relative commutant δ∞(ψ(D))′ ∩M(B) of the image of the infinite repeat

δ∞ ◦ ψ has trivial K∗-groups and is closed in the strict topology.
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The infinite repeat δ∞ : M(B) → M(B) is given by δ∞(b) :=
∑
n snbs

∗
n for

b ∈ M(B) where s1, s2, . . . is a sequence of isometries in M(B) with
∑
n sns

∗
n = 1

strictly convergent, cf. Remark 5.1.1(8) and Lemma 5.1.2(i,ii).

Proof. Let F := δ∞(ψ(D))′ ∩M(B). It is closed under strict convergence.

Certainly, δ∞(M(B))′ ∩M(B) ⊆ F . By Lemma 5.1.2(i),

early citations ? ??

there are isometries t1, t2, . . . in δ∞(M(B))′ ∩M(B) such that
∑
tnt
∗
n strictly

converges to 1. By Lemma 5.1.2(ii), there are isometries r1 and r2 in δ∞(M(B))′∩
M(B) with r1r

∗
1 + r2r

∗
2 = 1.

Let h : M(B) → M(B) denote the infinite repeat of id which is defined by

t1, t2, . . ., cf. Remark 5.1.1(8).The element h(b) =
∑

is in F if b ∈ F , because F

is strictly closed. Thus, h|F is a unital *-endomorphism of F . Let u := r1t
∗
1 +∑

r2tnt
∗
n+1. The right side converges strictly to a unitary u in M(B) by proof

of Lemma 5.1.2(i) (see e.g. Remark 5.1.1(2) for the strict convergence). Since its

summands are in F , we get u ∈ F . It holds u∗(b⊕r1,r2 h(b))u = h(b) for b ∈ F by

the convergence argument in Remark 5.1.1(2) and in the proof of Lemma 5.1.2(ii).

Thus K∗(F ) = 0 ( 9 ). �

The following Lemma 4.6.6 is a K1-counterpart to Proposition 4.4.3(iii).

4.4.3(iii) correct? ??

Lemma 4.6.6. Suppose that B is stable and σ-unital, D is stable and separable,

and that H : D → M(B) is a non-degenerate C*-morphism such that δ∞ ◦ H is

unitarily equivalent to H (by an unitary in M(B)).

Let E := Qs(B) = M(B)/B , H0 := πB ◦ H , C := H0(D)′ ∩ E , and let

U(H(D), B) denote the set of unitaries in M(B) that commute modulo B element-

wise with H(D).

(i) U(H(D), B) is closed under Cuntz addition and U 7→ [U+B] is an additive

epimorphism from U(H(D), B) onto the kernel of i1 : K1(C) → K1(E),

where i1 = K1(i) for the inclusion map i : C ↪→ E.

(ii) Let U1, U2 ∈ (H(D), B) and let U := U1 ⊕ 1, U ′ := U2 ⊕ 1. Then

[U1 +B] = [U2 +B] in K1(H0(D)′ ∩ E),

if and only if,

there exist U ′′ ∈ U(H(D), B) such that U ′′ − U ∈ B and U ′ is homotopic

to U ′′ in U(H(D), B),

if and only if,

there exist U ′′, V ∈ U(H(D), B) such that V ∗U ′V is homotopic to U ′′ in

U(H(D), B) and (U ′′ − U)H(D) ⊆ B.

9More generally, the existence of a unital endomorphism h : F → F with [h⊕ idF ] = [h] and

h ◦ C ⊆ C implies KK(C;A,F ) = 0 for all our generalized KK-theories in Chapter 8.
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Proof. There exists a unital C *-morphism O2 → δ∞(M(B))′ ∩M(B). The

latter is contained in H(D)′ ∩ M(B). It defines the needed isometries s1, s2 ∈
H(D)′ ∩M(B), cf. e.g. Lemma 5.1.2(ii).

?? Is it good to ref Chp 5 here?

(i): It is easy to see that U(H(D), B) is closed under Cuntz addition, because

O2 commutes with H(D). The image of U(H(D), B) under U → U + B ∈ E

goes into the unitary group of C . K1(M(B)) = 0 because B is stable. Thus

[U +B]E = 0 in K1(E) because [U ]M(B) = 0 in K1(M(B)). The Cuntz addition in

M(B) induces the Cuntz addition in E: (U1⊕U2) +B = (U1 +B)⊕ (U2 +B). By

Lemma 4.2.6(v),the natural map from the unitaries of C into K1(C) is an additive

epimorphism with respect to Cuntz addition on C.

It remains to show that U → [U + B] is an epimorphism onto the kernel of

K1(C) → K1(E). Let x ∈ K1(C) be in the kernel of i1 : K1(C) → K1(E). Then

there is a unitary in u ∈ C with [u]C = x, [u]E = 0. Since 1E ⊆ O2 ⊆ C ⊆ E, we

can use Lemma 4.2.6(v,2) and get [u⊕ 1]C = [u]C = x and that u⊕ 1 is homotopic

to 1 in the unitaries of E. Thus, there is a unitary U ∈M(B) with U +B = u⊕ 1.

U commutes element-wise with H(D) modulo B, because U + B = u ⊕ 1 ∈ C =

((H(D) +B)/B)′ ∩ E.

(ii): Let U ′ := U1 ⊕ 1, U ′′ := U2 ⊕ 1 and v1 := U1 + B and v2 := U2 + B

the corresponding unitaries in C. By Lemma 4.2.6(v,2), [v1]C = [v2]C if and only

if v1 ⊕ 1 = U ′ + B is homotopic to v2 ⊕ 1 = U ′′ + B in the unitaries of C. This

homotopy can be lifted to a continuous arc t ∈ [0, 1] 7→ U(t) in the unitaries of

M(B) starting from U(0) = U ′ and ending at U ′′ := U(1). Then U ′′−U ∈ B. But

if V is a unitary in M(B) such that V + B ∈ C then V commutes element-wise

with H(D) modulo B. Thus U(t) ∈ U(H(D), B) for t ∈ [0, 1].

Conversely, let U := U1⊕1, U ′ := U2⊕1 and suppose that there exist unitaries

V,U ′′ ∈ U(H(D), B) and a continuous arc t ∈ [0, 1] 7→ U(t) into U(H(D), B) with

U(0) = V ∗U ′V , U(1) = U ′′ and (U ′′ − U)H(D) ⊆ B.

Let v1 := U1 + B, v2 := U2 + B, v3 := V + B and v4 := U ′′ + B. Then

[v2]C = [v3(v2 ⊕ 1)v3]C = [v4]C in K1(C), because [1]C = 0 and t 7→ U(t) + B

connects v3(v2 ⊕ 1)v3 and v4 in the unitaries of C.

On the other hand, v1⊕1, v4 ∈ C, (v1⊕1)−v4 is in the annihilator Ann(H0(D))

of H0(D) in E, and [v1 ⊕ 1]E = [v4]E = 0 in K1(E). By Proposition 5.5.12(ii),

H0 : D → E dominates zero, because (πB)−1(H0(D)) = B+H(D) contains the sta-

ble and non-degenerate C *-subalgebra H(D). Therefore, the two-sided annihilator

Ann(H0(D)) of H0(D) ⊆ E is a full hereditary C *-subalgebra of E. The annihila-

tor Ann(H0(D)) is an ideal of C = H0(D)′ ∩E. Thus, Lemma 4.2.20(ii) applies to

N := Ann(H0(D)) ⊆ C ⊆ E and v1⊕1, v4 ∈ C . We get [v1] = [v1⊕1] = [v4] = [v1]

in K1(C). �

Corollary 4.6.7. Suppose that J ⊆ E ⊆ F are C*-subalgebras of F and

satisfy the following conditions (i)–(v):
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(i) 1F ∈ E.

(ii) J and is an ideal of F .

(iii) For every b ∈ J+ there is c ∈ J+ with ‖c‖ = 1 and cb = b.

(iv) For every c ∈ J+ there is an isometry t ∈ E with ct = 0.

(v) E contains a copy of O2 unitally.

If A is a σ-unital C*–algebra, and h1, h2 : A → J are C*-morphisms, then the

following (a)–(c) are equivalent:

(a) h2 = U∗h1(·)U for a unitary U in the connected component U0(E) of 1

in the group U(E) of unitaries of E.

(b) h1 and h2 are unitarily equivalent in F .

(c) h1 and h2 are unitarily equivalent in M(J).

Proof. (a)⇒(b)⇒(c): There are natural unital C *-morphisms

E → F →M(J)

that fix the elements of J by assumptions (i) and (ii).

(c)⇒(a): Suppose that U ∈ M(J) is a unitary with h2 = U∗h1(·)U . Let

e ∈ A+ a strictly positive element of A, and let b := h1(e) + h2(e). By (iii) and

(iv), there are c ∈ J+ and t ∈ E with ‖c‖ ≤ 1, cb = b, ct = 0 and t∗t = 1. It follows

chk(·) = hk = hk(·)c (k = 1, 2), and t∗(h1(a)+h2(a))t = 0 for a ∈ A. Let x := cUc.

Then x is a contraction in J ⊆ E that satisfies x∗h1(·)x = h2 and xh2(·)x∗ = h1.

Since t ∈ E and E contains a copy of O2 unitally by (v), the Parts (iii) and (iv,c)

of Proposition 4.3.6 apply: There is V ∈ U0(E) with V ∗h1(·)V = h2. �

Remark 4.6.8. We consider in Chapters 7 and 9, the case, where F :=

Q(C0(X,B)) :=M(C0(X,B))/C0(X,B), E := Cb(X,M(B))/C0(X,B) and J :=

Q(X,B) := Cb(X,B)/C0(X,B) for stable σ-unital B and a σ-compact locally

compact Hausdorff space X.

Note that in this particular case, J is the (two-sided) annihilator Ann(C,F ) of the

C *-subalgebra C := πC0(X,B)(C0(X) · 1) of the center of F .

Finally, we say some words about the groups G≈(h0 ; D,E) in case where D and

h0 are unital and E is K1-injective, because this is important for the comparison of

stable extensions with unital extension in case where E = Qs(B) = M(B)/B for

some σ-unital stable B.

Remark 4.6.9. Suppose that D is unital, that h0 : D → E is unital and that

isometries t1, t2 ∈ E are canonical generators of a copy of O2 in E. Let h ∈
Hom(D,E).

Recall that [h]≈ ∈ [Hom(D,E)]≈ denotes the class of k ∈ Hom(D,E) with

k = u∗h(·)u for a unitary in the connected component U0(E) of 1 in in the unitary

group U(E), and that [Hom(D,E)]≈ becomes a semigroup with Cuntz addition

[h1]≈ + [h2]≈ := [h1 ⊕s1,s2 h2]≈ (see Proposition 4.3.2).
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Suppose now – in addition – that [h0]≈ + [h0]≈ = [h0]≈ in ([Hom(D,E)]≈,+).

The proof of Proposition 4.3.5(iii) shows that this equivalently means that there is

u ∈ U0(E) such that s1 := ut1, s2 := ut2 ∈ h0(D)′ ∩ E.

Notice that s∗1s1 = s∗2s2 = 1 and s1s
∗
1 + s2s

∗
2 = 1, and that [h1 ⊕t1,t2 h2]≈ =

[h1 ⊕s1,s2 h2]≈ for all h1, h2 ∈ Hom(D,E). Therefore we can write ⊕ for ⊕s1,s2 .

We can define a subset S≈(h0 ; D,E) ⊆ [Hom(D,E)]≈:

S≈(h0 ; D,E) := {[h]≈ ; ∃(h′ ∈ Hom(D,E)) : [h]≈ + [h′]≈ = [h0]≈ }.

Since [h0]≈ + [h0]≈ = [h0]≈, the set S≈(h0 ; D,E) is a sub-semigroup of

[Hom(D,E)]≈. The set G≈(h0 ; D,E) := [h0]≈ + S≈(h0 ; D,E) is a sub-

group of S≈(h0 ; D,E) that is naturally isomorphic to the Grothendieck group

Gr(S≈(h0 ; D,E)) of S≈(h0 ; D,E) by Lemma 4.2.3.

The definition of S≈(h0 ; D,E) shows that [h]≈ ∈ S≈(h0 ; D,E) implies that

there is u ∈ U0(E) with h = s∗1u
∗h0(·)us1. In particular, h : D → E is unital.

Conversely, if u ∈ U0(E) and if h := s∗1u
∗h0(·)us1 is multiplicative, then

us2(s2u)∗ = 1−us1(s1u)∗ commutes with h0(D) and s1s
∗
1 = 1−s2s

∗
2 commutes with

u∗h0(D)u (by Lemma 4.3.4(i)), and h′ := s∗2u
∗h0(·)us2 is a unital C *-morphism

with [h]≈ + [h′]≈ = [h0]≈. [h]≈ is in G≈(h0 ; D,E), if and only if, there are

u, v ∈ U0(E) with h = s∗1u
∗h0(·)us1 and h0 = s∗1v

∗h(·)vs1. Thus, there is a

natural semigroup morphism [h]≈ ∈ S≈(h0 ; D,E)→ [h] ∈ S(h0 ; D,E). It defines

a natural group morphism of Grothendieck groups: G≈(h0 ; D,E)→ G(h0 ; D,E).

Proposition 4.6.10. Suppose that D and E are unital, that h0 : D → E is

unital, and that isometries t1, t2 ∈ E are canonical generators of a copy of O2 in

E with [h0]≈ = [h0 ⊕t1,t2 h0]≈ .

If E is K1-injective, then the group-morphisms of Remark 4.6.9 define natural

exact sequences:

(i) K1(h0(D)′ ∩ E) → K1(E) → G≈(h0 ; D,E) → G(h0 ; D,E) → 0 . Here

K1(h0(D)′ ∩ E)→ K1(E) is induced by h0(D)′ ∩ E ↪→ E.

(ii) 0 → G(h0 ; D,E) → G(h0 ⊕ 0;D,E) → K0(E), where [h] 7→ [h] + [0] for

[h] ∈ G(h0 ; D,E) and [k] 7→ [k(1)] ∈ K0(E) for [k] ∈ G(h0 ⊕ 0;D,E).

Proof. We use the s1, s2 ∈ h0(D)′ ∩ E defined in Remark 4.6.9.

(i): An element h ∈ Hom(D,E) defines an element [h] of S(h0 ; D,E), if and

only if, there is h′ ∈ Hom(D,E) with [h]+ [h′] = [h0]. It follows that the last obser-

vation of Remark 4.6.9 applies almost verbatim to S(h0 ; D,E) and G(h0 ; D,E),

in particular:

[h] ∈ G(h0 ; D,E), if and only if, there are u, v ∈ U(E) with h = s∗1u
∗h0(·)us1 and

h0 = s∗1v
∗h(·)vs1.

Since u(1⊕ u∗)s1 = us1 and since [u(1⊕ u∗)] = 0 in K1(E) we may suppose that,

in addition, [u] = 0 = [v] in K1(E).
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Now we use the assumption that E is K1-injective. Then for h ∈ Hom(D,E)

holds: [h] ∈ G(h0 ; D,E) if and only if [h]≈ ∈ G≈(h0 ; D,E). Thus:

If E is K1-injective, then the natural morphism G≈(h0 ; D,E) → G(h0 ; D,E) is

surjective.

If [h]≈ is in G≈(h0 ; D,E) then [h] ∈ G(h0 ; D,E). Then [h] = [h0] if and

only if h = u∗h0(·)u for some u ∈ U(E). Thus, the kernel of G≈(h0 ; D,E) →
G(h0 ; D,E) is the set of equivalence classes [u∗h0(·)u]≈ with u ∈ U(E). If

u∗1h0(·)u1 = v∗u∗2h0(·)u2v for v ∈ U0(E), then (u2vu
∗
2)u2u

∗
1 ∈ h0(D) ∩ E, i.e.,

u2u
∗
1 ∈ U0(E) · U(h0(D)′ ∩ E).

Conversely, [u∗1h0(·)u2]≈ = [u∗2h0(·)u2]≈ if u2u
∗
1 ∈ U0(E) · U(h0(D)′ ∩ E). In par-

ticular, ς[u] ∈ K1(E) 7→ [u∗h0(·)u]≈ is well-defined, because K1(E) ∼= U(E)/U0(E)

by Lemma 4.2.6(iv) and Lemma 4.2.10.

Since (u∗h0(·)u) ⊕ v∗h0(·)v = (u ⊕ v)∗h0(·)(u ⊕ v) the map ς : K1(E) →
G≈(h0 ; D,E) is additive by Lemma 4.2.6(iv). It follows: ker(ς) = {[u] ; u ∈
U0(E) · U(h0(D)′ ∩ E) } . In particular, ker(ς) is contained in the image of the

natural map η1 : K1(h0(D)′ ∩ E)→ K1(E), for the inclusion η : h0(D)′ ∩ E ↪→ E.

The natural map U(h0(D)′∩E)/U0(h0(D)′∩E)→ K1(h0(D)′∩E) is surjective

by Lemma 4.2.6(v). Therefore, if [u] ∈ K1(E) is in η1(K1(h0(D)′ ∩ E)), there is

v ∈ U(h0(D)′∩E) with [v] = [u]. We get u ∈ U0(E)·U(h0(D)′∩E) by K1-injectivity

of E.

(ii): The map [h]→ [h] + [h0] + [0] defines (obviously) a semigroup morphism

from S(h0 ; D,E) into G(h0 ⊕ 0 ; D,E).

The map is injective on G(h0 ; D,E):

Let [h] ∈ G(h0 ; D,E) with [h0⊕0] = [h⊕h0⊕0], then [h0] = [h⊕h0] : By assump-

tion, there is a unitary u ∈ E with u∗s1h0(·)s∗1u = s2
1h(·)(s∗1)2 + s1s2h0(·)s∗2s∗1. In

particular, u∗s1s
∗
1u = s1s

∗
1. Thus v := s∗1us1 is unitary, and v∗h0(·)v = h⊕ h0.

The map τ : [h] ∈ [Hom(D,E)] 7→ [h(1)] ∈ K0(E) is a semigroup morphism

by Lemma 4.2.6(i). Since [1] = 0 we get [h(1) ⊕ h0(1) ⊕ 0] = 0 in K0(E) if

h(1) = 1. Hence, the image of G(h0 ; D,E) → G(h0 ⊕ 0 ; D,E) is in the kernel of

G(h0 ⊕ 0 ; D,E)→ K0(E).

Now let [k] ∈ S(h0 ⊕ 0 ; D,E) and [k(1)] = 0 in K0(E) . We are going to

show that there is [h] ∈ G(h0 ; D,E) with [k] + [h0] + [0] = [h] + [h0] + [0] in

G(h0 ⊕ 0 ; D,E):

There is an isometry t ∈ E with p = k(1) ⊕ 1 ⊕ 0 ≥ tt∗ and [p] = 0 in K1(E),

thus, there is an isometry s ∈ E with ss∗ = p, cf. Lemma 4.2.6(ii).

By assumption, there is an isometry r ∈ E with r∗s1h0(·)s∗1r = k. Let h1 :=

s∗(k ⊕ h0 ⊕ 0)s, then h1(1) = 1 and h1 := z∗1h0(·)z1 + z∗2h0(·)z2 = w∗h0(·)w for

z1 := s∗1r(s
2
1)∗, z2 := s∗2s

∗
1 and w := s1z1 + s2z2. Then w∗w = h(1) = 1 and

h1 ∈ Hom(D,E), hence h1 ∈ S(h0 ; D,E).

There is a unitary u ∈ E with u∗(h1 ⊕ h0 ⊕ 0)u = k ⊕ h0 ⊕ 0:

We have sh1(·)s∗ = k ⊕ h0 ⊕ 0.
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Since (ss2)∗ss1 = 0, there is an isometry q ∈ E with qq∗ = 1− (ss1)(ss1)∗. Let

v := s1s
∗
1s
∗ + s2q

∗ ∈ U(E) with v∗s1 = s1s and v∗s2 = q. We get:

v∗(h1 ⊕ 0)v = s1(k ⊕ h0 ⊕ 0)s∗1 = (k ⊕ h0 ⊕ 0)⊕ 0 .

Since [0]+[0] = [0] and [h0]+[h0] = [h0] in ([Hom(D,E)],+), we get [h]+[h0]+[0] =

[k] + [h0] + [0] for h := h1 ⊕ h0. Note that [h] ∈ G(h0 ; D,E). �

The proof of the isomorphism KK(C; A,B(1)) ∼= Ext(C; A,B) for trivially

graded A and B in Chapter 8 uses a characterization of the defining relations

of elements given in Chapter 5, and this characterization

Precise reference? To Chp.5 ?? ??

uses the following observation:

Lemma 4.6.11. Let h : D → E a C*-morphism such that C := h(D)′ ∩ E
contains a copy of O2 = C∗(s1, s2) unitally, and that h dominates zero.

If p, q ∈ C are projections and V ∈ U(E) a unitary that satisfy V ∗h(·)pV =

h(·)q, [p] = [q] in K0(E) and [V ] = 0 in K1(E), then there exist projections r1, r2 ∈
Ann(h(D), E) ⊆ C such that [p⊕ r1] = [q ⊕ r2] in K0(C) .

Moreover, there exists a unitary U ∈ U0(h(D)′∩E) with U∗(p⊕ r1⊕1⊕0)U =

q ⊕ r2 ⊕ 1⊕ 0 , where ⊕ = ⊕s1,s2 .

Proof. The proof can be reduced to the splitting of the 6-term exact into the

split-exact sequence

0→ K∗(Ann(h(D), E))→ K∗(C)→ K∗(C/Ann(h(D), E))→ 0

with splitting maps K∗(C) → K∗(Ann(h(D), E)) ∼= K∗(E) given by the inclusion

map C ↪→ E, see Lemma 4.2.20.

Here we give an alternative elementary approach, that gives explicit elements

that are useful for the study of generalized extension groups Ext(C ; A,B) consid-

ered in Chapter 5. We write ⊕ for the specified Cuntz sum ⊕s1,s2 .

Since K0(C) and K0(E) are groups, it suffices to consider the case where p is

the range of an isometry in C and q is properly infinite in C. We can do this simply

by passing from (p, q, V ) to the projections p1 := p⊕ (1−p) and q1 := q⊕ (1−p) ,

and the unitary V1 ∈ U(C) given by V1 := V ⊕s1,s2 1 . Then p1 = TT ∗ for the

isometry T := s1p+ s2(1− p) ∈ C. Thus, p1 is range of an isometry. and [p1]C =

[p]C+[1−p]C = 0 in K0(C), [q1]C = [q]C−[p]C in K0(C) and [q1]E = [q]E−[p]E = 0

in K0(E). Since h(·)⊕ h(·) = h, the unitary V1 satisfies V ∗1 h(·)p1V1 = h(·)q1.

To keep notation simple we suppose in the following that p itself is a range of

an isometry. Let t1 ∈ C, t2 ∈ E the isometries defined in Proposition 4.3.6(i) with

t1t
∗
1 + t2t

∗
2 = 1 and h(D)t2 = {0}.

The projections p′ := t1pt
∗
1 + t2t

∗
2 and q′ := t1qt

∗
1 + t2t

∗
2 are in C, satisfy

ph(·) = p′h(·) and qh(·) = q′h(·) and have same classes 0 = [p]C = [p′] and

[q]C = [q′]C in K0(C) and [p′]E = [p]E = [q]E = [q′]E in K0(E). This is because
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t2t
∗
2 = 1− t1t∗1 ∈ C and t∗1t1 = 1 imply [t2t

∗
2] = 0 in K0(C) and K0(E). Moreover,

t2O2t
∗
2 is unitally contained in F := t2Et

∗
2 = (1− t1t∗1)E(1− t1t∗1) and fh(D) = {0}

for all f ∈ F . Notice that F is contained in the closed ideal Ann(h(D), E) of C.

The projections 1, t2t
∗
2, 1−t∗1pt1 and 1−t∗1qt1 are in C and majorize the properly

infinite projection t2t
∗
2 of C. The have all the same class [1] = 0 in K0(E) and t2t

∗
2

is full in E. Thus, by Lemma 4.2.6(ii), there are partial isometries v, w ∈ E with

v∗v = 1 − t1pt∗1, vv∗ = t2t
∗
2, w∗w = 1 − t1qt∗1 and ww∗ = t2t

∗
2. Let S := t1pt

∗
1 + v

and T := t1qt
∗
1 + w, then S and T are isometries in E with SS∗ = p′ , TT ∗ = q′ ,

St1pt
∗
1 = t1pt

∗
1 and Tt1qt

∗
1 = t1qt

∗
1 . Thus, S∗h(·)S = t1pt

∗
1h(·)t1pt∗1 = t1h(·)pt∗1

and T ∗h(·)T = t1h(·)qt∗1 .

It follows, that W ∗S∗h(·)SW = T ∗h(·)T for the unitary W = t1V t
∗
1 + t2t

∗
2.

Hence, SWT ∗ ∈ C by Lemma 4.3.4(ii), and defines a Murray–von-Neumann equiv-

alence between p′ and q′. Thus [p] = [p′] = [q′] = [q] in K0(C). By Lemma

4.2.6(iv,b), there is U ∈ U0(C) with U∗(p⊕ 1⊕ 0)U = q ⊕ 1⊕ 0 . �

7. Additional remarks and further plans for Chp.4

plan: ??

Some of following is contained in Lem.4.2.6 and around.

(0.1) V (A) common name?

Recall that V (A) denotes the set of all Murray–von-Neumann equivalence

classes [p] of projections p ∈ A. It has partially defined commutative “addition”

[p] + [q] := [r + s], if there exist projections r, s ∈ A with sr = 0 and [r] = [p] and

[s] = [q].

If the addition of MvN-classes – [p] with [q], [q] with [r], [p] + [q] with [r] and

[p] with [q] + [r] – are all defined, then the associative law holds: [p] + ([q] + [r]) =

([p] + [q]) + [r].

The addition is always defined if the unit element 1M(A) of the multiplier

algebraM(A) of A is properly infinite, and then V (A) is a commutative semigroup.

If, in addition, A contains a full projection p, then [q] ∈ V (A) → [e11 ⊗ q] ∈
V (K⊗ A) is an isomorphism of semigroups, and K1(A) is naturally isomorphic to

the Grothendieck group of the semigroup V (A).

Lemma 4.7.1. Suppose that p is a full and properly infinite projection in a

C*-algebra A.

For any projection q ∈ A there exists a projection r ∈ pAp such that p − r is

full and properly infinite in A and q ∼ r.

For any two projections r, s ∈ A the sum [r] + [s] exists in V (A). Its repre-

sentative is full and properly infinite if one of the projections is full and properly

infinite.

[q] ∈ [p] + V (A) if and only if q is full and properly infinite in A.
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If p ∈ A is a full and properly infinite projection, then for any projection p ∈ A
there exists a full and properly infinite projection r ∈ A with [q] + [r] = [p].

In particular, the Murray–von-Neumann equivalence classes of full and properly

infinite projections in A build a subgroup [p] + V (A) of V (A) with (unique) neutral

element [r] that satisfies [p] + [r] = [p].

If p ∈ A is full and properly infinite, then [p] + [q] = [p] + [r] in V (A), if and

only if, [q] = [r] in K0(A).

K0(A) is naturally isomorphic to the sub-semigroup [p] + V (A) of V (A).

If p ∈ A is a properly infinite projection, i.e., if there exist partial isometries

u, v ∈ A with u∗u = v∗v = p, uu∗ ≤ p, vv∗ ≤ p and u∗v = 0, then p0 := p − vv∗

is a properly infinite projection in A that generates the same ideal as p, and p0Ap0

contains a copy of O2 unitally, in particular [p0] = 2[p0] in V (A).

Lemma 4.7.2. If p ∈ A is full and properly infinite, then u ∈ U(pAp) 7→
[(1− p) + u] ∈ K1(A) is a surjective map.

If A is unital, u ∈ U(A), p ∈ A projection with 0 = [u] ∈ K1(A), ‖pu−up‖ < 1

and p and 1 − p both full and properly infinite in A. Then u is in the connected

component U0(A) of 1A in U(A).

Above lem contained in K1-injectivity/surjectivity stuff?

(1.0) Suppose that A contains a full and properly infinite projection p ∈ A.

Then:

The map u ∈ U(pAp) 7→ [u + (1 − p)] ∈ K1(A) defines a group epimorphism

from U(pAp) onto K1(A).

The algebra A contains also a full projection p0 with [p0] = 2[p0] in V (A), i.e.,

with the property that p0Ap0 contains a copy of O2 unitally.

The natural semigroup morphism [q] ∈ V (A) 7→ [q] ∈ K0(A) is surjective.

The set V (A) + [p0] is a subgroup of V (A) that is identical with the set of the

MvN–equivalence classes of all full properly infinite projections in A.

The restriction of the semigroup epimorphism V (A) → K0(A) to V (A) + [p0]

is a group isomorphism from V (A) + [p0] onto K0(A).

Suppose that A is unital and 1A is properly infinite.

It allows to define “additions” in U(A) and in Proj(A) by U ⊕ V := s1Us
∗
1 +

s2V s
∗
2 + (1− s1s

∗
1 − s2s

∗
2) and p⊕ q := s1ps

∗
1 + s2qs

∗
2.

It defines an addition in U(A)/U0(A) and in V (A) that is compatible with the

multiplication in U(A)/U0(A), – respectively with the addition in V (A⊗K).

It turns out that q → [q ⊗ e1,1] ∈ V (A ⊗ K) induces an isomorphism from

(V (A),+) onto V (A⊗K) with the usual bloc-wise addition. (In fact: (p+ q)⊗ e1,1

is MvN-equivalent to p⊗ e1,1 + q⊗ e2,2 if pq = 0 and for each projection p ∈ A⊗K
there exists q ∈ A with [q ⊗ e1,1] = [p] in V (A⊗K).)
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Furthermore, U ⊕V is homotopic to (UV )⊕ 1 in U(A). [U ⊕ 1] = [U ] in K1(A)

for all U ∈ U(A). It holds U ⊕ 1 ∈ U0(A) iff [U ] = 0 in K1(A). Moreover, if

T ∈ A is an isometry, such that 1− TT ∗ is a full properly infinite projection then

[TUT ∗ + (1 − TT ∗)] = [U ] in K1(A) for all U ∈ U(A), and [U ] = 0 implies that

TUT ∗ + (1− TT ∗) ∈ U0 .

(1.1) In particular, every C *-algebra A with a properly infinite unit 1A is K∗-

surjective, i.e., the natural semigroup morphism V (A) → K0(A) and the natural

group morphism U(A)→ K1(A) are surjective.

(1.2) Every unital s.p.i. algebras is K∗-injective in the sense that: This is now

shown in Chp. 4 in case of unital p.i. C *-algebras, with help of the squeezing

property. Refere to it!

(0) V (A)+[1A] is the subgroup of V (A) of all full properly infinite projections.

The natural morphism from V (A) to K0(A) defines an isomorphism from

V (A) + [1A] onto K0(A).

The element [1A] is the neutral element of V (A) + [1A], if and only if,

A contains a copy of O2 unitally.

(1) The natural group morphism from U(A) to K1(A) is surjective and has

kernel U0(A).

(1.3) If A is a unital s.p.i. algebra, then 1A is properly infinite and the group

V (A)+[1A] consists of all MvN-equivalence classes of full projections in A (because

every element of A is properly infinite).

There is a copy of O∞ = C∗(s1, s2, . . .) unitally contained in A, because A is,

in particular,

purely infinite, i.e., each non-zero element of A is properly infinite.

Exact reference! ??

We have seen in Chapter 3 that every s.p.i. algebra B satisfies the following

property:

For every finitely generated Abelian C*-subalgebra A ⊆ Bω with at most 1-

dimensional maximal ideal space Prim(A) there exists a C*-morphism

h : A⊗O∞ → Bω with h(a⊗ 1) = a ∀ a ∈ B .

(Notice that U = h(U ⊗ (tt∗)) + h(U ⊗ (1 − tt∗)) is homotopic to the unitary

h(U ⊗ (tt∗)) +h(1⊗ (1− tt∗)) = TUT ∗+ (1−TT ∗) with T := h(1⊗ t) if 1B , U ∈ A
and U is unitary, because the unitary group of C(S1,O2) is connected.)

Now use that K∗(Bω) = (K∗(B))ω (as Z2-graded groups), and get: A unitary

U ∈ B (respectively a projection p ∈ B) is homotopic to 1 in U(B) (respectively

to q ∈ B in Proj(B)), if and only if, it is homotopic to 1 (respectively to q) in the

unitaries (respectively projections) of Bω.

Thus, it suffices to proof the K1-injectivity of Bω. This follows from the homo-

topy of U ∼h TUT ∗ + (1 − TT ∗) in U(h(C∗(U)⊗O∞)), where T := h(1 ⊗ t), for

a non-unitary isometry t ∈ O∞.
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More generally, if for every commuting pair (b1, b2) of self-adjoint elements in

a given unital C *-algebra B and ε > 0 there exists isometries s, t ∈ B with s∗t = 0

and ‖sbj − bjs‖ < ε (j = 1, 2) then B is K1-injective.

This is, because then 1B is properly infinite, and – with ε := 1/4 – the following

criteria holds for u = b1 + ib2 with [u] = 0 in K1(B) and p := ss∗.

which criterium ? from Kt1-injectivity proposition?????, squeezing

property?? ‖s∗ut‖ < 2ε.

(2) Transfer to here, and generalize, the unitary homotopy for (id⊕h0)k con-

sidered in Chapter 11. ??.

(3) Let J ⊆ E a closed ideal, and let H0 : D → E a *-monomorphism such that

H0(D)′ ∩ E contains a copy of O2 unitally, and that there is an isometry T ∈ E
with TT ∗H0(D) = {0}.

Recall that S(H0 ; D,E) is the set of unitary equivalence classes [h] where

h ∈ Hom(D,E) is dominated by H0. Then, obviously, [h] ∈ S(H0 ; D,E) with

h(D) ⊆ J is a sub-semigroup S(H0 ; D,E; J) of S(H0 ; D,E).

Let B a C *-subalgebra of E. We denote by V (B) the Murray–von-Neumann

equivalence classes of projections in B with (partial) addition given by sums of

orthogonal representatives. If M(B) has a properly infinite unit, then V (B) is

a commutative semigroup such that [p] ∈ V (B) → [e11 ⊗ p] ∈ V (K ⊗ B) is an

isomorphism from V (B) onto V (K⊗B).

We define a map θ0 : S(H0 ; D,E)→ V (H0(D)′∩E) by θ0(h) := [tt∗] for some

isometry t ∈ E with h := t∗H0(·)t .

Let B := H0(D)′ ∩ N (H0(D), J), where N (H0(D), J) ⊆ E denotes the here-

ditary C *-subalgebra of E of the elements x ∈ E with xH0(D) ∪ H0(D)x ⊆ J ,

i.e.,

N (H0(D), J) = (πJ)−1(Ann(πJ(H0(D)), E/J)) .

There is a natural semigroup morphism [p]B ∈ V (B) 7→ [p]C ∈ V (C) where C :=

H0(D)′ ∩ E.

The following lemma is used to compare the semigroups SR(C ; A,B) of Chapter

7 with WvN-equivalence classes of projections in H0(D)′ ∩N (H0(D), J).

Lemma 4.7.3. Let (H0 ; D,E; J), B and θ0 as above (with [H0] + [0] = [H0]

and [H0] + [H0] = [H0]). Let C := H0(D)′ ∩ E. Then:

(o) B is a closed ideal of C and V (B) is a hereditary sub-semigroup of V (C).

(i) The map θ0 is well-defined and is a semigroup isomorphism from

S(H0 ; D,E) onto the sub-semigroup of classes [p] ∈ V (C) with the

property that there is an isometry t ∈ E with [tt∗] = [p] in V (C).

(ii,a) Let V0(C) the kernel of the natural morphism V (C)→ K0(C).

If T ∈ E is an isometry with TT ∗H0(D) = {0}, then TT ∗ ∈ C,

θ0(S(H0 ; D,E)) = [TT ∗] + V0(C) .
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(ii,b) The Grothendieck group of [TT ∗] + V0(C) is naturally isomorphic to the

kernel of K0(C)→ K0(E).

If F := Ann(H0(D), E) denotes the two-sided annihilator of H0(D)

in E, then F is an ideal of C, the Grothendieck group G(H0 ; D,E) :=

H0 + S(H0 ; D,E) of S(H0 ; D,E), and it holds:

G(H0 ; D,E) ∼= K0(C/F ) ∼= ker(K0(C)→ K0(E)) .

(iii) Let V0(B) denote the kernel of V (B) → K0(E). [TT ∗] ∈ V0(B) and

θ0(S(H0 ; D,E; J)) = θ0(S(H0 ; D,E)) ∩ V (B).

If T ∈ E is an isometry with TT ∗H0(D) = {0} then TT ∗ ∈ V0(B),

V0(B) = V (B) ∩ V0(C) and

θ0(S(H0 ; D,E; J)) = [TT ∗] + V0(B) .

Proof. Let C := H0(D)′ ∩ E.

(o): If b, c, e ∈ C and bH0(D) ⊆ J , then H0(D)cbe = cbeH0(D) = cbH0(D)e ⊆
J . Thus, B is an ideal of C. The same argument shows that [p]C = [q]C in V (C)

and p ∈ B implies q ∈ B and [p]B = [q]B in V (B). It follows that V (B) is a

hereditary sub-semigroup of V (C), in the sense that [p] + [q] ∈ V (B) ⊆ V (C)

implies [p], [q] ∈ V (C).

(i): See the arguments in the proof of Part (i) of Proposition 4.4.3.

(ii,a): Since TT ∗H0(a) = 0 = H0(a)TT ∗ for all a ∈ D, the projection TT ∗ is

in B ⊆ C. Let r, s ∈ C canonical generators of a unital copy of O2, and let p a

projection in C with [p] = 0 in K0(E). Then q := rTT ∗r∗+ sps∗ is a projection in

C with [q] = [TT ∗] + [p] = [1C ] + [p] in V (C), and there exists an isometry t ∈ E
with tt∗ ∈ C and [q] = [tt∗] in V (C).

To see this, we can use the isomorphism V (E) + [1] ∼= K0(E) and the fact that

V (E) + [1] is identical with the MvN-classes of all properly infinite elements: Since

[q] = [p] + [TT ∗] = [p] + [1] in V (E), the projection q is properly infinite and full in

E. Since [1] = 0 in K0(E) it follows that [q] = [p] = 0 in K0(E). Thus [q] = [1] in

V (E).

(ii,b): F → C → E defines an isomorphism K0(G) ∼= K0(E) that makes

that the sequence 0 → K∗(F ) → K∗(C) → K∗(C/F ) → 0 is split exact with

K∗(C)→ K∗(E) ∼= K∗(F ) as splitting map.

(iii): Let [h] ∈ S(H0 ; D,E; J) and h = t∗H0(·)t. Then tt∗ ∈ C by (i) and

tt∗H0(a∗a)tt∗ ∈ J for all a ∈ D. Thus, H0(D)tt∗ ⊆ J and tt∗ ∈ B. It follows that

θ0(S(H0 ; D,E; J)) ⊆ V (B) ⊆ V (C).

If θ0(h) ∈ V (B) and h = t∗H0(·)t for some isometry t ∈ E, then tt∗ ∈ C and

[tt∗]C = [q]C in V (C) for some q ∈ B. It follows tt∗ ∈ B and h = t∗(tt∗)H0(·)t
maps D into J , i.e., h ∈ S(H0 ; D,E; J).

Hence, θ0(S(H0 ; D,E; J)) = θ0(S(H0 ; D,E)) ∩ V (B).
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Now notice that ([TT ∗]+V (C))∩V (B) = [TT ∗]+V (B), because [TT ∗] ∈ V (B)

and V (B) is hereditary in V (C). �

Can the Grothendieck group of S(H0 ; D,E; J) be calculated with help of K∗-

groups of B, C and J ?

Remark 4.7.4. The following observation yields alternative proofs of some

parts of Lemma 4.2.6, e.g. of Part (v,5).

A unitary u ∈ U(E) satisfies u tt∗ = tt∗ for some isometry t ∈ E, if and

only if, u is conjugate to (u ⊕ 1) + p[−1], i.e., if there is a unitary V ∈ U(E) with

V ∗uV = (u⊕ 1) + p[−1]. The unitary V can be chosen such that [V ] = 0 in K1(E).

Proof. If V ∈ U(E) satisfies V ∗uV = (u ⊕ 1) + p[−1] = s1us
∗
1 + (1 − s1s

∗
1),

then uV s2 = V s2, thus utt∗ = tt∗ for the isometry t := V s2.

If t ∈ E is an isometry with utt∗ = tt∗, then let P := t(1 − s1s
∗
1)t∗. The

projection P is splitting, because P ≥ (ts2)(ts2)∗ and P (ts1)(ts1)∗ = 0. Since P is

MvN-equivalent to 1 − s1s
∗
1, there exists a unitary V1 with V ∗1 PV1 = 1 − s1s

∗
1. It

follows V ∗1 uV1(1− s1s
∗
1) = (1− s1s

∗
1) and u1 := s∗1V

∗
1 uV1s1 is a unitary in E such

that u = s1u1s
∗
1 + (1− s1s

∗
1), i.e., V ∗1 uV1 = (u1 ⊕ 1) + p[−1].

We use now the “corrected” direct sum formula U ⊕′ V := (U ⊕ V ) + p[−1]

on the unitary elements U, V ∈ U(E), and get V ∗1 uV1 = u1 ⊕′ 1. It follows that

V ∗2 (u ⊕′ 1)V2 = (u1 ⊕′ 1) ⊕′ 1 for V2 := V1 ⊕′ 1. The corrected direct sum is still

commutative and associative up to unitary equivalence by the unitaries Uc and Ud

defined in Equations (2.3) and (2.4), i.e., (U ⊕′ V ) ⊕′ W and U ⊕′ (V ⊕′ W ) are

unitarily equivalent by unitaries in U0(E). We get that there is a unitary V in the

classes U0(E)V1 such that V ∗uV = u⊕′ 1.

We can replace V by V ′ := V (1⊕′ V ∗) that satisfies 0 = [V ′] ∈ K1(E). �



CHAPTER 5

Generalized Weyl–von Neumann Theorems

?? Revise section structure !!

Remove two-fold text !! very urgent!!!

We generalize in this chapter the Weyl–von-Neumann theorem along lines indi-

cated by Voiculescu and Kasparov ([798], [404], see [42] for an elementary account

and use Lemma 2.1.22 to see that they are special cases of Theorem A). The defi-

nition, viewpoints and results are different from the generalization of some aspects

of the classical Weyl–von Neumann theorem by S. Zhang in [845].

The generalized Weyl–von Neumann Theorem 5.6.2 will be an ingredient of

the proofs of Theorem A and of the important special case of Theorem M, – the

Theorem 6.3.1 –, considered in Chapter 6 under the additional assumption that the

C *-algebra B in Theorem M has residual nuclear separation (cf. Definition 1.2.3),

i.e., that the m.o.c. cone Crn ⊆ CPnuc(B,B) is separating for B. This additional

assumption will be removed finally in Chapter 12, by showing that in ultrapowers

and asymptotic algebras those additional conditions are in the considered cases

for sufficiently big separable C *-subalgebras are satisfied, all this only by using

combinations of results obtained in all Chapters 7-11 together.

We assume in Chapter 6, in addition to the assumptions of Theorem M, that

the related universal weakly residually nuclear C *-morphism Hrn : B → M(B)

from B into its multiplier algebra M(B) is non-degenerate, faithful and that the

induced ideal-system action of ′(B) on B is simply the identity map ????

( 1 )

???? HERE and a bit below ???????

Explain Hrn by use of action and by use of suitable C.

In case of trivially graded stable separable A, B and non-degenerate m.o.c. cone

C we should have exact sequences

0→ Ext(C;A,B)→ K0(πB(HC(A))′ ∩Q(B))→ K0(Q(B)) ∼= K1(B)→ 0 ,

and

0→ KK(C;A,B)→ K1(πB(HC(A))′ ∩Q(B))→ K1(Q(B)) ∼= K0(B)→ 0 .

1 The author got in between, by a self-contained study of relations between coherent and non-

coherent Dini-spaces, refining and applying basic results from lattice theory, that each separable

stable C *-algebra has this property anyway. But here we use an other way of proof that considers

properties of ultra-powers of strongly purely infinite C *-algebras.

621
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Since HC(A)′ ∩M(B) contains a copy of O2 unitally we get K∗-surjectivity.

What about K∗-injectivity here??

For K0(HC(A)′ ∩M(B)) only the full properly infinite projections in HC(A)′ ∩
M(B) are uniquely defined by its value in K1(HC(A)′ ∩M(B)).

We must check if HC(A)′ ∩M(B) is K1-bijective! ?

... for the considered stable separable B and that there exists a C *-morphism

h : A→M(B) that defines the action of Prim(B) on A.

Relation to more general C and induced actions have to be explained / refer to

Chapter 3.

This ??? additional assumptions will be removed in Chapter 12 completely

using results of Chapters 3, and 7 -11 .

Here in Chapter 5 we allow weaker/stronger ??? assumptions.

Perhaps Chapter 3 should present the relations between actions and cones ...

In particular, C ′ ∩Qs(B) should be σ-sub-Stonean ...???

Should here also obtain finally that O2 ⊗ O2 ⊗ · · · is (unitally) contained in

O2, and that this allows to prove that O2 can be written as its own infinite tensor

product

??? if each unital ind-lim of O2 is O2.

Need the approximate unitary equivalence of all unital endomorphisms of O2

and more generally of On, O∞.

¡ ¡ ¡ Given at end of Chapter 4 ??

Its generalization to weakly residually nuclear maps – and, more generally and

systematic, to maps in a given m.o.c. cone C ⊆ CP(A,B) – will be used in Chapters

6 and 12 for the final proof of Theorem K.

Compare above and below text

First we prove an almost “tautological” universal version of a generalized Weyl–

von-Neumann theorem (Theorem 5.6.2) and show some of its consequences:

We apply it to give an alternative proof for the stability criteria of M. Rørdam

and J. Hjelmborg for σ-unital C *-algebras and its extensions (cf. [373], [688]).

We specialize it to the cases of extensions with splitting c.p. maps that are weakly

nuclear, weakly residually nuclear, or are in suitable general m.o.c. cones C ⊆
CP(A,B). It gives the base to define general cone-related Ext-groups Ext(C; A,B)

and we display explicit defining relations that will be used in Chapters 8 and 9 to

establish the functorial isomorphism of Ext(C; A,B) with KK(C; A,B(1)) – alone

the lines of early work of G. Kasparov – and its isomorphism with the a generalized

version of “Rørdam groups” R(C; A,B) defined in Chapter 7, that generalize groups

of asymptotic morphisms appearing (implicitly) in early work of G. Elliott and

M. Rørdam.
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Later applications of our general WvN-theorems (in the spirit of Voiculescu

and Kasparov) for the proofs of isomorphisms between the in Chapters 1, 4 and 7

– 9 considered types of operator class groups use the key results from Chapters 3

and 4.

We need some basic definitions, e.g. our version of unitarily homotopic mor-

phisms in the following Definition 5.0.1 will be used frequently.

Recall that the C *-algebra M(A) ⊆ L(A,A) denotes the multiplier algebra of

a C *-algebra A.

Definition 5.0.1. Let hj : A→M(B), j = 1, 2, C *-morphisms, and let V a

completely positive contraction from A into the multiplier algebra M(B) of B.

We call h1 and h2 unitarily homotopic if there is a norm-continuous map

t 7→ U(t) from the non-negative real numbers R+ into the unitaries inM(B), such

that,

(i) h2(a) − U(t)∗h1(a)U(t) ∈ B for all t ∈ R+ and a ∈ A , and

(ii) limt→∞ ‖h2(a) − U(t)∗h1(a)U(t) ‖ = 0 for all a ∈ A .

Let B σ-unital and stable. Question:

What happens if we require only that

t 7→ U(t) satisfies (i, ii) and is only strictly continuous?

Comments on this question to be checked:

It says then only that h1 : A → M(B) and h2 : A → M(B) are unitarily

equivalent in C := Cb,st

(
[0,∞),M(B)

)
/Cb([0,∞), B), where we take the natural

injective “constant” C *-morphism M(B) ⊂ Cb,st

(
[0,∞),M(B)

)
.

In case of our Definition 5.0.1 we get that U ∈ Cb([0,∞),M(B)).

Is the strict topology – restricted to Cb([0,∞), B) – is the same as the norm

topology on Cb([0,∞), B)?

We have often to do with the case where B is stable and σ-unital. Then

U(M(B)) = U0(M(B)), and there exist y1, . . . , yn ∈ M(B) with y∗k = −yk such

that U(1) = exp(y1)·. . .·exp(y1). Then h2(a)− U(1)∗h1(a)U(1) ∈ B for all a ∈ A .

Let V := πB(U(1)) Thus, πB ◦ h2 = V ∗πB ◦ h1(·)V ∈ Q(B) . and V ∈ U0(Q(B)).

If, in addition, h2 is unitarily equivalent to δ∞ ◦ h2 in M(B), then we can replace

here πB ◦ h2 by πB ◦ δ∞ ◦ h2.

The path t 7→ U(t) ∈ U(M(B)) defines an element U in U(M(C0(R+, B))) =

U0(M(C0(R+, B))) with the property h2(a)U −Uh1(a) ∈ C0(R+, B), where we use

the natural unital inclusions M(B) ⊂M(C(R+, B)) ⊆M(C0(R+, B))

Notice here that C0(R+, B) is again stable and σ-unital if B has this properties.

If M(B) contains a copy of O2 unitally, then we can define Cuntz addition

h1 ⊕ h2 on Hom(A,M(B)) (cf. Chapter 4). We say that “h1 asymptotically

absorbs h2” if h1 and h1 ⊕ h2 are unitarily homotopic.
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The C *-morphism h1 asymptotically dominates a completely positive con-

traction V : A → M(B) if there is a norm-continuous map t 7→ S(t) from the

non-negative real numbers R+ into the isometries in M(B), such that,

(i) V (a) − S(t)∗h1(a)S(t) ∈ B for t ∈ R+ and a ∈ A, and

(ii) limt→∞ ‖V (a) − S(t)∗h1(a)S(t) ‖ = 0 for all a ∈ A.

Notice that h1 and h2 are unitarily homotopic, (respectively h1 asymptotically

dominates V ), if and only if, h1 and h2 are unitarily equivalent in (respectively h1

dominates V in) Cb(R+ ,M(B))/C0(R+, B) ⊃ M(B) . If B is unital, then this

algebra is the same as Q(R+, B) := Cb(R+, B)/C0(R+, B).

This “algebraic” reformulation allows to apply the observations on Cuntz ad-

ditions from Sections 3 and 4 of Chapter 4, e.g. it implies immediately that h1

asymptotically absorbs h2, i.e., h1 is unitarily homotopic to h1 ⊕ h2, if and only

if, h1 asymptotically dominates h1 ⊕ h2 and h2 ⊕ h2 is unitarily homotopic to h2,

cf. Proposition 4.3.5(i,iii).

The asymptotic domination of all unital h1, h2 : O2 → E

(of each other) should be clear ??

Compare all arguments with observations in Chapter 4!!!

From nuclearity of O2 (and D2 := O2
⊗∞ ∼= O2?) one gets:

O∞ ∈ O2
′∩Q(R+,O2) unitally, and that there exist paths of approximate inner

u.c.p. maps Vt : O2 → O2 with V∞ : O2 → Q(R+,O2) is a unital C *-morphism with

V∞(O2) ⊆ O2
′ ∩Q(R+,O2) implemented by some isometry in T ∈ Q(R+,O2) with

T ∗aT = V∞(a) for a ∈ O2. Thus, the images of h1 and h2 commute with unital

copies of O2 and 1-step dominate each other in Q(R+, E) by nuclearity of O2. It

implies that h1 and h2 are unitary equivalent by a unitary in Q(R+, E). It means

that unital C *-morphisms h1, h2 : O2 → E are unitary homotopic (with B := E

and A := O2).

The unitary homotopy of id with δ2 on O2, implies that id is unitary homotopic

to an endomorphism k : O2 → O2 with k(O2)′∩O2
∼= O2, and moreover there exists

unital C *-morphisms k, k′ : O2 → O2 with k′(O2) ⊆ k(O2)′ ∩ O2 and linear span

of k(O2) · k′(O2) dense in O2.

Thus, all unital h1, h2 : O2 → E are unitarily homotopic inside hk(O2) ⊆ E to

unital homomorphisms gk : O2 → hk(O2) ⊆ E such that gk(O2)′ ∩ E contains a

copy of O2 unitally. This implies that both hk(O2)′ ∩ Q(R+, E) contain (possibly

different) unital copies of O2.

Since they 1-step dominate each other and commute with (possibly different)

copies of O2 in Q(R+, E), they are unitarily equivalent in Q(R+, E).

It means that unital h1, h2 : O2 → E are unitarily homotopic with respect to

A := O2 and B := E. In particular h1 is homotopic to some unitary equivalent of

h2, because near generators of copies of O2 in E are homotopic.
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This applies to all unital C *-morphisms h1, h2 : O2 → E of O2 into a unital C *-

algebra E and shows that they are unitarily homotopic (with respect to A := O2

and B := E):

For every unital C *-algebra E with properly infinite unit element that satisfies

0 = [1E ] ∈ K0(E) there is up to unitary homotopy exactly one unital C *-morphism

h : O2 → E .

Does the latter not require that E is K1-injective?

Answer: No, as above/below considerations show!

It shows that unitary equivalence implies unitary homotopy, but in general even

not point-norm homotopy of h1 and h2 in Hom(A,B).

A unitary homotopy with norm-continuous path of unitaries t 7→ U(t) ∈
U(M(B)) implies homotopy – in Hom(A,M(B)) with point-norm topology – if

A is σ-unital and U(M(B)) = U0(M(B)) . In particular, h1 ⊗ idK and h2 ⊗ idK

are homotopic in Hom(A ⊗ K, J ⊗ K) , if h1 and h2 are unitarily homotopic in

M(B ⊗K) and if J is an ideal of M(B) that contains h1(A).

Unitary equivalent C *-morphisms h1, h2 : A→M(B) are both non-degenerate

if one of its is non-degenerate (i.e., hk(A)B = B).

But this is not necessarily the case for unitarily homotopic C *-morphisms:

For example let B := A := K, h1(a) := a, h2(a) := TaT ∗ with T ∈ L(`2) an

isometry with (1−TT ∗)`2 of infinite dimension (i.e., related to a unital copy of O2).

One can find here a norm-continuous path t ∈ [0,∞) : U(t) ∈ U(M(K)) of unitaries

in L(`2) with U(0) = 1 and ‖U(t)∗aU(t)− TaT ∗‖ → 0 for t→∞. This particular

sort of unitary homotopy can be given explicit by using that U(M(K)) = U0(M(K))

and the fact that any trace-preserving *-endomorphism h2 of the algebra K of

compact operators of a separable (complex) Hilbert space is unitary homotopic to

h1 := idK.

(One can use here that the set of all isometries T ∈ L(`2(N)) ∼= M(K) with

(1−TT ∗)`2 of infinite dimension is path-connected in operator norm to the isometry

T (δn) := δ2n, n = 1, 2, . . ..)

Notice that it is in general not possible to start with the additional condition

U(0) = 1 in the definition of unitary homotopy as the following counterexample

shows:

Let H := `2(N), B := K(H), a0 ∈ `∞(N) ⊆ L(H) the projection given by

(0, 1, 0, 1, . . .), and A := C∗(1, a0) ⊆ `∞(N).

There exists T ∈ M(B) = L(`2) with Ta0 − a0T 6∈ K, T ∗ = −T , ‖T‖ < 1,

e.g. T := 3−1(S∗ − S) for the 1-step forward shift S of `2(N) (Toeplitz operator

with index = −1), S(α1, α2, . . .) = (0, α1, α2, . . .) . Then exp(−T )a0 exp(T )− a0 6∈
K =: B .
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Let h1 := idA and h2(a) := exp(−T )h1(a) exp(T ), i.e., exp(T )h2(a) −
h1(a) exp(T ) = 0 , U(t) := exp(T ) for all t ∈ [0,∞) (constant). In particular

h2(a)− U(t)∗h1(a)U(t) = 0 ∈ K =: B for all t ∈ [0,∞).

It does not exists t 7→ V (t) ∈ U(M(K)) norm-continuous, unitary, with V (0) =

1, V (t)∗h1(a)V (t)− h2(a) ∈ K for all t ∈ [0,∞) and a ∈ A, because it would imply

[exp(T ), h1(a0)] ∈ K.

A similar example is on some other place. ??

????????

because there are natural isomorphisms KK(A,B) ∼= Ext(A,SB) for separable

stable σ-unital A and B, and because

KK(A,B) ∼= ker(K1(H0(A)′ ∩Q(B))→ K1(Q(B)) ∼= K0(B)) ,

cf. Chapter 8.

We shall see below and in Chapter 7, that it does not matter if we replace in

the above definitions of asymptotic domination and of asymptotic absorption the

norm-continuity of t 7→ S(t), respectively of t 7→ U(t) by the – much weaker – strict

continuity if A is stable, h1 is non-degenerate and V (A) ⊆ B (respectively h2(A) ⊆
B, respectively h2 is also non-degenerate and h1(A) ∪ h2(A) ⊆ B). It means, that

we can replace a weakly continuous path t 7→ S(t) (respectively t 7→ U(t)) in this

cases by norm-continuous paths that do the same job, but are rather different from

the given weakly continuous paths and have a different isometry S(t0) (respectively

unitary U(t0)) at the starting point t0 ≥ 0.

Give Ref’s to places of proofs

of ‘‘strictly ..." to ‘‘norm- ...’’ !!!

Give example of different start points of paths !!!

The situation of unital C *-morphisms form O2 into the stable corona Qs(B)

of B (see Definition 5.4.7) is different:

The homotopy classes of the unital C *-morphisms h : O2 → Qs(B) are equiva-

lent to U(Qs(B))/U0(Qs(B)), thus are in bijective correspondence to K1(Qs(B)) by

the K1-bijectivity of stable coronas, cf. Proposition 4.2.15. Thus, they are classified

by K0(B) ∼= K1(Qs(B)).

But there is only one full non-unital C *-morphism h : O2 → Qs(B) up to

unitary homotopy. <-- Example? Why?

Sort above/below text (red and blue)!!!

?????? Give Ref’s!!!

The unital C *-morphisms h : O2 →M(B) for σ-unital stable B are all homo-

topic, because of U(M(B)) = U0(M(B)) by the Cuntz-Higson Theorem, cf. Propo-

sition 4.2.15, and unital C *-morphisms h0, h1 : O2 → A are unitarily homotopic to

each other, if and only if, the unitary u := h0(s1)h1(s∗1) + h0(s2)h1(s∗2) is in U0(A),
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by Corollary ?? cf. Section ?? of Chapter 4. Clearly they are all homotopic if and

only if U(A) = U0(A).

But the homotopy classes of unital h ∈ Hom(O2, E) is identical with

U(E)/U0(E), which is isomorphic to K1(E) if and only if E is K1-injective

(in addition).

All non-unital C *-morphisms h ∈ Hom(O2, E) with the property that the

projections h(1) and 1−h(1) are full in E and that 1−h(1) is properly infinite are

homotopic in Hom(O2, E) and are unitary homotopic. Clearly, the latter happens

for all non-unital h ∈ Hom(O2, E) if E is simple and purely infinite.

Compare for the non-purely infinite case the elements of Hom(O2, E) for the

stable corona E := Qs(M2∞) of M2∞ in Section 8.

1. Strict convergence in Multiplier algebras

Here we give some later used unconditional strict convergence results for com-

pletely bounded maps defined with help of certain strictly “unconditional square-

summable” sequences. We introduce some natural C *-subalgebras in M(B) of

stable (not necessarily σ-unital) B, and describe a certain “expanding” path of

projections in O2 ⊗K ⊂M(B) for σ-unital stable C *-algebras B.

A very important point for application of extension theory is the “stability”

of the σ-unital C *-algebras under consideration. We select for reference some ele-

mentary equivalent descriptions in Part (8). There are others and other proofs for

the here given equivalences and descriptions. We use (or misuse) our proof of the

following Remarks 5.1.1 – in particular of Parts (1) and (8) – to give also a survey

on multiplier algebras and their strict topology from our viewpoints and with our

terminology ( 2 ).

Remarks 5.1.1. The strict topology on M(B) ⊆ L(B) is given by the

semi-norms d ∈ M(B) 7→ ‖Ld(a)‖ + ‖Rd(b)‖, where a, b ∈ B ( 3 ), this topology is

different to the strong topology onM(B) ⊆ L(B), induced by the strong operator

topology on L(B). The latter is defined by the semi-norms T 7→ ‖T (a)‖ with a ∈ B
and T ∈ L(B) only.

(Since M(B) has a natural C *-algebra imbedding as a C *-subalgebra of B∗∗,

we can write Rd(a) as ad and Ld(a) as da for a ∈ B and d ∈M(B) ⊆ L(B).)

The strong and the strict topology coincide on the set of normal elements

d ∈ M(B), because ‖ad‖ = ‖da∗‖ for d ∈ M(B) with d∗d = dd∗ and a ∈ B. In

particular this topologies coincide on the unitary group of M(B) and on bounded

sets of self-adjoint elements in M(B).

A bounded net in {bτ} ⊂ M(B) converges strongly (resp. strictly = *strongly)

to an element of b ∈ M(B) if lim ‖bτ c − bc‖ = 0 (resp. if lim ‖bτ c − bc‖ = 0 and

2 Keep always in mind the simple observation in Part (2) of the the following Remarks.
3 In some cases, e.g. B = K, it is on bounded parts the same as the ∗-strong topology.
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lim ‖dbτ − db‖ = 0) for all c in a subset X ⊆ M(B) (resp. for all d in a subset

Y ⊆M(B) such that span(XB) and span(BY ) are dense in B.

If B is σ-unital and e ∈ B+ is a strictly positive element, the strict topology is

metrizable with metric ρ(b, c) := ‖(b− c)e‖+ ‖e(b− c)‖ on bounded parts ofM(B).

A series
∑
n dn means the sequence of its partial sums ek :=

∑k
n=1 dn with dn ∈

M(B). It converges unconditional strictly to T ∈ M(B) if
∑
n dγ(n) converges

also strictly in M(B) for each permutation γ of N. The series
∑
n dn denotes also

the sum (if it exists).

If
∑
n dn converges unconditional in strict topology, then for its sum holds∑

n dγ(n) =
∑
n dn for each permutation γ of N, because this is true for the se-

ries
∑
n f(dn) and each linear functional f ∈ B∗, where B∗ is considered as a

(complemented) subspace of M(B)∗ by B /M(B).

(1) A C *-morphism h : A → M(B) extends uniquely to a unital and strictly

continuous C *-morphism M(h) from M(A) into M(B), if and only if, the linear

span of the set h(A) ·B is dense in B. (In fact the closed linear span of h(A) ·B is

identical with the set of elements h(a) · b, a ∈ A and b ∈ B, because the proof of

G.K. Pedersen shows that the y ∈ X in the factorization e · y = x can be taken in

the closed convex cone B+ · x of X, cf. G.K. Pedersen’s proof a C *-version of the

Cohen Factorization Theorem outlined in Section 11 of Appendix A.

Def. of ‘‘non-degenerate’’ is used first in Part (7), but also

in Chapters 1, 2 and 3

(and perhaps Chapter 4 ?)

We call the C *-morphism h non-degenerate if h(A)B is dense in B. A C *-

subalgebra C ⊆M(B) is a non-degenerate subalgebra if CB is dense in B.

(2) Suppose that x = (x1, x2, . . .) and y = (y1, y2, . . . ) are sequences in M(B)

such that the sums
∑
xnx

∗
n and

∑
yny
∗
n converge strongly to elements X and

Y of M(B)+. We identify `∞(M(B)) naturally with the multiplier algebra of

c0(B) ∼= B ⊗ c0.

Original dn have been changed to bn

for later notational reasons.

Check changes in proofs (!), other references, applications!!

Then, for every bounded sequence b = (b1, b2, . . .) ∈ `∞(M(B)), the series∑
ynbnx

∗
n converges strictly and unconditionally to an element Γ(b1, b2, . . .) in

M(B) . It defines a strictly continuous and completely bounded linear map

Γ : (b1, b2, . . .) ∈ `∞(M(B)) =M(c0(B)) 7→
∑

ynbnx
∗
n ∈M(B) .

The mapping Γ maps c0(B) into B and has cb-norm

‖Γ ‖cb ≤
(
‖X‖ · ‖Y ‖

)1/2
.

This convergence observation turns the proofs of Lemma 5.1.2, Proposition

5.4.1 and some others into straight-forward calculations – sometimes left to the
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reader, as e.g. in the proof of Corollary 2.2.11(i) where this observation is used

implicitly.

(3) The applications of the unconditional strict convergence of the expressions

Γ – observed in Remark (2) – use sometimes quasi-central commutative approximate

units of σ-unital C *-algebras B to construct suitable sequences (xn) and (yn) that

satisfy the assumptions in Part (2):

Let e ∈ B+ any strictly positive element in B of norm ‖e‖ = 1, A ⊆ M(B)

a separable C *-subalgebra, and take a linear filtration of A by vector sub-spaces

Xn ⊆ A of finite dimension with the properties that Xn = X∗n := {x∗ ; x ∈ Xn} ⊆
Xn+1 , dim(Xn) <∞ and

⋃
nXn is dense in A.

Separation arguments for convex combinations of f(e) with suitable non-

decreasing functions f show that there exists a strictly decreasing zero-sequence

α1 > α2 > · · · in (0, 1) and non-decreasing functions fn ∈ C0((0, 1])+,

n := 0, 1, 2, . . ., with properties f0(t) := t, fn(t) = 0 for t ∈ [0, αn],

fnfn+1 = fn, ‖fn‖ = 1, and ‖f0 − fnf0‖ < 4−n ,

and the property that, for each b ∈ Xn and m > n, the commutators have estimates

‖ [fn(e), b] ‖ + ‖[(fm(e)− fn(e))1/2, b] ‖ < 4−n‖b‖ .

The properties imply fn|[ε, 1] = 1 and ‖ e− fn(e)e ‖ < ε for n ≥ 1− log(ε).

(4) Especially let xn := yn := gn := (fn(e) − fn−1(e))1/2 for n > 1 and

x1 := y1 := g1 := f
1/2
1 (e) in Remark (2) with fn selected for Xn ⊆ A ⊆ M(B) as

in Remark (3).

The sum
∑
n g
∗
n gn converges strictly to 1 and the in Remark (2) defined map

Γ: `∞(M(B)) → M(B) with xn := yn := g∗n is a unital completely positive map

with a− Γ(a, a, . . .) ∈ B for all a ∈ A.

(5) If g1, g2, . . . are as in Remarks (3) and (4), constructed for a given filtration

Xn of A ⊆M(B) and a given strictly positive contraction e ∈ B+, and if d1, d2, . . .

is a bounded sequence in M(B) with
∑
n ‖dngn − gndn‖ < ∞, then the series∑

n dngn converges strictly to an element d ∈M(B).

In particular, let P ⊆ N and (dn) defined by dn := 1 if n ∈ P and dn := 0 if

n ∈ N\P . The corresponding positive contraction S := SP :=
∑
n∈P gn ∈M(B)+

is not necessarily in B.

But we get from Remark (4) that

Sa− aS , SaS + (1− S2)1/2a(1− S2)1/2 − a ∈ B ∀ a ∈ A .

The operator S satisfies S2 =
∑
n∈P g

2
n if |p− q| > 1 for all p, q ∈ P with p 6= q.

(6) Suppose that a sequence of contractions d1, d2, . . . ∈ M(B), a self-adjoint

contraction a∗ = a ∈ M(B) and the sequence g1, g2, . . . defined in Remark (4)

satisfy

(i)
∑
` ν` <∞ for ν` := supn≥`

(
max1≤k≤n ‖dkgn − gndk‖

)
,
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(ii)
∑
` µ` <∞ for µ` := supn≥` ‖gna− agn‖, and

(iii) limn→∞ ‖gnd∗nadn+1gn+1‖ = 0 .

Then d1, d2, . . ., a and d :=
∑
n dngn satisfy

d∗ad − Γ(d∗1ad1 , d
∗
2ad2 , . . .) ∈ B .

(7) D is a corner ofB, ifD is a hereditary C *-subalgebra ofB andD+Ann(D)

is a non-degenerate C *-subalgebra of B.

It says equivalently that there is a projection p ∈M(B) with D = pBp .

A subset X ⊆ B generates a corner of B, if the closure of the linear span of

C∗(X) ·B · C∗(X) is a corner of B.

(In fact the set of products c · b · c with b ∈ B and contractions c ∈ C∗(X)+

in an approximate unit of C∗(X) is identical with the hereditary C *-subalgebra of

B generated by C∗(X) as the Cohen factorization theorem [621, Thm. 4.1] shows,

cf. also Theorem A.11.1.)

(8) Recall that B is a stable C*-algebra if there exists an isomorphism ψ

from B ⊗K onto B, where K := K(`2) denotes the compact operators K := K(`2)

on `2(N).

This is equivalent to the existence of a C *-algebra C and a C *-algebra isomor-

phism from C ⊗K onto B.

The following criterium is necessary and sufficient for the stability of a (not

necessarily σ-unital) C *-algebra B:

There exists a sequence s1, s2, . . . of isometries in M(B) such that
∑
n sns

∗
n con-

verges strictly to 1 in M(B).

Given a sequence s1, s2, . . . ∈ M(B) of isometries with
∑
n sns

∗
n strictly con-

vergent to 1, then δ∞(b) :=
∑
n snbs

∗
n for b ∈ M(B) defines a faithful strictly

continuous unital *-endomorphism of M(B).

It holds u∗δ∞(b)u =
∑
n tnbt

∗
n by a unitary u ∈ M(B) with tn = usn for n =

1, 2, . . . if t1, t2, . . . is any other sequence of isometries in M(B) with
∑
n tnt

∗
n = 1

(strictly convergent).

The unitary equivalence class [δ∞] has representatives δ∞ : M(B) → M(B)

determined by s1, s2, . . .. We call this class (and sometimes the endomorphisms∑
n sn(·)sn in this class) the infinite repeat (on M(B)) of the identity mapping

idM(B) of M(B). Then δ∞(b) (or its unitary equivalence class [δ∞(b)]) is the

infinite repeat of the element b ∈M(B).

There exists a C *-morphism µ : K→M(B) with following properties (a,b,c) :

(a) µ(K) ⊂ δ∞(B)′ ∩M(B),

(b) δ∞(b)µ(k) ∈ B for b ∈ B and k ∈ K, and
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(c) the (unique) C *-morphism ϕ : B ⊗K → B with ϕ(b⊗ k) = δ∞(b)µ(k) is

an isomorphism from B⊗K onto B that maps J⊗K onto J for each ideal

J of B.

If a C *-morphism µ : K→M(B) satisfies conditions (a,b,c) then µ(K) ·B = B.

The C *-morphisms µ : K→M(B) with properties (a,b,c) are uniquely defined

by the given sequence s1, s2, . . . ∈ M(B) of isometries with
∑
sns
∗
n = 1 – up to

unitary equivalence by unitaries in δ∞(B)′ ∩M(B).

One of the C *-morphisms µ : K→ δ∞(B)′ ∩M(B) with properties (a,b,c) can

be defined by µ(pj,k) := sjs
∗
k for j, k ∈ N, if the unitary equivalence class [δ∞] is

realized by given isometries s1, s2, . . ., i.e., if δ∞(·) :=
∑
n sn(·)s∗n.

The isomorphism ϕ from B⊗K onto B defined by µ : K→M(B) with proper-

ties (a,b,c) has the property that the corresponding C *-morphism b 7→ ϕ(b⊗ p1,1)

is a *-endomorphism of B, that is approximately 1-step inner as a c.p. contraction.

The C *-morphism ϕ((·)⊗ p1,1) is unitarily homotopic to idB if B is σ-unital.

If b ∈ B+, then ϕ(b⊗ e1,1) is Murray–von-Neumann equivalent to b. In partic-

ular, ϕ(J ⊗K) = J for each J ∈ I(B).

This property of the “natural” ϕ is different from the properties of very random

and possibly not well-behaved *-isomorphism ψ from B⊗K onto B – as allowed in

the definition of stability –, because in general the isomorphism ϕ ◦ ψ−1 of B does

not fix the ideal-system I(B) of B and is not approximately unitarily equivalent to

idB by unitaries in M(B).

The non-degenerate *-monomorphism µ : K → M(B) with properties (a,b,c)

has the“dual” property that

µ(K)′ ∩M(B) = δ∞(M(B)) .

It implies that δ∞(M(B)) is closed inM(B) with respect to the strict topology on

M(B).

The strictly continuous extension M(µ) : M(K) ∼= L(`2) → M(B) of µ is a

unital *-monomorphism, has image in δ∞(M(B))′ ∩M(B) and the norm-closed

unit-ball of M(µ)(L(`2)) is also closed in the strict topology of M(B).

The strictly closed C *-subalgebra δ∞(M(B))′ ∩M(B) ofM(B) can be larger

than M(µ)(L(`2)), e.g. if the center of M(B) is not trivial.

For each non-degenerate C *-morphism ψ : K(`2) → M(B), the topology in-

duced viaM(ψ)−1 onM(K) = L(`2) by the strict topology onM(B) coincides on

bounded parts with the *-strong operator topology on L(`2).

(9) The (s1, s2, . . .)-existence criteria for stability in Remark (8) shows that

B and B+h(A) are stable if A is stable and h : A→M(B) is a non-degenerate

C*-morphism.

In particular, B is stable if B contains a non-degenerate stable C *-subalgebra.
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To be worked out in detail:

(10) Let C1, C2, . . . a contable sequence of separable unital C *-algebras, K⊗D
a σ-unital stable C *-algebra, and let B := K⊗D⊗C1⊗C2⊗· · · the infinite tensor

product. We define unital C *-subalgebras G1 ⊂ G2 ⊂ · · · ofM(B) by the following

conditions:

To be defined. Sort of infinite E(Cn, Cn+1) ⊆M(B)

build with help an approximately central approximate unit of B that

is approximately central for h(A) of a given C *-morphism

h : A→M(B).

?????

Then for every C *-morphism h : A→M(B) of a separable C *-algebra A there

exists n0 := n0(h(A)) ∈ N such that [h(A), Gn] ⊆ B for all n ≥ n0 and, for each

a ∈ A, ‖[h(a), gn]‖ → 0 for any sequence of contractions gn ∈ Gn.

(With n0 depending from an approximate unit in K ⊗D that is quasi-central

for h(A).)

TO BE FILLED IN – for almost central sequences...

Lemma, ???? Idea ???, corona property ...

Case B := K ⊗ D ⊗ C1 ⊗ C2 ⊗ · · · A ⊆ M(B) separable C *-subalgebra.

Then one can find tensorial residuum if 1⊗ 11⊗· · ·⊗ 1nk ⊗Cnk+1
⊗· · · commuting

modulo B with A... provided that the Cn are unital simple and separable ... MORE

conditions ???

Proofs of Remarks (1)–(10):

We say here something about the different definitions of multipliers, multiplier

algebras, its relation to factorization properties of C *-algebra modules and the

interrelation between the (by them defined) strict, strong and weak* topologies on

bounded subsets of C *-subalgebrasof multiplier algebras. And we explain the often

required “non-degeneracy” of modular morphisms for the often needed verification

of unconditional strict convergence of series.

(0.1) General multiplier algebras:

If B is a Banach algebra and ρ : B → L(X) is an algebra homomorphism,

then the “action” ρ of B on X, respectively the (left) B-module X defined by

b · x := ρ(b)(x) is called non-degenerate if span(ρ(B)X) is dense in X.

To simplify some arguments we use later the special case for C *-algebras B of

the Cohen factorization theorem ( 4 ) given by G.K. Pedersen [621, Thm. 4.1] (with

13 lines of proof):

4 P. Cohen [?] proved 1959 that Banach algebras B with bounded approximate left-unit

have the factorization property. In 1964, E. Hewitt [363] and P. Koosis [491] showed that this

factorization property also holds for non-degenerate Banach B-modules.
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If a C*-algebra B acts on a Banach space X from left with ‖b ·x‖ ≤ ‖b‖‖x‖ and

if span(B ·X) is dense in X, then for each ε > 0 and x ∈ X there exists e ∈ B+

and y ∈ X with e · y = x, ‖e‖ ≤ 1, ‖y − x‖ < ε.

In fact, the proof of G.K. Pedersen, shows that the y ∈ X in the factorization

e · y = x can be chosen in the closed convex cone B+ · x of X, cf. Section 11 of

Appendix A.

Since one can here replace X likewise by B · x or by c0(X) with left action

b · (x1, x2, . . .) = (b · x1, b · x2, . . .), we can find a positive contraction a ∈ B and

y ∈ B · x (respectively (y1, y2, . . .) ∈ c0(X)) with b · y = x and ‖x − y‖ < ε

(respectively with b · yn = xn and ‖xn − yn‖ < ε for n = 1, 2, . . .). The latter

implies in particular for X := B that for a, b ∈ B there are e ∈ B+, c ∈ B+a and

d ∈ B+b with ec = a, ed = b and ‖e‖ ≤ 1.

If B is a σ-unital C *-algebra and X a non-degenerate B-module with ‖b ·x‖ ≤
‖b‖ ‖x‖, then one can find, for each given strictly positive contraction b0 ∈ B+ and

ε > 0 and x ∈ X, a factorization e · y = x with ‖y − x‖ < ε where y ∈ X and

e := ϕ(b0), ϕ an increasing continuous function with f(0) = 0 and f(1) ≤ 1.

Except the latter, all this is also true for Banach algebras B with an approxi-

mate unit consisting of contractions. (But one has to use for such algebras B the

estimates from the generalization of the Cohen factorization given by E. Hewitt or

P. Koosis.)

In particular, the following definition and arguments work more generally for

Banach algebras B that contains an approximate unit {eτ} with ‖ eτ ‖ ≤ 1 .

Notice that the non-degeneracy of the action of B on X implies that x ∈ B · x
and and thus, that B · x = {0} is equivalent to x = 0.

This allows to extend the action of B on X in a unique way to a left module

action of the left-multiplier algebra of B , i.e., of the operator-norm closed

subalgebra M`(B) of L(B) of bounded left multipliers L ∈ L(B) of B, that are

defined by its property

L(ab) = L(a)b for all a, b ∈ B .

(The elements L ∈ M` are also called “left centralizers” of B, where we have to

consider B as subalgebra of L(B).)

The extension of the B-modul X to anM`(B)-modul X with (Lb) ·′x = b ·x :=

ρ(b)(x) is uniquely defined for L ∈ M`(B) and y ∈ X via Cohen factorization

y := b · x by

L ·′ (b · x) := L(b) · x for b .

The definition of L ·′ y is justified, because the right side is equal to limτ L(eτ b) · x,

because L is bounded and eτ b → b. Since L(ea) · x = L(e) · (a · x) = L(eb) · y for

a·x = b·y, it follows that the action ofM`(B) is well-defined. It is then not difficult

to check that (L, x) 7→ L ·′ x is bi-linear in L and x ∈ X and ‖L ·′ x‖ ≤ ‖L‖‖x‖. See

[621, thm. 5.9] and proof of [621, thm. 5.10] for the case where B is a C *-algebra.



634 5. GENERALIZED WEYL–VON NEUMANN THEOREMS

Obviously an operator T ∈ L(B) is in M`(B) if and only TRb = RbT for all

b ∈ B, where Rb(a) := ab for a ∈ B. This shows that M`(B) is closed in L(B)

with respect to the strong operator topology.

If a Banach algebra B contains (two-sided) bounded approximate unit, then the

Cohen factorization theorem, applied to B as a left module over B, shows that the

subalgebraM`(B) ⊂ L(B) is the closure of the (then to B isomorphic) subalgebra

{Lb ; b ∈ B} ⊂ L(B) with respect to the strong operator topology on L(B).

We use now that for every Banach space X, the space L(X) is complete as

locally convex vector space with respect to the strong operator topology (an imme-

diate consequence of the Banach-Steinhaus uniform boundedness theorem).

It implies thatM`(B) equipped with the strong operator topology is the com-

pletion of B with respect to the uniform structure defined on B×B by the system

of semi-metrics ρc(a, b) := ‖(b− a)c‖ (c ∈ B), if B has a bounded two-sided approx-

imate unit.

Let ηB : B ↪→ B∗∗ the natural isometry fromB into its second conjugate Banach

space B∗∗. We identify the elements b ∈ B later with its image ηB(b) ∈ B∗∗.

If B has a (left) approximate unit consisting of contractions in B then there

exists an element e ∈ B∗∗ with the properties ‖e‖ ≤ 1 and (Rb)
∗∗(e) = ηB(b) for

all b ∈ B.

It follows that the map T ∈ L(B) 7→ T ∗∗(e) ∈ B∗∗ defined on L(B) has an

isometric restriction λ to M`(B) that satisfies

(Rb)
∗∗λ(T ) = ηB(Tb) and ‖λ(T )‖ = ‖T‖ for b ∈ B, T ∈M`(B) . (1.1)

If X ∈ B∗∗ satisfies (Rb)
∗∗T ∈ ηB(B) for all b ∈ B then T (b) := η−1

B ((Rb)
∗∗X)

defines an element T ∈M`(B) with λ(T ) = X.

If, moreover, the linear span of the elements (Rb)
∗ρ for b ∈ B and ρ ∈ B∗ is

norm-dense in B∗ then the element e ∈ B∗∗ with the property (Rb)
∗∗(e) = b for all

b ∈ B and the map λ : M`(B)→ B∗∗ with the quoted property is unique.

The latter is the case for C *-algebras B, by the Kaplansky density theorem for

B ⊆ B∗∗.

Notice that that (Rb)
∗∗(X) = X · ηB(b) in the W*-algebra B∗∗ for b ∈ B and

X ∈ B∗∗ if B is a C *-algebra B, i.e., the equation (1.1) becomes

γ(T )ηB(a) = ηB(Ta) .

It implies that γ is an isometric algebra isomorphism from M` into B∗∗ with

γ(Lb) = ηB(b).

If X ∈ B∗∗ satisfies X· ∈ B ⊂ B∗∗ then there exists T ∈M`(B) with X = γ(T )

for T (b) := η−1
B (XηB(b)).

It defines a multiplicative isometric algebra representation of M`(B) into the

W*-algebra B∗∗. The image of λ is the algebra of left-multipliers of ηB(B) ⊆ B∗∗

inside B∗∗.
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Recall that each C *-algebras B has an approximate unit consisting of contrac-

tions and the linear span of the elements (Rb)
∗(ρ) with b ∈ B and ρ ∈ B∗ (where

Rb(a) := ba) is norm-dense in B∗, cf. [616, thm. 4.1.2] and use that each ρ is in the

norm closure of (Rb)
∗ · ρ (b ∈ B, ‖b‖ ≤ 1), because B is *-ultra-strong dense in sec-

ond conjugate W*-algebra B∗∗ by Kaplansky density theorem cf. [616, thm. 2.3.3].

In particular, in this case e = 1 := 1B∗∗ and γ(T ) := T ∗∗(1) for T ∈M`(B).

Thus a natural isometric linear map λ : M`(ηB) : M`(B) ↪→ B∗∗ is given by

the restriction of the natural linear map

T ∈ L(B) 7→ T ∗∗(e) ∈ B∗∗

to M`(B), where T ∗∗ here is the bi-adjoint of the operator T ∈ L(B) and e is the

unique cluster point of an approximate unit consisting of contractions in B.

The restriction of the map T 7→ T ∗∗(e) to the elements in the algebra of left

multipliers M`(B) ⊆ L(B) of the map T → T ∗∗(1) from L(B) to B∗∗ is isometric

and multiplicative if the Banach algebra B contains a two-sided approximate unit

consisting of contractions and the elements (Rb)
∗(ρ)(·) := ρ((·)b) for ρ ∈ B∗ and

b ∈ B are norm-dense in the dual Banach space B∗ of B. Here e denotes the (then)

unique element in B∗∗ with (Rb)
∗∗(e) = b for all b ∈ B. In particular the map

γ : M`(B)→ B∗∗ is uniquely defined for all C *-algebras B.

The general (two-sided) multiplier algebra of a Banach algebras B (not nec-

essarily with involution operation on B) is defined as the set of pairs (L,R) of

operators L,R ∈ L(B) that satisfy (R(b)) · c = b · (L(c)), L(ab) = L(a)b and

R(ab) = aR(b) for a, b, c ∈ B. Notice that left and right multiplication (La, Ra) by

a ∈ B defines a two-sided multiplier for each a ∈ B.

The property (R(b)) · c = b · (L(c)) for all b, c ∈ B of the pair (L,R) ∈
L(B) × L(B) alone implies that a(L(bc) − L(b)c) = 0 = (R(ab) − aR(b))c for

all a, b, c ∈ B. Thus implies automatically that L and R are left and right multi-

pliers if e.g. B contains a (two-sided) approximate unit. Moreover, then the pair

(L,R) is determined uniquely by L alone and the property that to this (special sort

of) left multipliers L there exists a right multiplier such that (L,R) is a two-sided

multiplier.

In a Banach *-algebra B one can transform each right multiplier R into a left

multiplier R̂ ∈M`(B) by the anti-linear map on L(B) (of order 2) given by R̂(a) :=

R(a∗)∗. If a Banach *-algebra B contains an approximate unit then the two-sided

multipliers are the pairs of left multipliers (L, R̂) that satisfy (R̂(a))∗b = a∗L(b),

where R̂ is uniquely determined by L (if R exists for L). We rename them and

describe them as pairs (S, T ) ∈ M`(B) ×M`(B) and the defining property is the

relation

a∗S(b) = T (a)∗b for all a, b ∈ B , (1.2)

that is equivalent to Ŝ(b)a = bT (a) for a, b ∈ B.
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If B contains an approximate unit (eτ ) with ‖eτ‖ ≤ 1 then Equation (1.2)

implies that ‖S‖ = ‖T‖. In this way we can define on the two-sided multiplies

(S, T ) a norm ‖(S, T )‖ := max{‖S‖, ‖T‖} = ‖S‖.

(0.2) Two-sided multipliers of C*-algebras: We use the equivalent def-

inition for the two-sided multiplier algebra M(B) in case of C *-algebras B that

better suites for our applications:

We define M(B) as the norm-closed sub-algebra of M`(B) ⊆ L(B) consisting

of all operators T ∈ M`(B) with the property that there exists S ∈ L(B) that

satisfies Equation (1.2).

This equations yield automatically that the operator-norm inherited from L(B)

is the same as the C *-norm of the C *-algebra M(B).

The reader should notice the we have in fact a stronger observation (going back

to an old remark of J. von Neumann):

Alone the property that S and T are abstract maps from B into B (without sup-

posing linearity as precondition) that satisfy a∗S(b) = T (a)∗b for all b, c ∈ B allows

to see, using the property ‖d∗d‖ = ‖d‖2 = ‖dd∗‖ of C *-norms and the closed graph

theorem, that S and T must be linear operators that are bounded and have the

properties ‖T‖ = ‖S‖, T (bc) = (Tb)c, S(bc) = (Sb)c and that S is uniquely deter-

mined by T . Then S := T ∗ ∈M`(B) is well-defined for T in this closed subalgebra

M(B) of M`(B) by T ∗ := S.

The natural *-monomorphism of B onto an essential ideal of M(B) ⊆ L(B) is

given by b ∈ B 7→ Lb ∈ L(B), where Lb(c) := bc for b, c ∈ B. We identify B with

its image in M(B) via b ↔ Lb.

The so-called strong topology and strict topology on M(B) ⊆ L(B) is given

by the restriction to M(B) of the usual strong operator topology on L(B), that is

given by the family of semi-norms T 7→ ‖Tb‖ with b ∈ B, and the strict topology

is given by the family of semi-norms T 7→ ‖Tb‖ and T 7→ ‖T ∗b‖, where T ∗ ∈ L(B)

is defined as above by (T ∗a)∗b = a∗(Tb) for a, b ∈ B.

Obviously this implies that in case of σ-unital B we can take a strictly positive

contraction b0 ∈ B+ and get with T 7→ ‖Tb0‖+ ‖T ∗b0‖ a defining norm on M(B)

that defines the strict topology on bounded parts of M(B).

Let ηB : B ↪→ B∗∗ the natural *-monomorphism from B into its second con-

jugate W*-algebra B∗∗. Sometimes we identify the elements b ∈ B with its image

ηB(b) ∈ B∗∗.

A natural and unital C *-monomorphism M(ηB) : M(B) ↪→ B∗∗ is given by

the restriction of the natural linear map

γ : T ∈ L(B) 7→ T ∗∗(1) ∈ B∗∗

toM(B), where T ∗∗ here is defined as the bi-adjoint of the operator T ∈ L(B) and

1 := 1B∗∗ is the unit element of the W*-algebra B∗∗.

Look at next. Is it mentioned above?
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The restriction of the map T 7→ T ∗∗(1) (with 1 = 1B∗∗) to the elements in the

algebra of left multipliers M`(B) ⊆ L(B) of the map T → T ∗∗(1) from L(B) to

B∗∗ is isometric and multiplicative if the Banach algebra B contains a two-sided

approximate unit consisting of contractions and the elements (Rb)
∗(ρ)(·) := ρ((·)b)

for ρ ∈ B∗ and b ∈ B are norm-dense in the dual Banach space B∗ of B. Here

1 := 1B∗∗ denotes the (then) unique element in B∗∗ with (Rb)
∗∗(1) = b for all

b ∈ B.

Thus, if B is a C *-algebra, then it is a C *-algebra monomorphism if restricted

to M(B) ⊆ L(B) because, B+ 3 eτ → 1 in B∗∗ with σ(B∗∗, B∗) topology, e.g.

T (b) = T ∗∗(1 · b) = lim
τ
T (eτ · b) = T ∗∗(eτ )b = T ∗∗(1)b

for all b ∈ B∗∗. To see this, use that T ∗∗ is σ(B∗∗, B∗)-continuous and that the

unit ball of B is σ(B∗∗, B∗)-dense in the unit ball of B∗∗.

The image of T ∈ M(B) 7→ T ∗∗(1B∗∗) is a C *-algebra isomorphism from

M(B) onto the C *-subalgebra of the W*-algebra B∗∗ of elements d ∈ B∗∗ with

the property dB ⊆ B and Bd ⊆ B, where we have the elements b ∈ B naturally

identified with its images ηB(b) ∈ B∗∗ in the second conjugate W*-algebra B∗∗ .

We say that a C *-morphism h : B →M from a C *-algebra B into a W*-algebra

M that is weakly non-degenerate if 1M is contained in the σ(M,M∗)-closure of

h(B).

If h is weakly non-degenerate then there exists a unique C *-morphism

M(h) : M(B) → M with the property M(h)|B = h. The C *-morphism M(h) is

unital and maps M(B) into the C *-subalgebra of M given by the two-sided mul-

tipliers m ∈M of h(B) in M , i.e., mh(B)∪ h(B)m ∈ h(B) for m ∈M(h)(M(B)).

If h : B → M is faithful and weakly non-degenerate then M(h) is faithful and

each two-sided multiplier m of h(B) is in the image M(h)(M(B)), because then

L : b 7→ h−1(mh(b)) and R : b 7→ h−1(h(b)m) define a pair (L,R) ∈ L(B) × L(B)

that defines an element T ∈M(B) with M(h)(T )h(b) = mh(b). Now use that 1M

is in the σ(M,M∗)-closure of h(B).

The latter applies to B := K(H), M := L(H) and to h : b ∈ K(H)→ b ∈ K(H)

and yields thatM(K(H)) is naturally isomorphic to L(H) by an isomorphism that

fixes the compact operators.

The strict closure of any convex subset Z ⊆ M(B) coincides with the inter-

section of M(B) ⊆ B∗∗ with its closure Z in the σ(B∗∗, B∗)-topology, because all

strictly continuous linear functionals f : M(B)→ C are of the form f = g ◦M(ηB)

with g ∈ B∗ ⊆ B∗∗.

This can be seen from the existence of b1, . . . , bn ∈ B for a given strictly contin-

uous linear functionals f ∈M(B)∗ that satisfy | f(T ) | ≤
∑n
k=1 ‖Tbk‖+‖T ∗bk‖ for

all T ∈M(B), and from the fact that the unit-ball of B is strictly dense in the unit

ball of M(B) because each C *-algebra has an approximate unit {eτ} consisting of

positive contractions:
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The net eτ ′(Teτ ) ∈ B – with possibly different τ ′, τ - converges strictly to T .

The strict density of the unit ball of B in the unit ball of M(B) implies also

directly that a strictly continuos linear functional f onM(B) satisfies ‖f‖ = ‖f |B‖.
Hence, f is determined by its restriction to B, i.e., is the same as g|M(B) of the

natural extension of g := f |B ∈ B∗ to an σ(B∗, B∗∗)-continuous extension to an

element of M(B) ⊆ B∗∗.

If ρ : B → L(H) is a non-degenerate *-representation of B on a Hilbert space

H, i.e., if span(ρ(B)H) is dense in H, then ρ is also a non-degenerate C *-morphism

from B into M(K(H)).

This is because the closure of the linear span span(ρ(B)K(H)) is equal to

ρ(B) ·K(H) by Cohen factorization and is a closed right ideal R of K(H).

Indeed: It is easy to see that K(H)H = H and that RH = PH and PK(H) = R

with a unique projection P ∈ L(H) for all closed right ideals R of K(H).

Since M(K(H)) is naturally isomorphic to L(H), a *-representation ρ : B →
L(H) is non-degenerate if and only if ρ is non-degenerate as a C *-morphism from

B into M(K(H)).

(This says equivalently that ρ(B)H = H if and only if ρ(B)K(H) = K(H).)

If the latter is the case we get the unique unital strictly continuous extension

M(ρ) : M(B)→M(K(H)) = L(H) with the property M(ρ)(b) = ρ(b) for b ∈ B.

Next has also overlaps with (0.3):

MOVE TO to M(K) study !?! CROSS REF to????

(uniqueness extensions M(h) of non-degenerate h are explained in ????????

where??? “uniqueness of M(h) for non-degenerate h”

Should be in Chp. 3 – or in Chp.2, or even in Chp.1)

The *-representation ρ : B → L(H) ∼= M(K(H)) is non-degenerate as C *-

morphism from B toM(K(H)) if and only if ρ is non-degenerate as a representation

of B over H, i.e., the linear span of ρ(B)K(H) dense in K(H) if and only if the

linear span of ρ(B)H is dense in H.

See also further above/below for next:

The latter holds because K(H)H = H. (Alternative argument: A closed right

ideal R of K is equal to K if and only if the linear span of RH is dense in H.)

The proof of the uniqueness is similar to the below given proof in proof-part

(1a) of the uniqueness of M(h) : A→M(B) for non-degenerate h : A→M(B).

The existence ofM(ρ) comes by restriction toM(B) =M(ηB)(M(B)) ⊆ B∗∗

of the unital and normal extension ρ : B∗∗ → L(H) of ρ to B∗∗, of ρ – using that

L(H) ∼= (H⊗̂H)∗, with ⊗̂ the maximal uniform Grothendieck tensor product, i.e.,

H⊗̂H is the ideal of nuclear operators X with the norm ‖X‖nuc, and that H⊗̂H
is a complemented subspace of L(H)∗ – as adjoint ρ of ρ∗|H⊗̂H. The proofs are

straight-forward by calculations (cf. functional analysis textbooks).
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Moreover,M(ρ)(M(B)) is contained in the bi-commutant ρ(B)′′, which is the

smallest von-Neumann subalgebra of L(H) that contains ρ(B).

It is the *-strong closure of ρ(B) if ρ is non-degenerate, by using the bi-

commutation theorem of J. von Neumann.

Indeed, if U ∈ L(H) is unitary and Uρ(b) = ρ(b)U for all b ∈ B, then

(UM(ρ)(T ) −M(ρ)(T )U)ρ(b) = 0 for all b ∈ B. Since ρ(B)H is dense in H it

follows UM(ρ)(T ) =M(ρ)(T )U , i.e., M(ρ)(T ) ∈ ρ(B)′′.

If, in addition, ρ is faithful on B then M(ρ) is faithful on M(B), because

M(ρ)(T ) = 0 implies ρ(TB) = {0}, i.e., TB = {0} and T = 0.

If the non-degenerate ρ is moreover faithful, then the image M(ρ)(M(B)) of

M(ρ) is identical with the set of operators Y ∈ L(H) with Y ρ(b), Y ∗ρ(b) ∈ ρ(B)

for all b ∈ B. Indeed: Such Y defines bounded linear maps T, S ∈ L(B) by Tb :=

ρ−1(Y ρ(b)) and Sb := ρ−1(Y ∗ρ(b)) that satisfy T (bc) = (Tb)c and (Sb)∗c = b∗(Tc)

for b, c ∈ B. Thus, T ∈M(B) andM(ρ)(T )ρ(b) = ρ(Tb) = Y ρ(b) for b ∈ B. Since

ρ(B)H has dense span in H it follows M(ρ)(T ) = Y .

In particular, M(B) can be identified with the C *-subalgebra of the bi-dual

W*-algebra B∗∗ ⊇ B given by the elements T ∈ B∗∗ with Tb, bT ∈ B for all b ∈ B.

This is because B∗∗ is isomorphic to a von-Neumann algebra on a suitable Hilbert

space H and the corresponding representation of B is *-strongly dense in B∗∗.

We notice that any non-degenerate *-representation ρ : B → L(H) ∼=M(K(H))

is also a non-degenerate C *-morphism into M(K(H)) = L(H), despite of different

definitions.

The norm-closed linear span R ⊆ K(H) of ρ(B) ·K(H) is a non-degenerate left

B-module via ρ. Application of Cohen factorization shows that ρ(B) · K(H) = R

is a closed right-ideal of K(H). The closed right ideals R of K(H) are all of the

form R = P · K(H) for some orthogonal projection P ∈ L(H) given by the closed

subspace R · H of H.

Since ρ(B)H = H by non-degeneracy of ρ and – obviously – K(H) · H = H we

get P = 1. This shows that ρ : B →M(K(H)) is non-degenerate, i.e., ρ(B)·K(H) =

K(H), if we apply Cohen factorization for the non-degenerate left B-module K(H) .

We obtain that M(ρ) : M(B)→M(K(H)) ∼= L(H) is strictly continuous.

NEW:

(0.3) The strict topology on M(B):

Recall that the strict topology on the two-sided multiplier algebra M(B) ⊆
L(B)⊕L(B) is given on the pairs (L,R) ∈M(B) by semi-norms (L,R) 7→ ‖L(b)‖+
‖R(b)‖ with b ∈ B. Clearly the family defines the same locally convex topology as

the family of semi-norms given by (L,R) 7→ ‖L(b) ‖+ ‖R(c ) ‖ with b, c ∈ B.

In case of C *-algebras B (or Banach *-algebras with bounded approximate

unit) this strict topology is given by the semi-norms T ∈ M(B) 7→ ‖Tb‖ + ‖T ∗b‖
for b ∈ B+.
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The norm topology on B is the same as the strict topology on B ⊆ M(B), if

and only if, B is unital, because B is strictly dense in M(B), an approximate unit

{ eτ } in the positive contractions converges strictly to 1 in M(B).

If B is non-unital and σ-unital, then B contains a sequence b1, b2, . . . B+ with

‖bn‖ = 1 such that bn → 0 strictly in M(B).

Older stuff below in blue:

The finite rank operators a ∈ K(H) are norm-dense in K(H). Thus, is suffices

to find, for each finite rank projection p ∈ K(H) and ε > 0, a positive contraction

e = e(p, ε) ∈ B with ‖ ρ(e)xk − xk ‖ < ε/
√
n for k = 1, . . . n where n := rank of p

and x1, . . . , xn ∈ H is an orthonormal basis of pH, because then ‖p − ρ(e)p‖ < ε.

Since the positive elements e ∈ B+ with ‖e‖ < 1 build an approximate unit for

B and span(ρ(B)H) is dense in H we can find such e ∈ B+. In fact, the Cohen

factorization theorem for non-degenerate left B-modules gives an e ∈ B+ with

ρ(e)xk = xk and ‖e‖ = 1.

TO DO still here

(0.4) The strict topology on M(K) ∼= L(`2):

HERE WE NEED FIRST that M(K) = L(`2).

Has been shown with several methods above(?).

Recall that we have seen above thatM(K(H)) is naturally isomorphic to L(H)

by the isomorphism from L(H) to M(K(H)) that fixes K(H).

Let H a Hilbert space (of arbitrary dimension) and K := K(H) the essential

closed ideal of L(H) of compact operators on H.

There is natural isomorphism fromM`(K) onto L(H) that fixes the elements of

K, because K is an ideal of L(H) and L(H) is in a natural way the second conjugate

of K.

In particular, M`(K) = M(K) ∼= L(H) and the natural isomorphism from

M(K) onto L(H) is continuous with respect to the strict topology on M(K) and

*-ultra-strong topology on L(H).

In the same way M`(K) → L(H) is continuous with respect to the strong

operator topology on M`(K) ⊂ L(K) induced from K and the strong operator

topology on L(H) induced from H.

It turns out that the strict topology on M(K) and the strong* topology on

L(H) coincide on bounded parts. (Similar: Both strong topologies on bounded

parts of M`(K) = L(H) coincide.)

It follows that for any (non-zero) non-degenerate representation ψ : K→M(B)

(or any weakly non-degenerate ψ : K → M into a W*-algebra M) induce via

M(ψ)−1 on bounded parts of M(K) exactly the strict topology.

In particular, on bounded parts ofM(K) the strict, *-strong and *-ultrastrong

topology coincide.
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Alternatively:

Since K is essential in L(H) there is a natural unital *-monomorphism (say η)

from L(H) into M(K).

Conversely the natural *-representation T ∈ K 7→ T ∈ L(H) of K on H extends

to a faithful unital C *-morphism (say λ) from M(K) into the W*-algebra K∗∗ ∼=
L(H).

The unital C *-morphisms λ ◦ η form M(K) to M(K) fixes the elements of

K ⊆ M(K). The uniqueness of an extension of the non-degenerate C *-morphism

idK to a C *-morphism fromM(K) intoM(K) follows from above discussed Cohen

factorization factorization theorem and implies that λ ◦ η = idM(K). Since η and λ

are faithful it follows that η must be surjective, i.e., η is an isomorphism from the

abstract C *-algebra M(K) ⊆ L(K) onto L(H) that fixes K(H).

We compare the strict topology on M(K(H)) ∼= L(H) with the *-ultra-strong

topology on L(H) and consider the topologies induced on L(`2(N)) by M(ρ)−1

from any non-degenerate *-representation ρ : K(`2(N))→ L(H):

We get

(α)

Bounded norm-closed convex parts of M(ρ)(K(`2(N))) are strictly closed ???

in M(K(H)) ???,

and that the byM(ρ)−1 induced topology onM(K(`2(N))) is the same as the

strict topology with respect to K(`2(N)).

(β) Strict topology in the multiplier algebra M(K)

(respectivelyM(B) ⊆ B∗∗ is finer or equal to *-ultra-strong topology, and they

coincide on bounded parts.

(But it is not unlikely that they are globally different, because its restrictions

to `∞(N) ⊆ L(`2(N)) ∼=M(K(`2(N))) coincides with the strong operator topologies

given by the multiplier actions of `∞(N) on c0(N) respectively on `2(N).)

Strict topology in the multiplier algebra M(K)

(respectivelyM(B) ⊆ B∗∗ is finer or equal to *-ultra-strong topology, and they

coincide on bounded parts.

Older stuff below in blue:

The finite rank operators a ∈ K(H) are norm dense in K(H). Thus, is suffices

to find, for each finite rank projection p ∈ K(H) and ε > 0, a positive contraction

e = e(p, ε) ∈ B with ‖ ρ(e)xk − xk ‖ < ε/
√
n for k = 1, . . . n where n := rank of p

and x1, . . . , xn ∈ H is an orthonormal basis of pH, because then ‖p− ρ(e)p‖ < ε.

Since the positive elements e ∈ B+ with ‖e‖ < 1 build an approximate unit for

B and span(ρ(B)H) is dense in H we can find such e ∈ B+. In fact, the Cohen

factorization theorem for non-degenerate left B-modules gives an e ∈ B+ with

ρ(e)xk = xk and ‖e‖ = 1.
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The same argument shows that the *-ultra-strong topology on M(K(H)) =

L(H) is coarser than the strict topology on M(K(H)), because the *-ultra-strong

topology is the *-strong topology for the left multiplication L(H) on the Hilbert-

Schmidt class operators (HS(H) ∼= H⊗2 H):

There the same argument as for given above for B := K(H) works for the left

multiplication on (new) B := HS(H), i.e., holds for the action of L(H) = M(K)

on the Hilbert space tensor product H⊗2 H ∼= HS(H).

Alternatively (done above):

The Cohen factorization theorem applies to left action of K(H) on the Hilbert-

Schmidt class operators and gives that the strict topology on M(K(H)) is finer

than the *-ultra-strong topology on all subsets of M(K(H)) ∼= L(H).

It follows that they coincide on bounded parts of M(K).

But it says nothing about the behavior on unbounded parts.

(1.) Existence and uniqueness of M(h):

(1.0) Uniqueness and strict continuity of M(h):

Let A and B C *-algebras, h : A → M(B) a C *-morphism and ψ : M(A) →
L(B) any algebra homomorphism with the property ψ|A = h. Then ψ and h have

the property ψ(X)(h(a)b) = ψ(X)(ψ(a)b) = ψ(Xa)b = h(Xa)b for X ∈ M(A),

a ∈ A and b ∈ B.

Thus, ψ is uniquely determined by its restriction h := ψ|A on the closed linear

span L ⊆ B of h(A)B and ψ(1)b = b for b ∈ L. In particular ψ is unital and is

uniquely determined if the linear span of h(A)B is dense in B.

If span(h(A)B) is dense in B, then ψ is also a C *-morphism from M(A) into

M(B) ⊆ L(B) := L(B,B), because ψ(X)(h(a)b) = h(Xa)b implies

(ψ(X)(h(a1)b1))∗(h(a2)b2) = b∗1h(a∗1X
∗a2)b2 = (h(a1)b1)∗(ψ(X∗)(h(a2)b2)) ,

i.e., (ψ(X)b1)∗b2 = b∗1(ψ(X∗)b2) if we pass to the closure of span(h(A)B). We get

that ψ(X) is in M(B) ⊆ L(B) and ψ(X∗) = ψ(X)∗ if the linear span of h(A)B is

dense in B.

Such extensions ψ of h are automatically strictly continuous if h(A)B is dense

in B zz:

Then the B is also a non-degenerate left Banach module over A with left-action

a · b := h(a)b for a ∈ A and b ∈ B, and the Cohen factorization theorem applies to

it:

For each b1, b2 ∈ B there exist contractions a1, a2 ∈ A and c1, c2 ∈ B with

‖cj − bj‖ < 1/2 such that bj = h(aj)cj . It follows that the semi-norm

X 7→ ‖ψ(X)b1‖ + ‖ψ(X∗)b2‖

on M(A) is less or equal to the semi-norm by

X 7→ (1 + ‖b1‖+ ‖b2‖)(‖Xa1‖+ ‖X∗a2‖) .
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This latter semi-norms are continuous with respect to the strict topology onM(A).

It implies that ψ is strictly continuous.

If conversely a unital and strictly continuous ψ : M(A)→M(B) with ψ(a) =

h(a) exist, then an approximate unit (eτ ) ⊂ A+ of A converges strictly to 1 ∈
M(A), and h(eτ )b = ψ(eτ )b converges to b = ψ(1)b for each b ∈ B. Thus h(A)B is

dense in B i.e., h is non-degenerate.

(1.1) Existence of M(h):

Suppose that h : A→M(B) is a non-degenerate C *-morphism, i.e., the linear

span of h(A)B is dense in B.

The Cohen factorization theorem applies to the Banach left A-module B with

product a · b := h(a)b.

Then B is also in a unique way a Banach module over M`(A) with a product

L ·′ b ∈ B defined by L ·′ b := L(a) · c = h(L(a))c for b = h(a)c and L ∈ M`(A).

It satisfies L(a) · b = L ·′ (h(a)b), ‖L ·′ b‖ ≤ ‖L‖ · ‖b‖. This defines a contractive

Banach algebra homomorphism from M`(A) into L(B).

But in this special case holds the additional property L ·′ (bc) = (L ·′ b)c for

a ∈ A, b, c ∈ B and L ∈ M`(A). Indeed, let b = h(a)d, then bc = h(a)dc and

L ·′ bc = L(a) · dc = h(L(a))dc = (h(L(a))d)c == (L ·′ b)c.

Hence M`(L)(b) := L ·′ b defines a contractive Banach algebra homomorphism

M`(h) from M`(A) into M`(B) ⊆ L(B) with M`(La)(b) = h(a)b for a ∈ A and

b ∈ B.

Since – in our picture – M(A) ⊆ M`(A) ⊆ L(A) and M(B) ⊆ M`(B), we

can define M(h) : M(A) → M`(B) as the restriction of M`(h) to M(A), i.e., by

M(h)(X)b := X ·′ b for X ∈ M(A) and b ∈ B. This becomes automatically a

C *-morphism from M(A) into M(B) as we have seen in proof-part (1.0).

Older version for the existence proof:

The following is a special case of the above considered weakly non-degenerate

C *-morphism from B into a W*-algebra.

Let ρ : B → L(H) a faithful and non-degenerate *-representation on a Hilbert

space H. The representation ρ extends to a faithful unital *-representation

M(ρ) : M(B)→ L(H) with M(ρ)(b) = ρ(b) for b ∈ B.

Let d : A → L(H) the *-representation defined by d(a) = M(ρ)(h(a)). In

particular, d(a)ρ(b) = ρ(h(a)b).

Since ρ and h are non-degenerate, the linear spans of h(A)B and ρ(B)H are

dense in B respectively in H. Thus, the linear span of d(A)ρ(B)H = ρ(h(A)B)H is

dense in H, and d : A → L(H) is non-degenerate. We know from Proof-part (1.1)

that a non-degenerate *-representation d : A → L(H) extend uniquely to a non-

degenerate *-representation M(d) : M(A) → L(H) with M(d)(X)d(a) = d(Xa).
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We get

M(d)(X)ρ(h(a)b) =M(d)(X)d(a)ρ(b) = d(Xa)ρ(b) = ρ(h(Xa)b)

for all X ∈M(A), a ∈ A and b ∈ B. Since the linear span of h(A)B is dense in B,

it follows that M(d)(X)ρ(b) ∈ ρ(B) and M(d)(X)∗ρ(b) = M(d)(X∗)ρ(b) ∈ ρ(B)

for all b ∈ B. Thus, M(d)(M(A)) ⊆ M(ρ)(M(B)) by the characterization of the

image M(ρ)(M(B)) of M(B) in L(H).

We letM(h) :=M(ρ)−1(M(d)(X)). This is a unital C *-morphism fromM(A)

into M(B) that satisfies M(h)(X)h(a)b = h(Xa)b and is the desired extension to

M(A), because

M(ρ)(M(h)(X)h(a)b) =M(d)(X)ρ(h(a)b) = d(Xa)ρ(b) =M(ρ)(h(Xa)b) .

(2) Proofs for Part(2): Let pj,k denote the matrix units of K. Then the series

c :=
∑
n xn⊗p1,n and d :=

∑
n yn⊗p1,n are unconditional strictly convergent series

in M(B ⊗K) ( 5 ).

Indeed, partial sums, i.e., c(S) :=
∑
n∈S xn ⊗ p1,n over a finite set S ⊂ N of

indices, are norm-bounded by ‖X‖1/2 respectively by ‖Y ‖1/2.

More precisely: Let pm := p1,1+· · ·+pm,m, where pj,k ∈ K are partial isometries

that define canonical matrix units K for the standard basis of `2. Then

gXh∗ ⊗ p1,1 − (g ⊗ 1)c(S)((h⊗ 1)c(S))∗ = g(X −
∑
n∈S

xnx
∗
n)h∗ ⊗ p1,1 ,

for all g, h ∈ M(B),
∑
n∈S xnx

∗
n ≤ X, c(S)(e⊗ pm) =

∑
n∈S,n≤m(xne)⊗ p1,n and

(e⊗ pm)c(S) =
∑
n∈S,n≤m(exn)⊗ p1,n for each e ∈M(B).

Since the partial sums c(S) are bounded in M(B ⊗ K) by ‖X‖1/2, and since

the semi-norms

ρm(s, t) := max(‖(s− t)(e⊗ pm)‖, ‖(e⊗ pm)(s− t)‖)

for m ∈ N and positive contractions e ∈ B+ define the strict topology on bounded

parts of M(B ⊗K), it follows that
∑
n xn ⊗ p1,n converges strictly in M(B ⊗K).

That the convergence is also unconditional can be seen as follows:

For each contraction e ∈ B+, m ∈ N and ε > 0 there exists n := n(e,m, ε) ∈ N
such that n ≥ m, c(S)(e⊗pm) = c(S′)(e⊗pm) and ‖(e⊗pm)(c(S)−c(S′))‖ < ε for

all finite subsets S, S′ ⊂ N with {1, . . . , n} ⊆ S′∩S. The latter property implies the

unconditional strict convergence of c :=
∑
n xn ⊗ p1,n in M(B ⊗ K), i.e., that for

each permutation γ of the positive integers N the series
∑
n xγ(n)⊗p1,γ(n) converges

strictly to the same element of M(B ⊗K) as c :=
∑
n xn ⊗ p1,n does.

Thus, the series c and d are unconditional strictly convergent and its sums are

elements ofM(B⊗K). We use again c and d as notation for the sums of the series,

5The convergence is usually not absolute !



1. STRICT CONVERGENCE IN MULTIPLIER ALGEBRAS 645

because in this particular case the entries of the series can be restored from the

sum, e.g.

xn ⊗ p1,n = c(1⊗ pn,n) .

The c and d are row matrices if one considersM(B ⊗K) naturally as a subset

of the set of all infinite matrices [Ti,j ] ∈M∞(M(B)) with entries Ti,j from M(B):

If we use a fixed non-degenerate inclusion of c0(B) = B ⊗ c0 into B ⊗ K then

we get “natural” unital C *-monomorphisms

M(B)⊗ 1 ⊂ `∞(M(B)) ∼=M(c0(B)) ⊂M(B ⊗K) ⊂M∞(M(B)) ,

where the first two strict inclusion are strictly continuous. This inclusions are

naturally defined: If we choose a system of matrix units pj,k for K, we get nat-

ural inclusions c0 ⊂ K, c0(B) = B ⊗ c0 ⊂ B ⊗ K and can use the isomorphism

`∞(M(B)) ∼= M(c0(B)). The map b ∈ M(B ⊗ K) 7→ dbc∗ is obviously a strictly

continuous completely bounded map with cb-norm equal to ‖c‖·‖d‖ ≤ (‖S‖‖T‖)1/2.

The in Remark (2) defined map Γ satisfies Γ(b)⊗ p1,1 = dbc∗ for b ∈ `∞(M(B)) ⊂
M(B ⊗K) .

The proposed unconditional strict convergence of the series Γ(b1, b2, . . .) follows

now from the unconditional strict convergence of the sum
∑
n(δn,kbk) to (b1, b2, . . .)

in M(c0(B)) ∼= `∞(M(B)).

Since d∗bc∗ ∈ B ⊗ p1,1 for d ∈ B ⊗ K, we get that Γ(b1, b2, . . .) ∈ B for

(b1, b2, . . .) ∈ c0(B).

(3): Let ϕ0(t) := t for t ∈ [0, 1] and

ϕk(t) := min(1,max(2kt− 1, 0)) = (2kt− 1)+ − (2kt− 2)+

for k = 1, 2, . . .. Then there exists 1 =: k0 < k1 < k2 < · · · and fn(t) in the convex

span of ϕkn , . . . , ϕkn+1−1 such that the functions fn have the properties quoted in

Part (3). Here we use the method of Akemann and Pedersen as described in proof of

[43, thm. 2] or in [616, thm. 3.12.14, cor. 3.12.15]. See more details and discussion

in Section 3. The proposed estimates for norms of [(fn+1(e) − fn(e))1/2, x] follow

also from the estimates in Lemma 5.3.2.

(4): Let T (a) := a− Γ(a, a, . . .) the linear map from A into M(B) with norm

≤ 2, where Γ is defined as in Part (2) with xn := yn := gn := (fn(e)− fn−1(e))1/2

for n > 1 and x1 := y1 := g1 := f
1/2
1 (e) in Remark (2) with fn selected for

Xn ⊂ A ⊆M(B) as in Remark (3).

xn := yn := gn := (fn(e)− fn−1(e))1/2 .

Check Notations and estimates !?? ??

If a∗ = a ∈ Xn with ‖a‖ ≤ 1 then T (a) =
∑
n(agn− gna)gn and ‖agn− gna‖ <

4−n by part (3). Since agn ∈ B, it follows T (a) ∈ B for a in a dense linear subspace

of A, and that T (A) ⊆ B by continuity of T .
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(5): Let g1, g2, . . . as in (4) and d1, d2, . . . ∈M(B) as in (5), then gnhn = gn =

hngn for h1 := f2(e)1/2 and hn := (fn+1(e)− fn−2(e))1/2 for n > 1 where f0 := 0,∑
dngn =

∑
hn(dngn)hn +

∑
(1− hn)dngn ,

‖(1− hn)dngn‖ < ‖dngn − gndn‖ , and
∑
h2
n converges strictly to 2 in M(B).

Since gpgq = 0 if |p − q| > 1, it follows S2
P =

∑
n∈P g

2
n if |p − q| > 1 for all

p 6= q ∈ P .

It holds Sa−aS ∈ B for the contractions a∗ = a ∈ Xn, because ‖gna−agn‖ <
4−n by part (3). Thus, the continuous derivation a 7→ Sa− aS from A into M(B)

maps A into B, i.e., πB(S) ∈ πB(A)′ ∩ (M(B)/B).

It follow that πB(SaS + (1− S2)1/2a(1− S2)1/2) = πB(a) for all a ∈ A.

(6): Since
∑
‖dngn − gndn‖ ≤

∑
n νn < ∞, the series

∑
n dngn converges

(unconditional) strictly in M(B) by part (5). Let d :=
∑
n dngn denote its sum.

Denote by Zk,j the sum of the series
∑
n g2n−j(d

∗
2n−jad2n−j+k)g2n−j+k for

j = 0, 1 and k ∈ N, that is strictly convergent in M(B) by part (2), because

‖d∗2n−jad2n−j+k‖ ≤ ‖a‖ and the sums
∑
n g

2
2n−j+k and

∑
n g

2
2n−j are strictly con-

vergent in M(B) by part (5).

Let hn := (g2
n−1 + g2

n + g2
n+1 + g2

n+2)1/2 (g0 := 0). The series
∑
n h

2
n converges

strictly to some positive element in R+ −B+. By condition (iii) and part (3),

Z1,0 + Z1,1 =
∑
n

hn(gnd
∗
nadn+1gn+1)hn ∈ B ,

because gn ∈ B and the sequence ( gnd
∗
nadn+1gn+1 )n is in c0(M(B)) by condition

(iii). It follows that S1 := (Z1,0 + Z1,1)∗ + (Z1,0 + Z1,1) ∈ B .

If k > 1 then the elements zn := g2n−j(d
∗
2n−jad2n−j+k)g2n−j+k satisfy

‖zn‖ ≤ ‖ag2n+k−j − g2n+k−ja‖+ 2 max
1≤k≤2n−j+k

‖dkg2n+k−j − g2n+k−jdk‖

for k > 1 and j ∈ {0, 1}, by conditions (i) and (ii). Moreover, z∗nzm = 0 = zmz
∗
n for

n 6= m. Thus
∑
n zn converges absolute to Zk,j for k > 1, j = 0, 1, and its norm

can be estimated by

‖Zk,j‖ ≤ µ2+k−j + 2ν2+k−j .

Since (
∑
` µ`) + 2(

∑
` ν`) <∞, it follows that∑
k

‖Zk,j‖ ≤
∑
k

µ2+k−j + 2
∑
k

ν2+k−j <∞

for j = 0, 1. It implies that the series S2 :=
∑
k>1(Zk,0 + Zk,1)∗ + (Zk,0 + Zk,1)

with entries in B converges to an element of B.

It is not difficult to see from the partial sums that the series corresponding to

d∗ad− Γ(d∗1ad1, d
∗
2ad2, . . .) converges strictly to the sum S1 + S2 ∈ B.)

(7): The isomorphism D + Ann(D) ∼= D ⊕Ann(D) implies

M(D + Ann(D)) ∼= M(D)⊕M(Ann(D))
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and that the natural *-monomorphism ι : D + Ann(D) → B has a unital strictly

continuous extension M(ι) : M(D + Ann(D))→M(B) if ι is non-degenerate.

Define p := M(ι)(1M(D)). Then pBp = D. Conversely, if D = pBp then

(1− p)B(1− p) = Ann(D) and pep+ (1− p)e(1− p) becomes an approximate unit

of B if e runs through an approximately central (for p) approximate unit of B.

(8): final part of TEXT in (8):

Recall that B is a stable C*-algebra if there exists an isomorphism ψ from

B ⊗K onto B for the compact operators K = K(`2) on `2(N).

This is equivalent to the existence of a C *-algebra C and a C *-algebra isomor-

phism from C ⊗K onto B.

The following criterium is necessary and sufficient for the stability of a (not

necessarily σ-unital) C *-algebra B:

There exists a sequence s1, s2, . . . of isometries in M(B) such that
∑
n sns

∗
n con-

verges strictly to 1 in M(B).

It holds u∗δ∞(b)u =
∑
n tnbt

∗
n by a unitary u ∈ M(B) with tn = usn for

n = 1, 2, . . . if t1, t2, . . . is any other (countable) sequence of isometries in M(B)

with
∑
n tnt

∗
n = 1.

In this sense the unitary equivalence class [δ∞] has “representatives”

δ∞ : M(B) → M(B) determined by s1, s2, . . .. We call this class (and some-

times its members
∑
n sn(·)sn) the infinite repeat (on M(B)) of the identity

mapping idM(B) of M(B).

Then δ∞(b) (or its unitary equivalence class [δ∞(b)]) is the infinite repeat of

the element b ∈M(B).

Moreover, there exists C *-morphism µ : K→M(B) with the properties

(a) µ(K) ⊂ δ∞(B)′ ∩M(B),

(b) δ∞(b)µ(k) ∈ B for b ∈ B and k ∈ K, and

(c) the (unique) C *-morphism ϕ : B ⊗K → B with ϕ(b⊗ k) = δ∞(b)µ(k) is

an isomorphism from B ⊗K onto B.

The C *-morphism µ : K → M(B) with properties (a,b,c) is uniquely defined

by the given sequence s1, s2, . . . ∈ M(B) of isometries with
∑
sns
∗
n = 1 – up to

unitary equivalence by unitaries in δ∞(B)′ ∩M(B).

One of the corresponding C *-morphisms µ : K→ δ∞(B)′∩M(B) can be defined

by µ(pj,k) := sjs
∗
k for j, k ∈ N, if the unitary equivalence class [δ∞] is realized by

given isometries s1, s2, . . ., i.e., δ∞(·) :=
∑
n sn(·)s∗n.

The isomorphism ϕ from B ⊗ K onto B defined by µ : K → M(B) – with

properties (a,b,c) – has the property that the corresponding C *-morphism b 7→
ϕ(b⊗e11) is a *-endomorphism of B, that is approximately 1-step inner if considered

as a c.p. contraction.
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The C *-morphism ϕ((·)⊗ p1,1) = s1(·)s∗1 is unitarily homotopic to idB if B is

σ-unital:

???????????????

Moreover, if b ∈ B+, then ϕ(b⊗ p1,1) is Murray–von-Neumann equivalent to b.

In particular,

ϕ(J ⊗K) = J ∀ J / B .

This property of the “natural” ϕ is different from the properties of very random

and possibly not well-behaved *-isomorphism ψ from B⊗K onto B – as allowed in

the definition of stability –, because in general the isomorphism ϕ ◦ ψ−1 of B does

not fix the ideal-system I(B) of B and is not approximately unitarily equivalent to

idB by unitaries in M(B).

The non-degenerate *-monomorphism µ : K→M(B) has the important “dual”

property that

µ(K)′ ∩M(B) = δ∞(M(B)) .

It shows that δ∞(M(B)) is closed in M(B) with respect to the strict topology of

M(B).

The strictly continuous extension M(µ) : M(K) ∼= L(`2) → M(B) of µ is a

unital *-monomorphism, has image in δ∞(M(B))′ ∩M(B) and the norm-closed

unit-ball of M(µ)(L(`2)) is also closed in the strict topology of M(B).

The strictly closed C *-subalgebra δ∞(M(B))′ ∩M(B) ofM(B) can be larger

thanM(µ)(L(`2)), e.g. if the the center ofM(B) is not trivial, because the center of

M(B) is identical with the commutant of δ∞(B) ·µ(K) inM(B) , and δ∞(B) ·µ(K)

generates B if the center of M(B) is not trivial.

For each non-zero C *-morphism ρ : K(`2) → M(B), the topology induced by

M(ρ)−1 onM(K) = L(`2) from the strict topology onM(B) coincides on bounded

parts with the *-strong operator topology on L(`2). Moreover,M(ρ)(K) is strictly

closed if ρ is non-degenerate.

HERE: BEGIN NEW PROOF of (8) 27.10.2015 19:30

If B is stable then there exists a sequence of isometries s1, s2, . . . inM(B) such

that
∑
sns
∗
n converges strictly to 1 in M(B):

Is ϕ good notation?

If B is stable then there exist (by definition of stability) a C *-algebra C and a

C *-algebra isomorphism ϕ : C⊗K→ B from C⊗K onto B, where K := K(`2(N)).

If C is unital, then ρ(k) := ϕ(1 ⊗ k) defines a non-degenerate C *-morphism

from K into B.

If C is not unital, then the strictly continuous extension M(ϕ) : M(C ⊗K)→
M(B) is a strictly continuous isomorphism from M(C ⊗K) onto M(B).

The algebra C ⊗K is an essential ideal of M(C)⊗K. Thus, there is a unique

*-monomorphism γ from M(C) ⊗ K into M(C ⊗ K) with γ(T ⊗ k1)(c ⊗ k2) =
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(Tc) ⊗ (k1k2) for T ∈ M(C), c ∈ C and k1, k2 ∈ K. Then γ|(1 ⊗ K) is non-

degenerate. It implies that

ρ(k) :=M(ϕ)(γ((1⊗ k)))

is a non-degenerate C *-morphism from K into M(B). Recall that here “non-

degenerate” means that ρ(K)B = B (by using e.g. Cohen factorization).

The *-monomorphism ρ extends uniquely to a faithful strictly continuous unital

C *-morphism M(ρ) from M(K) into M(B).

Any bijective map η from N×N onto N defines isometries tn ∈ L(`2) ∼=M(K)

with
∑
n tnt

∗
n converging *-strongly to 1 if we let tn(ek) := eη(n,k).

Since, as discussed above, on bounded parts of M(K) ∼= L(`2) the *-strong,

*-ultra-strong and strict topology coincide, and since µ is strictly continuous, we

get that the isometries sn := M(γ)(tn) define a sequence of isometries in M(B)

with the property that
∑
n sns

∗
n converges strictly to 1 in M(B).

Suppose now that B is a C *-algebra such that its multiplier algebraM(B) con-

tains a sequence s1, s2, . . . ∈M(B). We define a rather canonical C *-isomorphism

ϕ from B ⊗K onto B :

The isometries s1, s2, . . . define (the unitary equivalence class of) the infinite

repeat

δ∞(b) :=
∑
n

snbs
∗
n

for b ∈M(B), because it follows from Remark (2) – with xn := yn := s∗n and bn := b

– that δ∞(b) :=
∑
n snbs

∗
n is strictly unconditional convergent. The unconditional

convergence allows to check that δ∞ is a unital *-endomorphism of M(B).

It holds u∗δ∞(b)u =
∑
n tnbt

∗
n by a unitary u ∈ M(B) with tn = usn for n =

1, 2, . . . if t1, t2, . . . is any other sequence of isometries in M(B) with
∑
n tnt

∗
n = 1

(strictly convergent), because Part (2) shows that the sums
∑
n tns

∗
n and

∑
n snt

∗
n

are unconditionally strictly convergent to contractions u, v ∈ M(B). Then the

unconditionality of the strict convergence of all four series allows to verify that

vu = uv = 1 by calculation.

The Remark (2) also implies that δ∞ is strictly continuous and is determined up

to unitary equivalence if it is build from different choices of sequence of isometries

s1, s2, . . . ∈ M(B) with
∑
n sns

∗
n = 1 (strictly), compare Lemma 5.1.2(i,ii) and its

proof.

There is a natural C *-morphism µ : K → M(B) that is uniquely defined on

the elementary matrices pj,k by µ(pj,k) := sjs
∗
k, as calculation shows.

Notice that µ can be different from the formerly defined ρ : K→M(B), e.g. if

B = C ⊗K with unital C.

We show that above defined µ : K→M(B) has the in Part (8) listed properties

(a), (b) and (c):
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Ad(a): µ(K) ⊂ δ∞(B)′ ∩M(B) because for b ∈ B and j, k ∈ N

sjs
∗
k(
∑
n

snbs
∗
n) = sjbs

∗
k = (

∑
n

snbs
∗
n)sjs

∗
k .

Ad(b): δ∞(b)µ(k) ∈ B for b ∈ B and k ∈ K, because the calculation in Part(a)

implies that (b ⊗ k) 7→ δ∞(b)µ(k) extends to a C *-morphism ϕ : B ⊗ K → M(B)

with ϕ(b ⊗ pj,k) ∈ B. Since the linear span of matrix units pj,k is dense in K it

follows that ϕ(B ⊗K) ⊆ B.

Ad(c): The C *-morphism ϕ : B ⊗ K → B is with ϕ(b ⊗ k) = δ∞(b)µ(k) is an

isomorphism from B ⊗K onto B.

Indeed: By Lemma 2.2.3 the kernel of ϕ is = {0}, because from ϕ(b ⊗ k) = 0

it would follow that sjbs
∗
k = δ∞(b)sjs

∗
k = 0 for a matrix unit pj,k ∈ K with

pj,jkpk,k = ξpj,k 6= 0.

The sequence s1, s2, . . . defines a partial isometry T ∈ M(B ⊗ K) by T :=∑
n sn⊗ p1,n with T ∗T = 1 and TT ∗ = 1⊗ p1,1 by sns

∗
m⊗ p1,npm,1 = δm,n1⊗ p1,1 .

T (b⊗ pj,k)T ∗ = T
∑
n bs

∗
n ⊗ pj,kpn,1 = T ((bs∗k)⊗ pj,1) =?????∑

n snbs
∗
k ⊗ p1,npj,1 = sjbs

∗
k ⊗ p11 = (δ∞(b) · sjs∗k) ⊗ p1,1 . This means T (b ⊗

pj,k)T ∗ = ϕ(b⊗pj,k)⊗p1,1 . Thus, TcT ∗ = ϕ(c)⊗p1,1 for all c ∈ B⊗K. Moreover,

T ∗T = 1 and T (B ⊗K)T ∗ = B ⊗ p1,1 .

Until HERE new 2015 Oct 30

??? by ??? the is a ???? natural C *-morphism µ : K→M(B) with the in Part

(8) quoted properties (a,b,c) uniquely defined by the given sequence s1, s2, . . . ∈
M(B) of isometries with

∑
sns
∗
n = 1 – up to unitary equivalence by unitaries in

δ∞(B)′ ∩M(B).

The below given arguments do not systematically

prove the statements in (8). Write new proofs!

??

(only for parts of 8?);

Suppose s1, s2, . . . ∈ M(B) are isometries with
∑
sns
∗
n = 1 (strictly conver-

gent) are given.

FROM “STABLE” TO s1, s2, . . .

If, conversely, isometries s1, s2, . . . ∈ M(B) are given with
∑
n sns

∗
n is (un-

conditional) strictly convergent to 1M(B) then we can define a strictly continuous

unital positive map δ∞ : M(B)→M(B). The strict continuity of δ∞ and the (easy

to check) multiplicative property of δ∞|B imply that δ∞ is a strictly continuous

*-endomorphism of M(B).

??????

It turns out that there exists C *-morphism µ : K→M(B) with the properties

µ(K) ⊂ δ∞(B)′ ∩M(B) such that δ∞(b)µ(k) ∈ B for b ∈ B and k ∈ K and such
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that the (unique) C *-morphism ϕ : B ⊗ K → B with ϕ(b ⊗ k) = δ∞(b)µ(k) is a

*-isomorphism from B ⊗K onto B.

Indicate proof of non/uniqueness:

The C *-morphism µ with the described properties is determined up to unitary

equivalence by unitaries in δ∞(B)′ ∩M(B).

The isomorphism ϕ from B ⊗K onto B defined by µ : K→M(B) with prop-

erties (a,b,c) has the property that the corresponding C *-morphism b 7→ ϕ(b⊗ e11)

is a *-endomorphism of B, that is approximately 1-step inner if considered as a

c.p. contraction. Moreover, if b ∈ B+, then ϕ(b ⊗ e11) is Murray–von-Neumann

equivalent to b. In particular,

ϕ(J ⊗K) = J ∀ J / B .

This property of the “natural” ϕ is different from the properties of very random

and possibly not well-behaved *-isomorphisms ψ from B⊗K onto B – as allowed in

the definition of stability –, because in general the isomorphism ϕ ◦ ψ−1 of B does

not fix the ideal-system I(B) of Band is not approximately unitarily equivalent to

idB by unitaries in M(B).

The non-degenerate *-monomorphism µ : K→M(B) has the important prop-

erty that

µ(K)′ ∩M(B) = δ∞(M(B)) .

In particular:

δ∞(M(B)) is closed in M(B) with respect to the strict topology of M(B).

The strictly continuous extension M(µ) : M(K) ∼= L(`2) → M(B) of µ is a

unital *-monomorphism, has image in δ∞(M(B))′ ∩M(B) and the norm-closed

unit-ball of M(µ)(L(`2)) is also closed in the strict topology of M(B).

The strictly closed C *-subalgebra δ∞(M(B))′ ∩M(B) ofM(B) can be larger

than M(µ)(L(`2)), e.g. if the center of M(B) is not trivial, because the center of

M(B) is identical with the commutant of δ∞(B) ·µ(K) inM(B) , and δ∞(B) ·µ(K)

generates B.

Next should be partly in the proof

Since µ is non-degenerate and B 6= {0}, µ is faithful and extends to a faithful

and strictly continuous C *-morphismM(µ) : M(K)→M(B) by the considerations

(0) given in the proof.

Let d : B → L(H) any non-degenerate *-representation on a Hilbert space H
(i.e., d(B)H = H, using factorization).

compare ?????????

Then d : B → M(K(H)) ∼= L(H) is non-degenerate in the sense of Part (1),

and M(d) : M(B)→M(K(H)) is strictly continuous.

Thus M(d) ◦ M(µ) is strictly continuous on M(K(`2)) and the topology in-

duced onM(K) byM(µ)−1 from the strict topology ofM(B) is between the strict
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topology ofM(K) and the topology onM(K) that is induced by (M(d)◦M(µ))−1

on M(K) from the strict topology of M(K(H)).

The strict topology onM(K(H)) is on bounded parts the same as the *-strong

topology.

Every non-degenerate representation of K(H) on some other Hilbert space H2

induces onM(K(H)) = L(H) the same strict topology as its “native” coming from

the identical representation over H.

The topology induced by M(µ)−1 on M(K(`2)) = L(`2(N)) from the strict

topology on M(B) is the same for each non-degenerate C *-morphism µ : K(`2)→
M(B).

This “universal” strict topology on M(K) = L(`2) coincides on bounded parts

of L(`2) with the *-strong operator topology on L(`2). In particular,M(µ)(M(K))

is strictly closed in M(B) if µ(K) is non-degenerate.

The strict closure h(A)
str
⊆ M(B) of the image h(A) ⊆ M(B) of any non-

degenerate C *-morphism h : A → M(B) of a stable C *-algebra A contains the

image M(h)(M(A)) of the strictly continuous unital extension M(h) : M(A) →
M(B), just by strict continuity ofM(h), but in general M(h)(M(A)) is not strictly

closed for non-degenerate h.

The closure of M(h)(M(A)) in M(B) with respect to the strict topology of

M(B) coincides with the intersection of M(B) ⊆ B∗∗ with the σ(B∗∗, B∗) closure

of M(h)(M(A)) in B∗∗.

(a) There exists a sequence s1, s2, . . . of isometries inM(B) such that
∑
n sns

∗
n

converges strictly to 1 in M(B), if and only if, B is stable:

There exists a sequence of isometries t1, t2, . . . ∈ M(K) = L(`2) with
∑
tnt
∗
n

strictly convergent to 1. The isometries tn can be given explicitly in L(`2) as

tn := I ◦Jn by a fixed isometry I from `2⊗`2 onto `2 composed with the isometries

Jn(x) := en ⊗ x for x ∈ `2(N) and for the canonical basis {e1, e2, . . .} of `2(N).

The strict convergence
∑
tnt
∗
n = 1 in M(K) follows from the fact that the

*-strong topology on L(`2) ∼=M(K) coincides with the strict topology on bounded

parts of M(K) ∼= L(`2).

The here used coincidence of the *-strong topology and the strict topology on

bounded parts of M(K) ∼= L(`2) follows from the norm-density of the finite rank

operators in K.

Since the *-ultra-strong topology coincides with the *-strong topology on

bounded parts of L(`2), we get that strict (given by L(`2) ∼= M(K(`2)) and

*-ultra-strong topology coincide on bounded parts.

Do the strict topology and *-ultra-strong topology

coincide also on unbounded parts of L(H)?

It is – perhaps – the case if and only if, strict and *-ultra-strong topology

coincide on M(K(`2(N))). The latter seems not to be the case (?!).
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Are the two the strong operator topologies on `∞(C) =M(c0C) for its natural

actions on c0 or `2 different on unbounded parts?

Does there exist an unbounded net in `∞ that that converges in the strong

operator topology on L(`2) to zero but does not converge in the strong operator

topology in M(c0) = `∞ ⊂ L(c0)?

It is the same problem with the “global” difference of the strong operator

topology for the left multiplication of L(`2) on K, Hilbert-Schmidt class, ore trace

class.

Semi-norms for *-ultra-strong topology on L(H) :

T 7→ (
∑
n ‖T ∗xn‖2 +‖Txn‖2)1/2 where xn ∈ `2,

∑
n ‖xn‖2 <∞. It is the same

as tr((T ∗T +TT ∗)S)1/2 = (‖TS1/2‖22 + ‖T ∗S1/2‖22)1/2 for some positive trace class

operator S. Then R := S1/2 is Hilbert-Schmidt, and

max(‖TR‖2, ‖T ∗R‖2) ≤ (‖TR‖22 + ‖T ∗R‖22)1/2 ≤ ‖TR‖2 + ‖T ∗R‖2

Notice here that ‖X‖ = ‖X‖∞ ≤ ‖X‖p for all p ≥ 1 and X ∈ L(`2) with (‖X‖p)p =

tr((X∗X)p/2) <∞ .

Alternatively:

The Hilbert-Schmidt class operator R can be Cohen factorized into aR1 = R

with a ∈ K and R1 in Hilbert-Schmidt class.

Since ‖TR‖2 = ‖TaR1‖2 ≤ ‖Ta‖ · ‖R1‖2 for T ∈ L(`2) =M(K) it follows that

*-ultra-strong topology is coarser than strict topology or is equal to it:

Result:

If an (possibly unbounded) net converges to an operator T in strict topology, then

it converges also in *-ultra-strong topology.

Recall that strict topology on M(K) = L(`2) is defined by the semi-norms

T 7→ ‖Ta‖+ ‖T ∗b‖ where a, b ∈ K.

If we use Cohen factorization, then the strict topology on L(`2) is also defined

by the semi-norms T 7→ ‖Tc‖+ ‖T ∗c‖ with c ∈ c0(N)+ ⊂ K(`2(N)).

Restricted to T ∈ `∞(N) it is the strong operator norm on `∞(N) defined by

the multiplication c 7→ Tc of elements c ∈ c0(N) with T .

If one wants to compare this with the right multiplication action of `∞ on the

Hilbert-Schmidt class HS ∼= `2(N × N), then one has to use the restriction of the

*-ultra-strong topology on L(`2) to `∞ ⊂ L(`2).

The (left-)actions of M(K) on K and HS are isometric with respect to the

operator norm on M(K) = L(`2).

The induced strong topologies have same (countable) zero sequences:

If X is a Banach space and T1, T2, . . . ∈ L(X) converges to zero in the strong

(or the “ultra-strong”) topology to zero, then ‖T1‖, ‖T2‖, . . . is a bounded sequence

by the uniform boundedness theorem.
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Now one can use that the norms ‖T‖ of T ∈ M(K) ⊂ L(K) and T ∈ L(`2) =

M(K) coincide and that strict and *-ultra-strong topologies on bounded parts of

M(K) coincide.

It follows that differences in the convergence structures for *-ultra-strong or

strict topology onM(K) can be only found if one considers unbounded nets of high

cardinality that converge in *-ultra-strong topology but not in strict topology.

Suppose that there exists an isomorphism ψ from a C *-algebra C ⊗ K onto

B. Let M(ψ) denote its strictly continuous extension to an isomorphism from

M(C ⊗K) onto M(B). Its inverse is given by M(ψ)−1 =M(ψ−1) and, therefore,

is strictly continuous. Notice that there are natural strictly continuous unital *-

monomorphisms M(ϕ1) : M(C) → M(C ⊗ K) and M(ϕ2) : M(K) → M(C ⊗ K)

that are the strictly continuous extensions of the non-degenerate C *-morphisms

ϕ1 : C →M(C⊗K) and ϕ2 : K→M(C⊗K) that are determined by the properties

ϕ1(c)(c1 ⊗ k) = (c · c1) ⊗ k and ϕ2(k)(c ⊗ k1) = c ⊗ (k · k1). We write 1 ⊗ t for

M(ϕ2)(t) if t ∈M(K) ∼= L(`2).

There is a non-degenerate C *-morphism λ : K→M(B) that is given by λ(k) :=

M(ψ)(1⊗k) for k ∈ K, i.e., λ =M(ψ)◦ϕ2. It extends to a unital *-monomorphism

M(λ) =M(ψ) ◦M(ϕ2) : M(K) →M(B), that is strictly continuous on bounded

parts. The isometries sn := M(λ)(tn) = M(ψ)(1 ⊗ tn) have the property that∑
sns
∗
n converges strictly to 1 in M(B), because

∑
tnt
∗
n converges strictly to 1

and M(λ) is strictly continuous on bounded parts.

Conversely suppose that M(B) contains a sequence s1, s2, . . . of isometries in

M(B) such that
∑
n sns

∗
n converges strictly to 1.

Then δ∞(b) :=
∑
n snbs

∗
n converges strictly to an element δ∞(b) ofM(B) and

the map δ∞ : M(B)→M(B) is strictly continuous and unital on M(B).

Indeed: If b ∈ B and ε > 0, then there ism ∈ N with ‖b−(s1s
∗
1+. . .+sms

∗
m)b‖ <

ε/2 and there exists a contraction e ∈ B+ with ‖ s∗kb − es∗kb ‖ < ε/2m . It gives

‖b− δ∞(e)b‖ < ε.

Thus δ∞(B)B is dense in B, i.e., δ∞|B is non-degenerate. It follows that

δ∞ =M(δ∞|B) is the unique strictly continuous unital extension of δ∞|B toM(B).

Then there is a unique C *-morphism µ : K → δ∞(B)′ ∩M(B) that satisfies

µ(ek,`) := sks
∗
` .

The range projections pn := sns
∗
n satisfy pm ≤ 1 − pn because pn + pm ≤ 1

for m 6= n. It implies pmpn = 0. Thus
∑
n sns

∗
n ≤ 1 implies s∗i sj = s∗i pipjsj = 0

for i 6= j. In particular, B is the closure of its *-subalgebra B0 :=
⋃
n PnBPn for

Pn := p1 + · · ·+ pn ∈M(B).

Let ei,j denote the canonical matrix units of K ⊂ M∞(C). We define an

isometry T ∈M(B ⊗K) with TT ∗ = 1M(B) ⊗ e1,1 by the “row matrix”

T := s1 ⊗ e1,1 + s2 ⊗ e1,2 + . . . . (1.3)
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We use the natural embedding

M(B ⊗K) ⊂M∞(M(B)) ⊆ B∗∗⊗L(`2(N))

that describes the elements of M(B ⊗ K) as matrices over M(B) then above T

becomes the row matrix

T ∼= [s1, s2, . . .] ∈M1,∞(M(B)) ⊂M∞(M(B)) .

The sum
∑
n sn⊗e1,n is unconditional strictly convergent inM(B⊗K) by Remark

(2) if we take there yn := sn ⊗ 1, dn := 1⊗ 1 and xn := 1⊗ en,1. Since

(s∗n ⊗ em,1)T = (s∗n ⊗ em,1)(sn ⊗ e1,n) = 1⊗ em,n ,

we get T ∗(sn⊗e1,n) = 1⊗en,n and T ∗T = 1⊗1. The identities (sk⊗e1,k)(s∗n⊗en,1) =

δk,nsks
∗
n ⊗ e11, imply that TT ∗ = 1⊗ e11 . It follows that the map

H : b ∈M(B) 7→ H(b) := T ∗(b⊗ e11)T

defines a unital *-monomorphism H from M(B) into M(B ⊗ K) that is strictly

continuous (on bounded parts) and maps B into B ⊗K, because T ∈M(B ⊗K).

The *-monomorphism H mapsM(B) onto M(B⊗K), i.e., is an isomorphism,

H maps B onto B ⊗ K, and the inverse map H−1 : M(B ⊗ K) → M(B) is given

on M(B)�K by H−1(b⊗ ejk) = δ∞(b)sjs
∗
k :

Indeed, if a ∈M(B⊗K), then a = T ∗(TaT ∗)T = H(TaT ∗) and TaT ∗ = b⊗e11

for some b ∈M(B).

Since H is verified to be an isomorphism from M(B) onto M(B ⊗ K), H(B)

must be a closed ideal ofM(B⊗K). The definition H := T ∗((·)⊗ e11)T of H with

T ∈M(B ⊗K) implies that H(B) ⊆ B ⊗K.

Since B is an essential ideal of M(B) that is dense in M(B) with respect to

the strict topology, H(B) is a closed ideal of B⊗K that is strictly dense in B⊗K.

Thus H(B) = B ⊗K.

(Alternatively one can prove that b ⊗ en,m ∈ T ∗(B ⊗ e1,1)T by showing that

B ⊗ 1 = T ∗(δ∞(B) ⊗ e1,1)T , T ∗(sns
∗
m ⊗ e1,1)T = 1 ⊗ en,m and δ∞(B)sns

∗
m ∈ B.

See more below.)

Let ψ := H|B and ϕ : B ⊗ K → B the inverse of ψ = H|B. Then M(ϕ) and

M(ψ) are strictly continuous and H =M(ϕ)−1.

We can use the above defined isomorphism ϕ : B ⊗K→ B to define the other

in part (8) proposed C *-morphisms:

We have that (s∗` ⊗ e11)T = 1⊗ e1,`. It implies T ∗(skbs
∗
` )⊗ e11T = b⊗ ek,` and

T ∗(δ∞(b)⊗ e11)T = b⊗ 1 for all b ∈M(B).

Next blue NEW / BETTER APPROACH?:

Let δ∞(b) :=
∑
n snbs

∗
n where b ∈ M(B), s1, s2, . . . ∈ M(B) with

∑
n sns

∗
n =

1M(B) and s∗msn = δm,n1M(B).

Let T ∈M(B ⊗K) the isometry defined by Equation (1.3).



656 5. GENERALIZED WEYL–VON NEUMANN THEOREMS

There is a non-degenerate C *-morphism µ : K → δ∞(B)′ ∩ M(B) with

T ∗(µ(ei,j)⊗ e11)T = 1⊗ ei,j , e.g. µ(c)⊗ e11 := T (1⊗ c)T ∗.

We can µ define µ : K→M(B) explicit by µ(ek,`) := sks
∗
` .

The equations T (1⊗ em,1) = sm ⊗ e1,1 imply (1⊗ e1,n)T ∗ = s∗n ⊗ e1,1 and

T (1⊗ em,n)T ∗ = T (1⊗ em,1)(1⊗ e1,n)T ∗ = sms
∗
n ⊗ e11 .

Since

δ∞(b)sms
∗
n = smbs

∗
n = sms

∗
nδ∞(b) ,

the C *-morphism [αjk] →
∑
jk αjksjs

∗
k extends to a C *-morphism µ : K →

δ∞(M(B))′ ∩M(B) and is uniquely defined by µ(k)⊗ e11 = T (1⊗ k)T ∗.

Better: To be shown directly with above H:

By Remark (2), δ∞(b) :=
∑
n snbs

∗
n is unconditional strictly convergent for

each b ∈M(B), and δ∞ defines a strictly continuous unital *-monomorphism from

M(B) into M(B), cf. Proof of Lemma 5.1.2(i,ii), or compare the proof of the

equation δ∞(b)⊗ e1,1 = T (b⊗ 1)T ∗ where T ∈ M(B ⊗K) is the isometry defined

by Equation (1.3).

(b) There exists a non-degenerate *-monomorphism µ : K → M(B), where

K := K(`2(N)), with the properties µ(K) ⊆ δ∞(B)′∩M(B) such that δ∞(b)µ(k) ∈ B
for b ∈ B and k ∈ K and such that the unique C*-morphism ψ : B ⊗ K → B with

ϕ(b⊗ k) = δ∞(b)µ(k) is a *-isomorphism from B ⊗K onto B.

The above defined isomorphism ϕ : B ⊗ K → B, with H = M(ϕ)−1, ψ :=

ϕ−1 = H|B, T (b ⊗ k)T ∗ = (δ∞(b)µ(k)) ⊗ e11 and H(b) = T ∗(b ⊗ e1,1)T , does the

job if µ is defined by µ(k)⊗ e1,1 := T (1⊗ k)T ∗.

(c) The non-degenerate *-monomorphism µ : K → M(B) has the property

µ(K)′ ∩M(B) = δ∞(M(B)) . In particular, δ∞(M(B)) is closed in M(B) with

respect to the strict topology of M(B).

This can be seen by using the isomorphism M(ϕ) : M(B ⊗K)→M(B) from

M(B ⊗K) onto M(B).

(d) The strictly continuous extension M(µ) : M(K) ∼= L(`2) →M(B) of µ is

a strictly continuous unital *-monomorphism, has image in δ∞(M(B))′ ∩M(B)

and M(µ)(L(`2)) is closed in the strict topology of M(B).

Next new version of proof ?

The natural extension θ : M(B) → B∗∗ of the unital *-monomorphism

ηB : B → B∗∗ from M(B) into the W*-algebra B∗∗ is continuous with respect to

the strict topology on M(B) and the *-ultra-strong topology on B∗∗.

If h : A→M(B) is any non-degenerate *-morphism, then µ extends uniquely to

a unital and strictly continuous map M(h) : M(A) →M(B). Then M(h)(1) = 1

and M(h)(M(A)) is in M(B) the strict closure of h(A). Since θ : M(B) → B∗∗

is continuous with respect to the strict topology on M(B) and the *-ultra-strong

topology on B∗∗, it follows that the *-ultra-strong closure of θ(h(A)) in B∗∗ contains
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θ(M(h)(A)). In particular, the *-ultra-weak closure of h(A) contains the unit

1 := 1B∗∗ of B∗∗.

If M is a von-Neumann algebra and Φ: L(`2) ∼=M(K)→M is a C *-morphism

such that the unit 1M of M is contained in the *-ultra-weak closure of Φ(K) then

Φ is normal on L(`2), i.e., is a unital W*-algebra isomorphism from L(`2) onto the

*-ultra-weak closure of Φ(K).

In particular, Φ(M(K)) is closed in the *-ultra-strong topology of B∗∗, and

the topology induced from this topology on M(K) ∼= L(`2) is the same as the

*-ultra-strong topology on L(`2).

Now take K and µ : K→M(B) in place of A and h above. Let Ψ := θ ◦M(µ),

then we get that the restriction of the strict topology onM(B) toM(µ)(M(K)) is

finer than the topology induced from the *-ultra-strong topology on M(K). Since

M(µ) : M(K) → M(B) is strictly continuous with respect to the strict topology

onM(K) and onM(B), it follows that the topology induced onM(K) byM(µ)−1

is equal to or coarser than the strict topology on M(K). So it is between the *-

ultra-strong topology and the strict topology on L(`2) ∼=M(K). It is easy to see -

by the definitions and by the remark in Part (i) – that the latter both coincides on

bounded parts of M(K).

Thus, on bounded parts ofM(K) the topology induced from the strict topology

on M(B) via M(µ)−1 coincide.

The imageM(µ)(M(K)) is strictly closed, because θ is continuous with respect

to the strict and *-ultra-strong topology, and θ(M(µ)(M(K))) is *-ultra-strongly

closed in B∗∗.

If one uses the isomorphism M(ϕ) from M(B ⊗K) onto M(B), then one can

see that M(µ)(L(`2)) is the isomorphic image of 1⊗ L(`2) ⊆M(B ⊗K).

It is not difficult to see that 1⊗L(`2) is strictly closed in M(B ⊗K) and that

the induced topology on M(K) ∼= L(`2) coincides on bounded parts of L(`2) with

the *-strong topology.

Indeed, if e ∈ B+ is a strictly positive positive contraction, then C∗(e) ⊗ K is

a non-degenerate C *-subalgebra of B ⊗ K and 1 ⊗M(K) is naturally contained

in M(C∗(e) ⊗ K) ⊆ M(B ⊗ K) and the representation T ∈ M(K) 7→ 1 ⊗ T ∈ is

strictly continuous, because it extends a non-degenerate representation of K. Thus,

the topology onM(K) induced from T 7→ 1⊗ T is coarser than the strict topology

on M(K). Let χ : C∗(e) → C a character. It defines a *-epimorphism λ from

C∗(e) ⊗ K onto K. Then M(λ) : M(C∗(e) ⊗ K) → M(K) is strictly continuous,

and its restriction to 1⊗M(K) is continuous with respect to the strict topology on

M(C∗(e)⊗K) defined by C∗(e)⊗K.

The strict topology on M(C∗(e) ⊗ K) coming from C∗(e) ⊗ K coincides on

bounded parts with the restriction to M(C∗(e) ⊗ K) of the strict topology on

M(B ⊗ K), because on bounded parts the strict topology can be defined by the
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semi-norms d ∈ M(B ⊗K) 7→ ‖d(e⊗ k1)‖+ ‖(e⊗ k2)d‖ with k1, k2 ∈ K+ of finite

rank. In particular this topologies coincide on bounded parts of 1⊗M(K).

Summing up, we get strictly continuous C *-morphisms M(µ) : M(K) → 1 ⊗
M(K) ⊆M(C∗(e)⊗K) ⊆M(B⊗K) andM(λ) : M(C∗(e)⊗K)→M(K) such that

the strict topology on bounded parts ofM(C∗(e)⊗K) coincides with the topology

induced from the strict topology ofM(B⊗K). MoreoverM(λ) ◦M(µ) : M(K)→
M(K) is a strictly continuous isomorphism of M(K) Thus it is given by an inner

automorphism of M(K). It follows that all the induced strict topologies are the

same on bounded parts of M(K).

The topology on L(`2) ∼=M(K) induced from the strict topology on M(K) is

on bounded parts the same as the *-strong topology on L(`2).

Thus, the topology induced byM(µ)−1 on L(`2) is on bounded parts the same

as the *-strong topology on L(`2).

Since the unit-ball of L(`2) is complete in the *-strong topology, it follows that

M(µ)(M(K)) is closed in M(B) with respect to the strict topology on M(B).

By Lemma 5.1.2(i,ii), all infinite repeats δ∞ are unitarily equivalent in M(B).

Therefore we need only to verify the observations by choosing case by case a suitable

“fitting” infinite repeat δ∞.

The isomorphism ψ from B⊗K onto B extends uniquely to a strictly continuous

*-isomorphism M(ψ) from M(B ⊗K) onto M(B). The natural *-monomorphism

λ : K→M(B⊗K) with λ(k1)(b⊗ k2) = b⊗ k1k2 is non-degenerate and extends to

a strictly continuous unital *-monomorphism M(λ) from M(K) into M(B ⊗K).

Since there is an isomorphism ι from K⊗K onto K, given by an isomorphism

`2 ∼= `2 ⊗2 `2, there exists isometries t1, t2, . . . ∈ M(K) such that
∑
n tnt

∗
n strictly

convergent to 1, and that the commutant δ∞(K)′ ∩ M(K) of δ∞(K) contains a

non-degenerate copy H(K) of K, that satisfies δ∞(k1)H(k2) = ι(k1 ⊗ k2) where

δ∞(k) :=
∑
n tnkt

∗
n.

Let sn := M(ψ) ◦ M(λ)(tn). Then s1, s2, . . . is a sequence of isometries in

M(B) such that
∑
n sns

∗
n converges strictly to 1.

And δ∞(b) :=
∑
n snbs

∗
n is a non-degenerate C *-morphism, such that µ : K→

δ∞(B)′ ∩ M(B) (given by µ(k) := M(ψ)(H(k))) satisfies that δ∞(b)µ(k) ∈ B.

It follows that there is a (new) C *-morphism ϕ from B ⊗ K into B that satisfies

ϕ(J⊗K) = J for all closed ideals of B and defines an isomorphism from B⊗K onto

B that is considerably different from the above defined by an arbitrary isomorphism

of B and some C ⊗K.

In particular, the unique strictly continuous extension M(µ) = M(ψ) ◦
M(H) : M(K)→M(B) of µ : K→M(B) is a unital *-monomorphism from L(`2)

intoM(B), and has the property that δ∞(M(B)) andM(µ)(L(`2)) commute and

the C *-algebra generated by δ∞(B) · µ(K) is strictly dense in M(B).

NEXT old or new ???
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There exists isometries t1, t2, . . . in δ∞(M(B))′ ∩ M(B) such that
∑
n tnt

∗
n

converges strictly to 1. This is because δ∞(M(B))′ ∩ M(B) is strictly closed

and there is a non-degenerate *-monomorphism µ : K(`2) →M(B) with image in

δ∞(M(B))′ ∩M(B). ThenM(µ) : M(K) ∼= L(`2)→M(B) is strictly continuous,

unital and has image in δ∞(M(B))′ ∩M(B).

(9): Recall that a C *-morphism h : A →M(B) is non-degenerate if and only

if the linear span of h(A)B is dense in B. The Cohen factorization theorem shows

that this is equivalent to B = h(A) ·B (as set of products h(a)b).

It follows that non-degenerate h satisfies h(A)(h(A)+B) ⊆ h(A)+B and that

h(A)(h(A) +B) is norm-dense in the C *-subalgebra h(A) +B of M(B).

Indeed, if a ∈ A, b ∈ B and ε > 0 are given, then let γ := ε/(3 + ‖b‖) We

find f ∈ A with ‖b− h(f)b‖ < γ. There exists a positive contraction e ∈ A+ with

‖f − ef‖ < γ and ‖a − ea‖ < γ. Straight calculation shows that ‖(h(a) + b) −
h(e)(h(a) + b)‖ < ε.

LetH : A→M(h(A)+B) the C *-morphism withH(e)(h(a)+b) := h(e)(h(a)+

b) for a, e ∈ A and b ∈ B. The elements tn := M(h)(sn) ∈ M(B) (respectively

tn := M(H)(sn) ∈ M(B) are isometries in M(h)(M(A)) ⊆ M(B) (respectively

in M(H)(M(A)) ⊆ M(h(A) + B)), and
∑
tnt
∗
n converges strictly to 1 in M(B)

(respectively inM(h(A) +B)), becauseM(h) (respectivelyM(H)) is strictly con-

tinuous and unital by Part (1).

It follows that B and h(A) +B are stable by Part (8). �

Lemma 5.1.2. Suppose that B is a stable and σ-unital C*-algebra, and let

s1, s2, . . . ∈M(B) a sequence of isometries such that
∑
n sns

∗
n converges strictly to

1 in M(B), – see Remark 5.1.1(8) for the existence of {s1, s2, . . .}.

(i) The map δ∞ : M(B)→M(B) is a strictly continuous unital *-monomor-

phism. If δ′∞ : M(B)→M(B) comes from another sequence t1, t2, . . . of

isometries in M(B) such that
∑
tnt
∗
n converges strongly to 1, then δ′∞

is unitarily equivalent to δ∞ . In particular, δ2
∞ is unitarily equivalent to

δ∞.

The algebra δ∞(M(B))′ ∩M(B) is strictly closed and contains a se-

quence of isometries q1, q2, . . . such that
∑
qnq
∗
n converges strictly to 1.

(ii) δ∞(M(B))′ ∩ M(B) contains a copy of O2 (with canonical generators

r1, r2) unitally, and δ∞ ⊕r1,r2 idM(B) is unitarily equivalent to δ∞.

(iii) Let D := O2⊗K denote the stabilized Cuntz algebra O2, q1 ≤ q2 ≤ . . . an

increasing sequence of projections in D and p0 is a nonzero projection in

D.

Then there exists norm-continuous maps t 7→ U(t) from R+ into

the set of unitaries in 1 + D ⊆ M(D) such that U(0) = 1 and qn ≤
U(t)∗p0U(t) and qn 6= U(t)∗p0U(t) for t ≥ n.
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If, in addition, qn 6= qn+1 for n = 1, 2, . . ., then one can find the path

t 7→ U(t) ∈M(D) such that qn ≤ U(t)∗p0U(t) ≤ qn+3 and U(t)∗p0U(t) 6∈
{qn, qn+3} for t ∈ [n+ 1, n+ 2].

(iv) There are isometries S, T ∈ δ∞(M(B))′∩M(B) with SS∗+TT ∗ = 1 and

a norm-continuous map t ∈ [0,∞) 7→ U(t) ∈ δ∞(M(B))′ ∩M(B) into

the unitaries of M(B), such that the norm-continuous maps

S0, T0 : t ∈ R+ 7→ S0(t), T0(t) ∈ δ∞(M(B))′ ∩M(B)

given by S0(t) := U(t)∗SU(t) and T0(t) := U(t)∗TU(t) for t ∈ R+ satisfy

limt→∞ S0(t)∗b = 0 and limt→∞ T0(t)∗b = b for every b ∈ B.

(v) Let C a separable C*-subalgebra of M(B), T : C → M(B) a completely

positive contraction, and suppose that there exists a contraction g ∈M(B)

with g∗cg − δ∞(T (c)) ∈ B for every c ∈ C.

Then there exists a norm-continuous map t ∈ R+ 7→ S(t) ∈ M(B)

into the contractions in M(B) such that S(t)∗cS(t) − δ∞(T (c)) ∈ B for

every t ∈ R+, and limn→∞ ‖δ∞(T (c))− S(t)∗cS(t)‖ = 0 for all c ∈ C.

If, moreover, 1M(B) ∈ C and T is unital then t 7→ S(t) can be found

such that, moreover, S(t)∗S(t) = 1 for t ∈ R+.

(vi) Suppose that 1M(B) ∈ C ⊆ M(B), C is separable, and that T is a unital

C*-morphism such that there exists a contraction g ∈ M(B) with g∗cg −
δ∞(T (c)) ∈ B for every c ∈ C. Then idC asymptotically absorbs T , i.e.,

idC ⊕T and idC are unitarily homotopic in the sense of Definition 5.0.1.

(vii) If f ∈ M(B) and if e ∈ B+ is a strictly positive element, then the norm

closures B0 of f∗Bf and B1 of δ∞(f∗)Bδ∞(f) are σ-unital with strictly

positive elements f∗ef , respectively with δ∞(f∗)eδ∞(f).

There is a natural isomorphism ψ from B1 onto B0 ⊗K, that is given by

ψ(b) := [s∗j bsk]jk ∈ B0 ⊗K ⊆M∞(B0) .

Proof. (i): The strict convergence of the n-th partial sums of
∑
snds

∗
n for

d ∈ M(B) and then of δ∞(dτ ) to δ∞(d) for a strictly convergent bounded net

in {dτ} ⊆ M(B) with strict limit d ∈ M(B) can be seen from the argument in

Remark 5.1.1(2). Since
∑
n sns

∗
n = 1 (strictly), the map δ∞ is unital. It is clear

that δ∞ is an isometric and completely positive map. It is multiplicative because

δ∞(d)δ∞(e)sns
∗
n = snds

∗
nsnes

∗
n = δ∞(de)sns

∗
n .

The sum
∑
snt
∗
n =: U is strictly convergent to a unitary because the strong

convergence of U and that of U∗ can be seen by the argument in Remark 5.1.1(2).

This also shows that U ∈M(B) is unitary and U∗δ∞(d)U = δ′∞(d) for d ∈M(B).

The sufficient criterium in Remark 5.1.1(2) shows that
∑
n,m snsm(snsm)∗ con-

verges unconditional strictly to 1M(B). Thus, δ2
∞ is an infinite repeat of idM(B).

Compare Remark 5.1.1(8)

and use ρ(ejk) := sjs
∗
k ????
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‘‘It is clear that’’ ???????

The map T ∈ M(B) 7→ ST − TS ∈ M(B) is strictly continuous for each

S ∈ M(B), thus with S := δ∞(d) we get that {δ∞(d)}′ ∩M(B) is strictly closed

for every d ∈ M(B)+. It implies that δ∞(M(B))′ ∩ M(B) is strictly closed as

intersection of strictly closed C *-subalgebras. It contains a non-degenerate copy

of K(`2) by Remark 5.1.1(8). Therefore, there is a strictly continuous unital *-

monomorphism ρ : M(K) ∼= L(`2) → M(B) such that the image of ρ commutes

with δ∞(M(B)).

If t1, t2, . . . is a sequence of isometries in M(B) (with
∑
tnt
∗
n = 1 strictly)

then ρ(t1), ρ(t2), . . . are isometries in δ∞(M(B))′ ∩M(B) (with
∑
ρ(tn)ρ(tn)∗ = 1

strictly).

(ii): Let the isometries s1, s2, . . . ∈ M(B) the generators of a copy of O∞ as

established in Remark 5.1.1(8). By part (i), there exists a unital *-monomorphism

Λ from L(`2) ∼= M(K) into δ∞(M(B))′ ∩M(B). Take isometries R1, R2 ∈ L(`2)

with R1R
∗
1 +R2R

∗
2 = 1 and let rk := Λ(Rk) ∈M(B) for k = 1, 2. Then C∗(r1, r2)

is a copy of O2 in δ∞(M(B))′ ∩M(B) that contains 1M(B).

The map δ∞⊕r1,r2 idM(B) is an infinite repeat δ′∞(b) :=
∑
n tnbt

∗
n of the identity

map idM(B) of M(B) that is given by the sequence of isometries t1 := r2, tn+1 :=

r1sn for n = 1, 2, . . ., because the series
∑
tnt
∗
n = r2r

∗
2 + r1(

∑
sns
∗
n)r∗1 converges

strictly to 1. It follows that δ∞ ⊕r1,r2 idM(B) is unitarily equivalent to δ∞ by (i).

(iii): We use here (and only here !) the notation p < q for projections if p ≤ q
and p 6= q.

Where next is really used? For what?

Let p0 := 1 ⊗ e11 ∈ D and a p ∈ D := O2 ⊗ K non-zero projection. Since D

has an approximate unit consisting of projections we find projections r, s ∈ D and

a unitary v1 ∈ U0(D + C · 1) in the connected component of 1 inside the unitaries

in D + 1 such that p0 < r < s, p < r < s, v1(1− s) = (1− s) and v∗1p0v1 = p.

Is r really necessary for something above?

Let p, q, r, s ∈ D with p < q < s and p < r < s. Then there exists a con-

tinuous map t ∈ [0, 1] 7→ v(t) ∈ D with v(t)∗v(t) = v(t)v(t)∗ = v(0) = s − p and

v(1)∗qv(1) = r.

Use below that O2 has property (sq), because O2 = E2/K.
It implies: O2 is K1-bijective.

Every projection in O2 is properly infinite,

and

δ2 is homotopic to id.

(Implies K∗(O2) = 0.
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This happens because, by [172], any two projections P,Q ∈ O2 \ {0, 1} are

unitarily equivalent in O2
∼= (s− p)D(s− p), and U(O2) = U0(O2).

The unitary equivalence of non-trivial projections in O2 implies that all non-

zero projections in D = O2 ⊗ K are MvN-equivalent, thus (s − p)D(s − p) is

isomorphic to O2, and we can pass from O2 to (s− p)D(s− p).

If there is n0 ∈ N such that qn = qn0
for all n ≥ n0, then we find projections

r, s ∈ D and a continuous map t 7→ w(t) ∈ D + 1 into the unitaries of D + 1 such

that w(0) = 1, qn0
< r < s and q := w(1)∗p0w(1) < s.

Thus 0 < r < s and 0 < q < s, and there is a continuous map t 7→ v(t) ∈ D with

v(t)∗v(t) = v(t)v(t)∗ = v(0) = s and v(1)∗qv(1) = r. Let U(t) := w(t)(v(t)+(1−s))
for t ∈ [0, 1] and U(t) = U(1) for t > 1. The map t 7→ U(t) is a continuous path in

the U0(D + C1) ∩ (1 +D) of the desired type.

If the sequence q1 ≤ q2 ≤ . . . becomes not stationary, than we may assume that

0 < qn < qn+1 for all n ∈ N, – simply by re-indexing the non-equal qn and changing

the parameter t ∈ R. Therefore we find continuous maps t ∈ [0, 1] 7→ vn(t) ∈ D into

the partial unitaries of D such that vn(t)∗vn(t) = vn(t)vn(t)∗ = vn(0) = qn+3 − qn
and vn(1)∗qn+1vn(1) = qn+2.

We find a projection s ∈ D with 0 < q3 < s and a continuous map t 7→ w(t) from

[0, 1] into the unitaries of D + 1, such that q := w(1)∗p0w(1) < s, w(0) = 1. Then

there is a continuous map t 7→ v0(t) ∈ D with v0(t)∗v0(t) = v0(t)v0(t)∗ = v0(0) = s

and v0(1)∗qv0(1) = q3.

Let U(t) := w(t)(v0(t) + (1 − s)) for t ∈ [0, 1] and, by induction, U(n + t) :=

U(n)(qn+2 +vn+1(t)+(1− qn+4)) for t ∈ [0, 1] and n = 1, 2, . . .. Then t 7→ U(t) is a

continuous map from R+ to the unitaries in D+ 1, with U(0) = 1, U(n)∗p0U(n) =

qn+2 and qn ≤ U(t)∗p0U(t) and U(t)∗p0U(t) 6= qn for t ∈ [n, n+ 1].

(iv): As noticed in Remark 5.1.1(8) (combined with part (i)), there is a non-

degenerate *-monomorphism ψ : K→M(B) such thatM(ψ) : M(K)→M(B) is a

unital strictly continuous *-monomorphism with image in δ∞(M(B))′∩M(B). We

identify M(K) with such a copy M(ψ)(M(K)) of M(K) in δ∞(M(B))′ ∩M(B).

Since `2 ⊗2 `2 ∼= `2 there is a non-degenerate copy D of O2 ⊗ K contained

in M(K) = L(`2), i.e., DK = K and the inclusion M(D) ⊆ M(K) is unital.

p0 := 1O2
⊗ p11 is in D, but is not in K. There exists an increasing sequence of

projections q0 < q1 < q2 < · · · in 1O2
⊗K ⊆ D with q0 ≤ q1, q1−q0 6= 0, q1−q2 6= 0,

and limn→∞ ‖qnk − k‖ = 0 for every k ∈ K. It follows that (qn) converges strictly

to 1 ∈M(B).

By (iii) there is a norm-continuous map t 7→ U(t) into the unitaries of D+ 1 ⊆
M(K) such that qn ≤ U(t)∗p0U(t) for t ≥ n.

In M(K) = L(`2) there are isometries T and S with p0T = p0, TT ∗ = q1,

SS∗ = 1 − q1, because 1 − p0, q1 − p0 and 1 − q1 are not in K (recall:

D ∩ K = {0}). Let S0(t) := U(t)∗SU(t) and T0(t) := U(t)∗TU(t). Then

qnS(t) = qn(U(t)∗p0U(t))U(t)∗SU(t) = qnU(t)∗p0 SU(t) = 0 and qnT (t) =
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qn(U(t)∗p0 U(t))U(t)∗TU(t) = qn(U(t)∗p0 U(t)) = qn for t > n, and the maps

t→ S0(t), T0(t) ∈M(K) ⊆M(B) are norm-continuous.

Thus, limt→∞ S0(t)∗qnb = 0 and limt→∞ T0(t)∗qnb = qnb for every b ∈ B and

n ∈ N.

The desired result follows, because
⋃
n(qnB) is dense in B.

(v): Let S(t) := gS0(t) where S0(t) ∈ δ∞(M(B))′ ∩M(B) is as in (iv). Then

t 7→ S(t) is a norm-continuous map from [0,∞) into the contractions in M(B),

(δ∞ ◦ T )(c)− S(t)∗cS(t) = S0(t)∗(δ∞(T (c))− g∗cg)S0(t) ∈ B

for t ∈ R+, and limt→∞ ‖S(t)∗cS(t)− δ∞(T (c))‖ = 0.

If 1 ∈ C and T (1) = 1, then 1−S(t)∗S(t) = S0(t)∗(δ∞(T (1))−g∗1g)S0(t) is inB

and tends to zero in norm. Since the norm-limit of S(t)∗S(t) is 1, there is t0 ≥ 0 such

that S(t)∗S(t) is invertible for every t ≥ t0. Then t→ (S(t0 + t)∗S(t0 + t))−1/2 ∈ B
is norm-continuous, S′(t) := S(t0 + t)(S(t0 + t)∗S(t0 + t))−1/2 is norm-continuous

and satisfies S′(t)∗S′(t) = 1, S′(t)∗cS′(t) − δ∞(T (c)) ∈ B and limS′(t)∗cS′(t) =

δ∞(T (c)) for c ∈ C.

(vi): The statement is independent of the chosen copy and generators {s1, s2},
{t1, t2} of O2 in M(B), because the unital completely positive map idC ⊕s1,s2T is

unitarily equivalent to idC ⊕t1,t2T by the unitary w = t1s
∗
1+t2s

∗
2 . In the following⊕

is formed with help of the same generators ofO2 ⊆M(B). Let V := δ∞◦T . By (ii),

there is a unitary U0 ∈ M(B) with U∗0V (·)U0 = T ⊕ V . If we have found a norm-

continuous map t 7→ U1(t) into the unitaries ofM(B) with V (c)⊕c−U1(t)∗cU1(t) ∈
B and limn→∞ ‖V (c)⊕ c− U1(t)∗cU1(t)‖ = 0 for all c ∈ C, then

U(t) := U1(t)(U0 ⊕ 1)Ud(1⊕ U1(t)∗)

is as desired, where Ud is a unitary in U0(O2) with U∗d (a⊕ b)⊕ c)Ud = a⊕ (b⊕ c)
as in Proposition 4.3.2(iv).

Thus, it is enough to prove the existence of U(t) for V = δ∞ ◦ T (in place of

T ). By (iv) there exists a norm continuous map t ∈ R+ 7→ S(t) ∈ M(B) into

the isometries of M(B) such that S(t)∗c S(t) − V (c) ∈ B for every t ∈ R+, and

limn→∞ ‖V (c) − S(t)∗c S(t)‖ = 0 for all c ∈ C. The relative commutant of V (C)

in M(B) contains a copy of O2 unitally, by Part (ii).

Now we prove a more general result than stated in Part (vi):

Suppose that C is a C*-subalgebra C ⊆ M(B) with 1M(B) ∈ C and that V is

a unital C*-morphism V : C → M(B) such that there are a unital copy of O2 in

V (C)′∩M(B) and a norm-continuous map t 7→ S(t) from R+ into the contractions

of M(B) with S(t)∗c S(t) − V (c) ∈ B and V (c) = limS(t)∗c S(t). Then there is

a norm-continuous map t 7→ U(t) from R+ into the unitaries of M(B) such that

c⊕ V (c)− U(t)∗cU(t) ∈ B for every t ∈ R+ and

lim
t→∞

‖ c ⊕ V (c) − U(t)∗cU(t) ‖ = 0 for c ∈ C .
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By Cb(R+,M(B)) we denote the bounded continuous maps from R+ into

M(B). We let E := Cb(R+,M(B))/C0(R+, B) and consider M(B) as a subalge-

bra of E . Then the assumptions imply that C ↪→ E dominates the C *-morphism

V : C → E and that V (C)′∩E contains a copy of O2 unitally. Thus, by Proposition

4.3.5(i) there is a unitary u ∈ E such that u∗cu = c⊕ V (c) for c ∈ C.

Let t 7→ W (t) a contraction in Cb(R+,M(B)) which represents u. Then

1 −W (t)∗W (t) and 1 −W (t)W (t)∗ are in B, lim ‖1 −W (t)W (t)∗‖ = 0, lim ‖1 −
W (t)∗W (t)‖ = 0. Thus there exists t0 ≥ 0 with ‖1 − W (t)∗W (t)‖ ≤ 1/2 and

‖1−W (t)W (t)∗‖ ≤ 1/2 for t ≥ t0. Let U(t) := W (t+ t0)(W (t+ t0)∗W (t+ t0))−1/2

for t ≥ 0. Then t 7→ U(t) is as desired.

(vii): Let g := δ∞(f), pk := sks
∗
k and qn :=

∑
k≤n pk. Recall B0 := f∗Bf

and B1 := g∗Bg . We have pkg = gpk = skfs
∗
k, pkB1 ⊆ B1 B = s∗j (sjBs

∗
k)sk ⊆

s∗jBsk ⊆ B, and pjgBgpk = sjf
∗s∗jBskfs

∗
k = sjf

∗Bfs∗k. Thus, pjB1pk = sjB0s
∗
k

and s∗jB1sk = B0. Since qng = gqn, ‖qng∗bg − g∗bg‖ ≤ ‖g‖2‖(qnb − b)g‖ → 0 for

n → ∞ and b ∈ B, we get qnB1 + B1qn ⊆ B1 and limn→∞ ‖qnbqn − b‖ = 0 for all

b ∈ B1.

Let ψ(b) := [s∗j bsk]j,k ∈ M∞(B0) . The restriction of ψ to qnB1qn defines a

*-isomorphism from qnB1qn onto Mn(B0). It follows that ψ is a *-isomorphism

from B1 onto B0 ⊗K ⊆M∞(B0) because limn→∞ ‖qnbqn − b‖ = 0 for all b ∈ B1.

Let ρ : B → C a positive state with ρ(f∗ef) = 0 . Since b 7→ ρ(f∗bf) is a

positive functional on B and e is strictly positive, we get ρ(f∗Bf) = {0} and

ρ(B0) = {0}, i.e., f∗ef is a strictly positive element of B0. In the same way one

gets that g∗eg is strictly positive in B1. �

2. Some properties of corona C*-algebras

HERE STARTS DISCUSSION ON σ-sub-Stonean C *-algebras:

Definition 5.2.1. A C *-algebra E is sub-Stonean (also called SAW*-

algebra) if, for each positive contractions a, b ∈ E+ with ab = 0, there exists

a positive contraction c ∈ E+ with ca = a and bc = 0 ( 6 ).

???? Wrong Definition ?:

The C *-algebra E is a σ-sub-Stonean C *-algebra if A′ ∩ E is sub-Stonean

for every separable C *-subalgebra A of E.

????

My comment:

This (!) is an other property than given in my original definition in [448, def. 1.4].

This original definition seems to be at least formally “stronger”? It is unclear

if they are equivalent.

6 In particular, for each e ∈ E+ there exist a positive contraction f ∈ E+ with fe = e = ef .
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“Recall” that a C *-algebra C is an SAW*-algebra if any two σ-unital C *-

subalgebras A and B of C are “orthogonal” (i.e., A · B = {0}) if and only if

they are “separated” (i.e., there exists positive contractions e, f ∈ C with ef = 0,

A = eAe and B = fBf . ⇐ is perhaps not the original definition of SAW*-algebras?

This applies to E := C∗(e) and F := C∗(f). It causes that there exists contrac-

tions g, h ∈ C+ with gh = 0, F = gFg and G = hGh. It implies that ρϕ · ϕ(f) ≤ g
for each ϕ ∈ C0(0, 1]+ with suitable ρϕ ∈ (0, 1]. Does it imply that there exists a

positive contraction T ∈ gCg with Tf = f = fT ?

What is it the correct Definition of sub-Stonean C *-algebras? (Look to Peder-

sen and others?)

???? Definition ???? A C *-algebra C is an SAW*-algebra if any two σ-unital

subalgebras A and B of C are “orthogonal”, if and only if, they are “separated”.

Original ?: positive f, g?: [292, def. 2.9]

My Definition [448, def. 1.4] in “green”:

We call a C *- algebra C σ-sub-Stonean if for every separable C *-subalgebra

A ⊆ C and every b, c ∈ C+ with bc = 0 and bAc = {0} there are positive contrac-

tions f, g ∈ A′ ∩ C with fg = 0, fb = b and gc = c .

Definition [292, def. 2.9]:

A C *-algebra C is σ-sub-Stonean if for every separable subalgebra A of C and

all positive b and c in C such that bAc = {0} there are contractions f and g in

A′ ∩ C such that fg = 0, fb = b and gc = c .

Gives fb = b and fc = 0, f∗fg = 0, f∗fc = 0 and fPb = Pb.

Missing:

bc = 0 (becomes stronger, because of weaker assumptions)

and

Positivity of f, g (becomes weaker conclusion).

Therefore difficult to compare!

Is it really equivalent to my Def?

(Implies: fc = 0, f = v(f∗f)1/2, (f∗f)1/2g = 0, v(f∗f)1/2Pb = Pb???? . f∗f

has properties: f∗fg = 0, fPb = Pb. Is g∗c = c ? gPc = Pc with Pc support of c.

Can here replace A by C∗(A, b) then it covers partly our Definition ... but I

can not see that one can deduce from [292, def. 2.9] that the commutant A′ ∩C is

again σ-sub-Stonean as it is in our Definition ...

The definition [292, def. 2.9] is not identical to my Definition:

A C *-algebra C is σ-sub-Stonean if, for every separable subalgebra A of C and

all positive b and c in C such that bAc = {0}, there are contractions f and g in

A′ ∩ C such that fg = 0, fb = b and gc = c.

Definitions [292, def. 2.5] of Farah and Hart:
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Two subalgebras A, B of an algebra C are orthogonal if ab = 0 for all a ∈ A
and b ∈ B.

They are separated if there is a positive element c ∈ C such that cac = a for

all a ∈ A and cb = 0 for all b ∈ B.

My definition [448, def. 1.4] is stated here again ( 7 ):

Definition 5.2.2. We call a C *-algebra C σ-sub-Stonean if for every sepa-

rable C *-subalgebra A ⊂ C and every b, c ∈ C+ with bc = 0 and bAc = {0} there

are positive contractions f, g ∈ A′ ∩ C with fg = 0, fb = b and gc = c.

My comments:

Obviously, if C is σ-sub-Stonean, then C is sub-Stonean (case A := {0}),
and B′ ∩ C is σ-sub-Stonean for every separable C *-subalgebra B of C (consider

C∗(B,A) in place of A in the definition).

It is easy to see, that if D is a hereditary C *-subalgebra of C, then D is σ-sub-

Stonean, if and only if, for every d ∈ D+ there is a positive contraction e ∈ D with

ed = d.

Proof of last:

There is a positive contraction e in D with eb = b, ec = c and ea = a for all a ∈ A.

Then bC∗(A, e)c = {0}. If f ′, g′ are positive contractions in C that commute with

C∗(A, e) and satisfy f ′g − 0, fb = b and g′c = c, then f := f ′e and g = g′e in I+

are as desired.

In particular, Ann(d,C) is σ-sub-Stonean for every d ∈ C+ if C is σ-sub-

Stonean.

Further, if C is σ-sub-Stonean and I / C is a σ-sub-Stonean closed ideal of C,

then C/I is σ-sub-Stonean. (An exercise.)

Proof of last:

Let A ⊂ C/I separable, b, c ∈ (C/I)+ with bc = 0 and bAc = {0}, A1 ⊂ C separable

with πI(A1) = A, f ∈ C a self-adjoint contraction with f = b1/2− c1/2, d a strictly

positive element of C∗(f+A1f−) ⊂ I. Let e ∈ I a positive contraction with ed = d,

and let b′ := f+(1 − e)f+, c
′ := f−(1 − e)f− ∈ C+. Then b′A1c

′ = {0}, b′c′ = 0

and πI(b
′) = b, πI(c

′) = c. Since C is σ-sub-Stonean there are f ′, g′ ∈ A′1 ∩C with

f ′b′ − b′ and g′c′ = c′. f := πI(f
′) and g := πI(g

′) are as desired.

If C is sub-Stonean, then C satisfies almost a sort σ-variant for this for given:

There are always contractions g, h ∈ C+ with gh = 0 that are “quasi-invariant”

under the unitaries in A + C · 1 ⊆ M(C), – in the sense that e.g. u∗gu ∈ gCg for

all u ∈ U(A+ C · 1) and satisfy b ∈ gCg and c ∈ hCh.

Definition of Farah and Hart ([292, def. 2.9]):

7 It was modified or wrongly displayed in [292, def. 2.9] to something that ?????? seems to

be even not equivalent to [448, def. 1.4].
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A C *-algebra C is σ-sub-Stonean if for every separable subalgebra A of C and

all positive b and c in C such that bAc = {0} there are contractions f and g in

A′ ∩ C such that fg = 0, fb = b and gc = c .

My question: Each SAW*-algebra (Def.???) has this property?

LetB the separable C *-algebra generated by AcA and e ∈ B+ a strictly positive

contraction in B. Then be = 0 and there are positive contractions f, g ∈ C+ with

fg = 0, bf = b and ge = e . It follows gbc = bc for all b ∈ B

Definition 5.2.3. The algebra E is σ2-sub-Stonean if for every separable

C *-subalgebra A of E, every positive contraction e ∈ A′ ∩ E and every sequence

g1, g2, . . . of positive contractions with egn = 0, gn+1gn = gn and limn ‖gna−agn‖ =

0 for all a ∈ A+ there exists a positive contraction f ∈ A′ ∩ E with fgn = gn for

all n ∈ N and fe = 0.

Next blue argument not clear !

( If one can take a subsequence hk = gnk and then takes g :=
∑

2−ngn or G :=∑
k 2−nk(hk+1 − hk), then ge = 0 and Ge = 0, the proposed positive contraction

f ∈ A′ ∩ E satisfies fg = g – which is equivalent to fgn = gn for each n = 1, 2, . . .

–, and each a ∈ A derives D = gEg into D :

ageg − gega = (ag − ga)eg + (gaeg − geag) + (ge(ag − ga)) ∈ D

for each a ∈ A and e ∈ E, because for all a ∈ A ga =
∑
n 2−ngna ∈ D by

limk ‖(gna− agn)gk‖ .)

A C *-algebra C has AA-CRISP (asymptotically abelian, countable

Riesz separation property) if the following holds:

Assume an, bn, for n ∈ N, are positive elements of C such that

an ≤ an+1 ≤ bn+1 ≤ bn

for all n. Furthermore assume that D is a separable subset of C such that for every

d ∈ D we have

lim
n
‖[an, d]‖ = 0 .

Then there exists a positive c ∈ C such that an ≤ c ≤ bn for all n and [c, d] = 0 for

all d ∈ D.

The algebra E satisfies Kasparov’s technical property (KTP) if E has

the following property:

If B1 and B2 are σ-unital C*-subalgebras of E with B1 ·B2 = {0} and ∆ ⊂ E
is a separable subspace with xb − bx ∈ B1 for all x ∈ ∆ and b ∈ B1, then there

exists a positive contraction f ∈ E+ such that f ·B1 = {0}, (1− f) ·B2 = {0} and

fx = xf for all x ∈ ∆.

We say that a C *-algebra M has KTP if the following holds:

Assume A, B, and C are subalgebras of M such that A⊥B and C derives B.

Furthermore assume A and B are σ-unital and C is separable. Then there is a
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positive element d ∈ M such that d ∈ C ′ ∩M , the map x 7→ xd is the identity on

B, and the map x 7→ dx annihilates A.

Every derivation of a separable subalgebra of M is of the form δb for some

b ∈M .

(Latter is Part of Definition? Is it ∂b?)

Kasparov’s Technical Theorem: [73, thm.12.4.2]

Let J be a σ-unital C *-algebra. Let A1 and A2 be σ-unital C *-subalgebras of

M(J), and ∆ a separable subspace of M(J). Suppose A1 · A2 ⊆ J , and that ∆

derives A1. Then there are M,N ∈M(J) such that

0 ≤M ≤ 1, N = 1−M, M ·A1 ⊆ J, N ·A2 ⊆ J, and [M,∆] ⊆ J .

The result can fail if A1 and A2 are not σ-unital, even if B1? and B2? are

commutative and ∆ = 0 [Choi and Christensen 1983]:

Kasparov’s Technical Theorem [73, thm.12.4.2] says – in an equivalent formu-

lation – that E := Q(A) :=M(A)/A has “Kasparov’s Technical Property” if A is

σ-unital.

If B1 and B2 are orthogonal σ-unital C *-subalgebras of E with B1 ·B2 = {0}
and ∆ a separable subspace with [x, b] ∈ B2 for all b ∈ B2 and x ∈ ∆. Then we can

find strictly positive contractions e1 ∈ B1 and e2 ∈ B2 and we get [x, b] ∈ e1Ee1

for all x ∈ ∆ and b ∈ B1.

The algebras B1 and B2 can not be completely re-discovered from (e1, e2,∆).

But if we find a positive contraction T ∈ E+ with Te2 = e2 and Te1 = 0, and

[T, d] = 0 for all d ∈ ∆ then f := T satisfies Kasparov’s technical property for

(B1, B2,∆).

We can conversely consider two positive e1, e2 ∈ E+ with e1e2 = 0 and a

countable subset X of E with the property that [x, e1] ∈ e1Ee1 for all x ∈ X. (E.g.

by taking strictly positive contractions e1 ∈ A1 and e2 ∈ A2).

If we find a contraction T ∈ E+ with Tx = xT for all x ∈ X, Te2 = e2 and

Te1 = 0. Then T has the required properties.

In fact it suffices to find T ∈ C∗(X)′ ∩ E, ‖T‖ ≤ 1, T ≥ 0 and Te1 = 0,

Te2 = e2.

If e1, e2 ∈ E+ with e1e2 = 0 and a countable subset X of E with the property

that [x, e1] ∈ e1Ee1 for all x ∈ X are given, then one can consider the C *-algebras

B2 := C∗(e2) and define ∆ as the linear span of X. A C *-algebra B1 can be defined

as closure of
⋃
nB1,n, where the B1,n are inductively defined by B1,1 := C∗(e1),

B1,n+1 := C∗(B1,n, [y, x], x ∈ X, y ∈???).

Then e1 is a strictly positive element of B1 and [B1, y] ⊆ B1 for all y in the

linear span of X.



2. SOME PROPERTIES OF CORONA C*-ALGEBRAS 669

Assuming that E satisfies the Kasparov technical property, we get a contraction

f ∈ E+ with f ·B1 = {0}, f ∈ C∗(X)′ ∩ E and fe1 = e1.

A C *-algebra C has AA-CRISP (asymptotically abelian, countable Riesz sep-

aration property) if the following holds:

Assume an, bn, for n ∈ N, are positive elements of C such that an ≤ an+1 ≤
bn+1 ≤ bn for all n ∈ N. Furthermore assume D is a separable subset of C such

that for every d ∈ D we have

lim
n
‖[an, d]‖ = 0 .

Then there exists a positive c ∈ C such that an ≤ c ≤ bn for all n and [c, d] = 0 for

all d ∈ D.

So far we have not seen examples that separate the stronger definitions from the

sub-Stonean C *-algebras. For abelian C *-algebras the definitions are equivalent.

(But compare the study [292] of I. Farah and B. Hart in the case of corona

algebras.:

“ We present unified proofs of several properties of the corona of σ-unital C *-

algebras such as AA−CRISP , SAW ∗, being sub-σ-Stonean in the sense of Kirch-

berg, and the conclusion of Kasparov’s Technical Theorem.

Although our results were obtained by considering C *-algebras as models of

the logic for metric structures, the reader is not required to have any knowledge of

model theory of metric structures (or model theory, or logic in general). The proofs

involve analysis of the extent of model-theoretic saturation of corona algebras.

Countable saturation of corona algebras Ilijas Farah, Bradd Hart,

arXiv:1112.3898v2 (revised 17 Oct 2012)

Related properties of coronas of σ-unital stable C *-algebras A is given in the

following proposition.

Proposition 5.2.4. Let A a stable σ-unital C*-algebra, D ⊂ A a σ-unital

hereditary C*-subalgebra.

(i) D is unitary homotopic to a corner of A.

(ii) The corona Q(A) :=M(A)/A ∼= Qs(A) is is a σ2-sub-Stonean C*-algebra

(in sense of Definition 5.2.3).

Proof. (i): To be filled in ?? (ii): It is essentially Kasparov’s lemma. �

Question 5.2.5. Let B a sub-Stonean C *-algebra (in the sense that for each

self-adjoint contraction c ∈ B there exists a self-adjoint contraction d ∈ B such that

dc = |c| (equivalently expressed: for c1, c2 ∈ B+ with c1c2 = 0 exist contractions

d1, d2 ∈ B+ with d1d2 = 0 and dkck = ck for k ∈ {1, 2}.)

Let e ∈ B+ a positive contraction, D := eBe and define the (two-sided) nor-

malizer of D in B by

N (D) := {b ∈ B ; bD ∪Db ⊆ D} .
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It is easy to see that N (D) is a C *-subalgebra of B and that ψD(c)d := cd (for

d ∈ D and c ∈ N (D)) defines a natural C *-morphism ψD : N (D) →M(D) from

N (D) into the (abstract two-sided) multiplier algebra M(D) of D. It is unital,

because there exists a contraction f ∈ B+ with fe = e.

Is ψD(N (D)) sub-Stonean?

Clearly, the kernel of ψD is equal to the two-sided annihilator

Ann(D) := Ann(B,D) := {b ∈ B ; bD = Db = {0} }

of D in B, which is a sub-Stonean hereditary C *-subalgebra of B.

The interesting question says:

Is ψD : N (D)→M(D) surjective?

I.e., M(D)/D ∼= N (D)/Ann(D) in a natural way.

It would give a nice new characterization of sub-Stonean C *-algebras.

Question 5.2.6. Let B a sub-Stonean C *-algebra. A special case of Question

5.2.5 is the following question:

Let b1, b2, . . . ∈ B+ a sequence of mutually orthogonal contractions.

Does B+ contain an contraction c ∈ B+ such that c is contained in the in N (D)

for D := dBd with d :=
∑
n 2−nbn and c(bn − (bn − 1/2)+) = (bn − 1/2)+ for all

n ∈ N ?

It seems (!) that Question 5.2.5 is equivalent to the following question:

Question 5.2.7. Let B a sub-Stonean C *-algebra and a ∈ B+. Let D := aBa.

Suppose that d1, d2, . . . ∈ D+ are mutually orthogonal and such that d1 + d2 + · · ·
converges strictly to an element in T ∈M(D)+.

Something more elaborate is needed ?

Does there exist an element b ∈ B+ that satisfies bD ∪Db ⊆ D and

lim
n
‖b(a− (1− 1/n))+a−

∑
k≤n

dn(a− (1− 1/n))+a‖ = 0 ?

3. Functions that respect quasi-central approximate units

If we want to verify in applications the estimates that appear in the assumptions

of the Parts (2)-(6) of Remark 5.1.1, then the below given Proposition 5.3.1 and its

consequence, the Lemma 5.3.2, are useful, despite the fact that also the arguments

in the proof of [43, thm. 2] can be used without controlling bound. This argument

of Arveson in [43] is in essence the following:

Let K a convex subset of the positive contractions in A that contains an ap-

proximate unit of A, and ϕ1, ϕ2, . . . ∈ C0(0, 1]+ a given sequence of continuous

function.
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We need an element e ∈ K with ‖y − ey‖ ≤ ε‖y‖ for y in a given finite-

dimensional subspace Y ⊆ A that satisfies at the same time the commutation

properties ‖[e, x]‖ ≤ ε‖x‖ and ‖[ϕk(e), x]‖ ≤ ε‖x‖ for x ∈ X and k = 1, . . . , n,

where X ⊆ M(A) is a finite-dimensional linear subspace. This can be done by

solving following inequalities by an inductive selection procedure with nth step as

follows:

First choose for each given ε > 0, n0 and the considered continuous function

ϕk(λ) with ϕk(0) = 0, k ≤ n, a polynomial Pk(λ) with Pk(0) = 0 and |ϕk(λ) −
Pk(λ)| < ε/2 for λ ∈ [0, 1] and then select from before constructed approximate

units en with enem = eminm,n a finite convex combination e of elements en1 , . . . , enk
(n0 < n1 < n2 < . . . < nk) such that ‖[e, x]‖ ≤ η‖x‖ for x in a given finite-

dimensional subspace Xk ⊆ M(A) in a (before chosen) filtration of A or of some

separable subspace, where η can be taken e.g. as η := ε/(2 max1≤k≤n{1 +Q′k(1)})
with polynomials Qk(λ) build from Pk(λ) by replacing all coefficients of Pk by its

absolute values and Q′k := d/dλQk is the derivative of Qk. Those estimates are

not perfect.

See [11, lem. 10.3] for the case of the polynomials P (λ) := λn.

Notice also that by [11, lem. 10.4], T ∗ = T , ‖T‖ < 1 and bounded X:

‖(1− T 2)1/2X −X(1− T 2)1/2‖ ≤ (‖T‖ · ‖XT − TX‖)/(1− ‖T‖2)1/2 .

Unfortunately we have to consider the case where ‖T‖ is near to 1.

In our application we need a construction that produces a sufficiently fast

commutation property such that sub-selections satisfy automatically better com-

mutation and approximate-unit properties, i.e., we need to check estimates of

commutator-norms for commutators of elements in given different convex subsets

of an algebra. This must be used later to verify the quadratic unconditional strict

convergence of some series build by selections from given sequences of elements in

the multiplier algebra.

A control of such general estimate is possible by the above described inductive

selection. But we need a general control of the commutators for all needed functions

f itself, e.g. by suitable bounds for the – with respect to t ∈ [0, 1] non-decreasing –

function

G(f, ·) : [0, 1] 3 t 7→ G(f, t) ∈ [0,∞] ,

defined by

G(f, t) := sup{ ‖[x, f(a)]‖ ; (a, x) ∈ P (t) }

for the set of pairs

P (t) := { (x, a) ; x, a ∈ L(`2), ‖x‖ ≤ 1, 0 ≤ a ≤ 1, ‖xa− ax‖ ≤ t } .

Here f is a given non-decreasing continuous real function on [0, 1]. The defini-

tion shows that t 7→ G(f, t) is the minimal function that satisfies for given f the

inequalities

‖[x, f(a)]‖ ≤ G(f, ‖[x, a]‖)
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for all contractions x, a ∈ L(H) with a ≥ 0. Below we observe that it suffices to

consider only self-adjoint contractions x = x∗ to define G(f, t).

Where Gu(f, t) is used?

Where Gu(f, t) is used? To get applicable estimates of G(f, t) it could be

useful to consider also the functions Gu(f, t) defined by

Gu(f, t) := sup{ ‖u∗f(a)u− f(a)‖ ; (a, u) ∈ PU(t) }

where PU(t) is defined as the set of pairs

PU(t) := { (u, a) ; u, a ∈ L(H) with u∗u = 1 = uu∗, 0 ≤ a ≤ 1, ‖[a, u]‖ ≤ t } ,

i.e., it considers only differences ‖f(b)−f(a)‖ of functions of unitary transformations

b := u∗au. Those have often easier estimates if the function f is operator monotone,

e.g. for f(t) = t1/2 it is easy to see that ‖f(b)− f(a)‖ ≤ f(‖b− a‖).

Always ‖[b, x]‖ ≤ ‖[b−, x]‖+ ‖[b+, x]‖ ≤ 2‖x‖(‖b−‖+ ‖b+‖) for all x ∈ L(H)

Is always ‖[b, x]‖ ≤ ‖x‖‖b‖ and each positive b ∈ L(H)?

It implies that for b ∈ L(H)+ and x ∈ L(H) holds that

‖[b, x]‖ ≤ inf
t∈R+

‖[(b− t)−, x]‖+ ‖[(b− t)+, x]‖ .

Is ‖[b, x]‖ ≤ ‖x‖‖b‖ for b ∈ L(H)+ and any x ∈ L(H) by the following estimates

??:

For each δ > 0 there are vectors θ, ξ ∈ H with norm = 1 such that 〈[b, x]θ, ξ〉 ≥ 0

and ‖[b, x]‖ ≤ δ + 〈[b, x]θ, ξ〉 . Notice that 〈[b, x]θ, ξ〉 = 〈bθ, x∗ξ〉 − 〈xθ, bξ〉 ≥ 0

It is a non-negative difference of two complex numbers of norm ≤ ‖x‖‖b‖.
It follows that it is also a non-negative difference of two real numbers of norm

≤ ‖x‖‖b‖. (Still it could be = 2‖x‖‖b‖ .)

If P is the orthogonal projection onto the linear span of {θ, ξ, xθ, x∗ξ}
then 〈[b, x]θ, ξ〉 = 〈bPθ, P 2x∗Pξ〉 − 〈P 2xPθ, bPξ〉 ≥ 0. The latter is equal to

〈[PbP, PxP ]θ, ξ〉 ≤ ‖[PbP, PxP ]‖.

Thus ‖[b, x]‖ ≤ δ+ ‖[PbP, PxP ]‖ and we can reduce all to the case of H = C4.

Can suppose that 0 ∈ Spec(PbP ).

Let P ∈ L(H) an orthogonal projection that commutes with b and satisfies

Pb = b+ and (1− P )b = b−. Then [b, x] = bPx− xPb+ b(1− P )x− x(1− P )b ...

??? says b+x− xb+ + b−x− xb− = [b, x]

and then ????? used where ???

check above and next again:

This ????????? can be seen by restriction to the case of self-adjoint contractions

X∗ = X and B ≥ 0, if we replace b by B := diag(γ+ b, γ+ b) ∈M2(L(H)) ∼= L(H)

with γ := ‖b−‖ and replace x by X := diag(x∗, x) · Z ∈ M2(L(H)), where Z∗ =

Z := [ζjk] ∈ M2 is defined by ζjk := 1 − δjk and satisfies Z2 = 1, Z diag(y, z) =
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diag(z, y)Z. Thus, ZBZ = B, ZX = diag(x, x∗), XZ = diag(x∗, x). and X∗ =

Z · diag(x, x∗) = X.

It follows that G(f, ·) restrict to the case of self-adjoint contractions X = X∗ ,

because Then ‖[x, b]‖ = ‖[X,B]‖ and ‖[x, f(b)]‖ = ‖[X, f(B)]‖.

B diag(x∗, x) = diag((γ + b)x∗, (γ + b)x),

ZBX = diag((γ + b)x, (γ + b)x∗),

ZB = Z diag((γ + b), (γ + b)) = diag((γ + b), (γ + b))Z = BZ,

Z(XB − BX) = diag(x, x∗) · diag(γ + b, γ + b) − diag((γ + b)x, (γ + b)x∗) is

the diagonal matrix with entries x(γ + b) − (γ + b)x and x∗(γ + b) − (γ + b)x∗.

Thus ‖XB − BX‖ = ‖x(γ + b) − (γ + b)x‖ = ‖[b, x]‖ if b∗ = b, γ := ‖b−‖ and

X := diag(x∗, x) · Z = X∗.

Since one can X replace here again by X + ‖X−‖ ≥ 0 without changing the

norms, it shows that all estimates can be done using positive operators in L(`2).

In particular it suffices to consider self-adjoint contractions x and positive a if

we want to find an estimate for G(f, t).

Check next arguments again

Always G(f, 0) = 0, because f(a) commutes with x if a = a∗ commutes

with x and f(t) is a function on the spectrum of a. Moreover, if t1 > t2 > · · ·
we find (an, xn) with ‖[xn, an]‖ ≤ tn and G(f, tn) − 2−n < ‖[xn, f(an)]‖ ≤
G(f, tn). The elements a := (a1, a2, . . .) + c0(L(H)) and x := (x1, x2, . . .) +

c0(L(H)) of `∞(L(H))/c0(L(H)) generate a C *-subalgebra C∗(a, x) that can be

faithfully represented as a C *-subalgebra of L(H), then ‖[x, a]‖ ≤ t∞ := limn tn

and ‖[x, f(a)]‖ = lim supn→∞G(f, tn) = limnG(f, tn). Since t 7→ G(f, t) is increas-

ing, and ‖[x, f(a)]‖ ≤ G(f, t∞) ≤ G(f, tn), it follows that the monotone increasing

function t 7→ G(f, t) is continuous from the right side.

(i.e., is upper semi-continuous ?) What about the left side?

If f is continuous, then t 7→ G(f, t) is continuous, i.e., is also continuous from

the left side: Let t1 < t2 < . . . in [0, 1] and t∞ := limn tn. Suppose G(f, t∞) >

supnG(f, tn) and let 0 < ε < G(f, t∞)− supnG(f, tn).

By definition of G(f, t∞), there exists (a, x) ∈ P (t∞) with G(f, t∞) − ε <

‖[x, f(a)]‖ ≤ G(f, t∞). If f is continuous on [0, 1], then limδ→0 ‖f((1 − 2δ)(a +

δ1))− f(a)‖ = 0.

Since [x, (1−2δ)(a+ δ1)] = (1−2δ)[x, a], and G(f, (1−2δ)t∞) ≤ supnG(f, tn)

and

‖[x, f((1− 2δ)(a+ δ1))]‖ ≤ sup
n
G(f, tn) ≤ G(f, t∞)− ε ≤ G(f, t∞) .

If we suppose that f is continuous, then ‖f((1−2δ)(a+δ1))−f(a)‖ → 0 for 0 < δ →
0. Thus, supnG(f, tn) = G(f, t∞). This implies that t ∈ [0, 1] 7→ G(f, t) ∈ [0, 1] is

continuous on [0, 1]. The continuity implies – by the Lemma of Dini on automatic
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uniform convergence from below applied to G(f, ·) on [0, 1] – that the value G(f, t)

is determined by the pairs (a, x) in P (t) with a and b operators of finite rank.

Some words about lower bounds for G(f, ·):

It is easy to check that f(t) ≤ G(f, t), e.g. a(t) := ts2s
∗
2 + s3s

∗
3 and x :=

s1s
∗
2 of O∞ = C∗(s1, s2, . . .) ⊆ L(`2) satisfy ‖x‖ = 1, ‖a(t)‖ = 1, a(t) ≥ 0 and

‖[x, f(a(t))]‖ = f(t), ‖[x, a(t)]‖ = t. This shows that f(t) ≤ G(f, t) for all t ∈ [0, 1].

Alternatively one can take elements a := diag(0, t, 1) ∈ M3 and x := [ξjk] ∈ M3

with ξ13 := 1 and ξjk = 0 for (j, k) 6= (1, 3).

If we allow in case of M2 also the case with ‖a‖ < 1, then a(t) := diag(t, 0)

and the above defined self-adjoint orthogonal matrix Z ∈ M2 again satisfy

‖[Z, f(a(t))]‖ = f(t) and ‖[Z, a(t)]‖ = t for t ∈ [0, 1].

The above reduction to the case of self-adjoint x = x∗ and b ≥ 0 shows also

that ‖xb− bx‖ ≤ ‖x‖(‖b+‖+ ‖b−‖) for each b∗ = b = b+ − b−, and any x ∈ L(`2),

because for x∗ = x and b∗ = b the element T := i(bx − xb) is self-adjoint and its

norm is given by the supremum of |〈Tv, v〉| = |〈xv, bv〉 − 〈bv, xv〉| for v ∈ H := `2

with ‖v‖ = 1. To see that |〈Tv, v〉| ≤ ‖x‖‖b‖, consider the orthogonal projection

P ∈ K of rank ≤ 2 from H onto the linear span of v and xv. Then

|〈Tv, v〉| = |〈PxPv, bPv〉 − 〈bPv, PxPv〉| = |〈(PbPxP − PxPbP )v, v〉| .

This reduces the claim to the case where b and x are in M2: If rank(P ) = 1 we get

〈Tv, v〉 = 0, and otherwise PbP is positive and PxP is self-adjoint in p(K)p ∼= M2.

It is easy to see that ‖bx− xb‖ ≤ 1 for contractions b, x ∈ M2 with b ≥ 0, because

one can reduce the general case to the case where b is diagonal and x has zero

diagonal.

If we allow both of b and x to be non-positive but self-adjoint contractions,

then x := Z with Z ∈ M2 as above defined and b := diag(1,−1) are self-adjoint

contractions that satisfy ‖[x, b] ‖ = ‖x‖(‖b−‖+ ‖b+‖) = 2.

Since one can for positive a ∈ M2 and f ≥ 0 reduce the considerations to the

case of diagonal a and x = diag(α, β) ·Z, one gets that ‖[x, f(a)]‖ ≤ f(‖[x, a]‖) for

all contractions x, a ∈ M2(C) with a ≥ 0 and any continuous non-decreasing f on

[0, 1] with f(0) ≥ 0.

Def. of P and ?

‖[x, f(a)]‖ = i〈xv, f(a)v〉 = i〈PxPv, f(a)Pv〉 ≥ ‖[PxP, Pf(a)P ]‖
for P = P ∗P , Pv = v, Pxv = xv ???

and ‖[PxP, Pf(a)P ]‖ ≤??? if Pf(a)P ≥ f(PaP )?

Some determination of G(f, t) should be possible in other cases because one

can restrict the definition to a, x ∈Mn(C) and get Gn(f, t) ≤ G(f, t) and G(f, t) =

supnGn(f, t) with uniform convergence by the Lemma of Dini. This reduction to

Mn can be seen as follows:

The positive contractions in c0 ⊆ K(`2) contain a approximate unit (en) of K
that is (in norm) quasi-central for L(`2), i.e., for each separable subset of X ⊂
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L(`2) there exists a suitable sub-sequence that approximately commutes with the

elements of X and has the following properties: If 0 ≤ en ≤ 1 satisfy enem = em

for 1 ≤ m < n (that implies that each en is automatically of finite rank) and

en → 1 strictly in M(K) ∼= L(`2) and ‖[en, a]‖+ ‖[en, f(a)]‖ → 0 for n→∞, then

‖[a, enxen]‖ → ‖[a, x]‖ and ‖[f(a), enxen]‖ → ‖[f(a), x]‖ for n→∞.

Thus, it suffices to consider self-adjoint contractions x = x∗ ∈ K of fi-

nite rank to determine the value of F (f, t). After this reduction we can

modify the approximate unit (en) such that in addition enx = x = xen

for all n, and get [enaen, x] = en[a, x]en and limn ‖f(enaen) − f(ae2
n)‖ = 0,

limn ‖f(enaen) − f(e2
na)‖ = 0, limn ‖f(enaen) − f(ae2

n)‖ = 0, limn ‖f(ae2
n)x −

f(a)x‖ = 0 and limn ‖xf(ae2
n) − xf(a)‖ = 0, but [f(enaen), x] = [e2

nf(a)e2
n, x]

and ‖e2
na

2e2
n − (enaen)2‖ → 0 for n → ∞. We obtain finally the convergences

‖[f(enaen), x]‖ → ‖[f(a), x]‖ and ‖[enaen, x]‖ → ‖[a, x]‖. Together with the

continuity of t 7→ F (f, t) this shows that F (f, t) = limn Fn(f, t).

T.A. Loring and F. Vides study in [541] among others the special case of

f(t) = t1/2 and get good reason for the conjecture that G(f, t) = t1/2 for f(t) = t1/2,

that was also suggested by G.K. Pedersen in [619]. Related results up to a (there

not explicitly given) constant can be obtained from results of A.B. Aleksandrov and

V.V. Peller, e.g. in [11, 12]. An estimate by Pedersen was given in [619, cor. 6.3]:

If 0 ≤ a ≤ 1 and ‖b‖ = 1, then ‖[a, b]‖ ≤ ε ≤ 1/4 implies ‖[a1/2, b]‖ ≤ (1.25)ε1/2.

We give explicit estimates in the following Proposition 5.3.1, that are likely not

the best possible, but its proof can be obtained easily by elementary observations.

Proposition 5.3.1. Let H a Hilbert space, and suppose that ϕ(t) a continuous

function on [0,∞) that is operator-monotone in (0,∞) and satisfies ϕ(0) ≥ 0.

For all positive a, b ∈ L(H),

‖ϕ(b)− ϕ(a)‖ ≤ ϕ(‖b− a‖) .

If u ∈ L(H) is unitary and a ≥ 0, then

‖ [u, ϕ(a)] ‖ ≤ ϕ( ‖[u, a]‖ ) . (3.1)

If a, x ∈ L(H) are contractions with a ≥ 0, then

‖ [x, ϕ(a)] ‖ ≤ 3ϕ( ‖ [x, a] ‖ ) . (3.2)

In particular, for all a ≥ 0, every contraction x and each β ∈ [1,∞),

‖[x, a1/β ]‖ ≤ 3‖[x, a]‖1/β .

Proof. It suffices to consider aε := (1− 2ε)(ε+ a) in place of a, because

xaε − aεx =: [x, aε] = (1− 2ε)[x, a] ,

and ϕ(‖[x, a]‖) = limε→0 ϕ(‖[x, aε]‖) by continuity of ϕ on [0,∞), and it implies

[x, ϕ(a)] = limε→0[x, ϕ(aε)] by uniform continuity of ϕ on bounded subsets of

[0,∞).



676 5. GENERALIZED WEYL–VON NEUMANN THEOREMS

Notice that Spec(aε) ⊆ [(1 − 2ε)ε,∞) ⊂ (0,∞) . Therefore we can use the

variant of the Löwner theorem given by F. Hansen [356, thm. 4.9, rem. 5.3]:

For every positive operator monotone function ϕ, defined in the positive half-

line (0,∞), there is a unique bounded positive measure µ on the closed interval

[0, 1] such that for t ∈ (0,∞), λ ∈ [0, 1] and the functions

fλ(t) := (λ+ (1− λ)t)−1t =
(
1−

(
1 + ((1− λ)/λ)t

)−1)
/
(
1− λ

)
holds

ϕ(t) =

∫ 1

0

fλ(t) dµ(λ) for t > 0 .

Any function given by such a measure is operator monotone, and the measure µ

is a probability measure if and only if ϕ(1) = 1. The functions fλ : t 7→ fλ(t) are

easily seen operator monotone, in particular the fλ are monotone.

Let η > 0 and a, b ∈ L(`2)+ such that η ≤ a and η ≤ b and let γ := ‖b − a‖ .

Since fλ is operator monotone and b ≤ a+ γ, we get fλ(b) ≤ fλ(a+ γ) . Moreover

fλ has the property fλ(t + γ) ≤ fλ(t) + fλ(γ) for γ > 0, because the function

x→ x/(1 + x) is sub-additive for x ∈ [0,∞). Thus we get

fλ(b) ≤ fλ(a+ γ) ≤ fλ(a) + fλ(γ) .

If we interchange here a and b it implies together that ‖fλ(b)− fλ(a)‖ ≤ fλ(γ) . If

we use the above integral representations of ϕ(a) and ϕ(b), we obtain the estimate

‖ϕ(b)− ϕ(a)‖ ≤
∫ 1

0

fλ(γ) dµ(λ) = ϕ(γ) = ϕ(‖b− a‖) .

To get that ‖ϕ(b)− ϕ(a)‖ ≤ ϕ(‖b− a‖) for arbitrary positive a, b ∈ L(`2), we can

consider δ + a and δ + b for δ > 0 and then use that ϕ is uniformly continuous on

bounded parts of [0,∞), e.g. that

lim
0<δ→0

‖ϕ(a)− ϕ(δ + a)‖ = 0 .

If u is unitary and a ≥ 0, then uϕ(a)u∗ = ϕ(uau∗) can be seen easily with help of

uniform approximation of ϕ by polynomials on the interval [0, ‖a‖]. For b := u∗au

holds ‖ua − au‖ = ‖b − a‖ and ‖uϕ(a) − ϕ(a)u‖ = ‖ϕ(b) − ϕ(a)‖ . This implies

inequality (3.1).

To find an estimate of ‖[x, ϕ(a)]‖ for a contraction x and a ≥ 0 by ‖[x, a]‖,
we can replace a by the positive element A := diag(a, a) ∈ M2(L(`2)) and x

by the self-adjoint contraction X := diag(x, x∗) · Z ∈ M2(L(`2)), because then

‖[X,A]‖ = ‖[x, a]‖ and ‖[X,ϕ(A)]‖ = ‖[x, ϕ(a)]‖ ( 8 ).

Let x∗ = x, b ∈ L(`2) with ‖x‖ < 1 and b ≥ 0. The Cayley transformation

of x ∈ L(`2) with ‖x‖ < 1 and x∗x = xx∗ is defined as the continuous operator-

valued function

u(λ) := (λ+ x)(1 + λx∗)−1

for λ ∈ C with |λ| ≤ 1, cf. [616, p. 4]. Then u(λ) is analytic for |λ| < 1, u(0) = x,

u(eis) is unitary for s ∈ [0, 2π].

8 Here Z ∈M2 has entries zj,k := 1− δj,k.
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Is this next blue general study useful here?

The general Cayley transformation is given for all x ∈ L(`2) with ‖x‖ < 1 and

λ ∈ C with |λ| ≤ 1 by

u(λ) := (1− xx∗)−1/2(λ1 + x)(1 + λx∗)−1(1− x∗x)1/2 .

Then u(λ) is unitary for |λ| = 1 and x = u(0). Moreover ‖u(λ)‖ < 1 for all |λ| < 1

(the latter by maximum modulus principle). See [222] or [402, ex. 10.5.5].

As in the considerations below, we get for v1, v2 ∈ H := `2 and ρ(y) := 〈yv1, v2〉
that

ρ([x, b]) = (2π)−1

∫ 2π

0

ρ([u(eis), b]) ds .

??????

Since 2πu(0) =
∫ 2π

0
u(eis) ds, we get

[x, b] = (2π)−1

∫ 2π

0

[u(eis), b] ds .

It implies (2π) · ‖[x, b]‖ ≤
∫ 2π

0
‖[u(eis), b]‖ ds . Hence, ‖[x, b]‖ ≤ sups ‖[u(eis), b]‖.

If we let here b := ϕ(a) then inequality (3.1) implies that

‖[x, ϕ(a)]‖ ≤ sup{ϕ(‖[u(eis), a]‖) ; s ∈ [0, 2π] } .

We let v(λ) := (λ + x) and w(λ) := (1 + λx∗)−1 =
∑∞
n=0(λx∗)n. Then u(λ) =

v(λ)w(λ), and, for all b ∈ L(`2), [b, v(λ)] = [b, x] , [b, w(λ)] = −λw(λ)[b, x∗]w(λ)

and

[b, u(λ)] = [b, x]w(λ) + λu(λ)[b, x∗]w(λ) .

Since u(λ) is unitary if |λ| = 1 we get for x = x∗ the estimate

‖[u(eis), b]‖ ≤ 2‖[x, b]‖‖w(eis)‖ .

The inequality ‖eisx∗‖ = ‖x‖ < 1 implies ‖w(eis)‖ ≤ (1− ‖x‖)−1 . Thus,

ϕ(‖[u(eis), a]‖) ≤ ϕ((1− ‖x‖)−12‖[x, a]‖) ,

and for all x∗ = x with ‖x‖ < 1,

‖[x, ϕ(a)]‖ ≤ ϕ((1− ‖x‖)−12‖[x, a]‖) .

Since the latter formula holds for all x = x∗ with norm ‖x‖ < 1, we can replace x

by 3−1x and get by monotony of ϕ the estimate

‖[x, ϕ(a)]‖ ≤ 3ϕ(‖[x, a]‖) .

�

Compare next blue with above given similar remarks!!

A particular case is the operator monotone function ϕ(t) := t1/2, where the

estimate shows that ‖[x, a]‖2 ≤ 9‖[x, a2]‖. It gives that the above defined and

discussed continuous function G(t) := G(ϕ, t) ≤ 3t1/2 for ϕ(t) := t1/2 – defined as
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the “minimal” function with G(‖[a, x]‖) ≥ ‖[a1/2, x]‖ for contractions x, a ∈ L(`2)

with a ≥ 0 – satisfies

t1/2 ≤ G(t) ≤ 3t1/2 .

Numerical methods indicate (but do not prove) that in this special case it could

be possible to improve the constant 3 down to 1 by other methods, compare [541].

This is in accordance with a suggestion of G.K. Pedersen in [619].

The following lemma gives for explicit estimates of unconditional strict conver-

gence at least some useful upper bounds (that are perhaps not minimal).

Lemma 5.3.2. Let x, y ∈ A and a, b ∈ A+ contractions and γ > 0. Suppose

that

max( ‖[x, a2]‖ , ‖[x, b2]‖ ) ≤ γ and ‖y − b2y‖+ ‖y∗ − b2y∗‖ ≤ γ .

Then we get the estimates

‖[x, (1− b)a]‖ ≤ 6γ1/2 and ‖y − by‖+ ‖y∗ − by∗‖ ≤ γ .

Proof. Let a, b ∈ A+ and x ∈ A contractions. We get from Proposition 5.3.1

that

max( ‖[x, a]‖ , ‖[x, b]‖ )2 ≤ 9 max(‖[x, a2]‖, ‖[x, b2]‖) ≤ 9γ .

This implies by [(1− b)a, x] = (1− b)[a, x]− [b, x]a that

‖[(1− b)a, x]‖ ≤ ‖[a, x]‖+ ‖[b, x]‖ ≤ 3‖[a2, x]‖1/2 + 3‖[b2, x]‖1/2 ≤ 6γ1/2 .

The estimates for y follows from e := (1 − b)2 ≤ (1 − b2)2 =: f if 0 ≤ b ≤ 1,

because e.g. ‖y − by‖2 = ‖y∗ey‖ ≤ ‖y∗fy‖ = ‖y − b2y‖2. �

4. A “tautologic” Weyl–von Neumann type result

We prove a very general “tautologic” version of the classical Weyl–von Neu-

mann theorem: the below stated Proposition 5.4.1.

Applications will be obtained later by verifying in some special cases the va-

lidity of assumptions (α) and (β) given in Proposition 5.4.1. The assumptions are

sufficient but are not necessary for some derived properties e.g. as in Part (iii) of

Proposition 5.4.1. Applications consider cases where the C *-algebra C does not

contain an element h with the property (α) required in Proposition 5.4.1 or is not

unital. But often one can build a larger algebra C1 and a suitable extension T1

of T that contains an element h that satisfies the required Conditions (α) and (β)

with C1 and T1 in place of C and T . But this extension, e.g. to an outer uniti-

zation is not always possible and needs some care. Here is a warning concerning

application in the theory of extension groups Ext(C ; C,B) : The nontrivial part

in those applications – by trying to establish the assumptions of Proposition 5.4.1

– consists in showing that condition (β) still holds also for the extended T1 on the

bigger C *-algebra C1.
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Adjoining a unit to C is only possible if the considered c.p. map T on C satisfies

that πB ◦T is “zero-absorbing”, i.e., if πB ·T “dominates zero” in the more precise

sense, as discussed in Chapter 4.

Does the Elliott-Kucerovsky result follow?? – from the special case

where C = C∗(E, d), with d ∈ B strictly positive, and πB(E) separable, T (d) = 0

and [T ] : πB(C) → M(B) has the property that, for each a ∈ B+, the map

e ∈ E 7→ a[T ](πB(e))a or the map f ∈ πB(E) 7→ a[T ](f)a is nuclear?

I.e.: When does it satisfy moreover the Condition (β)?? (That we can then

apply Prop. 5.4.1 to it.)

Proposition 5.4.1. Let B a σ-unital C*-algebra, C a separable C*-subalgebra

ofM(B), and T : C →M(B) a linear map with ‖T‖ ≤ 1 that satisfies the following

Conditions (α) and (β):

(α) There exists h ∈ C+ with T (h) = 0 and h1/nd → d if n → ∞ for every

d ∈ B .

(β) For every a ∈ B+, every finite subset X ⊂ C+ of contractions, and every

ε > 0 there exists d ∈M(B) with ‖d∗cd− aT (c)a‖ < ε for c ∈ X.

Then the contraction T : C →M(B) with this properties is completely positive and

has following properties:

(i) There exists a sequence Sn of contractions in M(B) such that, for all

c ∈ C and k ∈ N, and, for all m,n ∈ N,

S∗ncSm − δm,nT (c) ∈ B and lim
n→∞

‖ δk,0T (c) − S∗ncSn+k ‖ = 0 .

(ii) If B is stable then the completely positive contraction V := δ∞◦T satisfies

again Conditions (α) and (β) (with V there in place of T ) and there is

a norm-continuous map t ∈ R+ 7→ S(t) ∈ M(B) into the contractions of

M(B) such that, for s, t ∈ R+, k ∈ Z+ = N ∪ {0} and c ∈ C holds

S(s)∗c S(t)− δs,tT (c) ∈ B and lim
t→∞

S(t+ k)∗c S(t) = δk,0 · T (c) . (4.1)

(iii) If in addition to the properties in (ii) T is a C*-morphism and T (C)B

is dense in B, then the monomorphism ηC : c ∈ C 3 c 7→ c ∈ M(B)

asymptotically absorbs T , i.e., the C*-morphisms (idC ⊕T ) : C →M(B)

and ηC are unitarily homotopic in the sense of Definition 5.0.1 modulo

B.

(iv) If B is stable, 1M(B) ∈ C and T (1) = 1, or if πB ◦ T “dominates zero”

in the sense of Definition 4.3.3 ( 9 ), then the path t → S(t) in Part (ii)

can be modified such that Properties (4.1 ) still hold, but that S(t) has the

additional property that πB(S(t)) is an isometry for all t ∈ R+.

If the operators πB(S(t)) are isometries, πB ◦ T is a C*-morphism

and (πB ◦ T )(C)′ ∩ (M(B)/B) contains a copy C∗(s1, s2) of O2 unitally,

9 Compare also Lemma 4.3.4(i,iv).
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then there exists a unitary U ∈M(B)/B with

U∗πB(c)U = πB(c)⊕s1,s2 πB(T (c)) for all c ∈ C .

(v) The contractions Sn in Part (i), respectively the S(t) in Part (ii), can be

chosen as isometries if 1M(B) ∈ C and T is unital.

Collection of remarks:

General remarks:

Check and reorganize the proof !!!

Items have been changed !!!

Condition (α) is satisfied by some h ∈ C+ with T (h) = 0 if B = R for the

closed right ideal R := {d ∈ B ; limn h
1/nd = d}. In particular it suffices to check

this for d in a subset of B that generates B as a closed right ideal.

It suffices for Condition (β) to check the existence of da ∈M(B) with

‖d∗acda − aT (c)a‖ < ε for eachc ∈ Xγ

and for each a ∈ B+ in an approximate unit for B and a family {Xγ} of finite

subsets Xγ ⊂ B+ that have the property that the linear spans L(Xγ) build an

upward directed net of linear subspaces of B with
⋃
γ L(Xγ) dense in B. This

implies then that T is a point-wise approximately inner completely positive map.

Are there weaker formulation of Condition (β) possible? e.g. :

(New β): For every a ∈ B+, every pair of positive contractions c1, c2 ∈ C+ and

every ε > 0 there exists d ∈M(B), – depending on (a, c1, c2, ε) – with

‖d∗cjd− aT (cj)a‖ < ε for j ∈ {1, 2}

We can replace the element d ∈ M(B) in Condition (New β) or in Condition

(β) by some d ∈ B, because aT (c)a ∈ B for a ∈ B+, deλ ∈ B and

lim
λ
‖aT (c)a − eλaT (c)aeλ‖ = 0

for any quasi-central approximate unit {eλ} ⊆ B+ of B ( 10 ).

Now we use Condition (α) and the positivity of T . They imply the following:

For any ϕ,ψ ∈ C0(0, 1] and each c ∈ C we have that

T ((1− ϕ(h))c(1− ψ(h))) = T (c),

i.e., T (ϕ(h)c) = 0 for all c ∈ C and ϕ ∈ C0(0, 1].

For any finite subset X ⊆ C+, ε > 0 and contraction ϕ ∈ C0(0, 1]+ there exists

for each x ∈ X an element dx ∈ B with ‖d∗x(1−ϕ(h))x(1−ϕ(h))dx−aT (x)a‖ < ε .

Since hBh = B by Condition (α), it implies that we can find a sequence of

mutually orthogonal positive contractions en ∈ C ∗ (h)+ ⊆ C ⊂ M(B) such that,

10 Quasi-central approximate units of B exist in B+ for every C *-algebra B.
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for each a ∈ B+ and x ∈ C+, there exists a sequence of elements dk ∈ B and

numbers nk ∈ N such that

‖d∗kenkxenkdk − aT (x)a‖ < 2−k .

Unfortunately this seems only to work for each single element of finite subsets

X ⊂ C+ .

Condition (α) implies that there exists a contraction h ∈ C+ ⊆M(B) with the

property that for any given ??????

Question:

Is it enough to require in place of (β) for every a ∈ B+, every pair contraction

c1, c2 ∈ C+ and every ε > 0 there exists d ∈M(B) with ‖d∗ckd− aT (ck)a‖ < ε ?

Could it be that Condition (α) allows to use a kind of an approximate induction

procedure:

Suppose we have verified (β) for all finite subsets X ⊂ C+ with cardinality ≤ n
(with fixed n ≥ 2) and all ε > 0. Is it possible to derive then that (β) also holds

for X with cardinality ≤ n+ 1 .

CONCERNING PASSAGE TO THE STABLE CASE:

We show first that the conditions (α) and (β) on a linear map T : C →M(B)

of norm ‖T‖ ≤ 1 imply that T is completely positive (and T = 0 is possible).

Then each of the maps

T1 : C ⊗ 1 3 c⊗ 1 7→ T (c)⊗ 1 ∈M(B ⊗K)

– where here 1 means the unit element 1M(K) of M(K) –, and

T2 : C ⊗K 3 c 7→ (T ⊗ idK)(c) ∈M(B)⊗K ⊆M(B ⊗K)

satisfy again the Condition (α) with h⊗ 1 ∈ C ⊗ 1 for T1 and for T2 e.g. with h⊗ q
in place of h, where q :=

∑
n n
−2pnn.

Notice that T1 is unitary equivalent to its infinite repeat, but T2 is usually not,

but the quotient C *-morphism πB⊗K◦T2 : C⊗K→ Qs(B) dominates zero (in sense

of Definition 4.3.3).

The elements a ∈ (B ⊗ K)+ can be approximated in norm by elements in

(b0 ⊗ q)(B ⊗K)+(b0 ⊗ q) with a strictly positive element b0 ∈ B+.

In case of T2 : C⊗K→M(B⊗K) it is enough to consider finite sets X ⊂ C⊗K
containing only tensors c⊗ p with c ∈ C+ and p ∈ K a projection.

It follows that it suffices to check the Condition (β) for completely positive

maps T1 or T2 (in place of T ) only on those finite subsets X ⊆ (C ⊗ 1)+ that

contain finitely many elements c ⊗ 1 with c ∈ C+ in case of T1, and those finite

subsets X ⊆ (C ⊗K)+ that contain only elements c⊗ p with c ∈ C+ and p ∈ K in

case of T2 .

????? the elements (b0 ⊗ q)1/n in place of the required arbitrary elements

a ∈ (B ⊗K)+ in the test criterium for Condition (β).
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The linear span of the elements c ⊗ p with c ∈ C+ and p ∈ K a rank-one

projection in K is dense in X ⊆ (B ⊗K)+.

For every a ∈ B+, every finite subset X ⊂ C+ of contractions and every ε > 0

there exists d ∈M(B) with ‖d∗cd− aT (c)a‖ < ε for c ∈ X.

h⊗ (
∑
n n
−2pnn) ∈ B ⊗K

in place of B,

??? map from T ⊗ idK also the properties (α) and (β) for B ⊗K in place of B

with h⊗ (
∑
n n
−2pnn) in place of h and d⊗ 1 in place of d?

If we can shown that ‖T ⊗ idK ‖ ≤ 1, then it suffices to consider stable B.

We have anyway ‖T ⊗ 1M(K)‖ ≤ 1, because ‖c⊗ 1‖ = ‖c‖.

Desire / hope more:

Ad(i): S∗kS` = 0 ?? Perhaps at least sufficient that only S∗kS` ∈ B for k 6= ` ?

The strong hope is that (moreover) S1, S2, . . . can be found such that:

S∗j Sk = 0 for j 6= k

Or at least: S∗j Sk ∈ B and limn S
∗
n+kSn = 0 for j 6= k, k ≥ 1. ??

Could be related to extendability to unital case T˜ ??

Reality check to (i):

Contractions S1, S2, . . ..

S∗j cSk ∈ B for all c ∈ C (Suffices: S∗j cSk − δjkT (c) ∈ B For each c ∈ Lm and

m ∈ N.

For each m ∈ N and ε > 0 there exist n := n(m, ε) such that ‖ScjSk‖ ≤ ε‖c‖
for all j, k ≥ n and c ∈ Lm.

and, for all c ∈ C and n,m ∈ N,

S∗ncSm − δn,mT (c) ∈ B and lim
n→∞

‖δk,0 · T (c)− S∗n+kcSn‖ = 0 .

In the special case where S∗nSn+1 = 0, let α(t) := t − n + 1 for t ∈ [n − 1, n]

and

S(t) := α(t)Sn+1 + (1− α(t)2)1/2Sn .

Calc: S(t)∗S(t) = α2S∗nSn + (1− α2)S∗n+1Sn+1 + 0 if S∗nSn+1 = 0.

If S∗n+1cSn ∈ B and ‖S∗n+1cSn‖ ≤ 2−(n+1)‖c‖ and ‖S∗ncSn − T (c)‖ ≤ 2−n‖c‖
and ‖S∗n+1cSn+1 − T (c)‖ ≤ 2−(n+1)‖c‖ for c ∈ Ln, then we get:

S(t)∗cS(t) = α2S∗ncSn + (1 − α2)S∗n+1cSn+1 + α(1 − α2)1/2S∗ncSn+1 + α(1 −
α2)1/2S∗n+1cSn

It has estimates ‖S(t)∗cS(t)− T (c)‖ ≤ ‖c‖ ·
(
α22−n + (1− α2)2−(n+1) + α(1−

α2)1/22−n
)
≤ 2−n
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The map t ∈ R+ 7→ S(t) is norm-continuous path in the contractions inM(B)

and satisfies for s, t ∈ R+ and c ∈ C,

S(s)∗cS(t)− δs,tT (c) ∈ B and lim
t→∞

‖δs,0T (c)− S(t+ s)∗cS(t)‖ = 0.

Indeed: Let s ∈ [m − 1,m] and t ∈ [n − 1, n], β := s − m + 1, α := t − n + 1,

S(s) = βSm + (1 − β1/2)1/2Sm+1, S(t) := αSn + (1 − α2)1/2Sn+1. If c ∈ M(B),

then S(s)∗cS(t) = αβS∗mcSn + α(1− β1/2)1/2S∗m+1cSn +

(1− α2)1/2βS∗mcSn+1 + (1− α2)1/2(1− β1/2)1/2S∗m+1cSn .

To (ii): requires to distinguish the unital, non-unital,

or stable case ??

It seems that second part of (ii)

is not so different to the case of NON-STABLE B.

Compare all with Part (iv) !!!

Ad (iii): ‘‘πB ◦ T is a C∗-morphism’’ enough??

The unital, non-unital, or stable can give

different results??

Addition in (iii) requires that πB(Sn) resp. πB(S(t)) is an

isometry and that O2 is unitally contained in πB(T (C))′ ∩Q(B).

General remark to proof: Notice that for a verification of assumption (β) it

suffices to consider only positive contractions a := am in a given approximate unit

(am)m∈N of B.

Proof. The following are elementary consequences of assumptions (α) and

(β): If Y = {y1, . . . , yn} ⊂ C is any finite subset of contractions in C, then we

can pass to the finite set X := {x1,1, . . . , x1,4, . . . , xn,1, . . . , xn,4} of the at most

4n positive contractions xk,1, xk,2, xk,3, xk,4, given by the polar decompositions

xk,1−xk,2 = 2−1(y∗k+yk) and xk,3−xk,4 = i2−1(y∗k−yk) of the real and imaginary

parts of the yk ∈ Y . An application of Condition (β) to X gives that there is

d ∈M(B) with ‖d∗ykd− aT (yk)a‖ < 4ε for k = 1, . . . , n.

If we apply this observation to the set Y := {c1,1, c1,2, . . . , cnn} of entries cj,k

of a positive contraction [cj,k] ∈ Mn(C)+ and take a ∈ {em} for an approximate

unit em ∈ B+ of B, then we can see – with help of Condition (β) with ε/(4n2) in

place of ε –, that there exists dm ∈ M(B) for each a := em and ε := 1/m such

that in Mn(B) holds

‖ (dm ⊗ 1n)∗[cj,k]n,n(dm ⊗ 1n)− (em ⊗ 1n)[T (cj,k)]n,n(em ⊗ 1) ‖ < m−1 .

In particular, the matrix [T (cj,k)] is positive in Mn(M(B)) for each positive matrix

[cj,k] ∈ Mn(C)+ , i.e., we get that the map T : C →M(B) is a completely positive

contraction.

Therefore, we can tensor it with idK and get a c.p. contraction Ts := T ⊗ idK

from C ⊗K into M(B)⊗K ⊆M(B ⊗K). Let e :=
∑

2−npnn ∈ K .
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The c.p. contraction Ts : C ⊗K→M(B⊗K) satisfies again the conditions (α)

and (β) with C ⊗ K, B ⊗ K and h ⊗ e in places of C, B and h, but now with the

estimate

‖Ts(c)− (d⊗ e1/n)∗c(d⊗ e1/n)‖ < ε ,

where d comes from condition (β) for suitably chosen n ∈ N.

It is clear that Ts(h⊗ e) = 0 and lim(h⊗ e)1/nc = c for each c ∈ B ⊗K.

We can replace the d in Condition (β) by daγ ∈ B for sufficiently small γ > 0.

Thus, the element d ∈ M(B) in the inequality of Condition (β) for a given finite

set X ⊂ Cs.a. of selfadjoint contractions x = x+ − x− in C and a ∈ B+ can be

always chosen such that d ∈ B.

It follows for fixed a ∈ B+ that the c.p. map c ∈ C 7→ aT (c)a ∈ B is “approx-

imately 1-step inner” in the strict topology of M(B) as a map from C ⊆ M(B)

into B by assumption (β), and we can apply Lemma 3.1.8 by Remark 3.1.7 to this

approximately 1-step inner map. It gives an element d ∈ B that satisfies condition

(β) with norm ‖d‖ ≤ ‖a‖ , because the c.p. map c ∈ C 7→ aT (c)a ∈ B has norm

‖a‖2‖T‖ ≤ ‖a‖2.

If b ∈ B is not positive, then a := (bb∗)1/4, b0 := a−1b := limn(bb∗+1/n)−1/4b

with norms ‖a‖ = ‖b‖1/2 = ‖b0‖ and there exists d0 ∈ B, depending on a, X and

ε > 0, with ‖d0‖ ≤ ‖a‖ and ‖d∗0xd0 − aT (x)a‖ < γ := ε/(1 + ‖b‖1/2) for x ∈ X.

Thus d := d0b0 satisfies ‖d∗xd− b∗T (x)b‖ ≤ ‖b‖1/2γ ≤ ε and ‖d‖ ≤ ‖b‖.

Hence, we can use in the following also the c.p. maps b∗T (·)b with non-

selfadjoint b ∈ B in place of aT (·)a in Condition (β), and find the element d ∈ B
with ‖ d∗c d − b∗T (c)b ‖ < ε for c ∈ X with ‖d‖ ≤ ‖b‖ and d ∈ B · b.

Now we bring Condition (α) into play:

If ϕ ∈ C0(0, 1]+ is any non-negative continuous function with ϕ(0) = 0 and ‖ϕ‖ ≤ 1,

then we can find moreover an element d ∈ B depending on X, b ∈ B, ϕ and ε, such

that ‖d‖ ≤ ‖b‖ and

‖ d∗(1− ϕ(h))x(1− ϕ(h))d − b∗T (x)b ‖ < ε for all x ∈ X . (4.2)

This holds because the assumption T (h) = 0 from Condition (α) and the positivity

of T imply T (cϕ(h)) = 0 for c ∈ C and ϕ ∈ C0(0, 1], which gives that

T ((1− ϕ(h))c (1− ϕ(h))) = T (c) for all c ∈ C . (4.3)

To get the requested element d from Condition (β) – with a replaced by our non-

selfadjoint b (as discussed above) –, we replace X = {x1, . . . , xn} by

gXg := { gx1g, . . . , gxng } ,

where we let g := 1−ϕ(h), and use Equation (4.3). We find some d ∈ B depending

on X, b and ε, with ‖d‖ ≤ ‖b‖ such that d solves the Inequality (β) for gXg and b

in place of X and a, i.e., d solves the Inequality (4.2).
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We can go one step further and consider the specific elements hn := ψn(h) for

increasing pice-wise linear functions ψn ∈ Cc(0, 1], as e.g. defined by

hn := ψn(h) for ψn(t) := min(1,max(0, 2nt− 1)) . (4.4)

Notice that the positive contractions hn+1hn = hn for all n ∈ N. Above consider-

ations show that we can use in place of the before considered general ϕ(h) any of

the hn.

This allows to choose another solutions d ∈ B of the inequality in assumption

(β) in the following manner:

Let n0 ∈ N, and X a finite set of selfadjoint contractions x∗ = x ∈ C, an element

b ∈ B and ε > 0. Moreover we suppose that there is given an element f ∈ B and

let δ ∈ (0, ε), e.g. let δ := ε/(2 + 2‖b‖). Condition (α) implies that

lim
n
hnb = lim

n
h1/nb = b for all b ∈ B . (4.5)

It implies that the decreasing sequence {(1 − hm)2} converges strictly to zero in

M(B). Thus, there is a number m1 := m(f, δ) > n0 with ‖f − hmf‖ < δ and

‖xf − hmxf‖ < δ for each m ≥ m1 and x ∈ X.

We can replace for m > m1 > n0 the finite set X of selfadjoint contractions by

the set (1− hm)X(1− hm) and apply Equation T ((1− hm)c(1− hm)) = T (c) for

c ∈ C – coming from Equation (4.3) – and find d ∈ B with ‖d‖ ≤ ‖b‖ such that for

x ∈ X and ε > 0 holds

‖ d∗(1− hm)x(1− hm)d − b∗T (x)b ‖ < ε/2 . (4.6)

The new element d ∈ B depends from X, b, m ∈ N and ε. Moreover our choice of

m ∈ N ensures that ‖d∗(1− hm)xf‖ < δ‖b‖ for x ∈ X and ‖d∗(1− hm)f‖ < δ‖b‖.

Let δ ∈ (0, ε/(4 + 4‖d‖)) and let f ∈ B. The elements (1 − hm)d and xf are

in B. Therefore we find by Equation (4.5) a number n ∈ N such that n > m + 2,

‖hn(1− hm)d− (1− hm)d ‖ < δ and ‖hnxf − xf ‖ < δ for x ∈ X.

Then element d0 := hn(1− hm)d satisfies ‖d0‖ ≤ ‖d‖ ≤ ‖b‖, and for x ∈ X,

‖ d∗0xd0 − d∗(1− hm)x(1− hm)d ‖ ≤ 2δ‖b‖ < ε/2

and

‖d∗0xf − d∗(1− hm)xf‖ ≤ ‖b‖ · ‖hn(1− hm)xf − (1− hm)xf‖ ≤ δ‖b‖ < ε/2 .

It implies that hn, hm, d, b ∈ B and all x ∈ X satisfy following inequalities

‖ (hn(1− hm)d)∗x(hn(1− hm)d) − b∗T (x)b ‖ < ε , (4.7)

‖(hn(1− hm)d)∗xf‖ < ε/2 . (4.8)

and ‖(hn(1− hm)d)∗xf‖ ≤ ‖d‖ · ‖xf − hmxf‖ < ε/2 for x ∈ X.

This describes the idea for an induction procedure if b1, b2, . . . ∈ B, a zero-

sequence ε1 > ε2 > · · · > 0 (or finite sequence) and an increasing sequence of finite

subsets X1 ⊆ X2 ⊆ · · · of the selfadjoint contractions in C are given.
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To explain in more detail the proposed induction procedure that is indicated

by the above observations, we rename above considered b, f ∈ B, X ⊆ C, ε > 0,

and the from them defined d ∈ B, m < n ∈ N by b1, f1, X1, ε1, d1, m1 + 2 < n1.

The f1, i.e., in the above side condition involving f , was an “additional” infor-

mation, e.g. we can put f1 := f := 0 for n := 1. In the induction step (from k− 1

to k) it will be defined below more generally by

fk :=
(k−1∑
j=1

(hnj (1− hmj )dj)(hnj (1− hmj )dj)∗
)1/2

. (4.9)

Let X1 ⊆ X2 ⊂ C finite sets of contractions, b2 ∈ B an arbitrary element and

ε2 ∈ (0, ε1) given. Take from the former step d1 and n1 > m1 + 2 in N. Define

f2 :=
(
hn1

(1− hm1
)d1d

∗
1(1− hm1

)hn1

)1/2
and find m2 > n1 + 2 such that

‖hm2
xf2 − xf2‖ < ε2/2

for all x ∈ X2. Notice that automatically hm2f2 = f2 because hm2hn1 = hn1 .

We find d2 ∈ B with ‖d2‖ ≤ ‖b2‖ such that, for x ∈ X2,

‖ d∗2(1− hm2)x(1− hm2)d2 − b∗2T (x)b2 ‖ < ε2 .

Let δ2 := ε2/(2 + 2‖b2‖) . After we have selected d2 we apply the above considera-

tion and find a suitable number n2 > m2 + 1 such that, for x ∈ X2,

‖hn2(1− hm2)d2 − (1− hm2)d2 ‖ < δ2 and ‖hn2xf2 − xf2 ‖ < δ2 .

From now on we use the new notation h[m,n] := hn(1 − hm) = hn − hm for

m < n that avoids iterated indices and seems to be more transparent ( 11 ). The

h[n,m] are positive contractions that satisfy the identities h[`, p]αh[m,n] = h[m,n] ,

h[m,n]h[p, q] = 0 , and h[m,n] + h[n, p] = h[m, p] for α ∈ (0, 1] and `,m, n, p ∈ N
with ` < m < n < p < q. Then we get for x ∈ X2 and h[m2, n2] = hn2

(1 − hm2
)

that

‖ (h[m2, n2]d2)∗x(h[m2, n2]d2) − b∗2T (x)b2 ‖ < ε2 ,

(h[m2, n2]d2)∗(h[m1, n1]d1) = 0 by m2 > n1, and

‖ (h[m2, n2]d2)∗xf2 ‖ < ε2 .

If we repeat this arguments for given contractions b1, b2, . . . , bk, . . . ∈ B, selfadjoint

contractions c1 := 1, c2 = h, c3, . . . , ck, . . . ∈ C+ and a given decreasing zero se-

quence ε1 > ε2 > · · · > 0, then we obtain by the above described method for

each k ∈ N and Xk := {c1, . . . , ck}, suitable positive integers with `1 := 1,

`k < mk < nk < `k+1 (with `1 := 1 and element dk ∈ B with ‖dk‖ ≤ ‖bk‖
that satisfy the general Inequalities:

‖ (h[mk, nk]dk)∗x(h[mk, nk]dk) − b∗kT (x)bk ‖ < εk for all x ∈ Xk . (4.10)

and ‖(h[mk, nk]dk)∗x(h[mj−1, nj−1]dj−1)‖ < εk for x ∈ Xk and 1 ≤ j < k.

11 Observe here and in some later proofs that the expressions [m,n] denote pairs of indices

and not any sort of commutators!
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What happens with j = k−1 ??? Perhaps we have to replace in Equation (4.10)

(h[mk, nk]dk)∗x(h[mk, nk]dk)− b∗kT (x)bk simply by (h[mk, nk]dk)∗x(h[mj , nj ]dj)−
δjk · b∗kT (x)bk for 1 ≤ j ≤ k

The latter inequalities follow from ‖ (h[mk, nk]dk)∗ x fn ‖ < εk for fn as de-

fined in Equation (4.9). We have automatically (h[mk, nk]dk)∗(h[mj , nj ]dj) = 0 for

j = 1, . . . , k − 1 by h[mk, nk]h[mj , nj ] = 0 for j < k. This can be sees also from

the equations h[mk, nk]h[`k, `k+1] = h[mk, nk], for the suitable chosen sequence

1 := `0 < `1 < `2 < . . . in N with `k < mk < nk < `k+1. Such a sequence exists

because we have chosen mk+1 > 1 + nk.

In particular, for a given finite set X ⊆ C of selfadjoint contractions in C, and

given elements b1, b2, . . . , bk ∈ B and ε > 0, we find elements d1, . . . , dk ∈ B with

‖dj‖ ≤ ‖bj‖ that satisfy

‖d∗i xdj − δi,jb∗i T (x)bj‖ < ε

for 1 ≤ i, j ≤ k and x ∈ X, i.e., we get the following observation:

Observation (1):

Given contractions b1, . . . , bn and X ⊂ C a finite subset of the selfadjoint contrac-

tions, then, for every ε > 0, there exists contractions d1, . . . , dn ∈ B such that

d∗jdk = 0 for j < k and

‖ d∗jxdk − δj,kb
∗
kT (x)bk ‖ < ε/n2 for k, j = 1, . . . , n, and x ∈ X . (4.11)

The Inequality (4.11) implies the approximate 1-step innerness of the c.p. map∑n
k=1 b

∗
kT (·)bk := NAME? S ???????? with respect to the strict topology onM(B),

i.e., the element d := d1 + d2 + · · ·+ dn ∈ B and all x ∈ X satisfy the Inequality

‖ d∗xd −
n∑
k=1

b∗k T (x) bk ‖ < ε . (4.12)

Proof of Part(i):

We are going to choose the following objects µ, Xn, fk and Sn to make the

rest of the proof transparent and almost “constructive” – in a certain sense:

(A) A bijection µ form N× N onto N such that

µ((k, 1)) = minµ({k} × N) < µ((n, 1))

for k < n in N . It can be used to define a (disjoint) decomposition
⋃
kMk of N

given by bijective and order preserving maps νk : N → N with k ≤ νk(1) < νn(1)

for k < n in N. Here Mk = νk(N) = µ({k} × N). We have ν1(n) = n for all

n < ν2(1) = minM2, ν1(n) > n for n ≥ ν2(1), and νk(1) > k for all k > 1. It

follows that νk(n) ≥ k + n for k > 1, n ∈ N and ν1(n) ≥ n+ 1 for n ∈ N.

(B) Filtration Xn of C and quasi-central approximate unit (en) for V (Xn)

defined from strictly positive contraction e ∈ B+.
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(C) By induction:

Find solutions mk, nk, dk, and the such defined elements h[mk, nk]dk =: gk of

(4.10) for bk := e
1/2
k , with εk := 4−n and from them fk defined by Equation (4.9).

(D) The Sn are then (suitable) Γ-sums for the in (A) defined maps νn : N→ N,

Sn := Γn( gνk(1) , gνk(2) , . . .) ,

with Γn(·) defined by the x(n) and y(n) as where xn and yn have the components

components ?????????????

We use the above considerations concerning the inductive solutions of the In-

equalities (4.10) and Part (3) of Remarks 5.1.1 to define a filtration of C given by

linear spans Ln := span(Xn) with Xn := {c1, . . . , ckn}, defined from a sequence of

selfadjoint contractions c1, c2, . . . ∈ C that is dense in the unit ball of the self-adjoint

part Cs.a. of C.

Let e ∈ B+ a strictly positive contraction. We find a sequence of functions

fn ∈ C0((0, 1])+ such that en := fn(e) build an approximate unit of B that is

quasi-central with respect to finite subsets Xn ∪ T (Xn) of M(B). See Part (3)

of Remarks 5.1.1 for more details. We take the there defined adjustment of the

sequence en, – in particular in relation to T (Xn) – such that, for each (contraction)

x ∈ Xn and m > n,

‖ [en, T (x)] ‖ + ‖[(em − en)1/2, T (x)] ‖ < 4−n .

It follows for infinite subsets M1,M2 ⊆ N with minM1 < minM2 and order pre-

serving bijective maps λj from N onto Mj , λj : N→Mj , that

NEXT give good estimate:

‖Γj,k(T (x), T (x), . . .)− δj,kT (x)‖ ≤?????

and Γj,k(T (x), T (x), . . .) − δj,kT (x) ∈ B for x ∈ Xn and j, k ∈ {1, 2}. Here

Γj,k(a1, a2, . . .) for j, k ∈ {1, 2} is defined as in Remark 5.1.1(2) with y1 := e
1/2
λj(1),

yn+1 := (eλj (n+1)−eλj (n))1/2 x1 := e
1/2
λk(1), and xn+1 := (eλk(n+1)−eλk(n))1/2.

We define by induction successive elements

g1 := h[m1, n1]d1 , g2 := h[m2, n2]d2 , . . . ∈ B

and a sequence p1 < p2 < . . . in N with pk + 1 < mk, mk + 1 < nk, nk + 1 < pk

such that

‖g∗kxg` − δk,`e
1/2
k T (x)e

1/2
k ‖ ≤???

for x ∈ Xk, ` ≤ k, and that pk????gk = gk.

Let M ⊆ N an infinite subset, and let λ : N → M the unique bijective order-

preserving map from N onto M , as described in Part (i,A).

allow to make the following observations (?0.1) - (?0.4):

????

such that corresponding ϕkn(h)(1− ϕ`n(h))dn
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with nk > 2 +mk, next mk+1 > 2 + n+ k ????

can be used in place of dn for

‖d∗mxdn − δn,mgn(e)T (x)gn(e)‖ < 2−maxm,n‖x‖ .

NEXT:

The sequences (ϕn) and h1, h2, . . . can be defined by Equation (??).

(1.) h1, h2, . . . ∈ C∗(h)+ ⊆ C.

“ suitably ” (TO BE MADE PRECISE!!)

positive contractions with hn+1hn = hn, hn → 1M(B) strictly, using that hB

is dense in B by condition (α).

Define a nice sequence of ϕn.

Such that h[mk, nk]dk with nk > 2 +mk, next mk+1 > 2 + n+ k

can be used in place of dn for

‖d∗nxdn − gn(e)T (x)gn(e)‖ < 2−n‖x‖

(2.) fn ∈ C∗(e)+ ⊆ B for a strictly positive contraction e ∈ B+ with fn+1fn =

fn and limn ‖e− fne‖ = 0.

Since A := C∗(e, C, T (C)) is a separable C *-subalgebra of M(B) we find for

every linear filtration of A by finite-dimensional linear subspaces K1 ⊆ K2 ⊆ . . . of

A with
⋃
nKn dense in the rational convex hull of {f1, f2, . . .} an approximate unit

e1, e2, . . . with en+1en = en and ‖[en, y]‖ ≤ 4−n‖y‖ for y ∈ Kn. Compare Remark

5.1.1(3,4).

We can manage that Kn contains Ln ∪ T (Ln) from a before defined linear

filtration L1 ⊆ L2 ⊆ . . . of C, given by Ln := span(Xn), Xn := { c1, c2, . . . , cn } .

Thus, can find an approximate unit e1, e2, . . ., with ‖ [(en+1 − en)1/2, c] ‖ ≤
3(2−n)

√
2 ‖c‖

Compare next with above given definition of h[m,n]

without taking roots!

We define

h[j, k] := (hk − hj) = (hk(1− hj))

for k > j. Notice that h[j + 1, k − 1](hk − hj) = hk − hj and h[j1, k1]h[j2, k2] = 0

if k1 < j2.

Find d1, d2, . . . ∈ B and m1 < n1 < m2 < n2 < · · · in N with the properties:

(1.) mk+1 > nk + 3

(2.) ‖dn‖ ≤ 1,

‖d∗ncdn − en+1T (c)en+1‖ ≤ 8−n‖c‖

for all c ∈ Ln, en, en+1 well-commute with c ∈ Ln and with T ( c ) if c ∈ Ln.

(3.) dk = (hnk − hmk)dk, in particular d∗kd` = 0 for ` 6= k.

(4.) ‖(hnk+1
− hmk+1

)c dk‖ ≤ 8−n‖ c ‖ for all c ∈ Ln.
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(5.) In particular ???, ‖c dk − hmk+1
c dk‖ <?????.

That is not clear !!!

(6.) The contractions Sn should be defined as some Sn = Sµ,ν , where

Sµ,ν :=
∑
`

dν(`)(eµ(`+1) − eµ(`))
1/2

for suitable injective maps ν : N→ N and µ : N→ N.

(6.0) We take a bijective map λ : N→ N×N such that λ−1(n, 1) < λ−1(n+1, 1)

and λ−1(n, 1) = minλ−1({n} × N) for all n ∈ N. E.g. take λ defined by the order

on N × N given by (1, 1) < (1, 2) < (2, 1) < (1, 3) < (2, 2) < (3, 1) < (1, 4) < . . .,

which comes from γ : (m,n) → k := m + n − 1 ∈ N, γ−1(k) lexicographic ordered

as e.g. γ−1(1) = {(1, 1)}, γ−1(2) = {(1, 2) < (2, 1)}, and so on. Then λ defines a

decomposition of N into countably many pairwise disjoint infinite subsets Mn :=

λ−1({n} × N), such that kn := minMn satisfies kn < kn+1.

The natural maps order preserving bijections µn : N → Mn satisfy µ1(k) = k

for k = 1, . . . , µ2(1)− 1 and µn(k) > k for all other pairs (n, k) ∈ N× N.

find more flexible formulation by working with finite subsets!

??

For each `,m, n ∈ N, each finite-dimensional linear subspace ??? L ⊆ C ??? of

C, contractions bk ∈ B, γk ∈ (0, 1), k = 1, . . . , ` there exist ???? L ⊆ C ????

(i) numbers m(j, k), and n(j, k), j = 1, . . . ,m, with n+2 < m(j, k), m(j, k)+

2 < n(j, k), n(j, k) + 2 < m(j + 1, k), n(m, k) + 2 < m(1, k + 1).

(ii) Contractions dj,k ∈ B , j = 1, . . . ,m; k = 1, . . . , `, with

‖d∗i,kxdj,k − b∗kxbk‖ < γk , and ‖d∗j,kxdi,k′‖ < γmin(k′,k) .

(iii) a number ν ∈ N depending on dj,k ∈ B, j = 1, . . . ,m, k = 1, . . . , `,

numbers n < n1 < n2 <???

Let b1, b2, . . . ∈ B, γ1, γ2, . . . ∈ (0, 1) finite or infinite sequence,

?????

Consider the functions

ϕn(ξ) := min
(
1,max(0, 2nξ − 1)

)
= (2nξ − 1)+ − (2nξ − 2)+ ,

and let hn := ϕn(h) for n = 1, 2, . . ..

The elements hn ∈ M(B)+ are positive contractions with hmhn = hm for

n > m and ‖hnh − h‖ ≤ 21−n. Since h1/k converges strictly to 1 in M(B) by

(β), the sequence h1, h2, . . . tends to 1 unconditional strictly in M(B), because

‖(1− hn)h1/k‖ ≤ 2(1−n)/k.

We define rational numbers γk > 0, k = 1, 2, . . . , n and select by induction ele-

ments f1, f2, . . . , fn−1 and g1, g2, . . . , gn from the above defined increasing sequence

S := {h1, h2, . . .} ⊂ C∗(h)+ ⊂ M(B) , and choose simultaneously contractions

d1, . . . , dn ∈ B such that they fulfill together following equations and inequalities,

where we let g1 := h1 at the first step:
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(1.1) Find contractions dk ∈ B that fulfill inequality (4.13) for the given bk,

x ∈ X and given gk ∈ S := {h1, h2, . . .}:

‖ d∗k(1− gk)x(1− gk)dk − b∗kT (x)bk ‖ < γk. (4.13)

(1.2) Find fk ∈ S with fkgk = gk, ‖(1 − fk)dk‖ < γk and ‖(1 − fk)xdk‖ < γk

for x ∈ X, where gk, dk, X are given.

(1.3) Take gk+1 ∈ S with gk+1fk = fk for given fk ∈ S (if k < n).

We have seen above the possibility to find the contraction dk ∈ B (for given X, γk,

bk and gk) that satisfies the inequality (4.13). The existence of fk and gk+1 follow

immediately from the properties of the sequence S.

We apply the conditions on the inductively selected bk, gk and fk to find an

estimate:

Conditions (1.3) and (1.2) on gk and fk imply that gk+1 ≥ fk ≥ gk, and by

induction that g` ≥ fk and (1− g`)(1− fk) = (1− g`) for all ` > k. The elements

d` and (1− gk) are contractions by condition (1.2), and we get from condition (1.2)

that

‖d∗` (1− g`)x(1− gk)dk‖ ≤ ‖(1− fk)x(1− gk)dk‖ < γ .

If we combine this with Inequalities (4.13) and (4.18) we get that the element

D := (1− g1)d1 + . . .+ (1− gn)dn ∈ B satisfies

‖D∗xD − V (x)‖ < ε for all x ∈ X ,

because

‖D∗xD −
∑
k

b∗kV (x)bk‖ < n2δ = ε/2

by ‖d∗` (1− g`)x(1− gk)dk‖ < δ for k 6= `, and by the Inequalities (4.13).

Hence, V := δ∞ ◦ T : C →M(B) satisfies also condition (β).

Notice that δ∞ ◦ V = δ2
∞ ◦ T is unitarily equivalent to V by a unitary in

u ∈ M(B) by Lemma 5.1.2(i), and that T = s∗kV (·)sk for each k ∈ N if δ∞(b) =∑
k skbs

∗
k.

Next assumption necessary?

It becomes relevant in Part (ii), where B is stable,

And not here!!!

We suppose from now on that T is unitary equivalent to δ∞ ◦ T . ????

Begin of a bit revised old text:

It seems better to define first the needed universal sequences of ek ∈ B and

dk ∈ B with the “good” properties with respect to a given filtration Ln of C. And

then select the corresponding hn(k) − hm(k).

Then define S and more general Sn only with help of this sequences!

We define below a contraction S ∈ M(B) with the property S∗cS − T (c) ∈ B
for all c ∈ C.
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The element S is defined as the sum of an unconditional strictly convergent

series by

S :=
∑
n

(fn+1 − fn)1/2dn(en+1 − en)1/2

where the fn = hkn ∈ S := {h1, h2, . . .} have to be suitably chosen, and

{e1, e2, . . .} ⊂ B+ is an approximate unit of B that is quasi-central with respect

of the C *-subalgebra A := C∗(e, C, T (C)) ⊆ M(B) build from a strictly positive

contraction e ∈ B+ of B and contractions dn ∈ B. They are “suitably chosen” in

the sense that the series S converges strictly and unconditional to a contraction in

B, ‖S‖ ≤ 1, and

??????∑
m,n

‖d∗n(fn+1 − fn)1/2c(fm+1 − fm)1/2dm − δn,men+2fn+2cfn+2en+2‖ < ∞ .

By assumption, B is σ-unital, i.e., there exists a strictly positive element e ∈ B+

with ‖e‖ = 1.

Steps:

Choose:

(0) strictly positive contraction e ∈ B+, ‖e‖ = 1.

(1) linear filtration of C∗(e, C, T (C)) by taking a sequence in the unit ball of

C∗(e, C, T (C))+ that contains a sub-sequence c1, c2, . . . that is dense in the positive

part of the unit ball of C (notation: C≤1
+ ???)

the positive rational convex combinations of the ϕn(e),

S := {h1, h2, . . .}, ϕn(hk),

and with ????

defining a filtration Y1 ⊂ Y2 ⊂ . . . of A := C∗(e, C, T (C)) such that

Yn contains e, Xn := {h, hn, c1, . . . , cn}, T (Xn) and y1, . . . , yn of a dense se-

quence in the positive parts C≤1
+ and A≤1

+ of the unit balls of C+ and of A+.

The strict convergence of S := {h1, h2, . . .} to 1M(B) implies that we can

find for each linear subspace Y ⊆ B of finite dimension and ε > 0 a number

m := m(Y, ε) ∈ N such that ‖(1− hm)y‖+ ‖y(1− hm)‖ < ε‖y‖ for all y ∈ Y .

A reformulation of conditions (α) and (β) together says:

Let L ⊂ C a finite-dimensional subspace of C, m ∈ N, a ∈ B a positive

contraction and ε > 0 then there exists d := d(L, ε) ∈ B with ‖d‖ ≤ 1 and

‖d∗(1− hm)c(1− hm)d− aT (c)a‖ ≤ ε‖c‖ ∀ c ∈ L .

And, given any d ∈ B and m ∈ N, γ > 0 we find n ∈ N with n > m+ 1 such that

‖(1− hn)d‖ < γ, ‖(1− hn)cd‖ < γ and ‖(1− hn)c(1− hm)d‖ < γ for all c ∈ L.

We take a dense sequence in the positive contractions c1, c2, . . . ∈ C+ and

denote by Ln the linear span of {h, hn+2, c1, . . . , cn}.
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Find positive e1, e2, . . . ∈ C∗(e)+ ⊂ B+ with enem = emin(m,n) and

‖[en, T (x)]‖ < 4−(n+1) for x ∈ Ln, ‖x‖ ≤ 1.

Then ‖[e1/2
n , T (x)]‖ < 2−n for x ∈ Ln, ‖x‖ ≤ 1, ‖[(en−em), T (x)]‖ < 4−(n+1) +

4−(m+1) and ‖[(en − em)−1/2, T (x)]‖ < 2−min(n,m) for x ∈ Ln, ‖x‖ ≤ 1.

The positive contractions en := ϕn(e) ∈ B with above ???

???? the above defined functions ϕn satisfy ???e′ne
′
m = e′m for m < n build an

approximate unit of B, i.e., the sequence (??e′1, ??e′2, . . .) converges unconditional

strictly to 1 in M(B).

If we build elements en (n = 1, 2, . . .) by convex combinations of e′kn , . . . , e
′
ln

with kn < ln < kn+1 then again enem = em for m < n and lim enb = b for all

b ∈ B.

By Remark 5.1.1(3)

– applied

to the ??? of the separable C *-subalgebra A := C∗(T (C) ∪ C ∪ {1}) ⊃ C of

M(B), and to a dense sub-sequence y1, y2, . . . of the positive contractions in A –

Let x1, x2, . . . a dense sequence in the positive contractions of C.

Let Ln and Kn the linear span of Xn := {h, hn, x1, . . . , xn} ⊂ C respectively

of Xn ∪ T (Xn) ∪ {y1, . . . , yn}. Thus Ln ∪ T (Ln) ⊆ Kn.

By Remarks ??(??,???) we can find positive contractions e1, . . . , en, . . . ∈
C0(e)+ that satisfy enem = emin(m,n), limn en = 1M(B) and that the commuta-

tors [en, x] = enx − xen for x ∈ Kn satisfy ‖[en, x]‖ ≤ 8−n‖x‖ ?????? [en, x] and

[en, (1− x2)1/2] for each x ∈ Kn

have norms

max{ ‖[en, x]‖ , ‖[en, (1− x2)1/2]‖ } < 8−2n for all x ∈ Kn , ‖x‖ ≤ 1 .

Convergence proof needs explicit dependence !!

By Lemma 5.3.2 we get the desired estimates of [e
1/2
n , x], [(1 − en)1/2, x] and

[(en+k − en)1/2, x].

If 1 ≤ k1 < k2 < . . . is any sequence Σ ⊆ N, and c ∈ C, then, – with ek0
:= 0

–, the series

TΣ(c) :=

∞∑
k=0

(ekn+1
− ekn)1/2T (c)(ekn+1

− ekn)1/2

is unconditional strictly convergent in M(B) for each c ∈ C, and its “sum” c 7→
TΣ(c) defines a c.p. contraction TΣ : C →M(B) with the property TΣ(c)−T (c) ∈ B
for all c ∈ C

...?

Moreover ‖TΣ(c)− T (c)‖ ≤??????? for c ∈ Ln.

Indeed, let yn := xn := (ekn+1
− ekn)1/2 in Remark 5.1.1(2), then

∑
n x

2
n =

1 =
∑
y2
n, the there defined map Γ corresponding to
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??? Y := X := [x1, x2, . . .] ??? look this up in 5.1.1(2) ???

is a strictly continuous unital c.p. map from `∞(M(B)) = M(c0(B)) into

M(B) and TΣ(c) = Γ(T (c), T (c), . . .) for c ∈ C defines a c.p. contraction from C

into M(B) .

If ?????? ???????

Again by functional calculus – this time applied to the element h in condition

(α), we find a sequence of contractions h′1, h
′
2, . . . ∈ C∗(h)+ ⊆ C+ such that h′nh

′
m =

h′m for m < n and ‖(1 − h′n)en‖ < 8−n. Thus ‖h′nb − b‖ → 0 if n → ∞ for each

b ∈ B.

Why not hn (or gn, fn) in place of h′n?

If we use that T is positive, h ≥ 0 and T (h) = 0 by assumption (α), we get

T (h′n) = 0, T (c h′n) = 0, T (h′n c) = 0 and

T (c) = T ((1− h′n)c(1− h′n)), ∀ c ∈ C , ∀n ∈ N .

Combining this with condition (β) we get the existence of contractions gn,k ∈ B
(k, n ∈ N) that satisfy, for c ∈ Ln,

‖ (gn,k)∗(1− (h′k)2)1/2c(1− (h′k)2)1/2gn,k − en+3T (c)en+3 ‖ ≤ 8−n−k ‖c‖ . (4.14)

We define the desired contractions Sn,p as the sum of strictly converging series

of the kind

(h′`(n) − h
′
m(n))g2n,m(n)e

1/2
n +

∑
k>n

(h′`(k) − h
′
m(k))g2k,m(k)(ek − ek−1)1/2 ,

where m(k) < `(k) < m(k+ 1) < `(k+ 1) with choice depending from p ∈ N. Huge

gaps between `(k) and m(k + 1) can be used to make the Sn,p orthogonal modulo

B, i.e., S∗n,pSn,q ∈ B and even such that S∗n,pcSn,q ⊂ B for c ∈ C and

lim
n→∞

‖S∗n,pcSn,q − δp,qT (c)‖ = 0 .

More precisely, we select inductively a subsequence hn := h′k(n) and finite

subsequences hn,m := h′`(n,m), m = 1, . . . , n, from the above selected sequence

h′1, h
′
2, . . . with following properties :

(1) k(0) = 1,

(2) k(n) < `(n,m) < `(n,m+ 1) ≤ k(n+ 1) for m = 1, 2, . . . , n− 1.

(3) ‖(1− h′`(n,m+1))gn,`(n,m)‖ < 8−n,

(4) ‖(1− h′k(n+1))gn,k(n)‖ < 8−n,

(5) ‖(1− h′k(n+1))c(1− h
′
k(n))gn,k(n)‖ < 8−n and

‖(1 − hn+1)c(hj+1 − hj)gj,k(j)‖ < 8−n for c ∈ Xn+1, j = 1, . . . , n − 1,

n = 1, 2, . . ., and

(6) (h`(n,m+1) − h`(n,m))(hn+1 − hn) = h`(n,m+1) − h`(n,m) , and then

(h`(n1,m+1) − h`(n1,m))(h`(n2,m+3) − h`(n2,m+2)) = 0
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Notice that (1−hk)(1−hn) = 1−hn for k < n, and (hk+1−hk)(hn+1−hn) = 0

for k + 1 < n. Let

tn,m := (hn+2,m − hn)gn,k(n)en+2

for all n ∈ N and m ≤ n.

Then the tn,m are contractions with t∗n,mtn,m ≤ e2
n+2, t∗n,m1

tk,m2
= 0 and

‖t∗n,m(2)ctk,m(1)‖ < 8−n+12 for k + 1 < n, c ∈ Xk. We get (hn+2 − hn−1)1/2tn,m =

tn,m for n = 1, 2, . . ., m ≤ n.

It follows

‖t∗k,m(1)ctn,m(2) − δk,nen+2T (c)en+2‖ < 8−n3‖c‖

for c ∈ Ln, because ‖tn,m − (1− hn)gn,k(n)en+2‖ < 8−n.

This follows from the definitions and the inequality ‖(1−hn+2,m)gn,k(n)‖ < 8−n,

because hn+2,m = h′`(n+2,m) and ‖(1− h′`(n+2,m))gn,k(n)‖ < 8−n .

The latter inequality is a consequence of the following properties of h′n and

gn,k(n):

The inequality ‖(1 − h′k(n+1))gn,k(n)‖ < 8−n is property (3) of h′k(n) and gn,k(n),

and that k(n + 1) < k(n + 2) < `(n + 2,m) follows from property (2) of k(n) and

`(n,m). Then 0 ≤ h′nh
′
m = h′m ≤ 1 for m < n by construction of h′n. It follows

that

0 ≤ h′k(n+1) = h′k(n+1)h
′
`(n+2,m) ≤ h

′
`(n+2,m) ≤ 1 ,

It implies (1− h′`(n+2,m))
2 ≤ (1− h′k(n+1))

2 and, therefore

‖(1− h′`(n+2,m))gn,k(n)‖ ≤ ‖(1− h′k(n+1))gn,k(n)‖ < 8−n .

The definition of Sn,p is justified by the unconditional strict convergence of the

sum at the right hand side. The strict convergence can be seen with the argument

mentioned in Remark 5.1.1(2):

We define Sn,p ∈M(B) for n ∈ N and p ≤ n by

Sn,p := t2n,min(p,2n)e
1/2
n +

∑
k>n

t2k,min(p,2k)(ek − ek−1)1/2.

We must show now:

(I) The series ∑
k>n

t2k,min(p,2k)(ek − ek−1)1/2

is unconditional strictly convergent, ....????

(II) limn→∞ ‖Sn,p‖ = 1, and S∗n,pcSn,q − δp,qT (c) ∈ B for all c ∈ C and

n, p, q ∈ N, and

lim
n→∞

‖S∗n,pcSn,q − δp,qT (c)‖ = 0 .

Old version:
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because one can express Sn,p as product RDC of the bounded row matrix

R := [h
1/2
2n+2, (h2(n+1) − h2(n−1))

1/2, (h2(n+2) − h(n+1)−2)1/2, . . .]

the contractive diagonal matrix

D := diag(α1, α2, . . .)

with diagonal entries α1 := t2n,m and α` := t2(`+n),m, and the bounded column

matrix C with transposed row

C> := [e1/2
n , (en+1 − en)1/2, (en+2 − en+1)1/2, . . .] .

Moreover, Remark 5.1.1(2) shows that the Sn,p are contractions.

It is not difficult to see that ?Sk,m−?Sn,m ∈ B and, therefore

?S∗k,mcSk,m−?S∗n,mcSn,m ∈ B

for every c ∈ C.

Now let c ∈ Xm and, for n > m let

am := e1/2
m t∗2mct2me

1/2
m − T (c)em, (4.15)

bn := (en − en−1)1/2t∗2nct2n(en − en−1)1/2 − T (c)(en − en−1), (4.16)

dm,n := (en − en−1)1/2t∗2nct2me
1/2
m + e1/2

m t∗2mct2n(en − en−1)1/2 , (4.17)

and, for i < j,

fi,j := (ej − ej−1)1/2t∗2jct2i(ei − ei−1)1/2 + (ei − ei−1)1/2t∗2ict2j(ej − ej−1)1/2 .

Then from d1/2T (c)d1/2 − T (c)d = (d1/2T (c) − T (c)d1/2)d1/2 we get ‖ak‖ <
8−2m3 + 8−k, ‖bn‖ < 8−2n3 + 8−n, ‖dm,n‖ < 8−2n+12 and ‖fi,j‖ < 8−2j+12 for

m < n, m < i < j.

Since em + (em+1 − em) + . . . = 1 strictly, for c ∈ Xm,

S∗mcSm − T (c) = am +

∞∑
n=m+1

bn +

∞∑
n=m+1

dm,n +
∑

m<i<j

fi,j .

The right hand side are absolutely convergent series in B. The sums of the norms

can be estimated by by 8−m4.

It follows that ‖S∗k,mcSk,m − T (c)‖ < 2−k and that S∗k,mcSk,m − T (c) ∈ B for

c ∈ Xk. Since S∗kcSk − S∗ncSn ∈ B, we get that S∗n,mcSn,m − T (c) ∈ B for each

n = 1, 2, . . . and every element c of our dense sequence in the unit ball of C.

Thus, S∗n,mcSn,m−T (c) ∈ B and limn ‖S∗n,mcSn,m−T (c)‖ = 0 for every c ∈ C.

Our desire was to deepen the results by proving

orthogonality modulo B for the Sn ...

still to check:

We have S∗n,m1
cSn,m2

∈ B for m1 6= m2 and ‖S∗n,m1
cSn,m2

‖ → 0 for n→∞ if

c ∈ C or c = 1.
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(ii): Recall that B is stable if and only if M(B) contains a sequence of

isometries s1, s2, . . . such that
∑
k sks

∗
k = 1, cf. Remark 5.1.1(8). Then δ∞(b) :=∑

k skbs
∗
k converges unconditional strictly for b ∈ M(B), is a strictly continuous

unital *-endomorphism and δ∞(M(B))′∩M(B) = δ∞(B)′∩M(B) contains a copy

of O2 unitally by Remark 5.1.1(8).

The contractive c.p. map V := δ∞ ◦ T , i.e., V (·) :=
∑
k skT (·)s∗k again satisfies

Conditions (α) and (β):

Clearly V satisfies condition (α), because V (h) = δ∞(T (h)) = 0.

Let X ⊆ C+ a finite subset of the contractions in C+, b ∈ B a contraction and

ε > 0.

There exists q ∈ N with

‖ (1− Pq)b ‖ < ε/4

for the projection Pq :=
∑q
k=1 sks

∗
k, because

∑
k sks

∗
k converges strictly to 1 ∈

M(B).

It implies for x ∈ X and the contractions bk := s∗kb ∈ B that

‖ b∗V (x)b−
q∑

k=1

b∗kT (x)bk ‖ < ε/2 . (4.18)

We have seen at the end of the general observation, cf. Inequality (4.12), that,

for finite X ⊂ C+, b1, . . . , bq ∈ B and ε > 0, there exists an element d ∈ B with

‖d∗xd−
q∑

k=1

b∗kT (x)bk‖ < ε/2

Thus d ∈ B solves the inequalities ‖d∗xd − b∗V (x)b‖ < ε (x ∈ X) for given finite

X ⊆ C+, b ∈ B, ε > 0 and V := δ∞ ◦ T .

This confirms that δ∞ ◦ T satisfies also the Condition (β).

NEXT TO BE SORTED WITH NEW INSIGHT.

By Part (i), there exists a contraction g ∈ M(B) with V (c)− g∗cg ∈ B for all

c ∈ C.

Apply ???? Part (i) to V =: δ∞ ◦T and C. Let g := S1 with S1 as in Part (i).

We use Lemma 5.1.2(v). Let t 7→ S′(t) the map for V = δ∞ ◦ T in Part (v) of

Lemma 5.1.2, and let s1, s2, . . . be the generators of a unital copy of O∞ in M(B)

with
∑
n sns

∗
n = 1 (strictly convergent) such that δ∞ =

∑
n sn( · )s∗n, cf. Remark

5.1.1(8). Then t 7→ S(t) := S′(t)s1 is as desired for T .

Now notice that ?????????? ...

When S(t) is an isometry ? E.g. if S′(t) is a contraction with S′(t)∗S(t) ≥ s1s
∗
1

and s∗1s1 = 1 ??

When absorption happens?

(iii): If 1M(B) ∈ C, then T is unital, because T (C)B is dense in B.
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By Part (ii), V := δ∞ ◦ T satisfies (α) and (β). Moreover V (C)′ ∩M(B) ⊂
δ∞(M(B))′ ∩M(B) contains a copy of O2 unitally.

By Part (i), there exists a contraction g ∈ M(B) with V (c)− g∗cg ∈ B for all

c ∈ C. The existence of U(t) now follows from Lemma 5.1.2(vi).

If 1M(B) is not in C, then let C̃ := C + C1M(B) and T̃ (c + z1) := T (c) + z1

for c ∈ C and z ∈ C.

Then T̃ is a unital C *-morphism, and C̃ and V := δ∞ ◦ T̃ again satisfy (α)

and (β) (in place of C and T there).

Indeed: V (h) = δ∞(T (h)) = 0 gives (α).

We show (β) for the unital C *-morphism V : C̃ →M(B):

It suffices to check the condition (β) for V on sets of the form X ∪{1} and a ∈ B+,

where ‖a‖ ≤ 1 and X is a finite set of contractions in C.

By assumption, T (C)B is dense in B. The set δ∞(B)B is dense in B, because

δ∞ is a unital and strictly continuous endomorphism of M(B). It follows that the

set V (C)B is dense in B, because V (C)δ∞(B)B = δ∞(T (C)B)B.

Let X be a finite subset of the contractions in C, a ∈ B+ a contraction and

ε > 0.

There exists a contraction

e was used as strictly positive in B

e ∈ C+ with ‖V (e)a − a‖ < ε/4 and ‖ece − c‖ < ε/4 for c ∈ X, because V is

multiplicative and V (C)B is dense in B.

(β) of V was shown above from (β) of T

By assumption, V |C = δ∞ ◦ T satisfies (β).

Thus, there exists a contraction d1 ∈ B such that ‖d∗1xd1 − aV (x)a‖ < ε/2 for

x ∈ eXe ∪ {e2}, cf. proof of part (i).

Let d := ed1 ∈ B. Then ‖d∗cd− aV (c)a‖ < ε for c ∈ X ∪ {1}.

(iv): See the argument at the end of the proof of Part (v) of Lemma 5.1.2. �

What are (α) and (β) in case T := 0 or

if T (c) := ρ(c) · 1 for a (pure) state ρ on C with ρ(C ∩B) = {0} ?

Remark 5.4.2. Desirable !!! is the following version for countably generated

Hilbert D-modules and with a finite group action:

Let G a finite group, D a σ-unital C *-algebra with a G-action τD : G →
Aut(D), E a countably generated right Hilbert D-module with an isometric G-

action τE : G→ Iso(E) into the linear isometries on E that is compatible with τD

in the sense that, for e ∈ E, g ∈ G, ??? and

τE(g)(e) · τD(g)(d) = τE(g)(e · d)
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Now let C a separable C *-algebra with a G-action τC : G → Aut(C), and

suppose that Hk : C → L(E), k ∈ {1, 2}, are G-equivariant C *-morphisms.

If they are both in general position, and generate the same m.o.c cone, then

they should be unitarily homotopic ??

Corollary 5.4.3. Suppose that B is σ-unital and stable, A is separable, and

that H1, H2 : A→M(B) are C*-morphisms, such that δ∞ ◦Hk are non-degenerate

for k ∈ {1, 2}.

Then δ∞ ◦ H1 and δ∞ ◦ H2 are unitarily homotopic, if and only if, for every

contraction b ∈ B, Hj dominates weakly approximately inner the c.p. map b∗Hk(·)b
for j, k ∈ {1, 2} in sense of Definition 3.10.1.

I.e., δ∞ ◦H1 and δ∞ ◦H2 are unitarily homotopic if, and only if, the (point-

norm closed) m.o.c. cones C(H1) and C(H2) in CP(A,B) corresponding to H1 and

H2 are identical.

Recall here that, by definition, the m.o.c. cone C(Hk) ⊆ CP(A,B) is generated

by {b∗Hk(·)b ; b ∈ B} and is point-norm closed.

We can weaken the requirement of non-degeneracy of δ∞ ◦ Hk by supposing

only that δ∞ ◦Hk is unitarily homotopic to a non-degenerate C *-morphism from

A into M(B). Notice that this is a property of δ∞ ◦Hk that is not the same as as

the property that δ∞ ◦Hk non-degenerate.

Proof. The condition implies that H1 and H2 have the same kernel. Thus,

w.l.o.g. we can assume that H1 and H2 are faithful.

Let e ∈ B+ a strictly positive element of B, Fj := δ∞(Hj(A)) and Cj :=

C∗(Fj , e) for j = 1, 2. Since Fj ∩B = {0}, there is a unique C *-morphism Tj from

Cj onto Fi (for i 6= j ∈ {1, 2}) with Tj(e) = 0 and Tj(δ∞(Hj(a))) = δ∞(Hi(a)) for

a ∈ A.

The C *-morphism δ∞ ◦Tj is unitarily equivalent to Tj , because δ2
∞ is unitarily

equivalent to δ∞ by Lemma 5.1.2(i) and Hj is uniquely defined up to unitary

equivalence.

Cj and Tj satisfy assumption (α) of Proposition 5.4.1 with h := e.

We show that (Cj , Tj) satisfies also condition 5.4.1(β):

Let s1, s2, . . . a sequence of isometries in M(B) such that
∑
n sn(sn)∗ strictly con-

verges to 1M(B), and let a ∈ B+, X a finite subset of Cj and ε > 0 given. Then there

are finite subsets Y ⊆ A+ and Z ⊆ B such that X is a subset of {δ∞(Hj(y))+z : y ∈
Y, z ∈ Z}. Our assumptions imply that there are b1, . . . , bn ∈ B such that

‖a(δ∞)2(Hi(y))a−
∑

1≤k≤n

b∗kHj(y)bk‖ < ε/2 .

Since
∑
n sn(sn)∗ strictly converges to 1M(B), there is m ∈ N such that ‖d∗zd‖ <

ε/2 for z ∈ Z and d := sm+1b1 + . . . + sm+nbn. Thus ‖aVj(x)a − d∗xd‖ < ε for

x = δ∞(Hj(y)) + z in X.
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By assumption, Tj(Cj)B = δ∞(Hi(A))B is dense in B. Thus Proposition

5.4.1(iii) applies to (Cj , Tj) and yields that H1, H1 ⊕ H2 and H2 are mutually

unitarily homotopic. �

Corollary 5.4.4. Suppose that B is σ-unital and stable, A is separable, and

that S is a countably generated matrix operator-convex cone of completely positive

maps V from A into B (cf. Definition 3.2.2), such that S is non-degenerate in the

following sense: For every b ∈ B+ and ε > 0, there exists a ∈ A+ and V ∈ S such

that (b− ε)+ is in the closed ideal of B that is generated by V (a).

Then there is a non-degenerate C*-morphism H0 : A → M(B) with following

properties (i)–(iii):

(i) H0 is unitary equivalent to δ∞ ◦H0 by a unitary in M(B).

(ii) For every V ∈ S there exists a sequence b1, b2, . . . ∈ B such that, for every

a ∈ A,

lim
n→∞

b∗nH0(a)bn = V (a) .

(iii) For every b ∈ B there exists a sequence V1, V2, . . . ∈ S such that, for every

a ∈ A,

lim
n→∞

Vn(a) = b∗H0(a)b .

H0 is determined by (i)–(iii) up to unitary homotopy (cf. Definition 5.0.1).

H0 is injective, if and only if, S is separating for A, i.e., for every non-zero

positive a ∈ A+ \ {0}, there is V ∈ S with V (a) 6= 0 .

The example with B := A := O2 ⊗ K, S = CP(A,B), H0(a) := a shows that

H0 is not determined by (ii) and (iii) of Corollary 5.4.4 alone.

Proof. The uniqueness up to unitary homotopy follows from Corollary 5.4.3.

Let a ∈ A+. By (ii) and (iii), H0(a) = 0 if and only if V (a) = 0 for every

V ∈ S. In particular, H0 is a monomorphism if and only if a ∈ A+ and V (a) = 0

for all V ∈ S imply a = 0.

By assumption there exists a countable sequence V1, V2, . . . ∈ S such that S is

contained in the point-norm closure of the matrix operator-convex cone generated

by {V1, V2, . . .}. We can suppose that every Vn appears infinitely times in this

sequence.

Kasparov–Stinespring dilations lead to Hilbert B-modules Hn and and C *-

morphisms Dn : A → L(Hn) such that for b ∈ B and c ∈ A there is x ∈ Hn with

〈x,Dn(a)x〉 = b∗Vn(c∗ac)b for a ∈ A, and that a ∈ A 7→ 〈y,Dn(a)y〉 ∈ B is in the

point-norm closure of the matrix operator-convex cone generated by Vn. (Recall

here that Hn is a completion of a quotient of the algebraic tensor product A� B,

and that the B-valued Hermitian form is given there by

〈x, y〉 :=
∑
j,k

b∗jV (a∗jck)dk
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for representatives
∑
j aj ⊗ bj of x and

∑
k ck ⊗ dk of y. We take it anti-linear in

the first variable.)

Let H := H1 ⊕H2 ⊕ . . . and D : A→ L(H) denote the Hilbert B-module sum,

respectively of the corresponding `∞-sum of the C *-morphisms Dn.

Since every completely positive map Vn appears infinitely often in our sequence

(V1, V2, . . .), the maps Wy : a ∈ A 7→ 〈y,D(a)y〉 ∈ B for y ∈ H build a convex cone

S0 of completely positive maps from A into B, which is then automatically matrix

operator-convex. The map Wy is in the point-norm closure of S for every y ∈ H,

and every Vn is in the point-norm closure of S0, i.e., S0 and S have the same point-

norm closure in CP(A,B). (Here we use the existence of approximate units in A

and B.)

Since Hn and (therefore) H are countably generated over B and since B is

σ-unital and stable, the Kasparov trivialization theorem leads to the Hilbert B-

module isomorphisms H⊕HB ∼= HB ∼= B.

Thus there is a (degenerate) C *-morphism h : A →M(B) that satisfies prop-

erties (ii) and (iii) (with H0 replaced by h).

Let B0 denote the closed span of δ∞(h(A))Bδ∞(h(A)), and let e ∈ B+, f ∈
A+ strictly positive elements. B0 is a stable hereditary C *-subalgebra of B and

δ∞(h(f))eδ∞(h(f)) is a strictly positive element of B0, cf. Lemma 5.1.2(vii). B is

the closure of the linear span of Bh(A)B, because h satisfies property (ii) (with H0

replaced by h). Bh(A)B is contained in the closed span of BB0B.

Thus, by a variant of the stable isomorphism theorem of L.G. Brown [107]

(cf. Corollary 5.5.6) there is an isomorphism ψ from B onto B0 ⊆ B, which is

approximately unitary equivalent to the idB by unitaries in M(B). H(a)b :=

ψ−1(δ∞(h(a))ψ(b)) defines a non-degenerate C *-morphism from A into M(B).

Since ψ is approximately unitary equivalent to idB , we get that that H satisfies

(ii) and (iii). Thus H0 := δ∞ ◦H satisfies (i)–(iii) by Lemma 5.1.2(i). �

Remark 5.4.5. A “converse” of Corollary 5.4.4 holds obviously if A is sepa-

rable and B is σ-unital:

For every non-degenerate C *-morphism h : A→M(B), the set Sh of maps

Vh,b : a ∈ A 7→ b∗δ∞(h(a))b ∈ B

is a singly generated matrix operator-convex cone of completely positive maps, and

Vh,e is a generator of Sh if e is a strictly positive element of B. The corresponding

H0 is given by H0 := δ∞ ◦ h.

Corollary 5.4.6. Suppose that B is σ-unital and stable, A is separable

and unital, C ⊂ CP(A,B) a countably generated non-degenerate and faithful

point-norm closed operator-convex cone. Let H0 : A → M(B) the non-degenerate

*-monomorphism from A → M(B) as defined in Corollary 5.4.4. Further let

W : A→M(B) be a unital completely positive map with b∗W (·)b ∈ C for all b ∈ B.
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Then H0(1) = 1, and there are isometries S, T ∈ M(B) with SS∗ + TT ∗ = 1 and

W (a)− S∗H0(a)S ∈ B for all a ∈ A.

Proof. Since A is unital and H0 is non-degenerate, we get H0(1) = 1. Prop-

erty (i) in Corollary 5.4.4 implies H0(A) ∩B = {0}.

Let e ∈ B+ a strictly positive contraction, and let C := C∗(e,H0(A)) ⊂M(B).

Then C/(C ∩ B) ∼= H0(A). Thus, there is a unique *-morphism ψ : C → A with

ψ(e) = 0 and ψ ◦H0 = idA. Let V (c) := W (ψ(c)) for c ∈ C. Then V is unital and

(C, h := e, V ) satisfy the condition (α) of Proposition 5.4.1.

We have C = (C ∩ B) + H0(A). Let cj = bj + H0(aj) (j = 1, . . . , n) and

ε > 0, δ := ε/3. Since V ◦ H0 = W and since b∗W (·)b ∈ C, there is d1 ∈ B with

‖d∗1H0(aj)d1 −W (aj)‖ < δ for j = 1, . . . , n. By Lemma 5.1.2(iv) there exists

t 7→ S0(t) ∈ δ∞(M(B))′ ∩M(B) ⊂ H0(A)′ ∩M(B)

with limt→∞ bS0(t) = 0 for b ∈ B. There is t ∈ R+ with ‖d∗1S0(t)∗bjS0(t)(t)d1‖ < δ

for j = 1, . . . , n. Thus ‖d∗cjd − W (cj)‖ < ε for j = 1, . . . , n. Hence, for every

b ∈ B, the map c 7→ b∗V (c)b ∈ B is approximately 1-step inner, i.e., condition (β)

of Proposition 5.4.1 is satisfied.

Thus C ⊂ M(B), h := e and V : C → M(B) satisfy the assumptions of

Proposition 5.4.1(i,iv). It gives an isometry S1 ∈M(B) with S∗1H0(a)S1−W (a) ∈
B for all a ∈ A.

By Lemma 5.1.2(iv), there exist isometries s, t ∈ H0(A)′∩M(B) with ss∗+tt∗ =

1. Let S := sS1, then S∗H1(·)S = S∗1H1(·)S1, tt∗ ≤ 1− SS∗ and [1− SS∗] = [1] in

K0(M(B)). By Lemma 4.2.6(ii), there is an isometry T with TT ∗ = 1− SS∗. �

Definition 5.4.7. The quotient Qs(B) :=M(B⊗K)/(B⊗K) is called stable

corona of the C *-algebra B.

If B itself is stable, i.e., B ∼= B ⊗ K, we write instead Q(B) for M(B)/B ∼=
Qs(B). But the notation Q(B) for M(B)/B will also be used if B is non-unital

and not stable, i.e., it does not indicate that B is stable.

In Section 9 we define extension groups (depending on operator-convex cones

C ⊂ CP(A,B)) by

Ext(C ; A,B) := G(πB ◦H0 ; A,Q(B))

where C is separating and satisfies the requirements of Corollary 5.4.4 and H0 : A→
M(B) is as in Corollary 5.4.4. The following Corollary 5.4.9 describes its elements.

Lemma 5.4.8. Let S ⊂ CP(A, J) a point-norm closed operator-convex cone,

T : A → C/J a c.p. contraction, and V : A → C a c.p. lift of T , i.e., πJ ◦ V = T ,

such that c∗V (·)c ∈ S for every c ∈ J .

If A is separable, then there is a c.p. contraction W : A → C in the point-

norm closure of the operator convex hull C(V ) ⊂ CP(A,C) of V in CP(A,C) with

πJ ◦W = T . In particular, c∗V (·)c ∈ S for every c ∈ J .
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If, in addition, A, C and T are unital, and if S is non-degenerate ( 12 ), then

there are a positive contraction e ∈ C+ and χ ∈ S such that such that χ(1) =

1− eV (1)e ∈ J+. Then W = χ(·) + eV (·)e is unital, πJ ◦W = T and c∗W (·)c ∈ S
for all c ∈ C.

Proof. Suppose that A is separable and that e ∈ A+ is a strictly positive

contraction. Let gδ(t) := min(tδ, t−1) for t ∈ (0,∞) and gδ(0) := 0, where δ ∈ (0, 1].

For δ ∈ (0, 1] and a ∈ A+ C · 1 let

Vδ(a) := gδ(V (e2δ)V (eδaeδ)gδ(V (e2δ)) ,

and

Tδ(a) := (T (e2δ)δT (eδaeδ)(T (e2δ))δ ,

Then πJ ◦ Vδ = Tδ, Vδ ∈ C(V ), and ‖Vδ‖ = ‖Vδ(1)‖ ≤ 1, because Vδ(1) = gδ(c)
2c

has norm ≤ 1 for c = V (e2δ) ∈ C+. Let D the hereditary C *-subalgebra of C/J

generated by T (e2), i.e., D is the closure of T (e2)DT (e2). The span of eA+e is

dense in A and 0 ≥ T (eae) ≤ T (e2). Thus T (A) ⊂ D, and T (e2)δ ≤ T (e2δ)δ ∈ D+,

and fδ := T (e2δ)δ is an increasing approximate unit for D+. Since eδaeδ → a if

δ ↘ 0 , it follows, that Tδ(a) → T (a) for a ∈ A if δ ↘ 0 . Hence, T is in the

point-norm closure of the c.p. maps πJ ◦ Vδ where the Vδ ∈ C(V ) are contractions.

The set C(V )1 of contractions in C(V ) is an operator-convex set, in the sense

that a∗V1(·)a+ b∗V2(·)b is a contraction in C(V ) for a, b ∈ C with ‖a∗a+ b∗b‖ ≤ 1

and contractions V1, V2 ∈ C(V )). Therefore one can “perturb” ( 13 ) the elements

of the sequence {V1/n} inside C(V )1 to a sequence Wn ∈ C(V )1 that converges in

point-norm to an element W ∈ CP(A,C) such that c∗W (·)c ∈ S for every c ∈ C.

Suppose now that A, C and T are unital. Then 1 − g1(V (1)) ∈ J+ and d1 :=

1 − V (1)g1(V (1)) ∈ J+. Let e1 := g1(V (1))1/2. There exists χ0 ∈ S with χ0(1) ≥
(d1−1/4)+. There is a contraction f ∈ J with f∗χ0(1)f = (d1−1/2)+ , cf. Lemma

2.1.9. Let χ1 := f∗χ0(·)f . Then χ1 ∈ S, χ1(1)+e1V (1)e1 = (d1−1/2)+ +1−d1 =:

h ≥ 1/2. Now let e := e1h
−1/2 ∈ C∗(d1, 1) ⊂ C and χ := h−1/2χ1(·)h−1/2 ∈ S.

Then πJ(e) = 1 and W := χ+ eV (·)e is unital with c∗W (·)c ∈ S for all c ∈ J . �

Corollary 5.4.9. Suppose that A is separable, that B is stable and σ-unital,

and that ϕ : A→ Q(B) =M(B)/B is a C*-morphism.

Let e ∈ B+ denote a strictly positive contraction in B and let S ⊂ CP(A,B)

countably generated non-degenerate operator-convex cone. Consider the non-

degenerate H0 : A → M(B) as defined in Corollary 5.4.4 for S, and let

h0 := πB ◦ (H0 ⊕ 0). Then:

(i) [h0] + [h0] = [h0],

(ii) The unitary equivalence class [ϕ] of ϕ is in S(h0; A,Q(B)) (= the semi-

group introduced in Section 4 of Chapter 4), if and only if, there is a

12I.e., for every e ∈ J+ and ε > 0 there are χ ∈ S and a ∈ A+ with (e− ε)+ ≤ χ(a)
13 By “controlled” perturbations on a compact subset Ω ⊂ A with span(Ω) dense in A,

cf. e.g. the proof of the existence of nuclear lifts in [43].
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completely positive map W : A → M(B) with πB ◦ W = ϕ such that

b∗W (·)b in the point-norm closure of S for every b ∈ B ( 14 ).

(iii) [ϕ ⊕ 0] = [ϕ] + [0] ( 15 ) is in G(h0; A,Q(B)) = [h0] + S(h0; A,Q(B)) ,

( cf. Chapter 4, Section 4 ), if and only if, there is completely positive

contraction W : A→M(B) with πB ◦W = ϕ such that

(a) b∗W (·)b in the point-norm closure of S for every b ∈ B, and,

(b) for each V ∈ S, there is a sequence of elements d1, d2, . . . ∈ B such

that limn d
∗
nedn = 0 and limn d

∗
nW (a)dn = V (a) for all a ∈ A.

Proof. (i): The commutant h0(A)′ ∩ Q(B) contains a copy of O2 unitally,

because H0 is unitarily equivalent to δ∞ ◦H0, δ∞(M(B))′ ∩M(B) contains a copy

of L(`2) unitally, and because L(`2) contains a copy of O2 ⊗ O2 unitally. Thus

the semigroup S(h0 ;A,Q(B)) is well-defined and is the set of unitary equivalence

classes (by unitaries in Q(B)) of C *-morphisms ψ : A → Q(B) dominated by h0

(cf. Definition 4.3.3).

(ii): Let D denote the point-norm closure of S.

Suppose that W : A →M(B) is a completely positive map with πB ◦W = ϕ

such that b∗W (·)b ∈ D for every b ∈ B. The c.p. lift W of ϕ can be modified that it

becomes contractive, cf. Lemma 5.4.8. It can be taken unital if A and ϕ : A→ Q(B)

unital, because W ′(a) := d1/2H0(a)d1/2 + cW (a)c is as desired, if c ∈M(B)+ with

0 ≤ c ≤ 1, 1− c ∈ B and d := 1− cV (1)c ∈ B.

Let J ⊂ A denote the kernel of H0 : A → M(B) and let H1 = δ∞ ◦ H0. H1

is unitarily equivalent to H1 (by condition (i) of Corollary 5.4.4) and, obviously,

πB ◦H1 has the same kernel as H0. W (J) = {0}, because b∗W (·)b ∈ D for every

b ∈ B and H0 satisfies (ii). Thus, there is a completely positive contrcaction

[W ]J : A/J → M(B) with W = [W ]J ◦ πJ . Let C := C∗(e,H1(A)), and define

V : C →M(B) by V (c) := [W ]J(Γ−1(πB(c))), where Γ: A/J → πB(H1(A)) is the

isomorphism from A/J onto πB(H1(A)) with Γ(a + J) := πB(H1(a)). Note that

C∩B = eCe , C = (C∩B)+δ∞(H0(A)) and that V (H1(y)+z) = V (H1(y)) = W (y)

for y ∈ A and z ∈ C ∩B.

Then V (e) = 0 and e1/nd → d if n → ∞ for every d ∈ B. In particular,

V (C ∩ B) = {0}. If b ∈ B+, ε > 0 and if X is a finite subset of C+, then

there are f ∈ B and finite subsets Y ⊂ A, and Z ⊂ C ∩ B such that X ⊂
{H1(y) + z : y ∈ Y, z ∈ Z} and ‖f∗H0(y)f − bW (y)b‖ < ε/2 for y ∈ Y . The

latter holds by property (ii) of H0 in Corollary 5.4.4, because bW (·)b ∈ D. Since

δ∞(g) =
∑
n sngs

∗
n for all g ∈ M(B) with some sequence s1, s2, . . . of isometries

in M(B) with
∑
n sns

∗
n strictly convergent to 1 in M(B), there is m ∈ N such

that ‖f∗s∗mzsmf‖ < ε/2 for z ∈ Z. It follows ‖d∗xd− bV (x)b‖ < ε for x ∈ X and

d := smf . Thus Proposition 5.4.1(i) applies: There is a contraction g ∈ M(B)

such that g∗cg − V (c) ∈ B for every c ∈ C. In particular, g∗H1(a)g −W (a) ∈ B

14This particular c.p. lifts W of ϕ can be taken contractive. W can be chosen unital if A

and ϕ are unital.
15Note that, in general, [ϕ] + [0] 6= [ϕ] and [ϕ] + [0] 6= [ϕ] + [h0].
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and πB(g)∗πB(H1(a))πB(g)∗ = ϕ(a) for a ∈ A. Since H0 is unitarily equivalent

to H1 by property (i) of Corollary 5.4.4, and since h0 := πB ◦ H0 ⊕ 0 (trivially)

dominates zero, it follows from Proposition 4.3.6(ii) that h0 dominates ϕ. This

means [ϕ] ∈ S(h0, A,Q(B)).

Conversely, if ϕ is dominated by h0 = πB ◦H0 ⊕ 0 in Q(B) =M(B)/B, then

there is a contraction g ∈ M(B) with πB(g∗H0(·)g) = ϕ. For every b ∈ B, the

map W : a ∈ A 7→ b∗g∗H0(a)gb is in D by property (iii) of Corollary 5.4.4, i.e.,

W := g∗H0(·)g is as desired.

We have seen that (i) is equivalent to [ϕ] ∈ S(h0, A,Q(B)).

But [ϕ] ∈ S(h0, A,Q(B)) implies [ϕ⊕ 0] = [ϕ] + [0] ∈ S(h0, A,Q(B)), because

(trivially) [0] ∈ S(h0, A,Q(B)) and S(h0, A,Q(B)) is a semigroup by Proposition

4.4.2(i). Since ϕ⊕ 0 trivially dominates ϕ, [ϕ] + [0] ∈ S(h0, A,Q(B)) if and only if

[ϕ] ∈ S(h0, A,Q(B)).

By Proposition 4.3.5(i), [ϕ]+[0] ∈ G(h0, A,Q(B), i.e., [ϕ]+[0] = [ϕ]+[0]+[h0],

if and only if ϕ⊕ 0 dominates h0.

Suppose that [ϕ]+[0] is in G(h0, A,Q(B)). Then there are contractions g1, g2 ∈
M(B) such that πB(g∗1H0(a)g2) = ϕ(a) and g∗2g

∗
1H0(a)g1g2 − H1(a) ∈ B for all

a ∈ A and H1 := δ∞ ◦H0, because H1 is unitarily equivalent to H0. Let W (a) :=

g∗1H0(a)g1, then W satisfies (i), as we have seen above.

Let V ∈ D, there is a sequence of elements b1, b2, . . . ∈ B such that

limn b
∗
nH0(a)bn = V (a) for all a ∈ A (by property (ii) of H0 in Corollary

5.4.4). One can see, with help of an approximate unit of A, that one manage that

‖bn‖2 ≤ ‖V ‖. Then dn := g2snbn satisfies limn d
∗
nW (a)dn = V (a) for all a ∈ A and

limn ‖d∗nedn‖ ≤ ‖V ‖ lim ‖s∗n(g∗2eg2)sn‖ = 0, i.e., W satisfies also (ii).

Conversely, let W : A →M(B) a contractive and completely positive lift of ϕ

with (i) and (ii).

Then [ϕ⊕0] ∈ S(h0, A,Q(A)) by (i), as we have seen above. Since h0 and ϕ⊕0

both dominate zero and since H0 is unitarily equivalent to H1 = δ∞ ◦H0, it suffices

to find a contraction g ∈ M(B) with g∗W (a)g − H0(a) ∈ B for all a ∈ A, to get

that ϕ⊕ 0 dominates h0 (cf. Proposition 4.3.6(ii)).

There is an isomorphism ψ from ϕ(A) onto H0(A) such that ψ(ϕ(a)) = H0(a)

for a ∈ A, because W (a) ∈ B if and only if H0(a) = 0: Indeed, above we have

seen that H0(a) = 0 implies H0(a∗a) = 0 and 0 ≤ W (a)∗W (a) ≤ W (a∗a) = 0.

W (a) ∈ B implies ϕ(a∗a) = 0, i.e., W (a∗a) ∈ B, and, by (ii), that V (a∗a) = 0 for

all V ∈ D, i.e., H0(a) = 0 by property (iii) of H0 in Corollary 5.4.4.

Let C := C∗(e,W (A)) and V (c) := ψ(πB(c)). Then C is separable, C ∩ B =

eCe, C = (C ∩ B) + W (A), V (e) = 0, limn e
1/nb = b for b ∈ B, V (C ∩ B) = {0},

V (W (a)) = H0(a) for a ∈ A, and δ∞ ◦ V is unitarily equivalent to V , because

H0 is unitarily equivalent to H1 := δ∞ ◦H0. Moreover, V : C → M(B) is a non-

degenerate C *-morphism.
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If b ∈ B+, X ⊂ A and Y ⊂ C ∩ B are finite and ε > 0, then there is d ∈ B
with ‖d∗yd‖ < ε/2 and ‖d∗V (x)d− bH0(x)b‖ < ε/2 by property (ii) of W , because

bH0(·)b ∈ D. Thus, Proposition 5.4.1 applies to C and V : There is a contraction

g ∈M(B) with g∗cg − V (c) ∈ B for all c ∈ C, in particular g∗W (a)g −H0(a) ∈ B
for all a ∈ A. �

Corollary 5.4.10. Suppose that A is separable, B is σ-unital, D ⊂M(B) is

a

Is ‘‘simple’’ necessary?

simple, stable and σ-unital C*-subalgebra of M(B) such that DB is dense in

B.

Let H : A→M(D) ⊂M(B) a non-degenerate *-monomorphism with H(A) ∩
D = {0} such that Hd : A 3 a 7→ d∗H(a)d ∈ D is nuclear for all d ∈ D.

Then

(i) H0 := δ∞ ◦ H satisfies properties (i)–(iii) of Corollary 5.4.4 for the

operator-convex cone S := CPnuc(A,B).

(ii) H and H0 are unitarily homotopic if D ∼= K or if D is purely infinite.

Proof. (i): Let s1, s2, . . . a sequence of isometries in M(D) such that∑
sn(sn)∗ converges strictly to 1. Then H0 is unitarily equivalent to H1 given

by H1(a) :=
∑
snH(a)s∗n, and H1 is unitarily equivalent to δ∞ ◦ H1 , cf. Lemma

5.1.2(i). Let qm :=
∑
n≤m sns

∗
n, e ∈ D+ strictly positive, b ∈ B. Then

a ∈ A→ b∗e1/nqmH1(a)qme
1/mb =

∑
1≤k≤m

b∗e1/mskH(a)s∗ke
1/mb

is nuclear, because H : A→M(D) is weakly nuclear. It implies that Vb := b∗H1(·)b
is a nuclear map from A into B, because limm ‖qme1/mb− b‖ = 0 for b ∈ B. Hence

H0 = U∗H1(·)U satisfies condition (i) and (iii) of Corollary 5.4.4 for the m.o.c. cone

S := CPnuc(A,B).

The proof of Corollary 5.4.4 shows: Since H1 is unitarily equivalent to δ∞ ◦H1

and is non-degenerate, we get that the maps Vb : a 7→ b∗H1(a)b build an operator-

convex cone C ⊂ CPnuc(A,B) (that is generated by Vf for a strictly positive element

f ∈ B+).

Let a ∈ A+ with ‖a‖ = 1, b ∈ B+ and ε > 0. Then there is m ∈ N such

that ‖e1/mH(a)e1/m‖ > 1/2, and ‖b(1 − e1/m)b‖ < ε/2, because ‖H(a)‖ = 1

and because DB is dense in B. Let c := e1/mH(a)e1/m ∈ D. Since D is

simple, there are f1, . . . , fk ∈ D such that ‖e1/m −
∑
f∗j cfj‖ < ε/2 . Now let

d :=
∑

1≤j≤k s
∗
je

1/mfjb ∈ B. Then ‖d∗H1(a)d − b2‖ < ε. Thus, Lemma 3.2.7 ap-

plies, and every nuclear map V : A → B is in the point-norm closure of C. Hence,

H0 satisfies condition (ii) of Corollary 5.4.4 for S := CPnuc(A,B).

(ii): Since δ∞(H(a)) =
∑
snas

∗
n is (up to unitary equivalence) independent

from the sequence of isometries s1, s2, . . . with
∑
sns
∗
n = 1 (strictly), and since

M(D) → M(B) is unital and strictly continuous, it suffices to consider the case,
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where B = D. Let e ∈ D+ a strictly positive contraction, and let C := C∗(H(A), e),

e ∈ C ∩ B =: J / C and there is a (unique) *-morphism ψ : C → A with ker(ψ) =

C ∩ B and ψ ◦ H = idA. Let V := H0 ◦ ψ = δ∞ ◦ T (for T := H ◦ ψ). Then

V : C → M(D) is a non-degenerate *-morphism with V (e) = 0. The map V is

weakly nuclear, because H0 : A→M(B) is weakly nuclear.

For b ∈ D = B the map Vb : c ∈ C 7→ b∗V (c)b ∈ D is nuclear and Vb(C ∩D) =

{0}. It follows from Proposition 3.2.13(i) that Vb is approximately 1-step inner if

D is purely infinite.

If D ∼= K, then [Vb] : C/(C ∩D)→ D is necessarily nuclear. Then the map Vb

is approximately 1-step inner by Remark 3.2.14. It follows that (C, V, e,B = D)

satisfy also condition (β) of Proposition 5.4.1 in both cases. Then H0 = δ∞ ◦H =

H ⊕ δ∞ ◦H is unitarily homotopic to H by Proposition 5.4.1(iii). �

QUESTIONS:

Suppose A separable (unital or stable), B σ-unital and stable.

Let H0 : A→ Q(B) a C *-morphism, e.g. is defined by the universal bi-module

of all nuclear maps form A to B .

Is it next?

If we use that B ⊗ K ∼= B, then this is given by H0 := πB ◦ δ∞ ◦ (1 ⊗ h) the

infinite repeat of any faithful representation h : A→M(K).

Now describe all H : A→ Q(B) that absorb H0. ...???

Define S ′(H) as the set of “u.c.p. maps V : A → B” (??) with the property

that there exists a sequence of contractions in Tn ∈ Q(B) such that

πB(δ∞ ◦ V (a))− T ∗nHo(a)Tn → 0 .

Let W : A→M(B) a c.p. contraction.

Does H dominate π ◦W if b∗W (·)b ∈ C(S ′(H)) for all b ∈ B ?

The point is:

What happens with infinite strictly convergent sums

T (·) =
∑
n

b∗nVn(·)bn

with Vn ∈ C(S ′(H)) ?

Cases A = C, A = C0(0, 1]?

What happens in unital/non-unital cases ?

Check next blue text again!!

Remark 5.4.11. G. Elliott and D. Kucerovsky, [264], have used – together

with their own proof – the following older version of Proposition 5.4.1:
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Let C be a unital separable C *-algebra and let B be an essential closed two-

sided ideal of C, so that we may view C as a unital subalgebra of M(B):

B ⊆ C ⊆M(B); 1 ∈ C .

Let T : C →M(B) be a completely positive map which is zero on B, and suppose

that, for every b ∈ B, the map

b∗T (·)b : C → B,

given by c 7→ b∗T (c)b, can be approximated (on finite subsets of C) by the maps

c 7→ d∗cd, d ∈ B .

It follows that there exists a sequence Sn ∈M(B) such that

T (c)− S∗ncSn ∈ B, for all, c ∈ C ,

and limn S
∗
ncSn = T (c) for all c ∈ C.

This can be seen from Proposition 5.4.1, if one takes for the element h ∈ C+

in Condition (α) of Proposition 5.4.1 a strictly positive contraction of B. The

approximation condition implies Condition (β).

Comments to it: Find out the ingredients!!

Let B a σ-unital C *-algebra, C a separable C *-subalgebra of M(B), and

T : C →M(B) a linear map with ‖T‖ ≤ 1 that satisfies the following Conditions

(α) and (β):

(α) There exists h ∈ C+ with T (h) = 0 and h1/nd → d if n → ∞ for every

d ∈ B .

(β) For every a ∈ B+, every finite subset X ⊂ C+ of contractions and every

ε > 0 there exists d ∈M(B) with ‖d∗cd− aT (c)a‖ < ε for c ∈ X.

Question 5.4.12. Let A separable, B stable and σ-unital, C ⊆ CP(A,B) a

countably generated operator convex cone, e.g. C := CPnuc(A,B) (which is singly

generated).

Is there a characterization of those H : A→ Q(B) that absorbs each πB ◦ δ∞ ◦
h : A→ Q(B) with h : A→M(B) that satisfies b∗h(·)b ∈ C for all b ∈ B?

In the case of [264] it is

In case of C := CPnuc(A,B) a necessary and sufficient criteria for absorbing

was given by G. Elliott and D. Kucerovsky [264], cf. [310] for the non-unital case.

Has to consider as C ⊂ M(B) some separable C *-subalgebra of M(B) with

the properties that πB(C) = H(A) and that C ∩ B contains e ∈ C ∩ B that is

strictly positiv in B. Then use B ∼= B ⊗ K and take a faithful representation

ρ : A →M(K) ⊆ M(B ⊗K) in “general position”, i.e., ρ unitary equivalent to its

infinite repeat.

To get absorbed it is necessary that H is faithful.
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Then let T (c) := ρ(H−1πB(c)) . Let h := e for (α) a strictly positive element

of B ⊗K .

Check (β) ... for C, T ...

5. Ψ-equivariant Stability of extensions

We deduce from Proposition 5.4.1 some results concerning stability and a Ψ-

equivariant version (respectively m.o.c. cone equivariant version) of L.G. Brown’s

stable isomorphism theorem [107, thm.2.8].

Recall that a hereditary C *-subalgebra D of a C *-algebra B is full if the linear

span of BDB is dense in B, and that D is called a corner if there exists a (unique)

projection p ∈M(B) with D = pBp.

The following Corollary of the tautological Weil–von-Neumann type result

Proposition 5.4.1 gives an alternative proof of the stability criteria for σ-unital

C *-algebras of Hjelmborg and Rørdam [373, thm. 2.1, prop. 2.2(b)].

Corollary 5.5.1. Suppose that B is a non-zero σ-unital and stable C*-

algebra, and that D is a full corner of B, i.e., there is a projection p ∈ M(B)

with pBp = D and span BDB is dense in B.

(i) If, for every g ∈ D+ and δ > 0, there exist b ∈ D with ‖b∗b− g‖ < δ, and

‖b∗gb‖ < δ, then there exists an isometry S ∈M(B) with SS∗ = p.

(ii) The isometry S of Part (i) defines an isomorphism ϕ from B onto D by

ϕ(b) := SbS∗ for b ∈ B, and ϕ satisfies

ϕ(J) = D ∩ J for all J ∈ I(B) .

(iii) If S1, S2 ∈ M(B) are isometries in M(B) such that the maps ϕk :=

Sk( · )S∗k , k ∈ {1, 2}, from B onto D ⊆ B coincide (i.e., ϕ1 = ϕ2), then

there exists a unitary U in the center of M(B) with S1 · U = S2.

(iv) The isometries S ∈M(B) with SBS∗ = D can be obtained from the polar

decompositions d := S(d∗d)1/2 = (dd∗)1/2S, of any element d ∈ B with

the property that d∗d is strictly positive in B and dd∗ is a strictly positive

element of D.

Proof. The idea of our proof is different from that in [373], because our

proof is based on the fact that full properly infinite projections are MvN-equivalent

if they have the same class in K0 (an observation of J. Cuntz, cf. proof of Lemma

4.2.6(ii)). We combine this with the “tautological” Weyl–von-Neumann type re-

sult in Proposition 5.4.1 to get Part (i). The other parts follow then by straight

calculation.

(In fact all this conclusions of Proposition 5.4.1 are almost trivial elementary

applications, consisting only in notational problems.)

(i):

TO BE SHOWN:
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Let p ∈ M(B) a projection, and let D := pBp. Suppose that span BDB

is dense in B, and that for every g ∈ D+ and δ > 0, there exist b ∈ D with

‖b∗b− g‖ < δ, and ‖b∗gb‖ < δ.

Then there exists an isometry S ∈M(B) with SS∗ = p.

Recall that K∗(M(B) ) = 0 because δ∞ is unitarily equivalent to δ∞ ⊕ id,

cf. Lemma 5.1.2(ii).

By Lemma 4.2.6(ii), it suffices to show that there is an isometry I inM(B) with

II∗ ≤ p, because then p and q := 1 are both projections that majorize orthogonal

ranges of two isometries in M(B) and have same class [p] = [q] in K0(M(B)) = 0.

By Lemma 4.2.6(ii), the projections p and q = 1 are MvN-equivalent inM(B), i.e.,

there is an isometry S ∈M(B) with SS∗ = p.

(In fact, the existence of an operator S0 ∈ M(B) with x := 1 − S∗0pS0 ∈ B
would be enough, because the stability of B causes the existence of an isometry

S1 ∈M(B) with ‖S∗1xS1‖ ≤ 1/2. Then I := pS0S1(S∗1S
∗
0pS0S1)−1/2 is an isometry

with II∗ ≤ p.)

We apply Proposition 5.4.1(i) to prove the existence of needed isometry I:

Take a strictly positive contraction e ∈ B+ and let C denote the unital com-

mutative C *-subalgebra of M(B), which is generated by the commuting elements

1, p, pep and (1− p)e(1− p). The intersection C ∩B contains the strictly positive

contraction h := pep+ (1− p)e(1− p) = 2−1((1− 2p)e(1− 2p) + e) of B.

The projection p ∈M(B) is not contained in B, because otherwise p ∈ pBp =

D and the assumptions in part (i) propose the existence of b ∈ D (i.e., b ∈ pBp)
with pb = b = bp, ‖b∗pb‖ < 1/4 and ‖b∗b − p‖ < 1/4, which is impossible for a

non-zero projection p.

Let χ denote the (unique) character of C with χ(C ∩B) = 0 and χ(p) = 1. It

satisfies χ(y) = χ(pyp) for all y ∈ C, in particular, χ((1− p) + pep) = 0.

The map T (a) := χ(a)1 is a C *-morphism from C into M(B). Obviously,

T (p) = T (1) = 1 and T has the same kernel T−1(0) = C ∩ B + C · (1 − p) as

χ : C → C has. In particular T (h) = 0 for the strictly positive element h of B. The

strict positivity implies that b = limh1/nb for all b ∈ B.

Thus, C, T and h satisfy condition (α) of Proposition 5.4.1.

(β): For every a ∈ B+, every finite subset X ⊂ C+ and every ε > 0 there

exists d ∈M(B) with ‖d∗cd− aT (c)a‖ < ε for c ∈ X.

Part to be checked:

We show that T satisfies also condition (β) of Proposition 5.4.1 :

Let a ∈ B+, X a finite subset of C+ for C := C∗(1, p, pep, (1− p)e(1− p)) and

ε > 0. We define γ := max{‖c‖ : c ∈ X} and δ := ε/(4 + 4γ).

Notice that pCp = C∗(pep) + C · p, because c = pcp + (1 − p)c(1 − p) for all

c ∈ C.
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The kernel of T is identical with the kernel (1− p)C + p(C ∩D) of χ.

It follows that χ(C ∩D) ⊆ χ(C ∩B) = {0} and χ(1− p) = 0

In particular pcp− χ(c)p is in C ∩D for c ∈ C+.

Since c = pc+(1−p)c = pcp+(1−p)c(1−p) for all c ∈ C and since χ(1−p) = 0

and χ(C ∩B) = {0}, we get that

pcp− χ(c)p is in C ∩D for c ∈ C+. Thus, if b ∈ pB, then, for c ∈ C+,

b∗cb = χ(c)b∗b+ b∗(pcp− χ(c)p)b .

Since pcp− χ(c)p is selfadjoint,

‖b∗(pcp− χ(c)p)b‖ ≤ ‖b∗|(pcp− χ(c)p)|b‖ .

We consider the sum f of the absolute values |pcp− χ(c)p|:

f :=
∑
c∈X
|pcp− χ(c)p| ∈ C ∩D+ . (5.1)

Then, for c ∈ X and b ∈ pB,

‖b∗cb− aV (c)a‖ ≤ |χ(c)|‖b∗b− a2‖+ ‖b∗fb‖ .

Thus, to verify (β), it suffices to find b ∈ pB with ‖b∗b− a2‖ < 2δ and ‖b∗fb‖ < 2δ

for the f defined in Equation (5.1).

Since D is full, there exists b1, . . . , bm ∈ pB with ‖
∑
b∗j bj − a2‖ < δ. Let

ρ := δ/m(1+‖a‖2 +δ). There is a contraction g ∈ D+, such that ‖b∗jgbj−b∗j bj‖ < ρ

for j = 1, . . . ,m. By induction, the assumption on D implies that, for every

f, g ∈ D+, m ∈ N, and ρ > 0, there exist d1, . . . , dm ∈ D, such that ‖d∗i dj−δijg‖ < ρ

and ‖d∗i fdj‖ < ρ for i, j = 1, . . . ,m. Let b :=
∑
djbj . Then ‖b∗fb‖ < m·(‖a‖2+δ)·ρ

and ‖b∗b−
∑
b∗j bj‖ < m · (1 + ‖a‖2 + δ) · ρ. Thus ‖b∗fb‖ < δ, ‖b∗b− a2‖ < 2δ, and

V = δ∞ ◦ T satisfies also condition (β) of Proposition 5.4.1.

We are now in position to apply Parts (i) and (iv) of Proposition 5.4.1, and

find an element S1 in M(B), such that ‖S∗1pS1 − 1‖ < 1.

The element I := pS1(S∗1pS1)−1/2 is an isometry in M(B) with II∗ ≤ p.

Thus p is full and properly infinite in M(B) .

(ii): The isometry S ∈ M(B) with SS∗ = p defines obviously an injective

C *-morphism ϕ(b) := SbS∗ (b ∈ B) from B into D = pBp. It is surjective because

ϕ(SdS∗) = d for d ∈ D.

The hereditary C *-subalgebra D of B is full in B. Therefore, the map J ∈
I(B) 7→ D ∩ J ∈ I(B) is a bijective map. Since S ∈ M(B) we get that SJS∗ ⊆
D ∩ J . If d ∈ D ∩ J , then S∗dS ∈ J and ϕ(S∗dS) = d. Thus, ϕ(J) = D ∩ J .

(iii):

If ϕ(b) = S1bS
∗
1 = S2bS

∗
2 for isometries S1, S2 ∈ M(B) and b ∈ B, then we

obtain that S1S
∗
1 = S2S

∗
2 =: p from S1eS

∗
1 = S2eS

∗
2 for for e ∈ B in an approximate

unit of B. Thus, U := T ∗S ∈M(B) is a unitary with Ub = bU for all b ∈ B. Now
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use that B is strictly dense in M(B) the unitary U is in the center of M(B).

Clearly TU = S = UT .

(iv): If d ∈ B has the property that d∗d is strictly positive in B and dd∗ is

a strictly positive element of D, then the partial isometry v ∈ B∗∗ in the polar

decomposition with d := v(d∗d)1/2 = (dd∗)1/2v satisfies, – by definition of the

unique polar-decomposition in the W*-algebra B∗∗ –, that v∗v is the open support

projection = 1 of d∗d in B∗∗ and vv∗ is the support projection p of dd∗ in B∗∗.

Thus, vv∗ = p, v∗v = 1.

Above formulas imply B = (d∗d)1/2B , dB = pB and B(dd∗)1/2 = Bp. Using

this equations, then we get vB = dB = pB ⊆ B from d = v(d∗d)1/2, and Bv =

Bpv = Bd ⊆ B from (dd∗)1/2v = d.

Thus, v is an isometry inM(B) and can deserve as one of the above considered

S ∈M(B). �

(StC) looks strange? Better notation?

Corollary 5.5.2 ([373]). A non-zero σ-unital C*-algebra A is stable, if and

only if, satisfies the following “stability criterium” (StC):

(StC) For every a ∈ A+ and ε > 0 there exists d ∈ A such that ‖a − d∗d‖ < ε

and ‖d∗ad‖ < ε.

Proof. Let a ∈ A+ and ε > 0. If A is stable and t1, t2, . . . is a sequence

of isometries in M(A) with
∑
tkt
∗
k strictly convergent to 1M(A), then there exists

n ∈ N with ‖t∗natn‖ < ε/(1 + ‖a‖) . If we let d := tna
1/2, then d∗d = a and

‖d∗ad‖ < ε.

Conversely suppose that each for a ∈ A+ and ε > 0, there exists d ∈ A with

‖d∗ad‖ < ε and ‖d∗d− a‖ < ε. Let B := A⊗K and D := A⊗ e11.

Then the corner D of the σ-unital stable C *-algebra B satisfies the assumptions

of Corollary 5.5.1. Thus, A is isomorphic to the stable algebra B. �

If A is σ-unital, then A/J is σ-unital. If A1 ⊆ A2 ⊆ · · · ⊆ A are σ-unital

C *-subalgebras with
⋃
nAn dense in A, then A is σ-unital: e =

∑
n 2−nen is

strictly positive in A if en is strictly positive in An. This together implies that

indlim(hn : An → An+1) is σ-unital if each An is σ-unital.

It is easy to see that A satisfies the criteria of Corollary 5.5.2 if A is the inductive

limit of an (arbitrary upward directed) family of C *-algebras Aτ that satisfy the

criteria (STC) if the inductive limit is still σ-unital, e.g. if the directed diagram of

morphisms hn is countable. Thus we get:

Corollary 5.5.3 ([373]). The inductive limit of a sequence of σ-unital stable

C*-algebras is σ-unital and stable.

A generalization of the Zhang’s dichotomy [846] for simple purely infinite σ-

unital C *-algebras, is the following, cf. [462, thm. 4.24].
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Corollary 5.5.4 (Generalized Zhang dichotomy). A σ-unital purely infinite

C*-algebra B is stable if and only if B has no unital quotient.

Proof. Quotients of stable C *-algebras are zero or stable. Thus B can not

have a unital quotient if B is stable.

For the non-trivial direction suppose that B is p.i. and has no unital quotient.

Let 0 6= a ∈ B+, 0 < ε < 1 and δ = ε/(1 + ‖a‖).

The closed ideal J of B which is generated by the non-zero (!) annihilator

D := Ann((a− δ)+, B) of (a− δ)+ in B is equal to B, because – otherwise – B/J

is unital, Spec(πJ(a)) ⊂ {0} ∪ [δ/2, ‖a‖] and πJ(a) is a strictly positive element of

B/J , cf. Lemma 2.5.14(i,ii) for more details. Since, by assumption, B has no unital

quotient, it follows that D = Ann((a−δ)+, B) is a full hereditary C *-subalgebra of

B. Thus, there are c1, . . . , cn ∈ D+ and e1, . . . , en ∈ B with ‖a−
∑
e∗kckek‖ < δ/2.

By the definition of p.i. algebras there is f ∈ B with ‖a − f∗cf‖ < δ, where c :=

c1+. . .+cn ∈ D+. Let d := c1/2f . Then ‖d∗d−a‖ < δ < ε, d∗ad = d∗(a−(a−δ)+)d

and ‖d∗ad‖ ≤ δ(‖a‖+δ) < ε. Thus, B satisfies the criteria (STC) of Corollary 5.5.2

and is stable. �

Remark 5.5.5.

(i) Corollary 5.5.4 implies Zhang’s dichotomy [846] for simple purely infinite alge-

bras:

A σ-unital simple purely infinite C*-algebra is unital or is stable.

(ii) Proposition 2.2.1, Brown’s stable isomorphism theorem and the dichotomy to-

gether immediately imply that every hereditary C *-subalgebra D of a simple purely

infinite C *-algebra A has an approximate unit consisting of projections. By a theo-

rem of Brown and Pedersen, [113], this property is equivalent to the property that

the real rank of A is zero, i.e., every selfadjoint element can be approximated by

selfadjoint elements of A with finite spectra.

Thus every simple purely infinite C*-algebra has real rank zero. See also the

proof of Proposition 2.2.1(x).

(iii) We don’t use for our results on classification that simple purely infinite algebras

A have zero real rank. (rr(A) = 0 can be seen also by the asymptotic methods in

Chapter 7 or immediately from Theorem B.)

The following Corollary 5.5.6 is implicitly contained in the proofs of [107]. more

precise ref We derive it from Corollary 5.5.1.

Corollary 5.5.6 (Ψ-equivariant Brown stable isomorphism). Suppose that

D is a stable σ-unital hereditary C*-subalgebra of a stable σ-unital C*-algebra B,

such that BDB is dense in B.

Then there exists d ∈ B, such that

(i) d∗d is a strictly positive element of B,

(ii) dd∗ is a strictly positive element of D,
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(iii) the polar decomposition v(d∗d)1/2 of d in B∗∗ defines an isomorphism

ϕ := v(·)v∗ from B onto D ⊂ B, such that

(iv) ϕ : B → B is unitarily homotopic to idB, in particular ϕ(J) = D ∩ J for

J ∈ I(B).

It follows: if D1 is a σ-unital hereditary C*-subalgebra of a σ-unital C*-

algebra B1, which is not contained in a closed ideal J 6= B1, then there exists a

*-isomorphism ψ from D1 ⊗K onto B1 ⊗K such that, for J ∈ I(B1),

ψ((D1 ∩ J)⊗K) = J ⊗K.

Proof. Let t and s isometries in M(B) with t∗s = 0, and let E denote the

hereditary C *-subalgebra of B which is generated by F := sDs∗+tBt∗ . Then id |F
is a non-degenerate *-monomorphism from F into E. It extends to a unital strictly

continuous *-monomorphism H := M(id |E) from M(F ) ∼= M(sDs∗) ⊕M(tBt∗)

into E. It follows that sDs∗ and tBt∗ generate a corner of E. But both are

hereditary C *-subalgebras of B, which generate B as closed ideal.

Thus, sDs∗ and tBt∗ are corners of E that generate E as closed ideal.

F is stable, because sDs∗ and tBt∗ are stable, indeed: If s1, s2, . . . is a se-

quence of isometries in M(F ), such that
∑
n sns

∗
n converges strictly to 1, then

H(s1), H(s2), . . . has the same property for E. Thus, E is stable by Remark

5.1.1(8).

Since sDs∗ ∼= D, tBt∗ and and E are stable, Corollary 5.5.2 implies that the

pairs sDs∗ ⊂ E and tBt∗ ⊂ E satisfy the assumptions of Corollary 5.5.1 (in place

of the pair D ⊂ B). It follows, that there are elements d1, d2 ∈ E, such that d∗1d1

and d∗2d2 are strictly positive elements of E, d1d
∗
1 is a strictly positive element of

sDs∗ and d2d
∗
2 is a strictly positive element of tBt∗. Then d := s∗d1d

∗
2t satisfies

that d∗d is a strictly positive element of B and dd∗ is a strictly positive element of

D. Let v(d∗d)1/2 be the polar decomposition. By Remark 2.3.1, ϕ(a) = vav∗ is an

isomorphism from B onto D, and ϕ−1 : D → B is given by a 7→ v∗av.

By Lemma 5.1.2(iv) there exists a norm-continuous map t ∈ [1,∞) 7→ S0(t)

into the isometries in M(B) with limt→∞ S0(t)b = 0 for b ∈ B. Let G :=

Cb([1,∞),M(B))/C0([1,∞), B) ⊃ B. Then M(B) ⊂ G naturally and G con-

tains a copy of O2 unitally. Let h1, h2 : B → E given by h1(b) := b ∈ F??? or G

and h2(b) := h1(ϕ(b)) for b ∈ B. Now consider the isometry s := {S0(t)}1≤ t<∞ +

C0(R+, B) in G which corresponds to S0 ∈ Cb([0,∞),M(B)), and the contraction

y ∈ G with representative Y (t) := d∗(dd∗ + 1/t)−1/2 for t ∈ [0,∞).

Then s∗hj(·)s = 0 for j = 1, 2, y∗h1(·)y = h2 and yy∗h1(·)yy∗ = h1 Thus

Proposition 4.3.6(iii) applies: there is a unitary u in F with u∗h1(·)u = h2.

The unitary u comes from a continuous map U(t) from [0,∞) into the unitaries

of M(B) such that u = {U(t)}t∈[0,∞) + C0(R+, B), cf. proof of Lemma 5.1.2(vi).

Since the unitary group ofM(B) is (norm-) connected ([180]), one can choose

such that t 7→ U(t) such that U(0) = 1. Clearly, u∗h1(·)u = h2 means that
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limt→∞ ‖U(t)∗bU(t) − ϕ(b)‖ = 0 for b ∈ B, i.e., that idB and ϕ are unitarily

homotopic.

It follows ϕ(J) ⊂ D ∩ J and ϕ−1(D ∩ J) ⊂ J , which means ϕ(J) = D ∩ J for

J ∈ I(B). �

next Lemma is the old Lemma 7.15,

which is now n o t cited in Chapter 7

Lemma 5.5.7. Suppose that A is a full hereditary C*-subalgebra of B (i.e.,

ABA = A and span(BAB) = B), and that A and B are both σ-unital and stable.

Then there exist x in B and an isomorphism ϕ from B onto A such that x∗x is

strictly positive in B, xx∗ is a strictly positive element in A and ϕ(b) = ubu∗

where u can be chosen as any contraction in B∗∗ that satisfies u∗x = (x∗x)1/2 and

xu∗ = (xx∗)1/2.

Moreover, ϕ : B → A ⊂ B is unitarily homotopic to idB.

Proof. The proof is implicitly contained in the proofs of Corollaries 5.5.1 and

5.5.6:

It is enough to find an x ∈ B with x∗x strictly positive in B and xx∗ strictly

positive in A. We proceed as in [107]. Let D ⊂ M2(B) be the hereditary C *-

subalgebra which is generated by diag(e, f) where e is a strictly positive element

of B and f is a strictly positive element of A. Then F = diag(A,B) ∼= B ⊕ A
is naturally a C *-subalgebra of D such that D is the closure of FDF . It follows

that M(F ) is unitally and strictly continuous contained in M(D). F is stable

because A and B are stable. Thus there exists a copy C of K in M(F ) with

CF = F = FC. Then C ⊂ M(D) and CD = CFDF = FDF = D and similarly

DC = D. Then M(C) ⊂ M(D) by a strictly continuous inclusion map such that

1M(C) 7→ 1M(D). It follows that D is isomorphic to p11Dp11⊗K where p11 is a rank

one projection in C. To see this, we take bi ∈ M(D) with b∗i bj = δijp11 and with

C the strict closure of the span of the bjbi (i, j = 1, 2, 3, . . .). Since {
∑n
i=1 bib

∗
i }

converges strictly to 1M(D), d 7→ (b∗jdbi)ji defines a *-isomorphism from D onto

(p11Dp11) ⊗ K. Since F is isomorphic to B ⊕ A, 1M(B) ⊕ 0 and 0 ⊕ 1M(A) define

projections p, q ∈M(D) with p+ q = 1 and p, q ∈ C ′. By definition of F we have

that p, q ∈ M2(B)∗∗ = M2(B∗∗) are given by p = diag(1, 0) and q = diag(0, r)

where r is the open support projection of A. Since p, q are in C ′ it follows that

under the isomorphism D ∼= (p11Dp11) ⊗ K (defined by C) p, q define p̄ = pp11,

q̄ = qp11 in M(p11Dp11) with p̄+ q̄ = 1. Furthermore one gets p ∼= p̄⊗ 1M(K) and

q ∼= q̄ ⊗ 1M(K). ( M(D) ∼=M(p11Dp11)⊗K is described in Mat∞(p11Dp11) again

by T ∈ M(D) 7→ (b∗jTbi)ij and we get p 7→ (b∗jpbi) = (b∗j bip) = (δijp11p) ⊗ 1M(K).

Similarly q maps to p11p⊗ 1M(K). p̄(p11Dp11p̄ generates p11Dp11 as a closed ideal

because (p̄⊗ 1)(p11Dp11⊗K)(p̄⊗ 1) ∼= pDp and pDp generates D as a closed ideal.

A similar argument shows that q̄p11Dp11q̄ generates p11Dp11 as a closed ideal, i.e.,

p̄ and q̄ are full projections and p̄+ q̄ = 1).
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Since D contains a strictly positive element, p11Dp11 also contains one.

Thus the conditions of [107, lem. 2.5] are fulfilled and we get isometries v̄, w̄ in

M(p11Dp11 ⊗ K) with v̄∗v̄ = w̄∗w̄ = 1 and v̄v̄∗ = p̄ ⊗ 1M(K), w̄w̄
∗ = q̄ ⊗ 1M(K).

In particular p̄ ⊗ 1M(K) and q̄ ⊗ 1M(K) are Murray- von Neumann equivalent

in M(p11Dp11 ⊗ K). Now we use the isomorphism to M(D) and get a partial

isometry v ∈ M(D) with v∗v = p and vv∗ = q. If we consider v as an element in

M2(B∗∗) ⊃ M(D) we get v∗v = diag(1, 0), vv∗ = diag(0, r). Let y = v diag(e, 0),

then y satisfies y ∈ D, y∗y = diag(e2, 0) is strictly positive in pDp ∼= B ⊕ 0,

yy∗ = v diag(e2, 0)v∗ is strictly positive in qDq ∼= 0 ⊕ A. Thus we get that

y = (aij)ij ∈ M2(B) with only a12 nonzero. Let x be a12 and ϕ(b) = ubu∗ for

any u in B∗∗ with u∗x = (x∗x)
1
2 , xu∗ = (xx∗)

1
2 and ‖u‖ ≤ 1 (e.g. coming from

the polar decomposition of x). Since ϕ is a completely positive contraction, it is

sufficient to check that ϕ is multiplicative on the dense subset x∗Bx of B and here

we only need that xx∗ = xu∗ux∗ holds.

Similarly one checks that ϕ maps all onto the closure A of (xx∗)1/2B(xx∗)1/2,

and that ψ(a) := u∗au for a ∈ A is the inverse of ϕ, cf. Remark ??. �

Remark 5.5.8. Extensions E (given by an exact sequence 0→ B → E → A→
0) of stable separable algebras A by stable separable algebras B are in general not

stable. E.g. there is an extension E of A := K by B := C(Z,K) for the Tychonoff

product Z of countably many copies of the 2-dimensional sphere S2, cf. [685].

We show that every extension E of a separable stable C *-algebra A by a purely

infinite σ-unital stable B is stable.

This follows from some more general stability criteria that we discuss now.

Notice that it it suffices to consider the case A := C0(R+,K) by Remark

5.1.1(9).

Lemma 5.5.9. Suppose that B is stable and σ-unital, and that D is σ-unital.

Let Q(B) :=M(B)/B and suppose that h1, h2 : D → Q(B) are unitarily equivalent

C*-morphisms. Then:

(o) M(B) and Q(B) have property (sq) of Definition 4.2.14 (and are K1-

bijective by Lemma 4.2.6(v) and Proposition 4.2.15).

(i) K∗(M(B)) = 0 and U0(M(B)) = U(M(B)).

(ii) E := Q(B) contains a copy of O2 unitally, and is K1-bijective, i.e.,

the natural map U(E) → K1(E) defines an isomorphism U(E)/U0(E) ∼=
K1(E) ∼= K0(B) .

(iii) If h1 dominates zero in the sense of Definition 4.3.3 then there is a unitary

U ∈ U(M(B)) such that πB(U)∗h1(·)πB(U) = h2(·) .

In particular, h1 and h2 are unitary equivalent by a unitary in U0(E).

Proof. (i): The triviality K∗(M(B)) = 0 easily follows from the unitary

equivalence of δ∞ and δ∞ ⊕ id.

The equation U0(M(B)) = U(M(B)) was found by J. Cuntz and N. Higson [180],
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see also [557] in case that B contains a full projection. Modification of an observa-

tion in [180] leads to a slightly stronger observation in Lemma A.23.1, which implies

thatM(B) satisfies the “squeezing” property (sq) of Definition 4.2.14, cf. Proposi-

tion 4.2.15. Thus, M(B) and, for every C *-algebra A, every C *-algebra quotient

of M(B)⊗max A is K1-bijective by Proposition 4.2.15.

(ii): O2 ⊂ L(H) =M(K) ⊆ M(B) unitally. Thus, E := M(B)/B contains a

copy of O2 unitally. E is K1-surjective by Lemma 4.2.6(v) and is K1-injective by

Part (i). This follows also from Proposition 4.2.15.

(iii): The maps h1, h2 : D → E satisfy the requirements of Proposition

4.3.6(iv,d) by Part (ii): There exists W ∈ U(E) with W ∗h1(·)W = h2. The

C *-morphism h1 dominates zero in the sense of Definition 4.3.3 if and only if there

exists an isometry s ∈ E with s∗h1(D)s = {0}. Then V :=
(
sW ∗s∗ + (1− ss∗)

)
W

is a unitary in U(E) with V ∗h1(·)V = h2 and 0 = [V ] ∈ K1(E). Thus, V ∈ U0(E)

by the K1-injectivity of E = Q(B) = M(B)/B. Since V is in U0(M(B)/B) it is

a finite product of exponentials exp(tk), of −t∗k = tk ∈ M(B)/B, k = 1, . . . , n.

There are Tk = −T ∗k inM(B) with πB(Tk) = tk. Thus, V = πB(U) for the unitary

U := exp(T1) · . . . · exp(Tn) in M(B). �

The following Lemma 5.5.10 summarizes consequences of Proposition 4.3.6 and

of the generalized Tietze extension theorem of Akemann, Pedersen and Tomiyama

in the σ-unital case (see [616, prop. 3.12.10] for the separable case).

Lemma 5.5.10. Suppose that A and B are σ-unital, and that h : A→M(B)/B

is a C*-morphism. Let J denote the kernel of h, and define

M(A, J) := {T ∈M(A) ; TA ∪ AT ⊂ J} .

Further, let C := h(A), and let N (C) ⊂ M(B)/B the normalizer algebra of

C in M(B)/B, i.e., N (C) := {b ∈ M(B)/B ; bC ∪ Cb ⊂ C}, and let Ann(C) :=

{b ∈M(B)/B bC = 0 = Cb} denote the (two-sided) annihilator of C inM(B)/B.

Define L : N (C)→M(C) by L(b)(c) := bc for c ∈ C and b ∈ N (C).

Then L is a C*-morphism, and the following properties are valid:

(i) h extends naturally to an epimorphism M(h) from M(A) onto M(C)

with kernel M(A, J) (generalized Tietze extension).

(ii) If, in addition, h has a non-degenerate lift to a C*-morphism h1 : A →
M(B), then πB(M(h1)(M(A))) ⊂ N (C), and M(h) = L ◦ πB ◦M(h1).

(iii) The natural C*-morphism L from the normalizer N (C) ⊂M(B)/B of C

into the multiplier algebra M(C) of C is an epimorphism. The kernel of

L is Ann(C).

(iv) If h dominates zero, cf. Def. 4.3.3, and if S is any isometry inM(C), then

there exists a unitary U in the connected component of 1 in the unitaries

of M(B), such that πB(U)∗h(·)πB(U) = Sh(·)S∗.

Proof. (i): The morphism h : A → C is non-degenerate, because h is a *-

epimorphism from A onto C. Thus, there is a unique unital strictly continuous
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C *-morphismM(h) fromM(A) intoM(C). By definition ofM(h),M(h)(T ) = 0,

if and only if, h(TA ∪AT ) = {0}.

The morphism M(h) is an epimorphism, because A is σ-unital. Indeed: This

is, — in the separable case —, the generalized Tietze extension theorem [616,

prop. 3.12.10]. If A is not separable — but σ-unital —, then one can reduce the

proof to the separable case ( 16 ), as follows:

Let c ∈ M(C)+, let e ∈ A+ a strictly positive element of A and take b ∈ A with

h(b) = c · h(e), by using that h : A → C is surjective. Then the separable C *-

subalgebras F := C∗(b, e) ⊆ A, and G := h(F ) ⊆ C satisfy M(F ) ⊆ M(A) and

c ∈M(G) ⊆M(C), M(h)|M(F ) =M(h|F ) and M(h|F )(M(F )) =M(G).

(ii): Let b ∈ M(A), c ∈ C and a ∈ A with πB(h1(a)) = h(a) = c. Then

M(h)(b)c = h(ba) = πB(h1(ba)), and πB(M(h1)(b))c = πB(M(h1)(b)h1(a)) .

(iii): It is obvious that Ann(C) ⊂ N (C), and that the natural C *-morphism L

from N (C) into M(C) has kernel Ann(C).

We show that N (C)→M(C) is surjective:

Consider D := (πB)−1(C) and the *-epimorphism k := πB |D. Since C has

a strictly positive element d = h(e), and B has a strictly positive element p, the

element p+ q is a strictly positive element of D, if q ∈ D+ is such that k(q) = d.

By part (i), M(k) is an epimorphism from M(D) onto M(C).

The lifted C *-morphism k1 := id |D of k is non-degenerate, because B ⊂ D.

Thus, M(k1) is a unital map from M(D) into M(B), and πB(M(k1)(M(D))) ⊂
N (C).

By part (ii), the image of the natural C *-morphism N (C) →M(C) contains

the image of M(k), i.e., N (C)→M(C) is an epimorphism.

(iv): Let h2 := Sh(·)S∗. Then h2 is a C *-morphism from A into h(A) =

C ⊂ M(B)/B. By assumption, h dominates zero, i.e., there exists an isometry

V ∈M(B)/B such that V ∗h(A)V = {0}. Thus, V ∗h2(·)V = 0.

There exists a contraction y in N (C) such that L(y) = S by part (ii). It follows

y∗h2(·)y = h and yh(·)y∗ = h2.

By Proposition 4.3.6(iii), h2 and h are unitarily equivalent by a unitary u1 ∈
M(B)/B. By Proposition 4.3.6(iv,c) the unitary equivalence can be realized by

16 There is a direct argument: Since M(h)(M(A)) contains C, it suffices to show that for

a given contraction c ∈ M(C)+ there exist d ∈ M(A)+ with M(h)(d) − c ∈ C. Let e ∈ A+

be a strictly positive element of A with ‖e‖ = 1, and let d := h(e). By Remark 5.1.1(3), there

exist continuous functions 0 ≤ fn ≤ 1, with fn(0) = 0, fn+1fn = fn, such that lim fn(t) = 1 for

t ∈ (0, 1] and that the commutator norms ‖[gn(d), c]‖ are less than 2−n, where g1 = f
1/2
1 , and

gn := (fn+1 − fn)1/2 for n > 1. Let bn ∈ A+ contractions with h(bn) = fn+2(d)cfn+2(d). By

Remark 5.1.1(4), s :=
∑
gn(a)bngn(a) and t :=

∑
gn(d)cgn(d) are strictly convergent series in

M(A) and M(C), respectively. Then M(h)(s) = t and c − t ∈ C, because h(gn(e)bngn(e)) =

gn(d)cgn(d),M(h) is strictly continuous, and c− t is the sum of the norm-convergent series
∑
xn,

where with xn := gn(d)[gn(d), c] ∈ C.
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a unitary u = πB(U) in πB(U0(M(B))) = U0(M(B)/B), because V ∗(h(a) +

h2(a))V = 0 for a ∈ A. �

Lemma 5.5.11. Suppose that A and B are σ-unital and let h : A → Qs(B) a

C*-morphism.

Choose an isomorphism ψ : K⊗K→ K from K⊗K onto K.

Let γ denote the natural isomorphism from (B ⊗ K) ⊗ K onto B ⊗ (K ⊗ K),

i.e., with γ((b⊗ k1)⊗ k2) = b⊗ (k1 ⊗ k2) for b ∈ B, k1, k2 ∈ K, and let

Φ1 : M(B ⊗K)⊗K→M(B ⊗K)

the non-degenerate monomorphism, is defined by

Φ1 :=M((idB ⊗ψ) ◦ γ)|M(B ⊗K)⊗K.

(i) There are isometries s0, t0 ∈ M(K) and a norm-continuous map τ ∈
(0, 1] 7→ Iτ ∈ M(K) into the isometries in M(K) ∼= L(H), such that, for

b ∈ K,

s0s
∗
0 + t∗0t0 = 1,

M(ψ)(1M(K) ⊗ p11) = s0s
∗
0,

s∗0ψ(k ⊗ p11)s0 = k,

(Iτ )∗M(ψ)(1M(K) ⊗ b)Iτ ∈ K, and

lim
τ→0
‖(Iτ )∗M(ψ)(1M(K) ⊗ b)Iτ‖ = 0 .

(ii) Let r1 ∈M(C0((0, 1],K)) be the isometry, which is defined by (r1f)(τ) :=

Iτf(τ) and (r1f)(0) = 0 for f ∈ C0((0, 1],K), τ ∈ (0, 1]. Let e a strictly

positive element of B with ‖e‖ = 1, and let µ the non-degenerate C*-

morphism from C0((0, 1]) into B with µ(g0) = e, where g0(τ) := τ . Now

define r =M(µ⊗ idK)(r1).

Then Φ1 and the isometries s := 1M(B) ⊗ s0, t := 1M(B) ⊗ t0 and r

in M(B ⊗K) satisfy, for b ∈M(B ⊗K),

ss∗ + tt∗ = 1,

ss∗ = M(idB ⊗ψ)(1M(B) ⊗ (1M(K) ⊗ p11)),

Φ1(b⊗ p11) = sbs∗,

r∗Φ1(M(B ⊗K)⊗K)r ⊂ B ⊗K, and

Φ1((B ⊗K)⊗K) = B ⊗K.

(iii) Φ := [Φ1] : Qs(B) ⊗ K → Qs(B) is a monomorphism, which dominates

zero and satisfies Φ(b ⊗ p11) = S∗bS with S := πB⊗K(s). The range

projection of S is SS∗ = Φ(1⊗ p11).

(iv) h is unitarily equivalent to Φ(h(·)⊗p11) if and only if h dominates zero in

the sense of Definition 4.3.3. If this is the case, then the unitary equiva-

lence can be given by a unitary in the image of the unitaries inM(B⊗K).
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(v) Φ ◦ (h⊗ idK) is the Busby invariant of the stable extension

0→ (B ⊗K)⊗K→ E ⊗K→ A⊗K→ 0,

where we identify B ⊗K and (B ⊗K)⊗K naturally by (idB ⊗ψ) ◦ γ, and

define

0→ B ⊗K→ E → A→ 0,

as the extension corresponding to h : A→ Qs(B).

(vi) If A is stable, then Φ(h(·)⊗ p11) is the Busby invariant of a stable exten-

sion.

Proof. (i): p := M(ψ)(1M(K) ⊗ p11) and 1 − p are infinite projections in

M(K) ∼= L(H). Thus, there are isometries s1, t0 ∈ M(K) with s1s
∗
1 = p and

t0t
∗
0 = 1−p. Then b ∈M(K) 7→ s∗1M(ψ)(b⊗p11)s1 is a unital weakly continuous *-

endomorphism onM(K). Its image contains the corner ψ(K⊗p11) of K. Therefore,

it is an isomorphism of M(K), and there exist a unitary u ∈ M(K) with ubu∗ =

s∗1M(ψ)(b ⊗ p11)s1 for b ∈ M(K). Let s0 := s1u, then s0 and t0 have the desired

properties.

The construction of Iτ goes as follows. We let

pn :=

n∑
j=1

pjj

qn := M(ψ)(pn ⊗ (1− pn))

en := M(ψ)(pn+2 ⊗ (1− pn)).

Then, qn ≤ en, qn+1 ≤ en, and qn, en − qn, en − qn+1 are infinite projections.

It follows that there exists a unitary v commuting with en, such that vqnv
∗ =

qn+1. Since M(K) is isomorphic to the von-Neumann algebra L(H), there is a

T ∈M(K)+ such that T commutes with en and v = eiT .

Let I an isometry in M(K) with II∗ = qn. Then Iτ := eiT (τ)v, with T (τ) :=

((n+ 1)− (n+ 1)nτ)T , defines a norm-continuous map from [1/(n+ 1), 1/n]. into

the isometries of M(K), such that I1/n = I, In+1I
∗
n+1 = qn+1 and IτI

∗
τ ≤ en for

τ ∈ (1/(n+ 1), 1/n).

By induction we get the norm-continuous map

τ ∈ (0, 1] 7→ Iτ ∈M(K)

into the isometries of M(K) with the desired properties.

(ii): The properties of Φ1, s and t can be seen by simple calculations on the

level of elementary tensors. Then use that all the maps in question are strictly

continuous, to get the general result.

On the property of r: It suffices to show that r∗(1⊗M(ψ)(1⊗K))r is contained

in C∗(e)⊗K.

The properties of τ 7→ Iτ in part (i) mean that (r1)∗(1 ⊗M(ψ)(1 ⊗ K))r1 is

contained in C0((0, 1],K). Now apply M(µ⊗ idK).
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(iii): With R := πB⊗K(r) we have R∗R = 1 and R∗Φ(·)R = 0 by (ii), i.e., Φ

dominates zero. The rest are straight calculations.

(iv): Since Φ dominates zero by (ii), also Φ(h(·) ⊗ p11) = Sh(·)S∗ dominates

zero. Thus, if h is unitarily equivalent to h2 := Φ(h(·) ⊗ p11), then h dominates

zero.

Conversely, if V ∗h(·)V = 0 for some isometry V ∈ Qs(B), and h2 = Sh(·)S∗,
then W ∗h2(·)W = 0 for the isometry W := SV S∗+(1−SS∗). Thus, by Proposition

4.3.6(iii), there is a unitary u with u∗h(·)u = h2, because h2 = Sh(·)S∗, h =

S∗h2(·)S. By Lemma 5.5.9(iii) the unitary equivalence can be realized by a unitary

u = πB(U) in πB(U0(M(B)/B)).

(v): Straightforward calculations.

(vi): Let D be a σ-unital C *-algebra, and let ϕ an isomorphism from D ⊗ K
onto A. Let h1 := h ◦ ϕ.

Let ψ : K⊗K→ K be the isomorphism from K⊗K onto K, and let s0 ∈M(K)

an isometry with s0bs
∗
0 = ψ(b⊗ p11) for b ∈ K, see part (i).

Let γ denote the natural isomorphism from (D ⊗K)⊗K onto D ⊗ (K⊗K).

We define an isomorphism λ from D ⊗ K onto (D ⊗ K) ⊗ K by λ := γ−1 ◦
(idD ⊗ψ−1).

Then ν(b) := λ−1(b⊗ p11), for b ∈ D⊗K, defines a *-endomorphism of D⊗K,

such that ν(d⊗b) := d⊗ψ(b⊗p11) for d ∈ D, b ∈ K. It follows, that s2 := 1M(D)⊗s0

is an isometry in M(D ⊗K), such that s2bs
∗
2 = ν(b) for b ∈ D ⊗K.

Let h2 := Φ ◦ (h1 ⊗ idK) ◦ λ and h3 := Φ(h1(·)⊗ p11). Then h3 = h1 ◦ ν. The

h2 and h3 both dominate zero, because Φ dominates zero.

It suffices to show, that h2 and h3 are unitarily equivalent, by a unitary v =

πB(U) for some unitary U ofM(B⊗K), because the extension with Busby invariant

Φ ◦ (h⊗ idK) is stable, by part (v).

Let C := h2(D ⊗ K). S := M(h2)(s2) is an isometry in M(C), such that

h3 = Sh2(·)S∗. Since h3 dominates zero, by Lemma 5.5.10(iv), there exists a

unitary U ∈M(B) with v∗h2(·)v = h3 for v := πB(U). �

Proposition 5.5.12 (Stability of extensions). Suppose that

0→ B → E → A→ 0

is an extension of A by B, where A and B are σ-unital and stable C*-algebras.

Let ι : B → E, η : E → A and ϕ : A→M(B)/B ∼= Qs(B) denote the the defin-

ing morphisms of the above short-exact sequence, i.e., the corresponding monomor-

phism, respectively epimorphism, and the Busby invariant of E.

Further let θ denote an (arbitrary) isomorphism θ from B onto B ⊗ K, and

Θ: Q(B)→ Qs(B) := Q(B⊗K) is the isomorphism that is induced by the isomor-

phism θ.

Then following properties (i)–(vi) are equivalent.
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(i) The extension E is a stable C*-algebra.

(ii) The Busby invariant ϕ dominates zero.

(iii) For every a ∈M(B)+ with πB(a) ∈ ϕ(A), b ∈ B+ and ε > 0, there exists

d ∈ B with ‖d∗ad‖ < ε and ‖d∗d− b‖ < ε .

(iv) Θ ◦ ϕ and Φ(Θ ◦ ϕ(·)⊗ p11) are unitarily equivalent, where Φ denotes the

natural monomorphism from Qs(B) ⊗ K into Qs(B) defined in Lemma

5.5.11(iii).

(v) There is an isomorphism λ from E⊗K onto E, such that B = λ(B⊗K),

and that b ∈ B 7→ λ(b⊗ p11) and a ∈ A 7→ [λ](a⊗ p11) are approximately

inner in B respectively in A, where [λ](a ⊗ p) := η(λ(f ⊗ p)) for a ∈ A,

f ∈ η−1(a) and p ∈ K.

(vi) 1M(E) is properly infinite in M(E), i.e., the multiplier algebra M(E) of

E contains two isometries with orthogonal ranges.

The criteria (ii) and (vi) are not obvious, and (iii) is useful for applications.

Criterium (iii) was established by J. Hjelmborg and M. Rørdam in [373].

Compare also proof of [499, thm. 2.4].

Compare ?????

Proof. The implications (v)⇒(i) and (i)⇒(vi) are trivial. (i)⇒(iv) follows

from Lemma 5.1.2(ii).

(vi)⇒(iii): The natural C *-morphism h1 : E → M(B) with h1(f)b =

ι−1(fι(b)) (for f ∈ E, b ∈ B) satisfies ϕ ◦ η = πB ◦ h1 for the Busby invari-

ant ϕ : A → Q(B) of the extension. This can be seen by the natural Busby

isomorphism:

E ∼= Eϕ := A⊕ϕ,πBM(B) ⊂ A⊕M(B) ,

that is given by f 7→ (η(f), h1(f)).

Let C := ϕ(A) = πB(h1(E)), and let a ∈ M(B)+ with πB(a) ∈ C, b ∈ B+,

ε > 0 and let δ := ε/(2(‖a‖+ ‖b‖+ 1)).

By Lemma 5.5.10(i) and (ii) (with E in place of A), the epimorphism h := πB ◦
h1 : E → C extends uniquely to a strictly continuous epimorphismM(h) : M(E)→
M(C).

By assumption there are isometries T1, T2 ∈ M(E) with (T2)∗T1 = 0. Thus

rj :=M(h)(Tj) for j = 1, 2 are isometries in M(C) with orthogonal ranges.

Since A is stable, its image C = ϕ(A) by ϕ is again stable: A ∼= D⊗K implies

that D has a closed ideal J such that C ∼= (D ⊗K)/(J ⊗K) ∼= (D/J)⊗K.

Let s1, s2, . . . a sequence of isometries in M(C) such that
∑
n sn(sn)∗ strictly

converges to 1. Then there is m ∈ N with ‖s∗mπB(a)sm‖ < δ. SinceM(C) contains

a copy of O2 unitally, there is a unitary v in M(C), such that vr1 = sm. The

unitary group of M(C) is (norm-)contractible by [180]. Hence, there is a unitary

U ∈M(E) with M(h)(U) = v.
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The C *-morphism h1 : E → M(B) is non-degenerate, because h1(ι(B)) =

B. Thus h1 uniquely extends to a strictly continuous unital C *-morphism

M(h1) : M(E)→M(B).

By Lemma 5.5.10(ii), πB(M(h1)(M(E))) ⊂ N (C) andM(h) = L◦πB ◦M(h1)

for the natural epimorphism L from N (C) onto M(C) with kernel Ann(C).

Thus the isometry I := M(h1)(UT1) ∈ M(B) satisfies πB(I) ∈ N (C) and

dist(I∗aI,B) = ‖πB(I∗aI)‖.

It follows πB(I∗aI) = (L ◦ πB)(I∗aI) == M(h)(UT1)∗πB(a)M(h)(UT1) =

s∗masm , and, therefore, there is g = g∗ ∈ B with ‖I∗aI − g‖ < δ.

Now let t1, t2, . . . a sequence of isometries inM(B) such that
∑
tn(tn)∗ strictly

converges to 1 (exists, because B is stable). There is k ∈ N such that ‖t∗kgtk‖ < δ.

Let d := Itkb
1/2 ∈ B, then d∗d = b and ‖d∗ad‖ < 2δ‖b‖ < ε.

(iii)⇒(ii): Let e ∈ A+ and b ∈ B+ strictly positive elements of A and B

respectively. We find a ∈ M(B)+ with πB(a) = ϕ(e). It is enough to find an

isometry S ∈M(B) with S∗aS ∈ B.

Let C := C∗(a, b, 1) denote the unital C *-subalgebra of M(B) generated by

a, b and 1. Then C is the unitization D̃ of the C *-subalgebra D of C which is

generated by b and a. Let χ : C → C ∼= C/D the natural character.

The C *-morphism V : C → M(B), with V (c) := χ(c)1 for c ∈ C, satisfies

condition (α) of Proposition 5.4.1 with h := b.

f := b + a is a strictly positive element of D, and, by assumption, for every

δ > 0, there is d ∈ B with ‖d∗fδd‖ < δ and ‖d∗d− bδ‖ < δ.

Thus V and C satisfy also condition (β) of Proposition 5.4.1.

Since δ∞ ◦ V = V and V (a) = 0, by Proposition 5.4.1(ii) and (iv), there exists

an isometry S ∈M(B) with S∗aS ∈ B.

(ii)⇒(iv): Θ ◦ ϕ dominates zero if ϕ dominates zero. But then Θ ◦ ϕ and

Φ((Θ ◦ ϕ)(·)⊗ p11) are unitarily equivalent by Lemma 5.5.11(iv).

(iv)⇒(i): Since A is stable and σ-unital, Φ((Θ ◦ ϕ)(·) ⊗ p11) is the Busby in-

variant of a stable extension 0 → B ⊗ K → E1 → A → 0 by Lemma 5.5.11(vi).

Since Φ((Θ ◦ϕ)(·)⊗ p11) is unitarily equivalent to Θ ◦ϕ, it follows that this equiv-

alence is given by a unitary in the image in M(B ⊗ K)/(B ⊗ K) of the unitaries

of M(B ⊗ K), cf. Lemma 5.5.11(iv). Thus, the extension E1 is equivalent to an

extension 0→ B ⊗K→ E2 → A→ 0 with Busby invariant Θ ◦ ϕ –

in particular, E2
∼= E1 as C *-algebras, and

?? ????.

Since E2 and 0 → B → E → A → 0 are determined up to equivalence by the

Busby invariants Θ ◦ ϕ and ϕ, it follows that E2 and E are naturally isomorphic

(in particular, as C *-algebras). Thus E is a stable C *-algebra.
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(i)⇒(v): Let µ : E ⊗ K → E any isomorphism from E ⊗ K onto E, and let

ι : B → E, η : E → A the defining morphisms for the exact sequence 0 → B →
E → A → 0. Then there is a closed ideal J of E such that µ(J ⊗ K) = ι(B) and

J ⊗K is the kernel of η ◦ µ : E ⊗K→ A.

We define a new isomorphism λ from E ⊗K onto E by

λ := µ ◦ (idB ⊗ψ) ◦ γ ◦ (µ−1 ⊗ idK) ,

where ψ is an isomorphism from K⊗K onto K, and γ is the natural isomorphism

from (E ⊗K)⊗K onto E ⊗ (K⊗K).

Then λ(ι(B)⊗K) = ι(B) and the *-monomorphisms

b ∈ B 7→ ι−1(λ(ι(b)⊗ p11))

and a ∈ A 7→ [η ◦ λ](a ⊗ p11) are approximately inner, because even the *-

endomorphisms g ∈ E ⊗ K 7→ (idE ⊗ψ)(γ(g ⊗ p11)) and f ∈ E 7→ λ(f ⊗ p11)

are unitarily homotopic to idE⊗K respectively idE . �

Remark 5.5.13. One can the criteria 5.5.12(iii) replace by the (formally

weaker) criteria:

(iii*) There exists k ∈ N, such that, for every b, g ∈ B+, ε > 0, e1, . . . , ek ∈
M(B), with πB(ej) ∈ ϕ(A) and e∗i ej = δije

∗
1e1 for i, j = 1, . . . , n, there is

d ∈ B with ‖d∗(e∗1e1)d‖ < ε, ‖d∗gd‖ < ε and ‖d∗d− b‖ < ε.

Indeed:

(iii)⇒(iii*): Take k := 1, and let a := g + e∗1e1 in (iii).

(iii*)⇒(iii): Let C := ϕ(A), a ∈ M(B)+ with πB(a) ∈ C, b ∈ B+, ε > 0, and

let c := πB(a), δ := ε/(2 + ‖b‖+ ε).

Since A is stable, C is stable, and there are isometries s1, s2, . . . inM(C), such

that
∑
pj strictly converges to 1, where pj := sjs

∗
j . Thus there is a projection q1 :=

p1+. . .+pn inO∞ ⊂M(C) such that ‖q1cq1−c‖ < δ. Let qj := p(j−1)n+1+. . .+pjn.

Then there are partial isometries vj in M(C) with v∗j vj = q1 and vjv
∗
j = qj . Let

fj := vj(q1cq1)1/2, j = 1, . . . , k. Then fj ∈ C and f∗i fj = δijq1cq1. By Proposition

A.8.4, there exist e1, . . . , ek ∈ M(B), with πB(ej) = fj and e∗i ej = δije
∗
1e1 for

i, j = 1, . . . , n.

It follows, that g := (|a− e∗1e1| − δ)+ is in B+. By assumption, there is d ∈ B
with ‖d∗e∗1e1d‖ < δ, ‖d∗gd‖ < δ and ‖d∗d− b‖ < δ.

Since δ < ε and a ≤ e∗1e1 + |a− e∗1e1|, we get ‖d∗d− b‖ < ε and ‖d∗ad‖ < ε.

Corollary 5.5.14. Suppose that D and B are σ-unital C*-algebras and that

ψ : D →M(B)/B is a *-monomorphism. Let E := π−1
B (ψ(D)).

(I) If ψ has a non-degenerate “split” C*-morphism H : D → M(B) with

ψ = πB ◦H, and if D is stable, then B and E are stable.

(II) If E is stable, then
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(i) B and D are stable and ψ⊕0 is unitarily equivalent to ψ by a unitary

u ∈ U0(Q(B)), and

(ii) there exists isometries S, T ∈M(B) with SS∗+TT ∗ = 1, S∗ES ⊆ B
and (1− T )E ∪ E(1− T ) ⊂ B.

Proof. Ad(I): Suppose that D is stable and that H : D → M(B) is a non-

degenerate C *-morphism with ψ = πB ◦H.

Then the σ-unital C *-algebra B is stable by Remark 5.1.1(9), because H(D)

is a stable non-degenerate C *-subalgebra of M(B), i.e., H(D)B = B.

If e ∈ E+, then there exist b ∈ B and d ∈ D with e = b+H(d). Thus, for ε > 0

there exists a contraction f ∈ D+ with

‖e−H(f)e‖ ≤ ‖b−H(f)b‖+ ‖d− fd‖ < ε ,

i.e., H(D)E = E and H(D) is a non-degenerate C *-subalgebra ofM(E). It follows

that E is stable by Remark 5.1.1(9).

(II): Suppose that E is stable.

(i): The stability of E implies the stability of its ideal B and of its quotient D.

By Proposition 5.5.12(ii), the Busby invariant ψ : D → M(B)/B ∼= Qs(B)

dominates zero, i.e., there is an isometry t ∈ Q(B) with t∗ψ(D)t = {0}.

Define ⊕ := ⊕s1,s2 . Then ψ and ψ ⊕ 0 both dominate zero: t∗ψ(·)t = 0 and

(t⊕ 1)∗(ψ(·)⊕ 0)(t⊕ 1) = 0.

Chose one of next:

Since B is σ-unital and stable, the stable corona Qs(B) of B is K1-injective by

Lemma 4.2.10.

Stable coronas Qs(B) of σ-unital C *-algebras B have Property (sq) and are

therefore K1-bijective by Proposition 4.2.15.

If B is stable, then Q(B) is K1-surjective by Lemma 5.5.9.

It follows that ψ and ψ(·) ⊕ 0 are unitary equivalent with a unitary u ∈
U0(Qs(B)) by last conclusion in Parts (iii) and (iv,b) of Proposition 4.3.6.

Prop./Lem./Rem. in Chp. 4

??

????????????????? ??

Since B is stable, there exist isometries S1, S2 ∈M(B) with S1S
∗
1 + S2S

∗
2 = 1.

Let sj = πB(Sj). By Lemma 4.2.6(iii) there is a unitary u1 in Q(B) with u1s2 = ss2,

because t1 := ss1s2 and t2 := ss2 and r1 := s1s2 and r2 := s2 are pairs of isometries

(t1, t2) and (r1, r2) with orthogonal ranges and the property that 1− (t1t
∗
1 + t2t

∗
2) ≥

ss2
1(ss2

1) and 1 − (r1r
∗
1 + r2r

∗
2) = s2

1(s2
1)∗ are full and properly infinite projections

in Q(B).

What is the application?
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Then ψ = u∗1ψ(·)u1 and ψ2 := ψ(·)⊕s1,s2 0 have the property ψj(D)s2 = 0 for

j = 1, 2.

Since B is stable, Q(B) is K1-injective by Lemma 5.5.9.

Better refer to Lemma for property sq in 4 ?

By Proposition 4.3.6(iv,a ???), there exists a a unitary V ∈ U0(Q(B)) with

??? ?? Proceed proof ! ????????????????

(ii): By the proof of part (ii) of Lemma 5.5.9, there exist isometries S1, S2, T1 ∈
M(B) with πB(S1) = sπB(S2) and S1S

∗
1 + T1T

∗
1 = 1. Thus, πB(S∗1ES1) =

πB(S2)∗s∗ψ(D)sπB(S2) = {0}. It follows πB(S1(1−T1)S∗1E) = {0} = πB(ES1(1−
T1)S∗1 ).

Now let P := T1T
∗
1 = 1 − S1S

∗
1 , T := P + S1T1S

∗
1 and S := S2

1 . Then

T ∗T = 1 = S∗S, TT ∗ = P + S1PS
∗
1 = 1− SS∗ and 1− T = S1(1− T1)S∗1 .

Hence, S∗ES ⊂ B and (1− T )E ∪ E(1− T ) ⊂ B. �

Corollary 5.5.15. Suppose that Y is a σ-compact locally compact space, that

B is a σ-unital stable C*-algebra and that C is a σ-unital C*-subalgebra of the ideal

Q(Y,B) := Cb(Y,B)/C0(Y,B) of Q(C0(Y,B)) =M(C0(Y,B))/C0(Y,B).

(i) There are isometries S and T in Cb(Y,M(B)) ⊂ M(C0(Y,B)) =

M(Cb(Y,B)) such that SS∗ + TT ∗ = 1 , and that s := S + C0(Y,B) ∈
Q(C0(Y,B)) and t := T + C0(Y,B) ∈ Q(C0(Y,B)) satisfy s∗Cs = {0}
and (1− t)C = {0} = C(1− t).

(ii) If D is a σ-unital stable C*-algebra, and 0→ C0(Y,B)→ Eϕ → D → 0 is

an extension which has Busby invariant ϕ : D → Q(C0(Y,B)) with image

ϕ(D) in Cb(Y,B)/C0(Y,B) ⊂ Q(C0(Y,B)), then Eϕ is stable.

(iii) If f is a contraction in Cb(Y,B), then there is an isometry T in

Cb(Y,M(B)) such that g∗ag = t∗at for all a ∈ C, where g := f+C0(Y,B)

and t := T + C0(Y,B).

(iv) There is an *-monomorphism ρ : C ⊗K ↪→ Cb(Y,B)/C0(Y,B) with ρ(c⊗
p11) = c for c ∈ C.

Proof. (i): We use that B ∼= B ⊗ K, and replace B by B ⊗ K. Since Y

is σ-compact, there is a strictly positive function γ ∈ C0(Y ) with 0 ≤ γ(y) ≤ 1.

Since γ ∈ C0(Y )+ is strictly positive, the subsets Yn := γ−1[1/n, 1] ⊂ Y are

compact and Y =
⋃
n Yn. Let g ∈ C+ a strictly positive contraction for C. There

is f ∈ Cb(Y,B ⊗ K)+ with g = f + C0(Y,B ⊗ K) and ‖f(y)‖ ≤ 1. There are

projections pn ∈ K with ‖f(y)(1 ⊗ pn) − f(y)‖ < 1/(n + 1) for all y ∈ Yn+1 for

n = 0, 1, 2, . . .. This can be seen, because f |Yn is in C(Yn, B ⊗K) ∼= C(Yn, B)⊗K.

If we take linear interpolations p(t) := (n− t)pn−1 + (t+ 1−n)pn for t ∈ [n− 1, n],

then we get a norm-continuous path t ∈ [0,∞) 7→ p(t) ∈ K from R+ into the

positive contractions of K such that ‖f(y)(1 ⊗ p(t)) − f(y)‖ < 1/n for all y ∈ Yn
and t ≥ n− 1. Thus, ‖f(y)(1⊗ p(γ(y)−1))− f(y)‖ ≤ γ(y) for all y ∈ Y . Note that



5. Ψ-EQUIVARIANT STABILITY OF EXTENSIONS 727

p(t) ≤ qn :=
∨

1≤k≤n pk ∈ K, p(t) = p(t)qn and p(t)rn − p(t) = p(t)(qnrn − qn) for

t ≤ n.

There is a non-degenerate *-representation λ : D := O2 ⊗K→ L(`2) ∼=M(K).

We identify d ∈ D with λ(d) and M(K) with L(H) (for simplicity of notations).

Then we find projections rn ∈ D with 0 6= r1 ≤ r2 ≤ · · · , rn 6= rn+1 and

‖qnrn − qn‖ < 1/n for t ≤ n because qn ∈ K. By Lemma 5.1.2(iii), there exists a

norm-continuous path t 7→ U(t) from R+ into the unitaries in 1 +D ⊂M(K) such

that U(t)r1U(t)∗ ≥ rn+1 for t ≥ n.

Since r1 and 1 − r1 ≥ r2 − r1 ∈ D \ {0} are properly infinite projections in

M(K), there are isometries S0, T0 ∈ M(K) with S0S
∗
0 = 1− r1 and T0T

∗
0 = r1. It

follows ‖p(t)U(t)S0‖ ≤ ‖p(t)−p(t)rn+1‖+‖rn+1U(t)S0‖ < 1/n+ 1 for t ∈ [n, n+1],

because rn+1U(t)(1− r1) = 0 for t ≥ n. Thus, ‖p(γ(y)−1)U(γ(y)−1)S0‖ ≤ γ(y) .

We define a norm-continuous map y 7→ V (y) from Y into the unitary elements

of 1 ⊗M(K) ⊂ M(B ⊗ K) by V (y) := 1 ⊗ U(γ(y)−1) for y ∈ Y . Then S1(y) :=

V (y)(1⊗S0) and T1(y) := V (y)(1⊗T0) define isometries S1, T1 ∈ Cb(Y,M(B⊗K))

with S1S
∗
1 + T1T

∗
1 = 1 and, for y ∈ Y ,

‖f(y)S1(y)‖ ≤ ‖f(y)(1⊗ p(γ(y)−1))− f(y)‖+ ‖p(γ(y)−1)U(γ(y)−1)S0‖ ≤ 2γ(y) .

Thus, fS1 ∈ C0(Y,B⊗K), i.e., gs1 = 0 and s∗1Cs1 = {0} for s1 := S1+C0(Y,B⊗K).

Now we proceed as in the proof of Proposition 5.5.14: The isometries S := S2
1 ,

T := T1T
∗
1 + S1T1S

∗
1 and s := S + C0(Y,B ⊗K) are as stipulated.

(ii): By (i) with C := ϕ(D), Proposition 5.5.12 applies to ϕ, because ϕ domi-

nates zero.

(iii) follows from (i) by Proposition 4.3.6(ii), with Cb(Y,M(B))/C0(Y,B) in

place of E.

(iv): Let S, T ∈ Cb(Y,M(B)) the isometries from part (i), and let s := S +

C0(Y,B),

t := T + C0(Y,B), t1 := t and tn := stn for n = 2, 3, . . .. Then s, t, tn are

isometries in Cb(Y,M(B))/C0(Y,B) with t∗s = 0, t∗mtn = 0 for m < n, and t1ct
∗
1 =

tct∗ = c for all c ∈ C. There is a *-morphism ρ : C ⊗K→ Cb(Y,B)/C0(Y,B) with

ρ(c⊗ pjk) = tjct
∗
k for canonical matrix units pjk in K. We get ρ(c⊗ p11) = tct∗ = c

for c ∈ C . �

Compare here also [499, thm. 2.4.]: Let A and B be separable C *-

algebras such that B⊗K has the CFP (= Corona Factorization Property). Suppose

that there is an extension of C *-algebras of the form 0→ B → E → A→ 0. Then

E is stable if and only if A and B are stable.

(E.K.: It is clear that A and B must be stable if E ∼= E ⊗ K . Does

Prop. 5.5.12(iii) apply in the opposite direction?

Implies “B is s.p.i. and σ-unital” that B ⊗K has the CFP?)



728 5. GENERALIZED WEYL–VON NEUMANN THEOREMS

Corollary 5.5.16. Extensions 0 → B → E → A → 0 of stable σ-unital

C*-algebras A by σ-unital purely infinite stable C*-algebras B are stable.

Proof. Suppose that B is a stable, σ-unital and purely infinite C *-algebra,

that A is a stable σ-unital C *-algebra, and that ϕ : A→ Q(B) is a C *-morphism,

i.e., is the Busby invariant of an extension of A by B.

We show that the criterion (iii) of Proposition 5.5.12 is satisfied:

Let C := ϕ(A), E := π−1
B (C), a ∈ E+, b ∈ B+ a strictly positive contraction in

B, let ε ∈ (0, 1), and put δ := ε/5 . The annihilator D := Ann((a− δ)+) of (a− δ)+

in E generates a closed ideal J of E, such that J = E or E/J is unital and πJ(a)

is invertible. Then E/(J + B) ∼= C/πB(J) is a quotient of C. It is isomorphic to

A/ϕ−1(πB(J)) and is unital (if non-zero). Since A is stable it has no unit. Thus

ϕ(A) = πB(J), i.e., J +B = E and B/(B ∩ J) ∼= E/J is unital or zero. Since B is

stable and E/J is unital we get B = B ∩ J ⊂ J .

The hereditary C *-subalgebra D ∩ B generates B ∩ J = B as a closed ideal

of B, because B is an ideal of E. Therefore, there exist d1, . . . , dn ∈ B with

‖b −
∑
d∗jdj‖ < δ and djd

∗
j ∈ (D ∩ B). Let c :=

∑
djd
∗
j , g := d∗jdj . Since B is

purely infinite, there exist f ∈ B with ‖f∗cf − g‖ < δ. It follows, that d := c1/2f

satisfies ‖d∗d − b‖ < 2δ < ε and ‖d∗ad‖ < ‖d‖2δ < ε, i.e., the stability criterion

(iii) of Proposition 5.5.12 applies. �

Remark 5.5.17. Suppose that A and B are stable and σ-unital, and that

ϕ : A⊗O2 → Q(B) is a *-monomorphism. The above results contain the following

observations: (i) The extension E := π−1
B (ϕ(A⊗O2)) is stable if and only if E0 :=

π−1
B (ϕ(A⊗ 1)) is stable.

(This is because ϕ(A⊗1) is orthogonal to the range of an isometry inM(B)/B

if and only if ϕ(A⊗O2) is orthogonal to it. Recall that E is always stable if B is

purely infinite by Corollary 5.5.16.)

(ii) If E is stable, then there is a copy of O2 unitally contained inM(B), such that,

for a ∈ A and c ∈ O2,

ϕ(a⊗ 1)πB(c) = ϕ(a⊗ c) = πB(c)ϕ(a⊗ 1) .

(Indeed, thenM(E) contains a unital copy of O2 = C∗(s1, s2), and the epimor-

phism λ := ϕ−1πB |E : E → A⊗O2 extends to an epimorphism M(λ) from M(E)

onto M(A⊗O2), because λ is surjective and E and A⊗O2 are both σ-unital, i.e.,

one can apply Proposition ??.

(find precise cite! But it is also easy to check...) Pedersen Thm.:

M(A)→M(A/J) surjective if A is σ-unital.

There is a unitary V ∈ M(A ⊗ O2) with V (1 ⊗ sk) = M(λ)(sk). Since the

unitary group of M(A⊗O2) is connected by Remark ??,

Cuntz-Higson Theorem:

U(M(A)) = U0(M(A)) if A stable and σ-unital
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there is a unitary U ∈ M(E) ⊂M(B) with M(λ)(U) = V . One can see, that

C∗(U∗s1, U
∗s2) ∼= O2 is a copy of O2 in M(B) with the desired property.)

(iii) If E0 is stable and ϕ0(a) := ϕ(a⊗1), then (ii) is equivalent to [ϕ0] = [ϕ0]+[ϕ0]

in [Hom(A,Q(B)], i.e., ϕ0 is unitarily equivalent to ϕ0 ⊕ ϕ0 by a unitary in Q(B).

Question 5.5.18. Is every extension

0→ B → E → C0((0, 1],O2 ⊗K)→ 0

stable if B is stable and separable? (Compare Remark 5.5.17(i).)

6. W-vN type results for weakly nuclear maps

We deduce from Propositions 5.4.1 and 4.3.5(i) a proof of Kasparov’s more

general version, cf. Corollary 5.6.1, of Voiculescu’s generalized Weyl–von Neumann

theorem. It is implicitly contained in [404], but is not explicitly stated there.

Voiculescu’s generalization of the Weyl-von Neumann theorem reads now as a spe-

cial case of Kasparov’s generalization. The proof of Corollary 5.6.1 shows that we

could deduce Corollary 5.6.1 as a logical sum of Voiculescu’s generalized Weyl–von

Neumann theorem and of Theorem 5.6.2.

Let A a (non-zero) separable C *-algebra and B a stable σ-unital C *-algebra.

We have seen in Chapter 3 that the universal *-monomorphism HC : A→M(B) for

the matrix operator-convex cone C := CPnuc(A,B) of completely positive nuclear

maps from A into B is given up to unitary homotopy by the following universal

construction:

Let d : A →M(K) ∼= L(`2) any faithful non-degenerate *-representation of A,

in sense of Remark 5.1.1(i).

We apply the infinite repeat δ∞ of Remark 5.1.1(8) to d, i.e., replace d by

δ∞ ◦ d to make sure that d is in general position, i.e., that d(A)∩K = {0} and that

d(A)K = K. A crucial property is that this “general position” implies that d and

δ∞ ◦ d are unitarily homotopic.

The *-representation d is unital if A is unital. If A is not unital, then the

extension given by the Busby invariant

β0 := πK ◦ d : A→M(K)/K

dominates zero in sense of Definition 4.3.3. Since B is stable there is up to

unitary equivalence (and up to unitary homotopy) a unique non-degenerate *-

monomorphism H0 : K→M(B)

Hilbert B-module that the generating

Corollary 5.6.1 (Kasparov,Voiculescu,Weyl–von-Neumann). Suppose that

B is a σ-unital C*-algebra, I : M(K)→M(B) a strictly continuous unital *-mono-

morphism and C ⊂M(B) a separable C*-subalgebra such that C ⊂ I(M(K)).

Let T : C →M(B) be a completely positive contraction, such that
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(α′) T (C ∩ I(K)) = 0,

(β′) the completely positive contraction T ′ : C/(C ∩ I(K))→M(B) is weakly

nuclear, and

(γ) T (c) = 1 for c ∈ C ∩ (1 + I(K)) (if 1M(B) ∈ C + I(K)).

Then:

(i) idC asymptotically dominates T in the sense of Definition 5.0.1.

(ii) If, moreover, T : C →M(B) is a C*-morphism, then idC asymptotically

absorbs T , i.e., idC ⊕T : C →M(B) and idC are unitarily homotopic in

the sense of Definition 5.0.1.

Proof. To keep notations simple, we identify the elements of M(K) and

I(M(K)) with help of I. (In fact, there is a σ-unital C *-algebra A and an iso-

morphism λ from A⊗K onto B such that I(k) =M(λ)(1M(A)⊗ k) for k ∈ K, and

C lives in 1⊗M(K).)

The strict continuity of the unital *-monomorphism I implies that KB is dense

in B. M(K) contains a copy of O∞ with generators given by isometries t1, t2, . . .

with t∗j tk = δjk1 such that
∑
tkt
∗
k converges strictly to 1M(K) = 1M(B). By Remark

5.1.1(8), it follows that B is stable.

The conditions (β′) and (γ) allow us to reduce the proof to the case where C

is unital and contains K and that T is unital with T (K) = 0 : By assumption (β′),

T ′ : C/(C ∩K)→M(B) is weakly nuclear. Replace C by C +K if 1M(B) ∈ C +K.

Then T ′ is unital by assumption (γ). Thus we can replace T by T ′πK, because

(C +K)/K ∼= C/(C ∩K).

If 1M(B) is not in C +K, then (C +K+C1)/K is naturally isomorphic to the

(outer) unitization of C/(C∩K) and the unital extension T1 of T ′ to (C+K+C1)/K
is again completely positive and weakly nuclear by Lemma B.7.7(i). Thus we can

replace C by C +K+ C1 and T by T1πK.

Thus C and V := δ∞ ◦ T satisfy the condition (α) of Proposition 5.4.1, where

we take a strictly positive element h of K ⊂ C. The new C and V are now

unital. Moreover, V is a unital C *-morphism if the original T : C → M(B) is a

C *-morphism.

Next, we shall show that C and V satisfy condition (β) of Proposition 5.4.1.

Then (i) and (ii) will follow from parts (ii), (iv) and (iii) of Proposition 5.4.1.

Let ρ : C/K → M(K) ∼= L(H) be given by a faithful unital *-representation

of the separable unital C *-algebra C/K over a separable Hilbert space H. We

define C1 := δ∞(ρ(C/K)) and a unital completely positive map V1 : C1 → M(B)

by V1(e) := δ∞(T ′(c)) for e ∈ C1, c ∈ C/K, e = δ∞(ρ(c)). Then, by Remark

3.1.2(iii), V1 is weakly nuclear and V = δ∞ ◦◦T = V1γ, where γ := δ∞ ◦ρ◦πK is a

unital C *-morphism from C ⊂ M(K) onto C1 ⊂ M(δ∞(K)) with kernel K. Note

that M(δ∞(K)) = δ∞(M(K)) ⊂M(K) by our choice of O∞.
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By Lemma 5.1.2(ii), the commutant of δ∞(M(K)) in M(B) contains a copy

of O2 unitally. D := C∗(O2 · δ∞(K)) ∼= O2 ⊗ K is a simple purely infinite C *-

subalgebra of M(B) such that δ∞(M(K)) ⊂ M(D) and δ∞(K)D is dense in D.

Thus C1D ⊂ D. DB contains δ∞(K)B and is therefore dense in B.

Let c1, . . . , cn be contractions in C and ε > 0. Since C1 is a separable subalgebra

ofM(D) ⊂M(B) and since, for a ∈ B+, the map e ∈ C1 7→ aV1(e)a is nuclear, by

Proposition 3.2.15(i), there exists b ∈ B with ‖b∗γ(cj)b − aV1(γ(cj))a‖ < ε/3 for

j = 1, . . . , n.

We find a projection p ∈ K with 6‖b− pb‖ < ε/(1 + ‖b‖), because KB is dense

in B.

By Lemma 2.1.22, we find a partial isometry v ∈ K such that v∗v = p and

3‖S(cj) − v∗cjv‖ < ε/(‖b‖2 + 1) for j = 1, . . . , n , where the unital completely

positive map S : C → pKp ∼= Mk is given by S(c) := pγ(c)p , k := Dim(p`2) and

satisfies S(K) = 0 . Let d := vb . Since V (cj) = V1(γ(cj)) , the triangle inequality

gives that ‖d∗cjd− aV (cj)a‖ < ε for j = 1, . . . , n . Thus C and V := δ∞ ◦T satisfy

also condition (β) of Proposition 5.4.1. �

We study now weakly nuclear liftable semi-split essential extensions of sep-

arable C *-algebras A by simple purely infinite σ-unital stable algebras B. The

corresponding generalized Weyl–von Neumann Theorem 5.6.2 implies that the ex-

tension is split if its class in Extnuc(A,B) is zero. The pure infiniteness and the

weak nuclearity of the semi-split map is necessary in this statement, cf. Corollaries

5.7.1 – 5.7.3.

The following generalized Weyl–von Neumann Theorem 5.6.2 is in view of

Proposition 5.4.1 almost equivalent to the “local” result in Corollary 3.10.14.

If B nuclear then every unital completely positive contraction T with T (C ∩
I(K)) = {0} respectively T (C ∩D) = {0} can be considered in Corollary 5.6.1 and

Theorem 5.6.2.

Our Theorem 5.6.2 is simply a corollary of Proposition 3.2.13, Proposition 5.4.1,

and Lemma B.7.7 together. (We call it a theorem, because of its importance.)

Theorem 5.6.2 (Generalized Weyl–von Neumann Theorem). Suppose that B

is σ-unital and stable, and that D ⊆M(B) a

simple purely infinite

C*-subalgebra of M(B) such that DB is dense in B.

Let C be a separable C*-subalgebra ofM(B) with CD ⊆ D and T : C →M(B)

a completely positive contraction such that

(α′) T (C ∩D) = 0,

(α′′) C ∩D generates a corner of D,

(β′) T : C →M(B) is weakly nuclear, and

(γ) T (C ∩ (1 +D)) ⊆ {1M(B)}.
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Then

(i) idC asymptotically dominates T (in the sense of Definition 5.0.1).

(ii) If, moreover, T : C →M(B) is a C*-morphism then idC asymptotically

absorbs T , i.e., idC ⊕T : C →M(B) and idC are unitarily homotopic in

the sense of Definition 5.0.1.

Proof. The natural extension T1 : d+ c 7→ T (c) of T to D + C is still weakly

nuclear by Lemma B.7.7(ii) and by assumptions (α′), (α′′) and (β′).

It is unital by assumption (γ), if 1M(B) = 1M(D) is in C+D. If 1M(B) is not in

C+D, then the unital extension T2 : d+z1+ c 7→ T (c)+z1 is again weakly nuclear

by Lemma B.7.7(i). The extension T1 (respectively T2) is a unital C *-morphism if

T is a C *-morphism from C into M(B).

Thus, we can assume that C and T are unital and that the natural extension

of T to C +D is weakly nuclear.

Let b ∈ B+ a strictly positive element of B. We find a sequence d1, d2, . . .

in D+ such that dnb tends to b, because DB is dense in B. Let C1 ⊂ C + D

be the separable unital C *-subalgebra of M(D) which is generated by C, 1 and

{d1, d2, . . .}, and let T1 be the natural extension of T to C1. Then C1, V := δ∞ ◦T1

and a strictly positive element h of C1∩D fulfills condition (α) of Proposition 5.4.1.

We show that condition (β) of Proposition 5.4.1 is also satisfied:

Since C1 is a separable subalgebra of M(D) ⊂ M(B) and since, for a ∈ B+, the

map c ∈ C1 7→ aV (c)a is nuclear, by Proposition 3.2.15(i), for c1, . . . , cn ∈ C1 and

ε > 0, there exists d ∈ B with ‖d∗cjd− aV (cj)a‖ < ε .

Thus C1 and V := δ∞ ◦ T1 are unital and satisfy the assumptions (α) and

(β) of Proposition 5.4.1 and the assumptions of Propositions 5.4.1(ii) and 5.4.1(iv).

Hence (i) follows from Proposition 5.4.1(ii) and (iv).

Moreover, V is a C *-morphism if the original T : C →M(B) is a C *-morphism,

and (ii) follows then from Proposition 5.4.1(iii). �

We explain now the important role of exactness in our consideration, and

why we need exactness at certain places as assumptions for generalized Weyl–von-

Neumann theorems.

Corollary 5.6.3. A C*-algebra A is exact if and only if, for every σ-unital

C*-algebra B, every weakly nuclear map V : A→M(B) is nuclear.

Proof. Suppose that each weakly nuclear V : A → M(B) is nuclear if B

is σ-unital. Let A ⊂ L(H) for some Hilbert space H and C ⊂ A a separa-

ble C *-subalgebra of A. Then there exists a faithful *-representation d : C →
M(K) ∼= L(H1) of C on a separable Hilbert space H1. Since M(K) is injective,

by Arveson extension theorem, [43], d extends to a completely positive contrac-

tion V : A → M(K). B := K is σ-unital and nuclear. Thus V is weakly nuclear

and therefore nuclear by assumption. d−1 : d(C) → L(H) extends to a completely



6. W-VN TYPE RESULTS FOR WEAKLY NUCLEAR MAPS 733

positive contraction T : M(K) → L(H) by injectivity of L(H). TV is nuclear and

TV (a) = a for a ∈ C. Thus the inclusion map A ↪→ L(H) is nuclear. But this is

equivalent to the exactness of A, cf. Remark 3.1.2(ii).

Now suppose conversely that A is exact and that B is σ-unital and V : A →
M(B) is a weakly nuclear contraction.

We can assume that A and V are unital: If A is not unital, then V1(a+ z1) =

V (a) + z1 is a unital extension to the unitization of A. The u.c.p. mapV1 is still

weakly nuclear by Lemma B.7.7(i), and the unitization of A is again exact.

If A is unital, then we take a state ψ on A and consider W (a) = V (a)+ψ(a)(1−
V (1)) for a ∈ A. W is unital and weakly nuclear. The tensor criteria in Remark

3.1.2(i) shows that V is nuclear if W is nuclear.

It suffices to approximate V on unital separable subalgebras C of A by unital

nuclear maps. The subalgebras of A are again exact by Remark 3.1.2(ii) and by

the Arveson extension theorem. Therefore, by Remark 3.1.2(ii), H0 : C →M(K) ⊂
M(B ⊗ K) is nuclear for a faithful unital *-monomorphism H0 : C →M(K) with

H0(C) ∩ K = {0}, e.g. take H0 := δ∞ ◦ ρ for some unital faithful *-representation

ρ : C → L(H).

c ∈ C 7→ V (c)⊗ 1M(K) ⊂M(B ⊗K)

is still weakly nuclear. Therefore, by Corollary 5.6.1, there exists a sequence of

isometries Sn ∈M(B ⊗K) such that limn ‖V (c)⊗ 1− S∗nH0(c)Sn‖ = 0 for c ∈ C.

The nuclearity of H0 implies that V |C is nuclear. Thus V : A→M(B) is nuclear,

because the nuclearity is a “local” property of V by Definition 3.1.1. �

Let A a separable C *-algebra and ρ : A → L(H) ∼= M(K) a faithful non-

degenerate *-representation in general position, i.e., ρ(A)∩K = {0}. If B is stable,

the composition H : A → M(B) of ρ with M(K) ↪→ M(B) is a non-degenerate

*-monomorphism with H(A) ∩ B = {0}, and H is weakly nuclear. Let H0 :=

πB ◦ H the corresponding *-monomorphism from A into Qs(B) = Q(B). We use

the notation [H0] for the unitary equivalence class of H0 : A→ Qs(B) by unitaries

in Qs(B).

Corollary 5.6.4 (Equivalence and Dominance in M(B) and Qs(B)). Sup-

pose that B is σ-unital and stable, Di ⊂ M(B) are σ-unital stable C*-subalgebra

with DiB dense in B, for i = 1, 2, and that A is a separable C*-algebra which is

unital or is stable. Furthermore, assume that (for i = 1, 2) Di is simple and purely

infinite or Di
∼= K.

Further let H and H0 be as above.

(i) Let h1, h2 : A → Qs(B) be *-monomorphisms such that h1(A) ⊂
πB(M(D1)), h1(A) ∩ πB(D1) = 0, and that h2 has a completely positive

weakly nuclear lift T2 : A → M(B). (Suppose in addition that that

hi(1) = 1 for i = 1, 2, if A is unital.)

Then h1 dominates h2 in Qs(B).
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(ii) Let hi : A → M(Di) ⊂ M(B) be weakly nuclear *-monomorphisms such

that hi(A)∩Di = 0 for i = 1, 2. (Suppose, in addition, that hi(1) = 1M(B)

for i = 1, 2 if A is unital.)

Then h1 and h2 are unitarily homotopic in the sense of Definition

5.0.1.

(iii) S(H0, A,Q
s(B)) is the ⊕-semigroup of the unitary equivalence classes of

those C*-morphisms from A into Qs(B) that have a weakly nuclear com-

pletely positive lift, and which are unital if A is unital.

(iv) If B itself is simple and purely infinite, then, for every *-monomorphism

h from A into Qs(B), the Cuntz sum h ⊕H0 is unitarily equivalent to h

in Qs(B). (Here h is assumed to be unital, if A is unital.) In particular,

S(H0, A,Q
s(B)) ∩ [Mon(A,Qs(B))] = G(H0, A,Q

s(B)) .

Proof. In the stable case the unitized monomorphisms are still monomor-

phisms. Therefore it suffices to consider the unital case.

(i): Note that πBT2 = h2. Consider a unital separable C ⊂ M(D1) such

that C contains a strictly positive element of D1 and πB(C) = h1(A). Let T :=

T2h
−1
1 πB |C. T is weakly nuclear. Thus Theorem 5.6.2(i) or Corollary 5.6.1(i)

applies. Let s := πB(S(1)). Then s is an isometry in Qs(B) and s∗h1(·)s = h2.

(ii): Let Ck the C *-algebra which is generated by hk(A) and a strictly positive

element of Dk, (k = 1, 2). Then there are unique epimorphisms ψk from Ck onto

A with ψkhk = idA.

Let T1 := h2ψ1 and T2 := h1ψ2. Then Ck and Tk : Ck → M(B) satisfy

the assumptions of Theorem 5.6.2(ii) or of Corollary 5.6.1(ii). Thus we find norm

continuous maps t 7→ Uk(t) into the unitaries ofM(B) such that, for a ∈ A, t ∈ R+,

(hk(a)⊕ Tk(hk(a)))− Uk(t)∗hk(a)Uk(t) ∈ B

and

lim
t→∞

‖(hk(a)⊕ Tk(hk(a)))− Uk(t)∗hk(a)Uk(t)‖ = 0.

Since T1h1 = h2 and T2h2 = h1, we get the desired result with the unitaries

U(t) = U1(t)V0U2(t)∗, where V0 is a unitary with V ∗0 (a⊕ b)V0 = b⊕ a.

By Chapter 4, (iii) and (iv) are special cases of (i). �

7. W-vN type results for simple p.i. algebras

The Part (ii) of below given Corollary 5.7.1 says among others that the ab-

sorption criteria of G. Elliott and D. Kucerovsky [264] (cf. [310] for the non-unital

case) is satisfied for all pi-sun algebras.

Corollary 5.7.1. Let B a nonzero σ-unital C*-algebra and t1, t2 isometries

in M(B ⊗K) with t1t
∗
1 + t2t

∗
2 = 1.

The following conditions on B are equivalent:
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(i) B is stably isomorphic to a unital purely infinite simple C*-algebra or to

C;

(ii) For every unital separable C*-subalgebra C of M(B ⊗ K) such that C ∩
(B⊗K) contains a strictly positive element of B⊗K and for every unital

weakly nuclear map V : C →M(B⊗K) with V (C ∩ (B⊗K)) = {0} there

exists a sequence (sn) of isometries in M(B ⊗K) with

(1) V (b)− s∗nbsn ∈ B ⊗K for all b ∈ C,

(2) ‖V (b)− s∗nbsn‖ → 0 for all b ∈ C;

(iii) For every unital separable C*-subalgebra C ofM(B⊗K) such that C∩(B⊗
K) contains a strictly positive element of B⊗K, and for every unital weakly

nuclear C*-morphism h : C → M(B ⊗ K) with h(C ∩ (B ⊗ K)) = {0},
there exists a sequence (un) of unitaries in M(B ⊗K) with

(1) b⊕t1,t2 ϕ(b)− u∗nbun ∈ B ⊗K for all b ∈ C,

(2) ‖b⊕t1,t2 ϕ(b)− u∗nbun‖ → 0 for all b ∈ C,

for some pair s1, s2 of generators of O2 in M(B ⊗K).

Proof. The implication (i)⇒(ii) follows immediately from Theorem 5.6.2(i)

and Corollary 5.6.1(i).

(ii)⇒(iii): If V is unital and weakly nuclear then δ∞ ◦ V is again unital and

weakly nuclear and has the same kernel as V . Therefore the proof of Lemma

5.1.2(vi) can be modified to obtain a proof of the implication (ii)⇒(iii) here. One

has only to replace E there by `∞(M(B ⊗ K))/c0(B ⊗ K) here. Then we apply

Proposition 4.3.5(i) as there.

(iii)⇒(i): By Corollary 2.2.11(i), it suffices to show that the stable corona

Qs(B) :=M(B⊗K)/(B⊗K) of B is simple. This follows already from Part (iii,1):

Let a be a positive element of Qs(B) with ‖a‖ = 1. We want to find an element

d such that d∗ad = 1. This shows than that Qs(B) is not only simple but is also

purely infinite.

Let χ be a character on C∗(a) with χ(a) = 1, b ∈ M(B)+ a contraction with

πB(a) and q ∈ B ⊗ K a strictly positive element of B ⊗ K. Now let C := C∗(b, q)

be the C *-algebra generated by b and q. Then C ∩ (B ⊗K) contains q and we can

apply Part(iii,1). The quotient map π from M(B ⊗ K) onto Qs(B) maps C onto

C∗(a) Let us define h : C →M(B⊗K) as h(c) = χ(π(c)) · 1. Clearly h is a nuclear

C *-morphism and annihilates C ∩ (B ⊗ K). Hence by Part (iii, α) there exists a

unitary u ∈M(B ⊗K) such that

b⊕s1,s2 1− u∗bu ∈ B ⊗K

(recall that h(b) = 1). Recalling the definition of ⊕s1,s2 , we get s1bs
∗
1+s2s

∗
2−u∗bu ∈

B⊗K. Hence 1−s∗2(u∗bu)s2 belongs to B⊗K. So, by taking d = π(us2), d∗ad = 1

in Qs(B) as desired. �

Now we show a result that is stronger than the result pointed out in the proof

of the implication (iii)⇒(i) of Corollary 5.7.1:
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Corollary 5.7.2. If B is σ-unital, simple and purely infinite and if A is

a simple separable unital C*-subalgebra of the stable corona Qs(B) such that the

inclusion map A ↪→ Qs(B) has a completely positive lift T : A→M(B ⊗K) which

is weakly nuclear, then A′ ∩Qs(B) is purely infinite.

In particular, A′ ∩ Qs(B) is purely infinite for every simple separable nuclear

C*-subalgebra A ⊆ Qs(B) that contains the unit element of Qs(B).

Proof. By Corollary 5.7.1(iii), idA dominates the restriction of h0 to A ∼= A⊗1

where h0 : A ⊗ O2 → Qs(B) is a weakly nuclear liftable unital *-monomorphism,

e.g. coming from a faithful unital *-representation k : A⊗O2 → L(H) ∼=M(K).

Thus A′ ∩Qs(B) is not isomorphic to C.

Let V : A → M(B ⊗ K) be a weakly nuclear unital completely positive map

with π ◦V = idA. If C is a unital separable C *-subalgebra of Qs(B) and h : C → A

is a unital C *-morphism, then V ◦h is a weakly nuclear lift of h. Thus by Corollary

5.7.1(ii) there exists an isometry s ∈ Qs(B) with h(c) = s∗cs for c ∈ C.

This shows that A ⊂ Qs(B) satisfies the criteria in Proposition 2.2.5(v), and,

therefore, A′ ∩Qs(B) must be simple and purely infinite. �

Next stable absorption theorem characterizes the unital nuclear purely infinite

simple algebras B and B = C as the only C *-algebras by the “naive” one-to-one

generalization of the classical Weyl–von-Neumann theorem. It shows that a useful

more general generalization of the WvN-theorem needs more elaborate assumptions

and formulations, e.g. as ours.

Corollary 5.7.3. For a σ-unital C*-algebra B the following properties (i)

and (ii) are equivalent:

(i) B is stably isomorphic to C or is stably isomorphic to a simple purely

infinite unital nuclear C*-algebra A.

(ii) For every unital separable C*-algebra C ⊂ M(B ⊗ K) and every unital

C*-morphism h : C →M(B ⊗K) with h
(
C ∩ (B ⊗K)

)
= 0 there exists a

unitary U ∈M(B⊗K) such that c ⊕h(c)−U∗cU ∈ B⊗K for all c ∈ C.

Proof. (i)⇒(ii): Let E := B ⊗ K. Every C *-morphism k : F → M(E) is

weakly nuclear, because E is nuclear. Therefore, in this special case, the compo-

sition C + E → (C + E)/E ∼= C/(C ∩ B) → M(B) is again weakly nuclear if

h(C ∩ (B ⊗K)) = 0, and we can assume w.l.o.g. that C contains a strictly positive

element of E. Then (ii) follows from Corollary 5.7.1(iii,1).

(ii)⇒(i): We modify the proof of the implication (iii)⇒(i) of Corollary 5.7.1

as follows. Let C := C∗(b, 1), with b as there. Then we don’t use the assumption

that B is σ-unital, that we have used in the proof of Corollary 5.7.1 to check the

conditions in Corollary 2.2.11(i), because we can do here the same with every unital

separable C ⊂M(B ⊗K) by our assumptions in (ii).
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By Corollary 2.2.11(i), this gives that B is σ-unital simple and purely infinite

and thus is stably isomorphic to a simple purely infinite unital C *-algebra A by

[172] and by L.G. Brown’s stable isomorphism theorem (cf. Corollary 5.5.6).

Let A unital with A⊗K ∼= B⊗K and let D be a separable unital C *-subalgebra

of A and R : D → L(H) ∼= 1A ⊗ M(K) a faithful unital *-representation with

R(D) ∩ K(H) = 0. Then (ii), for C := R(D), implies that there is an isometry

S ∈M(A⊗K) with

S∗(1A ⊗R(d))S − d⊗ 1M(K) ∈ A⊗K .

If we use a sequence of states ψn on K which converges weakly to zero, then

we get that D ↪→ A is a point-wise limit of the unital completely positive

maps d 7→ (idA⊗ψn)(S∗1A ⊗ R(d)S), which are nuclear. Here we have to

extend (idA⊗ψn) : A ⊗ K → A naturally to a unital completely positive map

M(A⊗K)→ A. Thus A is nuclear. �

Remark 5.7.4. Above considerations show that the range of generalized Weyl–

von Neumann theorems seems to be very limited almost to extensions by K or stable

simple purely infinite algebras.

But if we consider special situations, i.e., additional requirements on C and V

or h, then Proposition 5.4.1 allows to deduce other types of generalizations of the

Weyl–von Neumann theorem in the spirit of Voiculescu’s generalization of BDF-

theory, e.g. some equivariant cases. Here we state a general result inspired by

E. Blanchard [89]. We do not use directly the fundamental conditions (α) and

(β) of the generalised Weyl–von-Neumann theorem but apply more comfortable

assumptions that imply conditions (α) and (β):

Assume that B is σ-unital and stable and that C ⊂ M(B) is unital and sepa-

rable. Let T : C →M(B) a unital completely positive map such that:

(α′) T (C ∩B) = 0 and C ∩B contains a strictly positive element of B;

(β′) For every (non-degenerate) factorial representation ρ : B → L(H) there

exists a net Wτ of inner unital completely positive maps Wτ (a) =
∑
d∗kadk

from N := ρ(B)′′ into N , such that ρ(V (c)) is the point-wise weak limit of

Wτ (ρ(c)) for every c ∈ C, where we have extended ρ naturally to a weakly

continuous homomorphism from B∗∗ ⊃M(B) into N .

(β′′) For every b ∈ B+, c1, . . . , cm ∈ C, ε > 0, n ∈ N there exist s1, . . . , sn ∈
M(B) such that s∗i sj = δij and ‖cksib − sickb‖ < ε for i = 1, . . . , n,

k = 1, . . . ,m.

Then the conclusions (ii), (iii) and (iv) Proposition 5.4.1 hold.

Idea of the proof: Clearly (α′) implies (α) of Proposition 5.4.1.

A combination of a Hahn-Banach separation argument (which yields a ten-

sor product characterization of approximately inner completely positive maps,

cf. Chapter 3 or [443, appendix]) with a modification of the argument in the proof
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of Proposition 2.2.5(iii) shows that (β′) and (β′′) together imply (β) of Proposition

5.4.1 for V := δ∞ ◦ T .

8. Extensions and Ext(C; A,B)

Parts of the proofs of our theorems in Chapter 1 consists in showing that a

certain strong equivalence of extensions (related to the theorem in question) can be

deduced from – in a “formal sense” – considerably weaker equivalence relations on

extensions. In particular, we have to deduce that certain extensions are actually

split ( 17 ). It requires that the extensions that absorb certain split extensions

need to be characterized with help of generalized Weyl–von-Neumann–Voiculescu

theorems. This will be discussed here in this section.

We need urgently the following cases:

(1) B = O2⊗K, A unital and separable (and exact), ϕ ∈ Hom(A,Q(B)) unital

(!) and with (automatically weakly nuclear) unital c.c. split T : A → M(B) with

πB ◦ T = ϕ.

If A is exact, then T is automatically nuclear. Thus, this is then the case if

ϕ : A→ Q(B) is nuclear.

Is there an “elementary way” to find a splitting by C *-morphism?

E.g. it could be that ϕ extends to A⊗O2, i.e., that one can find a unital copy

of O2 in ϕ(A)′∩Q(B) : Then one can take a faithful unital nuclear *-representation

ρ : A → L(`2) =M(K) and define ψ : A → Q(B) by ψ(a) = πB⊗K(1O2
⊗ ρ(a)). ψ

is again nuclear and commutes with a copy of O2 in Q(B).

Then ψ,ϕ 1-step dominate each other (needs a proof). It follows then from

results in Chapter 4, that they are unitary equivalent in Q(B). This defines a

unital splitting C *-morphism for ϕ.

To get such things there are two ways:

Replace A by A⊗O2 (covers the exact case), or try to find a way to prove that

ϕ⊕ ϕ is unitary equivalent to ϕ in Q(B) if A is nuclear. (this should be necessary

to get the desired additional observations in case of nuclear A).

We can attempt to first use that A = O2 ⊗O2 ⊗ · · · has this property (needs

homotopy invariance of Ext(A,O2) ?).

We find every exact C *-algebra as sub quotient of O2 in Q(B), such that each

c.p. lift sits in a copy of B ⊆ V (O2) ∩M(B) for a u.c.p. map V : O2 →M(B).

Get then unital embedding into O2, but first only of extensions of them by B.

Used later:

(1a) If ϕ and ψ : A → Q(B) have unital splits, then ψ and ϕ are unitarily

equivalent by a unitary in Q(B).

Moreover this should be the case if B = O2 ⊗K

17 I.e., is not only stably split after adding a certain split extension.
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One should check if ψ extends to ?????

Because, by Kasparov, Voiculescu, ????

(1b) U(Q(B)) = U0(Q(B)) deduced from K1-injectivity and K1(Q(B)) = 0.

(By property (sq) of Q(B), K∗(M(B)) = 0 and K∗(O2) = 0. Ref. from Chp. 4)

(2) B arbitrary σ-unital, stable strongly p.i. C *-algebra. C given by

H0 : A→M(B)

non-degenerate, A separable and stable, with the property that H0 is unitarily

homotopic to δ∞ ◦H0.

Are δ∞ and δ2
∞ really unitarily homotopic?

Yes, they are, because they are unitary equivalent and each unitary equivalence

causes “homotopy” inM(B) by a norm-continuous path of unitaries inM(B) if B

stable and σ-unital, because then U(M(B)) = U0(M(B)).

It is not clear if one can move them with a path U(t) in the unitaries such that

U(t)∗δ2
∞(H0(a))U(t)− δ∞(H0(a)) ∈ B

for all a ∈ A.

But this should be possible if H0 = δ∞ ◦ h0 for some h0 : A→ B ???

This could be almost possible with a “long” strictly continuous path W (t) with

limW (t) = U for W (t) = exp(h1(t)) · . . . · exp(hn(t)), U = exp(k1) · . . . · exp(kn),

h`(t)→ k` strictly, h`(t)
∗ = −h`(t), k∗` = −k`.

In the corona it does nothing.

Busby invariants in question are:

ϕ : A→ Q(B)

with c.p. splits V : A→M(B): i.e., b∗V (·)b ∈ C for each b ∈ B.

Pre-assumption in trivially graded case:

A and B stable, A separable, B σ-unital, C ⊆ CP(A,B) point-norm closed,

countably generated, non-degenerate m.o.c. cone.

HC : A → B non-degenerate in general position, in 1-1-relation to C, h0 :=

πB ◦HC .

Ext(C; A,B) ∼= kernel of K0(h0(A)′ ∩Q(B))→ K0(Q(B)) .

This is, because we consider only the zero-dominating maps in S(h0;A,Q(B)), i.e.,

where the extension is stable.

Since the σ-unital B is stable, and A is stable and σ-unital, it means equiv-

alently that we consider only stable extensions of A with B, by Proposition ??.
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Alternatively: Classes of projections p ∈ M(B) with [p, h0(a)] ∈ B for all

a ∈ A, equivalence modulo B in h0(A)′ ∩ Q(B) (alternatively: isometries T with

TT ∗ = p, T ∗T = p′, T commutes mod B with h0(A))

Unitary equivalence classes [ϕ] by unitaries in πB(U(M(B))) = U0(Q(B)) de-

serve as elements as elements of SExt(C;A,B).

SExt(C;A,B) := S(πB ◦H0 ; A,Q(B)).

implies Ext(C;A,B) ∼= Gr(SExt(C;A,B))

Needs “absorbing elements”.

Or / Respectively, other (not equivalent) definition ????:

Ext(C;A,B) := [πB ◦H0] + SExt(C;A,B)

The class [πB ◦H0] deserves as a zero element.

The H0 for C := CPnuc(X;A,B), respectively C := CPnuc(A,B), and (if A and

B are both separable) C := CPnuc(A,B) should be given.

(3) Specify the “nuclear cases” for A unital, exact, and separable, and B simple

s.p.i., σ-unital, stable and separable.

Then Qs(B) = M(B)/B is simple and p.i. If ϕ,ψ : A → Qs(B) are two

unital nuclear *-monomorphisms. Then there exist isometries S, T ∈ Qs(B) with

S∗ϕ(·)S = ψ and T ∗ψ(·)T = ϕ.

Need that in case B = O2 ⊗ K and separable unital C ⊆ Qs(B) that the unit

of C ′ ∩Qs(B) is properly infinite in C ′ ∩Qs(B), and K∗(C
′ ∩Qs(B)) = 0.

Can follow form ????

In a first step one could consider O2 ⊗O2 ⊗ · · · in place of A.

Implies that O2 ⊗O2 ⊗ · · · is unitally contained in O2 ?

Need: All unital *-endomorphisms of O2 and of O2⊗O2⊗· · · are approximately

inner.

Must be integrated in Chapter 3.

(4) Discuss:

Absorption like Elliott/Kucerovsky (+ correction by J. Gabe)

(5) Existence and uniqueness – up to unitary homotopy – of universal H0 : A→
M(B ⊗K). In which cases of C?

In case of B a pi-sun algebra, there exists only CP(A,B) = CPnuc(A,B).

Then each nuclear c.p. map into Qs(B) is 1-compression of H0 and one has to

determine the K1(πB⊗K ◦H0(A)′ ∩Qs(B)).

The quickest way should be to show that O2
∼= O2⊗O2⊗· · · and that it causes

that for each separable subset X of Q := Qs(O2 ⊗O2 ⊗ · · · ) there exists a copy of

O2 unitally in X ′ ∩Q.

(6??)
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The definition of Elliott/Kucerovsky/Gabe of an “absorbing extension” is:

“An extension that absorbs any weakly nuclear extension”

Ell/Kuc in Pacific MJ: (Unital) “purely large” extensions absorb all (unitally)

weakly nuclear extensions.

The extension 0→ B → E → A→ 0 is “purely large” (by Definition of “purely

large”) if for each x ∈ E \ B the hereditary C *-subalgebra x∗Bx of B contains a

stable hereditary C *-subalgebra D ⊆ x∗Bx that is full in B.

My observation:

Write B ∼= B ⊗K for K := K(`2(N)) The extension E must necessarily absorb the

extension given by Busby invariant πB ◦ h where h : A 3 a 7→ 1M(B) ⊗ δ∞(d(a)) ∈
M(B)⊗ L(`2) ⊆M(B ⊗K) ∼=M(B) .

Here, d : A → L(`2) is any faithful C *-morphism that has the property that

d(A)`2 is not dense in `2.

Full hereditary stable C *-subalgebras D of B ⊗ K contain an in D strictly

positive element e ∈ D+ that is M-vN equivalent in B ⊗ K to a strictly positive

element b ∈ (B ⊗K)+ .

How to use it to show our assumptions for the absorption Theorem ??? for

A ⊆ Qs(B) and (πB ◦ h) : A→ Qs(B)

An (unital) extension 0 → B → E → A → 0 is “(unitally) weakly nuclear” if

there exists a (unital) weakly nuclear c.p. map V : A → E with the property that

πB ◦ V is the Busby invariant of the extension.

Here V is “weakly nuclear” if A 3 a 7→ b∗V (a)b ∈ B is nuclear for all b ∈ B.

(Kucerovsky/Ng, Houston J.Math.32, 2006): Any “full” extension by a σ-unital

stable C *-algebra B with (CFP) is “purely large”.

Here “full” means that each non-zero element of A ⊆ E/B is full in E/B.

Corona factorization property (CFP) (of stable C *-algebras B):

Each full projection P ∈ M(B) is properly infinite in M(B). (P is range of a

isometry in M(B)?)

J. Gabe: Lemma 1.2 :

There exists non-unital purely large extension such that the unitization is not

purely large.

Final Th.??

We recall some basic definitions from the theory of extensions: For every short

exact sequence 0 → B → E → A → 0 of C *-algebras we consider the Busby

diagram

0 // B // E //

��

A //

��

0

0 // B //M(B)
π
// Q(B) // 0
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where Q(B) denotes the corona algebra M(B)/B. The right vertical arrow ϕ ∈
Hom(A,Q(B)) is the Busby invariant of the extension. There is a natural *-

isomorphism f ∈ E 7→ (η(f), ρ(f)) ∈ Eϕ from E onto the pull-back

Eϕ := A⊕ϕ,πBM(B) ⊂ A⊕M(B) ,

where η : E → A is the defining epimorphism of the extension E and ρ(f)b =

ι−1(fι(b)) for f ∈ E, b ∈ B and the defining monomorphism ι : B → E of the ex-

tension. Thus, the extension is (up to natural *-isomorphisms) uniquely determined

by the Busby invariant ϕ ∈ Hom(A,Q(B)).

For ϕ,ψ ∈ Hom(A,Q(B)), we write ϕ ≈ ψ if ψ(a) = π(u)ϕ(a)π(u∗), a ∈ A, for

some unitary u ∈M(B), and call the extensions strongly equivalent . Then Eψ

and Eϕ are isomorphic as C *-algebras by an isomorphism that induces the identity

map on A and the automorphism b 7→ u∗bu of B. That will be applied in the proofs

of Theorems A and B, and we need to establish strong equivalence in some special

cases from essentially weaker definitions of equivalence.

A Busby invariant ϕ ∈ Hom(A,Q(B)) is called trivial if there exists a C *-

morphism ϕ̂ ∈ Hom(A,M(B)) such that the diagram

A

ϕ

��
M(B)

vv

ϕ̂

π
// Q(B)

commutes, i.e., if ϕ is liftable. Then Eϕ is a split extension, because the

natural epimorphism η from Eϕ onto A has a split morphism η̂ : A → Eϕ with

η ◦ η̂ = idA. (We do not suppose that the lift is unital if A and ϕ are unital.)

Now assume thatM(B) contains a copy C∗(s1, s2) of O2 unitally. (This is the

case e.g. for stable B, whereM(B) ∼=M(B⊗K) and Q(B) ∼= Qs(B) := Q(B⊗K).)

Then Q(B) also contains the copy C∗(t1, t2) of O2 unitally, where tk = πB(sk)

(k = 1, 2), and

Cuntz addition ⊕ := ⊕t1,t2 is defined on the classes [ϕ]≈:

see Proposition 4.3.2 and notice that only canonical generators r1, r2 ∈ Q(B) with

property t1r
∗
1 + t2r

∗
2 ∈ πB(U(M(B))) are considered.

We write ϕ ∼ ψ if there exist trivial elements τ1, τ2 ∈ Hom(A,Q(B)) such that

ϕ⊕τ1 ≈ ψ⊕τ2. In particular ϕ ∼ (ϕ⊕0), because ϕ⊕0 = ϕ⊕ (0⊕0) ≈ (ϕ⊕0)⊕0

by Proposition 4.3.2(iv). Thus, we find for the ∼-classes [ϕ]∼ always a representing

element ϕ ∈ Hom(A,Q(B)) such that the inclusion map of the C *-subalgebra

π−1
B (ϕ(A)) in M(B) dominates zero (in the sense of Definition 4.3.3).

The *-morphism ϕ ⊕t1,t2 0 is unitarily equivalent to ψ ⊕t1,t2 0 in Q(B) if and

only if ϕ ⊕ 0 and ψ ⊕ 0 are conjugate by a unitary in the connected component

U0(Q(B)) of 1 in the unitaries U(Q(B)) of Q(B) (cf. Proposition 4.3.6(iv,c)).

Since πB
(
U0(M(B))

)
= U0(Q(B)), it follows that ϕ ∼ ψ if and only if, there

are “trivial” Busby invariants τ1, τ2 ∈ Hom(A,Q(B)) such that ϕ ⊕ τ1 ⊕ 0 and
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ϕ ⊕ τ2 ⊕ 0 are unitarily equivalent in Q(B). Hence, the relation ∼ is compatible

with Cuntz addition.

Recall that Ext(A,B) (or better notated as SExt(A,B)) is the semigroup

Hom(A,Q(B))/ ∼, where the zero element is the class of “trivial elements”. Let

Ext−1(A,B) denote the group of invertible elements in Ext(A,B), i.e., of ∼-classes

of elements ϕ ∈ Hom(A,Q(B)) such that there are ψ, τ1, τ2 ∈ Hom(A,Q(B)) such

that (ϕ⊕ ψ)⊕ τ1 = τ2 and τ1, τ2 are trivial. Notice that V := ((s1)2)∗τ̂2(·)(s1)2 is

a completely positive lift of of ϕ if ϕ is in Ext−1(A,B).

In the remaining part of this section we suppose in addition, that B is stable

and σ-unital and that A is separable and is unital or stable ( 18 ).

Then, conversely, every completely positive liftable ϕ ∈ Hom(A,Q(B)) is “in-

vertible” in Ext(A,B), because for a suitable Kasparov-Stinespring dilation τ̂ : A→
M2(M(B)) ∼= M(B) of a contractive c.p. lift V of ϕ there is ψ ∈ Hom(A,Q(B))

with ϕ ⊕ ψ ⊕ 0 ≈ τ ⊕ 0. Thus, for stable σ-unital B, Ext−1(A,B) consists of the

the ∼-classes of completely positive liftable elements of Hom(A,Q(B)) (with Cuntz

addition).

Moreover, for trivial Busby invariants τ1, τ2 ∈ Hom(A,Q(B)), there exists triv-

ial τ3 ∈ Hom(A,Q(B)) with

τ1 ⊕ τ3 ≈ τ3 ≈ τ2 ⊕ τ3 ,

(Indeed, τ3 := πB ◦ δ∞ ◦ (τ̂1 ⊕ τ̂2) does the job, because, with τ̂3 := δ∞ ◦ (τ̂1 ⊕ τ̂2),

τ̂1⊕τ̂3 and τ̂2⊕τ̂3 are both unitarily equivalent to τ̂3 inM(B) by Lemma 5.1.2(i,ii).)

It follows that h1 ∼ h2 for h1, h2 ∈ Hom(A,Q(B)) if and only if there is trivial

τ ∈ Hom(A,Q(B)) with [h1] + [τ ] = [h2] + [τ ] (and [τ ] + [τ ] = [τ ]) in the semigroup

of unitary equivalence classes ([Hom(A,Q(B))],+).

(Indeed: h1 ∼ h2⇔ there exists liftable τ with h1⊕τ ≈ h2⊕τ ⇒ [h1]+[τ ] = [h2]+[τ ]

⇒ [h1 ⊕ τ ⊕ 0] = [h2 ⊕ τ ⊕ 0] ⇒ h1 ⊕ (τ ⊕ 0) ≈ h2 ⊕ (τ ⊕ 0). The last implication

comes from the K1-injectivity of Q(B).)

Recall that Gr(S) denotes the Grothendieck group of an Abelian semigroup S.

The above observations imply – for σ-unital stable B – that Ext−1(A,B) has the

following equivalent description as Grothendieck group of a certain semigroup:

Let Homl-cp(A,Q(B)) denote the set of Busby invariants ϕ : A → Q(B) that

have a completely positive lift V : A→M(B) ( 19 ). The set of unitary equivalence

classes [Homl-cp(A,Q(B))] of elements in Homl-cp(A,Q(B)) by unitaries in Q(B)

are invariant under Cuntz addition [ϕ]+[ψ] := [ϕ⊕ψ] (where we now have to allow

all generators t1, t2 of a unital copy of O2 in Q(B) for the definition of ⊕).

18 Then ϕ ≈ ψ if and only if there is v ∈ U0(Q(B)) with v∗ϕ(·)v = ψ , because U0(Q(B)) =

πB(U0(M(B))) and the unitary group of M(B ⊗ K) ∼= M(B) is connected by [180]. Moreover,

one needs only that [v] = 0 in K1(Q(B)), because Q(B) is K1-injective if B is stable and σ-unital,

cf. Lemma 5.5.9(ii), or Proposition 4.2.15.
19 i.e., πB ◦ V = ϕ, one can always replace V by a completely positive contraction with this

property
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Ext−1(A,B) is naturally isomorphic to the Grothendieck group

Gr([Homl-cp(A,Q(B))]) of the commutative semigroup ([Homl-cp(A,Q(B))],+).

(Indeed: the isomorphism is induced by the semigroup morphisms

[ϕ]≈ 7→ [ϕ] 7→ [ϕ]Gr

for ϕ ∈ Homl-cp(A,Q(B)), because, if [ϕ]+ [λ] = [ψ]+ [λ] for λ ∈ Homl-cp(A,Q(B))

then there exist κ ∈ Homl-cp(A,Q(B) and a liftable τ ∈ Homl-cp(A,Q(B)) such

that [τ ] = [λ⊕κ], and, therefore ϕ⊕ τ ⊕ 0 ≈ ψ⊕ τ ⊕ 0 . I.e., ϕ ∼ ψ if [ϕ]Gr = [ψ]Gr

for ϕ,ψ ∈ Homl-cp(A,Q(B)).

Conversely, ϕ ∼ ψ implies the existence of a liftable τ ∈ Homl-cp(A,Q(B)) with

ϕ⊕ τ ≈ ψ ⊕ τ , which implies that [ϕ] + [τ ] = [ψ] + [τ ], i.e., that [ϕ]Gr = [ψ]Gr.)

We introduce the semigroup SExtnuc(A,B) and the group Extnuc(A,B) in a

similar way:

Let Homl-nuc(A,Q(B)) denote the elements ϕ ∈ Hom(A,Q(B)) which have weakly

nuclear lifts V : A → M(B). Note that h1 ≈ h2 if and only if u∗h1(·)u = h2 by

a unitary u ∈ U0(Q(B)), that h1 ≈ h2 implies (by definition) that u∗h1(·)u =

h2 for a unitary u ∈ Q(B), and that u∗h1(·)u ∈ Homl-nuc(A,Q(B)) if h1 ∈
Homl-nuc(A,Q(B)) and u ∈ Q(B) is unitary: Indeed, V ′(a) := d∗V (a)d is a weakly

nuclear completely positive lift of u∗h1(·)u if πB(d) = u and V : A → M(B) is a

weakly nuclear lift of h1. Thus, the subset Homl-nuc(A,Q(B)) ⊂ Hom(A,Q(B))

is closed under ≈, unitary equivalence and under ⊕: if ϕ,ψ ∈ Hom(A,Q(B)

have weakly nuclear lifts and χ ≈ ϕ, then χ and ϕ ⊕ ψ have weakly nuclear

lifts. It follows that Cuntz addition ⊕t1,t2 is defined on the set of classes [ϕ]≈

with ϕ ∈ Homl-nuc(A,Q(B)) for t1 = πB(T1), t2 = πB(T2), where the isometries

T1, T2 ∈ M(B) are canonical generators of a copy of O2 in M(B). We write

ϕ ∼nuc ψ if there exist weakly nuclear C *-morphisms H1, H2 : A → M(B) such

that ϕ⊕ (πB ◦H1) ≈ ψ ⊕ (πB ◦H2). Note that h1 ∼nuc h2 implies h1 ∼ h2, and it

happens that h1 ∼ h2 for h1 ∈ Homl-nuc(A,Q(B)) but h2 6∈ Homl-nuc(A,Q(B)) if

B is simple and is not nuclear (We do not know if h1 ∼ h2 implies h1 ∼nuc h2 for

h1, h2 ∈ Homl-nuc(A,Q(B)).) The relation ∼nuc is compatible with the Cuntz ad-

dition on [Homl-nuc(A,Q(B))]≈ and h1 ∼ h2 if and only if there is a weakly nuclear

C *-morphism H : A → M(B) such that h1 ⊕ π ◦ H ⊕ 0 is unitarily equivalent to

h1 ⊕ π ◦ H ⊕ 0 by a unitary in Q(B). Since for every ϕ ∈ Homl-nuc(A,Q(B))

there exists a contractive weakly nuclear c.p. map V : A → M(B) and since

there is a weakly nuclear C *-morphism H : A → M(B) and an isometry S ∈
M(B) with V = S∗H(·)S, we can see that there is ψ ∈ Homl-nuc(A,Q(B)) such

that ψ ⊕ ϕ ⊕ 0 is unitarily equivalent to πB ◦ H ⊕ 0. We get that the quotient

([Homl-nuc(A,Q(B)]∼nuc ,+) of the semigroup [Homl-nuc(A,Q(B))]≈ with respect

to the relation ∼nuc is a group. One can see that this group is isomorphic to

the below defined group Extnuc(A,B) (the nuclear Ext-group in the below given

Definition 5.8.2). The proof of the isomorphism

Homl-nuc(A,Q(B)) / ∼nuc ∼= Extnuc(A,B)
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is almost verbatim the above outlined proof of the natural isomorphism

Ext−1(A,B) ∼= Gr([Homl-cp(A,Q(B))],+).

If A is separable and unital, then we can consider the set Homul-nuc(A,Q(B))

of unital morphisms ϕ : A→ Q(B) in Homl-nuc(A,Q(B)).

The subset Homul-nuc(A,Q(B)) ⊂ Homl-nuc(A,Q(B)) is closed under uni-

tary equivalence (hence under ≈-equivalence) and under Cuntz addition ⊕. The

Grothendieck group

Extu,strong
nuc (A,B) := Gr([Homul-nuc(A,Q(B))]≈ ,+)

can be described equivalently by defining relations ∼u−nuc :

We write ϕ ∼u−nuc ψ if there are unital weakly nuclear C *-morphisms

H1, H2 : A→M(B) such that ϕ⊕ πB ◦H1 ≈ ψ ⊕ πB ◦H2.

Then H3 := δ∞ ◦(H1⊕H2) is unital, weakly nuclear and is unitarily equivalent

to H3 ⊕ H1 and to H3 ⊕ H2, and we get: ϕ ∼u−nuc ψ, if and only if, there is a

unital weakly nuclear *-morphism H : A → M(B) with ϕ ⊕ πB ◦ H ≈ ψ ⊕ πB ◦
H. It follows that ϕ ∼u−nuc ψ implies that [ϕ]Gr = [ψ]Gr in Extu,strong

nuc (A,B).

Conversely, if [ϕ]Gr = [ψ]Gr then there exists χ ∈ Homul-nuc(A,Q(B)) with ϕ⊕χ ≈
ψ ⊕ χ. By definition of Homul-nuc(A,Q(B)), there is a weakly nuclear c.p. lift

W : A → M(B) with πB ◦ W = χ. By a standard argument there are b ∈ B+

with ‖b‖ ≤ 1 and a unital weakly nuclear c.p. map U : A → M(B) such that

W ′(a) := (1 − b2)1/2W (a)(1 − b2)1/2 + bU(a)b satisfies ‖W ′(1) − 1‖ < 1/2. Thus,

V (a) := W ′(1)−1/2W ′(a)W ′(1)−1/2 defines a unital weakly nuclear c.p. map with

πB ◦ V = χ. Let C := CPnuc(A,B)) in the (more general) Corollary 5.4.6. It

shows that there is a unital weakly nuclear C *-morphism H : A → M(B) and

isometries S, T ∈ M(B) with SS∗ + TT ∗ = 1 and V (a) − S∗H(a)S ∈ B for all

a ∈ A. By Lemma 4.3.4(i) (applied to g := πB(SS∗) and h1 := πB ◦H) we get that

SS∗H(a)−H(a)SS∗ ∈ B and SV (a)S∗ + TT ∗H(a)TT ∗ −H(a) ∈ B for all a ∈ A,

i.e., χ⊕s,t ϑ = πB ◦H for ϑ(a) := πB(T ∗H(a)T ) and s := πB(S) and t := πB(T ).

Hence, ϕ⊕ πB ◦H ≈ ψ ⊕ πB ◦H, i.e., ϕ ∼u−nuc ψ.

Remark 5.8.1. Let E denote a unital C *-algebra and let O2
∼= C∗(s1, s2) be

unitally contained in E. (Here we use only the unital embedding ι : O2 ↪→ E up

to unitary equivalence by unitaries in the connected component U0(E) of 1E in the

unitaries U(E) of E.)

We say that a C *-morphism ϕ : A→ E strongly absorbs ψ : A→ E if there

is a unitary u ∈ U0(E) with u∗ϕ(·)u = ϕ⊕s1,s2 ψ, I.e., ϕ ≈ ϕ⊕ ψ, if E = Q(B) for

stable and σ-unital B.

It allows to formulate a useful lifting criterium (that follows straight from the

definitions):

Suppose that a unital C*-morphism ϕ : A → Q(B) strongly absorbs every unital

C*-morphism πB ◦H, where H : A→M(B) is unital and weakly nuclear:

There is a unital weakly nuclear C*-morphism ϕ̂ : A→M(B) with πB ◦ ϕ̂ = ϕ, if

and only if, ϕ is in Homl-nuc(A,Q(B)) and [ϕ]≈ = 0 in Extu,strong
nuc (A,B).
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By the formulas in the proof of part (i) of Proposition 4.3.5, one can see that

ϕ strongly absorbs πB ◦ δ∞ ◦H if and only if, there is an isometry S in M(B) such

that πB ◦ δ∞ ◦H = πB(S)∗ϕ(·)πB(S).

This links unital lifting problems to Weyl–von-Neumann type results and to

KK-theory.

Definition 5.8.2. Suppose that A is separable and B is σ-unital and stable.

Let

SExtnuc(A,B) := [Homl-nuc(A,Q(B))] ⊂ [Hom(A,Q(B))]

denote the unitary equivalence classes [ϕ] (by all unitaries in Q(B) !) of the weakly

nuclear liftable C *-morphisms ϕ : A → Q(B) equipped with Cuntz addition [ϕ] +

[ψ] := [ϕ⊕ ψ].

We define the nuclear Ext-group Extnuc(A,B) as the Grothendieck group of

SExtnuc(A,B) :

Extnuc(A,B) := Gr(SExtnuc(A,B)) .

If C is σ-unital (but not necessarily stable) then we let

Extnuc(A,C) := Extnuc(A,C ⊗K)

It is naturally isomorphic to the formerly defined group Extnuc(A,C) if C is stable

(cf. Lemma 5.8.5 below).

If A is unital, we let SExtu
nuc(A,B) denote the sub-semigroup of SExtnuc(A,B)

of classes [ϕ] ∈ SExtnuc(A,B) with ϕ(1A) = 1Q(B), i.e., , thus

SExtu
nuc(A,B) := [Homul-nuc(A,Q(B))] .

Then define the “unital” extension group Extu
nuc(A,B) of unital extensions with

weakly nuclear c.p. unital lifts V : A→M(B) by:

Extu
nuc(A,B) := Gr(SExtu

nuc(A,B)) .

Remark 5.8.3. The natural semigroup morphisms

[Homul-nuc(A,Q(B))]≈ → Extu
nuc(A,B)

induces an isomorphism

[h1]≈ + [Homul-nuc(A,Q(B))]≈ ∼= Extu
nuc(A,B)

for h1 := πB ◦ ρ for any unital faithful *-representation ρ : A →M(K) ∼= L(H) ⊂
M(B) with ρ(A) ∩K = {0}.

If A is unital, then there are natural exact sequences:

0→ Extu
nuc(A,B)→ Extnuc(A,B)→ K0(Q(B)) ∼= K1(B)

and

K1(h0(A)′ ∩Q(B))→ K1(Q(B))→ Extu,strong
nuc (A,B)→ Extu

nuc(A,B)→ 0 .

The problem is now if every element of CPnuc(A,B) can be approximated via

compressions of H0 : A→M(B). It respects no ideals!
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Remark 5.8.4. Suppose that A is separable and that B is σ-unital and stable.

Let H0 : A→ L(`2) ∼=M(K) ⊂M(B) a non-degenerate *-monomorphism with

H0(A) ∩K = {0}.

Then H0 satisfies the assumptions of Corollary 5.4.10 with D := K, thus,

H0 satisfies the assumptions of Corollary 5.4.9 for the cone S = CPnuc(A,B).

Thus, h0 := πB ◦ H0 : A → Q(B) satisfies [h0 ⊕ h0] = [h0], S(h0;A,Q(A)) ⊂
S(h0 ⊕ 0;A,Q(B)) ⊂ [Homl-nuc(A,Q(B))], and [h] ∈ S(h0 ⊕ 0; A,Q(B)) for every

h ∈ Homl-nuc(A,Q(B)) , by Corollary 5.4.9. Thus:

SExtnuc(A,B) = [Homl-nuc(A,Q(B))] = S(h0 ⊕ 0;A,Q(B)) .

If A is unital, then H0 is unital the above considerations show that (??)

SExtu
nuc(A,B) = S(h0;A,Q(B))

and

Extu
nuc(A,B) = G(h0;A,Q(B)),

and finally,

Extu,strong
nuc (A,B) = G≈(h0;A,Q(B)) .

If A is stable then

Gr([Homl-nuc(A,Q(B))],+) = [h0] + S(h0;A,Q(B)) = G(h0;A,Q(B))

because then [h0 ⊕ 0] = [h0] in Q(B) by Corollary 5.5.14.

But in general [Homl-nuc(A,Q(B))] 6∼= S(h0;A,Q(B)), cf. Remark 5.5.8.

Since Extnuc(A,B) := Gr([Homl-nuc(A,Q(B))],+), it follows (for separable sta-

ble σ-unital A):

Extnuc(A,B) ∼= [h0] + S(h0 ; A,Q(B)) = G(h0 ⊕ 0 ; A,Q(B))

and

Extnuc(A,B) ∼= kernel(K0(h0(A)′ ∩Q(B))→ K0(B))

by Propositions 4.4.2 and 4.4.3.

In particular, the Corollary 5.7.1 implies the following:

Suppose that B is simple, purely infinite, σ-unital and stable, and that A is sepa-

rable, stable and exact. Then

[Monnuc(A,Q(B))] = Extnuc(A,B) .

And this formula is equivalent to the following observations (i)-(iv):

(i) Every nuclear *-monomorphism h : A ↪→ Q(B) dominates h0 := πB ◦ρ for

a non-degenerate *-monomorphism ρ : A ↪→ L(H) ⊂ M(B) with ρ(A) ∩
B = {0} (i.e., [Monnuc(A,Q(B))] = [h0] + [Homnuc(A,Q(B))] ).

(Indeed: Theorem 5.6.2 with D = B, C := π−1
B (h(A)) and T := ρ ◦ h−1

yields the existence of an isometry S1 ∈M(B) with S∗1cS1−T (c) ∈ B for

c ∈ C. Thus t∗1h(·)t1 = h0 for t1 := S1 +B ∈ Q(B).)
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(ii) If a C *-morphism h : A → Q(B) has a weakly nuclear lift V : A →
M(B) then h0 dominates h, and h is nuclear (i.e., [Homl-nuc(A,Q(B))] ⊂
S([h0], A,Q(B)) ⊂ Monnuc(A,Q(B))).

(Indeed: it can be managed that the weakly nuclear lift V of h is a

contraction, cf. Lemma 5.4.8, then Theorem 5.6.2, with D = B, C :=

π−1
B (h0(A)) = B + ρ(A) and T := V ◦ h−1

0 , yields the existence of an

isometry S2 ∈ M(B) with S∗2ρ(a)S2 − V (a) ∈ B for a ∈ A, and t2 :=

S2 +B ∈ Q(B) satisfies t∗2h0(·)t2 = h.)

(iii) Homnuc(A,Q(B)) ⊆ Homl-nuc(A,Q(B)), because every nuclear c.p. con-

traction V : A → Q(B) has a nuclear lift T : A → M(B) (by a Theorem

of Effros and Choi, cf. [43]).

(iv) If h1, h2 ∈ Hom(A,Q(B)) are unitarily equivalent, then they are unitarily

equivalent by a unitary u = πB(U) with U ∈M(B).

(Indeed: h1 dominates zero by Corollary 5.5.16 and Proposition 5.5.12(ii).

The unital C *-algebra Q(B) is K1-injective by Lemmas 5.5.10(iv) and

4.2.6(viii).

The K1-bijectivity of Qs(B) for σ-unital // has been

shown until here 3-times!! // Clear the places !!!

Thus, Proposition 4.3.6(iv,d). implies that h1 and h2 are unitarily

equivalent by a unitary u ∈ U0(Q(B)) .)

Any two nuclear *-monomorphisms h, k : A ↪→ Q(B) dominate each other (by (i)

and (ii)). Therefore, the unitary equivalence classes [h] ∈ [Monnuc(A,Q(B))] =

[h0] + S(h0 ; A,Q(B)) of nuclear *-monomorphisms h : A ↪→ Q(B) is the

Grothendieck group of [Homnuc(A,Q(B))] by Proposition 4.4.2(ii).

Recall for applications of the following lemma that Extnuc(A,B ⊗ K)

onto Extnuc(A,B) := Ext(C; A,B) for the m.o.c. cone C := CPnuc(A,B)

and Extnuc(A,B ⊗ K) := Ext(C′; A,B ⊗ K) for C′ := CPnuc(A,B)K :=

CPnuc(A,B ⊗K) = CPnuc(A,B)⊗ CP(C,K).

Here CK := C ⊗CP(C,K) denotes the (non-algebraic) tensor product of matrix

operator-convex cones in sense of Definition ??, i.e., is the smallest point-norm

closed m.o.c. cone in CP(A,B ⊗ K) that contains all tensor products T ⊗ S with

T ∈ C and S ∈ CP(C,K) ∼= K+.

Lemma 5.8.5. Suppose that B is stable and σ-unital, that A is separable and C ⊆
CP(A,B) a countably generated non-degenerate full m.o.c. cone. Let λ : B⊗K→ B

be an isomorphism from B ⊗ K onto B such that b → λ(b ⊗ p11) is unitarily

homotopic to idB (cf. Corollary 5.5.6 and Lemma 5.5.11 for the existence of λ).

Denote by Q(λ) the induced isomorphism from Q(B ⊗K) onto Q(B).

Then

ϕ ∈ Hom(A,Q(B ⊗K)) 7→ Q(λ) ◦ ϕ ∈ Hom(A,Q(B))

defines a isomorphism from Ext(CK; A,B⊗K) onto the 0-dominating Ext(C; A,B)

or unital version Ext(C; A,B) that is a functor with respect to A.
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Check here:

It needs that we consider only zero-dominating

Busby invariants.

Discussion e.g. with B = M2∞, B = O∞, A = O2.

The inverse is given by

Ext(C; A,B)→ Ext( KCK ; A⊗K, B ⊗K)→ Ext(CK; A,B ⊗K) ,

i.e., is given by forming first the tensor product Eϕ ⊗ K of the extension Eϕ with

K and then by application of the map a ∈ A 7→ a⊗ p11 ∈ A⊗K (cf. Lemma 5.5.11,

Proposition 5.5.12(v)).

In particular, there is a natural isomorphism

Extnuc(A⊗K, B)→ Extnuc(A,B)

from Extnuc(A⊗K, B) onto Extnuc(A,B) that is induced by ϕ 7→ ϕ((·)⊗ p11).

Proof. to be filled in ??

Do we need additional properties on the extensions,

e.g. zero absorption or more relaxed equivalence classes? �

Remark 5.8.6. The natural semigroup homomorphism

[Homul-nuc(A,Q(B))]≈ → SExtu
nuc(A,B)

and the induced group homomorphism

Extu,strong
nuc (A,B) = Gr([Homul-nuc(A,B)]≈)→ Extu

nuc(A,B)

are in general not isomorphisms.

The definitions show that there are natural group and semigroup homomor-

phisms, e.g.

SExtnuc(A,B)→ [Homl-cp(A,Q(B))]→ Ext−1(A,B) ,

Extnuc(A,B)→ Ext−1(A,B) .

If A is unital, then there are group homomorphisms

Extu,strong
nuc (A,B)→ Extu

nuc(A,B)→ Extnuc(A,B)→ K0(Q(B)) ∼= K1(B) ,

induced by ϕ ∈ Hom(A,Q(B))→ [ϕ(1)] ∈ K0(Q(B)).

Further, there is the group morphism Extu
nuc(A,B) → Extnuc(A⊗K, B ⊗K) ,

given by forming tensor products [Eϕ ⊗K] of the corresponding extensions [Eϕ] ∈
Extu

nuc(A,B) .

more ?? ?? ?? ??

Remark 5.8.7. Let ρ : A → L(H) ∼= M(K) a faithful non-degenerate *-

representation of A on a Hilbert space H ∼= `2(N) such that ρ(A) ∩ K = {0}.
Fix a unital strictly continuous *-monomorphism I : M(K) → M(B), and define

H : A → M(B) by H := I ◦ ρ. We let h0 := πB ◦ H : A → Q(B), i.e., consider

H(a) modulo B.
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Then SExtnuc(A,B) = S(h0; A,Q(B)) if A is stable, and SExtu
nuc(A,B) =

S(h0; A,Q(B)) if A is unital, cf. Corollary 5.6.4(iii).

This implies the natural isomorphisms Extnuc(A,B) ∼= G(h0, A,Q(B)) , re-

spectively, in case of unital A, Extu
nuc(A,B) ∼= G(h0, A,Q(B)) and Extnuc(A,B) ∼=

G(πB ◦ (h0 ⊕ 0), A,Q(B)).

There are natural homomorphisms

K1(πB(h0(A))′ ∩Q(B))→ K1(Q(B)) ∼= K0(B)

and

K0(B) ∼= K1(Q(B))→ Extu,strong
nuc (A,B) .

induced by u ∈ U(Q(B))→ [u∗h0(·)u]≈ ∈ [Homul-nuc(A,Q(B))]≈.

The following Corollary 5.8.8 is a consequence of two of Kasparov’s theorems:

Corollary 5.6.1 and [73, prop. 17.6.5].

Corollary 5.8.8. Suppose that B is σ-unital and stable and that A is sepa-

rable.

If A or B is nuclear then

G(h0, A⊗K,Q(B)) ∼= Extnuc(A,B) = Ext−1(A,B) .

Note that Ext−1(A,B) ∼= KK(A,C0(R, B)) ∼= KK(C0(R, A), B) by theorems of

Kasparov (cf. [73, prop. 17.6.5, thm. 17.10.7, cor. 19.2.2.]).

Proof. By Lemma 5.8.5 and Remark 5.8.7, there is a natural isomorphism

from Extnuc(A,B) onto

Extnuc(A⊗K, B) = [h0] + [Homl-nuc(A⊗K, B)] = G(h0, A⊗K,Q(B)) .

We have Homl-cp(A⊗K,Q(B)) = Homl-nuc(A⊗K,Q(B)) and ∼nuc=∼ for nuclear

B. If A is nuclear, then (trivially) Hom(A ⊗ K,Q(B)) = Homnuc(A ⊗ K,Q(B))

and Homnuc(A ⊗ K,Q(B)) ⊂ Homl-nuc(A ⊗ K,Q(B)) (by the Choi-Effros lift-

ing theorem, cf. [43]). In both cases Ext−1(A,B) = Gr([Homl-cp(A,Q(B))]) =

Gr([Homl-nuc(A,Q(B))]) = Extnuc(A,B) . �

Corollary 5.8.9. Suppose that A is separable and unital, B purely infinite,

stable and σ-unital, h0 : A → L(H) ∼= M(K) ⊂ M(B) a faithful and unital *-

representation with h0(A) ∩K = 0. Then

(i) Extu
nuc(A,B) = G(h0, A,Q(B)); ??

(ii) 0→ Extu
nuc(A,B)→ Extnuc(A,B)→ K1(B) is an exact sequence.

(iii) There is a natural exact sequence

K1(πB(h0(A))′ ∩Qs(B))→ K0(B)→ Extu,strong
nuc (A,B)→ Extu

nuc(A,B)→ 0.

In particular, Extu,strong
nuc (A,B) = Extu

nuc(A,B) if K0(B) = 0.

Proof. to be filled in ?? �
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Corollary 5.8.10. If A is a separable unital C*-algebra, then

Extu,strong
nuc (A,O2 ⊗K) = Extu

nuc(A,O2 ⊗K) = Ext−1(A,O2) ∼= 0 .

In particular, if h : A→ Qs(O2) is a unital *-monomorphism which has a completely

positive lift V : A → M(O2 ⊗ K), then there is a unital C*-morphism ϕ : A →
M(O2 ⊗K) with πO2⊗Kϕ = h.

Proof.

Extu,strong
nuc (A,O2) = Extu

nuc(A,O2) ⊂ Extnuc(A,O2) = Ext−1(A,O2)

by Corollary 5.8.9(iii), because K0(O2) = 0 and O2 is simple, purely infinite and

nuclear, cf. [172], [169].

Ext−1(A,O2) ∼= KK1(A, (O2)(1)) ∼= KK(SA,O2)

by Kasparov’s isomorphisms and Bott periodicity, cf. [73, prop. 17.6.5, cor. 19.2.2]

(see also Chapter 8).

By [172], idO2 is homotopic to idO2 ⊕s,t idO2 in the unital endomorphisms of

O2. Thus KK(SA,O2) = 0, because KK(SA, · ) is a homotopy invariant functor

such that the Cuntz addition ⊕ induces the addition in KK(SA,O2), cf. Chapter

8.

Now let h : A ↪→ Qs(O2) a unital *-monomorphism that has a c.p. lift

V : A → M(O2 ⊗ K). Then Extu,strong
nuc (A,O2) = 0 implies the existence of unital

*-monomorphisms h1, h2 : A→M(O2⊗K) and of a unitary U1 ∈M(O2⊗K) such

that (V (a)⊕h1(a))−U∗1h2(a)U1 ∈ O2⊗K for a ∈ A, where V : A→M(O2⊗K) is a

unital completely positive lift of h : A→ Qs(O2). We get a unitary U2 ∈M(O2⊗K)

with U∗2 (V (a) ⊕ h1(a))U2 − V (a) ∈ O2 ⊗ K for every a ∈ A from Theorem 5.6.2,

which has to be applied to C := V (A) +O2⊗K and the completely positive unital

map

T := h1 ◦ h−1πO2⊗K : C →M(O2 ⊗K) .

Thus, ϕ : A 3 a 7→ U∗3h2(a)U3 with unitary U3 := U1U2 is a unital C *-morphism

that is a lift of h. �

Corollary 5.8.11. Suppose that A is separable and unital.

(i) SExtu
nuc(A,O2 ⊗K) ∩ [Mon(A,Qs(O2))] = Extu

nuc(A,O2 ⊗K) = 0.

(ii) If a C*-morphism h : A → Qs(O2) has a unital completely positive lift

T : A → M(O2 ⊗ K) then h has a lift as a unital C*-morphism ϕ : A →
M(O2 ⊗K), i.e., πO2⊗Kϕ = h.

Proof. (i) follows from Corollary 5.6.4(iv), because O2 ⊗K is purely infinite

and simple.

???? ??
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(ii): Let T : A →M(O2 ⊗ K) a unital completely positive map with πT = h.

Since O2 is nuclear, T is weakly nuclear, and thus h ∈ Homul-nuc(A,Q(O2 ⊗ K)),

i.e., [h] ∈ SExtu
nuc(A,O2 ⊗K) by Definition 5.8.2.

Let d : A → L(H) ⊂ M(O2 ⊗ K) a faithful unital *-representation of A such

that d(A) ∩ K = 0. Let k := πd. By Kasparov’s generalized Weyl–von Neumann

theorem ([?], see Corollary 5.6.4), we have Extu(A,O2) := Gr([Ext−1
u (A,O2)]) =

G(k,A,Qs(O2)), where we have used that O2 is nuclear (cf. [169]).

By Corollary 5.8.10, Extu(A,O2) = 0.

Thus there exists a unitary v in Qs(O2) such that h⊕ k = v∗k(·)v.

From now on we use that O2 is purely infinite and simple, [169], [172].

h absorbs k by Corollary 5.6.4(iv), i.e., there exists a unitary w ∈ U0(Qs(O2))

such that w∗h(·)w = h⊕ k.

It is easy to see, e.g. with help of Lemma 5.1.2(ii), that multiplier algebras of

stable algebras have trivial K-theory. Therefore we get K1(Qs(O2)) ∼= K0(O2) = 0

from the 6-term exact sequence of K-theory, [73].

By Corollary 5.7.2, Qs(O2) is simple and purely infinite. By a theorem of Cuntz

[172], the quotient of the unitary group of Qs(O2) by its connected component is

naturally isomorphic to K1(Qs(O2)) = 0. (More generally stable coronas of σ-unital

C *-algebras are K1-bijectivity by Proposition 4.2.15.)

Thus vw∗ is in the connected component of 1 in the unitary group of Qs(O2)

and therefore there exists a unitary U ∈M(O2 ⊗K) with π(U) = vw∗.

U∗d(·)U is a unital lift of h, i.e., π(U∗d(a)U) = k(a). �

Corollary 5.8.12. Suppose that E is a unital separable C*-algebra, λ : E → A

is an epimorphism such that the kernel D of λ is essential in E, D ∼= O2 ⊗K, and

that there exists a unital completely positive map V : A → E such that λV = idA .

Then there exists a unital *-monomorphism ψ : A→ E with λψ = idA.

Proof. Expressed in algebraic terminology, we show that a semi-split essential

exact sequence 0→ D → E → A→ 0 splits unitally if D ∼= O2 ⊗K.

Let π : M(O2 ⊗K)→ Qs(O2) be the natural epimorphism with kernel O2 ⊗K
and let θ be the *-monomorphism from E intoM(O2⊗K) which is defined by the

isomorphism from D onto O2⊗K. It is a monomorphism, because D is an essential

ideal of E (by our assumptions). In particular, θ(D) = O2 ⊗K.

Then there is a unique unital *-monomorphism τ : A→ Qs(O2) with πθ(E) =

τ(A) and πθ = τλ.

W := θV is a unital completely positive lift of τ , i.e., πW = τ .

By Corollary 5.8.10 there exists a unital lift h of τ , i.e., π(h(a)) = τ(a). But

then h(A) ⊂ π−1(τ(A)) = θ(E), and ψ(·) := θ−1(h(·)) is a unital *-monomorphism

from A into E such that λψ = idA, because τλψ = πθψ = πh = τ and τ is faithful.

Thus ψ is as desired. �
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9. The Ψ-residually nuclear case and Ext(C; A,B)

Start of collection for Chapter 5:

Needed for Theorem 6.3.1.

But is the here used notation ok?

Definition 5.9.1. Let X be a Dini-space, i.e., a sober second countable locally

quasi-compact T0 space.

Suppose that A and B are stable and σ-unital C *-algebras, and that

ΨA : OX → I(A) is a lower semi-continuous action of X on A and ΨB : OX → I(B)

an upper semi-continuous action of X on B (cf. Definition 1.2.6). A completely

positive map V : A → M(B) is called weakly ΨA-ΨB-residually nuclear,

(or shortly Ψ-residual nuclear) if, for every b ∈ B the completely positive map

a ∈ A 7→ b∗V (a)b ∈ B is ΨA-ΨB-residually nuclear in the sense of Definition

1.2.8. We denote by Homl-nuc(X; A,Q(B)) ⊂ Hom(A,Q(B)) the set of C *-

morphisms h from A into the (stable) corona Q(B) = M(B)/B of B which

have a weakly ΨA-ΨB-residually nuclear completely positive lift V : A → M(B).

Then Homl-nuc(X; A,Qs(B)) is invariant under passage to unitary equivalent C *-

morphisms and under Cuntz addition. Let SExtnuc(X; A,B) denote the semigroup

of unitary equivalence classes of morphisms in Homl-nuc(X; A,Qs(B)) with Cuntz

addition.

We define:

Extnuc(X; A,B) := Gr(SExtnuc(X; A,B)).

We generalize the above definitions in the following manner, because all con-

structions of ideal-system equivariant versions of Kasparov’s Ext-theory factorize

anyway though the variants of Ext-theory for the corresponding m.o.c. cones:

Let A separable, B σ-unital and stable, and let C ⊂ CP(A,B) a matricial operator-

convex cone. We denote by Homl(C; A,Q(B)) ⊂ Hom(A,Q(B)) the set of the

C *-morphisms h : A → Q(B) ∼= Qs(B) that have a c.p. lift V : A → M(B) with

the property that b∗V (·)b ∈ C for all b ∈ B. Again, Homl(C; A,Q(B)) is invariant

under unitary equivalence and Cuntz addition, and we can define the semigroups

and its Grothendieck groups by

SExt(C; A,B) := [Homl(C; A,Q(B))] ⊂ [Hom(A,Q(B))]

Here [·] means the unitary equivalence classes of morphisms in Homl(C; A,Q(B))

with Cuntz addition.)

Ext(C; A,B) := Gr(SExt(C; A,B)) .

Note that Extnuc(X; A,B) = Extnuc(C; A,B) for the m.o.c. cone C ⊂ CP(A,B)

of ΨA–ΨB-residually nuclear c.p. maps from A into B. If A is exact and B is

separable, then there is a unique action ΨA of X := Prim(B) such that a given

point-norm closed m.o.c. cone C is the same as CPrn(X; A,B) with ΨB defined as

the identity action of X on X.
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Remark 5.9.2. Special cases of the groups Ext(C; A,B) are Ext(A,B) =

Ext(CP(A,B); A,B), Extnuc(A,B) = Ext(CPnuc(A,B); A,B), Extnuc(X; A,B) =

Ext(CPrn(X; A,B); A,B), where CPrn(X; A,B) ⊂ CP(A,B) denotes the ΨA-ΨB-

residually nuclear c.p. maps, depending on fixed actions ΨA : O(X) → I(A) and

ΨB : O(X)→ I(B) of X on A and B.

We can also define

Ext(X; A,B) := Ext(CP(X; A,B); A,B) ,

the group of ΨA-ΨB-equivariant extensions, where CP(X; A,B) ⊂ CP(A,B) is the

Ψ-equivariant c.p. maps.

Next Def’s could be in Chp.3

The cone C ⊂ CP(A,B) is faithful (respectively non-degenerate ) if there is

no non-zero ideal J of A with T (J) = {0} for all T ∈ C (respectively there is no

ideal I 6= B of B with T (A) ⊂ I for all T ∈ C ).

There is also an explanation of Ext(C; A,B) with help of extensions with Busby

invariant that have lifts that are limits of maps in C with respect to the strict

topology onM(B). It can be done in a similar manner as in the explanation given

in Section 8 for the case X =point (Note that Extnuc(X; A,B) = Extnuc(A,B) if

X = {p} is a point).

Corollaries 5.4.4 and 5.4.9 tell us:

If C is countably generated, then there is a “universal” elementH0 ∈ Hom(A,M(B))

that defines the point-norm closure of C, with δ∞ ◦ H0 unitarily equivalent to

H0, and H0(A)BH0(A) a split corner of B. It can be chosen non-degenerate

if C is non-degenerate , i.e., if C is not contained in CB(A, J) for some closed

ideal J of B. Let h0 := πB ◦ H0. Then Ext(C; A,B) = [h0] + SExt(C; A,B) =

G(h0; A,B). The split extension B +H0(A) = πB is stable if C is non-degenerate.

By Proposition 5.5.12(i+ii), this implies that every extension with Busby invariant

in Ext(C; A,B) is a stable C *-algebra. (Here we can see that the questions about

the non-degeneracy of CPrn(X; A,B) is of importance for actions of X on A and

B.)

Recall that a corner of a C *-algebra E is a hereditary C *-subalgebra F of E

such that there is a projection p ∈ M(E) with F = pEp, and that a subalgebra

G ⊂ E generates a corner of E, if C∗(G)EC∗(G) is a corner of E ( 20 ). The

following Ψ-equivariant generalization of Theorem 5.6.2 seems to be the maximal

possible, only special cases are used in our applications.

Theorem 5.9.3. Suppose that B is a σ-unital C*-algebra, D ⊂ M(B) is

strongly purely infinite, separable and stable C*-subalgebra such that DB is dense

in B (and thus M(D) ⊂ M(B) naturally), and that C ⊂ M(D) is a separable

C*-subalgebra. Define ΨC := Ψup
D,C and ΨB := ΨD,B

down as in Chapter 1.

20The set (!) of products C∗(G) · E · C∗(G) is always a hereditary C *-subalgebra of E by

the Cohen factorization theorem for Banach modules.
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Suppose further that

(α3) for every closed ideal J of D, the subalgebra M(πJ)(C) ∩ πJ(D) of

πJ(D) = D/J generates a corner of D/J , and

(β3) Let V : C → M(B) be a weakly ΨC-ΨB–residually nuclear completely

positive map such that, for every J ∈ I(D), ξ ∈ C and c ∈ C ∩ (ξ1 +D+

M(D,J)) the element V (c) is in the strict closure of ξ1 + span(BJB)

(21).

Then idC asymptotically dominates V in the sense of Definition 5.0.1.

If, moreover, V is a C*-morphism then idC asymptotically absorbs V , i.e.,

idC ⊕V : C → M(B) and idC are unitarily homotopic in the sense of Definition

5.0.1.

Proof. Since B and D are σ-unital, there are natural isomorphisms

M(B)/M(B, I) ∼= M(B/I) and M(D)/M(D,J) ∼= M(D/J) for closed ideals I

of B and J of D by the non-commutative version of the Tietze extension theorem

( 22 ).

They allow us to proceed as in the proof of Theorem 5.6.2:

First, (β3) implies V (C ∩D) = {0} if we take ξ = 0 and J = {0}. Furthermore

C∩D is a corner of D by (α3). The same properties hold forM(πJ)(C) = C/ΨC(J)

and πJ(D) = D/J and the unit element 1 of M(D/J) ∼=M(D)/M(D,J) in place

of C, D and 1 ∈M(D) by (β3) and (α3).

Notice that M(D,J) ⊂ M(D) ∩M(B,ΨB(J)) and ΨC(J) = C ∩M(D,J).

The latter identity is the definition of ΨC = Ψup
D,C , and the first inclusion follows

from JB ⊂ ΨB(J), i.e., from J ⊂M(B,ΨB(J)), because M(B,ΨB(J)) is strictly

closed inM(B), the inclusionM(D)→M(B) is strictly continuous andM(D,J)

is the strict closure of J inM(D) (Recall that ΨB(J) is the closure of span(BJB)).

It follows thatM(D)∩M(B,ΨB(J)) is a strictly closed ideal ofM(D). Thus

M(D) ∩M(B,ΨB(J)) = M(D,J1) for the ideal J1 := D ∩M(B,ΨB(J)) of D.

Then J ⊂ J1 and ΨB(J1) = ΨB(J). The arguments show that our J1 is the biggest

ideal of D with ΨB(J1) = ΨB(J), and that, for every closed ideal I of B, the

ideal ΨD(I) := D ∩ M(B, I) of D satisfies M(D,ΨD(I)) = M(D) ∩ M(B, I),

ΨC(ΨD(I)) = C ∩M(B, I) and ΨB(ΨD(I)) ⊂ I. In particular, V (C ∩M(B, I)) =

V (ΨC(ΨD(I))) ⊂M(B, I) for all ideals I of B.

We let C1 := D + C + C1 and define Ve : C1 → M(B) by V e(d + c + ξ1) :=

V (c)+ξ1 for d ∈ D, c ∈ C, ξ ∈ C. It is well-defined, because d′+c′+ξ′1 = d+c+ξ1

implies that c′ − c ∈ (ξ − ξ′)1 + D, thus, V (c′ − c) = (ξ − ξ′)1 by (β3) with

J = {0}, which yields V (c′) + ξ′1 = V (c) + ξ1. By definition V e(D) = 0 and

[V e]D : C1/D → M(B) is the extension of [V ]D∩C : C/(D ∩ C) → M(B) to a

21I.e., V (C ∩ (ξ1 +D +M(D, J))) ⊂ ξ1 +M(B,ΨB(J)) for J ∈ I(D) and ξ ∈ {0, 1}.
22Cf. [616, Prop.3.12.10.] for the case of separable B. It extends to σ-unital C *-algebras B,

because thenM(B/J) is the algebraic inductive limit of its C *-subalgebrasM(A/(A∩J)) where

the C *-algebras A ⊂ B are separable and e ∈ A for some e ∈ B+ that is strictly positive in B.
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unital map of C1/D ∼= C/(D ∩ C) + C1 into M(B). Since V is a c.p. contraction

with V (D∩C) = 0, it follows that V e : C1 →M(B) is a u.c.p. map with V e(D) = 0.

Thus, condition (α) of Proposition 5.4.1 is satisfied for C1, V e and a strictly

positive contraction h ∈ D ⊂ C1.

Let Φ(J) := C1 ∩ M(D,J) for ideals J of D. We have that V e(Φ(J)) ⊂
M(B,ΨB(J)) by (β3): Indeed, if d+ c+ ξ1 ∈M(D,J), then c ∈ C ∩ ((−ξ)1 +D+

M(D,J)), and, by condition (β3), V (c) ∈ (−ξ)1 +M(B,ΨB(J)) , i.e., V e(d+ c+

ξ1) = V (c) + ξ1 ∈M(B,ΨB(J)) .

Lemma B.7.7(ii) shows that assumption (β3) implies that V e is even Φ-ΨB–

residually nuclear: The (induced class-)map

[V e]J : C1/Φ(J)→M(B/ΨB(J))

is weakly nuclear by Lemma B.7.7(ii) for every closed ideal J of D, because

C1/Φ(J) =M(πJ)(C)+πJ(D)+C1 ⊂M(D/J), [V e]J(d+c+ξ1) = [V ]J(c)+ξ1 ∈
M(B/ΨB(J)), M(πJ) ∩ πJ(D) generates a corner FJ of D/J = πJ(D) and

[V ]J : M(πJ)(C)→M(B/ΨB(J)) is weakly nuclear.

It follows that T := δ∞ ◦ V e is also a unital Φ-ΨB–residual weakly nuclear

u.c.p. map from C1 ⊂M(D) intoM(B). The strictly positive contraction h ∈ D+

again satisfies condition (α) of Proposition 5.4.1 for T : C1 →M(B).

Proposition 3.6.1 applies to T , and shows that the Φ-ΨB–residual nuclear maps

b∗T (·)b (b ∈ B) are approximately 1-step inner in M(B). Thus, also condition (β)

of 5.4.1 is satisfied, and the conclusions follow from parts (iii) and (iv) of Proposition

5.4.1. �

Remark 5.9.4. The tricky points of the reduction to Proposition 5.4.1 in the

proof of Theorem 5.9.3 are contained in the proof of Lemma B.7.7 and in the proof

of the local approximation result in Proposition 3.6.1. The latter proof essentially

reduces to the case, where there is a weakly residually nuclear *-monomorphism

H1 : C →M(D) such that H1(C)∩M(D,J) = H1(C ∩M(D,J)) for every closed

ideal J of D, as it is the case for the ultrapower Dω in place of D.

The following Corollary 5.9.5 is an immediate consequence of our above given

Weyl–von-Neumann–Voiculescu type Theorem 5.9.3 for weakly residually nuclear

maps. We define for D ⊆ B and X := Prim(D), an action

ΨE : O(X) ∼= I(D)→ I(Q(B))

of X on E := Q(B) by

ΨE(J) := πB(M(B, span(BJB))) for J ∈ I(D) .

If ΨA : O(X)→ I(A) is an action of X on A, we denote by Mon(X; A,E) the set

of *-monomorphisms ϕ : A → E with ϕ(ΨA(U)) = ϕ(A) ∩ ΨE(U) for U ∈ O(X).

(It might happen that Mon(X; A,E) is empty.)

Corollary 5.9.5. Suppose that A, and D ⊆ B are stable C*-algebras, such

that A and D are separable, D is strongly purely infinite and DB is dense in B.
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Let X := Prim(D). Further let H1 : A→M(D) be a weakly residually nuclear

*-monomorphism such that H1 is unitarily equivalent to δ∞ ◦H1 and that H1(A)D

is dense in D. Denote by H0 : A → Q(B) =M(B)/B ∼= Qs(B) the corresponding

monomorphism from A into the stable corona Qs(B) of B, i.e., H0 := πBH1.

Consider the actions ΨB := ΨD,B
down of X on B and the action ΨA :=

H−1
1 Ψup

D,H1(A) of X on A.

Then there are natural isomorphisms

SExtnuc(X; A,B) ∼= S(H0, A,Q(B))

and

Extnuc(X; A,B) ∼= G(H0, A,Q(B)) .

If, in addition, B = D then

SExtnuc(X; A,B) ∩ [Mon(X; A,Q(B))] = G(H0, A,Q(B)) .

Recall that G(H0, A,Q(B)) is naturally isomorphic to the kernel of K0(H0(A)′∩
Q(B))→ K0(Q(B)) by Proposition 4.4.3(ii).

Proof. to be filled in ?? �

Lemma 5.9.6. Suppose that B is σ-unital, A is a separable C*-subalgebra of

M(B)/B, and that V : A→M(B)/B is a completely positive contraction.

If there exist a sequence d1, d2, . . . of contractions in M(B)/B, such that, for

a ∈ A,

(i) limn→∞ ‖d∗nadn+1‖ = 0 , limn→∞ ‖d∗ndn+1‖ = 0 , and

(ii) limn→∞ ‖d∗nadn − V (a)‖ = 0,

then there exists a contraction d ∈ M(B), such that V (a) = πB(d)∗aπB(d) for

a ∈ A.

Proof. Since A is separable, there is a strictly positive contraction c ∈ A+

with ‖c‖ = 1.

The proof is similar to that of Proposition 5.4.1. Let Ω be a compact sub-

set of the contractions in A+ that linearly generates a dense linear subspace of

A, and let γ : Ω → M(B)+ (respectively τ : V (Ω) → M(B)+ ) a topological lift

of Ω ⊆ Q(B) (respectively of V (Ω) ⊆ Q(B)) into the positive contractions in

M(B). Further let e ∈ B+ a strictly positive contraction with ‖e‖ = 1, and

let f1, f2, . . . ∈ M(B) contractive lifts of d1, d2, . . .. The unital C *-subalgebra

D := C∗(1, e, γ(Ω), τ(V (Ω)), {fn}n) ⊆M(B) generated by {e, 1, f1, f2, . . .}∪γ(Ω)∪
τ(V (Ω)) is separable.

By Remark 5.1.1(3), we find elements gn ∈ C∗(e)+, namely, square roots of

suitable differences of elements in a suitable approximate unit of B that is approx-

imately central for D, with the following properties

(1)
∑
n g

2
n converges strictly to 1M(B), gngm = 0 for |m−n| > 1, ‖egn‖ < 2−n
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(2) ‖fkgn − gnfk‖ < 2−n for k ≤ n ,

(3) ‖gnγ(a)−γ(a)gn‖ < 2−n and ‖gnτ(V (a))− τ(V (a))gn‖ < 2−n for a ∈ Ω,

(4) ‖gnf∗nbfn+1gn+1‖ ≤ 2−n + dist(f∗nbfn+1, B) for b ∈ γ(Ω) ∪ {1}, and

(5) ‖gn(f∗nγ(a)fn − τ(V (a)))gn‖ ≤ 2−n + dist(f∗nγ(a)fn − τ(V (a)), B) for

a ∈ Ω.

Let Γ(b1, b2, . . .) :=
∑
gnbngn for (b1, b2, . . .) ∈ `∞(M(B)). By Remarks 5.1.1(2,4)

check numbers 2 and 4!, Γ is a unital c.p. map from `∞(M(B)) into M(B).

It holds Γ(b1, b2, . . .) ∈ B if lim ‖gnbngn‖ = 0, because then Γ(b1, b2, . . .) is the

sum of the two series
∑
g2n−1b2n−1g2n−1 and

∑
g2nb2ng2n which have mutually

orthogonal summands by (1). Thus, by (5) and (ii),

Γ(f∗1 γ(a)f1 − τ(V (a)), f∗2 γ(a)f2 − τ(V (a)), . . .) ∈ B .

Moreover, by Remarks 5.1.1(4,5,6), τ(V (a))−Γ(τ(V (a)), τ(V (a)), . . .) ∈ B (by (3)),∑
fngn converges strictly to an element f ∈M(B), and, by (2)–(4)

f∗bf − Γ(f∗1 bf1, f
∗
2 bf2, . . .) ∈ B

for b ∈ γ(Ω) ∪ {1}, because limn ‖gnf∗nbfn+1gn+1‖ = 0 by (4) and (i).

Thus, πB(f) is a contraction and πB(f)∗aπB(f) = V (a) for a ∈ Ω. Let d :=

hλ(h∗h), where λ(t) := min(1, t−1/2) for t ∈ [0,∞). Then d is a contraction in

M(B) with πB(d)∗aπB(d) = V (a) for a ∈ Ω, and thus for all a ∈ A. �

Remark 5.9.7. If (in addition to the assumptions of Lemma 5.9.6) B is stable

and A is contained in a σ-unital stable C *-subalgebra D of M(B)/B such that

π−1
B (D) is stable, then d can be replaced by an isometry s = πB(S) for some

isometry S ∈M(B), i.e., d∗ad = s∗as for all a ∈ A.

(Indeed: there are isometries T1, T2 ∈ M(B) such that T1T
∗
1 + T2T

∗
2 = 1, ct2 = 0

and t1c = c = ct1 for all c ∈ D ⊇ A and tk = πB(Tk),k = 1, 2, by Corollary 5.5.14.

Let S := T1d+ t2(1− d∗d)1/2 ∈M(B).)

Proposition 5.9.8. Suppose that A is separable, B is stable and σ-unital and

(1-)purely infinite, h : A→ Q(B) is a C*-morphism, and that (Vk : Q(B)→ Q(B))

is a sequence of approximately inner completely positive maps.

If h dominates h⊕h and Vn ◦h converges point-wise on A to a c.p. contraction

T : A→ Q(B), then h dominates T .

Proof. The multiplier algebra M(B) and the corona Q(B) contain copies of

O2 unitally, because B is stable. Since h dominates h ⊕ h, there is a copy of O∞
unitally contained in h(A)′ ∩ Q(B) (cf. Proposition 4.3.5(iv)). The sequence of

c.p. maps (Vk ◦ h) (with point-norm limit T ) allows to construct a sequence dn

of contractions in Q(B) such that d∗n+kbdn = 0 for b ∈ h(A) + C1, k > 0, and

limn→∞ ‖d∗nh(a)dn − T (a)‖ = 0 (cf. Lemma 3.10.5). Thus, Lemma 5.9.6 applies

and there is a contraction d ∈ Q(B) with d∗h(·)d = T . Since A is stable and B is

purely infinite, π−1
B (h(A)) is stable by Corollary 5.5.16. Thus d can be replaced by

an isometry (by Remark 5.9.7). �
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Remark 5.9.9.

Where 5.9.9 is used? ??

If B ∼= B ⊗ D∞ (with D∞ = O∞ ⊗ O∞ ⊗ . . .), then the latter approxi-

mate domination should be the case if and only if (for suitable topological lifts)

h̃ : Ω →M(B ⊗ D∞) approximately dominates T̃ modulo a suitable commutative

approximate unit e1 ≤ e2 ≤ . . . of B. More precisely: Let h̃ and T̃ denote topo-

logical lifts of h and T on a linearly generating compact subset Ω of A. Then, for

every ε > 0 there should exist kε ∈ N, such that, for every m > n > kε, there is a

contraction dn,m ∈ B ⊗D∞ with

‖d∗n,mh̃(a)dn,m − em(1− en)T̃ (a)(1− en)em‖ < ε.

for a ∈ Ω. (Also some orthogonality relations of the dn,m are required, coming here

from a central sequence of copies of O∞ in M(B ⊗D∞) for B ⊗D∞.)

Lemma 5.9.10. Let B a stable and σ-unital C*-algebra and b ∈M(B)+ . De-

note by J(b) := spanBbB the closed ideal of B, and by I(b) := span M(B)bM(B)

the norm-closed ideal of M(B) generated by b. Then, for every b ∈M(B)+,

M
(
B, J((b− ε)+)

)
⊆ I

(
δ∞(b)

)
⊆ M

(
B, J(b)

)
,

and b ∈ I
(
δ∞(b)

)
∈ I(M(B)) .

Proof. Let e denote a strictly positive element of B+, s1, s2, . . . ∈ M(B) a

sequence of isometries with
∑
sns
∗
n = 1 strictly, and b ∈M(B)+. Then

bB ⊆ J(b) := spanBbB ,

because limn→∞ e1/nbc = bc for c ∈ B. Thus, Bb∪ bB ⊆ J(b), i.e., b ∈M(B, J(b))

for every b ∈M(B)+.

It follows that δ∞(b) ∈ M(B, J(b)) for each b ∈ M(B)+, because spanBbB =

span(Bδ∞(b)B) by strict convergence of
∑
n snbs

∗
n =: δ∞(b), i.e., by norm-

convergence in B of
∑m
n=1 snbs

∗
na to δ∞(b)a for all a ∈ B.

Clearly, b = s∗1δ∞(b)s1 ∈ I
(
δ∞(b)

)
.

Let J := J((b − ε)+) = span(B(b− ε)+B), and let t ∈ M(B, J)+. If we

use functional calculus and convex combination, then we find en ∈ C∗(e) with

0 ≤ en ≤ 1, enen+1 = en, ‖ene−e‖ < 2−n, ‖ent−ten‖ < 2−n, and ‖gnt−tgn‖ < 2−n

for gn := (en − en−1)1/2 with e0 := 0, cf. Remark 5.1.1(3).

Next still to be checked:

The sum V (t) :=
∑

0≤n≤∞ gntgn converges strictly and the elements tgn and

V (t)− t are in J , cf. Remark 5.1.1(4). Since gntgn ∈ J+ for t ∈M(B, J) and since

J+ is the closed linear span of {b∗(a − ε)+b ; b ∈ B }, we get (a − ε)δ+ · B ⊆ J for

each δ ∈ (0, 1).



760 5. GENERALIZED WEYL–VON NEUMANN THEOREMS

By definition of J and M(B, J), there exist kn ∈ N and bn,k ∈ B where

k ∈ {1, . . . , kn}, with

‖ gntgn −
kn∑
k=1

(bn,k)∗(a− ε)+bn,k ‖ < 2−n.

Let s1, s2, . . . a sequence of isometries in M(B), such that
∑
sns
∗
n strictly

converges to 1. We define a bounded continuous function ϕ : [0,∞) by ϕ(0) := 0

and ϕ(τ) := ((τ − ε)+/τ)1/2 for τ ∈ (0,∞). Then ϕ(τ)2 ≤ ε−1(τ − ε)+ because

τϕ(τ)2 = (τ − ε)+. It follows that ϕ(a)bn,k ∈ J for each n ∈ N and k = 1, . . . , kn.

The elements fn := (en+2 − en−1)1/2 are positive contractions with gnfn = gn

if we let e0 := 0.

We define inductively mn ∈ N, dn ∈ B and qn ∈ M(B), by m1 = 0, mn+1 :=

mn + kn,

dn :=

kn∑
k=1

sk+mnϕ(a)bn,kfn and qn :=

kn∑
k=1

sk+mns
∗
k+mn .

The sum
∑
qn of the projections qn ∈ M(B) converges strictly to 1M(B). The dn

satisfy

‖gntgn − d∗nδ∞(a)dn‖ = ‖fn
(
gntgn −

kn∑
k=1

(bn,k)∗(a− ε)+bn,k
)
fn‖ < 2−n

and dn = qnxnfn, where xn ∈ B is defined by xn :=
∑kn
k=1 sk+mnϕ(a)bn,k . Notice

that xn and dn are in J , because b∗n,kϕ(a)2bn,k ≤ ε−1(bn,k)∗(a − ε)+bn,k ∈ J .

The sequence x1, x2, . . . is bounded, because b∗n,kϕ(a)2bn,k ≤ ε−1(bn,k)∗(a−ε)+bn,k

implies that

x∗nxn =

kn∑
k=1

b∗n,kϕ(a)2bn,k ≤ ε−1(2−n1 + gntgn) ≤ ε−1(1 + ‖t‖) .

Since also
∑
f2
n ≤ 3

∑
g2
n = 3 · 1M(B) converges strictly to some element F ∈

M(B)+ with ‖F‖ ≤ 3, we get that
∑∞
n=1 dn is strictly convergent in M(B),

cf. Remark 5.1.1(2). Let d :=
∑∞
n=1 dn ∈ M(B). Using that d∗mδ∞(a)dn =

δm,nd
∗
nδ∞(a)dn we get

d∗δ∞(a)d =
∑
n

d∗nδ∞(a)dn .

The estimates ‖d∗nδ∞(a)dn − gntgn‖ < 2−n and that d∗nδ∞(a)dn, gntgn ∈ J show

that d∗δ∞(a)d − V (t) is in J , because d∗nδ∞(a)dn, gntgn ∈ J . It implies V (t) ∈
J + I(δ∞(a)). Since J = J((a− ε)+) ⊆ J(a) ⊆ I(δ∞(a)), the element t = V (t) +

(t−V (t)) ∈M(B, J)+ is contained in I(δ∞(a)) +J(a). Clearly I(δ∞(a)) +J(a) =

I(δ∞(a)) . �

The following Proposition 5.9.11 characterizes the invertible elements of

SExtnuc(Prim(B); A,B) ⊆ [Hom(A,Qs(B))]

for exact A ⊆M(B) with the property that the imbedding map a ∈ A→ a ∈M(B)

is (weakly) nuclear, where B is σ-unital, stable and has the WvN-property. It
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generalizes the characterization of invertible elements in SExtnuc(A,B) given in

Remark 5.8.4 (using Theorem 5.6.2). This characterization will be used for the

proof of Theorem K.

Proposition 5.9.11 (Absorbing elements). Suppose that B is σ-unital and

stable, satisfies the WvN-property, and that A ⊆ M(B) is a separable stable ex-

act C*-subalgebra, such that idM(B) |A is weakly nuclear and non-degenerate. Let

ϕ : A→ Qs(B) =M(B)/B a *-monomorphism, and let h0 the restriction of πB◦δ∞
to A.

Define the “natural” lower semi-continuous action of Prim(B) on A by

ΨA(J) := A ∩M(B, J) for J ∈ I(B) .

Then ϕ defines an element in G(h0; A,Q(B)) ∼= Extnuc(Prim(B); A,B) (i.e.,

ϕ and h0 dominate in Q(B) each other), if and only if,

(i) ϕ is nuclear, and

(ii) ϕ(ΨA(J)) = πB(M(B, J)) ∩ ϕ(A) for J ∈ I(B).

Proof. The weak nuclearity of id |A and the exactness of A imply, that

H0 := δ∞|A is nuclear, cf. Chp.3: if A is exact then ‘‘weakly nuclear’’

H0 (norm-)‘‘nuclear’’ ??. Since δ∞(M(B)) ∩ M(B, J) = δ∞(M(B, J)), we

have H0(ΨA(J)) = H0(A)∩M(B, J) for J ∈ I(B). Since A is exact, this, together

with the nuclearity of H0, implies that H0 is ΨA-Ψup-residually nuclear.

Let e denote a strictly positive element of B. Since Eϕ := {b ∈M(B) : πB(b) ∈
ϕ(A)} is stable by Corollary 5.5.16 and Remark 3.10.9(iii), we find a stable separable

C *-subalgebra C of M(B), such that e ∈ C and πB(C) = ϕ(A).

Let h := ϕ−1πB : C → A, then h is residually equivariant, because h(C ∩
M(B, J)) ⊆ ΨA(J), by (ii), because πB (C ∩M(B, J)) ⊂ ϕ(A) ∩ πB(M(B, J)) =

ϕ(ΨA(J)).

Thus, T := H0 ◦ h is a non-degenerate weakly residually nuclear C *-morphism

from C into M(B).

By Theorem 5.9.3, there exists an isometry S inM(B), such that S∗cS−T (c) ∈
B for c ∈ C. This means that ϕ dominates h0 := πB ◦H0.

Let a ∈ A+ and ε > 0. By Lemma 5.9.10, (a− ε)+ is in ΨA(J) = A∩M(B, J)

for J := span(B(a− ε)+B). By condition (ii), ϕ((a− ε)+) ⊆ πB(M(B, J)).

On the other hand, again by Lemma 5.9.10,M(B, J) is contained in the norm-

closed ideal of M(B) that is generated by H0(a) = δ∞(a). Thus, ϕ((a − ε)+) is

contained in the closed ideal of Qs(B), that is generated by h0(a).

If follows that, for every closed ideal I of A, ϕ(I) is contained in the ideal of

Qs(B) that is generated by h0(I). Since h0 ⊕ h0 is unitarily equivalent to h0,

and since ϕ is nuclear, it follows that h0 approximately dominates ϕ by Corollary

3.10.8(ii). The C *-algebra π−1
B (h0(A)) = δ∞(A) + B is stable, because δ∞(A)

is stable and is a non-degenerate C *-subalgebra. The commutant h0(A)′ ∩ Qs(B)
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contains a copy of O∞ = C∗(s1, s2, . . . ) unitally, because δ∞(A)′∩M(B) contains a

copy of O∞ = C∗(s1, s2, . . .) unitally by Lemma 5.1.2(i). If c1, c2, . . . is a sequence

of contractions in Qs(B) such that ‖ c∗nh0(a)cn − ϕ(a) ‖ → 0, then dn := sncn

satisfy the assumptions (i) and (ii) of Lemma 5.9.6 (for h0(A) and ϕ in place of

A and V there). By Lemma 5.9.6 there exists an isometry T ∈ M(B) such that

πB(T )∗h0(·)πB(T ) = ϕ. Thus a 7→ T ∗δ∞(a)T is a ΨA residually nuclear lift of

ϕ. Thus [ϕ] ∈ G
(
h0; A,Qs(B)

)
. I.e. [ϕ] is the Busby invariant of an element in

Extnuc(Prim(B); A,B). �

Remark 5.9.12. Let D∞ := O∞ ⊗ O∞ ⊗ . . .. (It is isomorphic to O∞ by

Corollary H, or by a result of Lin and Phillips [531].)

We consider ψ1 : a ∈ D∞ → 1 ⊗ a ∈ D∞ ⊗ D∞ and an isomorphism ψ2 from

D∞ onto D∞ ⊗D∞. (ψ1 and ψ2 are unitarily homotopic by Corollary H.)

It holds C ∼= C ⊗D∞ for separable hereditary C *-subalgebras C of B ⊗D∞ ,

cf. [443].

Suppose that A and B are separable, and that

0→ B ⊗D∞ → E → A⊗D∞ → 0

is an extension. Then there exists an isomorphism λ from E onto E⊗D∞, cf. [443,

chp. 8].

If A and B are stable then E is stable by Corollary 5.5.16, because B ⊗D∞ is

purely infinite.

Question 5.9.13. Suppose that A and B are separable stable C *-algebras and

that

ϕ1, ϕ2 ∈ Hom(A⊗O∞,Q(B ⊗O∞))

are (not necessarily c.p. liftable) Busby invariants, and suppose that ϕ1 and ϕ2 are

unitarily homotopic (by unitaries in Q(B ⊗O∞)). Does it imply ϕ1 ≈ ϕ2 ?

(Recall that ϕ1 ≈ ϕ2 means the rather strong property that there is a unitary

u ∈M(B ⊗O∞) with ϕ1(a) = π(u)ϕ2(a)π(u∗) for all a ∈ A⊗O∞.

NEXT TRUE?:

The question has a positive answer, if - in addition - ϕ1 has a completely

positive lift. The latter is e.g. the case, if A is nuclear, cf. [443].)

Collection/ to be sorted/ to be integrated: ??

next used in Chapter 8:

The next lemma shows that the relation introduced by J. Cuntz for an alterna-

tive definition of Kasparov’s Ext(A,B) also hold for our Ext(C; A,B) with obvious

modifications.

Lemma 5.9.14. Suppose that A is separable and that B is σ-unital and stable,

and that C ⊆ CP(A,B) is a point-norm closed matrix operator-convex cone.
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Let S denote the set of pairs (ϕ, p), where ϕ : A → M(B) is a C*-morphism

with b∗ϕ(·)b ∈ C for all b ∈ B and p ∈ M(B) is a projection that satisfies ϕ(a)p−
pϕ(a) ∈ B for all a ∈ A.

We denote by [S] the set of unitary equivalence classes [(ϕ, p)] using unitaries

in M(B). An element (ϕ, p) ∈ S is degenerate if pϕ(a) = ϕ(a)p for all a ∈ A.

(i) [S] is a commutative semigroup (with Cuntz-Addition on maps and pro-

jections).

(ii) The map [ϕ, p] 7→ πB(ϕ(·)p) ∈ Hom(A,Q(B)) defines an additive semi-

group morphism ϑ from [S] onto SExt(C; A,B). The image of ϑ contains

[0] + SExt(C ; A,B).

(iii) The map S → Ext(C; A,B) induces an equivalence relation ∼ on S that

is compatible with Cuntz addition and is generated by the following oper-

ations and relations:

(a) unitary equivalence by unitaries inM(B), i.e., (ϕ, p) ∼ (ψ, q) if there

is a unitary u ∈M(B) with ψ = u∗ϕ(·)u and q = u∗pu ,

(b) addition (ϕ⊕ψ, p⊕q) of degenerate elements (ψ, q) ∈ S to elements

(ϕ, p) ∈ S , i.e., (ϕ⊕ ψ, p⊕ q) ∼ (ϕ, p) , and

(c) unitary perturbation: (ϕ, p) ∼ (ϕ, q) if there is b∗ = b ∈ M(B) such

that ϕ(a)b− bϕ(a) ∈ B and (p− e−ibqeib)ϕ(a) ∈ B for all a ∈ A.

(iv) The natural semigroup morphism from SExt(C; A,B) into Ext(C; A,B)

is an epimorphism.

(v) If C is countably generated and non-degenerate, and if H : A⊗K→M(B)

is as in Corollary 5.4.4, then the unitary equivalence classes [(H, p)] ∈ [S]

build a sub-semigroup [P] of [S] such that ϑ maps [P] onto Ext(C;A,B).

Proof. Let S, T ∈ M(B) isometries with SS∗ + TT ∗ = 1, and let s :=

πB(S) = S +B and t := πB(T ) = T +B in Q(B) :=M(B)/B.

(i): Unitary equivalence (ϕ, p) ≈ (ψ, q) for (ϕ, p), (ψ, q) ∈ S means that there

is a unitary U ∈M(B) with ψ = U∗ϕ(·)U and q = U∗pU . Now straight calculation

shows that the Cuntz addition

(ϕ, p)⊕ (ψ, q) := (ϕ⊕S,T ψ, p⊕S,T q)

defines an operation on S. It is associative and commutative on the set [S] of

unitary equivalence classes [ϕ, p]≈ of elements (ϕ, p) ∈ S, by Proposition 4.3.2.

(ii): The map

γ(ϕ, p) : a ∈ A 7→ πB(ϕ(a)p) ∈ Q(B)

is a *-morphism from A into Q(B) if (ϕ, p) ∈ S, and the c.p. map V = pϕ(·)p ∈
CP(A,M(B)) satisfies b∗V (·)b = (pb)∗ϕ(·)pb ∈ C for each b ∈ B, because ψ(·) is

in the closure of C with respect to the strict topology (by definition of S). Thus,

γ(ϕ, p) is in Homl(C; A,Q(B)) and defines an Element [γ(ϕ, p)] of

SExt(C;A,B) := [ Homl(C; A,Q(B)) ] .



764 5. GENERALIZED WEYL–VON NEUMANN THEOREMS

Clearly, γ(U∗ϕ(·)U,U∗pU∗) = πB(U)∗γ(ϕ, p)πB(U) for unitary U ∈ M(B). One

gets [γ(ϕ⊕ψ, p⊕q)] = [γ(ϕ, p)]+ [γ(ψ, q)] in SExt(C; A,B) by straight calculation.

We define ϑ : [S]→ SExt(C;A,B) by

ϑ([(ϕ, p)]≈) := [γ(ϕ, p)] .

If ρ ∈ Homl(C; A,Q(B)), then there is a c.p. contraction V : A → M(B) with

b∗V (·)b ∈ C for all b ∈ B (by definition of Homl(C; A,Q(B))). By Lemma 3.6.24,

there is a *-morphism ψ : A → M(B) with b∗ψ(·)b ∈ C and isometries s1, t1 ∈
M(B) such that t∗1ψ(·)t1 = V and s1s

∗
1 + t1t

∗
1 = 1. Let U := s1S

∗ + t1T
∗, ϕ(·) :=

U∗ψ(·)U and p := SS∗. Then (ϕ, p) ∈ S and 0 ⊕s,t ρ = γ(ϕ, p). Thus [0] +

SExt(C; A,B) ⊆ ϑ([S]).

(iii) +(iv): Recall that Ext(C; A,B) := Gr(SExt(C;A,B)) is the Grothendieck

group of the semigroup of unitary equivalence classes of morphisms ρ ∈
Homl(C; A,Q(B)) by unitaries u = πB(U) for unitaries U in M(B).

Let (ϕ, p) ∈ S, q ∈ M(B) a projection and U ∈ M(B) a unitary with (p −
q)ϕ(A) ⊆ B, respectively with Uϕ(a)− ϕ(a)U ∈ B for all a ∈ A. Then (ϕ, q) and

(ϕ,U∗pU) are in S, i.e., qϕ(a) − ϕ(a)q ∈ B and U∗pUϕ(a) − ϕ(a)U∗pU ∈ B for

all a ∈ A. Moreover, γ(ϕ, p) = γ(ϕ, q) and πB(U)∗γ(ϕ, p)πB(U) = γ(ϕ,U∗pU) in

Homl(C;A,Q(B)). Thus, the relations (a) and (c) on S are stronger (or equal) to

the relation on S induced by ϑ : [S]→ SExt(C;A,B).

If (ϕ, p) ∈ S is degenerate, then ψ := δ∞ ◦ ϕ and q := δ∞(p) ( 23 ) satisfy

b∗ψ(·)b ∈ C for all b ∈ B and qψ(a) = ψ(a)q for all a ∈ A. Thus (ψ, q) ∈ S.

Since K∗(M(B)) = 0 and s∗1s2 = 0, it follows from Lemma 4.2.6(ii) that there is

an isometry R ∈M(B) with RR∗ = 1− s1s
∗
1. More explicitly the series

∑
sn+1s

∗
n

converges strictly in M(B) to an element R :=
∑
sn+1s

∗
n of M(B) by Remark

5.1.1(2). The element R is an isometry in M(B) with RR∗ = 1− s1s
∗
1 and Rsn =

sn+1 for n = 1, 2, . . ..

Then U := Ss∗n + TR∗ is unitary, U∗(ϕ ⊕S,T ψ)U = ψ and U∗(p ⊕S,T q)U =

q, i.e., ϑ([ϕ, p]) + ϑ([ψ, q]) = ϑ([ψ, q]) in SExt(C;A,B). Thus, [ϑ([ϕ, p])] = 0 in

Ext(C;A,B) if (ϕ, p) is a degenerate element in S. It implies that (ϕ1, p1)⊕S,T (ϕ, p)

and (ϕ1, p1) define the same class in Ext(C;A,B) for all (ϕ1, p1) ∈ S if (ϕ, p) is

degenerate.

It follows that the equivalence relation (ϕ, p) ∼ (ψ, q) on S defined by the oper-

ations (a), (b) and (c) is stronger or equal to the equivalence relation (ϕ, p) ∼ (ψ, q)

defined by [ϑ([ϕ, p])] = [ϑ([ψ, q])] in Ext(C;A,B). If we consider the semigroup [S]

then (a) becomes equality and (b) describes there addition by elements in the sub-

semigroup D of [S] of unitary equivalence classes of degenerate elements. Thus,

relation (b) is compatible with Cuntz addition on [S]. Straight calculations show

that also relation (c) is compatible with Cuntz addition on [S]. It follows that the

23Here δ∞ : M(B) → M(B) is defined by a sequence of isometries s1, s2, . . . ∈ M(B) with

strictly converging sum
∑
sns∗n = 1, as considered in Remark 5.1.1(8) and Lemma 5.1.2.
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relation ∼ – coming from (a), (b), (c) – defines on [S] an equivalence relation that

is compatible with addition and that [(ϕ, p)] ∼ [(ψ, q)] implies [(ϕ, p)] ∼c [(ψ, q)].

To see that ∼c is equal to ∼, it suffices now to show that [S]/ ∼ is a group and

that ϑ([ϕ, p]) = ϑ([ψ, q]) implies (ϕ, p) ∼ (ψ, q).

We show first that ϑ([ϕ, p]) = ϑ([ψ, q]) implies (ϕ, p) ∼ (ψ, q), which is the

crucial and most involved part of the whole proof:

By definition of ϑ and of the equivalence classes [Homl(C;A,Q(B))] ,

there is a unitary U ∈ M(B) such that γ(ϕ, p) = γ(U∗ψ(·)U,U∗qU) . Since

(U∗ψ(·)U,U∗qU) ∼ (ψ, q) by relation (a). We may rename U∗ψ(·)U and U∗qU by

ψ respectively by q.

Thus we have to study the implication of the property

ϕ(a)p− ψ(a)q ∈ B ∀ a ∈ A .

Let ρ := (ϕ⊕ ψ)⊕ 0, p′ := (p⊕ 0)⊕ 0, q′ := (0⊕ q)⊕ 0, V := S(ST ∗ + TS∗)S∗ ⊕
TT ∗. Then ρ(·)T = 0, i.e., ρ dominates zero, (ρ, p′) ∼ (ϕ, p) and (ρ, q′) ∼ (ψ, q)

by relation (b), and ρ(a)p′ − V ∗ρ(a)q′V ∈ B for all a ∈ A. Let s1, s2, . . . ∈
M(B) a sequence of isometries with

∑
sns
∗
n = 1, and let λ := δ∞ ◦ ρ, p′′ :=

s1p
′s∗1, q′′ = s1q

′s∗1 and W := δ∞(V ). It holds (λ, p′′) ∼ (ρ, p′), (λ, q′′) ∼ (ρ, q′),

and λ(a)p′′ − W ∗λ(a)q′′W ∈ B for a ∈ A. Moreover, λ(·) dominates zero, the

algebra C∗(λ(A),W ) is contained in δ∞(M(B)) and there is a copy C∗(S1, T1) ∼= O2

unitally contained in δ∞(M(B))′ ∩M(B), cf. Remark 5.1.1(8).

It follows that Lemma 4.6.11 applies to D := A, E := Q(B), h := πB ◦ λ,

the unitary πB(W ), and the projections p1 := πB(p′′), q1 := πB(q′′), because

K∗(M(B)) = 0 by Lemma 5.5.9(i):

We get the existence of u ∈ U0(h(A)′ ∩Q(B)) with u∗(p1 ⊕ 1⊕ 0)u = (q1 ⊕ 1⊕ 0)

with Cuntz addition ⊕ taken with respect to the generators s1 := πB(S1) and

t1 := πB(T1) of a unital copy of O2 in πB(λ(A)′∩M(B)) ⊆ h(A)′∩Q(B). It follows

that there are self-adjoint h1, h2, . . . , hm ∈ M(B) with hkλ(a) − λ(a)hk ∈ B for

k = 1, . . . ,m such that u = πB(U) for U := eih1 · . . . · eihm .

Note that λ⊕S1,T1
λ = λ. Thus (λ, p′′) ∼ (λ, p′′ ⊕ 1⊕ 0) = (λ, p′′)⊕ (λ, 1⊕ 0)

and (λ, q′′) ∼ (λ, q′′ ⊕ 1 ⊕ 0) . Let p2 := p′′ ⊕ 1 ⊕ 0 and q2 := q′′ ⊕ 1 ⊕ 0, then

U∗p2U − q2 ∈ B.

The equivalence relation ≈(c) generated by (c) is stronger than ∼ and yields

that (λ, p2) ≈(c) (λ, q2) if there are selfadjoint h1, . . . , hm ∈ M(B) with hkλ(a) −
λ(a)hk ∈ B for k = 1, . . . ,m and U∗p2U − q2 ∈ B for U := eh1 · . . . · ehm .

All together shows that (ϕ, p) ∼ (ψ, q).

We check that [S]/ ∼ is a group:

For (ϕ, p) ∈ S, the element (ϕ, 1− p) is in S and

(ϕ, 1− p)⊕ (ϕ, p) ∼ (ϕ, 1)⊕ (ϕ, 0) ∼ (0, 0) .
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This is because [u, ϕ(a)⊕s,t ϕ(a)] ∈ B for all a ∈ A and u∗(1⊕ 0)u = (1− p)⊕ p,
where u := exp(iH) = s(1−p)s∗+t(1−p)t∗+spt∗−tps∗ for H := i(π/2)(tps∗−spt∗)
(respectively with z = s(1− p)s∗ + spt∗) in (iii,b) ( 24 ). It follows that the natural

image of the semi-group SExt(C; A,B) in Ext(C; A,B) is a group, because the

image of ϑ : [S] → SExt(C; A,B) contains [0] + SExt(C; A,B) by part (ii) and

because [0] + [0] = [0].

If we combine this with the observation that the image of SExt(C; A,B)

generates Ext(C; A,B) , then we get that the natural semigroup morphism from

SExt(C; A,B) into Ext(C; A,B) is a semigroup epimorphism.

(v): Suppose that C is countably generated and that h0 : A→ Q(B) is defined

as in Corollary 5.4.9. If (ϕ, p) ∈ S, then there is a unitary u ∈M(B) and a projec-

tion q ∈ M(B) such that u∗(H(a)⊕ 0)qu− ϕ(a)p ∈ B for all a ∈ A, cf. Corollary

5.4.9(ii). Since there is a suitable copy of O2 = C∗(S1, T1) unitally contained in

(H⊕0)(A)′∩∩M(B), it follows that the elements (H⊕0, q) build a sub-semigroup

of S under Cuntz-addition. �

next.ref: cor:5.X1.chp12 ??

Corollary 5.9.15. Let A and B stable and separable C*-algebras and let

Ψ: I(B) → I(A) a lower semi-continuous action of Prim(B) on A, such that

Ψ(0) = 0 and Ψ−1(A) = {B}.

Suppose that there exists a non-degenerate weakly Ψ-residually nuclear *-

monomorphism H0 : A →M(B), such that δ∞ ◦H0 is unitarily equivalent to H0,

and, for each J ∈ I(B),

Ψ(J) = H−1
0 (H0(A) ∩M(B, J)) .

Then the H0 with this properties is uniquely determined up to unitary homotopy.

Proof. Let C(H0) ⊆ CP(A,B) the point-norm closed m.o.c. cone generated

by the maps a ∈ A 7→ b∗H0(a)b.

Then C(H0) is contained in the m.o.c. cone Cnuc(Ψ) of all Ψ-residually nuclear

c.p. maps V : A→ B with V (Ψ(J)) ⊆ J for all J ∈ I(B) and [V ] : A/Ψ(J)→ B/J

is nuclear.

But, by assumptions, for each J ∈ I(B),

Ψ(J) = H−1
0 (H0(A) ∩M(B, J)) ,

i.e., that C(H0) is separating for the action Ψ.

By Corollary 3.9.1 this implies that the m.o.c. cone C(H0) is identical with the

m.o.c. cone of the – with respect to the l.s.c. action Ψ – residually nuclear c.p.

maps.

24 Use that C∗(s(1− p)s∗, sps∗, tps∗) is naturally isomorphic to C⊕M2 .
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If H1 : A → M(B) has the same properties as H0, – i.e., δ∞ ◦ H1 is unitary

equivalent to H1 and, for each J ∈ I(B),

Ψ(J) = H−1
1 (H1(A) ∩M(B, J)) ,

and [H1] : A/Ψ(J)→M(B/J) is nuclear for every closed ideal J of B –, then this

implies by Corollary 3.9.1 that the m.o.c. cone C(H1) is again the m.o.c. cone of all

Ψ-residually nuclear c.p. maps. Thus, C(H0) = C(H1).

It implies that H0 and H1 are unitarily homotopic by Corollary 3.9.2. �

Ref. to 5.9.16 still exists in Chp. 12!!

Corollary 5.9.16. Suppose that A is separable and B is σ-unital and stable.

If h1, h2 : A → M(B) are non-degenerate nuclear monomorphisms and define

the same action of I(B) on A, then δ∞ ◦ h1 and δ∞ ◦ h2 are unitarily homotopic.

Chapter 12 asks also for a Corollary

cor:5.?.same.lsc.action.gives.unitary.homotop

that says that for stable σ-unital B the same l.s.c. action of Prim(B) on

C∗(b) ⊂ M(B) and (– by pull-back also on C∗(b) –) on C∗(λ(b)) ⊂ M(B) – for

some C *-morphism λ : C∗(b)→M(B) implies that δ∞(b) and δ∞(λ(b)) are unitary

homotopic in M(B).

Have the hk same kernel J?

Seems to need/check still that the [hk] : A/J →M(B)

is again nuclear!! Then it reduces to the residually nuclear case

with exact A/J.

The following elementary corollary allows to (in proofs of Chapter 6) the

use of results on the generalized KK–theory KKnuc(X; A,B) (cf. Chapters 1 and

8). next.ref: cor:5.lifting-criterium ?? Is needed that the action

is monotonous upper s.c.?

Corollary 5.9.17. Suppose that A and B are separable and stable, that A is

exact and that B has the WvN–property of Definition 1.2.3. Further suppose that

ψ : A → Q(B) is a nuclear C*-morphism and H : A →M(B) is a non-degenerate

nuclear *-monomorphism. Furthermore suppose that, for J ∈ I(B),

ψ
(
H−1(H(A) ∩M(B, J))

)
∈ πB(M(B, J)) .

Then H0 := πB ◦ δ∞ ◦H dominates ψ in Hom(A,Q(B)), i.e.,

[ψ] ∈ SExtnuc(X ; A,B) = S(H0 , A,Q(B))

for the action of X := Prim(B) on A given by

Ψ: J ∈ I(B) ∼= O(X) 7→ Ψ(J) := H−1 (H(A) ∩M(B, J)) ,

and the semi-group S(H0;A,Q(B) as defined in Chapter 4, Section 4.
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If moreover

ψ−1 (ψ(A) ∩ πB(M(B, J))) = H−1 (H(A) ∩M(B, J))

for J ∈ I(B), and if there exists a C*-morphism ϕ : A⊗O2 → Q(B) with ψ(a) =

ϕ(a ⊗ 1) for a ∈ A, then there exists a unitary U ∈ M(B) such that πB(U∗δ∞ ◦
H(a)U) = ψ(a) for a ∈ A.

next.ref: prop:5.char-Extnuc. needed? ??

Proposition 5.9.18. Suppose that A and B are separable and stable, that

A is exact and that B has the WvN–property (cf. Definition 1.2.3). Further let

ψ : A → Q(B) and H : A → M(B) a weakly nuclear *-monomorphisms such that

BH(A)B generates B.

Let Ψ(J) := H−1(H(A)∩M(B, J)) for J ∈ I(B), and h0 := πB ◦δ∞◦H : A→
Q(B).

Then:

Ψ is a lower semicontinuous action of Prim(B) on A (corresponding to H).

Extnuc(Prim(B), A,B) = [h0] + S(h0;A,Q(B))

[ψ] ∈ [h0] + S(h0;A,Q(B)), if and only if, ψ(A)∩ πB(M(B, I)) = ψ(Ψ(I)) for

all I ∈ I(B).

The following Lemma allows to apply above to the asymptotic case.

next.ref:lem:asympt-absorbtion ??

Chp.7ref:lem:asympt-absorbtion.to.chp.7?

next: check if (1) and (2) are used in chp.7 !!

Lemma 5.9.19. (1) If B is a C*-algebra, then

πSB(M(SB, SI)) ∩Q(R, B) = Q(R, I)

for all I ∈ I(B), where SB := C0(R, B) and SI := C0(R, I).

(2) Suppose that A is separable, B is σ-unital and stable, and h0 : A → B

satisfies [h0] + [h0] = [h0 ⊕ h0] = [h0]. Let s1, s2, . . . ∈ M(B) a sequence of

isometries such that
∑
sns
∗
n converges strictly to 1 inM(B), and let H := δ∞◦h0 –

e.g. realized by s1, s2, . . .. Denote by HR(a) := η(H(a)), where η : M(B)→M(SB)

denotes the natural embedding that extends the inclusion map B ⊂ Cb(R, B) ⊂
M(SB).

If HR dominates k : A→ Q(R, I) then h0 dominates k.

Proof. (1): Let b ∈ M(SB, SI)) and c ∈ Cb(R, B) ⊃ SB := C0(R, B)

with b + SB = c + SB. There is a ∈ SB with b = c + a ∈ Cb(R, B). Thus

b(t) ∈ B ∩M(B, I) = I for t ∈ R, i.e., b ∈ Cb(R, I). Since Cb(R, I) ∩ SB = SI it

follows b+ SB ∈ Q(R, I) ∼= πSB(Cb(R, I)).
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(2): Let d ∈ M(SB) a contraction with πSB(d∗HRd) = k. By assumption,

there is a unitary u ∈ M(B) with u∗s1h0(·)s∗1u + u∗s2h0(·)s∗2u = h0, and H =∑
n snh0(·)s∗n. Let tn = (u∗s1)nu∗s2. Then t∗ntm = δn,m1 and tnh0(·) = h0(·)tn.

There exists a positive contraction e ∈ Cb(R, B) and a strictly increasing con-

tinuous function µ : R+ → (0,∞) with e(t) ≤
∑k
n=1 sns

∗
n for k ≥ µ(t), ed−de ∈ SB,

HR(a)e − eHR(a) ∈ SB for all a ∈ A and πSB(e)k(a) = k(a) = k(a)πSB(e) for

all a ∈ A. This can be seen with help of a convex commutative approximate

unit of B, that approximately commutes with the elements of H(A), s1, s2, . . .,

k̃(A)t (t ∈ [−n, n]) d|[−n, n]. Here k̃ : A → Cb(R, B) is some continuous topolog-

ical (not necessarily linear) lift of the C *-morphism k : A → Cb(R, B)/SB. Then

t 7→ g(t) :=
∑

1≤n≤[µ(t)]+1 tns
∗
ne(t)d(t)e(t) is a norm-continuous map from R into

the contractions of B. It satisfies g∗h0(a)g−d∗HR(a)d ∈ SB for all a ∈ A, because

e2d∗HR(a)de2 − d∗HRd ∈ SB.

to be filled in: check last 2 formulae ?? �

where is ref.cor:5.to-be-named used? ??

Corollary 5.9.20. Suppose that A and B are stable C*-algebras, where A is

separable B is σ-unital, and that H0 : A ↪→M(B) and ϕ : A ↪→ Q(B) =M(B)/B

are nuclear *-monomorphisms with the properties that H0(A)B is dense in B and,

for every a ∈ A, πB(H0(a)) and ϕ(a) generate the same closed ideal of Q(B).

Then, if at least one of the following conditions (i) or (ii) is satisfied, there is a

unitary U ∈M(B) such that ϕ = πB(U∗H0(·)U).

(i) B ∼= C ⊗O2 ⊗O2 ⊗ . . ., or

(ii) π−1
B (ϕ(A)) is stable, and there are C*-morphisms H : A ⊗ O2 ↪→ M(B)

and Φ: A⊗O2 ↪→ Q(B) =M(B)/B with H0(a) = H(a⊗ 1) and ϕ(a) =

Φ(a⊗ 1) for a ∈ A.

Proof. to be filled in ?? �

cite ? cor:5.X.1.chp8 ??

Corollary 5.9.21. Suppose that A and B are stable, A separable and B σ-

unital with strictly positive element e. Let H1 denote the infinite repeat of a faithful

*-representation ρ : A→ L(H) ∼=M(K) ⊂M(B).

If h : A → M(B) is any C*-morphism such that a ∈ A 7→ eh(a)e generates

CPnuc(A,B) as a m.o.c. cone, then δ∞ ◦ h is unitarily homotopic to H1 : A →
M(B).

It holds Extnuc(A,B) = G(H0, A,Q(B)) for H0 := πB ◦H1.

Proof. cite ? cor:5.X.1.chp8 ?? �

ref {cor:5.Y?1.chp9} (??) needed in this generality??
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Corollary 5.9.22. Suppose that A and B are stable, A is separable and B is

σ-unital. Let C ⊆ CP(A,B) a countably generated non-degenerate operator convex

cone, and H0 : A→M(B) the non-degenerate C*-morphism described in Corollary

5.4.4. If Y is a locally compact space, let HY := πC0(Y,B) ◦ εX ◦ H0 and EY :=

M(C0(Y,B))/C0(Y,B), where εX : M(B) → M(C0(Y,B)) is the natural strictly

continuous embedding of M(B) into M(C0(Y,B)) ∼= Cb,st(Y,M(B)).

Then:

(i)

Ext(C ⊗ CP(C,C0(Y )); A,C0(Y,B)) = G(HY , A,EY ) =: F (C, Y ) .

In particular,

Ext(C ⊗ CP(C,C0(R));A,SB) = G(HR , A,ER) =: F (C,R)

for the above defined HR : A→ ER .

(ii) In particular, if X is a T0 space that acts on A and B by ΨA respectively

ΨB, and if H0 (and then HR) is formed with respect to the cone of ΨA-

ΨB–residually nuclear maps from A into B, then

Extnuc(X; A,SB) = G(HR, A,ER) .

(iii) If H0 : A → M(B) is the infinite repeat of a non-degenerate h0 : A → B

with h0 ⊕ h0
∼= h0, then HR dominates h0 : A → Q(R+, B) ⊂ ER :=

Q(SB) . Every element h ∈ S(h0;A,ER) is also in S(HR; A,ER) and

[h⊕H0] ∈ G(HR, A,ER).

(iv) In particular, if A is exact and h0 is nuclear, then for h : A→ Q(R+, B)

holds [h⊕H0] ∈ Extnuc(X; A,SB) if and only if [h] ∈ S(h0, A,ER).

(Here the action of X := Prim(B) on A is defined by h0.)

We have e.g. ER :=M(SB)/SB if B is stable SB := C0(R, B).

next: ref: cor:5.Y5.chp9

Corollary 5.9.23. Suppose that D is separable and stable, B is σ-unital and

stable, and that k0 : D → B is a non-degenerate *-monomorphism such that k0⊕k0

is unitarily homotopic to k0.

Let C ⊆ CP(D,B) denote the point-norm closed m.o.c. cone of c.p. maps gen-

erated by k0. Let C(R) := C ⊗ CP(C, C0(R)).

We define a *-monomorphism

H0 := δ∞ ◦ k0 : D →M(B).

Let HR := IH0 : D → ER := Q(SB), where I : M(B) → Q(SB) is the natural

embedding.

Then

Ext(C(R) ;D,SB) ∼= G(HR;D,ER).
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If D is exact, we have moreover,

Extnuc(X;D,SB) = G(HR, D,ER) = [HR] + [Homnuc(X;D,ER)]

for X := Prim(B) and action ΨD(J) := k−1
0 (k0(D) ∩ J) for J ∈ I(B) ∼=

O(Prim(B)).

Let A and B stable C *-algebras, where A is separable and B is σ-unital. Sup-

pose that the operator convex cone Crn(ΨA) of all Ψ-residually nuclear maps from

A to B for a given lower semi-continuous action ΨA : O(Prim(B)) ∼= I(B)→ I(A)

of Prim(B) on A is countably generated (as e.g. in the case of separable B).

The universal C *-morphism Hrn : A → M(B) , that is determined (and de-

fined) by m.o.c. cone Crn(ΨA) := Crn(ΨA, id;A,B) in the sense of Corollary 5.4.4,

will be called the universal weakly residually nuclear map from A intoM(B).

Recall that Hrn is uniquely determined up to unitary homotopy by Corollary

5.4.4. It is now known that Crn(ΨA) – and therefore also Hrn – defines the action

Ψ, because B has “weak Abelian separation” which is (formally ?) stronger than

residually separation for B. But the proof of “weak Abelian separation” for B

(which is a weaker property than the existence of an ideal-separating regular abelian

C *-subalgebra of B) deserves several steps, e.g. that every coherent Dini space X

is the primitive ideal space of a separable nuclear C *-algebra that has Abelian

separation, and study some “almost minimal” embedding of of Dini spaces into

coherent Dini spaces. It uses some results of this book, but can not summarized

here.

Proposition 5.9.24. If B is stable and separable, then the universal residually

nuclear map Hrn : B →M(B) exists for ΨB = idI(B).

Separable B has residually nuclear separation (cf. Definition 1.2.3), if and only

if, Hrn is a non-degenerate *-monomorphism and Hrn(J) = Hrn(B)∩M(B, J) for

all J ∈ I(B).

If B 6= {0} is simple separable and stable, then Hrn : B → M(B) is unitarily

homotopic to M(ι) ◦ ρ for any non-degenerate *-morphism ι : K 7→ M(B) and any

non-degenerate *-representation ρ : B → L(`2) =M(K).

In particular, every simple separable C*-algebra has residually nuclear separa-

tion.

Proof. to be filled in ?? �

Used in Chp.8, ref: prop:5.stabilty.of.Ext.Co :

Stability, (partial) Functoriality of Ext?

Proposition 5.9.25. Suppose that A and B are σ-unital and that C ⊆
CP(A,B) is a point-norm closed m.o.c. cone.
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Then the inclusions ιA : A ∼= A⊗ p11 ⊆ A⊗K and ιB : B ∼= B ⊗ p11 ⊆ B ⊗K
induce natural isomorphisms

i(A,B) := (ιA)∗ : Ext(C; A⊗K, B)→ Ext(C; A,B) (9.1)

j(A,B) := (ιB)∗ : Ext(C; A,B)→ Ext(C; A,B ⊗K) , (9.2)

such that (ιB)∗ ◦ ((ιA)∗)−1 = ((ιA)∗)−1 ◦ (ιB)∗ in the sense

j(A⊗K, B) ◦ i(A,B) = i(A,B ⊗K) ◦ j(A,B) .

If, moreover, C ⊆ CP(A,B) is countably generated, A, A′ are separable, B, C

are σ-unital, then ψ ∈ Hom(B,C), then there is group morphism

ψ∗ : Ext(C; A,B)→ Ext(C(ψ) ◦ C; A,C) .

A *-morphism ϕ ∈ Hom(A′, A) defines a group morphism

ϕ∗ : Ext(C; A,B)→ Ext(C ◦ ϕ;A′, B) .

Proof. ??

This was outlined in a proof of the corresponding (non-nuclear) Proposition [73,

17.6.5]. Note here that the stabilization of any relation that contain at least the

(unitary) isomorphisms, automatically allows in the class of each representative

also the Cuntz addition of so-called “degenerate” pairs, which can be defined as

those with the property that their infinite Hilbert B-module sum defines again a

C-compatible Kasparov module. Therefore they have no significance for us, because

we pass anyway to the stabilized relations, i.e., to the Grothendieck group. �

Compare following Remark with Remark 5.9.27

Split both Remarks into one ‘‘common Remark’’ and a Proposition

Change then all references to them!!!

Remark 5.9.26. The reader should notice that in general the closed ideal

I(δ∞(B)) of M(B) generated by δ∞(B) for a separable stable C *-algebra

B is not identical with M(B) e.g. even for B = C0(0, 1] ⊗ K, because

M(B) ∼= Cb,st(R+,M(K)) is unital and 1 is not in the ideal J of Cb,st(R+,M(K))

that is generated by δ∞(C0((0, 1],K)), because it is contained in the ideal generated

by C0([0,∞))⊗ 1.

Following properties of σ-unital stable B are equivalent:

(i) I(δ∞(B)) =M(B).

(ii) Prim(B) is quasi-compact.

Equivalent to ′(B) quasi-compact?

(iii) B ⊗O2 contains a full projection.

We can replace in (iii) B⊗O2 by B⊗O∞, because O∞ ⊆ O2 (unital) and O2 ⊆ O∞
(non-unital).



9. THE Ψ-RESIDUALLY NUCLEAR CASE AND Ext(C; A,B) 773

Proof. Since L(`2) ∼= M(K) ⊆ δ∞(B))′ ∩ M(B) (by a strictly continuous

unital monomorphism), δ∞(B) commutes with a unital copy of O2
∼= C∗(t1, t2) ⊆

M(K) and a sequence of isometries s1, s2, . . . ∈ M(K) with
∑
n sns

∗
n strictly con-

vergent to 1 and tisj = sjti, t
∗
i sj = sjt

∗
i . Let e ∈ B+ a strictly positive contraction.

(i)⇒(ii): The element δ∞(e) is a strictly positive contraction for B + δ∞(B). And

δ∞(e) is properly infinite because δ∞ ◦ δ∞ is unitarily equivalent to δ∞. Thus,

there are ε > 0, X ∈M(B) with X∗δ∞((e− ε)+)X = 1. It follows that e is in the

closed ideal I((e − ε)+) of B generated by (e − ε)+, i.e., B = I((e − ε)+) . Thus

‖πJ((e − ε)+)‖ = 0 implies J = B for closed ideals J of B, and ‖J + a‖ ≥ ε

for all J 6= B. Since the set Yε ⊆ Prim(B) of primitive ideals J of B with

‖πJ(e)‖ = ‖J + e‖ ≥ ε is a quasi-compact Gδ-subset, of Prim(B), it follows that

Prim(B) = Yε is quasi-compact.

(ii)⇒(iii): The algebra B ⊗ O2 is (strongly) purely infinite by Corollary ??. If

Prim(B) is quasi-compact, then the purely infinite algebra B ⊗ O2 has quasi-

compact primitive ideal space Prim(B ⊗O2) ∼= Prim(B).

By Proposition 2.10.4 B ⊗O2 contains a full projection.

(iii)⇒(i): If B ⊗ O2 contains a full projection p, then there is a non-degenerate

C *-morphism h : K→ B ⊗O2.

Above we have seen that we can define by µ(b ⊗ tj) = δ∞(b)tj a *-

monomorphism µ : B ⊗ O2 → M(B) with µ(b ⊗ 1) = δ∞(b) and with δ∞ ◦ µ = µ

(if we take new isometries s1, s2, . . . for the definition of the new infinite repeat

δ∞ ). It follows, I(δ∞(B)) = I(µ(B⊗O2)) = I(µ ◦h(K)) inM(B). The morphism

µ ◦ h(K) ⊆M(B) is non-degenerate, i.e., M(µ ◦ h) : M(K)→M(B) exists and is

unital.

If we use the sequence s1, s2, . . ., then δ∞(µ◦h(x)) = µ◦h(x) for each x ∈ K. We

find a sequence of isometries r1, r2, . . . inM(K) with
∑
n rnr

∗
n = 1 for the definition

of δ∞ : K→M(K), thenM(µ◦h)◦δ∞ is unitarily equivalent to δ∞◦µ◦h = µ◦h by

Lemma 5.1.2(i), because there is a unitary U ∈ M(B) with U∗M(µ ◦ h)(rn) = sn

and U∗M(µ◦h)(·)U is strictly continuous. Thus, I(µ◦h(K)) ⊃M(µ◦h)(I(δ∞(K)).

But there is an isometry S ∈ M(K) ∼= L(`2) with SS∗ = δ∞(e1,1). It follows

1 ∈ I(µ ◦ h(K)) = I(δ∞(B)). �

Compare next with Remark 5.9.26

Remark 5.9.27. We consider sometimes elements that are in the ideal gener-

ated by δ∞(B) inM(B), e.g. in some proofs of Chapters 2, 5, 6, 8 and 12. Therefore

the following rather strong equivalent properties of the ideal of M(B) generated

by δ∞(B) should be noticed. They show that some care is needed if one establish

results with help of elements in the ideal generated by δ∞(B).

Suppose that B is stable, then the following are equivalent:

(a) The ideal J of M(B) generated by δ∞(B) is equal to M(B).

(b) B is σ-unital and prime(B) is quasi-compact.

(c) prime(B) quasi-compact.
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(d) There exists a positive contraction e ∈ B+ such that e is strictly positive

and f := (2e − 1)+ is “full” in B – in the sense that f generates B as

closed ideal –, and that there exists a1, . . . , an ∈ B such that

g := 2e− (2e− 1)+ =

n∑
k=1

a∗kfak .

If B contains a projection p ∈ B that generates B as a closed ideal, then δ∞(p)

is the range of an isometry in M(B). In particular, then B satisfies the property

(a) and B ∼= pBp⊗K.

If B is weakly purely infinite – in addition –, then property (a) implies that B

contains a properly infinite projection that generates B as a closed ideal.

Compare proof that stable stable B

with simple M(B)/B is σ-unital.

Is this proof here applicable?

Proof. For the proof of the existence of a countable approximate unit con-

sisting of contractions 0 ≤ b1 ≤ b2 ≤ · · · in B+ from the existence of e ∈ B+ and

d1, . . . , dn ∈M(B) with 1−
∑n
k=1 d

∗
kδ∞(e)dk ∈ B , see Chapter 2[Cor.2.1.7(i)?] or

proof of Corollary 2.2.11 in case of simple B?

We remind the definition of Dini functions f on topological T0 spaces X (by

requiring that the generalized classical Lemma of Dini is valid for f):

The function f is lower semi-continuous, and satisfies the Lemma of Dini: If

gτ is an upward directed net of non-negative lower semi-continuous functions on X

that converges point-wise to f on X, then the net converges uniformly on X to f .

An equivalent definition of bounded Dini functions is: The function f is non-

negative, lower semi-continuous and, for every decreasing sequence F1 ⊇ F2 ⊇ · · ·
of closed subsets Fn ∈ X, holds sup f(

⋂
n Fn) = infn sup f(Fn).

On sober topological T0 spaces this is equivalent to saying that for each t > 0

the set f−1[t,∞) is a quasi-compact subset of X. (Notice that it is always a Gδ

subset of X).

The latter characterization implies that each Dini functions f on prime(B) is a

generalized Gelfand transformations N(b) : prime(B) → [0,∞) where N(b)(J) :=

‖b+ J‖ = ‖πJ(b)‖ of some b ∈ B, cf. [447] ( 25 ). This is fairly easy to see directly

for stable weakly purely infinite C *-algebras B.

Notice that prime(B) ⊇ Prim(B) is the “point-wise completion” of Prim(B)

because both have the same lattice of open subsets. The restriction of a Dini

function on prime(B) to Prim(B) is again a Dini function, and each bounded Dini

function f on Prim(B) is a generalized Gelfand transformation N(b) by [447].

25 Typo: Replace b by c in the last line of the proof of [447, lem.3.3]
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(a)⇒(b): Since the (non-zero) elements of δ∞(B) are properly infinite inside

the hereditary C *-subalgebra D of M(B) generated by δ∞(B), – because O2 ⊂
M(K) ⊆ δ∞(B)′ ∩ M(B) – there exists a contraction b ∈ B+ and an operator

T ∈M(B) with T ∗δ∞(b)T = 1.

It follows that there exists γ > 0 and S ∈ M(B) such that S∗T ∗δ∞((b −
γ)+)TS = 1 . That implies that c := (b− γ)+ generates B as a closed ideal. Thus

‖πJ(c)‖ > 0 for all closed ideals of B.

Let e := γ−1(b − (b − γ)+). Then ‖e‖ ≤ 1 and ec = c. It follows ‖πJ(e)‖ ·
‖πJ(c)‖ = ‖πJ(e)‖ > 0 for every closed ideal J 6= B. Thus the function 1 = N(e)

is a Dini function on prime(B). It implies that prime(B) is quasi-compact (by

definition of the Dini functions).

(c)⇒(b): prime(B) is quasi-compact, because ‖πJ(g)‖ = 1 for all J / B with

J 6= B follows from gf = f and ‖πJ(f)‖ > 0 for all J / B, J 6= B.

(b)⇒(c): The definition of Dini functions implies: prime(B) is quasi-compact,

if and only if 1 is a Dini function on prime(B).

Since 1 is the point-wise supremum of the norm functions N(b)(J) := ‖b+J‖ =

‖πJ(b)‖ (for J ∈ prime(B)) on prime(B), where b ∈ B+ with ‖b‖ < 1 and since the

positive elements in the open unit ball of B build an upward directed family, the net

of this functions N(b) converges point-wise to 1. Since 1 is Dini, it follows that the

net converges uniformly to 1. In particular, there exists a contraction b ∈ B+ with

‖πJ(b)‖ > 2/3 for all closed ideals J 6= B of B. Let a := min(2b, 1) = 2b−(2b−1)+.

Then ‖πJ(a)‖ = 1 for all closed ideals J 6= B of B.

Indeed: Clearly 0 ≤ a and ‖a‖ ≤ 1. Take a character χ on C∗(πJ(b)) with

χ(πJ(b)) = ‖πJ(b)‖ > 2/3. Then χ((2πJ(b) − 1)+) = 2χ(πJ(b)) − 1 > 0 and

χ(πJ(a)) = 2χ(πJ(b))− (2χ(πJ(b))− 1)+ = 1. Thus, ‖πJ(a)‖ = 1.

It follows that ???? and ‖πJ(4(a− 1/4)+)‖ = 1 for all J / B with J 6= B.

This implies that (a− 1/4)+ is again full in B and that there exists n ∈ N and

d1, . . . , dn ∈ B such that ‖2b−
∑
d∗k(a− 1/4)+dk‖ < δ.

It follows from Lemma 2.1.9

??????

that there is a contraction e ∈ B with (2b− δ)+ =
∑
e∗d∗k(a− 1/4)+dke.

more ???????

(c)⇒(a): We construct a projection Q ∈ δ∞(B)M(B)δ∞(B) that majorizes

δ∞(f). It follows that P := δ∞(Q) is in the closed ideal generated by δ∞(B)

(because δ2
∞ is unitary equivalent to δ∞ in M(B)) and PBP is stable full split-

corner of B. It follows from the stable isomorphism theorem of L.G. Brown [107],

respectively from Kasparov absorption theorem [404] that P is equivalent to 1 in

M(B).

δ∞(B) commutes with a copy of C∗(t1, t2, . . .) = O∞ ⊆M(B).
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If B contains a projection p ∈ B that generates B as a closed ideal, then δ∞(p)

is the range of an isometry in M(B). In particular, then B satisfies the property

(a) and B ∼= pBp⊗K.

If B is weakly purely infinite –in addition–, then property (a) implies that B

contains a properly infinite projection that generates B as a closed ideal.

If B is weakly purely infinite then there exists n ∈ N such that F := s1fs
∗
1 +

· · · + snfs
∗
n is properly infinite in B. Let E := s1es

∗
1 + · · · + snes

∗
n and G :=

s1gs
∗
1 + · · · + sngs

∗
n. Then G = min(2E, 1), F = (2E − 1)+ and GF = F . Since

G =
∑n
k=1A

∗
kFAk for Ak := s1aks

∗
1 + · · · + snaks

∗
n, and F is properly infinite,

there exist T1, T2 ∈ B such that ‖T ∗kFTk − G‖ < 1/4 (k = 1, 2). We can manage

that T ∗1 FT2 = 0 in addition, because for every ε > 0 there are D1, D2 ∈ B with

D∗jFDk = δjk(F − ε)+

(by a suitable 2 × 2-matrix arguments using Lemma 2.1.9 ??). It follows that

there exists S1, S2 with (TjSj)
∗F (TkSk) = δjk·2(G−1/2)+. SinceGF = F it follows

that 2(G− 1/2)+F = F . We get contractions Vk := F 1/2TkSk with V ∗1 V2 = 0 and

V ∗1 V1 = V ∗2 V2 and V ∗j VjVk = Vk The isometry Z := ????? satisfies ????. �

Refer to inventer of this example!

Remark 5.9.28. An algebra B with properties (a)–(c) of Remark 5.9.27 can be

stably projection-less, e.g. there exist simple stable separable nuclear C *-algebras

B that are stably projection-less.

An easy example of a stably projection-less simple nuclear C *-algebra B is the

inductive limit of the C *-algebras An := C0((0, 1],M3n), with *-monomorphisms

φn : An → An+1 given for f ∈ An and t ∈ (0, 1] by

φn(f)(t) := f(t/2)⊕ f(t2)⊕ f(t1/2) ∈M3n+1 .

The closed ideals J of An are given by J = C0(U)⊗M3n , where U is a countable

union of pair-wise disjoint intervals (αn, βn) 0 ≤ α < β ≤ 1 possibly further united

with (γ, 1] where supn βn ≤ γ < 1 .

If the ideal J(f) generated by f ∈ A+
n contains C0(α, β) ⊗M3n for some 0 <

α < β < 1, then for each given δ > 0 there exists (sufficiently big) k ∈ N such that

the element

(φn+k ◦ · · · ◦ φn+1φn)(f)

generates an ideal of An+k+1 that contains C0((δ, 1],M3n+k+1).

Thus, indlimn→∞(An → An+1) is a simple C *-algebra. It is stably projection-

less, because An ⊗K ∼= C0((0, 1],K) does not contain a non-zero projection.

Remark 5.9.29. Suppose that B is stable and σ-unital, and that A is a pi-sun

algebra. Let ψ : A⊗K→ Q(B) a C *-morphism with 0 = [ψ] ∈ Ext(A,B).

This implies that ψ has a non-degenerate lift h : A⊗K→M(B) where h is a

homomorphism with ψ = πB ◦ h and h(A⊗K)B = B.

It follows that M(h) : M(A⊗K)→M(B) is unital and injective ?????
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It follows that ψ has a non-degenerate lift h : A ⊗ K → M(B) , if an only if ,

the closed ideal I(ψ(A⊗K)) generated by ψ(A⊗K) is equal to Q(B)

????????? why this ???????

and ψ dominates zero

(i.e., there exists an isometry S ∈M(B) with S∗h(A⊗K)S ⊆ B ).

The latter condition holds by Proposition 5.5.12, because B + h(A ⊗ K) is

(obviously) stable if h is non-degenerate.

Or is s.p.i. needed? If B is purely infinite, then ψ always dominates zero.

Thus, the question about existence of non-degenerate split morphisms for ψ

reduces to the verification of the necessary and sufficient condition I(Im(ψ)) =

Q(B).

It is always the case if B is, in addition, simple and ψ 6= 0.

There is no useful condition for the existence of possible degenerate lifts. But

the existence of a properly infinite projection p ∈M(B) with πB(p)ψ(·)πB(p) = ψ

and πB(p) ∈ I(Im(ψ)) seems to be sufficient in the case of purely infinite B.

10. The case of purely large extensions

Definition, from [264] :

Let B be a C *-algebra, and let C be a C *-algebra containing B as a closed

two-sided ideal.

Let us say that C is purely large with respect to B if for every element c ∈ C\B,

the C *-algebra cBc∗ (the intersection with B of the hereditary C *-subalgebra of

C generated by cc∗) contains a C *-subalgebra which is stable (i.e., isomorphic

to its tensor product with the C *-algebra K of compact operators on an infinite-

dimensional separable Hilbert space) and is full in B (i.e., not contained in any

proper closed two-sided ideal of B).

EK comment: It implies that Ann(B,C) = {0}
(annihilator of B in C),i.e., B is essential in C.

Criterium:

Let A and B be C *-algebras, and let

0→ B → C → A→ 0

be an extension of B by A (i.e., a short exact sequence of C *-algebras). Let us say

that the extension is purely large if the C *-algebra of the extension, C, is purely

large with respect to the image of B in it, in the sense described above.

Note that, if B is non-zero, a purely large extension of B by A is essential

(that is, the image of B in the C *-algebra of the extension C is an essential closed

two-sided ideal every non-zero closed two-sided ideal has non-zero intersection with

it).
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My comment: B is ‘‘essential’’ in C because B ⊆ C is ‘‘purely

large’’ in C.

Lemma (in Section 7 of [264] ?):

Let C be a C *-algebra that is purely large with respect to a closed two-sided

ideal B (of C ?), in the sense of “Section 1”.

Then, for any positive element c of C which is not in B, any ε > 0, and any

positive element b of B, there exists b0 ∈ B with

‖b− b0cb∗0‖ < ε .

If b is of norm one, and if the image of c in C/B is of norm one, then b0 may be

chosen to have norm one.

Theorem (in Section 6 of [264]).

Let A and B be separable C*algebras, with B stable and A unital.

A unital extension B → C → A ?? Notation ?? is absorbing, “in the nuclear

sense”, if, and only if, it is “purely large”.

Let us say, correspondingly, that an extension is absorbing in the nuclear sense

if it absorbs every extension which is trivial in the nuclear sense.

Again, “let us say” that a unital extension is absorbing in the nuclear sense

to mean that “ this holds within the semigroup of (equivalence classes of) unital

extensions”. (With triviality in the nuclear sense the existence of a unital weakly

nuclear splitting.)

EK remark:

Precise math. definition is not given!?

In the case of non-unital A, one has to require in addition

that φ : A→M(B)/B ‘‘dominates zero’’ in sense of Chapter 4,

because only then the map a+ α · 1→ φ(a) + α · 1
defines again ???? a purely large extension

???? for the unitization (in general).

EK comments (to Lemma in Section 7 of [264]):

One can take (if B is σ-unital) cn = (1 − e2
n)1/2c(1 − e2

n)1/2, for a suitable

quasi-central unit of B and gets elements bn ∈ B with c −
∑
n b
∗
ncbn ∈ B + 1 .

When the algebra C/B is simple?

When elements of C/B are properly infinite in Q(B)?

My (or of others ???????????) conjecture:

This criterium is satisfied for all nuclear separable unital C *-subalgebras of

the stable corona Qs(B) of a σ-unital C *-algebra B, if and only if, B = C or B is

simple and purely infinite.

One could consider A := C[0, 1] and A := C.
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If B = C ⊗ K with pi-sun C, the the result holds for all unital separable

A ⊂ Qs(B)...?

Questions:

Is it always satisfied for all non-zero stable σ-unital B for given separable simply

purely infinite A, A ⊂ Qs(B), that is not contained in an ideal of Qs(B) ?

Has A ⊆ Qs(B) the property that for each non-zero a ∈ A+ there exist d ∈
Qs(B) with d∗ad = 1?

What really implies the property that A ↪→ Qs(B) absorbs all “hyper-nuclear”

and (at the same time) “hyper-inner” c.p. contraction maps V : A→ Qs(B), in the

sense that there exists T ∈ Qs(B) with T ∗(·)T = V .

Let B σ-unital and stable. It seems that the it would be enough to require that

every a ∈ A+ ⊂ Q(B) is properly infinite in Q(B). (And full??)

Take the stronger assumption that there exists x ∈M(B) with πB(x)∗aπB(x) =

‖a‖ · · · 1 (for a ∈ A+?). It is then equivalent to the property that each a ∈ A+ is

infinite properly infinite in B and ???????????????

Let B σ-unital and stable c ∈M(B)+ with πB(c2) = a ∈ A+, x ∈M(B) with

x∗cx ∈ 1 +B. e ∈ B+ strictly positive contraction, e1, e2, . . . suitable quasi-central

approximate unit in C∗(e) for C∗(c).

Find dn,1, dn,2 with dn,kd
∗
n,k ∈ (c− δ)+B(c− δ)+, d∗n,1dn,2 = 0, d∗n,kdn,k = en.

Good? For what?

...

Lemma 5.10.1. (“Kirchberg” cited in [264]). Let C be a unital separable C*-

algebra and let B be an essential closed two-sided ideal of C, so that we may view

C as a unital subalgebra of M(B):

B ⊆ C ⊆M(B); 1 ∈ C .

Let φ : C →M(B) be a completely positive map which is zero on B, and suppose

that, for every b0 ∈ B, the map

b∗0φ(·)b0 : C → B,

given by c 7→ b∗0φ(c)b0, can be approximated (on finite sets) by the maps

c 7→ b∗cb, b ∈ B .

It follows that there exists v ∈M(B) such that

φ(c)− v∗cv ∈ B, c ∈ C .

The element v may be chosen so that the map c 7→ v∗cv also approximates φ on a

given finite subset of C (up to ε > 0).

Question 5.10.2. Let C ⊂ Qs(B) a separable unital C *-subalgebra of Qs(B)

with σ-unital B.
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Suppose that C satisfies the following criteria that is equivalent to the absorp-

tion criteria of G. Elliott and D. Kucerovsky in [264] (compare J. Gabe [310] for

the non-unital case):

The hereditary C*-subalgebra d∗(B ⊗K)d contains a stable and full hereditary

C*-subalgebra of B ⊗K for each d ∈M(B ⊗K) with πB⊗K(d) ∈ C \ {0}.

I.e., the ideal B ⊗K is “purely large” in π−1
B⊗K(C).

Does there exist a non-degenerate stable separable purely infinite simple C *-

subalgebra D of M(B ⊗K) such that C is contained in πB⊗K(M(D)) ?

Is this even an equivalent criteria for absorption?

An answer is not obvious.

In case that C is non-unital then

one has to require here that the inclusion map

map C ↪→ Qs(A) ‘‘dominates zero’’

in sense of Definition ??

see [310].

The closing question in [264]:

As pointed out above, any extension which is trivial in the nuclear sense has a

weakly nuclear splitting – i.e., is weakly nuclear. Is every weakly nuclear trivial

extension trivial in the nuclear sense?

Fit to better place and make it shorter.

It is for the proof of ‘‘Z-absorption implies (CFP)’’. Here CFP means

the corona factorisation property.

Remark 5.10.3. Suppose that P ∈M(B⊗K) is a projection with the property

that πB⊗K(P ) is properly infinite and full in Qs(B). Then there exists an isometry

T ∈M(B ⊗K) with TT ∗ = P .

Indeed: It says equivalently that there exists a contraction d ∈M(B⊗K) with

X := 1−d∗Pd ∈ (B⊗K)+. On the other hand, exists an isometry R ∈M(B⊗K)

with ‖R∗XR‖ < 1/2 for given X ∈ B⊗K. Then R∗D∗PDR is a positive operator

with 1 ≤ 2R∗D∗PDR ≤ 2. Thus, there exists Q := (R∗D∗PDR)−1/2 ∈ M(B ⊗
K)+ that satisfies ‖Q‖ ≤

√
2 and 1 = S∗S = S∗PS for S := PDRQ. This

shows that P majorizes a range of an isometry and is – therefore – itself properly

infinite in M(B ⊗ K). The existence of an infinite repeat endomorphism δ∞ on

M(B ⊗ K) with tδ∞(q)t∗ + s∗qs unitarily equivalent to δ∞(q) for all projections

q ∈M(B ⊗K) implies that 0 = [P ] ∈ K0(M(B ⊗K)) ∼= {0}. Thus there exists an

isometry T ∈M(B ⊗K) with TT ∗ = P .



CHAPTER 6

Exact subalgebras of Purely infinite algebras

We give a proof of Theorem A in this chapter and study a special case of

Theorem K. The proof of Theorem A is simple and short, but it looks lengthy,

because we carry out every detail.

Let us give a short guide to a proof of Theorem A for the impatient readers:

We take Glimm’s theorem [324] (see [616, thm. 6.7.3]) to obtain that O2 contains

M2∞ as a quotient of a C *-subalgebra of O2 ( 1 ). Then we combine it with the re-

sult of [438] that every separable exact C *-algebra is a quotient of a C *-subalgebra

of the CAR-algebra M2∞ , in order to realise every separable exact C *-algebra as

a quotient of a C *-subalgebra of O2. The embedding into O2 is then obtained

from the KK-triviality of O2 and from Corollary 5.8.12 of our generalized Weyl–

von-Neumann Theorem 5.6.2.

Certainly, for the first part of Theorem A, one could use also the natural em-

bedding of M2∞ into O2 instead of Glimm’s theorem. But then one gets not the

additional result in Remark 6.2.2, and one has to manage with additional tools that

the below considered extension 0→ O2⊗K→ E → A→ 0 (with E ⊂ O2) becomes

essential. But one could here also first menage to find a sub-quotient C *-algebra of

s1(s1)∗O2s1(s1)∗ ∼= O2 that is isomorphic to the given separable exact C *-algebra

A ( ... that can be considered as unital (!) ...) ... If the generated hereditary kernel

C *-subalgebra of the constructed extension is not stable, then the construction is

ready, because all non-zero hereditary C *-subalgebras of O2 are isomorphic to O2

or are isomorphic to O2 ⊗ K by Lemma 6.1.1(ii). Since the extension algebra is

contained in the nuclear C *-algebra O2, it is an exact C *-algebra and as an exten-

sion it is locally semi-split. This allows to derive that we have only two cases: A

is automatically C *-subalgebra of O2, or we get an extension B of A by O2 ⊗ K
that is contained up to isomorphisms in O2. The KK-triviality and Ext-triviality

of O2 ⊗K implies that the extension is split, as shown below ???ref???

Our proof of Theorem K follows a similar route, but the technical ingredients

of the proof of Theorem A have to be improved considerably. Therefore we prove

in Section 3 the intermediate result Corollary 6.3.2 (of Theorem 6.3.1), where we

assume, in addition to the assumptions on B in Theorem K, that

1Alternatively to the general theorem of Glimm we could alternatively use for the first part

of the proof the very different natural copy of M2∞ inside O2 that is just the closed linear span

of all elements TS∗ where T and S are all products of the generating isometries s1, s2 of the

C *-algebra O2 := C ∗ (s1, s2) with relations (s1) ∗ s1 = 1, (s2) ∗ s2 = 1 , (s2) ∗ s1 = 0 and

s1(s1) ∗+s2(s2)∗ = 1.

781



782 6. EXACT SUBALGEBRAS OF PURELY INFINITE ALGEBRAS

????

B is separable and that B ⊗ O2 contains a regular Abelian C *-subalgebra

(cf. Definition 1.2.9).

Decide:

Below transfer from old Chp. 5 more useful?

The generalized Weyl–von Neumann Theorem 5.6.2 will be an ingredient of

the proofs of Theorems A and of an important special case of Theorem M ????

in Chapter 6, under the additional assumption that the algebra B in Theorem

M has residual nuclear separation (cf. Definition 1.2.3), i.e., that the m.o.c. cone

Crn ⊆ CPnuc(B,B) is separating for B and its ideals. This extra assumption will

be removed finally in Chapter 12 that uses results from Chapters 7-11.

We assume in Chapter 6, – in addition to the assumptions of Theorem M

–, that the universal weakly residually nuclear C *-morphism Hrn : B → M(B)

from B into its multiplier algebra M(B) is non-degenerate for the in Theorem ??

considered stable separable B and that there exists a C *-morphism h : A→M(B)

that defines the action of Prim(B) on A. This additional assumptions will be

completely removed in Chapter 12 by using results of Chapters 3 and 7 -11 .

Its generalization to weakly residually nuclear maps – and, more generally, to

maps in a given m.o.c. cone C ⊆ CP(A,B) – will be used in Chapters 6 and 12 for

the proof of Theorem K.

This additional assumptions will be removed both in Chapter 12.

The here given proof of Theorem 6.3.1 gives also an alternative proof of Theo-

rem A that does not use [438], but requires to generalise some results of [437], see

Section 19 of Appendix A.

1. Normalizers of hereditary subalgebras (Part 1)

Recall that a *-subalgebra B of a C *-algebra A is an essential subalgebra

of A if it has no non-zero left annihilators in A, i.e., if aB = {0} implies a = 0 for

all a in A. E.g., always a dense *-subalgebra B of a C *-algebra C is an essential

subalgebra of the multiplier A :=M(C) of C.

Next red: Is here a good place?

Our Proposition 6.2.1 implies that the classification of (the positions in O2 of)

the essential hereditary C *-subalgebras D of O2 – together with a certain semi-

splitting property – would in particular create invariants for the classification of all

nuclear separable unital C *-algebras. Unfortunately, up to now there is no method

to link the points of this “classifying space” with known invariants of K-theoretic

nature.

Lemma 6.1.1. Suppose that D ⊆ J ⊆ E ⊆ B are C*-subalgebras of a C*-algebra

B, and that J is an ideal of E.
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(i) If D is essential in B and J 6= E, then J is an essential ideal of E and is

an essential hereditary C*-subalgebra of B.

In particular, the C*-algebra J can not have a unit element.

(ii) If D ⊂ O2 is an essential hereditary C*-subalgebra of O2 and D 6= O2,

then D is isomorphic to O2 ⊗K.

Proof. (i): Every annihilator of J in B ⊃ E is in an annihilator of D in B.

But the annihilators of D in B are zero.

Suppose J has a unit element e ∈ J , i.e., e = e∗e and ex = xe = x for all

x ∈ J . The elements of (1 − e)B(1 − e) are two-sided annihilators of J . Thus

‖(1 − e)b∗b(1 − e)‖ = ‖b − be‖2 = 0 for every b ∈ B, and e is the unit of B. Since

J is an ideal of E, this contradicts our assumption J 6= E.

(ii): All this is given by the equivalence of its Parts (ix) and (i) of Proposition

2.2.1, if we use that O2 is simple and purely infinite in the sense of J. Cuntz.

An alternative proof is the following: Let E := D + C · 1 ⊂ O2 . If D is an

essential hereditary C *-subalgebra of O2 and D 6= O2, then D 6= E and D has not

a unit element.

The non-zero hereditary C *-subalgebra D of O2, is simple, purely infinite and

separable. It follows that D is either unital or stable by Corollary 5.5.4 (Zhang

dichotomy). Thus, D ∼= D⊗K ∼= O2⊗K by Corollary 5.5.6 (Brown stable isomor-

phism theorem, [107]). �

Some of the, in Remarks 6.1.2 mentioned, properties are also at

other places discussed. Check this!!!

Remarks 6.1.2. The study of quotients of C *-subalgebras of a given C *-

algebra C leads to the study of hereditary C *-subalgebras D of C and of its nor-

malizer algebra N (D) ⊂ C, which is defined as N (D) := {b ∈ C : bD+Db ⊂ D}
(and is usually very different from the multiplier algebra M(D) of D).

(1) The set of products CD is a closed left ideal of C and the sum CD+DC is

a closed linear subspace of C ( 2 ). We define C//D := C/(CD + DC) (considered

as an operator subspace of the W*-algebra C∗∗, see below).

We consider N (D)/D, its natural maps into C//D and into M(D)/D, and

the behavior of this maps on the system of closed ideals of C. They lead to the

guiding principles for all proofs in this chapter (except some additional arguments

on approximation and inductive limits in the Ψ-residually nuclear case).

(2) A hereditary C *-subalgebra D of C is a closed ideal of N (D) by definition

of N (D), and, therefore, there is a natural C *-morphism ρ : N (D)→M(D) from

2 The closed left ideal L := span(CD) is identical with the set of products CD by Cohen

factorization theorem, – or simply observe that every element a of a closed left ideal L can be

expressed as a = cd for c ∈ C suitable and d := (a∗a)1/4 in D = L∗ ∩L –. The set CD+DC is a

closed linear subspace of C, because it is the sum of a closed left ideal L and a closed right ideal

R, and because C∗∗p+ pC∗∗ is σ(C∗∗, C∗)-closed in C∗∗.
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N (D) into the multiplier algebra M(D) of D. Clearly, the kernel of ρ : N (D) →
M(D) is the (two-sided) annihilator Ann(D) := {c ∈ C : cD +Dc = 0} ⊂ N (D)

of D in C. From the definition, one sees that Ann(D) is a closed ideal of N (D),

and that the *-epimorphism N (D)→ N (D)/D is faithful on Ann(D).

(3) A hereditary C *-subalgebra D ⊂ C is essential in C, if and only if,

Ann(D) = {0}. Thus, the natural *-morphism N (D) → M(D) is faithful, if

and only if, D is essential in C. The natural morphism N (D) → M(D) is not

necessarily an epimorphism. Different essential hereditary C *-subalgebras D and

D′ have in general non-isomorphic N (D)/D and N (D′)/D′, even if D and D′ are

isomorphic.

The corona construction Q(D) := M(D)/D defines an isomorphism invariant

for all algebras D.

(4) Let F ⊂ C a C *-subalgebra and J a closed ideal of F , then the set D :=

JCJ is a hereditary C *-subalgebra of C such that F ⊂ N (D) and F ∩ D = J ,

because an approximate unit of J is also an approximate unit of D. Therefore,

there is a natural *-monomorphism from F/J into N (D)/D and the unit of the

weak closure of J in the second conjugate C∗∗ of C is also the unit of the weak

closure of D. Moreover, F +D is closed, because FD +DF ⊂ D, cf. [767, Vol. I,

chap. I,sec. 8, exercise 2].

(5) Let D be a hereditary C *-subalgebra of C. Then the unit element pD of the

weak closure of D in C∗∗ is called the support projection of D. It is a so-called

open projection, and qD := 1− pD is a closed projection.

(6) There are well-known one-to-one relationships between hereditary C *-

subalgebras, open projections, closed left ideals, weakly closed faces of the state

space of C, weakly closed right invariant subspaces of C∗, and the (with respect to

C) closed projections in C∗∗.

Indeed, let S(C) denotes the state space of C, and let X 7→ Xo 7→ Xoo the

passage to the polar and bipolar of a set, then the one-to-one relations are given

by the maps D 7→ L := CD, L 7→ D = L∗ ∩ L, D 7→ KD = Do ∩ S(C),

L 7→ Lo 7→ X := Lo ∩ S(C) = Do, D 7→ pD, p 7→ Lp := C ∩ (C∗∗p),

K 7→ LK := {a ∈ C : f(a∗a) = 0 ∀f ∈ K}, p 7→ q = 1 − p, q 7→ C∗q,

X 7→ KX = S(C) ∩X, q 7→ Dq := {a ∈ C : q(a∗a+ aa∗)q = 0}.

We refer the reader to [767, Vol. I, chap. III, def. 6.19, cor. 6.20], and to

[616, prop. 3.11.9, thms. 3.10.7, 3.11.10]. (For our particular needs, the reader can

simplify the there given proofs if he uses instead 2× 2-matrix arguments.)

(7) It is useful to consider also the quotient XD := C//D := C/(CD+DC) of C

by CD+DC (which is a closed linear subspace of C ), and let πCD+DC : C → C//D

denote the natural epimorphism. The space XD with its natural matrix order

structure and matrix norms ( 3 ) becomes a (special kind of) C*-system (defined

3It is given on the vector space Mn(C/(CD + DC)) by the natural isomorphism with the

quotient Banach space norms Mn(C)→Mn(C)/Mn(CD +DC).
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more generally in [437]). If C is unital, then the C *-system XD is unital with

matrix order unit πCD+DC(1). The bi-dual operator system of XD is nothing

else qDC
∗∗qD (under natural identification given by the restriction of π∗∗CD+DC to

qDC
∗∗qD), cf. [437]. The unital C *-systems are non-commutative generalizations

of the spaces of continuous affine functions on a Choquet simplex, cf. [437], [472].

The natural isomorphism qDC
∗∗qD → X∗∗D defines a completely isometric iso-

morphism λ : qDcqD → c + (CD + DC) from the subspace qDCqD of C∗∗ onto

XD, Therefore, the kernel of the completely positive map a ∈ C 7→ qDaqD is just

CD +DC.

It is easy to see that N (D) = {qD}′ ∩C, and therefore, that there is a natural

unital C *-morphism N (D) → N (D)qD ⊂ qDCqD. By definition of pD = 1 − qD,

the kernel of this *-epimorphism onto qDN (D) is just D. We get a natural *-

isomorphism τ(b+D) := bqD from N (D)/D onto qDN (D) ⊂ qDCqD, and we have

for a ∈ N (D):

dist(a,C∗∗pD + pDC
∗∗) = dist(a,CD +DC) = ‖a+D‖ = ‖qDaqD‖ .

(8) We use for the proof of Proposition 6.2.1 results from the paper [438] which

rely on the following (non-trivial) fact [437, thm. 1.4(iii)] on normalizer algebras:

If C is unital, then the natural unital C*-morphism

π′D : N (D) 3 a 7→ aqD = qDaqD ∈ qDC∗∗qD

defines a completely isometric and completely positive isomorphism from N (D)/D

onto the (two-sided) multiplier algebra M(XD) ⊂ XD of XD in X∗∗D
∼= qDC

∗∗qD

(the latter naturally identified by the map λ from (7)).

(9) An obvious consequence of (8) is the following:

Suppose that F is a C *-subalgebra of N (D) ⊂ {pD}′ ∩ C = {qD}′ ∩ C and that

the image FqD of the map c→ qDcqD is σ(C∗∗, C∗)-dense in the image qDCqD of

C (which happens e.g. if qDCqD = qDF ). Then, πCD+DC(F ) = C/(CD + DC),

because it is a C *-subalgebra ofM(C/(CD+DC))). In particular F +D = N (D)

and C = N (D) +DC + CD.

Notice that, conversely, qDCqD = qDN (D) if C = N (D) + CD +DC.

From the above collected results, we get that the following properties (i)-(v) of

hereditary C *-subalgebras D of a unital C *-algebra C are equivalent:

(i) The C *-system C//D is unitally and isometrically isomorphic to a C *-

algebra.

(ii) M(C//D) = C//D (i.e., C//D is a C *-subalgebra of qDC
∗∗qD ).

(iii) C = N (D) + CD +DC.

(iv) There is a C *-algebra A and a completely positive contraction T : C → A

such that T (D) = {0}, T | N (D) is a *-epimorphism from N (D) onto

A with kernel D, and that there is a projection q ∈ C∗∗ and an W*-

isomorphism S from qC∗∗q onto A∗∗ with T ∗∗(c) = S(qcq) for all c ∈ C.
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(v) There is a completely positive map T : C → N (D)/D with T | N (D) = πD

and ker(T ) = CD +DC.

(10) Let T : C → G be a unital completely positive map. We define the mul-

tiplicative domain MT ⊂ C of T as the set of d ∈ C with T (db) = T (d)T (b)

and T (bd) = T (b)T (d) for b ∈ C. M.D. Choi’s generalized Kadison inequality

T (a)∗T (a) ≤ T (a∗a) shows that d ∈ MT , if and only if, T (d∗d) = T (d)∗T (d) and

T (dd∗) = T (d)T (d)∗. Unfortunately, the multiplicative domain (resp. the kernel)

of the unital completely positive map T ∗∗ : C∗∗ → G∗∗ is not necessarily contained

in the weak closure of the multiplicative domain (resp. the kernel) of T , cf. Part

(11).

The multiplicative domain of the unital completely positive map

TD : a ∈ C 7→ qDaqD ∈ qDC∗∗qD

is just N (D) = {qD}′ ∩ C and N (D)∗∗ 6= {qD}′ ∩ C∗∗.

(11) The above remarks on the quotient spaces XD = C//D show that the

second conjugate (πCD+DC)∗∗ of πCD+DC : x ∈ C 7→ x + (CD + DC) ∈ C//D is

just the normalization a ∈ C∗∗ 7→ qDaqD of TD in Part (10). The multiplicative

domain pDC
∗∗pD + qDC

∗∗qD of (πCD+DC)∗∗ is in general much bigger than the

weak closure of N (D) in C∗∗. But the kernel of (πCD+DC)∗∗ is just pDC
∗∗+C∗∗pD,

which is the weak closure of the kernel DC + CD of TD and of πD.

(12) Let X := XD := C//D ⊂ qDC
∗∗qD, and let η1 : X → X∗∗ ∼= qDC

∗∗qD,

η2 : X∗ → X∗∗∗ and η3 : X∗∗ → X∗∗∗∗ the natural inclusions. Then (η1)∗∗ : X∗∗ →
X∗∗∗∗ is a normal unital completely isometric map, (η2)∗ : X∗∗∗∗ → X∗∗ is a normal

*-epimorphism, and η3 is a (non-normal) *-monomorphism. The map E := (η1)∗∗ ◦
(η2)∗ is a normal u.c.p. map on the fourth conjugate W*-algebra of X with E2 = E.

We say that y ∈ X∗∗ ∼= qDC
∗∗qD is a (two-sided) multiplier of X if yx, xy ∈ X

for all x ∈ X, where the multiplication is given by the W*-algebra structure on

X∗∗. LetM(X) ⊂ X∗∗ denote the set of all multipliers of X. Then, clearly,M(X)

is a unital C *-subalgebra of X∗∗, and is contained in X, because qD = 1X∗∗ ∈ X.

One can see by a separation argument, that y ∈M(X), if and only if, η3(y) is

in the multiplicative domain of E (see [437] for details). It follows from Remark

(10) that y ∈M(X), if and only if, y, y∗y and yy∗ are all in X.

(13) By [437, cor. 1.5], a ∈ N (D) 7→ aqD ∈ qDCqD ∼= C//D is a *-epimorphism

fromN (D) ontoM(C//D) with kernel equal to D. It implies together with Remark

(12) the following observation:

Let x ∈ qDC∗∗qD. There is a ∈ N (D) with aqD = x if and only if, x, x∗x, xx∗ ∈
C//D, if and only if, x ∈M(C//D).

(14) If C is not unital, then we can pass to the unitization C̃ of C, and get

immediately the following reformulation of (13):

Let x ∈ qDC∗∗qD. There is a ∈ N (D) with aqD = x if and only if, x, x∗x, xx∗ ∈
C//D, if and only if, x ∈ C//D ∩M(C//D).
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In particular, N (D)/D ∼= (C//D)∩M(C//D) via identifications of a+D, apD

and a+ (DC + CD) for a ∈ N (D).

Lemma 6.1.3. Suppose that E ⊂ B is a C*-subalgebra of a nuclear C*-algebra

B, D is a σ-unital hereditary C*-subalgebra of B, D ⊂ E, and that D is an ideal

of E.

Then every completely positive contraction ϕ from a separable unital C*-algebra

A into E/D has a completely positive and contractive lifting V : A → E, i.e.,

πD ◦ V = ϕ.

If, in addition, B and A are unital, 1B ∈ E, and ϕ : A→ E/D is unital, then

a unital nuclear c.p. map V : A→ E with πD ◦ V = ϕ exists.

Notice, that a lift V : A → E of an isomorphism ϕ : A → E/D from A onto

E/D can’t be nuclear if A is not a nuclear C *-algebra. But V : A → B ⊃ E is a

nuclear c.p. map from A into B, because B is nuclear.

Proof. If A is separable and unital, B is unital with 1B ∈ E and ϕ : A→ E/D

is unital, then we can replace A by the separable unital C *-subalgebra F of E/D

generated by ϕ(A), ϕ by the identity map of this new algebra F , and finally E by

G := π−1
D (F ). The extension given by the exact sequence

0→ D → G→ F → 0

has a splitting unital c.p. map T : F → E ⊆ B for πD by [238, thm. B, prop. 4.3].

It uses that D is nuclear as a hereditary C *-subalgebra of the nuclear algebra B,

i.e., D fulfills assumption (1) of [238, thm.B]. The C *-subalgebra G ⊆ B inherits

property (C) from the nuclear B by [238, prop. 5.3] (citing [35, thms. 3.2, 3.3]).

Property (C′′) – which is equivalent to local reflexivity in the operator space

sense –, follows from property (C) and allows to verify the assumption (2) of [238,

thm.B], with help of [238, prop. 5.3(3)] and [238, prop. 5.5].

(Notice that the properties (C) and (C′) both are equivalent to exactness by

[438], because every separable exact C *-algebras is a quotient of some C *-sub-

algebras of the CAR algebra M2∞ .)

Check next again: Unit OK?

If one of B, E, A or ϕ are not unital, or if 1B 6∈ E, then we can adjoin to all

algebras (except D) an outer unit 1, and extend ϕ to a unital c.p. map

ϕ̃ : Ã→ Ẽ/D ∼= Ẽ/D ,

by ϕ̃(a+t1) := ϕ(a)+t1 . There is a unital u.c.p. map W : Ã→ Ẽ with πD◦W = ϕ̃.

Then W (A) ⊂ E and the map V := W |A is a completely positive contraction from

A into E with πD ◦ V = ϕ. �

Remark 6.1.4. Other methods in Section 3 that are different from those of

[238] and are more near to the study of the convex cone of c.p. maps V : A → E
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like methods of Arveson in the proof of [43, thm. 6]. The results are more general

lifting results than that stated in Lemma 6.1.3, e.g.

Suppose that B is separable and that B//D is a nuclear C*-space (i.e., that

qDB
∗∗qD is an injective von-Neumann algebra), that D is an essential hereditary

C *-subalgebra of B and that D ⊆ E ⊆ N (D) ⊆ B.

Then for every separable C *-algebra A and every c.p. contraction ϕ : A→ E/D

there exist a c.p. contraction V : A → E with πD ◦ V = ϕ such that V : A → B is

nuclear (but is not necessarily nuclear as a map from A to E).

If A and B are unital, 1B ∈ E and ϕ is unital, then one can manage that V is

unital.

(In fact, the reduction to [43, thm. 6] is done be showing that there exists a

(not necessarily unique) c.p. contraction T : B//D := B/(BD +DB)→M(D)/D

such that T | N (D)/D is the natural C *-morphism from N (D)/D into B//D.)

Lemma 6.1.5. Suppose that F is a C*-subalgebra of a C*-algebra C, and that

q ∈ F ′ ∩ C∗∗ is a projection that is closed in C∗∗ and satisfies Fq = qCq.

Let D denote the hereditary C*-subalgebra of C with open support projection

1− q. Then:

(i) N (D) = D + F .

(ii) Tq : c ∈ C 7→ qcq ∈ C∗∗ is a c.p. contraction and has kernel equal to

DC + CD .

(iii) The multiplicative domain of Tq is given by {c ∈ C ; cq = qc }, which is

the same as N (D).

(iv) There are natural isomorphisms

Fq ∼= F/(F ∩D) ∼= N (D)/D ∼= C/(DC + CD)

that are given by

[Tq] : πDC+CD(c) 7→ qcq ∈ Fq = N (D)q ∼= N (D)/D .

(v) C = N (D) +DC + CD.

Proof. to be filled in ?? �

Lemma 6.1.6. Suppose that D1 ⊂ C is a hereditary C*-subalgebra of a C*-

algebra C such that C = N (D1)+D1C+CD1. Let ρ : N (D1)→ B a *-epimorphism

from N (D1) onto a C*-algebra B with kernel equal to D1, and let D2 ⊂ B a

hereditary C*-subalgebra of B.

Denote by J the hereditary C*-subalgebra J := ρ−1(D2) of N (D1), and define

the hereditary C*-subalgebra D ⊂ C by D := JCJ .

(i) D1 ⊂ D, and N (D) = ρ−1(N (D2)) +D.

(ii) There is a unique positive contraction T : C → B that extends ρ. T is

completely positive, has kernel ker(T ) = D1C + CD1 and multiplicative

domain N (D1).



2. THE PROOF OF THEOREM A 789

(iii) T (D) = D2, T (DC + CD) = D2B +BD2 and T (N (D)) = N (D2).

(iv) The c.p. map T | N (D) defines an isomorphism of C*-algebras

η : N (D)/D 7→ N (D2)/D2 ,

with η(πD(c)) = πD1
(T1(c)) for c ∈ N (D).

In particular, η(c+D) = ρ(c) +D1 for c ∈ ρ−1(N (D2)).

(v) The class-map [T ](DC+CD) is a completely positive and completely isomet-

ric isomorphism from the C*-system C//D onto B//D2.

Proof. to be filled in ??

Let F ⊂ N (D1) ⊂ C denote the inverse image ρ−1(N (D2)) =: F of N (D2)

under the epimorphism ρ from N (D1) onto B.

The inverse image J := ρ−1(D2) of D2 is the kernel of the epimorphism πD2 ◦
ρ : F → N (D2)/D2 . In particular, J is an ideal of F , J contains the kernel D1

of ρ, ρ(J) = D2. Thus, there is an isomorphism µ : F/J → N (D2)/D2 with

µ ◦ πJ = πD2
◦ ρ.

Now we consider the hereditary C *-subalgebra D := JCJ = JCJ of C . Then

D is a hereditary C *-subalgebra of C, and D1 ⊂ D. Since the ideal J of F contains

an approximate unit ofD, we get that the hereditary C *-subalgebra F∩D of F must

be equal to the ideal J of F , and that F ⊂ N (D). In particular, F/J is naturally

isomorphic to a C *-subalgebra of N (D)/D. The above defined natural unital

monomorphism F/J → N (D)/D and the isomorphism µ−1 : N (D2)/D2
∼→ F/J

define together a unital *-monomorphism

ξ : N (D2)/D2 ↪→ N (D)/D ,

such that ξ(πD2
(ρ(a)) = πD(a) for a ∈ F . �

2. The Proof of Theorem A

Proposition 6.2.1. Suppose that A is a unital separable exact C*-algebra.

Then there exist a unital C*-subalgebra E of O2, a closed ideal D of E, and a

*-isomorphism ϕ from A onto E/D, such that

(i) D is an essential hereditary C*-subalgebra of O2;

(ii) ϕ has a unital completely positive lifting V : A→ E, i.e., ϕ = πD ◦ V ,

(iii) D ∼= O2 ⊗K .

If A is nuclear, then the subalgebras D ⊂ E ⊂ O2, and the isomorphism

ϕ : A
∼→ E/D can be chosen such that the epimorphism ϕ−1 ◦ πD : E → A extends

to a unital completely positive map T : O2 → A with kernel D · O2 +O2 ·D.

Proof. Let B denote the CAR-algebra M2∞ and let C := O2 . We define

D ⊂ E ⊂ C and ϕ : A
∼→ E/D and show later that they satisfy (i)–(iii).

First we consider the case of an exact separable A that is not necessarily nuclear:
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Since C is not a C *-algebra of type I, we can apply the improved variant [616,

thm. 6.7.3] of Glimm’s theorem: There exist a unital subalgebra F1 of C and a

closed projection q1 in C∗∗ such that q1 commutes with F1, q1Cq1 = q1F1 and that

the C *-subalgebra q1Cq1 of q1C
∗∗q1 is isomorphic to the CAR-algebra B := M2∞ .

Let p1 := 1− q1 the open complement of q1, and let D1 denote the hereditary

C *-subalgebra of B with open support projection p1 = pD1
, cf. Remark 6.1.2(5),

i.e., (D1)+ = {c ∈ C+ ; q1cq1 = 0} . Furthermore, let h1 : q1Cq1
∼→ B a *-

isomorphism from q1Cq1
∼= q1F1 onto B, and define T1 : C → B by T1(a) :=

h1(q1aq1).

By Lemma 6.1.5, T1 is a unital completely positive map, and the kernel of T1

is CD1 +D1C. Moreover, N (D1) = F1 +D1, and N (D1) is just the multiplicative

domain of T1. It implies that C = N (D1) + CD1 +D1C.

Let ρ := T1| N (D1). Then ρ : N (D1) → B is a *-epimorphism from N (D1)

onto B with kernel D1 = N (D1) ∩ (D1C + CD1).

By [438, cor. 1.3, 1.4, thm. 4.1], for every separable unital exact C *-algebra

A, there exists a hereditary C *-subalgebra D2 ⊂ B and a unital *-monomorphism

ψ : A→ N (D2)/D2.

Since D2 is an ideal of N (D2), the inverse image J := ρ−1(D2) is an ideal of

the C *-subalgebra ρ−1(N (D2)) of N (D1) . We let D := JCJ .

The equation C = N (D1) + CD1 + D1C and the Lemma 6.1.6 on iterated

normalizers show that that T1 : C → B is the unique completely positive extension

of the epimorphism ρ : N (D1) → B, that T1(D) = D2, that T1(N (D)) = N (D2)

and that T1| N (D) defines a C *-isomorphism η from N (D)/D onto N (D2)/D2

with η(πD(c)) = πD1
(T1(c)) for c ∈ N (D).

We define a unital *-monomorphism ϕ : A→ N (D)/D by ϕ := η−1 ◦ψ and let

E := π−1
D (ϕ(A)) ⊂ N (D) ⊂ O2

be the inverse image of ϕ(A) under the quotient map πD : N (D)→ N (D)/D.

Thus, we get a hereditary C*-subalgebra D of C := O2, a C*-subalgebra E ⊂
N (D) ⊂ O2 with D1 ⊂ D ⊂ E ⊂ N (D), and a unital *-isomorphism ϕ : A

∼→ E/D.

(i,iii): We use Lemma 6.1.1: Since D1 ⊂ D and D 6= O2, it suffices to show

that D1 is essential in O2, i.e., that Ann(D1) = {0}. Recall, that Ann(D1) is

a closed ideal of N (D1) and is a hereditary C *-subalgebra of C := O2. The

epimorphism ρ : N (D1) → B := M2∞ has kernel D1. Thus, ρ|Ann(D1) is faith-

ful, and ρ(Ann(D1)) is a closed ideal of M2∞ . Since every non-zero hereditary

C *-subalgebra of O2 is stably infinite and since M2∞ is stably finite, we get

ρ(Ann(D1)) = {0} and Ann(D1) = {0}.

(ii): By Lemma 6.1.3, there is a u.c.p. map V : A→ E with πD ◦ V = ϕ.

This completes the proof for general exact A.
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We consider now the special case of nuclear A:

If A is nuclear, then [438, cor. 1.5] says that the hereditary C *-subalgebra D2 ⊂
B := M2∞ and ψ : A → N (D2)/D2 can be chosen such that ψ is an isomorphism

from A onto N (D2)/D2 and, moreover, that B = N (D2) + D2B + BD2, i.e.,

ψ(A) = N (D2)/D2
∼= B//D2.

As in the case of (not-necessarily nuclear) exact A we define D ⊂ E ⊂ C, and

ϕ : A→ E/D :

Let D := JCJ for J := ρ−1(D2) ⊃ D1 with ρ := T1| N (D1) (defined as in the

case of exact A), and use the isomorphism η : N (D)/D → N (D2)/D2 to define

ϕ := η−1 ◦ψ. Then ϕ : A→ N (D)/D is an isomorphism of A onto N (D)/D. Thus

E := π−1
D (ϕ(A)) = N (D).

We apply Lemma 6.1.6 to (B, D2, ψ−1 ◦ πD2
, A, 0), in place of the there

considered general system (C, D1, ρ, B, D2), and get the unique u.c.p. extension

T2 : B → A of the *-epimorphism

ρ1 := ψ−1 ◦ πD2 : N (D2)→ A ,

and T2 has kernel D2B +BD2 and multiplicative domain N (D2).

Since C = N (D1) + CD1 +D1C, we get from Lemma 6.1.6, that

T1(DC + CD) = D2B +BD2 .

It implies that the u.c.p. map T := T2 ◦ T1 : C → A has kernel DC + CD.

Let c ∈ N (D) ⊂ C. Then V1(c) ∈ N (D2) and πD2
(V1(c)) = η(πD(c)) by

Lemma 6.1.6. Thus,

V (c) = ρ1(V1(c)) = ϕ−1(πD(c)) for c ∈ N (D) .

Thus, the u.c.p. map V : C → A extends the *-epimorphism from E = N (D) onto

A, and is given by ϕ−1 ◦ πD. �

We have seen so far, that there exists, for every separable unital exact C *-

algebra A, an essential semi-split exact sequence

0→ D → E → A→ 0

where E is a unital C *-subalgebra of O2 , and where D ∼= O2⊗K is essential in O2 .

This extension splits unital by Corollary 5.8.12. The unital splitting C *-morphism

is a monomorphism from A onto a unital subalgebra of E ⊂ O2 .

The desired conditional expectation onto the image of A in O2 is then just the

composition of T : O2 → A with the splitting C *-morphism. More details are given

below in Remark 6.2.2.

Proof of Theorem A.. Ad(i): Let A be a separable exact C *-algebra. If

A is not unital then the unitization of A is again exact, as our A ⊗ (·) -exactness

definition of exactness of A in Chapter 3 immediately implies (e.g. use the 3×3-

lemma of category theory). Thus we can restrict our considerations to the case of

unital exact C *-algebras A.
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The unital semi-split essential extension

0 −→ D −→ E
λ−→ A −→ 0

with λ := ϕ−1 ◦πD from Proposition 6.2.1 has a unital split morphism by Corollary

5.8.12, because D ∼= O2 ⊗K and E is exact.

The unital split C *-morphism ψ : A→ E ⊆ O2 with λ ◦ψ = idA is the desired

unital *-monomorphism A into O2.

Conversely, O2 is nuclear ([169]), nuclear C *-algebras are exact and C *-

subalgebras of exact C *-algebras are again exact ([432, prop. 7.1(i)] or [810,

2.5.1, 2.5.2], or see Remark 3.1.2(ii) and (iii)).

Ad(ii): If A is nuclear and T : O2 → A is the completely positive map from

Proposition 6.2.1, then P := ψ ◦ T is a conditional expectation from O2 onto

ψ(A) ⊂ E.

Indeed: P is a completely positive contraction that maps O2 into ψ(A). The

maps T , ψ and λ satisfy T (O2) = A, ψ(A) ⊂ E, T |E = λ, and λ ◦ ψ = idA.

Therefore, T ◦ ψ = idA, P 2 = P and

P (ψ(a)) = ψ(T (ψ(a))) = ψ(λ(ψ(a)) = ψ(a) ∀ a ∈ A .

Conversely, let P be a conditional expectation from a nuclear C *-algebra B onto a

C *-subalgebra A ⊂ B and ηA : A ↪→ B the inclusion map. Then idA = P ◦ idB ◦ηA
is nuclear because idB is nuclear and nuclearity is preserved under composition with

other completely positive maps. �

Remark 6.2.2. The conditional expectation P := ψ ◦ T : O2 → ψ(A) that has

been defined in the proof of Part (ii) of Theorem A(ii) is an extreme point of the

convex set of all linear contractions from O2 into O2.

Proof. Let M be a von Neumann algebra, q ∈M a projection, and µ : M →
M a unital contraction such that µ(1− q) = 0 (i.e., µ(q) = 1), qµ(qaq)q = qaq for

a ∈M and µ|qMq is a C *-morphism.

Then µ is an extreme point of the convex set of linear contractions from M

into M . Indeed:

We use that each unitary U ∈M is an extreme point of the closed unit-ball of

M , (cf. [704, thm. 1.6.4]). If T, S : M → M are contractions and θ ∈ (0, 1) with

θT + (1− θ)S = µ, then θT (1) + (1− θ)S(1) = 1. It implies that T (1) = 1 = S(1).

Hence T and S are positive unital maps. It follows T (1 − q) ≥ 0, S(1 − q) ≥ 0

and 0 = µ(1 − q) = θT (1 − q) + (1 − θ)S(1 − q), thus T (1 − q) = 0 = S(1 − q)
and T (a) = T (qaq), S(a) = S(qaq) for a ∈M . For unitaries u of qMq we get that

U := µ(u) is unitary and U = θT (u) + (1− θ)S(u). Thus µ(u) = T (u) = S(u) for

all unitaries of qMq. Together it implies µ = T = S.

The P : O2 → ψ(A) annihilates D and, therefore, M := O2
∗∗, µ := P ∗∗ and

q = 1 − pD satisfy the above assumptions on M , µ and q, where pD denotes the
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support projection of D. Since P ∗∗ is an extreme point of the contractions on M ,

P must be an extreme point of the contractions on O2. �

next Rem’s have overlapping statements

Remarks 6.2.3. Let ϕj : A → O2 (j = 1, 2) unital *-monomorphisms, then

they are unitarily homotopic by Theorem B. In particular, they are approximately

unitarily equivalent.

By Remark 6.2.2, one finds always for separable unital nuclear A at least one

unital embedding ι : A ↪→ O2 such that there is an extremal conditional expectation

P from O2 onto ι(A).

For any other embedding κ : A ↪→ O2 there is a norm-continuous path

t ∈ [0,∞) 7→ U(t) into the unitary group of O2, such that U(0) = 1 and

limt→∞ ‖U(t)∗ι(a)U(t) − κ(a)‖ for all a ∈ A. One can use this to show that

for any (more general type of) unital *-monomorphism κ : A ↪→ O2 there exists

a norm-continuous path t ∈ [0,∞) 7→ V (t) into the isometries in O2 such that

limt→∞ ‖V (t)∗κ(a)V (t) − κ(a)‖ for all a ∈ A and limt→∞ dist(V (t)∗bV (t), κ(A))

for all b ∈ O2 . (This could replace the existence of conditional expectations in an

approximate sense.)

There can not be stronger results, even under very reasonable additional con-

ditions, because there exist a unital nuclear C*-algebra A unital *-monomorphisms

ϕ1 and ϕ2 from a unital nuclear C*-algebra A into O2, such that there does not

exist an automorphism γ of O2 ⊗O2 with γ(ϕ(a)⊗ 1) = ψ(a)⊗ 1 for a ∈ A.

Let us consider two nuclear unital C *-algebras A ⊂ B such that there is no

conditional expectation from B onto A:

If h : B → O2 is any unital *-monomorphism, and if ψ : A→ O2 and P : O2 →
ψ(A) are as in Remark 6.2.2, then there can not exist an automorphism γ of O2⊗O2

with the property γ ◦ (h⊗ id)|A⊗ 1 = (ψ ⊗ id)A⊗ 1.

This is, because, on one side, there is a conditional expectation Q := P⊗(λ(·)1)

from O2 ⊗ O2 onto ψ(A) ⊗ 1, (where λ is a pure state on O2), but there can not

be a conditional expectation Q′ from O2 ⊗ O2 onto h(A) ⊗ 1, because otherwise

((h|A)−1 ⊗ 1)((Q′|(h(B)⊗ 1)) defines an conditional expectation from B onto A.

Suppose that A is a nuclear C *-subalgebra of a separable unital exact C *-

algebra B such that 1B ∈ A and such that there does not exist a conditional

expectation from B onto A. If k : B ↪→ O2 is a unital embedding and if we define

i := k|A as the restriction of k to A, then there does not exist any conditional

expectation E from O2 onto i(A) = k(A), because otherwise k−1 ◦ E ◦ k would be

a conditional expectation from B onto A.

Examples:

(o) Suppose that D is a hereditary C *-subalgebra of a unital C *-algebra B

such that the normalizer algebra N (D) := {b ∈ B ; bD+Db ⊂ D} is different from

A := D + C1 and that bD 6= {0} for all b ∈ B+ \ {0}. Then there does not exist a
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conditional expectation E from B onto A. (Here C denotes the complex numbers.)

Indeed: (E(b)− b)∗(E(b)− b)d = 0 for all b ∈ N (D), d ∈ D, i.e. E|N (D) = id.

It yields e.g. the following two examples (i) and (ii):

(i) Consider O2 as a unital C*-subalgebra of L(`2) (by some *-representation).

Let K denote the compact operators, and let A := K+ C1, B := K+O2.

(ii) Let B := T , A := K+C1, where T denotes the Toeplitz algebra, generated

as C*-algebra by the Toeplitz operator T (i.e. the unilateral shift of `2).

(iii) Consider the natural continuous epimorphism σ from the Cantor Space

Ω := {0, 1}∞ onto [0, 1] given by

σ : (a1, a2, ...) 7→
∞∑
n=1

an2−n

Then γ : f ∈ C[0, 1] 7→ γ(f) := f ◦ σ ∈ C(Ω) gives a unital embedding of C[0, 1]

into C(Ω) =
⊗∞

n=1(C⊕ C) ⊂M2∞ .

Let A := C[0, 1] ⊂ C(Ω) =: B, where Ω is the Cantor set Ω := {0, 1}∞, and

the monomorphism A ↪→ B is given by f 7→ f ◦ ρ for the continuous map

ρ : (α1, α2, . . .)→
∑
n=1

αn2−n

from Ω onto [0, 1].

The pairs A := γ(C[0, 1]) and B := C(Ω) – or B := M2∞ – have the property

that there does not exist a conditional expectation from B onto A, because the

continuous map σ is not open.

Still Question ?: Suppose that i, j : A ↪→ O2 are unital embeddings such that

there are extremal conditional expectations from O2 onto i(A), respectively onto

j(A).

Is there an automorphism γ of O2⊗O2with γ(i(a)⊗1) = j(a)⊗1 for all a ∈ A
?

There are nuclear A and unital embeddings i, j : A ↪→ O2 such that there is

a conditional expectation P from O2 onto i(A), but that there does not exist a

conditional expectation from O2 onto j(A).

It follows that there is no automorphism γ of O2⊗O2 such that γ(i(A)⊗ 1) =

j(A) ⊗ 1, because — otherwise — there is an automorphism β ∈ Aut(A) with

γ(i(a)⊗ 1) = j(β(a))⊗ 1) for a ∈ A and the the conditional expectation P : O2 →
i(A) (with P (O2) = i(A)) defines a conditional expectation Q : O2 → j(A) (with

Q(O2) = j(A) = (j ◦ β)(A)) by Q(b) := id⊗λ
(
γ(P ⊗ λ(γ−1(b ⊗ 1)))

)
, where

λ(b) := ρ(b)1 ∈ O2 for b ∈ O2.

What the hell is that ?:

One can show that there exist unital endomorphisms h1, h2 : O2 → O2, such

that there is no automorphism γ of O2 ⊗O2 such that γ ◦ (h1 ⊗ id) = h2 ⊗ id. An

example is given by h1, h2 as hk(a) = 1 ⊗ ιk(a) defined by isomorphisms ι1 from
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M2∞⊗O2 onto O2 and ι2 from O2⊗O2
∼= O2 onto O2: Here such an automorphism

γ would also define an isomorphism from M2∞ onto O2.

???????????

Notice that, moreover, the latter endomorphisms hk have the property that

there is an extremal conditional expectation P from O2 ⊗O2 onto hk(O2)⊗O2.

The above examples suggest, that a separable unital exact C *-algebra A is

finite-dimensional if all unital *-monomorphisms h : A ↪→ O2 are conjugate by an

automorphism γ of O2. (The K0-triviality of O2 implies immediately that all unital

*-monomorphisms h : A→ O2 are unitarily equivalent by a unitary in O2.)

Does there exist simple separable nuclear unital C *-subalgebras A ⊂ B such

that 1B ∈ A and such that there does not exist conditional expectation from B

onto A?

Does there exist a unital endomorphism ι : M2∞ ↪→M2∞ such that there is no

conditional expectation from M2∞ onto ι(M2∞) ?

Then it would follow that there are unital endomorphisms i : O2 ↪→ O2 such

that there does not exist a conditional expectation from O2 onto i(O2), because

O2
∼= A⊗O2 ⊂ B ⊗O2

∼= O2.

3. The residually nuclear case

The proof of a Ψ-residually equivariant version of Proposition 6.2.1 requires

some generalizations of the above used ideas. In particular, we must generalize

some definitions and results of [437] and [438]. The following Theorem 6.3.1 is

half on the way to the proof of Theorem K. The proof of Theorem K will be

completed in Chapter 12. Compare Definitions 1.2.6, 1.2.8 and 1.2.3 and Chapters

3 and 5 for the used notation.

Theorem 6.3.1. Suppose that A and B are separable stable C*-algebras, and

Ψ: I(B) → I(A) is an action of Prim(B) on A, that has the following properties

(i)–(v):

(i) B has the WvN-property ( 4 ), and

(ii) B has residually nuclear separation ( 5 ),

(iii) A is exact ( 6 ).

(iv) Ψ is non-degenerate, lower semi-continuous, and monotone upper semi-

continuous ( 7 ).

4 Def. WvN-property ????
5 Residually nuclear separation is defined in Definition 1.2.3. Equivalently, the universal

weakly residually nuclear *-morphism Hrn : B → M(B) of Definition ?? is a non-degenerate

*-monomorphism and separates the ideals of B by Proposition 5.9.24.
6 give Def. exact ??
7 Defs. non-degenerate, lsc, monotone usc.
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(v) The m.o.c. cone C ⊂ CP(A,B) of Ψ-equivariant completely positive maps

( 8 ) from A into B is separating for Ψ, i.e., ΨC = Ψ by Proposition ??

I.e. there exists a *-monomorphism H : A → M(B), with the property

Ψ(J) = H−1(H(A) ∩M(B, J)) for all J ∈ I(B) ( 9 ).

The above properties lead to a non-degenerate nuclear *-monomorphism k : A⊗
O2 ↪→ B such that h(Ψ(J)) = h(A) ∩ J for all J ∈ I(B), where h(a) := k(a⊗ 1).

The infinite repeats δ∞h and δ∞ ◦H are unitarily homotopic.

If, in addition, A is nuclear, A contains a regular Abelian C*-subalgebra, and

the action Ψ is continuous (i.e., Ψ(I) ∪ Ψ(J) = Ψ(I ∪ J) – in addition), then h

is unitarily homotopic to a non-degenerate *-morphism h1 : A→ B such that there

exists an approximately inner conditional expectation P from B onto h1(A).

( 10 ).

It follows from [464] that A⊗O2 contains a regular abelian C *-subalgebra for

every nuclear separable C *-algebra A.

If B is any separable C *-algebra, and B ⊗ O2 contains a regular Abelian C *-

subalgebra C ⊂ B⊗O2, then every lower semi-continuous action Ψ: I(B)→ I(A)

is realized by CPrn(Ψ;A,B) = CPrn(Prim(B); Ψ, id;A,B), cf. Proposition ??. In

particular, then B has residually nuclear separation (in the sense of Definition 1.2.3,

i.e., CPrn(B,B) defines the identity action of Prim(B) on B), cf. Corollary ??. A

separable C *-algebra B with residually nuclear separation has the WvN-property,

if and only if, B is strongly purely infinite (cf. Proposition ??). Hence, Theorem

6.3.1 implies:

Corollary 6.3.2. Theorem K is valid under the additional assumptions that B

is separable and that B⊗O2 contains a regular Abelian C*-subalgebra C ⊂ B⊗O2.

Remark 6.3.3. We derive from Corollary 6.3.2 a complete proof of Theorem K

in Chapter 12, using the study of scale-invariant morphisms in Chapter 9. The

proof relies on the construction of a suitable strongly purely infinite separable

C *-subalgebra B1 of Q(R+, B) := Cb(R+, B)/C0(R+, B) that contains a regu-

lar Abelian C *-subalgebra and a sufficiently large separable C *-subalgebra of B as

a non-degenerate subalgebra (of B1).

8 Give Ref to Def.Psi.equivariant.maps
9 I.e., ΨC = Ψ for the action Ψ of Prim(B) on A and the m.o.c. cone C ⊂ CP(A,B) of the

Ψ-equivariant nuclear maps. Then there is a C *-morphism h1 : A → M(B) such that h2 :=

M(Hrn) ◦ h1 induces the action ΨA of Prim(B) on A by ΨA(J) = h−1(h(A) ∩ M(B, J)) for

J ∈ I(B), cf. Proposition 5.9.24.
10 We assume, in addition to the assumptions of Theorem K, that B has residually nuclear

separation in sense of Definition 1.2.3, i.e., that the universal weakly residually nuclear *-morphism

Hrn : B →M(B) of Proposition 5.9.24

is non-degenerate and is separating for the ideals of B, and that ΨC = Ψ for the action Ψ

of Prim(B) on A and the m.o.c. cone C ⊂ CP(A,B) of the Ψ-residually nuclear maps, i.e., that

there is a C *-morphism h1 : A → M(B) such that h2 := M(Hrn) ◦ h1 induces the action ΨA

of Prim(B) on A by ΨA(J) = h−1(h(A) ∩M(B, J)) for J ∈ I(B), cf. Proposition 5.9.24. This

additional assumptions will be removed both in Chapter 12.
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Corollary 6.3.2 gives a nuclear *-monomorphism k : A⊗O2 → B1 ⊂ Q(R+, B)

with image in the ideal generated by B ⊂ Q(R+, B) and with the property that

k(A⊗ 1) ∩ J = k(ΨA(B ∩ J)⊗ 1) for any closed ideal J of Q(R+, B).

The latter property induces the existence of a unitary U ∈ Cb(R+,M(B)) and

of a non-degenerate nuclear *-monomorphism h : A ⊗ O2 → B with k(a ⊗ 1) =

U∗h(a ⊗ 1)U + C0(R+, B) for a ∈ A (see Chapter 9). The *-morphism h is as

stipulated in Theorem K.

Remark 6.3.4. Since every simple algebra has residually nuclear separation,

Theorem 6.3.1 contains Theorem A(i), if we consider O2 ⊗ A ⊗ K ⊂ L(`2) ∼=
M(K) ⊂ M(B) for B = O2 ⊗ K. Our proof of Theorem 6.3.1 is independent

from almost all results on p.i.s.u.n. algebras, because for the existence of the lift

k : A⊗O2 → B we have only used that A⊗O2 ⊗O2 is exact, and our elementary

characterization of absorbing liftable elements in SExtnuc(Prim(B);A,B).

We describe now the steps of the proof of Theorem 6.3.1.

Recall that H : A → M(B) is weakly nuclear, iff, or every b ∈ B, the map

A 3 a→ b∗H(a)b ∈ B is nuclear.

Since Ψ is non-degenerate, we get that H : A→M(B) is faithful and BH(A)B

is dense in B. We have see in Chapter 3 where exactly? that there exists a non-

degenerate weakly nuclear *-monomorphism H0 : A→M(B) with δ∞◦H0 unitarily

equivalent to H0, such that H0 is unitarily homotopic to δ∞ ◦H.

It follows that H0(A) ⊂ δ∞(M(B)). The commutant of δ∞(M(B)) in M(B)

contains a copy of O2 unitally.

We rename δ∞
(

span(H0(A) · O2)
) ∼= A ⊗ O2 by A. Then, from now on,

A ∼= A⊗O2. Then (i)–(v) imply:

(1) A is non-degenerate,i.e., AB is dense in B, and

(2) for every b ∈ B, the map A 3 a→ b∗H(a)b ∈ B is nuclear.

(3) The action Ψ: I(B) → I(A) is given by Ψ(J) := A ∩ M(B, J) and is

monotone upper semicontinuous,i.e.,
⋃
n Ψ(Jn) is dense in Ψ(J) for J :=

⋃
n Jn,

J1 ⊂ J2 ⊂ · · · ⊂ B.

The proof of Theorem 6.3.1 will be given at the end of this Section. But here

we describe the steps of the proof:

First step:

With A satisfies also δ∞(A) and C∗(δ∞(A),O2) ∼= A⊗O2 the properties (1)-(3).

Second step:

Next had disappeared and is restored from beamers

Steps of the embedding realization. Step 1:

We start with λ : B → M(B), a weakly continuous non-degenerate C *-morphism

λ : B →M(B) that defines the identity action J = λ−1
(
λ(B)∩M(B, J)

)
on I(B)
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and is in “general position” (i.e., δ∞ ◦ λ = u∗λ(·)u). It exists because our B has in

particular “Abelian” factorization (and is separable, stable and s.p.i.).

Then obtain for A ∼= A⊗D2 our non-degenerate Ψ-realization H1 : A→M(B)

– coming also from the “Abelian” factorization property of B that reduces it to a

classical selection problem. Get non-degenerate

H0 :=M(λ) ◦H1 : A ⊂M(λ)(M(B)) ⊂M(B) .

Here we list the former results that are needed for the “remaining” parts of the

proof:

(1) H0(A) is non-degenerate, i.e., H0(A)B is dense in B, and is in “general

position” (i.e., there exists a unitary U ∈M(B) U∗H0(·)U = δ∞ ◦H0).

(2) The given lower s.c. action Ψ: I(B) → I(A) is realized by Ψ(J) :=

H−1
0 (H0(A) ∩M(B, J)) and Ψ is monotone upper semi-continuous, i.e.,

⋃
n Ψ(Jn)

is dense in Ψ(J) for J :=
⋃
n Jn, if the sequence Jn ∈ I(B) is increasing:

J1 ⊂ J2 ⊂ · · · .

(3) For every b ∈ B, the ΨA-compatible map A 3 a 7→ b∗H0(a)b ∈ B is nuclear,

and can be approximated by compositions V2 ◦ V1 of the residually nuclear maps

V1 : a ∈ A 7→ b∗1H1(a)b1 ∈ B and V2 : b ∈ B 7→ b∗2λ(b)b2. I.e. V2 satisfies V2(J) ⊂ J

for all J ∈ I(B) and that [V2]J : B/J → B/J is nuclear for all J ∈ I(B).

Step 2:

If A satisfies (1)–(3), then, – with a ∈ A identified with H0(a) ∈ H0(A) ⊂ M(B)

– for every a1, . . . , an ∈ A and ε > 0, there exist completely positive contractions

V : M(B) → B and W : B →M(B) that satisfy the following conditions (a), (b)

and (c):

(a) ‖W ◦ V (aj)− aj‖ < ε, for j = 1, . . . , n.

(b) V is strictly continuous and is residually equivariant, i.e., limn ‖V (bn) −
V (b)‖ = 0 if bn → b inM(B) strictly and V (J) ⊂ J∩B for J ∈ I(M(B)).

(c) W : B → M(B) is weakly residually nuclear, i.e., W (J)B ⊂ J for J ∈
I(B), and the maps [W ]J : B/J → M(B/J) ∼= M(B)/M(B, J) satisfy

that ([W ]J)d : b ∈ B/J 7→ d∗[W ]J(b)d ∈ B/J is a nuclear map for all

d ∈ B/J . Here [W ]J(a + J) := W (a) +M(B, J), i.e., d∗[W ]J(b)d =

πJ(f∗W (a)f) for b = a+ J and d = f + J .

More on Step 2:

Consider the set of maps V := Vc : M(B) → B given by Vc : b ∈ M(B) 7→
c∗M(λ)(b)c. The point-norm closure is an m.o.c. cone C1.

Do the same with the maps W := WT : B → M(B) given by WT (b) :=

T ∗λ(b)T , for T ∈M(B), and we denote this m.o.c. cone by C2 .

Both cones are singly generated (as m.o.c.c.), e.g. C1 by eM(λ)(·)e where e ∈
B+ is strictly positive, and C2 by λ (as u.c.p. map).



3. THE RESIDUALLY NUCLEAR CASE 799

The properties (b) and (c) follows from the properties of λ and the fact that

M(λ) is the unique strictly continuous extensions of λ.

Continuation 1: More on Step 2:

Notice that λ(b) and δ∞(b) for each self-adjoint b ∈ B must be unitarily

homotopic in M(B) by the generalized W-vN theorem, because both define *-

mono-morphisms from C∗(b) into M(B) that are in “general position” and de-

fine the same action of Prim(B) on C∗(b) by definition of λ, namely the action

J ∈ I(B) 7→ M(B, J) ∩ C∗(b).

It follows that each W ∈ C2 maps B into the closure I0 of M(B)δ∞(B)M(B),

the closed ideal of M(B) generated by δ∞(B).

Moreover, b ∈M(B)+ will be mapped by all P ∈ C2◦C1 into the ideal ofM(B)

that is the norm-closure of the union of the ideals M(B, J((ebe − 1/n)+)), with

J(b) ∈ I(B) as defined above, e ∈ B+ strictly positive contractions.

A clear statement is now in Chapter 12:

The point-norm closed m.o.c. cone C1 ⊂ CP(A,M(B)) generated by a ∈ A →
W (V (a))) ∈ M(B) is contained in CPnuc(A,M(B)) and is element-wise approxi-

mating. Thus, is point-norm approximating for H0 : A→M(B).

Continuation 3: More on Step 2:

The condition (a) is equivalent to H0 ∈ C3 := C2 ◦ C1 ◦ CH0
. The m.o.c. cone

C3 is contained in the cone of (norm-) nuclear c.p. maps from A into M(B), and

the elements of C3 map A into the norm-closed ideal I(δ∞(B)) of M(B) that is

generated by δ∞(B).

More precisely, the elements of C3 map a ∈ A+ into the closed ideal of

I(δ∞(B)) ⊂M(B) generated by the element δ∞(e)δ2
∞(e)δ3

∞(a)δ2
∞(e)δ∞(e).

If there is b ∈ B+ such that δ∞(b) and a generate the same closed ideal of

M(B), then there are Tn ∈ C2 ◦ C1 such that ‖Tn(a)− a‖ → 0.

Step 3:

We use that A ∼= A ⊗ O2 ⊗ O2 ⊗ · · · , ( 11). and select suitable Vn : M(B) → B,

Wn : B → M(B) from Step 2, such that Wn ◦ Vn|A converges sufficiently fast

in point-norm to the inclusion A ↪→ M(B) (where H0(A) and A are naturally

identified). Then A is in the multiplier sub-algebra of the separable (non-unital)

C *-system

Y := indlimn(Wn ◦ Vn : M(B)→M(B)) ⊂M(B)∞ .

By a standard Banach space theory argument, (cf. Section 14 of Appendix B), Y is

completely positive and completely isometric isomorphic to the (nuclear) C *-system

X := indlimn(Vn+1 ◦Wn : B → B) ⊂ B∞ = `∞(B)/c0(B) .

11Notice that we do not use that O2
∼= O2 ⊗O2 ⊗ ·, because we want to give a proof that is

independent from the former results on p.i.s.u.n./ algebras, and gives also a new proof of Theorem

A.
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Step 4:

An inspection of the natural completely positive and completely isometric isomor-

phism I from Y onto X shows that

(α) The isomorphism I maps A ⊂ Y into the intersection X ∩M(X) of the

(two-sided) multiplier algebra M(X) ⊂ X∗∗ of X with X ⊂ X∗∗.

(β) This happens in an ideal-system equivariant way, i.e.,

I(M(B, J)∞ ∩ Y ) = J∞ ∩X for all J ∈ I(B) .

(γ) The operator system X is nuclear because the maps Tn : Vn+1 ◦Wn are

nuclear, i.e., Tn can be approximated point-wise by “decomposable” contractions

that factorize approximately through suitable matrix-algebras Mkn .

Use here and above that inductive limits of – not necessarily unital – C*-systems

by using c.p. contractions always are C*-systems, and that the second conjugate

with the natural matrix-order and matrix-norm is a W*-algebra.

Step 5:

We construct a hereditary C *-subalgebra D ⊂ B and a completely positive and

completely isometric isomorphism ϕ from X onto B//D, that have the properties

(P1) D is residually essential – in particular D is stable,

(P2) ϕ(J∞ ∩X) = πDB+BD(J),

(P3) ϕ(X ∩M(X)) = πD(N (D)),

(P4) the natural map N (D)/D → M(D)/D ∼= Q(B) extends to completely

positive map γ from B//D into M(D)/D with the property that γ(J//D) =

γ(B//D) ∩M(D,D ∩ J) for all J . B.

Idea for finding D in Step 5 is the following

Lemma on replacements of inductive limits:

(See somewhere below)

End of Lemma.

Since B is stable, separable and s.p.i., we get that the (I(B)-) residually nuclear

contractions P : B → B can be approximated point-wise by maps T : B → B given

by TS(b) := S∗bS for isometries S ∈ M(B) with 1 − SS∗ properly infinite. Thus

we can take a fixed copy of C∗(s, t) ∼= O2 in M(B) and find the approximating TS

as S = U∗sU for suitable unitary U ∈M(B).

Thus X becomes by the Lemma simply the same as indlimTn : B → B with

Tn(b) = U∗ns
∗UnbU

∗
nsUn for a suitable sequence of unitaries Un ∈ M(B). It turns

then out that X is c.i. and c.p. isomorphic to B//D where D is found in a certain

inductive limit of copies of B by inner automorphisms of B.

Step 6:

We apply the Proposition on Ψ-compatible Busby invariants to the Busby invariant

γ ◦ϕ ◦ I : A→M(D)/D. It has image in N (D)/D and admits a Ψ-equivariant lift

h : A→ N (D) ⊂ B, that is nuclear as map from A into B.
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(But h is not necessarily nuclear as a map from A into N (D).)

It turns out that h is unitarily homotopic to a non-degenerate nuclear mono-

morphism h0 : A→ B that is Ψ-equivariant.

Step 7:

????????????????????????

The case of (bi-) continuous action Ψ of Prim(B) on A.

Target: If A is nuclear and h0(A) regular in B, then there exists an Ψ-

equivariant conditional expectation from B to h0(A) or at least a sequence of Ψ-

equivariant c.p. contractions Vn : B → h0(A) with Vn(h0(a))→ h0(a) for n→∞.

If Ψ: I(B) → I(A) is “continuous”, then h0(A) must be a regular C *-

subalgebra of B. It follows, that there is a lower semi-continuous action

Φ: I(A)→ I(B) with Φ(h(J)) := biggest K . B with K ∩ h(A) ⊂ h(J).

REF ??????????

Since A contains a regular abelian C *-subalgebra, the cone CPrn(Φ;B,A) of

Φ-residually nuclear maps W : B → A is separating for Φ, i.e., for each b ∈ B+

and each pure state λ on A with λ(J) 6= {0}, there is W ∈ CPrn(Φ;B,A) with

λ(W (Φ(J))) 6= {0}.

Since Φ(K ∩ h(A)) ⊃ K for all ideals K .B, it follows that Φ ◦Ψ majorizes Id

of I(B).

??????? ??????????????????? If A is nuclear, ??????????????

??

Overview on proof Thm. 6.3.1 finished?

We need some simple general results on residually essential hereditary C *-

subalgebras D of a C *-algebra B, non-unital C *-systems and on inductive limits.

First we explain some properties of certain subspaces of C *–algebras.

Remark 6.3.5. Suppose that B is separable and that A ⊂M(B) is a separable

stable exact C *-subalgebra, such that AB is dense in B and that the maps a ∈
A 7→ b∗ab ∈ B are nuclear for all b ∈ B.

Then B is stable, and maps V : M(B) → B and W : B → M(B) with prop-

erties (a), (b) and (c) for (given) a1, . . . , an ∈ A and ε > 0 exist, if and only

if,

(i) The m.o.c. cone CPrn(Prim(B), B,B) of residually nuclear maps from

B to B is non-degenerate, i.e., the universal weakly residually nu-

clear Hrn : B → M(B) C *-morphism (given by Corollary ?? for

C := CPrn(Prim(B);B,B)) is non-degenerate.

And separating for Prim(B)??

(ii) The representations a ∈ A 7→ M(Hrn)(a) ∈ M(B) and a ∈ A 7→ a ∈
M(B) define the same action of of Prim(B) on A.
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(iii) The (lower semi-continuous) action of Prim(B) on A is monoton upper

semi-continuous.

(See the arguments in Chapter 12 for a proof.)

????????????

Move the needed arguments of Chapter 12 to here. ??

The conditions (i)–(iii) are satisfied if the action of Prim(B) on B defined by

Hrn is the identity map of I(B) ∼= O(Prim(B)).

Definition 6.3.6. A hereditary C *-subalgebra D ⊂ B is residually essential

in B, if for every closed ideal J ∈ I(B) holds that πJ(D) is essential in B/J , i.e.,

b ∈ B+ and bD ⊂ J imply b ∈ J (equivalently: Ann(πJ(D)) = 0 in B/J).

Lemma 6.3.7. Let T : X → C a positive and isometric linear map from a (not

necessarily unital) C*-system X into a C*-algebra C.

Then T−1(C+ ∩ T (X)) = X+.

Proof. We can pass to the second adjoint T ∗∗ : X∗∗ → C∗∗. The map T ∗∗ is

still positive and isometric, T ∗∗|X = T , X+ = (X∗∗)+∩X, and X∗∗ is unitally order

isomorphic to a unital C *-algebra. Thus, we may suppose that X is a C *-algebra.

Let a = h + ik ∈ X with self-adjoint h, k ∈ X with polar decompositions

h = h+ − h−, k = k+ − k−, and suppose T (a) ∈ C+. Then T (h+), T (h−), T (k+)

and T (k−) are all in C+. Thus T (k) = 0, a = h+ − h− and 0 ≤ T (h−) ≤ T (h+).

Suppose that h− 6= 0. Then T (h+) 6= 0 and h+ 6= 0. Let x := ‖h−‖−1h− and

y := ‖h+‖−1h+ . It follows x, y ∈ X+, xy = 0, T (x), T (y) ∈ C+, ‖T (x)‖ = ‖x‖ = 1,

‖T (y)‖ = ‖y‖ = 1 and ‖T (x + y)‖ = ‖x + y‖ = max(‖x‖, ‖y‖) = 1. Thus,

there exists a state ρ on C with ρ(T (x)) = 1 (by extending a suitable character

of C∗(T (x)) to C). Then 1 ≤ ρ(T (x)) + ρ(T (y)) = ρ(T (x + y)) ≤ 1. It implies

ρ(T (y)) = 0, which contradicts ‖h−‖T (x) ≤ ‖h+‖T (y) if ‖h−‖ > 0. Thus h− = 0

and a = h+. �

Lemma 6.3.8. Suppose that B and C are C*-algebras, that A is a C*-subalgebra

of C, that ΨC : I(B)→ I(C) is a monotone map, that D ⊂ B is a hereditary C*-

subalgebra of B.

If T : B//D → C is a completely positive and completely isometric linear map,

such that A ⊂ T (B//D) and, for J ∈ I(B),

T (πD(J)) = ΨC(J) ∩ T (B//D) ,

then the *-monomorphism λ := T−1|A : A→ N (D)/D satisfies, for J ∈ I(B),

λ(A ∩ΨC(J)) = λ(A) ∩ πD(J) .

Proof. The map λ : A → (B//D)∗∗ ∼= qDB
∗∗qD is an isometric completely

positive map by Lemma 6.3.7, because

T ∗∗ ⊗ idn = (T ⊗ idn)∗∗ : qDB
∗∗qD ⊗Mn → C∗∗ ⊗Mn
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is isometric and positive for each n ∈ N. Since ‖λ‖ ≤ 1, we get from the generalized

Kadison inequality of Choi that λ(a∗a) ≥ λ(a)∗λ(a) for a ∈ A. If we apply T ∗∗ to

this inequality and use the Choi-Kadison inequality for T ∗∗, we get

a∗a = T ∗∗(λ(a∗a)) ≥ T ∗∗(λ(a)∗λ(a)) ≥ T ∗∗(λ(a))∗T ∗∗(λ(a)) = a∗a .

Thus, T ∗∗(λ(a∗a)− λ(a)∗λ(a)) = 0. Using that T ∗∗ is faithful on C∗(λ(A)) we get

λ(a∗a) = λ(a)∗λ(a) for all a ∈ A.

Thus λ : A → qDB
∗∗qD is a *-monomorphism with λ(A) ⊂ qDBqD = B//D.

By Remark 6.1.2(14), λ(A) ⊆M(B//D) ∩ (B//D) = N (D)/D.

The equation follows from A∩ΨC(J) = A∩ T (πD(J)), because T is isometric.

�

Lemma 6.3.9. Suppose that D is a σ-unital hereditary C*-subalgebra of a

C*-algebra B, and that A is a separable C*-subalgebra of the normalizer algebra

N (D) ⊂ B.

Let π0 : B → B//D and π2 : M(D)→M(D)/D denote the quotient maps, and

let ρ denote the natural C*-morphism from N (D) into M(D) with kernel Ann(D)

(the two-sided annihilator of D in B).

For a closed ideal J of B let

Ann(D,J) := {a ∈ B ; aD +Da ⊂ J} ⊃ J .

Then there exists a completely positive contraction T from the C*-system B//D

into the C*-algebra M(D)/D, such that T has the following properties (i)-(ii):

(i) T (π0(Ann(D,J))) ⊂ π2(M(D,D ∩ J)) for every J ∈ I(B).

(ii) (T ◦ π0)|A is the C*-morphism (π2 ◦ ρ)|A from A into M(D)/D, and has

kernel A ∩ (D + Ann(D)).

(iii) T ◦ π0(A ∩ Ann(D,J)) = T (π0(A) ∩ π0(Ann(D,J))) = T (π0(A)) ∩
π2(M(D,D ∩ J)) for J ∈ I(B).

In particular, – if B//D is nuclear –, then π2◦ρ defines a nuclear *-monomorphism

from A/(A ∩ (D + Ann(D))) into M(D)/D.

Proof. It holds N (D) ⊇ Ann(D) = Ann(D, {0}) ∼= (Ann(D)+D)/D because

D + Ann(D) ∼= D ⊕ Ann(D) naturally, thus D + Ann(D) is the kernel of π2 ◦
ρ : N (D)→ Q(D) =M(D)/D.

Since D is σ-unital, it contains a strictly positive contraction e ∈ D+. We can

suppose that e ∈ A (consider otherwise A1 := C∗(A, e)). Let a1, a2, . . . ∈ A a

dense sequence in the unit ball of A. There is an approximate unit e1 ≤ e2 ≤ . . . ∈
C∗(e) ⊂ D with enen+1 = en ≤ 1, ‖ene − en‖ < 2−n and ‖[ak, e1/2

n ]‖ < 2−n−2 for

k ≤ n. Let g1 := e
1/2
1 , gn+1 := (en+1 − en)1/2

b 7→W (b) :=
∑
n gnbgn is a completely positive contraction from B intoM(D)

with W (e) = e, W (Ann(D)) = 0 and W (D) ⊂ D, because
∑
n gnbgn strictly
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converges in M(D), cf. Remark 5.1.1(4). Moreover,

‖(ρ(a)−W (a))(1− em)‖ ≤ sup
n≥m
‖a(en− em)−

∑
m−1≤k≤n+1

gkagk(en− em)‖ ≤ 2−m .

Thus ρ(a)−W (a) ∈ D for a ∈ A.

π2 ◦ W : B → M(D)/D is completely positive and contains D in its kernel.

It follows W (BD + DB) ⊂ D and that there is a unique completely positive map

T : B//D = B/(BD +DB)→ Q(D) =M(D)/D with T ◦ π0 = π2 ◦W .

(i): Let J ∈ I(B). Then W (Ann(D,J)) ⊂ M(D,D ∩ J), because eW (b)e =∑
egnbgne ∈ D∩J for b ∈ Ann(D,J). Thus T (π0(Ann(D,J))) ⊂ π2(M(D,D∩J)).

(ii): T ◦ π0|A = π2 ◦ ρ|A because π2(W (a)) = π2(ρ(a)) for a ∈ A. The kernel

of π2 ◦ ρ : N (D)→M(D)/D is ρ−1(D) = D + Ann(D).

(iii): π2 ◦ ρ(A ∩ Ann(D,J)) = T ◦ π0(A ∩ Ann(D,J)) ⊂ T (π0(A) ∩
π0(Ann(D,J))) ⊂ T (π0(A)) ∩ π2(M(D,D ∩ J)) = π2(ρ(A)) ∩ π2(M(D,D ∩ J),

because W (Ann(D,J)) ⊂M(D,D ∩ J), T ◦ π0 = π2 ◦W and T ◦ π0|A = π2 ◦ ρ.

Conversely, if b ∈ N (D) and ρ(b) = c + d with d ∈ D and c ∈ M(D,D ∩ J)

then c = ρ(b) − d = ρ(b − d) ∈ ρ(N (D)) and ρ(b − d) ∈ M(D,D ∩ J), i.e.,

b− d ∈ Ann(D,J). Thus b ∈ N (D) ∩Ann(D,J) +D and π0(b) ∈ π0(Ann(D,J)).

Since D ⊂ N (D), (N (D) ∩ Ann(D,J)) + D = N (D) ∩ (Ann(D,J) + D) =

(π2 ◦ ρ)−1(N (D) ∩M(D,D ∩ J)). �

Related/re-formulated text (new ϕ good?) for Lemma 6.3.9: Next

version better? ??

Recall that for C *-subalgebra D of a C *-algebra B, N (D) (= N (B,D)) is

defined as the set of two-sided normalizers b ∈ B of D: bD ∪Db ⊆ D.

This definition of N (B,D) gives also a natural C *-morphism ϕD : N (D) →
M(D) given by ϕD(b)d := bd for b ∈ N (D) and d ∈ D. The kernel of ϕD is the

two-sided annihilator Ann(D) (= Ann(D, 0)) of D in B defined as the set of b ∈ B
with bD = {0} = Db.

Some of the following are discussed in Chapter 2 ? Ref’s??

Lemma 6.3.10. Suppose that D ⊂ B is a σ-unital residually essential hereditary

C*-subalgebra of B.

(i) If B has no unital quotient, then D has no unital quotient.

(ii) The map J ∈ I(B) 7→ D ∩ J ∈ I(D) is a bijection onto I(D).

(iii) The natural map ϕD : N (D) → M(D) given is injective, and ϕD(a) ∈
M(D,D ∩ J), if and only if, a ∈ N (D) ∩ J .

(iv) For a ∈ N (D) and J ∈ I(B) holds:

a ∈ D + (N (D) ∩ J) ⇔ πB//D(a) ∈ πB//D(J) ⇔ ϕD(a) ∈ D +M(D,D ∩ J) .
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(v) For each separable C*-subalgebra A ⊂ B there is a completely positive

contraction TA : A→M(D)/D such that TA|(A ∩N (D)) = πD ◦ ϕD and

TA(A ∩ J) ⊂ πD(M(D,D ∩ J)) for each closed ideal J of B.

Sort out: Where ‘‘ hereditary in B’’ is needed for D??

Proof. Recall that the definition of “residual essential” (in B) for a (not

necessarily hereditary) C *-subalgebra D ⊆ B is:

For each closed ideal K ⊆ B, there is no non-zero element of (B/K)+ that is

orthogonal to πK(D).

Give ref. to Definition?

This implies obviously that D ⊆ K := span(BDB) = B. Moreover, the

hereditary C *-subalgebra E := span(DBD) of B is again residually essential C *-

subalgebra of B.

(ii): If D is a hereditary C *-subalgebra of a C *-algebra B that is not contained

in any closed ideal K of B with K 6= B, then the map

K ∈ I(B) 7→ JK := K ∩D ∈ I(D)

is a bijective lattice isomorphism.

cite TEXT books for this

(i): Suppose that B has no unital quotient, and suppose that there exists a

closed ideal J of D such that D/J is unital.

The closed ideal K := BJB of B is the smallest closed ideal of B that contains

J .

Since D is hereditary, each ideal J of D is the intersection of D with an ideal

L of B, i.e., J = D ∩ L. Thus J ⊆ D ∩K ⊆ D ∩ L = J , i.e., J = D ∩K.

It implies that D/J ∼= πK(D) = p(B/K)p for some projection in p ∈ B/K,

because πK(D) is a unital hereditary C *subalgebra of B by πK(D)πK(B)πK(D) =

πK(DBD) = πK(D).

Since πK(D) is “essential” inB/K it follows that (1−p)(B/K)(1−p) = {0}, i.e.,

that B/K is unital, a contradiction to the assumption that all non-zero quotients

B/K of B are not unital.

(iii): The map ϕD : N (D)→M(D) is injective because the kernel is Ann(D)

and Ann(D) = {0} for essential C *-subalgebras D of B (by definition of “essen-

tial”).

For a ∈ N (D) ⊆ B holds that ϕD(a) ∈ M(D,D ∩ J), if and only if, a ∈
N (D) ∩ J :

If a ∈ N (D) ∩ J , then aD ∪ Da ⊆ D ∩ J . Thus, ϕD(a) ∈ M(D,D ∩ J). If

a ∈ N (D) and ϕD(a) ∈ M(D,D ∩ J), then aD ∪ Da ⊆ D ∩ J . It follows that

πJ(a)πJ(D) = {0} and πJ(D)πJ(a) = {0}. It says that πJ(a∗a+aa∗) is orthogonal

to πJ(D).
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The algebra D is “residually essential”, which means that πJ(D) is essential in

πJ(B) for each J ∈ I(B).

It follows that πJ(a∗a+aa∗) = 0 or that πJ(D) = {0} must happen, i.e., a ∈ J
or D ⊆ J . Thus a ∈ N (D) ∩ J or D ⊆ J .

But essential C *-subalgebras in B generate B as ideal, i.e., if D ⊆ J and D is

essential in B imply that J = B and a ∈ N (D) ⊆ J = B.

(iv): For a ∈ N (D) are equivalent

a ∈ D + (N (D) ∩ J) ⇔ πB//D(a) ∈ πB//D(J) ⇔ ϕD(a) ∈ D +M(D,D ∩ J) .

Let a ∈ D + (N (D) ∩ J) then a = d+ c with d ∈ D and c ∈ N (D) ∩ J . Then

trivially πB//D(a) = πB//D(c) because the kernel of πB//D is BD+DB ⊇ D. Thus

πB//D(a) ∈ πB//D(J).

Notice that N (D)/D ∼=M(B//D)∩ (B//D) by a natural isomorphism. πB//D

coincides on N (D) with the C *-morphism a 7→ a+D. If πB//D(a) ∈ πB//D(J) and

a ∈ N (D), then a ∈ (J +BD +DB) ∩N (D) = D + (N (D) ∩ J).

(To see more look to the second conjugate of B: N (D) = {PD}′∩B ⊂ {PD}′∩
B∗∗.)

(v): To be filled in ??

For each separable C *-subalgebra A ⊂ B there is a completely positive con-

traction TA : A→M(D)/D such that TA|(A∩N (D)) = πD ◦ϕD and TA(A∩J) ⊂
πD(M(D,D ∩ J)) for each closed ideal J of B:

�

Proposition 6.3.11. Suppose that D is a residually essential hereditary C*-

subalgebra of a separable stable C*-algebra B with WvN-property, and that the op-

erator space B//D := B/(DB +BD) is nuclear.

Let π1 : N (D) → N (D)/D and π2 : M(D) → M(D)/D denote the natural

epimorphisms, and let A is a stable separable C*-subalgebra of M(B), such that

A ↪→M(B) is weakly residually nuclear and AB is dense in B. Then:

(i) D is stable and there is an isomorphism ϕ from B onto D, which is

unitarily homotopic to idB, and, therefore, satisfies ϕ(J) = D ∩ J for

J ∈ I(B).

(ii) The natural C*-morphism ρ from N (D)/D into M(D)/D is a nuclear

*-monomorphism, and satisfies, for closed ideals J of B,

ρ(π1(N (D) ∩ J)) = ρ(N (D)/D) ∩ π2(M(D,D ∩ J)).

(iii) If λ : A→ N (D)/D ⊂ B//D is a *-monomorphism with

λ(A ∩M(B, J)) = λ(A) ∩ π1(N (D) ∩ J) for J ∈ I(B) ,

then an element

H := Q(ϕ)−1 ◦ ρ ◦ λ : A→ Q(B)
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is nuclear and defines an element [H] of the semi-group

SExtnuc(Prim(B);A,B) := S(H0;A,Q(B))

where H0 := πB ◦ δ∞|A with 2[H0] = [H0].

The element [H] is contained in the subgroup

Extnuc(Prim(B);A,B) = [H0] + SExtnuc(Prim(B), A,B) .

(iv) If, in addition to (iii), [H] = 0 in Extnuc(Prim(B), A,B), then there is a

non-degenerate nuclear *-monomorphism h from A to B, such that

h(A ∩M(B, J)) = h(A) ∩ J for J ∈ I(B) .

The infinite repeats δ∞ ◦ h and δ∞|A are unitarily homotopic.

Proof. Since D is residually essential, we have in particular that B is the

closed span of BDB.

(i): Since B has the WvN-property, B and its hereditary C *-subalgebra D

must be purely infinite in particular. D is separable and can not have a unital

quotient, because for every closed ideal I of D there is a closed ideal J of B with

I = D ∩ J , and D/I ∼= πJ(D) is an essential subalgebra of the stable C *-algebra

πJ(B) (cf. assumptions). By Corollary 5.5.4, D is stable. Now use Corollary 5.5.6

to get ϕ with property(i).

(ii): The C *-algebras N (D) and N (D)/D are separable. The natural C *-

morphism ρ : N (D)/D → M(D)/D is faithful because Ann(D) = {0}. Let

T : B//D →M(D)/D be as in Lemma 6.3.9 with

TπBD+DB | N (D) = π2 ◦ η| N (D) = ρ ◦ π1 ,

where π2 : M(D)→ Q(D) =M(D)/D is the quotient map and η : N (D)→M(D)

denotes the natural *-morphism with η(d) = d for d ∈ D. Then T = T ◦ idB//D is

nuclear, because B//D is nuclear. We obtain ρ = T ◦γ, where γ denotes the natural

isomorphism from N (D)/D ontoM(B//D)∩(B//D) with γ◦π1 = πBD+DB | N (D)

that is given by Lemma A.19.8(i). Thus ρ is a nuclear *-monomorphism.

By Lemma 6.3.9, Ann(D,J) ⊂ π−1
J (Ann(πJ(D)) = J for residually essential D

and for J ∈ I(B). It follows:

ρπ1(N (D) ∩ J) = ρπ1(N (D)) ∩ π2(M(D,D ∩ J)).

(iii): The C *-algebra A is a stable C *-subalgebra of M(B), such that id |A is

weakly residually nuclear, and AB is dense in B. If there is a *-monomorphism λ

from A into N (D)/D with

λ(A ∩M(B, J)) = λ(A) ∩ π1(N (D) ∩ J)

for J ∈ I(B), then

H := (Q(ϕ))−1 ◦ ρ ◦ λ : A ↪→ Q(B) :=M(B)/B

is a monomorphism from A into Q(B). Here Q(ϕ) is the isomorphism from Q(D) :=

M(D)/D onto Q(B) induced by ϕ, i.e., Q(ϕ)(d+D) =M(ϕ)(d) + B ∈ Q(B) for
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d ∈ M(D). Note Q(ϕ)−1 = Q(ϕ−1). Then H : A → Q(B) is nuclear, because ρ is

a nuclear monomorphism. In particular, A is an exact C *-algebra. By Corollary

??, the inclusion map id: A ↪→M(B) is nuclear, because M(B) is weakly nuclear

and A is exact.

The map H satisfies, by asumptions in (ii),

H(A ∩M(B, J)) = Q(ϕ)−1ρ(λ(A) ∩ π1(N (D) ∩ J)) (3.1)

= H(A) ∩Q(ϕ)−1(π2(M(D,D ∩ J))). (3.2)

But Q(ϕ)−1(π2(M(D,D ∩ J))) = πB(M(B, J)), because ϕ(B) = D and

M(ϕ)(M(B, J)) =M(D,ϕ(J)) =M(D,D ∩ J).

The exactness of A gives that H is moreover residually nuclear with respect to

the natural actions of Prim(B) on A ⊂M(B) and Q(B) (cf. ??).

Thus H : A ↪→ Q(B), B and A ⊂M(B) satisfy the assumptions of Proposition

??. ?? Therefore, [H] is in G(H0;A,Q(B)) = Extnuc(Prim(B), A,B), where H0 :=

πB ◦ δ∞|A : A→ Q(B).

to be filled in: show [H] ∈ G(H0;A,Q(B)) ??

(iv): Since [H] = 0 = [H0] in Extnuc(Prim(B);A,B), it follows by Remark ??

??). that H = w∗H0(·)w where w ∈ U0(Q(B)) and H0 = πB ◦ δ∞|A, because the

extensions given by elements of Extnuc(Prim(B), A,B) are stable C *-algebras ( 12 ).

We find a unitary u ∈M(B), such that

H1 : a ∈ A 7→ u∗δ∞(a)u ∈M(B)

is a residually nuclear lift of H : A → Q(B) with H1(A) ∩ M(B, J) = H1(A ∩
M(B, J)) for J ∈ I(B). Then

H2 :=M(ϕ) ◦H1 : A→M(D)

is a residually nuclear lift of ρ◦λ : A ↪→M(D)/D. Necessarily, H2(A) ⊂ η(N (D)) =

π−1
2 ρ(D). Thus, the *-monomorphism H3 := η−1 ◦H2 maps A into N (D) ⊂ B. We

have H3(A) ∩ J = η−1(H2(A) ∩ η(N (D) ∩ J)), Ann(D,J) := π−1
J (Ann(πJ(D))) =

π−1
J (0) = J , Ann(D,J) = {b ∈ B ; bD +Db ⊂ J} ??

and that b ∈ N (D) ∩Ann(D,J), if and only if bD +Db ⊂ D ∩ J . It implies

η(N (D) ∩ J) = η(N (D) ∩Ann(D,J))

= η(N (D)) ∩M(D,D ∩ J).

Thus

H3(A) ∩ J = η−1(H2(A) ∩M(D,D ∩ J))

= η−1M(ϕ)(H1(A) ∩M(B, J))

= η−1M(ϕ)H1(A ∩M(B, J))

= H3(A ∩M(B, J))

12 Use here that A is stable, and that B is σ-unital, stable and purely infinite, cf. Corollary

5.5.16 .
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for J ∈ I(B).

Further, H−1
3 (0) = {0}, and H3(A) must generate B as a two-sided closed

ideal, because J1 := spanBH3(A)B satisfies H3(A) ∩ J1 = H3(A) and,thus, A ⊂
M(B, J1), AB ⊂ J1 ⊂ B and J1 = B AB = B.

Since A and B are stable and separable, it follows, by Proposition ?? ??, that

H3 is unitarily homotopic to a nuclear non-degenerate *-monomorphism h : A ↪→ B.

We get h(A) ∩ J = h(A ∩M(B, J)) for J ∈ B.

Thus k1 := δ∞ ◦ h and k2 := δ∞|A are both nuclear, non-degenerate *-

monomorphisms and satisfy ki(A) ∩ M(B, J) = ki(A ∩ M(B, J)) for J ∈ I(B)

and i = 1, 2. By Corollary ??, k1 and k2 are unitarily homotopic. �

Lemma 6.3.12. Suppose that E ⊂ F ⊂ B are hereditary C*–subalgebras of B.

(i) If for every a ∈M(B//E)+ ∩ (B//E) with a 6= 0 there is b ∈ πBE+EB(F )

with ab 6= 0, then F is essential in B.

(ii) If D ⊂ C is hereditary, B = C⊗M2∞ , E = D⊗M2∞ and ρ is a pure state

on M2∞ , then B//E ∼= (C//D) ⊗M2∞ by a natural completely positive

and completely isometric map V from B//E onto (C//D)⊗M2∞ .

The hereditary C*-subalgebra F ⊂ B that ist generated by {b ∈
B+ ; (idC//D ⊗ρ)(V (πBE+EB(b))) = 0 } satisfies the assumption of (i).

In particular, F is essential in B.

Proof. Recall that the product ab in (i) has to be calculated in the von Neu-

mann algebra (B//E)∗∗, that is naturally isomorphic to (1− pE)B∗∗(1− pE).

(i): Let c ∈ B+ with cF = {0}. Then cE = {0} and, therefore, c ∈
Ann(E)+ ⊂ N (E)+. It follows that a := πBE+EB(c) ∈ M(B//E)+ ∩ (B//E) and

that aπBE+EB(F ) = {0}. Thus a = 0 by assumption (i), i.e., (1−pE)c(1−pE) = 0,

c1/2(1− pE) = 0, c = cpE and c = pEc, where pE ∈ B∗∗ denotes the open support

projection of E. Thus c ∈ E. Since cE = {0} and c ∈ E+, we get c2 = 0 and c = 0.

(ii): Let L := CD and R := DC the closed left respectively right ideals

of C generated by D. Then EB + BE = (L + R) ⊗ M2∞ . Therefore, there

is a natural completely positive and completely isometric isomorphism V from

B//E := (C ⊗ M∞)//(D ⊗ M∞) onto (C//D) ⊗ M∞ that satisfies V ((c ⊗ d) +

EB + BE) = (c + (CD + DC)) ⊗ d for c ∈ C and d ∈ M2∞ , i.e., V ◦ πBE+EB =

πCD+DC ⊗ id. Let A := M(C//D) ∩ (C//D). Using slice maps, one can see that

V |M(B//E)∩ (B//E) is a *-isomorphism fromM(B//E)∩ (B//E) onto A⊗M2∞ ,

and N (E) = N (D)⊗M2∞ .

LetG := {g ∈M2∞ ; ρ(g∗g+gg∗) = 0}. TheG is the hereditary C *-subalgebra

of M2∞ generated by {0 ≤ g ∈M2∞ ; ρ(g) = 0}, and G is essential in M2∞ because

0 ≤ a ∈M2∞ and aG = 0 implies that a = 0 or that the pure state ρ is faithful on

the hereditary C *-subalgebra of M2∞ generated by a is faithful, but the latter can

not happen because M2∞ is anti-liminal.
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Thus, N (D)⊗G ⊂ F . If a ∈ (A⊗M2∞)+ and aV (F ) = {0}, then a(A⊗G) =

{0}. But this implies that (f ⊗ id)(a)G = {0} for every positive linear functional f

on A, thus f ⊗ id(a) = 0 for all f ∈ A∗, hence a = 0.

It follows that c ∈ M(B//E)+ ∩ (B//E) and cπBE+EB(F ) = {0} together

implies c = 0. �

Lemma 6.3.13. Suppose that D1, D2 are hereditary C*–subalgebras of B, that

T : B//D2 → (B//D1)⊗M2∞ is a completely positive and completely isometric map

from B//D2 onto (B//D1) ⊗M2∞ with T (π2(J)) = π1(J) ⊗M2∞ for every closed

ideal J of B, where πk : B → B//Dk := B/(BDk +DkB) are the quotient maps for

k = 1, 2. Let ρ : M2∞ → C a pure state, and let D3 denote the hereditary C*-algebra

of B that is generated by the elements f ∈ B+ with (id⊗ ρ)(T (π2(f))) = 0.

Then

(i) D3 ⊃ D2, D3 is residually essential in B, and

(ii) there is a completely positive and completely isometric isomorphism I from

B//D3 onto B//D1 with

I(π3(J)) = π1(J)

for every J ∈ I(B), where π3 : B → B//D3 is the quotient map π3(b) :=

b+BD3 +D3B.

Proof. Clearly, V : b ∈ B 7→ (id⊗ρ)(T (π2(b))) ∈ B//D1. is a completely

positive contraction from B onto B//D1 with V (D3) = 0 and V (J) = π1(J).

Let A := M2∞ and G ⊂ A the hereditary C *-subalgebra G := {a ∈ A ; ρ(a∗a+

aa∗) = 0}. It turns out that I := [V ] : B//D3 → B//D1 is a complete isometry: One

has T (π2(D3)) = (B//D1)⊗G and T (π2(BD3 +D3B)) = (B//D1)⊗ (AG+GA).

The same happens with T ⊗ idn.

to be filled in: new proof coming from Lemma 6.3.12 or 3.1.8

??

Let G := {a ∈ M2∞ ; ρ(a∗a) = 0 = ρ(aa∗)}. G is essential in M2∞ . There

is no non-zero element x ∈ ((B//D1) ⊗M2∞)+ that is orthogonal to the support

projections of (B//D1) ⊗ G in ((B//D1) ⊗M2∞)∗∗, because there is no non-zero

x ∈ (B//D1)∗∗ ⊗M2∞ which is orthogonal to (B//D1)∗∗+ ⊗ e for a strictly positive

element e of G.

γ has the property that π1(J) ⊗ M2∞ corresponds to the natural image of

J ⊗M2∞ in (B ⊗M2∞)//(D1 ⊗M2∞). Thus, one has natural isomorphisms

((B/J)//πJ(D1))⊗M2∞
∼= ((B//D1)⊗M2∞)/(π1(J)⊗M2∞) .

?? Clearly, D2 ⊂ D3 and π2(D3) contains T ((B//D1) ⊗ G). Recall that T ∗∗ is

a W*-algebra isomorphism from ((B//D1) ⊗M2∞)∗∗ onto (B//D2)∗∗. If b ∈ B+

with bD3 + D3b = {0} then π2(b) is orthogonal to T ((B//D1) ⊗G) in (B//D2)∗∗.

The element x := T−1(π2(b)) is orthogonal to (B//D1)⊗G in ((B//D1)⊗M2∞)∗∗,

which implies (step by step) x = 0, π2(b) = 0, b ∈ D1 ⊂ D3 and b2 = 0, b = 0.
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Hence, D3 is essential in B.

If J is a closed ideal of B, then πk(J) is an M-ideal of B//Dk (i.e., there

is a projection zJ in the center of (B//Dk)∗∗ with πk(J)∗∗ = zJ(B//Dk)∗∗) and

there are natural completely positive and completely isometric isomorphisms

(B/J)//πJ(Dk) ∼= (B//Dk)/πk(J). Thus T defines a completely isometric and

completely positive isomorphism [T ]J from (B/J)//πJ(D2) ∼= (B//D2)/π2(J) onto

((B/J)//πJ(D1))⊗M2∞
∼= ((B//D1)⊗M2∞)/(π1(J)⊗M2∞) .

Let [π2]J denote the quotient map B/J → (B/J)/πJ(D2). πJ(D3) is essential in

B/J , because πJ(D3) is the hereditary C *–subalgebra of B/J which is generated by

the elements g ∈ (B/J)+ = πJ(B+) with id⊗ρ)([T ]−1
J ([π2]J(g))) = 0, and because

we can replace in the above arguments B, B//D2, (B//D1), D2, T and π2 by B/J ,

(B/J)//πJ(D2), ((B/J)//πJ(D1)), πJ(D3), [T ]J and [π2]J . �

Lemma 6.3.14. Suppose that B is stable and that Tn : B → B is a sequence of

completely positive contractions. Then there is a sequence of isomorphisms γn : B →
B⊗M2n , such that γn is unitarily homotopic to the map b ∈ B 7→ b⊗p11 ∈ B⊗M2n .

The sequence (γn) defines a *-isomorphism γ∞ from B∞ := `∞(B)/c0(B) onto

E :=

(∏
n

B ⊗M2n

)
/
⊕
n

(B ⊗M2n) ⊂ (B ⊗M2∞)∞

by

γ∞((b1, b2, . . .) + c0(B)) := (γ1(b1), γ2(b2), . . .) + c0(B ⊗M2∞) .

Let Sn := γ−1
n+1(Tn ⊗ ιn) ◦ γn , where ιn : a ∈ M2n 7→ a ⊗ 12 ∈ M2n+1 . Consider

X := indlim(Tn : B → B) and Y := indlim(Sn : B → B) as subspaces of B∞ :=

`∞(B)/c0(B) , and let

Z := indlim(Tn ⊗ ιn : B ⊗M2n → B ⊗M2n+1) ⊂ E .

Then

(i) Z coincides with the image of X ⊗M2∞ by the natural *-monomorphism

η from B∞ ⊗M2∞ into E.

(ii) The isomorphism γ∞ from B∞ onto E maps Y onto Z = η(X ⊗M2∞)

and satisfies

γ∞(Y ∩ J∞) = η((X ∩ J∞)⊗M2∞)

for all closed ideals J of B.

(iii) If Tn is residually nuclear, then Sn is residually nuclear and X is a nuclear

(non-unital) operator system.

Proof. Let κn an isomorphism from the algebra of compact operators K onto

K⊗M2n . Since every endomorphism of K onto a hereditary C *–subalgebra D of

K is unitarily homotopic to the identity map on K (cf. e.g. Corollary 5.5.6), we

get that a ∈ K 7→ a ⊗ p11 ∈ K ⊗M2∞ is unitarily homotopic to κn. There is an

isomorphism λ from B onto B ⊗ K, because B is stable and K ⊗ K ∼= K. Then

γn := (λ⊗ idn)−1 ◦ (idB ⊗κn)⊗ λ is an isomorphism from B onto B ⊗M2n that is
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unitarily homotopic to b ∈ B 7→ b⊗p11 ∈ B⊗M2n . In particular, γn(J) = J⊗M2n

for J ∈ I(B), which implies

γ∞(J∞) =
∏
n

(J ⊗M2n)/
⊕
n

(J ⊗M2n) .

(i): Let I :=
⊕

nB ⊗ M2n ⊂ c0(B ⊗ M2∞) and let Vn : M2∞ → M2n the

natural conditional expectation from M2∞ onto M2n
∼= M2n ⊗ 1 ⊗ 1 ⊗ . . . ⊂ M2∞

with Vn(a ⊗ b) = tr(b)a for a ∈ M2n , b ∈ M2∞ . Then η : B∞ ⊗M2∞ → E is the

C *-morphism that is defined by

η (((b1, b2, . . .) + c0(B))⊗ c) := (b1 ⊗ V1(c), b2 ⊗ V2(c), . . .) + I

for (b1, b2, . . .) ∈ `∞(B) and c ∈ M2∞ . This defines η, because B∞ ⊗ M2∞ =

B∞ ⊗max M2∞ by nuclearity of M2∞ .

Let Uk,∞ : B ⊗M2k → Z ⊂ E the canonical maps for the inductive limit Z

defined by the maps Tn ⊗ ιn, i.e., starting with k − 1 zeros one has

Uk,∞(d) = (0, . . . , 0, d, Tk ⊗ ιk(d), (Tk+1Tk)⊗ (ιk+1ιk)(d), . . .) + I ,

where d ∈ B ⊗M2k .

Then Z is the closed linear span of Uk,∞(b⊗ c) for b ∈ B and c ∈M2k , k ∈ N.

A straight calculation shows that this set coincides with η(X ⊗M2∞).

(ii): We have (Tn ⊗ ιn) ◦ γn = γn+1 ◦ Sn . Thus,

γ∞ ◦ Sm,∞(b) = Um,∞(γm(b)) ,

for b ∈ B, which implies that the *-isomorphism γ∞ from B∞ onto E maps the

closed subspace Y onto Z.

Clearly, η(J∞⊗M2∞) ⊂ γ∞(J∞). Since γ∞(J∞) is an ideal, and since M2∞ is

simple and nuclear, there is a unique closed ideal K of B∞ such that η(K⊗M2∞) =

η(B∞ ⊗M∞) ∩ γ∞(J∞). Let (b1, b2, . . .) ∈ `∞(B) with (b1, b2, . . .) + c0(B) ∈ K.

Then

η (((b1, b2, . . .) + c0(B))⊗ 1) := (b1 ⊗ 12, b2 ⊗ 14, . . .) + I ∈ γ∞(J∞) ,

i.e., there exists a sequence cn ∈ J ⊗M2n with lim ‖(bn ⊗ 12n) − cn‖ = 0. If we

apply the slice maps idB ⊗tr2n : B ⊗M2n → B, we get that there is a sequence

d1, d2, . . . ∈ J with lim ‖bn − dn‖ = 0, i.e., (b1, b2, . . .) + c0(B) ∈ J∞ and K = J∞.

The equation (X⊗M2∞)∩(J∞⊗M2∞) = (X∩J∞)⊗M2∞ holds by nuclearity

of M2∞ .

(iii): Let J a closed ideal of B. Then γn(J) = J ⊗M2n and (Tn ⊗ ιn)(J ⊗
M2n) ⊂ J ⊗ M2n+1 . Thus, Sn(J) = γ−1

n+1

(
(Tn ⊗ ιn)(γn(J))

)
⊂ J , i.e., Sn is

residually equivariant if Tn is residually equivariant. Since residually nuclear maps

are residually equivariant, Sn is residually equivariant if Tn is residually nuclear.

Then the completely positive quotient map [Sn]J : B/J → B/J is given by [Sn]J =

[βn+1] ◦ ([Tn]J ⊗ ιn) ◦ [βn], where [Tn]J : B/J → B/J is nuclear and βn is an

isomorphism from B/J onto (B/J)⊗M2n . Thus, Sn : B → B is residually nuclear.
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The inductive limit X of the residually nuclear contractions Tn : B → B is a

nuclear C *-system by Lemma A.19.6, because residually nuclear maps in particular

are nuclear. �

Lemma 6.3.15. Suppose that B is a stable and σ-unital C*-algebra. Let d ∈
M(B) with ‖d‖ ≤ 1. Then there is a norm-continuous path t ∈ [0,∞) 7→ s(t) ∈
M(B) into the isometries of M(B), such that limt→∞ s(t)∗bs(t) = d∗bd for all

b ∈ B.

Proof. By Lemma 5.1.2(iv), there exist norm-continuous maps t ∈ [0,∞) 7→
T0(t), T1(t) ∈M(B) with T0(t)∗T0(t) = T1(t)∗T1(t) = T0(t)T0(t)∗+T1(t)T1(t)∗ = 1,

and limt→∞ Tk(t)∗b = kb for b ∈ B, k = 0, 1. Let s(t) := T0(t)(1−d∗d)1/2 +T1(t)d.

Then t 7→ s(t) is norm-continuous and limt→∞ s(t)∗b = d∗b . Since B = BB, it

follows limt→∞ s(t)∗bs(t) = d∗bd . �

Next has to be checked again ??

Lemma 6.3.16. Suppose that B a C*-algebra and that s1, s2, . . . ∈ M(B) is

a sequence of isometries in M(B). Let Sn(b) := s∗nbsn for b ∈ B and n ∈ N,

tn := s1s2 · · · sn, qn := 1− tnt∗n, and denote by E the closure of
⋃
n qnBqn.

Then E is a hereditary C*-subalgebra of B and there is a natural completely

positive and completely isometric map V from B//E onto indlim(Sn : B → B) ⊂
B∞ that satisfies

V (πBE+EB(J)) = V (B//E) ∩ J∞ for J ∈ I(B) .

Proof. Since qn ≤ qn+1, the set E is the hereditary C *-subalgebra of B

generated by
⋃
n qnBqn .

Let pn := 1 − qn = tnt
∗
n, Rn(b) := pnbpn, πBE+EB : B → B//E the quotient

map, X := indlim(Sn : B → B), Tn(b) := t∗nbtn and ρn(b) := tnbt
∗
n for b ∈ B.

Notice that Tn ◦ ρn = idB and Tk+n ◦ ρk−1 = Sn ◦ Sn−1 ◦ · · · ◦ Sk.

Let π∞(b1, b2, . . .) := (b1, b2, . . .) + c0(B). We define completely positive con-

tractions T∞ : B∞ → B∞ and ρ∞ : B∞ → B∞ by

T∞(π∞(b1, b2, . . .)) := π∞(T1(b1), T2(b2), . . .)

ρ∞((b1, b2, . . .)) := π∞(ρ1(b1), ρ2(b2), . . .) .

Notice T∞ ◦ ρ∞ = id on B∞, and that T∞(π∞(b1, b2, . . .)) = t∗∞π∞(b1, b2, . . .)t∞

for the isometry

t∞ := π∞(t1, t2, . . .) ∈M(B)∞ ⊂M(B∞)

with range projection

p∞ := t∞t
∗
∞ = π∞(p1, p2, . . .) ∈M(B)∞ .

We introduce a “diagonal” map ∆: B → B∞ by ∆(b) := π∞(b, b, . . .).
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The C *-space B//E is isomorphic to Y := indlim(Rn : B → B), because

RmRn = RnRm = Rmax(m,n) (coming from pn+1pn = pn+1) implies that a com-

pletely positive and isometric isomorphism from B//E onto

Y := indlimn(Rn : B → B) ⊂ B∞

is given by

b ∈ B 7→ P∞(b) := π∞((p1bp1, p2bp2, . . .)) = p∞∆(b)p∞ ∈ B∞ ,

i.e., for y = [yij ] ∈ Mk(B//E) ∼= Mk(B)//Mk(E) and any b := [bij ] ∈ Mk(B) with

π(bij) = yij holds that ‖[P∞(bij)]‖ = ‖[yij ]‖ for the norms inMk(B∞) ∼= (Mk(B))∞

respectively in Mk(B//E), and [P∞(bij)] is positive if and only if y is positive in

Mk(B//E). This is because

‖[yij ]‖ = dist
(
[bij ],Mn(BE + EB)

)
= lim sup

n
‖[pnbijpn]‖ .

The argument for the complete positivity of the class-map η := [P∞] : B//E → Y

is similar. The completely isometric and completely positive isomorphism η from

B//E onto Y is determined by η ◦ πBE+EB = P∞.

It follows that η(πBE+EB(J)) = P∞(J) ⊆ J∞∩Y for J ∈ I(B). The inclusion

“⊇” needs a less simple argument: If π∞(p1ap1, p2ap2, . . .) ∈ J∞ , then there is a

bounded sequence b1, b2, . . . ∈ J with limn→∞ ‖pnapn−pnbnpn‖ = 0. It follows that

πBE+EB(a) = limn πBE+EB(pnbnpn) in B//E, i.e., πBE+EB(a) is in the closure of

πBE+EB(J). But it turns out that J ∩ (BE + EB) = J(E ∩ J) + (E ∩ J)J and

that the natural map from J//(E ∩ J) to B//E is (completely) isometric. This

can be seen from the second conjugate spaces which are naturally isomorphic to

(1− qE)B∗∗(1− qE)qJ and to (1− qE)B∗∗(1− qE). Here we denote by qE and qJ

the open support projection of E and J in B∗∗. This implies together that

η(πBE+EB(J)) = P∞(J) = J∞ ∩ Y = (p∞J∞p∞) ∩ Y .

Since t∗ntn = pn, we get – for the isometry t∞ := π∞(t1, t2, . . .) ∈ M(B)∞ ⊆
M(B∞) – that the restriction to Y of the c.p. contraction

T∞(π∞(b1, b2, . . .)) := t∗∞π∞(b1, b2, . . .)t∞

is a completely positive complete isometry from Y onto the image of the map

S1,∞ : B → X ⊂ B∞.

In fact, S1,∞(b) = T∞(∆(b)) = T∞(P∞(b)). The defining maps Sk,∞ : B →
X ⊂ B∞ for the inductive limit X = indlimn(Sn : B → B) are given by

Sk,∞(b) := π∞(0, . . . , 0, Sk(b), Sk+1(Sk(b)), . . .) .

(It is not important if one takes zero at places 1 to k − 1 or takes other elements

of B.) The inductive limit X = indlimn(Sn : B → B) is the closure of
⋃
k Sk,∞(B)

in B∞. But, since S1,∞ = Sk,∞ ◦ Sk−1 ◦ · · · ◦ S1 , Sk,∞ = S1,∞ ◦ ρk−1 , and

ρn(B) = qnBqn, it follows that

Sk,∞(B) = S0,∞(B) = {T∞(∆(b)) ; b ∈ B} = T∞(Y )
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are the same linear subspace of B∞. The image T∞(Y ) = S1,∞(B) of the (not nec-

essarily unital) C *-system Y ⊆ p∞B∞p∞ for the projection p∞ := π∞(p1, p2, . . .) ∈
M(B)∞ ⊆ M(B∞) is closed, because the restriction of ρ∞ ◦ T∞ to p∞B∞p∞ is

the identity map, i.e., T∞|p∞B∞p∞ must be isometric on Y .

The map T∞ ◦ η : B//E → X is induced from T∞ ◦ η ◦ πBE+EB = T∞ ◦ P∞.

Since T∞(P∞(B)) = T∞(Y ) = X, it follows that T∞ ◦ η = [T∞ ◦ P∞] : B//E → X

defines a complete isometry from B//E onto X.

Thus, ρ∞|X is a completely positive and completely isometric map from

X ∼= B//E onto Y , and the map (ρ∞|X)−1 is given by the class-map V :=

[S1,∞] : B//E → X with V ◦ πBE+EB = S1,∞ = T∞ ◦∆.

Since Tn(pnJpn) = Tn(J) = t∗nJtn = J and ρn(J) = pnJpn = J ∩ pnBpn, we

get for all J ∈ I(B) that

T∞(p∞J∞p∞) = T∞(J∞) = J∞

and

ρ∞(J∞) = p∞J∞p∞ = J∞ ∩ p∞B∞p∞ .

η(B//E) ∩ π(J)∞ = ρ∞(X ∩ J∞) = P∞(J) == η(πBE+EB(J)) .

It follows that V := [T∞ ◦ ∆] = T∞ ◦ η : B//E → X = indlimn(Sn : B → B) is a

complete isometry from B//E onto X and satisfies

V (πBE+EB(J)) = J∞ ∩X = indlimn(Sn : J → J) .

�

Proposition 6.3.17. Suppose that B is separable and stable and has the WvN-

property, and that Tn : B → B is a sequence of residually nuclear completely positive

contractions. Consider X := indlim(Tn : B → B) naturally as operator subspace of

B∞ := `∞(B)/c0(B).

Then X is a nuclear subspace of B∞ and there exist a residually essential

hereditary C*-subalgebra D of B and a completely isometric and completely positive

isomorphism I from B//D onto X = indlim(Tn : B → B), such that

I(πBD+DB(J)) = J∞ ∩X

for every closed ideal J of B.

Proof. The inductive limit X is nuclear by Lemma 6.3.14(iii), because the

maps Tn are residually nuclear contractions. Since B has the WvN-property, the

maps Tn are in the point-norm closure of the set of one-step inner maps b 7→ c∗bc.

By Lemma 3.1.8 the Tn are in the point-norm closure of the contractive inner

c.p. maps b 7→ d∗bd, i.e., with ‖d‖ ≤ 1. By Lemma 6.3.15, the maps b 7→ d∗bd with

‖d‖ ≤ 1 can be approximated in point-norm topology by maps b 7→ t∗bt with an

isometry t ∈M(B), because B is stable and σ-unital.
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Now we can apply Lemma A.14.2 to the sequence of maps T1, T2, . . . and the

set of maps b 7→ t∗bt with isometries t ∈ M(B), because B is separable. We get

that are isomeries tn ∈ M(B) such that X = indlim(Ln : B → B) for the maps

Ln(b) := t∗nbtn.

Then, by Lemma 6.3.16, there is a hereditary C *-subalgebra F of B and com-

pletely isometric and completely positive isomorphism ϕ from B//F onto X with

ϕ(πBF+FB(J)) = J∞ ∩X ⊂ B∞ for J ∈ I(B). By Lemma 6.3.14 there are residu-

ally nuclear contractions Sn : B → B such that there is a completely isometric and

completely positive isomorphism ψ from Y := indlim(Sn : B → B) onto X ⊗M2∞

with ψ(J∞ ∩ Y ) = (J∞ ∩X)⊗M2∞ for J ∈ I(B). In particular,

Y ∼= (B//F )⊗M2∞
∼= (B ⊗M2∞)//(F ⊗M2∞) ,

If we repeat the above arguments with Sn (in place of Tn), then we get that there

is a hereditary C *-subalgebra E ⊂ B and a completely isometric and completely

positive isomorphism χ from B//E onto Y such that χ(πBE+EB(J)) = J∞ ∩ Y . If

ρ : M2∞ → C is a pure state and V : X⊗M2∞ → X ⊂ B∞ is the completely positive

contraction with V (c⊗d) = ρ(c)d, then there is a hereditary C *-subalgebra D of B

with E ⊂ D ⊂ B such that BD+DB is the kernel of the completely positive map

W := V ◦ψ◦χ◦πBE+EB : B → X fromB intoX. Let I := [W ]BD+DB : B//D → X.

By Lemma 6.3.13, D is residually essential in B and I is a completely isometric

and completely positive isomorphism from B//D onto X. If J is a closed ideal of

B then, for J ∈ I(B) ,

IπBD+DB(J) = V
(
ψ
(
χ (πBE+EB(J))

))
= V

(
ψ(Y ∩ J∞)

)
= V

(
(X ∩ J∞)⊗M2∞

)
= X ∩ J∞ .

�

Proof of Theorem 6.3.1: Ad(I): Let ak be a dense sequence in the unit-ball

of A. There are completely positive maps Vn : M(B) → B and Wn : B → M(B)

that satisfy conditions (b) and (c) of Theorem 6.3.1 and

‖WnVn(aj)− aj‖ < 2−n for 1 ≤ j ≤ n .

Then A ⊆M(B) ⊂M(B)∞ := `∞(M(B))/c0(M(B)) is naturally contained in

Y := indlim(Sn : M(B)→M(B)) ⊂ J∞

with Sn := WnVn. Indeed, the compositions of the upper rows Sn of the commu-

tative diagram

M(B) //

V1 ""

M(B) //

V2 ""

M(B) // . . .

B //
W1

<<

B //
W2

<<

. . .

converge asymptotically to idA on A ⊂ M(B) ⊂ M(B)∞, in the sense, that

Sn,∞ : M(B) → M(B)∞ converges in point-norm on A to idA : A → M(B)∞,
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where

Sn,∞(b) := (0, . . . , 0, b, Sn(b), Sn+1Sn(b), . . .) + c0(B) .

The product maps
∏
n≥1 Vn and (b1, b2, . . . ) 7→ (0,W1(b1),W2(b2), . . . ) de-

fine complete contractions V∞ from M(B)∞ into B∞ and σ ◦W∞ from B∞ into

M(B)∞. Let Tn := Vn+1Wn : B → B. Then Tn is a residually nuclear contraction

by construction of Vn and Wn, indeed: Ue : B 3 b 7→ Vn+1(eWn(b)e) ∈ B is a

residually nuclear map by conditions (a),(b) and (c) for every e ∈ B+, and, since

Vn+1 strictly continuous as a map from M(B) into B (with norm topology), Tn is

the point-norm limit of {Ueτ } if eτ ⊂ B+ is an approximate unit of B. V∞ maps

Y into

X = indlim(Tn : B → B) ⊂ B∞

and σW∞ maps X into Y .

We have W∞ ◦ V∞ ◦ σ|Y = (S∞ ◦ σ)|Y = idY because S∞ ◦ σ ◦ Sm,∞ = Sm,∞.

Clearly V∞ ◦σ ◦W∞) = T∞. Since σ ◦T∞|X = idX , we get σV∞ ◦ (σW∞)|X = idX .

If follows that σW∞|X is a completely isometric and completely positive map from

X onto Y .

Let us consider the actions Ψ1(J) = J∞ ⊂ B∞ and Ψ2(J) = M(B, J)∞ ⊂
M(B)∞ for J ∈ I(B) of Prim(B) on B∞ and M(B, J)∞. Since Wn and Vn are

weakly residually equivariant, we get

V∞(Ψ2(J)) ⊂ Ψ1(J) and

σW∞(Ψ1(J)) ⊂ Ψ2(J).

Thus V∞(Ψ2(J) ∩ Y ) ⊂ Ψ1(J) ∩X and

σW∞(Ψ1(J) ∩X) ⊂ Ψ2(J) ∩ Y.

Since (V∞|Y )−1 = (σW∞|X), we get σW∞(Ψ1(J) ∩X) = Ψ2(J) ∩ Y . By Propo-

sition 6.3.17 there is a residually essential hereditary C *-subalgebra D of B and a

completely isometric and completely positive map T : B//D
∼→ X ⊂ B∞, such that

BDB = B and

T (πD(J)) = Ψ1(J) ∩X

for J ∈ I(B). Let V := (σ ◦W∞) ◦ T , C := J∞ and ΨC(J) := Ψ2(J) for J in

I(B).

to be filled in! ??

Then Lemma 6.3.8 and Lemma A.19.8 define a *-monomorphism λ from A into

M(B//D)∩(B//D) = π1(N (D)) such that λ = V −1|A and that λ(A∩M(B, J)) =

λ(A)∩ π1(N (D)∩ J), because V −1(A∩M(B, J)) = V −1(A∩ΨC(J)) = V −1(A)∩
π1(J).

The operator space X is nuclear, because Tn : B → B is nuclear for every n ∈ N.

Thus B//D ∼= X is nuclear, and the assumptions of Proposition 6.3.11 are satisfied

for B and D ⊂ B, and A ⊂ M(B), λ : A ↪→ π1(N (D)) = M(B//D) ∩ (B//D)
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are as in part (iii) of Proposition 6.3.11. By 6.3.11(iii) we get the class [H] ∈
Extnuc(PrimB,A,B).

Now suppose that A ∼= E⊗O2 or B ∼= E⊗O2 for a stable separable C *-algebras

E. Then we can use the natural isomorphisms

Extnuc(Prim(B);E ⊗O2, B) ∼= KKnuc(Prim(B);SE ⊗O2, B)

(for separable stable B with WvN-property 13) respectively

Extnuc(Prim(B);A,E ⊗O2) ∼= KKnuc(Prim(E) : SA,E ⊗O2)

cf. Chapter 8. The left sides of the above isomorphisms are zero because

KKnuc(Prim(B), ·, ·) is homotopy invariant in each variable and id is unitarily

homotopic to id⊕ id for all C *-algebras ∼= C ⊗O2.

Hence [H] = 0 in this cases, and Proposition 6.3.11(iv) gives the desired non-

degenerate nuclear *-monomorphism h : A ↪→ B with h(A ∩M(B, J)) = h(A) ∩ J .

δ∞ ◦ h is unitarily homotopic to δ∞|A by Corollary ??.

Ad(II): Suppose, that we can find the Wn such that Wn(B) ⊂ A (in addition).

Then Sn(A) = WnVn(A) ⊂ A , A = indlim(Sn : A→ A) ⊂ A∞ ⊂ B∞, Sm,∞(B) =

Sm+1,∞(Sn(B)) ⊂ Sm+1,∞(A) ⊂ A . It follows that Y = A in B∞, because Y is

the closure of
⋂
m Sm,∞(B).

Thus, λ = V −1 : A ↪→ πD(N (D)) is an isomorphism from A onto B//D and

πD(N (D)) = B//D, i.e., B = N (D) + BD + DB. In particular, A ∼= B//D is

nuclear.

If [H] = 0 in Extnuc(Prim(D), A,D) ∼= Extnuc(Prim(B), A,B), then again we

find a non-degenerate *-monomorphism H3 : A → N (D) ⊂ B with πD(H3(a)) =

λ(a) such that

H3(A ∩M(B, J)) = H3(A) ∩ J
(cf. proof of Proposition 6.3.11(iv)). As in the proof of Proposition 6.3.11(iv), it

follows that H3(A) generates B as a two-sided closed ideal. The hereditary C *-

subalgebra D1 := H3(A)BH3(A) of B is stable.

There is a *-isomorphism ϕ from B onto D1 that is unitarily homotopic to idB

by 5.5.6. In particular, ϕ(J) = D1∩J for J ∈ I(B). Let πD : B → B//D = λ(A) =

πD(H3(A)) the natural quotient map. Then P1 := H3λ
−1πD satisfies P1H3 = H3

and P1(B) ⊂ H3(A).

It follows P1(D1) ⊂ D1. Thus, P := ϕ−1 ◦ P1 ◦ ϕ and h := ϕ−1 ◦ H3 are as

desired.

The extremality of the conditional expectation P : B → h(A) follows as in

Remark 6.2.2. �

13 Recall that our nuclear Ext-groups have rather strong equivalence relations that require

e.g. that the extensions are stable as C *-algebras.



CHAPTER 7

Groups of asymptotic morphisms R(C; A,B)

We consider here “nuclear” (respectively “residually nuclear” , respectively

“C-compatible”) asymptotic morphisms. Their unitary equivalence classes modulo

C0(R+, B) form a semigroup SR(A,B) (respectively SR(X; A,B), SR(C; A,B))

if the multiplier algebra of B contains a copy of O2 unitally. The corresponding

Grothendieck group R(A,B) (respectively R(X; A,B), R(C; A,B)) is a continu-

ous analog of Rørdam’s group of asymptotic morphisms over N, cf. [677], [679],

[680] [681]. This groups are the mediators between the semi-groups [Hom(C;A,B)]

of unitary equivalence classes of the under Cuntz-addition invariant morphisms in

Hom(A,B)∩C and the C-equivariant KK-groups KK(C; A,B). If this is an isomor-

phism then KK(C; ·, ·)-equivalence implies Morita equivalence of A and B. It means

that we “reduce” some classification problems to questions on the “realization” of

KK-theory equivalence by isomorphisms.

The main tools are continuous modifications and generalizations of the Rørdam

groups R(A,B). They play a role in several generalizations, e.g. to the non-simple

case as described above, or others, mentioned in the remarks of this Chapter. Some

of the known stable invariants for simple separable nuclear C *-algebras are the same

for R(., .)-equivalent C *-algebras A and B (e.g. they are KK-equivalent, F (A) and

F (B) contain, up to isomorphisms, the same simple separable C *-subalgebras, the

stable rank, the real rank and decomposition rank are the same). A part of further

study on classification could be the study of the consequences of R(., .)-equivalence.

??

1. The semigroups SR(C; A,B)

By CP(A,B) ⊂ L(A,B) we denote the matrix operator-convex cone of the

completely positive contractions from a C *-algebra A into a C *-algebra B.

(We shall later require in addition that A and B are stable, that A is separable

and that B is σ-unital.)

Definition 7.1.1. Let C ⊂ CP (A,B) denote a point-norm closed matricial

operator-convex sub-cone of the cone of completely positive maps from A to B.

Suppose that V : [0,∞) 3 t 7→ V (t) ∈ C ⊂ CP(A,B) is a point-norm continuous

map (i.e., is continuous with respect to the strong operator topology on L(A,B)).

The map V is called an asymptotic C-morphism from A to B if V satisfies the

following conditions (a), (b) and (c):

819
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(a) For every t ∈ R+, V (t) : A→ B has norm ‖V (t)‖ ≤ 1.

(b) The V (t) are asymptotically multiplicative , i.e.,

lim
t→∞

‖V (t)(a∗a)− V (t)(a)∗V (t)(a)‖ = 0

for every a ∈ A.

(c) for every a ∈ A+ and ε > 0 there exist b1, . . . , bn ∈ B+ and c1, . . . , cn ∈
Cb(R+, B) such that lim supn→∞ ‖V (t)(a)−

∑n
i=1 ci(t)

∗bici(t)‖ ≤ ε ( 1 ).

Compare next blue with def. of unitary homotopy in Definition

5.0.1 !!

Let V1, V2 asymptotic C-morphisms. We call V1 unitarily homotopic to V2

if there is a map u : t ∈ R+ 7→ u(t) ∈ M(B) such that u(t) is unitary, is continu-

ous with respect to the strict topology onM(B) ( Is the footnote really true

?? Likely not. No proof exists so far. 2 ), and lim ‖u(t)∗V1(t)(a)u(t) −
V2(t)(a)‖ = 0 for every a in A.

Suppose that M(B) contains a copy of O2 unitally (i.e., there are isometries

s1, s2 ∈M(B) with s1s
∗
1 + s2s

∗
2 = 1). It is easy to check that the Cuntz sum

(V1 ⊕ V2)(t) := V1(t)⊕s1,s2 V2(t) := s1V1(t)(·)s∗1 + s1V1(t)(·)s∗1

defines again an asymptotic C-morphism t 7→ (V1 ⊕ V2)(t) from A to B.

The properties of Cuntz addition (cf. Chapter 4) show that the equivalence

classes [V ] of unitarily homotopic morphisms V form A to B build a semigroup

under Cuntz addition. This semigroup and its Grothendieck group will be denoted

by SR(C; A,B), respectively by R(C; A,B).

If C = CPnuc(A,B) is the cone of all nuclear maps from A to B the we shall

write SR(A,B) for SR(CPnuc(A,B);A,B) and call SR(A,B) the Rørdam semi-

group. Its Grothendieck group Gr(SR(A,B)) will be denoted by R(A,B) and call

it the Rørdam group.

Suppose that X is a T0 space and that ΨA : O(X)→ I(A) and ΨB : O(X)→
I(B) are actions of X on A respectively B. Let CX ⊆ CP (A,B) denote the cone

of ΨA-ΨB-residually nuclear maps from A into B. We call the asymptotic CX -

morphisms residually nuclear asymptotic morphisms.

Then we write SR(X; A,B) and R(X; A,B) in place of SR(CX ; A,B) respec-

tively of R(CX ; A,B) . We call R(X; A,B) a Ψ-equivariant Rørdam group.

Clearly, all the definition depend from the actions ΨA and ΨB and not from

X alone. The point is that they all come from before chosen non-degenerate point-

norm closed matrix operator-convex cone C ⊆ CP(A,B).

1 Property (c) means, equivalently, that the morphism hV : A → Q(R+, B) corresponding

to V : R+ → C with properties (a) and (b) maps A into the ideal of Q(R+, B) generated by

B ⊂ Q(R+, B).
2 The map t 7→ u(t) can be chosen norm-continuous if B is σ-unital and stable and A is

separable.
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Remark 7.1.2. If t → V (t) ∈ C ⊆ CP(A,B) is an asymptotic C-morphism,

then V (a)(t) := V (t)(a) defines an element V (a) ∈ Cb(R+, B) and

hV : a ∈ A 7→ V (a) + C0(R+, B)

is a C *-morphism from A into Q(R+, B) := Cb(R+, B)/C0(R+, B).

If hV is unitarily equivalent to a C *-morphism k : A → B ⊂ Q(R+, B) by a

unitary inM(Q(R+, B)) then t 7→ V (t) and hV satisfies in particular the following

additional continuity conditions:

(d) For all lower semi-continuous 2-quasi-traces τ1, τ2 : Q(R+, B)+ → R+ ∪
{+∞} = [0,∞] holds τ1 ◦ hV = τ2 ◦ hV if τ1|B+ = τ2|B+.

(e) Let τγ , ρ : Q(R+ , B)+ → [0,∞] denote lower semi-continuous 2-quasi-

traces on Q(R+ , B)+ , where the family of quasi-traces {τγ} are indexed

by elements γ is an element of a directed net Γ.

If {τγ ; γ ∈ Γ} and ρ satisfy that

sup
δ>0

lim
γ∈Γ

τγ((b− δ)+) = ρ(b)

for all b ∈ B+ then we require here the condition of the map V that hV

satisfies in addition that

sup
δ>0

lim
γ∈Γ

τγ(hV ((a− δ)+)) = ρ(hV (a))

for all b ∈ A+.

We call the asymptotic C-morphism V continuous if it satisfies (in addition)

the above conditions (d) and (e). One can see that the continuous asymptotic

C-morphism V define a sub-semigroup SRc(C; A,B) of of SR(C; A,B).

The condition (d) implies in particular that

hV (A) ∩ I1 = hV (A) ∩ I2 if I1 ∩B = I2 ∩B

for all closed ideals I1, I2 of Q(R+, B), if we consider the lower semi-continuous

traces τk : Q(R+, B)+ → {0,∞} , k = 1, 2, given by τk(f) := 0 if f ∈ (Ik)+ and

by τk(f) := ∞ if f ∈ Q(R+, B) \ Ik. Thus, conditions (a), (b) and (d) imply the

following properties (f) and (g). It shows that the conditions (a,b,d,e) together

imply moreover the following property (h):

(f) For every a ∈ A and every closed ideal J of B there exists

lim
t→∞

‖V (t)(a) + J‖ ,

and Ψ(J) := (hV )−1(hV (A) ∩ Q(R+, J)) defines a monotone-continuous

action of Prim(B) on A in the sense of Definition 1.2.6.

(g) τV (a) := supδ>0 limt→∞ τ((V (t)(a)−δ)+) ∈ [0,∞] exists for every a ∈ A+

and for every lower semi-continuous 2-quasi-trace τ : B+ → [0,∞].

The map τV : A+ → [0,∞] is necessarily a lower semi-continuous 2-quasi-

trace.
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(h) The map τ 7→ τV is continuous from the set of l.s.c. 2-quasi-traces on B+

to those on A+ with respect to the topology of point-wise convergence

( 3 ).

Remark 7.1.3. Below we will show that the map t 7→ u(t) ∈M(B) can be cho-

sen norm-continuous if asymptotic C-morphism V1 and V2 are unitarily homotopic

and if B is σ-unital and stable, cf. ??.

On the other hand, it is easy to check that V ′(t)(a) := u(t)∗V (t)(a)u(t) sat-

isfies conditions (a)-(c) for C = CPnuc(A,B), if t 7→ V (t) ∈ L(A,B) defines a

weakly nuclear contraction V : A → Cb(R+, B) ⊆ M(C0(R+, B)) from A into

M(C0(R+, B)) such that hV := πC0(R+,B) ◦ V is a C *-morphism from A into

M(C0(R+, B))/C0(R+, B), and if t 7→ u(t) is a strictly continuous map from R+

to M(B).

It follows, that, equivalently, we can consider SR(A,B) as a the sub-semigroup

of the semigroup of unitary equivalence classes of those C *-morphisms h from A

into

Q(R+ , B) := Cb(R+ , B)/C0(R+ , B) ⊆M(C0(R+ , B))/C0(R+ , B)

that have a completely positive contractive lift V : A → Cb(R+, B) which satisfies

the conditions (a)-(c).

By Lemma ??,

the unitaries for the unitary equivalences can be chosen in any of the following

unital algebras

Cb(R+ ,M(B))/C0(R+ , B) ⊆M(C0(R+ , B))/C0(R+ , B)→M(Q(R+ , B)) .

Remark 7.1.4. The conditions (c), (d) and (e) are redundant in some cases,

e.g. if A has real rank zero or B is a pi-sun algebra. But (d) and (e) do not imply

(c) in general:

K is the only simple C *-algebra that has an asymptotic morphism into K with

(c).

For example let us consider only the requirements (a)–(d) for B = K :

A non-zero, simple, and separable C *–algebraAmust be stably isomorphic toK
or is stably projection-less, if A admits a non-zero C *-morphism h : A : Q(R+ ,K).

(In particular, that K is the only simple separable stable algebra which is SR-

equivalent to K.)

The closed ideal J of Q(R+;K) that is generated by K is Morita-equivalent to

the commutative algebra Q(R+ , C) = C(βR+ \R+). In particular, every separable

C *-subalgebra of J is of type I, in particular it is very different from the huge

algebra Q(R+ ; K), that has every separable C *-algebra as a sub-quotient.

3 Notice that the l.s.c. quasi-traces build a compact set with topology of point-wise conver-

gence, because [0,∞] is compact.
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On the other hand, the cone of every separable C *-algebra is a C *-subalgebra

of Q(R+,K). In particular, C0(R+,O2) ⊂ Q(R+,K), and thus, (a), (b), (d), (e) (f),

(g), (h) are satisfied for a c.c.p. lift V of the inclusion map, but (c) is not satisfied.

If B is stably isomorphic to a unital C *-algebra Bst (its “Cuntz standard

form”) which contains unitally a copy of O2 then B has no semi-finite lower semi-

continuous traces and then (c), (f), (g) and (e) follow from (a)-(b), because then

T+(B) = 0 and every b ∈ Cb(R+, B) is in the ideal which is generated by B:

Indeed, by Lemma ??, there exists a projection p ∈ Cb(R+,O2⊗K) with b−pbp ∈
C0(R+, B). Thus pb− b ∈ C0(R+, B), and p(t) = u(t)p0u(t) for p0 ∈ O2 ⊗K ⊆ B.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Is above OK? Compare Chp. 9 ??

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

But here we add a few comments on the general case (and possible generaliza-

tions):

Since (b) implies that hV : a ∈ A 7→ V (a) + C0(R+, B) ∈ Q(R+, B) is a C *-

morphism and that for every ω ∈ (βR+ \ R+) πωhV : A → Cb(R+, B)/Jω is a

C *-morphism (f) means just that πωhV is a C *-morphism with the same kernel as

hV , i.e. ‖hV (a)‖ω = ‖V (a)‖ω = dist(V (a),C0(R+, B)) for every ω in the corona

of R+. E.g. if A is simple then h is zero or πωhV is a monomorphism for every

ω ∈ βR+ \ R+.

If A has real rank zero then again (c), (d), (e), (g) and (h) follow from (a),

(b) and (f) since every projection of Q(R+, B ⊗ K) is unitarily equivalent to a

projection in B ⊗ K by a unitary in the unitization of Q(R+, B ⊗ K) and ideals

of A are determined by its projections. For RR(A) = 0 the topology on T+(A) is

induced by the pairing with K0(A) thus (h) is satisfied. The same happens with

the space of 2-quasi-traces, which gives (d) and (e) from (a),(b) and (f).

The further challenge of the theory of (our type of) asymptotic morphisms are

variants of property (f). Here a lot of stronger or weaker versions are possible which

will be discussed somewhere else.

Next Cor. cited in Chapter 10.

Corollary 7.1.5. Suppose that A and B are C*-algebras, where A is separable

and B is a σ-unital and stable.

Let ϕ : A→ Q(R+, B) and ψ : A→ Q(R+, B) C*-morphisms that are unitarily

equivalent by a unitary W ∈M(Q(R+, B)).

Then ϕ and ψ are unitarily equivalent by a unitary U ∈ Q(R+,M(B)) that is

a finite product of exponentials exp(Tj), j = 1, . . . , n, where Tj ∈ Q(R+,M(B))

with ‖Tj‖ < 1, T ∗j = −Tj.

Desired: Tj ∈ Q(R+, B)
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Proof. Let W ∈M(Q(R+, B)) with W ∗ϕ(·)W = ψ(·).

Let a0 ∈ A+ a strictly positive contraction for A. Then ϕ(a0) + ψ(a0) is a

strictly positive element of C∗(ϕ(A) ∪ ψ(A)). There exists contractions e0, e1, e2 ∈
Cb(R+, B)+ such that, eiej = ejei and e1(1 − e0), e2(1 − e1) ∈ C0(R+, B), e3 :=

e2 + C0(R+, B) ∈ Q(R+, B) satisfies e3(ϕ(a0) + ψ(a0)) = ϕ(a0) + ψ(a0).

It implies that e3ϕ(·) = ϕ(·) = ϕ(·)e3 and e3ψ(·) = ψ(·) = ψ(·)e3. Let f :=

e3We3. Then f ∈ Q(R+, B) is a contraction with f∗ϕ(·)f = ψ(·) and fψ(·)f∗ =

ϕ(·). It follows that (1− ff∗)ϕ(·)ff∗ = 0 and ????

We can lift f to a contraction g ∈ Cb(R+, B) with f = g + C0(R+, B) and

e1g = g = ge1.

Since B is stable and σ-unital, we get from

Lemma ??

isometries S, T ∈ Cb(R+,M(B)) with SS∗ + TT ∗ = 1 and (1 − S)e0, e0(1 −
S) ∈ C0(R+, B). It gives T ∗e0 = 0 = e0T . Let U0 := U(g) the Halmos unitary

of g with respect to (S, T ), cf. cf. Remark ??. Then U0 ∈ Cb(R+,M(B)) and

πB(U0(t)) = TS∗ − ST ∗, i.e., U0 ∈ TS∗ − ST ∗ + Cb(R+, B). We get U∗0 e1 =

U∗0 e0e1 = Sge0 + T (1− g∗g)S∗e0 = Sg = Se0g = g,

Need U∗0 e1 = g ???? �

2. The asymptotic corona Q(X,A)

Let us fix some notations: Throughout this section X denotes a locally compact

Hausdorff space. In our later applications we use only closed subsets X of the plane

R× R ∼= C that are not necessarily bounded.

Notice that a locally compact space X is a σ-compact space if and only if the

C *-algebra C0(X) contains a strictly positive element e ∈ C0(X) : Let X1 ⊆ X2 ⊆
. . . be a sequence of open subsets of X with compact closures such that the closure

of Xn is contained in Xn+1 and X =
⋃
Xn.

By Urysohn Lemma, we find continuous functions µn ∈ C0(X)+ with ‖µn‖ = 1,

µn|Xn = 1, µn|(X \ Xn+1) = 0. Then µnµn+1 = µn and e(x) :=
∑∞
n=1 2−nµn ∈

C0(X)+, and 1 ≥ e(x) > 0 for every x ∈ X. Thus, C0(X) is σ-unital with strictly

positive element e if X is σ-compact.

Conversely, suppose that the C *-algebra C0(X) is σ-unital. There exists con-

tinuous function e ∈ C0(X)+ that is a strictly positive element of norm one in

the C *-algebra C0(X). The sets Un := e−1((n−1, 1]) build a sequence of open

subsets of X with X =
⋃
Xn, the closure of Xn is contained in compact set

Cn := e−1([(n+ 1)−1, 1]). Thus X is σ-compact.

We consider from now on only σ-compact l.c. spaces X.

Let Cb(X) denote the C∗-algebra of bounded continuous functions on X. By

βX we denote the Stone-Čech compactification of X, the corona γ(X) :=
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β(X) \X consists of abstract limit points of the free ultra-filters on X. β(X) and

γ(X) are compact and X is a dense open subset of βX.

In terms of C∗-algebras we have natural isomorphisms Cb(X) ∼= C(βX) ∼=
M(C0(X)) and, therefore, C((βX \ X)) ∼= Cb(X)/C0(X) ∼= M(C0(X))/C0(X).

The free ultra-filters on X (i.e. the points of the corona of X) correspond one-

to-one to the characters of Cb(X) which annihilate C0(X), i.e. to the characters

of Cb(X)/C0(X). In the sequel we consider frequently every continuous bounded

function on X also as a continuous function on βX.

It follows that γ(R) = βR\R is the disjoint union of the open connected subsets

γ(R−) and γ(R+), where R− = (−∞, 0] and R+ = [0,+∞).

More simply expressed:

If f is a bounded continuous function on R− and g a bounded continuous function on

R+, then h(t) := f(t) for t ≤ −1, j(t) := g(t) for t ≥ 0, h(t) := |t|f(−1)+(1−|t|)g(0)

for t ∈ [−1, 0] is a bounded continuous function with h|γ(R−) = f |γ(R−) and

h|γ(R+) = g|γ(R+).

Now let A be a Banach space. By Cb(X,A) (resp. C0(X,A)) we denote the Ba-

nach space of bounded continuous functions f : X → A with ‖f‖ = sup{‖f(x)‖ : x ∈
X} (resp. continuous functions f : X → A vanishing at infinity, i.e., on γ(X)).

If A is a C *-algebra, then C0(X,A) is an ideal of the C *-algebra Cb(X,A),

Cb(X) acts on Cb(X,A) by (gf)(x) = g(x)f(x) for f ∈ Cb(X,A) and g ∈ Cb(X).

Definition 7.2.1. Let f ∈ Cb(X,A). We denote by N(f) ∈ Cb(X) the

continuous function N(f)(x) := ‖f(x)‖.

We call the Banach space Q(X,A) := Cb(X,A)/C0(X,A) the asymptotic

corona of A with respect to X, and Q(R+, A) the asymptotic corona of A.

If Y is a closed subset of β(X) then

JY := {f ∈ Cb(X,A) : N(f)(y) = 0 ∀y ∈ Y },

where we consider N(f) as a function in C(βX). In particular, JX = C0(X,A).

More generally, we define restrictions Cb(X,A)|Y of Cb(X,A) to closed sub-

sets Y of βX by

Cb(X,A)|Y := Cb(X,A)/JY .

In particular, Q(X,A) = Cb(X,A)|γ(X) . We write also Q(X,A)|Y := Cb(X,A)|Y
if Y ⊆ γ(X) .

The reader can easily check that:

(i) N(f) : x 7→ ‖f(x)‖ is in Cb(X) ∼= C(βX) if f ∈ Cb(X,A) and is Cb(X)+-

homogeneous, i.e. gN(f) = N(gf) if f ∈ Cb(X,A), g ∈ Cb(X)+.

(ii) C0(X,A) = C0(X) Cb(X,A), and, more generally,

JY = C0((βX) \ Y ) · Cb(X,A)
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if Y ⊆ γ(X) ( 4 ).

Part (ii) can be seen (e.g. in the case of σ-compact X) as follows: Let f ∈ JY

and let e ∈ C0(X)+ ⊆ C(β(X)) a fixed continuous function with e(x) > 0 for

x ∈ X \ Y , e(y) = 0 for y ∈ γ(X) (i.e., take the above constructed strictly positive

element e ∈ C0(X) of the σ-unital C *-algebra C0(X \ Y )+ — with X replaced by

X \ Y ). C0(X)+. Then g = (N(f) + e)1/2 ∈ C0(βX \ Y ). The function f1(x) :=

(N(f) + δ)−1/2(x)f(x) for x ∈ X is continuous and satisfies N(f1) ≤ N(f)1/2. In

particular f1 ∈ JY and gf1 = f .

Lemma 7.2.2. Let A a C∗-algebra, and X a locally compact, σ-compact and

non-compact Hausdorff space.

There are following natural isomorphisms and properties:

(i) C0(X,A) ∼= C0(X)⊗A by the a natural isomorphism that identifies f(x)a

and f ⊗ a for a ∈ A, f ∈ C0(X). It defines a natural C*-morphism from

Cb(X) into the center of M(C0(X,A)).

(ii) M(C0(X,A)) is naturally isomorphic to the C*-algebra Cb,st(X,M(A))

of bounded strictly (= ∗-strongly) continuous maps f from X into M(A).

(iii) Cb(X,A) is identical with the ideal of M(C0(X,A)) given by

{ f ∈M(C0(X,A)) ; gf ∈ C0(X,A) ∀ g ∈ C0(X)} .

In particular, the natural *-monomorphism from Cb(X,A) extends to a

natural *-isomorphism

M(Cb(X,A)) ∼=M(C0(X,A)) .

(iv) Q(X,A) := Cb(X,A)/C0(X,A) is naturally isomorphic to an ideal of

M(C0(X,A))/C0(X,A).

And M(Q(X,A)) =M(C0(X,A))/C0(X,A).

The algebraic two-sided annihilator Ann(Q(X,A)) of Q(X,A) in

M(C0(X,A))/C0(X,A) =M(Cb(X,A))/C0(X,A) is identical with

{T + C0(X,A) ; T ∈M(C0(X,A)) , T f, fT ∈ C0(X,A) ∀ f ∈ Cb(X,A)} .

It is identical with the C*-algebra
(
C0(X) · M(C0(X,A))

)
/C0(X,A).

(v) For f, g ∈ Q(X,A)+, fg = 0 there exists contractions h1, h2 ∈ Q(X,A)+

with fh1 = f , gh2 = g and h1h2 = 0.

(vi) For f ∈ Cb(X,A ⊗ K)+ there exists an isometry s ∈ Cb(X,M(K)) ⊆
M(C0(X,A⊗K)) such that fs ∈ C0(X,A⊗K).

(vii) If M1 ⊂ M(C0(X,A)) and M2 ⊆ Cb(X,A) are countable subsets then

there exist a positive contraction e ∈ Cb(X,A) such that eb−be, c−ec, c−
ce ∈ C0(X,A) for all b ∈M1 and c ∈M2.

(viii) Suppose that the C*-algebra B contains a continuous path t ∈ R+ 7→
p(t) ∈ B in the projections of B such that limt→∞ p(t)b = b for all b ∈ B.

4 The factorization holds for arbitrary l.c. X by Cohen factorization applied to the non-

degenerate Banach C0(β(X) \ Y )-module JY .
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Let h : B →M(A) is non-degenerate C*-morphism, and

hX : Cb(X,B)→ Cb,st(X,M(A)) ∼=M(C0(X,A))

its natural extension to Cb(X,B).

Then for every countable subset M ⊂ Cb(X,A) there exists a projec-

tion p ∈ Cb(X,B) such that (1 − hX(p))f, f(1 − hX(p)) ∈ C0(X,A) for

all f ∈M .

It is likely that M(Cb(X,B))/C0(X,B) ⊆M(Q(X,B))

is not equal to M(Q(X,B)), e.g. if X = R+ and B is not σ-unital?

When M(A)/J ⊆M(A/J) ??

Perhaps M(A/J) ∼=M(A)/N (A, J) if A and J are σ-unital ??

Notice that J := C0(X,B) is not σ-unital if B is not σ-unital !

Proof. (i): Easy to see, e.g. [767, vol.I,chp.IV.,thm.4.14], [704, sec. 1.22].

(ii): For y ∈ X the ∗-epimorphism f ∈ C0(X,A) 7→ f(y) ∈ A defines a

C *-morphism b ∈ M(C0(X,A)) 7→ b(y) ∈ M(A) . If g ∈ C0(X), a ∈ A then

(b(g ⊗ a))(y) = g(y)b(y)a ∈ C0(X,A) . Thus y 7→ b(y) is strongly continuous. The

same happens for b∗, y 7→ (b(y))∗ = b∗(y) since C0(X)�A is dense in C0(X,A) =

C0(X) ⊗ A, for every b ∈ M(C0(X,A)) there exists a strictly continuous function

x 7→ b(x) with sup ‖b(x)‖ ≤ ‖b‖ such that (bf)(x) = b(x)f(x). Conversely a

bounded strictly continuous map x 7→ b(x) ∈M(A) defines a multiplier of C0(X,A)

(respectively of Cb(X,A)), because the A-valued functions x→ b(x)a(x) and x→
a(x)b(x) are in C0(X,A) (respectively in Cb(X,A)) if x→ b(x) ∈M(A) is bounded

and strictly continuous.

Parts (iii) and (iv) can be seen from (ii) and (i).

(v): It suffices to find a contraction h1 ∈ Q(X,A)+ with h1f = f and h1g = 0,

because then one can use (g, h1) in place of (f, g) to produce in the same way h2

with h2h1 = 0 and and h2g = g.

Let b = b∗ ∈ Cb(X,A) with b + C0(X,A) = f − g. The the positive and

the negative parts of b satisfy b+(x) = max(0, b(x)), b−(x) = max(0,−b(x)), b+ +

C0(X,A) = f and b− + C0(X,A) = g. Take a strictly positive contraction e ∈
C0(X)+, i.e., 1 ≥ e(x) > 0 for all x ∈ X and limx→∞ e(x) = 0.

Define h(x) := e(x)−1 min(b+(x), e(x) · 1), i.e., h(x) = e(x)−1b+(x) −
e(x)−1(b+(x) − e(x))+. This h is a positive contraction in Cb(X,A), and with

‖b+(x)h(x) − b+(x)‖ ≤ e(x) by spectral calculus, because (b+(x) − e(x))+ ∈
C∗(b+(x)) ⊆ A, x 7→ (b+(x) − e(x))+ is continuous and t(1 − ε−1 min(t, ε)) ≤ ε

for all t ≥ 0 and ε > 0. Right from the definition we get b−(x)h(x) = 0. Thus

h1 := h + C0(X,A) ∈ Q(X,A) has the desired properties.

(vi): Combine proof with (viii). New text in Lemma:
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For f ∈ Cb(X,A ⊗ K)+ there exists an isometry s ∈ Cb(X,M(K)) ⊆
M(C0(X,A⊗K)) such that fs ∈ C0(X,A⊗K).

Old proof: Let f ∈ Cb(X,A⊗K) and X1 ⊆ X2 ⊆ · · · a sequence of compact

subsets of X such that Xn is contained in the interior of Xn+1 and
⋃
nXn = X. We

find projections p1 ≤ p2 ≤ . . . ∈ K such that ‖f(x)1⊗ pn − f(x)‖ < 1
n for x ∈ Xn.

Thus it suffices to find a strictly continuous map x 7→ s(x) ∈ L(H) =M(K) such

that s(x) is an isometry and ‖pns(x)‖ ≤ 1
n for x in the closure of Xn+1 \Xn. Then

x 7→ 1⊗ s(x) is as desired.

For X = R+ and A := C this can be solved by Lemma 5.1.2(iv) with Xn :=

[0, n]: We find a norm-continuous map t ∈ R+ 7→ s0(t) into the isometries ofM(A)

such that ‖pns0(t)‖ ≤ 1
n for t ∈ [n, n+ 1].

For general X and A let s(x) := s0(t(x)), where t : X → R+ is a continuous

function with t(X \ Xn) ⊆ (n,∞), e.g. t(x) :=
∑
n(1 − gn(x)) with a continuous

functions gn : X → [0, 1] with gn|Xn−1 = 1 and gn|(X \X◦n) = 0.

(vii): stated text:

If M1 ⊆M(C0(X,A)) and M2 ⊆ Cb(X,A) countable subsets. Then there exist

a positive contraction e ∈ Cb(X,A) such that eb− be, c− ec, c− ce ∈ C0(X,A) for

all b ∈M1 and c ∈M2.

(viii): stated text:

Suppose that the C *-algebra B contains a continuous path t ∈ R+ 7→ p(t) ∈ B
in the projections of B such that limt→∞ p(t)b = b for all b ∈ B.

If h : B → M(A) is a non-degenerate C *-morphism, and hX : Cb(X,B) →
Cb,st(X,M(A)) ∼=M(C0(X,A)).

Then for every countable subset M ⊆ Cb(X,A) there exists a projection p ∈
Cb(X,B) such that (1− hX(p))f, f(1− hX(p)) ∈ C0(X,A) for all f ∈M .

To be filled in ?? �

Remark 7.2.3. The following example shows that in general Cb(X,A) is

strictly contained in the C *-algebra of the bounded strictly continuous functions

f ∈ Cb,st(X,M(A)) with f(X) ⊆ A, i.e., a bounded strictly continuous function

f on X with values in A is not necessarily continuous. Let X := {0} ∪ {1/n : n ∈
N} ⊆ [0, 1]. A := K and f(0) := 0, f(1/n) = pnn.

Then X is compact and limn→∞ pnn converges strictly to zero inM(A). Thus,

f ∈ Cb,st(X,M(A)). Clearly, f 6∈ C(X,M(A)), because certainly f 6∈ C(X,A).

Thus, f is in Cb,st(X,M(A)) ∼=M(C(X,A)), has image in A, but f is not in

Cb(X,A) = C(X,A).

Lemma 7.2.4. Let (Ω, ρ) be a compact metric space, X a locally compact σ-

compact space and F a set of bounded nonnegative continuous functions on Ω×X,

such that

(i) |f(ω1, x)− f(ω2, x)| ≤ Cρ(ω1, ω2) for all x ∈ X, f ∈ F and ω1, ω2 ∈ Ω,
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(ii) For every bounded sequence f1, f2, . . . ∈ F and every countable cover-

ing {Un} of X by open subsets with compact closures (in X), there ex-

ist f ∈ F and a locally finite decomposition λ1, λ2, . . . ∈ C0(X)+ of

1, such that for every k there exists nk with support λk ⊆ Unk and

f(ω, x) ≤
∑
λk(x)fnk(ω, x) for x ∈ X.

Let f∗(x) := sup{f(ω, x) : ω ∈ Ω}, g(x) := inf{f∗(x) : f ∈ F}, h a bounded

continuous function on X such that g(x) < h(x) for every x ∈ X and Y ⊂ βX \X
a compact subset of the corona.

Then there exist k1, k2 ∈ F with k∗1 ≤ h, and k∗2(y) ≤ sup{g(y) : y ∈ Y } for

every y ∈ Y .

It holds sup{g(x) : x ∈ βX \ X} ≤ limn→∞(sup{g(x) : x ∈ X \ Xn}) where

Xn ⊆ Xn+1 ⊆ . . . X are open subsets of X with compact closures such that X =⋃
Xn.

Remark 7.2.5. Here we consider only locally finite decompositions of 1 which

are finite in a sufficiently small neighborhood every point of X, i.e. for every x ∈ X
there is neighborhood U of x such that only a finite number of the λk is nonzero

on U .

Proof. By the Lipschitz-condition (i), the f∗ are bounded continuous func-

tions on X. F ∗ = {f∗ : f ∈ F} satisfies (i) and (ii) for Ω = point and F replaced by

F ∗. The conclusions do not require Ω. Therefore it is enough to prove the lemma

in case of Ω = point, f = f∗ ∀f ∈ F . Since g(x) < h(x) for x ∈ X we find for

every x ∈ X an f ∈ F and a neighborhood U(x) of x such that f(y) < h(y) for

every y ∈ U(x) and U(x) has compact closure. Since X is locally compact we find

a countable subsystem (fn, U(Xn)) with
⋃
U(Xn) = X. If (λk) is the locally finite

decomposition of unit subordinated to {U(xn)} such that support of λk is contained

in some U(xnk) and such that there is k1 ∈ F with k ≤
∑
λkfnk , then g ≤ k1 ≤ h.

If Xn ⊆ Xn+1 ⊆ . . . X is a covering of X by open subsets with compact closure, the

a suitable construction of h ≥ g shows that sup{g(x) : x ∈ βX \X} ≤ lim supCn

where Cn = sup{g(x) : x ∈ Xn+2 \ Xn}. Now consider Y ⊆ βX \ X, compact,

C = sup{g(y) : y ∈ Y }.

Then for every y ∈ Y , n ∈ N there exists f ∈ F ⊆ Cb(Y ) ∼= C(βX), such that

f(y) < C + 1
n . Thus for every point y ∈ Y there exists a neighborhood U(y) of

y ∈ βX and f ∈ F ⊆ C(βX) with f(x) ≤ C + 1
n for x ∈ U(y).

Since Y is compact we find a y1, . . . , yn ∈ Y , f1, . . . , fn ∈ F with fk(x) ≤ C+ 1
n

for x ∈ U(yk) and Y ⊆ U(y1) ∪ . . . ∪ U(yn). In this way we find a sequence

g1, g2, . . . ∈ F such that inf{gk(y) : k = 1, 2, . . .} ≤ C for y ∈ Y . Let δ ∈ C0(X)+

with δ(x) > 0 for every x ∈ X (exists because X is σ-compact). By the first part

of the proof it is enough to find a bounded continuous function k with g ≤ k ≤
inf{gk}+δ onX. Because then there is k1 ∈ F with k1 ≤ k+δ which implies k1(y) ≤
gn(y) for y ∈ βX\X and n = 1, 2, . . . . Let k = µ1g1+

∑
(µn+1−µn)·inf{g1, . . . , yn}



830 7. GROUPS OF ASYMPTOTIC MORPHISMS R(C; A,B)

where µn(x) ∈ [0, 1] for x ∈ Xn, µn(x) = 1 on Xn and µn(x) = 0 on X \Xn+1 (use

Urysohn Lemma). �

Remark 7.2.6. If X = N and ω ∈ γ(N) := βN \ N is a point of the corona

γ(N) of N the ω is called a ”free” ultrafilter. Bω = Cb(N, B)/J{ω} = l∞(B)/cω(B)

is then the well known (norm-)ultrapower of a Banach space B.

If X is locally compact, non-compact but σ-compact (e.g. X = R+) and ω ∈
βX \ X then in general there does not (!) exist a sequence x1, x2, . . . ∈ X and a

(free) ultrafilter ω1 ∈ βN\N such that ω = λ(ω) (where λ : βN→ βN is induced by

the map n 7→ xn ). Therefore in the following proof one needs really our reduction

to the bounded continuous functions on X (and not only ultrapower arguments or

pure logical partition arguments).

Another technical problem is the following: If Ω is a compact metric space

that contain infinitely many points, then the natural continuous epimorphism from

β(R+ × Ω) onto β(R+) × Ω is not an isomorphism. Thus Cb(R+,C(Ω, A)) �
C(Ω,Cb(R+, A)) in general. But always Cb(R+,C(Ω, A)) = Cb(R+ × Ω, A).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose that B is a Banach space, Z ⊆ βX, f ∈ Cb(X,B). then

N(f)(y) := ‖f(y)‖ defines an element N(f) of C(βX) ∼= Cb(X). There-

fore ‖f‖Y := sup{N(f)(y) : y ∈ Y } is well defined for Y ⊆ βX closed and

‖f‖Y = ‖πY (f)‖ = ‖f + JY ‖ = dist(f, JY ).

Suppose, A, B are Banach spaces, T is a set of linear contractions from A into

B. TX denotes the set of strongly continuous maps from X into T . The elements of

TX operate on Cb(X,B) as linear contractions, indeed: if L := {S(y)}y∈X ∈ TX ,

f ∈ Cb(X,B) then g(y) := S(y)(f(y)) defines an element L(f) = g ∈ Cb(X,B).

Let Ω be a compact metric space, γ1 : Ω → Cb(X,A) and Z ⊆ βX a subset

of βX. For fixed Ω, γ1 and γ2, we define for Z ⊆ βX closed, L ∈ TX µ(L,Z) :=

sup{‖L(γ1(t))− γ2(t)‖Z : t ∈ Ω} ν(Z) := inf{µ(L,Z) : L ∈ TX}.

With the above assumptions and notations we have:

Proposition 7.2.7. Assume that X is σ-compact and T is convex or that X

is totally disconnected. Then

(i) ν(Z) ≤ sup{ν({ω}) : ω ∈ Z}
(ii) ν(βX \X) ≤ limn→∞(sup{ν({y}) : y ∈ X \Xn})
(iii) If Z ⊆ βX \X is closed then there exists L ∈ TX with ν(Z) = µ(L,Z),

i.e. the infimum is attained.

(iv) ν(X) ≤ sup{ν({y}) : y ∈ X}.

Proof. The functions

g(y, t) := ‖L(γ1(t))− γ2(t)‖y = ‖L(y)(γ1(t)(y))− γ2(t)(y)‖,
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y ∈ X, t ∈ Ω satisfy the assumptions of Lemma ?? where we have to introduce

on Ω the metric ρ(t1, t2) = ρΩ(t1, t2) + ‖γ1(t1) − γ1(t2)‖ + ‖γ2(t1) − γ2(t2)‖. In

particular the family {g(y, t)} is σ − C0(X)-subconvex in the variable y ∈ X.

But then (i)-(iii) follows from Lemma ??, where for the proof of (iii) one has

to use the family max{0, g(y, t) − ν(Z)}, which again satisfies the assumptions of

Lemma ??. �

Corollary 7.2.8. Suppose that A and B are C*-algebras, that X is σ-compact

and that T is a set of c.p. contractions from A into B.

Then, for each ω ∈ β(X), TX defines a set of completely positive contractions

TX |ω from Aω := Cb(X,A)/Jω into Bω := Cb(X,B)/Jω, given by the natural map

TX 7→ TX |Y from Cb,st(X,L(A,B)) in L(AY , BY ) for closed Y ⊆ β(X) \X.

The restriction of TX |Y to each separable closed subspace C of AY is point-

norm closed in L(AY , BY ).

If T ⊆ CP(A,B) is convex, (respectively inner-invariant, operator-convex or is

a matrix operator-convex cone), then TX |Y is so as subset of CP(AY , BY ).

TX |Y satisfies the assumptions (i)-(iii) of Lemma ??.

???????

??

Transitivity needed???:

If T is convex, and for every a ∈ A+ and b ∈ B+ with ‖a‖ = ‖b‖ = 1 and ε > 0

there exists V ∈ T with ‖V (a)−b‖ < ε, then TX |Y has this property for a ∈ (AY )+

and b ∈ (BY )+ with ‖aω‖ = ‖bω‖ for all ω ∈ Y .

In particular, if C ⊆ Aω is a separable C*-subalgebra and V : C → Bω is a

nuclear contraction, then there exists an L ∈ TX such that for V πω(a) = πω(L(a))

if a ∈ Cb(X,A) and πω(a) ∈ C.

Corollary 7.2.9. Let Y ⊆ βX\X be a compact subset, C a separable subspace

of Cb(X,A)/JY and S : C → Cb(X,B)/JY a linear map.

Suppose that for each ω ∈ Y , ε > 0 and every finite subset F ⊆ C there exists

a nuclear completely positive contraction Vω : πω(C)→ Bω such that

‖Vω(πω(c))− πω(S(c))‖ < ε

for all c ∈ F .

Then there exists a strongly continuous map L : x ∈ X 7→ L(x) ∈ L(A,B) into

the nuclear completely positive contractions from A into B such that

S(πY (a)) = πY (L(a)) ∀ a ∈ π−1
Y (C) .

Proof. Let Ω be a compact subset of C that generates C as a closed linear

subspace. and let γ1 : Ω → Cb(X,A) a topological lift, i.e., πY γ1 = idΩ. Let

γ2 : Ω → Cb(X,B) be a topological lift of (S|Ω): Ω → Cb(X,B)/JY . Moreover,
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let T be the convex set of nuclear completely positive contractions from A into

B. Define ν(L, Y ) and µ(Y ) as explained above. We have to find L ∈ TX with

ν(L, Y ) = 0 because then L is as desired (since πY L and S are contractions).

By Proposition ?? (iii) and (i) it suffices to show that ν({y}) = 0 for each

y ∈ Y . But that we have seen above in Corollary ??. �

Now we get our asymptotic Weyl–von Neumann version of the Weyl–von

Neumann–Voiculescu–Kasparov theorem:

Theorem 7.2.10. Let X be a locally compact σ-compact space, Y a closed

subset of the corona βX \X of X, B a C*-algebra and A a purely infinite simple

C*-subalgebra of B such that AB is dense in B. Moreover let C be a separable

C*-subalgebra of πY (Cb(X,A)) = Cb(X,A)/JY .

If V is a completely positive contraction from C into πY (Cb(X,B)) such that

for each ω ∈ Y there exists a nuclear completely positive contraction Vω : πω(a) =

πω(V (a)) for every a ∈ C, then there exists a contraction d ∈ Cb(X,B) such that

V (a) = πY (d)∗aπY (d) for every a ∈ C.

Proof. The Theorem is the logical sum of Corollary ?? and Proposition ??.

�

Lemma 7.2.11. If a ∈ πY (Cb(X,A))+ satisfies ‖πω(a)‖ = 1 for every ω ∈ Y ,

then there exists b ∈ Cb(X,A)+ such that ‖πx(b)‖ = 1 for every x ∈ X and

a = πY (b).

Proof. Let d ∈ A+ with ‖d‖ = 1 and let c ∈ Cb(X,A)+ be a contractive

lift of a, i.e. πy(c) = a, c ≥ 0, ‖c(x)‖ = ‖πx(c)‖ ≤ 1 for every x ∈ X. Now let

g(x) := ‖c(x)‖ then g ∈ C(βX) ∼= Cb(X), f(x) := c(x) + (1− g(x))d is in Cb(X,A)

and ‖f‖ ≤ 1 and 1/2 ≤ max(g(x), 1 − g(x)) ≤ ‖f(x)‖ for x ∈ X. Then πy(f) = a

because g(ω) = 1 for ω ∈ Y . Thus ‖πω(f)‖ = 1 for ω ∈ Y , i.e. h(ω) = 1 for ω ∈ Y ,

where h(x) := ‖f(x)‖−1. �

Next:

Suppose Cb(X,A) is not s.p.i.

Conjecture (1):

Then there exists a separable C *-subalgebra B of A

such that B has the same invariants:

ρ(a, b;B) = ρ(a, b;A)

for a, b ∈ B+, where

ρ(a, b;C) := inf{‖d∗a2d− a2‖+ ‖e∗b2e− b2‖+ ‖d∗abe‖ ; e, d ∈ C}

for a, b ∈ C.
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Conjecture (2):

Let A a C *-algebra. Then

for every separable C *-subalgebra B of M(A)

there exists a contraction d ∈ A+ with

BD ⊆ D for D := dAd

and ‖b‖ = supn ‖bd1/n‖ for all b ∈ B
such that

ρ(a, b;M(A)) = ρ(λ(a), λ(b);M(D))

for the faithful C *-morphism λ : B →M(dAd)

given by λ(b)x := bx for x ∈ D and b ∈ B

The σ-unitality of A and the σ-compactness

of X (used below) can be reduced if Conj. (1) and (2) hold.

If A is strongly p.i. and σ-unital and X is σ-compact,

then M(C0(X,A)) is s.p.i. and above defined Aω strongly p.i.

This special case follows also from:

‘‘B s.p.i.’’ and ‘‘C exact’’ imply ‘‘B ⊗ C s.p.i.’’ and

‘‘M(b∗Bb) is s.p.i.’’ for each b ∈ B
‘‘A s.p.i.’’ implies ‘‘A⊗ C0(X) = C0(X,A) s.p.i.’’

implies ‘‘M(C0(X,A)) s.p.i.’’ if X is σ-compact and A σ-unital

Cb(X,A) is ideal of Cb,st(X,M(A)) ∼=M(C0(X,A)),

because f ∈ Cb(X,A), if and only if,

f ∈ Cb,st(X,M(A)) and gf ∈ C0(X,A) for all

g ∈ C0(X) · 1 ⊆ center of M(C0(X,A)).

Property ‘‘s.p.i.’’ passes to ideals and quotients.

Corollary 7.2.12. If A is simple and purely infinite then every fiber Aω =

Cb(X,A)/Jω of Cb(X,A) (ω ∈ βX) is simple and purely infinite.

In particular, Cb(X,A) is a continuous field over β(X) with simple purely

infinite fibres Ax = A for x ∈ X and Aω for ω ∈ β(X) \X.

Proof. If ω ∈ X then Jω is the kernel of the epimorphism πω : Cb(X,A)→ A.

If ω ∈ β(X) \ X, then Jω = C0(β(X) \ {ω}) · Cb(X,A) , because f ∈ Jω if

and only if N(f) ∈ Cb(X) ∼= Cb(βX) for the N(f)(x) := ‖f(x)‖ has the property

N(f)(ω) = 0.

Consider for a, b in (Aω)+, ‖a‖ = ‖b‖ = 1 the nuclear map V : c 7→ ρ(c)b where

ρ is a pure state on Aω with ρ(a) = 1.
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By Lemma 7.2.11 and Corollary 7.2.9 there exist elements c, d ∈ Cb(X,A) with

πω(c) = a, πω(d) = b, ‖c(x)‖ = ‖d(x)‖ = 1 for all x ∈ X.

Need reduction to σ-compact X !

if not supposed before.

For each compact subset K ⊆ X and ε > 0 there is a contraction f = f(K, ε) ∈
C(K,A) with ‖f(x)∗c(x)f(x)− d(x)‖ < ε for all x ∈ K

???????????? (cf. Corollary ??).

Since X is σ-compact, we find continuous functions g0 = 0 and gn : X → [0, 1]

with supports in compact sets Kn of X such that gn+1(x) = 1 for x ∈ Kn and

X =
⋃
Kn. Let G1(x) :=

∑
n(g2n(x) − g2n−1(x))1/2f(K2n, 1/n)(x) and G2(x) :=∑

n(g2n+1(x)−g2n(x))1/2f(K2n+2, 1/n)(x). Then Gj ∈ Cb(X,A) and d−G∗1cG1 +

G∗2cG2 ∈ C0(X,A). It follows that y∗1ay1 + y∗2ay2 = b for the contractions yj :=

πω(Gj). In particular, Aω is simple.

Since A is naturally contained in Aω and since A is purely infinite, Aω is

not isomorphic to the compact operators on a Hilbert space. Thus Aω satisfies

the assumptions of part (iv) of Proposition ??, which implies that Aω is purely

infinite. �

Start of collections for Chapter 7

The *-epimorphism b 7→ b(t), for b ∈ C([0, 1], B), extends naturally to a *-

epimorphism πt : Cb(R+ × [0, 1], B)→ Cb(R+, B) by

πt((bs)s∈R+
) := (bs(t))s∈R+

.

The πt define evaluation semi-group morphisms

(πt)∗ : SR(C[0, 1];A,B[0, 1])→ SR(C;A,B)

that naturally define group morphisms

(πt)∗ : R(C[0, 1];A,B[0, 1])→ R(C;A,B) .

The following proposition confirms the homotopy invariance of the Rørdam groups.

Proposition 7.2.13. If B is stable and σ-unital h : A → Q(R+, B[0, 1]), sat-

isfies [h] ∈ SR(C[0, 1];A,B[0, 1]), then [h0] = [h1] in R(C; A,B), where [ht] :=

(πt)∗[h] ∈ R(C; A,B) is defined by the evaluation semi-group morphism

(πt)∗ : R(C[0, 1];A,B[0, 1])→ R(C;A,B) .

Lemma 7.2.14. Suppose that X is a σ-compact locally compact space, B is

a stable and σ-unital algebra, and that D ⊆ M(B) is non-degenerate (i.e. DB is

dense in B).

(i) For every σ-unital C*-subalgebra A of Q(X,B) there exists an contraction

f ∈ Q(X,B)+ such that fa = af = a for every a ∈ A.

(ii) For each g ∈ Cb(X,B) there exists a contraction e ∈ Cb(X,D)+ with

g − eg, g − ge ∈ C0(X,D) .
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(iii) For f ∈ Q(X,B) there exists an isometry T in Cb(X,M(B))/C0(X,B)

such that T ∗fT = 0.

(iv) Each C*-morphism h : D → Q(X,B) dominates zero in Q
(
X,M(B)

)
(and thus in Cb(X,M(B))/C0(X,B) ⊆ EX).

Recall that Q(X,B) ⊆ Cb(X,M(B))/C0(X,B) ⊆ EX . Since the annihilator

of Q(X,B) in Cb(X,M(B))/C0(X,B) is just C0(X,M(B))/C0(X,B), we have

also that Q(X,B) is naturally isomorphic to an ideal of Q(X,M(B)).

Proof. to be filled in ?? �

Important !

Observation:

For all C *-algebras B and l.c. Hausdorff spaces holds

M(C0(X,B)) =M(Cb(X,B)) .

(1) C0(X,B) ideal of Cb(X,B), fg = 0 for all g ∈ C0(X,B) implies that f = 0.

And Cb(X,B) is non-degenerate C *-subalgebra of M(C0(X,B)).

Induces faithful unital embedding of M(Cb(X,B)) into M(C0(X,B)).

(2) Need that Cb(X,B) is ideal of M(C0(X,B)) (then we are ready).

If f ∈ Cb(X,B), T ∈ M(C0(X,B)) and ψ ∈ C0(X) then T.(ψ.f) ∈ C0(X,B)

and ψ.(T.f) = T.(ψ.f). Thus, ψTf ∈ C0(X,B) for all ψ ∈ C0(X,B).

g ∈ Cb,st(X,M(B)) ∼= M(C0(X,B)) is in Cb(X,B) if and only if ψ · g ∈
C0(X,B) for all ψ ∈ C0(X).

Proposition 7.2.15. Suppose that A and B are stable and σ-unital, and that

X is a σ-compact, locally compact, non-compact Hausdorff space.

Then all “natural” definitions of inner equivalence of C*-morphisms hi : A →
Q(X,B), i = 1, 2, define the same classes, i.e., precisely that the following proper-

ties (i)–(v) of (h1, h2) are all equivalent:

(i) There exists a unitary u1 in the multiplier algebraM(Q(X,B)) of Q(X,B)

such that u∗1h1(·)u1 = h2 , i.e., u∗1h1(a)u1 = h2(a) for every a ∈ A.

(ii) There exists a unitary u2 in EX = M(C0(X,B))/C0(X,B) =

M(Cb(X,B))/C0(X,B) such that u∗2h1(·)u2 = h2 for every a ∈ A.

(iii) There exists a unitary V3 in the C*-algebra Cb(X,M(B)) of bounded

norm-continuous functions on X with values in M(B) such that

u∗3h1(·)u3 = h2 for the unitary

u3 := πC0(X,B)(V3) = V3 + C0(X,B)

in Cb(X,M(B))/C0(X,B) ⊆ EX .

(iv) If Y is a σ-compact locally compact Hausdorff space such that the corona

β(X)\X of X is an open subset of β(Y )\Y , then there exists an unitary

u4 ∈ EY such that u∗4h1(·)u4 = h2, where we embed Q(X,B) naturally as

an ideal of EY .
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(v) There exists a contraction e in Q(X,B) such that e∗h1(·)e = h2 and

eh2(·)e∗ = h1.

In particular, we get for every C *-morphism h0 : A→ Q(X,B) that the semi-

groups S
(
h0; A,Q(X,M(B))

)
S
(
h0; A,M(Q(X,B))

)
, and S(h0; A,EX) become

naturally isomorphic semigroups if consider Q(X,B) as ideals in Q(X,M(B)) and

in EX .

If especially X := R+ and Y := R, then β(R+)\R+ is naturally homeomorphic

to an open subset of β(R)\R ∼= (β(R−)\R−)
⊎
β(R+)\R+. Let h0 : A→ Q(R+, B)

a C *-morphism with [h0] = [h0] + [h0] in Hom(A,ER+
). Then S

(
h0 ; A,ER

)
,

S
(
h0 ; A,ER+

)
and S

(
h0 ; A,Q(R+,M(B))

)
are naturally isomorphic semigroups.

Proof. (i)⇒(v): Let f ∈ A+ a strictly positive contraction. The element

h0(f) +h1(f) is a strictly positive element of C∗(h0(A)∪h1(A)) ⊆ Q(X,B). Thus,

by Lemma 7.2.14(i) there exists a positive contraction C ∈ Cb(X,B) with cg = g =

gc for c := C + C0(X,B) and g ∈ h0(A) ∪ h1(A). Let e := cu1c.

(iii)⇒(ii): Use that Cb(X,B) ⊆ Cb(X,M(B)) ⊆ M(Cb(X,B)). The restric-

tion of the *-monomorphism

M(Cb(X,B))→M(Q(X,B))

to the embedding of Cb(X,B) in Cb(X,M(B)) induces the quotient map

Cb(X,B)→ Q(X,B).

(ii)⇒(i): Consider the C *-algebras

Cb(X,B) ⊆ Cb(X,M(B)) ⊆ Cb,st(X,M(B)) ∼=M(C0(X,B)) .

The C *-algebra Cb(X,B) is an ideal ofM(C0(X,B)), because f ∈ Cb(X,B) if

and only if ψ ·f ∈ C0(X) for all functions ψ ∈ C0(X) ∼= C0(X)1 ⊆ Cb,st(X,M(B)).

The induced C *-morphism from M(C0(X,B)) into M(Cb(X,B)) is faith-

ful and unital and fixes Cb(X,B). It allows to identify the multiplier algebras

M(C0(X,B)) and M(Cb(X,B)) naturally, as

Cb(X,B) ⊆ Cb,st(X,B) =M(C0(X,B)) =M(Cb(X,B)) .

Since Q(X,B) = Cb(X,B)/C0(X,B), we get also a natural unital C *-

morphism from M(Cb(X,B)) into M(Q(X,B)). The restriction of the corre-

sponding *-morphisms

M(C0(X,B)) =M(Cb(X,B))→M(Q(X,B))

to the embedding of Cb(X,B) in M(C0(X,B)) induces the quotient map

Cb(X,B) → Q(X,B). Thus, define unital C *-morphisms into M(Q(X,B))

that is compatible with Cb(X,B)→ Q(X,B). This shows that (i) follows from (ii)

and (iii).

(v)⇒(iii):

to be filled in ??
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(iv)⇔(i): In case Y := X it is the same as the implication (ii)⇔(i), by the

above proven equivalences of (i),(ii),(iii) and (v).

If the compact set β(X) \X is homeomorphic to an open subset of β(Y ) \ Y ,

let Z := (β(Y ) \ Y ) \ (β(X) \ X). It follows that Z is open and compact and

Q(Y,B) = Q(Y,B)|Z ⊕Q(X,B). Thus M(Q(X,B)) is a quotient of M(Q(Y,B)).

It shows that (iv) implies (i) in general, because Q(X,B) ⊆ Q(Y,B) ⊆ EY is an

ideal of EY , that defines the natural group morphism U(EY )→ U(Q(X,B)).

To be filled in

???? The way from (iii) to (iv) goes over the natural C *-morphisms

Cb(Y,M(B))/C0(Y,B)→ Cb(X,M(B))/C0(X,B) .

�

Corollary 7.2.16. Suppose that A and B are stable, where B is σ-unital and

A is separable.

Let h : A→ Q(R+, B) be a C*-morphism that dominates h⊕h, and let V : A→
Q(R+, B) a completely positive contraction.

Further let Ω ⊆ A a (norm-)compact subset that generates a (norm-)dense

linear subspace of A, γ0 : Ω → Cb(R+, B) a topological lift of h|Ω and γ1 : Ω →
Cb(R+, B) a topological lift of V |Ω.

The following are equivalent:

(i) h dominates V by an isometry S ∈ Cb

(
R+,M(B)

)
.

(ii) h approximately 1-dominates V .

(iii) h dominates weakly approximately inner V (in the second conjugate of

Q(R+, B).

(iv) h n-dominates V for some n ∈ N.

(v) There exists a contraction T ∈M
(
C0(R+, B)

)
such that

T ∗δ∞γ0(a)T − γ1(a) ∈ C0(R+, B) ∀ a ∈ A .

The criteria (v) is later needed only the case of constant h : A→ B.

Proof. to be filled in ?? �

Lemma 7.2.17. Let h1 and h2 be C*-morphisms from A⊗O2 into a W*-algebra

N such that h1(a⊗ 1) = h2(a⊗ 1) for every a ∈ A.

Then h1 and h2 dominate weakly approximately inner each other.

In fact, h1 and h2 are unitarily homotopic in N (in norm-topology).

Proof. Let H(a) := h1(a ⊗ 1) and let M denote the W*-algebra generated

by H(A) with unit element P = 1M ∈ N . Then there are unital C *-morphisms

gj : O2 → PNP such that H(a)gj(b) = hj(a ⊗ b). It follows that hj(O2) ⊆ E :=

M ′ ∩ PNP . Notice that K1(M ′ ∩ PNP ) = 0 as it is for all W*-algebras, because

every unitary is an exponential of a some T with T ∗ = −T and ‖T‖ ≤ π.
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Any two unital *-morphisms from O2 into a unital C *-algebra E with U(E) =

U0(E) are point-norm homotopic. The latter implies stable unitary homotopy for

copies of O2. Since id and δ2 are unitary homotopic in O2, it follows that stable

homotopy of unital copies of O2 implies that the copies unitarily homotopic in E.

The path of unitaries t 7→ U(t) + (1 − p) defines a unitary homotopy from h1

to h2.

To be filled in: Check again ?? �

Proposition 7.2.18. Suppose that A and B are stable, where B is σ-unital

and A is separable, X a non-compact locally compact σ-compact Hausdorff space,

and that h : A→ Q(X,B) is a C*-morphism which is unitarily equivalent to h⊕ h
by a unitary in M(Q(X,B)).

Then there exists a C*-morphism k : A⊗O2 → Q(X,B) such that

(i) k(a⊗ 1) = h(a) for all a ∈ A, and

(ii) k is unitarily equivalent to k ⊕ k.

A C*-morphism k with properties (i) and (ii) is unique up to unitary equivalence

by a unitary in Q(X,M(B)).

Proof. to be filled in ?? �

Corollary 7.2.19. Suppose that A and B are stable, where B is σ-unital and

A is separable and exact, and that hi : A → Q(R+, B) are nuclear C*-morphisms

which are unitarily equivalent to hi ⊕ hi, i = 1, 2.

Furthermore, suppose that, for each closed ideal J of A, h1(J) and h2(J) gen-

erate the same ideal of Q(R+, B).

Then h1 and h2 are unitarily equivalent, by a unitary in Q
(
R+,M(B)

)
.

Proof. To be filled in ?? �

What happens if k : A⊗O2 ↪→ E exists with k((·)⊗1) = h0(·)? Is h0 ∼
h0 ⊕ h0 in Q(R+,M(B))?

Corollary 7.2.20. Suppose that A is stable, separable and exact, that B

is stable and σ-unital, and that C0(R, B) satisfies the WvN-property or that B is

strongly purely infinite.

Let h0 : A→ B be a nuclear non-degenerate C*-morphism from A into B such

that h0 ⊕ h0 is unitarily homotopic to h0 . And let h : A → B is a C*-morphism

that satisfies for each J ∈ I(B) that

h−1(h(A) ∩ J) = h−1
0 (h0(A) ∩ J) ,

i.e., that h(a) and h0(a) generate the same closed ideal of B for each a ∈ A+.

Then h is unitarily homotopic to h⊕ h0.

In particular, every *-monomorphism h : A⊗K→ B⊗K is unitarily homotopic

to h⊕ h0 if B is simple, purely infinite and σ-unital and A is unital and separable.
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Proof. The equation shows that h(A) generates B as a closed ideal, because

h0(A)B is dense in B. Since A and B are stable and B is σ-unital, we get from

Proposition ??

IN CHAPTERS 7 or 5 ??

that h is unitarily homotopic to a non-degenerate C *-morphism from A into B,

i.e., there is a norm-continuous path t ∈ R+ → U(t) ∈M(B) and a non-degenerate

C *-morphism H : A→ B such that limt→∞ U(t)∗h(a)U(t) = H(a) for each a ∈ A.

to be filled in, check from here ??

Therefore, we can assume that h(A) contains a strictly positive element of B.

Since h0 ⊕ h0 is unitarily homotopic to h0, it follows by

Proposition ??,

that it suffices to show that h asymptotically absorbs h0, i.e. that h dominates

h0 in the multiplier algebra M(Q(R+, B)) ∼= Cb,st(R+, B) of Q(R+, B).

If we want to adapt the proof of

Proposition ??,

then we have to find a sequence of contractions dn ∈ B, such that, for a ∈ A
and j ∈ {0, 1},

lim
n→∞

‖d∗nh(a)dn+j − (1− j)h0(a)‖ = 0 .

Since (h0⊕h0)◦h−1 : h(A)→ B is residually nuclear by the assumptions, and since

B is strongly p.i. (or has WvN-property), we find such a sequence,

cf. Remark ??.

Thus h absorbs h0 asymptotically and, therefore h⊕ h0 is unitarily homotopic

to h. �

Proofs of Theorems B(iii) and M(iii): First, Theorem B(iii) is a special

case of Theorem M(iii):

we have defined h0 : A⊗K→ B⊗K in Chapter 1 before Theorem B. If we replace

A and B by its stabilizations, then with N := O2⊗K, Prim(N) = Prim(B) =point,

and the assumptions of Theorem M(iii) are satisfied.

We explain the assumptions of Theorem M in the special situation of part

(iii): We suppose that A is a separable, stable and exact C *-algebra, that B is

strongly purely infinite, and that N is a strongly purely infinite separable stable

C *-subalgebra of B, such that NB is dense in B and that ΨB := ΨN,B
0 is an

isomorphism from I(N) ∼= O(Prim(N)) onto I(B). The latter conditions imply

that B is σ-unital and stable, and that, for every I ∈ I(N), there is a unique

J ∈ I(B) with I = J ∩N .

Furthermore, there is given a lower semi-continuous action ΨA : O(X)→ I(A)

of X := Prim(N) on A with ΨA(∅) = 0, Ψ−1
A (A) = X, such that ΨA satisfies

condition (ii) of Definition 1.2.6.
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Here we assume the existence of a non-degenerate nuclear *-monomorphism

k : A⊗O2 → N such that h0 := k((.)⊗1) induces ΨA by ΨA(ZI) = h−1
0 (h0(A)∩ I)

for I ∈ I(N) and ZI ∈ O(X) corresponding to I. The existence of h0 follows from

Theorem K, which will be shown in Chapter 12. The proof of Theorem K uses

results of Chapter 3-6, of the first part of Chapter 9 and of Chapter 7 up to

Corollary ??.

For this h0 we have h0(ΨA(Z)) = h0(A) ∩ ΨB(Z), because N ∩ ΨB(Z) is

the closed ideal of N which corresponds to Z ∈ O(X). If h : A → B is a *-

monomorphism, such that h(ΨA(Z)) = h(A) ∩ ΨB(Z) for Z ∈ O(X), then, for

J ∈ I(B),

h−1(h(A) ∩ J) = h−1
0 (h0(A) ∩ J),

because ΨB maps O(X) onto I(B).

Thus, Corollary 7.2.20 applies, and h asymptotically dominates h0. �

3. Remarks on the case of group actions

Remark 7.3.1. Our Definition 7.1.1 of asymptotic CPnuc(A,B)-morphisms

does not work well in the case where a T0 space X acts on A and B, as considered

in Section 2 of Chapter 1, or in the case where, moreover, a locally compact group

G acts ΨA-equivariant on A (via γA : G→ Aut(A)) and ΨB-equivariant on B (via

γB). Then it is useful to replace (a) by the following (a’):

(a’) For every t ∈ R+, every open subset Z ⊆ X and every g ∈ G, V (t) is

Ψ-residually nuclear and V (t) is asymptotically γ-equivariant.

That means:

V (t)(ΨA(Z)) ⊆ ΨB(Z) and the naturally induced completely positive

contraction [V (t)]Z : A/ΨA(Z)→ B/ΨB(Z) is nuclear, and,

for every g ∈ G and a ∈ A, V (t)(γA(g)(a))− (γB(g)V (t)(a)) converges to

zero if t→∞.

This is condition (a) in case of the cone C of Ψ-residually nuclear maps from A to

B if the action of G is trivial on A and B.

If the actions of G are not trivial, i.e., if there exists a g ∈ G such that γA(g) 6=
id or γB(g) 6= id, then also the definition of unitary homotopy should be stronger:

We could require that g 7→ M(γB(g))(u(t)) is norm-continuous for every t and that

limt→∞ ‖u(t)−M(γB(g))(u(t))‖ = 0 in the for every g ∈ G.

One has to make some extra assumption on the actions of G on B such that

that Cuntz addition makes sense:

There should exist norm-continuous maps t 7→ s1(t), t 7→ s2(t) from R+ into the

isometries inM(B) such that s1(t)s1(t)∗+s2(t)s2(t)∗ = 1, M(γB(g))(si(t))−si(t)
is in B for every t ∈ R+ and every g ∈ G, and tends to zero if t → ∞ for every

(fixed) g ∈ G.



4. COLLECTION OF NEEDED RESULTS. 841

The semigroup of asymptotically γ-equivariant Ψ-equivariant nuclear asymp-

totic morphisms will be denoted by SRG(X,A,B). We write RG(X,A,B) for its

Grothendieck group, and R(X,A,B) if G is trivial.

Most of the theory ??????????????

more ??? ??

4. Collection of needed results.

PLAN:

General Plan for Chp. 7:

1. Asymptotic morphisms (def. and classes)

2. lifting of nuclear maps, cases where residually nuclear maps can be lifted,

lifting by continuous families of approximately inner maps. When does a continuous

family of approximately inner maps define a “locally” approximately inner map of

Q(X,B)?. Compare also the invertibility for SExtnuc(X; A,B) in Chapter 5.

3. ”car:” Asymptotic Weyl - von Neumann theorem (for asymptotically resid-

ually nuclear maps V : C → Q(X,B))

4. Absorption theorems for h : A→ Q(X,B), k : A→ C(Y,B), . . .

5. Asymptotic morphism as elements of

G(h0;A,ER) ∼= G(h0;A,Q(R+,M(B))) ∼= G(h0;A,Cb(R+,M(B))/C0(R+, B))

for ER :=M(C0(R, B))/C0(R, B), A separable, B σ-unital and stable.

R(Prim(B);A,B) ∼= G(h0;A,ER) if nuclear h0 : A ↪→ B with [h0 ⊕ h0] = [h0]

defines the action.

R(C(h0);A,B) ∼= G(h0;A,ER) if h0 = h((·)⊗ 1) for h : A⊗O2 → B.

6. Existence of zero domination:

For every h : A→ Q(X,B) with stable B and σ-unital A there exist a positive

contraction e ∈ Q(X,B) and isometries S, T ∈ Cb(X,M(B)) with SS∗+TT ∗ = 1,

η(T )∗eη(T ) = 0, h(a) = h(a)e = eh(a) for all a ∈ A, where η : Cb(X,M(B)) →
M(Q(R+, B))

<== here X = R+ ?

denotes the natural *-morphism induced by the natural embedding

Cb(X,M(B)) ↪→ Cb,st(X,M(B)) ∼=M(C0(X,B)) .

In particular, h : A→ Q(X,B) dominates zero in Q(X,M(B)).

7. Asymptotic unitary equivalence of ”stable” monomorphisms to ”non-

degenerate” monomorphisms (see also Chapter 5)

to be added:
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refprop:7.Y1.chp9

For a C *-algebra F , let

Q(R+, F ) := Cb(R+, F )/C0(R+, F ) .

Proposition 7.4.1. Q(R+,M(F )) is in a natural way a C*-subalgebra of the

multiplier algebra of Q(R+, F ).

If F is stable or unital, then, for every separable subset Y of Q(R+, F ) and every

unitary v in the multiplier algebra of Q(R+, F ) there is a unitary u ∈ Q(R+,M(F ))

with u∗bu = v∗bv for every b ∈ Y .

In general (for every σ-unital F ), if A ⊆ Q(R+, F ) is a separable C*–subalgebra

of Q(R+, F ) and v is a unitary in the connected component of 1 in M(D) for

D := AQ(R+, F )A, then there is a unitary u ∈ Q(R+,M(F )) with uD +Du ⊆ D
such that v = u+ Ann(A).

ref{lem:7.Y2.chp9} or ref{prop:7.Y2.chp9}

Proposition 7.4.2. Suppose that M(B) contains a copy of O2 unitally, that

A is a C*–algebra, and that h0 : A ↪→ Q(R+, B) is a *-monomorphism. If h0 ⊕ h0

is unitarily equivalent to h0 in M(Q(R+, B)) then there is a *-monomorphism

h : A⊗O2 ↪→ Q(R+, B) with h(a⊗1) = h0(a) for a ∈ A such that h⊕h is unitarily

equivalent to h by a unitary in M(Q(R+, B)).

If A is σ-unital and stable and k : A⊗O2 → Q(R+, B) satisfies k(a⊗1) = h0(a)

for a ∈ A, then k is unitarily equivalent to h by a unitary in Q(R+,M(B)).

In particular, then h⊕ h is unitarily equivalent to h in Q(R+,M(B)).

For the two latter statements it is only needed that A is σ-unital and the

unitary group of D := h0(A) Q(R+, B)h0(A) is connected. ¡== for unital A or ???

or:

... U(M(h0(A) Q(R+, B)h0(A))) is connected ?? ??

reflem:7.Y3.chp10? also: chp9?

Corollary 7.4.3. Suppose A is stable and separable, that B is stable, and that

h0 and k0 are nuclear *-monomorphisms from A into Q(R+, B), such that h0 and

k0 “extend” to C*-morphisms h and k from A⊗O2 into Q(R+, B).

Then h and h ⊕ h (respectively k and k ⊕ k) are unitarily equivalent in

Q(R+,M(B)).

If for every I ∈ I(Q(R+, B)),

h−1
0 (h0(A) ∩ I) = k−1

0 (k0(A) ∩ I) .

Then h and k are unitarily equivalent by a unitary in Q(R+,M(B)) .

In particular, if h, k : A ⊗ O2 → B are nuclear *-monomorphisms that induce

the same map from I(B) to I(A), then h and k are unitarily homotopic.
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ref{lem:7.??}(??)

By Lemma lem:7.??(??), ( see ref in chp 9) k0 comes from k : D⊗O2 → B, D,B

stable, D separable , B σ-unital there exists a contraction g1 ∈ Cb(R, 1B ⊗ K)+

such that g1(x) = 0 for x ≤ 0 and limx→+∞ g1(x)k0(a) = k0(a) for every a ∈ D,

because k0(D) is separable.

refcor:7.Y7.chp9

Corollary 7.4.4. Suppose that A is separable and stable, B is σ-unital and

stable and that h, k : A⊗O2 → B are *-monomorphisms. Let h0 := h((.)⊗ 1) and

k0 := k((.)⊗ 1).

If there are approximately inner completely positive maps Vn,Wn : B → B such

that Vn ◦ h0 converges in point-norm to k0 and Wn ◦ k0 converges in point-norm to

h0, then h and k are unitarily homotopic.

next: reflem:7.Y3.chp9

Lemma 7.4.5. There are natural inclusions and isomorphism

M(B) ⊆ Cb(R,M(B)) ⊆ Cb,st(R,M(B)) ∼=M(C0(R, B))

ref, cor:7.Y1.chp11

Corollary 7.4.6. Suppose that hu0 : A → O2 is a unital *-monomorphism,

and that the evaluations πyh at y ∈ R+ ×X of h : A→ Cb(R+ ×X,D) are unital

monomorphisms. Let π : Cb(R+ ×X,D)→ Q(R+ ×X,D).

Then πh : A→ Q(R+ ×X,D) dominates hu0 : A→ O2 ⊆ Q(R+ ×X,D).

ref; prop:7.Y2.chp10

Proposition 7.4.7. , Suppose that A and B are stable and σ-unital. and

that a C*-morphism h1 : A → B approximately dominates a completely positive

contraction h2 : A → B, (cf. Definition 3.10.1). (i.e., there exists a sequence of

contractions dn ∈ B such that lim ‖h2(a)− d∗nh1(a)dn‖ = 0 for a ∈ A.)

Then there are isometries tn ∈ M(B) such that lim ‖h2(a) − t∗nh1(a)tn‖ = 0

for a ∈ A.

ref; cor:7.Y4.chp12

Corollary 7.4.8. , h, k : A⊗O2 → B nuclear, h is unitarily homotopic to k

if h−1(J) = k−1(J) for all closed ideals of B

ref; cor:7.Y3.chp12

Corollary 7.4.9. Suppose that B ∼= B ⊗O∞ ⊗O∞ · · · and that B is stable.

Let G = Q(R+, B) or G := Bω and A ⊆ G separable. There is a *-monomorphism

h from A⊗O∞ ⊗K into G with h(a⊗ 1⊗ e1,1) = a.

ref; cor:7.Y2.chp12
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Corollary 7.4.10. G as in Corollary 7.4.9 A ⊆ G separable. The approxi-

mately inner completely positive contractions T : D → G are one-step inner, i.e.,

there is a contraction d ∈ G such that T (b) = d∗bd.

ref; prop:7.Y1.chp12:

Proposition 7.4.11. Suppose that A1, A2, . . . are separable C*-algebras with

Ak ∼= Ak ⊗O∞ ⊗O∞ ⊗ . . ., and let D :=
∏
ω(Ak).

Then if B ⊆ D is separable, there exists a *-monomorphism ϕ from B ⊗ O∞
into D, such that ϕ(b⊗ 1) = b for b ∈ B.

ref; lem:7.Y6.chp9

Lemma 7.4.12. Let a = (a1, a2) ∈ Q(R, B) ∼= Q(R−, B)⊕Q(R+, B) a positive

contraction, then there exist a positive contraction b = (b1, b2) ∈ Q(R, B) with

b1 = 0 and b2a2 = a2.

Lemma 7.4.13. Every non-zero projection in Cb(R,O2 ⊗ K) is equivalent to

1⊗ e1,1 ∈ O2 ⊗K by unitaries in the unitization of Cb(R,O2 ⊗K).

Proposition 7.4.14. (Compare also 7.4.18)

Suppose that O2⊗K ⊆M(B) non-degenerate with (O2⊗K)∩B = 0. Define F

by Cb(R,O2 ⊗K) ∼= F ⊆ Cb(R,M(B)). For every projection q ∈ F1
∼= Cb(R,O2 ⊗

K), and every element f1 ∈ Cb(R, B) there exists a projection p in F1 such that

pf1p− f1 ∈ C0(R, B), q ≤ p and q 6= p.

ref; {prop:7.Y5.chp9}(??), {prop:7.Y5new.chp9}(??),

Proposition 7.4.15. Suppose B is stable and σ-unital, and that D separable,

stable and exact.

Let ER := M(B ⊗ C0(R))/B ⊗ C0(R) and h0 : D → ER defined by

...????????????? is nuclear.

??

Let k ∈ Hom(X;D,Q(R+, B)).

(i) The map k has unitary equivalence class [k] in S(h0, D,ER), if an only if

k is nuclear, where Q(R+, B) ⊆ Q(R, B) ⊆ ER naturally.

(ii) R(X;D,B) = [h0] + S(h0, D,ER) = [h0] + S(h0, D,Q(R+,M(B))).

(iii) If h is nuclear as a map from D to Q(R+, B), and if h is also Ψ-

equivariant, then h is dominated by h0 : D → Q(R+, B).

The point is, that nuclear asymptotically equivariant h is residually nuclear

??????

really needed in chp. 9:

Let h : D → Q(R+, B). Suppose that HR dominates h + βh0, i.e., there exists an
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isometry T ∈ ER with T ∗H0(.)T = h + βh0. Then h ∈ S(h0 ; D,Q(R+,M(B))),

i.e., h0 dominates h if and only if HR dominates h+ βh0.

(True for any h0 : D → B non-degenerate with h0 ⊕ h0 ∼ h0, i.e., H0 pseudo-

dominates h, if and only if, H0 dominates h, if and only if, h0 dominates h.)

ref; prop:7.Y5.chp9

By Proposition 7.4.15, S(h0, D,ER) is nothing else the semigroup of unitary

equivalence classes of Ψ-residually nuclear C *-morphisms h from D into Q(R+, B),

where ΨA(J) and ΨQ(R+,B) are defined as above.

next: Proof of Thm. B(iii),

also Proof of Corollary 7.4.16

Corollary 7.4.16. The absorption result (iii) of Theorem B:

Suppose that B is simple, purely infinite, unital and contains a copy of O2 ⊆ B
unitally.

Let A a unital separable exact C*–algebra and let k1 : A→ O2, k2 : O2⊗O2 →
O2 unital *-monomorphisms, and k0 := k2(k1(·)⊗ 1).

Then, for every unital *-monomorphism h : A→ Q(R+, B), [h⊕ k0] = [h].

More generally, R(D, (O2 ⊗O2 ⊗ · · · )⊗K) = 0 for every stable separable C*-

algebra D.

Lemma 7.4.17. Let h : D → B ⊗K a C*-morphism where D is σ-unital. Then

there exists a contraction g1 ∈ Cb(R, 1M(B) ⊗ K)+ such that g1(x) = 0 for x ≤ 0

and limx→+∞ g1(x)h(a) = h(a) for every a ∈ D.

(because h(D) is σ-unital)

Next proposition, see chp9, but only the prop is cited:

Let G2 := ε(O2 ⊗K) ⊆M(B). Then G2
∼= O2 ⊗K, G2 ∩B = 0 and G2 ·B is

dense in B. Let F1 := Cb(R, G2) ⊆M(C0(R, B)). Certainly β̃(F1) ⊆ F1.

F1 ∩C0(R, B) = 0 and therefore F := πSB(F1) ⊆ ER is a C *-subalgebra of ER

which is isomorphic to Cb(R,O2 ⊗K) and satisfies β(F ) = F .

H ′0(D)G2 ⊆ B implies that F1H
′
0(D) ⊆ Cb(R, B) and thus FH0(D) ⊆ J + βJ .

Proposition 7.4.18. For every projection q ∈ F1, and every element f1 ∈
Cb(R, B) there exists a projection p in F1 such that pf1p − f1 ∈ C0(R, B), q ≤ p

and q 6= p.

Proof. of Proposition 7.4.18 ?? to be filled in ... �

Next Corollary 7.4.19 is used in Chp. 9

Corollary 7.4.19. (iii) Suppose that D is a stable and separable, that B

is stable and σ-unital. Let k : D ⊗ O2 → B a non-degenerate *-monomorphism,
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k0 := k((·) ⊗ 1) and let C ⊆ CP(D,B) denote the point-norm closed matricial

operator-convex cone generated by k0 : D → B. Then:

(i) SR(C;D,B) = S(k0;D,Q(R+,M(B))) (as semi-groups). By Corollary

??,

(ii) If k1 ∈ Hom(D,B) ∩ C is non-degenerate and satisfies that k1 ⊕ k1 is

unitarily homotopic to k1 and that k1 generates C, then k1 is unitarily

homotopic to k0.

(iii) R(C;D,B) ∼= SR(C;D,B) + [k0] ⊆ SR(C;D,B) .

Lemma 7.4.20. Suppose that D is separable, B stable, and let I1 : Q(R+, B)→
ER :=M(SB)/SB the canonical embedding.

The unitary equivalence classes of k ∈ Hom(D,Q(R+, B)) and I1 ◦ k ∈
Hom(D,ER) naturally coincide, i.e., [k] = [k′] in [Hom(D,Q(R+, B))] if and only

if [I1 ◦ k] = [I1 ◦ k′] in [Hom(D,ER)].

Proposition 7.4.21. For separable stable D and σ-unital stable B, let

I1 : Q(R+, B) → ER := M(SB)/SB the natural embedding. Suppose that

k : D ⊗ O2 ↪→ B is non-degenerate. Let k0 := k((·) ⊗ 1) and h0 := I1 ◦ k0 .

Let C ⊆ CP(A,B) denote the point-norm closed matricial operator-convex cone

generated by k0.

(i) A morphism k ∈ Hom(D,Q(R+, B)) has unitary equivalence class [k] ∈
SR(C;D,B), if an only if, [I1 ◦ k] is in S(h0;D,ER).

(ii) [k] ∈ [k0] + S(k0;D,Q(R+, B)) ∼= R(C;D,B), if and only if, [I1 ◦ k] ∈
[h0] + S(h0;D,ER) = G(h0;D,ER).

In particular, [(I1 ◦ k)⊕ h0] ∈ R(C;D,B) for [k] ∈ SR(C;D,B).

We have

G(k0;D,Q(R+, B)) ∼= R(C;D,B) ∼= G(I1 ◦ k0;D,ER)

if C = C(k0) for some k0 : D → B with k0 ⊕ k0 unitarily homotopic to k0, if D is

separable and B is stable.

Proof. Use Proposition 4.4.3 ?????. �

Next Lemma {cor:7.YZnew.chp9} is used in Chp. 9

Lemma 7.4.22. Suppose that D is stable and separable, that B is σ-unital

and stable, and that k : D ⊗ O2 → B is a non-degenerate *-monomorphism. Let

k0 := k((·) ⊗ 1) and h0 := I1 ◦ k : D → J ⊆ Q(R, B) ∼= Q(R−, B) ⊕ Q(R+, B)

for the natural isomorphism I1 from Q(R+, B) onto J := π(K) for K := {f ∈
Cb(R, B) ; f(t) = 0 for t < 0} (where

π := πC0(R,B) : M(C0(R, B))→ ER :=M(C0(R, B))/C0(R, B)

and where we consider B naturally as a subset Q(R+, B)). Further, let

β : Q(R, B)→ Q(R, B) the isomorphism with β(f + C0(R, B)) = f̃ + C0(R, B) for

f̃(t) := f(−t), and H0 := π ◦ (δ∞ ◦ k0 ⊗ 1) : D → ER.
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(i) If h : D → Q(R+, B) ⊆ Q(R, B) is a C*-morphism then there exists a

contraction Y ∈ Cb(R, B)+ with Y (t) = 0 for t ≤ 0 such that yhy =

y(h+ βh0)(·)y = h for y := Y + C0(R, B) ∈ J .

(ii)

H0(D) ⊆ π(M(B)) ⊆ π(Q(R,M(B))) ⊆ ER ,

by the natural embeddings

M(B) ⊆ Cb(R,M(B)) ⊆ Cb,st(R,M(B)) =M(C0(R, B)) ,

(iii) If z is a contraction in the ideal Q(R, B) = J + β(J) of ER :=

M(C0(R, B))/C0(R, B)), then there is a contraction w ∈ Cb(R, B) with

w + C0(R, B)) = z, and w∗(δ∞ ◦ k0)(·)w + C0(R, B) = z∗H0(·)z =: T .

(iv) There is a contraction v ∈ Cb(R, B) with v(t) = 0 for t < 0 and v∗k0(·)v+

C0(R, B) = T . Thus, d∗h0(·)d = d∗(h0 +βh0)(·)d = T for the contraction

d := v + C0(R, B) ∈ J ∼= Q(R+, B).

(v) There is an isometry S ∈ Cb(R,M(B)) ⊆ M(C0(R, B)) such that s :=

S + C0(R, B) ∈ ER satisfies s∗h0(·)s = d∗h0(·)d = T .

Corollary 7.4.23. Suppose that N ⊆ B is a (non-simple) strongly purely

infinite C*–subalgebra of B with NB dense in B, and that k : D ⊗ O2 → N is a

non-degenerate nuclear *-monomorphism. Let k0 := k((·) ⊗ 1) ∈ Homn uc(D,B),

X := Prim(N) and define actions ΨA (respectively ΨB) of X on A (respectively on

B) by ΨA(J) := k−1
0 (k0(A) ∩ J) and ΨB(J) := the closed ideal of B generated by

J ∈ I(N) ∼= O(Prim(N)).

Then CPrn(Ψ) = C(k0) ⊆ CP(A,B) and

SR(X; D,B) = SR(CPnuc(Ψ); D,B) = S(k0; D,Q(R+,M(B))) .

??

Next taken from chap.9. Need this here ??

The reader can see, that X := Prim(N) acts on B upper semi-continuously

by ΨB where ΨB(J) is the closed ideal of B generated by the closed ideal J of

N . The T0 space X acts lower semi-continuously on D by ΨD, and, moreover, the

action ΨD is monotone upper semi-continuous, i.e., satisfies also condition (ii) of

Definition 1.2.6. Here ΨD(J) for J ∈ I(N) is defined by

ΨD(J) := k−1
0 (k0(D) ∩ J) .

The later in Chapter 12 given proof of Theorem K shows that k0 : D → B (and

k : D ⊗O2 → B) can be constructed up to unitary homotopy from the actions ΨD

and ΨB of X on D, respectively on B.

Next used in chp.9:

There is a natural isomorphism Cb,st(Y,M(B)) ∼=M(C0(Y,B)).

next: lem:7.ZZnew.chp.9
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Lemma 7.4.24. Suppose that D is separable and stable, B is σ-unital and stable

and that h0 ∈ Hom(D,B) is non-degenerate and is unitarily equivalent to h0 ⊕ h0.

Let C := C(h0) ⊆ CP(D,B), the point-norm closed matrix operator-convex

cone generated by h0.

Then a c.p. contraction T : D → Q(R+,M(B)) is dominated by h0 in

Q(R+,M(B))), if and only if, there is a point-norm continuous map t ∈ R+ 7→
Vt ∈ C such that V : D → C(R+, B) satisfies ‖V ‖ ≤ 1, V (a)(t) := Vt(a) and

V (a) + C0(R+, B) = T (a) for all a ∈ D.

If T ∈ CP(D,B) is a c.p. contraction, then h0 dominates T in Q(R+,M(B)),

if and only if, T ∈ C.

In particular, h ∈ Hom(D,B) satisfies h ∈ C, if and only if, [h] ∈ SR(C; D,B),

if and only if, [h] ∈ Gr
(
h0; D, Q(R+,M(B))

)
.

The natural group homomorphism

G(h0; D,M(B))→ G(h0; D,Q(R+,M(B)))

is neither surjective nor injective in general, e.g. for D = O2⊗K, B = O2⊗O2⊗K
and h0(·) := 1⊗ (·).

Proof. T ∈ CP(D,Q(R+,M(B))) is dominated by h0 in Q(R+,M(B)) ⊃ B,

if and only if, there is a norm continuous map t ∈ R+ 7→ S(t) ∈ M(B) into

the isometries in M(B) with s∗h0(·)s = T for s := S + C0(R+,M(B)). Let

Vt(a) := S(t)∗h0(a)S(t), then Vt ∈ C = C(h0) and V (a) + C0(R+, B) = T (a) for all

a ∈ A (because Cb(R+, B))) ∩ C0(R+,M(B)) = C0(R+, B) and Cb(R+, B) is an

ideal of Cb(R+,M(B))).

If T ∈ CP(D,B) (in addition), this means that T is the limit of Vt :=

S(t)∗h0(·)S(t) in point-norm. Since C is closed in point-norm topology, this implies

T ∈ C.

More arguments:

The assumption implies that there are norm continuous paths

t ∈ [0,∞) 7→ Sk(t) ∈M(B)

(for k ∈ {1, 2}) of isometries, defining a path of copies ofO2 inM(B) that commutes

with h0(D) in Cb(R+,M(B)) modulo C0(R+, B).

If T ∈ C then there exist point-norm approximation b∗nh(·)bn of T in

CP(D,B) ⊆ L(D,B) with suitable bn. With approximately central unit of

D one can manage that ‖bn‖ ≤ 1. This allows to replace the sequence by a

norm-continuous path of isometries in Cb(R+,M(B)).

Conversely, if there is contraction V : D → Cb(R+, B) with Vt(·) := V (·)(t) ∈ C,
then there is a norm-continuous map t ∈ R+ 7→ S(t) ∈ M(B) into the isometries

in M(B), such that limt→∞ ‖V (a)(t)− S(t)∗h0(a)S(t)‖ = 0 for all a ∈ D.

??
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Give reference for construction of S(t)

Perhaps as in above blue part?

Let h ∈ Hom(D,B). By Definition ??of [h] ∈ SR(C; D,B), if and only if, there

is a map t ∈ [0,∞) 7→ Vt ∈ C, such that limt→∞ ‖Vt(a)−h(a)‖ = 0 for every a ∈ D.

Thus h ∈ C.

If h ∈ C, then T := h is dominated by h0 in Q(R+; M(B))

(but in general not directly in M(B) itself, h0 dominates h only asymptotical

inside M(B)). �

Next cited from chp.8:

If an element b ∈ M(SB)/SB has a representative c ∈ Cb,st(R,M(B)) such that

c(t) ∈ B for every t. that it even does not say that c is in Cb(R, B) (as we have

seen in Chapter 7).

Next definition cited from chp.8:

SR(X;A,B) := Homnuc(X;A,Q(R+, B)) for stable separable A and σ-unital stable

B.

for the action Ψ of X on Q(R+, B)

one has to take Ψ(U) := Q(R+, B)ΨB(U) Q(R+, B)

(or less controlled, but NOT Ψ(U) = Q(R+,ΨB(U)) ???)

Somewhere in Chp.7: following should appear for use in Chp.9:

Q(R+,M(F )) is a unital C *-subalgebra of the multiplier algebraM(Q(R+, F )) of

Q(R+, F ).

5. Related questions

Question:

Let hj : A→M weakly nuclear C *-morphisms (j = 1, 2), where A is separable and

exact and M is a semi-finite W*-algebra and ‖h1(a)p‖ = ‖h2(a)p‖ for all central

projections p of M and all a ∈ A, that the neutral ???? elements ej of the weak

closures of hj(A) are unitarily equivalent in M , and that τ(h1(a)) = τ(h2(a)) for

all a ∈ A+ and all l.s.c. additive traces τ : M+ → [0,∞] (possibly degenerate).

Is h1 unitarily homotopic to h2?

Are they (at least) weakly approximately unitarily equivalent?

(There should be a reduction to the case of countably decomposable M and

then to M with separable pre-dual.)

If the image of h1 has only trivial intersection with the Brauer-ideal of M

(i.e., the norm-closed ideal generated by the finite projections in M), then one has

only to check that the infinite repeats δ∞ ◦ hj are unitarily homotopic to hj (if

e1 = e2 = 1M ) and then apply Theorem M (here δ∞ is in End(M)).





CHAPTER 8

The isomorphism of KK(C; A,B) and Ext(SC; A, SB)

We have reassuring good news for those readers who are interested only in

Theorem A and Corollaries C, D, F, G, H and J, and only in the nuclear case of

Theorem I:

Their proofs only use the triviality of Ext−1(A,O2) and the special case of Theorem

B in the introductory Chapter 1, where A is nuclear. In this cases we have obviously

the identities Extnuc(A,B) = Ext−1(A,B) and KK(A,B) = KKnuc(A,B). The

reader can see that our proof of Theorem B in this special cases involves only the

usual KK- and Ext-theory of Kasparov. So, the reader can find the needed facts for

this very special case and the here indicated approach in text books, e.g. in [73],

except some elementary observations in Sections 3 of this chapter

Is Section 3 all?

needed for the proofs of Theorems B and its generalization M in Chapter 9.

In this Chapter 8 we describe our viewpoint on a (weakly) nuclear version of

Kasparov’s KK-theory, and its isomorphism to Extnuc(A,SB), but in a more general

context that covers also our C-equivariant group Ext(C ; A,SB) – just by the any-

way needed more refined and general terminology. The needed definitions and facts

about Extnuc(A,B) and generalizations in different directions like Ext(X; A,B) and

Ext(C; A,B) can be found in Chapters 3 and 5. We generalize the ordinary KK-

functor in the following direction:

We introduce KK-groups KK(C; A,B) depending on (non-degenerate) countably

generated point-norm closed matrix operator-convex cones (m.o.c.c.) C ⊆ CP(A,B)

(cf. Chapter 3). It has the property, that the Kasparov product allows to define a

bi-additive map

KK(C1 ; A,B)×KK(C2 ; B,C)→ KK(C3 ; A,C)

if C2 ◦ C1 ⊆ C3 and A and B are both separable, and C is σ-unital. A special case

is our residually nuclear KK-group KKnuc(X; A,B) that corresponds to a well-

defined m.o.c. cone C := CPrn(X; A,B) ⊆ CP(A,B) , the cone CPrn(X; A,B) :=

CPrn(X; ΨA,ΨB) of Ψ-residually nuclear c.p. maps for given actions ΨA : O(X)→
I(A) of a T0 space X on A and ΨB of X on B (under the additional assumption

that CPrn(X; A,B) for the actions ΨA and ΨB is non-degenerate), see Chapters 1

and 3 for the

give Refs. for actions and its cones

851
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definitions of this actions and the related m.o.c. cones. The group KKnuc(A,B)

of Skandalis [726] – even if they are defined directly as the homotopy classes given

by elements in E(A,B[0, 1]) ...

is the same as our KK(C ; A,B) for the special case of the m.o.c. cone C :=

CPnuc(A,B) ⊆ CP(A,B) (?? check def in [726] again ! ??),

if A is separable and B is σ-unital, because then CPnuc(A,B) is countably

generated as matrix operator convex cone.

If A and B are both separable, then C := CP(A,B) is itself countably gener-

ated and the usual Kasparov group KK(A,B) is the same as KK(CP(A,B) ; A,B) .

Check next! But next is true if B is not σ-unital!:

(Notice that CP(A,B) is not countably generated – which is equal to singly gen-

erated – as matrix operator-convex cone if A := K(`2(N)) or A := C and B is not

separable.)

But CP(C, B) ∼= B+ is generated as m. o. c. cone by the element C 3 z 7→ ze ∈
B if e ∈ B+ is a strictly positive element of B. But what happens if A := C0(0, 1]?

All results of this chapter can be obtained by modifying the proofs of the cor-

responding results for the usual (non-nuclear) KK-theory, but use our observations

on operator-convex cones in Chapter 3. We apply the Ext(C; ·, ·)-groups defined in

Chapter 5 to give other proofs, which are more “elementary” (or “constructive”) and

allow to control all identifications and constructions which are needed during our

proofs of Theorems B and M, cf. Lemma 8.3.2. In fact, we need to work only with

unitary homotopy, because this is automatically C-equivariant, and we prove later

that C-equivariant homotopy can be realized by unitary homotopy (modulo stabi-

lization). This is also important for the X-equivariant theory KKnuc(X ; A,B) :=

KK(C ; A,B) given by the m.o.c. cone for C := CPrn(X ; ΨA,ΨB ; A,B).

The major results of this chapter are the homotopy invariance of KK(C ; A,B),

the observations in Section 5 (that are needed in Chapter 9) and the related “con-

trolled” isomorphism

Ext
(
C ⊗ CP(C,C0(R)); A,B ⊗ C0(R)

) ∼= KK(C; A,B) ,

that gives in particular Extnuc(X; A,SB) ∼= KKnuc(X; A,B) for actions ΨA

and ΨB of a T0-space X on A respectively B if the cone CPrn(X; A,B) is

non-degenerate and countably generated, cf. Chapters 1 and 5.

In Chapters 9 and 12 we use results on KKnuc(X; A,B) and Extnuc(X; A,B) in

the case where X is often the primitive ideal space of a separable C *-algebra. The

definitions can be found in Chapters 1 and 5. The necessary changes from the theory

of KKnuc(A,B) and Extnuc(A,B) to this general KKnuc(X; ., .)- and Extnuc(X; ., .)-

theories or even to KK(C ; A,B) and Ext(C ; A,B) are often straight-forward, up

to more complicate notations:

Then one has only to replace the emphasized words “nuclear” by the words “Ψ-

residually nuclear”, respectively by “C-compatible”, if we consider the more flexible
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theory of the groups KK(C ; A,B) . Therefore we discuss sometimes only proper-

ties of the KKnuc-theory because of simpler notation. All differences to the basic

theory appears by a pre-selection of suitably chosen sub-classes of Kasparov mod-

ules. If this choice has been made, only two general conditions define the appro-

priate equivalence relation that makes the direct module-sum to the addition on

the corresponding classes that build the elements of the KK-groups. The formed

Grothendieck group defines in the case of C = CP(A,B) the relation ∼c on the

Kasparov modules considered by G. Kasparov and J. Cuntz.

The prove of the (operator-) homotopy invariance of J. Cuntz and G. Skandalis

carries over almost verbatim to B 7→ KK(C;A,B). The full homotopy invariance

can then derived by the ideas of A. Connes ...

Check next statement!!

A modification of parts of our proof of Theorem B can be used to show that

O∞-stabilized unsuspended weakly nuclear ⊗O∞ necessary?

E-theory is equivalent to KKnuc-theory in separable case with trivial grading

(an observation of N.Ch. Phillips, cf. Remark 8.3.6).

Check ??? At some points we could use that A′∩Q(B) with Q(B) :=

M(B)/B

is s.p.i. if A ↪→ Q(B) is nuclear

and B is s.p.i. and σ-unital.

Then A′ ∩Q(B) should be K1-bijective.

VERY IMPORTANT!!!

We need !!! and use later that:

KK(C; A,B) is naturally isomorphic to the kernel of the natural map

K1

(
(πB ◦HC)(A)′ ∩Q(B)

)
→ K1(Q(B)) ∼= K0(B)

if A is separable and stable and B is σ-unital and stable (and all is trivially graded).

And that the “natural” isomorphisms KK(C[0, 1] ; A,B[0, 1]) ∼= KK(C ; A,B)

and KK([0, 1]C ; A[0, 1], B) ∼= KK(C ; A,B). given by evaluations at points t ∈
[0, 1].

( – The latter are the homotopy invariances of KK(C; ·, ·) and works as in

the case C = CP(·, ·) using the G. Kasparov product construction modified by

A. Connes ... – ).

Claimed in Chapter 5:

There are natural isomorphisms KK(A,B) ∼= Ext(A,SB) and KK(A,B) ∼=
ker
(
K1(H0(A)′ ∩Q(B))→ Q(B) ∼= K0(B)

)
for separable stable σ-unital A and B.

This should come from Cuntz picture for trivially graded A and B:

KK1(C; A,B) is defined for separable A and σ-unital B and countably gener-

ated m.o.c. cone C ⊆ CP(A,B) as equivalence classes [(ψ, P )] in the set of all pairs
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{(ψ, P ) ; ψ : A →M(B ⊗ K), P = P ∗ = P 2 ∈ M(B ⊗ K)} with the properties: ψ

is a C *-morphism, d∗ψ(·)d ∈ C for all d ∈ B ⊗K and Pψ(a)− ψ(a)P ∈ B ⊗K.

Can all reduce to case E := ĤB := HB ⊕ HopB . It has the “standard even”

grading if B is trivially graded. And this induces on L(ĤB) ∼= M(B ⊗ K) the

standard even grading.

If E is any trivially graded Hilbert B-module then E⊕Eop induces the standard

even grading on M2(L(E)).

We should start with “Fredholm picture” in case of trivially graded separable

A and stable σ-unital trivially graded B:

Triples (E(0) ⊕ E(1), φ0 ⊕ φ1, T ) with T ∈ L(E(0), E(1)) and relations:

Tφ0(a)−φ1(a)T ∈ K(E(0), E(1)) for all a ∈ A, 1−T ∗T ∈ K(E(0)) and 1−TT ∗ ∈
K(E(1)) .

The φ∗ should satisfy 〈φ∗(·)e, e〉 ∈ C.

Then try to “absorb” the φ∗ and E(∗) by HC : A→M(B) and E ∼= B in case

of stable σ-unital B.

Should get new T ∈ M(B) with [T,HC(a)] ∈ B, (1 − T ∗T )HC(a) ∈ B (1 −
TT ∗)HC(a) ∈ B for all a ∈ A. ... ???

Is this all at the beginning?

If one can make ????????????

Also very important:

There are natural isomorphisms

Ext(C; A,B) ∼= ker(K0(H0(A)′ ∩Q(B))→ K0(Q(B)) ∼= K1(B))

for separable stable σ-unital A and σ-unital stable B.

⇐ This has been shown in Chp. 3 or 5 ??? Where? Ref.?

1. Some basics on KK and Ext

Think about interchanging the role of L(E) and B(E),

or use B(E) and L(E) !!??

The nuclear KK-theory KKnuc(A,B) was defined by Skandalis [726]. But we

use at the beginning a different definition that is more algebraic and refers not ex-

plicit to any sort of homotopy invariance. It allows us to give later a “constructive”

proof of the existence of a functor isomorphism:

Ext(C; A⊗K, B) ∼= KK(C; A,B(1)) (1.1)

in case where A and B are trivially graded, i.e., the corresponding Z2-actions on

A and B are given by the identity map, A is separable, B is σ-unital, stable and

B(1) denotes the graded algebra B(1) := B ⊕ B with the standard odd grading

β((a, b)) := (b, a). In particular Extnuc(A⊗K, B) ∼= KKnuc(A,B(1)).
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It implies then that Ext(SC; A,SB) = KK(C; A,B) for trivially graded sepa-

rable stable C *-algebras A and B.

The natural isomorphism B(1)
∼= B ⊗ (C(1)) of graded C *-algebras allows to

extend an operator-convex cone C ⊆ CP(A,B) naturally to a cone C ⊆ CP(A,B(1)) :

Simply take the m.o.c. cone-tensor product C⊗CP(C,C⊕C), i.e., the smallest point-

norm closed hereditary sub-cone of CP(A,B(1)) containing the c.p. maps V ⊗W
with V ∈ C and W ∈ CP(C,C⊕ C) ∼= R+ ⊕ R+ .

Recall that the “tensor”-cones are in general not completions of algebraic tensor

products – see Definition 3.6.16: Here this “m.o.c.cone-tensor-product” is – as a

set – the same as the set of maps a ∈ A 7→ (V1(a), V2(a)) ∈ B1 with V1, V2 ∈ C ⊆
CP(A,B).

We have to consider Z2-graded C *-algebras, because we need formula (1.1)

and its consequences concerning the very important homotopy invariance. But the

reader should notice that the groups Extnuc(A,SB) and KKnuc(A,B) are in general

not isomorphic for non-trivially graded separable C *-algebras A and B.

Check again ??:

G. Skandalis [726] requires homotopy invariance as a part of his definition

of KKnuc(A,B) right from the beginning, so he was in the comfortable situation

that he didn’t need to prove the formula (1.1). But for us this is a non-obvious

key observation, that must be proven, because it is then often used in our proofs,

e.g. in Section 5 that establish the applicability the abstract results in Chapter 4

and allow with them together to show in Chapter 9 that

?? in the general case that we consider ??

Need: For stable separable C *-algebras A and B and countable generated non-

degenerate m.o.c. cone C for the canonical HC : A →M(B) holds (in the trivially

graded case):

The group KK(C ; A,B) is naturally isomorphic to the kernel of the natural

morphism

K1

(
(πB ◦HC)(A)′ ∩Qs(B)

)
→ K1

(
Qs(B)

) ∼= K0(B) .

A hint is: [73, subsec. 17.5.1] but then add the infinite repeat of φ0 ⊕ φ1 to it

and use suitable unitaries in M(B) to correct the formula ...

To be carried out in detail.

In case of Ext(C ; A,B) it is not difficult to see that Ext(C ; A,B) is isomorphic

to the kernel of

K0

(
(πB ◦HC)(A)′ ∩Qs(B)

)
→ K0

(
Qs(B)

) ∼= K0(B) .

We define KKnuc(A,B) as one of our more general groups KK(C; A,B) – spe-

cialized to the case where C := CPnuc(A,B). They have a completely algebraic

definition and that does not impose any sort of homotopy invariance in itself. We
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shall later prove the homotopy invariance of our KK(C; A,B) by modifications of

ideas of G. Kasparov (discussed and modified by A. Connes, G. Skandalis, J. Cuntz,

N. Higson and others).

We work with an “algebraic” definition that does not refer to “homotopy invari-

ance” because the homotopy invariance of the purely algebraic defining relations

proves also the homotopy invariance of our Extnuc(A,B) groups (and of our groups

Ext(C; A,B), Extnuc(X; A,B) etc.) with help of our definition of KK(C; A,B). It

is not a triviality.

Even the much weaker (since as a relation stronger) operator-homotopy invari-

ance of the equivalence classes that build the elements of in KK(C; A,B) is not

evident. The proof of the homotopy invariance from stronger more algebraic def-

initions is the core of the application of generalized KK(C; ·, ·) to classification of

non-simple C *-algebras.

The so-called “degenerate” Kasparov modules represent zero automatically in

any version of KK-theory that is a quotient of the Grothendieck group of a sub-

semigroup of the semigroup of unitary equivalence classes of Kasparov modules,

because the “degenerate” Kasparov modules can be defined equivalently by its prop-

erty that their infinite direct sum is again a Kasparov module ( 1 ). The proof of the

operator homotopy can be done by modifications of the techniques of G. Kasparov

(respectively of J. Cuntz and G. Skandalis) in the proof of the homotopy invari-

ance of the below defined KKc(A,B)-functor for graded separable A and σ-unital

graded B, where KKc can be defined equivalently by the cobordism-picture, cf. [73,

def. 17.10.2, thm. 17.10.7] ( 2 ). After introduction of the Kasparov products up to

operator homotopy (!), the proof of [73, thm. 18.5.3] carries over to our situation

and establishes the general homotopy invariance, where one can use that Kasparov

products define the functor KKnuc to as an KK-“ideal” in the KK-category. See

below lemmata for a more details.

The way from operator homotopy invariance to the existence of Kasparov pro-

ducts (and then to homotopy invariance) can be found also in [389, chp. 2].

We use the approach of Kasparov to show that our KKnuc-bi-functor (respec-

tively our KK(C; ·, ·) bi-functor – generalizing our KKnuc(X; ·, ·) bi-functor for

actions Ψ of O(X) on ideal lattices) is homotopy invariant. But one has to be

careful because in general the identity maps idA does not represent an element of

KKnuc(A,A), and the relations are calculated up to stabilization with nuclear Kas-

parov modules and not up to stabilization with general Kasparov modules. But

with this in mind, one can go through the textbooks and over-carry step by step

every argument to the case of KKnuc (or even to KK(C; ·, ·), and thus especially to

KKnuc(X; ·, ·), if one uses the natural extension of the actions Ψ of X on A to an

action Ψ⊗C : U → Ψ(U)⊗C on A⊗C, for C := C0((0, 1]), C0(R), K, C([0, 1]) or

O∞ –).

1 Note that the infinite sums are again weakly nuclear, or more generally C-compatible.
2Note that [73, def. 17.10.1] must require [p, F ]φ(A) ⊆ K(E) in addition, cf. [187, def. 3.1].
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Let us recall some general definitions concerning graded Hilbert modules used

in the “algebraic” definition of KK(C; ·, ·)-theory:

We prefer a picture (– the original picture of Kasparov himself –) that requires

to use graded σ-unital algebras for the most basic results, in particular, all C*-

algebras A,B, . . . in question are supposed to be σ-unital, of course except the related

algebras M(A), ... , etc .

Suppose that A and B are Z2-graded C *-algebras, with grading automorphisms

βA ∈ Aut(A) and βB ∈ Aut(B). We drop the indices A and B, if it is obvious

where β acts. Thus, always β2 = id. Further we suppose that C ⊆ CP(A,B) is a

(non-degenerate) point-norm closed matrix operator-convex (m.o.c.) cone with the

(minimally necessary) property that βB ◦ C ◦ βA ⊆ C .

In general a Z2-grading of a vector space V is given by a linear operator β : V →
V with β2 = idV .

compare def.s with book:

An element v ∈ V has degree deg(v) = 0 if v = β(v) and deg(v) = 1 if

v = −β(v). We use also the notation ∂v for deg(v).

Is notation ∂v really better? Not misleading?

The vector space V is the direct sum V = V (0) + V (1) ∼= V (0) ⊕ V (1) of its

linear subspaces V (0) = {v ∈ V ; deg(v) = 0} and V (1) = {v ∈ V ; deg(v) = 1}.
Thus β(v) = β(v0 + v1) = v0 − v1 for the unique decomposition v = v0 + v1 with

deg(v0) = 0 and deg(v1) = 1.

The graded tensor product V ⊗W of graded vector spaces V , W is usually

given by βV ⊗ βW ? ??

A Hilbert B-module E is a complete normed right B-module together with

positive definite hermitian B-module form (x, y) ∈ E × E 7→ 〈x, y〉 ∈ B that is

linear in the second variable and anti-linear (conjugate-linear) in the first variable

and satisfies ‖x‖2 = ‖〈x, x〉‖ for all x ∈ E.

We denote by K(E) the closed linear span of the “B-rank-one” operators:

x ∈ E 7→ y〈z, x〉 ∈ E .

It is a C *-algebra and an essential ideal in the C *-algebra L(E) of bounded and

〈., .〉-adjoint-able B-module endomorphisms of E. Moreover L(E) is naturally iso-

morphic to the multiplier C *-algebra (real or complex)M(K(E)) of K(E). During

Chapter 8 we denote by B(E) the Banach algebra of all bounded linear operators

on E with the usual operator norm. Then our L(E) is the subalgebra of T ∈ B(E)

with T (x · b) = (Tx) · b for x ∈ E and b ∈ B. The norms on L(E) are the usual

operator norms. L(E) does not coincide with B(E) if B 6= C.

Assume that B is Z2-graded by a C *-algebra automorphism βB of order 2.

A Hilbert B-module E is graded by βE , if βE is an isometry with β2
E = id and
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βE(xb) = βE(x)βB(b) for x ∈ E, b ∈ B. One can easily see that the isome-

try property ‖βE(x)‖ = ‖x‖ (x ∈ E) of βE is equivalent to invariance property

βB(〈x, y〉) = 〈βE(x), βE(y)〉 for x, y ∈ E, e.g. simply by composing both sides with

positive functionals on B, and using the trapezoid rule and that ‖〈x, x〉‖ = ‖x‖2.

The grading βE induces on the C *-algebra L(E) the grading F → βE ◦F ◦βE .

By Eop we denote the opposite Hilbert B-module of E, that is the same B-module

as E with the new “opposite” grading −βE .

An isomorphism of graded Hilbert B-modules λ : E1 → E2 is an isometric

B-module map from E1 onto E2 that satisfies λ ◦ βE1
= βE2

◦ λ ( 3 ). The isomor-

phism classes of (over B) countably generated graded Hilbert B-modules build a

set, if B is σ-unital, because they are isomorphic to orthogonally complemented

grading invariant closed subspaces of H̃B := HB ⊕B (HB)op, cf. [73, thm.14.6.1],

by Kasparov’s stabilization theorem [?], (or, by the almost equivalent Brown stable

isomorphism theorem, [107]).

The direct sum E ⊕∞ E′ of Hilbert B-modules E and E′ with norm

‖(x, y)‖∞ := max(‖x‖, ‖y‖) is a Hilbert B ⊕ B-module, and therefore has also

the diagonal right B-module structure. If we consider E ⊕∞ E′ as a right Ba-

nach B-module, then E ⊕∞ E′ is naturally and bounded (but not isometrically!)

B-module isomorphic to the Hilbert B-module sum E ⊕B E′ with B-valued

form 〈(x1, y1), (x2, y2)〉 := 〈x1, x2〉 + 〈y1, y2〉. Up to unitary equivalence, ⊕B is

associative and commutative, L(E)⊕∞ L(E′) ⊂ B(E ⊕∞ E′) and L(E)⊕∞ L(E′)

is a unital C *-subalgebra of L(E ⊕B E′).

Some minimal basics on graded tensor products of operator-convex cones and

on natural extension are needed during this Chapter 8:

We denote by A ⊗̂B the (outer) graded tensor product of Z2-graded C *-algebras

A and B. The outer graded tensor product of graded Hilbert A-modules E1

and graded Hilbert B-modules E2 will be denoted by E1⊗̂E2 and is a Hilbert

A⊗̂B-module.

Since we have to define the groups KK(C ; A⊗̂C, B⊗̂D) for Z2-graded separable

nuclear C *-algebras C and D, we must “extend” a given matrix operator-convex

cone C ⊆ CP(A,B) to an m.o.c. cone CC,D ⊆ CP(A⊗̂C,B⊗̂D) :

Simply, let CC,D := C⊗̂CP(C,D), where C⊗̂CP(C,D) ⊆ CP(A⊗̂C,B⊗̂D)

denotes the point-norm closed m.o.c. cone that is generated by the graded

Hilbert (A⊗̂C,B⊗̂D)-module (E1⊗̂E2, φ1⊗̂φ2 : A⊗̂C → L(E1⊗̂E2)) for a graded

Hilbert (A,B)-module (E1, φ1 : A → L(E1)) and a graded Hilbert (C,D)-module

(E1, φ2 : C → L(E2)) that generates C (respectively generates CP(C,D)) in the

sense of Definition 3.6.25. (Please observe that the notation C⊗̂CP(C,D) does

not say that it is a sort of “completion” of the linear span of some kind of tensor

3 The grading λ is C-linear by the Cohen factorization theorem, because every Hilbert B-

module is non-degenerate, and it holds automatically 〈λ(x), λ(y)〉 = 〈x, y〉 for x, y ∈ E1 , because,

if a, b ∈ B+ and ‖c∗ac‖ = ‖c∗bc‖ for all c ∈ B then a = b, – as application of pure states to b− a
shows by using the “excision” Lemma ??.
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products: It is only “generated” as point-norm closed m.o.c. cone by tensor

products V ⊗W with V ∈ C and W ∈ CP(C,D). See Chapter 3 for more details.

Let us consider an easy example:

Example 8.1.1. We consider the groups KK(C; C[0, 1],C) that are used in the

proof of the later considered “homotopy invariance”. Where C ⊆ CP(C[0, 1],C) ∼=
C[0, 1]∗+ is any point-norm closed m.o.c. cone ...

The minimal point-norm closed non-degenerate

??????

CP(C,C) = R+ · idC ∼= R+

matrix operator-convex cone Cmin ⊆ CP(C[0, 1]) := CP[0,1](C[0, 1],C[0, 1]) on

C[0, 1] are the “inner” c.p. maps, i.e., is here – with other words – simply the set

of all multiplication maps Vg(f) := gf with positive elements g ∈ C[0, 1]+. Thus

Cmin(C[0, 1]) ∼= C[0, 1]+ by an isometric identification ‖Vg‖ = ‖g‖.

Indeed ????: CP(C[0, 1],C[0, 1]) is natural isomorphic to the set of weakly

continuous maps

[0, 1] 3 t 7→ µt ∈ C[0, 1]∗+

from [0, 1] into the finite positive measures on [0, 1].

Let C ⊆ CP(C[0, 1],C[0, 1]) is a point-norm closed m.o.c. cone, then for each

t ∈ [0, 1] there exists V ∈ C and f ∈ C[0, 1]+ such that V (f)(t) > 1. By continuity

of V (f)(·), order monotony of V and we find an open intervall I = (α, β) ⊆ [−1, 2]

and γ > 0 such that t ∈ I and V (1)(s) > γ for s ∈ I. The compactness of [0, 1]

shows then that there is µ > 0 finite sum of such kind of V ∈ C is a W0 ∈ C with

W0(1)(t) ≥ µ. It shows that there exists W ∈ C with with W (1) = 1.

The only point-norm closed non-degenerate m.o.c. cone C ⊆ CP(C[0, 1],C) =

C[0, 1]∗+ is C[0, 1]∗+ itself ??

Seems to be ... wrong ...????

It implies that KK(C; C[0, 1],C) = KK(C[0, 1],C) ∼= Z and then for all non-

degenerate point-norm m.o.c. cones C ⊆ CP(A,B) and, – as we see later – that

KK(C[0, 1] ; A,B[0, 1]) ∼= KK(C ; A,B)

via any of the evaluation maps {Vt} ∈ C[0, 1] → V0 ∈ C and {b(t)} ∈ B[0, 1] :=

C([0, 1], B) 7→ b(0) ∈ B.

(Compare Definition 3.6.16 for the notations.)

For our later applications on the study of KK(C; A,B) and Ext(C; A,B) in

the trivially graded cases, we need only the below listed cases (I) and (II), where

the graded tensor products of algebras and the outer graded tensor-products of its

Hilbert modules become naturally isomorphic to the usual spatial C *-algebra- and

Hilbert module- tensor products, then with grading automorphisms on the tensor

product given by the tensor product of the grading automorphisms:
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(I) A and B are graded, C ◦ βA ⊆ C and βB ◦ C ⊆ C ,

and C, D are trivially graded separable nuclear algebras.

(II) A and B are trivially graded and C,D are graded separable nuclear alge-

bras.

In case (I) we need only C[0, 1], C0(R+), C0(R), C0(R2), C and K in place of C or D

for our applications, and in case of (II) the later application for the proofs of Theo-

rems ?? require only the cases (C,D) = (C(1),C0(R)) and (C,D) = (C0(R),C(1)).

The below given construction of the group morphisms

τB : KK(C,D)→ KK(CPin(B,B)⊗ CP(C,D) ; B⊗̂C,B⊗̂D)

becomes natural for all graded B, C and D.

In general, A⊗̂C(1)
∼= Aoβ Z2 ⊆ A⊗M2 for the Z2-action defined by the β and

with grading β ◦ β̂ on Aoβ Z2 on the right side, where β̂ is just the dual Z2-action

on Aoβ Z2 of the action β : Z2 → Aut(A). It is a C *-morphism that maps a ∈ A
to a ∈ A and ε := (1,−1) to the Z2-generator in Z2 ⊆M(Aoβ Z2). In the special

case C = CPrn(X; A,B) := CPrn(X; ΨA,ΨB ; A,B) we define a matrix o.c. cone

by

CC,D := CPrn(X ; A ⊗̂C , B ⊗̂D) := CPrn(X; ΨA⊗̂C ,ΨB⊗̂D)

for the actions ΨA⊗̂C(U) := ΨA(U)⊗̂C with U ∈ O(X) and (similar) ΨB⊗̂F For

simplicity, we assume here that actions ΨA and ΨB are invariant under the gradings

on A and B, e.g. βA(ΨA(U)) = ΨA(U) for U ∈ O(X).

We know from Chapter 3 that for nuclear C and D, a c.p. map V ∈
CP(A ⊗̂C , B ⊗̂D) is in CC,D := C⊗̂CP(C,D) if and only if

a ∈ A 7→ (idB ⊗̂ρ)(V (a⊗̂e)) ∈ B

is in C for each e ∈ C+ with βC(e) = e and for each positive functional ρ ∈ D∗

with ρ ◦ βD = ρ:

See Proposition ?? for the case of trivially graded C and D. The graded case

can be reduced to the case of an even grading by the embedding of C and D into

CoZ2 respectively DoZ2 (with the grading given by the self-adjoint unitary that

generates the copy of Z2 in M(C oZ2)). Then the arguments are similar to those

in the proof of Proposition ?? (using that the point-norm closed m.o.c. cones are

just the point-norm closed convex cones that are hereditary in CP(A⊗̂C,B⊗̂D),

then properties of hereditary cones).

In case C := C, D := C0(Y ) (with Y a locally compact Hausdorff space), a map

V ∈ CP(A,C0(Y,B)) is in CC,D, if and only if, there is a point-strongly continuous

map W : y ∈ Y 7→ CP(A,B) ⊆ L(A,B) with W (y) ∈ C, the map y 7→ ‖W (y)(a)‖ is

in C0(Y ) for every a ∈ A and W (y)(a) = V (a)(y). In this case we write also C(Y )

(C[Y ] or simply C) if CC,D = C ⊗CP(C,C0(Y )) for C = C and D = C0(Y ). Thus,



1. SOME BASICS ON KK AND Ext 861

the extensions C y CC,D are rather natural ( 4 ). KKnuc-theory is the special case

of KK(C; ·, ·)-theory where C = CPnuc(A,B),

Check if this is equivalent to the Def. of Skandalis [726]

and it is the special case of KK(X; ·, ·)-theory where X is a singleton, i.e.,

X = {p} with action on A given by ΨA(∅) = 0, ΨA({p}) = A (and similar on B).

In the same way Extnuc(·, ·) is a special case of Extnuc(X; ·, ·) or of Ext(C; ·, ·). If A

is separable and B is nuclear and separable, then KK(C; A,B) = KKnuc(X; A,B)

for C := CPrn(X; A,B)

read again !!!!!! more precise? ??

(where X and non-degenerate actions ΨA and ΨB of X on A and B are given)

and X := Prim(B), with natural action on B and lower semi-continuous action of

Prim(B) defined by a “universal” Hilbert A-B-module H0 : A→ L(HB) (as defined

in Chapters 3 and 5, where we have to use that the corresponding cone is separating

and non-degenerate by the existence of a regular Abelian subalgebra in B (in the

sense of Definition B.4.1) using [464] and [359]).

A triple E = (E, φ, F ) is called a Kasparov module (more precisely: Kasparov

(A,B)–module ) if E is a graded right Hilbert B-module that is countably generated

over B, φ : A → M(K(E)) ∼= L(E) is a grading preserving C *-morphism, and

F ∈ L(E) is an operator of degree 1 such that Fφ(a)−φ(βA(a))F ( 5 ), (1−F 2)φ(a)

and (F ∗ − F )φ(a) are in K(E) for every a ∈ A. The Kasparov module (E, φ, F ) is

degenerate if Fφ(a)− φ(βA(a))F , (1− F 2)φ(a) and (F ∗ − F )φ(a) are all zero.

If the B-module E is trivially graded, then this definition implies that F = 0

and φ(A) ⊆ K(E) and that (E, 0, 0) is the only degenerate Kasparov module.

The Kasparov module E = (E, φ, F ) is isomorphic to E ′ = (E′, φ′, F ′) (de-

noted by E ′ ≈u E) if there is an isometric B-module map U : E → E′ from E

onto E′ such that UβE = βE′U (i.e., U is of even degree), φ′(·)U = Uφ(·) and

F ′U = UF . It is easy to see that the isometric B-module morphism U preserve

the values of the B-valued hermitian form: 〈Ux,Uy〉 = 〈x, y〉 for x, y ∈ E. By

definition, the Kasparov modules E and E ′ are unitary equivalent if they are

isomorphic in this way.

The sum E ′⊕E of Kasparov A-B-modules E ′ and E is defined by the B-module

sum

E ′ ⊕ E := (E′ ⊕B E, φ′ ⊕ φ, F ′ ⊕ F ).

A Kasparov module (E1, φ1, F1) is a compact perturbation of the Kasparov

module (E, φ, F ) if E1 = E, φ1 = φ and (F − F1)φ(a) is in K(E) for every a ∈ A.

It suffices here to consider only a ∈ A of degree ∂(a) = 0, because it is obvious that

4 See Chapter 3 for a Definition of tensor products of matrix operator-convex cones. We write

also C instead of CC,D to relax notation.
5Because ∂(F ) = 1, Fφ(a)− φ(βA(a))F = [F, φ(a)]gr for the graded commutator [·, ·]gr .
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A(0) contains an approximate unit of A. Occasionally we use then the terminol-

ogy “φ-compact perturbation” to underline the difference to perturbations by

elements of K(E), or by generalized “compact” operators on the Banach space E.

The equivalence relation ∼scp which is generated by (unitary) isomorphisms

and compact perturbations is compatible with the addition of Kasparov modules.

Therefore the addition ?????? defines on the ∼scp-classes of Kasparov modules the

structure of a semigroup E(A,B)/ ∼scp. The relation ∼cp of [73, def.17.2.4] is

weaker, because the ∼cp -classes allow addition of degenerate Kasparov modules.

But ∼cp and ∼scp generate the same “stable” relation on E(A,B).

2. Isomorphism of Ext(C; A,B) and KK(C; A,B(1))

Notice that the below considered natural map from KK(C; A,B(1)) to

Ext(C; A,B)

Or: from Ext(C; A,B) to KK(C; A,B(1))?

becomes in general only in the special case of separable trivially graded A and

trivially graded σ-unital B an isomorphism.

The here first considered algebras A,A1, . . . , B, C,D, . . . are σ-unital C *-

algebras. We start with some general considerations that require to consider

also graded algebras. Thus, the algebras may have grading automorphisms

βA, βA1
, . . . , βB , . . ., and then we require that C ⊆ CP(A,B) is a point-norm closed

matrix operator-convex cone with βB ◦ C ◦ βA ⊆ C (cf. Chapter 3, Section on

m.o.c.c. operations and equivariant m.o.c. cones ?? for notations).

Definition 8.2.1. A Kasparov module (E, φ, F ) ∈ E(A,B) is called nuclear

(respectively Ψ-residually nuclear, C-compatible) if the C *-morphism

φ : A→M(K(E)) = L(E)

is weakly nuclear in the sense Definition B.7.6 (respectively is weakly Ψ-residually

nuclear, respectively is weakly C-compatible). Equivalently, this means that the c.p.

maps a ∈ A 7→ 〈φ(a)x, x〉 ∈ B are nuclear (respectively are Ψ-residually nuclear,

respectively are in C) for every x ∈ E.

In fact all KK-groups come from first selecting an m.o.c. cone C and then consid-

ering only the C-compatible Kasparov modules, because KK(A,B) = KK(C ; A,B)

with C = CP(A,B), KKnuc(A,B) = KK(CPnuc ; A,B), KK(Ψ ; A,B) =

KK(CP(Ψ ; A,B) ; A,B), where CP(Ψ ; A,B) ⊆ CP(A,B) denotes the m.o.c. cone

of Ψ-equivariant c.p. maps, and, finally, the Ψ-residually nuclear KK-groups are

KK(C ; A,B) with m.o.c. cone C defined by the “Ψ-residually nuclear” maps

C := CPnuc(Ψ ; A,B) ⊆ CP(Ψ ; A,B) ⊂ CP(A,B) .

This theory can be considered as a refinement of the original Kasparov theory.

Examples of nuclear Kasparov (A,B)-modules (respectively of C-compatible

Kasparov modules) are the modules (E, 0, F ) for arbitrary Hilbert B-modules E
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and arbitrary F ∈ L(E) of degree one, and the difference construction (B,φ, 0)

for a nuclear C *-morphism φ : A→ B (respectively for ψ ∈ Hom(A,B)∩C ), where

B is considered as right B-module.

The category of nuclear (respectively of C-compatible) Kasparov (A,B)-

modules is invariant under Hilbert B-module addition, because

φ⊕ φ′ : A→M
(
K(E ⊕B E′)

)
is again weakly nuclear (resp. is again weakly C-compatible) if φ and φ′ are weakly

nuclear (resp. are weakly C-compatible). If (E, φ, F ) is nuclear (respectively C-
compatible) and (E, φ, F ) ∼scp (E′, φ′, F ′), then (E′, φ′, F ′) is also nuclear (re-

spectively C-compatible). It follows that the ∼scp-classes of nuclear (respectively

C-compatible) Kasparov A–B-modules build a sub-semigroup Enuc(A,B)/ ∼scp (re-

spectively a sub-semigroup E(C; A,B)/∼scp) of the semi-group E(A,B)/∼scp (with

Hilbert B-module sum as addition).

Definition 8.2.2. We define the nuclear Kasparov group KKnuc(A,B) as

the Grothendieck group of Enuc(A,B)/ ∼scp:

KKnuc(A,B) := KK(C; A,B) = Gr(Enuc(A,B)/∼scp) = Gr(E(C; A,B)/∼scp) ,

for C := CPnuc(A,B). The more general C-equivariant Kasparov group

KK(C; A,B) is the Grothendieck group of of E(C; A,B)/∼scp :

KKnuc(A,B) := Gr(E(C; A,B)/∼scp) .

The X-equivariant KK-groups and residually nuclear KK-groups are defined

by

KK(X; A,B) := KK(C; A,B) for C := CP(X; A,B) ,

and

KKnuc(X; A,B) := KK(C; A,B) for C := CPrn(X; A,B) .

More precisely, KK(X; A,B) and KKnuc(X; A,B) depend on the actions

ΨA : O(X) → I(A) and ΨB : O(X) → I(B), that define the related point-

norm closed m.o.c. cones CP(X,ΨA,ΨB ; A,B) and CPrn(X,ΨA,ΨB ; A,B),

cf. Chapter 3. But there are other natural and functorial constructions of

m.o.c. cones C from “actions” ΨA and ΨB of X on A and B. The m.o.c. cones

CPrn(X,ΨA,ΨB ; A,B) ⊆ CPnuc(A,B) of ΨA-ΨB–residually nuclear maps play an

important role in our applications.

If A and B are trivially graded and if h : A → B ⊗ K = B ⊗̂K is a nuclear

C *-morphism (respectively if h ∈ Hom(A,B ⊗ K) ∩ C ), we can define [h − 0] ∈
KKnuc(A,B) (respectively [h− 0] ∈ KK(C; A,B)) as the class which is represented

by the difference construction

(HB , h : A→ B ⊗K, 0) ,

where HB denotes the Hilbert B-module

HB := {(b1, b2, . . .) : bn ∈ B,
∑
n

b∗nbn ∈ B}.
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with trivial grading, and where we use the natural isomorphism B ⊗K ∼= K(HB) .

It can be shown (as in the non-nuclear theory) that the bi-functor KKnuc(A,B)

is stable, and with help of Kasparov products, that our KKnuc groups are homotopy

invariant, hence, are the same as the KKnuc-groups of Skandalis [726] (at least if

A is exact). Therefore, they satisfy variants of Bott Periodicity, 6-term exact se-

quences for semi-split exact sequences, ... But in case of the KK(C; ·, ·)-theory

the situation is more complicate, because this are in essence functors from a “cat-

egory” of point-norm closed m.o.c. cones C ⊆ CP(A,B) into Abelian groups, and

the C *-algebras play only a formal role as a sort of indices.

The way to homotopy invariance for our functors KKnuc(A,B) := KK(C; A,B)

in case that C := CPnuc(A,B) and the much more general KK(C; A,B) is the

following:

Our definitions of KKnuc(A,B) is the weakly nuclear variant (respective C-
compatible variant) of the cobordism-class ∼c definition for KK, cf. [73,

defs. 17.2.4, 17.3.1, 17.10.2]. Indeed, weakly nuclear (respectively C-compatible)

Kasparov modules E1 and E2 define the same element of KKnuc(A,B), if and only

if, there exists a nuclear (respectively C-compatible) Kasparov module E3 such that

E1⊕E3 is isomorphic to a compact perturbation of E2⊕E3. This is the equivalence

relation ∼c of [73, def. 17.2.4] (in case where C := CP(A,B)). More precisely, the

relation ∼c in [73] is the stabilization of the relation ∼cp that allows also addition

of degenerate elements. “Degenerate” Kasparov modules become zero even for the

stabilization of the relation ≈u of unitary equivalence in [73, def.17.2.1], but here

automatic inside Enuc(A,B) (respectively inside the semigroup E(C; A,B)): The

difference between the nuclear (respectively our more general C-compatible) case

and the usual KK-theory relation ∼c is, that the added module E3 has to be a

nuclear (respectively a C-compatible) Kasparov module as well.

We say that Kasparov modules (E, φ, F0) and (E, φ, F1) are operator homo-

topic if there exists a norm-continuous map t ∈ [0, 1] 7→ F (t) ∈ L(E) such that

F (0) = F0, F (1) = F1 and that (E, φ, F (t)) is a Kasparov module for every t ∈ [0, 1].

The same arguments as in [73, sec. 17.10] show that operator homotopic nuclear

(respectively C-compatible) Kasparov modules define the same element of our group

KKnuc(A,B) (respectively of KK(C; A,B)).

The result that operator homotopic C-compatible Kasparov modules are stably

equivalent, implies that the Kasparov product is well-defined and is invariant under

operator homotopy. In fact, the proofs in [73] or in [389, sec. 2.2] show that Kas-

parov products E1⊗E2 of representatives E1 and E2 of elements [E1] ∈ KKnuc(B,C)

and [E2] ∈ KK(C,D) define up to operator homotopy an element of KKnuc(B,C)

if B and C are separable. One has also that the Kasparov product defines a bi-

additive map

KK(A,B)×KKnuc(B,C)→ KKnuc(A,C)

for σ-unital A, B and C and separable B. Its values are in KKnuc(B,D) respectively

KKnuc(A,C), and if A = B or D = C the multiplication with [idB −0] or [idC −0]
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gives the identity homomorphism of KKnuc(B,C). Therefore, our KKnuc-functor

is homotopy invariant and coincides with the KKnuc-functor of Skandalis [726].

There are natural homomorphisms from KKnuc(A,B) into KK(A,B), as the defi-

nition tells us ( 6 ).

Certainly, KKnuc(A,B) = KK(A,B) if A or B is nuclear, because then every Kas-

parov (A,B)-module is nuclear.

We outline now the changes of the Kasparov approach, that are necessary in

the case of KK(C; A,B). Recall the other equivalence relations ∼c, ∼cp, ∼s, ∼soh,

∼oh and ∼h and on E(C; A,B) that are defined as in [73, chp. 17] on all elements

of E(A,B) by

(∼cp:) E0 ∼cp E1 if there are degenerate E2, E3 ∈ E(C; A,B), such that

E0 ⊕ E2 ∼scp E1 ⊕ E3.

(∼c :) (E0, φ0, F0) ∼c (E1, φ1, F1) if [(E0, φ0, F0)] = [(E1, φ1, F1)] in

KK(C; A,B) = Gr(E(C; A,B)/ ∼scp) .

In [73, chp. 17]: ‘‘stabilized version of ∼cp’’
(∼soh:) (E0, φ0, F0) ∼soh (E1, φ1, F1) if there is a C *-morphism ψ : A → L(E)

and an operator-norm continuous map t ∈ [0, 1] 7→ F (t) ∈ L(E) such

that (E,ψ, F (t)) ∈ E(C; A,B) for every t ∈ [0, 1] and that (Ei, φi, Fi) is

(unitarily) isomorphic to (E, φ, F (i)) for i = 0, 1.

(∼oh:) (E0, φ0, F0) ∼oh (E1, φ1, F1) if there are degenerate E2, E3 ∈ E(C; A,B),

a Hilbert B-module E, a C *-morphism ψ : A → L(E) and a norm-

continuous map t ∈ [0, 1] 7→ F (t) ∈ L(E) such that (E,ψ, F (t)) ∈
E(C ; A,B) for every t ∈ [0, 1] and that (Ei, φi, Fi) ⊕ Ei+2 is (unitarily)

isomorphic to (E, φ, F (i)) for i = 0, 1.

(∼h:) It is the equivalence relation that is generated by the reflexive, but not

necessarily transitive ???, relation ∼h0
:

(E0, φ0, F0) ∼h0
(E1, φ1, F1) if there exists

(E,ψ, F ) ∈ E(C ⊗ CP(C,C[0, 1]) ; A, B ⊗ C([0, 1]))

such that (Ei, φi, Fi) is isomorphic to (E(i), ψi, F (i)) for i = 0, 1.

Straight calculations show that all this relations are compatible with addition in

E(C; A,B)/≈u.

The relation ∼cp is an equivalence relation on E(C; A,B), because the

degenerate Kasparov modules in E(C; A,B)/ ∼scp build a sub-semigroup of

E(C; A,B)/ ∼scp.

The relation ∼oh is an equivalence relation, because the degenerate Kasparov

modules in E(C; A,B)/ ∼soh build a sub-semigroup of E(C; A,B)/ ∼soh.

6 We don’t know if this homomorphisms are injective in general and if their images are

naturally complemented in KK(A,B).
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Notice that the Kasparov module (E,ψ, F ) in the definition of ∼h can be

considered as a “continuous” family {(E(t), ψt, F (t))}0≤t≤1 in E(C; A,B), if we

consider the B[0, 1]-module E as a complemented B[0, 1]-submodule of ĤB[0,1]
∼=

C([0, 1], Ĥ)

but the unitary equivalences at the endpoints can not be specified ??????????

See proofs of part (vii) of Lemma 8.2.3.

Temporary, we define semi-groups

KK∗(C; A,B) := E(C; A,B)/ ∼∗

for ∗ = h, oh, cp, c.

Lemma 8.2.3. Suppose that A and B are σ-unital and graded, C ⊆ CP(A,B)

is countably generated point-norm closed operator convex cone, with C ◦ βA ⊆ C
and βB ◦ C ⊆ C.

Then:

(i) The unitary equivalence classes E(C; A,B)/ ≈u build an Abelian semi-

group under addition of Kasparov modules.

(ii) The relations ∼h, ∼oh, ∼c, ∼cp, ∼scp and ≈u (respectively the rela-

tions ∼oh, ∼soh and ∼scp) are successively stronger, and are equiva-

lence relations on E(C; A,B) that are all compatible with addition in

E(C; A,B)/≈u.

Thus, the set of equivalence classes E(C; A,B)/∼∗ are semi-groups,

and there are natural semi-group epimorphisms from E(C; A,B)/≈u onto

E(C; A,B)/∼∗ for each of the above listed equivalence relation ∼∗.
If C′ ⊆ C, then there are natural morphisms from E(C′; A,B)/∼∗ into

E(C; A,B)/∼∗.
(iii) KK∗(C; A,B) := E(C; A,B)/∼∗ are groups for ∗ = oh, h and there are

natural semigroup epimorphisms

KKc(C; A,B)→ KKoh(C; A,B)→ KKh(C; A,B) .

The natural epimorphism E(C; A,B)/ ∼scp→ E(C; A,B)/ ∼cp defines a

group isomorphism Gr(E(C; A,B)/∼scp) ∼= Gr(E(C; A,B)/∼cp).
KKc(C; A,B) is a sub-semigroup of Gr(E(C; A,B)/ ∼cp)), and

the kernel of KKc(C; A,B) → KKoh(C; A,B) consists of the classes

[(E, φ, F )]c such that there is a degenerate element (E0, φ0, F0) ∈
E(C; A,B) with (E, φ, F )⊕ (E0, φ0, F0) ∼soh (E0, φ0, F0).

(iv) If f ∈ Hom(B,C) is a grading preserving epimorphism, let f∗C := C(f)◦C
the point-norm closed matrix operator-convex cone generated by f ◦ C :=

{f ◦ V ; V ∈ C}. Then

f∗[(E, φ, F )] := [(E⊗̂fC, φ(·)⊗̂f1, F ⊗̂f1)]



2. ISOMORPHISM OF Ext(C; A,B) AND KK(C; A,B(1)) 867

defines semigroup morphism f∗ : E(C ; A,B)/≈u→ E(f∗C ; A,C)/≈u that

is compatible with all relations ∼∗.
(v) If g ∈ Hom(D,A) is grading preserving let g∗C := {V ∈ CP(D,B) ; V ◦

g ∈ C } , then

g∗[(E, φ, F )] := [(E, φ ◦ g, F )]

defines semigroup morphism g∗ : E(g∗C ; D,B)/ ≈u→ E(C ; A,B)/≈u that

is compatible with all relations ∼∗.
(vi) Let CPin(B,B) ⊆ CP(B,B) denote the cone of all approximately inner

c.p. maps of B.

If C and D are separable nuclear graded C*-algebras, then the map

[(E, φ, F )] 7→
[
(B⊗̂E, idB⊗̂φ, 1⊗̂F )

]
maps E(C,D)/≈u into E(CPin(B,B) ⊗̂ CP(C,D); B ⊗̂C, B ⊗̂D) and de-

fines a morphism

τB : KK(C,D)→ KKoh(CPin(B,B)⊗̂CP(C,D); B⊗̂C,B⊗̂D)

with τB([k − 0]) = [(idB ⊗̂k)− 0] for grading preserving k ∈ Hom(C,D).

In particular, [χt] = [χt−0] ∈ KK(C([0, 1]),C) for χt(f) := f(t) maps

to

τB([χt]) = [χBt ] ∈ KKoh(CPin(B,B)⊗̂CP(C[0, 1],C); B⊗̂C([0, 1]), B) ,

where χBt denotes the epimorphism χBt : f ∈ C([0, 1], B) 7→ f(t) ∈ B

(t ∈ [0, 1]).

Since [χt] = [χ0] by [73, lem.18.5.2],it follows that [χB0 ] = [χBt ] for

t ∈ [0, 1].

(vii) Let ĤB := HB⊕BHB with grading β∞⊕(−β∞), where β∞(x1, x2, . . .) :=

(βB(x1), βB(x2), . . .) for (x1, x2, . . .) ∈ HB ∼= (B ⊗K)(1⊗ p11).

There is a construction λ =: λB that assigns to each class [E ] =

[(E, φ, F )] ∈ E(C; A,B)/≈u a special class λ([E ]) ∈ E(C; A,B)/≈u that

has representative (ĤB , ψ, U) with U = U∗ = U−1, such that λ is additive,

E ∼cp λ(E) in E(C; A,B), λ(E) is degenerate if E is degenerate, λ(E1) ∼scp
λ(E2) if E1 ∼scp E2, and E = (E, φ, F ) ∈ E(C[0, 1]; A,B[0, 1]) implies

(pt)∗(λB[0,1][E ]) = λB((pt)∗[E ]) .

Moreover, if E ∼= ĤB then ψ is unitarily equivalent to φ⊕0 by an unitary

W ∈ L(ĤB) of degree zero, and, if F = F ∗ = F−1 then λ(ĤB , φ, F ) is

isomorphic to (ĤB , φ⊕s,t0, F⊕s,t(−F )) for (any) isometries s, t ∈ L(ĤB)

of even degree.

In particular, all equivalence-operations for the relations ∼∗ can be

elaborated inside the class of special Kasparov modules (ĤB , ψ, F ) with

F = F ∗ = F−1.

(viii) If M(B) contains isometries s, t of even degree with ss∗ + tt∗ = 1, then

addition in E(C; A,B)/≈u is compatible with

ε : B ⊕∞ B → B , ε(a, b) 7→ sas ∗+tbt∗ ,
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i.e., the composition ε∗ ◦ Σ of the map

Σ: [E(A,B)]× [E(A,B)]→ [E(A,B ⊕B)]

given by

Σ: ((E1, φ1, F1), (E2, φ2, F2)) 7→ (E1 ⊕∞ E1, φ1(·)⊕ φ2(·), F1 ⊕ F2)

with ε∗ defines the addition in E(A,B)/≈u. In particular, 2[E ] = δ∗[E ] in

E(C; A,B)/ ≈u for E ∈ E(C; A,B) and δ(b) := sbs∗ + tbt∗.

Proof. (i): The unitary equivalence classes E(C; A,B)/ ≈u build an Abelian

semigroup under addition of Kasparov modules, because E(A,B)/ ≈u is an Abelian

semigroup (is in particular a set), the sum of C-compatible Kasparov (A,B)-

modules is C-compatible, and the class of C-compatible Kasparov modules is in-

variant under unitary equivalence.

(ii): It is easy to check that ≈u, ∼scp and ∼soh are equivalence relations on

E(C ; A,B) that are compatible with sums of Kasparov modules.

If (E, φ, F ′) ∈ E(A,B) is a φ-compact perturbation of (E, φ, F ) ∈ E(C; A,B),

then (E, φ, F (t)) is in E(C; A,B) for F (t) := tF + (1 − t)F ′, thus (E, φ, F ′) ∼soh
(E, φ, F ) in E(C; A,B), i.e., ∼scp is stronger than ∼soh on E(C; A,B).

Thus ∼soh, ∼scp and ≈u are successively stronger equivalence relations ∼∗ on

E(A,B) that are compatible with the property that (E, φ, F ) ∼∗ (E′, φ′, F ′) and

(E, φ, F ) ∈ E(C; A,B) implies (E′, φ′, F ′) ∈ E(C; A,B).

It is easy to see, that the infinite repeat E∞ := (E ⊗ `2; φ(·) ⊗ 1, F ⊗ 1) is a

Kasparov (A,B)-module, if and only if, E = (E, φ, F ) is a degenerate Kasparov

module. Then E∞ ⊕ E ≈u E∞ , and E is a degenerate element in E(C; A,B) if and

only if E∞ is in E(C; A,B).

compare above and below! ??

Infinite (B-module) sums (E, φ, F ) ⊕ (E, φ, F ) ⊕ · · · ∼= (H ⊗ E, 1 ⊗ φ, 1 ⊗ F )

of degenerate Kasparov modules (E, φ, F ) ∈ E(C; A,B) are degenerate Kasparov

modules in E(C; A,B), and (E, φ, F )⊕ (H⊗E, 1⊗ φ, 1⊗ F ) is unitary isomorphic

to (H ⊗ E, 1 ⊗ φ, 1 ⊗ F ), i.e., [(E, φ, F )] = 0 in Gr(E(C; A,B)/ ∼scp) Thus E ⊕
(E, φ, F ) ∼c E for every E ∈ E(C; A,B). If follows that ∼c is stronger than ∼oh.

Hence, there is a natural semigroup epimorphisms KKc(C; A,B)→ KKoh(C; A,B).

Since the classes of degenerate modules in E(C; A,B) build the sub-semigroups

of E(C; A,B)/ ∼scp and E(C; A,B)/ ∼sop of elements that are additively absorbed

by some other element, we get that ∼op and ∼cp are successively stronger additive

equivalence relations on E(C; A,B) that are weaker than ∼sop respectively ∼scp.
Furthermore, KK(C ; A,B) = Gr(E(C ; A,B)/ ∼cp) ,

Gr(E(C ; A,B)/ ∼soh) = Gr(E(C ; A,B)/ ∼oh) ,
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and there is semigroup monomorphism KKc(C; A,B) ↪→ KK(C; A,B), and semi-

group epimorphisms

E(C; A,B)/ ∼cp→ KKc(C; A,B)→ KKoh(C; A,B)

and a semigroup morphism KKoh(C; A,B) → Gr(E(C; A,B)/ ∼soh) such that its

image generates Gr(E(C; A,B)/ ∼soh). All its images are sub-semigroups that

generate the groups.

???????????????????????

The relation ∼soh is stronger than ∼oh by definition, and KKoh(C; A,B) =

E(C; A,B)/ ∼oh is a group ???? (if we include unitary equivalence and calculate

modulo addition of a degenerate module in E(C; A,B)), because ∼oh is compat-

ible with unitary equivalence, compact perturbation and addition of degenerate

elements.

???????????????????.

??

The relation ∼h is an equivalence relation, because homotopy ∼h0
is reflexive

and ≈u is an equivalence relation. Since homotopy “inside” E(C; A,B) are additive

as elements of E(C ⊗ CP(C,C[0, 1]); A,B ⊗ C[0, 1]), and since unitary equivalence

is compatible with addition of Kasparov modules, we get that ∼h is compatible

with addition in E(C; A,B)/ ≈u. Thus KKh(C; A,B) := E(C; A,B)/ ∼h is a

commutative semi-group.

The relation ∼soh is stronger than ∼h on E(C; A,B), because an operator

homotopy t 7→ (E, φ, F (t)) in E(C; A,B) defines an element (E⊗C[0, 1], φ(·)⊗1, F )

in E(C([0, 1]); A,C([0, 1], B)) that defines a homotopy between (E, φ, F (0)) and

(E, φ, F (1)). Here:

F := {F (t)} ∈ C([0, 1],M(K(E))) ⊆ Cb,st([0, 1],M(K(E))) ∼= L(E ⊗ C[0, 1])

By definition of the relation ∼oh , E ∼oh ({0}, 0, 0) if E ∈ E(C ; A,B) is degenerate.

The same happens also for ∼h, because the homotopy connecting degenerate

E := (E, φ, F ) ∈ E(A,B) and the 0-module 0 := ({0}, 0, 0) , that is given the proof

of [73, prop.17.2.3], is in E(C([0, 1]); A,C([0, 1, B)) if E ∈ E(C; A,B). Thus ∼oh is

stronger than ∼h.

Finally, there are natural semigroup epimorphisms

E(C; A,B)/ ≈u→ KKc(C; A,B)→ KKoh(C ; A,B)→ KKh(C; A,B) .

If (E, φ, F ) ∈ E(C ; A,B) then (E, φ ◦βA,−F ) ∈ E(C; A,B), because C ◦βA ⊆ C by

our assumptions.

The sum (E, φ, F ) ⊕ (E, φ ◦ βA,−F ) is operator-homotopic to a dege-

nerate element (cf. [73, prop.17.3.3]). Thus, the semigroups KKoh(C ; A,B)

and KKh(C ; A,B) are groups, and the above natural semigroup morphism

KKoh(C ; A,B)→ Gr(E(C ; A,B)/ ∼sop) is an isomorphism of groups.

to be filled in: proof of 8.2.3
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Let ∼soh denote the equivalence relation generated by ≈u and operator ho-

motopies t ∈ [0, 1] 7→ (E, φ, F (t)) ∈ E(C2 ; B,C). Then ∼soh is compatible with

addition and is stronger than ∼oh.

Since KKoh(C ; B,C) = E(C2 ; B,C)/ ∼oh is a group, we get that there is a

natural epimorphism from Gr(E(C2 ; B,C)/ ∼soh) onto KKoh(C; B,C). This must

be an isomorphism, because 0 = [E ] ∈ Gr(E(C2 ; B,C)/ ≈u) for every “degenerate”

E ∈ E(C2 ; B,C).

If C1 ⊆ C2, then (obviously) E(C1 ; B,C) ⊆ E(C2 ; B,C).

For the relations ∼∗=≈u,∼scp or ∼soh It is easy to see, that elements Ej ∈
E(C1 ; B,C) (j = 1, 2) satisfy E1 ∼∗ E2 in E(C1 ; B,C), if and only if, E1 ∼∗ E2 in

E(C2 ; B,C).

Thus E(C1 ; B,C)/ ∼∗ is a subgroup of E(C2 ; B,C)/ ∼∗. If we apply the

Grothendieck functor, we get natural semigroup morphisms KKc(C1 ; B,C) →
KKc(C2 ; B,C) and KKoh(C1 ; B,C)→ KKoh(C2 ; B,C) .

In the case of the relation ∼∗=∼h, one has at least that E1 ∼h E2 in E(C1 ; B,C)

implies that E1 ∼h E2 in E(C2 ; B,C), because E(C1⊗CP(C,C[0, 1]) ; B,C([0, 1], C))

is contained in E(C2 ⊗ CP(C,C[0, 1]) ; B,C([0, 1], C)).

??

Thus, if C1 ⊆ C2, there are natural semigroup morphisms

KK∗(C1 ; B,C)→ KK∗(C2 ; B,C) .

This semi-group morphisms are in general neither injective nor surjective.

??

semigroup epimorphisms

KKc(C2 ; B,C)→ KKoh(C2 ; B,C)→ KKh(C2 ; B,C) .

The natural injections B ∼= C ⊗ p11 ⊆ B and C ∼= C ⊗ p11 ⊆ C ⊗ K define

isomorphisms from KKoh(C3 ; B ⊗ K, C) onto KKoh(C2 ; B,C) respectively from

KKoh(C2 ; B,C) onto KKoh(C4 ; B,C ⊗ K), where the m.o.c. cones C3 ⊆ CP(B ⊗
K, C) and C4 ⊆ CP(B,C ⊗K) are the natural extensions of C2 ⊆ CP(B,C) to the

stabilizations.

more???

(vi): Let χBt denote the epimorphisms χBt : f ∈ C([0, 1], B) 7→ f(t) ∈ B (t ∈
[0, 1]), and let CPin(B,B) ⊆ CP(B,B) denote the cone of approximately inner c.p.

maps of B, and S := CPin(B,B)⊗CP(C[0, 1],C). Then the difference construction

(B ,χBt , 0) is an Element in ( 7 )

E
(
S; C([0, 1], B), B

)
= E

(
CPin(B,B)⊗ CP(C[0, 1],C) ; B ⊗ C[0, 1], B

)
.

We denote by [χBt − 0] := [(B, χBt , 0)] its class in KK(CPin(B,B); B ⊗
C([0, 1]), B) .

7The equation expresses only our conventions on notations, i.e., it is a trivial identity!
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Since by ??? ??

C = (C ⊗ CP(C,C[0, 1])) ◦ (CPin(B,B)⊗ CP(C[0, 1],C))

holds for all point-norm closed matrix operator-convex cones C ⊆ CP(A,B), one

has only to check that, for all σ-unital B and all t ∈ [0, 1] holds [χB0 − 0] = [χBt − 0]

in KK(CPin(B,B); B ⊗ C[0, 1], B).

The cone CPin(B,B) is singly generated by {idB}. Thus, our theory applies

to KK(CPin(B,B); B ⊗ C[0, 1], B).

(E, φ, F ) 7→ (B⊗̂E, idB ⊗̂φ, 1M(B)⊗̂F )

defines an additive map from E(C,D) into E(CPin(B,B)⊗CP(C,D); B⊗C,B⊗D)

for trivially graded nuclear C and D (where e.g. the graded tensor product (B⊗̂C, β)

coincides with (B ⊗C, βB ⊗ idC)). It induces a group morphism τB : KK(C,D)→
KK(CPin(B,B); B ⊗ C,B ⊗D). Obviously, τB([ψ − 0]) = τB([(D,ψ, 0)]) = [(B ⊗
D; id⊗ψ, 0)] = [(id⊗ψ)− 0] if ψ ∈ Hom(C,D).

We have the identities [(C, χt, 0)] = [χt − 0] = [χ0 − 0] in KKoh(C[0, 1],C) for

all t ∈ [0, 1], where χt : f ∈ C[0, 1] 7→ f(t) ∈ C, cf. [73, lem.18.5.2].

It is not difficult to see that the original proof of Kasparov of [χB0 − 0] =

[χBt −0] in KK(B⊗C[0, 1], B) works also in KK(CPin(B,B); B⊗C[0, 1], B), because

(B,χBt , 0) = (B ⊗ C, idB ⊗ψt, 0) for the morphism ψt : g ∈ C[0, 1] 7→ g(t) ∈ C.

(vii): Let Eop denote the Hilbert B-module E with grading −βE . Then

ĤB ∼= HB ⊕B HB . We use that there are unitary grading-preserving B-module

isomorphisms E ⊕B ĤB ∼= ĤB (Kasparov stabilization, [73, thm.14.6.1], [389,

thm.1.2.12], ĤB ⊕B (ĤB)op ∼= ĤB .

We define λ[(E, φ, F )] for [E ] = [(E, φ, F )] ∈ E(C; A,B)/ ≈u by the operations

λ = λ2 ◦ λ1:

λ1([E, φ, F ]) := (E ⊕B ĤB , φ⊕ 0 , G1(F )⊕ 0) ,

where G1(F ) := g((F ∗ +F )/2) for the function g(t) = t on |t| ≤ 1 and g(t) := t/|t|
for |t| > 1. Then G1(F ) = G1(F )∗ and ‖G1(F )‖ ≤ 1.

Note that (E, φ,G1(F )) is degenerate if (E, φ, F ) is degenerate, G1(F1⊕F2) =

G1(F1)⊕G1(F2), G1(U∗FU) = U∗G1(F )U for unitaries U , G1(F2) is a φ-compact

perturbation of G1(F1) if F2 is a φ-compact perturbation of F1. and G1(F )(t) =

G1(F (t)) for F = {F (t)} ∈ L(E) if E = {E(t)} is a Hilbert B[0, 1]-module. Since

E⊕(ĤB , 0, 0) ∈ E(C; A,B), it follows from the arguments in [73, 17.4] that λ =: λB

has the quoted properties.

One can now go a step further and build from (E, φ,G) ∈ E(C; A,B) with

E := ĤB , G = G∗ and ‖G‖ ≤ 1 the Kasparov module

λ2

(
E, φ, (E ⊕B Eop, φ⊕ 0, U(G)

)
∈ E(C; A,B)

with U(G) ∈ M2(L(E)) ∼= L(E ⊕B Eop) where U(G) is the (selfadjoint) Halmos

unitary U(G) of G with U(G)11 := G, U(G)22 := −G and U(G)12 = U(G)21 :=

(1 − G2)1/2. Straight calculations show U(G)(βE(x),−βE(y)) = ((−βE) ⊕
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βE)(U(G)(x, y)) (i.e., U(G) has odd degree), and U(G) is a (φ ⊕ 0)-compact per-

turbation of G⊕−G. The graded commutator U(G)(φ(a)⊕0)−(φ(βA(a))⊕0)U(G)

is given by the 2 × 2-matrix with diagonal entries Gφ(a) − φ(βA(a))G and 0 and

with off-diagonal entries (1 − G2)1/2φ(a) and −(φ(βA(a))(1 − G2)1/2), thus is in

K(E ⊕Eop) ∼= M2(K(E)) (and is zero if (E,ψ,G) is degenerate). Now one can use

again that E⊕Eop ∼= ĤB . The operation λ2 also plays nicely together with unitary

equivalence, (Cuntz-)addition, φ-compact perturbation, operator homotopy and

homotopy (all inside the class of Kasparov C-modules with self-adjoint contractive

ψ-derivation G).

??

(viii):

(ix): ?????????????????? �

Lemma 8.2.4. Suppose that A and B are trivially graded and stable, A is sepa-

rable, B is σ-unital, and that C ⊆ CP(A,B) is a non-degenerate point-norm closed

m.o.c. cone that is countably generated.

Let B(1) denote B ⊕B with odd grading βB⊕B(a, b) = (b, a).

Let H : A→M(B) defined by C such that δ∞ ◦H is unitarily equivalent to H

and is non-degenerate.

Let s, t isometries in H(A)′ ∩M(B) with ss∗ + tt∗ = 1.

H1 := H(·)⊕H(·) : A→M(B ⊕B) =M(B)⊕M(B).

(o) CPnuc(A,B) is countably generated if A is separable and B is σ-unital.

(i) There is a natural grading preserving isomorphism B(1)
∼= B⊗̂C(1), and

the graded standard Hilbert B(1)-module ĤB(1)
is isomorphic to the B⊕B-

module B ⊕B with standard odd grading S(x, y) = (y, x).

Furthermore, K(B(1)) ∼= B(1), and L(B(1)) = M(B(1)) = M(B)(1).

(i.e., M(B)⊕M(B) with standard odd grading).

There is a grading-preserving unitary B(1)-module monomorphism γ

from B(1) ⊕B(1)
B(1) onto B(1) that induces the Cuntz addition ⊕ on

M(B)⊕M(B), i.e.,

M(γ)((F1, G1)⊕B⊕B (F2, G2)) = (sF1s
∗ + tF2t

∗, sG1s
∗ + tG2t

∗)

for (F1, G1), (F2, G2) ∈M(B)⊕M(B).

The morphism H1 : a ∈ A 7→ H(a) ⊕H(a) ∈ M(B) ⊕M(B) defines

a degenerate element (B(1), H1, 1⊕ (−1)) ∈ E(C; A,B(1)).

(iii) The isomorphism classes of the Kasparov B(1)-modules (B(1), H1, U), with

self-adjoint unitary U define a sub-semigroup Sp of E(C; A,B(1))/ ≈u,

such that the in E(C; A,B(1))/ ≈u defined addition

[(B(1), H1, U1)] + [(B(1), H1, U2)] := [(B(1), H1, U3)]

is realized by Cuntz addition (U1, U2) 7→ U3 := SU1S
∗ + TU2T

∗, where

S := (s, s) and T = (t, t).
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It holds U = (1 − 2p, 2p − 1) with (1 − U)/2 =: p = p∗ = p2 if and

only if [p,H(A)] ⊆ B.

The semigroup morphism from Sp into

KKh(C; A,B(1)) := E(C; A,B(1))/ ∼h

is an epimorphism.

(iv) If we consider B as graded Hilbert B-module with even grading given by

the symmetry I = ss∗ − tt∗ ∈ M(B), then ĤB ∼= B. If V ∈ M(B)

is a selfadjoint unitary, then (B,H, V ) is in E(C; A,B) if and only if

U := s∗V t is a unitary with [U,H(A)] ⊆ B. Then V = sUt∗ + tU∗s∗.

The isomorphism classes of the Kasparov B-modules

(B,H, sUt∗ + tU∗s∗) ,

where U is a unitary in M(B) with [U,H(A)] ⊆ B build a sub-semigroup

Su of E(C; A,B)/≈u, such that the addition

[(B,H, sU1t
∗ + tU∗1 s

∗)] + [(B,H, sU2t
∗ + tU∗2 s

∗)] = [(B,H, sU3t
∗ + tU∗3 s

∗)]

in E(C; A,B(1))/≈u is realized by Cuntz addition

(U1, U2) 7→ U3 := sU1s
∗ + tU2t

∗ .

The semigroup morphism from Su into

KKh(C; A,B) := E(C; A,B)/ ∼h

is an epimorphism.

Proof. (o): ?????????????

The m.o.c. cone CPnuc(A,B) is countably generated if A is separable and B is

σ-unital, because it is generated by the c.p. map Vϕ,e(a) := ϕ(a)e, where e ∈ B+

is a strictly positive contraction and ϕ ∈ A∗+ is a faithful positive functional.

(i): Since B is stable, there are isometries s1, s2, . . . ∈ M(B) with
∑
sns
∗
n

strictly convergent to 1, cf. Remark 5.1.1(8). Then µ(b) := (s1b, s2b, . . .) defines an

isometric B-module isomorphism from B onto HB with inverse µ−1(b1, b2, . . .) =∑
n s
∗
nbn.

HB(1)
is HB⊕B with grading given by

((x1, y1), (x1, y2), . . .) 7→ ((y1, x1), (y1, x2), . . .) ,

and HB⊕B is B ⊕B-module isomorphic to HB ⊕∞ HB by

((x1, y1), (x1, y2), . . .) 7→ ((x1, x2, . . .), (y1, y2, . . .))

This isomorphism becomes grading-preserving if we take onHB⊕∞HB the standard

odd grading (x, y) 7→ (y, x). It follows that HB(1)
is isomorphic to B ⊕B with odd

grading β(x, y) = (y, x).

Thus ĤB(1)
∼= (B ⊕ B) ⊕B⊕B (B ⊕ B) with grading β((x1, y1), (x2, y2)) :=

((y1, x1), (−y2,−x2)).
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Since B is stable, M(B) contains a copy

C∗(s, t ; ss∗ + tt∗ = s∗s = t∗t = 1)

of O2 unitally. The map ν((x1, y1), (x1, y2)) := (sx1 + tx2, sy1 − ty2) defines a

grading preserving B(1)-module map from (B ⊕B)⊕B⊕B (B ⊕B) with grading β

onto B(1).

Clearly L(B(1)) =M(B(1)) =M(B)(1) and K(B(1)) = B(1).

Since B is trivially graded, the graded tensor product B⊗̂C(1) is isomorphic to

B ⊗ (C⊕C) with grading idB ⊗α, where α(z1, z2) = (z2, z1) is the grading of C(1).

Thus, B⊗̂C(1)
∼= B(1) in this case.

(ii):

(iii):

(iv): �

The next proposition implies that relations ∼c, ∼oh and ∼h on E(C; A,B)

are the same if A is separable and B is σ-unital. We use the above introduced

conventions on the extensions of the m.o.c. cone C.

Proposition 8.2.5. Suppose that A,B,C are σ-unital graded C*-algebras,

where A is separable, and let C ⊆ CP(A,B) and C1 ⊆ C2 ⊆ CP(B,C) denote non-

degenerate countably generated point-norm closed matricial operator-convex cones

with C ◦ βA ⊆ C, βB ◦ C ⊆ C, Cj ◦ βB ⊆ Cj and βC ◦ Cj ⊆ Cj for j = 1, 2.

(i) The Kasparov product

[(E′, φ′, F ′)] ◦ [(E, φ, F )] = [(E′⊗̂BE , φ(·)⊗̂B1 , , F ′]F )]

defines a bi-additive map

KKoh(C; A,B)×KKoh(C2, B,C) 7→ KKoh(C2 ◦ C; A,C) .

The natural injections B ∼= C ⊗ p11 ⊆ B and C ∼= C ⊗ p11 ⊆ C ⊗
K define isomorphisms from KKoh(C2 ; B ⊗ K, C) onto KKoh(C2 ; B,C)

respectively from KKoh(C2 ; B,C) onto KKoh(C2 ; B,C ⊗K).

(ii) The Kasparov C-group KK(C; A,B) := Gr(E(C; A,B)/ ∼scp) is homotopy

invariant in the – stronger – sense that the natural epimorphisms

KKc(C; A,B)→ KKoh(C; A,B)→ KKh(C; A,B)

and the natural monomorphism KKc(C; A,B) ↪→ KK(C; A,B) are iso-

morphisms.

The groups KK(C ⊗ CP(C[0, 1],C); C([0, 1], A), B), KK(C; A,B) and

KK(C([0, 1]); A,C([0, 1], B)) are naturally isomorphic.

In particular, our above defined bi-functor

KKnuc(A,B) = KK(CPnuc(A,B); A,B)
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is homotopy invariant, and coincides with the KKnuc-functor of Skandalis

[726]. Therefore KKnuc(A,B) is stable and is half exact (on semi-split

short exact sequences) in each variable.

(iii) There are natural isomorphisms

KK(C; A,B(1)) ∼= KK(C; A,SB) ∼= KK(C; SA,B),

KK(C; A⊗K, B) ∼= KK(C; A,B) ∼= KK(C; A,B ⊗K) .

In particular,

KKnuc(A,B(1)) ∼= KKnuc(A,SB) ∼= KKnuc(SA,B) .

Proof. To deduce the ???????

??

By the Kasparov product construction of an connection F1]F2, the Kasparov

module (E1⊗̂BE2 , φ1⊗̂B idE2
, F1]F2) exists (in E(A,C)) for (E1, φ1, F1) ∈

E(A,B) and (E2, φ2, F2) ∈ E(B,C), because A is separable. It is an element

in E(C2 ◦ C; A,C), if (E1, φ1, F1) ∈ E(C; A,B) and (E2, φ2, F2) ∈ E(C2 ; B,C),

cf. Proposition ?? where C2 ◦ C denotes the m.o.c. cone that is generated by the

compositions W ◦ V for V ∈ C and W ∈ C2.

Since the connection F1]F2 is uniquely defined up to operator homotopy, it

defines the desired bi-additive map from KKoh(C; A,B) × KKoh(C2 ; B,C) into

KKoh(C2 ◦ C; A,C).

(ii): By definition two elements Ej = (Ej , φj , Fj) ∈ E(C; A,B) (j = 0, 1)

are cobordant in E(C; A,B), if there are (E, φ,G) in E(C; A,B) and a partial

isometry v ∈ L(E) = M(K(E)) of degree 0, commuting with φ(A), such that

[v,G]φ(A) ⊆ K(E) and that the “restricted” Kasparov modules (E, φ,G)1−vv∗ :=

(pE, φ(·)|pE, pG|pE) and (E, φ,G)1−v∗v are (unitary) equivalent to E0 respectively

E1.

Then the system (E, φ,G, v) is a C–cobordism between E0 respectively E1 (inside

E(C; A,B)).

Inspections of the arguments in the proofs of [73, sec.17.10] shows that the

relation ∼c on E(C; A,B) is equivalent to the relation “cobordant” on E(C; A,B),

and that the relations ∼c is the same as ∼oh .

Indeed, the cobordism between 0 and (E, φ, F ) for a degenerate (E, φ, F ′) ∈
E(C; A,B) that is operator homotopic to (E, φ, F ) is given by (E⊗̂`2, φ⊗̂1, G, 1⊗̂T )

(where T ∈ L(`2) is the Toeplitz operator and G is suitable). It is also C–cobordism

in E(C; A,B) between 0 and (E, φ, F ).

(Note that it suffices to prove that elements E ∈ E(C; A,B) which are operator

homotopic to a degenerate element in E ∈ E(C; A,B) are also cobordant to (0, 0, 0),

because this implies that KKc(C; A,B) is a group with the same representatives

(−E) for the inverse elements of [E ]c as for [E ]oh, and then, that E ′ ∼oh E implies

that E ′ ⊕ (−E) ⊕ E1 ∼soh E2 for degenerate E1 and E2. Thus E ′ ⊕ (−E) ∼c 0 and

E ⊕ (−E) ∼c 0. Hence E ′ ∼oh E implies E ′ ∼c E by the cancelation property of ∼c.
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The relation ∼op is different from ∼c because Enuc(C; A,B)/∼op has in general

not cancelation.)

Since KKc(C; A,B) is a sub-semigroup of

KK(C; A,B) := Gr
(
E(C; A,B)/∼scp

)
that generates KK(C; A,B), it follows that the natural group morphism

KK(C; A,B)→ KKoh(C; A,B)

is an isomorphism, i.e., our maximal group KK(C; A,B) = Gr
(
E(C; A,B)/∼scp

)
is naturally isomorphic to

KKoh(C; A,B) := Gr(E(C; A,B)/∼oh))

if A is separable and B is σ-unital.

If the invariance of the classes in KK(C; A,B) under unitary homotopy of its

representatives in E(C; A,B) is established for all separable A and all σ-unital B

and all (point-norm closed non-degenerate) operator-convex cones C ⊆ CP(A,B),

then Kasparov’s proof of the homotopy-invariance works also for KK(C; A,B) and

its special cases KKnuc(A,B) and KKnuc(X; A,B) :

Then one can use the (formally larger) classes of Kasparov modules (E, φ, F ) ∈
E(C; A,B) given by by the equivalence relation ∼oh (i.e., given by unitary isomor-

phisms and operator homotopy) on E(C; A,B).

This allows to use Kasparov products to show finally the homotopy invariance.

The Kasparov product reduces its proof to Lemma 8.2.3(vi) as follows:

shorten/complete above and below given arguments ??

The homotopy invariance of KK(C; A,B) = KKoh(C; A,B) finally follows from

Lemma 8.2.3(vi). Indeed, let

E := (E, φ, F ) = {(Et, φt, Ft)} ∈ E(CP(C,C[0, 1])⊗ C; A,C([0, 1], B)) .

The Kasparov modules (Et, φt, Ft) = χBt (E, φ, F ) define the same element

[(Et, φt, Ft)] = (χBt )∗[(E, φ, F )] of KK(C; A,B) for t ∈ [0, 1].

This is because, for t ∈ [0, 1], [χt − 0] = [χ1 − 0] ∈ KK(C[0, 1],C) and

(χBt )∗[(E, φ, F )] is the the same as the Kasparov product

[E ]⊗B⊗C[0,1] [(B,χBt , 0)] = [E ]⊗ τB([χt − 0]) .

Notice here that the smallest point-norm closed m.o.c. cone Cmin(C[0, 1],C)

that contains all characters

χt : f ∈ C[0, 1] 7→ f(t) ∈ C

is nothing else all of CP(C[0, 1],C) ∼= C[0, 1]∗+

The m.o.c. cone CPin(B,B) of all approximately inner c.p. maps V from B to

B is generated by the identity map idB of B, and has the property that for each

point-norm closed m.o.c. cone C ⊆ CP(A,B) holds CPin(B,B) ◦ C = C.
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check above and below formula!

Let C(1) := CPin(B,B)⊗̂CP(C[0, 1],C) ⊆ B⊗?????? the m.o.c. cone tensor

product generated by { idB ⊗χt } in CP(B ⊗C[0, 1], B), i.e., the point-norm closed

m.o.c. cone that is generated by idB ⊗CP(C[0, 1],C) and CP(C[0, 1],C).

This construction reduces the proof of homotopy invariance of general

KK(C; A,B) to the check of the homotopy invariance of KK(C(1) ; B[0, 1], B),

which in turn reduces to KK(C[0, 1],C) ∼= Z.

(iii): ????????

Part (i????) of ??????????

implies in particular, that our KKnuc-groups are the same as those of Skandalis,

[726]. Then periodicity (ii) comes now in the same way as it comes for Kasparov’s

KK-functor.

But there is ???????????? �

The following Proposition 8.2.6 is crucial for the later needed corollaries of the

homotopy invariance of our groups Ext(C; A,B). Therefore, we give a detailed

proof, that uses the natural isomorphism KKc(C; A,B(1)) ∼= KKh(C; A,B(1)) and

the isomorphism from Ext(C; A,B) onto the kernel ( 8 ) of the group homomorphism

K0(H0(A⊗K)′ ∩Qs(B))→ K0(Qs(B)) .

Proposition 8.2.6. Suppose that A is separable and stable, that B is σ-

unital and stable, that both are trivially graded, and let C ⊆ CP(A,B) a point-norm

closed matrix operator-convex cone that is countably generated, non-degenerate and

faithful.

(i) Ext(C; A,B) is naturally isomorphic to KK(C; A,B(1)), such that the iso-

morphism Φ(C; A,B) from Ext(C; A,B) onto KK(C; A,B(1)) satisfies

Φ(δ ◦ C; A,C) ◦ δ∗ = (δ(1))∗ ◦ Φ(C ;A,B)

and

Φ(C ◦ γ; A1, B) ◦ γ∗ = γ∗ ◦ Φ(C ◦ γ; A1, B)

for isomorphisms δ : B → C and γ : A1 → A.

In particular, Extnuc(A,B) is naturally isomorphic to KKnuc(A,B(1)).

(ii) Ext(C(R+); A,C0(R+, B)) ∼= 0.

In particular, Extnuc(A,C0(R+, B)) ∼= 0.

(iii) KK(C(R+); A,C0(R+, B)) ∼= 0.

(iv) Let H0 : A → Qs(B) the canonical C*-morphism associated to C and

S, T ∈ H(D)′ ∩ M(B) isometries with SS∗ + TT ∗ = 1. Consider the

isometries s := πB(S) and t := πB(T ) in H0(A)′ ∩Qs(B).

8 Notice that Ext(A,B) is not equal to K0(H0(A⊗K)′ ∩Qs(B)) itself. But one can calculate

Ext(A,B) as quotient by its subgroup K0(Ann(H0(A ⊗ K),Qs(B))). Use Lemma 4.2.20(o) to

compare it with our definition.
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Then there exists a constant γ(C) < ∞ such that for each unitary

u ∈ U0(H0(D)′∩Qs(B)) the geodesic distance cel(sus∗+tt∗) of the unitary

sus∗ + tt∗ to 1 inside U0(H0(D)′ ∩Qs(B)), satisfies

cel(sus∗ + tt∗) ≤ γ(C) .

Proof. Recall that C := CPnuc(A,B) is singly generated, non-degenerate and

faithful if A is separable and B is σ-unital, because V := ρ(·)b0 is a generates

CPnuc(A,B) as m.o.c. cone if ρ ∈ A∗+ is a faithful positive functional on A and b0 ∈
B+ is a strictly positive element. (The more general m.o.c. cones CPrn(X;A,B) are

often not countably generated despite CPrn(X; A,B) itself is a matrix-hereditary

sub-cone of CPnuc(A,B).)

Notice that CPnuc(A,B) ⊗ CP(C,D) = CPnuc(A ⊗ C,B ⊗ D) for all nuclear

C *-algebras C and D by the local characterization in Proposition ??, and that

KKnuc(A,B⊗̂C) = KK
(
CPnuc(A,B ⊗ C); A,B⊗̂C

)
for all (graded) separable nu-

clear C. Further recall that

Extnuc(A,B) := Gr(SExtnuc(A,B)) ∼= Ext(CPnuc(A,B); A,B) ,

with SExtnuc(A,B) := [Homl-nuc(A,Q(B ⊗ K))] ∼= SExt(CPnuc(A,B); A,B), and

KKnuc(A,B) = KK(CPnuc(A,B); A,B) right from the definitions.

We proceed with the KK(C; ·, ·) and Ext(C; ·, ·) for general countably generates

point norm closed m.o.c. cones C ⊆ CP(A,B).

It follows that there is a natural isomorphism from KK(C; A,B(1)) onto

Ext(C; A,B) for separable stable A, σ-unital stable B, (both trivially graded),

with countably generated non-degenerate and faithful m.o.c. cone C ⊆ CP(A,B).

It covers also the cases C := CPnuc(A,B) and C := CPrn(X;A,B), i.e., it suffices to

consider the (more general) case of a non-degenerate faithful countably generated

m.o.c. cone C in place of CPnuc(A,B).

(i): Life could be easier if a simply and elementary argument would show that

the stabilization ∼ of the relation that are given by unitary equivalence and by ψ-

“compact” perturbations on the below considered pairs (ψ, q) with ψ : A→M(B)

weakly C-compatible and q ∈M(B) a projection with qψ(a)−ψ(a)q ∈ B (equipped

with with Cuntz addition ⊕ := ⊕S,T with a suitable copy C∗(S, T ) of O2) are the

same as the stabilization of relations induced on them by considering them modulo

B ⊗ K (up to unitary equivalence), i.e., as the corresponding classes of elements

that build our Ext(C; A,B) defined in Definition 5.8.2. The critical point is, that

one has to make sure that the relation ∼ is weak enough such that πB(p1φ1(·)p1) =

πB(p2φ2(·)p2) implies (φ1, p1) ∼ (φ2, p2).

In our approach we use that KKc(C; A,B(1)) = KKh(C; A,B(1)) to get the

relation (ψ1, p1) ∼ (ψ2, p2) from the homotopy invariance of KKc(C; A,B(1)).

check next remark, give cross-ref
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By Lemma 5.9.14, the general defining relations for classes of representing

elements (φ, p) that build the elements of Ext(C; A,B) are:

(φ0, p0) ∼ (φ1, p1) ⇔ ∃ (ψ0, 1), (ψ1, 1), ∃U ∈M(B) : (2.1)

∀a ∈ A : p0φ0(a)p0 ⊕ ψ0(a)− U∗(p0φ1(a)p0 ⊕ ψ1(a))U ∈ B . (2.2)

Here ⊕ means Cuntz-addition in M(B).

From Lemma 5.9.14: Recall:

Let C ⊆ CP(A,B) is a countably generated point-norm closed matrix operator-

convex cone. We denote by S the set of pairs (ϕ, p), where ϕ : A → M(B) is a

C *-morphism with b∗ϕ(·)b ∈ C for all b ∈ B and p ∈ M(B) is a projection that

satisfies ϕ(a)p− pϕ(a) ∈ B for all a ∈ A.

We denote by [S] the set of unitary equivalence classes [(ϕ, p)] by unitaries in

M(B).

An element (ϕ, p) ∈ S is degenerate if pϕ(a) = ϕ(a)p for all a ∈ A.

(i) [S] is a commutative semigroup (with Cuntz-Addition on maps and pro-

jections).

(ii) The map [ϕ, p] 7→ πB(ϕ(·)p) ∈ Hom(A,Q(B)) defines an additive semi-

group morphism ϑ from [S] onto SExt(C; A,B). The image of ϑ contains

[0] + SExt(C; A,B).

(iii) The map S → Ext(C; A,B) induces an equivalence relation ∼ on S that

is compatible with Cuntz addition and is generated by the following op-

erations and relations:

(a) unitary equivalence by unitaries inM(B), i.e., (ϕ, p) ∼ (ψ, q) if there

is a unitary u ∈M(B) with ψ = u∗ϕ(·)u and q = u∗pu ,

(b) addition (ϕ⊕ψ, p⊕ q) of degenerate elements (ψ, q) ∈ S to elements

(ϕ, p) ∈ S , i.e., (ϕ⊕ ψ, p⊕ q) ∼ (ϕ, p) , and

(c) unitary perturbation: (ϕ, p) ∼ (ϕ, q) if there is b∗ = b ∈ M(B) such

that ϕ(a)b− bϕ(a) ∈ B and (p− e−ibqeib)ϕ(a) ∈ B for all a ∈ A.

(iv) The natural semigroup morphism from SExt(C; A,B) into Ext(C; A,B)

is an epimorphism.

(v) If C is countably generated and non-degenerate, and if H : A⊗K→M(B)

is as in Corollary 5.4.4, then the unitary equivalence classes [(H(·), p)] ∈
[S] with p = TT ∗ for some isometry T ∈ M(B) build a sub-semigroup

[P] of [S] such that ϑ maps [P] onto Ext(C;A,B).

Recall that almost directly from the definitions one can see that there are

natural isomorphisms Ext(C; A,B) ∼= Ext(C; A ⊗ K, B ⊗ K) (in particular this

happens for Extnuc), see cf. Proposition 5.9.25.

One direction of the proof (such as in [73, 17.6]) is almost trivial, as the reader

can see from the last part of our proof. But for the other direction we make two

times very essential use of the homotopy invariance of KK(C; A,B(1)), and use

the trivial isomorphism C([0, 1], B(1)) ∼= C([0, 1], B)(1). Our proof is a compromise



880 8. THE ISOMORPHISM OF KK(C; A,B) AND Ext(SC; A,SB)

between the suggestions in [73] before [73, prop. 17.6.5] and the detailed exposition

in [389, chp. 3] (both for ordinary KK and Ext).

We make use of the stability of the bi-functors KK(C; ·, ·) and Ext(C; ·, ·) to get

a constructive picture, that allows to see the C-compatibility of all constructions.

In particular, we suppose from now on that B is stable and σ-unital, and let D :=

A⊗K, E := Q(B) :=M(B)/B that is naturally isomorphic to Qs(B) (because B

is stable).

Remark 5.8.7 and ?????????????????? ??

show that there are natural isomorphisms

Extnuc(A,B) ∼= Extnuc(D,B) ∼= G(H0 ; D,E) ,

respectively,

Ext(C; A,B) ∼= Ext(C ⊗ CP(K,C); D,B) ∼= G(H0 ; D,E) ,

where C is naturally extended to D = A ⊗ K as C ⊗ CP(K,C) ⊆ CP(D,B),

H0 = πB ◦ H1, and H1 : D → M(B) is an infinite repeat of a faithful non-

degenerate representation of D inM(K) ⊆M(B) (compare Corollary 5.4.10 in case

C = CPnuc(D,B)), or where H1 : D → M(B) is constructed from the countably

generated cone C by Corollary 5.4.4. Thus, there is a copy of O2 unitally contained

in the commutant of H1(D) inM(B) by Lemma 5.1.2(ii), i.e., H0(D)′∩E contains

a unitally liftable copy of O2. By Proposition 4.4.3(i), G(H0 ; D,E) is naturally

isomorphic to the kernel of K0(H0(D)′ ∩ E)→ K0(E) .

Furthermore, since C := H0(D)′ ∩ E contains a unitally liftable copy of O2,

every element of this kernel has a representative q = p+B ∈ C which comes from

a projection p ∈ M(B), because q = q′ ⊕ 1 ⊕ 0 is unitarily equivalent to 1 ⊕ 0 by

a unitary u ∈ U0(E) = πB(U(M(B))) if [q′] = 0 in E, but [q] = [q′] in K0(C),

cf. Lemma 4.2.6(iv,b).

Thus the representatives are projections p ∈M(B) with pH1(a)−H1(a)p ∈ B
for every a ∈ D. By Lemma 4.2.6(i), the addition in K0(H0(D)′∩E) coincides with

the Cuntz addition (if we use a unital copy of O2 in E that commutes element-wise

with H0(D)). Let

P := {p ∈M(B) ; p = p∗ = p2 , [p,H1(a)] ∈ B ∀ a ∈ A } .

The set P is closed under Cuntz addition defined by a unital copy of O2 in

H1(D)′ ∩M(B) , and it is invariant under unitary equivalence by unitaries in the

commutant of H1(D) in M(B) and, more generally, by unitaries in π−1
B (H0(D)′ ∩

Qs(B)). Therefore, the unitary equivalence classes of projections in P by unita-

ries in H1(D)′ ∩M(B) build a semigroup by Proposition 4.3.2. This semigroup

maps additively onto Ext(C; D,B) (respectively onto Extnuc(D,B)) by the above

consideration.

We are now going to describe the equivalence relation which is induced by this

additive map into K0(C):
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By Lemma 4.2.6(iv,b), two representatives p and p′ define the same element of

K0(H0(D)′ ∩E) if and only if the Cuntz sums 0⊕ p⊕ 1 and 0⊕ p′⊕ 1 are unitarily

equivalent modulo B by a unitary u ∈M(B) that can be connected to 1 by a norm-

continuous path ξ ∈ [0, 1] 7→ u(ξ) ∈ M(B) of unitaries u(ξ) which all commute

element-wise with the image of H1 modulo B. Another equivalent condition is:

0 ⊕ p ⊕ 1 and 0 ⊕ p′ ⊕ 1 are (norm-)homotopic in the set P (the projections q of

M(B) with qH1(a) − H1(a)q ∈ B for every a ∈ D). (Because the latter implies

that their images in C := H0(D)′ ∩ E are homotopic inside the projections of C.)

But a more delicate description of the equivalence relation on P induced by

P → K0(H0(D)′ ∩ E) comes from Propositions 5.5.12 and 4.4.3:

The *-morphism H0 : D → E dominates zero, because H1(D) + B is sta-

ble, cf. Proposition 5.5.12(ii). Projections p, p′ ∈ P define the same class in

K0(H0(D)′ ∩ E), if and only if, there is a unitary u ∈ M(B) such that [u,H1(a)]

and (u∗(p′ ⊕ 1⊕ 0)u− (p⊕ 1⊕ 0))H1(a) are in B for every a ∈ D , cf. Proposition

4.4.3(iii).

By obvious reasons (e.g. consider the given map from P into K0(H0(D)′ ∩ E)

itself), the corresponding equivalence relations on P are compatible with Cuntz

addition.

Now we define a semigroup epimorphism from ([P],+) onto KKnuc(A,B(1)) =

KKnuc(D,B(1)) . (We show later that this map induces the same equivalence rela-

tions as the map from [P] to K1(C).)

As in [73, 17.6.4], one can see that the elements of KK(C; D,B(1)) (respectively

of KKnuc(D,B(1))) can be represented by (HB ⊕∞ HB , φ,G) where

HB := {(b1, b2, . . .) ; bn ∈ B,
∑

b∗nbn ∈ B}

and the grading is given by β(x, y) = (y, x) for x, y ∈ HB , φ is weakly C-compatible

(respectively is nuclear), and G is a selfadjoint unitary in L(HB⊕∞HB) =M(B)⊕
M(B) = M(B)(1) of degree one. Thus, G = (U,−U), U = U∗ = U−1 ∈ M(B),

and φ(a)(x, y) = (φ1(a)x, φ2(a)y) satisfies ψ := φ1 = φ2.

The passage to a selfadjoint unitary G ∈ M(B)(1) respects unitary

isomorphism classes and is additive on E(C; D,B(1))/ ≈u (respectively in

Enuc(D,B(1))/ ≈u), the operation is compatible with “compact” perturbations and

transforms each homotopy into a homotopy. The same happens with the passage

from a graded B(1)-module E and φ : D → L(E) to ψ : D → HB ⊕HB with help of

Kasparov stabilization: (E, φ, F ) ⊕ ((HB)(1), 0, 1) ≈ ((HB)(1), φ
′, F ′) for suitable

weakly C-compatible φ′ : D → L((HB)(1))

???????.

??

But then Hilbert B-module addition becomes Cuntz addition with a unital

copy of O2 with degree zero generators. Thus the equivalence relations from our

definition becomes unitary equivalence with an unitary of degree zero and compact

perturbation, i.e., passage to an selfadjoint unitary F ′ with degree = 1 and (F ′ −
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F )φ(D) ⊆ B. KK(C; D,B) is then again the Grothendieck group of the semigroup

which is defined by this equivalence classes.

It follows L(HB ⊕HB) =M(B)⊕M(B), φ = ψ⊕ψ and F = (1− 2q, 2q− 1),

where ψ : D →M(B) is a weakly nuclear (possibly degenerate) C *-morphism and

q is a projection in M(B) with qψ(a) − ψ(a)q for all a ∈ D. Conversely (E, φ, F )

is in Enuc(D,B) if E := HB ⊕HB , φ := ψ ⊕ ψ and F = (1 − 2q, 2q − 1) for every

pair (ψ, q) with weakly nuclear (respectively ψ ∈ C) ψ : D →M(B) and projection

p ∈M(B) such that qψ(a)− ψ(a)q for all a ∈ D.

The addition in KK(C; D,B(1)) agrees under this identification with the Cuntz

addition of the projections q and of the homomorphisms ψ. Isomorphisms become

unitary equivalences and “compact” perturbation means passage to a projection

p′ ∈ M(B) with (p′ − p)ψ(D) ∈ B. Therefore (H1, 1) and (H1, 0) represent the

zero element, and we can represent the elements of KK(C; D,B(1)) by the elements

(ψ ⊕H1, q ⊕ 1). Let ψτ : D →M(B) be a point-norm continuous family of weakly

nuclear C *-morphisms and let p ∈M(B) be a projection such that ψτ (a)− ψ0(a)

and [ψ0(a), p] are in B for all a ∈ D and τ ∈ [0, 1]. Then the homotopy invariance

of the KKnuc-functor implies that (ψ0, p) and (ψ1, p) represent the same element of

KK(C; D,B(1)).

By Theorem 5.6.2(ii) – applied to C := H1(A) and T = ψ ◦ (H−1
1 ) –, we

find a norm-continuous map t 7→ U(t) into the unitaries of M(B) such that

U(t)∗H1(a)U(t)− (ψ(a)⊕H1(a)) ∈ B for t ∈ R+ and

lim
t→∞

‖U(t)∗H1(a)U(t)− (ψ(a)⊕H1(a))‖ = 0

for a ∈ A. Thus (U(0)∗H1U(0), q ⊕ 1) and (ψ ⊕ H1, q ⊕ 1) represent the same

element of KK(C; D,B(1)) ∼= KK(C; A,B(1)) . But (U(0)∗H1U(0), q⊕1) is unitarily

equivalent to (H1, p) where p := U(0)(q⊕1)U(0)∗, and p is in P. Thus every element

of KK(C; D,B(1)) can be represented by (H1, p), where p ∈ P.

Conversely, the maps

p ∈ P 7→ (H1, p) 7→ (HB ⊕HB , H0 ⊕H0, (1− 2p, 2p− 1))

define together an additive map from P onto E(C; D,B(1)).

If we use the copy of O2 in the commutant of H1(D), then (H1, p ⊕ 1 ⊕ 0) is

nothing else (H1 ⊕H1 ⊕H1, p⊕ 1⊕ 0), and represents therefore the same element

of KK(C; D,B(1)) as it (H1, p) does.

Let p, p′ ∈ P. If t ∈ [0, 1] 7→ u(t) is a norm-continuous map into the uni-

taries which element-wise commutes with H1(D) modulo B, and if u(0) = 1 p′ −
u(1)∗pu(1) ∈ B then (H1, p) and (H1, p

′) define the same element of KK(C; D,B(1))

because it defines a homotopy in the nuclear Kasparov modules followed by a “com-

pact” perturbation.

So far we have seen that p ∈ P 7→ (HB ⊕HB , H1⊕H1, (1− 2p, 2p− 1)) defines

a group epimorphism from Extnuc(D,B) onto KK(C; D,B(1)).
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It remains to show that the kernel is trivial, i.e., that [p] = 0 in K0(H0(D)′ ∩
Qs(B)) if (H1, p) represents the zero of KK(C; D,B(1)).

If (H1, p) represents zero, then there is a pair (ψ, q) and a unitary u0 ∈M(B)

such that H1 ⊕ ψ = u0ψu
∗
0 and u0qu

∗
0 is a H1 ⊕ ψ-“compact” perturbation of

p⊕ q. We add to this relations the pair (H1, 1). By Proposition 4.3.2 and Theorem

5.6.2(ii) (applied to C := H1(A) and T := ψ ◦H−1
1 ), we find then unitaries u1 and

u2 such that H1 ⊕ (ψ ⊕ H1) = u1(ψ ⊕ H1)u∗1, u∗2H1(a)u2 − (ψ ⊕ H1)(a) ∈ B for

a ∈ D, and such that u1(q ⊕ 1)u∗1 is a H1 ⊕ (ψ ⊕ H1)-“compact” perturbation of

p⊕ (q ⊕ 1).

Now we consider the relations modulo B in E := Qs(B) := cM(B)/B, and

let vj := πB(uj), ϕ := πB ◦ ψ, p′ := πB(p) and q′ := πB(q). Note that H0 ⊕
H0 = H0, if we use a copy of O2 in H0(D)′ ∩ Qs(B). We get v∗2H0v2 = ϕ ⊕ H0,

v∗1(1⊕ v2)∗H0(1⊕ v2)v1 = v∗2H0v2 and(
(q′ ⊕ 1)− v∗1(p′ ⊕ (q′ ⊕ 1))v1

)
· v∗2H0v2 = {0} .

It follows that the unitary w := (1⊕v2)v1v
∗
2 and the projection r := v2(q′⊕1)v∗2

are in H0(D)′ ∩E, and that (r−w∗(p′⊕ r)w)H0(D) = {0}. Let p1 := w∗(p′⊕ r)w.

If π denotes the quotient map, then It gives [p1] = [r] = 0 in K0(Qs(B)) and

(p1 − r))H0(D) = 0, [π(p)] = [p′] = [p1]− [r] in K0(H0(D)′ ∩Qs(B)).

By Proposition 4.4.3(iii), [p1] = [r] in K0(H0(D)′ ∩Qs(B)), because H0 domi-

nates zero. Thus [π(p)] = 0 in K0(H0(D)′ ∩Qs(B)).

(ii): The functor

Y 7→ Ext(C(Y ); A,C0(Y,B)) ∼= KK(C(Y ); A,C0(Y,B)(1))

is homotopy invariant, because C0(Y,B)(1) = C0(Y,B(1)) and the map Y 7→
KK(C(Y ); A,C0(Y,C)) is homotopy invariant for each non-degenerate point-norm

closed m.o.c. cone C ⊆ CP(A,C) for any graded σ-unital graded C *-algebra C, by

Proposition 8.2.5.

(iii): Ext(C(R+); A,C0(R+, B)) ∼= 0 follows from (ii), because C0(R+, B(1)) is

a contractible.

(iv):

TEXT of (iv):

Let H0 : A → Qs(B) denote the canonical C *-morphism associated to C and

S, T ∈ H(D)′ ∩M(B) isometries with SS∗ + TT ∗ = 1. Consider the isometries

s := πB(S) and t := πB(T ) in H0(A)′ ∩Qs(B).

Then there exists a constant γ(C) < ∞ such that for each unitary u ∈
U0(H0(D)′ ∩Qs(B)) the geodesic distance cel(sus∗ + tt∗) of the unitary sus∗ + tt∗

to 1 inside U0(H0(D)′ ∩Qs(B)), satisfies

cel(sus∗ + tt∗) ≤ γ(C) .
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Proof, To be filled in ?? �

Next Corollary 8.2.7 is important and has to be checked: ?? Move

parts of the Cor. (8.b2) to proof !!!

Recall Definitions (4.2) and (4.3) for a C *-subalgebra C ⊆ D of a C *-algebra

D and an ideal I / D of D: The derivation C*-subalgebra Der(C, I) ⊆ E is defined

by

Der(C, I) := {e ∈ D ; ea− ae ∈ I ∀ a ∈ C} ,

and the normalizer C*-subalgebra N (C, I) ⊆ E is defined as the hereditary C *-

subalgebra

N (C, I) := {e ∈ D ; ea, ae ∈ I ∀ a ∈ C} .

The definitions show that I ⊆ N (C, I) and that N (C, I) is a closed ideal of

Der(C, I).

Corollary 8.2.7. Suppose that A and B are stable C*-algebras (with trivial

gradings βA = idA and βB = idB), A is separable, B is σ-unital and that C ⊆
CP(A,B) is a non-degenerate m.o.c. cone that is countably generated.

Let H : A→M(B) a non-degenerate C*-morphism with δ∞◦H unitarily equiv-

alent to H such that Vb : a ∈ A 7→ b∗H(a)b is in C for each b ∈ B and the c.p. maps

{Vb ; b ∈ B} generate C, existing by Corollary 5.4.4.

Further let S, T ∈ H(A)′∩M(B) two isometries with SS∗+TT ∗ = 1 that exist

by Remark 5.1.1(8).

Define H0 : A→M(B)/B = Qs(B) by H0 := πB ◦H.

The group KK(C; A,B) is natural isomorphic to the kernel of the group mor-

phism

K1

(
H0(A)′ ∩Qs(B)

)
→ K1

(
Qs(B)

) ∼= K0(B) .

Alternatively, with D :=M(B) and C := H(A) and I := B, we get

KK(C; A,B) ∼= K1

(
Der(H(A), B)

)
.

The elements of KK(C; A,B) can be represented by unitaries in u ∈M(B) that

satisfy u ∈ Der(H(A), B).

Next has to be checked again!

It would be a dream. But not reality?

Two unitaries u, v ∈ Der(H(A), B) define the same element of KK(C ; A,B),

if and only if, there exist n ∈ N and f1, . . . , fn ∈ Der(H(A), B) with f∗j = −fj
(j = 1, . . . , n) and

(u∗v)⊕S,T 1 = exp(f1) · . . . · exp(fn) .

In particular, u ∈ U
(
Der(H(A), B)

)
represents the zero element, if and only if,

there exist n ∈ N and f1, . . . , fn ∈ Der(H(A), B) with f∗j = −fj (j = 1, . . . , n) and

u⊕S,T 1 = exp(f1) · . . . · exp(fn) .
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Proof. A description that is a straight reformulation of the picture coming

from the use of Kasparov modules and generalized Fredholm operators is given

by classes of elements F ∈ Der(H(A), B) with 1 − F ∗F, 1 − FF ∗ ∈ N (H(A), B),

i.e., F +N (H(A), B) is a unitary in Der(H(A), B)/N (H(A), B) and [F ] = [G] for

G ∈ Der(H(A), B) with 1−G∗G, 1−GG∗ ∈ N (H(A), B) if and only if (G∗F ⊕S,T
1) +N (H(A), B) is in U0(Der(H(A), B)/N (H(A), B)). The addition is defined by

[F1] + [F2] := [F1F2].

Equivalently expressed:

Vj := Fj +N (H(A), B) are unitaries in Der(H(A), B)/N (H(A), B).

And [F1] = [F2] if and only if (1⊕ V2)− (1⊕ V1) ∈ N (H(A), B)

???

Other approach ???

F1, F2 ∈ Der(H(A), B) with 1−F ∗j Fj , 1−FjF ∗j ∈ N (H(A), B) for some unitary

Fj +B = Vj ∈M(B)/B, and [F1] = [F2] if and only if

1− (V ∗1 V2 ⊕ 1) ∈ Ann(H0(A),Qs(B))

with ⊕ = ⊕πB(S),πB(T ), i.e., (V1 ⊕ 1)− (V2 ⊕ 1) ∈ Ann(H0(A),Qs(B)).

The equivalence follows from the fact that the hereditary C *-subalgebra

N (H(A), B) contains B and πB(N (H(A), B)) = Ann(H0(A),Qs(B)).

to be filled in ??

By assumptions, A and B are σ-unital, A is stable and H0 is non-degenerate.

It follows that the σ-unital C *-subalgebras B, H(A) and H(A) + B of M(B) are

stable by Remark 5.1.1(9).

It follows from ???? Prop. ?? ?? that there exist an isometry S1 ∈ M(B)

with S∗1H(A)S1 ⊆ B. Thus, V := πB(S1) ∈ Qs(B) is an isometry, V ∗V = 1, that

satisfies V ∗H0(A)V = {0}. In particular, Ann(H0(A)) := Ann(H0(A),Qs(B)) is a

full hereditary C *-subalgebra of Qs(B). It follows

K∗
(
(H0(A)′∩Qs(B))/Ann(H0(A))

) ∼= kernel{K∗
(
H0(A)′∩Qs(B)

)
→ K∗(Q

s(B))} .

We use that N (H(A), B) is a full hereditary C *-subalgebra ofM(B) and con-

tains B. If we apply Lemma 4.2.20 to them we obtain that there is a natural isomor-

phism from K∗
(
Der(H(A), B)/N (H(A), B)

)
onto the kernel of the homomorphism

K∗(Der(H(A), B)→ K∗(M(B))) induced by the inclusion Der(H(A), B) ⊆M(B).

Using that B ⊆ N (H(A), B) ⊆ Der(H(A), B) we obtain that

Der(H(A), B)/B = H0(A)′ ∩Qs(B) (2.3)

N (H(A), B)/B = Ann(H0(A),Qs(B)) . (2.4)
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Above we have seen that Ann(H0(A),Qs(B)) is full in Qs(B). All this together

yields

Der(H(A), B)/N (H(A), B) ∼= (H0(A)′ ∩Qs(B))/Ann(H0(A),Qs(B))

and that Ann(H0(A),Qs(B)) is a full hereditary C *-subalgebra of Qs(B) ... MORE

!!! ??? �

3. Ext(SC; A,SB) and KK(C; A,B) considered as K1-groups

We fix now a σ-unital C *-algebra B – later we suppose in addition that B is

stable (which plays in the formal notation no role). The separability is then needed

for emphour interpretation of the Kasparov product.

C-compatible we need ????

Let A an arbitrary separable C *-algebra and C ⊆ CP(A,B) a non-degenerate

countably generated point-norm closed matricial operator-convex cone (“m.o.c.

cone”). We define point-norm closed m.o.c. cones C(Y ) := C ⊗ CP(C,C0(Y ))

and C(Z, Y ) := C ⊗ CP(C0(Z),C0(Y )) ⊆ CP(C0(Z,A),C0(Y,B)) for the natural

extensions of C to the tensor products C0(Z,A) = A ⊗ C0(Z) with help of the

algebras C0(Z). This is compatible with our in Section 1 introduced canonical

extensions CD,E := C ⊗ CP(D,E) of C to a m.o.c. cone in CP(A ⊗ D,B ⊗ E).

In case Y = R we write sometimes SC in place of C(R), but mostly we simply

drop the specification to the spaces Y and Z and write simply C in place of C(Y )

or C(Z, Y ), – if it is visible to which considered spaces the m.o.c. cone has to be

canonically extended.

Recall from Chapter 3, Section ??, that the possible extension of C to a point-

norm closed m.o.c. cone in CP(A ⊗M,B ⊗ N) is unique if M and N are simple

and nuclear (cf. Chapter 3 exact refs ??). This applies in particular to the case

where M = K and N = K. We write also C for this extension C ⊗ CP(K,K) ⊆
CP(A⊗K, B ⊗K).

It is important to understand clearly that the definitions in Chapter 3 give not

“tensor products” in the usual algebraic or topological sense, because it are only

point norm closed m.o.c. cones that are “generated” by a set S of tensor products,

and the algebraic hull of this “tensors” is usually not dense in C(S).

Our below given results show that we only need to know that our func-

tors Y 7→ KKnuc(A,C0(Y,B)), or Y 7→ KKnuc(X; A,C0(Y,B)) respectively

Y 7→ KK(C(Y ); A,C0(Y,B)) exists (and are homotopy invariant with respect to

the locally compact spaces Y ) to get the needed facts for our later applications

of Extnuc, Extnuc(X; ·, ·), Ext(C; A, ·) and to the Rørdam groups R(C; A, ·) in the

proofs of Theorems B and M.
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For the proofs of the general results in Chapter 9 we even need only that

Ext(C(R+); A,C0(R+, B)) = 0 (respectively Extnuc(A,C0(R+, B)) = 0, respec-

tively Extnuc(X; A,C0(R+, B)) = 0). In fact, it would be enough to know that

Ext
(
C(S1,R+) ; D ⊗ Cb(S1) , B ⊗ C0(R+)

)
= 0

for D = A ⊗ K, because e.g. Extnuc(A,B) = Ext(C; A,B) take C = CPnuc(A,B),

and for Extnuc(X; A,B) take the cone CPrn(X; A,B) of ΨA-ΨB-residually nu-

clear maps from A to B, where A is separable, B is σ-unital, and the action

ΨB is (downward !) induced by an action of X on a separable non-degenerate

C *-subalgebra N ⊆ M(B) (which makes sure that CPrn(X; A,B) is countably

generated, cf. Chapter 3).

We know from Prop./Cor. in Chapter 3

Give exact references !!! ??

and Corollary 5.4.4 how to find a non-degenerate C *-morphism H : A ⊗ K →
M(B ⊗ K) which determines the point-norm closure of C – in the case of, closed

with respect to the point-norm topology, countably generated and non-degenerate

matrix operator-convex cones C ⊆ CP(A,B) and of separable A and σ-unital B.

find ref’s for above ??? ??

For example, if A and B are both separable, then C = CP(A,B) satisfies our

requirements on C, but CP(A,B) is in general not singly generated if A is separable

and B is only σ-unital.

We know from Corollary 5.6.1, cf. also Remark 5.1.1(8) and Lemma 5.1.2, that

we can find a strictly continuous unital *-monomorphismM(K) ↪→M(B⊗K) and

Next H1 is only related to C := CPnuc(D,B).

we use also the universal H1 : D := A ⊗ K →→ M(B) in ‘‘general

position’’ in the sense of Definition 3.3.1,

related to some specified C ⊆ CP(A,B)

that is ‘‘non-degenerate’’ and countably generated.

(... and ) for D := A ⊗ K a faithful *-monomorphism H1 : D → M(K) ⊆
M(B ⊗K) such that H1 is universal for the cone CPnuc(D,B) and that there is a

copy of O2 unitally contained in H1(D)′ ∩M(K) ⊆M(B ⊗K) . Here D := A⊗K.

The general bi-module to be considered for non-degenerate m.o.c. cones C ⊆
CP(A,B) is given by the universal H0 : D → M(B ⊗ K) in general position – in

the sense of Definition 3.3.1, with the property the c.p. maps d ∈ D 7→ e∗H0(d)e ∈
B ⊗K generates the natural extension of C to C ⊗CP(K,K) ⊆ CP(A⊗K, B ⊗K).

To simplify notation, let us assume again that B is stable in this section,

i.e., that B ∼= B ⊗ K. Further we suppose from now on that B is σ-unital, that

A ∼= D := A⊗K is stable and separable.

We know that there is a given non-degenerate C *-morphism H : D → M(B)

with δ ◦H unitarily equivalent to H, such that H corresponds to a non-degenerate
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countably generated m.o.c. cone C in the sense of Corollary 5.4.4. We fix H and C
from now on.

Suppose from now on that Y is a closed subspace of R2 . There is a natural

unital strictly continuous embedding

M(B) ∼= 1⊗M(B) ⊆ Cb,st(Y ∪ {∞},M(B)) ⊆M(C0(Y,B)) .

Let EY :=M(C0(Y,B))/C0(Y,B) and HY (a) := πC0(Y,B)(H(a)) ∈ EY for a ∈ D.

Then B ∼= C0({0}, B), H0 := H{0} = πB ◦H, HY (D)′ ∩EY contains a unital copy

of O2 that comes from a copy of O2 which is unitally contained in (1 ⊗H(D))′ ∩
M(C0(Y,B)). In particular, [HY ⊕HY ] = [HY ] for the unitary equivalence classes.

Further let C ⊆ CP(D,B) denote the point-norm closed m.o. convex cone, that is

generated by the maps Vb : a ∈ D 7→ b∗H(a)b (b ∈ B), and let

C(Y ) := C ⊗ CP(C,C0(Y )) ⊆ CP(D,B ⊗ C0(Y ))

denote the natural extension of C to a cone in CP(D,C0(Y,B)) (cf. Definition 3.6.16

and Corollary 3.6.20. Don’t mix it up with a sort of completion of algebraic sums

of tensors!).

Then Ext(C(Y ); A,C0(Y,B)) ∼= G(HY ; D,EY ) by Proposition ?? and Corol-

lary 5.4.4 by putting C(Y ) and HY : D → EY in place of C and H : D →M(B).

Now we introduce a construction that is needed in the proof of Lemma 8.3.2

and Corollary 8.3.3. The Lemma 8.3.2 will be used in the proof of Theorems B(i,ii)

and M(i,ii) in Chapter 9.

Note that Qs(SB) = Qs(C0(R, B)) = ER is naturally isomorphic to the pull-

back construction of the split epimorphisms π+
0 : E(+) → E(0) and π−0 : E(−) → E(0)

at t = 0, where E(+) := ER+ = Qs(C0(R+, B)), E(−) := ER− = Qs(C0(R−, B))

and E(0) := E{0} = Qs(B):

This results from the natural isomorphism Cb,st(Y,M(B)) ∼=M(C0(Y,B)) in

cases Y = R, Y = R+, Y = R− and Y = {0}, by dividing by C0(Y,B). The

restriction and evaluation maps are induced by the corresponding restriction and

evaluation of strictly continuous functions:

H : D →M(B) ∼= 1⊗M(B) goes into the constant functions of Cb,st(Y,M(B))

and then down to EY = Qs(C0(Y,B)). Therefore we must not always distin-

guish the various restrictions of “constant” elements in M(B) ⊆ Cb(Y,M(B)) ⊆
Cb,st(Y,M(B)) .

But the reader should not misunderstand the terminology “constant”, “re-

striction” and “evaluation”: The point-“evaluations” πt(b) can all be zero but

b ∈ Qs(SB) is non-zero, because that says only that b has a representative c ∈
Cb,st(R,M(B)) such that c(t) ∈ B for every t. In particular this happens for all

c ∈ Cb(R, B).

Notice that the C *-subalgebra of elements

c ∈M(Cb(X,B)) ∼= Cb,st(X,M(B)) ∼=M(C0(X,B))
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with πx(c) ∈ B for all x ∈ X for a non-discrete second countable locally compact

Hausdorff spaces X is always bigger than Cb(X,B) if B is σ-unital and stable.

The criterium for c ∈ Cb(X,B) is πx(c) ∈ B for all x ∈ X and x 7→ ‖πx(c)‖ is

an upper semi-continuous

As we have seen in Chapter 7, this does not imply that c is in Cb(R, B), and,

in particular, it does not mean that c is in C0(R, B). For example, the natural

embedding ε : M(B) → Qs(C0(Y,B)) of the constant functions into the stable

corona of C0(Y,B) will be defined as b ∈ M(B) 7→ b + C0(Y,B), i.e. ε(M(B)) =

M(B) + C0(Y,B). It is faithful for Y = R and Y = R+, but the kernel of πt ◦ ε is

B for every t ∈ Y . But this is just the nice property that we can explore now:

Remark 8.3.1. The algebra ER := Qs(SB) is a weak variant of a sort of

“pull-back” of epimorphisms π+
0 : E(+) → E(0) and π−0 : E(−) → E(0) if B is σ-

unital, where we use the natural identities and epimorphisms fromM(C0(R−, B)) =

M(Cb(R−, B))→M(B) and M(C0(R+, B)) =M(Cb(R−, B))→M(B)

We can define for unitaries U in M(B) that commute element-wise modulo B

with H(D), i.e., with UH(d)−H(d)U ∈ B for all d ∈ D, in an almost trivial way

a weakly nuclear (respectively weakly C-compatible) extensions hU : D → ER if H

is weakly nuclear (respectively H is weakly C-compatible).

More generally, we find in Ext(CH ; D,SB) = G(HR ; D,ER) extensions by the

following method:

ER is in a natural way isomorphic to the subalgebra of E(−) ⊕ E(+) which

consists of the pairs (e, f) with π−0 (e) = π+
0 (f), i.e., e = π−(g−) := πB(g−(0)),

f = π+(g+) := πB(g+(0)) for

gα ∈ Cb,st(Rα,M(B)) ∼=M(C0(Rα, B))

(α ∈ {+,−}), and the restriction maps gα 7→ gα|0 := gα(0). Notice that

πB(g−(0)) = πB(g+(0)) is equivalent to g+(0)− g−(0) ∈ B.

Is ER really the pull-back of E(−) and E(+)?

Is C(0) := HR(D)′ ∩M(SB) the pull-back of C+ and C−

with restriction epimorphisms Cα → C|0 (α ∈ {−,+}), for

C(0)
α := HRα(D)′ ∩M(C0(Rα, B))

and

C(0)|0 = H(D)′ ∩M(B) .

The map c ∈ C(0) → c(0) ∈ C(0)|0 is a splitting epimorphism

via λ : C(0)|0→ C(0) defined by

λ(d)(t) := d ∈ C(0)|0 for all t ∈ R .

Is it the same for DX := Der(HX(D); C0(X,B)),

with X = R, X = R+ X = R− or X = {0}?
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What about Der(HR(D);K)/C0(R, B) with

K := {f ∈ Cb(R, B) ; lim
t→−∞

‖f‖ = 0} .

Let U ∈ Der(H(D), B) ⊆ M(B) a unitary, and let hαU : D → E(α), for α ∈
{+,−}, be defined by h

(−)
U (a) := H(a)|R− and h

(+)
U (a) := UH(a)U∗|R+ for a ∈ D,

where we use the natural inclusions of M(B) into ER, E(−) and E(+).

Then π+
0 h

(+)
U (a) = H(a) = π−0 h

(−)
U (a) for a ∈ D. Thus, h

(+)
U and h

(−)
U define a

homomorphism hU : D → ER.

If we use the – a bit inaccurate – restriction notation, we can express this by

hU (a)|R− = H(a)|R− and hU (a)|R+ = UH(a)U∗|R+ for a ∈ D.

It turns out that hU has a completely positive contractive lift T : D →
M(SB) ∼= Cb,st(R,M(B)) that is 2-step-dominated by H : D → M(B) ⊆
Cb,st(R,M(B)):

Let f ∈ Cb(R) be defined by f(t) := 0 for t ≤ 0, f(t) := t on [0, 1] and f(t) := 1

for t ≥ 1, further let T (d)(t) := (1− f(t))H(d) + f(t)UH(d)U∗.

Thus T (·) = e∗1H(·)e1 + e∗2H(·)e2 for e1 :=
√

1− f and e2 := U∗
√
f , and T is

weakly nuclear if H is weakly nuclear (respectively T is weakly C-compatible if H

is weakly C-compatible).

If M(B) contains a copy of O2 unitally and if [H] = [H] + [H] (which is the

case by our assumptions), then there are isometries s1, s2 ∈ H(D)′ ∩M(B) which

are canonical generators of O2, cf. Proposition 4.3.5(iii). Then T (·) = I∗UH(·)IU
for the isometry IU = (1− f)1/2s1 + f1/2s2U

∗ .

Since UH(d)U∗ −H(d) ∈ B, T (d)−H(d) is an element of the ideal I1 := {b ∈
Cb(R, B) : b(t) = 0∀t ≤ 0}, and T (d)−UH(d)U∗ is a element of the ideal I2 := {b ∈
Cb(R, B) : b(t) = 0 ∀t ≥ 1}. But (I1 + SB)/SB = Q(R+, B) and (I2 + SB)/SB =

Q(R−, B), where we identify Q(R, B) naturally with Q(R−, B)⊕`∞ Q(R+, B) and

consider it as an ideal of ER. The natural epimorphism ER → E(−) maps Q(R+, B)

to zero and ER → E(+) maps Q(R−, B) to zero.

One can see that T (d) + SB = hU (d), because this equality can be calculated

separately in E(−) and E(+).

So, if H(D)′ ∩M(B) contains a unital copy of O2 and if the unitary group of

M(B) is connected, we get a map U 7→ hU from the intersection U0(Q(B))∩H0(D)′

into S(HR ; D,ER), where H0 := πB ◦H.

Thus we have seen that, in the case where B is stable and σ-unital and D is

stable and separable, for every unitary U ∈ M(B) with UH(d) −H(d)U ∈ B for

all d ∈ D,

the homomorphism hU defines an element [hU ] of S(HR ; D,ER) and satisfies

hU (d)−H(d) ∈ J for every d ∈ D, where J is the ideal of Qs(SB) which is defined

by Q(R+, B).



3. Ext(SC; A,SB) AND KK(C; A,B) CONSIDERED AS K1-GROUPS 891

It follows that [hU ⊕HR] is an element of Ext(C(H); D,SB) = G(HR ; D,ER).

With the above introduced notations J , EY , HY , F (Y ) and H0 we get the

following lemma.

Lemma 8.3.2. Suppose that D is separable and stable, that B is σ-unital and

stable, and that H : D → M(B) is a non-degenerate faithful C*-morphism with

δ∞ ◦H unitarily equivalent to H.

Furthermore, suppose that the following groups for R+ := [0,∞) are trivial:

Ext(C; D,C0(R+, B)) = G(HR+ ; D,ER+) = {[HR+ ]} ∼= 0 .

Let [g], [T ] ∈ S(HR ; D,ER) with [T ] = [HR], and let s1, s2 ∈ ER canonical genera-

tors of a copy of O2 that is unitally contained in ER. Then:

(i) There exists a unitary u ∈ ER such that

u∗T (a)u− (g(a)⊕s1,s2 T (a)) ∈ J for every a ∈ D ,

where J is the image of the natural embedding of Q(R+, B) into

Q(R, B) ⊆ ER .

(ii) If σ : R→ R is an order preserving homeomorphism of R, then

[σ̂ ◦ (g ⊕ T )] = [g ⊕ T ] in S(HR ; D,ER).

This applies to the case where H : D →M(B) corresponds to a countably gen-

erated non-degenerate m.o.c. cone C – as e.g. to C := CPnuc(A,B) if A is separable

and B is σ-unital – because then Ext(C; D,C0(R+, B)) ∼= 0, by Corollary 5.9.21

and Proposition 8.2.6.

Proof. We keep the notations of Remark 8.3.1. The Cuntz addition will be

taken at first with respect to fixed isometries s1 and s2 in HR(D)′ ∩ ER which

generate a copy of O2 in HR(D)′ ∩ ER. Then HR ⊕HR = HR.

We show at the end of the proof of Part (i) the independence of the result from

the chosen representatives H for for [HR] in G(HR; D,ER) and from the chosen

isometries s1, s2 in HR(D)′ ∩ ER with s1s
∗
1 + s2s

∗
2 = 1.

(i): Recall that C0(Rα, B) ∼= C0((0, 1], B),

E(α) := ERα = Qs(C0(Rα, B))

for α ∈ {−,+} and E(0) = Qs(B).

If g : D → ER := Qs(SB) defines an element in S(HR , D,ER), then this means

that there is an isometry s ∈ ER with s∗HR(d)s = g(d) for all d ∈ D, i.e., such

ss∗ ∈ HR(D)′ ∩ ER.

In fact we know at the beginning only that, by definition of SExt(C[R]; D,SB),

unify notations for C[X] !!!



892 8. THE ISOMORPHISM OF KK(C; A,B) AND Ext(SC; A,SB)

there is a c.p. contraction V : D → M(SB) with πSB ◦ V = g and a∗V (·)a ∈
C[R] for each a ∈ C0(R, B) =: SB. From that we have obtained in Chapters 3 and

4 that there exists an isometry T ∈ M(SB) with T ∗H(d)T − V (d) ∈ SB for all

d ∈ D. Thus s = πSB ◦ T has the desired property.

If we restrict now g(d) and s to R− and R+, we get isometries s− ∈ E(−),

s+ ∈ E(+) and homomorphisms g− : D → E(−) and g+ : D → E(+) such that

(sα)∗Hαs
α = gα for α ∈ {+,−} where H+ := H[0,∞) and H− := H(−∞,0] are

the “restrictions” of HR. Thus [gα] ⊕ [Hα] ∈ G(Hα, D,E
(α)) for α ∈ {+,−}. By

the definition of E(+) and E(−) and by assumption, we get [gα ⊕ Hα] = [Hα].

But this means that there are unitaries U+ ∈ E(+) and U− ∈ E(−) such that

gα ⊕Hα = (Uα)∗HαU
α for α ∈ {+,−}.

If we let H0 := πB ◦H we get in particular

(π+
0 (U+))∗H0π

+
0 (U+) = (π−0 (U−))∗H0π

−
0 (U−)

at zero. From now on we use the shorter (but by Remark 8.3.1 somehow inaccurate)

notation

U+(0) := π+
0 (U+) and U−(0) := π−0 (U−).

Thus U+(0)U−(0)∗ ∈ Qs(B) is a unitary in the commutant H0(D)′ ∩Qs(B) of

H0(D) in Qs(B). U−(0) is in the image of the unitaries of E(−) by π−0 and U+(0)

is in the image of the unitaries of E(+) by π+
0 .

We have K∗(M(C0(R+, B))) = 0, because B is stable. This follows from

Lemma 5.1.2(ii) as in the proof of Lemma 4.6.5(ii), or from the contractibility of

the unitary groups of multiplier algebras of stable algebras, [557], [180]. Since

C0(R+, B) ∼= C0(R−, B) is contractible, we get K1(E(+)) = 0 and K1(E(−)) =

0 from the 6-term exact sequence of K-theory. Therefore the epimorphisms π+
0 ,

respectively π−0 , maps unitaries of E(+), respectively of E(−), into the unitaries u

of E(0) := Qs(B) with [u] = 0 in K1(Qs(B)). Thus [U+(0)U−(0)∗] = [U+(0)] −
[U−(0)] = 0 in K1(Qs(B)), and, therefore, by Lemma 4.2.6(v,2), (U−(0)U−(0)∗)⊕1

is in the connected component of 1 in the unitaries of Qs(B). Let V ∈ M(B) a

unitary lift of (U+(0)U−(0)∗) ⊕ 1. Then H(a)V − V H(a) ∈ B for a ∈ D, and

we can form the *-monomorphism hV : D → ER with [hV ] ∈ S(HR, D,ER) and

hV (a)−HR(a) ∈ J .

Let W := V + C0(R+, B) in E(+), then

π+
0 (W ) = πB(V ) = (U+(0)U−(0)∗)⊕ 1 .

The unitaries (U− ⊕ 1) ∈ E(−) and W ∗(U+ ⊕ 1) ∈ E(+), satisfy

U−(0)⊕ 1 = π−0 (U− ⊕ 1) = π+
0 (W )∗(U+(0)⊕ 1) = π+

0 (W ∗(U+ ⊕ 1)).

Therefore they define a unitary u0 ∈ ER ⊆ E(−) ⊕ E(+).

Let w ∈ O2 with w∗((a⊕b)⊕c)w = a⊕(b⊕c), and let u := u0w. For the Cuntz

addition ⊕ and its transformation rules we refer to Chapter 4 for every details.
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Since H0 ⊕H0 = H0, we get from our definition of hV in Remark 8.3.1 that

g−(a)⊕H−(a) = w∗(U− ⊕ 1)∗(hV (a)|R−)(U− ⊕ 1)w

and

g+(a)⊕H+(a) = w∗(U+ ⊕ 1)∗V ∗(hV (a)|R+)V (U+ ⊕ 1)w .

This means that g ⊕ H0 = u∗hV u with u ∈ U(ER) as above defined. Therefore,

(g(a)⊕H0(a))− u∗H0(a)u = u∗(hV (a)−H0(a))u is in J for a ∈ D.

We show the independence from the particular choice of T ∈ [HR] and from

the generators s1, s2 of O2: Let T : D → Qs(SB) another representative of [HR]

and t1, t2 isometries in ER = Qs(SB) which generate a copy of O2. Then there are

unitaries u1, u2 ∈ ER such that T = u∗1HRu1 and u2tj = sj , j = 1, 2. Thus, with

⊕ = ⊕s1,s2 , g ⊕t1,t2 T = (1⊕ u1)∗u2(g ⊕HR)u∗2(1⊕ u1). If u∗hV u = g ⊕HR, then

u∗3(u∗1hV u1)u3 = g ⊕t1,t2 T for u3 := u∗1uu
∗
2(1⊕ u1), and T (a)− u∗1hV (a)u1 ∈ J for

a ∈ D, because J is an ideal.

(ii): Let σs(t) := st+(1−s)σ(t) for s ∈ [0, 1] and t ∈ R. Since σ : R→ R is order

preserving, the σs define a homotopy s→ ρs := σ̂s|C0(R, B) ∈ Aut(C0(R, B)) be-

tween σ̂|C0(R, B) = ρ0 and id = ρ1, where σ̂s(f) := f◦σs for f ∈ Cb,st(R,M(B)) ∼=
M(C0(R, B)). Then [σ̂s◦h] = (ρt)∗([h]) in Ext(C(R); D,SB) ∼= KK(C; D, (SB)(1)),

by definition of (ρt)∗ ∈ Aut(Ext(C(R); A,B)).

Let τs := (ρs)(1), i.e., τs(f, g) := (f◦σs, g◦σs). Then t→ τs ∈ Aut(C0(R, B)(1))

is a (grading-preserving) homotopy between id and τ1.

If Φ = Φ(C; D,SB) denotes the natural isomorphism from Ext(C(R); D,SB)

onto KK(C; D, (SB)(1)), then (τs)∗ ◦ Φ = Φ ◦ (ρs)∗.

Since (τ1)∗ = (τ0)∗ by homotopy invariance of KK(C; D, (SB)(1)), we get [σ̂ ◦
h] = (ρ0)∗([h]) = (ρ1)∗([h]) = [h] for [h] ∈ G(HR ; D,ER). Since h = g⊕ T satisfies

[h] ∈ G(HR ; D,ER), we can see that [σ̂ ◦ (g ⊕ T )] = [g ⊕ T ] in S(HR ; D,ER). �

In principle, Proposition 8.2.6, and Remark 5.8.7

Check ref. to 5.8.7

imply our below given Corollary 8.3.3 via Bott periodicity.

But we give a proof which uses only the homotopy invariance of KK(C; ·, ·) alone

to derive that Ext(C(R+); A,C0(R+, B)) = 0 and use the simple construction of

Remark 8.3.1, because our explicit constructions on the level of Busby invariants

and unitaries are needed in Chapter 9 to show that Theorem 4.4.6 yields the proofs

of Theorems B(i,ii) and M(i,ii).

Corollary 8.3.3. Suppose that D is separable, B is σ-unital and that both

are stable and trivially graded. Let C ⊆ CP(D,B) a non-degenerate point-norm

closed countably generated m.o.c. cone.

Let E := Q(B) := M(B)/B ∼= Qs(B), and let H0 := πB ◦H : D → E be a *-

monomorphism that comes from a faithful non-degenerate *-representation H : D →
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M(B) with the property that δ∞ ◦H is unitarily equivalent to H and that the maps

a ∈ D 7→ b∗H(a)b ∈ B generate C ( 9 ).

(i) There is a natural isomorphism θ from the kernel of K1(H0(D)′ ∩ E) →
K1(E) onto KK(C; A,B).

(ii) In particular, K∗(HR+(D)′ ∩ Qs(C0(R+, B))) = 0 where HR+(a) means

the “restriction” of H0(a) ∈ M(B) ⊆ ER = M(C0(R, B))/C0(R, B) to

R+.

(iii) The map

[g] ∈ G(H0 , D,Q
s(SB))→ [U+(0)U−(0)∗] ∈ K1(H0(D)′ ∩ E),

where U−(0), U+(0) ∈ E are as in the proof of Lemma 8.3.2, defines a

group isomorphism ι from Ext(C; D,SB) = G(H0 ; D,Qs(SB)) onto the

kernel of K1(H0(D)′ ∩ E)→ K1(E).

(iv) Let h : D → B be a C*-morphism in C, Ch the extension of D by SB

given by the mapping cone construction for h, and let [h − 0] denote the

element of KK(C; A,B) that is represented by the difference construction

(B, h, 0).

Then the isomorphism θ ◦ ι from Ext(C; A,SB) onto KK(C; A,B)

maps the class [Ch] ∈ Ext(C; A,SB) of Ch to [h− 0] ∈ KK(C; A,B), i.e.,

θ ◦ ι([Ch]) = [h− 0].

Proof. (i): Let H0(a) := H1(a) + B, Q(B) := M(B)/B ∼= Qs(B) and let

C := H0(D)′ ∩Qs(B). Recall that H1(D)′ ∩M(B) contains a copy of O2 unitally,

and that K∗(H1(D)′ ∩M(B)) = 0.

By E0 we denote the Hilbert B-module HB ⊕HopB , i.e., HB ⊕HB with grading

βE0
: (x, y) 7→ (x,−y). Then naturally L(E0) ∼= M2(M(B)) with grading Z 7→

βZβ, β := diag(1,−1) and K(E0) ∼= M2(B) under this isomorphism. We define

φ0 : D → L(E0) by φ0(a) := diag(H1(a), H1(a)) for a ∈ D.

For a unitary U ∈ M(B) let F (U) ∈ L(E0) denote the selfadjoint unitary

which is given by the off-diagonal 2× 2-matrix with entries F (U)11 = F (U)22 = 0,

F (U)12 = U and F (U)21 = U∗. Then

F (U)φ0(a)− φ0(a)F (U) = F (1) diag
(
U∗H1(a)−H1(a)U∗, UH1(a)−H1(a)U

)
.

Thus, (E0, φ0, F (U)) is a C-compatible Kasparov module, if and only if, U ∈
U(H1(D), B), with notation of Lemma 4.6.6. In particular, the product U0U2U

∗
1 is

in U(H1(D), B) if U0, U1, U2 ∈M(B) are unitaries and if

(E0,diag(U∗0H1U0, U
∗
1H1U1), F (U2))

is a Kasparov module. The latter is isomorphic to (E0, φ0, F (U0U2U
∗
1 )) via

diag(U0, U1).

9 See Corollary 5.4.4. In the special C = CPnuc(A,B), H = M(γ) ◦ ρ for a non-degenerate

*-morphism γ : K→M(B) and any faithful ρ : D ↪→M(K) with ρ(D) ∩ K = 0.
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We define a Hilbert B-module isomorphism T0 : E0 ⊕B E0 → E0 from the

Hilbert B-module sum E0 ⊕B E0 onto E0, by

T0 : ((x1, y1), (x2, y2)) 7→ (s1x1 + s2x2, s1y1 + s2y2) .

Then T ∗0 (φ0⊕φ0)T0 = φ0 and T ∗0 (F (U1)⊕F (U2))T0 = F (U1⊕s1,s2U2) for unitaries

U1 and U2 inM(B). By Lemma 4.6.6, U(H1(D), B) is closed under Cuntz addition.

It follows that θ0 : U 7→ (E0, φ0, F (U)) is an additive map from U(H1(D), B)

with Cuntz addition into the semigroup E(C; D,B)/ ≈ of isomorphism classes of

elements of E(C; D,B).

Since 1⊕1 = 1, we get that θ0(1) represents the zero of KK(C; D,B). Therefore,

θ0(U) and θ0(U ⊕ 1) represent the same element of KK(C; D,B).

A simple calculation shows that θ0(U) is a compact perturbation of θ0(U ′) in

the sense of Definition 8.2.1 if and only if (U ′ − U)H1(D) ⊆ B.

If t 7→ U(t) is a continuous map from [0, 1] into U(H1(D), B), then t 7→ θ0(U(t))

defines an operator homotopy in E(C; D,B), and, therefore, θ0(U(0)) and θ0(U(1))

represent the same element of KK(C; D,B) by the (operator) homotopy invariance

of KK(C; ·, ·).

By Lemma 4.6.6, it follows that θ0(U1) and θ0(U2) represent the same element

of KK(C; D,B) if [U1 +B] = [U2 +B] in K1(H0(D)′ ∩Qs(B)).

This means that θ([U + B]) := [θ0(U)] defines a group homomorphism θ from

the kernel of K1(H0(D)′ ∩ E) → K1(E) into KK(C; D,B) ∼= KK(C; A,B). It

remains to show:

(1) θ is an epimorphism, i.e., every element of KK(C; D,B) can be represented

by θ0(U) for a suitable U ∈ U(H1(D), B).

(2) [θ0(U)] = 0 in KK(C; D,B) implies [U +B] = 0 in K1(C).

(1): For trivially graded D and σ-unital trivially graded B, one can use Kas-

parov’s stabilization theorem to obtain a representative (E, φ, F ) of an element of

KK(C; D,B), such that the Hilbert B-module E is isomorphic to the above con-

sidered “universal” graded Hilbert B-module E0, cf. . [73, 17.4.1].

An element of KK(C; D,B) ∼= KK(C; A,B) with representing element (E, φ, F )

can be also represented by C-compatible Kasparov modules (E ⊕Eop, φ⊕ 0, G(F ))

with G(F ) = G(F )∗ = G(F )−1. Here Eop is the Hilbert B-module E with the new

grading operator −βE , and G(F ) ∈ L(E⊕Eop) ∼= M2(L(E)) is given by the matrix

with entries G(F )11 = F1, G(F )22 = −F1 and G(F )12 = G(F )21 = (1 − F 2
1 )1/2,

where F1 := f((F ∗ + F )/2) is a contractive selfadjoint φ-“compact” perturbation

of F , and f ∈ Cb(R) is given by f(t) = t for t ∈ [0, 1], f(t) = −1 for t ≤ −1 and

f(t) = 1 for t ≥ 1.

(E ⊕B Eop, φ⊕ 0, G(F )) represents the same element of KK(C; D,B) because

(E ⊕B Eop, φ ⊕ 0, G(F )) is a compact perturbation of the sum of (E, φ, F ) and

(Eop, 0,−F ) (see [73, 17.4.2, 17.4.3, 17.6] for more details).
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The passage to this special representatives is functorial in E(C; D,B) in the

sense that it is operator homotopy preserving and is additive modulo addition of

trivial elements of form (E′, 0, F ′) and compact perturbation. If (E, φ, F ′) is a

φ-“compact” perturbation of of (E, φ, F ), then

Is this correct needed?:

(E ⊕B Eop, φ⊕ 0, G(F ′)) ∼cp (E ⊕B Eop, φ⊕ 0, G(F )).

Since we did start with a C-compatible Kasparov module (E, φ, F ) such that E

is isomorphic to our above defined E0 by a grading preserving isometric B-module

isomorphism, we have that E ⊕B Eop is isometrically and grading preserving B-

module isomorphic to E0.

Thus we find for each element of KK(C; D,B) a representing C-compatible

Kasparov module (E0 , φ,G) with G = G∗ = G−1.

Since the degree of φ(a) is zero and the degree of G is one, the representa-

tive has the form φ(a) = diag(ψ0(a), ψ1(a)) with weakly C-compatible *-morphisms

ψ0, ψ1 : D →M(B) and G = F (U) for a unitary U ∈M(B).

T0 defines an isomorphism from the sum of (E0 ,diag(ψ0, ψ1), F (U)) and of

θ0(1) onto

(E0 ,diag(ψ0 ⊕H1, ψ1 ⊕H1), F (U ⊕ 1)). (∗)

Since θ0(1) represents the zero, every element of KK(C; D,B) is represented

by a Kasparov module of form (∗).

The homotopy invariance of KK(C; D,B) yields the following:

Let τ 7→ ψ
(τ)
0 : D →M(B) and τ 7→ ψ

(τ)
1 : D →M(B) be a point-norm continuous

families of weakly C-compatible C *-morphisms, and let U ∈ M(B) be a unitary

such that Uψ
(0)
1 (a)−ψ(0)

0 (a)U ∈ B for all a ∈ D. Suppose that ψ
(τ)
0 (a)−ψ(0)

0 (a) and

ψ
(τ)
1 (a)−ψ(0)

1 (a) are in B for all a ∈ D and τ ∈ [0, 1]. Then (E0,diag(ψ
(0)
0 , ψ

(0)
1 ), U)

and (E0,diag(ψ
(1)
0 , ψ

(1)
1 ), U) represent the same element of KK(C; D,B).

By Theorem 5.6.2(ii) (applied to C := H1(D) and T := ψ ◦ H−1
1 ), we find

norm-continuous maps t 7→ U0(t) and t 7→ U1(t) into the unitaries of M(B) such

that, for k ∈ {0, 1}, t ∈ R+ and a ∈ A,

Uk(t)∗H1(a)Uk(t)− (ψk(a)⊕H1(a)) ∈ B

and

lim
t→∞

‖Uk(t)∗H1(a)Uk(t)−
(
ψk(a)⊕H1(a)

)
‖ = 0 .

Thus (
E0,diag(U0(0)∗H1U0(0), U1(0)∗H1U1(0)), F (U ⊕ 1)

)
(∗∗)

and (∗) represent the same element of KK(C; D,B) = KK(C; A,B).

(∗∗) is isomorphic to θ0(U1), where U1 := U0(0)(U ⊕ 1)U1(0)∗, and U1 is a

unitary in U(H1(D), B), because (∗∗) is a Kasparov module. Thus, every element

of KK(C; D,B) ∼= KK(C; A,B) can be represented by a C-compatible Kasparov

module θ0(U), where U ∈ U(H1(D), B), and θ is an epimorphism.
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(2): Suppose that [θ0(U)] = 0 in KK(C; D,B).

By Definition 8.2.1, [θ0(U)] = 0 means that there exist a C-compatible Kasparov

module (E, φ, F ) and a compact perturbation (E, φ, F ′) of it, such that θ0(U) ⊕
(E, φ, F ) is isomorphic to (E, φ, F ′) via a grading preserving B-module unitary I.

In particular F ′ = I−1(F (U) ⊕ F )I. If we add trivial Kasparov modules, take

the above listed φ ⊕ 0-“compact” perturbations and pass to isomorphic Kasparov

modules (isomorphic in the strong sense of Definition 8.2.1), then we can assume

moreover that E = E0, F = F (V1), F ′ = F (V2) for unitaries V1 and V2 in M(B),

as we have shown above. Then φ = diag(ψ0, ψ1) for weakly C-compatible C *-

morphisms ψ0 and ψ1 from D into M(B).

By stability of B, there exists a sequence of isometries t1, t2, . . . in M(B) such

that
∑
tnt
∗
n converges strictly to 1, cf. Remark 5.1.1(8). Let λ be the infinite repeat

of the Cuntz sum (ψ0 ⊕ψ1)⊕H1 i.e., λ := δ∞((ψ0 ⊕ψ1)⊕H1), where ⊕ = ⊕s1,s2 .

Then λ is a strictly continuous C *-morphism from D into M(B).

The series
∑

((tn ⊕ tn) ⊕ tn)t∗n and converges strictly to a unitary in M(B).

Therefore λ is unitarily equivalent to the Cuntz sum of the infinite repeats of ψ0,

of ψ1 and of H1. It follows that ψ0 ⊕ λ, ψ1 ⊕ λ and H1 ⊕ λ are unitarily equivalent

to λ.

Now Corollary 5.6.1 applies to the C *-subalgebra C := H1(D) of M(B) and

to T = λ◦H−1
1 . Thus there is a unitary v inM(B) such that v∗λ(a)v−H1(a) ∈ B

for a ∈ D.

Let χ := v∗λv. Then again χ ⊕ ψ0 and χ ⊕ ψ1 are unitarily equivalent to χ.

By Lemma 4.6.5(ii), the relative commutant of χ(D) inM(B) has trivial K-theory,

in particular, [V + B] = 0 in K1(C) if V is a unitary in M(B) which commutes

element-wise with χ(D). By Lemma 5.1.2, χ is unitarily equivalent to χ⊕χ, because

χ is an infinite repeat.

We add the Kasparov module (E0,diag(χ, χ), F (1)) to (E0, φ, F (Vj)), j = 1, 2.

Then we use our above defined isomorphism T0 from E0 ⊕ E0 onto E0, and pass

to equivalent Kasparov modules, where we use the above described transformation

rules for U 7→ F (U).

Then we get unitaries U1, U2, U3 and U4 in M(B) such that

(E0,diag(χ, χ), F (Uj)) are Kasparov modules for j = 1, 2,

χ(D)(U1 − U2) ⊆ B,

U∗3 (H1 ⊕ χ)U3 = χ, U∗4 (H1 ⊕ χ)U4 = χ and U∗3 (U ⊕ U1)U4 = U2.

In particular V := U∗3U4 commutes element-wise with the image of χ, and,

therefore, [V +B] = 0 in K1(C).

Since H1 ⊕H1 = H1 and χ(d)−H1(d) ∈ B for d ∈ D, we get that the Uk are

in U(H1(D), B) for k = 1, 2, 3, 4.

Let u0, u1, u2, u3, u4 denote the images of U,U1, U2, U3, U4 in C = H0(D)′ ∩E.
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Then [u1] = [u2] in K1(C) by Lemma 4.6.6.

[u0] + [u1] = [u∗3(u0 ⊕ u1)u3] + [u∗3u4] = [u2] .

Thus [U +B] = [u0] = 0 in K1(H0(D)′ ∩ E).

(ii): Let E(+) := Qs(C0(R+, B)). In the proof of Lemma 8.3.2 we have seen

that K∗(E
(+)) = 0.

Is this CONCLUSION ‘‘thus’’ correct? ??

Thus,

by Propositions 4.4.3(i) and 8.2.6,

K0(HR+(D)′ ∩ E(+)) = KK(C; D,C0(R+, B)(1)) = 0 .

By Part (i) and Proposition 8.2.5(ii),

K1(HR+(D)′ ∩ E(+)) = KK(C; D,C0(R+, B)) = 0 .

(iii): Let E := Qs(B), C := H0(D)′ ∩E, ER := Q(SB) E(α) := Qs(C0(Rα, B))

for α ∈ {+,−}.

Since G(HR, D,ER) = [HR] +S(HR, D,ER) , from the proof of Lemma 8.3.2 we

get the existence of unitaries U+ ∈ E(+) and U− ∈ E(−) such that

gα = (Uα)∗HαU
α ,

where gα(a) := g(a)|Rα, Hα := HRα for α ∈ {+,−}. Here we use the “restriction”

notation as explained in Remark 8.3.1.

We have seen in the proof of Lemma 8.3.2 that U+(0)(U−(0))∗ is a unitary in

C such that [U+(0)(U−(0))∗] is in the kernel of the natural group homomorphism

from K1(C) into K1(E). Here U+(0) := π+
0 (U+) and U−(0) := π−0 (U−) for the

natural epimorphisms πα0 : E(α) → E, where α ∈ {+,−}.

If U+
1 ∈ E(+) and U−1 ∈ E(−) are other unitaries with gα = (Uα1 )∗HαU

α
1 for

α ∈ {+,−}. Then U+
1 (U+)∗ is in ????? H+(D)′∩E(+). By part (ii), the K1-images

of the natural epimorphism from H+(D)′∩E(+) into C = H0(D)′∩E is zero. This

implies that [U+
1 (0)(U+(0))∗] = 0 in K1(C). Similarly, [U−(0)(U−1 (0))∗] = 0 in

K1(C). Thus [U+(0)(U−(0))∗] = [U+
1 (0)(U−1 (0))∗] in K1(C).

Therefore ι([g]) := [U+(0)(U−(0))∗] is a well-defined map from G(HR, D,ER) =

Ext(C; D,SB) into the kernel of K1(C)→ K1(E).

If g and h are representatives of elements inG(HR, D,ER) and if U+
1 , U

+
2 ∈ E(+)

and U−1 , U
−
2 ∈ E(−) are unitaries with hα = (Uα2 )∗HαU

α
2 and gα = (Uα1 )∗HαU

α
1 for

α ∈ {+,−}. Then Uα := Uα1 ⊕Uα2 ∈ E(α) are unitaries with (g⊕h)α = (Uα1 )∗HαU
α
1 .

Thus ι([g] + [h]) = [(U+
1 (0)(U−1 (0))∗)⊕ (U+

2 (0)(U−2 (0))∗)], which is ι([g]) + ι([h]) in

K1(C). Therefore, ι is a group homomorphism.

By Lemma 4.6.6, ι is an epimorphism, because for U ∈ U(H1(D), B) and hU

in Remark 8.3.1 we have, for g = hU ⊕HR, U+ = U ⊕ 1 and U− = 1, and therefore

ι[hU ⊕HR] = [U +B].
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Suppose that ι([g]) = [U+(0)U−(0)∗] = 0 in K1(H0(D)′ ∩ E). By Lemma

4.2.6(v,2), the unitary V := (U+(0)U−(0)∗) ⊕ 1 is in the connected component of

1 in the unitaries of C. Thus there is a continuous map t ∈ [0, 1] → U(t) into the

unitaries ofM(B) such that U(0) = 1, U(1)+B = V and U(t)+B ∈ C for t ∈ [0, 1].

Thus U(t) ∈ U(H1(D), B) for t ∈ [0, 1]. Let U := U(1) and W ∈ Cb(R,M(B)) ⊆
M(SB) the unitary which is defined by W (t) := 1 for t ≤ 0, W (t) := U(t) for

t ∈ [0, 1], and W (t) = U for t ≥ 1. Then, for the lift T of hU in Remark 8.3.1, we get

that T (a)(t)−W (t)∗H1(a)W (t) ∈ B for t ∈ R and T (a)(t)−W (t)∗H1(a)W (t) = 0

for t not in [0, 1]. Thus hU = w∗(HR)w for w := W + C0(R, B). In the proof of

Lemma 8.3.2 we have seen that [g ⊕HR] = [hU ]. Since [g] ∈ G(HR, D,ER), we get

[g] = [g ⊕HR] = [hU ] = [w∗HRw] = [HR] = 0.

Thus ι is an isomorphism from Ext(C; A ⊗ K, SB) ∼= G(HR, D,Q
s(SB)) onto

the kernel of natural homomorphism from K1(H0(D)′ ∩Qs(B)) into K1(Qs(B)).

(iv): To simplify notation, we assume that B is stable. We keep the notations

E(−), E(+) of Remark 8.3.1, but don’t use the notation ER used there for Qs(SB) =

M(SB)/SB. Let C := H0(D)′ ∩ E.

If h : D → B is a *-morphism in C, then the mapping cone Ch is represented

as an element of S(HR ; D,Qs(SB)) by

gh : a ∈ D 7→ (0, h(a)) ∈ 0⊕B ⊂ Q(R−, B)⊕Q(R+, B) = Q(R, B) ⊆ E(−) ⊕E(+).

The corresponding element of G(HR, D,Q
s(SB)) = Ext(C; A⊗K, SB) is [gh⊕

HR]. If we apply Theorem 5.6.2(ii) to C := H1(D) and separately to T = 0 and

T = hH−1
1 , we get norm-continuous maps t 7→ U0(t) and t 7→ U1(t) from R+ into

the unitaries of M(B), such that limt→∞ ‖(h ⊕ H1)(a) − U0(t)∗H1(a)U0(t)‖ = 0,

(h⊕H1)(a)−U0(t)∗H1(a)U0(t) ∈ B, limt→∞ ‖(0⊕H1)(a)−U1(t)∗H1(a)U1(t)‖ = 0

and (0⊕H1)(a)− U1(t)∗H1(a)U1(t) ∈ B for a ∈ D, t ∈ R+.

Let us consider U0 as a unitary in Cb(R+,M(B)) ⊆M(C0(R+, B)) and V (t) :=

U1(−t) for t ≤ 0 as a unitary V in M(C0(R−, B)).

Let U+ := π+(U0), U− := π−(V ). Then (gh ⊕ HR)|Rα = (Uα)∗HαU
α for

α ∈ {+,−}, U+(0) = π+
0 (U+) = U0(0) + B and U−(0) = π−0 (U−) = U1(0) + B.

Thus ι([gh ⊕H0]) = [U0(0)U1(0)∗ +B]C ∈ K1(C).

By construction of θ, we have that θ([U0(0)U1(0)∗ + B]C) is represented by

(E0, φ0, F (U0(0)U1(0)∗)).

Let (HB , h, 0) the C-compatible Kasparov module obtained by the difference

construction. Since the derivative F of the module is zero, the construction in the

proof of part (i) produces for the class of (HB , h, 0) in KK(C; D,B) the represen-

tative (E0,diag(h, 0), F (1)), because F (1) = G(0), where the notation is as in the

proof of part (i).

In the proof of part (i) we have seen, that the Kasparov module (E0, φ0, F (1))

represents zero. If we add it to (E0,diag(h, 0), F (1)), we get (E0,diag(h⊕H1, 0⊕
H1), F (1)).
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By homotopy invariance of KK(C; ·, ·), (E0,diag(U∗0H1U0, U
∗
1H1U1), F (1)) re-

presents the same element, where U0 := U0(0) and U1 := U1(0) are the unita-

ries in M(B) which come from the above considered paths U0(t) and U1(t) in

U(H1(D), B).

In the proof of part (i) we have seen that the latter Kasparov module is iso-

morphic to (E0, φ0, F (U0U
∗
1 )), which represents ι([U0U

∗
1 ]). Hence, ι ◦ θ([Ch]) =

[h− 0]. �

Change following to C-picture !?

Corollary 8.3.4. Suppose that A is separable, that B is σ-unital and sta-

ble, and that both are trivially graded. Let D := A ⊗ K, ER := Qs(SB), and let

HR : D → ER be a *-monomorphism which comes from a faithful non-degenerate

*-representation of H : D ↪→M(B) ⊆ ER in “general position”, i.e., with δ∞ ◦H
is unitarily homotopic to H.

(i) For every t ∈ [0, 1], the natural group homomorphism

πt : G(HR×[0,1], D,Q
s(S C([0, 1], B)))→ G(HR, D,ER),

which is induced by the natural epimorphism from Qs(S C([0, 1], B)) onto

ER is an isomorphism and is therefore independent of t ∈ [0, 1].

(ii) If σ is an orientation preserving homeomorphism of R and σ̂ the automor-

phism of ER := Qs(SB) which is naturally induced by σ, then [σ̂ ◦h] = [h]

in Extnuc(A⊗K, SB) for every representing C*-morphism h : D → ER of

an element of Extnuc(A⊗K, SB).

Proof. (i): It follows from the natural isomorphisms G(H0, D,ER) =

Extnuc(D,SB) ∼= KKnuc(D,B) (including G
(
HR×[0,1], D,Q

s(S C([0, 1], B))
) ∼=

KKnuc(D,C([0, 1], B))) and the homotopy invariance of KKnuc.

(ii): Since σ is a strictly increasing continuous function from R into R, for

every f ∈ SB ∼= C0(R, B), the definition g(t, s) := f(st + (1 − s)σ(t)) defines an

element g in

S C([0, 1], B) ∼= C0(R× [0, 1], B) .

Let V : D →M(SB) be a completely positive

weakly nuclear, respectively C-compatible,

contractive lift of h : D → Qs(SB).

The curvature d 7→ V (d∗d) − V (d)∗V (d) of V maps D into SB = C0(R, B).

Under the natural identifications of Cb,st(R,M(B)) with M(SB), respectively of

Cb,st(R× [0, 1],M(B)) with M(S C([0, 1], B)), we let

Ṽ (t, s)(d) := V (st+ (1− s)σ(t))(d)

for t ∈ R, s ∈ [0, 1], d ∈ D. Then Ṽ is

check again?:
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weakly nuclear, respectively C-compatible,

and the curvature d 7→ Ṽ (d∗d)−Ṽ (d)∗Ṽ (d) of Ṽ maps D into C0(R×[0, 1], B) =

S C([0, 1], B). Thus it defines a

weakly nuclear, respectively C-compatible,

liftable C *-morphism k : D → Qs(S C([0, 1], B)).

The natural epimorphisms from Qs(S C([0, 1], B)) onto Qs(SB) at zero and

at one map k into σ̂h and h, respectively. Thus k defines an element [k] of

Extnuc(D,S C0([0, 1], B)). with π1([k]) = [h] and π0([k]) = [σ̂h]. Therefore, by

(i), [h] = [σ̂ ◦ h] in Extnuc(D,SB), respectively is in Ext(C; D,SB). �

Remark 8.3.5. The natural map γ from KKnuc(A,B) to Hom(K∗(A),K∗(B))

is defined as (γ(x))(y) := y ⊗A x ∈ K∗(B) for y ∈ K∗(A), x ∈ KKnuc(A,B), where

we denote by y ⊗A x the Kasparov product of x and y, and K0(.) and K1(.) are

naturally identified with KK(C, .) and KK(C0(R), .) respectively.

In terms of Extnuc(A,SB) this means equivalently, that γ maps the class with

representative g : D → Qs(SB) into the connecting maps

δ∗ : K∗(A)→ K(∗+1)mod2(SB)

of the six term exact sequence for the extension of A ⊗ K by SB which is defined

by g. Then use K∗(B) ∼= K(∗+1)mod2(SB).

Both descriptions of γ allow to see that γ([h− 0]) = K∗(h) if h : A⊗K→ B is

a nuclear C *-morphism.

Remark 8.3.6. By Bott periodicity of KKnuc and by the isomorphism (1.1),

the similar notion of a strictly nuclear E-theory is functorial equivalent to KKnuc

(See further below). But E-theory is not useful for the proof of (1.1) and its

consequences. Note that Enuc(A,B) = E(A,B) if A is nuclear, but in general this

equation does hold for nuclear B and non-nuclear A.

Even in the trivially graded case there is no direct proof of the isomorphism

Extnuc(A,SB) ∼= Enuc(A,B)

by using directly the weakly nuclear version SR(CPnuc; SA, S2B) of [[SA⊗K, S2B]]

as defined in the beginning of Chapter 7. Therefore we outline here another proof :

Suppose that B is a stable σ-unital C *-algebra and denote by πs (s ∈ [0, 1])

the natural epimorphism

πs : Q(R+, S C([0, 1], B))→ Q(R+, SB) .

But notice that a weakly nuclear asymptotic morphism h = {V (t) : A ⊗ K → B}
in the sense of of Definition 7.1.1(a,b) represents in general not an element of the

Rørdam semigroup (with the additional requirement (c) of Definition 7.1.1 and with

C := CP (A⊗K, B ⊗K)). This can be seen easily in the case A = C0(R,O∞) and

B = C0(R)⊗K. Note, that the nuclearity of V (t) is required for each t ∈ R+, but

the uniform nuclearity on R+ is not required.
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We say that weakly nuclear asymptotic morphisms h0 = {V0(t)} and h1 =

{V1(t)} from SA⊗ K into SB are asymptotical homotopic if there is a weakly

nuclear asymptotic morphism h = {V (t)} from SA⊗K into C([0, 1], SB) such that

h0 = π0 ◦ h and h1 = π1 ◦ h.

As in [165] or [163, chp.II.B], one can see that the classes of asymptotically

homotopic weakly nuclear asymptotic homomorphisms from SA⊗K into SB ⊗K
form a group Enuc(A,B) under Cuntz addition.

The generalized mapping cone construction, cf. Chapters 1 and 9, yields a group

homomorphism from Enuc(A,B) into Extnuc(SA⊗K, S2B).

Conversely the natural asymptotic morphism from SA ⊗ K into SB which

corresponds to an extension (extension-class) 0 → SB → E → A ⊗ K → 0 in

Extnuc(A ⊗ K, SB) is a weakly nuclear asymptotic morphism. It defines a group

homomorphism from Extnuc(A⊗K, SB) to Enuc(A,B).

The composition maps are equivalent (i.e. are element-wise homotopic) to the

natural map Enuc(A,B)→ Enuc(SA, SB), respectively to

Extnuc(A⊗K, SB)→ Extnuc(SA⊗K, S2B) .

Thus Proposition 8.2.5(iii) and Corollary 8.3.3(iii) imply that there is a natural

isomorphism KKnuc(A,B) ∼= Enuc(A,B) for separable A and σ-unital B.

4. The residually nuclear case

Remark 8.4.1. Suppose that A, B are stable, where A is separable and B is

σ-unital. They are assumed to be trivially graded.

Furthermore, we suppose that X is the primitive ideal space of a separable C *-

algebra C. We can then replace C by F ⊗C with same primitive ideal space, where

we let F := K⊗O2 ⊗O2 ⊗ . . .. Then, in addition, C is stable and C ∼= C ⊗O2.

Suppose now that there are given monotonous actions ΨA and ΨB of X on A

and B, respectively, cf. Definition 1.2.6.

The group KKnuc(X; A,B) is defined in Definition 1.2.10 as KK(C; A,B) for

the cone C of ΨA-ΨB–residually nuclear maps.

Extnuc(X; A,B) ∼= G(H0; A,B) and S(H0, A,B) are defined in Chapter 5.

Note that here H0 : A→M(B) denotes the “universal” non-degenerate weakly

Ψ-residually nuclear C *-morphism from A to M(B) such that δ∞H0 is unitarily

equivalent to H0.

or is it only approximately unitary equivalent

with respect to the strict topology on M(B) ...?

See def. in chp. 5 !!

The existence and uniqueness of H0 is assured if the m.o.c. cone of Ψ-residually

maps from A→M(B) has a countable generating set (as it is e.g. in the case where

A and B are separable).



4. THE RESIDUALLY NUCLEAR CASE 903

We list now the non-trivial changes of the above considered case X =point

(with trivial action ΨA(X) = A, ΨA(∅) = {0}).

In the beginning of the proof of Proposition 8.2.5(iii):

By Section 9, for D separable and stable and B σ-unital and stable,

Extnuc(X; D,B) = G(H0; D,E) where E := Q(B), H0 = πB ◦ H1 and

H1 : D → M(B) is an infinite repeat of a sufficiently general non-degenerate

weakly ΨA-ΨB–residually nuclear C *-morphism from D in M(B) (The existence

of such H1 for exact A follows later from results in Chapter 12).

The unitary homotopy between H0⊕ψ and H0 comes in the residually nuclear

case from Theorem 5.9.3 in the same way as Theorem 5.6.2(ii) has been used in the

proof.

To-do-list: corollaries for chapter 9:

next:lem:8.Ynew.chp9

Lemma 8.4.2. There are natural isomorphisms

Ext
(
C ⊗ CP(C,C0(R)) ; D,B ⊗ C0(R)

) ∼= KK(C; D,B) .

The isomorphisms are compatible with respect to scaling of R.

The classes in KK(C ; A,B) are invariant under homotopy.

There are natural isomorphisms

Extnuc(X; D,SB) ∼= KKnuc(X; D,B) .

Chp:9: By generalized Cor.8.3.3(iii) or Lem. 8.4.2:

Suppose that ???????

For a C *-morphism h from D to B with h ∈ C the mapping cone construction

defines an element α[h] = [Ch] of Ext(C ⊗ CP(C,C0(R)); D,SB) which is mapped

to the element [h − 0] ∈ KKnuc(X; D,B) under the natural isomorphism from

Ext(C ⊗ CP(C,C0(R)); D,SB) onto KK(C; D,B).

next lem:8.4new used in chp:9

Lemma 8.4.3. , For every homomorphism k : D → ER that is dominated by

H0, there exists a unitary u ∈ ER such that u∗(k ⊕H0)(a)u −H0(a) ∈ J for each

a ∈ D.

next mentioned in chp:1

There is a natural group homomorphism for tensor products:

KK(X; A,B)×KK(C,D)→ KK(X; A⊗ C,B ⊗D) ,

where the action is given, e.g. on A⊗ C, by

Z ∈ O(X) 7→ ΨA(Z)⊗ C ∈ I(A⊗ C) .
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Is it the same as

KK(C; A,B)×KK(C,D)→ KK(C ⊗ CP(C,D); A⊗ C,B ⊗D) ?

my view on split extensions:

Remark 8.4.4. Suppose that

0 −→ B −→ C −→ A −→ 0

is a short exact sequence of graded C *-algebras, and that C1 ⊆ CP(A,C),

?????

??

We define a map from the locally compact subspaces Y of R2 into the groups

by

F (Y ) := G(HY ; D,EY ) ∼= Ext(C(Y ); A,B⊗C0(Y )) ∼= KK(C(Y ), A, SB⊗C0(Y )) .

Then F (R+) = 0 because KK(C; ·, ·) is homotopy invariant and the identity map

of B ⊗ C0(R+) is homotopic to 0.

Proposition 8.4.5. With the above notation holds that

K∗(H[0,∞)(D)′ ∩ E[0,∞)) = 0 ,

that there is a natural isomorphism from F (R) onto the kernel of K1(H0(D)′ ∩
Q(B))→ K1(Q(B)) ∼= K0(B),

and that [α̂ ◦h] = [h] ∈ Ext(C(R); D,B) for every h : D → ER with [h] ∈ F (R) and

every order-preserving homeomorphism α from R to R with α(0) = 0.

The proof is contained in the further below given more explicit constructions,

The reduction to Mayer--Vietoris does not work??

but we give an independent proof, that reduce the proof to an application of

the K∗-theory Mayer–Vietoris sequence to the Y -equivariant isomorphism of F (Y )

with the kernel of K0(HY (D)′ ∩ EY )→ K0(EY ) ∼= K1(B ⊗ C0(Y )), (that we have

seen in Chapters 5 and 4).

Lemma 8.4.6. Let L(L2(S1)) ∼= M(K) ⊆ H(D)′ ∩ M(B) given by a non-

degenerate map from K into H(D)′ ∩M(B), and let

C0(R) + C · 1 ∼= C(S1) ⊆ L(L2(S1))

given by multiplication of functions. Then the C*-morphism

H1 : D ⊗ C0(R) → H(D)′ ∩M(B)

with H1(a ⊗ f) := D(a)f satisfies the assumptions of Corollary 5.4.4 ??. for the

cone C ⊗ CP(C0(R),C). Thus

Ext(C(R, Y ); D ⊗ C0(R), B ⊗ C0(Y )) ∼= G(πB ◦H1; D ⊗ C0(R), EY )
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and is isomorphic to the kernel of

K0(T )→ K0(EY ) ∼= K1(B ⊗ C0(Y ))

where T := πB(H1(D ⊗ C0(R)))′ ∩ EY .

There is an epimorphism from Ext(C(R,R+) ; D ⊗ C0(R), B ⊗ C0(R+)) onto

the kernel of the group morphism

K1(H[0,∞)(D)′ ∩ E[0,∞))→ K1(E[0,∞)) ∼= K0(B ⊗ C0([0,∞))) .

Proof. ?? �

Alternatively: use explicit KK-equivalences in

E(C,C0(R)(1)) and E(C0(R)(1),C)

Proof of Proposition 8.4.5. : Since there are exact sequence

0→ F (R+)→ K0(H[0,∞)(D)′ ∩ E[0,∞))→ K1(B ⊗ C0(R+)),

0→ F (R−)→ K0(H[0,−∞)(D)′ ∩ E[0,−∞))→ K1(B ⊗ C0(R−)),

the monomorphism F (Y ) := G(HY ; D,EY ) → K0(HY (D)′ ∩ EY ) and the mor-

phisms K∗(HY (D)′ ∩ EY ) → K∗(EY ) and the isomorphisms K0(EY ) ∼= K1(B ⊗
C0(Y )) behave in a natural way equivariant with respect to homeomorphisms σ

of Y , because σ̂ ◦ HY = HY . If X is a closed subset of Y such that for every

f ∈ Cb(Y )+ with f |X ∈ C0(X) there exists g ∈ Cb(Y )+ with gf ∈ C0(Y ) and

gf |X = f |X, then the natural map HY (D)′ ∩ EY → HX(D)′ ∩ EX is an epimor-

phism (that is induced by the natural epimorphism EY → EX).

The algebra HR(D)′ ∩ ER is the pullback of H(−∞,0])(D)′ ∩ E(−∞,0]) and

H[0,∞)(D)′ ∩ E[0,∞) by its natural morphism onto H[0,∞)((D)′ ∩ E{0}. Since

K∗(C0(R+, B)) = 0 and K∗(H[0,∞)(D)′ ∩ E[0,∞)) = 0 (by the first part), we get

that K1(πB(H0(D))′ ∩Qs(B)) ∼= K0(HR(D)′ ∩ ER).

The diagram (and thus the isomorphism) is invariant under σ̂ if σ is an order

preserving homeomorphism of R and σ(0) = 0. Then the morphisms of the Mayer–

Vietoris sequence are also σ̂-equivariant. Since K1(σ̂|{0}) = K1(id) on K1(H0(D)′∩
E0) it follows σ̂ = id on K0(HR(D)′ ∩ ER)

More??? ??

�

One can check that the kernel of K1(H0(D)′ ∩Q(B))→ K1(Q(B)) ∼= K0(B) is

nothing else KKnuc(A,B) if H0 corresponds to CPnuc(A,B) (and similarly in the

residually nuclear case KKnuc(X; A,B) or in the case of KK(C; A,B) with general

non-degenerate m.o.c. cone C ⊆ CP(A,B)). Notice here that A and B are trivially

graded.

Protocol (until 16.9.2009):

Some TO DO list for chp.8, applied in Chapter 11:

(0.1) In all points (*.*) and (*) below:
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We should work with a suitable G-equivariant bi-functor (A,B) 7→ CA,B ⊆
CP(A,B) on suitable categories ofG-algebras withG-equivariant morphisms, where

G is a Polish group.

(0.2) The only additional requirement for (G,X)-equivariant Kasparov modules

is that A and B are graded G algebras. That φ, and the gradings are G-equivariant,

and that the bi-module is G-modular, and that (g(F ) − F )φ(A) ∈ K(E) for all

g ∈ G, and g → g(F ) is norm-continuous.

(1) Each element of KKG(X; A,B) can be represented by a non-degenerate

(G,X)− Kasparov A–B-module (E, φ, F ) (i.e., φ(A)E = E).

(It gives the σ-additivity of KKG(X ; · , B) ???

But it is probably only for a special class of groups G possible, that contains

??????? compact ????? groups (?).

For them, one can reduce all to the stable case and then use the Brown stability

or Kasparov trivialization in a G-equivariant manner ????.)

(2) KKG(X; · , B) is half exact on (G,X)-semi-split sequences (and additive on

(G,X)-split-exact sequences). Needed (!!!), because of the KKG–proof in chapter

11.

(3) Desire: Give an explicit module for the KK-equivalence of split sequences.

(4) Morphisms:

If ψ : A→ B satisfies ψ ◦ C1 ⊆ C2, (that is symbolic ψ ∈ C2C−1
1 ⊆ CP(A,B)), then

ψ∗ : KK(C1 ; D,A)→ KK(C2 ; D,B) is well-defined in the usual way.

If there are G-actions δ, α and β on D,A,B with α(g) ◦ C1 ◦ δ(g−1) ⊆ C1
and β(g) ◦ C2 ◦ δ(g−1) ⊆ C2 for all g ∈ G, and if ψ ◦ α(g) = β(g) ◦ ψ, then

ψ∗ : KKG(C1 ; D,A)→ KKG(C2 ; D,B) is well-defined.

Suppose that G acts on a T0-space X and that D, A, B are (G,X)-

algebras. If ψ : A → B is compatible with the (G,X)-actions on A and

B, then ψ∗ : KKG(X; D,A) → KKG(X; D,B) and ψ∗ : KKnuc
G(X; D,A) →

KKnuc
G(X; D,B) are well-defined. (This can be deduced from the case of cone-

depending KK, by taking C1 := C(X; D,A) and C2 := C(X; D,B), respectively

C1 := Crn(X; D,A) and C2 := Crn(X; D,B).)

Similar (obvious “opposite”) sufficient conditions can be given for the existence

of ψ∗ : KKG(C4 ; B,E)→ KKG(C3 ; A,E) : ψ should be G-equivariant and C4◦ψ ⊆
C3

We get that ψ∗ : KKG(X; B,E) → KKG(X; A,E) is well-defined if ψ is

(G,X)-equivariant.

(5) The cones C needed for Mayer-Vietoris sequence:

(5a) Pull-back of epic morphisms ϕk : Ak → C :

In the case of the pull-back P := A1 ⊕ϕ1,ϕ2 A2 of ϕk : Ak → C (with ϕk ◦ CD,Ak ⊆
CD,C) one has to take the “pull-back” of the cones CD,Ak as follows:
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Let CD,P ⊆ CP(D,P ) denote the set of all maps d 7→ V1(d)⊕V2(d) with V1 ∈ CD,A1
,

V2 ∈ CD,A2
, and ϕ1(V1(d)) = ϕ2(V2(d)) for all d ∈ D.

Notice that π ◦CD,P ⊆ CD,C for π : a1⊕a2 ∈ P → (1/2)(ϕ1(a1)+ϕ2(a2)) ∈ C
and is G-equivariant, because the c.p. map W : a1⊕a2 ∈ A1⊕A2 7→ (1/2)(ϕ1(a1)+

ϕ2(a2)) is G-equivariant and W ◦ (CD,A1
⊕ CD,A2

) ⊆ CD,C .

The co-homological case has to consider given CAk,E ⊆ CP(Ak, E) and CC,E ⊆
CP(C,E). The assumptions need theG–invariance of the cones and maps, e.g. η(g)◦
CC,E ◦ γ(g−1) ⊆ CC,E , etc.

(5b) How to construct the (G, C)-lift from lifts of ϕk?

In case that the ϕk are epimorphisms, the required lifts Tk : C → Ak (of ϕk for

homology) should satisfy Tk ◦ CD,C ⊆ CD,Ak (and should be G-equivariant). In the

co-homological situation, one has to require that CAk,E ◦ Tk ⊆ CC,E etc.

Then T : c 7→ T1(c) ⊕ T2(c) is a G-equivariant c.p. split of the epimorphism

π : P → C with π ◦ T = idC , and T ◦ CD,C ⊆ CD,P .

(6) Mapping cones, Puppe sequence, Bott periodicity. (The modifications for

the C-version!):

ψ : A→ B should be (G, C) equivariant (in the relevant sense, depending from

the homological or co-homological situation). The mapping cone Cψ of ψ is the

pull-back of f ∈ CB = B ⊗ C0((0, 1]) 7→ f(1) ∈ B and of ψ : A→ B. C =: CD,B ⊆
CP(D,B) has to be extended to CD,CB := C ⊗ CP(C,C0((0, 1])) =: C(0, 1] ⊆
CP(D,CB).

This implies that CD,Cψ ⊆ CP(D,Cψ) has to be the the set of all those c.p.

maps V1 ⊕ V2 : D → A⊕CB with V1 ∈ CD,A, V2 ∈ CD,CB and ψ(V1(d)) = V2(d)(1)

for all d ∈ D.

In the co-homological situation one has given CA,E and CB,E and has to

define CCB,E ⊆ CP(CB,E) and CCψ, E ⊆ CP(Cψ, E) : CCB,E := CB,E ⊗
CP(C0((0, 1]),C) CCψ, E as in the above given pull-back construction.

(7) The cones (and conditions in G-equivariant case) needed for the half-

exactness on (G, C)-semi-split exact sequences.

(On (G,X)-semi-split exact sequences it should be nothing in addition to re-

quire.)

Let G a second countable l.c. group, that acts on A and D via α(g) and δ(g),

and let J / A a G-invariant ideal with quotient map π : A → A/J and inclusion

ι : J → A. The action on J and A/J should be the induced one.

Further, CD,A ⊆ CP(D,A), CD,J ⊆ CP(D,J), and CD,A/J ⊆ CP(D,A/J)

are given. We require that π ◦ CD,A ⊆ CD,A/J and ι ◦ CD,J ⊆ CD,A, moreover,

that α(g)CD,Aδ(g−1) ⊆ CD,A, α(g)CD,Jδ(g−1) ⊆ CD,J , and [α](g)CD,A/Jδ(g−1) ⊆
CD,A/J .
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Definition 8.4.7. We say that V : A/J → A is a (G, C)-equivariant lift, if

V is completely positive, G-equivariant, and V ◦ CD,A/J ⊆ CD,A. The sequence

0→ J → A→ A/J → 0 is called homological (G, C)-semi-split, if such V exists.

Similar, one has to require in the co-homological case that e.g. CA,D ◦ V ⊆
CA/J,D, etc.

The proof of the 6-term sequences of usual KK-theory applies now. because,

the (G, C)-analogs of [73, lem. 19.5.3, thm. 19.5.5] work.

Proposition 8.4.8. If the sequence 0 → J → A → A/J → 0 is homolog-

ical (G, C)-semi-split, then the six-term exact sequence of the “homology” X 7→
KKG(CD,X ; D,X) holds (cf. [73, thm. 19.5.7]).

If the sequence 0 → J → A → A/J → 0 is co-homological (G, C)-semi-split,

then the six-term exact sequence of the “cohomology” X 7→ KKG(CX,D ; X,D)

holds.

(8) Comments on the applications of KKG(C; ·, ·) in Chapters 9-12.

(8a) The σ-additivity of KKG(X; · , D) and its consequences:

The σ-additivity immediately follows from the fact that each element can be rep-

resented by a non-degenerate Kasparov module. One of the consequences is the

following lemma:

Lemma 8.4.9. Let B∞ denote the inductive limit of a sequence of (G,X)-

invariant injective morphisms ψn : Bn → Bn+1, and suppose that the morphisms

ψn satisfy the following conditions (i) and (ii) for every n ∈ N.

(i) The element [(Bn+1, ψn, 0)] of KKG(X; Bn, Bn+1) has an inverses ele-

ment in KKG(X; Bn+1, Bn).

(ii) For every finite subset F ⊆ Bn and each ε > 0, there are m2 > m1 ≥
n and a (G,X)-equivariant c.p. contraction V : Bm2

→ Bm1
such that

‖ψm1
n (x)− V (ψm2

n (x))‖ < ε for all x ∈ F .

Then ψ∞1 : B1 → B∞ := indlim(ψn : Bn → Bn+1) defines a KKG(X; ·, ·)–
equivalence of B1 and B∞, i.e., KK(ψ∞1 ) ∈ KKG(X; B1, B∞) admits an inverse

in KKG(X; B∞, B1).

Notice that (ii) is trivially satisfied for compact G and nuclear Bn (if the action

of X on Bn is continuous).

Proof. The condition (ii) ensures that there is a sequence n1 < n2 < · · · and

(G,X)-equivariant completely positive maps Tk : B∞ → Bnk such that

Sk := psi∞k ◦ Tk

converges point-wise to idB∞ . It follows that the epimorphism from the ((G,X)-

contractible) mapping telescope T of the maps (ψ1, ψ2, . . .) onto the inductive limit

B∞ has an (G,X)-equivariant c.p. lift.
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Then B∞ is KKG(X; ·, ·)-equivalent to the kernel of T → B∞. After

realizing that, one is able to apply the standard arguments of cohomology

theory to h(·) := KKG(X; ·, D) (for fixed D), because of homotopy in-

variance and half-exactness on (G,X)-split-exact sequences. Then one uses

that proj− lim(1)(ψ∗1 , ψ
∗
2 , . . .) = 0, and gets that ψ∞1 : B1 → B∞ satisfies

that (ψ∞1 )∗ : KKG(X; B∞, D) → KKG(X; B1, D) defines an isomorphism for

KKG(X; B∞, D) onto KKG(X; B1, D) for each separable (G,X)-algebra D.

In particular, there is y ∈ KKG(X; B∞, B1) with (ψ∞1 )∗(y) = [idB1
]. Since

ψ∞1 is (G,X)-equivariant, it defines an element z := [ψ∞1 ] := [(B∞, ψ
∞
1 , 0)] of

KKG(X; B1, B∞) with z ⊗B∞ y = (ψ∞1 )∗(y) = [idB1 ]. Then

(ψ∞1 )∗([idB∞ ]− (y ⊗B1
z)) = z − (z ⊗B∞ y)⊗B1

z = 0 ,

hence, y ⊗B1
z = [idB∞ ] by injectivity of (ψ∞1 )∗. �

(8b) If A and B are trivially graded, then [(B,ψ, 0)] ∈ KKG(C; A,B) corre-

sponds to the element of ExtG(C ⊗ CP(C,C0(R)); A,C0(R, B)) that is defined by

the extension of A by C0((0, 1), B) given by the mapping cone.

(8c) Notice that the mapping cone Cψ of an (G,X)-equivariant morphism

ψ : A → B is in a natural way a (G,X)-algebra (because defined by passage to

the cone of B and a pull-back construction), and the lift a 7→ a ⊕ (a ⊗ f0) ∈ Cψ
is a (G,X)-equivariant. The canonical 6-term exact sequence for the (G,X)-semi-

split sequence 0 → SB → Cψ → A → 0 has as its connecting maps δ are just

the maps (Sψ)∗KKG(X; SB,D) → KKG(X,SA,D) and ψ∗ : KKG(X; B,D) →
KKG; A,D) (for each separable (G,X)-algebra D). Thus, we get:

Lemma 8.4.10. The (G,X)-algebra Cψ is KKG(X; ·, ·)-trivial, if and only if,

ψ : A→ B is a KKG(X; ·, ·)-equivalence. �

This has a nice application in chapter 11.

Remark 8.4.11. Suppose that G is a Polish l.c. group, and A is a separable

C *-algebra with two actions α and β of G on A. Let C = Cin ⊆ CP(A,A) the cone

of approximately inner c.p. maps of A.

If α and β are exterior equivalent then there is an invertible element in

KKG(C; (A,α), (A, β)).

Here α and β are exterior equivalent if there is a strictly continuous map

g 7→ U(g) from G into the the unitary group U(M(A)), such that U(gh) =

U(g)α(g)(U(h)), and β(g)(·) = U(g)α(g)(·)U(g−1) for g, h ∈ G. (Here we ex-

tend α(g) naturally to M(A). It is the same as our notation M(α(g)) in other

chapters.)

Proof. The arguments in the proof of [698, prop. 3.1] apply to our situation,

because the cone of approximately inner c.p. maps V is invariant under conjuga-

tions, i.e., β(g) ◦ V ◦ α(g−1) if α and β are exterior equivalent. �
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5. Verifying Condition (DC) of the basic Theorem 4.4.6

The verification of Condition (DC) of Theorem 4.4.6 for our axiomatic picture

of KK(C;A,B) ∼= Ext(C(R);A,SB) is completely contained in the following Propo-

sition 8.5.1. Let us first collect some informations that allow to give a proof at the

end of this Section.

In the following we make the overall assumptions that A and B are stable

C *-algebras (real or complex), A is separable, B is σ-unital, and E is any unital

C *-algebra.

We consider in the following Lemmata and in Proposition 8.5.4 also the (triv-

ially graded) real case. Clearly in the complex case the skew-adjoint operators

a∗ = −a are of the form a = ib with b∗ = b.

Say/Recall what is here a "non-degenerate" morphism.

Need to check first following facts:

Let A stable and separable, B stable and σ-unital, CB := C0([0,∞), B),

H : A → M(B) a non-degenerate C *-morphism that is unitarily equivalent to

δ∞ ◦H.

Consider the natural unital injection M(B) ⊂M(CB) of M(B) in M(CB).

Then (by Kasparov ...?), U(πCB(H(A))′ ∩ (M(CB)/CB)) is equal to

U0(πCB(H(A))′ ∩ (M(CB)/CB))

. ????

Proposition 8.5.1. Let A and B stable C*-algebras, where A is separable and

B is σ-unital, and H : A → M(B) a non-degenerate C*-morphism in “general

position” – in the sense of Definition 3.3.1, i.e., H(A)B = B and H is unitarily

homotopic to its infinite repeat δ∞ ◦H, cf. Definition 5.0.1 and Remark 5.1.1(8).

Decide ! :

Is it equal to H(A)B = B and that H is approximately unitary

equivalent to δ∞ ◦H in Norm or strict topology? ( 10 ).

Let S, T ∈ H(A)′ ∩M(B) isometries with SS∗ + TT ∗ = 1.

Suppose that there exists a strictly continuous map t ∈ R 7→ U(t) ∈M(B) from

(−∞,+∞) into the unitaries of M(B) such that

(α) [U(t), H(a)] := U(t)H(a)−H(a)U(t) ∈ B for each a ∈ A,

(β) the map R 3 t 7→ [U(t), H(a)] from R to B is continuous for each a ∈ A,

and

(γ) limt→−∞ ‖U(t)H(a)−H(a)U(t)‖ = 0 for each a ∈ A.

Then there exist strictly continuous maps t ∈ R 7→ V (t) ∈ U(M(B)) and

t ∈ R 7→W (t) ∈ U(M(B)) that have the following properties for each a ∈ A:

(i) U(t)⊕S,T 1 = V (t)W (t) for all t ∈ R,

10 Then δ∞ ◦H is approximately unitary equivalent to H inM(B) with respect to the strict

topology on M(B) in sense of Remarks 5.1.1.
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(ii) t 7→ [V (t), H(a)] is a continuous map from R into B,

(iii) limt→−∞ ‖[V (t), H(a)]‖ = 0 and limt→+∞ ‖[V (t), H(a)]‖ = 0,

(iv) W (t) = 1 for all t ≤ −1 and W (t) ∈ U(B + C · 1) ⊂ U(M(B)) for all

t ∈ R,

(v) t 7→ [W (t), H(a)] ∈ B is a continuous map.

Proposition 8.5.1 says with other words: If U ∈M(C0(R, B)) is a unitary with

UH(a)−H(a)U ∈ Cb(R, B) and and limt→−∞ ‖U(t)H(a)−H(a)U(t)‖ = 0 for each

a ∈ A, then U ⊕S,T 1 decomposes as U ⊕S,T 1 = VW , V,W ∈ U(M(C0(R, B)))

with W ∈ 1 + Cb(R, B) – which implies obviously WH(a)−H(a)W ∈ Cb(R, B) –,

with W (t) = 1 for t ≤ −1 and V H(a)−H(a)V ∈ C0(R, B) for all a ∈ A.

Notice that the assumptions of Proposition the map t ∈ R+ → U(t) ∈ M(B)

corresponding to U is only strictly continuous.

We remind first some simple facts and (easy to see) rough estimates concerning

skew-adjoint contactions −c∗ = c, c1, . . . , cn ∈ E, ‖c‖ ≤ 1 in some real or complex

unital C *-algebra E :

(1) exp(c) ∈ U0(E) if c∗ = −c.
(If E is complex then c = ih for the self-adjoint element h = −ic ∈ E.)

(2) ‖ [exp(c), T ] ‖ ≤ 3 ‖ [c, T ] ‖ for all T ∈ E.

(Use that ‖[cn, T ]‖ ≤ (n‖c‖n−1) · ‖[c, T ]‖, ‖c‖ ≤ 1 and e ≤ 3.)

(3) If c1, . . . , cn ∈ E are skew-adjoint contraction and T ∈ E, then

‖ [ exp(c1) · exp(c2) · . . . · exp(cn) , T ] ‖ ≤ 3nmax { ‖[ck, T ]‖ ; 1 ≤ k ≤ n } .

(Use part (2) and that ‖ exp(c)‖ = 1 if c = −c∗.)

In the following Lemma let B denote a σ-unital (real or complex) C *-algebra

and let D ⊆M(B) a (real or complex) separable C *-subalgebra.

Recall thatM(B) means the multiplier algebra of B and thatM(B) ⊆M(CB)

unitally by the natural non-degenerate embedding B ⊆ M(CB), where we define

here CB := C0((0, 1], B) ∼= C0((α, β], B) for each α < β ∈ R. In this way also D ⊆
M(B) ⊆ M(CB) becomes a C *-subalgebra of M(CB) by natural identification

cf. prove of following Lemma 8.5.2 for details.

Lemma 8.5.2. Let B a σ-unital (real or complex) C*-algebra, D ⊆ M(B) a

separable C*-subalgebra of the multiplier algebra of B, b1, . . . , bn ∈ M(CB) skew-

adjoint contractions with the property that [bk, d] ∈ CB for all d ∈ D and for each

k = 1, . . . , n.

Then, for each given fixed contractions d1, . . . , dm ∈ D and ε > 0, there exist a

positive contraction e ∈ CB and a normal element g ∈ CB such that – with

ck := (1− e2)1/2bk(1− e2)1/2

for k ∈ {1, . . . , n} – and for ` ∈ {1, . . . ,m} holds:

(i) [ck, d] ∈ CB for all d ∈ D,
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(ii) ‖[ck, d`]‖ < ε/(6n+ 7),

(iii) 1 + g ∈ U0(C · 1 + CB), – respectively 1 + g ∈ U0(R · 1 + CB) –, and

(iv) V · (1 + g) = exp(b1) · exp(b2) · . . . · exp(bn)

for the unitary V := exp(c1) · exp(c2) · . . . · exp(cn) ∈ U0(M(CB)).

It implies ‖ [V, d`] ‖ < ε/2 for ` = 1, . . . ,m, [V, d] ∈ CB and [g, d], gd, dg ∈ CB
for all d ∈ D.

There exist δ > 0 and −f∗ = f ∈ CB such that, for ` = 1, . . . ,m,

‖f‖ ≤ 1 , exp(−f)(1 + g)|(0, δ] = 1|(0, δ] and ‖[f, d`]‖ < ε/(3(n+ 1)) .

It implies that h =: exp(−f)(1 + g) − 1 ∈ CB satisfies h(t) = 0 for t ∈ (0, δ],

V · (1 + g) = (V · exp(f)) · (1 + h) and

‖ [V · exp(f), d`] ‖ < ε for ` = 1, . . . ,m .

Moreover 1+h = exp(−f)(1+g) ∈ U0(C1+CB) (respectively 1+h ∈ U0(R1+CB)

in case of a real C*-algebra B).

The later used point is to manage that the

product of exponentials and

the unitary in U(C0((−1, 0], B + C1))

becomes equal to 1 -- say at (−1,−1/2] if defined on (−1,+∞).

Proof. The natural C *-morphism from B into M(CB) is non-degenerate,

i.e., the span of B ·CB is dense in CB. Thus, there is a natural strictly continuous

unital *-monomorphism from M(B) into M(CB). We identify the elements of

M(B) with there images in M(CB), i.e., M(B) ⊂ M(CB) in a natural manner.

Let f0 ∈ C0(0, 1] the function with f0(t) := t for t ∈ [0, 1] and let e0 ∈ B+

a strictly positive contraction in B. Then f0 ⊗ e0 ∈ CB is a strictly positive

contraction in CB and the intersection E of CB with the separable C *-subalgebra

A := C∗(D ∪ {b1, . . . , bn, f0 ⊗ e0}) of M(CB) is a separable C *-subalgebra of CB

and contains the strictly positive element f0 ⊗ e0 of CB.

Thus, the natural inclusion of E in CB defines a unital monomorphism

φ : M(E)→M(CB) with the property that A ⊆ φ(M(E)) ⊆M(CB).

It follows that C∗(f0 ⊗ e0)+ ⊆ CB contains a quasi-central approxi-

mate unit 0 ≤ e1 ≤ e2 ≤ . . . for the elements in C∗(f0 ⊗ e0)+, cf. [616,

thm. 3.12.14, cor. 3.12.15]. It is important that we can find the en with the

additional property eke` = ek for 1 < k < `.

This allows to apply the “mirror method”. (The new application to the mir-

rored problem can be done without harming the before done steps.) The result is a

decomposition of U into unitaries U = VW with W ∈ 1 +J and [V,A] ⊆ C0(R, B).

In particular, for each finite subsets X ⊂ A, Z ⊂ (A∩CB) and each δ > 0 there

exists a positive contraction e ∈ CB+ with ‖ex−xe‖ < δ and ‖z−ze‖+‖z−ez‖ < δ
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for x ∈ X and z ∈ Z. (It suffices to take here Z := {f0 ⊗ e0} and then the δ > 0

sufficiently small.)

?? See for this also Remark 5.1.1(1) and its proof in Section 1 and the Section

3 of Chapter 5 for more details.??

By Proposition 5.3.1, for all a ≥ 0, every contraction x and each β ∈ [1,∞),

‖[x, a1/β ]‖ ≤ 3‖[x, a]‖1/β .

Apply this to β := 2, a := 1− e2 and x with ‖x‖ ≤ 1 and get

‖[x, (1− e2)1/2]‖ ≤ 3‖[x, e2]‖1/2 ≤ 5‖[x, e]‖1/2 .

(i): Let e ∈ (CB)+ a positive contraction. Then b−(1−e2)1/2b(1−e2)1/2 ∈ CB
for all b ∈ M(CB) because πCB(1) = πCB((1 − e2)1/2) for the quotient map

πCB : M(CB)→M(CB)/CB.

If we apply πCB to c := (1− e2)1/2b(1− e2)1/2 ∈M(CB) for b ∈M(CB) with

the property [b, d] ∈ CB for all d ∈ D ⊆ M(CB), we get that πCB(c) = πCB(b)

and πCB([c, d]) = πCB([b, d]). Thus [c, d] ∈ CB for all d ∈ D if [b, d] ∈ CB for all

d ∈ D.

(ii): ‖[ck, d`]‖ ≤ ‖[bk, d`]‖+ 2‖[(1− e2)1/2, d`]‖ ...

But we have only [bk, d`] ∈ CB, need that ‖[ck, d`]‖ is small.

Since bk ∈ M(CB), d` ∈ M(B) ⊆ M(CB) and [bk, d`] ∈ CB for k = 1, . . . , n

` = 1, . . . ,m – by assumptions –, we find for given δ > 0 a positive contraction

e ∈ C ∗ (f0 ⊗ e0)+ ⊆ CB with ‖[e, bk]‖ < δ, ‖[e, d`]‖ < δ and ‖(1 − e)[bk, d`]‖ +

‖[bk, d`](1− e)‖ < δ f := (1− e2)1/2, 1 ≤ k ≤ n and 1 ≤ ` ≤ m.

This ????????????

Let b := bk and d := d`. All are positive contractions.

(fbfd− dfbf) = fb(fd− df)− (fd− df)bf + f(bd− db)f can be estimated by

2‖b‖‖fd− df‖+ ‖f(bd− db)f‖. Since bd− db ∈ CB

Let γ := ε/(6n+ 7). Since

G := C∗(D, b1, . . . , bn) ⊆ φ(M(E)) ⊆M(CB)

is separable we find a quasi-central approximate unit in the positive contractions

of CB for the elements of G by [616, thm. 3.12.14, cor. 3.12.15], i.e., we find a

positive contraction e ∈ CB with ‖[e, x]‖ < γ/2 for x ∈ {d1, . . . , dm, b1, . . . , bn}.

and ‖(1− e)[?, ?]‖+ ‖[?, ?](1− e)‖ <????? (small) for ????

Find contraction e ∈ CB+ with ‖[(1− e2)1/2bk(1− e2)1/2, d`]‖ < γ ...

(iii,iv): Define g by

g :=
(
V −1 · exp(b1) · exp(b2) · . . . · exp(bn)

)
− 1

for V := exp(c1) · exp(c2) · . . . · exp(cn) .
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Since πCB(ck) = πCB(bk) it follows that πCB(V ) = πCB
(
exp(b1) · exp(b2) · . . . ·

exp(bn)
)

and therefore πCB
(
V −1 · exp(b1) · . . . · exp(bn)

)
= πCB(1), i.e., g ∈ CB.

Clearly 1 + g ∈ U(C · 1 + CB), respectively 1 + g ∈ U(R · 1 + CB) ∩ (1 + CB)

in real case. In complex case we have always U(C · 1 + CB) = U0(C · 1 + CB) and

in case of real C *-algebras B holds U(R · 1 + CB) ∩ (1 + CB) ⊆ U0(R · 1 + CB).

To be filled in??

It follows that ‖ [V, d`] ‖ < ε/2 for ` = 1, . . . ,m, [V, d] ∈ CB and [g, d], gd, dg ∈
CB for all d ∈ D.

There exist δ > 0 and −f∗ = f ∈ CB such that ‖f‖ ≤ 1, exp(−f)(1 +

g)|(0, δ] = 1|(0, δ] and ‖[f, d`]‖ < ε/(3(n+ 1)) for ` = 1, . . . ,m.

It implies that h =: exp(−f)(1+g)−1 ∈ CB, h(t) = 0 for t ∈ (0, δ], V ·(1+g) =

(V · exp(f)) · (1 + h) and

‖ [V · exp(f), d`] ‖ < ε for ` = 1, . . . ,m .

�

The following Lemma remains to be checked:

In the following let A and B denote stable (real or complex) C *-algebras. We

require that A is separable and that B is σ-unital. We fix a a non-degenerate C *-

morphism H : A→M(B) in general position, i.e., H(A)B = B and H is inM(B)

approximately unitary equivalent to its infinite repeat δ∞ ◦H.

Lemma 8.5.3. Let A, B stable C*-algebras, A separable B σ-unital, H : A →
M(B) non-degenerate faithful and in “general position”, i.e., H and δ∞◦H unitary

homotopic in M(B).

Given U ∈ U(M(B[0, 2])) with U(t) = 1 for t ∈ [0, 1) and b1, . . . , bn ∈
M(B[0, 2]), b∗k = −bk with [bk, H(a)] ∈ C0((1, 2], B) for k = 1, . . . , n, for all a ∈ A,

and such that

U(t) = exp(b1(t)) · . . . · exp(bn(t))W (t)

with W |[0, 1] ∈ 1 + C([0, 1], B).

We find modifications b′k of bk and W ′(t) of W (t) (the latter inside

1 + C([0, 1], B) ) such that such that W ′(t) = 1 for t ∈ [0, 1/2], W ′(1) = W (1),

b′k(1) = bk(1) and

U(t) = exp(b′1(t)) · . . . · exp(b′n(t)) ·W ′(t)

on [0, 1], and limt→0 b
′
k(t) = 0 strictly.

Perhaps use an approximately central unit of B? With b′k(t) := (1 −
e(t)2)1/2bk(t)(1− e(t)2). Converges strictly to 0.

πB(exp(b′1(t)) · . . . · exp(b′n(t))) = πB(exp(b1(t)) · . . . · exp(bn(t)))
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Proposition 8.5.4. Let A and B stable C*-algebras (real or complex), where

A is separable and B is σ-unital, and let H : A → M(B) a non-degenerate C*-

morphism “in general position” (i.e., H is approximately unitary equivalent to δ∞ ◦
H).

in strict or norm topology ???

Compare Chp. 5

Moreover, let S, T ∈ H(A)′ ∩M(B) isometries with SS∗ + TT ∗ = 1.

The then following holds:

If α < β < γ ∈ R and t ∈ [α, γ]→ u(t) ∈ U(M(B)) is a strictly continuous map

into the unitaries ofM(B) with u(t) = 1 for t ∈ [α, β] and u(t)H(a)−H(a)u(t) ∈ B
for each a ∈ A and t ∈ [α, γ].

Assume moreover that the maps t 7→ u(t)H(a) − H(a)u(t) ∈ B is continuous

on [α, γ] for each a ∈ A (i.e., U := {u(t)} derives H(A) into into C([α, γ], B).

Then for each finite subset X ⊂ A and every ε > 0 there exist n ∈ N and a

decomposition u(t) ⊕S,T 1 = v(t) · w(t) into a product of strictly continuous maps

t ∈ [α, γ] → v(t) ∈ U(M(B)) and t ∈ [α, γ] → w(t) ∈ U(M(B)) such that w(t) =

1 = v(t) for t ∈ [α, (α+ β)/2], w(t) ∈ B + C · 1 for t ∈ [α, γ]

one can only deduce that it w(t) is strictly continuous!!!!

with t ∈ [α, γ]→ w(t) norm-continuous, even with w(t) ∈ 1 +B[α, γ] ??

and

v(t) := exp(b1(t)) · exp(b2(t)) · . . . · exp(bn(t))

for suitable strictly continuous maps t 7→ bk(t) = −bk(t)∗ ∈ M(B) from ((α +

β)/2, γ] with bk(t) ∈ Der(H(A), B) and
∑
k ‖[H(a), bk(t)]‖ < ε for all a ∈ X and

t ∈ ((α+ β)/2, γ], and the maps

t ∈ ((α+ β)/2, γ] 7→ [H(a), bk(t)] ∈ B

are (norm-) continuous and satisfy

lim
t→(α+β)/2

‖[H(a), bk(t)]‖ = 0 .

Proof. The problem is:

Given b1(t), . . . , bn(t), with b∗k = −bk ∈M(C0((−1/2, 0], B))

strictly continuous with respect to t ∈??? and bounded on (−1/2, 0]

with

t 7→ bk(t)H(a)−H(a)bk(t) ∈ C0((−1/2, 0], B)

and 1− exp(b1) · . . . · exp(bn) ∈ C0((−1/2, 0], B) .

Can we connect it in a controlled way inside

[−1, 0] and U(B + C · 1) with 1 ?? �

Notice that we do not require that limt→(α+β)/2 bk(t) = 0. Even not strictly.

But ?????

It can happen that distance of w(γ) from C · 1M(B) is equal to 2.
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Remark 8.5.5. It seems that one can show that the number n ∈ N in Propo-

sition 8.5.4 has an universal upper bound (clearly not depending on ε).

But it could be that ????????

Perhaps one get it by an indirect argument ?

For example one could consider for B the cone over c0(B1, B2, . . .) from a

sequence with A = K ⊗ (C(0, 1] ∗ C(0, 1]) of hn : A → M(Bn), α := −1, β := 0,

γ := 1, un : [−1, 1]→ U(M(B)) –

We are now in position to give the Proof of Proposition 8.5.1.

Proof of Proposition 8.5.1. We can use a ‘‘mirror principle’’ and

apply induction ... �



CHAPTER 9

Scale-invariant maps (i+ii of Thm’s B,M)

NEEDED???/CHECK???/PROBLEM:

In case A, B, stable and separable, that ???

Ext(C; A,B) ∼= ker(U(πB(HC(A))′ ∩Q(B))→ U(Q(B))) .

THIS should apply to Ext(C(0, 1] ; A,C0((0, 1], B)) = 0 and gives then that

each strictly continuous path of unitaries t ∈→ U(t) ∈M(B) with

lim
t→0
‖U(t)a− aU(t)‖ = 0

and U(t)a− aU(t) ∈ B for all t ∈ (0, 1]

This has NOT been proven somewhere: is a finite product of exponentials

exp(h(t)) with h(t)∗ = −h(t) and limt→0 ‖h(t)a−ah(t)‖ = 0 and h(t)a−ah(t) ∈ B.

The number of this exponentials would then have moreover an universal upper

bound.

The injectivity of

ϑ : R(C; A,B)→ KK(C; A,B)

requires to use that C = C(h0) and we must show that the elements in the kernel

of ϑ are homotopic in R(C; A,B) (via boundary maps from R(C[0, 1]; A,B[0, 1]) at

{0, 1} to R(C; A,B)) to the class [h0].

Moreover, one has to show with the method of N.Ch. Phillips that “boundary-

homotopic” elements of SR(C; A,B) define the same element of Gr(SR(C; A,B)).

??

In the meantime we rediscovered also our direct proof of the injectivity

of the natural group homomorphism from SR(C; A,B) onto Ext(C; A,SB) ∼=
KK(C; A,B) is injective. The proof of the injectivity uses a mirror-principle and

triviality of KK(C; A, C(R−, B)), which follows from the homotopy invariance of

KK via KKc = KKoh = KKh (an observations of G. Kasparov).

We prove the parts (i) and (ii) of Theorem B and of Theorem M in this Chapter.

We assume the existence of the non-degenerate nuclear C *-morphism h0 : A→ B as

described in Chapter 1 before Theorem M. The existence of h0 comes from Theorem

A (in the case of Theorem B), and, — if B is separable, stable, strongly purely

infinite and contains an Abelian regular C *-subalgebra —, comes from Corollary

6.3.2.

917
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The general existence of h0 comes later from Theorem K (in the case of Theorem

M). Theorem K will be proven in Chapter 12 with help of Corollary 6.3.2 and

Corollary 9.1.7.

In Section 1 we derive also some useful applications of asymptotic maps that

are asymptotically scale invariant up to approximate unitary equivalence.

The proof, as given in the second part of this Chapter, is (in conjunction

with Theorem 4.4.6) a more detailed reformulation of the proof in the appendix

of our preprint from December 1994 (3rd draft), more precisely: We show that

the natural morphism from R(A,B) into KKnuc(A,B) (resp. from R(X,A,B) into

KKnuc(X;A,B) for X := Prim(B)) is an isomorphism, cf. Corollary 9.4.2. Here

we start with the *-monomorphism h0 described below Theorem A (resp. before

Theorem M) which defines the zero element of the R- and KKnuc-groups and reduce

the proofs of the parts (i) and (ii) of Theorems B and M to Theorem 4.4.6. This

reduction requires results of Chapters 5 and 7, and Lemma 8.3.2.

Note that the material of Chapter 8 are modifications of well-known results

of Kasparov, Skandalis and others, and can also be deduced from textbooks as

e.g. [73], [389], at least in the situation of nuclear C *-algebras, and only so far

as it is needed for Corollary C, if the reader is only interested in the classification

result Corollary C.

Then we use the isomorphism R(A,B) ∼= KKnuc(A,B) (resp. R(X; A,B) ∼=
KKnuc(X; A,B), R(C; A,B) ∼= KKnuc(X; A,B)) to conclude with help of Corol-

lary 8.3.4,(ii) (respectively with help of the generalization of Corollary 8.3.4 for

Extnuc(X; ., .) and Ext(C; ., .)) that the elements of R(A,B) (respectively of

R(X; A,B)) are invariant under scaling in the sense of the below given Definition

9.1.1. We conclude that every element of R(A,B) (respectively of R(X; A,B),

R(C; A,B)) is given by a nuclear (respectively by a morphism ϕ : A ↪→ B with

ϕ ∈ C, e.g. for C = CPrn(X; A,B)). But this proves parts (i) and (ii) of Theorems

B and M.

More generally, we show that

if A is separable, B is σ-unital, A and B are stable, h0 = k(· ⊗ 1) for some non-

degenerate *-monomorphism k : A ⊗ O2 ↪→ B, and if C ⊆ CP(A,B) denotes the

point-norm closed matrix operator-convex cone generated by h0, then the natural

morphism

R(C; A,B)→ Ext(C ⊗ CP(C,C0(R)); A,B ⊗ C0(R))

is an isomorphism.

The homotopy invariance of KK(C; A,B) and the natural isomorphism

Ext(C ⊗ CP(C,C0(R)); A,B ⊗ C0(R)) ∼= KK(C; A,B)

(shown in Chapter 8) then imply that every element of KK(C; A,B) can be repre-

sented by a morphism h from A into B that is asymptotically dominated by h0 (i.e.,

by h ∈ Hom(A,B) with [h] ∈ SR(C; A,B)). Then the definition of R(C; A,B) =

[h0] + SR(C; A,B) ∼= Gr(SR(C; A,B)) and the relations in SR(C; A,B) yield that
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[h] = [k] in KK(C; A,B) if and only if h ⊕ h0 and k ⊕ h0 are unitarily equivalent.

(The latter can be deduced from the identity and isomorphism

G(h0; A,Q(R+,M(B))) = R(C; A,B) ∼= KK(C; A,B)

and the considerations of Chapter 4 on this type of groups.)

1. Scale-invariant elements of SR(X; A,B)

We introduce a notion of generalized invariance under scaling for asymptotic

maps:

Consider a topological isomorphism σ from R+ onto R+. That is, σ is a bijective

continuous function of R+ onto R+. Note that σ(0) = 0 and that σ has to be strictly

increasing.

Now let F be a C *-algebra. The homeomorphism σ induces an automorphism σ̂

of Q(R+, F ) in a natural way by mapping π(f) to π(f ◦σ), for f ∈ Cb(R+, F ), where

π : Cb(R+, F )→ Q(R+, F ) denotes the quotient map. Recall from Chapter 7 that

Q(R+,M(F )) is a unital C *-subalgebra of the multiplier algebraM(Q(R+, F )) of

Q(R+, F ).

Definition 9.1.1. Let X be a set and h : X → Q(R+, F ) a map. The map

h will be called invariant under scaling (up to unitary equivalence) , if, for

every topological isomorphism σ from R+ onto R+, σ̂ ◦ h is unitarily equivalent to

h by a unitary in Q(R+,M(F )) ⊆M(Q(R+, F )).

We say that h is approximately scale-invariant , if, for every topological

isomorphism σ from R+ onto R+, σ̂ ◦ h is approximately unitarily equivalent to h

by unitaries in Q(R+,M(F )).

An class [h] ∈ [Hom(A,Q(R+, F ))] will be called invariant under scaling if

[h] = [σ̂ ◦ h] for every topological isomorphism σ from R+ onto R+ ( 1 ).

Recall form Chapters 5 and 7 that, for a C *-algebra F ,

Q(R+, F ) := Cb(R+, F )/C0(R+, F ) ,

that Q(R+,M(F )) is in a natural way a C *-subalgebra of the multiplier algebra

M(Q(R+.F )) of Q(R+, F ), and that, for every separable subset Y of Q(R+, F ) and

unitary v in the multiplier algebra of Q(R+, F ) there is a unitary u ∈ Q(R+,M(F ))

with u∗bu = v∗bv for every b ∈ Y , so far as F is stable or is unital, cf. Proposition

7.4.1. Thus, one can replace Q(R+,M(F )) by M(Q(R+, F )) in Definition 9.1.1 if

F is unital or F is stable.

It is obvious from Definition 9.1.1 that, for every set X and every map

k : X → F into the “constant” elements of Q(R+, F ) and for every unitary

u ∈ Q(R+,M(F )), the map h(x) := u∗k(x)u is, up to unitary equivalence, invari-

ant under scaling. The following Proposition 9.1.2 and Corollary 9.1.3 show that

1 That means, by our definition of the classes [ · ] in Chapters 4 and 7, that σ̂ ◦ h is unitarily

equivalent to h in Q(R+,M(F )), i.e., h is invariant under scaling up to unitary equivalence.
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for separable h(X) this is the only example of a map which is scaling invariant up

unitary equivalence.

Proposition 9.1.2. Suppose that X is a compact metric space, F is a σ-unital

C*-algebra, and that h : X → Q(R+, F ) is a continuous map.

If h is approximately scale-invariant, then there exists a continuous map h1

from X into F , such that h1 is unitarily equivalent to h by a unitary U in the

C*-subalgebra Q(R+,M(F )), of the multiplier algebra of Q(R+, F ).

The following proof shows that we can find the map h1 : X → F and the unitary

U such that U = W +C0(R+,M(F )) with a unitary W ∈ Cb(R+,M(F )) such that

W (1) = 1M(F ). It implies for the above example h := u∗k(·)u, that there exists a

unitary W0 ∈ M(F ) ⊂ Cb(R+,M(F )) such that h1 := W ∗0 k(·)W0 and U = W ∗0 u

are as desired.

Proof. Since h ∈ C(X,Q(R+, F )) and since Q(R+, F ) is a quotient C *-

algebra of Cb(R+, F ), there exists T ∈ C(X,Cb(R+, F )) such that h(b) = T (b) +

C0(R+, F ) for every b ∈ X, i.e., T : X → Cb(R+, F ) is a topological lift of h.

If σ is a topological isomorphism of R+, then the bounded continuous function

t 7→ T (b)(σ(t)) ∈ F is a lift of σ̂(h(b)) to Cb(R+, F ).

Let u be a unitary in Q(R+,M(F )) such that, for all b ∈ X,

‖u∗h(b)u− σ̂(h(b))‖ < ε/8 .

There exists a unitary w in Cb(R+,M(F )) such that u = w + C0(R+,M(F )). w

is given by a norm continuous map w : t ∈ R+ → w(t) ∈ U(M(F )) ( 2 ). It follows

that

γ(b, t) := ‖T (b)(σ(t))− w(t)∗T (b)(t)w(t)‖

satisfies, for every b ∈ X,

lim
t→∞

γ(b, t) = ‖u∗h(b)u− σ̂(h(b))‖ < ε/8 .

On the other hand, by the triangle inequality, for t ∈ R and a, b ∈ X,

|γ(a, t)− γ(b, t)| ≤ 2‖T (a)− T (b)‖

(where the last norm comes from C(X,Cb(R+, F ))), i.e., γ(b, t) is uniformly con-

tinuous on the compact space X and, therefore,

lim
t→∞

(sup
b∈X

γ(b, t)) < ε/8 .

Let y ≥ 0. For x > y and ε > 0, consider the set M(x, ε) of the s > x with the

property that there exists a norm continuous map

v : t ∈ [x, s]→ v(t) ∈M(F )

2Note that the choice of w depends from u and thus from σ.
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from [x, s] into the unitary group U(M(F )) of the multiplier algebra of F with

v(x) = 1 and

‖v(t)∗T (b)(t)v(t)− T (b)(x)‖ < ε (1.1)

for b ∈ X and t ∈ [x, s] ( 3 ). From the definition of M(x, ε) we see that M(x, ε/2) ⊆
M(x, ε) and t ∈M(x, ε) if x < t < s and s ∈M(x, ε).

We define m(x, ε) := supM(x, ε) ∈ [x,+∞]. The real number 2m(x, ε) is not

in M(x, ε) if m(x, ε) <∞, because x > 0.

The properties of M(x, ε) and

???? what else? ??

lead to

m(x, ε/2) ≤ m(x, ε)

for ε > 0 . Moreover, x < m(x, ε/2) for every ε > 0, because T is (uniformly)

continuous.

Intuition says that for every y ∈ R+ and every ε > 0 there exists at least one

x > y with m(x, ε) =∞. But we give a very detailed proof of this almost obvious

fact:

Let ε > 0 and y ∈ R+ be fixed. We show below that the assumption that

m(x, ε) <∞ for every x > y (1.2)

contradicts that h is of approximate scaling invariant.

If m(x, ε) < ∞ for every x > y, then we can find a sequence (xn) in (y,∞)

such that, for every n,

n < xn < m(xn, ε/2) < 2m(xn, ε) < xn+1 <∞ . (1.3)

This allows us to define a topological isomorphism of R+ by taking a strictly in-

creasing continuous piecewise linear map σ : R+ → R+, satisfying

σ(xn) = xn and σ(2m(xn, ε)) = xn+(m(xn, ε/2)−xn)/2 for every n .

As we have seen above, by the assumption of approximate invariance of h under

scaling (applied to σ), there exists a norm continuous map t 7→ w(t) ∈ U(M(F ))

with

lim
t→∞

sup
b∈X
‖T (b)(σ(t))− w(t)∗T (b)(t)w(t)‖ ≤ ε/8.

Thus there exists xn in our sequence such that

‖w(t)∗T (b)(t)w(t)− T (b)(σ(t))‖ < ε/4 (1.4)

for t ≥ xn and b ∈ X.

On the other hand, by the definition ofm(x, ε/2), we can find a norm continuous

map t 7→ z(t) ∈ U(M(F )) such that z(xn) = 1 and

‖z(t)∗T (b)(t)z(t)− T (b)(xn)‖ < ε/2 (1.5)

3 Note here that v can depend on s and ε.
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for t ∈ [xn, xn + (m(xn, ε/2)− xn)/2] and b ∈ X.

Since σ maps [xn, 2m(xn, ε)] onto [xn, xn + (m(xn, ε/2)−xn)/2] and since z(t)

is unitary, we get from equations (1.4) and (1.5) that, for t ∈ [xn, 2m(xn, ε)] and

b ∈ X ,

‖w(xn)T (b)(xn)w(xn)∗ − T (b)(xn)‖ < ε/4,

‖z(σ(t))∗w(t)∗T (b)(t)w(t)z(σ(t))− z(σ(t))∗T (b)(σ(t))z(σ(t))‖ < ε/4,

‖z(σ(t))∗T (b)(σ(t))z(σ(t))− T (b)(xn)‖ < ε/2 .

Let v(t) := w(t)z(σ(t))w(xn)∗ for t ∈ [xn, 2m(xn, ε)]. Then the equation v(xn) = 1

and applications of the triangle inequality and of the (isometric) inner automor-

phisms w(xn)(·)w(xn)∗ show (together) that

‖v(t)∗T (b)(t)v(t)− T (b)(xn)‖ < ε

for every t ∈ [xn, 2m(xn, ε)] and b ∈ X. It gives 2m(xn, ε) ∈ M(xn, ε). This

leads to the (desired) contradiction by inequalities (1.3) because m(xn, ε) <∞ (by

assumption).

We have seen above that, for every y ∈ R+ and ε > 0, there exist x > y

with m(x, ε) = ∞ . Hence, we find a sequence 0 < x1 < x2 < . . . ∈ R such that

xn+1 > max(xn, n) and m(xn, 2
−n) =∞.

By the definition of M(xn, 2
−n) and of m(xn, 2

−n) there are norm continuous

maps vn from [xn, xn+1] into U(M(F )) such that vn(xn) = 1 and

‖vn(t)∗T (b)(t)vn(t)− T (b)(xn)‖ < 2−n

for every t ∈ [xn, xn+1] and every b ∈ X.

By induction we define a norm continuous map W from R+ into the unitaries

of M(F ) by W (t) := 1 for t ∈ [0, x1] and W (t) := vn(t)V (xn) for t ∈ [xn, xn+1].

Since vn(xn) = 1 and vn is norm continuous, the map W : t 7→ W (t) is well-

defined and is continuous in norm. Then we have

‖W (t)∗T (b)(t)W (t)−W (s)∗T (b)(s)W (s)‖ < 2(1−n)

for t, s ∈ [xn, xn+1] and b ∈ X. Iterated use of the triangle equation gives

‖W (t)∗T (b)(t)W (t)−W (s)∗T (b)(s)W (s)‖ < 2(2−n) for all s, t ≥ xn .

Thus,

h1(b) := lim
t→∞

W (t)∗T (b)(t)W (t)

exists in F for b ∈ X. If we consider h1 as a map from X to F ⊆ Q(R+, F )

then h1 is unitarily equivalent to h by the unitary U = W + C0(R+,M(F )) in

Q(R+,M(F )). Hence h1 is again continuous. �

Corollary 9.1.3. Let D be a separable C*-algebra, F a stable or a unital

C*-algebra and h : D → Q(R+, F ) a C*-morphism.



1. SCALE-INVARIANT ELEMENTS OF SR(X; A,B) 923

If h is approximately scale-invariant, then there exists a (“constant”) C*-

morphism k from D into F ⊆ Q(R+, F ) such that h is unitarily equivalent to k

by a unitary in Q(R+,M(F )).

In particular, for separable stable exact A and σ-unital stable B, an element [h]

of SR(X,A,B) is invariant under scaling if, and only if, [k] = [h] for a “constant”

C*-morphism k from A into B ⊆ Q(R+, B).

Proof. Let d1, d2, . . . be a dense sequence in the unit ball of D and let X :=

{0} ∪ {2−ndn : n = 1, 2, . . .}. Then D is the closed span of the compact set X, and

the restriction of h to X satisfies the requirements of Proposition 9.1.2.

Thus, there is continuous map h1 : X → F and a unitary u in Q(R+,M(F )),

which is considered as a C *-subalgebra of the multiplier algebra of Q(R+, F ), such

that u∗h(d)u = h1(d) for d ∈ X.

The map k : d ∈ D 7→ u∗h(d)u is a C *-morphism from D into Q(R+, F ) which

extends h1 to a C *-morphism k from D into Q(R+, F ), and k is unitarily equivalent

to h by a the unitary u in Q(R+,M(F )).

k(D) ⊆ F , because the linear span of X is dense in D and k|X = h1, i.e., k is

“constant”.

If D := A and F := B, then, by Proposition 7.4.1 the various versions of unitary

equivalence coincide and we may consider the unitary equivalence by unitaries in

Q(R+,M(F )). Then the scale-invariance of [h] means that h is invariant under

scaling up to unitary equivalence. Hence h is approximately scale-invariant. �

We get the following useful Corollaries 9.1.4 and 9.1.6, which we apply in Chap-

ters 10 and 12.

Corollary 9.1.4. Suppose that A and B are C*-algebras, where A is stable

and separable. Let h0 : A→ B be a non-degenerate *-monomorphism.

Then h0 is unitarily homotopic to h0 ⊕ h0, if and only if, there exists a *-

monomorphism k : A⊗O2 → B, such that k0(a) := k(a⊗ 1) is unitarily homotopic

to h0.

The monomorphism k can be chosen to be non-degenerate, and then k0(A)

commutes with a copy of O2 which is unitally contained in M(B).

Proof. B is stable and σ-unital, because A is stable and separable and h0 is

non-degenerate, i.e., h0(A)B is dense in B.

Suppose that k : A ⊗ O2 → B is such that k0(a) := k(a ⊗ 1) is unitarily

homotopic to h0. Then k(A ⊗ O2) is a stable C *-subalgebra that generates B as

a closed ideal, because h0 is non-degenerate. By Corollary 5.5.6(iv), k is unitarily

homotopic to a non-degenerate *-monomorphism from A ⊗ O2 into B, because B

is stable and σ-unital. Therefore, we can assume that k is non-degenerate.



924 9. SCALE-INVARIANT MAPS (I+II OF THM’S B,M)

The extension M(k) of k to a unital *-monomorphism from M(A ⊗ O2) to

M(B) maps 1 ⊗ O2 unitally into the commutant of k0(A). Thus, k0 is unitarily

equivalent to k0 ⊕ k0. It follows that h0 is unitarily homotopic to h0 ⊕ h0.

Now suppose, that h0 is unitarily homotopic to h0 ⊕ h0.

By Proposition 7.4.2, there exists, up to unitary equivalence by unitaries in

Q(R+,M(B)), a unique *-monomorphism k1 : A⊗O2 → Q(R+, B) with k1(a⊗1) =

h0(a) such that k1 ⊕ k1 is unitarily equivalent to k1 in Q(R+,M(B)).

If we compose k1 with σ̂ for a scaling σ of R+, then σ̂k1 has the same properties

as k1 with respect to h0. Thus, σ̂k1 is unitarily equivalent to k1 by Proposition

7.4.2.

By Corollary 9.1.3, k1 is unitarily equivalent to a *-monomorphism k from

A⊗O2 into B by a unitary in Q(R+,M(B)). But then k0 = k((·)⊗ 1) is unitarily

equivalent to h0 in Q(R+,M(B)), and this means that h0 and k0 are unitarily

homotopic. �

Remark 9.1.5. In view of the following assumptions on asymptotic embeddings

of a separable C *-algebra A it seems to be useful to remember the following basic

observations at the beginning of Chapter 3:

Let A a C *-algebra. Then the following are equivalent:

(i) A is an exact C *-algebra.

(ii) There exists a faithful nuclear *-representation ρ : A → L(H) over some

Hilbert space H.

(iii) Each C *-morphism h : A → B into a weakly injective C *-algebra B is

nuclear.

(iv) There exists a nuclear faithful C *-morphism h : A → C into some C *-

algebra C.

(v) There exists a nuclear completely isometric embedding of A into some

C *-algebra D.

Proof. The equivalence of (i) and (ii) is discussed in Remarks ?? ????? Sec-

tion 1 of Chapter 3. The equivalence of (ii)-(v) follow essentially from the Arveson

extension theorem [42], i.e., that each of the conditions (iii)-(v) implies that the

faithful *-representations of A on a Hilbert space H are nuclear, cf. Chapter 3 for

more details. �

Corollary 9.1.6. Suppose that A and B are stable C*-algebras, where A is

separable and exact, and that k is a nuclear *-monomorphism from A ⊗ O2 into

Q(R+, B).

Let k0(a) := k(a⊗ 1) for a ∈ A.

If k0(A) ∩ J1 = k0(A) ∩ J2 for all pairs of closed ideals J1 and J2 of Q(R+, B)

with J1∩B = J2∩B, then there exists a nuclear *-monomorphism h from A⊗O2 into

B, such that the *-monomorphisms h0 := h((·)⊗ 1) and k0 from A into Q(R+, B)

are unitarily equivalent by a unitary in Q(R+,M(B)).
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If, moreover, B is σ-unital, and B is contained in the closed ideal of Q(R+, B)

that is generated by the image of k, then h can be found such that, moreover, h0 is

non-degenerate and unitarily equivalent to h0 ⊕ h0 by a unitary in M(B).

Proof. If σ is a homeomorphism of R+, a ∈ A, I ∈ I(Q(R+, B)), then

σ̂k0(a) ∈ I, if and only if, k0(a) ∈ σ̂−1(I), if and only if, k0(a) ∈ I, because

B ∩ I = B ∩ σ̂−1(I).

Thus, k0 and k1 := σ̂ ◦ k0 are nuclear *-monomorphisms, such that k0 and

k1 extend to C *-morphisms k and σ̂k from A ⊗ O2 into Q(R+, B), and, for every

I ∈ I(Q(R+, B)),

k−1
0 (k0(A) ∩ I) = k−1

1 (k1(A) ∩ I) .

By Corollary 7.4.3, this implies that k0 and k1 are approximately unitarily equiva-

lent.

Therefore k0 is approximately scale-invariant. By Corollary 9.1.3, k0 is unitarily

equivalent to a C *-morphism h1 from A into B by a unitary in Q(R+,M(B)). By

Corollary 7.4.3, k0 and k0 ⊕ k0 are unitarily equivalent in Q(R+,M(B)). Thus

h1 is unitarily homotopic to h1 ⊕ h1. Now we can proceed as in the proof of

Corollary 9.1.4, and get a *-monomorphism h : A ⊗ O2 → B, such that h0 :=

h((·)⊗ 1) is unitarily homotopic to h1. Thus, h0 and k0 are unitarily equivalent in

Q(R+,M(B)).

It follows that h0 is a nuclear map, if we consider it as a map from A into

Q(R+, B). But B is relatively weakly injective in Q(R+, B), i.e., there is a normal

conditional expectation from the second conjugate of Q(R+, B) onto the second

conjugate of B ( 4 ). Thus h0 is also a nuclear map from A into B.

We use the nuclearity criteria (i) in Remark 3.1.2, to show that h is nuclear if

h0 is nuclear: Let C be a C *-algebra. Consider the natural C *-morphism

g := idC ⊗maxh : C ⊗max (A⊗O2)→ C ⊗max B .

The restriction of g to C ⊗max (A ⊗ 1) annihilates the kernel of the natural epi-

morphism from C ⊗max (A⊗ 1) onto C ⊗ (A⊗ 1), because h0 is nuclear. Since, by

nuclearity of O2, on the algebraic tensor product (C ⊗ A) � O2 there is a unique

C *-norm, we get that g annihilates the kernel of the natural epimorphism from

C ⊗max (A⊗O2) onto C ⊗ (A⊗O2). Thus h is nuclear.

Now we suppose, in addition, that the closed ideal I0 of Q(R+, B), which is

generated by k0(A), contains B, and that B is σ-unital.

Let J denote the closed ideal of B, which is generated by h0(A). The ideal

Q(R+, J) of Q(R+, B) contains k0(A) and I0, because h0(A) and k0(A) generate

the same ideal of Q(R+, B). Since B∩Q(R+, J) = J and B∩I0 = B, we get B = J .

Thus, h(A ⊗ O2) is a stable C *-subalgebra of B and the closed ideal generated

by h(A ⊗ O2) is the σ-unital stable C *-algebra B. By Corollary 5.5.6(iv), h is

unitarily homotopic to a non-degenerate *-monomorphism h′ from A to B. The

4Use normalizations of suitable c.p. maps Q(R+, B)→ `∞(B∗∗)/c0(B∗∗)→ B∗∗.
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non-degenerate *-monomorphism h′0 is again unitary equivalent to k0 by a unitary

in Q(R+,M(B)). The image of h′0 commutes element-wise with the unital copy

M(h′)(1M(A) ⊗O2) of O2, if M(h′) is the unital extension of h′ to the multiplier

algebras. �

We can rephrase Corollary 9.1.6 in the language of actions of Prim(B) on A as

follows:

Corollary 9.1.7. Suppose that A and B are stable separable C*-algebras,

and that Ψ: I(B) → I(A) is a lower semi-continuous action of Prim(B) on A,

such that Ψ(0) = 0 and Ψ−1(A) = {B}.

If k : A ⊗ O2 → Q(R+, B) is a nuclear *-monomorphism, such that, for every

closed ideal I of Q(R+, B) and for k0 := k((·)⊗ 1),

k0(Ψ(I ∩B)) = k0(A) ∩ I,

then there exists a non-degenerate nuclear C*-morphism h : A⊗O2 → B, such that

h0(Ψ(J)) = h0(A) ∩ J for every closed ideal J of B, where h0(a) := h(a⊗ 1).

The morphism h0 is unitarily equivalent to h0 ⊕ h0. Every nuclear *-

monomorphism h1 : A → B which satisfies h1(Ψ(J)) = h1(A) ∩ J for J ∈ I(B),

and is unitarily homotopic to h1 ⊕ h1, is unitarily homotopic to h0.

Proof. Since the *-monomorphism k : A ⊗ O2 → Q(R+, B) is nuclear, the

algebra A is exact.

By assumption, the intersection of the image of k0 with a closed ideal of

Q(R+, B) depends only from the intersection of the ideal with B.

The closed ideal I0 of Q(R+, B) which is generated by the image of k0 := k((·)⊗
1) satisfies k0(Ψ(B ∩ I)) = k0(A). Since Ψ−1(A) = {B}, we have B ∩ I = B. Thus

Corollary 9.1.6 applies to k. It gives the existence of the desired non-degenerated

nuclear h with h0 unitarily equivalent to h0 ⊕ h0 by a unitary in M(B).

Since h0 is unitarily homotopic to k0, for a ∈ A and closed ideals I of Q(R+, B),

h0(a) ∈ I if and only if k0(a) ∈ I. This applies to the ideals I := Q(R+, J), where

J ∈ I(B). We have J = I ∩B. Thus, h0(Ψ(J)) = h0(A) ∩ J for J ∈ I(B).

If h1 : A→ B is a nuclear *-monomorphism, such that h1 is unitarily homotopic

to h1 ⊕ h1, and such that, for J ∈ I(B),

h−1
1 (h1(A) ∩ J) = h−1

0 (h0(A) ∩ J),

then h0 and h1 are unitarily homotopic by Corollary 7.4.3. �

2. Mapping-cone construction defines isomorphism

Let D a stable separable C *-algebra. We start with any non-degenerate *-

monomorphism k : D⊗O2 → B , i.e., we suppose that D, k and C with the following

properties (a)–(c) are given:
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(a) D is a separable and stable C *-algebra,

(b) k : D ⊗O2 → B is a non-degenerate *-monomorphism, and

(c) C ⊆ CP(D,B) is the point-norm closed matrix operator-convex cone that

is generated by the *-monomorphism k0 := k((·)⊗ 1) ∈ Hom(A,B).

The p.i. algebra k(A ⊗ O2) is a non-degenerate C *-subalgebra of B by (b), i.e.,

k(A ⊗ O2)B is dense in B and k extends uniquely to a strictly continuous unital

monomorphism M(k) from M(A⊗O2) into M(B). It follows that

(d) B is σ-unital and stable, cf. Remark 5.1.1(9),

(e) the morphism k0 := k((·) ⊗ 1) is is unitarily equivalent to k0 ⊕ k0 by a

unitary in M(B) by Proposition 4.3.5(iii), because k0(A) commutes with

the unital copy M(k)(1M(A) ⊗O2) of O2 in M(B)), and

(f) k0 : D → B is non-degenerate.

We know from Corollary 7.4.19, that

SR(C; D,B) = S(k0; D,Q(R+,M(B))) ,

and that a non-degenerate *-morphism k1 ∈ Hom(A,B)∩ C is necessarily unitarily

homotopic to k0 if k1 generates C and if k1 is unitarily homotopic to k1 ⊕ k1. In so

far k0 and C determine each other uniquely.

We recall some definitions and results of Chapters 5, 7 and 8:

Remark 9.2.1. For locally compact Y , e.g. if Y equals one of R, R+ = [0,∞)

or R− := (−∞, 0], we have defined in Chapter 7 the asymptotic coronas Q(Y,B) :

Q(Y,B) := Cb(Y,B)/C0(Y,B).

Recall that there is a natural isomorphism

Q(R, B) ∼= Q(R−, B)⊕Q(R+, B),

and that Q(R, B) is an ideal in ER = Qs(SB), where we write

SB := C0(R, B) and ER :=M(SB)/SB ∼= Qs(SB).

We denote the canonical epimorphism from M(SB) onto ER by πSB .

Thus Q(R+, B) contains B naturally and Q(R+, B) is naturally isomorphic to

an ideal of ER. We let J denote the closed ideal of ER that is naturally isomorphic

to Q(R+, B) and let I1 : Q(R+, B) → J denote the natural isomorphism from

Q(R+, B) onto J ⊆ ER. We define a monomorphism h0 : D → J , by

h0 := I1 ◦ k0 . (2.1)

To make I1 and all related calculations of later identities explicit, we can take

the continuous function λ(t) := min(1,max(0, t)) (for t ∈ R) and build an element

f̃(t) := λ(t)f(t) in f̃ ∈ Cb(R, B) by f̃(t) := λ(t) · f(t) (t ∈ [0,∞)) and f̃(t) := 0 for

t < 0, where f ∈ Cb(R+, B) is a given representative of an element f + C0(R+, B)

in Q(R+, B). Then

I1
(
f + C0(R+, B)

)
= f̃ + C0(R, B) .
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All notions of unitary equivalence in Hom(D,Q(R+, B)) coincide with the

equivalence induced by unitaries of ER :=M(SB)/SB ∼= Qs(SB), or by unitaries

coming from Cb(R,M(B)), because B is stable, cf. Proposition 7.4.1. Therefore,

the inclusion map I1 : Q(R+, B) ↪→ ER = Qs(SB) defines a natural semigroup

monomorphism ψ from the semigroup [Hom(D,Q(R+, B))] of classes of unitar-

ily equivalent morphisms in Hom(D,Q(R+, B)) (by unitaries in Q(R+,M(B)) ⊆
M(Q(R+, B))) to [Hom(D,ER)] those of Hom(D,ER). Note that the additive map

ψ generalizes the usual mapping cone construction in a natural way.

The natural inclusions and isomorphism

M(B) ⊆ Cb(R,M(B)) ⊆ Cb,st(R,M(B)) ∼=M(C0(R, B))

of Lemma 7.4.5 induce natural inclusions

M(B) ⊆ Cb(R,M(B))/C0(R, B) ⊆ ER .

We denote by I2 is the unital inclusion map of M(B) into ER.

We define a *-monomorphism

H ′0 := δ∞k0 : D →M(B) .

Let H0 := HR := I2 ◦H ′0 : D → ER. Then H0 for H ′0 is related to C := C(k0) in the

sense of Corollary 5.4.4.

Let β̃ be the *-automorphism of M(C0(R, B)) which is defined by β̃(f)(t) =

f(−t) for f ∈ Cb,st(R,M(B)) ∼= M(C0(R, B)). β̃ maps C0(R, B) onto C0(R, B)

and defines therefore an automorphism β of ER with β2 = id.

Certainly, β(b) = b for b ∈ I2(M(B)) ⊆ ER, and β(Q(R+, B)) = Q(R−, B).

Thus β(J) ∩ J = 0, βH0 = H0 and J + β(J) = Q(R, B) ⊆ ER. Furthermore

h0 + βh0 = I2 ◦ k0, because I2(b) = I1(b) + βI1(b) for b ∈ B.

Since H0 dominates h0, the map ψ induces a semigroup homomorphism

ϑ : [h] ∈ S(h0; D,ER)→ [h] + [H0] ∈ G(H0; D,ER) .

Then ϑ|G(h0, D,ER) is a group homomorphism and ϑ([h] + [h0]) = [h] + [H0] by

Proposition 4.4.2(ii).

We have seen in Chapters 5 and 8 that

Ext(C ⊗ CP(C,C0(R)); D,SB) = G(H0, D,ER)

(cf. Corollary 5.9.23) and

Ext(C ⊗ CP(C,C0(R)); D,SB) ∼= KK(C; D,B)

(cf. Lemma 8.4.2).

The semigroup S(h0; D,ER) is a sub-semi-group of S(H0; D,ER) because

H0 dominates h0 (almost obviously). Thus, [h] 7→ [h ⊕ H0] = [h] + [H0]

defines a natural group morphism ϑ from R(C; D,B) = G(h0; D,ER) into

Ext(C ⊗ CP(C,C0(R)); D,SB) = G(H0; D,ER).
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By Chapters 4 and 7, we have

G(k0; D,Q(R+, B)) = R(C; D,B) ∼= G(h0; D,ER) = [h0] + S(h0; D,ER) .

Proof of Prop. 9.2.4 and Cor. 9.2.5 requires to prove first

homotopy invariance of R(C ; D,B),

i.e., that

π0, π1 : R(C[0, 1] ; D,B[0, 1])→ R(C ; D,B)

satisfy π0 = π1.

Is the homotopy invariance of R(C ; D,B) equivalent to the to the

injectivity of

R(C ; D,B)→ KK(C ; D,B) .

???

But there is also a a direct proof of the criteria in Theorem

4.4.6 for the injectivity of G(h0; D,ER) → G(H0; D,ER), given by

an inductive decomposition procedure (see below).

Lemma 9.2.2. Suppose that D and B are stable, D is separable, B is σ-unital,

H : D →M(B) is a non-degenerate C*-morphism, and a1, a2 are self-adjoint gen-

erators of D, i.e., D = C∗(a1, a2).

Then there exists exists a constant Ω(H) ∈ N with the following property:

For every unitary U ∈ M
(
C0((−∞, 1], B)), – given by a strictly continu-

ous map U : (−∞, 1] 3 t 7→ U(t) ∈ U(B) – with γU,k ∈ C0((−∞, 1], B) for

γU,k(t) := H(ak)U(t) − U(t)H(ak) and every δ > 0 there exist n ≤ Ω(D,B,H)

and contractions T1, . . . , Tn ∈ M
(
C0((−∞, 1], B)

)
with T ∗j = −Tj and a unitary

V ∈ 1 + C0((−∞, 1], B), such that [Tj , H(ak)] ∈ C0((−∞, 1], B), ‖[Tj , H(ak)]‖ < δ

for j = 1, . . . , n, k = 1, 2, and

U ⊕s1,s2 1 = V · exp(T1) · . . . · exp(Tn) .

In particular,

‖[V ∗(U ⊕ 1), H(ak)]‖ ≤ n · δ ≤ Ω(D,B,H) · δ .

Proof. Is not very likely that a proof exist!!!

To be filled in ?? �

Next lemma describes a correction method for paths of unitaries by mirroring

the interval [α, β) onto (−∞, α] via the bijective map

[α, β) 3 t 7→ α− (t− α)/(β − t) ∈ (−∞, α] .

Lemma 9.2.3. Let D and B stable C*-algebras, D separable and B σ-unital,

H : D → M(B) a non-degenerate C*-morphism in general position (i.e., δ∞ ◦
H unitarily homotopic to H), 0 ≤ α < β real numbers, a1, a2 ∈ D self-adjoint

contractions,

(−∞, β] 3 t 7→ U(t) ∈ U(M(B))
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a strictly continuous map.

Let λ(t) := U(t)H(a) −H(a)U(t) in M(B) for t ∈ (−∞, β] and suppose that

λ ∈ C((−∞, β], B) and lim∞ ‖λ(t)‖ = 0.

Let n,m ∈ N with max(m,n) ≤ Ω(D,B,H), and 0 < δ ≤ ε. Suppose that the

following are given (e.g. coming from Lemma 9.2.2):

(i) S1, . . . , Sm ∈ Cb,st((−∞, α],M(B)) with S∗j = −Sj, ‖Sj‖ ≤ 1, [Sj , ak] ∈
C0((−∞, α], B), ‖[Sj , H(ak)]‖ < ε and

V ∗1 (U |(−∞, α]) ∈ 1 + C0(−∞, α], B) ,

for V1 := exp(S1) · . . . · exp(Sm).

(ii) T1, . . . , Tn ∈ Cb,st((−∞, α],M(B)) with T ∗j = −Tj, ‖Tj‖ ≤ 1,

[Tj , H(ak)] ∈ C0((−∞, β], B), ‖[Tj , H(ak)]‖ < ε and

V ∗2 U ∈ 1 + C0(−∞, β], B) ,

for V2 := exp(T1) · . . . · exp(Tn).

Then there exists a unitary in W ∈ 1 + C([α, β], B) with W (β) = 1, W (α) =

V2(α)∗V1(α) and, for t ∈ [α, β], ?????

‖[W (t), H(ak)]‖ ≤ ‖[V1, H(ak)]‖+‖[(V2|(−∞, α]), H(ak)]‖ ≤ nδ+mε ≤ 2εΩ(?????) .

Then W (α)∗V2(α)∗U(α) = V1(α)∗U(α), V2(α)W (α) = V1(α), V2(β)W (β) =

V2(β).

Moreover V3(t) := V1(t) for t ∈ (−∞, α] and V3(t) := V2(t)W (t) for t ∈ (α, β]

is strictly continuous on (−∞, β], with V ∗3 U ∈ 1 + C0((−∞, β], B),

‖[V3(t), H(ak)]‖ ≤ mε+ 2nδ ≤ 2εΩ(D,B,H)

and ‖[V3(β), H(ak)]‖ = ‖[V2(β), H(ak)]‖ ≤ nδ ≤ δΩ(D,B,H).

Proof. To be filled in ?? �

Proposition 9.2.4. The semigroup homomorphism ψ defines a surjec-

tive group homomorphism ϑ : [h] + [h0] 7→ [h] + [H0] from G(h0; D,ER) onto

G(H0; D,ER), if H0 : D → ER :=M(B[R])/B[R] is as above defined.

The epimorphism ϑ is an isomorphism from G(h0; D,ER) onto G(H0; D,ER),

if Y 7→ R(C[Y ] ; D,B[Y ]) (Y compact metric space) is homotopy invariant, in the

sense that the evaluation maps

πt : R
(
C[Y × I] ; D,B[Y × I]

)
→ R

(
C[Y ] ; D,B[Y ]

)
have the same images for t ∈ {0, 1} ⊂ I := [0, 1].

Recall that we denote by C[R] (or likewise CR, SC) respectively by the ma-

trix operator convex cone C ⊗ CP(C,C0(R)), that is the tensor product of C and

CP(C,C0(R)) inside the category of m.o.c. cones, and we urge the reader to re-

mind that the tensor product in the category of m.o.c. cones has not not much to
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do with a completion of some tensorproduct in the ordinary sense, because of the

many different “canonical” matrix-cones on tensor products, compare Chapter 3.

Remember that B[R] (or likewise BR, SB) are other notations for the C *-

algebra C0(R, B) ∼= B ⊗ C0(R). The above listed results of Chapters 5, 7 and 8

immediately yield the following.

It suffices to consider the case Y := point in Proposition 9.2.4 by replacing B

by B[Y ] = Cb(Y,B).

Corollary 9.2.5. The semigroup homomorphism ψ induces a natural group

epimorphism ϑ of R(C; D,B) onto Ext(C[R]; D,B[R]) ∼= KK(C; D,B). The epi-

morphism ϑ is an isomorphism if the evaluation maps

π0, π1 : R(C[0, 1]; D,B[0, 1])→ R(C; D,B)

have the same image. �

We need several elementary observations for the proofs of Proposition 9.2.4 and

Corollary 9.2.5, e.g.

Lemma 9.2.6. Suppose that D is a stable and σ-unital C*-algebra and that k

is a non-degenerate *-monomorphism from D ⊗O2 into B.

Let r1, r2, . . . a sequence of isometries in M(B) such that
∑
rn(rn)∗ converges

strictly to 1, and let δ∞ :=
∑
rn(·)(rn)∗ the corresponding infinite repeat endomor-

phism of M(B). Then:

(i) There exists a unital *-morphism ε : M(O2 ⊗K) ↪→M(B) such that

(0) ε is a strictly continuous monomorphism,

(1) ε(M(O2 ⊗K)) commutes element-wise with δ∞(k(D ⊗ 1)),

(2) ε(O2 ⊗ 1M(K)) commutes element-wise with k(D ⊗ 1), and

(3) r1r
∗
1 = ε(1O2

⊗ p11) , and

(4) δ∞(k(D ⊗ 1)) · ε(O2 ⊗K) ⊆ B .

(ii) If ε : M(O2⊗K)→M(B) is any unital *-morphism that has the properties

(0)–(4) of Part (i), then

d⊗ f 7→ δ∞(k(d⊗ 1))ε(f ⊗ p11)

extends to a *-monomorphism k1 : D ⊗ O2 → B, such that d ∈ D 7→
k1(d⊗ 1) is unitarily homotopic to d ∈ D 7→ k(d⊗ 1).

(iii) ε(O2⊗K)B is dense in B, and there exists an isometry t′0 ∈ ε(M(O2⊗K))

such that t′0t
′∗
0 = 1− r1r

∗
1.

Proof. (i): First we consider the case B = D ⊗O2 and k := id.

Let λ : K ⊗ K → K be an isomorphism. Then there exist sequences (In),

(sn) of isometries in M(K), such that
∑
InI
∗
n and

∑
sns
∗
n strictly converge to 1,

λ(a⊗ pnn) = InaI
∗
n and λ(pnn ⊗ a) = snas

∗
n for a ∈ K.

In particular M(λ)(1⊗ p11) = InI
∗
n.
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Then the infinite repeats δ(1) :=
∑
In(·)I∗n and δ(2) :=

∑
sn(·)s∗n have element-

wise commuting images and δ(1)(a)δ(2)(b) = λ(a ⊗ b) for a, b ∈ K. Indeed, δ(1) =

M(λ)((·)⊗ 1) and δ(2) =M(λ)(1⊗ (·)).

Let r′n := 1 ⊗ In ⊗ 1, s′n := 1 ⊗ sn ⊗ 1, and ε′(f) :=
∑
s′n(1 ⊗M(κ)(f))s′n

for f ∈ M(O2 ⊗K), where κ denotes here the flip-isomorphism from O2 ⊗K onto

K ⊗ O2. Then ε′ has the quoted properties with respect to r′1, r
′
2, . . . and id (in

place of ε, r1, r2, . . . , k):

For a ∈ A and b ∈ K, where D := A⊗K

Is A sufficiently well-defined? ??

let ??????

δ∞(a⊗ b⊗ 1) = a⊗ δ(1)(b)⊗ 1,

and, for e ∈ K and f ∈ O2,

ε′(e⊗ f) = 1⊗ δ(2)(e)⊗ f.

In particular,

ε′(1⊗ p11) = 1⊗M(λ)(1⊗ p11)⊗ 1 = r′1(r′1)∗ .

D ⊗ 1 and ε′(O2 ⊗ 1) commute, because, for a ∈ A, b, c ∈ K and f ∈ O2,

(a⊗ λ(b⊗ c)) · ε′(f ⊗ 1) = a⊗ λ(b⊗ c)⊗ f .

In the general case, letM(k) : M(D⊗O2) ↪→M(B) the strictly continuous unital

extension of k. By Lemma 5.1.2(i) there is a unitary u ∈ M(B) such that rn =

uM(k)(r′n). Let ε := uM(k)(ε′(·))u∗, then ε satisfies (0)-(4).

(ii): By the properties listed in (i), there is a C *-morphism g from the algebraic

tensor product D �O2 into B such that, for d ∈ D, f ∈ O2,

g(d⊗ f) = δ∞(k(d⊗ 1))ε(f ⊗ p11) ,

moreover g extends to a C *-morphism k1 from D⊗O2 into B, because O2 is nuclear

and simple.

Let k2 := k1((·) ⊗ 1) and k0 := k((·) ⊗ 1). Since r1(r1)∗ = ε(1 ⊗ p11),

k2 = r1k0(·)r∗1 . Thus k0 = r∗1k2(·)r1. By Corollary 7.4.4, k2 and k0 are unitar-

ily homotopic, because B is stable, D is separable and r1 ∈M(B).

(iii): ε(O2 ⊗K)B is dense in B, because ε is strictly continuous and unital.

By (i), ε(1⊗ (1− p11)) = 1− r1r
∗
1 .

Let T0 an isometry in M(K) ∼= L(H) with T0(T0)∗ = 1 − p11, and let t′0 :=

ε(1⊗ T0). Then t′0 is an isometry in ε(M(O2 ⊗K)) such that t′0t
′∗
0 = 1− r1r

∗
1 . �

Proof of Proposition 9.2.4. We use the notations and observations of Re-

mark 9.2.1 and reduce the prove to Theorem 4.4.6. It means, that we are going to

find F ⊆ H0(D)′∩ER and elements s, t, p0, s0, t0, u1 in ER, such that the above de-

fined D, ER, J , h0, H0, β, together with with the below defined F , s, t, p0, s0, t0 and

u1 satisfy the assumptions (i)–(vi) of Theorem 4.4.6. Then Theorem 4.4.6 implies
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that the generalized mapping cone construction ψ : S(h0; E,ER) → G(H0; D,ER)

defines a group epimorphism ϑ from G(h0; D,ER) onto G(H0; D,ER). It becomes

an isomorphism if we later can show in addition that that Γ(H0(D), J, E) = 0.

We are now going to define the missing ingredients for this list. Parallel, we

check that the conditions (i)-(vi) of Theorem 4.4.6 are fulfilled for them:

Let r1, r2, . . . be a sequence of isometries in M(B), such that
∑
rn(rn)∗ = 1,

and let ε : M(O2⊗K)→M(B) the strictly continuous unital *-monomorphism that

satisfies (0)-(4) of Lemma 9.2.6(i) with respect to k : D⊗O2 → B and (r1, r2, . . .).

By Lemma 9.2.6(iii), there is an isometry t′0 in ε(M(O2⊗K)), such that t′0(t′0) =

1− r1(r1)∗. Thus t′0 commutes element-wise with H ′0(D).

Therefore δ∞(k0(D)) and k0(D) both commute element-wise with the unital

copy η(O2) := ε(O2 ⊗ 1) of O2 in M(B), where

η(·) := ε((·)⊗ 1M(K)) .

Let s1, s2 generators of O2 and let s := I2(η(s1)), t := I2(η(s2)). Then both are

isometries in I2(M(B)) ⊆ ER and generate a unital copy of O2. Since β fixes the

elements of I2(M(B)), we have β(s) = s and β(t) = t.

By Lemma 9.2.6(i), η(O2) ⊆ H ′0(D)′ ∩ k0(D)′. If we apply I2, we get that s

and t are in H0(D)′ ∩ (h0 + βh0)(D)′ ∩ ER.

Recall that k0 : D → B is non-degenerate.

By Lemma 7.4.17, there exists a contraction g1 ∈ Cb(R, ε(1 ⊗ K))+ such that

g1(x) = 0 for x ≤ 0 and limx→+∞ g1(x)k0(a) = k0(a) for every a ∈ D, because

k0(D) is separable. Let g := g1 + SB ∈ ER. Then (h0 + βh0)(a)g = h0(a). The

positive contraction g commutes with s and t, because ε(1 ⊗ K) commutes with

ε(O2 ⊗ 1M(K)). Thus s and t also commute element-wise with h0(D).

Commutation of s, t with h0(D)

follows also from commutation of s, t with

(h0 + βh0)(D) and J ∩ βJ = 0. ??

Hence, s, t ∈ ER satisfy condition (i) of Theorem 4.4.6.

Our non-degenerate *-monomorphism H0 : D → ER satisfies Ext(C ⊗
CP(C,C0(R)); D,SB) = G(H0, D,ER) by Corollary 5.9.22(i), as it was explained

above.

Therefore, by Lemma 8.4.3, for every homomorphism k : D → ER that is dom-

inated by H0, there exists a unitary u ∈ ER such that u∗(k⊕H0)(a)u−H0(a) ∈ J
for each a ∈ D.

Thus condition (ii) of Theorem 4.4.6 is valid.

Now we want to show that conditions (iii), (iv) and (v) of Theorem 4.4.6 are

satisfied:

For P := ε(O2 ⊗K) ⊆M(B) with ε : O2 ⊗K→M(B) we have that P ∼= O2 ⊗K,

and that P · B is dense in B (by Lemma 9.2.6). Moreover P ∩ B = {0} because
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P is simple and P is not contained in B by condition (3) of Lemma 9.2.6(i). Let

F1 := Cb(R, P ) ⊆ Cb,st(R,M(B)) ∼= M(SB). Certainly β̃(F1) ⊆ F1, and F1 ∩
C0(R, B) = {0}, because ε(g(t)) = f(t) for g(t) ∈ O2 ⊗ K and because f(t) ∈ B
implies f(t) = 0. Therefore F := πSB(F1) ⊆ ER is a C *-subalgebra of ER that is

isomorphic to Cb(R,O2 ⊗ K) and satisfies β(F ) = F . Since H ′0(D)P ⊆ B, we get

F1H
′
0(D) ⊆ Cb(R, B) and FH0(D) ⊆ J + βJ .

By Proposition 7.4.18, for every projection q ∈ F1, and every element f1 ∈
Cb(R, B) there exists a projection p in F1 such that pf1p − f1 ∈ C0(R, B), q ≤ p

and q 6= p.

If we apply πSB , we get that condition (iii) of Theorem 4.4.6 is satisfied.

By Lemma 9.2.6(iii), there are isometries r1, t
′
0 in M(B) such that t′0(t′0)∗ =

1− p′0 , r1(r1)∗ = p′0 ∈ P , r∗1H
′
0(·)r1 = k0, and t′0 ∈ ε(M(O2 ⊗K)) commutes with

the elements of H ′0(D). If considered as elements of M(SB) they are fixed by β̃.

Let s0 := I2(r1), t0 := I2(t′0) and p0 := I2(p′0) the corresponding elements in ER .

Then s0 and t0 are fixed by β, p0 = s0s
∗
0 ∈ F , and t0 commutes with the elements

of H0(D) = I2(H ′0(D)). Since r∗1H
′
0(·)r1 = k0, we get s∗0H0(·)s0 = I2k0 = h0 +βh0 .

Thus, condition (iv) of Theorem 4.4.6 is satisfied.

By [172] any two nonzero projections in O2 ⊗ K are unitarily equivalent by a

unitary in the *-semigroup 1 +O2 ⊗K in M(O2 ⊗K). Therefore, condition (v) of

Theorem 4.4.6 is satisfied by Lemma 7.4.13, because p0 is a nonzero projection of

F and F is isomorphic to Cb(R,O2 ⊗K).

BEGIN (Old vi)

The old assumption (OLD vi) has been

proven in new Lemma 4.4.7

from the other assumptions (i)-(v) and (OLD vii).

Thus (OLD vi) is superfluous and Part (OLD vii)

is now the new Part (vi).

Check of condition (OLD vi) of Theorem 4.4.6:

Let h : D → J . Suppose that H0 dominates h+ βh0, i.e., there exists an isometry

T ∈ ER with T ∗H0(·)T = h+ βh0. By Lemma 7.4.22(i), there exists a contraction

y ∈ (J + β(J))+ = Q(R, B)+ such that y(h + βh0)(·)y = h. It follows that

h = yT ∗H0(·)Ty is dominated by H0. Since z := Ty is a contraction in the

ideal Q(R, B) of ER =M(C0(R, B))/C0(R, B)) and, since

H0(D) ⊆ πSB(M(B)) ⊆ πSB(Q(R,M(B))) ⊆ ER ,

by the natural embeddings

M(B) ⊆ Cb(R,M(B)) ⊆ Cb,st(R,M(B)) =M(C0(R, B)) ,

there is a contraction w ∈ Cb(R, B) with w + C0(R, B)) = z

h = w∗(δ∞ ◦ k0)(·)w + C0(R, B) .
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By 7.4.22(iv), there is a contraction v ∈ Cb(R, B) with v(t) = 0 for t < 0 and

v∗k0(·)v+C0(R, B) = h. Thus, d∗h0(·)d = d∗(h0 +βh0)(·)d = h for the contraction

d := v+ C0(R, B) ∈ J ∼= Q(R+, B). Since B is stable and h0(D) is separable, there

is an isometry S ∈ Cb(R,M(B)) ⊆M(C0(R, B)) such that s := S+C0(R, B) ∈ ER

satisfies s∗h0(·)s = d∗h0(·)d = h (cf. Lemma 7.4.22(v)). Thus assumption (OLD

vi) of Theorem 4.4.6 is satisfied.

END (OLD vi)

Check again assumption (vi) ?? ??

Now we verify assumption (vi) of Theorem 4.4.6:

First we define a continuous map ξ ∈ R → v(ξ) into the unitaries of O2 =

C∗(s1, s2) for ξ ∈ [0, 1] by

v(ξ) := ξ(s1s
∗
1 + s2s

∗
2) + (1− ξ2)1/2(s2s

∗
1 − s1s

∗
2) ,

and by v(ξ) := 1 for ξ ≥ 1, v(ξ) := v(0) = s2s
∗
1 − s1s

∗
2 for ξ ≤ 0.

Let w(ξ) := η(v(ξ)), then w ∈ Cb(R, η(O2)) is a unitary in Cb,st(R,M(B)) ∼=
M(SB). Finally, let u1 := w + SB = πSB(w) . Then u1 ∈ J ′ ∩ ER, because every

a ∈ J ∼= Q(R+, B ⊗ K) has a representative b ∈ Cb(R, B) with b(ξ) = 0 for ξ ≤ 1,

and, for those b, wb = b = bw.

Since β fixes C∗(s, t) = I2(η(O2)) ⊆ I2(M(B)) and s, t commutes element-wise

with h0(D), we get that s and t commute element-wise with βh0(D). The elements

of βJ can be represented by elements b in Cb(R, B) such that b(ξ) = 0 for ξ ≥ 0.

We get wb = η(s2s
∗
1−s1s

∗
2)b and bw = bη(s2s

∗
1−s1s

∗
2). It implies that the equation

u1βh0(·)ss∗ = tt∗βh0(·)u1

is equivalent to

(ts∗ − st∗)ss∗βh0(·) = βh0(·)tt∗(ts∗ − st∗) ,

i.e., is equivalent to the above shown element-wise commutation of ts∗ with βh0(D).

Therefore condition (vi) of Theorem 4.4.6 is satisfied.

Now we have seen that all conditions of Theorem 4.4.6 are satisfied by D, ER,

H0, h0, J and β. Therefore

ϑ : [k ⊕ h0]→ [k ⊕H0]

is a group epimorphism from G(h0; D,Qs(SB)) ∼= R(C; D,B) onto

G(H0; D,Qs(SB)) = Ext(C ⊗ CP(C,C0(R)); D,SB) ∼= KK(C; D,B) .

�

The following Corollary 9.2.7 and its proof uses the notations and conventions

of Remark 9.2.1.
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Corollary 9.2.7. Suppose that B and D are stable (and trivially graded), D is

separable, B σ-unital, and that h0 : D → B is non-degenerate with [h0⊕h0] = [h0].

Let C := C(h0) and define Hom(C; D,B) := Hom(D,B) ∩ C . Then:

(i) S(h0 ; D,Q(R+,M(B))) = SR(C; D,B).

If [k] ∈ S(h0 ; D,Q(R+,M(B))) then h := k ⊕ h0 is in [h0] +

SR(C; D,B) ∼= R(C; D,B), and [σ̂ ◦ h] = [h] in SR(C; D,B), for

every homeomorphism σ of R+ ,

i.e., h is invariant under scaling up to unitary equivalence.

(ii) The difference construction [h − 0] := [(B, h, 0)] ∈ KK(C; D,B) for h ∈
Hom(C; D,B) defines a semigroup epimorphism

α : [Hom(C; D,B)]→ KK(C; D,B)

from the “constant” sub-semigroup [Hom(C ; D,B)] of R(C ; D,B) onto

KK(C;D,B).

Elements [h1], [h2] ∈ [Hom(C; D,B)] define the same element [h1 − 0] =

[h2 − 0] of KK(C; D,B), if and only if, h1 ⊕ h0 and h2 ⊕ h0 are unitarily

homotopic (cf. Definition 5.0.1).

Next example OK ???

More information ? ??

Note that, in “contrast” to Corollary 9.2.7, the natural group homomorphism

G(h0 ; D,B) → G(h0 ; D,Q(R+, B)) is neither surjective nor injective in general,

e.g. for D = O2 ⊗K, B = O2 ⊗O2 ⊗K and h0(·) := 1⊗ (·).

Not clear, e.g.:

Then G(h0 ; D,Q(R+, B)) contains only one element ?

What about this G(h0 ; D,B)?

Proof. The homotopy invariance of R(C; D,B) follows from different more

involved considerations ??

(i): Let ER := M(SB)/SB ∼= Qs(SB) , let I1 : Q(R+, B) ∼= J ↪→ ER be the

natural inclusion, and let I2 : M(B) → ER denotes the natural unital monomor-

phism induced by M(B) ⊆ Cb,st(R,M(B)) =M(SB).

By Proposition 7.4.21(i), a morphism k ∈ Hom(D,Q(R+, B)) has unitary

equivalence class [I1 ◦ k] in S(h0 ; D,ER), if an only if [k] ∈ SR(C; D,B). (The

unitary equivalence classes coincide, i.e., [k] = [k′] in [Hom(D,Q(R+, B))] if and

only if [I1 ◦ k] = [I1 ◦ k′] in [Hom(D,ER)], cf. Lemma 7.4.20.)

The class [h] = [(I1 ◦ k) ⊕ h0] = [(I1 ◦ k)] + [h0] is in G(h0; D,ER) = [h0] +

S(h0 ; D,ER) ∼= R(C; D,B), by Proposition 7.4.21(ii) (and by Proposition 4.4.3).

If σ is a topological isomorphism of R+ then σ(0) = 0 and therefore σ ex-

tends naturally to an orientation preserving topological isomorphism of R by let-

ting σ(t) = t for t ∈ R−. We denote this extension again by σ. It induces in a

natural way an automorphism σ̂ of ER = M(SB)/(SB) such that its restriction



2. MAPPING-CONE CONSTRUCTION DEFINES ISOMORPHISM 937

to J ∼= Q(R+, B) is just the above considered induced automorphism of Q(R+, B),

which we also denote by σ̂, because all is naturally related by the natural inclusion

and restriction maps.

The generalized mapping cone construction k 7→ I1 ◦ k satisfies σ̂ ◦ (I1 ◦ k) =

I1 ◦ (σ̂ ◦ k).

On the other hand the isomorphism ϑ of Proposition 9.2.4 satisfies, by definition

of ϑ,

ϑ([σ̂ ◦ (k ⊕ h0)]) = [I1 ◦ (σ̂ ◦ (k ⊕ h0))] + [H0] = [σ̂ ◦ (I1 ◦ (k ⊕ h0))] + [H0] .

On the other hand σ̂ ◦H0 = H0 and σ̂ ◦ (H ⊕H0) = (σ̂ ◦H)⊕H0, because σ̂ fixes

I2(M(B)), H0(D) is in I2(M(B)) and ⊕ = ⊕s,t (up to unitary equivalence) with

canonical generators s, t of O2 in I2(M(B)). Thus

[σ̂ ◦ (I1 ◦ (k ⊕ h0))] + [H0] = [σ̂ ◦ ((I1 ◦ (k ⊕ h0))⊕H0)] .

Since [I1 ◦ (k ⊕ h0)] + [H0] ∈ G(H0; D,ER) , we get from Corollary 8.3.4(ii) that

[σ̂ ◦ (I1 ◦ (k ⊕ h0)⊕H0)] = [I1 ◦ (k ⊕ h0)⊕H0] = ϑ([k ⊕ h0]).

Since [k⊕h0] is in R(C; D,B) and ϑ is faithful on R(C; D,B) by Proposition 9.2.4,

this shows the invariance of [k ⊕ h0] under scaling:

[k ⊕ h0] = [σ̂ ◦ (k ⊕ h0)].

By Corollary 7.4.19(i),

S(h0; D,Q(R+,M(B))) = SR(C; D,B) .

The Definition of S(h0; D,Q(R+,M(B))) yields that h = k⊕h0 is scaling invariant

up to unitary equivalence (by unitaries in Q(R+,M(B)). By Corollary 7.4.19(iii),

R(C; D,B) ∼= SR(C; D,B) + [h0] ⊆ SR(C; D,B) .

(ii): Since h0 is unitarily equivalent to h0⊕h0 we get from Lemma 7.4.24 that

Hom(D,B) ∩ C = {h ∈ Hom(A,B) ; [h] ∈ SR(C; D,B) } .

By part (i) and by Corollary 9.1.3, for every [h] ∈ G(h0; D,Q(R+,M(B))) ∼=
R(C; D,B), there exists a unitary u ∈ Q(R+,M(B)) and a *-morphism k : D → B

such that u∗k(·)u = h. It follows that k ∈ R(C; D,B) and [k ⊕ h0] = [k] + [h0] =

[h]+[h0] = [h]. Thus, k⊕h0 is unitarily homotopic to k, and k ∈ Hom(C; D,B). We

can replace k by k⊕h0, and may assume that k is a monomorphism that dominates

h0 (in M(B) itself). It follows that k ∈ Hom(C; D,B) → [k] ∈ R(C; D,B) is

surjective.

Morphisms h1, h2 ∈ Hom(C; D,B) define the same element [h1] = [h2] in

R(C; D,B) if and only if h1 ⊕ h0 and h2 ⊕ h0 are unitarily homotopic by defi-

nition of R(C; D,B) = G(h0; D,Q(R+,M(B))).

It remains to check that the isomorphism R(C; D,B) ∼= KK(C; D,B) given by

Proposition 9.2.4 and of Corollary 9.2.5 maps [h] ∈ R(C; D,B) to the difference

construction [h− 0] ∈ KK(C; D,B) if h ∈ Hom(C; D,B).
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Let C(R) := C ⊗ CP(C,C0(R)). By Corollary 5.9.23 and Corollary 8.3.3 there

are natural isomorphisms

Ext(C(R); D,SB) ∼= G(H0; D,ER) ,

and

Ext(C(R); D,SB) ∼= KK(C; D,B)

that sends [H0] to zero and the mapping cones Ch ∈ SExt(C(R); A,SB) (cor-

responding to the Busby invariant [I1 ◦ h] ∈ S(H0; D,ER)) of a morphism h ∈
Hom(C; D,B) = Hom(D,B)∩C to the difference construction [h−0] = [(B, h, 0)] ∈
KK(C; D,B).

If we combine this isomorphism with the isomorphism [h] 7→ [h] ⊕ [H0] from

R(C; D,B) ∼= G(h0; D,Q(R+,M(B))) onto G(H0; D,ER) ∼= Ext(C(R); D,SB),

then we get an epimorphism α from the Abelian semigroup [Hom(C; D,B)] ⊆
[Hom(D,B)] of unitary equivalence classes [h] of morphisms h ∈ Hom(C; D,B)

onto KK(C; D,B).

The construction of α shows (by inspection of the values of the composed maps)

that α([h]) = [(B, h, 0)] =: [h− 0] ∈ KK(C; D,B). Since the last two morphisms of

the compositions

[Hom(C; D,B)]→ R(C; D,B)→ Ext(C(R); D,B)→ KK(C; D,B)

are isomorphisms, we get that [h1 − 0] = [h2 − 0] in KK(C; D,B) if and only if

h1 and h1 have the same class in G(h0; D,Q(R+,M(B))). The latter means that

h1 ⊕ h0 and h2 ⊕ h0 are unitarily homotopic. �

3. Unsuspended stable E-theory versus Ext-groups

We consider the case where A is separable and stable, i.e., that D := A⊗K ∼= A,

that B is σ-unital and stable and that C ⊆ CP(A,B) is a countably generated

point-norm closed m.o.c. cone. Moreover, we assume that C is “faithful” and “non-

degenerate” in the sense that if a ∈ A+ V (a) = 0 for all V ∈ C implies a = 0, and

that {V (a) ; V ∈ C, a ∈ A} generates B as a closed two sided ideal.

[With other words: There does not exist closed ideals I 6= {0} of A or J 6= B

of B such that V (I) = {0} or V (A) ⊆ J for all V ∈ C. We exclude this, because

otherwise we can in the below considerations A replace by A/I and B by J .]

Recall that in case where A is amenable and B is separable, the m.o.c. cone C
is the same as the m.o.c. cone of all ΨC-equivariant nuclear c.p.-maps from A to B,

where ΨC is the lower semi-continuous action of Prim(B) on A defined by C.

Respectively, C ⊆ CP(A,B) is the m.o.c. cone of all Ψ-equivariant c.p.-maps

for a given non-degenerate action Ψ: O(Prim(B))→ I(A) of Prim(B) on A that is

lower semi-continuous.

More specially we can take – in the situation where A is exact and the action

Ψ is lower s.c. and monotone upper s.c. – the m.o.c. cone C ⊆ CPnuc(A,B) of all
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Ψ-equivariant nuclear c.p.-maps V : A → B. The exactness of A yields that those

V are automatically Ψ-residual nuclear.

This equivalences show that working with an m.o.c. cone C covers all possible

cases of “ideal-equivariant” KK- and Ext-groups.

What is optimal notation?

h, H, H0 or H0? Mostly used?

Unify all notation?

What about h0 : A→ B if C := C(h0)?

Recall that there is a universal non-degenerate *-monomorphism H : A →
M(B) in “general position”, i.e., H is unitarily equivalent to its infinite repeat,

that is in 1-1-correspondence to C, cf. Chapters 3 and 5 Precise Refs ?? in

Chapters 3 and 5.

Let H1 := πB ◦H : A→ Q(B) :=M(B)/B.

Basic observations:

Let A, B, C, H : A→M(B), H1 := πB ◦H, as above.

Partly obvious generalizations of work of G. Kasparov, Connes/Higson and

J. Cuntz proves homotopy invariance of KK(C; A, ·), that

KK(C(1) ; A,B(1)) ∼= Ext(C ; A,B)

and that

KK(C; A,B) = Ext(C; A,SB) .

Moreover, if the m.o.c. cone C ⊂ CP(A,B) is countably generated and non-

degenerate, this results allow to give the following “reduction” to a description by

“ordinary” K∗-theory (using also a result of Cuntz and Higson):

(1)

KK
(
C(−∞, 1] ; A,C0((−∞, 1], B)

)
= 0 .

(2)

KK(C; A,B) ∼= kernel of K1(H1(A)′ ∩Qs(B))→ K1(Qs(B)) = K0(B) .

(3) Qs(B) is K1-bijective.

(4) Homotopy invariance of KK: Each evaluation map

B[0, 1] = C([0, 1], B) 3 f 7→ f(t) ∈ B

defines the same natural isomorphism

KK(C[0, 1] A,B[0, 1]) ∼= KK(C ; A,B) .

(5) In particular, with CB := C0((0, 1], B),

KK(C(0, 1]; A,CB) = 0 .

We need the following natural isomorphisms and descriptions of KK(C ; A,B)

and and of representatives of its zero elements:
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Proposition 9.3.1. Suppose that A is separable and stable, B is σ-unital and

stable, and if the m.o.c. cone C ⊆ CP(A,B) is non-degenerate and countably gen-

erated, and let then

KK(C ; A,B) ∼= kernel of K1(H(A)′ ∩Q(B))→ K1(Q(B)) ,

and

Ext(C ; A,B) ∼= kernel of K0(H(A)′ ∩Q(B))→ K0(Q(B)) .

(i) The kernel of K1(H1(A)′ ∩Q(B))→ K1(Q(B)) is the image of the map

u 7→ [πB(u)] ∈ K1(H1(A)′ ∩Q(B))

where u ∈ M(B) is in the group of those unitary elements of M(B) that

satisfy uh(a)− h(a)u ∈ B for all a ∈ A.

(ii) The defining equivalence relation u1 ∼ u2 – given by [πB(u1)] = [πB(u2)]

in K1(H(A)′ ∩Q(B)) – can be equivalently expressed by the property that

there exist Tk ∈ M(B) (k = 1, . . . , n) with T ∗k = −Tk and Tkh(a) −
h(a)Tk ∈ B, for a ∈ A, k ∈ {1, . . . , n}, such that

(u∗1u2)⊕s,t 1 = exp(iT1) · . . . · exp(iTn) .

Here s, t ∈ h(A)′ ∩M(B) are isometries with ss∗ + tt∗ = 1.

THIS formulation of Parts (i) and (ii) use the K1-bijectivity

of Qs(B) for stable σ-unital B.

See Parts (c) and (iii) of Proposition 4.2.15.

It implies that all unitaries v ∈ Qs(B) with [v] = 0 in K1(Qs(B)) are

products of exponentials. Thus, there is a unitary u ∈ M(B) with

π(u) = v if and only if [v] = 0 in K1(Qs(B)).

Proof. The formulas for KK(C ; A,B) and Ext(C ; A,B)

have been mentioned/proven somewhere above!

(i): The unit 1 of the C *-algebra H1(A)′ ∩Q(B) is properly infinite.

Thus, each element z of K1(H1(A)′ ∩ Q(B)) has a representative [v] = z by a

unitary in v ∈ H(A)′∩Q(B). and v⊕1 defines the same class in K1(H(A)′∩Q(B))

as v.

If v = πB(u) ∈ H(A)′ ∩ Q(B) for some unitary in u ∈ M(B) then [v] = 0 in

K1(Q(B)) because K1(M(B)) = 0 by stability of B. Clearly, [u, h(a)] ∈ B for all

a ∈ A if and only if πB(u) ∈ H(A)′ ∩Q(B).

Conversely, if v is unitary in Q(B) and [v] = 0 in K1(Q(B)), then v ⊕ 1 ∈
U0(Q(B)).

If [u⊕1] = 0 in K1(Q(B)), then u⊕1 is a product of exponentials exp(X1) · . . . ·
exp(Xm) with X∗` = −X` and X` ∈ Q(B), cf. Lemma 4.2.6(v,2). And this implies

that there exists a unitary u ∈M(B) with πB(u) = v ⊕ 1.
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(ii): If [u] = 0 in K1(H(A)′∩Q(B)), then – moreover – there exists Y1, . . . , Yn ∈
H(A)′ ∩Q(B) with Y ∗k = −Yk such that u⊕ 1 = exp(Y1) · . . . · exp(Yn). See Lemma

4.2.6(v,2).

Given any finite subset M of A and ε > 0 then there exist Tk ∈ M(B) (k =

1, . . . , n) with πB(Tk) = Yk and T ∗k = −Tk and [Tk, h(a)] ∈ B for all a ∈ A and

‖[Tk, h(a)]‖ < ε for all a ∈ M . The latter property can be obtained by lifting

the Yk to Sk ∈ M(B) with S∗k = −Sk and πB(Sk) = Yk and then one defines

Tk := (1− e)Sk(1− e) for a suitable positive contraction e ∈ B+ in a approximate

unit of B that is quasi-central for h(A) ⊆M(B). �

The following conjecture

Conjecture 9.3.2. The “logarithmic length” of the unitary πCB((u∗1u2)⊕s,t1)

with unitaries of u1, u2 ∈M(CB) such that [u1, h(a)]− [u2, h(a)] ∈ CB is bounded

by a universal constant, where above considered B is replaced here by CB :=

C0

(
(−∞, 1], B

)
.

One can correct this by passing to uk ⊕ 1 (k = 1, 2) in U(π−1
B (H(A)′ ∩Q(B))).

This is possible, because A is separable and stable, B is σ-unital and stable,

and h ≈u δ∞h for h : A→M(B) with H = πB ◦ h, the map

u⊕ 1 7→ πB(u⊕ 1) ∈ U(H(A)′ ∩Q(B))→ K1

is surjective map onto the kernel of

K1(H(A)′ ∩Q(B))→ K1(Q(B)) .

Lemma 9.3.3. An unitary u ∈ M(B) represents the zero element of

KK(C ; A,B), if and only if, πB(u) represents the zero of K1(H(A)′ ∩ Q(B)),

if and only if, there exist elements T1, . . . , Tn ∈M(B) such that T ∗j = −Tj,

exp(T1) · . . . · exp(Tn)− (u⊕ 1) ∈ B

and Tkh(a)− h(a)Tk ∈ B for all a ∈ A and k = 1, . . . , n.

Given ε > 0 and a finite subset M ⊂ A, then the Tk in this relations can be

chosen such that moreover ‖Tkh(a)− h(a)Tk‖ < ε for a ∈M .

Here is the same problem with the possibly missing K1-injectivity of H(A)′ ∩
Q(B) if one hopes to replace u⊕ 1 by u itself in this relations.

Is H(A)′ ∩Q(B) K1-injective if A or B is O∞-absorbing?

Is it equivalent to the question about K1-injectivity of all properly infinite unital

E?

The answer is positive if B is s.p.i. and H is nuclear.

Let B[0, 1] := C([0, 1], B) ∼= B ⊗ C([0, 1]). Define C[0, 1] ⊆ CP(A,B[0, 1]) as

the set of c.p. maps V : A → B[0, 1] with V (·)(t) ∈ C for each t ∈ [0, 1]. The
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corresponding realization of C[0, 1] is induced by the natural embedding η : b 7→
b ⊗ 1 ∈ B[0, 1] of B into B[0, 1] in the sense that M(η) ◦ h : A → M(B[0, 1]) is

the corresponding universal *-monomorphism from A into M(B[0, 1]) that defines

C[0, 1].

Thus, the kernel of

K1((πB[0,1] ◦M(η) ◦ h)(A)′ ∩Q(B[0, 1]))→ K1(Q(B[0, 1]))

is naturally isomorphic to KK(C[0, 1] ; A,B[0, 1]).

A natural generalization of Kasparov’s result of homotopy invariance of KK-

and Ext-groups is the following:

For (given fixed) t ∈ [0, 1], the evaluation map f ∈ B[0, 1] 7→ f(t) ∈ B defines a

natural isomorphism from KK(C[0, 1] ; A,B[0, 1]) onto KK(C ; A,B). (“Homotopy

invariance” of KK(C ; A,B).)

On the set of “representing” unitaries u ∈ M(B), respectively of {u(t)} =

U ∈ M(B[0, 1]) (with t 7→ u(t) ∈ M(B) strictly continuous), this isomorphism

corresponds to the evaluation map U = {u(t)} 7→ u(t) ∈M(B).

Consequently:

Corollary 9.3.4. Suppose that A and B are stable, A separable and B σ-

unital, C ⊆ CP(A,B) a countably generated non-degenerate m.o.c. cone.

Let a0 ∈ A such that A = C∗(a0) and let h : A → M(B) a non-degenerate

C*-monomorphism that is unitary homotopic to is infinite repeat δ∞ ◦ h, satisfies

Vb := 〈h(·)b, b〉 ∈ C for all b ∈ B and that C is generated by {Vb ; b ∈ B}.

Let B[0, 1] := C([0, 1], B) and η : M(B) → Cb,st([0, 1],M(B)) ∼= M(B[0, 1])

the natural embedding.

If U ∈M(B[0, 1]) is a representing unitary for an element of

KK(C[0, 1] ; A,B[0, 1]) ,

i.e., and if U(0) ⊕ 1 can be written modulo B as finite product of exp(Tk), k =

1, . . . , n, with −T ∗k = Tk ∈ M(B[0, 1]) and Tkh(a) − h(a)Tk ∈ B[0, 1] for a ∈ A,

k = 1, . . . , n, then U⊕1 can be written modulo B[0, 1] as a finite product of exp(S`),

` = 1, . . . ,m, −S∗` = S` ∈ M(B[0, 1]) and S`(M(η) ◦ h)(a) − (M(η) ◦ h)(a)S` ∈
B[0, 1] for a ∈ A, i.e.,

−S∗` = S` ∈ Der(M(η)(h(A)), B[0, 1]) ⊆M(B[0, 1])

and Commutator norms ????

?????????????????????????

Here M(η) : M(B)→M(B[0, 1]) is the natural inclusion map.

Proof. To be filled in ?? ?? �
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Corollary 9.3.5. Let A, B, C ⊆ CP(A,B) and h : A→M(B) as above,

M(η) : M(B) → Cb,st((−∞, 1],M(B)) ∼= M(C0((−∞, 1], B)) the natural

monomorphism.

Let u ∈ M(C0((−∞, 1], B)) a unitary given by the strictly continuous map

(−∞, 1] 3 t 7→ u(t) ∈ U(M(B)) from (−∞, 1] into the unitaries in M(B).

Suppose that [u(t), h(a)] ∈ B for all a ∈ A and t ∈ (−∞, 1] and that t 7→
[u(t), h(a)] is continuous, and

lim
t→−∞

‖[u(t), h(a)]‖ = 0 ∀ a ∈ A ,

i.e., [u, h(A)] ⊆ C0((−∞, 1], B).

Then there exist S1, . . . , Sn ∈ M(C0((−∞, 1], B)) with S∗k = −Sk, [sk, h(a)] ∈
B for all a ∈ A and

U = exp(S1) · . . . · exp(Sn) ·W

for some W ∈ U(C0((−∞, 1], B) + C · 1) with 1−W ∈ C0((−∞, 1], B).

Such W is a product of exponentials W = exp(T1) · . . . · exp(T`) with Tj =

−T ∗j ∈ C0((−∞, 1], B).

In particular, W (t) ∈ U0(B + C · 1) ∩ (1 +B) for each t ∈ (−∞, 1].

Question 9.3.6. Suppose that T1, . . . , Tm ∈ Der(h(A), B) ⊆M(B) and

S1, . . . , Sn ∈ Der(h(A), B[0, 1]) ⊆M(B[0, 1])

with T ∗j = −Tj , S∗k = −Sk, V1, V2 ∈ U0(B + C · 1) ∩ (1 + B) and a ∈ A are given

with

exp(Tm) · . . . · exp(T1)V1 = W (0)V2 ,

for W (t) := exp(S1(t)) · . . . · exp(Sn(t)).

Does there exist for each γ > 0 and ε ∈ (0, γ) a unitary

U ∈ U0(B[0, 1] + C · 1) ∩ (1 +B[0, 1])

with U(0) = 1,

‖[W (t)V2U(t), h(a)]‖ ≤ γ + ‖[W (0)V2, h(a)]‖

for t ∈ [0, 1] and

‖[W (1)V2U(1), h(a)]‖ ≤ ε ?

Lemma 9.3.7. Suppose that M is a C*-algebra, B ⊆ M a closed ideal, X =

{a1, . . . , an} ⊆M a finite subset, and let

ν(a; S1, . . . , Sn) := exp(S1) · . . . · exp(Sn)a− a exp(S1) · . . . · exp(Sn)

for a, S1, . . . , Sn ∈M , with Sk = −S∗k .

Suppose that T1, . . . , Tn ∈ M satisfy Tk = −T ∗k and Tka − aTk ∈ B for all

a ∈ X and k = 1, . . . , n.
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Then for each ε > 0 there exists a positive contraction b = b(ε) ∈ B+ such that∥∥ ν(a; (1− b)T1(1− b), . . . , (1− b)Tn(1− b)
)∥∥ ≤ ε ∀ a ∈ X .

But the QUESTION is ???:

Let B := C([0, 1], C), with C σ-unital and stable,

T1, . . . , Tn ∈M(B) self-adjoint contractions

with Tkh(a) − h(a)Tk ∈ B for all a ∈ A and k = 1, . . . , n, and, in

addition,

exp(T1(0)) · . . . · exp(Tn(0)) = 1 .

Can we find the b ∈ B+ in this case such that b = {c(t)} satisfies

in addition the following inequality ?

‖1− exp
(
i(1− c(0))T1(0)(1− c(0))

)
· . . . · exp

(
i(1− c(0))T1(0)(1− c(0))

)
‖ < ε .

Proof. Without loss of generality, one can suppose that M is separable and

a 6= 0, because we can replace M and B in the proof by by C∗(X ∪ {T1, . . . , Tn})
and B by B∩C∗(X∪{T1, . . . , Tn}). Then B contains a strictly positive contraction

e ∈ B+. If we define by functional calculus elements f(e) ∈ B+ with f ∈ C[0, 1]+,

‖f‖ ≤ 1 and f([0, δ]) = 0 for some δ ∈ (0, 1), then we can select from this family

of positive contractions a commutative approximate unit e1, e2, . . . of B that is

an approximately central sequence for M and satisfies em+1em = em. It implies

(1− em)(1− em+k)` = (1− em+k)` for k, ` ≥ 1.

Given ε > 0 we let γ := max(‖T1‖, . . . , ‖Tn‖) and

δ := ε/n(1 + 2γ) · exp(γ) .

Since [a, Tk] := aTk − Tka ∈ B for a ∈ X, and since (em) is an approximate unit of

B that is approximately central for the elements of M , there exists m0 ∈ N with

‖ema− aem‖ < δ and ‖[a, Tk](1− em)‖ < δ for all m ≥ m0 and a ∈ X.

Recall that [a, x] := ax−xa satisfies the Leibnitz rule [a, xy] = [a, x]y+x[a, y].

We obtain with this rule that

‖[a, (1− em)Tk(1− em)]‖ ≤ ‖[a, Tk](1− em)‖+ 2‖[a, em]‖‖Tk‖ < δ · (1 + 2‖Tk‖) .

It follows that

‖[a, x1 · . . . · xn]‖ ≤ γn−1(‖[a, x1]‖+ . . .+ ‖a, xn‖)

for γ = max{‖x1‖, . . . , ‖xn‖}, and, for self-adjoint S, S1, . . . , Sn ∈Ms.a. that

∥∥ν(a; S1, . . . , Sn)
∥∥ ≤ n∑

k=1

‖[a, exp(iSk)]‖ .

Moreover, ‖[a, exp(iS)]‖ ≤ ‖[a, S]‖ · (exp ‖S‖).
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With γ := max{‖S1‖, . . . , ‖Sn‖} and Sk ∈Ms.a., we get∥∥ν(a; S1, . . . , Sn)
∥∥ ≤ exp(γ) ·

n∑
k=1

‖[a, Sk]‖ .

If Tk ∈Ms.a. with Tka− aTk ∈ B for all a ∈ X then we can find m0 ∈ N such

that ‖[a, (1− em)Tk(1− em)]‖ < δ · (1 + 2γ) for all m ≥ m0. Thus, for m ≥ m0,∥∥ν(a; (1− em)T1(1− em), . . . , (1− em)Tn(1− em))
∥∥ < nδ · (1 + 2γ) · exp(γ) = ε .

�

We denote by ξ : M(B) → M(C0(R, B)) the natural unital embedding given

by the strictly continuous extension of

B 3 b→ 1⊗ b ∈ Cb(R, B) ⊆M(C0(R, B)) .

The next proposition is the base for the final proof the injectivity of

R(C; A,B) = G(h0, A,E)→ G(H0, A,E) = KK(C; A,B) .

Proposition 9.3.8. Suppose that A and B are stable C*-algebra, A is separable

and B is σ-unital, and let h : A→M(B) a non-degenerate C*-morphism such that

δ∞ ◦ h is unitary equivalent to h. Denote by ξ : M(B) ↪→ Cb,st(R,M(B)) the

natural inclusion.

If U ∈M(C0(R, B)) ∼= Cb,st(R,M(B)) a unitary such that, for all t ∈ R,

U(t)h(a)− h(a)U(t) ∈ B

and

lim
t→−∞

‖U(t)h(a)− h(a)U(t)‖ = 0

for each a ∈ A, i.e.,

U · (ξ ◦ h)(a)− (ξ ◦ h)(a) · U ∈ J−∞

for J−∞ := {c ∈ Cb(R, B) ; lim t→−∞ c(t) = 0 }.

Then there exist unitaries V,W ∈M(C0(R, B)) such that U ⊕ 1 = VW ,

W (ξ ◦ h)(a)− (ξ ◦ h)(a)W ∈ C0(R, B) ∀ a ∈ A ,

V ∈ 1 + Cb(R, B) and V (t) = 1 for t ≤ −1.

Proof. Let a0 ∈ A a contraction that generates A as C *-algebra.

First we define W0 ∈M(SB) by W0(t) := W (t) for t ≤ 0 and W0(t) := W (−t)
for t > 0. Then W0(t)h(a) − h(a)W0(t) ∈ B for each t ∈ R and a ∈ A and

U0(t) := W0(t)∗U(t) satisfies U0(t) = 1 for t ≤ 0 and [U0(t), h(a)] ∈ B for all t ≥ 0.

It follows that, for each (positive) n ∈ N, there exists a decomposition of Un :=

U0|(−∞, 2n] of the form Un = Vn ·Wn where Wn := exp(Tn,1) · . . . · exp(Tn,kn) with

−T ∗n,` = Tn,` ∈M(C0(−∞, 2n]) [Tn,`(t), h(a)] ∈ B, Vn(t) ∈ B+ 1, limt→−1 Vn(t) =

1, ‖[Tn,`(t), h(a0)]‖ < 4−n
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Connect then by going back to −1 by both decompositions for Un and Un+1

and by shifting and rescaling the “mirrors” at −1.

It gives a path in [2n, 2n+ 2] of elements in U(B + C · 1) that corrects Wn on

[2n, 2n+ 1] in controlled way.

�

We could use the above mentioned results on intervals [n, n+1] (instead of [0, 1])

for a proof if we can find at the end-points a “fitting-together” procedure for the

above described approximate decomposition. Or if we can find similar approximate

decompositions with help of approximately central units in the ideal Cb([n,∞), B)

of M(C0([n,∞), B)). (But suitable combined).

It has to do with the question if unsuspended m.o.c. cone-related E-

theory for strongly purely infinite separable C *-algebras is homotopy-invariant,

i.e., if for the Rørdam groups R(C; A,B) two asymptotic homomorphisms

h(0), h(1) : A → Q(R+, B) are asymptotically stably unitary equivalent in

Cb(R+,M(B))/C0(R+, B) if they are homotopic, i.e., are boundaries of h : A →
Q(R+,C([0, 1], B) with [h] ∈ R(C; A,B[0, 1]). One can directly prove this kind of

homotopy invariance for the Rørdam groups R(C; A,B).

We discuss now the natural relation of this homotopy invariance and the de-

composition condition (DC) of Theorem 4.4.6.

Suppose that A and B are stable, A is separable and B is σ-unital. Let h0 : A→
B a non-degenerate *-monomorphism such that h0 extends to a *-monomorphism

k0 : A⊗O2 → B with h0 = k0((·)⊗ 1).

Let C ⊆ CP(A,B) the corresponding m.o.c. cone. H := δ∞◦h0 : A→M(B) de-

note the infinite repeat of h0. ConsiderM(B) naturally as a unital C *-subalgebra of

constant elements of M(C0(R, B)) ∼= Cb,st(R,M(B)). Let consider also Cb(R, B)

as an ideal of M(C0(R, B)).

There exists a *-monomorphism k1 : O2⊗K→ H(A)′∩M(B) such that k1(O2⊗
K)B = B, such that H(a)k1(c) ∈ B for all a ∈ A and c ∈ k1(O2 ⊗ K), and that

p0 := k1(1 ⊗ p11) is a full in M(B) and 1 − p0 is a full and properly infinite

projection in H(A)′ ∩ M(B). Since p0 is properly infinite in k1(O2 ⊗ K) with

[p0] = 0 ∈ K0(k1(O2 ⊗K)), there exists an isometry in s0 ∈ M(B) with s0s
∗
0 = p0

and an isometry t0 ∈ H(A)′ ∩M(B) with t0t
∗
0 = 1− p0.

Let F denote the image of Cb(R,O2 ⊗K) ⊃ O2 ⊗K. We consider F naturally

as a non-degenerate C *-subalgebra of Cb,st(R,M(B)) ∼= M(C0(R, B)) using the

*-monomorphism f 7→ {k1(f(t))} ∈ Cb,st(R,M(B)). Then p0 ∈ F , 1− p0 ∈ 1 + F .

It is easy to see that each non-zero projection p ∈ F is equivalent to p0 by a unitary

u ∈ 1 + F , because this is true for C([0, 1],O2 ⊗K) (in place of F ).

Remarks 9.3.9. For each positive element g ∈ Cb(R, B) there is a projection

p ∈ F with g − pg ∈ C0(R, B), p ≥ p0.

F ⊆ H(A)′ ∩M(C0(R, B)).
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If V = {V (t)} ∈ M(C0(R, B)) ∼= Cb,st(R,M(B)) is a unitary with

limt→−∞ ‖V (t)H(a) − H(a)V (t)‖ = 0 and V H(a) − H(a)V ∈ Cb(R, B) for

all a ∈ A (i.e., V (t)H(a) − H(a)V (t) ∈ B for all t ∈ R and a ∈ A). Then

W ∈ M(C0(R, B)) with W (t) := V (t)∗ for t ≤ 0 and W (t) := V (−t)∗ for t ≥ 0 is

a unitary that satisfies WH(a) − H(a)W ∈ C0(R, B) for all a ∈ A. If U := VW

then U(t) = 1 for t ≤ 0 and UH(a)−H(a)U ∈ Cb(R, B) for all a ∈ A.

Let U ∈M(C0(R, B)) a unitary with U(t) = 1 for t ≤ 1 and UH(a)−H(a)U ∈
Cb(R, B) for all a ∈ A. Define Ue(t, s) := U(t − s−1 + 1) for t ∈ R and s ∈ (0, 1]

and Ue(t, 0) := 1 for all t ∈ R. Then Ue is a unitary in

M(C0(R× [0, 1], B)) ∼= Cb,st(R× [0, 1],M(B))

with Ue(t, s) = 1 if t ≤ 1 and UeH(a)−H(a)Ue ∈ Cb(R× [0, 1], B) for all a ∈ A.

Notice Cb(R,C([0, 1], B)) ∼= Cb(R× [0, 1], B) . Same for C0 in place of Cb, and

for (Cb,st,M(C([0, 1], B)),M(B)) in place of (Cb,C([0, 1], B), B).

For each s ∈ [0, 1] define the unitary Us(t) := Ue(t, s). The Us are unitaries in

M(C0(R, B)) that satisfy U0 = 1 and Us(t) = 1 for t ≤ s−1 − 1 if s ∈ (0, 1]. In

particular, Us(t) = 1 for all t ≤ 0 and s ∈ [0, 1].

There exists a projection p ∈ F such that

(1− p)(UeH(a)−H(a)Ue) ∈ C0(R× [0, 1], B) for all a ∈ A .

Let v ∈ 1 + F a unitary with vpv∗ = p0. Then

(1− p0)(vUsH(a)−H(a)vUs) ∈ C0(R, B)

for all a ∈ A.

The projections (1 − p0) and p0 commute with H(a) and commute modulo

C0(R, B) with (vUs)H(a)(vUs)
∗ for each a ∈ A. We define for s ∈ [0, 1] the

completely positive map Ts : A→ Cb(R, B) by

Ts(a) := p0(vUs)H(a)(vUs)
∗p0 for a ∈ A

Then

Ts(a)− p0(vUs)H(a)(vUs)
∗ ∈ C0(R, B)

and

Ts(a
∗a)− Ts(a)∗Ts(a) ∈ C0(R, B) .

Recall that Ts(a)(t) = p0v(t)U(s, t)H(a)(v(t)U(s, t))∗p0 for (t, s) ∈ (−∞,∞)×
[0, 1]. In particular, T0(a) = p0H(a), because U(0, t) = 1 and v(t) commutes with

H(a). For t ∈ R holds T1(a)(t) = p0v(t)U(t)H(a)U(t)∗v(t)∗p0 where U := {U(t)}
is the above considered unitary U ∈M(C0(R, B)) with U(t) = 1 for t ≤ 0.

The restriction to (t, s) ∈ [0,∞)×[0, 1] of Ts defines a homotopy in SR(C; A,B)

from T0 = p0H(·) to T1(·)|[0,∞).

It holds Ts(a)(t) = p0H(a) for all t ≤ 0 and a ∈ A, and a ∈ A 7→ Ts(a) ∈
Cb(R, B) is a c.p. contraction, with Ts(a

∗a)− Ts(a)∗Ts(a) ∈ C0(R, B) for a ∈ A.
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Proof. to be filled in ?? �

Proposition 9.3.10. Let U = {U(t)} ∈ Cb,st(R, B) = M(C0(R, B)) and v =

{v(t)} ∈ 1 + F ∈ H(A)′ ∩M(C0(R, B)) the above considered unitary operators.

Then (1−p0)(vU)H(a)(vU)∗−(1−p0)H(a) ∈ C0(R, A), p0(vU)H(a)(vU)∗p0 ∈
Cb(R, A) and p0(vU)H(a)(vU)∗(1− p0) ∈ C0(R, A) for a ∈ A.

Let k(a) := s∗0p0(vU)H(a)(vU)∗p0s0 and h0(a) := s∗0p0H(a)s0 for a ∈ A.

Suppose that there exists a unitary V ∈ Cb,st(R,M(B)) such that

V ∗h0(a)V − k(a)⊕s0,t0 h0(a) ∈ C0(R, B) for all a ∈ A .

Then U = U1U2 for suitable unitary operators U1, U2 ∈M(C0(R, B)) with

H(a)(U1 − 1), U2H(a)−H(a)U2 ∈ C0(R, B) for all a ∈ A .

Proof. We consider first the special case where the c.p. map k : A→ Cb(R, B)

given by

k(a)(t) := s∗0(v(t)U(t))H(a)(v(t)U(t))∗s0

is itself unitary equivalent modulo C0(R, B) to h0, i.e., we suppose in this special

case that there exists a unitary W = {W (t)} ∈ Cb,st(R,M(B)) with

W ∗h0(a)W − k(a) ∈ C0(R, B) for all a ∈ A .

By definition of k(·) and Cuntz addition ⊕s0,t0 ,

s0k(a)s∗0 + (1− p0)H(a) = k(a)⊕s0,t0 H(a) ,

where t0 is an isometry in H(A)′ ∩M(C0(R, B)) with t0t
∗
0 = 1− p0, and

s0k(a)s∗0 = p0(vU)H(a)(vU)∗p0 .

Since (1− p0)H(a)− (1− p0)(vU)H(a)(vU)∗ ∈ C0(R, B) and

p0vUH(a)(vU)∗ − p0(vU)H(a)(vU)∗p0 ∈ C0(R, B) ,

we get that(
k(a)⊕s0,t0 H(a)

)
− (vU)H(a)(vU)∗ ∈ C0(R, B) for all a ∈ A .

Let V1 := s0Ws∗0 + (1− p0). Then

V ∗1 (h0(a)⊕s0,t0 H(a))V1 − (k(a)⊕s0,t0 H(a)) ∈ C0(R, B) for all a ∈ A .

Since h0(a) ⊕s0,t0 H(a) = H(a) for all a ∈ A, it follows that V ∗1 H(a)V1 −
(vU)H(a)(vU)∗ ∈ C0(R, B) for all a ∈ A. Thus, V2 := V1vU commutes with

H(a) modulo C0(R, B) for a ∈ A. Notice U = U1U2 with U1 := v∗V ∗1 v and

U2 := v∗V2. Since v ∈ 1 + F ⊆ H(A)′ ∩ M(C0(R, B)) we get that U2 satisfies

U2H(a) − H(a)U2 ∈ C0(R, B) . The operator V1 − 1 = s0Ws0 − p0 is contained

in p0M(C0(R, B))p0. Since p0H(a) = H(a)p0 ∈ B for a ∈ A it follows that

H(A)(V1 − 1) ⊆ Cb(R, B). Since v commutes with H(a) and Cb(R, B) is an ideal

of M(C0(R, B)), we get that H(A)(U1 − 1) ⊆ Cb(R, B).

Now we reduce the general case to the above considered special case:
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Recall:

p0 := k1(1⊗ p11) ∈ k1(O2 ⊗K) ⊃ F

k(a) := s∗0p0(vU)H(a)(vU)∗p0s0

h0(a) := s∗0p0H(a)s0 for a ∈ A.

It exits unitary V ∈ Cb,st(R,M(B)) with

V ∗h0(a)V − k(a)⊕s0,t0 h0(a) ∈ C0(R, B) for all a ∈ A .

Want to show:

There exists p1 ≥ p0 in and a unitary W ∈ p1M(B)p1 + (1 − p1) such that

WH(a)W ∗ − (vU)H(a)(vU)∗ ∈ C0(A,B).

By properties of F , – or directly by simple properties of O2 ⊗ K –, there

exist unitary w1, w2 ∈ 1 + F such that w∗1p0w1 ≤ 1 − p0 and w∗2p1w2 = p0 for

p1 := p0 + w∗1p0w1. Notice

w1(p1 − p0)w∗1 = p0 ≤ w1(1− p0)w∗1 .

For a ∈ A it follows that

p1(vU)H(a)(vU)∗ − (s0k(a)s∗0 + (p1 − p0)H(a)) = p0(vU)H(a)(vU)∗(1− p0)

is in C0(R, A).

Let h1(a) := t∗0(p1 − p0)H(a)t0 = t∗0(p1 − p0)t0H(a) and z := t∗0w
∗
1s0 .

The mapping h1 is a C *-morphism because p1−p0 ≤ (1−p0) = t0t
∗
0 and p1−p0

commutes with H(A). Then

s0k(a)s∗0 + t0h1(a)t∗0 = s0k(a)s∗0 + (p1 − p0)H(a) .

We show below that h1 is unitary equivalent to h0 modulo C0(R, B).

Let V1 ∈ M(C0(R, B)) a unitary with V ∗1 h0(a)V1 − h1(a) ∈ C0(R, B) and let

V2 := s0s
∗
0 + t0V1t

∗
0. Then

(s0k(a)s∗0 + t0h1(a)t∗0)− V ∗2 (s0k(a)s∗0 + t0h0(a)t∗0)V2 ∈ C0(R, B) .

On the other hand, there ?????

It follows that ?????

We have

p1(vU)H(a)(vU)∗ − (s0k(a)s∗0 + t0h1(a)t∗0) ∈ C0(R, B)

Next ?????????????

In the same way we get that p1H(a) = s0h0(a)s∗0 + t0h1(a)t∗0

(s0h0(a)s∗0 + t0h0(a)t∗0)− V ∗3 (s0h0(a)s∗0 + t0h1(a)t∗0)V3 ∈ C0(R, B) ,

and ?????
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We want to show that ?????

Recall h0(a) = s∗0p0H(a)s0.

We get from t0t
∗
0 = 1− p0 that

z∗z = s∗0w1(1− p0)w∗1s0 = 1 ,

and

zz∗ = t∗0w
∗
1s0s

∗
0w1t0 = t∗0w

∗
1p0w1t0 == t∗0(p1 − p0)t0 .

Notice that w1, p1, p0, t0 commute with H(a). Thus (w1(p1 − p0)t0)(t∗0(p1 − p0)) =

w1(p1 − p0) commutes with H(a). Since

w1t0h1(a)t∗0w
∗
1 = s∗0w1(p1 − p0)H(a)w∗1 = w1(p1 − p0)w∗1H(a)

it follows

z∗h1(a)z = s∗0w1(p1 − p0)w∗1H(a)s0 = s∗0p0H(a)s0 = h0(a) ,

and

zh0(a)z∗ = zs∗0H(a)s0z
∗ = t∗0w

∗
1p0H(a)w1t0 =

t∗0w
∗
1p0w1H(a)t0 = t∗0(p1 − p0)H(a)t0 = h1(a) .

Since h1 dominates h0 and h0 dominates 0 modulo C0(R, B). It follows that

h1 dominates zero modulo C0(R, B), i.e.,

[πC0(R,B) ◦ h1] + [0] = [πC0(R,B) ◦ h1]

in M(C0(R, B))/C0(R, B). It follows that there exists isometries S, T ∈
M(C0(R, B)) with Sh1(a) − h1(a)S ∈ C0(R, B), SS∗ + TT ∗ = 1 and T ∗h1(a)T ∈
C0(R, B).

???????? �

We extend an m.o.c. cone C ⊆ CP(A,B) naturally to C[Y ] ⊆ CP(A,B[Y ]) by

letting B[Y ] := C0(Y,B) and V ∈ CP(A,B[Y ]) is an element of C[Y ] if and only

if there is a point-norm continuous map y ∈ Y 7→ Vy ∈ C with y 7→ ‖Vy(a)‖ is in

C0(Y ), such that V (a)(y) = Vy(a) for a ∈ A.

Corollary 9.3.11. Suppose that A and B are stable C*-algebras, A is sepa-

rable, B is σ-unital, the m.o.c. cone C ⊆ CP(A,B) is generated by h0 ∈ C, where

h0(a) := k(a⊗ 1) for some a non-degenerate *-monomorphism k : A⊗O2 → B.

Then R(C; A,B[Y ]) → KK(C; A,B[Y ]) is injective, if and only if, Y 7→
R(C; A,B[Y ]) is homotopy invariant on locally compact metric spaces Y , – in the

sense that the canonical evaluation group morphisms

R(C; A,B[Y × [0, 1]])→ R(C; A,B[Y ])

are isomorphisms for t ∈ [0, 1].

Proof. to be filled in ?? �
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4. Proofs of Parts (i) and (ii) of Theorems B and M

Now we carry out the program for the proof of Parts (i) and (ii) of Theorems

B and M that we have described in the beginning of this Chapter 9. First we

explain why Parts (i) and (ii) of Theorem B are a special cases of Parts (i) and

(ii) of Theorem M (from the point of view of our program), and why they are both

special cases of Corollary 9.2.7.

Remark 9.4.1. Let A a separable exact C *-algebra. we use in the remaining

part of this section the definition D := A ⊗ K. Note that, by Corollary 5.5.6, the

*-monomorphism a ∈ A 7→ a ⊗ p11 is is unitarily homotopic to an isomorphism

from A onto D, if A is stable.

For notational simplicity we assume that in the sequel B denotes a stable σ-

unital C *-algebra. Then the assumptions of Theorem B can be reformulated as

follows: The C*-algebra A is unital, separable and exact, and B is a stable C*-

algebra that contains a copy N of O2 ⊗K such that NB is dense in B .

We modify the definition of the *-monomorphism h0 : D → N ⊆ B ⊗K (given

in Chapter 1 after Theorem A):

By Theorem A, we find a unital *-monomorphism h1 : A ⊗ O2 → O2. Then

we define a unital *-monomorphism k1 : D → O2 ⊗ K by k1 := ku1 ⊗ idK, where

ku1 (a) := h1(a⊗ 1).

Since B contains the non-degenerate copy N of O2⊗K, the monomorphism k1

defines a unital nuclear *-monomorphism k0 from D into B by k0 := ϑk1, where ϑ

is an isomorphism from O2 ⊗K onto N .

k0 is nuclear and non-degenerate, and there is a non-degenerate *-monomor-

phism k from D ⊗O2 into N ⊆ B such that k0 = k((·)⊗ 1). Thus k0 and k0 ⊕ k0

are unitarily equivalent.

The *-monomorphism k can be defined by ϑ(h1 ⊗ idK)γ, where γ means here

the natural isomorphism from (A⊗K)⊗O2 onto (A⊗O2)⊗K.

Later it follows, as a corollary of Theorem B, that any copy of O2⊗K in B, that

generates a full hereditary subalgebra of B, could be used in place of our particular

fixed copy N of O2⊗K in B. Also later the reader can deduce from Corollary 9.4.2

that the above defined k0 could be replaced in the sequel by any *-monomorphism

from D = A ⊗ K into O2 ⊗ K, because of R(D,O2 ⊗ K) ∼= KK(A,O2) = 0 and of

the absorption result (iii) of Theorem B, proved in Chapter 7, cf. Corollary 7.4.16.

Suppose, now that N ⊆ B is a (non-simple) strongly purely infinite C *-sub-

algebra of B with NB dense in B, and that k : D ⊗ O2 → N is a non-degenerate

nuclear *-monomorphism. Let k0 := k((·) ⊗ 1) ∈ Homnuc(D,B). With the def-

initions and elementary observations of Chapter 1 in hand, the reader can see,

that X := Prim(N) acts on B upper semi-continuously by ΨB where ΨB(J) is the

closed ideal of B generated by the closed ideal J of N . The T0 space X acts lower

semi-continuously on D by ΨD, and, moreover, the action ΨD is monotone upper
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semi-continuous, i.e., satisfies also condition (ii) of Definition 1.2.6. Here ΨD(J)

for J ∈ I(N) is defined by

ΨD(J) := k−1
0 (k0(D) ∩ J).

The later in Chapter 12 given proof of Theorem K shows that k0 : D → B (and

k : D ⊗O2 → B) can be constructed up to unitary homotopy from the actions ΨD

and ΨB of X on D respectively B. In fact, by Corollary 7.4.23 holds CPrn(Ψ) =

C(k0) and

SR(X; D,B) = SR(CPnuc(Ψ); D,B) = S(k0; D,Q(R+,M(B)) .

Let X := Prim(N), and use the natural lattice isomorphism between the

open subsets of of X and the closed ideals of N , cf. Section 2. Then ΨD(J) :=

(k0)−1(k0(D) ∩ J) and ΨB(J) := ΨN,B
0 (J) = span(BJB) are actions of X on D

and B, respectively. Here ΨD is lower semi-continuous and ΨB is upper semi-

continuous.

We define actions of I(N) on ER = Q(SB) and on Q(R+, B) ∼= J by ΨER(I) :=

πSB(M(SB, SΨB(I))), ΨQ(R+,B)(I) := Q(R+,ΨB(I)) = ΨER(I) ∩ J for I ∈ I(N).

Def.of action OK? ??

From the exactness of D it follows that h is Ψ-residually nuclear, if and only

if, h is nuclear and is Ψ-residually equivariant (cf. Chapter 3).

Thus H0 is nuclear and has a lift H ′0 := δ∞◦k0 which maps D into the multiplier

algebra

M(N) ⊆M(B) ⊆ Cb,st(R,M(B)) =M(C0(R, B))

of the purely infinite C *-algebra N ⊆ B, but H ′0(D) intersects N exactly in zero.

Therefore, by Corollary 5.9.23,

Extnuc(X; D,SB) = G(H0; D,ER).

If D is exact, we have moreover G(H0, D,ER) = [H0] + [Homnuc(X; D,ER)], but

we don’t need this (for the proofs in section 9.2).

In Chapters 5 and 8 we have seen that there are natural isomorphisms

Extnuc(X; D,SB) ∼= KKnuc(X; D,B) .

Since h0 : D → ER is dominated by H0, every element in S(h0 ; D,ER)

is the unitary equivalence class [h] with nuclear h and defines an element

of Extnuc(X; D,SB) by the unitary equivalence class [h ⊕ H0], cf. Corollary

5.9.22(??).

By Proposition 7.4.15, S(h0 ; D,ER) is nothing else the semigroup of unitary

equivalence classes Ψ-residually nuclear C *-morphisms h from D into Q(R+, B),

where ΨA(J) and ΨQ(R+,B) are defined as above.

In Chapter 7 we have seen that

R(X; D,B) = G(h0; D,ER) = [h0] + [Homnuc(X; D,J)] .
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(If h0 resp. k exists.)

Corollary 9.4.2. If D is exact and k : D ⊗ O2 → B is a non-degenerate

nuclear *-morphism that induces the above considered action of X := Prim(B) on

D, then ψ induces an isomorphism α of R(X; D,B) onto Extnuc(X; D,SB) ∼=
KKnuc(X; D,B).

Proof. to be filled in ?? �

Following Lemma uses above conventions and explanations in Remark 9.4.1.

Lemma 9.4.3. If A is exact and h0 is nuclear, let ΨA denote the action of

Prim(B) induced by h0.

For every nuclear Ψ-residually equivariant C*-morphism k : D → Q(R+, B),

i.e., for [k] ∈ SR(X; D,B), the morphism h := k ⊕ h0 defines an element [h] in

R(X; D,B) that is approximately scale-invariant.

Proof. Use Corollary 9.2.7 with C := C(h0) = Crn(X;D,B).

Give new proof based on Corollary 9.2.7 ??

Let ER := Qs(SB). By Proposition 7.4.15(??), ?? for separable stable and exact

D, k ∈ Hom(X; D,Q(R+, B)) has unitary equivalence class [k] in S(h0 ; D,ER), if

an only if k is nuclear.

[h] = [k ⊕ h0] = [k] + [h0] is in R(X; D,B), because R(X; D,B) = [h0] +

S(h0 ; D,ER) by Proposition 7.4.15(??) and Proposition 4.4.3.

If σ is a topological isomorphism of R+ then σ(0) = 0 and therefore σ ex-

tends naturally to an orientation preserving topological isomorphism of R by letting

σ(t) = t for t ∈ R−. We denote this extension again by σ. It induces in a natural

way an automorphism σ̂ of Qs(SB) such that its restriction to J ∼= Q(R+, B) is just

the above considered induced automorphism of Q(R+, B), which we also denote by

σ̂, because all is trivially related by restriction maps.

Let I1 : Q(R+, B) ∼= J ↪→ Qs(SB) the natural inclusion. Then for the general-

ized mapping cone construction k 7→ I1◦k we have, obviously, σ̂◦(I1◦k) = I1◦(σ̂◦k).

On the other hand the isomorphism α of Proposition 9.2.4 satisfies, by definition

of α,

α([σ̂ ◦ (k ⊕ h0)]) = [I1 ◦ (σ̂ ◦ (k ⊕ h0))] = [σ̂ ◦ (I1 ◦ (k ⊕ h0))].

By Corollary 8.3.4(ii), we have

[σ̂ ◦ (I1 ◦ (k ⊕ h0))] = [I1 ◦ (k ⊕ h0)] = α([k ⊕ h0]).

Since [k ⊕ h0] is in R(X; D,B) and α is faithful on R(X; D,B) by Proposition

9.2.4, this shows the invariance of [k ⊕ h0] under scaling:

[k ⊕ h0] = [σ̂ ◦ (k ⊕ h0)] .

�
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Proof of (i) and (ii) of Theorems B and M.. Give new proof based

on Corollary 9.2.7!!! ??

In case of Theorem B we pass to the stabilizations D := A⊗K and replace B

by B ⊗K.

In the case of Theorem M we assume the existence of h0 (i.e., we prove (i) and

(ii) modulo the result of Theorem K, see our above made conventions).

By Corollary 9.4.2, the natural map h 7→ I1 ◦ h from Homnuc(X; D,Q(R+, B))

into Homnuc(X; D,Qs(SB)) defines an isomorphism

α : R(X; D,B)
∼→ Extnuc(X; D,SB) ∼= KKnuc(X; D,B).

By Corollary 8.3.3(iii), for a nuclear C *-morphism h from D to B the mapping

cone construction defines an element α[h] = [Ch] of Extnuc(X; D,SB) which is

mapped to the element [h − 0] ∈ KKnuc(X; D,B) under the natural isomorphism

from Extnuc(X; D,SB) onto KKnuc(X; D,B).

Thus the relations considered in Theorems B(ii) and M(ii) are just the relations

which are induced by the semigroup homomorphism from the unitary equivalence

classes of elements of Homnuc(X; D,B) into R(X; D,B). I.e., if h and k are in

Homnuc(X; D,B) then [h − 0] = [k − 0] ∈ KKnuc(X; D,B) if and only if they

define the same element of R(X; D,B). But this means that there is a strongly

continuous map t 7→ U(t) from R+ into the unitary group of M(B) such that

h ⊕ h0 = limt→∞ U(t)∗(k ⊕ h0)U(t). This proves the second part of Theorems B

and M.

To complete the proof of the first part of Theorem B, we have to show that

every element of R(X; D,B) can be represented by a Ψ-residually nuclear C *-

morphism h : D → B. But this follows from Lemma 9.4.3 and Corollary 9.1.3,

because R(X; D,B) = SR(X; D,B) + [h0] ⊆ SR(X; D,B) and [h0] is the neutral

element of R(X; D,B), cf. Chapter 4. �

Remark 9.4.4. Let us shortly mention alternative approaches as e.g. by

N. C. Phillips [627] in the case where X is a point:

If one finds another way to show the homotopy invariance of R(A,B) with respect

to the second variable B, then one can directly apply Corollary 9.1.3. And one gets

that the representatives of R(A,B) can be chosen as nuclear C *-morphisms from

A ⊗ K into B ⊗ K. Then it follows that there is a composition that replaces the

Kasparov products. But then it still remains to show that the natural morphism

from R(A,B) to KKnuc(A,B) ∼= Enuc(A,B) is both faithful and surjective ( 5 ). The

zero functor satisfies all requirements of category theory descriptions of Kasparov

or E-theory type functors, except of the universality. A less trivial example, which

is also a two-sided ideal of KK-theory (and even of E-theory) is the subgroup of the

elements of KKnuc(A,B) that factorize through a commutative C *-algebra (it is a

5In principle, it could happen that h0 is – up to asymptotic unitary homotopy – the only

element of R(A,B).
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group by Bott periodicity). Therefore, formal category theoretic (algebraic) argu-

ments that prove the coincidence of R(A,B) and KKnuc(A,B) without assuming

UCT for A or B require some care.

The *-epimorphism b 7→ b(t), for b ∈ C([0, 1], B), extends naturally to a *-

epimorphism πt : Cb(R+ × [0, 1], B)→ Cb(R+, B) by

πt((bs)s∈R+
) := (bs(t))s∈R+

.

The πt define evaluation semi-group morphisms

(πt)∗ : SR(C[0, 1]; A,B[0, 1])→ SR(C; A,B)

that naturally define group morphisms

(πt)∗ : R(C[0, 1]; A,B[0, 1])→ R(C; A,B) .





CHAPTER 10

Unitarily homotopic algebras and Theorem B(iv)

We give in this chapter the proof of part (iv) of Theorem B and obtain related

results. This finishes the proof of Theorem B, because parts (iii), (i)+(ii) have been

shown in Chapters 7 and 9 respectively.

We consider here also non-simple σ-unital C *-algebras.

1. Unitary homotopies and Proof of Theorem B(iv)

We recall that two morphisms ϕ,ψ : A→ B are unitarily homotopic if there

is a norm-continuous map t ∈ R+ 7→ U(t) ∈ M(B) into the unitary operators in

the multiplier algebra M(B) of B such that ϕ(a) = limt→∞ U(t)∗ψ(a)U(t) for all

a ∈ A, cf. Definition 5.0.1 ( 1 ).

We say that *-homomorphism ϕ : A → B defines a unitary homotopy be-

tween A and B, if there exists a *-homomorphism ψ : B → A such that ψ ◦ ϕ is

unitarily homotopic to idA and ϕ ◦ ψ is unitarily homotopic to idB .

A simple calculation shows that unitarily homotopic morphisms have the same

kernel. Therefore, a unitary homotopy ϕ : A→ B always is a monomorphism.

If ϕ : A→ B is a unitary homotopy and ψ : B → A is a *-homomorphism as in

the above definition, then ψ defines again a unitary homotopy between A and B.

In the following we denote by BXB the closed ideal of B which is generated

by a subset X of the multiplier algebra M(B) of B, i.e., BXB means the closure

of the linear span of BXB.

A unitary homotopy ϕ : A → B always satisfies that ϕ(A) is not contained in

a non-trivial closed ideal of B, i.e. Bϕ(A)B = B:

Proof. J := Bϕ(A)B is a closed ideal of B and ϕψ(B) ⊂ ϕ(A) ⊂ J . Since ϕψ

is unitarily homotopic to idB , this implies that every element of B is approximately

unitarily equivalent to an element of the ideal J . Thus B = J . �

1It suffices to suppose that t 7→ U(t) ∈ is strongly continuous. Then we say that ϕ and

ψ are “weakly unitarily homotopic”. Since the unitary operators are a topological group with

strict topology (and strong and strict topology coincides on the unitaries), the “weakly unitary

homotopy” of maps ϕ and ψ is an equivalence relation. If A and B are σ-unital and B is stable

then weakly unitarily homotopic ϕ and ψ are unitarily homotopic (by an other norm-contiuous

path t 7→ Ũ(t)), cf. Corollary 7.1.5.

957
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A similar argument shows that B and ϕ must be unital (resp. B is σ-unital) if

A is unital (resp. is σ-unital) and ϕ : A→ B is a unitary homotopy.

In order to prove Theorem B(iv), we use the following observations (I)-(III):

(I) Suppose that A and B are σ-unital and stable, and h : A → B is a

monomorphism, such that Bh(A)B = B.

Then h is unitarily homotopic to a monomorphism k : A → B with

k(A)B = B ( 2 ).

(II) If h1 : A → B and h2 : B → C are unitarily homotopic to k1 : A → B

respectively k2 : B → C, and if k2(B)C is dense in C, then h2 ◦ h1 is

unitarily homotopic to k2 ◦ k1.

(III) Suppose that A and B are separable, that ϕ : A → B defines an unitary

homotopy of A and B, and that ϕ(A) contains a strictly positive element

of B. Then ϕ is unitarily homotopic to an isomorphism χ from A onto

B.

Observation (I) is a special case of Corollary 7.4.6. The observations (I), (II)

and (III) together imply that unitarily homotopic separable C *-algebras are iso-

morphic if they are σ-unital and stable or if they are unital, i.e., (I), (II) and (III)

imply Theorem B(iv).

Proof of the implication { (I),(II),(III) } ⇒ (iv) of Theorem B:.

Let ϕ : A → B a unitary homotopy and ψ : B → A a *-homomorphism such that

ϕ ◦ψ is unitarily homotopic to idB and ψ ◦ϕ is unitarily homotopic to idA. Above

we have shown that ϕ and ψ must be monomorphisms such that Bϕ(A)B is dense

in B and Aψ(B)A is dense in A. By (I) there exists monomorphisms ϕ1 : A → B

and ψ1 : B → A which are unitarily homotopic to ϕ and ψ respectively, such that

ϕ1(A)B and ψ1(B)A are dense in B and A respectively.

By (II), the ϕ1 and ψ1 again define a unitary homotopy between A and B.

Now (III) applies, and we get an isomorphism χ from A onto B such that χ is

unitarily homotopic to ϕ1. But then χ is unitarily homotopic to ϕ by (II).

We have that B, ϕ and ψ are unital if A unital. Thus (III) applies to ϕ in the

unital case. �

Proof of (II): . The definition of unitary homotopy shows immediately that

k2h1 is unitarily homotopic to h2h1. Since k2(B)C is dense in C there is a unital

strictly continuous *-homomorphism ψ from the multiplier algebraM(B) of B into

the multiplier algebraM(C) of C such that ψ|B = k2. If t ∈ R+ 7→ u(t) ∈M(B) is

a strictly continuous map into the unitaries ofM(B) such that lim ‖u(t)∗h1(a)u(t)−
k1(a)‖ = 0 for a ∈ A, then t ∈ R+ → v(t) := ψ(u(t)) ∈M(C) is strictly continuous

and lim ‖v(t)∗k2(h1(a))v(t) − k2(k1(a))‖ = 0 for a ∈ A. Thus k2h1 and k2k1 are

2The norm-continuous path t ∈ R+ 7→ U(t) ∈M(B) with limt→∞ ‖k(a)−U(t)∗h(a)U(t)‖ =

0 (for all a ∈ A) can be taken in the unitization B̃ = B + C · 1 ⊂M(B).
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unitarily homotopic. Since unitary homotopy is an equivalence relation, k2k1 is

unitarily homotopic to h2h1. �

2. Proof of property (III)

This Section is concerned with the proof of (III), that finishes the proof of

Theorem B. The proof of (III) is given above Corollary 10.3.1. Then we get some

other Corollaries of our technical Proposition 10.2.1.

We start with a very general Proposition 10.2.1 that is not exactly stated in

[438] as here, but is proved in [438], cf. proofs of [438, cor. 2.4(II), prop. 2.3].

Let Xn ⊂ Y be a sequence of Banach spaces and closed subspaces, and

let Vn : Xn → Xn+1 be a sequence of contractions. Then the inductive limit

indlim(Vn : Xn → Xn+1) is well-defined and naturally contained in `∞(Y )/c0(Y )

(or in a norm ultrapower Yω) as a closed subspace. By

V∞n : Xn → indlim(Vn : Xn → Xn+1)

we denote the natural contractions which are given in the definition of inductive

limits by universal diagrams (and satisfy V∞n+1 ◦ Vn = V∞n ). See [438, sec. 2] for

definitions and explicit formulas (in the case of operator systems).

In the following Proposition 10.2.1 let X be a separable Banach space and Y a

closed subspace of X, S ⊂ L(X) a semigroup of linear contractions on X, G be a

topological semigroup π : G→ S a strongly continuous semigroup epimorphism.

To simplify notation we write V , Vn, V (t) and Vn(t) instead of π(g), π(gn),

π(g(t)), π(gn(t)) etc.

Proposition 10.2.1. Let X, Y , S, G and π be as above.

(i) Assume that for every finite dimensional subspace Z1 of X and for every

finite dimensional subspace Z2 of Y and every ε > 0 there exist V ∈ S
with

‖z − V z‖ ≤ ε‖z‖ ∀z ∈ Z2 and dist(V z, Y ) ≤ ε‖z‖ ∀z ∈ Z1.

Then there exist a sequence V1, V2, . . . in S and an isometric isomorphism

ϕ : Y
∼→ indlim(Vn : X → X)

from Y onto indlim(Vn : X → X), such that, for y ∈ Y ,

ϕ(y) = lim
n→∞

V∞n (y) .

If, moreover, G is a group and π(1G) = idX , then (V∞1 )−1 is an

isometric isomorphism from indlim(Vn : X → X) onto X and there is a

sequence (of isometries) Tn ∈ S such that, for y ∈ Y ,

(V∞1 )−1(ϕ(y)) = lim
n→∞

Tn(y).

(V∞1 )−1 ◦ ϕ is an isomorphism from Y onto X.
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(ii) Suppose that, moreover, idX ∈ S, G is unital, π(1G) = idX , and for every

pair of subspaces Z1 ⊂ X, Z2 ⊂ Y of finite dimension and for every ε > 0,

there exists a continuous map s ∈ [0, 1] 7→ g(s) ∈ G with g(0) = 1G, such

that, with V (s) := π(g(s)), for all s ∈ [0, 1],

‖z − V (s)z‖ ≤ ε‖z‖ ∀z ∈ Z2 and dist(V (s)z, Y ) ≤ ε‖z‖ ∀z ∈ Z1.

Then, for every dense sequence y1, y2, . . . ∈ Y the sequence

V1, V2, . . . ∈ S in (i) and the sequence g1, g2, · · · ∈ G for which π(gn) = Vn

in (i) can be selected such that moreover for every n ∈ N there is a

continuous map t ∈ [0, 1] 7→ gn(t) ∈ G with ‖Vn(t)yk − yk‖ < 2−n for

every k ≤ n, gn(0) = 1G, Vn(1) = Vn, V0(t) ≡ 1.

Furthermore, W (t) := V∞n+1 ◦ Vn(n + 1 − t) (for n ≤ t ≤ n + 1) has

the property that

t ∈ R+ 7→W (t)y ∈ indlim(Vn : X → X)

is continuous with W (0) = V∞1 , and

lim
t→∞

W (t)y = ϕ(y) .

If, moreover, G is a group and π(1G) = idX , then (V∞1 )−1 is an

isometric isomorphism from indlim(Vn : X → X) onto X.

The map t ∈ R+ 7→ g(t) ∈ G, which is defined by

g(t) := g−1
1 · . . . · g−1

n gn+1(t− n)−1 for n ≤ t ≤ n+ 1 ,

is continuous and satisfies π(g(t)) = (V∞1 )−1W (t).

The inclusion map Y ↪→ X is homotopic to the isometric isomorphism

(V∞1 )−1 ◦ ϕ from Y onto X by the strongly continuous map t ∈ R+ 7→
V (t) := π(g(t)).

Proof. (i): The proof [438, cor. 2.4(II)] can be used here (word by word in

the same way), but the inductive existence proof of the Vn ∈ S with the desired

properties does not need in the induction step a Hahn-Banach separation argument,

as in [438], the existence is just our assumption in (i) that S is a semigroup and

has (!) the the needed approximation property.

If G is a group and π(1G) = idX , then the Vn are isometries from X onto X

and thus V∞1 is an isometric isomorphism from X onto indlim(Vn : X → X). The

desired Tn can be found as iterates (products) of the Vn.

(ii): It is in principle the same proof as of [438, cor. 2.4(II)], but one has to

construct the finite-dimensional filtrations Xn ⊂ X, Yn ⊂ Y and the Vn = Vn(1)

in [438, prop. 2.3] such that the ball of V (t)V nm(Xn) is 8−n-contained in Xn+1 for

t ∈ [0, 1] and Vn(t) := π(gn(t)) with gn(0) = 1, V (1) = Vn. That can be done by

our assumptions in (ii).

Now assume that moreover G is a group and π(1) = idX . Than V∞1 is an

isometric isomorphism as one can easily see from the natural model for indlim in
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l∞(X)/c0(X), cf. e.g. beginning of [438, sec. 2]. The rest can be verified by straight

forward calculations. �

Note that on the unitary operators inM(B) the strong and the strict topology

coincide. We get the applications of Proposition 10.2.1 if we considered M(B) as

a closed subalgebra {T ∈ L(B) : ∃(S ∈ L(B)), (Sb)∗a = b∗Ta,∀a, b ∈ B} of the

bounded operators L(B) on B. The strict topology is the *-strong topology on

L(B) given by the seminorms T 7→ ‖T (b)‖+ ‖T (b∗)‖, b ∈ B.

The natural group epimorphism u ∈ M(B) 7→ ιu ∈ Int(B) ⊂ L(B), with

ιu(a) := uau∗ for a ∈ B, is continuous with respect to the strong topologies (on

both sides).

Corollary 10.2.2. Let ϕ : A→ B be a *-homomorphism and suppose that A

and B are separable. Then ϕ is unitarily homotopic to an isomorphism ψ from A

onto B, if and only if, ϕ satisfies the following property (δ):

ϕ is a monomorphism and, for every ε > 0, a1, . . . , an ∈ A, b1, . . . , bm ∈ B

there exist a strongly continuous map t ∈ [0, 1] 7→ v(t) ∈ M(B) from [0, 1] into the

unitary operators in M(B) such that

(i) v(0) = 1,

(ii) ‖[v(t), ϕ(ai)]‖ < ε for i = 1, . . . , n, t ∈ [0, 1],

(iii) dist(v(1)∗bjv(1), ϕ(A)) < ε for j = 1, . . . ,m.

Proof. Assume ϕ : A → B satisfies the property (δ), then with X := B,

Y := ϕ(A), G = U(M(B)) := unitary group of M(B) with strict topology,

π(u) := ιu and S := {ιu : u ∈ U(M(B))} the assumptions of Proposition 10.2.1(ii)

are satisfied. Thus the inclusion map ϕ(A) ↪→ B is unitarily homotopic to an

isomorphism from ϕ(A) onto B.

Since ϕ is a monomorphism, it follows that ϕ is unitarily homotopic to an

isomorphism from A onto B.

Conversely, suppose that ϕ is unitarily homotopic to an isomorphism ψ from

A onto B. Along a unitary homotopy the norm of an element remains constant.

Thus ϕ is a monomorphism.

Let t ∈ R+ 7→ u(t) ∈ M(B) be the strongly continuous map into the unitaries

corresponding to the unitary homotopy. Then there exists a t0 such that, for every

t ≥ t0,

‖ϕ(ai)− u(t)ψ(ai)u(t)∗‖ < ε/2.

Let fj := ψ−1(u(t0)∗bju(t0)) ∈ A .

We find t1 > t0 with ‖ϕ(fj)− u(t)ψ(fj)u(t)∗‖ < ε for every t ≥ t1.

Let s(t) := t0 + t(t1 − t0) and v(t) := u(t0)u(s(t))∗ for t ∈ [0, 1].

Then v(0) = 1, v(t) is unitary, t 7→ v(t) is strongly continuous and, by the

triangle inequality, for t ∈ [0, 1], ‖v(t)∗ϕ(ai)v(t)− ϕ(ai)‖ < ε.
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Furthermore, dist(v(1)∗bjv(1), ϕ(A)) ≤ ‖v(1)∗bjv(1) − ϕ(fj)‖ ≤ ε, because

v(1)∗bjv(1) = u(t1)ψ(fj)u(t1)∗. �

Corollary 10.2.3. Suppose that ϕn : An → An+1, n = 1, 2, . . ., are *-homo-

morphisms, where An is separable, ϕn(An) contains a strictly positive element of

An+1, and there exists an isomorphism ψn from An onto An+1 such that ψn is

unitarily homotopic to ϕn.

Then ϕ∞1 : A1 → indlim(ϕn : An → An+1) is unitarily homotopic to an isomor-

phism from A1 onto indlim(ϕn : An → An+1).

Proof. We have to check the criteria (δ) of Corollary 10.2.2. By Corollary

10.2.2 every ϕn is a monomorphism.⋃
ϕ∞n (An) is dense in B := indlim(ϕn : An → An+1).

The assumptions imply that ϕ∞n (An) contains, for every n, a strictly positive

element of B, because ϕn(An)An+1 is dense in An+1, and then by induction:

ϕn+k ◦ . . . ◦ ϕn(An)An+k+1 = An+k+1, ϕ∞n (An)B = B .

Thus M(ϕ∞n (An)) ∼= M(An) is unitally contained in M(B) and the strict

topology onM(ϕ∞n (An)) is the same as the topology which is induced by the strict

topology of M(B). Therefore it suffices to check that ϕ∞1 : A1 → ϕ∞n (An) satisfies

the criteria (δ) of Corollary 10.2.2. But this follows from Corollary 10.2.2 and the

following observation:

By induction and (II), (ϕ∞n )−1 ◦ ϕ∞1 = ϕn−1 ◦ . . . ◦ ϕ1 is unitarily homotopic

to the isomorphism ψn−1 ◦ · · · ◦ ψ1 from A1 onto An, where ψk : Ak → Ak+1 are

isomorphisms which are unitarily homotopic to ϕk : Ak → Ak+1 (k = 1, . . . , n −
1). �

Now we are ready for the proof of the above statement (III), and finish here

the proof of Theorem B:

check next proof again!!

Proof of (III). Suppose that A and B are separable.

Let h : A → B and k : B → A monomorphisms, such that h(A)B = B and

k(B)A = A, i.e., h(A) contains a strictly positive element of B, and h(B) contains

a strictly positive element of A. It follows

hk(B)B = hk(B)h(A)B = h(k(B)A)B = h(A)B = B.

In the same way kh(A)A = A. If, moreover, kh is unitarily homotopic to idA,

then, by Corollary 10.2.3, there exists an isomorphism α from A onto the inductive

limit A∞ of the sequence of morphisms χn : A → A with χn := kh, such that α is

unitarily homotopic to χ∞1 : A→ A∞.
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If hk is unitarily homotopic to idB , then there exists an isomorphism β from B

onto the inductive limit B∞ of ψn : B → B with ψn := hk, such that β is unitarily

homotopic to ψ∞1 : B → B∞.

If we consider the natural inclusions

A∞ ⊂ l∞(A)/c0(A), B∞ ⊂ l∞(B)/c0(B),

we see, that

(a1, a2, . . .) 7→ (h(a1), h(a2), . . .) and (b1, b2, . . .) 7→ (k(b1), k(b2), . . .)

define (modulo zero-sequences) monomorphisms µ from A∞ into B∞ and ν from

B∞ into A∞ such that with νµ = id and µν = id. Therefore, µ is an isomorphism.

Thus ϕ := β−1 ◦ µ ◦ α : A → B is an isomorphism from A onto B. A simple

calculation shows that µ ◦ χ∞1 = ψ∞1 ◦ h.

β−1 ◦ µ ◦ α is unitarily homotopic to β−1 ◦ µ ◦ χ∞1 = β−1 ◦ ψ∞1 ◦ h.

Since ψ∞1 is unitarily homotopic to β, we get that ψ∞1 ◦h is unitarily homotopic

to β ◦ h.

Thus ϕ = β−1 ◦ µ ◦ α is unitarily homotopic to h. �

3. Some corollaries

We add some related corollaries of the first part of Proposition 10.2.1, which

can be proved by almost the same arguments as above.

Corollary 10.3.1. Let ϕ : A → B be a *-homomorphism, where A and B

are separable. Then the following are equivalent:

(i) ϕ is approximately unitarily equivalent to an isomorphism ψ from A onto

B.

(ii) ϕ is a monomorphism and for every ε > 0, a1, . . . , an ∈ A, b1, . . . , bm ∈
B there exists a unitary v ∈ M(B) with ‖v∗ϕ(ai)v − ϕ(ai)‖ < ε for

i = 1, . . . , n and dist(v∗bjv, ϕ(A)) < ε for j = 1, . . . ,m.

(iii) ϕ is a monomorphism, and in the relative commutant ϕ(A)′ ∩ M(B)ω

of ϕ(A) in the ultrapower of M(B) there exists, for every finite sequence

b1, . . . , bm ∈ B and every ε > 0, a unitary v ∈ ϕ(A)′ ∩M(B)ω such that

v∗bjv has distance < ε from ϕω(Aω) for j = 1, . . . ,m.

Remark 10.3.2. Part (iii) of Corollary 10.3.1 is just an equivalent formulation

of (ii) in the more rigorous language of ultrapowers. There is a more elegant and

far reaching version in the ultrapower context.

One concludes Corollary 10.3.1 from Proposition 10.2.1(i) essentially in the

same way as we have deduced Corollary 10.2.2 from Proposition 10.2.1(ii). And

one can use the same arguments for the implications “Corollary 10.3.1 ⇒ Corol-

lary 10.3.3 ⇒ Corollary 10.3.4” below as for the implications “Corollary 10.2.2 ⇒
Corollary 10.2.3 ⇒ (III)” above.
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Corollaries 10.3.4 and 10.3.5 overlap with (partly not published) results of El-

liott.

Corollary 10.3.3. Suppose that, for n = 1, 2, . . ., An is separable, ϕn : An →
An+1 are *-homomorphisms, ϕn(An) contains a strictly positive element of An+1

and ϕn is approximately unitarily equivalent to an isomorphism from An onto An+1.

Then ϕ∞1 : A1 → indlim(ϕn : An → An+1) is approximately unitarily equivalent

to an isomorphism from A1 onto indlim(ϕn : An → An+1).

Corollary 10.3.4. If A and B are separable C*-algebras, h : A → B and

k : B → A are C*-algebra morphisms such that h(A)B = B, k(B)A = A, kh and

hk are approximately unitarily equivalent to idA and idB respectively, then h is

approximately unitarily equivalent to an isomorphism from A onto B.

Corollary 10.3.5. Suppose that A is a separable C*-algebra, which is stable

or unital and that B is a separable unital C*-subalgebra of the multiplier algebra

M(Aω) of Aω, such that B commutes element-wise with A, and such that b ∈ B 7→
b ⊗ 1 ∈ B ⊗ B and b ∈ B 7→ 1 ⊗ b ∈ B ⊗ B are approximately unitarily equivalent

(to each other in B ⊗B), then

(i) B is simple and nuclear.

(ii) A ∼= A⊗B⊗B⊗ . . . with an isomorphism ψ : A→ A⊗B⊗B⊗ . . . which

is approximately unitarily equivalent to a ∈ A 7→ a⊗ 1⊗ 1⊗ . . .

Proof. (i): Let J be a closed ideal of B and J 6= B, ν a pure state of B

with ν(J) = 0. Since B is separable, we find a sequence of unitaries un ∈ B ⊗ B
and 2−n-approximations an of un in the algebraic tensor product B�B, such that

b⊗1 = limn→∞ u∗n(1⊗b)un. Thus b = lim(id⊗ν)(a∗n(1⊗b)an) for every b ∈ B. The

right hand side is a sequence of completely positive finite rank maps with kernels

which contain J . Thus J = 0 and B is nuclear. Every closed ideal of B is trivial,

i.e. B is simple.

(ii): Since B is nuclear and simple, there is a copy of A⊗(B⊗B) ∼= (A⊗B)⊗B
in the ultrapower (A⊗B)ω of A⊗B, such that A⊗ 1⊗B corresponds naturally to

the canonical embedding of A⊗B in (A⊗B)ω by constant sequences, and A⊗B⊗1

is in C∗(A · (A′∩M(Aω))) ⊂ Aω ⊂ (A⊗B)ω, where Aω is naturally identified with

(A⊗ 1B)ω.

Let v ∈ M(A ⊗ B)ω denote the unitary, which is represented by 1M(A) ⊗ un,

where un is as in part (i). We see that the criteria (iii) of Corollary 10.3.1 is satisfied

for ϕ : a ∈ A 7→ a ⊗ 1B ∈ A ⊗ B. Thus ϕ is approximately unitarily equivalent to

to an isomorphism ψ1 from A onto A⊗B.

It follows by induction that ϕn : An → An+1 is approximately unitarily equiv-

alent to an isomorphism from An onto An+1, where inductively A1 = A, An+1 =

An ⊗ B and ϕn(a) = a ⊗ 1B for a ∈ An. But then Corollary 10.3.3 gives that

the monomorphism a 7→ a ⊗ 1B ⊗ 1B ⊗ . . . from A into A ⊗ B ⊗ B ⊗ . . . =
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indlim(ϕn : An → An+1) is approximately unitarily equivalent to an isomorphism

from A onto A⊗B ⊗B ⊗ . . .. �

Remark 10.3.6. Since we have finished the proof of Theorem B with the above

given proof of (III), now we can use the results A-F and H as stated in Chapter 1.

One easily sees from Theorem B(ii)+(iii) and Corollaries C(ii) and F that B =

O2 and B = O∞ satisfy the requirements of Corollary 10.3.5. Therefore, also

Corollary G now follows from Corollary F and Corollary 10.3.5, if we do not use

the original paper [678].

We recall from Definition 3.10.1 that a *-homomorphism h1 : A → B approxi-

mately dominates a completely positive contraction h2 : A→ B, if and only if, there

exists a sequence of contractions dn ∈ B such that lim ‖h2(a)− d∗nh1(a)dn‖ = 0 for

a ∈ A. Clearly, we can choose the dn’s as isometries if A, B, h1 and h2 are unital.

If A and B are stable and σ-unital, then, by Proposition 7.4.7, we find isometries

tn ∈M(B) such that lim ‖h2(a)− t∗nh1(a)tn‖ = 0 for a ∈ A.

Corollary 10.3.7. Suppose that A is a separable C*-algebra which is stable

or is unital and contains a copy of O2 unitally.

If idA approximately dominates idA⊕ idA, then A ∼= O∞ ⊗A.

If idA is approximately unitarily equivalent to idA⊕ idA by a sequence of uni-

taries in the multiplier algebra of A, then A ∼= O∞ ⊗A ∼= O2 ⊗A.

Proof. By the above Remark 10.3.6, the assumptions mean that there is an

isometry T ∈M(A)ω such that T ∗aT = sas∗+tat∗ for a ∈ A and suitable canonical

generators of O2 ⊂M(A). It follows that t1 := Tt and s1 := Ts are isometries in

M(A)ω such that t∗1s1 = 0 and the elements t1 and s1 commute elementwise with

A ⊆ Aω. C∗(s1, t1) contains a copy of B := O∞ unitally.

The natural unital *-homomorphism from M(A)ω into M(Aω) fixes A ⊂ Aω

and maps, therefore, B unitally and, by simplicity of B, faithfully into A′∩M(Aω).

By Corollary 10.3.5 and Remark 10.3.6, A ∼= O∞ ⊗A.

If idA is approximately unitarily equivalent to idA⊕ idA, then the above con-

sidered T is unitary and t1t
∗
1 + s1s

∗
1 = 1, i.e., C∗(s1, t1) is naturally isomorphic to

O2. By Corollary 10.3.5 and Remark 10.3.6, A ∼= O2 ⊗A. �

Corollary 10.3.8. Suppose that A is a separable nuclear C*-algebra. Then A

satisfies the WvN-property of Definition 1.2.3, if and only if, A⊗K ∼= A⊗K⊗O∞.

Proof. We may suppose that A is stable, because A satisfies the WvN-

property if and only if A⊗K satisfies the WvN-property, as one can see immediately

from Definition 1.2.3.

Since O∞ ∼= O∞⊗O∞⊗. . ., we get from Proposition 3.10.15 that A is strongly

p.i. and has the WvN-property if A ∼= A⊗O∞.
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If A is nuclear, then id⊕ id is residually nuclear. Thus, if A satisfies the WvN-

property, then id⊕ id is approximately dominated by id. Hence, A ∼= A ⊗ O∞ by

Corollary 10.3.7. �

Revise next. Give ref.

Remark 10.3.9. In the paper with M. Rørdam [463] we show that all strongly

purely infinite C *-algebras have the WvN-property.

Mention the corrections that have to be done

in the paper with Rørdam [463]

(as in Info for Ando)!!!

It is an open question if every purely infinite separable nuclear C *-algebra has

the WvN-property.

Mention here:

“regular Abelian C *-subalgebra”

implies

“Abelian factorization”,

implies existence of

“ideal-separating residually nuclear map”

(= “residually nuclear separation”)

The progress is partly mentioned in Chp. 12.

Corollary 10.3.10. Suppose that A and B are stable separable nuclear C*-

algebras, and that h : A → B, k : B → A and ψ : A ⊗ O2 → A ⊗ O2 are *-

monomorphisms.

(i) If, for every primitive ideal J ⊂ A,

ψ(J ⊗O2) = ψ(A⊗O2) ∩ (J ⊗O2),

then ψ is unitarily homotopic to the identity map of A⊗O2.

(ii) h ⊗ idO2
is unitarily homotopic to an isomorphism from A ⊗ O2 onto

B⊗O2 if kh(J) = kh(A)∩J and hk(K) = hk(B)∩K for every primitive

ideal J ⊂ A and every primitive ideal K ⊂ B.

Proof. (i): By assumption on ψ, ψ and id are both residually nuclear *-

monomorphisms and induce on A⊗O2 the same action of the primitive ideal space

of A. Thus, by Corollary 7.4.3, ψ and id are unitarily homotopic.

(ii): Since A and B are stable, we find by (I) and (II) *-monomorphisms

h1 : A→ B and k1 : B → A, such that h1 is unitarily homotopic to h, k1 is unitarily

homotopic to k, h1(A)B is dense in B, k1(B)A is dense in A, and hk is unitarily

homotopic to h1k1, kh is unitarily homotopic to k1h1. Thus h1k1 and k1h1 again

take the system of closed ideals invariant. This carries over to h1k1 ⊗ idO2
and
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k1h1 ⊗ idO2
. Thus, part(i) and the above proven (III) imply, that h1 ⊗ idO2

, and,

therefore, h⊗ idO2
are unitarily homotopic to an isomorphism. �

We do not know if it is necessary to assume in the following Corollary 10.3.11

that the algebras Bn are stable.

Corollary 10.3.11. Suppose that (Bn) is a sequence of separable stable C*-

algebras, and that hn : Bn → Bn+1 are *-homomorphisms.

Let B := indlim(hn : Bn → Bn+1).

If Bn ∼= Bn ⊗ O∞ (resp. Bn ∼= Bn ⊗ O2) for n = 1, 2, . . ., then B ∼= B ⊗ O∞
(resp. B ∼= B ⊗O2).

Proof. Let h∞n : Bn → B the natural morphism and let Cn := h∞n (Bn). Since

K, O∞ and O2 are simple and nuclear, Cn is stable and Cn ∼= Cn⊗O∞ (resp. Cn ∼=
Cn ⊗O2).

The union of the stable subalgebras Cn is dense in B. By [373], cf. also

Corollary 5.5.3, B is stable, i.e. B ∼= B ⊗K.

Therefore, we can assume, thatM(B) contains isometries s, t with ss∗+tt∗ = 1,

such that dCn + Cnd ⊂ Cn for every d ∈ C∗(s, t) ∼= O2 and n ∈ N. Otherwise, we

replace B by B ⊗K, Cn by Cn ⊗K, and hn by hn ⊗ idK.

By Corollary 10.3.7, idB |Cn approximately dominates (idB ⊕ idB)|Cn. There-

fore, by Corollary 10.3.7, B ∼= B ⊗O∞.

If Cn ∼= Cn ⊗O2, then, by Corollary 10.3.7, idB |Cn is approximately unitarily

equivalent to (idB ⊕ idB)|Cn by unitary elements of the multiplier algebra of Cn.

By [180], cf. [816, chp. 16], the unitary group of M(C) is contractible if C

is σ-unital and stable, cf. our version ?? of a proof. It follows, that the unitary

operators ofM(C) can be approximated by unitary operators in the unitization of

C in the strict (= strong*) topology.

Therefore, idB |Cn is also approximately unitarily equivalent to (idB ⊕ idB)|Cn
by unitaries in the unitization of B. Thus, the morphisms idB and idB ⊕ idB are

approximately unitarily equivalent. Thus, by Corollary 10.3.7, B ∼= B ⊗O2. �

Corollary 10.3.12. The class of separable nuclear C*-algebras with WvN-

property is closed under inductive limits.

Proof. There is a more general result for inductive limits of strongly p.i. al-

gebras (cf. [463]), but here we use Corollary 10.3.7.

Let hn : An → An+1, n = 1, 2, . . ., a sequence of *-homomorphisms, where An

is separable, nuclear and has the WvN-property. Let A denote its inductive limit,

and let B := A⊗K.

By Definition 1.2.3, the class of C *-algebras with WvN-property is closed under

stabilization and passage to hereditary C *-subalgebras, i.e., it suffices to show that

B satisfies the WvN-property.
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By Corollary 10.3.8, Bn := An ⊗ K, satisfies Bn ∼= Bn ⊗ O∞ and B is the

inductive limit of the sequence hn ⊗ idK : Bn → Bn+1.

Therefore, by Corollary 10.3.11, B ∼= B ⊗O∞.

B is separable, stable and nuclear. Thus B has the WvN-property by Corollary

10.3.8. �



CHAPTER 11

PI-SUN algebras represent the nuclear KK-classes

In this Chapter we prove Theorem I of Chapter 1 and some additional results.

There are different methods to construct purely infinite algebras that are

KKG(X; ·, ·)-equivalent to a given separable (G,X)-algebra, and have simple fibers

with respect to the action of X.

(1) inductive limit construction in the case of exact algebras and exact discrete

groups, 1a) direct inverses in Ext. 1b) using σ-additivity of KK w.r.t. first variable.

(2) construction of a suitable Toeplitz-Pimsner algebra (such that it is equal to

the corresponding Cuntz-Pimsner algebra).

Citation from Chapter 1, changes to bundle/equvariant case: ??

In fact, we prove in Chapter 11 a more general result for continuous fields

(Ax)x∈X of exact C *-algebras Ax on a compact Hausdorff space X with the addi-

tional property that the algebra A of continuous sections is exact (which is e.g. the

case if all fibers Ax are nuclear or if X is finite):

One has to take again At := A ⊗ O∞st if A is unital, and define At as the

natural unital split extension of

C(X,O2) ∼= [C(X)1M(A)]⊗O2

by A⊗O∞st if A is not unital. Then one can use the sub-trivialization theorem of

E. Blanchard [89] (that can be shown using Theorem A and is a special case of The-

orem K), to get a unital C(X)-module *-monomorphism hu0 : At → C(X,O2) ⊂ At .
We define again h := idAt ⊕hu0 and let P(A) := indlim(h : At → At). All the opera-

tions are consistent with the above defined constructions of (Ax)t and P (Ax) for the

fibers Ax of (Ax)x∈X . It is not difficult to see that (P (Ax))x∈X is a continuous field

of C *–algebras, and that P(A) is the algebra of continuous sections of this field.

By construction, P(A) is exact. Further, the *-monomorphisms ηx : Ax → P (Ax)

define a C(X)-module monomorphism η from A into P(A).

We show in Chapter 11 the more general result:

The monomorphism η defines a KK(X; ·, ·)-equivalence between A and P(A) . ( 1 ).

At the end of Chapter 11 we outline an other construction that leads to

KK(X; ·, ·)-equivalent exact (respectively nuclear) algebras with primitive ideal

space isomorphic to X (cf. Theorems 11.4.1 and O):

1The KK(X;A,B) is for compact metric spaces X just the Kasparov functor RKKG(X; ., .)

for the base space X, G is the trivial group).

969
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One starts with a suitable Hilbert bimodule and builds the corresponding Cuntz–

Krieger–Pimsner algebra. The construction has the advantage that G-actions of

locally compact groups G on (Ax)x∈X lead in a natural way to G-actions on

(P (Ax)⊗K)x∈X ( 2 ).

Furthermore, we modify in Chapter 11 the above described construction of

A⇒ P (A) in a way that we get (cf. Theorem 11.0.7):

Suppose that A is a unital separable exact C*-algebra, G is a countable (discrete)

exact group, and that α : G→ Aut(A) is a group-morphism.

Then there exist a purely infinite exact unital C*-algebra B, a group-morphism

β : G→ Aut(B) and a G-equivariant unital monomorphism η : A→ B that defines

a KKG-equivalence [η] ∈ KKG(A,B).

It can be managed that η(A) is the range E(B) of a β(G)-equivariant conditional

expectation E on B.

If — in addition — A is nuclear, then one can find B, β and E, such that B

is nuclear — in addition —.

some new approach:

Definition: ????????????

To get some more general and farer going results on KK-equivalent embedding

into purely infinite algebras, we have to make some definitions, concerning maps

that changes the identity maps not to much in the sense of KK-theory.

Definition 11.0.1. Suppose that D is unital, separable and exact. A unital

monomorphism h : D → E will be called elementary if there are

(i) a unital *-monomorphism h0 : D → O2,

(ii) a *-monomorphism γ : O2 → O∞, and

(iii) an isometry T ∈ O∞
(iv) an isomorphism ι : D ⊗O2 → E such that

h(d) = ι((d⊗ TT ∗) + (1⊗ γ(h0(d)))) for all d ∈ D .

We call h plain if E = D ⊗O∞ and ι = id.

More generally:

Suppose O∞ ⊂M(D), k0 : D⊗O2 → D⊗O∞, h0(d) := k0(d⊗1), “sufficiently”

degenerate. consider similar sum-construction variants

h(d) := TdT ∗ + h0(d) etc.

Consider the cases of bundles, to see what is the right definition.

h0 : D → C0(X,O2)

2At least in the case where Ax is is nuclear, because then, by Theorem M(iii), there are

C(X)-module isomorphisms of P(A) ⊗ K onto any other purely infinite stable separable nuclear

C(X)-algebra B (with simple fibers Bx) that is KK(X; ·, ·)-equivalent to A.
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generally:

Some continuous action of a lattice O on D should be given.

k0 : D ⊗O2 → D ⊗O∞

universally for that action (if k0 goes into D ⊗O∞ ???)

Suppose that D1 → D2 → · · · → Dk are given by elementary morphisms

hn : Dn → Dn+1 and suppose that D1
∼= D1 ⊗O∞.

By definition there are isomorphisms ιn : Dn ⊗ O∞ → Dn+1 related to hn.

Consider

λj,k := ιj ⊗ id⊗ · · · ⊗ id : Dj ⊗O∞ ⊗O∞⊗(k−j) → Dj+1 ⊗O∞⊗(k−j)

ηk := λk ⊗ · · · ⊗ λ1 : D1 ⊗O∞⊗k → Dk+1.

The system is called homotopy-commutative, if ηk ⊗ id is unitarily homotopic

to ηk+1 and if every unitary homotopy on the boundary of a triangle extends to a

homotopy in the interior.

more precise !!! ???

Technical Lemma:

Lemma 11.0.2. Iterations of elementary morphisms h are elementary.

Elementary morphisms h1, h2 : D → E are unitarily homotopic if

ι1, ι2 : D ⊗O∞ → E

are unitarily homotopic.

Elementary h is a KK-equivalence.

There is a conditional expectation Ph : E → h(D).

Others???

Proposition 11.0.3. Suppose that D1 is separable and exact, hn : Dn → Dn+1,

n ∈ N, is a sequence of elementary morphisms and D1
∼= D1 ⊗O∞. Let

P := indlim(hn : Dn → Dn+1) .

(i) P is simple, purely infinite, separable, unital and exact (respectively is

pi-sun if the Dn are nuclear).

(ii) There is an approximately inner conditional expectation E : P → P onto

h1,∞(D1), h1,∞ is injective.

(iii) The unital monomorphism h1,∞ : D1 → P defines a KK-equivalence be-

tween D1 and P , if the ιn-diagrams (to/for D1⊗O∞) are homotopy com-

mutative.

The idea is, that one considers the m.o.c. cones Ck,` ⊂ CP(Dk, D`), Ck,∞ ⊂
CP(Dk, P ) and C∞,k ⊂ CP(P,Dk) that are generated by the hk,`, hk,∞ and condi-

tional expectations from P onto h1,k(D1) ⊆ Dk etc.

The consider (perhaps C and “action” - equivariant) asymptotic morphisms:
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I.e. consider/construct/define a “natural” asymptotic morphism φ : P →
Q(R+, D1), such that Q(R+, h1,∞) : Q(R+, D1) → Q(R+, P ) has the property

that [Q(R+, h1,∞) ◦ φ] : P → Q(R+, P ) is homotopic to idP : P → Q(R+, P ) and

φ ◦ h1,∞ : D1 → Q(R+, D1) is homotopic to idD1 : D1 → Q(R+, D1).

But all this inside the given m.o.c. cones.

The proof will be postponed to Section ??. (Sec. 11.2 ??)

Instead we first deduce from Proposition 11.0.3 the proof of Theorem I, the

proof of its C(X)-modular generalization Corollary 11.0.5, and the proof of Theo-

rem 11.0.7, that gives a G-equivariant generalization of Theorem I.

Theorem

Theorem 11.0.4. Suppose that A is a stable separable C*-algebra.

Let X a T0 space and Ψ: O(X) → I(A) an action of X on A such that there

exists a non-degenerate nuclear *-monomorphism k0 : A ⊗ O2 → A ⊗ O∞ that is

maximal with respect to the Ψ-residually nuclear maps and reproduces Ψ, i.e.,

J ∈ I(A) is in the image of Ψ, if and only if, k0(J⊗O2) = k0(A⊗O2)∩ (J⊗O∞).

????????????????

Let h0 := k0((·)⊗ 1) and h := id⊕(h0 ⊗ id). Then P := indlim(h : A⊗O∞ →
A⊗O∞) is exact (respectively nuclear if A is nuclear), strongly purely infinite (more

precisely: P ∼= P ⊗O∞), Prim(P ) ∼= X, and η : a ∈ A 7→ h1,∞(a⊗ 1) ∈ P defines

a is a KK(X; ·, ·)-equivalence [η] ∈ KK(X; A,P ).

Corollary 11.0.5. Let X a locally compact Polish space. Suppose that A is

a separable exact C0(X)-C*-algebra, such that x ∈ X → ‖ax‖ is continuous for

every a ∈ A (i.e., A is the algebra of continuous sections vanishing at infinity of a

continuous field of C*-algebras Ax). And let P(A) be defined as above.

Then P(A) is a strongly purely infinite exact C0(X)-C*-algebra with simple

purely infinite fibers P (Ax), and P(A) ∼= P(A)⊗O∞.

The natural map η : A→ P (A) defines a KK(X; ·, ·)-equivalence.

Lemma 11.0.6. If D ∼= D ⊗O∞ and if discrete exact G acts on D by α : G→
Aut(D), then there exists a unitary representation U : G → U(O∞) and an ele-

mentary morphism h : D → D ⊗ O∞ with ι unitarily homotopic to id, such that

h ◦ α(g) = (α(g)⊗Ad(U(g))) ◦ h for g ∈ G.

Proof. Use an unital embedding η of the exact unital algebra D or,α G into

O2. One may suppose that O2 is unitally contained in (1− s1s
∗
1)O∞(1− s1s

∗
1) for

O∞ = C∗(s1, s2, . . .) . Then U(g) = η(g) + TT ∗ has the property for T = s1. �

Theorem 11.0.7. Suppose that A is an separable unital nuclear C*-algebra,

and α : G→ Aut(A) is an action of a countable discrete exact group G on A.

Then there exist a pi-sun algebra B with an action β : G→ Aut(B) of G on B

and a G-equivariant unital monomorphism η : A→ B that defines a KK-equivalence

[η] ∈ KK(A,B).
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In particular, K∗(β(g))◦K∗(η) = K∗(η)◦K∗(α(g)) and K∗(η) : K∗(A)→ K∗(B)

is invertible.

It seems that (B, β) and η can be chosen, such that η defines even a KKG-

equivalence [η] ∈ KKG(A,B). (only ”seems” ???)

Proof. Let G act on D1 := A ⊗ O2 by α1(g) := α(g) ⊗ id for g ∈ G.

Clearly the map k : a → a ⊗ 1 is a G-equivariant monomorphism from A into

D1, and [k] ∈ KKG(A,D1) is a KKG-equivalence, in particular [k] ∈ KK(A,D1)

is a KK-equivalence. Let Dn := A ⊗ (O∞⊗n). By Lemma 11.0.6 there ex-

ists actions αn : G → Aut(Dn) and G-equivariant plain elementary morphisms

hn : Dn → Dn+1.

Now let B := indlimDn and η := h1,∞◦k. Since the hn are G-equivariant, there

is a group morphism β : G → Aut(B) with h1,∞ ◦ α1(g) = β(g) ◦ h1,∞ for g ∈ G.

By Proposition 11.0.3, B is pi-sun and the morphism η defines a KK-equivalence

[η] ∈ KK(A,B). �

Remark 11.0.8. We call a group G C*-liftable if, for every pi-sun algebra B

in the UCT-class with finitely generated K∗(B) and every grading-preserving action

γ : G → Aut(K∗(B)) of G on K∗(B) that fixes the class [1] ∈ K0(B), there exists

an action β : G→ Aut(B) such that for the natural group morphism µ : Aut(B)→
Aut(K∗(B)) holds µ ◦ β(g) = γ ◦ µ.

The Theorem 11.0.7 implies that the problem of the determination of all C *-

liftable groups G is equivalent to the question under which circumstances for a

finitely generated Abelian group H and an action γ0 : G → Aut(H) with G-fixed

element x0 ∈ H there is a unital nuclear C *-algebra A in the UCT-class and

an action α : G → Aut(A) such that K1(A) = 0 and there is an isomorphism

γ : H → K0(A)

???????????

Then the case K0(A) = 0 and K1(A) = H can then be studied by replacing A by

A⊗P∞, where P∞ is the unique pi-sun algebra in the UCT class with K0(P∞) = 0

and K1(P∞) = Z ( 3 ).

The general case follows from the consideration of A = A1 ⊕ (A2 ⊗ P∞) in

Theorem 11.0.7, where K1(Aj) = 0 for j = 1, 2.

It is evident that every free group is in this class of groups.

It is not clear if Aut(B) → KK(B,B)−1 is surjective for pi-sun

B in UCT-class !!! ?? By the natural epimorphisms (???) Aut(B) →
KK(B,B)−1 → Aut(K∗(B)), (given by the UCT and Theorem B).

3One can easily show that P∞ = O∞st oZ2 for the flip action µ of Z2 on the standard form

O∞st ∼= P∞ ⊗ P∞ with K0(µ)(x) = −x — it is simply the flip on the tensor product, cf. [448,

Rem.4.3(2)] and observe that, for the coordinate flip on R2, the crossed product C0(R2) × Z2 is

isomorphic to C0(R)⊗ C, with C := {f ∈ C0(R0,M2) ; f(0) = diagonal}, i.e., K∗(C) = (Z, 0) .
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Contributions of J. Spielberg [732] and (farer going) results of T. Kasura ([416],

[417]) show that in particular all cyclic groups are C *-liftable.
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Begin of old text:

Note that we can construct in the case of exact algebras only KK-equivalences,

but not KKnuc-equivalences because thre is no useful non-elementary criteria for

which exact separable A the identity map of A defines a class [idA] in KKnuc(A,A).

(But there is a natural map from KKnuc(A,A) onto an ideal of the ring KK(A,A).)

Recall that O∞st := (1 − s1s
∗
1)O∞(1 − s1s

∗
1) ⊂ O∞. It contains a copy of O2

unitally.

If A is exact, separable and unital let At := A⊗O∞st. If A is exact, separable

and non-unital, then let At denote the unital C *-subalgebra ofM(A)⊗O∞st given

by

At := A⊗O∞st + 1⊗O2 ⊆M(A)⊗O∞st ,

a split extension of O2 by A⊗O∞st.

One can variate the construction if A is stable to get a stable version of At by

considering first a copy of K ⊂M(A) with K∩A = {0} and K ·A = A, existing by

Remark 5.1.1(8), and then let At := A⊗O∞st+K⊗O2, contained inM(A)⊗O∞st.

Let S, T the generators of O2 = C∗(S, T ; SS∗ + TT ∗ = 1, S∗S = 1 = T ∗T ).

The algebra At is exact because A is exact and O∞st and O2 are nuclear

(cf. [432]).

To avoid later problems with notations, now we change the notation for At:

Let B := At in the sequel. Note that the exact C*-algebra B is unital and contains

O2 unitally.

Define h := idB ⊕hu0 where the unital monomorphism hu0 : B → O2 ⊂ B is as

described in Chapter 1 before Theorem B. (Respectively, if A is stable, let h :=

idB ⊕h0 for the more general non-degenerate “maximal” ideal-system preserving

nuclear map h0 from A⊗O∞ into C ⊂ A⊗O∞, where C is a nuclear and stable,

O2 absorbing C *-subalgebra of A⊗O2 with the ideal system of A)

P (A) := indlim(h : B → B) is purely infinite and simple by the criteria in

check if (iv) or (v) is used Proposition 2.2.5(iv)

for hn = h, Bn = B, because for ε > 0, a, b in B+ with ‖a‖ = ‖b‖ = 1 we can

find an isometry v in O2 such that ‖1− v∗h0(a)v‖ < ε. Thus

‖h(b)− h(b)1/2v∗t∗h(a)tvh(b)1/2‖ < ε .

Since exactness is closed under inductive limits ([432]), P (A) is exact. P (A)

is nuclear if moreover A (and hence B) is nuclear.

The ideal system is the same as that from A because h is ideal system preserv-

ing.

For a proof of Theorem I it remains to show:

(i) There is a conditional expectation from the hereditary C*-subalgebra D of

P (A) generated by A⊗ p onto A⊗ p ∼= A, and
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(ii) the inclusion map A ∼= A ⊗ p ⊂ B ∼= h∞1 (B) ⊂ P (A) defines a KK-

equivalence between A and P (A).

The projection p = s2s
∗
2 is in O∞st = (1 − s1s

∗
1)O∞(1 − s1s

∗
1) ⊂ O∞. A ∼=

A ⊗ p → A ⊗ O∞st is a KK-equivalence, because Cp → O∞st defines a KK-

equivalence between C and O∞st and because one can tensor KK-equivalences (by

nuclear algebras). It can be seen from the the 6-term exact sequences and from

KK(.,O2) = KK(O2, .) = 0 that A ⊗ O∞st → B defines a KK-equivalence. Thus

A ∼= A ⊗ p → B defines a KK-equivalence between A and B. The hereditary

subalgebra of B generated by A ⊗ p is A0 := A ⊗ pO∞p ⊂ A ⊗ O∞st ⊂ B. Thus

A⊗ p is the range of a conditional expectation from the hereditary C*-subalgebra

A0 onto A⊗ p.

Above we have seen that the proof of Theorem I, (i.e. of (i) and (ii) above)

reduces to the proof of the following:

(i*) h∞1 (B) is the range of a conditional expectation on P (A), and

(ii*) h1,∞ : B → P (A) defines a KK-equivalence [h1,∞] ∈ KK(B,P (A)).

We show (i∗) by an induction procedure and then use homotopy invariance of

unsuspended E-theory R(B,P (A)) and R(P (A), B) to prove (ii∗). More precisely

we construct a unital asymptotic morphism g : P (A)→ Cb(R+, B) such that g◦h1,∞

is homotopic to idB and h1,∞◦g is homotopic to idP (A). By the homotopy invariance

of Rørdam groups it follows that h1,∞ is a KK-equivalence.

Cuntz addition of morphisms is the same as the “direct” sum of morphisms

(after stabilization) and thus induces the sum for the corresponding KK-elements:

[idB ] + [h0] = [idB ⊕h0] = [h] and 2[h0] = [h0 ⊕ h0] = [h0]. It follows that

[h0] = 0 and [h] = [id] in KK(B,B).

Thus it suffices to show that the following statements (α) and (β) are true in

order to prove (i*) and (ii*):

(α) There is a family of conditional expectations Emn from h∞m (B) onto h∞n (B)

for n < m such that Em+k
n h∞m = Emn h

∞
m . and EknE

k
mh
∞
k = Eknh

∞
k for

n < m < k.

They define conditional expectations En : P (A) → h∞n (B) ⊂ P (A)

with En(P (A)) = h∞n (B) and EnEm = Emin(n,m).

(β) There exists a completely positive unital map V : P (A)→ Cb(R+, B) such

that V (b∗b)− V (b)∗V (b) ∈ C0(R+, B) for every b ∈ P (A), and [(π ◦ V ) ◦
h∞1 ] = [h] ∈ KK(B,B), [h∞1 ◦ (π ◦ V )] = [idP (A)] ∈ KK(P (A), P (A)).

The completely positive maps V , V ◦ h∞1 and h∞1 ◦ V in statement (β) de-

fine elements of Ext−1(P (A), SB), Ext−1(B,SB) and Ext−1(P (A), SP (A)) and [.]

denote the corresponding elements of KK(., .) ∼= Ext−1(., S(.)).
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1. Proof of (α)

We start with the proof of (α). The proof of (β) is conceptional quite simple

but requires some preparation.

Proof of (α): By induction we find (sn)∗hn(b)sn = b for b ∈ B and n =

1, 2, . . .:

b = s∗(sbs∗ + thu0 (b)t∗)s = s∗h(b)s = s∗(sn)∗hn(h(b))(sn)s = (sn+1)∗hn+1(b)sn+1.

Let Tn be given by Tn(b) := hn((sn)∗bsn) and T0 = idB . Then Tn is a condi-

tional expectation from B onto hn(B), because Tn(B) ⊂ hn(B) and Tn(b) = b for

b in hn(B), because (sn)∗hn(b)sn = b.

The conditional expectations Tn satisfy Tn+kh
k = hkTn and TnTm = Tmin(n,m):

The first equation follows from hn+k((sn)∗(sk)∗hk(b)sksn) = hk(hn((sn)∗bsn)).

Certainly TnTm = Tm if n ≤ m if n ≤ m and for m < n we have

TnTm(b) = hn((sn)∗hm((sm)∗bsm)sn) = hn((sn−m)∗(sm)∗bsmsn−m) = Tn.

Now we define conditional expectations Emn (n < m) from h∞m (B) onto

h∞n (B) = h∞m (hm−n(B)) by

Emn (b) := h∞mTm−n(h∞m )−1(b)

for b in h∞m (B), i.e. by Emn h
∞
m = h∞mTm−n.

Then Emn h
∞
k = Eknh

∞
k for n < m and n < k ≤ m because

Emn h
∞
k = Emn h

∞
mh

m−k = h∞mTm−nh
m−k = h∞mh

m−kTk−n = h∞k Tk−n = Eknh
∞
k .

If n < m < k we have EknE
k
m = Ekn because

EknE
k
mh
∞
k = Eknh

∞
k Tk−m = h∞k Tk−nTk−m = h∞k Tk−n = Eknh

∞
k .

The consistency of the Emn implies the existence and uniqueness of conditional

expectations En : P (A) → h∞n (B) from P (A) onto h∞n (B) such that Enh
∞
k =

Emn h
∞
k for n ≤ k ≤ m. Then EnEm = Em if m ≤ n.

Let n < m < k ∈ N then

EnEmh
∞
k = EnE

k
mh
∞
k = EknE

k
mh
∞
k = Eknh

∞
k = Enh

∞
k .

Thus En(P (A)) = h∞n (B), EnEm = Emin(n,m) and (α) is shown. �

2. Preliminaries for the proof of (β)

We need some observations for the proof of (β). They are based on elementary

properties of O2 and of Proposition 11.2.2 (which is related to Theorem B).
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Lemma 11.2.1. Let A be a unital C*-algebra, then the unitary group of A⊗O2

is simply connected.

In particular, any continuous map u : ∂([0, 1]× [0, 1])→ U(O2) from the bound-

ary of the square [0, 1]× [0, 1] into the unitaries of O2 extends to a continuous map

from the square into the unitaries of O2.

Proof. Let F := A⊗O2. We consider O2
∼= 1⊗O2 as a unital subalgebra of

F with generators {s, t} (to simplify notation). The unital endomorphism δ(a) =

sas∗ + tat∗ = a ⊕ a, is point-norm homotopic inside the endomorphisms of O2 to

idO2
, by [172, prop.2.2], O2 is K1-injective by [172, thm.1.9], and K1(O2) = 0 by

[172, thm.3.8].

Thus, U(O2) = U0(O2), and it follows that idA⊗δ is homotopic to idF and

u ∼h u⊕ u in U(F ).

Notice that v ⊕ 1 is unitarily equivalent to 1 ⊕ v by the selfadjoint unitary

Uc := ts∗+st∗ in M2 ⊂ O2 and (u1⊕u2)⊕u3 is unitarily equivalent to u1⊕(u2⊕u3)

by the unitary Ud ∈ U(O2) = U0(O2), defined by equation (2.4), see Lemma 4.2.6(o)

or Proposition 4.3.2.

Since the unitary group of O2 is connected by [172, thm.1.9, thm.3.8], we get

that the unitary Ud ∈ O2 defined by equation (2.4) is homotopic to 1 in E. Together

we get the following homotopies in the unitary group of F :

u ∼ u⊕ u = (u⊕ 1)(1⊕ u) ∼ u2 ⊕ 1, and with v = u2

1 = (v ⊕ 1)(v∗ ⊕ 1) ∼ v ⊕ v∗ ∼ (v ⊕ v)⊕ v∗ ∼ v ⊕ (v ⊕ v∗) ∼ v ⊕ 1 = u2 ⊕ 1.

Thus u ∼ 1.

For T := ∂([0, 1]×[0, 1]) andD := [0, 1]×[0, 1] this implies that the epimorphism

C(D,O2)→ C(T,O2) maps the unitary group of C(D,O2) onto the unitary group

of C(T,O2) ∼= C(T )⊗O2. �

The following Proposition 11.2.2 generalizes some aspects of Theorem B.

The unitary equivalence modulo C0(R+,C(X,D)) implies that k and h define

the same element of Extnuc(A,S C(X,D)).

Thus [h] = [k] in KKnuc(A,C(X,D)).

Parts (i) and (ii) of Proposition 11.2.2 simply mean that h ⊕ hu0 , h and k

are unitarily homotopic in C(X,D) if h(A) and k(A) are contained in C(X,D) ⊂
Cb(R+,C(X,D)).

By πy : Cb(Y,D)→ D we denote the evaluation at the point y ∈ Y = R+×X.

Proposition 11.2.2. Suppose that X is a compact space, D is a unital simple

purely infinite C*-algebra which contains a copy of O2 unitally, that A a unital

separable exact C*-algebra, and that h, k : A→ Cb(R+×X,D) ∼= Cb(R+,C(X,D))

are unital C*-morphisms with the property that, for every y ∈ R+ × X, πyh and

πyk are monomorphisms. Then:
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(i) There is a unitary U0 ∈ Cb(R+,C(X,D)) such that (h⊕hu0 )(a)−U∗0h(a)U0

is in C0(R+,C(X,D)) for every a ∈ A.

(ii) If, moreover, h and k are nuclear and [h] = [k] in KKnuc(A,C(X,D)),

then there exist a unitary U ∈ Cb(R+,C(X,D)) such that h(a)−U∗k(a)U

is in C0(R+,C(X,D)) for every a ∈ A.

(iii) For ϕ : A ⊗ K → C(X,D) ⊗ K with [ϕ(1 ⊗ p11)] = 0 in K0(C(X,D))

there exits a unital C*-morphism h : A → C(X,D) such that πyh is a

monomorphism for every y ∈ X and h⊗ idK and ϕ⊕h0 (where h0 = hu0 ⊗
idK) are unitarily homotopic. h is nuclear if ϕ is nuclear. In particular,

every z ∈ KKnuc(A,C(X,D)) with [1A] ⊗A z = [1C(X,D)] = 0 is of the

form z = [h] for a nuclear h of the type above.

Proof. Ad(i): Let Q(R+,C(X,D)) := Cb(R+,C(X,D))/C0(R+,C(X,D))

and let π denotes the quotient map π : Cb(R+,C(X,D))→ Q(R+,C(X,D)).

Cb(R+×X,D) ∼= Cb(R+,C(X,D)) and C0(R+×X,D) ∼= C0(R+,C(X,D)) by

a natural isomorphism.

Consider C(X,D) as a unital C*-subalgebra of Q(R+,C(X,D)). Then the

relative commutant hu0 (A)′ ∩ Q(R+,C(X,D)) contains a copy of O2 unitally (by

the definition of hu0 in Chapter 1 before Theorem B).

Thus by Proposition 4.3.5 it suffices to show that πh : A → Q(R+ × X,D)

dominates hu0 : A → O2 ⊂ Q(R+ × X,D). But this follows from Corollary 7.4.6,

because the lift hu0 : A→ O2 ⊂ Cb(R+ ×X,D) is nuclear and the evaluations πyh

at y ∈ R+×X of the lift h : A→ Cb(R+×X,D) of πh are unital monomorphisms.

Ad(ii): By the proof of Theorem B(i) and (ii) in Chapter 9 we have for

h0 := hu0 ⊗ idK that the morphisms h⊗ idK⊕h0 and k ⊗ idK⊕h0 from A⊗K into

Cb(R+,C(X,D)⊗K) are unitarily equivalent modulo C0(R+,C(X,D))⊗K Since

h⊗ idK⊕h0 = (h⊕ hu0 )⊗ idK the argument before Corollary C in Chapter 1 shows

that this implies that h⊕hu0 and k⊕hu0 are unitarily equivalent in Cb(R+,C(X,D))

modulo C0(R+,C(X,D)). By the assumptions on the πyh and πyk we get from

part(i) that moreover h and k are unitarily equivalent in Cb(R+,C(X,D)) modulo

C0(R+,C(X,D)).

Ad(iii): By Theorem B(i) there exists for z ∈ KKnuc(A,C(X,D)) a nuclear C *-

monomorphism ϕ : A⊗K→ C(X,D)⊗K with [ϕ] = z, because C(X,D) contains

a unital copy of O2.

Then [ϕ(1⊗ p11)] = z ⊗A [1A] = 0 in K0(C(X,D)).

[(ϕ⊕ h0)] = [ϕ] + [h0] = [ϕ] in KK(A,C(X,D)) because 2[h0] = [h0].

Since [ϕ(1⊗p11)] = 0 in K0(C(X,D)), there is a unitary V in M(C(X,D)⊗K)

such that

1⊗ p11 = V ∗(ϕ(1⊗ p11)⊕ (1⊗ p11))V = V ∗(ϕ⊕ h0)(1⊗ p11)V.
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Thus there is a unital C *-morphism h : A→ C(X,B) such that, for a ∈ A

h(a)⊗ p11 = V ∗(ϕ⊕ h0)(a⊗ p11)V.

A⊗ p11 is a full corner of A⊗K. Therefore, h⊗ idK is unitarily homotopic to

V ∗(ϕ⊕ h0)V and thus to ϕ⊕ h0. If we apply the evaluation maps πy ⊗ idK to this

unitary homotopy, then we see that πyh is a monomorphism for every y ∈ X.

From the definition of a unitary homotopy it follows that a morphism is nuclear,

if it is unitarily homotopic to a nuclear morphism. �

Let X be a compact space and D a unital C *-algebra. Then cone(X) means

the one-point compactification of of R+ ×X.

By the isomorphism [0, 1) ∼= R+, the C *-algebra C(cone(X), D) is the unital

subalgebra of C([0, 1]×X,D) ∼= C([0, 1],C(X,D)) which is naturally isomorphic to

the unital split extension of C0(R+,C(X,D)) by D ⊂ C(X,D).

Now we consider the case D = O2.

Corollary 11.2.3. Suppose that X is a compact space, B is a unital separable

exact C*-algebra, and h : B → C(X,O2) is a unital C*-morphism such that πyh is

a monomorphism for every y ∈ X.

Then there exists k : B → C(cone(X),O2) with πyk = πyh for every y ∈ X ∼=
X × {0} and πyk is a monomorphism for every y ∈ cone(X).

Proof. Since KK(A,C(X) ⊗ O2) = 0, h is unitarily homotopic to hu0 by

Proposition 11.2.2(ii). This homotopy yields a strongly continuous family of mor-

phisms k1(τ, y) : B → O2 (τ ∈ [0, 1/2]) such that k1(0, y) = h(y) := πyh for

y ∈ X. And there is a continuous map u : (0, 1/2] × X → U(O2) such that

k1(τ, y) = u(τ, y)∗hu0u(τ, y) for y ∈ X and τ ∈ (0, 1/2]. The unitary v ∈ C(X,O2)

with v(y) := u(1/2, y) is homotopic to 1 in the unitaries of C(X,O2) ∼= C(X)⊗O2

by Lemma 11.2.1.

Thus there is an extension w of u to (0, 1]×X with w(1, y) = 1 for y ∈ X and

w(τ, y) = u(τ, y) for y ∈ X, τ ∈ [0, 1/2], k(τ, y) := k1(τ, y) for y ∈ X, τ ∈ [0, 1/2],

k(τ, y) := w(τ, y)∗h0(.)w(τ, y) for y ∈ X, τ ∈ (1/2, 1] is the desired extension of h

to cone(X). �

Lemma 11.2.4. (i) If ϕ : B → Cb(R+,O2) is a unital C*-morphism such

that πτϕ is a monomorphism for every τ ∈ R+ then there exists a unitary

U ∈ Cb(R+,O2) such that ϕ(a) − U∗hu0 (a)U ∈ C0(R+,O2) for every

a ∈ B, where hu0 : B → O2 is as defined before Theorem B in Chapter 1.

In particular, every unital *-monomorphism k : B → O2 is unitarily

homotopic to hu0 .

(ii) Suppose that h := idB ⊕s,thu0 , and that uk are unitaries in O2 with uks =

sk+1, u0 = 1.

Then hk+1 = uk(idB ⊕s,thk)u∗k, where hk : B → O2 is a unital C*-

morphism.
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In particular, h2 is unitarily homotopic to h by unitaries τ ∈ [0, 1) 7→
u(τ) ∈ O2 such that u(1/2) = u1, u(0) = 1, u(1/2 + τ) = u1(1 ⊕s,t
v(2τ)) for τ ∈ [0, 1/2), where h1(b) = limτ→1 v(τ)h0(b)v(τ)∗ is a unitary

homotopy between h1 and h0 with v(x) ∈ O2 and v(0) = 1.

(iii) For k ∈ N there exist unitaries vk ∈ O2 with vk(sk) = s.

If k ≥ 2 and vk is a unitary in O2 with vk(sk) = s, then there is exactly

one unital *-monomorphism ψk : B → O2 such that hk = v∗k(idB ⊕ψk)vk,

where Cuntz addition is taken with {s, t}.
(iv) Let u(t) as in (ii), and define a unital C*-morphism ϕ from B into

Cb(R+, B) by ϕ(b)(t) := h(b) for t ∈ [0, 1] ϕ(b)(n) := hn(b) for n =

1, 2, . . . and ϕ(b)(n+ t) := u(t)ϕ(b)(n)u(t)∗ for n = 1, 2, . . ., t ∈ [0, 1).

Suppose n+ k ≥ 1 and that uk+n+2 are unitaries in O2 with

uk+n+1 · sk+n+1 = s and uk+n+2 · sk+n+2 = s.

Then there are a continuous map u : [0, 1] → O2 into the unitaries of O2

and a strongly continuous map ψ : [0, 1] → Hom(B,O2) ⊂ L(B) into the

unital C*-morphisms from B into O2 such that u(0) = uk+n+1, u(1) =

uk+n+2 and

hkϕ(1 + τ)hn = u(τ)∗(idB ⊕(h0 ⊕ ψ(τ)))u(τ).

Proof. Ad(i): Since KKnuc(B,O2) = KK(B,O2) = 0, (i) follows as a special

case from Proposition 11.2.2(ii) where X= point, k = hu0 and D = O2.

Ad(ii): Above we have seen that (sk)∗hk(b)sk = b, cf. construction of En.

Suppose that hk−1 : B → O2 and uk−1 ∈ O2 with hk = uk−1(id⊕s,thk−1)u∗k−1

are given.

Let h′k := h0 ⊕s,t (hk−1 ◦ h). Then h′k is a unital morphism from B into O2.

We have

hk+1(b) = uk−1(s2b(s∗)2 + sth0(b)t∗s∗ + t(hk−1 ◦ h)(b)t∗)u∗k−1.

Let w be the unitary in O2 with ws2 = s, wst = ts, wt = t2.

Then (id⊕s,thk−1)h = h ⊕s,t (hk−1 ◦ h) = (idB ⊕s,th0) ⊕s,t (hk−1 ◦ h) =

w∗(idB ⊕s,t(h0 ⊕s,t hk−1 ◦ h))w = w∗(idB ⊕s,th′k)w.

It follows hk+1 = uk−1w
∗(idB ⊕s,th′k)w(uk−1)∗.

On the other hand, uk−1w
∗s = sk+1 = uks and uk−1, uk, w ∈ O2.

Thus uk = uk−1w
∗(1⊕s,t v) for some unitary v ∈ O2. Now let hk := v∗h′kv.

Ad(iii): There exist unitaries vk in O2 with vk(sk) = s, because sk(sk)∗ and

1− sk(sk)∗ are all Murray–von Neumann equivalent for k ∈ N, by [172].

The existence of ψk follows from (ii): Let ψk := hk−1 for uk−1 := (vk)∗.

ψk is uniquely determined by ψk(b) = t∗vkh
k(b)(vk)∗t.

Ad(iv): By definition of ϕ, we have ϕ(1 + τ)(b) = u(τ)∗(b ⊕ h(τ)(b))u(τ),

where u : [0, 1] → O2 is a continuous map into the unitaries of O2 with u(0) = 1,
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u(1)s2 = s, and h : [0, 1] → Hom(B,O2) is a strongly continuous map into the

unital *-monomorphisms from B into O2 with h(0) = h0.

If u1, u2 in O2 are unitaries with u∗0s = sk, u∗1s = sk+1 such that

λ(τ)(b) = u(τ)∗(b⊕ ψ(τ)(b))u(τ) (∗)

where ψ : τ 7→ ψ(τ) ∈ Hom(B,O2), and u : τ 7→ u(τ) ∈ U(O2) are chosen with

u(0)∗s = sk, u(1)∗s = sk+1 then u(0) = (1 ⊕ v0)u0, u(1) = (1 ⊕ v1)u1, where v0

and v1 are unitaries in O2.

Let v : [0, 1]→ U(O2) be continuous with v(0) = v0, v(1) = v1, then χ(τ)(b) =

w(τ)∗(⊕χ(τ)(b))w(τ) where χ(τ)(b) := v(τ)∗ψ(τ)(b)v(τ), w(τ) := (1⊕ v(τ))∗u(τ).

Thus in all cases in question it suffices to find a decomposition (*) for at least

one pair (ψ(τ), u(τ)) for every τ ∈ O2, such that ψ(τ) is a unital monomorphism and

u(0)sk = s, u(1)sk+1 = s. This is the case for λ(τ) := ϕ(1+τ) by definition of ϕ. If

λ(τ) has the decomposition (*) of the desired type, then (by a simple computation)

hλ(τ) = u1(τ)∗(b ⊕ ψ1(τ)(b))u1(τ) and λ(τ) = u2(τ)∗(b ⊕ ψ2(τ)(b))u2(τ) where

u1(τ) := w(u(τ) ⊕ 1), u2(τ) := wu(τ), ψ1(τ) := ψ(τ)(b) ⊕ h0(λ(τ)(b)), ψ2(τ) :=

h0(b)⊕ψ(τ)((b)) and w := s(t∗)2 +tst∗s∗+t2s∗. Thus by induction we get (iv). �

Now we define a unital C *-morphism ϕ : B → Cb(R+, B) by ϕ(b)(t) := h(b)

for t ∈ [0, 1] ϕ(b)(n) := hn(b) for n = 1, 2, . . . and ϕ(b)(n + t) := u(t)ϕ(b)(n)u(t)∗

for n = 1, 2, . . ., t ∈ [0, 1), where u(t) is as in Lemma 11.2.4(ii). The definition fits

because u(0) = 1.

Then by the above Lemma 11.2.4(iv) we have ϕ(b) = w(b⊕s,t ψ(b))w∗, where

w ∈ Cb(R+,O2) is defined inductively by w(t) = 1 for t ∈ [0, 1], w(n+t) = u(t)w(n)

for n = 1, 2, . . ., t ∈ [0, 1) (note that u(0) = 1 ), w(n + t) = u(1/2)w(n) for

n = 1, 2, . . ., t ∈ (1/2, 1] and where ψ(b) := t∗w∗ϕ(b)wt is a unital C *-morphism

from B into O2 ⊂ B.

Thus by Lemma 11.2.4(i) there exists a unitary v ∈ Cb(R+,O2) such that

ψ(b)− vhu0 (b)v ∈ C0(R+,O2) for every b ∈ B and thus ϕ(b)− (w(1⊕ v))h(b)(w(1⊕
v))∗ is in C0(R+,O2) for every b in B, and w(1⊕ v) is a unitary in Cb(R+, O2).

Lemma 11.2.5. There exist unital C*-morphisms

θn : B → C([0, 1]× [0, 1], B)

that satisfy the following boundary conditions for σ ∈ [0, 1], τ ∈ [0, 1]:

θn(0, σ) = hϕ(1 + nσ), θn(1, σ) = hϕ(1 + (n+ 1)σ),

θn(τ, 0) = h2, and θn(τ, 1) = hn+1ϕ(1 + τ).

Proof. By Lemma 11.2.1 and Corollary 11.2.3 it is enough to show that there

is a continuous map u : ∂([0, 1]× [0, 1])→ O2 into the unitaries of O2 and a strongly

continuous map h : ∂([0, 1] × [0, 1]) → Hom(B,O2) ⊂ L(B,O2) into the unital *-

monomorphisms from B into O2, such that the boundary conditions on θn are given

by ψ : ∂([0, 1]× [0, 1])→ Hom(B,B) with ψ(b)(τ, s) = u(τ, s)∗(b⊕ h(τ, s)(b))u(τ, s)
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for (t, s) ∈ ∂([0, 1]× [0, 1]) because then θn(b)(τ, s) := w(τ, s)∗(b⊕k(τ, s)(b))w(τ, s),

(τ, s) ∈ [0, 1] × [0, 1] is as desired, where w : [0, 1] × [0, 1] → U(O2) is a continuous

extension of u and k : [0, 1] × [0, 1] → Hom(B,O2) is a strongly continuous map

from [0, 1] × [0, 1] ∼= cone(∂([0, 1] × [0, 1])) into the unital *-monomorphisms from

B into O2 such that h = k|∂([0, 1]× [0, 1]).

On the sides of the square [0, 1] × [0, 1], the boundary conditions are given

by strongly continuous maps into Hom(B,B), which coincide on the vertices: h2

in (0, 0) and (1, 0) , hn+2 in (0, 1) and hn+3 in (1, 1). By the construction of ϕ

we have ϕ(1 + k + ξ) = ϕ(1 + ξ)hk for ξ ∈ [0, 1]. Thus we find m = 2n + 3

points z1, z2, . . . , zm on ∂([0, 1] × [0, 1]) (containing the vertices z1 = (0, 0), z2 =

(1, 0)) such that λk(τ) := θn(zk+1 + τ(zk+1− zk)) is one of the following functions:

λ1(τ) ≡ h2, λ2(τ) = ϕ(1 + τ)h, λ3(τ) = ϕ(1 + τ)h2, . . . , λn+2(τ) = ϕ(1 + τ)hn+1,

λn+3(τ) = hn+1ϕ(2 − τ), λn+4(τ) = hϕ((n + 1) − τ) = hϕ(2 − τ)hn+1, . . . ,

λ2n+3(τ) = hϕ(2− τ).

Now apply Lemma 11.2.4(iv) to this function to get the above desired particular

form.

�

3. Proof of (β)

We construct in some sense a “completely positive liftable unsuspended E-

equivalence” as an element of R(P (A), B) , given by by a path of u.c.p. maps

Vt : P (A) → B with the property that Vt ◦ h1,∞ : B → B is equivalent in R(B,B)

to h : B → B. for the maps h1,∞ : B → P (A) and h : B → B:

Since h : B → B is a KK-equivalence, (and is equivalent to idB in R(B,B)), it

is sufficient to define a unital completely positive map V : P (A)→ Cb(R+, B) with

the following properties:

(i) V (b∗b) − V (b)∗V (b) ∈ C0(R+, B) for every b ∈ P (A), i.e., V defines a

unital and completely positively liftable homomorphism from P (A) into

Q(R+, B).

(ii) There are a *- homomorphism ϕ1 : B → Cb(R+, B) and a unitary U ∈
Cb(R+,O2) such that ϕ1(a)− U∗h(a)U ∈ C0(R+, B)

(Is not necessary! “Stable” homotopy of ϕ1 with h : B → B is

enough.)

and

{ϕ1(a)(t)− V (h1,∞(a))(t)} ∈ C0(R+, B) for a ∈ B, τ ∈ R+.

(It gives – by R(C,D) = KK(C,D) for unitally O∞-containing C,D

– [V ] ◦ [h1,∞] = [h] = [idB ] in KK(B,B))

This is equivalent to V ◦h1,∞ homotopic to U∗h(·)U for suitable path

U(t). Thus [h] = [V ] ◦ [h1,∞] in KK(B,B)

(iii) Need a proof that h1,∞(V (·)(t)) is homotopic to [idP (A)] in R(P (A), P (A)).

(A kind of “reconstruction”.)
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(iv) Another way to describe it would be the following:

There is unital completely positive W : P (A)→ Cb(R+×[0, 1], P (A)),

such that limτ→∞ ‖W (b∗b)(τ, t)−W (b)(τ, t)∗W (b)(τ, t)‖ = 0

and

limτ→∞ ‖W (b)(τ, 1)− b‖ = 0

and

limτ→∞ ‖W (b)(τ, 0)− h1,∞(V (b)(τ))‖ = 0.

This means that [π ◦ V ] ∈ Ext−1(P (A), SB) ∼= KK(P (A), B) has the property

that

[h∞1 ]⊗B [π ◦ V ] = [idP (A)] ∈ KK(P (A), P (A))

and

[π ◦ V ]⊗P (A) [h∞1 ] = [h] ∼= [idB ] ∈ KK(B,B).

Thus Theorem I is proved if we have shown the existence of V , ϕ1, U and W

with the above listed properties (i)-(iii).

We define the unital completely positive map V : P (A) → Cb(R+, B) by the

following constructions.

For n = 1, 2, . . . let ϕn(b)(τ) := ϕ(b)(τ − n) for τ ≥ n and ϕn(b)(τ) := h(b) for

0 ≤ τ < n. Then ϕn(n+ k) = hk(b), ϕn(b)(n+ τ) = h(b) for k = 1, 2, . . ., τ ∈ [0, 1]

and ϕn+k(hk(b))(τ) = ϕn(b)(τ) for τ ≥ n+ k. We let Vn := ϕn(h∞n )−1En.

Then Vnh
∞
n = ϕn, and we have Vm(h∞n (b))(τ) = Vn(h∞n (b))(τ) for m > n,

τ ≥ m:

Vm ◦ h∞n = Vm ◦ h∞mhm−n = ϕmh
m−n.

For the parameter τ ≥ m we get ϕm(hm−n(b))(τ) = ϕn(b)(τ) = Vn(h∞n (b))(τ). Let

V (d)(τ) := (n+ 2− τ)Vn(d)(τ) + (τ − n− 1)Vn+1(d)(τ)

for n+ 1 ≤ τ ≤ n+ 2 and V (d)(τ) := V1(d)(τ) for 0 ≤ τ ≤ 2.

The definition is fits, because on the boundary points of the intervals in question

we have V (d)(n+1) = Vn(d)(n+1) and V (d)(n+2) = Vn+1(d)(n+2) for n = 1, 2, . . ..

Then V : P (A)→ Cb(R+, B) is a unital completely positive map and

V (h∞n (b))(τ) = ϕn(b)(τ)

for τ ≥ n+1, n ≥ 1, because if τ ≥ n+1 then there is an m ∈ N with n+1 ≤ m+1 ≤
τ ≤ m+2 and for this m we get V (h∞n (b))(τ) = (m+2−τ)Vm(h∞n (b))(τ)+(τ−m−
1)Vm+1(h∞n (b))(τ) and the right hand side is equal to Vn(h∞n (n))(τ) = ϕn(b)(τ).

In particular, since P (A) is the closure of
⋃
h∞n (B), we get that V is asymp-

totically multiplicative, i.e., V (d∗d)− V (d)∗V (d) ∈ C0(R+, B) for d ∈ P (A).

Thus V is an asymptotic morphism (which is not nuclear if B is not nuclear)

from P (A) in B with V (h∞1 (b)) − ϕ1(b) ∈ C0(R+, B). As we have seen above, ϕ1

(as a scaling of ϕ) is unitarily equivalent to h : B → B ⊂ Cb(R+, B) by a unitary

U in Cb(R+,O2). Thus

[V ]⊗P (A) [h∞1 ] = [h] = [idB ]



3. PROOF OF (β) 985

in KK(B,B).

We construct an asymptotic morphism

W : P (A)→ Cb(R+ × [0, 1], P (A))

with

W (d)(τ, 0)−h∞1 (V (d)(τ)) ∈ C0(R+, P (A)) and W (d)(τ, 1)−d ∈ C0(R+, P (A)).

We use the unital C *-morphisms θn : B → C([0, 1]× [0, 1], B) of Lemma 11.2.5.

Let us list some equations for V , h∞n , ϕ and θn that we have shown above or

are obtained by straight forward calculations from the definitions:

Just from the definition of ϕ, ϕn, V and from V (hn(b))(n+1+σ) = ϕn(n+1+σ)

we get ϕ(1 + σ)(b) = V (h∞n (b))(n+ 1 + σ)) for σ ∈ [0, 1].

Then we need moreover the equations h∞m+k(hk(b)) = hm(b) and the boundary

conditions listed in Lemma 11.2.5.

From the boundary conditions it follows that h(θn(b)(1, τ)) = θn+1(h(b))(1, τ).

At first we define unital, completely positive maps Wn.

Let Wn : P (A)→ C([n+ 1, n+ 2]× [0, 1], P (A)) be defined for τ, σ ∈ [0, 1] by

Wn(d)(n+ 1 + σ, τ) := h∞n+2(θn((h∞n )−1En(d))(σ, τ)).

It implies

Wn(h∞n (b))(n+ 1 + σ, τ) = h∞n+2(θ(b)(σ, τ)),

and from En(P (A)) = h∞n (B) and the above listed equations (and the boundary

conditions of θn in Lemma 11.2.5) the reader easily get by straight forward calcu-

lations (by replacing En(d) by h∞n (b)) the following three equations (where n ∈ N,

d ∈ P (A), and σ, τ ∈ [0, 1]):

Wn(En(d))(n+ 1 + σ, 0) = En(d),

Wn(En(d))(n+ 1 + σ, 1) = h∞1 (V (En(d))(n+ 1 + σ))

and

Wn(En(d))(n+ 2, τ) = Wn+1(En(d))(n+ 2, τ).

The latter equation shows that

W (d)(n+ 1 + σ, τ) := Wn((1− σ)En−1(d) + σEn(d))(n+ 1 + σ, τ)

for n = 2, 3, . . . and σ, τ ∈ [0, 1] and W (d)(η, σ) := W2(E1(d))(3, σ) for τ, σ ∈ [0, 1],

0 ≤ η ≤ 3 is a well-defined completely positive and unital map from P (A) into

Cb(R+, P (A)).

Since the union of the En(P (A)) is dense in P (A) we see from first two the

above listed three equations for the Wn’s that

lim
σ→∞

‖W (d)(σ, 0)− d‖ = 0
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and

lim
σ→∞

‖W (d)(τ, 1)− h∞1 (V (d)(τ))‖ = 0

for every d ∈ P (A).

This means [h∞1 ◦ (π ◦ V )] = [id] in KK(P (A), P (A)). On the other hand

[h∞1 ◦ (π ◦ V )] = [h∞1 ]⊗B [V ].

This completes the proof of (β) and ends the proof of Theorem I.
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4. Examples via Cuntz-Pimsner algebras

The following (X,G)-equivariant construction of generalized Fock–Toeplitz al-

gebra (respectively of a Cuntz–Krieger–Pimsner algebra) using a suitable Hilbert

bi-module.

Theorem 11.4.1. Text from lectures on equivariant reconstruction.

Proof. �

Cite from Chapter 1: One starts with a suitable “universal” Hilbert bimodule

and builds the corresponding Cuntz–Krieger–Pimsner algebra.

The universality of the construction has the advantage that G-actions of locally

compact groups G on (Ax)x∈X lead in a natural way to G-actions on (P (Ax) ⊗
K)x∈X

Next taken from Toronto 2014 lectures

Definition (in Chp.1??) of regular subalgebras:

Let C ⊂ A a C *-subalgebra. C is regular for A if

(i) C separates the ideals J of A: J1 ∩ C = J2 ∩ C implies J1 = J2.

(ii) C ∩ (J1 + J2) = (C ∩ J1) + (C ∩ J2) for all J1, J2 ∈ I(A).

Theorem 11.4.2 (Realization of Ψ, H.H.,E.K.). Suppose that B is separable

and stable. Let Ψ: I(B)→ I(A) a non-degenerate lower s.c. action of Prim(B) on

A.

If B⊗O2 contains a regular abelian C*-subalgebra C then Ψ = ΨC for C := CΨ.

In particular, Ψ comes from a non-degenerate *-monomorphism h : A⊗K→M(B),

that is unique up to unitary homotopy of its infinite repeats.

Corollary 11.4.3 (Reconstruction Theorem, H.H.,E.K.). Suppose that A is a

nuclear and stable, that Ω is a sup–inf closed sub-lattice of I(A) ∼= O(Prim(A)) with

Prim(A), ∅ ∈ Ω . Then there is a non-degenerate *-monomorphism H0 : A→M(A)

with following properties:

(i) The infinite repeat δ∞ ◦H0 is unitarily equivalent to H0.

(ii) For every U ∈ O(Prim(A)) holds H0(J(V )) = H0(A)∩M(A, J(U)) where

V ∈ Ω is given by V =
⋃
{W ∈ Ω ; W ⊂ U}.

The H0 is uniquely determined up to unitary homotopy.

The uniques up to unitary homotopy means by Definition 5.0.1:

If H1 : A→M(A) also satisfies the conditions (i) and (ii) then there is a norm-

continuous path t ∈ R+ → U(t) ∈ U(M(A)) such that U(t)∗H2(a)U(t)−H0(a) ∈ A
for all a ∈ A and t ∈ R+ and limt→∞ U(t)∗H2(a)U(t) = H0(a).

Corollary 11.4.4 (Continuation of Reconstruction Theorem). The Cuntz-

Pimsner algebra OH of the Hilbert A-A-module H := (A,H0) is stable and strongly

purely infinite; and it is the same as the C*-Fock algebra F(H) of H.
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The natural embedding of A into OH defines a lattice isomorphism from Ω onto

O(Prim(OH)) and is a KK(X; ·, ·)-equivalence for X := prime(Ω) ∼= Prim(OH).

Discussion of some general ways:

The algebra A will be changed to nice Cuntz “standard” form B := At up to

KK, such that O2 ⊆ M(B), α : A → B is KK(C ; A,B) a KK-equivalence (!!!!),

e.g. given by tensoring with O2 ⊗K and “adding” O2 or O2 ⊗K, depending on C.

Better would be: Can it be chosen stably homotopic to direct sum A⊕s1,s2 O2

sitting in B = At?

What is the inverse? Can stabilize ? Use C⊗̂CP(O∞)?

– after stabilization also an E-equivalence?? –

and the endomorphism γ := idB ⊕γ0, γ0, C-compatible “inner homotopic”: γ2
0

and γ0⊕γ0 “controlled” (inner?) homotopic to γ0, γ should have has in KK(C; B,B)

the same class as idB .

C := indlimn(γn : B → B) with γn = γ, τ : C → Q([0,∞), B) by intertwining

γn and γn+1 in suitable way and using conditional expectations onto ????,

given by moving the conditional expectations from C onto γn,∞(B) to that of

with γ1,∞ : B → C, satisfies τ ◦ γ1,∞ hεB in a controlled sense (“inner” sense ?),

with εB(b) = b+B[0,∞).

An idea would be convex combinations Ts := (n + 1 − s)Tn + (s − n)Tn+1 for

s ∈ [n, n + 1] as maps from C into B[n, n + 1], where Tn := γ−1
1,n ◦ Pn : C → B,

Pn : C → γ1,n(B) ⊂ C.

Thus, [εB ] = [idB ] in E(B,B) ∼= KK(C;B,B), [τ ] ◦ [γ1,∞] = [εB ] = [idB ],

γ1,∞ : Q([0,∞), B)

Does it explain the KK-equivalence ??

It gives classes X =???? ∈ KK(C ; C,B), Y ∈ KK(C ; B,C) inclusion, with

Y = [γ1,∞], X = [τ ] corresponds to asymptotic morphism from C to B.

that is KK(C; ·, ·) equivalent to A.

B has equivariant endomorphism that is KK(C; ·, ·) equivalent to idB , ...

Use the “fact” that certain kinds of ??? and a non-commutative variant of a

classical result of J. Milnor ???? given by L.G. Brown [?] . give simply ref to

Blackadar Rosenberg [1987, 1.12]. not found????

Countable additivity w.r.t. first variable: Blackadar’s K-theory book, [73,

thm. 19.7.1]

Continuity in first variable [73, thm. 21.5.2] with Milnor lim1-sequence.



CHAPTER 12

Non-commutative Selection and Proof of Thm. K

In this chapter we use the in Chapters 4 -11 confirmed results for a complete

proof of Theorems K (e.g. using Corollary 6.3.2) and Theorem O in Chapter 1

(e.g. using Theorem ??). As it was explained in the introductory Chapter 1,

this completes the proofs of all the results stated in Chapter 1, because we have

already proved Theorem M in Chapter 9 under the additional assumption, that there

exists h0 : A ↪→ B with the properties that h0 is injective, non-degenerate, nuclear,

is unitarily homotopic to h0 ⊕ h0, and realizes the given non-degenerate action

Ψ: I(B)→ I(A) via Ψ(J) = h−1
0 (J ∩ h0(A)). The existence of h0 is now the main

point of Theorem K, because we have seen the uniqueness of such h0 up to unitary

homotopy in Chapter 9. Moreover we have shown there, that, for σ-unital stable

B, there is — up to unitary equivalence (by unitaries in Q(R+,M(B))) — at most

one nuclear *-monomorphism k0 : A → Q(R+, B) with k0 approximately unitarily

equivalent (by unitaries in the bigger algebra M(Q(R+, B))) to k0 ⊕ k0, such that

k0 realizes the given action Ψ of Prim(B) on A via Ψ(J ∩B) = k−1
0 (J ∩ h0(A)) for

any closed ideal J of Q(R+, B). We have seen in Chapter 9, that this properties

of k0 imply that such k0 must be unitarily equivalent to some h0 : A → B of the

desired kind ( 1 ).

The Theorem 6.3.1 implies the existence of h0 : A → B (realizing Ψ) under

the additional assumptions that B is separable and contains a regular abelian C *-

subalgebra in the sense of Definition 1.2.9.

Thus, to complete the proof of Theorem K, we must show only the following

(but get more general) results:

(i) B can be replaced by a suitable separable subalgebra B0 of B and Ψ

by a suitable action Ψ0 of Prim(B0) on B0, i.e., there exists a separable

C *-subalgebra B0 of B such that

(a) B0 is stable and contains a strictly positive element of B.

(b) Each ideal I of B0 is the intersection I = B0 ∩ J of an ideal J of B

with B0.

(c) Ψ(J1) = Ψ(J2) if J1 ∩B0 = J2 ∩B0, J1, J2 ∈ I(B).

(d) B0 is strongly purely infinite.

1Combine Corollaries 9.1.6 and 9.1.4 – with the B in 9.1.4 replaced by our

k0(A) Q(R+, B)k0(A) .

989



990 12. NON-COMMUTATIVE SELECTION AND PROOF OF THM. K

(2) If B is separable ( 2 ), then we show the existence of a separable C *-

subalgebra B1 ⊂ Q(R, B) such that

(e) B ⊂ B1 and B contains a strictly positive element of B1 (in partic-

ular, B1 is stable).

(f) Each ideal I of B1 is the intersection I = B1 ∩ J of an ideal J of

Q(R+, B) with B1.

(g) B1 contains a regular abelian C *-algebra C ⊂ B1.

(h) B1 is strongly purely infinite.

If we consider B1 (in place of B) and the action Ψ1(I) := Ψ(I ∩B) of Prim(B1) on

A, then it turns out that the action Ψ1 is non-degenerate, lower semi-continuous and

monotone upper semi-continuous ( 3 ). Thus, Theorem 6.3.1 (respectively Corollary

6.3.2 — a special case of Theorem K) applies to (A,B1,Ψ1) and gives that there is

nuclear

k0 : A ↪→ B1 ⊂ Q(R+, B0) ⊂ Q(R+, B)

with k0 unitarily equivalent to k0⊕k0, and k0(A)∩J = k0(Ψ1(B1∩J)) = k0(Ψ(J ∩
B)) for all closed ideals J of Q(R+, B). Then Corollaries 9.1.6 and 9.1.4 imply

that there is non-degenerate nuclear h : A⊗O2 → B such that h0 := h((·)⊕ 1) is

unitarily equivalent to k0. Thus, h0 is as desired, and Theorem K follows from the

existence of (B0,Ψ0) and (B1,Ψ1) with the above listed (1a)–(2h).

The technical preparations for the existence of (B0,Ψ0) and (B1,Ψ1) lead also

to the asymptotic non-commutative ‘selection’ Theorem 12.1.8.

The below given characterization of the Dini functions on Prim(A), Proposition

12.2.6, the reduction result in Lemma 12.2.14, together with the results in the last

sections of Chapters 5 and 6 yield a proof of Proposition 12.2.15.

For notations we refer the reader to Chapter 1, Definitions 1.2.1–1.2.8.

1. Non-commutative asymptotic Selection

First we need some lemmata for our proof of the asymptotic non-commutative

Selection Theorem 12.1.8.

Lemma 12.1.1. Suppose that H : A→M(B) is a C*-morphism, where A and

B are σ-unital. For J ∈ I(B), let

Ψ(J) := H−1(Ψup
B,H(A)(J)) := H−1(H(A) ∩M(B, J)) .

(i) Ψ is a lower semi-continuous action of Prim(B) on A, i.e., it satisfies

parts (iii) and (iv) of Definition 1.2.6.

2The separability of B can be supposed, because we can replace B by B0, and Ψ by Ψ0(J) :=

Ψ(K) for arbitrary K.B with J = B0∩K. The properties (b) and (c) imply that Ψ0 is well-defined

and is lower s.-c. and monotone upper s.-c., because Φ(J) := span(BJB) is upper semi-continuous,

satisfies B0 ∩ Φ(J) = J , and B0 ∩
⋂
τ Φ(Jτ ) =

⋂
τ Jτ , and Ψ is lower s.-c. and monotone upper

s.-c.
3The l. s.-continuity and monotone u. s.-continuity of Ψ1 follows from the that continuity

properties of Ψ and of I 7→ I ∩B.



1. NON-COMMUTATIVE ASYMPTOTIC SELECTION 991

(ii) Ψ(0) = ker(H), and Ψ−1(A) is the set of J ∈ I(B) with BH(A)B ⊂ J .

(iii) Ψ satisfies (ii) of Definition 1.2.6 if H(A) ⊂ B.

(iv) If C is a σ-unital C*-subalgebra of M(B), such that CB is dense in B,

H(A) ⊂M(C) (i.e. H(A)C ⊂ C), and, for I ∈ I(C),

Φ(I) := H−1(Ψup
C,H(A)(I)) = H−1(H(A) ∩M(C, I)) ,

then, for J ∈ I(B),

Ψ(J) = Φ(Ψup
B,C(J)) .

(v) The morphism H : A→M(B) is weakly Ψ-residually nuclear if H satisfies

at least one of the following properties (a)–(c):

(a) H : A→M(C) is Φ-residually nuclear.

(b) A is exact and H : A→M(C) is weakly nuclear.

(c) C is nuclear.

Proof. (i)-(iv) follow straight from the definitions. The details are left to the

reader. E.g., (iv) follows from the easily poved identity

M(C) ∩M(B, J) =M(C,C ∩M(B, J))

for non-degenerate C *-subalgebras C of M(B).

Note that (iv) implies (v,a), because, for J ∈ I(B), I := Ψup
B,C(J), we have the

natural inclusions

[H] : A/Φ(I) ↪→M(C/I) ⊂M(B/J),

the map a+ Φ(I) 7→ b∗(d∗(H(a) +M(C, I))d)b is a nuclear map from A/Φ(I) into

B/J for b ∈ B/J , d ∈ C/I ⊂M(B/J), and C/I is a non-degenerate C *-subalgebra

of M(B/J).

It is obvious that (v,c) implies (v,a). By Proposition ??, H : A → M(C)

is (norm-) nuclear if A is exact and H is weakly nuclear. Then all the quotient

maps [H] : A/Φ(I) → M(C)/M(C, I) ⊂ M(C/I) are nuclear by exactness of A

(cf. Remark ??). �

Lemma 12.1.2. Suppose that A and B are stable and separable C*-algebras,

and that Ψ: I(B) → I(A) is a lower semi-continuous action of Prim(B) on A,

such that Ψ(0) = 0 and Ψ−1(A) = {B}.

Then the following are equivalent:

(i) There exists a non-degenerate weakly Ψ-residually nuclear *-monomor-

phism H0 : A → M(B), such that δ∞H0 is unitarily equivalent to H0,

and, for J ∈ I(B),

Ψ(J) = H−1
0 (H0(A) ∩M(B, J)).

(ii) For every J ∈ Prim(B), a ∈ A \ Ψ(J) there exist a Ψ-residually nuclear

completely positive map V : A→ B such that V (a) 6∈ J .

If H0 with (i) exists, then H0 is unique up to unitary homotopy.
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Proof. (i)⇒(ii): If a ∈ A and H0(a) 6∈ M(B, J), then there exists b ∈ B+

with bH0(a)b 6∈ J . V = bH0(.)b is a Ψ-residually nuclear map from A to B with

V (a) 6∈ J .

(i)⇒(ii): If I is a closed ideal of B, and if a ∈ A is not in Ψ(I), then there

exists a primitive ideal J ∈ Prim(B), such that I ⊂ J and a 6∈ Ψ(J), because Ψ

is lower semi-continuous and I is the intersection of the primitive ideals J which

contain I.

Thus, there is a Ψ-residually nuclear map V : A→ B with V (a) 6∈ I.

The set K of Ψ-residually nuclear completely positive contractions V from A to

B is a convex set. It is a separable metric space as a subset of CP(A,B) ⊂ L(A,B)

with strong topology on L(A,B) (i.e., topology of point-wise convergence in norm,

given by the system of semi-metrics ρa(V1, V2) := ‖V1(a)− V2(a)‖).

Let V1, V2, . . . be a dense sequence in K. We get weakly Ψ-residually nuclear

C *-morphisms dn from A to L(HB), if we apply Stinespring-Kasparov dilation to

Vn, n = 1, 2, . . .. Here HB denotes the (right) Hilbert-B-module which is given by

the sequences (b1, b2, . . .) with norm convergent series
∑
b∗nbn in B. Since B is stable

and σ-unital, we get that there is a natural isomorphism HB ∼= B as (right) Hilbert-

B-modules and L(HB) ∼=M(B) as C *-algebras under this isomorphism. If we use

this isomorphism, we get weakly Ψ-residually nuclear C *-morphisms hn : A → B,

such that Vn is the point-norm limit of Ψ-residually nuclear completely positive

contractions of form W = b∗hn(.)b, with b ∈ B a contraction.

Let h : A→M(B) be the direct sum of h1, h2, . . ., i.e., h(a) :=
∑
n snhn(a)s∗n

for a ∈ A, where s1, s2, . . . is a sequence of isometries in M(B) with
∑
sn(sn)∗

strictly convergent to 1 in M(B).

Then h is weakly Ψ-residually nuclear and every Ψ-residually nuclear com-

pletely positive contraction V : A→ B is the point-norm limit of maps b∗h(.)b with

contractions b ∈ B.

It follows, that h(Ψ(I)) ⊂M(B, I) and h(a) 6∈ M(B, I) for I ∈ I(B), a 6∈ Ψ(I).

Thus h : A → M(B) is a weakly Ψ-residually nuclear *-monomorphism, such

that, for I ∈ I(B),

h(Ψ(I)) = h(A) ∩M(B, I).

The hereditary C *-subalgebra D of B, which is generated by h(A)Bh(A), is stable,

because A is stable.

The existence of an approximate unit in A shows that h(A)D ⊂ D and that

h(a)Bh(a∗) is contained in the closure of h(a)Dh(a∗) for a ∈ A.

Let k(a) := h(a)|D for a ∈ A. It follows, that k : A → M(D) is a non-

degenerate *-monomorphism from A into M(D), such that, for J ∈ I(B) and

a ∈ A+, k(a) ∈ M(D,D ∩ J) if and only if h(a) ∈ M(B, J). Since every closed

ideal of D is the intersection of a closed ideal of B with D, we get that k is weakly

Φ-residually nuclear for Φ := ΨD,B
down, and that Φ(D ∩ J) = Ψ(J) for J ∈ I(B). In

particular, Ψ(J1) = Ψ(J2) if J1 ∩D = J2 ∩D.
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The ideal I which is generated by D, satisfies h(A) ⊂M(B, I). Thus Ψ(I) = A

and, by assumption, I = B. By Corollary 5.5.6, there is a *-isomorphism γ from

B onto D, which is approximately inner as a *-monomorphism from B to B and

satisfies γ(I) = D ∩ I for I ∈ I(B).

Let H0 denote the infinite repeat of M(γ)−1k. Then H0 is a non-degenerated

weakly (Φ ◦ γ)-residually nuclear *-monomorphism from A to B with H0(a) ∈
M(B, I), if and only if, k(a) ∈ M(D, γ(I)). Since δ2 is unitarily equivalent to δ,

γ(I) = D ∩ I, and Ψ = Φγ, we get that H0 has the desired properties.

By Corollary 5.9.15, H0 with (i) is unique up to unitary homotopy. �

Lemma 12.1.3. Suppose that C is a separable commutative C*-algebra, that A

is a separable C*-algebra, and that

Ψ: I(C) ∼= O(Prim(C))→ I(A)

is a lower semi-continuous action of X := Prim(C) on A with Ψ(0) = 0 and

Ψ−1(A) = {C}.

Then, there is a *-monomorphism H from A into M(C ⊗ K) such that, for

every closed ideal J of C,

H(Ψ(J)) = H(A) ∩M(C ⊗K, J ⊗K) .

If A is stable, then H can be taken as a non-degenerate *-monomorphism, i.e.,

such that H(A)(C ⊗K) is dense in C ⊗K.

Proof. Since J 7→ J ⊗K defines a lattice isomorphism from I(A) onto I(A⊗
K), it suffices to consider the case where A is stable. Moreover, it suffices to show

that condition (ii) of Lemma 12.1.2 is satisfied for B := C ⊗ K under the above

natural identification J ⊗K↔ J of I(B) and I(C).

Note that here X := Prim(C) is the maximal ideal space of C, and that X itself

or its one point compactification Y := X ∪ {C} is a metrizable compact space.

We define a map g from Y into the set of closed split faces of the quasi-state

space Sq(A) := {f ∈ A∗ : 0 ≤ f, ‖f‖ ≤ 1} of A as follows: For J ∈ Y let

g(J) := {f ∈ Sq(A) : f(Ψ(J)) = 0}.

Then the lower semicontinuity of Ψ implies that the map (J, f) 7→ J is an open

map from {(J, f) : J ∈ Y, f ∈ g(J)} ⊂ Y × Sq(A) onto Y .

Let a ∈ A and I a closed ideal of C. The lower semicontinuity of Ψ implies that,

if a 6∈ Ψ(I), then there is a maximal ideal J0 of C such that I ⊂ J0 and a 6∈ Ψ(J0).

Thus there is a quasi-state f0 ∈ g(J0) with f0(a) = ‖a + Ψ(J0)‖. Since g satisfies

the requirements of the Michael selection principle [553], we find a continuous map

J ∈ Y 7→ f(J) ∈ Sq(A) such that f(J) ∈ g(J) and f(J0) = f0. In particular,

f(C) = 0. The map

V : b ∈ A 7→ {f(J)(b)}J∈X ∈ C0(X) ∼= C ⊗ p11
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is a Ψ-equivariant completely positive contraction from A into B with V (a) 6∈
I ⊗K. �

Lemma 12.1.4. Suppose that B, C and D are separable C*-subalgebras of a

C*-algebra G, such that

(i) B and D are stable,

(ii) D contains B and DBD = D, and,

(iii) C is a commutative C*-subalgebra of D with the following properties (α)

and (β):

(α) For every closed ideals J1 and J2 of D, J1 ∩ C = J2 ∩ C implies

J1 ∩B = J2 ∩B.

(β) There exists a sequence of (in D) approximately inner completely

positive contractions Vn : D → C with limn→∞ Vn(a) = a for every

a ∈ C.

Suppose moreover that A is a separable stable C*-algebra and that Ψ: I(B)→
I(A) is a lower semi-continuous action of Prim(B) on A with Ψ(0) = 0 and

Ψ−1(A) = {B}.

Let E := B ·G ·B ⊆ G and Φ(J) := Ψ(B ∩ J) for J ∈ I(E).

Then there exists a non-degenerate weakly Φ-residually nuclear *-monomor-

phism H1 : A ↪→ M(E), such that δ∞H1 is unitarily equivalent to H1, and, for

every closed ideal J of E,

H1(Φ(J)) = H1(Ψ(B ∩ J)) = H1(A) ∩M(E, J).

H1 with this property is unique up to unitary homotopy.

In particular, for every automorphism ϕ of E with ϕ|B = idB, the composition

M(ϕ)H1 = ϕH1ϕ
−1 is unitarily homotopic to H1.

Condition (iii,β) implies that (J1 ∩ C) + (J2 ∩ C) = (J1 + J2) ∩ C for all

closed ideals J1 and J2 of D. If a commutative C *-subalgebra C ⊆ D satisfies

this condition and has property (iii,α) then C is called regular Abelian C*-

subalgebra of D.

The map I / C 7→ J(I) / D considered in the proof of Lemma 12.1.4 is lower

semi-continuous. Thus, the family of c.p. maps W : D → C with W (J(I)) ⊂ I

is closed under point-norm convergence, satisfies W (J) ⊂ J ∩ C for all J / D by

J(J ∩C) ⊇ J (hence W is approximately inner in D). Since C is nuclear, it follows

that W is residually nuclear.

Can we find, for c1, . . . , cn ∈ C+ and ε > 0, a contraction V ∈ CPin(A,A) with

V (C) ⊂ C and ‖V (ck)− ck‖ < ε ?

Proof. The hereditary C *-subalgebra E of G is σ-unital and stable because

B is σ-unital and stable. Therefore, the uniqueness of H1 follows from Lemma

12.1.2. The ϕ-invariance up to unitary homotopy follows from the uniqueness.
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Let J1, J2 ⊂ D closed ideals, then C ∩ Ji ⊂ C ∩ (J1 + J2) for i = 1, 2. Now let

a ∈ (J1 + J2) ∩ C. There exist b ∈ J1 and c ∈ J2 with a = b + c. By assumption

(iii, β), for ε > 0 there is an approximately inner completely positive contraction

V : D → C with ‖V (a) − a‖ < ε. Then V (b) ∈ J1 ∩ C, V (c) ∈ J2 ∩ C and

V (a) ∈ (C ∩ J1) + (C ∩ J2). But (C ∩ J1) + (C ∩ J2) is a closed ideal of C.

Thus, for closed ideals J1 and J2 of D,

C ∩ (J1 + J2) = (C ∩ J1) + (C ∩ J2) .

Therefore, for every closed ideal I of C, the set of closed ideals J of D with

C ∩ J ⊂ I is upward directed. It is easy to see, that this set is also upward

monotonous closed. Hence, for every closed ideal I of C, there is a biggest ideal

J(I) in the set of closed ideals J of D with J ∩ C ⊂ I.

Let ΨD(I) := J(I) for I ∈ I(C).

The definition of ΨD shows that ΨD : I(C) → I(D) defines a lower semi-

continuous action of Prim(C) on D.

Prim(D) acts lower semi-continuous on B by J ∈ I(D) 7→ B ∩ J ∈ I(B).

It follows that the composition with the given action Ψ of Prim(B) on A,

ΨA : J ∈ I(C) 7→ Ψ(B ∩ΨD(J))

is a lower semi-continuous action of Prim(C) on A.

Let J ∈ I(D), then, by definition of ΨD, J ⊂ ΨD(C ∩J) and C ∩ΨD(C ∩J) ⊂
C ∩ J . By assumption (iii,α), this implies B ∩ J = B ∩ΨD(C ∩ J). Thus, for every

J ∈ I(D),

Ψ(B ∩ J) = ΨA(C ∩ J).

In particular, ΨA(0) = Ψ(0) = 0 and ΨA(C) = Ψ(B) = A.

Let I ∈ I(C) and suppose that ΨA(I) = A, i.e., Ψ(B ∩ΨD(I)) = A. Since, by

assumption on Ψ, Ψ−1(A) = {B}, this implies B ⊂ ΨD(I). By (ii) and definition of

ΨD, it follows ΨD(I) = D, C = ΨD(I) ∩ C ⊂ I, and therefore, (ΨA)−1(A) = {C}.

Thus, ΨA is a lower semi-continuous action of Prim(C) onto A with ΨA(0) = 0

and (ΨA)−1(A) = {C}.

By Lemma 12.1.3, there exists a non-degenerate *-monomorphism H from A

into M(C ⊗K) such that, for I ∈ I(C),

H(ΨA(I)) = H(A) ∩M(C ⊗K, I ⊗K).

We have D ∩ E = BDB, because both are hereditary C *-subalgebras of D

which are generated by B. Therefore, D ∩ E is σ-unital and stable. By (ii), D is

the smallest closed ideal of D which contains B. Let J := DCD the closed ideal of

D which is generated by C. Then C ∩ J = C = C ∩D, thus J ∩ B = D ∩ B = B

and J = D, by (iii,α) and (ii). It follows, that (D ∩E)⊗ p11 and C ⊗K are stable

σ-unital C *-subalgebras of D ⊗K which both generate the same ideal D ⊗K.
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By Corollary 5.5.6, there is a *-monomorphism

k : C ⊗K ↪→ D ∩ E

such that k(C⊗K) contains a strictly positive element of D∩E, and that, for every

closed ideal J of D,

k(C ⊗K) ∩ J = k((C ∩ J)⊗K).

Since k is non-degenerate, M(k(C ⊗K)) ⊂M(E) and, for I ∈ I(G),

M(k(C ⊗K)) ∩M(E, I ∩ E) =M(k(C ⊗K), k((C ∩ I)⊗K)).

Here we used that C ∩ I = C ∩ (I ∩D).

Let H1 := M(k)δ∞H = kδ∞(H(.))k−1. Then H1 is a non-degenerate *-

monomorphism, H1(A) is contained inM(k(C ⊗K)), and, for every closed J of E,

and

H1(Φ(J)) = H1(Ψ(B ∩ J)) = H1(A) ∩M(E, J) .

Note here that B ∩ J = B ∩ (I ∩D), and C ∩ I = C ∩ (I ∩D) for the unique ideal

I of G with J = I ∩ E.

Since H1(A) is contained in M(k(C ⊗K)), we get from Lemma 12.1.1(v) that

H1 is weakly Φ-residually nuclear. δ∞H1 is unitarily equivalent to H1, because

δ∞M(k)δ∞ is unitarily equivalent to M(k)δ∞ by Lemma 5.1.2. �

We denote by [a, b] the commutator ab− ba in the following.

Lemma 12.1.5. For every n ∈ N, there is a continuous function fn with fn(0) =

0 which has the following universal property:

If A is a C*-algebra with A ∼= A ⊗ O∞ ⊗ O∞ ⊗ . . ., a1, . . . , an, b ∈ A+ are

contractions, and ε > 0, with ‖[aj , ak]‖ < ε for j, k = 1, . . . , n, then, there exists a

contraction c ∈ A with

‖[aj , c]‖ < fn(ε) , ‖(1− c∗c)aj‖ < fn(ε) and ‖[aj , c∗bc]‖ < fn(ε) .

Proof. Let C be a commutative C *-subalgebra of a C *-algebra D. Then the

set K(C) of completely positive maps V (a) :=
∑

(ci)
∗aci with c1, . . . , cm ∈ C and

‖V (1)‖ ≤ 1 is convex. Its point weak closure on D∗∗ is K(C∗∗), where we identify

C∗∗ naturally with the weak closure of C in D∗∗. For b ∈ D, a1, . . . , an ∈ C, and

δ > 0, there exist V ∈ K(C∗∗) with

‖(1− V (1))aj‖ < δ and ‖[aj , V (b)]‖ < δ. ( ∗)

To see this, approximate a1, . . . , an by elements in the span of mutually orthogonal

projections p1, . . . , pk ∈ C∗∗ and consider
∑
j pjbpj . A Hahn-Banach separation

argument shows that we can find V with (∗) even in K(C).

Suppose that there is a C *-algebra B and a *-monomorphism ϕ from B⊗O∞
into D, such that C ⊂ ϕ(B ⊗ 1) and b ∈ ϕ(B ⊗ 1). Let c :=

∑
1≤i≤m ϕ(di ⊗ si),

where ϕ(di ⊗ 1) = ci and si denote the canonical generators of O∞. Then c

satisfies c∗bc = V (b), V (1) = c∗c, and [aj , c] = 0. Therefore, ‖(1 − c∗c)aj‖ < δ,

‖[aj , c∗bc‖ < δ, and c is a contraction in D commuting with aj for j = 1, . . . , n.
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Now we define numbers g(a, b) := ‖[a, b]‖, where [a, b] = ab− ba,

η(a1, . . . , an) := max{g(aj , ak) : j, k = 1, . . . , n},

µ(a; b; c) := max(g(a, c), g(a, c∗bc), ‖(1− c∗c)a‖),

and, for C *-algebras A and contractions a1, . . . , an, b, c ∈ A+,

v(a1, . . . , an; b;A) := inf
c
{max(µ(a1; b; c), . . . , µ(an; b; c))},

where the infimum runs over all contractions c ∈ A.

For every t ∈ R+, and for every C *-subalgebra A, we denote by Y (t, A) the set

of sequences (a1, . . . , an, b) of contractions in A+ such that η(a1, . . . , an) ≤ t. Now

we define increasing functions F (t, A) and F (t) as follows:

F (t, A) := sup{v(a1, . . . , an; b;A) : (a1, . . . , an, b) ∈ Y (t, A)},

and F (t) := supA{F (t, A)}, where the supremum runs over all separable C *-

subalgebras A of L(`2) with A ∼= A ⊗ O∞ ⊗ O∞ ⊗ . . .. F (t, A) and F (t) are

increasing on R+.

It is not hard to see, that fn with the desired properties exists if and only if

limt→0 F (t) = 0. Since F (t) is increasing, we have limt→0 F (t) = inf{F (1/k) : k ∈
N}.

Suppose that F (1/k) ≥ 3γ > 0 for k ∈ N. Then we can find, for k = 1, 2, . . .,

(i) separable C *-algebras Ak with Ak ∼= Ak ⊗O∞ ⊗O∞ ⊗ . . ., and

(ii) (a
(k)
1 , . . . , a

(k)
n , b(k)) ∈ Y (1/k,Ak) such that v(a

(k)
1 , . . . , a

(k)
n ; b(k);Ak) > 2γ.

Now we use ultrapowers: Let D :=
∏
ω(Ak), and a1, . . . , an, b ∈ D with rep-

resentatives (a
(1)
j , a

(2)
j , . . .) of aj , and (b(1), b(2), . . .) of b. Let C and B be the

C *-subalgebras of D that are generated by {a1, . . . , an} and {b, a1, . . . , an} respec-

tively. Then C is commutative and B is separable. By Proposition 7.4.11, there

exists a *-monomorphism ϕ from B⊗O∞ into D, such that ϕ(d⊗1) = d for d ∈ B.

As we have seen above, there is a contraction c ∈ D such that

max(µ(a1; b; c), . . . , µ(an; b; c)) < γ .

This contradicts the above property (ii). �

Lemma 12.1.6. Suppose that B ∼= B ⊗ O∞ ⊗ O∞ ⊗ . . .. Let G := Q(R+, B),

the corona of B, or let G := Bω, the ultrapower of B.

If D is a separable C*-subalgebra of G and C a separable commutative C*-

subalgebra of D, then there exist a contraction d ∈ C ′ ∩ G and a commutative

C*-subalgebra A of G such that C ⊂ A, d∗da = a for a ∈ C, and d∗Dd ⊂ A.

Proof. We consider the case G = Q(R+, B). The proof for the case G = Bω

is similar.

Let e1, e2, . . . be a dense sequence in the positive contractions of D.

By Corollary 7.4.10, the approximately inner completely positive contractions

T : D → G are one-step inner, i.e., there is a contraction d ∈ G such that T (b) =
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d∗bd. If T |C = id |C, then [a, d] = (1− dd∗)ad and ‖(1− dd∗)1/2ad‖2 = ‖T (a∗a)−
T (a∗)T (a)‖ = 0 for a ∈ C. It follows d ∈ C ′ ∩ G and and d∗da = d∗ad = a for

a ∈ C.

Thus it suffices to construct a sequence of approximately inner completely pos-

itive maps Tn : G → G, such that Tn|C = id |C, limn[Tn(ek), Tn(ej)] = 0 and that

limn Tn(ek) exists for k, j ∈ N .

The approximately inner completely positive contractions T : G → G with

T |C = id |C form a semigroup for every C *-subalgebra C ⊂ G. Therefore, we

attempt to construct a sequence of approximately inner completely positive con-

tractions Tn : G → G in the special way Tn := Sn+1Sn . . . S1. Here Sn : G →
G should be approximately inner completely positive contractions which satisfy

Sn|Cn = id |Cn and Sn(gn) commutes with Cn, where C1 := C, g1 := e1, and, by

induction, gn := Sn−1 . . . S1(en), Cn+1 := C∗(Cn, Sn(gn)).

Then the sequence of restrictions Tn|D has the desired properties, and A :=

indlimCn, T (b) := limTn(b) for b ∈ D have the properties as stated in Lemma

12.1.6.

Thus it remains to show that for every separable commutative C *-subalgebra

C ⊂ G and every contraction g ∈ G+ there is an approximately inner completely

positive contraction S : G→ G with S|C = id |C such that S(g) commutes elemen-

twise with C.

Let a1, a2, . . . a sequence of positive contractions in Cb(R+, B), such that the

sequence of the cn := an+C0(R+, B) is dense in the positive contractions in C. Let

b ∈ Cb(R+, B)+ a contraction which represents g. With the notation of Lemma

12.1.5, we find a sequence s1 > s2 > . . . in (0, 1] such that fm(ε) < 1/n for

ε ∈ (0, sn], m ≤ n. This is possible by Lemma 12.1.5.

Since [cj , ck] = 0, there are positive real numbers xn with xn+1 > max(xn, n),

such that ‖[ai(y), aj(y)]‖ < sn for y ≥ xn and 1 ≤ i, j ≤ n.

Let In := [xn, xn+2]. Since C(In, B) absorbs O∞ tensorial, we can apply

Lemma 12.1.5 to C(In, B), aj |In, j = 1, . . . , n, and b|In, and find contractions dn ∈
C(In, B) such that, for j = 1, . . . , n, ‖(1 − d∗ndn)(aj |In)‖, ‖(aj |In) − d∗n(aj |In)dn‖
and ‖[(aj |In), d∗n(b|In)dn]‖ are smaller then 1/n.

Now we choose a continuous function µ1(y) on R+ with 0 ≤ µ1(y) ≤ 1,

µ1(x2n) = 0 and µ1(x2n−1) = 0, for n ∈ N. Let µ2(y) := 1− µ1(y).

We define elements h1, h2 ∈ Cb(R+, B) as follows:

Let hk(y) = 0 for y ∈ [0, xk], k = 1, 2, and, for y ∈ [x2n−k, x2n+2−k], n ∈ N,

hk(y) := (µk(y))1/2d2n−k.

Then the corresponding elements d1, d2 ∈ G satisfy ‖d∗1d1 + d∗2d2‖ ≤ 1 and

define an inner completely positive contraction S(a) := d∗1ad1 + d∗2ad2 on G with

S|C = id |C, such that S(g) commutes with C. �
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Lemma 12.1.7. Suppose that B is separable and stable, and that B is isomor-

phic to B ⊗O∞ ⊗O∞ ⊗ . . ..

Let G := Q(R+, B). Then there exist separable C*-subalgebras C and D such

that B, C, D and G satisfy the assumptions (i), (ii) and (iii) of Lemma 12.1.4.

Proof. Below, we show the existence of sequences of separable C *-subalgebras

Cn ⊂ Dn ⊂ Fn ⊂ Dn+1 of G, of contractions dn ∈ G, and of *-monomorphisms hn

from Fn ⊗O∞ ⊗K into G, such that

(i) D1 := B,

(ii) Fn is the C *-subalgebra of G generated by Dn and dn,

(iii) hn(f ⊗ 1⊗ p11) = f for every f ∈ Fn
(iv) Dn+1 is the image hn(Fn ⊗O∞ ⊗K) of hn,

(v) Cn is a commutative C *-subalgebra of Dn such that, for every closed ideal

J of Dn, J is the smallest closed ideal of Dn which contains Cn ∩ J , and

(vi) dn commutes elementwise with Cn, d∗ndna = a for every a ∈ Cn, and

d∗nDndn generates a commutative C *-subalgebra An of Fn with Cn ⊂ An,

(vii) An ⊂ Cn+1.

In particular, we have B ⊂ Dn ⊂ Dn+1 and Cn ⊂ An ⊂ Cn+1 ⊂ Dn+1.

Let D and C be the closures of the unions of the sequences (Dn) and (Cn)

respectively. Then C ⊂ D and B ⊂ D. D is stable by (iv) and [373]. B is stable

by assumption. By (ii),(iii) and (iv), Dn+1 is the closed span of Dn+1DnDn+1.

Thus, by (i), the span of DBD is dense in D. C is commutative.

Let J1 and J2 be closed ideals of D with J1∩C = J2∩C. Then J1∩Cn = J2∩Cn
and, by (v), J1 ∩ Dn = J2 ∩ Dn. But Jk is the inductive limit of Jk ∩ Dn for

n = 1, 2, . . . and k = 1, 2.

We can define approximately inner completely positive contractions Tn : D →
C with Tn|Cn = id |Cn, as follows: Let enk := dndn+1 . . . dn+k and Tn(a) :=

limk→∞(enk)∗aenk Note here that enm is inDn+m+1 and that, therefore, by (vi) and

(vii), (enk)∗a(enk) is in Cn+m+2 and (enk)∗a(enk) = (enl)
∗a(enl) for a ∈ Dn+m+1,

and k, l > m.

Thus, B, C, D and G satisfy the assumptions (i), (ii) and (iii) of Lemma

12.1.4.

Now we show the existence of Cn, Dn, dn, An, Fn and hn by induction:

We start at n = 0. Let C0 := 0, d0 := 0, A0 := 0 and let ϕ denote an

isomorphism from B ⊗O∞ ⊗K onto B ⊂ G. ϕ exists by our assumptions on B.

We define F0 ⊂ G as ϕ(B ⊗ 1⊗ p11). Then there is a unique *-monomorphism

h0 from F0 ⊗O∞ ⊗K onto B, such that, for b ∈ B, e ∈ O∞ and k ∈ K,

h0(ϕ(b⊗ 1⊗ p11)⊗ e⊗ k) = ϕ(b⊗ e⊗ k).

In particular, h0(f ⊗ 1⊗ p11) = f for f ∈ F0.



1000 12. NON-COMMUTATIVE SELECTION AND PROOF OF THM. K

In other words, h0(f ⊗ e⊗ k) = ϕ(ψ(f)⊗ e⊗ k) , where ψ denotes the inverse

of the isomorphism b 7→ ϕ(b⊗ 1⊗ p11) from B onto F0.

By (ii), for n = 1, 2, . . ., Fn := C∗(Dn, dn) is defined by Dn and dn.

If we have found Fn, we find a *-monomorphism hn from Fn ⊗O∞ ⊗K into G

with property (iii) by Corollary 7.4.9.

Since Dn+1 is the image of hn, we have B = D1, and it is enough to to define

dn and Cn with properties (v), (vi) and (vii). If Cn ⊂ Dn are given, then the

existence of dn and An := C∗(d∗nDndn) with (vi) follows from Lemma 12.1.6.

So we may assume that An ⊂ Fn and hn are given. It remains to construct

Cn+1 with properties (vii) and (v), where n has to be replaced by n+ 1 in (v).

Let (fk) ⊂ Fn a dense sequence in the set of positive contractions in Fn, andlet

Xn denote the commutative C *-subalgebra of Fn⊗K which is generated by An⊗p11

and the set {fk ⊗ pkk : k = 2, 3, . . .}.

We identify Fn ⊗ K with the subalgebra Fn ⊗ 1 ⊗ K of Kn := Fn ⊗ O∞ ⊗ K.

For every closed ideal J of Kn, we have that Xn ∩ J generates J as a closed ideal

of Kn. Since hn(Kn) = Dn+1, we can define Cn+1 as hn(Xn). Now properties (v)

and (vii) follow from property (iii) of hn. �

Theorem 12.1.8 (Asymptotic non-commutative Selection). Suppose that A

and B are separable and stable C*-algebras, where B is isomorphic to B ⊗ O∞ ⊗
O∞ ⊗ . . ., and that

Ψ: I(B)→ I(A)

defines a lower semi-continuous action of Prim(B) on A in the sense of Definition

1.2.6 with Ψ(0) = 0 and Ψ−1(A) = {B}.

Let E denote the hereditary C*-subalgebra of Q(R+, B) which is generated by

B, and let Φ(I) := Ψ(I ∩B) for I ∈ I(E).

Then, there exists a non-degenerate weakly Φ-residually nuclear *-monomor-

phism H0 from A into the multiplier algebraM(E) of E such that δ∞H0 is unitarily

equivalent to H0, and, for I ∈ I(E),

Ψ(I ∩B) = Φ(I) = H−1
0 (H0(A) ∩M(E, I)).

H0 with this property is unique up to unitary homotopy.

Conversely H0 determines Ψ in the sense of Lemma 12.1.1, i.e., for J ∈ I(B),

Ψ(J) := H−1
0 (H0(A) ∩M(E,E ∩Q(R+, J))) .

In particular, H0 and σ̂ ◦H0 are unitarily homotopic, for every automorphism

σ̂ of M(E), which is induced by a scaling homeomorphism σ of R+.

Proof. The existence of H0 is the logical sum of Lemma 12.1.4 and Lemma

12.1.7, because B is separable, stable and is isomorphic to B ⊗O∞ ⊗O∞ ⊗ . . ..
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The uniqueness up to unitary homotopy of a non-degenerate weakly Φ-resid-

ually nuclear *-monomorphism H0 : A→M(E) with

Φ(I) = H−1
0 (H0(A) ∩M(E, I)).

and δ∞H0 unitarily equivalent to H0 follows from Lemma 12.1.2.

For J ∈ I(B), Q(R+, J) is an ideal of Q(R+, B) and J = B ∩Q(R+, J).

Note that σ̂ fixes the elements of B and that B∩σ̂(I) = B∩I for every I ∈ I(E)

and every homeomorphism σ of R+. Thus Φσ̂ = Φ, and, therefore the uniqueness

result applies to σ̂H0.

Since Ψ(J) = Φ(E ∩Q(R+, J)) for J ∈ I(B), H0 determines Ψ in the sense of

Lemma 12.1.1. �

2. Selections and Ψ-equivariant embedding

We give now some definitions and lemmata that are needed for the generaliza-

tion of Theorem A to the case of non-simple strongly purely infinite algebras as

target algebras instead of O2 (cf. Theorem K).

Definition 12.2.1. Let I(A) denote the set of closed ideals of A with the

below described topology and let Prim(A) denote the space of primitive ideals of

A with the hull-kernel topology, i.e. J ∈ I(A) is in Prim(A) if it is the kernel of a

(non-zero) irreducible representation of A, and the closed subsets of Prim(A) are

given by the sets of “hulls” h(I) := {J ∈ Prim(A) : I ⊂ J}. Thus the closure

operation X ⊆ Prim(A) 7→ X ⊂ Prim(A) is given by X := h(k(X)), where the

“kernel” ideal k(X) of X is defined as k(X) :=
⋂
J∈X J .

We define a sort of generalized Gelfand transform b ∈ A 7→ b̂ from A into

the bounded functions on I(A), where b̂ : I(A)→ R+, for b ∈ A, is defined by

b̂(J) := ‖b+ J‖ := inf{‖b+ c‖ : c ∈ J}.

Recall that the ideal space I(A) of a C *-algebra A is a compact Hausdorff space

if we take the coarsest topology under which every generalized Gelfand transform

is continuous. The latter is the Fell topology on I(A), cf. [559].

The compactness follows simply from the fact that every character on the

commutative C *-algebra C∗({b̂ ; b ∈ A}) defines a C *-seminorm on A. Here

C∗({b̂ ; b ∈ A}) means the C *-subalgebra of `∞(I(A)discrete) that is generated

by the Gelfand transforms b̂ (b ∈ A). All Gelfand transforms vanish on the point

J = A, i.e. b̂(A) = 0. Thus, for every b ∈ A, b̂ is in C0(I(A) \ {A}).

We shall use also the notation b̂ for the restriction b̂ |Prim(A) of b̂ to Prim(A) ⊂
I(A). This is justified, because b̂ is determined by its restriction to Prim(A), for

I ∈ I(A), i.e.,

b̂(I) = sup{ b̂(J) ; J ∈ h(I) }.

If A is commutative, then Prim(A) is the space of maximal ideals of A and b̂

is the ordinary Gelfand transform of the absolute value |b| =
√
b∗b of b ∈ A.
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Remark 12.2.2. If A is separable, then, with the homeomorphism which we

have introduced in Chapter 1, I(A) becomes a closed subspace of the Hilbert cube

[0, 1]∞, which contains (0, 0, . . .) and is closed under component-wise maximum α∨β
for α, β ∈ I(A). Since I(A) is compact, it follows that, for every subset K ⊂ I(A),∨
K ∈ I(A), and, for every decreasing sequence α1 ≥ α2 ≥ . . .,

∧∞
n=1 αn is in I(A).

Note here, that the natural map from the ideals of A into the Hilbert cube

reverses the natural order, i.e., the elements α in the corresponding subset of the

Hilbert cube correspond better to the closed subsets of the primitive ideal space

of A. If A ∼= C(X) for a compact metric space X, the image is just the classical

compact space of closed subsets of X, the topology is then given by the Hausdorff

distance metric.

The reader should note that, as explained in Chapter 1, Prim(A) has not the

relative topology induced by I(A):

Prim(A) is a subset of I(A), but is not a topological subspace. The topology

of Prim(A) is given by the above cited hull-kernel topology (Jacobson topology). It

is easy to see, that the system O(Prim(A)) of open sets is the coarsest T0-topology

on Prim(A) under which every generalized Gelfand transform â of an element a in

A is lower semi-continuous. Thus, Prim(A) has the topology that is induced by

the T0 topology on the Hilbert cube [0, 1]∞ given by the family of open subsets in

Hausdorff topology, that are upward directed (with respect to the coordinate-wise

order on elements of [0, 1]∞).

If A is separable, one can re-discover Prim(A) as the ∨-prime elements of I(A)

with system of closed sets induced by the intersection of I(A) with the set {β : β ∨
α = α} of points below α ∈ I(A).

The reader, who is not familiar with this topics, could learn from considering

the following simple example:

LetX a point-complete T0-space with a countable base of its topology (e.g.X ∼=
Prim(A) with separable A), and let f : X → R+ be a bounded non-negative function

on X with ‖f‖∞ := sup f(X) = 1. We can define an action of O(X) on C0((0, 1]) by

Ψf (Z) := C0((sup f(X\Z), 1]) for open subsets Z of X. Here we define sup(∅) := 0,

because we consider only subsets and elements of [0, 1].

The reader easily checks that the action Ψf is lower semi-continuous if and only

if f is lower semi-continuous.

It is interesting to note, that Ψf satisfies property (ii) of Definition 1.2.6, if and

only if, for every decreasing sequence K1 ⊃ K2 ⊃ . . . of closed subsets Kn of X,

sup f(
⋂
Kn) = inf{sup f(Kn) : n = 1, 2, . . .}.

Now let X := Prim(A) for a separable C *-algebra A. As we shall see below, Ψf

satisfies properties (ii), (iii) and (iv) of Definition 1.2.6, if and only if, J 7→ f(h(J))

is a continuous function on I(A), and this is the case, if and only if, f = b̂ for an

element b ∈ A⊗O2 .
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The property (i) of Definition 1.2.6 is satisfied for Ψf only in the rare and

exceptional case where f nsatisfies sup f(K1 ∩ K2) = min(sup f(K1), sup f(K2))

for every closed subsets K1,K2 ⊂ Prim(A). E.g., this happens for commutative A,

if and only if, f is 0 except on one point of Prim(A).

Let s, t ∈ M(A) isometries, a, b, c, d ∈ A elements and denote by β(a, b; t) the

maximum of ‖t∗bt − a‖, ‖t∗b∗bt − a∗a‖ and ‖t∗bb∗t − aa∗‖. Clearly t ∈ M(A) 7→
β(a, b; t) is strictly continuous and β(c, d; t) ≤ β(a, b; t) + ‖a− c‖+ ‖b− d‖.

In the following Lemma 12.2.3, let

D(a, b; s, t) := max(β(b, a, s), β(a, b, t)) .

The definition causes D(a, b; s, t) ≤ D(c, d; s, t) + ‖a − c‖ + ‖b − d‖. A similar

argument shows that D(a, b; s, t) is strictly continuous in s, t ∈M(A). We define a

sort of “distance” ρ1 of contractions a, b ∈ A by

ρ1(a, b) := ρ1(a, b, A) := inf{D(a, b; s, t) : s, t ∈M(A), s∗s = t∗t = 1 } .

Lemma 12.2.3. For every C*-algebra A with A ∼= A ⊗ D2, and for every

contractions a, b ∈ A with ρ1(a, b, A) < ε, there exists a unitary U ∈ M(A) such

that ‖U∗aU − b‖ < 8
√
ε .

Proof. It suffices to consider separable C *-algebras A (up to isomorphisms).

The properties of D(a, b; s, t) imply ρ1(a, b) ≤ ρ1(c, d)+‖a−c‖+‖b−d‖. Obviously

‖U∗aU − b‖ ≤ ‖U∗cU −d‖+‖a−c‖+‖b−d‖ for a, b, c, d ∈ A by triangle inequality

for unitary U ∈M(A).

Recall that D2 := O2 ⊗ O2 ⊗ · · · . By the above inequalities we can suppose

for our estimates that a = c ⊗ 1, b = d ⊗ 1 ∈ A ⊗ 1 and that there are isometries

s, t ∈ M(A) with D(a, b; s ⊗ 1, t ⊗ 1) = D(c, d; s, t) < ε, by approximation of

contractions a, b ∈ A ∼= A ⊗ D2 by those in A ⊗ 1 and by strict approximation of

the isometries s, t ∈ M(A) by those in M(A) ⊗ 1 ⊂ M(A). Then we have to find

U ∈M(A)⊗O2 ⊂M(A) with ‖U∗(c⊗ 1)U − d⊗ 1‖ ≤ 8 ·D(c, d; s, t)1/2.

Let B := C∗(x) denote the universal C *-algebra generated by a single con-

traction x ∈ B and define representations h, k : B → E := M(A) by h(x) := c,

k(x) := d, then we find a unitary U ∈ E ⊗O2 that satisfies the inequality

‖U∗(h(x)⊗ 1)U − k(x)⊗ 1‖ < 8 · µ(s, t; h, k; x)1/2 ,

by Corollary 4.5.2, where µ(s, t; h, k; x) denotes the maximum of the 6 values{
‖s∗h(y)s− k(y)‖ , ‖t∗k(y)t− h(y)‖ ; y ∈ {x, x∗x, xx∗ }

}
.

This definition of µ(s, t; h, k; x) shows that D(c, d; s, t) = µ(s, t; h, k;x), i.e., U is

as desired. �

Lemma 12.2.4. Suppose that A is a separable C*-algebra, and that F a simple

and exact C*-algebra (e.g. F = O2 or F = K). Let B := A⊗O2 and X := Prim(A).

Then:
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(i) The map J 7→ J ⊗ F defines a natural topological isomorphism X ∼=
Prim(A⊗ F ).

(ii) {â : a ∈ A⊗K} is closed under point-wise maximum.

(iii) Every lower semi-continuous non-negative function f on X is the point-

wise l.u.b. of a sequence (ân) with an ∈ A+.

(iv) {â : a ∈ B} ⊂ `∞(Xdisk) is a maximum-closed and ‖.‖∞ norm-closed

subset of `∞(Xdisk),

(v) The ‖ . ‖∞- closure of {â : a ∈ A⊗K} is {â : a ∈ B}.

Proof. Ad(i): By Proposition B.4.2, J 7→ J ⊗ F defines topological isomor-

phism from Prim(A) onto Prim(A⊗F ), for every simple separable exact C *-algebra

F , e.g. F = O2 or F = K.

Ad(ii): Let s, t be canonical generators of a unital copy of O2 in M(A ⊗ K).

The Cuntz sum a⊕ b := sas∗ + tbt∗ satisfies

‖(a⊕ b) + J‖ = max(‖sas∗ + J‖, ‖tbt∗ + J‖) = max(‖a+ J‖, ‖b+ J‖) ,

i.e., â⊕ b = max( â , b̂ ).

Ad(iii): Let f : X → R+ be a lower semi-continuous function on X. For

c ∈ R+, let Y (c) := f−1((c,∞)), and let χ(c) denote the characteristic function of

Y (c). Then cχ(c) ≤ f . If z ∈ X and 0 < c < f(z), then c = cχ(c)(z). Thus f is

the point-wise the l.u.b. of the at most countable set {cχ(c) : c = m/n,m, n ∈ N}.
Since f is lower semi-continuous, Y (c) is an open subset of X and, therefore χ(c)

is lower semi-continuous. Moreover, by the definition of the topology on X, there

is a closed ideal I(c) of A such that Y (c) = X \ h(I(c)).

Thus it suffices to show that, for every closed ideal I of A and c ∈ R+, there

exist a ∈ A+, such that the characteristic function χ of X \ h(I) is the l.u.b. of

gn := b̂n = â 1/n where bn = a1/n. Since I is separable, we find a strictly positive

contraction a in I+. But this means: 0 < ‖a+ J‖ ≤ 1 if J ∈ X is a primitive ideal

of A which is not in h(I), and ‖a+ J‖ = 0 for J ∈ h(I), i.e., â ≤ χ and â(J) > 0 if

χ(J) > 0. Thus, sup â(J)1/n is the characteristic function χ of X \ h(I).

Ad(iv): Let b ∈ B, d := (b∗b)1/2 and c ∈ (O2)+ with Spec(c) = [0, 1], then

‖b+ J‖ = ‖(d⊗ c) + J ⊗O2‖.

There is an isomorphism ϕ from B ⊗ O2 onto B, such that g 7→ ϕ(g) ⊗ 1 is an

approximately inner endomorphism of B ⊗O2. In particular ϕ(J ⊗O2) = J , and,

for a := ϕ(d⊗ c),
‖b+ J‖ = ‖a+ J‖.

This, together with the logical sum of Corollary 3.10.11 and Lemma 12.2.3,

says that, for every uniformly convergent sequence fn = b̂n with bn ∈ B, there

is a sequence (an) ⊂ B+, such that (an) converges in B and b̂n = ân. a 7→ â

is a norm-continuous map from B into `∞(Prim(B)discrete). Thus lim fn = b̂ for

b = lim an .

Part (v) follows from (iv), because O2 is nuclear. �
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Definition 12.2.5. Suppose X is a T0-space and that f : X → R+ := [0,∞) is

a non-negative function on X. We say that f is a Dini function on X (or say f is

Dini) if f is lower semi-continuous and, for every increasing sequence g1 ≤ g2 ≤ . . .
of lower semi-continuous functions gn : X → R+, (gn) converges uniformly to f in

`∞(X), i.e., limn→∞ ‖f−gn‖∞ = 0, if f is point-wise the supremum of the sequence

(gn), i.e., if f(x) = sup{gn(x) : n ∈ N}.

Every Dini function on X is automatically bounded, because we can consider

gn := min(n, f).

If X is a metrizable, locally compact and σ-compact Hausdorff space, then a

function f is a non-negative Dini function in the sense of the above given Definition,

if and only if, f ∈ C0(X). This follows from the classical Lemma of Dini.

The following is a weak version of a stronger result in [447], where B = A⊗O2

in (ii) is replaced by A itself.

Proposition 12.2.6. Suppose that A is a separable C*-algebra and let B :=

A⊗O2, X := Prim(A) and h(I) := {J ∈ X : I ⊆ J} for I ∈ I(A).

Then for a non-negative function f on X the following properties are equivalent:

(i) f is a Dini function.

(ii) There exists b ∈ B with b̂ = f , i.e., f(J) = b̂(J ⊗O2) for J ∈ X.

(iii) f is lower semi-continuous, bounded, and, for every increasing sequence

I1 ⊂ I2 ⊂ . . . of closed ideals In of A,

sup f(h(I)) = inf{sup f(h(In)) : n = 1, 2, . . .},

where I is the closure of
⋃∞
n=1 In.

Proof. (i)⇒(ii): Suppose that f : X → R+ is a Dini function. By Lemma

12.2.4(iii), there is a sequence (an) in A such that f is the point-wise supremum

of the sequence (ân). Let gn(J) := max(â1(J), . . . , ân(J)) for J ∈ X. Then gn is

an increasing sequence of non-negative lower semi-continuous functions on X with

f = sup{gn : n ∈ N} point-wise. Since f is Dini, (gn) converges uniformly to f .

Let bn := (a1 ⊗ 1)⊕ . . .⊕ (an ⊕ 1) in B, then gn(J) = ‖bn + (J ⊗O2)‖.

Thus gn ∈ {b̂ : b ∈ B}. By Lemma 12.2.4(iv), f = b̂ for some b ∈ B.

(ii)⇒(iii): Suppose that there is b ∈ B such that f(J) = b̂(J ⊗O2) for J ∈ X.

Let g(I) := ‖b + (I ⊗ O2)‖ for every closed ideal I of B. Then, for every subset

Z ⊂ I(A), g(I) = sup{g(J) : J ∈ Z}, where I :=
⋂
{J : J ∈ Z}. If K is the

closure of an increasing sequence I1 ⊂ I2 ⊂ . . . of closed ideals In in A, g(K) =

inf{g(In) : n ∈ N}.

Since g|X = f , it follows that f satisfies sup f(Z) = g(k(Z)) for every subset

Z of X, where k(Z) =
⋂
{J : J ∈ Z} is the kernel-operation on I(A).
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But hk(Z) is the closure of Z in X and kh(I) = I for every closed ideal I of

A. We get that f is lower semi-continuous, and that sup f(h(I)) = g(I) for every

closed ideal I of A. Now the upward monotone continuity of g implies, for every

increasing sequence I1, I2, . . . of closed ideals In of A, that, for the closure I of⋃
{I1, I2, . . . },

sup f(h(I)) = inf{sup f(h(In)) : n = 1, 2, . . .}.

(iii)⇒(i): We define a map T from the bounded functions f on X into the

functions F on I(A), by T (f)(I) := sup f(h(I)) for I ∈ I(A). Then T (g) ≤ T (f)

if g ≤ f . If I1, I2 ∈ I(A) then T (f)(I1 ∩ I2) = max(T (f)(I1), T (f)(I2)), because

h(I1∩ I2) = h(I1)∪h(I2). In particular, T (f) is monotone, i.e., T (f)(I) ≤ T (f)(J)

if J ⊂ I.

If f is lower semi-continuous on X, then T (f)(J) = f(J) for every primitive

ideal J of A:

The set {y ∈ X : f(y) ≤ f(J)} is closed and contains J . The closure of the

one-point set {J} is h(J). Thus f(J) ≤ T (f)(J) = sup f(h(J)) ≤ f(J).

If f is lower semi-continuous on X, then T (f) is also a lower semi-continuous

function on I(A):

Let M be a subset of I(A), and let J(M) denote the intersection of the ideals

I ∈M . Then h(J(M)) is the closure in X of of the union of the subsets h(I) ⊂ X
for I ∈M . Since f is lower semi-continuous,

sup f(h(J(M))) = sup f(
⋃
{h(I) : I ∈M}) = sup{sup f(h(I)) : I ∈M}.

The right hand equality comes from f(
⋃
{h(I) : I ∈M}) =

⋃
{f(h(I)) : I ∈M}.

Let c ∈ R+ and P ∈ I(A) a point in the closure of the set M(c) :=

{I ∈ I(A) : T (f)(I) ≤ c}. Then J(M(c)) ⊂ P and, therefore, T (f)(P ) ≤
T (f)(J(M(c))). By the above formula for f , T (f)(J(M(c))) ≤ sup{T (f)(I) : I ∈
M(c)} ≤ c. Thus T (f) is lower semi-continuous on I(A).

Now suppose that f satisfies the assumptions of (iii).

We show that T (f) is then also an upper semi-continuous function, i.e., T (f)

is a continuous function on the metrizable compact Hausdorff space I(A):

Let c ∈ R+, and let (Pn) be a convergent sequence in I(A) with limit P ∈ I(A)

such that c ≤ T (f)(Pn) for n = 1, 2, . . .. Let In =
⋂
k≥n Pk. Then In ⊂ In+1,

In+1 ⊂ Pn+1 and, therefore, c ≤ T (f)(Pn+1) ≤ T (f)(In+1) ≤ T (f)(In).

It follows c ≤ T (f)(I) for the closure I of
⋃
{I1, I2, . . . }.

Let a ∈ P , then â(P ) = 0, â(In) = sup{â(Pk) : k ≥ n}, and

â(P ) = lim â(Pn) = lim
n
â(In) = â(I).

Thus, P ⊂ I and c ≤ T (f)(I) ≤ T (f)(P ). Which proves the upper semicontinuity

of T (f).
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Let 0 ≤ g1 ≤ g2 ≤ . . . be an increasing sequence of lower semi-continuous

functions on X, such that f(y) = sup{gn(y) : n ∈ N} for every y ∈ X. Let I ∈ I(A)

and ε > 0. We find y ∈ h(I) ⊂ X such that f(y) + ε > sup f(h(I)). There is

n ∈ N with gn(y) + ε > sup f(h(I)). Thus T (g1) ≤ T (g2) ≤ . . . is an increasing

sequence of lower semi-continuous functions on I(A), which converges point-wise

to the continuous function T (f).

By the lemma of Dini, the sequence T (gn) converges uniformly to T (f) on

I(A). This happens also with gn = T (gn)|X and f = T (f)|X.

Hence, f is a Dini function. �

Corollary 12.2.7. Suppose that A and B are separable C*-algebras, and that

γ is a topological isomorphism from Prim(A) onto Prim(B). Let E := A⊗O2 and

F := B ⊗ O2. Then f 7→ f ◦ γ defines an isomorphism from {b̂ : b ∈ F} onto

{â : a ∈ E}, where we naturally identify Prim(A) with Prim(E) and Prim(B) with

Prim(F ).

Proof. f 7→ f ◦γ defines an isomorphism from the Dini functions on Prim(B)

onto the Dini functions on Prim(A). Now apply Proposition 12.2.6. �

Corollary 12.2.8. Suppose that A and B are separable C*-algebras, and that

Ψ is a map from I(B) into I(A) with Ψ(J1) ⊂ Ψ(J2) for J1 ⊂ J2, J1, J2 ∈ I(B).

Then:

(i) Ψ is lower semi-continuous, if and only if, for every a ∈ A, J 7→ â(Ψ(J))

is a lower semi-continuous function on Prim(B), and for every I ∈ I(B)

and a ∈ A with â(Ψ(I)) > 0 there exists J ∈ Prim(B) with â(Ψ(J)) > 0

and I ⊂ J .

(ii) Ψ is, moreover, countably monotone upper semi-continuous, i.e., satisfies

(ii) of Definition 1.2.6, if and only if, for every a ∈ A, J 7→ â(Ψ(J)) is a

Dini function on Prim(B).

Proof. Let X := Prim(B) and fa := âΨ|X for a ∈ A.

Suppose that Ψ is lower semi-continuous. Then, for every subset Z of X,

â(Ψ(
⋂
J ∈ Z) = â(

⋂
J∈Z

Ψ(J)) = sup{â(J) : J ∈ Z}.

In particular, sup fa(Z) = sup fa(hk(Z)) and â(Ψ(I)) = sup fa(h(I)), because⋂
{J ∈ Z} =

⋂
{J ∈ hk(Z)} and I = kh(I) =

⋂
{J ∈ h(I)}. But this means that

fa is lower semi-continuous on X and that â(Ψ(I)) > 0 implies the existence of

J ∈ h(I) with fa(J) > 0.

Conversely, suppose that fa is lower semi-continuous for every a ∈ A and

that for every I ∈ I(B) and a ∈ A with â(Ψ(I)) > 0 there exists J ∈ h(I)

with fa(J) > 0. This says that fa(Z) = {0} implies fa(hk(Z)) = {0} and that

â(Ψ(I)) = 0 if and only if fa(h(I)) = {0}.
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Let I :=
⋂
α Iα, K :=

⋂
α Ψ(Iα) and Z :=

⋃
α h(Iα). By monotony of Ψ, we

have Ψ(I) ⊂ K. If a ∈ K, then â(Ψ(Iα)) = 0 for every α in the index set. Thus

{0} = fa(Z) = fa(hk(Z)). But k(Z) = I. Therefore, â(Ψ(I)) = 0, i.e., a ∈ Ψ(I).

Hence K = Ψ(I) and Ψ is lower semi-continuous.

Ad(ii): We have seen in the proof of the first part, that â(Ψ(I)) = sup fa(h(I))

for I ∈ I(B) and that fa is lower semi-continuous, if Ψ is lower semi-continuous.

fa is bounded by ‖a‖.

Let I1 ⊂ I2 ⊂ . . . an increasing sequence of closed ideals of B, and let I and K

denote the closures of
⋃
In and

⋃
Ψ(In), respectively. Then

â(K) = inf{sup fa(h(In)) : n = 1, 2, . . .}.

By Proposition 12.2.6(iii), it follows that â(Ψ(I)) = â(K) if fa is a Dini function.

Thus, Ψ satisfies (ii) of Definition 1.2.6 if fa is a Dini function on X for every a ∈ A.

If Ψ satisfies (ii) of Definition 1.2.6 then Ψ(I) = K and, therefore,

sup fa(h(I)) = inf{sup fa(h(In)) : n = 1, 2, . . .}.

Thus, by Proposition 12.2.6(iii), fa is a Dini function on X for every a ∈ A, if Ψ

satisfies property (ii) of Definition 1.2.6. �

Remark 12.2.9. Recall from Remark 3.11.3 that for a C *-algebra B the

following Properties (i)–(iv) are equivalent to each other:

(i) B strongly purely infinite in the sense of Definition 1.2.2.

(ii) For every a, b ∈ B+ and ε > 0 there exist contractions s, t ∈ B such that

‖a2 − s∗a2s‖, ‖b2 − t∗b2t‖ and ‖s∗abt‖ are all less then ε.

(iii) The ultrapower Bω of B is strongly purely infinite.

(iv) The asymptotic corona Q(R+, B) of B is strongly purely infinite.

(v) Q(R+, B) has the WvN-property of Definition 1.2.3.

(vi) B admits no non-zero character, and for every separable C*-subalgebra C

of Q(R+, B) the following holds:

If t ∈ R+ 7→ V (t) is a strongly continuous map from R+ into the

approximately inner completely positive contractions from B into B, T is

the completely positive contraction from Q(R+, B) into Q(R+, B) given by

T (a+ C0(R+, B)) := V (a) + C0(R+, B),

where a ∈ Cb(R+, B) and V (a)(t) := V (t)(a(t)), and if T |C is residually

nuclear, then, there exists a contraction d ∈ Q(R+, B) such that T (b) =

d∗bd for b ∈ C.

From (ii) it follows that the class of strongly purely infinite algebras is closed

under inductive limits.

It is obvious that quotient algebras and hereditary C *-subalgebras of strongly

purely infinite C *-algebras are strongly purely infinite.

Remark 12.2.10. In [431, sec. 3] we have discussed several equivalent proper-

ties of C *-subalgebras A of a C *-algebra B, among them the property, that there
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is a normal conditional expectation from the second conjugate B∗∗ of B onto the

second conjugate A∗∗ of A, where we have naturally identified A∗∗ with the weak

closure of A in B∗∗.

Among others, in [431] it was shown that this property is equivalent to the

relative weak injectivity (in short: rwi) of A in B, which means that the natural

C *-morphism from the maximal C *-algebra tensor product A⊗maxC to B⊗maxC
is injective, and thus isometric, for every C *-algebra C, cf. [431, prop. 3.1]. Here

it suffices even to take C = C∗(F∞), the full group C *-algebra of the free group on

countably many generators.

It follows immediately that the closure A of the union of an increasing sequence

A1 ⊂ A2 ⊂ . . . of relatively weakly injective subalgebras of B is again relatively

weakly injective in B.

Unfortunately, relative weak injectivity does not pass to quotients in general:

There exist B, A ⊂ B, closed ideals J of A, and I1 ⊂ I2 of B such that

(i) J := I1 ∩A = I2 ∩A and A is relatively injective in B,

(ii) A/J is relatively injective in B/I1, but

(iii) A/J is not relatively weakly injective in B/I2.

We define a stronger property as the relative weak injectivity such that it plays

together with some particular quotient maps in a natural manner:

We say that A ⊂ B is residually relatively weakly injective in B, if,

for every J ∈ I(A), the natural monomorphism maps A/(A ∩ ΨA,B
down(J)) onto a

relatively weakly injective C *-subalgebra of B/ΨA,B
down(J) (4).

The above mentioned results from [431] and the short exactness of the maximal

C *-algebra tensor product imply immediately the following equivalent formulation:

A ⊂ B is residually relatively weakly injective in B, if and only if,

A⊗max C∗(F∞) ⊂ B ⊗max C∗(F∞)

and, for every J ∈ I(A),

(A ∩ΨA,B
down(J))⊗max C∗(F∞) = (A⊗max C∗(F∞)) ∩ (ΨA,B

down(J)⊗max C∗(F∞)).

If A is relatively weakly injective in B, and if I is a closed ideal of B ⊗max C
such that

I ∩ (A⊗max C) = (A ∩ΨA,B
down(J))⊗max C,

then I contains ΨA,B
down(J)⊗max C.

It follows, that A ⊂ B is residually relatively weakly injective in B if, e.g., A

is relatively weakly injective in B and every closed ideal of A ⊗max C∗(F∞) is the

intersection of A⊗max C∗(F∞) with a closed ideal of B ⊗max C∗(F∞).

4Recall that ΨA,Bdown(J) is the smallest closed ideal of B which contains J ∈ I(A).
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Lemma 12.2.11. Suppose that A1 ⊂ A2 ⊂ . . . is a sequence of C*-subalgebras

of B which are residually relatively weakly injective in B. Then the closure A of its

union is residually relatively weakly injective in B.

Proof. First, A is again relatively weakly injective in B, i.e., A ⊗max C and

An ⊗max C are naturally C *-subalgebras of B ⊗max C for every C *-algebra C,

because the functor (.)⊗max C is continuous with respect to inductive limits.

Let J ∈ I(A). Then (A∩ΨA,B
down(J))⊗max C is contained in ΨA,B

down(J)⊗max C,

and ΨA,B
down(J) is the closure of the union of the increasing sequence of closed ideals

ΨAn,B
down (An ∩ J).

For n < m, the intersection of ΨAn,B
down (An ∩ J) ⊗max C with Am ⊗max C is

contained in
(
A ∩ΨAm,B

down (Am ∩ J)
)
⊗max C.

Thus, the intersection of ΨAn,B
down (An ∩ J) ⊗max C with A ⊗max C is contained

in (A ∩ΨA,B
down(J))⊗max C.

By continuity of (.)⊗max C , we get that (A ∩ΨA,B
down(J))⊗max C is the inter-

section of A⊗max C with ΨA,B
down(J)⊗max C. �

Lemma 12.2.12. Suppose that A ⊂ B is non-degenerate and residually rela-

tively weakly injective in B, and that A ∩ΨA,B
down(J) = J for every J ∈ I(A).

Let C be a C*-subalgebra of M(A) and V : C → M(A) a completely positive

map.

Then V is weakly residually nuclear as a map into M(A), if and only if, it is

weakly residually nuclear as a map into M(B).

Proof. By Lemma 12.1.1(iv), sinceM(A) ⊂M(B) unitally, we haveM(A)∩
M(B, I) = M(A,A ∩ I) for I ∈ I(B). It follows that M(A, J) = M(A) ∩
M(B,ΨA,B

down(J)) . Therefore, V (C ∩ M(B, I)) ⊂ M(B, I) for every I ∈ I(B),

if and only if, V (C ∩M(A, J)) ⊂M(A, J) for every J ∈ I(A).

The argument for the proof of Lemma 12.1.1(v) shows, that V is also weakly

residually nuclear as a map from C ⊂M(B) into M(B), if V is weakly residually

nuclear as a map from C into M(A).

Now suppose that V is weakly residually nuclear as a map from C intoM(B),

and let J ∈ I(A) and I := ΨA,B
down(J). Then J = A ∩ I, and C ∩ M(B, I) =

C ∩M(A, J), because C ⊂ M(A). C/(C ∩M(A, J)) is in a natural way a C *-

subalgebra of M(A/J) ⊂ M(B/I). The natural map [V ]I : C/(C ∩M(B, I)) →
M(B/I) is weakly nuclear as a map from C/(C∩M(B, I)) ⊂M(B/I) into (B/I)∗∗,

and [V ]I(C/(C ∩M(B, I))) is contained in M(A/J). By assumption, A/J ⊂ B/I
is a non-degenerate and relatively weakly injective C *-subalgebra of B/I, i.e., there

is a normal conditional expectation P from (B/E)∗∗ onto the weak closure (A/J)∗∗

of A/J in (B/E)∗∗. The natural map [V ]J from C/(C ∩M(A, J)) into (A/J)∗∗

equals P [V ]I . Thus [V ]J is weakly nuclear.

Thus V : C →M(A) is weakly residually nuclear. �
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Remark 12.2.13. Recall that, by Definition 1.2.3, a C *-algebra B has resid-

ually nuclear separation if, for every separable C *-subalgebra C ⊂ B, every

a ∈ C+ and every ε > 0, there exists a residually nuclear completely positive

contraction V : C → B such that ‖V (a) − a‖ < ε. Obviously, residually nuclear

separation passes to hereditary C *-subalgebras and to quotient algebras. An ap-

plication of Lemma 12.1.2 to A := B and Ψ := ΨB shows that

a separable stable C*-algebra B has residually nuclear separation, if and only

if, there is a non-degenerate weakly residually nuclear *-monomorphism H0 : B →
M(B), such that δ∞H0 is unitarily equivalent to H0, and, for J ∈ I(B),

H0(J) = H0(B) ∩M(B, J).

On can conlude from [463] and [443] that

a C*-algebra B with residually nuclear separation has the WvN-property if and

only if it is strongly purely infinite.

Lemma 12.2.14. Suppose that B is strongly purely infinite, and that A is a

separable C*-subalgebra of M(B).

Then, for every separable C*-subalgebra C of B, there exists a separable C*-

subalgebra D of B, such that

(i) C ⊂ D,

(ii) D is strongly purely infinite,

(iii) for every closed ideal J of D, there exists a closed ideal I of B such that

J = D ∩ I, i.e., J = D ∩ΨD,B
down(J),

(iv) there is a weakly continuous conditional expectation from (B/ΨD,B
down(J))∗∗

onto (D/J)∗∗, i.e., D is residually relatively weakly injective in B, and

(v) AD ⊂ D and aD = {0} implies a = 0 for a ∈ A, i.e., the natural

C*-morphism L : a ∈ A → La|D ∈ M(D) from A to M(D) is a mono-

morphism, where La(b) := ab.

The subalgebras D of B with the properties (i)-(v) are closed under inductive

limits, i.e., closures D of increasing sequences D1 ⊂ D2 ⊂ . . . of C*-subalgebras of

B with properties (i)-(v) satisfy again (i)-(v).

If B is stable, then D can be chosen as stable subalgebra of B.

If B is stable and has residually nuclear separation, then D can be chosen

such that D is stable and there exists a non-degenerate residually nuclear *-

monomorphism H0 : D →M(D), such that δ∞H0 and H0 are unitarily equivalent,

and H0(J) = H0(D) ∩M(D,J) for every closed ideal J of D.

If B is σ-unital (with strictly positive element e ∈ B+) then D with (i)-(iv) for

C replaced by C∗(C, e) satisfies IL(A ∩M(B, I)) = L(A) ∩M(D,D ∩ I) for every

I ∈ I(B).

If id |A : A ↪→M(B) is weakly residually nuclear, then L : A→M(D) is weakly

residually nuclear.
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Proof. If a1, a2, . . . is a dense sequence in A, then we find contractions bn ∈
B+ with ‖anbn‖+1/n > ‖an‖. The smallest C *-subalgebra C1 of B with AC1 ⊂ C1,

C ⊂ C1 and {b1, b2, . . .} ⊂ C1 is separable, and L : a 7→ La|C1 is a *-monomorphism

from A to M(C1).

Let C1 be a separable C *-subalgebra of B, and let M be a countable dense

subset of the positive cone of C1.

By Remark 12.2.9 we can choose, for a, b ∈M and k ∈ N, contractions c, d ∈ B,

such that ‖a2 − c∗a2c‖, ‖b2 − d∗b2d‖ and ‖c∗abd‖ are less then 1/k. The chosen

elements are in a countable subset S of B. Let C2 be the separable C *-subalgebra

of B which is generated by C1 and S.

Then for positive elements a, b ∈ C1 and δ > 0 there exist contractions c, d ∈ C2

such that ‖a2 − c∗a2c‖, ‖b2 − d∗b2d‖ and ‖c∗abd‖ are less then δ.

In the same way we construct an increasing sequence C1 ⊂ C2 ⊂ . . . of separable

C *-subalgebras Cn of B such that, for positive elements a, b ∈ Cn and δ > 0 there

exist contractions c, d ∈ Cn+1 such that ‖a2− c∗a2c‖, ‖b2−d∗b2d‖ and ‖c∗abd‖ are

less then δ.

Let D1 be the closure of the union of the Cn. Then, for positive elements

a, b ∈ D1 and δ > 0 there exist contractions c, d ∈ D1 such that ‖a2 − c∗a2c‖,
‖b2 − d∗b2d‖ and ‖c∗abd‖ are less then δ. Thus D1 is a separable strongly purely

infinite C *-subalgebra of B and contains C1.

Now let G be a C *-algebra. For every C *-subalgebra C of G and a, b ∈ G, k ∈
N, we denote by ρ(a, b, k, C) the infimum of the numbers ‖a−

∑
c∗j bcj‖, where cj ∈

C, 1 ≤ j ≤ k, with ‖
∑
c∗jcj‖ ≤ 1. If C1 ⊂ C2 then ρ(a, b, k, C2) ≤ ρ(a, b, k, C1).

For fixed C and k, ρ(a, b, k, C) is uniformly continuous in a and b.

Let C ⊂ G and a, b ∈ C positive contractions. Then a is in the closed ideal

generated by b if and only if the infimum of {ρ(a, b1/n, k, C) : n, k ∈ N} is zero.

Thus, the equations ρ(a, b, k, C) = ρ(a, b, k,G) for every a, b ∈ C+, k ∈ N,

imply that, for every J ∈ I(C),

ΨC,G
down(J) ∩ C = J.

Now let E1 be a separable C *-subalgebra of G and let M denote a dense

countable subset of (E1)+.

By definition of ρ, we can choose, for a, b ∈ M and k,m ∈ N, contractions

c1, . . . , ck ∈ G with ‖
∑k
j=1 c

∗
jcj‖ ≤ 1 such that ‖a −

∑k
j=1 c

∗
j bcj‖ is less then

ρ(a, b, k,G) + 1/m. The chosen elements are in a countable subset S of G. Let E2

be the separable C *-subalgebra of G which is generated by E1 and S.

Then ρ(a, b, k, E2) = ρ(a, b, k,G) for positive elements a, b ∈ E1 and k ∈ N.

In the same way we construct an increasing sequence E1 ⊂ E2 ⊂ . . . of sepa-

rable C *-subalgebras En of G such that ρ(a, b, k, En+1) = ρ(a, b, k,G) for positive

elements a, b ∈ En and k ∈ N.
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Let E be the closure of the union of the En. Then E is separable, E1 ⊂ E, and

ρ(a, b, k, E) = ρ(a, b, k,G) for positive elements a, b ∈ E and k ∈ N. Here we used

the uniform continuity of ρ in a and b.

Thus, for every separable C *-subalgebra E1 of a C *-algebra G, there exist a

separable C *-subalgebra E of G, such that E1 ⊂ E and every closed ideal J of E

is the intersection of E with a closed ideal of G, i.e., E ∩ΨE,G
down(J) = J .

By [431, lem. 3.4], for every separable C *-subalgebra D1 of B, there is a

separable relatively weakly injective C *-subalgebra D2 of B with D1 ⊂ D2.

Let F := C∗(F∞). Thus E1 := D2 ⊗max F is in natural way a separable

C *-subalgebra of G := B ⊗max F .

We find a separable C *-subalgebra E2 of G which contains E1 and has the

property that every closed ideal of E2 is the intersection of E2 with a closed ideal

of G. Since the algebraic tensor product B � F is dense in G, there is a separable

C *-subalgebra D3 of B such that D2 ⊂ D3, and the closure in G of the algebraic

tensor product D3 � F contains E2.

By [431, lem. 3.4], we find a separable relatively weakly injective C *-subalgebra

D4 of B with D3 ⊂ D4. Then E2 ⊂ D4 ⊗max F .

In this way we get sequences D1 ⊂ D2 ⊂ . . . and E1 ⊂ E2 ⊂ . . . of separable

C *-subalgebras of B andG, respectively, such thatD2n is relatively weakly injective

in B, D2n⊗max F = E2n−1, and every closed ideal of E2n is the intersection of E2n

with a closed ideal of G.

Let D ⊂ B denote the closure of the union of algebras Dn. Then D is relatively

weakly injective in B, and D⊗maxF is just the closure E of the union of the algebras

En.

Let J ∈ I(E). The closure I of the union of In := ΨE2n,G
down (E2n ∩ J) contains

J , because the union of E2n ∩ J is dense in J .

In ∩ E is contained in J , because, for n ≤ m, In ⊂ Im, and

E2m ∩ In ⊂ E2m ∩ Im = E2m ∩ J,

and the union of E2m ∩ In is dense in In ∩ E. Thus J = I ∩ E. By the last

observation in Remark 12.2.10, D is residually relatively weakly injective in B.

Now let J ∈ I(D). Then ΨD,B
down(J) ⊗max F is the closed ideal of B ⊗max F

which is generated by the closed ideal I := J ⊗max F of E = D ⊗max F , i.e., is

ΨE,G
down(I). It contains (D ∩ΨD,B

down(J))⊗max F , and its intersection with E = D is

I. Thus J ⊗max F contains (D ∩ΨD,B
down(J))⊗max F . If we apply a character χ of

F to this, we get that J = D ∩ΨD,B
down(J)).

Now we change the notation and iterate the constructions:

We find inductively sequences (Cn), (Dn) and (En) of separable C *-subalge-

bras of B, such that C ⊂ C1, Cn ⊂ Dn ⊂ En, and En ⊂ Cn+1, ACn ⊂ Cn,
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‖La|C1‖ = ‖a‖ for a ∈ A, Dn is strongly p.i., En is residually relatively weakly

injective in B, and ΨEn,B
down (J) ∩ En = J for every J ∈ I(En).

Let D be the closure of the union of this sequence. D contains C. By Remark

12.2.9, D is strongly p.i. and, by Remark 12.2.10, D is residually relatively weakly

injective in B. It is easy to see that D satisfies condition (v).

Let J ∈ I(D) and Jn := En∩J . Then ΨD,B
down(J) is the closure of the increasing

sequence of closed ideals In := ΨEn,B
down (Jn), and In∩Em ⊂ Im∩Em = Jm for n < m.

Thus In ∩D ⊂ J and, therefore ΨD,B
down(J) ∩D = J . Thus D satisfies (i)-(v).

Now let D1 ⊂ D2 ⊂ . . . be an increasing sequence of separable C *-algebras Dn

of B, and suppose that Dn satisfies (i)-(v).

Let D the closure of
⋃
Dn. By Remarks 12.2.9 and 12.2.10, D has also proper-

ties (ii) and (iv). Above we have seen that (iii) is preserved under inductive limits,

i.e. D satisfies (iii). It is easy to check that D satisfies (v).

Now suppose that B is stable. By Remark 5.1.1(8), this means that there exists

a sequence t1, t2, . . . of isometries in M(B), such that
∑
tn(tn)∗ strictly converges

to 1. We replace A by the separable C *-subalgebra A1 ofM(B) which is generated

by A and {t1, t2, . . .}. Then a separable C *-subalgebra D of B is stable, if D

satisfies (i)-(v) for A1 in place of A:

sn := Ltn |D are isometries in M(D) such that
∑
sn(sn)∗ strictly converges to

1 in M(D).

Suppose that B is stable and has residually nuclear separation.

Let D1 := D be above found separable stable C *-subalgebra D of B with

(i)-(v) for A1, let B1 denote the closure of DBD, and let M1 be a countable dense

subset of the positive cone of D1.

Residually nuclear separation passes to hereditary C *-subalgebras. Therefore

we can find a countable set S1 of residually nuclear completely positive contractions

from D1 into B1 such that, for a ∈ M1 and n ∈ N, there is a V ∈ S1 with

‖a− V (a)‖ < 1/n.

The union the images of the V ∈ S1 is a separable subset of B1. Thus it is

contained in a separable C *-subalgebra C2 of B1. Necessarily, C2 contains M1 and,

therefore, also D1.

We find a separable C *-subalgebra D2 of B1 with (i)-(v) for A1, C2 and B1 in

place of A, C and B, because B1 is again strongly purely infinite, C2 ⊂ B1, and

A1
∼= L(A1)|B1 is contained in M(B1). If M2 is a countable dense subset of the

positive cone of D2, then we can again find a countable set S2 of residually nuclear

completely positive contractions from D2 into B1 such that, for a ∈M2 and n ∈ N,

there is a V ∈ S2 with ‖a− V (a)‖ < 1/n.

If we go so on, we get sequences D1 ⊂ D2 ⊂ . . ., S1, S2, . . . of separable C *-

subalgebras Dn of B1 and of countable sets Sn of residually nuclear completely

positive contractions from Dn to B1 such that, for n ∈ N :
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(i) C ⊂ D1, D1 is stable and contains a strictly positive element of Dn

(ii) Dn is strongly purely infinite,

(iii) for every closed ideal J of Dn, J = Dn ∩ΨDn,B
down (J), and,

(iv) Dn is residually relatively weakly injective in B,

(v) A1Dn ⊂ Dn and ‖a‖ = ‖La|D1‖ for a ∈ A.

(vi) V (Dn) ⊂ Dn+1 for V ∈ Sn, and,

(vii) for every a ∈ (Dn)+ and every δ > 0 there is V ∈ Sn with ‖V (a)−a‖ < δ.

Let D denote the closure of the union of the C *-algebras Dn. Then D satis-

fies conditions (i)-(v) of Lemma 12.2.14 and D is stable. By Lemma 12.2.12, the

completely positive maps V ∈ Sn are also residually nuclear if we consider them as

maps from Dn to D.

Now we argue as in the proof of the implication (ii)⇒(i) in the proof of Lemma

12.1.2:

Since, by Kasparov stabilization theorem, HD ∼= D as (left) Hilbert D-module,

we can take Kasparov-Stinespring dilations of the V in Sn, infinite repeats and

direct sums. We get a sequence of non-degenerate weakly residually nuclear *-

monomorphisms hn : Dn → M(D), such that δ∞hn is unitarily equivalent to hn,

and hn(J ∩Dn) = hn(Dn) ∩M(D,J) for J ∈ I(D). By Lemma 12.1.2, it follows

that hn|Dm is unitarily homotopic to hm for m < n.

This allows to replace the hn by unitarily equivalent *-monomorphisms kn such

that the sequence kn is convergent in point-norm on every Dm.

The limit is a *-monomorphism h from D into M(D) with h(J) = h(D) ∩
M(D,J) for J ∈ D, and h|Dn is weakly residually nuclear for every n ∈ N. It

follows that h is residually nuclear, and that D is the closure of Dh(D)D.

By Lemma 12.1.2, we can construct from h with the above properties a

non-degenerate residually nuclear *-monomorphism H0 from D into M(D) with

H0(J) = H0(D) ∩M(D,J) for J ∈ I(D) such that H0 is unitarily equivalent to

its infinite repeat δ∞H0.

Now suppose that B is σ-unital and let e ∈ B+ strictly positive.

Then we can find D with the properties (i)-(v) and e ∈ D (simply by replacing

C by C∗(C, e)). It holds L(A∩M(B, I)) = L(A)∩M(D,D∩I) for every I ∈ I(B),

because, for a ∈ A

a ∈M(B, I) ⇔ ae ∈ I ⇔ aD ⊂ D ∩ I ⇔ a ∈M(D,D ∩ I) .

If id |A : A ↪→ M(B) is weakly residually nuclear, then L : A → M(D) is

weakly residually nuclear, by (iv) and Lemma 12.2.12, because we replace B by its

hereditary C *–subalgebra DBD (with strictly positive e ∈ D+). �

The following Proposition 12.2.15 generalizes the first part of Theorem A. Here

the target algebra B replaces O2 in Theorem A, and B is in general not simple.
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Theorem A(i) is implied by Proposition 12.2.15, because a separable exact algebra

A always has a nuclear *-monomorphism into L(`2) ⊂M(O2 ⊗K).

Proposition 12.2.15 (Trivialization and Embedding).

Suppose that B is strongly purely infinite, stable, σ-unital and has residually

nuclear separation, and that A is stable, separable and exact.

Let H be a non-degenerate *-monomorphism from A into M(B), such that

a ∈ A 7→ b∗H(a)b ∈ B is nuclear for every b ∈ B.

The following properties (i) and (ii) are equivalent:

(i) There exists a non-degenerate nuclear *-monomorphism h : A⊗O2 ↪→ B

such that δ∞h0 and δ∞H are unitarily homotopic, where h0(a) := h(a⊗1)

for a ∈ A, and δ∞ : M(B) → M(B) is the infinite repeat, as defined in

Remark 5.1.1(8).

(ii) The lower semi-continuous action

Ψ: J ∈ I(B) 7→ H−1(H(A) ∩M(B, J)) ∈ I(A),

of Prim(B) on A is also monotone upper semi-continuous (i.e., satisfies

condition (ii) of Definition 1.2.6).

Note that h0 = h0 ⊕s,t h0 if we use the isometries s, t ∈M(B) which are given

by s := M(h)(1 ⊗ r1) and t := M(h)(1 ⊗ r2) if r1 and r2 denote the canonical

generators of O2.

Proof. (i)⇒(ii): For a ∈ A, δ∞(H(a)) ∈ M(B, J) if and only if δ∞(h0(a)) ∈
M(B, J), because they are unitarily homotopic in M(B). For stable σ-unital B,

we have that

δ∞(M(B)) ∩M(B, J) = δ∞(M(B, J)),

i.e., b ∈ M(B, J) if and only if δ∞(b) ∈ M(B, J) for b ∈ M(B). Since B ∩
M(B, J) = J , it follows, that h0(A) ∩ J = h0(Ψ(J)). By Lemma 12.1.1(iii),

J 7→ h−1
0 (h0(A) ∩ J) satisfies condition (ii) of Definition 1.2.6.

(ii)⇒(i): We consider at first the case that B is separable.

By Remark 5.1.1(8), there is a strictly continuous unital C *-morphism from

M(K) into the relative commutant R of δ∞(H(A)) in M(B). It follows that R

contains a unital copy of O2 and a sequence of isometries r1, r2, . . ., such that

the isometries rn commute with the elements of O2, and that
∑
rn(rn)∗ strictly

converges to 1 in M(B).

There is a non-degenerate *-monomorphism K : A⊗O2 →M(B) with K(a⊗
b) = δ∞(H(a))b for a ∈ A and b ∈ O2. The isometries rn commute with the image

of K. Thus, by Lemma 5.1.2(i), δ∞K is unitarily equivalent to K.

If we can find a non-degenerate nuclear *-monomorphism h from A ⊗O2 into

B, such that δ∞h is unitarily homotopic to δ∞K, then the infinite repeat of h0 :=

h((.)⊗ 1) is unitarily homotopic to (δ∞)2H. But δ2
∞ is unitarily equivalent to δ∞

by Lemma 5.1.2(i).



2. SELECTIONS AND Ψ-EQUIVARIANT EMBEDDING 1017

Thus, by Theorem 6.3.1, it suffices to show that, for a1, . . . , an ∈ K(A ⊗ O2)

and for ε > 0, there exist completely positive contractions V : M(B) → B and

W : B →M(B) such that

(a) ‖W ◦ V (aj)− aj‖ < ε, for j = 1, . . . , n.

(b) V is strictly continuous and is residually equivariant, i.e., limn ‖V (bn) −
V (b)‖ = 0 if bn → b inM(B) strictly and V (J) ⊂ J∩B for J ∈ I(M(B)).

Old version was only: V is weakly residually nuclear.

(c) W : B → M(B) is weakly residually nuclear, i.e., W (J)B ⊂ J for J ∈
I(B), and the c.p. maps Wa : b ∈ B 7→ a∗W (b)a ∈ B are residually nuclear

for all b ∈ B. I.e. the maps [W ]J : B/J → M(B/J) ∼= M(B)/M(B, J)

have the property that ([W ]J)d : b ∈ B/J 7→ d∗[W ]J(b)d ∈ B/J is a

nuclear map for all d ∈ B/J . Here [W ]J(a+ J) := W (a) +M(B, J), i.e.,

d∗[W ]J(b)d = πJ(f∗W (a)f) for b = a+ J and d = f + J .

Old version was only: W is weakly residually equivariant,

i.e. W (J) ⊂M(B, J) for J ∈ I(B).

change the old version for Thm. 6.3.1, as executed below: ??

NEXT comes from some beamer presentation:

(1) H0(A) is non-degenerate, i.e., H0(A)B is dense in B, and is in “general

position” (i.e., there exists a unitary U ∈M(B) U∗H0(·)U = δ∞ ◦H0).

(2) The given lower s.c. action Ψ: I(B) → I(A) is realized by Ψ(J) :=

H−1
0 (H0(A) ∩M(B, J)) and Ψ is monotone upper semi-continuous, i.e.,

⋃
n Ψ(Jn)

is dense in Ψ(J) for J :=
⋃
n Jn, if the sequence Jn ∈ I(B) is increasing:

J1 ⊂ J2 ⊂ · · · .

(3) For every b ∈ B, the ΨA-compatible map A 3 a 7→ b∗H0(a)b ∈ B is nuclear,

and can be approximated by compositions V2 ◦ V1 of the residually nuclear maps

V1 : a ∈ A 7→ b∗1H1(a)b1 ∈ B and V2 : b ∈ B 7→ b∗2λ(b)b2 . I.e. V2 satisfies V2(J) ⊂ J
for all J ∈ I(B) and that [V2]J : B/J → B/J is nuclear for all J ∈ I(B).

Step 2:

If A satisfies (1)–(3), then, – with a ∈ A identified with H0(a) ∈ H0(A) ⊂ M(B)

– for every a1, . . . , an ∈ A and ε > 0, there exist completely positive contractions

V : M(B) → B and W : B → M(B) that satisfy the above listed conditions (a),

(b) and (c).

More on Step 2:

Consider the set of maps V := Vc : M(B) → B given by Vc : b ∈ M(B) 7→
c∗M(λ)(b)c . The point-norm closure is an m.o.c. cone C1 .

What is λ : B →M(B)??

Perhaps λ : B →M(B) a residually nuclear separation?

Do the same with the maps W := WT : B → M(B) given by WT (b) :=

T ∗λ(b)T , for T ∈M(B), and we denote this m.o.c. cone by C2 .
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Both cones are singly generated (as m.o.c.c.), e.g. C1 by eM(λ)(·)e where e ∈
B+ is strictly positive, and C2 by λ (as u.c.p. map).

The above listed properties (b) and (c) for suitable V = Vc and W = WT follow

from the properties of λ and the fact that M(λ) is the unique strictly continuous

extensions of λ.

Continuation 1: More on Step 2:

Notice that λ(b) and δ∞(b) for each self-adjoint b ∈ B must be unitarily

homotopic in M(B) by the generalized W-vN theorem, because both define *-

mono-morphisms from C∗(b) into M(B) that are in “general position” and de-

fine the same action of Prim(B) on C∗(b) by definition of λ, namely the action

J ∈ I(B) 7→ M(B, J) ∩ C∗(b).

It follows that each W ∈ C2 maps B into the closure I0 of M(B)δ∞(B)M(B),

the closed ideal of M(B) generated by δ∞(B).

Moreover, b ∈M(B)+ will be mapped by all P ∈ C2◦C1 into the ideal ofM(B)

that is the norm-closure of the union of the ideals M(B, J((ebe − 1/n)+)), with

J(b) ∈ I(B) as defined above, e ∈ B+ strictly positive contractions.

The following Lemma supports the conjectures in ‘‘Continuation

1’’ and ‘‘Continuation 2’’.

Lemma 12.2.16. Let B a σ-unital stable C*-algebra, e ∈ B+ a strictly positive

contraction, and let a ∈ M(B)+ such that the natural l.s.c. action of Prim(B) on

C∗(a) ∼= C0(Spec(a) \ {0}) is also monotone upper semi-continuous.

Then a is in the closed ideal of M(B) that is generated by δ∞(eae).

Suppose that – more generally – λ : B → M(B) is a non-degenerate *-

monomorphism such that δ∞ ◦λ is approximately unitarily equivalent to λ and that

span(BbB)) = span(Bλ(b)B)) for each b ∈ B+.

Then a is in the closed ideal of M(B) that is generated by λ(eae).

Proof. Let I(b) denote the closed ideal of M(B) generated by b ∈ M(B)+

and let J(b) the closed ideal of B generated by BbB. Note J(δ∞(b)) = J(b) =

J(ebe) = J(b1/2e2b1/2) = J(beb).

For b ∈M(B)+ and γ > 0 holds, by Lemma 5.9.10, that

δ∞((b− γ)+) ∈M(B, J((b− γ)+)) ⊆ I(δ∞(b)) .

Let ε > 0. Since, the natural action of Prim(B) on C∗(a) ∼= C0(Spec(a) \ {0}) is

monotone upper semi-continuous, and since J(eae) is the closure of
⋃
n J((eae −

1/n)+), we get that a is in the closed union of the ideals C∗(a)∩M(B, J((eae−γ)+))

for γ ∈ (0, 1).

It follows that (a− ε)+ ∈M(B, J((eae− γ)+)) for some suitable γ > 0. Then

(a− ε)+ ∈ I(δ∞(eae)). Since I(δ∞(eae)) is closed it follows a ∈ I(δ∞(eae)).

Add the missing cross references:
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The conditions on λ imply that, for b ∈ B+, the upper s.c. action of Prim(C∗(b))

on B defined by C∗(b) ⊂M(B) and λ : C∗(b)→M(B) are the same. This implies

that the l.s.c. actions of Prim(B) on C∗(b) defined by id |C∗(b) or λ|C∗(b) are

the same, because they are both the Galois adjoint of the same upper s.c. action,

cf. Proposition ??.

It follows by Corollary ?? that δ∞(λ(b)) and δ∞(b) are approximately uni-

tarily equivalent in M(B). This implies I(δ∞(λ(b))) = I(δ∞(b)). Since λ(b) is

approximately unitary equivalent to δ∞(λ(b)) it follows I(λ(b)) = I(δ∞(b)).

This applies in particular to b := eae.

What about the a and e here ??

It implies that a ∈ I(δ∞(eae)) = I(λ(eae)). �

Continuation 2: More on Step 2:

This ideal is contained in the closed ideal ofM(B) generated by δ∞(ebe) for a

strictly positive element e ∈ B+ of B.

??????????????????????

b ∈ I(δ∞(ebe)) if and only if b ∈ I(δ∞(e)) = the closed ideal ofM(B) generated

by δ∞(B).

??????????????????????

Conjecture: There exists a sequence Pn ∈ C2 ◦ C1 with ‖Pn(b)− b‖ → 0 if and

only if b ∈ I(δ∞(e)).

¡– Seems to require further assumptions.

Continuation 3: More on Step 2:

The condition (a) is equivalent to H0 ∈ C3 := C2 ◦ C1 ◦ CH0
. The m.o.c. cone

C3 is contained in the cone of (norm-) nuclear c.p. maps from A into M(B), and

the elements of C3 map A into the norm-closed ideal I(δ∞(B)) of M(B) that is

generated by δ∞(B).

More precisely, the elements of C3 map a ∈ A+ into the closed ideal of

I(δ∞(B)) ⊂M(B) generated by the element δ∞(e)δ2
∞(e)δ3

∞(a)δ2
∞(e)δ∞(e).

If there is b ∈ B+ such that δ∞(b) and a generate the same closed ideal of

M(B), then there are Tn ∈ C2 ◦ C1 such that ‖Tn(a)− a‖ → 0.

END of TEXT from old beamer presentation

Idea: take unital weakly residual nuclear monomorphism H

of M(B) in general position and use that H|C and idC are

approximately unitarily equivalent by unitaries u1, u2, . . ..

Then replace W by suitable u∗nH(W (·))un.

Let C := K(A ⊗O2), let a1, a2, . . . be a dense sequence in the unit ball of C,

and let Xn denote the span of {a∗1, a1, . . . , a
∗
n, an}.
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idM(B) |C is weakly residually nuclear, because C is exact and δ∞|A = K(( · )⊗
1) is nuclear by the exactness of A. In fact, id |C : C ↪→M(B) is even nuclear, see

Chapters 3 and 5, where we have discussed those topics in every detail.

Since K is unitarily equivalent to δ∞, id |C is unitarily equivalent to δ∞|C.

By Remark 12.2.13, there exists a non-degenerate weakly residually nuclear

*-monomorphism d : B → M(B) such that δ∞d is unitarily homotopic to d, and,

for J ∈ B,

d(J) = d(B) ∩M(B, J).

Thus M(d) (M(B, J)) =M(d)(M(B)) ∩M(B, J) for J ∈ I(B).

It follows, that the *-monomorphisms M(d)|C and id |C from C to M(B) are

both nuclear *-monomorphisms and induce the same action of Prim(B) on C, i.e.,

for J ∈ I(B),

M(d)(C ∩M(B, J)) =M(d)(C) ∩M(B, J).

Therefore, by Corollary 5.9.16, δ∞M(d)|C and δ∞|C are unitarily homotopic. This

implies, together with the unitary equivalence of δ∞|C and id |C, the existence of

a sequence U1, U2, . . . of unitaries inM(B), such that, for n = 1, 2, . . . and b ∈ Xn,

‖U∗nδ∞M(d)(b)Un − b‖ < 4−n‖b‖ . (1)

Let e ∈ B+ a strictly positive contraction in B of norm one. By Remark

5.1.1(3), we find a sequence of functions gn ∈ C0((0, 1])+, such that gngn+1 = gn,

‖gn‖ = 1, gn → 1 point-wise, and, for b ∈ Xn and m > n,

‖[gn(e), b]‖+ ‖[(gm(e)− gn(e))1/2, b]‖ < 4−n‖b‖.

We define real numbers γ(n, k,m, T ), γ(n, k,m) and γ(n, k) for k,m, n ∈ N and

for inner completely positive contractions T : B → B as follows:

γ(n, k,m, T ) := sup{‖T (gk(e)agk(e))− gm(e)agm(e)‖ ; a ∈ Xn, ‖a‖ ≤ 1}

γ(n, k,m) := inf
T
γ(n, k,m, T )

γ(n, k) := sup
m
γ(n, k,m).

Then γ(n, k,m) = 0 for m ≤ k, γ(n, k,m) ≤ γ(n + 1, k,m), γ(n, k,m) ≤
γ(n, k + 1,m) and γ(n, k,m) ≤ γ(n, k,m+ 1).

Thus, γ(n, k + 1) ≤ dzγ(n, k) ≤ γ(n+ 1, k).

Now we show that limk→∞ γ(n, k) = 0.

Since k 7→ γ(n, k) is decreasing and m 7→ γ(n, k,m) is increasing, it is enough

to show that limj→∞ γ(n, kj , kj+1) = 0 for every sequence k1 < k2 < . . ..

Let pj := gkj (e) for j ∈ N, and P : C → `∞(B), Q : C → `∞(B) the com-

pletely positive maps which are defined by P (c) := (p1cp1, p2cp2, . . . ) and Q(c) :=

(p2cp2, p3cp3, . . . ).
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To see limj→∞ γ(n, kj , kj+1) = 0, it suffices to show that, for every ε > 0, there

exists an inner completely positive contraction T on `∞(B), such that, for a ∈ Xn,

dist(T (P (a))−Q(a), co(B)) < ‖a‖ε.

Let h1 denote the C *-morphism from C ⊗ C0((0, 1]) ∼= C0((0, 1], C) to

`∞(B)/c0(B), with h1(c⊗f) = π((cf(p1), cf(p2), . . .)) for c ∈ C and f ∈ C0((0, 1]),

where π means the natural quotient map from `∞(B) onto `∞(B)/c0(B).

Further let h2 the *-epimorphism from C⊗C0((0, 1]) onto C, with h2(c⊗ f) =

f(1)c.

Note that h1(c ⊗ f2
0 ) = π(P (c)), where f0(t) = t. We show that h1 approxi-

mately inner dominates V := πQh2. Then the proof of limk γ(n, k) = 0 is ready,

because it follows that, for ε > 0, there is an inner completely positive contraction

T ′ on `∞(B)/c0(B), such that, for a ∈ Xn,

‖T ′(π(P (a)))− π(Q(a))‖ < ‖a‖ε/2.

(because C is exact).

Since every completely positive contraction c 7→ pjcpj , for j > 1, is a nuclear

map, its direct sum Q is a nuclear map from C into `∞(B) ⊂ M(c0(B)). By

Corollary 5.6.3, Q is nuclear, because C is exact. Thus V is nuclear.

Now we show that V (a⊗ f) = f(1)π(Q(a)) is in the closed ideal generated by

h1(a⊗ f) for a ∈ C+, f ∈ C0((0, 1])+ :

V (a ⊗ f) = 0, if f(1) = 0. But if f(1) > 0, then there is δ ∈ (0, 1), such

that f(t) > f(1)/2 for t ∈ (δ, 1]. Define λ ∈ C0((0, 1]) by λ(t) := 0 on [0, δ],

λ(t) :=],min(1, 2(t − δ)/(1 − δ)) for t ∈ (δ, 1]. Then f(1)(a ⊗ λ) ≤ a ⊗ f , and it

suffices to show that πQ(a) is in the closed ideal generated by π(b), where

b := (a1/2λ(p1)a1/2, a1/2λ(p2)a1/2, . . .).

By Corollary 3.10.12 and Proposition 2.12.8(iii),

what is needed: prop:2.24 ??? ??

this follows if we can show that the sequence of real numbers

λn = max(0, sup{‖pn+1apn+1 + J‖ − ‖a1/2λ(pn)a1/2 + J‖ : J ∈ Prim(B)})

converges to zero. We have

‖pn+1apn+1 + J‖ = ‖a1/2p2
n+1a

1/2 +M(B, J)‖ ≤ ‖a+M(B, J)‖.

By definition of λ, λ(pn)λ(pn+1) = λ(pn), ‖λ(pn)‖ = 1 and lim ‖λ(pn)e−e‖ = 0.

Since a1/2λ(pn)a1/2 ≤ a and λ(pn) is an increasing approximate unit of B,

we get that ξn(J) := ‖a1/2λ(pn)a1/2 + J‖ converges to ‖a +M(B, J)‖ for every

J ∈ Prim(B).

The natural lower semi-continuous action Ψup
B,C from Prim(B) on C satisfies,

for J ∈ I(B),

δ∞(H(Ψ(J))) = δ∞(H(A)) ∩Ψup
B,C(J) .



1022 12. NON-COMMUTATIVE SELECTION AND PROOF OF THM. K

Here we used that δ∞(M(B, J)) is the same as δ∞(M(B)) ∩M(B, J) . Since O2

is simple and nuclear, and since K(A⊗ 1) = δ∞(H(A)), we get that, for J ∈ I(B),

Ψup
B,C(J) = K(Ψ(J)⊗O2) .

Thus Ψup
B,C satisfies the condition (ii) of Definition 1.2.6, because Ψ satisfies

this condition by assumption.

By Corollary 12.2.8(ii), the property (ii) of Definition 1.2.6 for Ψup
B,C implies

that, for every a ∈ C+, the real function

J 7→ â(Ψup
B,C(J) = ‖a+M(B, J)‖

is a Dini function on Prim(B).

Therefore, the functions ξn converge on Prim(B) uniformly to the function

J 7→ ‖a+M(B, J)‖, because ξn is an increasing sequence of lower semi-continuous

functions which converges point-wise to J 7→ ‖a+M(B, J)‖ on Prim(B).

Let θn := sup{‖a+M(B, J)‖ − ξn(J) ; J ∈ Prim(B)} .

Then 0 ≤ limλn ≤ lim θn = 0. Thus V (a⊗ f) is in the closed ideal generated

by h1(a⊗ f) for a ∈ C+, f ∈ C0((0, 1])+ .

By Proposition B.4.2(ii), it follows now that, for every closed ideal J of C ⊗
C0((0, 1]), V (J) is in the closed ideal of `∞(B)/c0(B) that is generated by h1(J).

Thus, the kernel of h1 is contained in the kernel of V , and the natural completely

positive map S from the image of h1 into `∞(B)/c0(B) is residually equivariant.

Since C ⊗ C0((0, 1]) is exact, by Remark 3.1.2(iv), h1(C ⊗ C0((0, 1])) is exact

and S is nuclear.

By Corollary 3.10.7, S is approximately inner.

This completes the proof of limk→∞ γ(n, k) = 0.

We can take a sequence 1 < k1 < k2 < . . . of positive integers such that

γ(n, kn) < 4−n , and get an approximate unit en := gkn(e) ∈ B+, of B with

en+1en = en, ‖en‖ = 1, and, for b ∈ Xn,

‖[en, b]‖+ ‖[(en+1 − en)1/2, b]‖ < 4−n‖b‖. (2)

Since γ(n, kn) < 4−n, we find inner completely positive contractions Tn : B →
B, such that, for b ∈ Xn

‖Tn(enben)− en+1ben+1‖ < 4−n‖b‖. (3)

check next construction with new (a),(b),(c) of 6.3.1 ??

We define the desired weakly residually equivariant completely positive con-

tractions Wn : B →M(B) and Vn : M(B)→ B, such that Vn is weakly residually

nuclear, and (Wn ◦ Vn)|C tends to id |C in point-norm topology:

Let n ∈ N fixed and k > n. The inner completely positive contractions

Lk := Tk+1 ◦ Tk ◦ . . . ◦ Tn+1Tn
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of B are given by Lk(b) :=
∑mk
j=1(ck,j)

∗bck,j for b ∈ B, where ck,j ∈ B, j =

1, . . . ,mk,
∑mk
j=1(ck,j)

∗ck,j is a contraction. Note that, by induction, (3) implies

‖Lk(enben)− ek+2bek+2‖ < 41−n/3, (4)

for b ∈ Xn and k > n.

Let t1, t2, . . . denote the sequence of isometries inM(B) with
∑
tk(tk)∗ strictly

convergent to 1, such that our infinite repeat δ∞ is defined by
∑
tk(·)t∗k, cf. Remark

5.1.1(8).

Let fn := e
1/2
n , and fk := (ek+1 − ek)1/2 for k > n. We define, by induction,

integers p(n + 1) := 1 and, p(k + 1) = p(k) + mk for k > n, and elements of

M(B) by dn := 1, dk :=
∑mk
j=1(tp(k)+j)ck,j . Note dk is a contraction, because

(dk)∗dl = δk,l
∑
j(ck,j)

∗ck,j .

Then
∑
k>n dkfk is strictly convergent in M(B) and

Sn :=
∑
k≥n

dkfk

is a contraction in M(B), cf. Remark 5.1.1(???????). ??

Let, for b ∈M(B),

Wn(b) := S∗nδ∞(b)Sn,

and

Vn(b) := enU
∗
nδ∞(M(d)(b))Unen.

Then, Wn|B is a weakly residually equivariant contraction from B intoM(B),

Vn is a weakly residually nuclear contraction from M(B) to B, and, for b ∈ Xn,

‖WnVn(b)− b‖ < 41−n3‖b‖.

This estimate summarizes the estimate (1) and the estimates for ‖Γ(x − y)‖ and

‖Γ(y) − b‖ otained by summing the inequalities (4) and (2). Here Γ denotes the

completely positive contraction from `∞(B) into M(B), which is given by

Γ(b1, b2, . . .) := (en)1/2bn(en)1/2 +
∑
k>n

fkbkfk,

and x, y denote the elements of `∞(B), which are defined by xk := Lk(enben) and

yk := ek+2bek+2 for k = 1, 2, . . ..

Note that Γ(x) = Wn(enxen) and Γ(y) = (en)1/2b(en)1/2 +
∑
k>n fkbfk. (See

Remark 5.1.1(?????) ?? for the calculation of the needed estimates from those of

(2) and (4).)

Thus Theorem 6.3.1 applies in the separable case.

Here end of use of 6.3.1

If B is not separable, then we can consider instead of B a separable C *-

subalgebra D of B, which contains a strictly positive element of B, is invariant

by right and left multiplication by elements of H(A), and satisfies all the prop-

erties listed in Lemma 12.2.14 with respect to H(A), B and D. In particular,



1024 12. NON-COMMUTATIVE SELECTION AND PROOF OF THM. K

D is residually weakly injective in B, H(A)D ⊂ D, and D ∩ ΨD,B
down(I) = I for

I ∈ I(D). It follows H(A) ⊂M(D) ⊂M(B) and, therefore, by Lemma 12.1.1(iv),

H(A) ∩M(B, J) = H(A) ∩M(D,D ∩ J) for J ∈ I(B). Thus, Ψ(J) = Φ(D ∩ J)

for J ∈ I(B), where Φ(I) := H−1(H(A) ∩M(D, I)) for I ∈ I(D).

By Lemma 12.2.12, it follows that H : A →M(D) is is a weakly Φ-residually

nuclear map from A to M(D).

Since ΨD,B
down is upper semi-continuous, and Φ(I) = Ψ(ΨD,B

down(I)) for I ∈ I(D),

we get from (ii), that the lower semi-continuous action Φ also satisfies condition

(ii) of Definition 1.2.6.

By construction, D is again strongly purely infinite and has residually nuclear

separation.

Thus, by the above considered separable case, there exists a non-degenerated

nuclear *-monomorphism h : A ⊗ O2 → D ⊂ B, such that the infinite repeat of

h0 := h((·)⊗ 1) is unitarily homotopic to the infinite repeat of H in M(D). Since

D is a stable and non-degenerate C *-subalgebra of B, this implies that δ∞h0 is

unitarily homotopic to δ∞H in M(B). �

Remark 12.2.17. For every C *-algebra B, every separable C *-subalgebra

D of Q(R+, B) and every commutative separable C *-subalgebra C of D, there

exists a strongly continuous map t 7→ V (t) from R+ into the approximately inner

completely positive contractions on B, such that the completely positive contraction

T on Q(R+, B) defined by V fixes the elements of C and T (D) is contained in a

commutative C *-algebra of Q(R+, B).

This can be seen as follows: If g is a contraction in Cb(R+, B ⊗O∞) and f a

pure state on O∞ then

V (t)(b) := (id⊗f)(g(t)∗(b⊗ 1)g(t))

defines an approximately inner completely positive contraction V (t) of B such that

t 7→ V (t) is strongly continuous. For the corresponding completely positive contrac-

tion T on Q(R+, B) and the contraction d := g+C0(R+, B) in Q(R+, B⊗O∞) holds

T (a) = P (d∗(a⊗1)d) for a ∈ Q(R+, B). Here the completely positive contraction P

from Q(R+, B⊗O∞) onto Q(R+, B) is given on representatives e ∈ Cb(R+, B⊗O2)

by e(t) 7→ (id⊗f)(e(t)) for t ∈ R+, and Q(R+, B)⊗O∞ is naturally embedded in

Q(R+, B ⊗O∞). Now choose d for D⊗ 1 and C ⊗ 1 as in Lemma 12.1.6 to get the

desired result.

If B is purely infinite then, for every positive element a in Q(R+, B), T (a) is

in the closed ideal generated by a: For δ > 0, (T (a)− δ)+ = e∗ae+ f∗af for some

e, f ∈ Q(R+, B). It follows that then T |D is residually nuclear. This shows:

For every purely infinite C*-algebra B the asymptotic corona Q(R+, B) has

residually nuclear separation in the sense of Definition 1.2.3 (cf. Remark 12.2.10).



2. SELECTIONS AND Ψ-EQUIVARIANT EMBEDDING 1025

If, moreover, B is strongly purely infinite then there exists a contraction d in

Q(R+, B) with T (b) = d∗bd for b ∈ D. d commutes elementwise with C, as we have

shown on the beginning of the proof of Lemma 12.1.6.

Lemma 12.2.18. Suppose that B is stable and σ-unital. Let B1 := B ⊗ F ,

where F := O∞ ⊗ O∞ ⊗ . . .. Then there is a non-degenerate *-monomorphism

d : B1 ↪→M(B), such that

(i) δ∞d is unitarily equivalent to d, and

(ii) d(B1) ∩M(B, J) = d(J ⊗ F ) for J ∈ I(B).

Proof. Since B is stable, we can apply the infinite repeat δ∞ toM(B). There

is a unital copy of L(`2) in the relative commutant of δ∞(M(B)) inM(B). There-

fore, a unital copy of F ⊂M(B) commutes with δ∞(B).

Since F is nuclear and simple, it follows that there is a unique C *-morphism

h : B1 → M(B) with h(b ⊗ f) = δ∞(b)f for b ∈ B, f ∈ F . h is a non-degenerate

*-monomorphism, because δ∞|B := h((.)⊗1) is a non-degenerate *-monomorphism

and F is simple.

Let d := δ∞h. Then d is non-degenerate *-monomorphism, because d(B⊗1) =

δ2
∞(B) is a non-degenerate C *-subalgebra of M(B).

δ∞d is unitarily equivalent to d, because δ2
∞ is unitarily equivalent to δ∞.

Let J ∈ I(B). Then I := d−1(d(B1) ∩M(B, J)) is a closed ideal of B1. By

Proposition B.4.2(iii), there is a closed ideal K of B such that K⊗F = Ψ1(J). We

get that b ∈ K if and only if δ2
∞(b)B ⊂ J . Since b ∈ B, this is the case if and only

if b ∈ J . Thus K = J . �

Proof of Theorem K:. Let Ψ(J) := ΨA(ZJ) for J ∈ I(B). Here ZJ ⊂
Prim(B) denotes the hull of J .

The uniqueness up to unitary homotopy of the nuclear *-monomorphism h0 :=

h((.) ⊗ 1) follows from h0(Ψ(J)) = h0(A) ∩ J for J ∈ I(B) and from the unitary

homotopy of h0 with h0 ⊕ h0, cf. Corollary 9.1.4.

We reduce the general case to the case where B is separable and Ψ is non-

degenerate.

If B is separable, it suffices to consider, instead of of B, the smallest ideal I of

B with Ψ(I) = A, to prove the existence of h. The existence of I follows from the

lower semicontinuity of Ψ.

Thus, we may assume, in addition, that Ψ−1(A) = {B}.

Let F := O∞⊗O∞⊗ . . ., B1 := B⊗F , and let E1 and E denote the hereditary

C *-subalgebras of Q(R+, B1) and Q(R+, B) which are generated by B1 and B,

respectively. By Remarks 12.2.9 and 12.2.17, E1 and E are strongly purely infinite

and have residually nuclear separation.
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Since F is simple and nuclear, we get from Proposition B.4.2(iii), that

J ↔ J ⊗ F

defines a natural topological isomorphism from Prim(B) onto Prim(B1) and,

therefore, a lattice isomorphism from I(B) onto I(B1). We denote the ac-

tion of Prim(B1) on A by Ψ1, i.e., Ψ1(J ⊗ F ) = Ψ(J). Then Ψ1 is again

lower semi-continuous, satisfies property (ii) of Definition 1.2.6, Ψ1(0) = 0 and

Ψ−1
1 (A) = {B1}.

The action Φ(J) := Ψ1(B1∩J) for J ∈ I(E1) is a lower semi-continuous action

of Prim(E1) on A, and satisfies property (ii) of Definition 1.2.6, Φ(0) = 0 and

Φ−1(A) = {E1}. This is the case, because Ψ1 and Ψup
E1,B1

: J 7→ B1 ∩ J satisfy

conditions (ii)-(iv) of Definition 1.2.6, and B1 ⊂ J implies J = E1.

By Theorem 12.1.8, there is a non-degenerate weakly residually nuclear mono-

morphism G0 from A toM(E1) such that G0 is unitarily equivalent to δ∞G0, and,

for J ∈ I(E1),

G0(Φ(J)) = G0(A) ∩M(E1, J).

By Proposition 12.2.15, there is a non-degenerate nuclear *-monomorphism

k : A⊗O2 → E1 such that, for k0 := k((.)⊗ 1), δ∞k0 is unitarily homotopic to G0

in M(E1), and k0 is unitarily equivalent to k0 ⊕ k0.

In particular, for J ∈ I(E1),

δ∞k0(Φ(J)) = δ∞(k0(A)) ∩M(E1, J).

This implies k0(Ψ1(B1 ∩ I)) = k0(A) ∩ I for every closed ideal I of Q(R+, B1).

E1 is a hereditary C *-subalgebra of Q(R+, B1). Therefore, k is also nuclear as

a *-monomorphism from A⊗O2 into Q(R+, B1).

Since Ψ−1
1 (A) = {B1}, it follows from Corollary 9.1.7, that there exists a nuclear

*-monomorphism h from A⊗O2 into B1, such that h0 := h((.)⊗1) is non-degenerate

and satisfies h0(Ψ1(I)) = h0(A) ∩ I for I ∈ I(B). Thus, for J ∈ I(B),

h0(Ψ(J)) = h0(A) ∩ (J ⊗ F ).

Now, it follows from Lemma 12.2.18, that H0 = dh0 is a non-degenerate nuclear

*-monomorphism from from A into M(B), such that δ∞H0 is unitarily equivalent

to H0, and, for J ∈ I(B),

H0(Ψ(J)) = H0(A) ∩M(B, J).

Since B contains a strictly positive element of E, we get from Lemma 12.1.1

that M(B) ∩M(E, I) =M(B,B ∩ I) for I ∈ I(E), and we can consider H0 as a

non-degenerate nuclear *-monomorphism from A into M(E). Thus, for I ∈ I(E),

H0(Ψ(B ∩ I)) = H0(A) ∩M(E, I).

Now we can repeat the above applications of Proposition 12.2.15 and Corollary

9.1.7, where we have to replace B1 by B, E1 by E, and G0 by H0 : A→M(E).
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We get the desired non-degenerate nuclear *-monomorphism h from A ⊗ O2

into B with h0(Ψ(J)) = h0(A) ∩ J for J ∈ I(B) and h0 = h((.)⊗ 1). �

Corollary 12.2.19. Suppose that B is strongly purely infinite, separable and

stable.

Then {b̂ : b ∈ B} is the set of all Dini functions on Prim(B).

Proof. Let B1 := B ⊗O2, and let f be a Dini function on X.

By Proposition 12.2.6, there exists a ∈ (B1)+ with f(J) = â(J ⊗ O2) for J ∈
Prim(B). Let C denote the commutative C *-subalgebra of B1 which is generated

by a, and let A := C ⊗K. Then A is a nuclear C *-subalgebra of B1 ⊗K.

Let Φ(J) := J ⊗O2 ⊗K.

By Lemma 12.2.4, Φ is a lattice isomorphism from I(B) onto I(B1 ⊗K).

It follows that Ψ(J) := A ∩Φ(J) for J ∈ I(B) defines a lower semi-continuous

action of Prim(B) on A. It satisfies Ψ(0) = 0, Ψ(B) = A, and the condition (ii) of

Definition 1.2.6.

By Theorem K, there is a *-monomorphism h0 : A ↪→ B, such that, for J ∈
I(B),

h0(Ψ(J)) = h0(D) ∩ J.

Let b := h0(a⊗ p11). Then, for J ∈ Prim(B),

‖b+ J‖ = ‖(a⊗ p11) + Φ(J)‖ = â(J ⊗O2).

This means b̂ = f . �

The following Corollary 12.2.20 is an equivalent reformulation of Corollary L.

Corollary 12.2.20. Suppose that A and B are separable, stable and nuclear

C*-algebras, and that there is a topological isomorphism γ from X := Prim(A) onto

Prim(B).

Then there exists an isomorphism ϕ from A ⊗ O2 onto B ⊗ O2, such that ϕ

induces γ, i.e., for J ∈ Prim(A),

ϕ(J ⊗O2) = γ(J)⊗O2 .

ϕ with this properties is unique up to unitary homotopy.

In particular, the natural group morphism from Aut(A⊗O2) to the homeomor-

phisms of Prim(A) is an epimorphism with kernel equal to the group of automor-

phisms of A⊗O2 that are unitarily homotopic to id.

In particular, every approximately inner automorphism of A ⊗O2 is unitarily

homotopic to id.

Proof of Corollary L and of Corollary 12.2.20. By Theorem K,

there exist non-degenerate *-monomorphisms h : A ⊗ O2 ↪→ B ⊗ O2 and

k : B ⊗ O2 ↪→ A ⊗ O2 such that h and k induce the corresponding actions of
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X on B, i.e., for J ∈ Prim(A), h(J ⊗ O2) is the intersection of h(A ⊗ O2) with

γ(J)⊗O2, and similar for k. By Corollary 10.3.10(ii), h is unitarily homotopic to

an *-isomorphism ϕ from A⊗O2 onto B ⊗O2 with the desired property. Here we

have used that every unital *-endomorphism of O2 is unitarily homotopic to id,

and that O2
∼= O2 ⊗O2, cf. Corollary F(iii) and Corollary H(ii).

The uniqueness of ϕ follows from Corollary 10.3.10(i). �

3. Interjection: Non-commutative Selection Conjecture

Corollary 12.3.1. Suppose that A is a separable, stable and exact C*-algebra.

Then there are

(i) a separable stable nuclear C*-algebra B such that B ∼= B ⊗O2, and

(ii) a non-degenerate *-monomorphism ϕ : A ↪→ B such that ϕ induces an

isomorphism λ from I(B) onto I(A) by λ(I) := ϕ−1(I ∩ ϕ(A)), i.e., for

closed ideals I1, I2 ∈ I(B), I1 ∩ ϕ(A) = I2 ∩ ϕ(A) implies I1 = I2, and,

λ(I) = J for J ∈ I(A) and I := Bϕ(J)B ∈ I(B).

B is unique up to λ-equivariant isomorphisms, and ϕ is unique up unitary homo-

topy.

If, in addition, A strongly purely infinite, then there is also a non-degenerate

*-monomorphism ψ : B ↪→ A that induces a ”kind of inverse” for λ. The map ϕ◦ψ
is unitarily homotopic to idB.

The nuclear map ψ ◦ϕ is unitarily homotopic to idA : A→ A, if and only if, A

is nuclear and A ∼= A⊗O2.

Proof. The uniqueness of B follows from Corollary L. The uniqueness, up to

unitary homotopy, of ϕ follows from Corollary 7.4.8.

We can replace A by A ⊗ O2, to prove the existence of B and ϕ. Here we

use that O2 ⊗ O2
∼= O2 and that every unital *-endomorphism of O2 is unitarily

homotopic to the identity map of O2, cf. Corollary F(ii) and Corollary H(ii).

Suppose A ∼= A⊗O2. Then A is strongly purely infinite. By Theorem K, there

is a non-degenerate nuclear *-monomorphism h : A → A, such that h induces the

natural action of Prim(A) on A, i.e. h(J) = h(A)∩ J for every closed ideal J of A.

Let B denote the inductive limit indlim(hn : A → A) where hn = h for n =

1, 2, . . .. Since h is nuclear, B is a nuclear C *-algebra. By Corollary 10.3.11, B is

separable, stable and B ∼= B ⊗O2.

By Corollary 7.4.8, the nuclear maps hn and h are unitarily homotopic for

n = 2, 3, . . ., because hn(J) = hn(A)∩ J (by induction). This implies that J is the

closure of Ahn(J)A for every J ∈ I(A).

If we apply the canonical maps h∞n+kh
n = h∞k , we obtain that, for J ∈ I(A),

h∞k (J) = h∞k (A) ∩ h∞n+k(J),
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and h∞n (J) is the closure of h∞n (A)h∞1 (J)h∞n (A).

Let ϕ denote the canonical C *-morphism h∞1 from A into B := indlim(hn : A→
A), and, for J ∈ I(A), let µ(J) denote the closure of Bϕ(J)B. Then µ(J) is the

inductive limit of h∞n (J), and ϕ(A) ∩ µ(J) = ϕ(J).

If I ∈ I(B), then I is the inductive limit of h∞n (A) ∩ I, because
⋂
n h
∞
n (A) is

dense in A. If we apply the above observations to

Jn := (h∞n )−1(h∞n (A) ∩ I)

we get Jn = Jm for m,n ∈ N and

h∞n (ϕ−1(ϕ(A) ∩ I)) = h∞n (A) ∩ I.

Thus I = µ(ϕ−1(ϕ(A) ∩ I)), and λ defines a lattice isomorphism from I(B) onto

I(A) with inverse µ. (In particular, it preserves prime elements and the hk-topology

on them.)

If A strongly purely infinite, then, by Theorem K there is also a non-degenerate

*-monomorphism ψ : B ↪→ A that defines the “inverse” µ = λ−1 of λ : I(B) →
I(A), i.e., J ∩ ψ(B) = ψ(µ(J)).

Then ϕ ◦ ψ induces the identity on I(B), and ϕ ◦ ψ is unitarily homotopic to

idB by Theorem K.

If the nuclear map ψ◦ϕ is unitarily homotopic to idA : A→ A then A is nuclear

and idA is approximately unitarily equivalent to idA⊕ idA, because ψ and ϕ can be

taken non-degenerate (which implies that ψ ◦ (idB ⊕ idB) ◦ϕ is unitarily equivalent

to (ψ ◦ ϕ)⊕ (ψ ◦ ϕ)), and idB is unitarily homotopic to idB ⊕ idB .

If A is nuclear and A ∼= A⊗O2, then Theorem K applies also to ψ ◦ ϕ, and is

unitarily homotopic to idA : A→ A. �

Conjecture 12.3.2. Suppose that B is a separable stable C*-algebra with

B ∼= B ⊗ O∞. Let E denote the closure of BQ(R+, B)B, let H : A → M(E) a

non-degenerate C*-morphism from a separable stable C*-algebra A into the multi-

plier algebra M(E) of E, and let Ψ1 denote the lower semi-continuous actions of

Prim(E) on A which is defined, for I ∈ I(E), by

Ψ1(I) = H−1(H(A) ∩M(E, I)).

Furthermore, suppose that

(i) H is unitarily equivalent to its infinite repeat δ∞H,

(ii) H and σ̂H are unitarily homotopic, for every automorphism σ̂ of M(E),

which is induced by a scaling homeomorphism σ of R+, and

(iii) H is weakly Ψ1-residually nuclear.

The conjecture is:

Then there exists a C*-morphism H0 from A into M(B), which is in M(E) uni-

tarily homotopic to H.
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Remark 12.3.3. If the Conjecture 12.3.2 is true, then (i)-(iii) imply the addi-

tional condition

(iv) Ψ1(I1) = Ψ1(I2) if I1 ∩B = I2 ∩B.

This is because M(B) ∩M(E, I) =M(B, I ∩ B). The latter formula comes from

B ⊂ BEB = E.

One could believe that the proof of Conjecture 12.3.2 can be given with ideas

from Section 1. But there is a difficult point:

Let b ∈ B+ a strictly positive contraction of B. Let X be a compact subset of A+

with linear span dense in A. For T in M(E) let ‖T‖# := ‖Tb‖+ ‖bT‖.

The difficulty consists in the proof the following additional condition:

(v) For every linearly generating compact subset X of A, there exists a se-

quence of functions fn ∈ C0((0, 1])+ with

‖fn‖ = 1, fnfn+1 = fn and ‖[fn(b), H(a)]‖# < 2−n

for n ∈ N and a ∈ X, such that, in addition, for every ε > 0 and every

homeomorphism σ of R+, there is a unitary U ∈M(E) with the following

properties:

For every a ∈ X and n ∈ N, ‖[fn(b), U ]‖# < 2−n , and

‖U∗H(a)U − σ̂H(a)‖# + ‖H(a)− Uσ̂H(a)U∗‖# < ε.

Note that the existence of approximately commutative approximate units im-

plies that, for every countable set S of homeomorphisms σ of R+, such a sequence

fn exists (uniformly for all ε > 0 and σ ∈ S).

If, conversely, H is approximately unitarily equivalent to a “constant” H0, then

the same argument shows the existence of the desired sequence (fn) and the unitary

U ∈M(E). I.e., the sequence (fn) exists, if Conjecture 12.3.2 is true.

If we make the additional assumption of the above described “uniform” ex-

istence of the sequence fn, then the proof of the Conjecture 12.3.2 is similar to

the proofs of Proposition 9.1.2 and its Corollary 9.1.3 together. But the operator

norms, that we have considered there, must be replaced by the above strictly con-

tinuous norms ‖ . ‖#. This norm is invariant under scaling automorphisms σ̂, but

it is only quasi-invariant with respect to inner automorphisms.

Remark 12.3.4. Let A, B, E and H : A → M(E) as in Conjecture 12.3.2.

Suppose that there exists a non-degenerate C *-morphism H0 from A into M(B),

such that H0 is unitarily homotopic to H in M(E).

Let Ψ2 denote the lower semi-continuous actions of Prim(B) on A defined by

Ψ2(J) := H−1
0 (H0(A) ∩M(B, J)).

Then Ψ1(J) = Ψ2(J ∩B) for J ∈ I(E) and H0 is weakly Ψ2-residually nuclear.

Indeed:

Since H0 and H are unitarily homotopic in M(E) , H0(a) is in M(B) ∩M(E, J)



3. INTERJECTION: NON-COMMUTATIVE SELECTION CONJECTURE 1031

if and only if H(a) is in M(E, J). But it is easy to see that M(B, J ∩ B) =

M(B) ∩M(E, J). Thus Ψ1(J) = Ψ2(J ∩B) for J ∈ I(E).

Let I ∈ I(B). Then J := Q(R+, I) ∩ E is a closed ideal of E, such that

J ∩ B = I. B/I is relatively weakly injective in E/J , because E/J is naturally

isomorphic to the hereditary C *-subalgebra of Q(R+, B/I), that is generated by

B/I.

It follows, that I = B ∩ ΨB,E
down(I), and that B/I is relatively weakly injective

in E/ΨB,E
down(I). Therefore, B is residually relatively weakly injective in E.

Thus H0 is Ψ2-residually nuclear by Lemma 12.2.12, where we have to replace

(C,A,B) by (H0(A), B,E).

Definition 12.3.5. A separable C *-algebra B has the (non-commutative)

selection property if, for every separable C *-algebra A and every lower semi-

continuous action

Ψ: I(B)→ I(A)

of Prim(B) on A in the sense of Definition 1.2.6 with Ψ(0) = 0 and Ψ−1(A) = {B},
there exists a non-degenerate weakly Ψ-residually nuclear *-monomorphism H0

fromA into the multiplier algebraM(B) ofB such that δ∞H0 is unitarily equivalent

to H0, and, for J ∈ I(B),

Ψ(J) = H−1
0 (H0(A) ∩M(B, J)) .

(By Corollary 5.9.16, H0 is unique up to unitary homotopy.)

Lemma 12.1.2(ii) allows to give an equivalent definition which also works for

non-stable B.

In other words (in the terminology of Section ??):

For every separable A and for every non-degenerate lower semi-continuous action

Ψ of Prim(B) on A, CPrn(Ψ;A,B) realizes the action Ψ in the sense that Ψ = ΨC

for C := CPrn(Ψ;A,B).

The “selection” procedure is the following:

Let be given a0 ∈ A+ and a pure state λ0 on B with λ0(Ψ(span(Aa0A)) 6= {0}.
Then we have to construct a continuous map f from the Polish space P (B) of pure

states on B into the compact metric space S(A∗) of positive linear functionals ρ on

A with ‖ρ‖ ≤ 1 with properties:

(i) f(λ)(Ψ(Jλ)) = 0 for all λ ∈ S(A∗), where Jλ is the kernel of the irreducible

representation dλ corresponding to λ.

(ii) For each a ∈ A+ there is b ∈ B with λ(b) = f(λ)(a) for all λ ∈ S(A∗).

The condition (ii) is not covered by usual selection theorems.

Conjecture 12.3.6 (Non-commutative Michael selection principle). Every

separable and stable C*-algebra B has the selection property of Definition 12.3.5.
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Now there exists a proof of the NC Micheal selection principle.

??

It uses that coherent Dini spaces are primitive ideal spaces of nuclear separable

C *-algebras and that every lower s.c. action of an Abelian separable C *-algebra C

on a separable and stable C *-algebra B comes from a H0 : C →M(B).

Remark 12.3.7.

(1) It is known that every exact separable stable C *-algebra B has the selection

property, because B ⊗ O2 contains a “regular” commutative C *-subalgebra C ⊂
B ⊗O2 if B is exact and separable (cf. Remark 12.3.8).

(2) Since B has the selection property, if and only if, B ⊗O2 has the selection

property, we may suppose that B ∼= B ⊗O2 and let D ⊂ B a non-degenerate copy

of C ⊗ K that is also regular in B. Then the non-commutative Michael selection

principle, the observation that M(B,B ∩ J) is equal to the set of T ∈M(B) with

TD ⊂ J , Lemma 12.1.2 and Corollary 5.9.15 imply together a proof of Conjecture

12.3.2 for all stable separable B with the property that B⊗O2 contains an Abelian

regular C *-subalgebra.

(3) If the Conjecture 12.3.2 is true then also the non-commutative Michael

selection principle of Conjecture 12.3.6 holds:

Let B1 := B⊗O∞. By Theorem 12.1.8 and Conjecture 12.3.2, there is a weakly

Ψ-residually nuclear C *-morphism H1 : A→M(B1) such that, for J ∈ I(B),

Ψ(J) = H−1
1 (H1(A) ∩M(B1, J ⊗O∞)).

Let J ∈ I(B) and a ∈ A \Ψ(J). Then there is f ∈ B1, such that f∗H1(a)f is not

in J ⊗O∞.

Let d : B1 → M(B) denote the non-degenerate *-monomorphism of Lemma

12.2.18.

By Lemma 12.2.18(ii), d(f∗H1(a)f) is not inM(B, J), i.e., there is e ∈ B, such

that V (a) is not in J , where we let V (c) := e∗d(f∗H1(c)f)e for c ∈ A.

V is Ψ-residually nuclear for f ∈ B1 and e ∈ B, because f∗H1(.)f is Ψ-

residually nuclear, and e∗δ∞(d(.))e is equivariant on I(B) ∼= I(B1).

By Lemma 12.1.2, there exists the desired Ψ-residually nuclear non-degenerate

*-monomorphism H0 from A to M(B).

Thus a proof of Conjecture 12.3.2 would imply a proof of the non-commutative

Michael selection principle.

Remark 12.3.8. If one limits to those separable C *-algebras B such that

Prim(B) is homeomorphic to Prim(C) for a separable exact C *-algebra C, then,

by Corollary 12.3.1, Theorem K, Corollary L and Lemma 12.2.18, it suffices to

prove the selection property for the unique stable separable nuclear C *-algebra A

with Prim(A) homeomorphic to Prim(B), and with A ∼= A⊗O2. Thus, in this class
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of C *-algebras B, the selection property is essentially a property of the T0-space

Prim(B).

Lemma 12.1.3 implies, that every separable stable C *-algebra B with Hausdorff

primitive ideal space has the selection property.

Lemma 12.1.4 and the below given Lemma 12.3.10 show that stable separable

B has the selection property if B contains a commutative C*-subalgebra C which is

regular in B in the sense of Definition B.4.1.

This implies, e.g., that B has the selection property if its primitive ideal space

is isomorphic to the primitive ideal space of an inductive limit of C *-algebras with

Hausdorff primitive ideal spaces. But the second example considered after Corollary

N in Chapter 1, is not such an inductive limit but contains a commutative C *-

subalgebra which is regular in the algebra.

Examples of those B where considered by Mortensen [559]. We generalize his

construction as follows:

Let S be a compact metric semi-group with jointly continuous multiplication,

and let C := C(S). The multiplication defines a unital C *-morphism d : C → C⊗C,

which is given by d(f)(x, y) = f(xy). Let A := C ⊗ O2. We choose a unital *-

monomorphism h from C into O2, and a *-isomorphism k from O2 ⊗O2 onto O2.

Let g denote the unital *-endomorphism of A, which is given by

g := (idC ⊗k)((idC ⊗h)d)⊗ idO2
).

Now let B := indlim(hn : A→ A), with hn = h for n = 1, 2, . . ..

Then I(B) is the projective limit of the iterates of the map from O(S) into

O(S), which is given, for open subsets Z of S, by

Z 7→ S \ ((S \ Z)S).

If S is a linearly ordered space, which is separable and compact in its interval

topology, then S is topologically and order isomorphic to a closed subset of the

interval [0, 1] (cf. [360]). S carries semigroup structures, e.g. the multiplication

(x, y) 7→ min(x, y). The corresponding map on O(S) is given by

Z 7→ S ∩ (max(S \ Z), 1],

and the T0-space of the corresponding is S with S, ∅ and S ∩ (t, 1], t ∈ [0, 1) as

open subsets. (Together with Corollary L, this implies the main result of [559].)

Remark 12.3.9. The realization H0 : A→M(E) of a lower semi-continuous

actions ΨB : I(A) → I(B) of Prim(A) on B (as given Theorem 12.1.8 with E :=

BQ(R+, B)B) can be used to obtain realizations of upper semi-continuous actions

ΨA : I(B) → I(A) of Prim(B) on A, if the action ΨA is ‘residually non-singular’

in the following sense:

We call an action ΨA : I(B) → I(A) of Prim(B) on A residually non-

singular, if ΨA(J1) = ΨA(J2) and J1 ⊂ J2 imply J1 = J2.
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If ΨA satisfies the condition (i) or the condition (iii) of Definition 1.2.6, then

ΨA is residually non-singular if and only if ΨA is an injective map from I(B) into

I(A).

Let B and A stable and separable, and let X := Prim(B). Since in the following

considerations only the lattices of ideals are considered, we assume — for simplicity

— that B ⊗ F ∼= B and A⊗ F ∼= A, where F ∼= O∞ ⊗O∞ ⊗ . . ..

Suppose that ΨA : I(B) ∼= O(X)→ I(A) satisfies the conditions (i) and (ii) of

Definition 1.2.6, and ΨA(0) = 0, Ψ−1
A (A) = {B}.

We define, for I ∈ I(A), a subset of I(B) by

γ(I) := {J ∈ I(B) : ΨA(J) ⊂ I} .

The set γ(I) is closed under sums J1 + J2 of closed ideals, and J ∈ γ(I) if J is

the closure of an increasing sequence in γ(I). Therefore γ(I) contains a unique

maximal element ΨB(I). ΨB(I) is the closure of the sum of all elements in γ(I).

It is easy to see that ΨB : I(A) → I(B) is a lower semi-continuous action of

Prim(A) on B, that Ψ−1
B (B) = {A}, and that, for J ∈ I(B), I ∈ I(A), J ⊂ ΨB(I)

if and only if ΨA(J) ⊂ I. In particular, J ⊂ ΨB(ΨA(J)). It follows that, for

J ∈ I(B),

ΨA(J) =
⋂
{I ∈ I(A) : J ⊂ ΨB(I)}.

If ΨA is residually non-singular, it implies that ΨB(0) = 0, and that ΨB is a left

inverse of ΨA.

Let E denote the closure AQ(R+, A)A, and let H0 : B → M(E) be the ΨB-

residually nuclear non-degenerated *-monomorphism of Theorem 12.1.8 for ΨB ,

then an easy calculation shows that, for J ∈ I(B),

ΨA(J) = A ∩Ψ
H0(B),E
down (H0(J)) .

If, moreover, A has the selection property, then even H0 can be found such

that H0(B) ⊂M(A), and we get, for J ∈ I(B),

ΨA(J) = A ∩Ψ
H0(B),A
down (H0(J)) .

Lemma 12.3.10. Suppose that A is a nuclear stable C*-subalgebra of a separable

stable C*-algebra B, and that A has the selection property of Definition 12.3.5.

Then the following are equivalent:

(i) A is a regular subalgebra of B in the sense of Definition B.4.1.

(ii) Ψup
B,A : J ∈ I(B) 7→ A ∩ J ∈ I(A) is a residually non-singular action,

which is continuous in the sense of Definition 1.2.5, (i)-(iv).

(iii) A separates the ideals of B, and, for every I ∈ I(A), the set γ(I) := {J ∈
I(B) : A ∩ J ⊂ I} contains a unique maximal element.

(iv) A separates the ideals of B, and there exists a sequence (Tn) of residually

equivariant maps from B into B, such that Tn(B) ⊂ A for n ∈ N, and

Tn|A converges in point-norm topology to id |A.
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Proof. If J1, J2 ∈ I(B), I := (A ∩ J1) + (A ∩ J2), and γ(I) of (iii) contains

a maximal element K, then J1 ⊂ K and J2 ⊂ K. Therefore J1 + J2 ⊂ K, which

means I = A ∩ (J1 + J2).

This observation shows that (iii) and (ii) are obvious equivalent formulations

of (i).

(iv)⇒(i): Since A separates I(B), it remains to show that A ∩ (J1 + J2) is

contained in (A ∩ J1) + (A ∩ J2), for J1, J2 ∈ I(B). The argument in the second

part of the proof of Lemma 12.1.4 can be easily adapted, to get this.

(iii)⇒(iv): ΨB(I) := max γ(I) is the lower semi-continuous action of Prim(A)

on B, which corresponds to the upper semi-continuous action ΨA := Ψup
B,A in the

sense of Remark 12.3.9.

ΨB(0) = 0 and Ψ−1
B (B) = {A}, because A separates the ideals of B.

Since A is separable, stable, and has the selection property, there is a non-

degenerate weakly ΨB-residually nuclear *-monomorphism H0 from B intoM(A),

such that, for I ∈ I(A)

H0(ΨB(I)) = H0(B) ∩M(A, I).

It follows A ∩ΨB(I) ⊂ I, and

H−1
0 (H0(A) ∩M(A, I)) = A ∩ΨB(I) .

Thus, by Corollary 3.10.6(II), H0|A approximately dominates V := idA, because A

is also nuclear.

The hereditary C *-subalgebra D ⊂ B generated by A is stable and generates

B as an ideal, because A is stable and separates I(B).

If we consider H0|D as a *-monomorphism from D into M(D), then H0|D is

weakly residually nuclear, because A is nuclear, H0(D) ⊂M(A), and, for J ∈ I(B),

J = ΨB(A ∩ J) and

H0(D) ∩M(D,D ∩ J) = H0(ΨB(A ∩ J)) .

Thus T := a∗H0(b∗(.)b)a is a residually nuclear map from B into B with image

in A, if a ∈ A and d ∈ D.

The convex combinations of restrictions T |A approximate id |A in the point-

norm topology, because, the map H0|A approximately dominates V := idA. �

The following Proposition 12.3.11 generalizes part (ii) of Theorem A.

Proposition 12.3.11. Suppose that A, B are stable and separable, that A

is nuclear and has the selection property, B is strongly purely infinite, and that

Ψ: I(B) → I(A) is a residually non-singular lower semi-continuous action of

Prim(B) on A with Ψ(0) = 0 and Ψ(B) = A.

Then the following are equivalent.

(i) Ψ is a continuous action in the sense of Definition 1.2.6, (i)-(iv).
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(ii) There is a non-degenerate *-monomorphism h0 : A ↪→ B with h0(Ψ(J)) =

h0(A) ∩ J and [h0] = [h0] + [h0] and a residually equivariant conditional

expectation P from B onto h0(A).

(iii) Every non-degenerate *-monomorphism h from A into B, with h(Ψ(J)) =

h(A) ∩ J and [h] = [h] + [h], maps A onto a regular subalgebra of B.

Proof. Combine Theorem K, Lemma 12.3.10, and the last part of Theorem

6.3.1. �

The next observations allows to extend the main results of this section consid-

erably (see Corollary 12.3.18).

Alternative version from Dini3 :

Suppose that A is a stable separable C *-algebra, and that g : Prim(A)→ [0,∞)

is a bounded lower semi-continuous function,such that the set X := {sup g(F ) ; F ∈
F(Prim(A))} is closed in [0, sup g(X)].

Then there exists a ∈M(A)+ with the following properties (i)-(iii).

(i) Spec(a) = X,

(ii) g(J) = ‖a+M(A, J)‖ for all J ∈ Prim(A), and

(iII) Spec(a+M(A, I)) = X ∩ [0, sup g(hull(I))] for every closed ideal I / A.

If a ∈ M(A)+ satifies (i)-(iii) then its infinite repeat δ∞(a) also satisfies (i)-

(iii). If b ∈ M(A)+ satisfies (i)-(iii) (with b in place of a), then there is

norm-continuous map t ∈ [0,∞) 7→ U(t) ∈ U(M(A)) such that U(0) = 1 and

limt→∞ U(t)δ∞(a)U(t)∗ = δ∞(b).

Proposition 12.3.12. Suppose that B is stable and separable, 1 ∈ K ⊂ [0, 1]

a closed set and that f : Prim(B) → K is a lower semi-continuous function on

Prim(B) with supremum sup f(Prim(B)) = 1. Then there is a ∈ M(B)+ with

following properties:

(i) Spec(a) = K

(ii) ‖a+M(B, J)‖ = f(J) for all J ∈ Prim(B),

(iii) a is unitarily equivalent to δ∞(a).

(iv) The action of Prim(B) on K = Spec(a) ∼= Prim(C∗(a, 1)) is given by

Ψ(I) = (‖a+M(B, I)‖, 1] ∩K for all closed ideals I of B.

The a ∈M(B)+ with (i)–(iv) is unique up to unitary homotopy.

Proof. We find isometries r, t, s1, s2, . . . ∈ M(B) with tt∗ + rr∗ = 1 and

with
∑
n sn(sn)∗ strictly converges to 1. We define ∆: `∞(M(B)) → M(B) by

∆(b1, b2, · · · ) :=
∑
snbn(sn)∗. If we identify `∞(M(B)) with M(c0 ⊗ B) then we

can see that ∆ is a unital non-degenerate strictly continuous *-monomorphism.

If J is closed ideal of B, then J is stable, and tBt∗+sJs∗ is stable and generates

a full hereditary C *–subalgebra D of B. Then D is stable, and, by Corollary 5.5.6

(which is the Ψ-equivariant version of the Brown stable isomorphism theorem),
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there exists an approximately inner isomorphism ψ from B onto D. Thus, there

is an projection p ∈ M(B) such that pBp and (1 − p)B(1 − p) are stable, pBp

generates J and (1 − p)B(1 − p) is full in B . It follows that there is an isometry

v ∈ M(B) with vv∗ = 1− p, and that the strictly closed ideal of M(B) generated

by p is just M(B, J).

We define a lower semi-continuous increasing function γ : K → K by γ(0) := 0

and γ(s) := sup(K ∩ [0, s)) for s > 0. The function γ satisfies t ≤ γ(s) ≤ s for all

t < s ∈ K, and γ(s) < s holds if and only if (γ(s), s) ∩K = ∅.

It holds inf{γ(s) ; s ∈ (t, 1] ∩K} = t for all t ∈ K. Indeed, if t = inf K ∩ (t, 1],

then there is a sequence s1 > s2 > · · · inK with lim sn = t, then sn+1 ≤ γ(sn) ≤ sn,

thus lim γ(sn) = t. For each s ∈ (t, 1] ∩ K there is n ∈ N with s > sn. Hence

γ(s) ≥ γ(sn) ≥ t and inf{γ(s) ; s ∈ (t, 1] ∩K} = t . If t < s0 := inf K ∩ (t, 1], then

s0 ∈ K (by compactness of K) and (t, s0)∩K = ∅. It follows (t, 1]∩K = [s0, 1]∩K,

[0, s0) ∩K = [0, t] ∩K and inf{γ(s) ; s ∈ (t, 1] ∩K} = g(s0) = t.

Now let (x1, x2, . . .) a dense sequence of (pairwise different) points in K \ {0}
that contains all boundary points of K (in (0, 1]).

Let Jn denote the ideal of B corresponding to the open subset f−1(γ(xn),∞)

of Prim(B). For each n ∈ N, we find a projection pn ∈M(B, Jn) such that pnBpn

is stable and generates Jn.

Define a := ∆(x1p1, x2p2, . . .). We show that a ∈ M(B) satisfies (i) and (ii),

and we modify a later to get also (iii) and (iv).

(i): Let p0 := 1 − ∆(p1, p2, . . .), and define a unital *-morphism λ : C(K) →
M(B), for g ∈ C(K), by

λ(g) := g(0)p0 + ∆(g(x1)p1, g(x2)p2, . . .) .

Then λ is faithful, because {0, x1, x2, . . .} is dense in K. Clearly a = λ(f0) for

f0(t) := t, t ∈ K. Thus Spec(a) = Spec(f0) = K by spectral permanence.

(ii): Notice that (sn)∗Bsn = B, (sn)∗Jsn = J and pnB generates Jn. Thus

pn(sn)∗Bsn ⊂ (sn)∗Jsn is equivalent to Jn ⊂ J . If J is primitive, then the inclusion

Jn ⊂ J means that f(J) ≤ γ(xn) (by definition of Jn).

Let J ∈ Prim(B). Then ‖a + M(B, J)‖ ≤ t, if and only if, ‖(a − t)+ +

M(B, J)‖ = 0, if and only if, (a − t)+B ⊂ J , if and only if, min(xn −
t, 0)pn(sn)∗Bsn ⊂ (sn)∗Jsn for all n ∈ N, if and only if, f(J) ≤ γ(xn) for

all n with t < xn.

Thus, ‖a+M(B, J)‖ ≤ t, if and only if, f(J) ≤ t, because

inf{γ(xn) ; t < xn} = inf{γ(s) ; s ∈ (t,∞) ∩K} = t .

It follows (ii).

(iii): Replace a by δ∞(a) (if necessary) and use that δ∞ ◦ δ∞ is unitarily

equivalent to δ∞ by Lemma 5.1.2(i).
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(iv): Suppose that a′ ∈M(B) satisfies (i)–(iii) (in place of a). By property (iii)

and by Lemma 5.1.2(ii), one can find a unital *-monomorphism ϕ : C(K)⊗O2 →
M(B) with ϕ(f0⊗1) unitarily equivalent to a′ with property (i)–(iii), where f0(t) =

t for t ∈ K. Take a unital monomorphism ρ : C(K)→ O2 (e.g. using a continuous

epimorphism of the Cantor set onto K), and let g ∈ C(K × K) ∼= C(K) ⊗ C(K)

denote the function g(s, t) := min(s, t).

Then Spec(g) = g(K × K) = K, and, for every closed subset F of K, one

has g(F × K) = [0,maxF ] ∩ K. It follows that b := (id⊗ρ)(g) ∈ C(K) → O2

has spectrum Spec(b) = F and that a natural action of Prim(C(K) ⊗ O2) ∼= K

on Prim(C∗(b, 1)) ∼= K is given by F 7→ K ∩ [0,maxF ] (all expressed by the

maps for the closed subsets F ). In particular, if I is a closed ideal of C(K) ⊗ O2

(corresponding to the open subset U of K), then I ∩ (C(K) ⊗ 1) = C0(U) ⊗ 1

and I ∩ C∗(b, 1) = µ(C0(K ∩ (max(K \ U), 1])), for the unital *-monomorphism

µ : h ∈ C(K)→ h(b) = (id⊗ρ)(h◦g) ∈ C(K)→ O2 . It implies ‖b+I‖ = ‖f0⊗1+I‖
and I ∩ C∗(b, 1) = µ(C0(K ∩ (‖b+ I‖, 1]), for all closed ideals of C(K)→ O2 .

Let a := δ∞(ϕ(b)). Then a satisfies (i)–(iv), because the l.s.c. action of Prim(B)

on C∗(a, 1) (respectively on C∗(a′)) factorizes over the action on of Prim(C(K)→
O2 ) ∼= K on C(K)⊗ 1 (respectively on C(K)⊗ 1). �

Lemma 12.3.13. Suppose that B is a σ-unital C*–algebra, and that J,K ∈
I(B).

(i) (J +K)+ = J+ +K+, and

(ii) M(B, J +K) =M(B, J) +M(B,K) .

Proof. (i): See [401, exercise 4.6.64]. Alternatively: It is easy to see that the

set J +K is a closed ideal. Let c ∈ (J +K)+, and d := c1/2. There are selfadjoint

a ∈ J and b0 ∈ K with a+ b0 = d. Then c ≤ a2 + b2 for b := (b20 + (ab0 + b0a)−)1/2

and b ∈ K+. By asymmetric Riesz decomposition [616, prop. 1.4.10], there are

e, f ∈ B with ee∗ ≤ a2, ff∗ ≤ b2 and c = e∗e+ f∗f .

(ii): Since J , K and J + K are closed ideals of B, the M(B, J), M(B,K),

M(B, J) +M(B,K) and M(B, J +K) are closed ideals of M(B). The inclusion

M(B, J) +M(B,K) ⊂M(B, J +K)

comes immediately from the Definition of M(B, ·). Let T ∈ M(B, J + K)+ and

ε > 0. Since B is σ-unital, there is an approximate unit e0 = 0 ≤ e1 ≤ e2 ≤ · · · ≤ 1

in B with enen+1 = en for n ∈ N, such that
∑
n(en+1 − en) and

∑
n≥0(en+1 −

en)1/2T (en+1−en)1/2 are strictly convergent with sums 1 and T1 and ‖T1−T‖ < ε.

Let e−1 := 0 and fn := en+2 − en−1. By part (i), there are an ∈ J+ and bn ∈ K+

with an + bn = fnTfn. Then S1 :=
∑
n≥0(en+1 − en)1/2an(en+1 − en)1/2 and

S2 :=
∑
n≥0(en+1−en)1/2bn(en+1−en)1/2 are strictly convergent, S1 ∈M(B, J)+ ,

S2 ∈M(B,K)+ , T1 = S1+S2. Thus, T has distance < ε fromM(B, J)+M(B,K)

(for each ε > 0). �
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Remark 12.3.14. The (algebraic) definition of M(B, J) immediately shows

that
⋂
γM(B, Jγ) = M(B,

⋂
γ Jγ) for for every family {Jγ} ⊂ I(B), i.e., that

M(B, ·) is lower semi-continuous.

The monotone map M(B, ·) is not monotone upper semi-continuous, e.g. if

B := c0 = C0(N) and Jn := C({1, 2, . . . , n}) (respectively B := C0(N,O2 ⊗K) and

Jn := C({1, 2, . . . , n},O2⊗K) ), then B =
⋃
n Jn, but

⋃
nM(B, Jn) is not dense in

M(B) =M(B,B).

Next need Def.’s of Dini function and Dini space

Lemma 12.3.15. Suppose that B is separable and stable, that X is a Dini space,

and that Ψ: I(B) ∼= O(Prim(B))→ O(X) is a lower semi-continuous action.

Let J ∈ I(M(B)) and let Ψ∗(J) := the biggest open subset U of X such that,

for every Dini function g : X → [0,∞) on X with support in U and sup g(X) = 1,

af ∈ J for the element af ∈ M(B)+ of Proposition 12.3.12 for the l.s.c. function

f(J) := sup g(X \Ψ(J)) for every Dini function g : X → [0,∞) on X with support

in U and sup g(X) = 1.

It holds

(o) Ψ∗ : I(M(B))→ O(X) is well-defined.

(i) U ⊂ Ψ∗(J), if and only if, M(B,Φ(V )) ⊂ J for all V << U and the

upper s.c. adjoint Φ of Ψ.

(ii) The map J → Ψ∗(J) is l.s.c. and monotone upper s.c. on the ideals J

with J ∩ δ∞(M(B)) generates J .

Proof. Important, to be filled in ??, �

Proposition 12.3.16. Suppose that A is separable and contains a regular exact

C*-subalgebra C. Then A has the Abelian factorization property.

Theorem 12.3.17. Suppose that A and B are separable and stable, and that A

has the Abelian factorization property.

Then, for each non-degenerate lower semi-continuous action Ψ: I(B)→ I(A),

there is a non-degenerate faithful weakly Ψ-residually nuclear C*-morphism

H : A→M(B) (with H unitarily equivalent to δ∞) such that

Ψ(J) = H−1(H(A) ∩M(B, J)) for all J ∈ I(B) .

Proof. to be filled in ??, �

Corollary 12.3.18. Suppose that A and B are separable C*-algebras, A is

exact and B is stable. If Ψ: I(B) → I(A) is a lower semi-continuous action

of Prim(B) on A with Ψ({0}) = {0} and Ψ−1(A) = {B}, then there is a non-

degenerate (norm-) nuclear C*-morphism H : A → M(B) with δ∞ ◦ H unitarily

equivalent to H and Ψ(J) = H−1(H(A) ∩M(B, J)) for all J ∈ I(B).

The nuclear morphism H is unique up to unitary homotopy.
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Proof. to be filled in ?? �

4. Proof of (old !!!) Theorem O

We conclude this chapter with the proof of the old !!!! Theorem O.

beginning from here, old text has to be replaced ??

The proof is fairly elementary and allows the reader to check his insight in the

above developed methods for Ψ-residually nuclear maps.

We show that any C *-algebra with primitive ideal space homeomorphic to [0, 1]

and fibres ∼= O2 respectively ∼= O2 ⊗K are isomorphic to C([0, 1],O2) respectively

to C([0, 1],O2 ⊗K).

??

Next there is only a proof of the old Theorem O

Suppose that A is a unital separable C *-algebra with Prim(A) ∼= [0, 1], the

interval [0, 1] with ordinary topology, and that the fibers, i.e. the simple quotients,

are isomorphic to O2. Thus, A is as a C *-algebra bundle with base space [0, 1] and

fibers isomorphic to O2. This implies that A nuclear and is strongly p.i., cf. ends

of Chapters 2 and 3. The K-theory of A is trivial, see below.

For nuclear C *-algebra bundles A, B over a locally compact σ-compact

metrizable spaces X, we have that KKnuc(X;A,B) = RKKtrivial(X;A,B).

By Corollary N, the bundle is stably isomorphic to C([0, 1],O2) if and only if

RKKtrivial([0, 1], A,A) = 0.

This allows to use the tautological epimorphism and the six-term exact sequence

to check

the ‘‘following proposition’’, that has been erased,

which reduces the triviality question to the ordinary KK-theory.

We show the non-trivial direction of the statement of the old version of Theorem

O, i.e., that A is isomorphic to C([0, 1],O2), if A is a separable unital C*-algebra

with Prim(A) ∼= [0, 1], if every primitive quotient of A is isomorphic to O2, and if

A satisfies the UCT for the ordinary KK-theory of C*-algebras.

All non-zero projections in C([0, 1],O2⊗K) are equivalent. Therefore, it suffices

to show that A⊗K and C([0, 1],O2 ⊗K) are isomorphic.

Every primitive quotient of A is nuclear. Since A is separable, this implies that

every factor representation of A generates an injective factor. Thus, A is a nuclear

C *-algebra.

By Corollary L, A ⊗O2
∼= C([0, 1],O2) with an isomorphism that implements

the isomorphism χ from [0, 1] onto Prim(A).

The isomorphism and the natural embedding of A⊗ 1 into A⊗O2 maps χ(t)

onto the intersection of A ⊗ 1 with the kernel of the epimorphism g 7→ g(t) from



4. PROOF OF (OLD !!!) THEOREM O 1041

C([0, 1],O2) onto O2, and it maps the center of A onto C([0, 1]). This gives a unital

isomorphism λ from C([0, 1]) onto the center of A such that

χ(t) = λ(C0([0, 1] \ {t}))A and πt(λ(f)a) = f(t)πt(a).

Thus A is a (continuous) C *-bundle with quotient maps πt : A → A/χ(t) in

the sense of [92], [471]. Since [0, 1] has dimension one, and since the fibers A/χ(t)

are simple and purely infinite, by Remarks 2.15.12 and 3.11.6(ii), the algebra A is

strongly purely infinite, cf. [93]. (The latter can be seen also directly and elementary

with a modification of the idea in step one, below.)

It follows that Theorem M applies to A:

A⊗K is isomorphic to C([0, 1],O2 ⊗K), if and only if, KK([0, 1];A,A) = 0.

We show the equation KK([0, 1];A,A) = 0 in the following five steps.

Let A|X denote the restriction of the bundle A to X: Let Ψ denote the action

of [0, 1] on A, which is defined by a homeomorphism χ from [0, 1] onto Prim(A).

Then Ψ(Z) = λ(C0(Z))A for open subsets Z of [0, 1] and the primitive ideal χ(t)

is the ideal Ψ([0, 1] \ {t}). If X is a relatively closed subset of an open subset Z

of [0, 1], we define A|X as Ψ(Z)/Ψ(Z \ X). Then πt : A → A|{t} is the natural

epimorphism on the fiber at t. Let 0 < x < y ≤ 1, then the natural epimor-

phisms A|[0, y] → A|[0, x] and A|[0, y] → A|[x, y] define just the pull back of the

natural epimorphisms A|[0, x]→ A|{x} and A|[x, y]→ A|{x}, i.e., we can compose

elements of A|[0, x] and A|[x, y] to an element of A|[0, y] if they coincide at x.

First, A contains a copy of O2 unitally:

Since A|{x0} is isomorphic to O2 there exist contractions a and b in A such

that a∗b = 0 and that the continuous functions x 7→ ‖πx(c)‖ are zero at x = x0 for

c in G := {1− a∗a, 1− b∗b, 1− aa∗ − bb∗}.

It follows that there exists δ > 0 such that ‖πY (c)‖ < 1/8 for c ∈ G, where

Y := [max(0, x0− δ),min(x0 + δ, 1)] and πY denotes the natural epimorphism from

A onto A|Y . Then s := πY (a)πY (a∗a)−1/2 and t := πY (b)πY (b∗b)−1/2 are canonical

generators of a unital copy of O2 in A|Y .

We find x0 = 0 < x1 < . . . < xn = 1 such that A|[xj , xj+1] contains isometries

sj and tj with sjs
∗
j + tjt

∗
j = 1 for j = 0, . . . , n− 1, because [0, 1] is compact.

We modify them by induction, fit them together and get a unital copy of O2

in A:

Suppose that k < n and that s, t are canonical generators of O2 in A|[0, xk]. Let

π+ and π− denote the natural epimorphisms A|[0, xk]→ A|{xk} and A|[xk, xk+1]→
A|{xk} respectively.

Then u := π+(s)π−(s∗k) + π+(t)π−(t∗k) is a unitary in A|{xk} ∼= O2. Since the

unitary group of O2 is connected, we find a unitary v in A|[xk, xk+1] such that

π−(v) = u. Let s̃ := vsk and t̃ := vtk. Then π−(s̃) = π+(s) and π−(t̃) = π+(t).
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Thus there are S, T in A|[0, xk+1] with restrictions to [0, xk] and [xk, xk+1] equal

to s, t and s̃, t̃ respectively. Thus S∗S = 1 = T ∗T and SS∗ + TT ∗ = 1.

Second, K0(A) = 0: Since A contains copy of O2 unitally, it suffices to show

that, for every non-zero projection p in A, pAp contains a copy of O2 unitally.

t ∈ [0, 1] 7→ ‖πt(p)‖ is continuous, non-zero and takes 1 or 0 as its values. Thus

this function is one on [0, 1], and, therefore, Prim(pAp) = Prim(A) = [0, 1], and

the primitive quotients are isomorphic to O2. The first step shows that the unital

algebra pAp contains a copy of O2 unitally.

Third, K1(A) = 0: Let B := A ⊗ P∞, where P∞ is the unique unital pi-sun

algebra in the UCT-class with K0(P∞) = 0 and K1(P∞) = Z, cf. Corollary H(ii).

Then K1(A) = K0(B) by Künneth theorem. But Prim(B) = [0, 1] and every simple

quotient of B is isomorphic to O2
∼= O2 ⊗ P∞. Thus from the second step we see

that K0(B) = 0.

Fourth, separable A with K∗(A) = 0 satisfies the UCT if and only if

KK(A,B) = 0 for all separable C *-algebras B.

The six term exact sequence implies that KK(A|I, A|I) = 0 for every half-open

interval I = [0, t) or I = (t, 0], because there is a natural semi-split short exact

sequence

0→ A|[0, t)⊕A|(t, 1]→ A→ O2 → 0,

and KK is additive in each variable with respect to direct sums. It follows that

KK(A|I, A|I) = 0 for every closed subinterval I = [s, t] ⊂ [0, 1] of [0, 1], because

A|I = A/(A|[0, s) +A|(t, 1]). For open or half-open subintervals I of [0, 1] we have

short exact sequences 0 → A|I → A|K → B → 0 where K is the closure of I and

B is O2 or O2 ⊕O2.

Fifth: To calculate KK([0, 1];A,A), we use the six-term exact sequence with

respect to the second variable and the following C([0, 1])-equivariant semi-split short

exact sequence:

0→ J → C([0, 1])⊗A→ A→ 0,

where the action on C([0, 1])⊗A is induced by

d : f ∈ C([0, 1]) 7→ f ⊗ 1 ∈ C([0, 1])⊗A

and the map C([0, 1])⊗A→ A is the tautological epimorphism given by

f ⊗ a ∈ C([0, 1])⊗A 7→ fa ∈ A .

The Ψ-equivariant semi-splitness of the exact sequence can be seen as follows:

Tensor with O2, use that A ⊗ O2
∼= C([0, 1],O2), take the obvious lift and cut it

down to A and C([0, 1], A) with help of a state on O2.

J is the closed sum of ideals C0(K)⊗A|I with certain open subintervals K and

I of [0, 1], cf. Proposition B.4.2(ii).

We consider now the action of [0, 1] on C0(K)⊗A|I which is induced by d.
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For open or closed sub-intervals I and K of [0, 1],

KK([0, 1]; C0(K)⊗A|I,C0(K)⊗A|I) = 0,

because A|I is KK-equivalent to O2 and we can tensor the identity map of C0(K)

with this KK-equivalence to obtain a KK([0, 1]; ., .)-equivalence of C0(K)⊗A|I and

C0(K)⊗O2.

The Mayer-Vietoris sequence gives that also KK([0, 1];B,C) = 0 if B ⊂ J and

B is finite sum of ideals C0(K)⊗A|I of C([0, 1])⊗A.

KK([0, 1]; ., .) is in the first variable continuous with respect to Ψ-equivariant

monomorphic inductive limits of nuclear C *-algebras Jn which are KK([0, 1]; ., .)-

equivalent to C([0, 1],O2). It follows KK([0, 1]; J, ·) = 0, because the corresponding

Milnor lim(1)-sequence vanishes.

Since also KK([0, 1]; C([0, 1])⊗A,C([0, 1])⊗A) = 0, the six term exact sequence

shows that KK([0, 1];A,A) = 0.





APPENDIX A

Cuntz equivalence, multiplicative domains,

?related topics?

?? TO DO list of topics, to add:

0 ≤ b ≤ ndiag(b) for b ∈Mn(A)+ etc.

( <-- this is partly done below )

Applications of n[a] ≤ m[b] for a, b ∈ A+.

Remarks on Glimm halving in ultra-powers. !!!!!!! That is:

Aω has Glimm halving property,

if and and only if,

A has uniform Glimm halving property.

Is Glimm halving and uniform Glimm halving really different?

See also Remarks in Chapter 2 on Condition (ii) of Definition ??.

See also Lemma A.6.8(iii).

Conjecture?:

Let A a separable stable C *-algebra.

For separable C *-subalgebras B of Qs(A) ∼=M(A)/A

and unital separable C *-subalgebras C of

F (A) := (A′ ∩Aω)/Ann(A,Aω)

there exists a unital C *-morphism

of the ‘‘winding around’’ (or ‘‘joining’’) algebra E(C,C) into B′ ∩
Qs(A).

OK: It is only a very weak hope ... !!!

Generalities:

Flip of self-absorbing approximately inner ?

U(A) = U0(A) for all A := On, A := En?
U(A) = U0(A) for all tensorial self-absorbing A?

Jiang-Su?

Each tensorial self-absorbing A absorbs Jiang-Su? Result of Winter?

Are K1-injective?

Has stable rank one, by result of Rørdam

What happens with the commutators of unitaries in C(S1) ⊗ E(Mm,Mn)

1045
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if m 6= n ?

Is it K1-injective?

In particular, is each commutator of two unitaries in U(E(Mm,Mn)),

or -- more generally -- those contained in the connected component

U0(E(Mm,Mn)) of 1 in the unitaries of it?

1. (*) The algebras On, En and O∞

We outline an approach to get the used basic facts on En and On, n ∈
{2, 3, . . . ,∞}. All is based on elementary observations (or can be replaced by such

observation in our particular cases). We work with formal algebras generated by

relations, because it allows to see what carries over to general non-commutative

rings... and what does not so ... E.g. the existence of suitable very important

C *-subalgebras in the central sequence algebra requires the analytic theory of

some rather special types of operator algebras, defined by their defining relations.

(1) C*-algebras defined by relations .

Let A denote an algebraic *-algebra over C (or likewise over R) that has

finitely, countable or uncountably many generators a1, a2, . . . and defining re-

lations R1, R2, . . . that are given explicitly by non-commutative polynomials

Pn(a1, . . . , an, a
∗
1, . . . , a

∗
n) with coefficients in C (or R in case of real C *-algebras)

and the relation are given by requiring the equations Pn = 0, A is the quotient

of the free *-algebra by the ideal generated by the polynomials Pn. Sometimes

the relations are written more efficient as matrix conditions and then the Pn are

matrix polynomials. But this can be described also by ordinary n.c. polynomials

by writing the conditions for the entries separately.

If we require bounds, e.g. that certain expressions P (a1, . . . , a
∗
n) should

become a contractions in any representation then we can do this by introduc-

ing new elements, say x, y, and then Q1(a1, . . . , a
∗
n, x) := P (a1, . . . , a

∗
n) − x

and Q2(x, x∗, y, y∗) = 1 − x∗x − y∗y, but consider C∗(a1, . . . , an;R) with sys-

tem of relations R containing P as a C *-subalgebra of the unital C *-algebra

C∗(a1, . . . , an, x, y, 1;R ∪ {Q1, Q2}). We go here not into details, because we use

only very special types of relations that are easily to understand and are usually

“bounded” in the following sense:

The algebraic *-algebra A is called “ bounded” if, for each generator an, there

exist c1, · · · , cm ∈ Ã := A+C1, 0 ≤ γn <∞ such that a∗nan+c∗1c1 + · · ·+c∗mcm =

γ2
n1 . If A is bounded then every *-representation d of A on a pre-Hilbert space H

is bounded in the sense that ‖d(an)‖ ≤ γn for all generating elements. (Compare

[426, lem. 5.3(iii)] that was inspired by ideas of T. Tannaka [768] and its abstract

version introduced for the study of block-algebras of M.G. Krein [493]). (Today:

dual of compact “quantum groups”?)

In particular, the supremum ‖a‖ := sup{d} ‖d(a)‖ of all C *-semi-norms on A

exists and is finite for all elements on A. The set J0 := {a ∈ A ; ‖a‖ = 0 } is a
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*-ideal of A, and the C *-completion of A/J0 with respect to the induced (maximal)

C *-norm is a C *-algebra, that we denote by C∗(a1, a2, . . . ;R1, R2, . . .).

One can check that the below considered(!) special examples A all have the

property that J0 = {0} (exercises for the reader). – But in more general cases and

other types of relations it can happen that J0 6= {0}. –

To make this definitions more flexible, one can here the “scalar coefficients”

replace by elements in some other ring/algebra.

(2) On the defining relations for En and On

One can easily show – on a fairly algebraic level – that the universal C *-algebras

On := C∗(s1, . . . , sn ; s∗jsj = 1 = s1s
∗
1 + · · ·+ sns

∗
n)

with n > 1 is “naturally” isomorphic to the universal unital C *-algebra

C∗(Bn ∪ {S} ; S∗S = 1 ∈ Bn, SaS∗ = e1,1 ⊗ a, a ∈ Bn) (1.1)

that contains Bn := Mn∞ .

Notice that this formula is only a formal “reminder” if we hold up our restricted

view that we, if possible, are willing to describe the basic model algebras as quotients

of “free” algebras by ideals generated by “relations” (as above described in an

informal manner), thenBn or a suitable dense *-subalgebra itself has to be described

as quotient of free *-algebra. It means here that we first have to define Bn as the

competition of the inductive limit of Ak,n := Mnk with a ∈ Ak,n 7→ Ak+1,n given by

a 7→ a⊗ 1n and S is an “additional variable” that satisfies the relation polynomials

P1(S) := S∗S − 1 = 0 with 1 = indlimk→∞ 1nk , and S(an ⊗ 1n)S∗ = e11 ⊗ an ∈
Ak+1,n for all an ∈ Ak,n. It looks childish, but careful consistence would require a

detailed list of generators and how the generators of one algebra can be expressed

by the generators of the other algebra and vice versa. All this should be done on

the algebraic level. With other words: to compare this relation-defined algebras we

should her replace – for calculation with (countably many) relations on the pure

algebraic level – the algebra Bn by its algebraic inductive limit of the sequence

Mnk →Mnk+1 given by the maps a 7→ a⊗ (e11 + ·+ enn) = a⊗ 1n and the proceed

as e.g. in [686, proof thm. 4.2.2] or in proof of [169, thm. 1.13]. The isomorphism

of On with the corner cross-product in Equation (1.1) becomes true for the C *-

algebras after completion with the maximal C *-norm on them. In more detail it

goes as follows:

Let Ik := {1, . . . , n}k and define

W (i1, . . . , ik) := Wp := si1 · . . . · sik
for the “word” p := (i1, . . . , ik) ∈ Ik. Then the linear span of the elements 1,

Wp, (Wp)
∗ and Wp(Wq)

∗ (p ∈ Ik, q ∈ I`) is a dense *-subalgebra of On. Take

S := s1 and identify Mnk with the linear span of the elements WpW
∗
q , p, q ∈ Ik

(k = 1, 2, . . .).

It shows that On
∼= Bn oψ N for the corner endomorphism ψ : Bn 3 a 7→

e1,1 ⊗ a ∈ Bn . This algebra is stably isomorphic to the crossed product of a
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trace-scaling automorphism α of Bn⊗K. Trace-scaling automorphisms α of simple

C *-algebras have always the property that αk is strictly outer for k ∈ N, and

therefore, (Bn ⊗K)oα Z is simple (use here the more general results of Kishimoto

[478] or of Olesen and Pedersen [578]). Crossed products of nuclear C *-algebras by

Abelian groups are always nuclear ????? give citation ?????????? (more generally

crossed products of nuclear C *-algebras by amenable groups are nuclear).

Missing citation/reference to place?

A proof would be:

Let G locally compact group, that acts point-norm continuous ( 1 ) on a C *-

algebra A by ρ : G → Aut(A), and let B any C *-algebra. There are natural iso-

morphisms of full crossed products

C∗(G,A; ρ)⊗max B ∼= C∗(G,A⊗max B; ρ(·)⊗max idB)

and of reduced crossed products

C∗red(G,A; ρ)⊗min B ∼= C∗red(G,A⊗min B; ρ(·)⊗min idB)

and an obvious canonical epimorphism from the first to the second that is compat-

ible with the canonical epimorphism (·)⊗max B → (·)⊗min B.

Thus, if A nuclear and G amenable, then C∗(G,A, ρ) = C∗red(G,A, ρ) is again

nuclear.

Here is what we need:

But in our case we use the following general observation:

Suppose that G is a compact group that acts point-norm continuous on a C *-

algebra A and that the fix-point algebra Aρ(G) of the action ρ of G on A is nuclear.

Then A nuclear.

Indeed: The kernel J of A⊗max B → A⊗min B is ρ(g)⊗max id-invariant. And

the integral over G defines a faithful conditional expectation from J to the kernel of

Aρ(G)⊗maxB → Aρ(G)⊗minB that is trivial by nuclearity of Aρ(G). Thus, J = {0}
and A must be nuclear.

We have used here the following variant of the Definition of Nuclearity of C*-

algebras (compare cite :

Choi–Effros , [141], [142], Nuclear C*-algebras and injectivity: the general case.

(Shows: A is nuclear , if and only if, A∗∗ is an injective W*-algebra.) [145]

A C *-algebra A is nuclear, if and only if, the natural *-epimorphisms A⊗max

B → A⊗min B are faithful ( = are isomorphisms) for every C *-algebra B.

In fact, it suffices to take here as B the algebras C∗(F∞), L(`2) and

L(`2)/K(`2). ( ¡ – is this from Kirchberg, E. [426], or from one of the upper

citations? )

1 Means that g ∈ G 7→ ρ(g)(a) is a continuous map from G into A for each a ∈ A
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It follows that On is simple and nuclear. By definition, On (2 ≤ n < ∞)

is finitely generated and O∞ is countably generated, in particular they all are

separable.

We have this ‘‘exercise in footnote’’ carried out somewhere!

Find and Cite the place of it!!

( 2 ).

The simplicity of the corner-endomorphism crossed product Bn oψ N and the

property that

for each a, b ∈ (Bn)+ with ‖b‖ = 1 ≥ ‖a‖ and for each ε > 0 there are k ∈ N and a

contraction d ∈ Bn with ‖ψk(a)− d∗bd‖ < ε

imply that Bn oψ N is purely infinite (cf. Corollary 2.18.3). Hence, On is a pi-sun

algebra in the UCT-class.

(Urgent Question:

Where it is shown that the On are in the UCT-class, and what has to be shown

to recognize the ”pi-sun” algebras are in the UCT-class? For the On one has

”only” to show first that all AF-algebras are in the UCT-class, and what imply the

products of UCT-class algebras by circle actions, action by an endomorphism or

automorphisms.)

The above mentioned property can be seen directly by the following argument

of J. Cuntz:

Let b ∈ Bn ⊆ On with b ≥ 0 and ‖b‖ = 1. Then we find k ∈ N and c ∈ (Mnk)+

with ‖b− c⊗1‖ < ε and ‖c‖ = 1. Since the k-fold tensor product ek of e1,1 ∈Mn is

a minimal idempotent in Mnk there is a unitary u ∈Mnk with eku
∗cuek = ek. Let

d := (u⊗1)ψk(a1/2), then ‖d‖ ≤ 1 and d∗(c⊗1)d = ψk(a). Thus ‖d∗bd−ψk(a)‖ < ε.

The Pimsner–Voiculescu exact sequence for crossed products (more precisely:

its variant for crossed products by N, [636]) gives “immediately” the exact sequence

0→ K1(On)→ Z[
1

n
]
×(n−1)−→ Z[

1

n
]→ K0(On)→ 0 ,

?? to be checked again !!!

where 1 ∈ Z[ 1
n ] maps to [1] ∈ K0(On). It shows that K1(On) = 0 and K0(On) ∼=

Zn−1 (in a way that the class of [1] generates Zn−1). In particular, O2 is K∗-trivial.

(3) The non-simple algebras En.

We consider the (non-simple) universal C *-algebras

En := C∗(s1, . . . , sn ; s∗i sj = δi,j1) ,

and its (simple) natural inductive limit

O∞ := C∗(s1, s2, . . . ; s∗i sj = δi,j1) .

2 In fact, it is easy to see (as an exercise for the readers?) that every separable C *-algebra A

with properly infinite multiplier algebraM(A), i.e., with 1M(A) ∈ E2 ⊆M(A), is single generated.

This applies to all separable pi-sun algebras, in particular to En, On and O∞.
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It turns out ( 3 ), that e := en := 1− (s1s
∗
1 + · · ·+ sns

∗
n)

The element en is called ‘‘p’’ on some other places.

is a non-zero projection in En with eEne = Ce, that the closed ideal I(e)

(generated by e) is naturally isomorphic to K, and that the left multiplication of

En on I(e) is faithful (as one can see with help of the gauge action z ∈ S1 7→ σz ∈
Aut(En) with σz(sn) = zsn that fixes e).

Indeed:

X · En · e = {0} implies X∗X · En · e = {0}. Since σz(En · e) = En · e for all z ∈ S1,

we get also σz(X
∗X) · En · e = {0} for all z ∈ S1 . Thus P (X∗X) · En · e = {0}.

Here P (a) :=
∫
S1 σz(a)dz for a ∈ En .

It is not difficult to see: The fix-point algebra of any (continuous) circle action

on the compact operators K of a separable Hilbert space has a non-degenerate fix-

point C *-subalgebra of K. (Because p ∈ P (p) ·K · P (p) for all continuous circle

actions σ(z) on K.)

It follows that P (En) acts faithful on the ideal I(e) by left-multiplication if and

only if P (En) acts faithful on I(e) ∩ P (En).

It is not difficult to see that the fix-point algebra P (En) of the circle action on

En is an AF-algebra that contains p. If P (En) acts not faithful on I(e) then there

must exist a non-zero projection in the kernel of this action.

Such a projection must be equivalent to a projection in the canonical filtration

of P (En) by finite AF-algebras and each “smaller” projection is also on the kernel.

It causes that for some W := sk1
· . . . · skm holds WW ∗ · I(e) = {0}, in particular

WW ∗(We) = 0. But this is impossible, because W is an isometry, i.e., W ∗W = 1

and W ∗(We) = e.

Thus, P (En) acts faithful on En · e and on I(e). By above considerations it

implies that P (X∗X) = 0 if XEn · e = {0}. Since P is a faithful conditional

expectation (for any continuous circle action) it follows that X = 0 if X ∈ En and

X · En · e = {0}. Thus, I(e) is a non-degenerate ideal of En, i.e., there exists no

ideal orthogonal to I(e).

(This arguments show that every σ(z)-invariant non-zero ideal of En has non-

zero intersection with P (En).)

Therefore, I(e) is an essential ideal of En.

Clearly, the quotient En/I(e) is naturally isomorphic to the – simple – C *-

algebra On.

(This way of arguments requires to prove before !!! the simplicity of On, to

obtain above conclusion.)

3Use that En is the span of elements WrW ∗s of words, where Wr and Ws are = 1 or are

products of some of the generators s1, . . . , sn.
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Above we have seen, that there is a short-exact sequence

0→ K→ En → On → 0 .

In particular, En must be nuclear (if On is proven to be nuclear). The corre-

sponding six-term exact sequence in K∗-theory shows that (necessarily) K1(En) = 0

and that there is an exact sequence

0→ Z→ K0(En)→ Zn−1 → 0 ,

such that the class [1] ∈ K0(En) is mapped onto the 1 ∈ Zn−1 and 1 ∈ Z is mapped

into [e] ∈ K0(En). The definition of e shows that [e] = (n− 1)[1] in K0(En).

The only remaining possibility is now K0(En) ∼= Z with generator [1] of Z.

One can see now (e.g. from [e] = (n− 1)[1]) that the extension En of On by K
is not a split extension.

One can show also directly that the natural C *-morphisms En−1 → En → On

for n ≥ 2 define a faithful embedding from En−1 into On, – and therefore also a

faithful embedding from En−1 into En that does not intersect the closed ideal of En
generated by en := 1−

∑n
k=1 sks

∗
k .

Indeed: Let ρ : En−1 → L(H) a faithful unital *-representation of En−1. We

can here take a separable Hilbert space H, because En−1 is separable. The H has

infinite dimension because L(H) contains a non-unitary isometry. Thus H ∼= `2(N).

If we let L := ρ(en−1)H, then there exists an isometry T ∈ L(H ⊗2 H) with

T T ∗ = ρ(en−1) ⊗ idH . The isometries tk := ρ(sk) ⊗ idH for k = 1, . . . , n − 1 and

tn := T satisfy the relation
∑n
k=1 tkt

∗
k = 1. Thus C∗(t1, . . . , tn) is a natural image of

On and the C *-representation a 7→ ρ(a)⊗idH is a faithful unital C *-morphism from

En−1 into C∗(t1, . . . , tn) that factorizes through the canonical unital C *-morphisms

En−1 → En → On → C∗(t1, . . . , tn). It shows that the natural unital C *-morphism

En−1 → En is injective and does not intersect the ideal of En generated by en.

It follows that the natural unital *-morphisms from En into O∞ are injective

(because they factorize over the natural C *-morphism En → En+1, and that is

injective) and that, therefore, K∗(O∞) = indlimn K∗(En) by continuity of K∗(·)
with respect to inductive limits ...

(Unfortunately, it is bit more complicate ...!!!)

We get thatO∞ is separable, unital and nuclear, that K0(O∞) ∼= Z with genera-

tor [1] ∈ K0(O∞) and that K1(O∞) = 0. The unital C *-morphisms ηn : En → En+1

satisfy the sufficient criteria in part (iv) of Proposition 2.2.5, because I(e) ∼= K is

an essential ideal.

Indeed: It implies that, for each a ∈ (En)+ with ‖a‖ = 1, there is a contraction

c ∈ I(e) with ‖c∗ac− e‖ < ε, thus ‖d∗ηn(a)d− 1‖ < ε for d := ηn(c)sn+1.

Thus O∞ is simple and purely infinite by Proposition 2.2.5(iv), i.e., if we

all above put together the we see that O∞ is a (simple) pi-sun algebra with
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K0(O∞) ∼= Z with generator [1] and K1(O∞) = {0}. The pure infiniteness im-

plies that K1(O∞) = 0 is equivalent to U0(O∞) = U(O∞).

(4) δn is homotopic to id in End(On)

δ2 is unitarily homotopic to id in the space of unital *-endomorphism of O2

(with point-norm topology).

Indeed: Notice that X := {s2, st, ts, t2} are four isometries with range sum = 1

(X defines a unital embedding of O4 into O2). Thus B := span{ab∗ ; a, b ∈ X }
is naturally isomorphic to M4. Let u1 := δ2(s)s∗ + δ2(t)t∗ = s2(s∗)2 + ts(st)∗ +

st(ts)∗+t2(t∗)2 . Then u1 is a selfadjoint unitary in B, δ2(s) = u1s and δ2(t) = u1t .

It follows that there is a (norm-)continuous path [0, 1] 3 τ 7→ u(τ) ∈ U(B) with

u(0) = 1 and u(1) = u1 . The unital endomorphisms hτ of O2 with hτ (s) = u(τ)s

and hτ (t) = u(τ)t define a point-norm continuous path in the unital endomorphisms

of O2 with h0 = id and h1 = δ2 .

Similarly, one can see that δn is homotopic to id in the unital *-endomorphisms

of On for 3 ≤ n <∞ , by showing that

u1 :=

n∑
k=1

δn(sk)s∗k =

n∑
k,`=1

sks`(s`sk)∗

is a selfadjoint unitary in the natural image of Mn2(Z) spanned by

{sks`s∗js∗i ; k, `, j, i ∈ {1, . . . n} .

(5) The unitary groups are contractible U(On) = U0(On)

For the case of the real C *-algebras generated by s1, . . . , sn, one can consider

the unitary u :=
∑n
k=1 δn(sk)s∗k in the bigger C *-subalgebra Mn3 of On spanned

by Wp(Wq)
∗ (p, q ∈ {1, . . . , n}3).

The determinant of u ⊗ 1n in O(n3) is always ±1, but if n = 2m then again

u ∈ 1n ∈ SO(n3) and SO(k) is connected for all k ∈ N.

Thus, for even n ∈ 2N, we have again that δn is homotopic to id inside the

unital endomorphisms of the real version (On)R of On.

check next again? was used! Where?? The sign of the determinant of

u⊗ 1 ∈M22 ⊗ 12 ⊆ M23 is positive. Thus u⊗ 1 ∈ SO(23), .... ????? But elements

of SO(23) are connected to 1 in SO(23). This implies also the K∗-triviality of O2
R.

(Moreover F (O2
R) = 0 for every homotopy invariant “additive” functor from the

category of “real” C *-algebras into “additive” categories of groups.)

For the other “real” On
R the situation is more complicate ... Compare e.g. [718]

in conjunction with [173].

(6) The groups U(B ⊗O2) are contractible.

U(B ⊗ O2) is connected for all unital separable C *-algebras: The application

of the path idB ⊗hτ from id to idB ⊗δ2 to U defines a path from U to δ2(U) in

U(B ⊗O2).

Now proceed as in Chapter 11. more general? ??.
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Notice that every continuous map λ : Sn → U(B ⊗ O2) is an element of

U(C(Sn, B)⊗O2). Thus, U(B⊗O2) has trivial homotopy groups. Since U(B⊗O2)

is a Polish space, that is locally homeomorphic to the self-adjoint part of B ⊗O2,

it follows that U(B ⊗O2) is contractible (By a classical result of J. Milnor [556]).

In particular, the unitary group of C(S1,O2) is simply connected.

(7) A proof that On is pi-sun

There is an alternative direct proof of the simplicity, nuclearity and pure in-

finiteness of On , considered as the universal C *-algebras

C∗(s1, . . . , sn ; s∗jsj = 1 = s1s
∗
1 + · · ·+ sns

∗
n) ,

that does not imply (immediately) the above derived additional informations that

On is in the UCT class and K∗(On) ∼= Zn−1 ⊕ 0 with generator [1].

If z ∈ S1 ⊂ C is a complex number with |z| = 1 then, by universality of On,

there is a unique automorphism σz of On with σz(sj) = zsj . It is easy to check on

elementary products of the sj and s∗k that z → σz is a (point-norm continuous) circle

action on On, and that the fixed point algebra of σ is just Bn , i.e., P (On) = Bn

for the faithful conditional expectation

P (x) :=
1

2π

∫ 2π

0

σeit(x) dt .

Let F any C *-algebra and h ≥ 0 in the kernel J of On ⊗max F → On ⊗min F .

Since the kernel is invariant under the action σz ⊗max idF by the functoriality

of the maximal and minimal C *-tensor products, we can integrate and get that
1

2π

∫ 2π

0
(σeit ⊗ id)(h) dt is in J . The conditional expectation defined by this integral

can be calculated on elementary tensors, and is just P ⊗max idF . It is necessarily

a faithful conditional expectation from On ⊗max F onto Bn ⊗max F = Bn ⊗min F

(because Bn is nuclear). It follows that J ∩ (Bn ⊗max F ) = P ⊗max id(J) = 0 and,

thus P ⊗max idF (h) = 0 and h = 0, i.e., J = {0} and On is nuclear.

The proof of the simplicity and pure infiniteness uses that the faithful condi-

tional expectation P is one-step approximately inner (by a sequence of isometries

D1, D2, . . . ∈ On). Refer to the place where the Dn are defined.

What is here Dk? How is it defined? See further below.

An argument of J. Cuntz in [172] implies that On is both simple and purely

infinite:

Let ε > 0 and a ∈ On with 0 ≤ a and ‖a‖ = 1, then P (a) 6= 0 (because P

is faithful on (On)+ by continuity of the circle action σz), and we find k ∈ N
and a minimal projection p ∈ Mnk with ‖D∗kaDk − P (a)‖ < (ε‖P (a)‖)/2 and

‖pP (a)p− ‖P (a)‖p‖ < (ε‖P (a)‖)/2 .

There is an isometry T in On with T (T ∗) = p . We get ‖ d∗ad − 1 ‖ < ε for

d := ‖P (b)‖−1/2DkT . Then calculation shows that ‖T ∗D∗kaDkT − 1‖P (a)‖‖ <

(2/3)ε‖P (a)‖ .

(8) Approximate Innerness of P : On →Mn∞
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An algebraically defined explicit sequence of isometries D1, D2, . . . ∈ On, first

described by De Schreye and Van Daele in [209, prop. 6], with property

lim
k
‖D∗kxDk − P (x) ‖ = 0 for all x ∈ On

can be given by the following modification of definitions by De Schreye and Van

Daele in [209, prop. 5] (it uses an argument of J. Cuntz in [169, lem. 1.8]):

We let Ik := { 1, . . . , n }k and define isometries Wp := si1si2 · . . . · sik for p =

(i1, . . . , ik) ∈ Ik . The linear span of the elements WrW
∗
s is a dense *-subalgebra of

On, and each element WrW
∗
s (r ∈ I`, s ∈ Im) with ` ≤ m ≤ k is in the linear span

of elements WpW
∗
q with q ∈ Ik and p ∈ Ik−(m−`). Notice that Mnk is naturally

isomorphic to the linear span of WrW
∗
s with r, s ∈ Ik. Define Yk := s1(s2)k and

Dk :=
∑
p∈Ik

Wp YkW
∗
p .

The Wp are isometries with mutually orthogonal ranges that sum up to 1. Therefore

Dk is an isometry, and satisfies D∗kWrW
∗
sDk = P (WrW

∗
s ) if r ∈ I`, s ∈ Im and

max(`,m) ≤ k .

Indeed:

It suffices to consider the case m = k ≥ `, then W ∗sDk = YkW
∗
s , which implies that

D∗kbDk = b for all b ∈ Mnk . In case ` < k, one has D∗kWr =
∑
i∈Ij WrWiY

∗
kW

∗
i

for j := k − `. Thus, the remaining case m = k > ` leads (with j := k − ` > 0) to

D∗kWrW
∗
sDk = D∗kWrYkW

∗
s =

∑
i∈Ij

Wr(WiY
∗
kW

∗
i Yk)W ∗s

which is zero: If WiY
∗
k 6= 0 then necessarily Wi = sj2, which gives WiY

∗
kW

∗
i Yk =

sj2(sk2)∗s∗1(sj2)∗s1(s2)k = 0 , because (sj2)∗s1 = 0 .

Change to more consistent notation!!

(9) Question if flip has algebraic approximation

An interesting question for application to flip maps is the following:

It holds that limk(Dk⊗Dk)∗(x⊗ y)(Dk⊗Dk) = P (x)⊗P (y) for all x, y ∈ On

using suitable contractions D1, D2, . . . ∈ On with the property

lim
k
‖D∗kxDk − P (x) ‖ = 0 for x ∈ On .

(It would be desirable to have them also for En in place of On to get it also for

O∞.)

If this is the case then the question about the simplicity of the fixed point

algebra of the flip map on On ⊗On becomes a question about the simplicity of the

fix-point algebra Fn∞ of the flip on Mn∞ ⊗Mn∞ . This is because Fn∞ is the range

of the restriction of P ⊗ P to the fix-point algebra of the flip map on On ⊗ On :

Each (possibly existing) non-trivial ideal J of the fix-point algebra of the flip map

on On ⊗ On has a nontrivial intersection with the Fn∞ with help of the in the

flip-algebra contained Dk ⊗Dk.
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??? Is there an opposite application ???: To show simplicity (!) of On, could

we show directly that the flip of On ⊗On is approximately inner as c.p. map?

???

The unitary u =
∑
n s
∗
n ⊗ sn that satisfies u∗u = 1 = uu∗, u(sk ⊗ 1) = 1⊗ sk,

and u∗(1⊗ sk) = sk ⊗ 1.∑
n,m s

∗
nsm ⊗ sns

∗
m =

∑
n 1 ⊗ sns

∗
n = 1 and

∑
n,m sns

∗
m ⊗ s∗nsm = 1 and∑

n ... = 1

(applies also to the ultrapower ?).

u(sk ⊗ 1) = (1⊗ sk)u ???
∑
n s
∗
nsk ⊗ sn?? =??

∑
n s
∗
n ⊗ (sksn) No !!!!

Can not work??

because extremal ideals need not be maximal.

Could only work with extremal S1-invariant ideals,

and would show that K ⊆ En
is the only non-trivial S1-invariant ideal.

Attempt: Go the following way:

The kernel ideal of En → On is generated by p := 1 − s1s
∗
1 − . . . − sns∗n, and

the projection p satisfies pWiW
∗
j p = 0 and pWi = 0 for Wi ∈ Ik and Wj ∈ I`. It

follows that p is a minimal projection, i.e., satisfies p(En)p = C · p and the ideal

generated by p is isomorphic to K(`2(N)).

(Question: In the real case one has to take ±1 actions (by Z2 or Zn2 ) ??)

Moreover, the circle action fixes the projection p. Thus, the ideal generated by

p is invariant under circle action.

next is nonsense, because ‘‘extremal’’ is not ‘‘maximal’’.

Check if this used on other places!!!

Since On and En are unital, they

???? have a maximal (? only extremal !! ?) nontrivial closed ideal (say J) that

contains the ideal generated by p.

Without knowing first the existence or non-existence of an ideal we have to

proof with other means that the conditional expectation P is approximately inner.

Just this is established with D1, D2, . . ..

The fixed points of the circle action on “this maximal ideal” must be necessarily

an ideal of the fixed point algebra.

(10) On simplicity of algebraic On version

The reader can check, that the above arguments show also that the universal

algebraic *-algebra (over R, C or over the rational numbers) with the above suitably

generalized defining relations of On is a simple *-algebra.
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In fact, the above arguments also show that the (algebraic) algebra generated by

elements s1, . . . , sn, t1, . . . , tn with defining relations tjsk = δjk1 and
∑
k sktk = 1

is simple.

(With suitably modified D1, D2, . . ..)

One can easily see that there is a unique anti-isomorphism x 7→ x∗ of order 2

with s∗k = tk. (The involution ∗ has to be defined as conjugate linear if we consider

the algebraic algebra over C defined by this relations.)

(11) List K∗(On)

(K0(On), [1],K1(On)) = (Zn−1, 1, 0) (n = 3, . . .), (K0(O2),K1(O2)) = (0, 0)

and (K0(O∞), [1],K1(O∞)) = (Z, 1, 0).

Has been discussed above in Old(0.1) ?= New (3)? .

(12) Unital endomorphisms of On are homotopic.

Every unital endomorphism of On is homotopic to id (in particular δn is homo-

topic to id).

[And thus, (n− 1) K∗(On) = 0]

(See Old (0.2) ?= ? New (4) or (A1.4, it follows also from UCT and classification

for n = 3, 4, . . .).

But we need before that O∞ and O2 are pi-sun with (K0(O2),K1(O2)) = (0, 0)

(It follows from: δ2 unitarily homotopic to id) and (K0(O∞), [1],K1(O∞)) =

(Z, 1, 0) (should come from K∗(En) = (Z, [1En ] = 1, 0) and O∞ = indlimn En with

unital En → En+1).

En → E2 → En homotopic to id, and E2 → En → E2 homotopic to id, where

Em → En for n ≥ m natural sk 7→ sk, and O∞ → E2 given by s1 7→ s1 and

sn+1 7→ sn2 s1. Notice s∗1(sm2 )∗sn2 s1 = 0 for m = 0, 1, 2, . . ., m < n.

The proof of homotopy follows from the K1-injectivity implied by the squeezing

property (sq) of the En.

We must show before that O2
∼= D2 := O2 ⊗ O2 ⊗ · · · and O∞ ∼= D∞ :=

O∞ ⊗O∞ ⊗ · · · ???.

(How to get that shortly, elementary, sufficient ???)

(13) General F (O2) = 0 for homotopy functors.

For every

(enough: “with respect to unitary homotopy” ??)

homotopy-invariant additive functor F : C∗ → G into an Abelian (or only ad-

ditive) category G holds F (O2) = 0 where C is a subcategory of the category of

C *-algebras that contains O2 (as object) and all unital endomorphisms of O2 (as

morphisms).

Also every functor F that takes on approximately unitary equivalent C *-

morphisms into the same element/morphism in G.
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(14) On as Cuntz-Pimsner algebras.

There is another way to study On (and En) – including all the former results on

nuclearity, simplicity, pure infiniteness, UCT and the calculation of the K-theories.

This algebras are very special cases of Cuntz-Pimsner algebras (respectively

generalized Fock–Toeplitz algebras) as considered by M. Pimsner in [633], because

On
∼= O(H) and En ∼= T (H) for the Hilbert C –C- bimodule H := `2(n), O∞ ∼=

O(H) = T (H) for the C –C-bimodule H := `2(N). The paper of M. Pimsner unifies

and generalizes some parts of related work of J. Cuntz.

1.1. Remarks on On and O∞ (2). Where is the homotopy a⊗ 1 ∼ 1⊗ a in

O∞, O2 ?

(and On ?? depends on the class in K1(On ⊗ On) of ??? a possible flipping

unitaries vn, discussed somewhere below ?? with limn v
∗
n(sk ⊗ 1)vn = 1 ⊗ sk,

limn v
∗
n(1⊗ sk)vn = sk ⊗ 1 ??? or V := n−1/2

∑
k,` s

∗
k ⊗ s` ??? with V ∗ = V )

constructed respectively described?

For O2 ⊗ A we have always K∗(O2 ⊗ A) = 0. Indeed, δ2 ⊗ idA is (unitary)

homotopic to id on O2 ⊗A, because δ2 on O2 has this property.

If A is unital, then this implies U(O2⊗A) = U0(O2⊗A) by Proposition 4.2.15

because O2 satisfies as a quotient of E2 the “squeezing” Property (sq) of Definition

4.2.14 and O2 ⊗A inherits it from O2.

It follows moreover that U(O2 ⊗A) is contractible, because O2 ⊗ (A⊗ C(Sn))

has also contractible C(Sn,U(O2 ⊗A)) ∼= U(O2 ⊗ (A⊗ C(Sn))) .

The case of O∞ requires to show that K1(O∞) = 0 and K1(O∞⊗O∞) = 0. It

was shown in Section ?? of Chapter 2 that O∞ is p.i. and simple.

< -- NO! That On is simple has to be shown -- before we can

apply this arguments !!

The definitions of O∞, On and En show that all have an properly infinite unit

element, thus are K1-surjective by Lemma 4.2.6(v).

By Proposition 4.2.15, En, O∞ and On have the squeezing property (sq) of

Definition 4.2.14, because the En have it and O∞ respectively On inherits it as

inductive limit of all En respectively quotients of En.

Those C *-algebras A that absorb O2 or O∞ tensorial are also strongly purely

infinite (and are simple if A is simple), and then are K1-injective by Proposition

4.2.15 or ?????????????

Since O∞ is in the “bootstrap” category (as inductive limit of the En), the

Künneth theorem for tensor products gives that K1(O∞ ⊗ O∞) = 0 and that

K0(O∞ ⊗ O∞) = Z with [1 ⊗ 1] = 1. This argument can be repeated and yields

K1(O∞ ⊗O∞ ⊗ · · · ) = 0 and K0(O∞ ⊗O∞ ⊗ · · · ) = Z with [1] = 1 by induction.

Use vn get what??
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It needs to consider the partial isometries vn :=
∑n
k=1 sk ⊗ s∗k in O∞ ⊗ O∞

(respectively the unitaries in On ⊗On). They satisfy v∗nvn = 1⊕ (
∑n
k=1 sks

∗
k) and

vnv
∗
n = (

∑n
k=1 sks

∗
k)⊕ 1.

Are the isometries sk ⊗ s` generators of O∞ ⊗O∞? (Certainly the sk ⊗ 1 and

1⊗ s` are generators.)

If one uses K1-injectivity, then one has to use also Künneth theorem to calculate

K1(O∞ ⊗O∞).

Needs K1-injectivity of all s.p.i. algebras:

Some has to be shown (more practical?) in Section ?? of Chapter 2.

The notion of K1-injectivity is defined and studied in Section 2 of Chapter 4.

Gives that all unital *-morphisms O∞ → E are unitarily homotopic if and

only if E is K1-injective:

Let S1, S2, . . . ∈ E generators of O∞. sn := h1(Sn), tn := h2(Sn).

s1, s2, . . . homotopic to s1, s1s
n
2 and t1, t1t

n
2 , then to t1, t2, . . ..

Gives embeddings E2 ↪→ E3 ↪→ E.

All unital *-monomorphisms En ↪→ En+k (n, k ≥ 1) are homotopic in En+k and

are – moreover – homotopic in E – if E is K1-injective.

If E unital and has properly infinite unit, then this means U(E)/U0(E) ∼= K1(E)

if E is K1-bijective.

Uses U0(En) = U(En) and that En ∩ K = {0} in En+1, because K ⊆ Em is an

essential ideal of Em for each m ≥ 2 and otherwise the unital map En → On+1

would define a unital C *-morphism from On into On+1.

It follows that D∞ has a flip automorphism. that is homotopic to id.

SOME COLLECTION OF RESULTS USED IN CHAPTERS 2 and

4 about On:

Transfer or Repeat ??

Needs to refer to “Property (sq)” !!!

Give the precise reference to definition and Prop. with results in Chp. 4 !!!

?? From Chp. 4:

(a): En := C∗(s1, . . . , sn; s∗i sj = δij), n = 2, . . . ,∞, satisfy Property (sq):

Indeed: Let w := k1k2 . . . kp, v := `1`2 . . . `q, “words” of length p, q ∈ N with

“letters” kj , `i ∈ {1, . . . , n} from the “alphabet” {1, . . . , n}.

Define T0 := 1 and an isometry by the product

Tp(w) := sk1
sk2
· . . . · skp .

It is easy to see ??? that the linear span of the element 1 and of the “elementary”

products Tq(w), Tq(w)∗ and Tq(w)(Tr(v)∗) is dense in the C *-algebra En (in both

of real or complex case), because
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(i) the product Tq(v)∗Tp(w) is equal to 1 if v = w,

(ii) is equal to zero if there exists g ≤ r := min(p, q) with kg 6= `g,

(iii) is equal to T(p−q)(u1) if q < p and w = vu1 and

(iv) is equal to T(q−p)(u2)∗ if p < q and v = wu2.

We denote by G one of this elementary products or let G = 1.

Perhaps change L(...) to λ(...)???

A sort of “length” L(G) is defined by L(1) := 0, L(Tq) := q, L((Tq)
∗) := q and

L(Tq · (Tr)∗) := q + r. Clearly, s∗kTp(w) = δk,k1
Tp−1(v) for all k = 1, . . . , n with

word v := k2k3 . . . kn for w = k1k2 . . . kn.

Let G := Tp(w)Tq(v)∗ with w = k1 . . . kp, v = `1 . . . `q (p, q ≥ 1), then,

L(s∗kGs`) = L(G) − 2 if and only if k1 = k and `1 = `, otherwise only s∗kGs` = 0

can happen.

In case G = Tp(w), w = k1 . . . kp we get s∗kGs` 6= 0 if and only if k = k1

and then L(s∗kGs`) = L(G), because then G = Tp(u) with u = k2 . . . kp`. Since

L(G∗) = L(G) the same holds for G = Tp(w)∗ with the role of k and ` interchanged.

Therefore, one can find, for each linear combination C = α01 +
∑m
j=1 αjGj

(with scalars αj), an index 1 ≤ j0 ≤ m and suitable k, ` ∈ {1, . . . , n} such that

k 6= `, s∗kGj0s` = 0 for at least one j0 ∈ {1, . . . ,m} and L(s∗kGjs`) ≤ L(Gj) for

j 6= j0. Thus s∗kCs` =
∑
j 6=0,j 6=j0 αjs

∗
kGjs` with elementary products s∗kGjs` (it

can be equal to 1).

Iteration – say m-times – of this operation leads to words w and v in the alpha-

bet {1, . . . , n} such that for the isometries Tm(w) and Tm(v) holds Tm(w)∗Tm(v) =

0 and Tm(w)∗CTm(v) = 0. It says that En has Property (sq).

It follows that its quotients On also have Property (sq).

END OF (sq) PROOF for En!

We can also use also the proof of J. Cuntz in [172, thm. 1.9, thm. 3.7] to get

U0(O∞) = U(O∞).

On the real version (O2)R of O2:

The homotopy id ∼h δ2 exists also in the semi-group of unital *-endomorphisms

of (O2)R. It follows that U((O2)R) = U0((O2)R) and that all unital *-

endomorphisms ϕ of (O2)R are homotopic to the identity isomorphism of (O2)R.

Indeed, ϕ is uniquely defined by ϕ(sj) = uϕsj (j = 1, 2), where

uϕ :=

2∑
j=1

ϕ(sj)s
∗
j ,

and, for each unitary u ∈ (O2)R holds:

u⊕s1,s2 u ∼h u in U((O2)R). Since u⊕ v ∼h v ⊕ u and uv ⊕ 1 by Part (v,4) of

Lemma 4.2.6 we get that

(u⊕ u)⊕ u∗ ∼h u⊕ u∗ ∼h 1 .
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Since Ud or U∗d first?

U∗d ((u⊕ u)⊕ u∗)Ud = u⊕ (u⊕ u∗)

it follows

u⊕ 1 ∼h u⊕ (u⊕ u∗) ∼h 1

in U((O2)R). We get that

u ∼h u⊕ u ∼h (u⊕ 1) · (1⊕ u) ∼h 1

for every u ∈ U((O2)R), i.e., U((O2)R) = U0((O2)R).

The self-adjoint unitary C(2) :=
∑

1≤i,j≤2 sisjs
∗
i s
∗
j in the real C *-algebra

A2 := C∗(sisk(sjs`)
∗; 1 ≤ i, j, k, ` ≤ 2) ∼= M4(R)

has determinate = −1. But δ2(C(2)) is unitary equivalent to C(2) in

M8(R) ∼= A3 := C∗(sisksm(sjs`sn)∗; 1 ≤ i, j, k, ` ≤ 2)

by the unitary C(3) :=
∑

1≤i,j,k≤2 sisjsk(sjsksi)
∗. This implies that C(2) ∈

U0((O2)R) and then that δ2 is homotopic to id inside the unital *-endomorphisms

of (O2)R.

The equality U(E2) = U0(E2), can be seen (in case of complex E) from the short-

exact sequence K→ E2 → O2, and from the equalities U0(K+C · 1) = U(K+C · 1)

and U0(O2) = U(O2) .

Transfer or Repeat? FROM Chp. 2:

In proof of property (sq) for En in Chp. 4

is already some said about the algebraic version of En .

The C *-algebra En is the universal C *-algebra generated by n isometries with

orthogonal ranges, i.e., En := C∗(s1, . . . , sn ; s∗ks` = δk`1) . The C *-algebra O∞ is

the inductive limit of the sequence of the natural unital C *-morphisms hn : En →
En+1 defined by hn(sk) := sk for k = 1, . . . , n.

The *-monomorphisms hn satisfy the criteria 2.2.5(iv):

The closed ideal J(pn) of En generated by pn := 1 − s1s
∗
1 − · · · − sns

∗
n is

isomorphic to K(`2(N)) and pn is a minimal projection of J(pn) ∼= K, because

pnTq(w1)Tr(w2)∗pn = 0 for w1, w2 words in the “alphabet” {1, . . . , n} with at least

one of w1 and w2 is not the “empty” word (i.e., the q + r > 0 for the lengths q of

w1 and r of w2).

It implies that pn · En · pn = C · pn.

The ideal J(pn) is an essential ideal of En, because On
∼= En/J(pn) is simple.

(Refer here to the place where simplicity of On is proven!)

The simplicity of On follows from the fact that Mn∞ is the fixed point algebra

of the “gauge” circle action on On and that (!!!!) the conditional expectation from

On onto Mn∞ defined by this action is an approximately inner u.c.p. map.

(Where is the appox innerness is shown here?)
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(The point is, that one proves first – e.g. Cuntz – that the conditional expecta-

tion Pn : On →Mn∞ is element-wise approximately inner by taking approximation

be elementary .)

Ref’s to simplicity (! where shown?) of On ??:

J(pn) ∼= K
pnEnpn = Cpn
On simple, implies that

J(pn) is essential ideal of En.

(But the argument for “J(pn) essential” needs only that On is G-simple for

G := S1 and the “gauge” circle action.)

Hence, a ∈ En 7→ H(a) ∈M(J(pn)) with H(a)b = ab for b ∈ J(pn) is a faithful

C *-morphism, and for a ∈ (En)+ with ‖a‖ = 1 there exists a partial isometry

z ∈ J(pn) ∼= K with z∗z = pn and ‖ pn − z∗az ‖ < ε .

Define c := hn(z)sn+1hn(b1/2). If we use that hn(pn) = pn+1 + sn+1s
∗
n+1 ∈

En+1 and pn+1sn+1 = 0, then we get

‖c∗hn(a)c− hn(b)‖ < ε .

New ?? concepts for Appendix of book:

Try to find a direct simple proof that the gauge action of On is approximately

inner ...???

NOT found yet !!!

Definitions of On, En, O∞.

Its K∗-groups:

K∗(En) = (Z, 0), K∗(On) = (Z/(n−1)Z, 0), n = 2, 3, . . ., i.e., cyclic with generators

[1] K∗(O∞) = (Z, 0).

O∞ is the inductive limit of the inclusion maps En → En+1, n = 2, 3, . . . . It is

stationary on [1]. Shows (Z, 1) ∼= (K0(O∞), [1]).

It was shown in Chp.2, sec.2.2:

indlim En → En+1 is simple and p.i.

But it did use that the ideal I(p) is essential in En,
with p = p0 = en defined below/above several times.

Requires that I(p) is essential for En.

On := En/I(p), where I(p) is the closed ideal of En generated by the projection

p := 1− s1s
∗
1 − . . .− sns∗n.

Here En := C∗(s1, . . . , sn ; s∗i sj = δij1) = C∗(An) is the C *-completion of

An, defined as the universal algebraic *-algebra generated by s1, . . . , sn subject to

the relations s∗i sj = δi,j1.

The existence and well-defined-ness of C∗(An) follows from an old observation

of M.G. Krein in 1949 [493] mentioned in his study of Krein bloc-algebras:
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Let A a unital *-ring with relations that allow to prove that for (some)

given generators a1, a2, . . . ; a
∗
1, a
∗
2, . . . and relations R1, R2, . . . of A there exists

b1,n, . . . , bk,n ∈ A and γn ≥ 0 (depending from an) such that in the unitization

Ã := A+ C · 1 of A holds

a∗nan + b∗1,nb1,n + · · ·+ b∗k,nbk,n = γn1 .

Then there is a well-defined maximal C *-seminorm on A. We denote the corre-

sponding C *-algebra then by C∗(a1, a2, . . . ;R1, R2, . . .). The natural C *-morphism

from the algebraic A into its C *-algebraic version C∗(a1, a2, . . . ;R1, R2, . . .) is not

necessarily faithful.

(In non-unital case one can adjoin a unit element e and require that ??? for

desired “contractions” w ∈ A there exist v ∈ Ae in an extended version Ae ⊇ A

with w∗w + v2 = 1 or w∗w + v∗v = 1.)

We show that our An is the linear span of the expressions WαW
∗
β for α and β

words in from the “alphabet” {1, 2, . . . , n}, where Wα := 1 for the empty word (of

length 0) or Wα = sk1sk2 · . . . · sk` for the word α = k1k2 . . . k` of length ` = `(α)

with k1, k2, . . . , k` ∈ {1, . . . , n}.

Notice that Wα and Wβ satisfy W ∗αWβ = δα,β1 if α and β have the same

length. If `(α) < `(β), then we have to write β as β = β′γ with `(β′) = `(α) and

get W ∗αWβ = δα,β′ ·Wγ . In this way only terms like 1 and Wα ·W ∗β appear in the

sub-semigroup of An generated by 1, s1, . . . , sn, s
∗
1, . . . , s

∗
n . Thus An is the linear

span of this terms.

If we let p0 := 1 − s1s
∗
1 − · · · − sns∗n then p0Wα = 0 if α has length ≥ 1, i.e.,

if Wα 6= 1, because p0sk = 0 for all k ∈ {1, . . . , n}. It follows that p0Anp0 = C · p0

and p0Enp0 = C · p0 .

It follows that W (α)p0W (α)∗W (β)p0W (β)∗ = 0, i.e., that the ideal I(p0) of An

generated by {p0} contains a countable number of mutually orthogonal projections

pα := W (α)p0W (α)∗ with 1-dimensional pαAnpβ .

Clearly p0 = p∗0, and, for k 6= ` and i = j, or i 6= j,

(si)
kp0((si)

k)∗(sj)
`p0((sj)

`)∗ = 0 .

It implies that the closed ideal I(p0) of En must be isomorphic to K .

There is a circle action σz on An (by universality of An) given on generators by

σz(sk) := zsk for z ∈ S1 := {z ∈ C ; |z| = 1}. The action fixes p0 and is compatible

with the relations of An, i.e., the tk := σz(sk) define the same relations t∗j tk = δjk1

and p0 := 1−t∗1t1−· · ·−t∗ntn as the s1, . . . , sn. Moreover σz(a
∗) = σz(a)∗, because

this happens on generators.

By universality of An it follows that σ extends to a circle action on En that

fixes p0. In particular, it takes I(p0) ∼= K invariant.

(In fact one has moreover a natural U(Mn) action on En that fixes p0.)
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Thus, σ extends naturally to a circle action σ on En, and then to an action

on On respectively on O∞, because they are the completions with the maximal

possible C *-norms on it.

Notation below differs from that of above:

The fix-point-algebra of σ on On is generated by the elements WαW
∗
β with Wα

and Wβ words in “letters” s1, . . . , sn of the same length `(α) = `(β). We have∑
sns
∗
n = 1 in On. It follows that WαW

∗
β =

∑n
j=1(Wαsj)(Wβsj)

∗ is contained in

the span of the WγWδ with 1 + `(α) = `(γ) = `(δ) = 1 + `(β).

It is easy to see that this is naturally isomorphic to the inductive limit of unital

embeddings

Mnk →Mnk ⊗ 1n ⊆ Mnk+1 .

Thus On
σ ∼= Mn∞ and

Pn(a) :=

∫
z∈S1

σz(a)dz

is a conditional expectation from On onto Mn∞ ⊆ On.

It turns out that Pn is 1-step approximately inner in On (cf. [209]), but this

has been shown also by J. Cuntz itself.

The corresponding contractions Tm with Pn(a) := limm T
∗
maTm are given by

Tm :=
∑
α,β

VαWβ(Vα)∗(Wβ)∗ =
∑
β

δmn (Wβ)(Wβ)∗ =
∑
α

Vαδ
m
n (Vβ) ,

where α and β run through {1, . . . , n}m.

If leads to the observation that On is simple, p.i. (hence s.p.i.) and nuclear:

The nuclearity follows from the general observation that compares maximal and

minimal tensor products and shows that a C *-algebra with a continuous action of

a compact group is nuclear if its fix-point-algebra is nuclear.

Where explained in detail? Refer to this.

Since Pn(On) ∼= Mn∞ is simple and Pn is faithful on the positive cone of On, it

follows that “one-step approximate innerness” of Pn would show also the simplicity

of On, cf. [169], [172] or [209].

Nothing found in the cited papers?!

The argument of J. Cuntz goes a follows:

(1a.) The conditional expectation Pn : On →Mn∞ ⊆ On is faithful, because it

is the integral of a circle action.

(1a is My or his argument?)

(1b.) The nonzero projections in Mn∞ ⊆ On are all infinite in On.

In particular Why it should be a special case of what???, there exists for each

nonzero projection p ∈ On an isometry s ∈ On with s∗ps = 1.

(1c.) It implies that each nonzero positive element a ∈ Mn∞ is infinite in On,

and there exists d ∈ On with d∗ad = (‖a‖/2) · 1.
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(2a.) Let b ∈ On an element in W?????? then there exists d ∈ W?? such that

d∗b∗bd = Pn(b∗b) ...??

(Range of such d must almost commute with given finite subset in the fixed

point algebra of the circle action but must have orthogonal ranges if composed with

a finite subset of non-fixed points ...?)

(2b.) Let a ∈ On positive with ‖a‖ = 1 and ε > 0. Then there exists an

element e ∈ A with ‖e∗ae− Pn(a)‖ ≤ ε.

WHERE THIS IS SHOWN?

(2a.)

If we can show that Pn(a) is contained in {d∗ad ; d ∈ On} for each a ∈ On with

a ≥ 0.

Thus, if 0 6= a ≥ 0 and Pn is faithful on (On)+ then On is simple.

Let a ∈ On positive and ε > 0, then find n ∈ N and b∗ = b ∈ Wn with

‖b2 − a‖ < ε. Leads to ‖Pn(a)− Pn(b2)‖ < ε.

Then find element (contraction?) D ∈Wm with ‖D∗b2D − Pn(b2)‖ < ε. ...

If one can show that each projection in Pn(On) dominates the range of an

isometry in On then the one-step approximation of Pn shows moreover that On

must be purely infinite.

That is, each minimal projection of the span of {WαW
∗
β ; `(α) = `(β) = k} =

Mnk is the range of an isometry in On, because all non-zero minimal projections in

Mnk are equivalent.

Since I(p) ∼= K (where shown? ref!) and On := En/I(p) is nuclear, it follows

that the algebras En are nuclear. This passes to its inductive limit O∞, i.e., O∞ is

nuclear.

The defining element u ∈ O2 with usj = δ2(sj) of the endomorphism δ2 : O2 →
O2 given by a ∈ O2 7→ δ2(a) := s1as

∗
1 + s2as

∗
2 can be written down explicitly as

u := s1s1s
∗
1s
∗
1 + s2s1s

∗
2s
∗
1 + s1s2s

∗
1s
∗
2 + s2s2s

∗
2s
∗
2 .

It is a symmetry in the real C *-algebra M4(R) ∼= A2 := C∗R(sisks
∗
`s
∗
j ; i, j, k, ` =

1, 2) with determinate = −1.

Since C∗R(sisks
∗
`s
∗
j ; i, j, k, ` = 1, 2) is a unital *-subalgebra of M8(R) ∼= A3 :=

C∗R(sisksms
∗
ns
∗
`s
∗
j ; i, j = 1, 2), and O(4)⊗ 12 ⊆ SO(8), there is a continuous path

inside SO(8) that connects u⊗ 12 in SO(8) with 1. This happens then also in O2.

An explicit path can be found with help of suitable elementary transformations:

Bit more general for n ∈ N, n > 1, we consider On and En. Let

W (k) := {1, . . . , n}k. If w = (j1, . . . , jk) ∈ W (k) is a “word” of length k,

let λw := (jk, j1, . . . , jk−1) the cyclic change of the word w ∈ W (k) and

w := (jk, jk−1, . . . , j2, j1) the reversed word in W (k). They define isometries

S(w) := sj1 · . . . · sjk . Notice that the elements Z(k) :=
∑
w∈W (k) Z(λw)Z(w)∗
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and U(k) :=
∑
w∈W (k) Z(w)Z(w)∗ of On are orthogonal operators in Ak :=

span({S(w1)S(w2)∗ ; w1, w2 ∈ Wk}) ∼= Mnk respectively a symmetry (i.e.,

U(k)∗ = U(k), U(k)2 = 1).

Notice that Ak ⊆ Ak+1 because

S(w1)S(w2)∗ =

n∑
`=1

(S(w1)s`)(S(w2)s`)
∗

and S(w)s` = S((w, `) where (w, `) := (j1, . . . , jk, `) ∈W (k + 1).

Z(k + 1)∗S(w1)S(w2)∗Z(k + 1) = δn(S(w1)S(w2)∗) for w1, w2 ∈W (k) .

This follows from Z(k + 1)∗S(w1)s`s
∗
`S(w2)∗Z(k + 1) = s`S(w1)S(w2)∗s∗` or

s∗`S(w2)∗Z(k + 1) = S(w2)∗s∗` .

In case n = 2 and k = 2, one gets

U(2) = Z(2) = s2
1(s2

1)∗ + s2
2(s2

2)∗ + s1s2(s2s1)∗ + s2s1(s1s2)∗

Moreover U(2)s` = δ2(s`) for ` = 1, 2.

More generally, for n ≥ 2, U(2)s` = δn(s`) for ` = 1, . . . , n . It follows that δn is

homotopic to id on On, if and only if, U(2) is homotopic to 1 in U(On) (respectively

in O(On) for the real version of On).

In case n = 2 we get with V := (s1s
∗
2 − s2s

∗
1) that

Z(3)∗U(2)Z(3) = δ2(U(2)) = (s1U(2)s∗1 + s2s
∗
2)V ∗(s1U(2)s∗1 + s2s

∗
2)V .

Notice that exp((π/2)V ) = V + (1 − V 4) if V ∗ = −V = V 3. In particular,

V = exp((π/2)V ) if V ∗ = −V and V 4 = 1. Let C = [αjk] ∈ SO2 the 90◦ rotation

matrix, i.e., α11 = α22 = 0 and α21 = −α12 = 1 and recall [s1, s2]∗ = [s∗1, s
∗
2]> ∈

M2,1(O2) ⊆ M2(O2). We define a unitary in (the real version of) O2 by

Vθ := exp(θ(π/2)V ) = [s1, s2] exp(θπ/2C)[s1, s2]∗ ∈ A3

Since V ∗ = −V , we get that Vθ is in SO(A3) ∼= SO3 for θ ∈ [0, 1].

It follows that

Uθ := Z(3)(U(2)⊕ 1)V (θ)∗(U(2)⊕ 1)V (θ)Z(3)∗

is a path in SO(A3) that connects the unitary U(2) = U1 ∈ O(A2) with 1 = U0.

It follows that the unital *-endomorphism δ2 of O2 is homotopic inside the

unital endomorphisms End1(O2) of O2 to the identity isomorphism.

Similar considerations show that δn ∈ End1(On) is homotopic inside the unital

endomorphisms End1(On) of On to the identity isomorphism id of On.

If one can find a unitary U in the ultra-power (O2)ω of O2, or in Q(R+,O2) :=

Cb(R+,O2)/C0(R+,O2), or in (O2)∞ := `∞(O2)/c0(O2) with Uδ2(x)U∗ = x for

x ∈ O2 then one gets for tj := Usj that t1, t2 commute element-wise with O2, i.e.,

O2
∼= C∗(t1, t2) is a copy of O2 that is unital contained in O2

′∩(O2)ω (respectively
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in O2
′ ∩ Q(R+,O2) or in O2

′ ∩ (O2)∞). Then, by repeat of this construction, we

find a unital copy of O2⊗O2⊗ · · · ⊆ O2ω that commutes with O2 element-wise in

this asymptotic algebras. It allows to conclude that O2
∼= D2 := O2 ⊗O2 ⊗ · · · .

Next is contained in proof prop. 2.2.5?

The following argument for pure infiniteness of O∞ uses (and needs) that En →
O∞ is injective. (Somewhere above proven !)

and that e ∈ En satisfies sn+1s
∗
n+1 ≤ e.

Claim: The algebra O∞ is purely infinite.

Idea of arguments:

“Have somewhere above shown” that the natural map η : En → En+1 is injective

and that en := 1−
∑n
k=1 sks

∗
k satisfies enEnen = C · en.

(E.g. via looking to En−1 → En → On and extending a faithful unital represen-

tation ρ : En−1 → L(H) with separable H to ρ⊗ id : En−1⊗L(H)→ L(H⊗H) and

finding an isometry T ∈ L(H⊗H) with

TT ∗ = 1⊗ 1− ρ(s1s
∗
1 + . . .+ sn−1s

∗
n−1)⊗ 1 .

– Here we denote idH by 1. )

It follows that I(e) embeds injective into En+1 and s∗n+1η(e)sn+1 = 1. If c ∈ En
is positive and g ∈ I(e) with γ · e = g∗cg 6= 0, g∗g = e, then s∗n+1g

∗cgsn+1 = γ1.

In particular, c is full and properly infinite in En+1.

Let a ∈ O∞ positive with ‖a‖ = 1. Then there exists n ∈ N and a positive

contraction b ∈ En with ‖a − b‖ < 1/8. Thus, ‖b‖ ≥ 7/8 and ‖(b − 1/8)+‖ ≥ 3/4.

There is a contraction d ∈ O∞ with d∗ad = (b− 1/8)+, cf. Lemma 2.1.9. It follows

that d∗ad ∈ En and ‖d∗ad‖ ≥ 3/4.

Rest of the proof: e = 1−
∑
k sks

∗
k satisfies I(e) ∼= K and e ∈ I(e) minimal and

e ∈ En+1 ⊆ O∞

Need for final conclusion that

(o) I(e) ∼= K,
(i) e is a properly infinite full projection in En+1 ⊆ O∞ and

(i) I(e) essential for En.
To be shown:

The closed ideal I(e) ∼= K of En is an essential of En.

Steps:

(1.) I(e) ∼= K, because:

It is a closed ideal of En generated by the projection e := 1− (s1s
∗
1 + . . .+ sns

∗
n).

It satisfies esj = 0 for j = 1, . . . , n. Thus, eEne = C · e, i.e., the projection e is a

minimal idempotent in En.

(2.) I(e) is invariant under the canonical circle action, because e is fixed by the

circle action

(3.) The set of positive elements orthogonal to I(e) is (by (2.)) invariant under the
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circle action and is a closed ideal J of En orthogonal to I(e).

(4.) The image πI(e)(J) of J in On := En/I(e) is a closed ideal of On that is

isomorphic to J and is invariant under the circle action on On and ...

(5.) πI(e)(J) does not contain the class 1 + I(e) ∈ En/I(e):

Otherwise it means that (1− Y ) · En · e = {0} for some Y ∈ I(e) with 0 ≤ Y ≤ 1.

It implies that Y a = a for all a ∈ I(e) and that Y − Y 2 = 0. Thus, Y is a unit

element of I(e), but I(e) is not unital.

(6.) The circle-action invariant ideal πI(e)(J) has – if it would be non-zero – a non-

zero intersection with P (On) that is a closed ideal of P (On), that can not contain

1 by (5.).

Since P (On) ∼= Mn∞ it follows that J ∼= πI(e)(J) = 0.

This finishes the proof that I(e) is an essential ideal of En (without showing

before that On is simple).

Follows also immediately from the simplicity of On ( – if this has

been shown before together with the property of e := 1 − s1s
∗
1 − · · · − sns∗n that

e · En · e = Ce – but we give an other proof that does not use the simplicity of On):

eW (α) = 0 for `(α) > 0, where W (α) :=????.

Recall: a ∈ O∞ with ‖a‖ = 1 there exists n ∈ N and a positive contraction

b ∈ En with ‖a − b‖ < 1/8. Thus, ‖b‖ ≥ 7/8 and ‖(b − 1/8)+‖ ≥ 3/4. There is a

contraction d ∈ O∞ with d∗ad = (b− 1/8)+, cf. Lemma 2.1.9.

We find a minimal projection q in I(p) with

‖q(b− 1/8)+q‖ ≥ ‖(b− 1/8)+‖ − 1/4 ≥ 1/2 .

Then qd∗adq = αq for some α ≥ 1/2. There is a contraction z ∈ En+1 with

z∗qz = 1, because there is a partial isometry v ∈ I(p) ∼= K with v∗qv = p and

s∗n+1psn+1 = 1. Thus f := α−1/2dqz satisfies f∗af = 1.

It follows that O∞ is simple and purely infinite (if we have shown before the

simplicity of On or only that I(e) is an essential ideal of En).

1.2. Remarks on Real On and O∞ (2). The defining unitary u ∈ O2 with

usj = δ2(sj) for the endomorphism

δ2 : O2 3 a 7→ δ2(a) := s1as
∗
1 + s2as

∗
2 ∈ O2

can be written down explicitly as

u := s1s1s
∗
1s
∗
1 + s2s1s

∗
2s
∗
1 + s1s2s

∗
1s
∗
2 + s2s2s

∗
2s
∗
2 .

It is a symmetry with determinate = −1 in the real C *-algebra M4(R) ∼= A2 :=

C∗R(sisks
∗
`s
∗
j ; i, j, k, ` = 1, 2).

But since C∗R(sisks
∗
`s
∗
j ; i, j, k, ` = 1, 2) is a unital *-subalgebra of

Check formula for A3:

M8(R) ∼= A3 := C∗R(sisksms
∗
ns
∗
`s
∗
j ; i, j, k, `,m ∈ {1, 2})
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, and the natural embedding A2 ⊂ A3, O(4) ⊗ 12 ⊆ SO(8), there is a continuous

path inside SO(8) that connects u ⊗ 12 in SO(8) with 1. This happens then also

in the real version of O2.

An explicit path can be found using an isomorphism from M8(R) onto A3.

Bit more general (but only in complex case) for n ∈ N, n > 1, we con-

sider On and En. Let W (k) := {1, . . . , n}k. If w = (j1, . . . , jk) ∈ W (k)

is a “word” of length k, let λw := (jk, j1 . . . , jk−1) the cyclic change of

the word w ∈ W (k) and w := (jk, jk−1, . . . , j2, j1) the reversed word in

W (k). The define isometries S(w) := sj1 · . . . · sjk . Notice that the elements

Z(k) :=
∑
w∈W (k) Z(λw)Z(w)∗ and U(k) :=

∑
w∈W (k) Z(w)Z(w)∗ of On are

orthogonal operators in Ak := span({S(w1)S(w2)∗ ; w1, w2 ∈ Wk}) ∼= Mnk

respectively a symmetry (i.e., U(k)∗ = U(k), U(k)2 = 1).

Notice that Ak ⊆ Ak+1 because

S(w1)S(w2)∗ =
n∑
`=1

(S(w1)s`)(S(w2)s`)
∗

and S(w)s` = S((w, `) where (w, `) := (j1, . . . , jk, `) ∈W (k + 1).

Z(k + 1)∗S(w1)S(w2)∗Z(k + 1) = δn(S(w1)S(w2)∗) for w1, w2 ∈W (k) .

This follows from Z(k + 1)∗S(w1)s`s
∗
`S(w2)∗Z(k + 1) = s`S(w1)S(w2)∗s∗` or

s∗`S(w2)∗Z(k + 1) = S(w2)∗s∗` .

In case n = 2 and k = 2, one gets

U(2) = Z(2) = s2
1(s2

1)∗ + s2
2(s2

2)∗ + s1s2(s2s1)∗ + s2s1(s1s2)∗

Moreover U(2)s` = δ2(s`) for ` = 1, 2.

More generally, for n ≥ 2, U(2)s` = δn(s`) for ` = 1, . . . , n. It follows that δn is

homotopic to id on On, if and only if, U(2) is homotopic to 1 in U(On) (respectively

in O(On) for the real version of On).

In case n = 2 we get with V := (s1s
∗
2 − s2s

∗
1)

Z(3)∗U(2)Z(3) = δ2(U(2)) = (s1U(2)s∗1 + s2s
∗
2)V ∗(s1U(2)s∗1 + s2s

∗
2)V .

Notice that exp((π/2)V ) = V + (1 − V 4) if V ∗ = −V = V 3. In particular,

V = exp((π/2)V ) if V ∗ = −V and V 4 = 1. Let C = [αjk] ∈ SO2 the 90◦ rotation

matrix, i.e., α11 = α22 = 0 and α21 = −α12 = 1 and recall [s1, s2]∗ = [s∗1, s
∗
2]> ∈

M2,1(O2) ⊆ M2(O2) . We define a unitary in (the real version of) O2 by

Vθ := exp(θ(π/2)V ) = [s1, s2] exp(θπ/2C)[s1, s2]∗ ∈ A3

Since V ∗ = −V , we get that Vθ is in SO(A3) ∼= SO3 for θ ∈ [0, 1].

It follows that

Uθ := Z(3)(U(2)⊕ 1)V (θ)∗(U(2)⊕ 1)V (θ)Z(3)∗

is a path in SO(A3) that connects the unitary U(2) = U1 ∈ O(A2) with 1 = U0.
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It follows that the unital *-endomorphism δ2 of O2 is homotopic inside the

endomorphisms of O2 to the identity isomorphism.

This is an important information, because it allows to show that with an ap-

proximation argument one can apply the following observation:

If one can find a unitary U in the ultra-power (O2)ω of O2, or in Q(R+,O2) :=

Cb(R+,O2)/C0(R+,O2), or in (O2)∞ := `∞(O2)/c0(O2) with Uδ2(x)U∗ = x for

x ∈ O2 then one gets for tj := Usj that t1, t2 commute element-wise with O2 in

the asymptotic algebra, i.e., O2
∼= C∗(t1, t2) is unital contained in O2

′ ∩ (O2)ω

(respectively in O2
′ ∩ Q(R+,O2) or in O2

′ ∩ (O2)∞). Then, by repeat of this

construction, we find a unital copy of O2⊗O2⊗· · · ⊆ O2ω that commutes with O2

element-wise in this asymptotic algebras. It allows to conclude that O2
∼= D2 :=

O2 ⊗O2 ⊗ · · · . See Chapter 11.

Remarks on real O2 and O∞ (3):

The endomorphism δ2(a) := s1as
∗
1 + s2as

∗
2 is homotopic to id in the endomor-

phisms of real Cuntz algebra (O2)R.

It follows U(O2) = U0(O2) by [172, thm. 1.9, thm. 3.7].

We have for the “real version” of O∞ also U0(O∞) = U(O∞) by [172,

thm’s. 1.9, 3.7], (cf. arguments in Chapter 4, modify them for the real case).

U0((O2)R) = U((O2)R) and U0((O∞)R) = U((O∞)R) hold also for the “real”

version (O2)R of O2.

Here we use in the real cases E = ER, (O2)R and (E2)R also the “complex”

notations “unitary” and U(E), U0(E) instead of O(E), respectively SO(E), for the

orthogonal elements u ∈ E, respectively u ∈ E in the connected component of 1 in

O(E).

The homotopy id ∼h δ2 exists also in the semi-group of unital *-endomorphisms

of (O2)R. It follows that U((O2)R) = U0((O2)R) and that all unital *-

endomorphisms ϕ of (O2)R are homotopic to the identity isomorphism of (O2)R.

Indeed, ϕ is uniquely defined by ϕ(sj) = uϕsj (j = 1, 2) where

uϕ :=
2∑
j=1

ϕ(sj)s
∗
j ,

and, for each unitary u ∈ (O2)R holds:

u ⊕s1,s2 u ∼h u in U((O2)R). Since u ⊕ v ∼h v ⊕ u ∼ uv ⊕ 1 by part (v,4) of

Lemma 4.2.6 we get that

(u⊕ u)⊕ u∗ ∼h u⊕ u∗ ∼h 1 .

Since Ud or U∗d first?

U∗d ((u⊕ u)⊕ u∗)Ud = u⊕ (u⊕ u∗)

it follows

u⊕ 1 ∼h u⊕ (u⊕ u∗) ∼h 1
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in U((O2)R). We get that

u ∼h u⊕ u ∼h (u⊕ 1) · (1⊕ u) ∼h 1

for every u ∈ U((O2)R), i.e., U((O2)R) = U0((O2)R).

The selfadjoint unitary C(2) :=
∑

1≤i,j≤2 sisjs
∗
i s
∗
j in the real C *-algebra A2 :=

C∗(sisk(sjs`)
∗; 1 ≤ i, j, k, ` ≤ 2) ∼= M4(R) has determinate = −1.

But δ2(C(2)) is unitary equivalent to C(2) in

M8(R) = A3 := C∗(sisksm(sjs`sn)∗; 1 ≤ i, j, k, ` ≤ 2)

by the unitary C(3) :=
∑

1≤i,j,k≤2 sisjsk(sjsksi)
∗. This implies that C(2) ∈

U0((O2)R) and then that δ2 is homotopic to to id in the unital *-endomorphisms of

(O2)R.

The equality U(E2) = U0(E2) , can be seen (in case of complex E) from the

short-exact sequence

K→ E2 → O2

and from the equalities

U0(K+ C · 1) = U(K+ C · 1)

and U0(O2) = U(O2).

But one can also use the general property (sq) to prove K1-injectivity.

[209, prop. 5]:

(Let T1, . . . , Tn isometries with
∑
k TkT

∗
k = 1.) Define Rk := T2T1 · . . . · T1,

where we take k-times T1.

??

Is it not simply the original argument of J. Cuntz ?

Let (Uk is not a unitary !)

Uk =
∑
p∈Γk

VpRkV
∗
p

Then φ(x) = limk→∞ U∗kxUk for x ∈ On.

???????

(What happens in En in place of On ??)

Here φ(x) :=
∫
G
σ(g)(x) dµG(g). It is different defined in the paper. (Above

defined as P (x) for the circle action.)

How is the group G defined?? Likely by circle action – or by Z2-action:

χ : {−1, 1} ?

Here

Γk := {1, 2, . . . , n}k :=
{
p = (p1, . . . , pk) ; pj ∈ {1, 2, . . . , n}

}
and Vp := Tp1

· . . . · Tpk .
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(Also written somewhere as Tk(w) for w = p1 . . . pk, pj ∈ {1, . . . , n}).

2. Semi-Projectivity of the En and On

Recall that E2 := C∗(s1, s2 ; s∗jsk = δjk1). The C *-algebra E2 satisfies a

version of weak semi-projectivity shown in the following lemma.

Lemma A.2.1. If A is the closure of an increasing sequence of C*-subalgebras

A1 ⊆ A2 ⊆ · · · and ψ : E2 → A is a (not necessarily unital) C*-morphism, then

for every ε ∈ (0, 1) there exist n = n(ε) ∈ N, a C*-morphism ψn : E2 → An and

elements h1, h2 ∈ A of norm ‖hk‖ ≤ ε (k = 1, 2) such that h∗k = −hk and ψn(1) :=

exp(−h1)ψ(1) exp(h1), ‖ψ(sj) − ψn(sj)‖ < ε and ψn(sj) = exp(h2)ψ(sj) exp(h1)

for j = 1, 2.

Reorganize following proof:

Explain the relations between

‘‘‖1 − u‖ < 1 small’’ and u := exp(h) for h ∈ A with h∗ = −h and ‘‘‖h‖
small’’.

Start then (! 1st) the unital case with

range projections in An for all n.

Do (2nd) the reduction from unital case where

the range projections are not in An

to the case where they are in all An

then (3rd) the reduction from most general

to the unital case.

Proof. Let pk := ψ(sks
∗
k) for k = 1, 2. We consider first the C *-morphism

ψ0 : C⊕ C→ A defined by ψ0(ξ1, ξ2) := ξ1p1 + ξ2p2.

Let y := p1 − p2. It has spectrum {−1, 1} ⊆ SpecA(y) ⊆ {−1, 0, 1}. We find

a sequence of selfadjoint contractions yn ∈ An such that y = lim yn. It follows

that there exists n0 such that ‖yn − y‖ < 1/8 for all n ≥ n0. Thus, Spec(yn) is in

[−1,−3/4] ∪ [−1/4, 1/4] ∪ [3/4, 1] for all n ≥ n0. Let γ(t) the continuos pice-wise

linear function with (only) break points {−3/4,−1/4, 1/4, 3/4}, values γ(t) := −1

on [−1,−3/4], γ(t) := 0 on [−1/4, 1/4], γ(t) := 1 on [3/4, 1] and γ(t) linear on

[−3/4,−1/4] ∪ [1/4, 3/4].

Then Spec(γ(yn)) ⊆ {−1, 0, 1} for all n ≥ n0, and p1,n := γ(yn)+, p2,n :=

γ(yn)− are projections for n ≥ n0 and ψ0,n(ξ1, ξ2) := ξ1p1,n + ξ2p2,n are C *-

morphisms from C⊕C into An (n ≥ n0) that satisfy limn ψ0,n(ξ1, ξ2) = ψ0(ξ1, ξ2).

More precisely, there exist h1,n ∈ A with h∗1,n = −h1,n and ‖h1,n‖ ≤ arcsin????,

such that

ψ0,n(1, 1) = exp(−h1,n)(p1 + p2) exp(h1,n)
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for all n ≥ n0.

Let zj := ψ(sj), P := z∗1z1 = z∗2z2, pj := zjz
∗
j ≤ P (j = 1, 2). Notice that

p1 + p2 ≤ P (implies p1p2 = 0).

Since the self-adjoint contractions in the algebraic *-algebra
⋃
n An are dense

in the self-adjoint contractions of A, we can start with a sequence x∗n = xn ∈ An
with ‖xn‖ ≤ 1 and lim ‖xn − P‖ = 0. Let γn := ‖xn − P‖. Then the spectrum

Spec(xn) of xn is contained in [−γn, γn] ∪ [1− γn, 1]. Thus, Pn := ϕ(xn) ∈ An is a

projection with ‖xn − Pn‖ ≤ γn for all n with γn < 1/4 where

ϕ(t) := min(1, 2 max(0, 2t− 1)) = 4[(t− 1/2)+ − (t− 3/4)+] .

We get the existence of n0 such that there are projections Pn ∈ An with ‖Pn−P‖ ≤
1/2 for n ≥ n0 and that limn ‖Pn − P‖ = 0.

Let λ(t) a “suitable” continuous strictly increasing functions on [0, 2] with

λ(0) = 0.

By ????

Check Ref’s for changes!!

Part (v) of Lemma 4.1.3

there exist hn ∈ A+ with ‖hn‖ ≤ arcsin ‖Pn − P‖ such that e−ihnPeihn = Pn.

Notice that here eihn is build in A + C1 after adjoining a unit to A and that

|eit − 1| ≤ |t| (for t ∈ [−π, π]) implies

‖1− eihn‖ ≤ ‖hn‖ ≤ arcsin ‖Pn − P‖ .

An opposite estimate follows from 2| sin(t/2)| = | exp(−it/2) − exp(it/2)| =

|1 − exp(it)| for t ∈ [−π, π] and gives ‖h‖ ≤ 2 arcsin(‖1 − exp(ih)‖/2) for h∗ = h

with ‖h‖ ≤ π/2.

Notice also that ‖1−u‖ < 1 implies for unitary u that s := log(u) = log(1−(1−
u)) exists, satisfies s∗ = −s, ‖s‖ ≤ π/3 and exp(s) = u. (One can consider C∗(u) as

a quotient of C(S1) and reformulate it as properties of characters of C(S1) i.e., as

conditions on points of S1 ⊆ C.) Using that | log(1−t)| ≤ − log(1−|t|) ≤ |t|/(1−|t|)
for |t| < 1, we get also the estimate ‖s‖ ≤ − log(1−‖1−u‖) ≤ ‖1−u‖/(1−‖1−u‖)
if u is a unitary with ‖1− u‖ < 1. Let h := −is, then u = exp(ih) and

‖h‖ ≤ ‖1− u‖/(1− ‖1− u‖) .

If we take some suitable ` > n0 such that ‖h`‖ < λ(ε), then we can replace A

by P`AP`, ψ by the then unital C *-morphism ψ′ : E2 → P`AP` b ∈ E2 → A given

by ψ′(b) := e−ih`ψ(b)eih` and consider only the P`AnP` with n ≥ ` > n0. We store

n0, n` and H0 := h` in our bookkeeping.

This reduces the considerations to unital A and a unital C *-morphism ψ : E2 →
A, i.e., now z∗j zk = δj,k1. We proceed in the same way as above with the projections

pj = zjz
∗
j and find self-adjoint h1 ∈ A, n1 < n2 in N and self-adjoint h2 ∈ (1 −

q1)A(1 − q1) both with ‖h1‖, ‖h2‖ ≤ λ(ε), such that e−ih1p1e
ih1 =: q1 ∈ An1
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and e−ih2e−ih1p2e
ih1eih2 =: q2 ∈ An2

. Notice that also e−ih2e−ih1p1e
ih1eih2 = q1,

because q1e
ih2 = eih2q1 = q1. Again store n1 < n2 and H1 := h1 and H2 := h2 to

our list.

In this way we have reduced the consideration to the case where we can start

with the more comfortable assumptions z∗j zk = δjk1 and pj = zjz
∗
j ∈ An for

all n ∈ N. Let Sn denote the closed unit-ball of An and S the closed unit-ball

of A. Since (pjSn)n is an increasing sequence of closed convex subsets of pjS

and pjS is the closure of
⋂
n pjSn there exists for given ε > 0 and m ∈ N an

n := n(ε,m) ∈ N with n > m and dist(zj , pjSn) < λ(ε) for j = 1, 2. It means that

we can find wj ∈ pjSn with ‖wj − zj‖ < λ(ε) (j = 1, 2). It implies that wjw
∗
j ≤ pj ,

1−2ε ≤ w∗jwj ≤ 1 and ‖wjw∗j −pj‖ < 2λ(ε). Thus, (w∗jwj)
−1/2 exists and satisfies

1 ≤ (w∗jwj)
−1/2 ≤ (1− 2λ(ε))−1/2 .

Let uj := wj(w
∗
jwj)

−1/2. Then uj is an isometry with pjuj = uj and

‖uju∗j − pj‖ ≤ 2λ(ε) + [(1− 2λ(ε))−1/2 − 1] < 1 ,

i.e., with uju
∗
j = pj and

‖uj − zj‖ ≤ λ(ε) + [(1− 2λ(ε))−1/2 − 1] .

The functions λ(t) should be chosen such that λ(ε) + [(1− 2λ(ε))−1/2 − 1)] < ε/3,

and that |eit − 1| ≤ 2λ(ε) + 2[(1− 2λ(ε))−1/2 − 1] implies |t| ≤ ε/2.

It follows that U := u1z
∗
1 +u2z

∗
2 + (1− p1− p2) is a unitary with Uzj = uj and

‖U − 1‖ ≤ ‖u1 − z1‖+ ‖u2 − z2‖ ≤ 2λ(ε) + 2[(1− 2λ(ε))−1/2 − 1] .

Then uj = Uzj with unitary U such that ‖U − 1‖ is sufficiently small.

Summing up we get that that uj = UV ∗zjV with V := eiH0eiH1eiH2 and

‖1− V ‖????? and ‖1− UV ‖ ≤ ‖1− U‖+ ‖1− V ‖.

Since |1−exp(it)|2 = 2(1−cos(t)) the norm ‖H‖ ≤ π/2 of H∗ = H approaches

zero if ‖1− exp(iH)‖ goes to zero. This allows to show that products of unitaries

sufficiently near to 1 are exponentials exp(iH) with H∗ = H of small norm. �

3. On the Jiang-Su algebra Z

Let m,n ∈ N = {1, 2, . . .} natural numbers with g.c.d.(n,m) = 1, the

dimension-drop C *-algebra E(Mm,Mn) is defined as the C *-subalgebra of

C([0, 1],Mm⊗Mn) consisting of the maps f : [0, 1]→Mm⊗Mn with f(0) ∈Mm⊗1n

and f(1) ∈ 1m ⊗Mn.

(We call it also “winding around” algebra ... build by a construction on pairs

of algebras similar to the construction of a “Join” polyhedron in Rm×Rn from two

polyhedra in Rm and Rn ... )

Need: Suitable central sequences, ...

There exists a trace-collapsing unital endomorphism from E(M2∞ , M3∞) into

E(M2∞ , M3∞).
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Definition A.3.1. The Jiang-Su algebra is isomorphic to the inductive limit

of this endomorphism ...

There are several other definitions. See original Jiang-Su paper ... Needed

properties of the Jiang-Su algebra...

Containment of Jiang-Su algebra in other algebras, e.g. infinite tensor products

of suitable amenable unital C *-algebras.

Need:

Special Central sequences of the JS algebra that allow to apply p.i. and s.p.i.

criteria.

Each tensorial self-absorbing C *-algebra absorbs the Jiang-Su algebra. (Win-

ter)

Compare with my homotopy criterium ...

Something lost??

4. Fix-point algebras of compact group actions

Suppose that G is a compact group and α : G→ Aut(A) a point-norm contin-

uous group homomorphism from G into the group Aut(A) of automorphisms of A.

It is not difficult to see, that the map

a 7→ PG(a) :=

∫
G

α(g)(a) d(g)

defines a faithful conditional expectation PG from A onto the fix-point algebra AG

of G. Here “faithful” means that PG(a) 6= 0 for all non-zero a ∈ A+.

Notice that one can not conclude similar properties for A from the correspond-

ing property of the fix-point C *-subalgebra of a Z-action of A (by an automorphism

of A).

Proposition A.4.1. Suppose that a compact group G acts continuous in point-

norm topology on a C*-algebra A.

The fix-point subalgebra AG of A is nuclear (respectively is exact, weakly injective,

QWEP, has the local lifting property), if and only if, A is nuclear (respectively is

exact, weakly injective, QWEP, has the local lifting property).

Moreover, if the conditional expectation PG can be approximated point-wise by

inner c.p. maps

Vτ (a) :=

n(τ)∑
k=1

d∗k,τadk,τ ,

then each non-zero closed ideal of A has non-zero intersection with AG.

It is interesting that the question if PG respects also local reflexivity – as defined

for operator spaces, which is different from the well-known (and almost trivial) local

reflexivity of Banach spaces – remains open even in case of circle actions!
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It could be that the new operator exact sequences criteria for left-ideals of

(stable) locally reflexive C *-algebras implies now a positive answer for “local re-

flexivity” ... ???

But this requires to check what happens with the the fixed points under com-

pact actions?

Question: What about “relative” properties? In particular, “relative weak

injectivity” could be a candidate ...

Equivalent formulation of r.w.i. is given by: A ⊆ B r.w.i. in B if and only if

A⊗max C∗(F∞) ⊆ B ⊗max C∗(F∞) .

If G acts on B by ρ : g ∈ G 7→ ρ(g) ∈ Aut(B) and ρ(g)(A) = A for all g ∈ G,

then BG ∩A is r.w.i. in BG?

Here BG denotes the fix-point algebra of the G-action on B. Seems to work

for compact G.

Proof. Wa adapt an idea of A. Grothendieck for the study of locally convex

vector spaces with help of tensor product functors. A simple variant of his idea

transferred to the study of analytic properties of C *-algebras is to express this

properties with help of tensor product functors and use the automatic G-invariance

of the functors. We use this proof to say something more general about the appli-

cations of this method and its limitation.

Let (at the moment) C denote a fixed C *-algebra. Let α : G→ Aut(A) denote

the G-action on A, and let

(B,C)→ B ⊗µ C and (B,C)→ B ⊗ν C

denote C *-algebra tensor product “functors” that satisfy ‖ · ‖µ ≥ ‖ · ‖ν on the

algebraic tensor product B �C for all C *-algebras B, i.e., the closed ideals Jµ(B)

and Jν(B) of maximal C *-algebra tensor product B⊗maxC given as kernels of the

natural *-epimorphisms B ⊗max C → B ⊗µ C and B ⊗max C → B ⊗ν C satisfy

Jµ(B) ⊆ Jν(B). (In fact, a suitable functorial selection of those “kernels” contains

all necessary information on the tensor product functors!)

They are defined by a B-functorial choice of C *-norms ‖ · ‖µ ≥ ‖ · ‖ν on the

algebraic tensor products B � C and are the corresponding topological tensor-

products are the completions of B � C with this norms. The functoriality means

that for each C *-morphism h : A → B and x ∈ A � C in the algebraic tensor

product holds that ‖h ⊗ id(x)‖µ ≤ ‖x‖µ and similar for ‖ · ‖ν . Or, equivalently,

(h⊗max id)(Jµ(A)) ⊆ Jµ(B) for each C *-morphism h : A→ B and fixed C.

With other words, we allow only “natural” functor transformations

ϕB : B ⊗µ C → B ⊗ν C

that satisfy

ϕB ◦ (h⊗µ id) = (h⊗ν id) ◦ ϕA
for h : A→ B .
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In addition, we suppose, that V⊗µid andW⊗ν id remain contractions, whenever

V and W are c.p. contractions. It is not difficult to see, – with help of Kasparov-

Stinespring dilations of V and using the outer-unital extension Ṽ : Ã → B̃ –, that

this property is equivalent to the property of ⊗µ (and similar of ⊗ν) that B⊗µC ⊆
B̃ ⊗µ C and pBp⊗µ C ⊂ B ⊗µ C for all C, and all full projections p ∈ B . (We let

it to reader to check this.)

Let ???????

Thus, AG is nuclear (respectively, weakly injective, QWEP, locally liftable) if

A is so.

Exactness always passes to C *-subalgebras.

The conditional expectations PG are faithful for compact G. Indeed, if a ≥ 0

and χ is a positive functional on A with χ(a) > 0, then χ(PG(a)) > 0, because

it is the integral over the non-zero, non-negative, and continuous function g 7→
χ(α(g)(a)).

The maps η⊗µ id : AG⊗µC → A⊗µC and V ⊗µ id : A⊗µC → AG⊗µC satisfy

(V ⊗µ id)(η ⊗µ id) = id. Thus, AG ⊗µ C is naturally isomorphic to the closure of

the subspace AG � C in A⊗µ C, i.e., AG ⊗µ C ⊂ A⊗µ C.

Now let the inclusion A ⊂ B be G-equivariant, for some (point-norm) contin-

uous G-action β : G → Aut(B), i.e., αg(a) = βg(a) for a ∈ A and g ∈ G. Then it

holds:

If AG ⊗µ C ⊂ BG ⊗ν C, then A⊗µ C ⊂ B ⊗ν C.

Indeed, let J denote the kernel of the natural C *-morphism ϕ : A ⊗µ C →
B ⊗ν C. The functoriality of ⊗µ and ⊗ν implies

ϕ ◦ (α(g)⊗µ idC) = (β(g)⊗µ idC) ◦ ϕ .

Thus, α(g)⊗µ idC(J) = J for all g ∈ G.

One can see, with help of elementary tensors a⊗ c, that g 7→ (α(g)⊗µ idC) and

g 7→ (β(g)⊗ν idC) are point-norm continuous, and that the corresponding faithful

conditional expectations P1 := PGX : x 7→
∫

(α(g) ⊗ id)(x) dg and P2 := PGY : y 7→∫
(α(g) ⊗ id)(x) dg map X := A ⊗µ C onto the closure of AG � C in A ⊗µ C,

respectively, maps Y := B ⊗ν C onto the closure of BG �C in B ⊗ν C and satisfy

ϕ ◦ P1 = P2 ◦ ϕ. for ϕ : A⊗µ C → B ⊗ν C. It follows, that P1(J) ⊂ J ∩AG ⊗ C

Since AG⊗µC ⊂ A⊗µC and BG⊗ν C ⊂ B⊗ν C are complemented subspaces,

we get that PG(J) is in the kernel of the monomorphism AG ⊗µ C → BG ⊗ν C
(after natural identifications of AG ⊗µ C and BG ⊗ν C with its images). Thus

PG(J) = {0}, and J = 0.

Now we apply the latter to our cases:

One obtains that A is nuclear if AG is nuclear if one uses above ⊗µ := ⊗max,

⊗ν := ⊗min, B := A and C arbitrary.

It has been shown in [431, prop.1.1] that B is weakly injective, if an only if,

B ⊗max C∗(F ) = B ⊗min C∗(F ), where F is the free group on countably many
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generators. Thus, we obtain that A is weakly injective if AG is weakly injective, if

we let ⊗µ := ⊗max, ⊗ν := ⊗min, A = B and C := C∗(F ).

By [431, prop.1.1], B has the local lifting property, if and only if, B ⊗max

L(`2) = B ⊗min L(`2) . We get that A has the local lifting property if AG has the

local lifting property, if we take ⊗µ := ⊗max, ⊗ν := ⊗min, A = B and C := C∗(F )

To see that A has the QWEP if AG has the QWEP, one can take ⊗µ :=

⊗max, ⊗ν := ⊗`, B := A, C := C∗(F ), because B has QWEP, if and only if,

B ⊗max C∗(F ) = B ⊗` C∗(F ) .

Here (generally) B ⊗` C – “the minimal left-exact C *-tensor-product functor”

– is defined by the completion of B � C with respect to the C *-norms

‖
∑
k

bk ⊗ ck‖` := sup
F,π

NF (
∑
k

bk ⊗ ck) ,

given by (sufficiently many) C *-algebras F and epimorphisms π : F → B and,

NF (
∑
k

bk ⊗ ck) := dist(
∑
k

fk ⊗ ck, I ⊗min C) ,

where π(fk) = bk and I := ker(π), and with distance taken in F ⊗min C.

That the exactness of A follows from the exactness of AG, can be seen by

putting ⊗ν := ⊗min, ⊗µ := ⊗r, B := A and consider arbitrary C.

Here we define the functor (B,D) 7→ B ⊗r D – “the minimal right exact C *-

tensor-product functor” – from D ⊗` B by

‖
∑
k

bk ⊗ dk‖r := ‖
∑
k

dk ⊗ bk‖`????? .

??? More ????

If PG can be approximated point-wise by inner c.p. maps

Vτ (a) :=

n(τ)∑
k=1

d∗k,τadk,τ ,

then PG(J) ⊂ J ∩AG.

Since PG is faithful on positive elements, each non-zero closed ideal of A has

non-zero intersection with AG. �

Question A.4.2. Is the class of locally reflexive C *-algebras is invariant under

crossed product by abelian compact groups G?

(Could this follows from Takai Duality: A ⊗ K ∼= (A o G) o Ĝ. For discrete

groups H acting on B – e.g. for H := Ĝ and

????

holds B ⊆ B oH. Now take B := AoG and H := Ĝ.)

The Question is:
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Can we deduce from the local reflexivity of the crossed product A o G (re-

spectively of the fixed point algebra AG) of A by a continuous action of a compact

group G on A that A itself is locally reflexive?

Even in the case of circle actions G := T (= S1) the answer is not known.

5. Comparison of elements in C*-algebras

HERE is some collection of observations on ≈ and - and some easy

consequences:

Notice a ≈ a∗a ∼MvN aa∗ in A.

It holds a ⊗ b ≈ (a + b) ⊗ 0 in M2(A) if a∗b = 0 = ba∗. Indeed: It implies

b∗a = 0, a∗ab∗b = 0 and Thus (a+ b) ≈ (a+ b)∗(a+ b) = a∗a+ b∗b,

It follows that the ≈-classes [K(H)]approx for all (non-zero) Hilbert spaces H is

isomorphic to {0, 1, . . . ,Dim(H)} if H has finite dimension and {0, 1, 2, . . .}∪{+∞}
if H ∼= `2(N).

S, T ∈ K(`2(N)) satisfy S ≈ T if an only if the ranks (= dimension of image)

of S∗S and T ∗T are the same.

The positive operators g(α) := (α, α2, α3, . . .) ∈ K(`2(N)) for α ∈ (0, 1) are

properly infinite in K(`2(N)) with trace = α/(1 − α), because g(α) - g(α2) =

(α2, α4, α6, . . .) , and g(α) - α · g(α2) = (α3, α5, α7, . . .) imply g(α)⊕ g(α) - g(α),

because αg(α) ∼MvN g(α2) ⊕ α · g(α2) in K(`2(N)) and ∼MvN implies ≈. But

αg(α) ≈ g(α).

Notice also that inside the diagonal operators in K(`2(N)) it holds g(α)2 =

g(α2). It gives g(α)⊕ g(α) - g(α)2 ⊕ αg(α)2 ≈ α · g(α).

The g(α) ∈ K+ are all properly infinite and limn→∞ ‖g(1/n)‖ ≤ 1/n with

traces Tr(g(α)) = α/(1− α) .

Asymptotic: 2α/(1 − α) versus (1 + α)α2/(1 − α2) on α ∈ (0, 1) behave simi-

lar/different for α↗ 1.

A flexible almost “topological” version of comparison has been introduced in

special cases in the papers [170, 171] and was later generalized e.g. by M. Rørdam

in [690] and others to the following definition.

Definition A.5.1. The Cuntz comparison between elements a, b ∈ A is

defined as follows:

We say that b majorizes a (in A and in the sense of J. Cuntz [170, 171]),

and write it as a - b or b % a), if there are sequences c1, c2, . . . ; d1, d2, . . . ∈ A such

that a := limn cnbdn .

Below it is shown that a - b is a transitive order relation, i.e., a - b and b - c

imply a - c. Obviously always a - a.

Thus, we can define an equivalence relation a ≈ b by a - b and b - a. It has

the obvious property a ≈ a for all a ∈ A.
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move to/ or see one of the below given lemmas:

It is evident that a - b is a transitive relation: a - a because e.g. always

a = limn(aa∗)1/na(a∗a)1/n, and a = limn gnc hn for suitable choices gn := ckne`n
and hn := f`ndkn if e1, e2, . . . ; f1, f2, . . . ∈ A satisfies b = limn enc fn.

Elements a, b ∈ A are Cuntz equivalent (notation: a ≈ b) if a - b and b - a.

Since a - a and - is transitive, ≈ is an equivalence relation in the usual sense. The

a ≈ b–equivalence classes of a ∈ A⊗K in A⊗K will be denoted sometimes by [a]≈

or simply by [a] for elements a in the algebraic inductive limit

indlimnMn(A) = indlimnA⊗Mn ⊆ A⊗K

(but sometimes even for a ∈ A ⊗ K). The corresponding semigroup of this classes

with Cuntz-addition has later been written as W (A) by M. Rørdam, cf. [690]. We

denote by Cu(A) the classes in A⊗K, and call it the large Cuntz semi-group.

Since M(A⊗K) contains a copy of E2 := C∗(S1, S2; S∗j Sk = δj,k · 1) unitally

(It contains also a copy of O2, but that is for the definitions here not of interest), we

can define a (Cuntz-)addition of elements by a⊕b := S1aS
∗
1 +S2bS

∗
2 for a, b ∈ A⊗K,

it induces an addition of the ≈ classes, and allow to define the “general” and the

“local” Cuntz semigroups, namely the “general” for all elements of A⊗K and the

“local” for the Pedersen ideal P (A ⊗ K) of A ⊗ K. Notice here that P (A ⊗ K) is

usually different from the – naturally in P (A ⊗ K) as inductive limit contained –

union (respective inductive limit)
⋂
n∈NMn(P (A)), but from the definition of the

Pedersen ideals P (A) of A and P (K⊗A) of K⊗A as “the minimal dense algebraic

ideals” it is easy to see that each element x ∈ P (A⊗K)+ is in the stronger sense of

Murray–von-Neumann equivalent (see below) to some element in y ∈ Mn(P (A))+

for some n := n(x) ∈ N.

The semigroup W (A) for elements in
⋃
nMn(A) as introduced by M. Rørdam,

[690], is in general strictly between the “large” and the “small” Cuntz semi-groups

Cu(A) and CS(A).

It is often considered as the algebraic inductive limit

Mn ⊗A = Mn(A)→Mn+1(A) = Mn+1 ⊗A

via the embedding Mn⊕{0} ⊆Mn+1 . But this is inessential because - and ≈ are

weaker than ≤ and ∼MvN combined, but this requires some care.

A stronger equivalence relation ∼ is the Murray–von-Neumann equivalence:

Elements a, b ∈ A+ are MvN-equivalent (denoted by a ∼ b or a ∼MvN b), if they

are equivalent in sense of Murray and von Neumann, i.e., if there exists d ∈ A with

d∗d = a and dd∗ = b. Indeed, a ≈ b because one can take dn := d((d∗d)1/2 +1/n)−1

and cn := d∗n to get a := lim d∗nbdn and b := lim dnad
∗
n.

We define n-step majorization (denoted b �n a) by

a⊕ 0n−1
∼= a⊗ p11 - b⊗ 1n .



1080 A. CUNTZ EQUIVALENCE, MULTIPLICATIVE DOMAINS, ?RELATED TOPICS?

?? Check all chapters for closed ideals: J(b), Jb, I(b)

generated by an element or subset of B.

Decide which of them is the best and change others!!!

Definition A.5.2. Let B a C *-algebra. A non-zero contraction c ∈ B will be

called a scaling element if c∗cc = c. We call a scaling element c ∈ B “strictly

scaling” if in addition c∗c 6= cc∗.

A positive contraction b ∈ B+ is a scale generator if there exists d ∈ B and

0 < δ < ε < 1 such that d∗(b− ε)+d = (b− δ)+

In particular then, (b− δ)+ is in the closed ideal generated by (b− ε)+ .

A positive element b ∈ B+ is a compactly supported element in B if there

exist δ ∈ (0, ‖b‖) such that b is contained in the closed ideal generated by (b− δ)+.

(In particular each projection p ∈ B is compactly supported.)

The element b ∈ B is called compactly n-supported if there exists δ > 0

such that b⊗ p11 - (b− δ)+ ⊗ 1n.

Remark A.5.3. An equivalent definition of a scaling element c ∈ B is that

e := c∗c is a positive contraction in B with ecc∗ = cc∗ = cc∗e.

A scaling element c ∈ B that is not strictly scaling in sense of our Definition

A.5.2 is simply a normal element in B with the property that Spec(c) ⊆ {0} ∪ S1.

Notice that B. Blackadar and J. Cuntz call elements c ∈ B in [78, def. 1.1]

“scaling” only if they are strictly scaling elements in sense of our Definition A.5.2.

Remark A.5.4. The usual definition of compactness implies for Hausdorff

spaces X that compact subsets of X are closed. But notice that for non-Hausdorff

spaces this is not the case if we take the usual definition of a “compact” subset

Y ⊆ X that we find in every family V ⊆ O(X) with Y ⊆
⋃
U∈V U a finite collection

U1, . . . , Un ∈ V with Y ⊆ U1 ∪ . . . ∪ Un . This kind of subsets Y of X has been

called in the Bourbaki monographs “quasi-compact” for non-Hausdorff spaces.

We have to consider sometimes the T0 spaces X := Prim(A) for separable

C *-algebras A – or in cases where A is non-separable its “point” completions

X := prime(A) ( 4 ). We write often “compact” instead of “quasi-compact” in

our considerations.

Moreover this kind of (“quasi -”) compact subsets K of X are even not “satu-

rated”, i.e., are not the intersections of all open subsets of X that contain K. Only

the very special “coherent” spaces X defined by the property that each (quasi-)

compact subset of X is saturated in this sense.

The class of saturated spaces does not contain Prim(A0) for

A0 := { f ∈ C([0, 1],M2) ; f(0) ∈ C⊕ C = diag(M2) } .

4 Such “adding” of all prime closed subsets of a T0 space X to the set of points in X also

called a “sobrification” of X, in a sense it is a kind of completion of X that does not change its

lattice of open subsets.
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The notions of Definition A.5.2 will be justified by the following Lemma:

Lemma A.5.5. Let b ∈ B+, c ∈ I((b− γ)+)+ for some γ > 0.

(i) For each ε > 0 there exists n := n(ε) ∈ N such that (b−ε)+⊗p11 - c⊗1n

in A ⊗ Mn, if and only if, b is in the closed ideal generated by c. In

particular, then b ∈ I((b− γ)+).

(ii) If b is contained in the closed ideal I((b − γ)+), then the Dini function

fb : J ∈ Prim(B) 7→ ‖πJ(b)‖ on Prim(B) has an open and compact subset

Ub of Prim(B) as its support, and fb(J) ≥ γ for all J ∈ Ub. In particular,

the closed ideal I(b) = span(BbB) has (quasi-) compact primitive ideal

space Prim(I(b)).

(iii) If the closed ideal I(b) of B generated by b ∈ B+ has compact primitive

ideal space, then there exists γ > 0 such that b is in the closed ideal

generated by (b− γ)+.

In particular, for each ε > 0 there exists n := n(ε) ∈ N and

d1, . . . , dn ∈ B such that (b− ε)+ =
∑n
k=1 d

∗
k(b− γ)+dk.

(iv) Let c ∈ B a scaling element, i.e., ‖c‖ ≤ 1 and c∗cc = c . The element

V (c) := c+ i(1− c∗c)1/2 is an isometry in B + C · 1, and the projection

p := p(c) := 1− V (c)V (c)∗ = (c∗c− cc∗) + i(c(1− c∗c)1/2 − (1− c∗c)1/2c∗)

is a projection in the closed ideal I(c) of B.

The ideal I(p) generated by p contains a sequence of mutually orthog-

onal Murray–von-Neumann equivalent projections p = p(c) =: p1, p2, . . ..

(v) The closed ideal I(p) ⊆ I(c) given by the projection p ∈ I(c) of part (iv)

is generated as a closed ideal by c∗c− cc∗ ∈ I(c).

The ideal I(p) contains c∗c(1 − c∗c) and each d ∈ B that satisfies

dc = 0 and dc∗c = d.

(vi) If b and γ satisfy (iii) and that (b− γ)+ is properly infinite, then for each

ε ∈ (0, γ) there exists dk := dk(ε) ∈ B (k = 1, 2) such that

d∗j (b− γ)+dk = δjk min(1, ε−1(b− ε)+) = δjkε
−1
(
(b− ε)+ − (b− (1 + ε))+

)
.

In particular, the elements ck := (b − γ)
1/2
+ dk are “scaling” elements in

B with

c∗jck = δjkc
∗
1c1 , c

∗
kckck = ck and ‖ck‖ = 1

that generates the closed ideal I(b) := span(BbB) of B.

(vii) The closed ideal I(p1) of B generated by p1 := 1−V (c1)V (c1)∗ with scaling

elements c1, c2 ∈ B as in Part (vi) coincides with I(b). In particular,

I(b) is generated by a hereditary stable C*-subalgebra D that is generated

by a sequence of mutually orthogonal and mutually equivalent projections

p1, p2, . . ..

Proof. (i): Let b ∈ B+, and c ∈ I((b− γ)+)+ for fixed γ > 0 .

If b is contained in the closed ideal I(c) generated by c then for each ε > 0 there

exists n ∈ N and d1, . . . , dn ∈ B with ‖b −
∑
k d
∗
kcdk‖ < ε/2 . By norm-continuity
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of δ 7→ (c− δ)+ and by Lemma 2.1.9, there exists a contraction e ∈ B such that

(b− ε)+ =
∑

1≤k≤n

(dke)
∗(c− δ)+(dke) .

We can this equation express by (b− ε)+ ⊗ p11 = D∗((c− δ)+ ⊗ 1n)D in B ⊗Mn

with column D :=
∑
k(dke)⊗ pk1 ∈Mn,1(B).

In particular, for each ε > 0 there exists n := n(ε) ∈ N such that (b−ε)+⊗p11 -

c⊗ 1n in A⊗Mn.

Suppose now that for each ε > 0 there exists n := n(ε) ∈ N such that (b−ε)+⊗
p11 - c ⊗ 1n in A ⊗Mn. It says that there exists a sequence of column matrices

D1, D2, . . . ∈Mn,1(B) ⊆Mn(B) with (b−ε)+⊗p11 = limnD
∗
n(c⊗1n)Dn in Mn(B).

It follows that (b− ε)+ ⊗ p11 ∈Mn(I(c)) with I(c) / B the ideal generated by c. It

follows that (b − ε)+ ∈ I(c) ⊆ I((b − γ)+) for each ε > 0. Thus, b is in the closed

ideal I(c) generated by c, in particular, b ∈ I((b− γ)+).

(ii): Recall here that f−1
b [γ,∞) ⊆ Prim(A) is (quasi-) compact for every γ > 0,

cf. [213, prop. 3.3.7], where we consider here the Dini function fb on Prim(A)

defined by fb(J) := ‖πJ(b)‖ for b ∈ B and J ∈ Prim(B).

If b is contained in the closed ideal

I((b− γ)+) =
⋂
{J ∈ Prim(B) ; ‖πJ(b)‖ ≤ γ } ,

then the Dini function fb : J ∈ Prim(B) 7→ ‖πJ(b)‖ ∈ [0,∞) on Prim(B) has

support

Ub := f−1
b (0,∞) = {J ∈ Prim(B) ; fb(J) > 0} .

This set Ub is identical with the (quasi-) compact subset

f−1
b [γ,∞) = {J ∈ Prim(B) ; fb(J) ≥ γ} .

Indeed: The inequality fb(J) = ‖πJ(b)‖ < γ for J ∈ Prim(A) implies that

there are ε > 0 and δ ∈ [fb(J), γ) such that πJ((b− δ)+) = 0 and, – by assumption

b ∈ I((b− γ)+) –, that there exist d1, . . . , dn ∈ B with (b− ε)+ =
∑
k d
∗
k(b− δ)+dk.

If we apply to this πJ , we see that

(fb(J)− ε)+ = ‖πJ((b− ε)+)‖ ≤
∑
k

‖dk‖2‖πJ((b− δ)+)‖ = 0 .

Thus, fb(J) ≤ ε for all ε > 0, i.e., fb(J) = 0 if fb(J) < γ. It means Ub :=

f−1
b (0,∞) = f−1

b [γ,∞).

Since the set fb(J) = ‖πJ(b)‖ ≥ γ is a compact subset of Prim(B), the closed

ideal I(b) = span(BbB) =
⋂
{J ∈ Prim(B) ; fb(J) = 0 } has compact primitive

ideal space Prim(I(b)) = f−1
b [γ,∞).

(iii): Suppose that I(b) has compact primitive ideal space Prim(I(b)) ⊆
Prim(B). The corresponding open subset of Prim(B) is given by f−1

b (0,∞). The

family of open subsets f−1
b (δ,∞) of f−1

b (0,∞) with δ > 0 covers the compact space

f−1
b (0,∞). Thus, there exists γ > 0 such that f−1

b (γ,∞) = f−1
b (0,∞). It is easy

to see that f−1
b (γ,∞) = f−1

c (0,∞) for c = (b− γ)+. It follows that (b− γ)+ and b

generate the same closed ideal of B.
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This implies that for each ε > 0 there exists n := n(ε) ∈ N and d1, . . . , dn ∈ B
such that (b− ε)+ =

∑n
k=1 d

∗
k (b− γ)+ dk .

(iv,v): Let c ∈ B a contraction with cc∗c∗c = cc∗. The element V := V (c) :=

c + i(1 − c∗c)1/2 of B + C · 1 is an isometry, because cc∗(1 − c∗c) = 0 implies

c∗(1− c∗c) = 0, c∗(1− c∗c)1/2 = 0 and (1− c∗c)1/2c = 0.

The projection p := p(c) := 1− V (c)V (c)∗, is in I(c) ⊆ B. The projections

pn := V n−1(V ∗)n−1 − V n(V ∗)n

are mutually orthogonal, where we let p1 := p(c). If m < n then pm ∼MvN pn by

Z = V n−mpm, i.e., ZpmZ
∗ = pn . In particular, pn ∈ I(p(c)) for all n ∈ N.

The equations c∗(1 − c∗c)1/2 = 0 and (1 − c∗c)1/2c = 0 imply p := 1 −
V (c)V (c)∗ = (c∗c−cc∗)+ i(c(1−c∗c)1/2− (1−c∗c)1/2c∗) and that (1−c∗c)1/2p(1−
c∗c)1/2 = c∗c(1 − c∗c). Thus, J := I(c∗c(1 − c∗c)) ⊆ I(p). Since c(1 − c∗c) ∈ J ,

we get c(1− c∗c)1/2 ∈ J and that πJ(p) = πJ(c∗c− cc∗) , i.e., p− (c∗c− cc∗) ∈ J .

The epimorphism πJ maps I(p) ⊇ J onto I(p)/J and has kernel J ⊆ I(p). We get

that the positive element c∗c− cc∗ must be in I(p).

Let d ∈ B with d∗c = 0 and dc∗c = d. Then dd∗V (c) = 0, because d(1 −
c∗c)1/2 = 0. It follows dd∗ ≤ ‖d‖2p, which implies d ∈ I(p).

(vi): Suppose that b ∈ B+ and γ satisfy (iii) and that (b − γ)+ is properly

infinite.

It implies that for each τ > γ and n ∈ N the existence of e1, . . . , en ∈ B such

that e∗j (b− γ)+ek = δij(b− τ)+.

Indeed, for each µ > 0 and n ∈ N there exists a matrix R ∈Mn(B) that satisfies

R∗((b − γ)+ ⊗ p11)R = ((b − γ)+ − µ)+ ⊗ 1n. Here we use again Lemma 2.1.9 in

Mn(B) to obtain equality. Define µ := τ − γ and e1, . . . , en by [e1, . . . , en] := R

with R for µ. The e1, . . . , en have the desired property.

Let ε ∈ (0, γ). There exists τ > γ and m := m(ε, τ) ∈ N g` := g`(ε, τ) ∈ B
(` = 1, . . . ,m) such that∑

1≤`≤m

g∗` (b− τ)+g` = min(1, ε−1(b− ε)+) = ε−1
(
(b− ε)+ − (b− (1 + ε))+

)
,

because we find f` ∈ B with

‖
∑
`

f∗` (b− γ)+f` − (b− ε/3)+‖ < ε/3

and can apply the continuity of τ 7→ (b − τ)+ and the Lemma 2.1.9 to get the

equation proper by multiplying the f` with a suitable contraction e from the right

to reach the equality ∑
1≤`≤m

(f`e)
∗(b− τ)+(f`e) = (b− 2ε/3)+ .

Finally we let g` := f`eh(b) where

h(t) := min(ε, (t− ε)+)/(ε(t− 2ε/3)+) .



1084 A. CUNTZ EQUIVALENCE, MULTIPLICATIVE DOMAINS, ?RELATED TOPICS?

We take n := 2m in the above given construction of the ek and let d1 :=∑
1≤`≤m e`g` and d2 :=

∑
1≤`≤m em+`g` . Then

d∗j (b− γ)+dk = δjk min(1, ε−1(b− ε)+) .

In particular, the ck := (b − γ)
1/2
+ dk are “scaling” elements in B with c∗jck =

δjkc
∗
1c1, ckc

∗
kc
∗
kck = ckc

∗
k, such that I(ck) = I(b) for the the closed ideals I(ck) :=

span(BckB) and I(b) := span(BbB) of B. �

We have sometimes to deduce estimates for the infimum γ(n, a, b, ε) of the

norms ‖
∑
d∗kdk‖ for d1, . . . , dn ∈ A with ‖b −

∑
k d
∗
kadk‖ < ε. Notice that then

there are contractions e1, . . . , em ∈ A such that ‖b −
∑
j e
∗
jaej‖ < ε and m ≤

n(γ(n, a, b, ε) + 1).

Lemma A.5.6. Let X = [bk`] ∈ Mn(B)+, d1, . . . , dn ∈ B, and let diag(X) ∈
Mn(B) denote the diagonal matrix with entries b11, . . . , bnn in the diagonal of X.

(i) The linear map X 7→ ndiag(X)−X on Mn(B) is completely positive. In

particular, X ≤ n diag(X) for all X ∈Mn(B)+.

(ii) Let Trn([αjk]) := (α11 + · · · + αnn) · 1n for [αjk] ∈ Mn. The map X 7→
n(idB ⊗Trn)(X)−X on Mn(B) is completely positive.

In particular, X ≤ n(idB ⊗Trn)(X) = n(b11 + . . .+ bnn)⊗ 1n for all

X = [bk,`] ∈Mn(B)+.

(iii) 0 ≤
∑n
k,`=1 bk` ≤ n(b11 + . . .+ bnn) for all X = [bk,`] ∈Mn(B)+.

(iv) For every b ∈ B+ and d1, . . . , dn ∈ B,

(d1 + · · ·+ dn)∗b(d1 + · · ·+ dn) ≤ n (d∗1bd1 + · · ·+ d∗nbdn) .

Proof. (i): We identify Mn(M(B)) naturally withM(B)⊗Mn, and Mn with

1⊗Mn. Let z := exp((2πi)/n) and U := diag(1, z, . . . , zn−1) ∈Mn ⊆ Mn(M(B)) .

Then, for a ∈M(B),

n−1∑
k=0

(Uk)∗(a⊗ eij)Uk = a⊗ (
∑
k

z(j−i)k)eij = nδij(a⊗ eij) .

Thus, X = (U0)∗XU0 ≤
∑n−1
k=0(Uk)∗XUk = ndiag(X) , and the map

X 7→ ndiag(X)−X =

n−1∑
k=1

(Uk)∗XUk

is completely positive, because is a sum of c.p. maps.

(ii): The map n(idB ⊗Trn)(X)−X = (idB ⊗(nTrn− id))(X), idB is c.p. on B

and we show tat nTrn− id is c.p. on Mn, where we define Tr([αjk]) := (
∑
k αkk)·1n.

The complete positivity of nTrn− id on Mn can be seen from the formula

n−1(
∑
k

αkk) · 1n = n−2
∑
g∈G

g−1[αjk]g ,

because this implies n(
∑
k αkk)·1n−[αjk] is the sum of n2−1 inner *-automorphisms

g−1[αjk]g of Mn.
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Here G := G(U, V ) ⊆ U(n) = U(Mn) is the irreducible finite subgroup

G of U(Mn) with n2 unitary elements that is generated by the unitary U :=

diag(z0, z1, . . . , zn−1) with z := exp (2πi)/n and by the cyclic permutation V ∈
U(Mn) of the canonical basis {e1, . . . , en} of Cn, i.e., V (ek) = ek+1 (k = 1, . . . , n−1)

and V (en) = e1. To see |G| = n2, notice that U jV k = zjkV kU j for j , k ∈
{ 0 , . . . , n− 1 } .

Alternative proof:

The map

S : X 7→ diag(X) = (b11, . . . , bnn) ∈ Bn = B ⊕ · · · ⊕B ∼= diag(Mn(B)) ⊆ Mn(B)

is a c.p. map, because it is a conditional expectation and

diag(X) = n−1(n diag(X)−X) + n−1X .

It is clear that the maps Tj(b1, . . . , bn) :=
∑
k 6=j bk are completely positive, because

they are sums of c.p. maps.

The map (b1, . . . , bn) 7→ (b1 + . . . + bn) ⊗ 1n − diag(b1, . . . , bn) ∈ Mn(B) is

completely positive in Bn ∼= diag(Mn(B)), because it is the orthogonal sum of the

c.p. maps Tj .

It follows the positivity of

X 7→ [n(b11+. . .+bnn)]⊗1n−X = n((idB ⊗Trn)(X)−diag(X))+(n diag(X)−X) .

(iii): Let C the column C := [1, 1, . . . , 1]> ∈Mn,1(M(B)). Apply the c.p. map

Y 7→ C∗Y C to Y := n diag(X)−X. Since Y ≥ 0 by part (i), we get

n∑
k,`=1

bk` = C∗XC ≤ nC∗ diag(X)C = n(b11 + . . .+ bnn) .

(iv): Take X := [bjk] in part (iii) with bj,k := d∗j bdk, i.e., X = D∗D for the

row matrix D := [b1/2d1, · · · , b1/2dn] ∈Mn,1(B). �

Next remark considers the equivalence given by polar decomposition of a of the

hereditary C *-subalgebras generated by a∗a and by aa∗.

Next appears also before proof of THM.E. ??

Remark A.5.7. Let a ∈ A non-zero and a := v(a∗a)1/2 its polar decomposition

in the W*-algebra A∗∗, let D := a∗aAa∗a and E := aa∗Aaa∗ the hereditary C *-

subalgebras of A generated by a∗a, respectively by aa∗.

Then D = a∗Aa, E = aAa∗, and the map ϕ : d ∈ D → vd v∗ ∈ A∗∗ has image in

E and defines a C *-algebra isomorphism from D onto E. The inverse isomorphism

ϕ−1 is given by e ∈ E 7→ v∗ev ∈ D.

It holds ϕ(D ∩ I) = E ∩ I for every closed ideal I / A of A. In particular, if D

is a full hereditary C *-subalgebra of A, i.e., if span(ADA) = A, then also E is full

in A.
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In particular, D is simple if and only if E is simple.

Proof. Let a ∈ A and a = v(a∗a)1/2 = (aa∗)1/2v its unique (right) polar

decomposition of a in A∗∗. Then vx ∈ A for every x in the norm-closed right-ideal

R := a∗aA = a∗A of A that is generated by (a∗a)1/2.

The map x 7→ vx is an isometric right-module isomorphism from R onto the

closed right-ideal aA = aa∗A . The inverse map from aA onto R is given by

y 7→ v∗y, because a∗ = v∗(aa∗)1/2 is the polar decomposition of a∗ in A∗∗.

This follows from vf(a∗a) = f(aa∗)v for each non-negative continuous function

f ∈ C0(0, ‖a‖2], and can be easily seen in A∗∗.

easily seen: more details?

In particular, y := vzα ∈ A and y∗y = z2α for all z ∈ A+ with z ≤ a∗a and all

α > 0. �

Remark A.5.8. Let D a closed hereditary C *-subalgebra of A.

Each closed ideal J of D is the intersection J = D ∩ I with D of the closed

ideal I := I(J) := span(AJA) of A.

For I1, I2 ∈ I(A) holds I1 ∩D = I2 ∩D if and only if I1 ∩ I(D) = I2 ∩ I(D),

where I(D) := span(ADA).

If I(D) = A then the map I ∈ I(A) 7→ J := I ∩ D ∈ I(D) is a lattice

isomorphism from the lattice I(A) of closed ideals of A onto the lattice D. The

inverse of this map is given by J 7→ I := span(AJA).

6. Basic properties of Cuntz semigroups

Compare also with W-vN equivalence ??

Let A a C *-algebra. Recall that a - b (with more precise notation a -A b)

for a, b ∈ A is defined by the existence of sequences of elements dn, en ∈ A with

a = limn dnben.

In particular, always a - a∗a - aa∗ - a∗.

The relation depends from A and passes in general not to C *-subalgebras: Let

a, b ∈ A+ non-zero with ab = 0 and a -A b define D ⊆ A as D := aAa+ bAb then

a 6- b in D.

Notice that for A 6= 0, ?????

It follows that a, b ∈ (A ⊗ K)+ then a - b is equivalent to the existence of

c1, c2, . . . ∈ A⊗K with a = limn c
∗
nbcn . Moreover, if a 6= 0, the cn can be replaced

here by (b−δn)
1/kn
+ cn(a−δn)

1/kn
+ with suitable choices kn ∈ N, < δn < min(‖a‖, ‖b‖)

with kn → ∞ and δn → 0, depending on the norms ‖cn‖, ‖a‖ and ‖b‖ in an

“universal” way. (The explicit formula should be an exercise.) Thus, if a, b are in

the Pedersen ideal P (A) of A – which is by definition the minimal dense ideal of

A denoted by P (A) – then a, b ∈ P (A) and a ≈A b implies a ≈P (A) b. Recall also

that a ≈ b means a - b and b - a.
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Lemma A.6.1. The relation a -A b has following properties:

(i) The relation - is transitive:

Always a - a in C∗(a) ⊆ A itself. The relations a -A b and b -A c

imply a -A c.

The relation a ≈ b, i.e., a - b and b - a together, is an equivalence

relation on A, and it satisfies that a - b, a ≈ c and b ≈ d together imply

that c - d.

(ii) The relations ≈ and - are compatible with ⊕, e.g. a ⊕ c - b ⊕ d in

M2(A) if a - b and c - d in A. If, moreover, b, d ∈ A are “orthogonal”

in the sense that bd∗ = 0 and b∗d = 0, then a - b and c - d imply

a⊕ c - (b+ d)⊕ 0 ≈ b⊕ d in M2(A).

(iii) The relation - is compatible with *-morphisms: If ψ : A → B is a *-

morphism, and a -A b in A, then ψ(a) -B ψ(b) in B.

(iv) The set ξ(b) of a ∈ A with a - b is closed in A and satisfies cξ(b)d ⊆ ξ(b)

for c, d ∈M(A).

More precisely, ξ(b) is the closure in A of the set of all elements

cbd ∈ A with c, d ∈M(A).

(v) It holds aa∗ ≈ a∗a ≈ a∗ ≈ a, and g(a∗a) - a for all continuous functions

g on Spec(a∗a) with g(0) = 0.

If, in addition, g(t) > 0 for t > 0, then g(a∗a) ≈ a.

(vi) If a, b ∈ A+, then a - b, if and only if, for every ε > 0, there are

δ = δ(ε) > 0 and d = d(ε) ∈ A+ such that d∗(b − δ)+d = (a − ε)+ . In

particular, a - b if a ∼MvN c for some 0 ≤ c ≤ b.
If p and q are projections in A, then p - q, if and only if, there is a

projection r ∈ A with p ∼ r ≤ q.
(vii) If a ∈ A+ then a - b if and only if (a− ε)+ - b for all ε > 0.

(viii) If D is a hereditary C*-subalgebra of A, and a, b ∈ D ⊆ A, then a -D b

in D, if and only if a -A b in A.

Particular cases are:

Always a -D b for a ∈ D := b∗Ab and b ∈ A.

x ⊕ 0n -B y ⊕ 0n in B := Mn+1(A), if and only if, a -A y (i.e., in

A itself).

If a, b ∈ A, then a -A b in A, if and only if, a -M(A) b in the

multiplier algebra M(A).

(ix) (x ⊕ y) ≈ (y ⊕ x) in M2(A) and ((x ⊕ y) ⊕ z) ≈ (x ⊕ (y ⊕ z)) in M3(A)

for all x, y, z ∈ A.

(x) (x+ y)⊕ 0 - x⊕ y in M2(A) for all x, y ∈ A.

(xi) If a, b ∈ A+, πJ(a) - πJ(b) for J /A, then, there is c ∈ J+ with a - b⊕ c.
In particular, there exists c ∈ J+ ∩ bAb such that (b ⊕ b) - (b ⊕ c) if

πJ(b)⊕ πJ(b) - πJ(b).

(xii) Suppose that a ∈ A+ and that there is b ∈ Ann(a,A)+ such that a ∈
span(AbA).
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Then, for each closed ideal J / A, each δ > 0, each c ∈ J+, and every

ε > 0 there is d = d(ε) ∈ J+ ∩Ann((a− δ)+, A) and n = n(δ, ε) ∈ N such

that

(a− δ)+ + (c− ε)+ - a⊕ (d⊗ 1n) .

(xiii) Parts (xiii) and (xiv) should be separated

Suppose that A is an AW*-algebra, pn, q ∈ A projections with p1 ≤
p2 ≤ · · · and with pn - q for each n ∈ N. Then p - q for p := supn pn.

(xiv) If A is an AW*-algebra, and if a, b ∈ A+ with a - b, then pa - pb for the

support projections pa, pb ∈ A of a and b, and az - bz for each z ∈ A+ in

the center of A.

(xv) Suppose that an, bn ∈ A, a = lim an, b = lim bn. If there is a continuous

function ψ ∈ C[0, 1]+ with ψ(δ) > 0 for δ > 0, such that (a∗nan − δ)+ -

(b∗nbn − ψ(δ))+ for all n ∈ N and all rational δ > 0. Then a - b.

(xvi) Suppose that C ⊆ B ⊆ A are C*-subalgebras of A, and that S ⊆ C is a set

of positive contractions with the property that, for each c1, c2 ∈ S and each

positive rational numbers r1, r2 with property (c1 − r1)+ -A (c2 − r2)+

in A holds also (c1 − r1)+ -B (c2 − r2)+ in B.

If S ⊆ C ⊆ B satisfy the following condition (D), then for all a, b ∈ C,

a -A b if and only if a -B b .

(D) For each positive contraction a ∈ C+ and δ > 0, there exists c ∈ S
and rational r > 0 with (a− δ)+ -B (c− r)+ -B a.

Condition (D) is satisfied, if S is dense in the set of contractions in C+.

(xvii) Let a, b ∈ A and B := Aω or B := Cb(X,A)/C0(X,A) with any locally

compact Hausdorff space X, and A ⊆ B the natural embedding. Then

a -A b, if and only if, a -B b .

Proof. The properties (i) and (iii) come straight form the definition.

(ii): a⊕c = limn(en⊕gn)(b⊕d)(fn⊕hn) if a = limn enbfn and c = limn gndhn.

If (moreover) b, d ∈ A satisfy bd∗ = 0 and b∗d = 0, then (b + d) ⊕ 0 ≈ b ⊕ d
in M2(A) by part (v), because (b + d)(b + d)∗ ⊕ 0 = [b, d][b, d]∗ and [b, d]∗[b, d] =

(b⊕ d)∗(b⊕ d) for the row matrix [b, d] ∈M1,2(A).

(iv): If a = limn fnben then cad = limn(cfn)b(end) . Thus, cad ∈ ξ(b) if

a ∈ ξ(b) for all c, d ∈M(A).

Let a := lim an with an - b for each n ∈ N, and let ε > 0. Put δ := ε/2. There

are n = n(δ) ∈ N with ‖a − an‖ < δ and elements f, g ∈ A with ‖an − fbg‖ < δ .

Thus ‖a − fbg‖ < ε for suitable f, g ∈ A. It implies that a - b. Thus, a ∈ ξ(b) if

a ∈ ξ(b).

The closed set ξ(b) is the closure in A of the set of all elements cbd ∈ A with

c, d ∈ M(A), because cbd - b, i.e., cbd ∈ ξ(b), for all elements c, d ∈ M(A), and if

a ∈ ξ(b), i.e., if a - b, then the there exist sequences (cn) (dn) in A ⊆ M(A) such

that a = limn cnbdn.
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(v): The relations g(b) -A b for b ∈ A+ and continuous g : Spec(b) → R+

with g(0) = 0 can be seen in C∗(b) ∼= C0(Spec(b) \ {0}), using later part (iii). In

this way one can also see that g(b) ≈ b if g(t) > 0 for all 0 < t ∈ Spec(b).

In particular, b ≈ b2, thus a(a∗a)a∗ = (aa∗)2 ≈ aa∗. It implies aa∗ - a∗a. If

we replace a by a∗, then we get aa∗ ≈ aa∗.

Hence b ≈ c if b, c ∈ A+ and b ∼MvN c.

The definition of - shows that a - b implies a∗ - b∗. Thus, a ≈ b if and only

if a∗ ≈ b∗.

We have a∗a = limn cnadn with cn = a∗ and dn = (a∗a)1/n. On the other

hand, a = limn ena
∗afn for en = a, fn := gn(a∗a), where gn(t) = (t + 1/n)−1t1/n.

It follows a ≈ a∗a, and then a∗ ≈ (a∗a)∗ = a∗a.

(vi): If a, b ∈ A+ and a - b, then a ≈ a1/2 - b1/2 ≈ b by parts (i) and (v).

Thus, there are sequences cn, dn ∈ A with limn cnb
1/2dn = a1/2. Let ε > 0. There

is n ∈ N with ‖cnb1/2dnd∗nb1/2c∗n − a‖ < ε/3.

Thus, ε/3 + ‖dn‖2cnb(cn)∗ ≥ a, and Lemma 2.1.9 gives the existence of a

contraction e ∈ A with f∗bf = e∗b1e = (a − ε/2)+ for b1 := ‖dn‖2cnb(cn)∗ and

f := ‖dn‖c∗ne. It follows ‖f∗(b− δ)+f − a‖ < ε for δ = ε/(4(‖f‖2 + 1)) > 0. Now

again Lemma 2.1.9 applies and gives the existence of g ∈ A with d∗(b − δ)+d =

g∗(f∗(b− δ)+f)g = (a− ε)+ where d := fg.

Conversely, if there are δ = δ(ε) > 0 and d = dε ∈ A+ such that d∗(b− δ)+d =

(a− ε)+ for every ε > 0, then (a− ε)+ - (b− δ)+. Since (b− δ)+ - b by part (v),

then (a− 1/n)+ - b for all n ∈ N. It implies a - b by part (iv).

By part (v), a ∼ c implies a ≈ c. If 0 ≤ c ≤ b, then there are contractions

dn ∈ A with d∗nbdn = (c− 1/n)+ by Lemma 2.1.9. Thus c ≈ a - b.

It follows, that the existence of r ≤ p = p∗ = p2 with r ∼ p implies p - q, if p

and q are projections in A.

If p - q then there are δ > 0 and d ∈ A with (1 − δ)d∗qd = d∗(q − δ)+d =

(p − 1/2)+ = (1/2)p . It follows that z := (2(1 − δ))1/2qd satisfies z∗z = p and

r := zz∗ ≤ q.

(vii): It follows from parts (v) and (iv), because

(a− ε)+ - a and a = lim(a− (1/n))+ .

(viii): Use an approximate unit of D.

(ix); Part (viii) allows to use suitable (unitary) permutation matrices in

M2(M(A)) respectively M3(M(A)).

(x): d∗(x ⊕ y)d = (x + y) ⊕ 0 for d ∈ M2 ⊆ M2(M(A)) with matrix entries

d11 = d21 = 1, d12 = d22 = 0.

(xi): Let a, b ∈ A+, πJ(a) - πJ(b) and ε > 0. Then Part (vi) shows that there

are δ = δ(ε) > 0 and d = d(ε) ∈ A, such that xε := d∗(b − δ)+d − (a − ε)+ ∈ J .

It follows (a − ε)+ ≤ b ⊕ |xε| . If we take here ε ∈ {1/n ; n ∈ N} and let c :=
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n 2−n(1+‖x1/n‖)−1|x1/n| , then c ∈ J+, ‖c‖ ≤ 1, |x1/n| - c and (a−1/n)+ - b⊕c

for all n ∈ N. Thus a - (b⊕ c) by (vii).

(xii): Let a ∈ A+ and b ∈ Ann(a,A)+ := {c ∈ A ; ca = 0 = ac} such that

a ∈ span(AbA). Let δ > 0 and let K denote the closed ideal, that is generated by

Ann((a− δ)+, A). Then b ∈ Ann(a,A) ⊂ Ann((a− δ)+, A). It follows that a ∈ K.

On the other hand, πK(a) is invertible in A/K, because K contains (1 − fδ(a))a,

i.e., Spec(πK(a)) ⊆ [δ, ‖a‖]. Thus K = A, which means that D := Ann((a−δ)+, A)

is a full hereditary C *-subalgebra of A. Then J ∩D is full in J for each J / A.

Thus, for every ε > 0 and c ∈ J+, there are e1, . . . en ∈ (J∩D)+ and f1, . . . , fn ∈
J such that (c − ε)+ =

∑
k f
∗
k ekfk. Thus (c − ε)+ - d ⊗ 1n for d :=

∑
k ek. Now

(a− δ)+ + c - a⊕ (d⊗ 1n) follows from Parts (ii), (vi) and (x).

Put (xiii) and (xiv) on extra place (xiii): There is a projection y ∈ qAq
such that y is central in qAq, y = yq is finite (or zero) and (q−y) is properly infinite

(or zero). There exist a central projection z of A such that zq = y. Notice that the

projection p := supn pn ∈ A+ exists, because A is an AW*-algebra. If a ∈ A is a

contraction, then the left and right support projections paa∗ := supn(aa∗)1/n and

pa∗a := supn(a∗a)1/n of a are Murray–von-Neumann equivalent in A by the partial

isometry v ∈ A of the polar decomposition a = v(a∗a)1/2 of a in A, cf. [64].

By Part (vi), there exist qn ≤ q such that pn ∼ qn for n ∈ N . It implies

zpn ∼ zqn ⊆ zq = y and (1− z)pn ∼ (1− z)qn ⊆ (1− z)q = q − y.

If q 6= y then q − y is properly infinite, i.e., there are s, t ∈ A with s∗s = t∗t =

q − y and s∗t = 0 and ss∗ + tt∗ ≤ q − y. Then there exist a sequence s1, s2, . . . ∈
(q − y)A(q − y) with s∗msn = δm,n(q − y). Let wn ∈ A with (1− z)pn = w∗nwn and

wn(wn)∗ ≤ q − y. Now we define

a := s1w1 +
∑
n=1

2−nsn+1wn+1(1− z)(pn+1 − pn) .

Then ‖a‖ ≤ 1, (1 − z)p = supn(a∗a)1/n and aa∗ ≤ (q − y). Thus paa∗ =

supn(aa∗)1/n ≤ (1− z)q = q − y and (1− z)p = pa∗a ∼ paa∗ ≤ (1− z)q .

The AW*-algebra yAy is finite. Let v0 a partial isometry with v∗0v0 = zp1 and

v0(v0)∗ ≤ y = zq. By induction, we find partial isometries v2, v3, . . . ∈ A with

v∗nvn = z(pn+1 − pn), vn(vn)∗ ≤ zq = y and v∗nvk = 0 for k < n. Indeed:

The partial isometry wn := v0 + · · ·+ vn−1 satisfies w∗nwn = zpn and wn(wn)∗ ≤ y.

By Part (vi), there is a partial isometry x ∈ A with x∗x = zpn+1 and xx∗ ≤ y,

because zpn+1 - y. Then xzpnx
∗ ∼ wn(wn)∗ in the finite AW*-algebra yAy. We

find a unitary u ∈ yAy with uxzpnx
∗u∗ = (wnwn)∗, because Murray–von-Neumann

equivalent projections in finite AW*-algebras are unitarily equivalent, cf. [64, chap.

6]. Let vn := uxz(pn+1−pn), then v∗nwn = 0 and v∗nvn = z(pn+1−p) and vnv
∗
n ≤ zq.

Now let b :=
∑

2−nvn. Then ‖b‖ ≤ 1, bb∗ ≤ zq, zp = supn(b∗b)1/n. Thus

zp = pb∗b ∼ pbb∗ ≤ zq.

It follows p = pa∗a + pb∗b ∼ paa∗ + pbb∗ ≤ q .
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(xiv): If z ∈ A+ is in the center of A, and if (dn), (en) ⊆ A satisfy lim enbdn =

a, then lim en(zb)dn = za, i.e., a - b implies za - zb.

Let a, b ∈ A+ with a - b, then (1/n)pn ≤ a - b ≤ ‖b‖q, p1 ≤ p2 ≤ · · ·
and p = supn pn for the support projections p := pa, pn := pan and q := pb of a,

an := (a − (1/n))+ and b respectively. In particular, pn - q for all n ∈ N. Thus,

Part (xiii) implies pa - pb .

(xv): Suppose that a = lim an, b = lim bn, and that ψ is a continuous function

ψ(δ) > 0 such that (a∗nan − δ)+ - (b∗nbn − ψ(δ))+ for all n ∈ N and all rational

δ > 0. Let ε > 0, and δ ∈ (0, ε/2) rational. There is n0 ∈ N with ‖a∗a− a∗nan‖ < δ

and ‖b∗b − b∗nbn‖ < ψ(δ)/2 for all n ≥ n0. This implies a∗a ≤ (a∗nan − δ)+ + 2δ

and b∗nbn ≤ b∗b + ψ(δ)/2. By Lemma 2.1.9, we find d1, d2 ∈ A with (a∗a − ε)+ =

d∗1(a∗nan− δ)+d1 and (b∗nbn−ψ(δ))+ = d∗2b
∗bd2. It follows (a∗a− ε)+ - b∗b (for all

ε < 0), and (finally) a ≈ a∗a - b∗b ≈ b by Parts (i), (vii) and (v).

(xvi): Let a1, b1 ∈ C \ {0} with a1 -A b1, then a ≈C a1, b ≈C b1 and a -A b

for the contractions a := ‖a1‖−2a∗1a1 ∈ C+ and b := ‖b1‖−2b∗1b1 ∈ C+ . By Part (vi)

there exist 0 < δn ≤ εn < 1/4 with limn εn = 0 such that (a− εn)+ -A (b− δn)+.

For each n ∈ N there are cn, dn ∈ C+ and rational rn, sn > 0 with (a− 2εn)+ -B

(cn − rn)+ -B (a− εn)+ and (b− δn)+ -B (dn − sn)+ -B b.

It follows (cn − rn)+ -A (dn − sn)+. Then (cn − rn)+ -B (dn − sn)+ by

assumptions on S. It yields (a − 2εn)+ -B b for all n ∈ N, by Part (i). Thus,

a -B b and a1 -B b1 by Parts (vii) and (i).

Condition (D) is satisfied, if S is dense in the set of contractions in C+, because

‖c − a‖ < δ/3 implies the existence of contractions d1, d2 ∈ C and rational r ∈
(δ/3, δ/2] with (a− δ)+ = d∗1(c− r)+d1 and (c− r)+ = d∗2ad2, by Lemma 2.1.9.

proofs complete ??

(xvii): Let a, b ∈ A and B := Aω or B := Cb(X,A)/C0(X,A), and consider

the natural embedding a 7→ πω(a, a, . . .) ∈ Aω, respectively a 7→ fa + C0(X,A)

for fa(x) := a. Then a -A b implies a -B b by Part (iii). We use a ≈ a∗a for

the opposite direction, cf. Part (v). Let a, b ∈ A+ with a -B b and δ > 0, then

Part (v) says that there is d = (d1, d2, . . .) ∈ `∞(A) with limn d
∗
nbdn = (a − δ)+

(respectively d ∈ Cb(X,A) with g ∈ C0(X,A) for g(x) := d(x)∗bd(x) − (a − δ)+).

Thus (a− δ)+ -A b in both cases (since X is not compact). It follows a -A b by

Part (vii). �

We call a C *-subalgebra B of A --preserving if a, b ∈ B and a -A b imply

that a -B b.

Lemma A.6.2. Let C ⊆ A a separable C*-subalgebra and B1 ⊆ B2 ⊆ · · · ⊆ A a

sequence of --preserving C*-subalgebras of a C*-algebra A.

(o) Each hereditary C*-subalgebra D ⊆ A is --preserving.

(i) The closure B of
⋃
nBn is --preserving.
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(ii) There exists a separable --preserving C*-subalgebra B of A with C ⊆ B ⊆
A.

(iii) Consider a C*-algebra E naturally as a C*-sub-algebra of A := Eω, (re-

spectively of A := Cb(X,E)/C0(X,E) for a locally compact Hausdorff

space X). Then E is a --preserving C*-subalgebra of A.

Proof. (o): See Lemma A.6.1(viii).

(i): We prove a stronger result: Suppose that a -A b and a, b ∈ Bn imply

a -Bn+1
b. Then, obviously, the relation a -A b for a, b ∈

⋃
nBn implies a -B b.

Let C := B and let S ⊆ C+ denote the set of positive contractions in
⋃
nBn. Then

S, C, B and A satisfy the assumptions of Lemma A.6.1(xvi). Thus, for all a, b ∈ B,

a -A b if and only if a -B b .

(ii): Since C is separable, there exists a countable dense subset S in the set of

positive contractions in C+.

If c, d ∈ S and r, t ∈ [0, 1] are rational with (c− r)+ -A (d− t)+ , then there

is a sequence d1, d2, . . . ∈ A with (c− r)+ = limn d
∗
n(d− t)+dn.

The set S × S × ([0, 1] ∩Q)× ([0, 1] ∩Q) is at most countable. It follows, that

there is a separable C *-subalgebra C ⊆ B1 ⊆ A such that (c − r)+ -A (d − t)+

implies (c− r)+ -B1 (d− t)+ for c, d ∈ S and r, t ∈ [0, 1]. By Lemma A.6.1(xvi),

for each a, b ∈ C, a -A b is equivalent to a -B1 b.

We can repeat this argument for B1 in place of C, and get a separable C *-

subalgebra B1 ⊆ B2 ⊆ A such that, for each a, b ∈ B1, a -A b is equivalent to

a -B2
b. Going on this way, we can find a sequence B1, B2, . . . of separable C *-

subalgebras Bn ⊆ Bn+1 ⊆ A such that B0 := C ⊆ B1 and, for each a, b ∈ Bn,

a -A b is equivalent to a -Bn+1
b . Then the closure B of

⋃
nBn is a --preserving

separable C *-subalgebra of A that contains C.

(iii): The cases E ⊆ Eω and E ⊆ Cb(X,E)/C0(X,E) follow from Lemma

A.6.1(xvii). �

Remark A.6.3. Suppose that B ⊆ A is a C *-subalgebra. Let a ∈ A+, b ∈ B+

and let JA(b) := span(AbA) (respectively JB(b) := span(BbB) ) the closed ideal of

A (respectively of B) generated by b.

Notation I(a) was in conflict with absorption ideal

IA(a) = {b ∈ A ; [b] + [a] ≤ [a]}

The following observation (o) is trivial, and the implications (o)⇒(i)⇒(ii) are

straight-forward:

(o) The smallest number t ≥ 0 with (a− t)+ ∈ JA(b) is given by

dist(a, JA(b)) = ‖a+ JA(b)‖ = ‖πJA(b)(a)‖ .
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(i) For each δ > 0 there exists n = n(δ) ∈ N such that (a− (t+ δ))+ - b⊗ 1n,

if and only if, t ≥ dist(a, JA(b)).

(ii) dist(a, JA(b)) = dist(a, JB(b)) for all b ∈ B+ if B ⊗ K ⊆ A ⊗ K is --

preserving.

Let B ⊆ A a C *-sub-algebra of A and a, b ∈ A positive contractions, and let

d1, d2 ∈ A contractions. We define

ρ(a, b; d1, d2) := ‖a2 − d∗1a2d1‖+ ‖b2 − d∗2b2d2‖+ ‖d∗1abd2‖ ,

and denote by ρ(a, b;B) the infimum of the non-negative numbers

{ρ(a, b; d1, d2) ; d1, d2 ∈ B, ‖d1‖ ≤ 1, ‖d2‖ ≤ 1, } .

The following Lemma establishes the continuity of the property s.p.i. in the category

of C *-algebras with respect to inductive limits.

Lemma A.6.4. Let C ⊆ A and B1 ⊆ B2 ⊆ . . . ⊆ A separable C*-subalgebras.

Let B denote the closure
⋃
nBn. Then:

(i) For contractions a, b, a′, b′ ∈ A+ holds

| ρ(a′, b′;A)− ρ(a, b;A) | ≤ 5‖a′ − a‖ + 5‖b′ − b‖

and ρ(a, b;C) ≥ ρ(a, b;A) if a, b ∈ C.

(ii) ρ(a, b;A) = ρ(a, b;Aω) for all contractions a, b ∈ A+.

(iii) If ρ(a, b;Bn+1) = ρ(a, b;A) for all positive contractions a, b ∈ Bn for n =

1, 2, . . . , then ρ(a, b;B) = ρ(a, b;A) for all positive contractions a, b ∈ B.

(iv) There exists a separable C*-subalgebra B of A with C ⊆ B ⊆ A, such

that ρ(a, b;B) = ρ(a, b;A) for all contractions a, b ∈ B+.

Proof. (i): The inequality ρ(a, b;C) ≥ ρ(a, b;A) is immediate from the defi-

nition. Straight calculation shows

| ρ(a′, b′; d1, d2)− ρ(a, b; d1, d2) | ≤ 5‖a′ − a‖ + 5‖b′ − b‖ .

(ii): By Part (i), ρ(a, b;A) ≥ ρ(a, b;Aω). Here we have identified a ∈ A with

πω(a, a, . . .) = ∆(a) + cω(A) in Aω.

Let a, b ∈ A+ contractions and δ > 0 . There are sequences of contraction

e1, e2, . . . ; f1, f2, . . . ∈ A such that, for e := πω(e1, e2, . . .) and f := πω(f1, f2, . . .),

ρ(a, b;Aω) + δ > ρ(a, b; e, f) = lim
ω
ρ(a, b; en, fn) ≥ inf

n
ρ(a, b; en, fn) .

Clearly, infn ρ(a, b; en, fn) ≥ ρ(a, b;A) .

(iii): By assumptions and Part (i), we have ρ(a, b;B) = ρ(a, b;A) for all pos-

itive contractions a, b ∈
⋃
nBn. It implies ρ(a, b;B) = ρ(a, b;A) for all positive

contractions a, b ∈ B, because (a, b) 7→ ρ(a, b;B)− ρ(a, b;A) is continuous.

(iv): Let X ⊆ C+ a countable subset of contractions, that is dense in the set of

all positive contractions in C. For each a, b ∈ X there are sequences of contractions
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e1, e2, . . . ; f1, f2, . . . ∈ A, such that limn ρ(a, b; en, fn) = ρ(a, b;A). Thus, there is a

countable subset X ⊆ Y ⊆ A of the contractions in A, such that

inf{ ρ(a, b; d1, d2) ; d1, d2 ∈ Y } = ρ(a, b;A) ∀ a, b ∈ X .

Let C ⊆ B1 ⊆ A denote the separable C *-subalgebra that is generated by Y . Then

ρ(a, b;B1) = ρ(a, b;A) for all a, b ∈ X. This is true also for all positive contractions

a, b ∈ C, because (a, b) 7→ ρ(a, b;B)− ρ(a, b;A) is continuous.

Now we can repeat the argument with B1 in place of C, and get a separable

C *-subalgebra B1 ⊆ B2 ⊆ A with ρ(a, b;B2) = ρ(a, b;A) for all a, b ∈ B1. Thus,

we find a sequence B1 ⊆ B2 ⊆ · · · ⊆ A that satisfies the assumptions of Part (iii).

Then the closure B of
⋃
nBn is a separable C *-subalgebra of A with C ⊆ B and

ρ(a, b;B) = ρ(a, b;A) for all a, b ∈ B. �

Lemma A.6.5. Let M a W*-algebra, a ∈M+ with ‖a‖ = 1, let Pb ∈M denote

the support projection of b ∈M+, and let d1, . . . , dm ∈M with
∑
d∗jdj ≤ 1.

Suppose that the support projections of z(a− t)+ and of z(1− a− t)+(a− s)+

are either zero or infinite for all t, s ∈ (0, 1) and for all central projections z ∈M .

Then:

(i) The support projections of (a− t)+ and (1−a− t)+ · (a− s)+ are properly

infinite or zero for every t, s ∈ [0, 1].

(ii) For each δ > 0, there exists mutually orthogonal projections p1, . . . , pn ∈
{a}′ ∩M and 0 ≤ α1 ≤ · · · ≤ αn ≤ 1 such that pk is properly infinite in

M for k = 1, . . . , n,
∑
k pk = Pa and (a− δ)+ ≤

∑
k αkpk ≤ a.

(iii) For each δ > 0 and m ∈ N there exists partial isometries v1, . . . vm ∈
PaMPa with v∗j vk = δjkPa and ‖ vj a − avj ‖ < δ for j, k = 1, . . . ,m.

(iv) For each ε > 0 there exist self-adjoint hk ∈M with ‖hk‖ ≤ π (1 ≤ k ≤ 4)

such that h2 = −h1, h4 = −h3 and

next ok ?? ??

(
(
∑
j

d∗jadj)− ε
)

+
≤

4∑
k=1

exp(ihk)a exp(−ihk)

Proof. check proof of (i) again (i): Suppose that the support projec-

tions of z(a − t)+ and of z(1 − a − t)+(a − s)+ are either zero or infinite for all

t ∈ (0, 1) and for all central projections z ∈M .

Let b ∈ M+ such that the support projection Pb ∈ M of b is infinite. Then

there exists a central projection z ∈ M such that zPb is finite (or is zero) and

that (1 − z)Pb is properly infinite (or is zero). The support projection of zb is

given by zPb. Thus, if the support projection of zb is not finite, then zPb = 0 and

Pb = (1− z)Pb is properly infinite.

Thus, all support projections P(a−t)+
and and P(1−a−t)+(a−s)+

of the elements

(a− t)+ respectively (1− a− t)+(a− s)+ are properly infinite ore zero in M .
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If follows that (a− t)+ and (1−a− t)+(a− s)+ are zero or are properly infinite

elements of M for each s, t ∈ [0, 1], by Lemma 2.5.3(xv).

(ii): By Lemma A.6.2(ii), there exists a separable C *-subalgebra B ⊆ M with

a ∈ B, such that c -B d if and only if c -M d for all c, d ∈ B . Let M0 ⊆ M the

σ(M,M∗)-closure (i.e., ultra-weak closure) of B in M .

Then M0 is a direct sum M0
∼=
∏
αNα of W*-algebras Nα with separable

predual, and the elements (a− t)+ and (1− a− t)+(a− s)+ are properly infinite or

zero in M0 for all s, t ∈ [0, 1]. It follows, that the image aα of a = {aα}α ∈
∏
αNα

have the properties that the elements (aα − t)+ and (1 − aα − t)+(aα − s)+ are

properly infinite or zero.

Fix some of the α. Let b := aα ∈ Nα =: N . Then 0 ≤ b ≤ 1 and the elements

(b−t)+ and (t−b)+(b−s)+ are properly infinite for all s, t ≥ 0. Let E := Pb ∈ N the

support projection of b in N . By 2.5.3(xv), the support projections P (t) := P(b−t)+

of (b − t)+ and the support projections Q(t) := P(t−b)+b of (t − b)+b are properly

infinite projections in N (but, clearly, they can’t be properly infinite in {b}′′ ⊆ N ,

and they are not necessarily properly infinite in {b}′∩N). It holdsQ(t), P (t) ∈ {b}′′,
Q(t)P (t) = 0, Q(s) ≤ Q(t), P (s) ≥ P (t) for s < t Q(t) +P (t) ≤ E. The projection

R(t) := E − Q(t) − P (t) satisfies bR(t) = tR(t) for each t ∈ [0, 1]. In particular,

R(t)R(s) = 0 for s 6= t. Since N has separable pre-dual, there is a faithful normal

state ρ on N . It follows ρ(R(t)) > 0 if R(t) 6= 0, and that {t ∈ [0, 1] ; ρ(R(t)) ≥ 1/n}
contains at most n points. It implies, that the set S = {t ∈ [0, 1] ; R(t) 6= 0} is

countable. We have 0 6∈ S, because P (0) = E.

If s < t and R(t) = 0, then P (s) − P (t) = P (s)Q(t). But P (s)Q(t) is the

support projection of (t − b)+(b − s)+, and (t − b)+(b − s)+ is zero or properly

infinite properly infinite. Now, Lemma 2.5.3(xv) implies that the support projection

P (s)− P (t) = P (s)Q(t) of (t− b)+(b− s)+ is properly infinite if P (s) 6= P (t) and

t 6∈ S.

Since b = sup+ tP (t) (in the lattice ({b}′′)+), we can approximate b from below

in norm by
∑
tk(P (tk)− P (tk+1)) = supk tkP (tk) with 0 = t1 < t2 < . . . < tn < 1,

tk+1 6∈ S and where tk ∈ ((k − 1)/n, k/n].

It follows that each Rk = P (tk) − P (tk+1) (with P (tn+1) := 0 = P (1)) is

a properly infinite projection in Nα or is zero, Rk ∈ {b}′′+, b − 1/n ≤
∑

(k −
1)/nRk

∑
tkRk ≤ b.

If we do this for each summand Nα of M0, then we get projections pk = (Rαk )α ∈
M0, k = 1, . . . , n, such that the pk commute with a, are mutually orthogonal, are

properly infinite or zero, have sum
∑
pk = Pa, and a− (2/n) ≤

∑
(k− 1)/npk ≤ a.

(iii): Let δ > 0 and m ∈ N. Let n = [2/δ] + 1. We find pk ∈ {a} ∩ M ,

k = 1, . . . , n, with the properties in (ii). It follows, that, for each j ∈ {1, . . . , n},

‖pjTpjb− bpjTpj‖ ≤ ‖b−
∑
k

(k − 1)/n)pk‖‖pjTpj‖ ≤ (2/n)‖pjTpj‖ .
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Since the projections pk are properly infinite, we find z`,j ∈ pjMpj , ` = 1, . . . ,m

with z∗`,jzk,j = δ`,kpj .

Let v` =
∑
j z`,j . Then v1, . . . vm ∈ PaMPa and v∗` vk = δ`,kPa. Since the pj

commute with a and v`, we have that v` a − a v` =
∑
j pj(z`,j a − az`,j)pj . Thus,

the above estimate gives ‖ v` a − a v` ‖ < δ for `, k = 1, . . . ,m,

end above? more?

(vi): Given d1, . . . , dm ∈ M with
∑
d∗jdj ≤ 1, and ε > 0, we let δ := ε/(1 +

√
m). We find the v1, . . . , vm with the properties of (iii), and define a contraction d ∈

M by
∑m
`=1 v`d`. Then d∗ad −

∑
` d
∗
`ad` = CBC∗ for the row C = [d1, . . . , dm] ∈

M1,m(M) and the matrix B = [b`,k] ∈Mm(M) with entries

b`,k = δ`,ka− v∗` avk = v∗` (vka− avk) .

Thus, B = V ∗D for the rows V := [v1, . . . , vm] andD = [v1a−av1, . . . , vma−avm] in

M1,m(M). Since ‖C‖ ≤ 1, V ∗V ≤ Pa⊗ 1n, and ‖D‖ ≤ δ
√
m, it follows ‖CBC∗‖ ≤

‖B‖ ≤ ‖D‖ < ε. Hence, ∑
`

d∗`ad` − ε ≤ d∗ad .

Let e := (d+ d∗)/2, f := (d− d∗)/2i, h1 := arcsin(e), h2 := −h1, h3 := arcsin(f)

and h4 := −h3, then ‖e‖ ≤ 1, ‖f‖ ≤ 1, and ‖hk‖ ≤ π for k = 1, 2, 3, 4.

d∗ad ≤ d∗ad+ dad∗ = 2(eae+ faf) ≤

2(eae+ faf) + 2(cos(h1)a cos(h1) + cos(h3)a cos(h3)) =

4
∑
k

exp(ihk)a exp(−ihk) .

�

Lemma A.6.6. For every a ∈ A and every unitary u ∈ M(A), the element

u∗au is in the norm-closed convex hull of the set {exp(ih)a exp(−ih) ; h∗ = h ∈
A, ‖h‖ < π} .

In particular, if C ⊆ A+ is a hereditary closed convex sub-cone of A+, then

K := {a ∈ A+ ; exp(ih)a exp(−ih) ∈ C for all h∗ = h ∈ A with ‖h‖ < π}

is the positive part I+ := K of a closed ideal I of A.

The closed ideal I is the largest ideal of A with I+ := I ∩A+ ⊆ C.

Proof. Recall thatM(A) ⊆ A∗∗. The set {exp(ih) ; h∗ = h ∈ A, ‖h‖ < π} is

*-ultra-strongly dense in the unitaries of A∗∗, because exp: A∗∗ → A∗∗ is *-ultra-

strongly continuous on bounded parts, and because every unitary V of a W*-algebra

is of the form V = exp(ih) for some self-adjoint h ∈ A∗∗ with ‖h‖ ≤ π.

Use Hahn-Banach separation from the closed convex hull of

{exp(ih)a exp(−ih) ; h∗ = h ∈ A, ‖h‖ < π} .
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If exp(ih)a exp(−ih) ∈ C for all h∗ = h ∈ A with ‖h‖ < π and if C is closed and

convex, then u∗au ∈ C for all unitaries u ∈M(A), i.e.,

a ∈ K :=
⋂

u∈U(M(A))

u∗Cu .

If C is a hereditary closed convex sub-cone of A+, then K :=
⋂
u∈U(M(A)) u

∗Cu

is a hereditary closed convex sub-cone of A+ that is invariant under “inner” auto-

morphisms Ad(u) of A.

Thus, the hereditary C *-subalgebra I := KAK of A is a closed ideal of A with

I+ = K.

If J / A is a closed ideal with J+ ⊆ C, then u∗au ∈ C for all a ∈ J+ and

u = exp(−ih) with h∗ = h ∈ A. Thus, J ⊆ I. �

Lemma A.6.7. Suppose that A is a C*-algebra with the property that every

additive lower semi-continuous trace τ : A+ → [0,∞] takes only the values 0 and

∞.

Let Sin denote the set of approximately inner completely positive contractions,

and let Su denote the point-norm closed convex hull of the (exponential) inner

automorphisms

a 7→ exp(ih)a exp(−ih)

with h∗ = h of norm < π.

Then, for each contraction a ∈ A+, V ∈ Sin and ε > 0, there exists T ∈ Su
with

V (a)− ε ≤ 4T (a) .

Proof. to be filled in ?? �

Lemma A.6.8. Let a ∈ A+, and suppose that there is m ∈ N such that, for every

contraction b ∈ A+ in the (algebraic) ideal generated by {a} there are d1, . . . , dm ∈
A (depending on b) with

∑m
k=1 d

∗
kadk = (b− 1/2)+.

We denote by m(a) the smallest m ∈ N with this property.

Let I(a) denote the closed ideal of A generated by a ∈ A+. Then:

(i) For every c ∈ I(a)+ and ε > 0 there are δ > 0 and d1, . . . , dm(a) ∈ aAc
with

∑
k d
∗
k(a− δ)+dk = (c− ε)+ and ‖

∑
k d
∗
kdk‖ ≤ 2δ−1‖c‖.

check above estimate

(ii) If A1, A2, . . . is a sequence of C*-algebras, such that there is µ ∈ N with

m(a) ≤ µ for each n ∈ N and a ∈ (An)+ then m(b) ≤ µ for every positive

b ∈
∏
nAn.

(iii) If m(a) ≤ m0 for all a ∈ A+, and if J is a closed ideal of A, then

m(b) ≤ m0 for every positive b ∈ (A/J)+.

(iv) Suppose that, for each b ∈ (Aω)+ and ε > 0, there exists m = m(b, ε) ∈ N
such that (b− ε)+ ⊗ 12m - b⊗ 1m.

Then there exists n ∈ N such that a⊗ 12n - a⊗ 1n for all a ∈ A+.
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Proof. (i): Let c ∈ I(a)+ and ε > 0 . There are n ∈ N and f1, . . . , fn ∈ A
with ‖c−

∑
k f
∗
kafk‖ < ε/2 .

Question:

Are there δ > 0 and d1, . . . , dm ∈ aAc with
∑
k d
∗
k(a − δ)+dk = (c − ε)+ and

‖
∑
d∗kdk‖ ≤ 2δ−1‖c‖?

(If it does not work in A∗∗ then not in A!)

check above estimates

to be filled in ?? �

Question A.6.9. If 0 ≤ a ≤ b and ‖b‖ ≤ 1, then, for every ε > 0 there is a

contraction d ∈ C∗(a, b) ⊆ A with d∗bd = (a− ε)+ and ‖db− bd‖ ≤ f(‖ab− ba‖, ε),
where

f(t, ε) := sup{µ(a, b; ε) ; a, b ∈ L(`2)+ , 0 ≤ a ≤ b ≤ 1 , ‖ab− ba‖ ≤ t }

for t > 0 and

µ(a, b; ε) := inf{‖db− bd‖ ; d ∈ C∗(a, b), ‖d‖ ≤ 1, d∗bd = (a− ε)+ } .

Is limt→0 f(t, ε) = 0 for each (fixed) ε > 0?

That is “in the limit” (i.e., in L(`2)ω) the case of commuting 0 ≤ a ≤ b and

d := lim
δ→0

(b+ δ)−1/2(a− ε)1/2
+ .

The question has to do with the study of images in Q(X,B)|ω of the fibers

F (X;A,B)|ω of the unital C(γX)-algebra

F (X ; A,B) := (A′ ∩Q(X,B))/Ann(A,Q(X,B))

for separable C *-subalgebra A ⊆ Q(X,B).

Question A.6.10. Is there a universal continuous function ρ : R+ → R+ with

ρ(0) = 0, such that ρ is increasing and has the following property (*)?

(*) If a, b ∈ A+, 0 ≤ γ < ε satisfy b ≤ a + γ, then there is a contraction

d := d(a, b; γ, ε) ∈ A with d∗ad = (b− ε)+ and

‖da− ad‖ ≤ ρ( sup
γ≤δ≤ε

‖a(b− δ)+ − (b− δ)+a‖) .

What about using ultrapowers here?

7. Basics on Quasi-traces

Is only collection/list of topics now

Definition A.7.1. To be defined:

Dimension function d, dimension function

Rank function = subadditive local rank function, local rank function r, quasi-

trace τ , 2-quasi-trace bounded, unbounded, l.s.c. traces = additive q-traces, ...
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For every compact Hausdorff space X of dimension ≥ 2 there exists a compact

Hausdorff space Y of dimension ≤ Dim(X)+1, a continuous injective map ϕ : X →
Y (with adjoint epimorphism ϕ̂ : C(Y ) → C(X) given by ϕ̂(f)(x) := f(ϕ(x)) for

x ∈ X) and a unital extension

0→ K⊗ c0 → A→ C(Y )→ 0

(– with fixed canonical epimorphism π : A → C(Y ) –) such that for each quasi-

measure µ on X (in the sense of Aarnes [3]) with µ(X) = 1 the composition

τµ := νµ ◦ ϕ̂ ◦ π is a unital quasi-trace on A+, where νµ : C(X)+ → [0,∞) is the

local quasi-trace defined by the quasi-measure µ. It is then easy to see that τµ can’t

be 2-sub-additive on the positive part A+ of the type-I C *-algebra A+ if νµ is not

additive on C(X)+, because otherwise the (again) 2-sub-additive class map [τµ] on

C(X)+ coincides with νµ, but the quasi-state νµ on C(X)+ can’t be 2-sub-additive

if the quasi-measure µ is not a (then finite) Borel measure on X.

Recall here that a quasi-trace τ is 2-sub-additive if it has the property τ(a+b) ≤
2(τ(a) + τ(b)) for a, b ∈ A+. This property is equivalent to both of τ(a + b)1/2 ≤
τ(a)1/2 + τ(b)1/2 (U. Haagerup) and the existence of a quasi-trace τ2 on M2(A)+

with τ2(a⊗ p11) = τ(a),

Aarnes has defined in [3] a quasi-state on C([0, 1]2) that is not additive, there-

fore it can not be 2-sub-additive. Thus, there are bounded quasi-traces that are not

2-quasi-traces on unital type-I C*-algebras.

Haagerup [342] (cf. also [348]) has shown that every bounded 2-quasi-trace on

an exact unital C *-algebra is additive (i.e., is a bounded trace). One can technically

improve the arguments of Haagerup [342] and Blackadar/Handelman [79] to get

this result also for all (not necessarily bounded !) lower semi-continuous 2-quasi-

traces τ : A+ → [0,∞].

Remark A.7.2. The lower semi-continuous dimension functions d : M∞(A)→
[0,∞], where M∞(A) :=

⋃
nMn(A), are in one-to-one correspondence to lower

semi-continuous 2-quasi-traces τ : A+ → [0,∞] by :

τd(a) := lim
ε↘0

∫ ∞
ε

d((a− t)+) dt

and dτ (b) for b ∈Mn(A) and given τ – extended to τn : Mn(A)+ → [0,+∞], by

dτ (b) := lim sup
m

τn((b∗b)1/m) .

Check last definition!

Is here ((b∗b)1/m − 1/m)+ better??

The local quasi-trace τ (respectively rank function d ) is on A+ lower semi-

continuous, if and only if, for every a ∈ A+ : τ(a) = supδ>0 τ((a− δ)+)

( respectively d(a) = supδ>0 d((a − δ)+) ). All on A1
+ := {a ∈ A+ ; ‖a‖ ≤ 1}

bounded local quasi-traces are lower semi-continuous.

An l.s.c. quasi-trace τ : A+ → [0,∞] is a 2-quasi-trace, if and only if, τ(a+b) ≤
2(τ(a) + τ(b)) for all a, b ∈ A+, if and only if, τ(a+ b)1/2 ≤ τ(a)1/2 + τ(b)1/2 for all
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a, b ∈ A+. It is equivalent to the original definition of J. Cuntz that proposes the

existence of a quasi-trace τ2 on M2(A)+ with τ(a) = τ2(diag(a, 0)) for all a ∈ A+.

The dimension functions d : M∞(A)→ [0,∞] are in one-to-one correspondence

to the monotone additive maps λ : CS(A⊗K)→ R+ ∪ {+∞}.

Need definitions of Cu(A), CS(A) and M∞(A) given in Chp. 2 ! Or move them

to here? ??? Or only remind them here? ???

If d : M∞(A) → [0,∞] is a dimension function (respectively a rank func-

tion r : A → [0,∞], respectively τ : A+ → [0,∞] a quasi-trace) then d∗(b) :=

supε>0 d((b∗b− ε)+) for b ∈M∞(A) (respectively r∗(b) := supε>0 r((b
∗b− ε)+) for

b ∈ A, τ∗(a) := supε>0 τ((a − ε)+) for a ∈ A+) is a lower semi-continuous dimen-

sion function on M∞(A) (respectively, lower semi-continuous rank function, lower

semi-continuous quasi-trace). r∗ is sub-additive on A if r is sub-additive. (τ∗ is a

2-quasi-trace if τ is a 2-quasi-trace.

It holds τ∗ = τdτ and d∗ = dτd .

Let a ∈ A+ and denote by S the semigroup of x ∈ CS(A⊗K) with the property

that there is n ∈ N with x ≤ n[a] = [a⊗ 1n], i.e., b - a⊗ 1n for [b] = x.

????

then (S,≤, [a]) is a scaled abelian semigroup (with the induced preorder ≤ and

order unit [a]). Every monotone and additive map λ : S → [0,∞] extends to a

monotone and additive map λe : CS(A ⊗ K) → [0,∞] by λe(x) := λ(x) for x ∈ S
and by λe(x) := +∞ for x 6∈ S.

Proof. If x ≤ y and λe(y) <∞, then x, y ∈ S, in case that λe(x) ≤ λe(y). If

λe(x+ y) <∞ then x+ y ∈ S. Since 0 ≤ y and 0 ≤ x in CS(A⊗K) it follows that

x = 0 + x ≤ x+ y ≤ n[a].

and ?????

If λe(x) + λe(y) <∞, then λe(x) <∞ and λe(y) <∞, i.e., x, y ∈ S. �

Proof. to be filled in ?? �

Corollary A.7.3. Let A denote a C*-algebra, and a ∈ A+ with the property

that d(a) = 0 for every lower semi-continuous dimension function d on M∞(A) :=⋃
nMn(A) with d(a) < ∞, then, for every ε > 0, there is n(a, ε) ∈ N (depending

on ε) such that (a− ε)+ ⊗ 12n - a⊗ 1n in M2n(A) for all n ≥ n(a, ε).

Proof. Let I denote the algebraic ideal of A generated by a. It contains

the minimal dense ideal (Pedersen ideal) of the hereditary C *-subalgebra aAa, in

particular, (a − ε)+ ∈ I for all ε > 0. Consider the sub-semigroup S of classes

[c] ∈ CS(aAa) with the property that there is n ∈ N with [c] ≤ n[a], i.e., c - a⊗1n.

Then (S,≤, [a]) is a “scaled” semigroup with the preorder induced from CS(aAa).

Since every monotone additive map λ : S → R+ extends to monotone additive

map λe : CS(A)→ [0,∞], and D(x) := λe([x]) is a dimension function on M∞(a),
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and since D∗(x) := supε>0D(((x∗x)1/2−ε)+) is a lower semi-continuous dimension

function on A, we have D∗(a) = 0 . Thus, λ((a− ε)+) = 0 for all ε > 0.

By A.13.10, for every ε > 0, there is n0 = n0(ε) ∈ N with 2n[(a − ε)+] ≤ n[a]

in CS(aAa) for all n ≥ n0, i.e., (a− ε)+ ⊗ 12n - a⊗ 1n for all n ≥ n0. �

Lemma A.7.4. Suppose that τ : A+ → [0,∞] is a lower semi-continuous quasi-

trace.

(i) If τ is a 2-quasi-trace, and if e ∈ A+ satisfies τ(e) <∞ and ‖e‖ = 1, then

there is a bounded quasi-trace ρ : M2(D̃)+ → R+ with ρ(d⊕ 0) = τ(d) for

d ∈ D+, where D := {d ∈ A ; ed = de = d}.
(ii) The l.s.c. quasi-trace τ is additive on A+, if τ |D+ is sub-additive for

every hereditary C*-subalgebra D ⊆ A with the property that there is

e ∈ A+ with τ(e) <∞, ‖e‖ = 1 and de = ed = d for all d ∈ D.

Proof. (i): We have τ(d) ≤ ‖d‖τ(e) for all d ∈ D. By [79, cor.II.2.5], the

bounded 2-quasi-trace τ ′ := τ |D+ on D extends to a bounded 2-quasi-trace τ ′′|D̃+

on the unitization D̃ of D with

τ ′′(1) = sup{τ(d) ; d ∈ D+, ‖d‖ ≤ 1} ≤ τ(e) .

The proof of [79, cor.II.2.5] is based on the technically engaged theorem [79,

thm.I.4.1]. A detailed and elementary proof of Part (i) goes as follows:

It follows that f := 2(e − 1/2)+ satisfies df = fd = d for all d ∈ D and

f1/n ≤ 2e for all n ∈ N. In particular, f is a strictly positive contraction in the

center of the C *-subalgebra C∗(D, f) of A, because h(f)d = h(1)d for h ∈ C0(0, 1]

and d, which implies C∗(D, f) = D + C∗(f) and DC∗(f) = D.

The restriction of τ to C∗(D, f)+ is bounded, because, for c ∈ C∗(D, f)+,

τ(c) ≤ ‖c‖ sup
n
τ(f1/n) ≤ 2‖c‖τ(e) .

The element f(1 − f) is orthogonal to D and is a strictly positive element of an

ideal I of C∗(D, f), with D̃ ∼= C∗(D, f)/I . The isomorphism is defined by the

epimorphism φ : C∗(D, f) → D̃ with kernel C∗(f(1 − f)), given by φ(f) = 1 and

φ(d) = d.

Then we have M2(D) = {b ∈ M2(A) ; b(e ⊕ e) = (e ⊕ e)b = b } . Thus

M2(C∗(D, f)) is generated by M2(D) and M2(C∗(f)), f⊕f = f⊗12 is in the center

of M2(C∗(D, f)), and the ideal M2(C∗(f(1− f))) is the hereditary C *-subalgebra

of M2(C∗(D, f)) that is generated by g := (f(1− f))⊗ 12 = (f − f2)⊕ (f − f2) .

Use the identification M2(A) = A ⊗M2, then e ⊕ e = e ⊗ 12, f ⊕ f = f ⊗ 12,

M2(C∗(D, f)) = C∗(M2(D),M2(C∗(f)), M2(C∗(f(1− f))) = C∗(f(1− f))⊗M2,

f ⊕ f is in the center of M2(C∗(D, f)).

check again!::

We define on the unital C *-algebra M2(D̃) ∼= M2(C∗(D, f))/M2(I) a function

ν(a+ s) := infn τ2((1− g1/n)(a+ f ⊗ s)(1− g1/n) for selfadjoint a∗ = a ∈M2(D)
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and s∗ = s ∈M2 with ???????? ≤ a+ s ≥ 0. It is obvious that ν(d⊕ 0) = τ(d) for

all a ∈ D+, and it is not hard to see, that ν|C+ is additive for every commutative

C *-subalgebra C ⊆ M2(D̃) , because C∗(C · (f ⊗ 12), g) ⊆ M2(C∗(D, f)) is a

commutative C *-subalgebra of M2(C∗(D, f)) .

Thus ν1(d+ t) = ν((d+ t)⊕ 0) (for d∗ = d ∈ D and t ∈ R+ with d+ t ≥ 0) is

a bounded 2-quasi-trace on D̃+ with ν1(d) = τ(d) for d ∈ D+ .

(ii): Let a, b ∈ A+ . Since τ is in particular a lower s.c. 2-quasi-trace, one has

τ(a+ b) ≤ 2(τ(a) + τ(b)) and max(τ(a), τ(b)) ≤ τ(a+ b). Thus τ(a) + τ(b) = +∞ ,

if and only if, τ(a+ b) = +∞ . Hence, we may suppose that τ(a+ b) <∞ .

Let gδ(t) := min((2/δ) max(t− δ/2, 0), 1) for t ∈ R+ and δ ∈ (0, 1] , and notice

that gδgε = gε for δ ≤ ε/2 .

If τ(a+b) <∞ and δ > 0, let e := gδ(a+b) and D := {x ∈ A ; xe = ex = x } .

The elements c := g4δ(a+d)1/2 and d := ‖a+b‖g2δ(a+d)1/2 are in D+ , d commutes

with all elements in cAc and d ≥ c(a+b)c. In particular, τ(d−cac)+τ(cac) = τ(d) ,

τ(d− cbc) + τ(cbc) = τ(d) , and

2τ(d)− τ(c(a+ b)c) = τ(2d− c(a+ b)c) = τ((d− cac) + (d− cbc))

The sub-additivity of τ implies τ(c(a+ b)c) ≤ τ(cac) + τ(cbc) , and

2τ(d)− τ(c(a+ b)c) ≤ τ(d− cac) + τ(d− cbc) = 2τ(d)− (τ(cac) + τ(cbc)) .

Hence, τ(c(a+ b)c) = τ(cac) + τ(cbc) .

The elements a, b, a+ b are in E := (a+ b)A(a+ b). Since

τ(y1/2g2δ(a+ b)y1/2) = τ(g2δ(a+ b)1/2yg2δ(a+ b)1/2)

and

τ(y) = lim
δ↘0

τ(y1/2g2δ(a+ b)y1/2)

for all y ∈ E+ by monotony and lower semi-continuity of τ , it follows τ(a + b) =

τ(a) + τ(b). �

Remark A.7.5. Similar arguments show:

A lower s.c. local quasi-trace τ : A+ → [0,∞] is 2-subadditive,

i.e., τ(a+ b) ≤ 2(τ(a) + τ(b)) for all a, b ∈ A+ , if and only if

τ(a + b) = ∞ implies τ(a) + τ(b) = ∞, and, for every e ∈ A+ with τ(e) < ∞
and ‖e‖ = 1, τ |D+ is 2-subadditive, where D is the the hereditary C*-subalgebra

D := {a ∈ A ; ae = ea = a } .

Corollary A.7.6. Let A an exact C*-algebra. Then every lower semi-

continuous 2-quasi-trace τ : A+ → [0,∞] is an additive trace.

Proof. If A is exact, unital and τ(1) < ∞, then this was shown by U.

Haagerup in [342] (see also [348]).

It suffices to show in the non-unital case that τ |D+ is sub-additive for every

hereditary C *-subalgebra D ⊆ A with the property that there is e ∈ A+ with

τ(e) < ∞, ‖e‖ = 1 and de = ed = d for all d ∈ D, cf. Lemma A.7.4(ii). But then
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there is an extension τ̃ : D̃+ → [0,∞) of τ |D+ by Lemma A.7.4(i). Where we use

that the unitization D̃ of D ⊆ A is exact if A is exact. �

Remark A.7.7. There exist unital quasi-traces that are not 2-quasi-traces on

the unital C *-algebra A := C([0, 1]) ∗ C([0, 1]), i.e., on the unital free product of

two copies of C([0, 1]), and on a type-I C *-algebra A that is a unital extension

0→ c0(K)→ A→ C([0, 1]2)→ 0 .

Cite! place of exact definition.

8. Projectivity of some C*-algebras

Definition A.8.1. A C *-algebra B is projective if for every C *-algebra A,

closed ideal J /A of A and C *-morphism ψ : B → A/J there exists a C *-morphism

φ : B → A with ψ = πJ ◦ φ (φ is a lift of ψ).

Obvious examples of projective C *-algebras are the free algebras generated by

a finite, countable or uncountable number of contractions. (The latter by using the

Axiom of Choice.)

Here we display a proof of the projectivity of the cones CF := C0((0, 1], F )

over finite-dimensional C *-algebras F .

The following Lemma A.8.2 reformulates [540, thm. 3.3]. We use a variant of

[616, prop. 1.5.10] for a proof.

Lemma A.8.2. Let J / A, a, b ∈ A+ and d ∈ A/J with d∗d ≤ πJ(a) and

dd∗ ≤ πJ(b). Then there exists g ∈ A with g∗g ≤ a, gg∗ ≤ b and πJ(g) = d.

Remark A.8.3. Lemma A.8.2 is a two-sided version of an order lifting theorem

of Combes [155], cf. also [616, prop. 1.5.10]:

Let ρ : B → C a C *-algebra epimorphism. If x ∈ B+ and y ∈ C satisfy

y∗y ≤ ρ(x) then there exists some z ∈ B with ρ(z) = y and z∗z ≤ x.

Inspection of the proof of [616, prop. 1.5.10] allows to see moreover the follow-

ing:

For each b ∈ B with ρ(b) = y there exists z ∈ B with ρ(z) = y, z∗z ≤ x and

(in addition) zz∗ ≤ bb∗.

Indeed: Let b ∈ B with ρ(b) = y and J := ρ−1(0). Then (x− b∗b)− ∈ J+, and

c = (x− b∗b)− + x satisfies ρ(c) = ρ(x), b∗b ≤ c and x ≤ c.

Let z := limn→∞ b(n−11 + c)−1/2x1/2. This limit exists because the elements

tn := b(n−11+c)−1/2x1/2 satisfy via monotony and centrality of C *-algebra norms

the inequalities

‖tm − tn‖2 ≤ ‖
(
(m−11 + c)−1/2 − (n−11 + c)−1/2

)
c ‖ .

The equation πJ(x) = πJ(c) implies πJ(z) = πJ(b). The additional inequality

zz∗ ≤ bb∗ comes from ‖(n−11 + c)−1/2x1/2‖2 ≤ 1 via x ≤ c.
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Proof of Lemma A.8.2: Let J / A , a, b ∈ A+ and d ∈ A/J with

d∗d ≤ πJ(a) and dd∗ ≤ πJ(b) .

We find some e ∈ A with πJ(e) = d by surjectivity of πJ . There exists f ∈ A with

f∗f ≤ a and πJ(f) = d, by Remark A.8.3.

We can apply again Remark A.8.3, but this time with (d∗, f∗, b) in place of

(y, b, x), because πJ(f) = d and dd∗ ≤ πJ(b). Get z ∈ A with πJ(z) = d∗, z∗z ≤ b

and zz∗ ≤ f∗f .

The element g := z∗ has the desired properties: g∗g ≤ f∗f ≤ a, gg∗ = z∗z ≤ b
and πJ(g) = πJ(z)∗ = d . �

Proposition A.8.4. [540, cor. 3.8] For each C*-algebra F of finite dimension,

the cone CF := C0((0, 1], F ) of F is projective in sense of Definition A.8.1.

Proof. The following simple observation works only for σ-unital C *-algebras

B1 and B2. This is necessary to observe because the (free) universal C *-algebra

generated by un-countably many contractions is projective (by using the Axiom of

Choice) but is not σ-unital.

If B1 and B2 are projective σ-unital C*-algebras, then B1 ⊕B2 is projective.

Indeed: Let ψ : B1 ⊕B2 → A/J a C *-morphism, e1 ∈ B1 and e2 ∈ B2 strictly

positive contractions, and let a ∈ A with πJ(a) = ψ(e1 ⊕ (−e2)). The elements

a1 := (a∗ + a)+ , a2 := (a∗ + a)− ∈ A+ and hereditary C *-subalgebras Dk :=

akAak (k ∈ {1, 2}) satisfy D1D2 = {0}, ψ(B1 ⊕ {0}) ⊆ πJ(D1) ∼= D1/(J ∩ D1)

and ψ({0} ⊕ B2) ⊆ πJ(D2) ∼= D2/(J ∩D2). Then ψ1(b1) := ψ(b1 ⊕ 0) (b1 ∈ B1)

and ψ2(b1) := ψ(0⊕ b2) (b2 ∈ B2) are C *-morphisms into D1/(J ∩D1) respectively

D2/(J ∩D2). By projectivity of B1 and B2 there are C *-morphisms φk : Bk → Dk

with πJ(φk(bk)) = ψk(bk) for bk ∈ Bk (k ∈ {1, 2}). The map φ(b1 ⊕ b2) :=

φ1(b1) + φ2(b2) (bk ∈ Bk) is a linear lift of ψ. It is a C *-morphism, because

D1D2 = {0}.

This shows that finite orthogonal direct sums of σ-unital projective C *-algebras

are projective.

Let k1, k2, . . . , kn ∈ N and F := Mk1 ⊕ · · · ⊕Mkn . It is easy to see that

CF := C0((0, 1], F ) ∼= C0((0, 1],Mk1
)⊕ · · · ⊕ C0((0, 1],Mkn) .

The additive invariance of the class of σ-unital projective C *-algebras shows that it

is enough to prove the projectivity of CF only in the cases F := C and of F := Mn

for n > 1.

If F := C then CF ∼= C0(0, 1] and has the generator f0 defined by f0(t) = t

(t ∈ [0, 1]). ψ : CF → A/J is determined by the positive contraction b := ψ(f0).

Let d ∈ A with πJ(d) = b1/2. Then πJ(f(a0)) = ψ(f) for f ∈ C0(0, 1] and

a0 := d∗d− (d∗d− 1)+. Thus φ : f 7→ f(a0) is a lift of ψ.

Since projectivity is invariant under direct sums we get that CF is projective

for F = Cn = C⊕ · · · ⊕ C.
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If F := Mn with n > 1 then the C *-algebra CF = CMn := C0((0, 1],Mn) is

isomorphic to the universal C *-algebra An := C∗(x2, . . . , xn; Rn) with conditions

and relations Rn given by ‖x2‖ ≤ 1, x∗jxk = δjkx
∗
2x2 and xjxk = 0 for j, k ∈

{2, . . . , n}.

Indeed (by using arguments in the proof [538, prop. 2.7]): It is easy to see that

the elements γn(xk) := f0⊗pk,1 ∈ C0((0, 1],Mn) – with the canonical matrix units

pj,k ∈Mn – generate C0(0, 1]⊗Mn = C0((0, 1],Mn) and satisfy the norm-condition

and relations Rn and therefore define a *-epimorphism onto C0((0, 1],Mn). More-

over, it is not difficult to check that the positive element

Zn := (x1,2x
∗
1,2 + x∗1,2x1,2 + . . .+ x∗1,nx1,n)1/2

is a contraction in the center of An and γn(Zn) = f0⊗1n. Since it is in the center, it

must be strictly positive in An (by the defining relations). Thus, every irreducible

*-representation ρ of An maps Zn to a scalar ρ(zn) = α1 for some α ∈ (0, 1] and

that ρ(An) ∼= Mn with ρ(x1,k) = αp1,k .

Use now that γn(Zn) = f0 ⊗ 1n to get that the natural C *-morphism γn from

An onto C0((0, 1],Mn) is an isomorphism, because any irreducible representation

of A is the compositions of γn with the irreducible representations of C0((0, 1],Mn)

and those exhaust all the corresponding α ∈ (0, 1] .

The relations Rn (or its realization in CMn = C0(0, 1]⊗Mn) show the existence

of canonical C *-morphisms from An into An+1 that agrees with the natural C *-

morphisms from CMn into CMn+1 given by the inclusion Mn ⊆ Mn+1 (as left

upper corner). Moreover the natural inclusion CF ⊂ C0((0, 1],Mn) for F := Cn

defines an isomorphism from CF onto

C∗((x2x
∗
2)1/2, (x∗2x2)1/2, . . . , (x∗nxn)1/2) ⊆ An ,

in a way such that f0 ⊗ 1n ∈ CF corresponds to Zn, f0 ⊗ p11 to (x∗2x2)1/2 and the

f0 ⊗ pkk map to (xk x
∗
k)1/2 for k = 2, . . . , n.

Let ψ : An → A/J a C *-morphism. The projectivity of CF ∼= C0((0, 1],Cn)

for F := Cn shows that there is a C *-morphism φ1 : `n(C0(0, 1]) = CCn → A

that is always given by mutually orthogonal positive contractions a1, . . . , an ∈ A+

with φ1((x∗2x2)1/2) = a1 and φ1((xkx
∗
k)1/2) = ak for k = 2, . . . , n, and satisfies the

equations

πJ(a1)2 = ψ(x∗2x2) and πJ(ak)2 = ψ(xkx
∗
k) for k ≥ 2 . (8.1)

Let a1, . . . , an ∈ A mutually orthogonal positive contractions, and suppose that

there are given C *-morphism ψ : An → A/J with ψ(x∗2x2) ≤ πJ(a2
1) and ψ(xk x

∗
k) ≤

πJ(a2
k) for k ≥ 2. We show that there exists a C *-morphism φ : An → A with

πJ ◦ φ = ψ .

In addition we show that we can find the φ with φ(x∗2x2) ≤ a2
1 and φ(xk x

∗
k) ≤ a2

k

for k ≥ 2.

We proceed by induction over k ≥ 2 and produce from above defined

φ1 : CCn → A, given by mutually orthogonal positive contractions a1, . . . , an ∈ A+,



1106 A. CUNTZ EQUIVALENCE, MULTIPLICATIVE DOMAINS, ?RELATED TOPICS?

inductively C *-morphisms φk : Ak → A with φk(x2)∗φk(x2) ≤ a2
1, φk(xj)φk(xj)

∗ ≤
a2
j and πJ(φk(xj)) = ψ(xj) for j = 2, . . . , k.

If k = 2 then this follows immediately from Lemma A.8.2 with a := a2
1, b := a2

2,

d := ψ(x2).

Let 2 < k < n and suppose that we have a C *-morphism φk : Ak → A with

the above listed properties. We apply Lemma A.8.2 to a := φk(x2)∗φk(x2) ≤ a2
1,

b := a2
k+1 and d := ψ(xk+1), and obtain g ∈ A with g∗g ≤ φk(x2)∗φk(x2), gg∗ ≤

a2
k+1 and πJ(g) = ψ(xk+1).

We use φk and g to define a C *-morphism φk+1 : Ak+1 → A with πJ ◦ φk+1 =

ψ|Ak+1, φk+1(x∗2x2) ≤ a2
1 and φk+1(xjx

∗
j ) ≤ a2

j .

Recall that φk(xi)
∗φk(xj) = δijφk(x2)∗φk(x2) for i, j ∈ {2, . . . , k} and let S :=

(φk(x2)∗φk(x2))1/2. Then φk(xj) := vjS is the polar decomposition of φk(xj)

with the partial isometries vj ∈ A∗∗ given by vj = limn φk(xj)(n
−11 + S)−1. It

follows that v∗j vi = δijv
∗
2v2. Since g∗g ≤ S2, we can define yj := vj(g

∗g)1/2 =

limn φk(xj)(n
−11 + S)−1(g∗g)1/2 (j = 2, . . . , k) and yk+1 := g.

The yj satisfy yjy
∗
j ≤ φk(xj)φk(xj)

∗ ≤ a2
j , y

∗
i yj = δijy

∗
2y2 = δijg

∗g. for

2 ≤ i, j ≤ k, and y∗k+1yj = g∗yj = 0 for j ≤ k because gg∗ ≤ a2
k+1 and yjy

∗
j ≤ a2

j .

Moreover, yiyj = 0 because y∗i yi ≤ g∗g ≤ a2
1 and yjy

∗
j ≤ a2

j and a1aj = 0 for

j = 2, . . . , n. ‖y2‖ = ‖g‖ ≤ ‖φk(x2)‖ ≤ 1

Thus, the elements {y2, . . . , yk+1} ⊂ A satisfy the condition and relations Rk+1

of Ak+1. Moreover, they satisfy y∗2y2 ≤ a2
1 and yjy

∗
j ≤ a2

j for j = 2, . . . , k + 1. Let

φk+1 : Ak+1 → A the corresponding C *-morphism.

We check that πJ ◦ φk+1 is the restriction of ψ : An → A/J to Ak+1 :

Recall that πJ(yk+1) = πJ(g) = ψ(xk+1) by construction of g, and

πJ(φk(xj)) = ψ(xj) for 2 ≤ j ≤ k by assumption on φk. In particular

πJ((g∗g)1/2) = (ψ(x2)∗ψ(x2))1/2, and πJ(S) = (ψ(x2)∗ψ(x2))1/2 by defini-

tion of S := (φk(x2)∗φk(x2))1/2. Let T := (ψ(x2)∗ψ(x2))1/2. It satisfies

ψ(xj)
∗ψ(xj) = T 2. Then the definition of the yj for j = 2, . . . k show the norm

convergence

πJ(yj) = lim
n
ψ(xj)(n

−11 + T )−1T = ψ(xj) .

It says that φk+1, – defined by φk+1(xj) := yj –, satisfies πJ ◦ φk+1 = ψ|Ak+1 . �

Corollary A.8.5. For each n ∈ N the universal C*-algebra A generated by n

contractions t1, . . . , tn with mutually orthogonal ranges is projective.

Proof. Notice that A is given by universal C *-algebra with relations

A := C∗(t1, . . . , tn ; ‖tk‖ ≤ 1, t∗kt` = 0 for k 6= ` , k, ` ∈ {1, . . . , n} )

with contractions tk. The relations imply the additional relation t1t
∗
1 + · · ·+ tnt

∗
n ≤

1 . Let B a C *-algebra, J ⊆ B a closed ideal of B and ρ : A→ B/J a C *-morphism.

We let sk := ρ(tk) . All we need is to find contractions c1, . . . , cn ∈ B with c∗jck = 0
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for j 6= k and πJ(ck) = sk := ρ(tk), because then there is a C *-morphism ψ : A→ B

with ψ(tk) = ck, which implies πJ ◦ ψ = ρ.

The C *-subalgebra of A generated by (tkt
∗
k)1/4 (k = 1, . . . , n) is the image of

a unique C *-morphism γ : CF → A for F := Cn and

CF ∼= C∗(y1, . . . , yn ; 0 ≤ yk ≤ 1, yky` = 0, for k 6= ` )

with γ(yk) = (tkt
∗
k)1/4. By the projectivity of CF there exists a C *-morphism λ

from CF into B that is a lift of ρ ◦ γ : CF → B/J . The C *-morphism λ satisfies

the equations

πJ(λ(yk)) = ρ((tkt
∗
k)1/4) = (sks

∗
k)1/4 .

The polar decomposition sk = vk(s∗ksk)1/2 = (sks
∗
k)1/2vk of sk in (B/J)∗∗ has

the property that (sks
∗
k)1/4vk = vk(s∗ksk)1/4 ∈ B/J . Let xk ∈ B elements with

πJ(xk) = (sks
∗
k)1/4vk. Then the elements bk := λ(yk)xk satisfy b∗`bk = 0 for k 6= `

and πJ(bk) = sk for k = 1, . . . , n. We define elements ck ∈ B by ck := bkf(b∗kbk) =

limp→∞ bkf(1/p+b∗kbk) for the continuous function f(t) := max(1, t)−1/2 on [0,∞).

Use here that the element f(b∗kbk) is a multiplier of C∗(b∗kbk). The elements

c1, . . . , cn are contractions in B with c∗kcj = 0 for j 6= k (i.e., with orthogonal

ranges) and πJ(ck) = ρ(tk). �

Contents of next Remark should be exist on

other places! Find it! And delete one of them.

Delete following Lemma ref.lem:A.old.2.5

Replace citations as follows:

ref.lem:A.old.2.5(i,ii) by Remark A.8.6????,

ref.lem:A.old.2.5(iii) by Remark 2.1.16(ii),

Old ref.lem:A.1.25 =? ref.lem:A.old.2.5(iv) by ?????

ref.lem:A.old.2.5(v) by ?????

ref.lem:A.old.2.5(iv) = Old A.1.25?? by ??????

Begin: Old Lemma ref.lem:A.old.2.5

Remark A.8.6. The projectivity of CF can be equivalent expressed by the

following formulation:

If F is a C *-algebra of finite linear dimension then every extension

0→ J → E → C0((0, 1], F )→ 0

of C0((0, 1], F ) by a C *-algebra J is a split extension.

9. Projectivity and c.p.c. order zero maps

Elements a, b ∈ A of a C *-algebra A are orthogonal if (aa∗+a∗a)(bb∗+b∗b) = 0.

We denote this by a⊥b. It is equivalent to the 4 equations ab = 0, ba = 0, a∗b = 0

and ab∗ = 0 . And it says equivalently that h1,jh2,k = 0 for j, k ∈ {1, 2}, where

h1,1, h1,2, h2,1, h2,2 ∈ A are the selfadjoint elements with a = h1,1 + ih1,2 and
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b = h2,1 + ih2,2. In particular, for self-adjoint a, b ∈ A holds a⊥b if and only if

ab = 0.

Definition A.9.1. Let A and B C *-algebras and ψ : A→ B a bounded linear

map that is invariant under passage to adjoint elements, i.e., ψ(a∗) = ψ(a)∗ for all

a ∈ A ( 5 ). We call a map ψ with this property orthogonality preserving if ψ has

the additional property that ψ(h)ψ(k) = 0 for selfadjoint h, k ∈ A with hk = 0.

( 6 )

If ψ is moreover a completely positive contraction, then ψ is called an “order-

zero map” by W. Winter and J. Zacharias in [836, def. 1.3].

(We call it here sometimes “order-zero morphism”.)

If ϕ : C0((0, 1], A)→ B is a C *-algebra homomorphism then ψϕ(a) := ϕ(f0⊗a)

is the contractive completely positive order-zero map defined by ϕ.

It turns out that there exists a natural decomposition of ψϕ into element-

wise commuting C *-morphisms λ : C0(0, 1] → M(D) and ρ : A → M(D) with

ψϕ(f⊗a) = λ(f)ρ(a) for all f ∈ C0(0, 1] and a ∈ A, where D denotes the hereditary

C *-subalgebra B generated by ψϕ(A) ...

We use in this book only the C *-morphisms ϕ : C0((0, 1], A) → B instead of

order-zero morphisms, because by our

Lemmata ??, ??, ??, and Proposition ??

there is a natural bijective relation between contractive, 2-positive and orthogo-

nality preserving maps ψ : A→ B and the usual C *-morphisms ϕ : C0((0, 1], A)→
B that is given by ψ(a) = ϕ(f0 ⊗ a) for all a ∈ A. It is a bijective relation be-

cause the 2-positive contraction ψ determines ϕ uniquely by the following obvious

equations for all n ∈ N and a ∈ A+ :

ϕ(fn0 ⊗ a) = ϕ(f0 ⊗ a1/n)n = ψ(a1/n)n .

In particular, this implies that all 2-positive and orthogonality preserving maps

ψ : A→ B are automatically completely positive!

The following Proposition A.9.2 should be moved below general observations!

One application of the projectivity of C0((0, 1], F ) for a finite-dimensional C *-

algebra F and the characterization of 2-positive order-zero maps ϕ : F → A/J is

the following proposition.

Proposition A.9.2. Let F a C*-algebra of finite dimension and ϕ : F → A/J

a 2-positive order-zero map, then there exists a completely positive order zero map

ψ : F → A with πJ ◦ ψ = ϕ .

Proof. For each 2-positive order-zero map ϕ from F into the C *-algebra

B := A/J there exists a C *-morphism λ0 : C0((0, 1], F ) → B and f ∈ C0(0, 1]+

5 Such maps ψ are sometimes called “symmetric”.
6 Equivalently, a1⊥a2 implies ψ(a1)⊥ψ(a2), because ψ(a∗) = ψ(a)∗ on A. M. Wolff calls

our “orthogonality preserving” maps “disjointness preserving” in [838].
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with ϕ(b) = λ0(f⊗b) for all b ∈ B. By Proposition A.8.4, the algebra C0((0, 1], F ) is

projective. Thus, there exists a C *-morphism λ1 : C0((0, 1], F )→ A with πJ ◦λ1 =

λ0. Then ψ(b) := λ1(f ⊗ b) defines a completely positive order-zero from F into A

with πJ ◦ ψ = ϕ. �

Here are some citations from the paper [836] of W. Winter and J. Zacharias.

Erase them or replace them by my own version (with citations).

Corollary 3.1 of WILHELM WINTER AND JOACHIM ZACHARIAS in

COMPLETELY POSITIVE MAPS OF ORDER ZERO:

[836, cor. 3.1]

Let A and B be C *-algebras, and ϕ : A → B a c.p.c. order zero map. Then,

the map given by ρϕ(f0 ⊗ a) := ϕ(a) (for a ∈ A) induces a *-homomorphism

ρϕ : C0((0, 1], A)→ B .

Conversely, any *-homomorphism ρ : C0(0, 1]⊗ A → B induces a c.p.c. order

zero map ϕρ : A → B via ϕρ(a) := ρ(f0 ⊗ a). These mutual assignments yield

a canonical bijection between the point-norm closed set of c.p.c. order zero maps

from A to B and the *-homomorphisms from C0(0, 1]⊗A to B.

My Remarks:

The positive case:

If A is abelian and ϕ : A→ B positive, then ϕ is completely positive, because the

second conjugate ϕ∗∗ : A∗∗ → B∗∗ is again positive. Then ϕ and ϕ∗∗ are moreover

a completely positive map because each finite subset of A∗∗ can be approximated

(in norm) by the linear span of finitely many projections in A∗∗.

Thus, then there are unique (!) C *-morphisms ρC : C(0, 1] ⊗ C → B with

ρC(f0 ⊗ c) = ϕ(c) for each commutative C ⊆ A ...

Check if it is on intersections of different abelian C ⊆ A the same. (Seems to

be ...)

But the PROBLEM (!) is, that general elements of (C(0, 1] ⊗ A)+ are not

contained in some C(0, 1]⊗ C ... Thus, this old idea of proof don’t work.

The following theorem reformulates the theorem [838, thm.2.3] of M. Wolff on

Jordan algebras for the more special case of C *-algebras, where he calls the above

defined “symmetric” and “orthogonality preserving” maps “disjointness preserv-

ing”.

Theorem A.9.3. Let A and B be C*-algebras, with unital A, and let ϕ : A→ B

be a disjointness preserving map. Define D := {ϕ(1A)}′ ∩B ⊆ B and

C := ϕ(1A) ·D .

Then, ϕ(A) ⊆ C and there is a Jordan *-homomorphism ψ : A → M(C) from A

into the multiplier algebra of C satisfying ϕ(a) = ϕ(1A)ψ(a) for all a ∈ A .
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The ideas of his proof are related to some study of Lamperti operators by

W. Arendt in [41].

Notice that ϕ(1A) is selfadjoint, but is here not required to be positive. The

proof of Theorem A.9.3 reduces to the case where A = C[0, 1], but is not obvious.

We use the below given Lemma ?? and consider then a slightly more general

case where A is not necessarily unital, ϕ : A→ B is a bounded linear map with the

properties that ϕ is “symmetric” – in the sense that ϕ(a∗) = ϕ(a)∗ for all a ∈ A
– and is “orthogonality preserving” – in the sense that ϕ(a1)ϕ(a2) = 0 if a1a2 = 0

for orthogonal selfadjoint elements a1 = a∗1, a2 = a∗2 (i.e., with a1a2 = 0).

Remark A.9.4. First (see below explained): Banach case for V : Y ∗ →
X∗.

Then V is σ(Y ∗, Y )-σ(X∗, X) continuous

if and only if

there exists bounded linear map U : X → Y such that V = U∗.

But look to the notations!! Chaos there???

The continuity properties for S : A∗∗ → B∗∗ and T : A∗∗ → B∗∗ with respect

to σ(A∗∗, A∗) and σ(B∗∗, B∗) (... play role of V := U∗ : Y ∗ → X∗, e.g. with

suitable S∗ : B∗ → A∗ in the role of U : X → Y with continuity of V with respect

to σ(Y ∗, Y ) and σ(X∗, X).)

Because then, for example, the linear functional given by a ∈ A∗∗ 7→ ϕ(T (a))

where ϕ ∈ B∗ is equal the linear functional V (ϕ) ∈ A∗. This proves the continuity

properties for T = V ∗.

V : Y ∗ → X∗.

Then V is σ(Y ∗, Y )-σ(X∗, X) continuous

if and only if

there exists bounded linear map U : X → Y such that V = U∗.

Conversely, the quoted continuity properties e.g. for T on A∗∗ implies that for

each ϕ ∈ B∗ the map ϕ◦T is in A∗ and has norm ≤ ‖ϕ‖·‖T‖. Thus, V (ϕ) := ϕ◦T
defines a bounded linear map V : B∗ → A∗.

Compare notational chaos with above:

From Banach space theory it follows that a continuous linear map V : X → Y

(here U := V ∗ = T∗) for Banach spaces X and Y (here in our case X := B∗ and

Y := A∗) has an adjoint T := L∗ : Y ∗ = A∗∗ → X∗ = B∗∗ that is σ(A∗∗, A∗) –

σ(B∗∗, B∗) continuous, i.e., is continuous with respect to the topologies σ(A∗∗, A∗)

on A∗∗ and σ(B∗∗, B∗) on B∗∗, because this means that L(ϕ) = ϕ ◦ T is in A∗ for

each ϕ ∈ B∗.

In particular, then ????
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Indeed, we can consider ϕ : B → C as linear operator. Then ϕ∗∗ : B∗∗ → C
is in B∗ ⊆ (B∗∗)∗ and (ϕ ◦ V )∗∗ = ϕ∗∗ ◦ T . But this says that T : A∗∗ → B∗∗ is

continuous with respect to σ(A∗∗, A∗) and σ(B∗∗, B∗).

In the special case of ???????? we have to require in addition also that U(a∗) =

U(a)∗ and V (a∗) = V (a)∗ for all a ∈ A, such that S := U∗∗ and T := V ∗∗ map

selfadjoint elements to selfadjoint elements.

Remark A.9.5. We consider on the class of C *-algebras only “symmetric”

Jordan morphisms T : A→ B for C *-algebras A and B, i.e., linear maps with the

properties that T (a∗) = T (a)∗ for all a ∈ A and T (h2) = T (h)2 for h∗ = h ∈ A.

It follows then that T (a∗b+ b∗a) = T (a)∗T (b) + T (b)∗T (a) for all a, b ∈ A.

The second conjugate T ∗∗ : A∗∗ → B∗∗ of a C *-Jordan morphism is again a

C *-Jordan morphism.

PROOF of this ??:

At first T and T ∗∗ are positive linear contractions on As.a. and (A∗∗)s.a., be-

cause T (a) = T (a1′/2)T (a1/2) ≥ 0 for a ∈ A+ and χ(T (·)) ∈ (A∗)+ for positive

χ ∈ B∗ gives that its natural extensions is the positive functional χ(T ∗∗(·)) ∈ A∗

and is again positive on A∗∗+ and T ∗∗ is σ(A∗∗, A∗) – σ(B∗∗, B∗) continuous.

Let 0 ≥ c ∈ A∗∗ with ‖c‖ = 1. Then there exists a net of self-adjoint contrac-

tions {aλ} ⊆ A+ that converges to c *-ultra-strongly in A∗∗. Then T (a2
λ)→ T (c2)

???????

If ρ ∈ B∗ is a state then ρ(T (aλ)T (aλ))→???

Lemma A.9.6. Let A and B C*-algebras and T : A → B a C*-Jordan mor-

phism. Then the following properties of T are equivalent:

(i) T is 2-positive, i.e., T ⊗ idM2 : A⊗M2 → B ⊗M2 is positive.

(ii) The linear map T2 := T ⊗ idM2 : A ⊗M2 → B ⊗M2 is contractive, i.e.,

has norm ≤ 1.

(iii) T is C*-algebra morphism.

Proof. It is somewhere calculated (further down?).

It holds (T2)∗∗ = T ∗∗2 . Thus one can restrict the considerations to W*-algebras.

�

Remark A.9.7. Let A denote a C *-algebra.

The open support projection pt ∈ A∗∗ of (a− t)+ ∈ A+ is the unit element of

D∗∗t ⊆ A∗∗, where Dt := (a− t)+A(a− t)+ with t ∈ [0, ‖a‖]. The projection pt is

contained in C ∗ (a)∗∗ ⊆ A∗∗ and is the unit element of C ∗ ((a− t)+)∗∗ ⊆ A∗∗.

We can here replace A by C∗(a) and A∗∗ by the second conjugate (C∗(a))∗∗ ⊆
A∗∗ of C∗(a).

We denote the projection p0 ∈ A∗∗ – respectively more generally the p0 for a

positive contraction in any W*-algebra M –, for a ∈ A+ also by pa, respectively
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by pb for b ∈ A+ (or b ∈ M), to distinguish the support projections of different

elements a, b ∈ A+.

If a 6= 0 and t ∈ [0, ‖a‖] then the projection pt is a projection that is the

smallest positive contraction q ∈ A∗∗ with the property

(‖(a− t)+‖−1(a− t)+)1/n ≤ q for all n ∈ N .

This remains true for every W ∗-algebra M (in place of the special case M :=

A∗∗):

The “support projection” pa ∈M for some positive contraction a ∈M+ is the

smallest positive contraction in M with a1/n ≤ pa for all n ∈ N; i.e.:

Let 0 ≤ x ≤ 1 in M with a1/n ≤ x for all n ∈ N then pa ≤ x.

In particular, if N is another W*-algebra and ψ : M → N is an injective unital

C *-algebra mono-morphism from M into N and E : N → ψ(M) ⊆ N is a condi-

tional expectation of N onto a C *-subalgebra ψ(M) of N , then E(pψ(a)) = ψ(pa),

where pψ(a) the support projection in N of ψ(a) ∈ N and pa the support projection

in N of a positive contraction a ∈ N .

This applies to the natural unital conditional expectation from N := M∗∗ onto

M ⊆M∗∗, where ψ denotes here the canonical embedding of the W*-algebra M in

its second conjugate N .

Let 0 ≤ s < t ≤ 1, a ∈ A+ with ‖a‖ ≤ 1 and ps, pt ∈ A∗∗ the open support

projection of (a−s)+ and (a−t)+ then (a−t)+ ≤ (a−s)+, pspt = pt and (a−t)+ =

((a−s)+−(t−s))+ ≤ (t−s)·ps+(a−t)+ . It follows that (a−s)+−(a−t)+ ≤ (t−s)ps .

Moreover, pt((a− s)+ − (a− t)+) = (t− s)pt ≤ (a− s)+ − (a− t)+.

Thus, (t− s)pt ≤ (a− s)+ − (a− t)+ ≤ (t− s)ps for the support projections pt

for (a− t)+ and ps for (a− s)+ and 0 ≤ s ≤ t ≤ 0.

Lemma A.9.8. Let A a C*-algebra.

(i) Every a ∈ A+ is contained in the norm closure of the convex set generated

by the open support projections pt := p(a−t)+
∈ A∗∗ of (a− t)+ ∈ A+ with

t ∈ (0, ‖a‖) .

(ii) All elements of A are contained in the (norm-)closed linear span of the

open support projections pa ∈ A∗∗ of elements a ∈ A+.

(iii) Let T : A → M a bounded linear map into a W*-algebra M , and let

T̃ : A∗∗ → M denote its unique natural extension to a σ(A∗∗, A∗)–

σ(M,M∗) continuous linear map (i.e., the normal extension of T ).

The point is:

It uses the natural conditional expectation from M∗∗ onto

M,

where M is considered as C*- subalgebra of M∗∗.

The linear map T is a Jordan morphism (cf. Remark A.9.5) if and

only if, T̃ (pa) is an orthogonal projection in M for the open support pro-

jections pa ∈ A∗∗ of each elements a ∈ A+.
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Proof. ( i): Let a ∈ A+ with ‖a‖ = 1 and pn,k ∈ C ∗ (a)∗∗ ⊆ A∗∗ the open

support projection of ak := (a− (k − 1)/n)+ ∈ C ∗ (a) ⊆ A for k ∈ {1, . . . , n+ 1}.
Then a` ≤ ak for k ≤ `, and

ak+`(ak − ak+`) = ‖ak − ak+`‖ak+` .

Then a1 = a, a2 = (a− 1/n)+, . . . , ak = (a− (k− 1)/n)+, . . . , an = (a− (n−
1)/n)+, an+1 = 0. Thus, a =

∑n
k=1(ak − ak+1) . Notice that ak ≥ a` for ` > k.

We denote hereby pn,k the open support projection of ak, k = 1, . . . , n + 1.

Then pn,n+1 = 0. Thus

1/npn,k+1 ≤ ak − ak+1 ≤ 1/npn,k .

It follows that

(

n∑
k=1

pn,k+1) ≤ n · a ≤ (

n∑
k=1

pn,k) .

Since pn,n+1 = 0, the difference of the left and right estimates is = pn,1. It

shows that a ∈ A+ can be approximated arbitrarily well by scalar multiples of sums

of open projections in A∗∗.

(ii): Each element a ∈ A is the (complex) linear combination of at most 4

elements in A+.

(iii): If T : A → M is a C *-Jordan morphism and a ∈ A+ is a positive

contraction then T (a) = T (a1/n)n for all n ∈ N. Thus, T (a)1/n = T (a1/n) for

n ∈ N.

Is T ∗∗ : A∗∗ →M∗∗ again C *-Jordan???

Is the “natural” map M∗∗ →M multiplicative?

The increasing sequence T (a)1/n converges in M to the support projection of

T (a) with respect to the τ(M,M∗)-topology, that is stronger than the σ(M,M∗)-

topology.

The increasing sequence of elements a1/n converge τ(A∗∗, A∗)-strongly in A∗∗

to the support projection pa ∈ A∗∗ of a. Here paA
∗∗pa is the τ(A∗∗, A∗) closure of

the hereditary C *-subalgebra aAa

of ??????

In general the map T̃ : A∗∗ → M is continuous with respect to the topologies

σ(A∗∗, A∗) and σ(M,M∗), because T̃ = PM ◦ T ∗∗ where T ∗∗ : A∗∗ → M∗∗ is the

weakly continuous bi-dual map from T and PM : M∗∗ →M

together τ -continuous ???

normal (!!! ???) W∗-algebra epimorphism from M∗∗ onto M .

Is this correct ????

T : A→M (positive because Jordan)

T ∗∗ : A∗∗ →M∗∗ σ-continuous.
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(One could also use an orthogonality argument,

Or reduction to abelian case?

Take maximal commutative C *-subalgebra C of A that contains the given

element a ∈ A+.

Then C∗∗ ⊆ A∗∗ T |C is a C *-algebra morphism from C into M .

Second conjugate T ∗∗|C = (T |C)∗∗ : C∗∗ → M∗∗ The algebra T (C) ⊆ M is

commutative.

in particular pa ∈ A∗∗ → T̃ (pa) ∈M

�

Lemma A.9.9. Let A and B denote C*-algebras and suppose that S, T : A∗∗ →
B∗∗ are σ(A∗∗, A∗)-σ(B∗∗, B∗) continuous “symmetric” linear maps in the sense

that S(a∗) = S(a)∗ and T (a∗) = T (a)∗ for all a ∈ A .

(i) Let a, b ∈ A+ positive contractions with a ∈ D := bAb and p, q ∈ A∗∗ the

open projection p = pq ≤ q corresponding to the hereditary C*-subalgebras

D and E := aAa ⊆ D of A.

Then S(p)T (1−q) ∈ A∗∗ is contained in the σ(A∗∗, A∗)-closure of the

set of elements S(e)T (1 − d) with positive contractions e ∈ E+, d ∈ D+

with de = e.

Moreover, each element S(e)T (1 − d) with positive contractions d ∈
D+ and e ∈ E+ and de = e is in the σ(A∗∗, A∗)-closure of the set of

elements S(e)T (g) with positive contractions g ∈ (1− d)A(1− d).

(ii) In particular, S(p)T (1− q) = 0 if p, q ∈ A∗∗ are open projections with the

properties that qp = q and for each contractions a, b, c ∈ A+ with cb = b

and ca = a. holds S(a)T (c−b) = 0 for all positive contractions a, b, c ∈ A+

with the properties that a ≤ p and b ≤ q and cb = b a(c− b) = 0.

????????????????

S((a − 1/n)+)T (1 − fm(b)) = 0 for all a ∈ A+ with 0 ≤ a ≤ p and

n,m ∈ N with (a− 1/n)+(1− fm(a)) = 0.

Remarks A.9.10. Notice that Part (iii????) of Lemma A.9.9 contains the case

a = b and D = E.

The continuity properties of S and T are equivalent to the existence bounded

linear maps U, V : A→ B with S := U∗∗ and T := V ∗∗. Because in general Banach

space theory one has that a continuos map V : A→ B from

In our case U(a∗) = U(a)∗ and V (a∗) = V (a)∗ for all a ∈ A, such that S := U∗∗

and T := V ∗∗.

Proofs not ready, because of the partial continuity of ??? !!!

Ad(iii):
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TEXT: Let a, b ∈ A+ positive contractions with a ∈ D := bAb and p, q ∈ A∗∗

the open projection p = pq ≤ q corresponding to the hereditary C *-subalgebras D

and E := aAa ⊆ D of A.

Then S(p)T (1 − q) ∈ A∗∗ is contained in the σ(A∗∗, A∗)-closure of the set of

elements S(e)T (1− d) with positive contractions e ∈ E+, d ∈ D+ with de = e.

We use the piece-wise linear continuous functions ϕn(t) on [0, 1] given by

ϕn(t) := 2n+1((t − 2−(n+1))+ − (t − 2−n)+) for n = 1, 2, . . .. This continuous

functions are non-negative, ϕn(0) = 0, ‖ϕn‖ = 1, ϕn+1ϕn = ϕn and ϕn converges

on each interval [s, 1] ⊆ (0, 1] uniformly to 1. For every n ∈ N and protection

P ∗ = P = P 2 holds ϕn(P ) = P .

Let en := ϕn(a) ∈ E+, where a is a strictly positive contraction in E. Then

the en are positive contractions that satisfy emen = em for m < n and the sequence

e1, e2, . . . converges to the support projection p ∈ A∗∗ of a in the τ(A∗∗, A∗) topol-

ogy, that is stronger than the σ(A∗∗, A∗) topology on A∗∗. By our assumption that

S : A∗∗ → A∗∗ is σ(A∗∗, A∗)-continuous shows that the sequence S(e1), S(e2), . . .

converges to the element S(p) ∈ A∗∗ in the σ(A∗∗, A∗) topology.

Let p ≤ q ∈ A∗∗ denote the open support projection E = aAa ⊆ D = bAb.

Since en ≤ p ≤ q, we get that en + (1− en)1/2q(1− en)1/2 = q for each n ∈ N, i.e.,

q − en = (1− en)1/2q(1− en)1/2.

Let fn := ϕn(a) ∈ D+. This positive contractions satisfy fmfn = fm for

m < n, and the increasing sequence f1, f2, . . . converges to the support p of a

Need to find contractions dn ∈ D+ (for D = bAb) with dnen = en and dn → q

in A∗∗.

dn−1 = en + (1− en)1/2fn(1− en)1/2

for suitable contractions fn ∈ D+ with fn → q in A∗∗ and f
1/2
n e

1/2
n − e1/2

n fn

and en − fnen small ...

Since en ≤ p ≤ q, we get en + (1− en)1/2q(1− en)1/2 = q ????

We call a projection p ∈ A∗∗ open in the following Lemma A.9.11 if pA∗∗p is

the σ(A∗∗, A∗)-closure of a hereditary C *-subalgebra D of A. We say that p is a

σ-unital open projection if the corresponding D ⊆ A is σ-unital, i.e., if D = dAd for

some d ∈ A+. The following Lemma A.9.11 considers special cases of orthogonally

preserving pairs of symmetric maps V,W : A→ B.

(It seem that the general theory of such pairs, without assuming the additional

equivalent conditions (i)–(ix) in Lemma A.9.11 has to do with approximately inner

gradings on C *-algebras and questions of different nature.)

Lemma A.9.11. Let A and B C*-algebras and let V : A → B and W : A → B

linear maps that are “symmetric” in the sense that V (a∗) = V (a)∗ and W (b∗) =

V (b∗). and are relatively orthogonality preversing that satisfy

(1) T := V ∗∗(1A∗∗) = W ∗∗(1A∗∗) ∈ B∗∗ and
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(2) V (a1)W (a2) = 0 for all a1, a2 ∈ A+ with a1a2 = 0.

Then the following properties (i)–(ix) of V and W , respectively of its bi-adjoints

V ∗∗ and W ∗∗, are equivalent:

(i) TV (a) = V (a)T for all a ∈ A.

(ii) TW (a) = W (a)T for all a ∈ A.

(iii) TV ∗∗(p) = V ∗∗(p)T for all open projections p ∈ A∗∗.
(iv) TW ∗∗(p) = W ∗∗(p)T for all open projections p ∈ A∗∗.
(v) TV ∗∗(p) = V ∗∗(p)T for all σ-unital open projections p ∈ A∗∗.

(vi) TW ∗∗(p) = W ∗∗(p)T for all σ-unital open projections p ∈ A∗∗.
(vii) V = W .

(viii) V (a)V (b) = 0 for all a, b ∈ A+ with ab = 0.

(ix) W (a)W (b) = 0 for all a, b ∈ A+ with ab = 0.

Proof. �

Proposition A.9.12. If V : A→ B is symmetric and orthogonality preserving

and has norm ‖V ‖ ≤ 1, then there are two uniquely defined symmetric Jordan

morphisms ψk : C0((0, 1], A)→ B (k ∈ {1, 2} with the following properties:

(i) ψ1(C0((0, 1], A)) · ψ2(C0((0, 1], A)) = {0} and

(ii) V (a) = ψ1(f0 ⊗ a)− ψ2(f0 ⊗ a) for all a ∈ A+.

Proof. Next proof wrong here?

By Lemma A.9.9 we get with W = V that W ∗∗(1 − p)V ∗∗(p) = 0 = V ∗∗(1 −
p)W ∗∗(p)

Thus TW ∗∗(p) = V ∗∗(p)W ∗∗(p), V ∗∗(p)T = V ∗∗(p)W ∗∗(p) and TV ∗∗(p) =

W ∗∗(p)V ∗∗(p). Thus TW ∗∗(p) = V ∗∗(p)T . It follow that TW (a) = V (a)T for all

a ∈ A.

�

Lemma A.9.13. Let ϕ : A → B an orthogonality preserving map in sense of

Definition A.9.1. Then the restriction ψ : C∗(A, 1A∗∗) → B∗∗ of ϕ∗∗ : A∗∗ → B∗∗

is again an orthogonality preserving map from C∗(A, 1A∗∗) = A + C · 1A∗∗ into

B∗∗.

Proof. We write here 1 for the unit element 1A∗∗ of A∗∗. If A is unital then

nothing is to prove. If A is not unital then A + C · 1 = C∗(A, 1) ⊆ A∗∗ is natural

isomorphic to the standard unification of A.

It implies: If x∗ = x and y∗ = y elements of A and α, β ∈ R such that

(x+ α1)(y + β1) = 0, then necessarily αβ = 0, and xy = yx.

If α = β = 0 then xy = 0 and ψ(x)ψ(y) = ϕ∗∗(x)ϕ∗∗(y) = ϕ(x)ϕ(y) = 0,

because ϕ preserves orthogonality.
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By symmetry of the cases α 6= 0 and β 6= 0 for αβ = 0, it suffices to consider

the case α = 0 :

Let z := −β−1y. It gives zx = x = xz, i.e., (1− z)x = 0.

If ϕ∗∗(1 − z)ϕ∗∗(x) = 0, then ϕ(x)(ϕ(y) + βϕ∗∗(1)) = 0, because βϕ∗∗(1 +

β−1y) = ϕ(y) + βϕ∗∗(1) is equivalent to ϕ∗∗(x)ϕ∗∗(1 + β−1y) = 0.

Suppose that zx = x, x∗ = x and z∗ = z. Then also xz = x, x+ = zx+ and

x− = zx−, because for example x(x
1/n
+ )→ x+, and, in the same way, x− = zx−.

A similar argument shows that z+x+ − z−x+ = zx+ = x+ implies z−x+ = 0

and z+x+ = x+. If we take here x− in place of x+, then we get z−x− = 0 and

z+x− = x−.

It follows that (z+− 1)+x+ = 0 from (z+− 1)x+ = 0, because (z+− 1) and x+

commute. (In general, if a selfadjoint element is orthogonal to a positive element,

then its positive and negative parts are also orthogonal to the positive element.)

z+x = x, (z+ − (z+ − 1)+)x = x, 0 ≥ v := 2(z+ − (z+ − 1/2)+) ≤ 1 satisfies

v(z+ − (z+ − 1)+) = (z+ − (z+ − 1)+), vx = x and (1− v)1/2x = 0 in A∗∗

...

Positive contraction eτ ∈ A+ suitably chosen ...

Need: v + (1 − v)1/2eτ (1 − v)1/2 ∈ A+ converges in A∗∗ to 1 in σ(A∗∗, A∗)

topology.

Since ψ is linear, ...

�

Corollary A.9.14. Let A and B C*-algebras, ϕ : A → B an orthogonality

preserving

My blue Remarks:

Let ϕ : A→ B a 2-positive and orthogonality preserving map.

Question:

Does there exists a C *-algebra morphism h : C0(0, 1] ⊗ A → B and an element

gϕ ∈ C0(0, 1]+ such that ϕ(a) = h(g ⊗ a) for all a ∈ A.

(Is there a certain uniqueness for such h and g?)

If A is not unital or B is not unital, then take ϕ∗∗ : A∗∗ → B∗∗.

(It is here not clear if ϕ∗∗ is still orthogonality preserving, – except for “open”

projections in A∗∗ corresponding to hereditary C *-subalgebras of A. But ϕ∗∗ maps

selfadjoint elements to selfadjoint elements, respectively is positive, 2-positive or

c.p. if ϕ has this properties.)

One has now to check if the (again 2-positive) restriction ϕ∗∗|C∗(A ∪ {1A∗∗})
of ϕ∗∗ is again orthogonality preserving:

Let a1, a2 ∈ A selfadjoint, α1, α2 ∈ R and suppose that A is not unital. If

x := a1 + α1 · 1A∗∗ and y := a2 + α2 · 1A∗∗ are “orthogonal” in the sense xy = 0,
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then at least one of α1 and α2 is equal to 0. Therefore, up to change of indices

and multiplication by a non-zero real number, this reduces all to the cases where

a1a2 = 0 and a1a2 +a1 = a1(a2 +1) = 0. Then a1a2 = 0 leads to ϕ(a1)ϕ(a2) = 0 by

using the assumption that ϕ preserves orthogonality of selfadjoint elements. The

case a1a2 = −a1 induces that a1 and a2 are commuting selfadjoint elements and

that e∗ = e := −a2 is a local unit for a1.

Reduces to the case of A0 := C∗(a, e) with ae = a, a∗ = a, e∗ = e, ϕ0 : A0 → B

linear, bounded, involution and orthogonality preserving. C := A0 + C · 1 ⊆ A∗∗

(where 1 denotes here the unit element 1A∗∗ of A∗∗0 ).

NEED that ϕ0(a)(ϕ∗∗(1C)) = (ϕ∗∗(1C))ϕ0(a) and

???????????????????????

Let T := ϕ∗∗(1A∗∗) ∈ B∗∗.

Does T commute element-wise with ϕ(A)?

Suppose (!!!) we have found a C *-Jordan morphism ψ : A → {T}′ ∩ B∗∗ with

ϕ(a) = T · ψ(a), and suppose that ϕ is 2-positive on A.

Can we deduce that ψ : A→ B∗∗ is 2-positive if ϕ is 2-positive?

It would be enough to show that

ψδ(a) := Tδϕ(a)Tδ

for Tδ := (T + δ1B∗∗)
−1/2 is 2-positive for all δ ∈ (0, ‖T‖/2).

(THIS ARE THE KEY QUESTION!)

Since ψ(A) commutes ???????

It should reduce to the study of the images of the support projection P ∈ A∗∗

of positive elements in the Pedersen ideals of A:

They should have the important property ϕ∗∗(1−P )ϕ∗∗(P ) = 0. It is then the

key for all other study!

(Seems to be OK at least in case of positive maps ϕ, because if a, b ∈ Ped(A)+

are contractions with ab = a and b ≤ P , then (1−b)a = 0 and a ≤ P , (1−P ) ≤ 1−b.
... )

To obtains that ϕ∗∗(1− b)ϕ∗∗(a) = 0 we have to check if (1− b) the σ(A∗∗, A∗)

- limit of elements (1− b)1/2c(1− b)1/2, where c ∈ Ped(A)+ with ‖c‖ ≤ 1.

All this should work also in case of self-adjoint non-positive case of ϕ : A→ B.

Precise estimates in self-adjoint case?

This could give that ϕ∗∗(P ) = T · Φ(P ) with Φ(P )2 = Φ(P ) = Φ(P )∗, where

T := ϕ∗∗(1A∗∗) ∈ B∗∗ is a *-preserving map (self-adjoint maps).

It seems that the Φ can be integrated to to a C *-Jordan morphism from A to

B∗∗.

It is not clear if Φ(A)B ⊆ B ...(likely not!)
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Is this new bounded linear map again orthogonality preserving on self-adjoint

elements?

(Seems to be by the above outlined decomposition for the images of the “com-

pact” projections!)

General observations:

A C *-Jordan morphism ψ : A → C is a linear map with ψ(a∗) = ψ(a)∗ for all

a ∈ A, and satisfies ψ(ib) = iψ(b) and ψ(b2) = ψ(b)2 for all b ∈ A+. In particular,

ψ is a positive linear map: ψ(A+) ⊆ C+ .

Then ψ(b2) = ψ(b)2 for all b∗ = b ∈ As.a.. As.a. is a real Jordan algebra

with [a, b] := (1/2) · (ab+ ba) for a, b ∈ As.a., and ψ|As.a. is a real Jordan algebra

morphism from As.a. into Cs.a., because ab + ba = (a + b)2 − (a2 + b2). Clearly ψ

is determined by its restriction to As.a. = A+ −A+.

Lemma A.9.15. If ψ : A → C is a C*-Jordan morphism then properties (i),

(ii) and (iii) are equivalent:

(i) ψ is a C*-morphism.

(ii) ψ(a∗a) = ψ(a)∗ψ(a) for all a ∈ A.

(iii) ψ(a∗a) ≥ ψ(a)∗ψ(a) for all a ∈ A.

Proof. The implications (i)⇒(ii)⇒(iii) are obvious.

(iii)⇒(ii): Always ψ(a∗) = ψ(a)∗ for C *-Jordan morphisms ψ and

ψ(a)∗ψ(a) + ψ(a)ψ(a)∗ = ψ(a∗a+ aa∗) = ψ(a∗a) + ψ(aa∗)

Suppose ψ(a∗a) ≥ ψ(a)∗ψ(a) and ψ(aa∗) ≥ ψ(a)ψ(a)∗, then this all together im-

plies that the sum of the two positive elements ψ(a∗a) − ψ(a)∗ψ(a) and ψ(aa∗) −
ψ(a)ψ(a)∗ is zero. Thus, ψ(a∗a) = ψ(a)∗ψ(a) and ψ(aa∗) = ψ(a)ψ(a)∗.

(ii) ⇒ (i): For C *-Jordan morphisms ψ holds in general

ψ(h)ψ(k) + ψ(k)ψ(h) = ψ(hk + kh) = ψ(hk) + ψ(kh)

by using the equations ψ((h+ k)2) = (ψ(h) + ψ(k))2, ψ(h2) = ψ(h)2 and ψ(k2) =

ψ(k)2. It delivers the general formula:

ψ(h)ψ(k) + ψ(k)ψ(h) = ψ(hk) + ψ(kh).

Now use ψ(a∗a) = ψ(h)2 + ψ(k)2 + i(ψ(hk − kh)) and

ψ(a)∗ψ(a) = ψ(h)2 + ψ(k)2 + i(ψ(h)ψ(k)− ψ(k)ψ(h))

The property ψ(a∗a) = ψ(a)∗ψ(a) and that ψ(hk−kh) = ψ(hk)−ψ(kh) imply

the equation

ψ(h)ψ(k)− ψ(k)ψ(h) = ψ(hk)− ψ(kh) .

Add this to the general formula for C *-Jordan morphisms (obtained by pentagon

rule): ψ(h)ψ(k) + ψ(k)ψ(h) = ψ(hk) + ψ(kh) and get 2ψ(h)ψ(k) = 2ψ(hk).

It says that ψ is multiplicative. Thus ψ : A→ C is a C *-algebras morphism. �

Remark: Let T : A→ C a C-linear map with ‖T‖ ≤ 1, T ∗∗(1A∗∗) = 1C∗∗ then

T is positive.
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Lemma A.9.16. Let A and C C*-algebras, T : A → C a positive linear map

(i.e., T is linear and T (A+) ⊆ C+).

Then ‖T‖ = ‖T ∗∗(1A∗∗)‖ and T (a)2 ≤ ‖T‖ · T (a2) for all a∗ = a ∈ A.

If, moreover, T is 2-positive, in the sense that

T2 := T ⊗ IdM2 : A⊗M2 → C ⊗M2

is positive, then, for each a ∈ A,

T (a)∗T (a) ≤ ‖T‖ · T (a∗a) .

If T is positive and unital and T ⊗ idM2
has norm ≤ 1 on A⊗M2, then T ⊗ idM2

is positive.

Is generally a unital hermitian contraction T automatically positive:

Restrict T to C∗(1, a) for a ∈ A+, ‖a‖ ≤ 1. Take pure state ρ on C with

ρ(T (a)) = min{t ∈ Spec(T (a))}. Then ρ · T is a unital linear functional on A with

norm ≤ 1.

(Is equivalent for positive T ∗∗, to decompose T ∗∗ as T ∗∗ = GS(·)G with

G := T ∗∗(1A∗∗)
1/2 for some suitable positive S : A∗∗ → C∗∗ with S(1) = sup-

port projection of G. Then require (!) that S2 := S ⊗ idM2
has norm = 1. This

requirement is equivalent to the 2-positivity of T .)

(The 2-positivity for positive T could be also equivalent to

Z · diag(T (a1,2), T (a2,1)) ≤ diag(T (a11), T (a22)) .

Here Z ∈M2(M(A)) has entries [1− δj,k], and [aj,k] ∈M2(A)+.

This should be equivalent to ‖(1/n+ T (a1,1))−1T (a1,2)(1/n+ T (a2,2))−1‖ ≤ 1

and ‖(1/n+ T (a2,2))−1T (a2,1)(1/n+ T (a1,1))−1‖ ≤ 1 ...

Proof. Consider in place of A the commutative C *-algebra C∗(a). Then

T |C∗(a) is the restriction of the completely positive map S := (T |C∗(a))∗∗ from

C∗(a)∗∗ ⊆ A∗∗ . Let P ≤ 1A∗∗ denote the unit-element of C∗(a)∗∗ . Passage

to linear sums of projections show that S is c.p. with norm ‖S‖ = ‖S(P )‖ ≤
‖T ∗∗(1A∗∗)‖ ≤ ‖T‖ and therefore T (a)2 = S(a)2 ≤ ‖S(P )‖S(a2) ≤ ‖T‖T (a2) .

The map T2 := T ⊗ idM2 has norm ‖T2‖ = ‖T ⊗ 12‖ = ‖T‖ if T2 is again

positive (by the additional assumption). We can build for a ∈ A the selfadjoint

element b∗ = b := [ajk] in M2(A) ∼= A⊗M2 with zero diagonal entries b11 = b22 = 0

and off-diagonal entries b12 := a and b21 := a∗ .

Can now apply the general formula for positive maps and self-adjoint elements:

Get T2(b)2 ≤ ‖T‖T2(b2) by positivity of T2 and ‖T2‖ = ‖T‖. The upper left entries

show that T (a∗)T (a) ≤ ‖T‖ · T (a∗a). �

The following Proposition is a straight conclusion of above Lemmata A.9.15

and A.9.16.
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Proposition A.9.17. Let A and C C*-algebras and ψ : A → C a C*-Jordan

morphism.

Then ψ is a C*-algebra morphism, if and only if, ψ is a 2-positive contraction,

i.e., the algebraic tensor product

ψ2 := ψ ⊗ idM2
: A⊗M2 → C ⊗M2

is a positive contraction.

Suppose we have a C *-Jordan morphism (or a C *-morphism) π : A→ B∗∗ and

T ≥ 0 in B∗∗ such that π(A) ∈ {T}′ ∩B∗∗ and T · π(a) = ϕ(a) ∈ B.

The C *-Jordan morphism π is 2-positive (and therefore is a C *-algebra mor-

phism) if ϕ is 2-positive, because π(·) is point-wise limit of (T + 1/n)−1/2ϕ(·)(T +

1/n)−1/2 for n → ∞, and the maps b ∈ B 7→ (T + 1/n)−1/2b(T + 1/n)−1/2 are

completely positive.

(Is important to know, for my version of a complete proof!).

??? Let D ⊆ B the hereditary C *-subalgebra generated by ϕ(A), i.e., D :=

ϕ(A)Bϕ(A), then it is likely that T ∈ M(D) (modulo annihilator of D?) and

π(a) ∈M(D) for all a ∈ A. ?????

10. The “socle” of a C*-algebra.

Recall that the “socle” of Banach algebra A is the (algebraic) ideal of A gen-

erated by all elements a ∈ A with aAa of finite linear dimension. In case of

C *-algebras A the socle(A) it is an algebraic *-ideal generated by all projections

p∗ = p2 = p ∈ A with pAp of finite dimension.

The closure of the socle of a C *-algebra A is the largest closed ideal of A

that is a c0-sum of “elementary” C *-algebras ∼= K(H) with H of finite or infinite

dimensions.

Lemma A.10.1. Let ρ a pure state on A with ρ(socle(A)) = {0} and a ∈ A+

with ‖a‖ = 1 = ρ(a), then, for every δ > 0 and n ∈ N, in the commutant of

(a− (1− δ))+ in (a− (1− δ))+A(a− (1− δ))+ contains pairwise orthogonal positive

elements a1, . . . , an with ‖ai‖ = 1.

Notice that the element a ∈ A+ could be a projection a = p and that then

(a− (1− δ))+ = δp for all δ ∈ [0, 1] .

Proof. If 1 is not isolated in the spectrum of a, then a1, . . . , an exist by

functional calculus applied to (a − (1 − δ/2))+ . If 1 is isolated, then there are

γ > 0, b ∈ A+ and a projection q ∈ A with bq = 0, a = b + q, ‖b‖ = 1 − γ . Then

(a− (1− δ))+A(a− (1− δ))+ = qAq for 0 < δ < γ . Since also ρ(a2) = 1, we get

ρ(b(1 − b)) = ρ(a − a2) = 0, ρ(b) = 0 and ρ(q) = 1 . It follows that q 6∈ socle(A).

Thus any maximal commutative C *-subalgebra C of qAq is infinite-dimensional,

i.e., for every n ∈ N we find non-zero orthogonal a1, . . . , an ∈ C+. �
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Remark A.10.2. Let J := socle(A) and D a hereditary C *-algebra of A, then

D ∩ socle(A) = socle(D) and D ∩ J = socle(D).

Indeed: The elements a ∈ socle(A) are characterized by the property that a∗Aa

is finite-dimensional. It implies D socle(A)D ⊆ D ∩ socle(A) = socle(D). And it

follows socle(D) ⊆ DJD = J ∩D and DJD ⊆ D socle(A)D ⊂ socle(D).

Lemma A.10.3. Let J := socle(A), and ψ : C0((0, 1],Mn)→ A a C*-morphism

with ‖πJ ◦ ψ(f0 ⊗ e1,1)‖ = 1, D the hereditary C*-subalgebra of A generated by

ψ(f0 ⊗ 1), where f0(t) = t for t ∈ [0, 1].

Then there exist an increasing continuous map λ : [0, 1] → [0, 1] with λ(0) = 0

and λ(1) = 1, and a C*-morphism ϕ : C0((0, 1],Mn) → D with ϕ(f ◦ λ) = ψ(f)

for f ∈ C0((0, 1],Mn), such that 1 is not isolated in the spectrum of ϕ(f0 ⊗ 1)

and ψ(f0(1− f0)⊗ 1n) is contained in the hereditary C*-subalgebra E generated by

ϕ((f0(1− f0)⊗ 1n). Moreover ϕ(g − (g ◦ λ)) ∈ E for g ∈ C0((0, 1],Mn).

Proof. We take ϕ := ψ and λ := f0 if 1 is not isolated in Spec(ϕ(f0 ⊗ 1)).

Thus we may suppose that 1 is isolated in Spec(ϕ(f0 ⊗ 1n)).

First we consider the case where n = 1 and where e := ψ(f0) is a strictly

positive element of A:

Then there is µ ∈ (0, 1) such that the hereditary C *-algebra F of A generated by

(e − µ)+ is unital with unit p := 1F = (1 − µ)−1(e − µ)+. Then pe = p = pe and

‖(1 − p)e‖ ≤ µ. Since ‖πJ(e)‖ = 1, it follows that p is not in J . Let C ⊆ F a

maximal commutative C *-subalgebra of F . The compact Hausdorff space X :=

Prim(C) can’t be finite, because p ∈ C \ J and the minimal idempotents of C are

in the socle of F = pAp and, therefore, are in J . Moreover, by the same argument,

if the open subset U of X := Prim(C) corresponding to the ideal C ∩ J of C is

closed in X, then the open and closed set Y := X \ U (that is homeomorphic to

Prim(C/J∩C)) is not finite. Thus, in any of this cases, there is a point x0 ∈ Y that

is not isolated in X. It allows to find a function h : Prim(C)→ [0, (1− µ)/2] with

h(x0) = 0 such that there is a sequence xn ∈ X with 0 < h(xn) and h(xn)→ 0. This

means that 0 ∈ Spec(πJ(g)), and that 0 is not isolated in Spec(g) ⊆ [0, (1− µ)/2]

if g ∈ C+ has Gelfand transform ĝ = h.

Now let a := e(1− p) + (p− g) = e− g ∈ A+. Then µe ≤ a ≤ e , ‖πJ(a)‖ =

‖πJ(p) − πJ(g)‖ = 1, and 1 is not isolated in Spec(a). Moreover, e(1 − e) =

(1− p)(e− e2) ≤ e(1− e) + (p− g)− (p− g)2 = a(1− a) , i.e., e(1− e) is contained

in the hereditary C *-subalgebra that is generated by a(1 − a). We denote by ϕ

the (unique) C *-morphism ϕ : C0(0, 1]→ A with ϕ(f0) = a and define a pice-wise

linear continuous function λ : [0, 1] → [0, 1] by λ(t) := t for t ∈ [0, µ], λ(t) := 1 for

t ∈ [(µ + 1)/2, 1] and λ|[µ, (µ + 1)/2] linear. Then ϕ(λ) = λ(a) = e = ψ(f0), and

ϕ(f ◦ λ) = f ◦ λ(a) = f(e) = ψ(f) for all f ∈ C0(0, 1].

In the general case we let D denote the hereditary C *-subalgebra D of A that

is generated by ψ(f0 ⊗ 1n) ∈ A+, and let A1 ⊆ D denote the hereditary C *-

subalgebra of A that is generated by ψ(f0 ⊗ e1,1). Then ψ1(f) := ψ(f ⊗ e1,1)
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defines a C *-morphism from C0(0, 1] into A. There is a natural isomorphism θ

from A1 ⊗Mn onto D such that θ(ψ1(f)⊗ α) = ψ(f ⊗ α) for all f ∈ C0(0, 1] and

θ(a ⊗ e1,1) = a for all a ∈ A1. Since D ∩ J = socle(D) and A1 ∩ J = socle(A1),

the C *-morphism ψ1 : C0(0, 1] → A1 satisfies the assumptions for the case n = 1 .

With ϕ1 : C0(0, 1] → A1 and λ : [0, 1] → [0, 1] constructed as above, we have that

ϕ := θ ◦ (ϕ1 ⊗ idn) and λ have the required properties. (Notice here that λ(1) = 1

and λ(0) = 0 implies g − (g ◦ λ) ∈ C0(0, 1)⊗Mn for all g ∈ C0((0, 1],Mn).) �

11. C*-version of Cohen factorization

The following theorem is a C *-version of the Cohen factorization theorem,

given by G.K. Pedersen in [621, Thm. 4.1] with a proof on 13 lines. We give a more

detailed proof. Only elementary knowledge on functional calculus and approximate

units of C *-algebras is used.

Theorem A.11.1. Suppose that a C*-algebra A acts on the Banach space X

from left with ‖a · x‖ ≤ ‖a‖‖x‖ and span(A ·X) dense in X.

Then for given ε > 0 and x ∈ X, there exist y ∈ {a · x ; a ∈ A+ } and e ∈ A+

with e · y = x, ‖e‖ ≤ 1 and ‖y − x‖ < ε.

Proof. Since the span of A ·X is dense in X, any approximate unit (uλ) for

A will converge strongly to the operator 1 in L(X). We let Ã := A + C1 be the

unitized C *-algebra acting on X, and by induction (setting a0 := 1 and x0 := x)

we define sequences (an) and (xn) in Ã+ and X, respectively, by

an := an−1 − 2−n(1− un) , xn := a−1
n · x .

It is easy to verify (by induction) that an ≥ 2−n1 (so that ‖2−na−1
n ‖ ≤ 1), and that

dist(an, A) = 2−n .

Moreover

xn − xn−1 = a−1
n (an−1 − an)a−1

n−1 · x = 2−na−1
n (1− un) · xn−1 .

Having chosen the un’s properly we can therefore assume that ‖xn−xn−1‖ < 2−nε

for all n.

Let e := lim an and y := limxn. Since an · xn = x for all n, we have ey = x.

Moreover, ‖x − y‖ < ε by construction. Finally, e ∈ A+ and ‖e‖ ≤ 1. In fact,

e =
∑
n≥1 2−nun. �

The additional condition y ∈ {a · x ; a ∈ A+ } is not mentioned in the orig-

inal formulation of [621, Thm. 4.1], but can be seen from its proof, or can be

shown from the decomposition of x = e ·y and combination with the corresponding

decomposition e′f = e of e with f ∈ C∗(e)+e and a contraction e′ ∈ C∗(e)+.

Of course, Theorem A.11.1 works also for non-degenerate right-actions: Con-

sider the left multiplication a ·` x := a · x by a ∈ Aop, where Aop denotes the

opposite C *-algebra of A, i.e., A with opposite multiplication.
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An easy separation argument and the fact that {e ∈ A+ ; ‖e‖ < 1} is an

approximate unit for A show that the non-degeneracy condition span(A ·X) = X

implies that each x ∈ X is contained in the closure of {a · x ; a ∈ A+, ‖a‖ < 1}.

In particular, A · x = {0} implies x = 0 if X is a non-degenerate Banach

A-module.

It allows to extend the left-multiplication (a, x) ∈ A×X 7→ a · x ∈ X uniquely

to a left multiplication (b, x) ∈ M(A) × X → X that is strictly continuous with

respect to b ∈M(A).

Since one can replace the Banach module X by c0(X) in Theorem A.11.1, this

Theorem implies the following formally stronger result:

For every finite sequence x1, . . . , xn in X and ε > 0 there exists a positive

contraction e ∈ A+ and y1, . . . , yn ∈ X with yk ∈ {a · xk ; a ∈ A+ } such that

e · yk = xk, ‖yk − xk‖ < ε and ‖e‖ ≤ 1.

12. On centralizers in asymptotic coronas

The discrete version of asymptotic coronas for a C *-algebra A is A∞ :=

`∞(A)/c0(A).

Lemma A.12.1. The algebra F∞(C,A) := (C ′ ∩A∞)/Ann(C,A∞) is a unital

C*-algebra if C is any σ-unital C*-subalgebra of A∞.

For a better understanding what is going on, notice here that an arguments in

[448] can be modified to obtain the stronger result for separable C *-subalgebras

C ⊆ A∞ and D := C(A∞)C that there exists a natural isomorphism

(C ′ ∩A∞)/Ann(C,A∞) ∼= C ′ ∩M(D) .

Proof. If e ∈ C+ is a strictly positive contraction then obviously C ⊆ D :=

e ·A∞ · e = C ·A∞ · C ,

D′ ∩A∞ ⊆ C ′ ∩A∞ ⊆ {e}′ ∩A∞

and Ann({e}, A∞) = Ann(D,A∞) = Ann(C,A∞) . (We can suppose that ‖e‖ = 1,

but this is not important.) Then e = (e1, e2, . . .)+c0(A) with contractions en ∈ A+.

Let (g1, g2, . . .) a sequence of positive contractions with gn ∈ C∗(en) and ‖en−
gnen‖ < 1/n.

Then g := (g1, g2, . . .) + c0(A) satisfies 0 ≤ g ≤ 1, g − g2 ∈ Ann({e}, A∞)+

and g ∈ D′ ∩ A∞. The latter because gd = d = dg for all d ∈ D, i.e., the

positive contraction d is a “local” unit for all elements in D ⊇ C. It follows that

g + Ann({e}, A∞) is a projection in (D′ ∩A∞)/Ann(D,A∞).

Thus, g is a positive contraction in D′ ∩ A∞ ⊆ C ′ ∩ A∞ with gc = c = cg for

all c ∈ C and g + Ann(C,A∞) is a projection in (C ′ ∩A∞)+/Ann(C,A∞) .

If h ∈ C ′∩A∞ and c ∈ C then (h−gh)c = 0 = c(h−gh) because ghc = gch =

ch = hc and cgh = ch, i.e., (h− gh) ∈ Ann(C,A∞) .



12. ON CENTRALIZERS IN ASYMPTOTIC CORONAS 1125

We obtain gh, hg ∈ C ′ ∩ A∞ for h ∈ C ′ ∩ A∞ and h − gh, h − hg, g − g2 ∈
Ann(C,A∞) in a similar way. It implies that g + Ann(C,A∞) is the unit element

of (C ′ ∩A∞)/Ann(C,A∞). �

Remark A.12.2. Let X a Polish l.c. space, that is not compact, and let ω ∈
γX := βX \X a point of the corona γX of X.

Recall that Cb(X,B) and Q(X,B) := Cb(X,B)/C0(X,B) are C *-bundles over

βX respectively γX := βX\X, i.e., are algebras of continuous section of continuous

fields of C *-algebras Bω (if ω ∈ γX) and Bx = B (if x ∈ X).

In particular, Cb(X) ∼= C(βX) and Cb(X)/C0(X) ∼= C(γX). Cb(X,B) is

a C(βX)-algebra, and Q(X,B) is a C(γX)-algebra. This explains the notations

Cb(X,B)|Y and Q(X,B)|Z for closed subsets Y ⊆ βX and Z ⊆ γY . We write

also Bω for Q(X,B)|{ω} if ω ∈ γX.

Let A ⊆ Q(X,B) a separable C *-subalgebra. We define

F (X; A,B) := (A′ ∩Q(X,B))/Ann(A,Q(X,B)) .

It is always a unital algebra that contains a copy of C(γX) in its center.

(Indeed : Clearly, A′ ∩Q(X,B) is a C(γX)-algebra. Since Ann(A,Q(X,B)) is

a hereditary C *-subalgebraof Q(X,B), it is a C(γX)-algebra. An approximate unit

of a separable C *-subalgebra C ⊆ Cb(X,B) with C|γX = A allows to construct a

positive contraction f ∈ Cb(X,B)+ with ‖f(x)‖ = 1 for each x ∈ X and ea = a =

ae for all a ∈ A, where e := f |γX.)

Let DA := AQ(X,B)A denote the σ-unital C *-subalgebra of Q(X,B) that is

generated by A, and let

N (DA) := { f ∈ Q(X,B) ; fDA ∪DAf ⊆ DA } .

Then (obviously) A′ ∩ Q(X,B) ⊆ N (DA), and the natural C *-morphism from

A′∩Q(X,B) intoM(DA) has kernel Ann(A,Q(X,B)) = Ann(DA,Q(X,B)) . The

image is contained in A′ ∩ M(DA). It is not hard to show that it is really all

of A′ ∩ M(DA), because Ann(A,Q(X,B)) ⊆ A′ ∩ Q(X,B) and the natural *-

monomorphism

N (DA)/Ann(A,Q(X,B))→M(DA)

is surjective. The latter can be deduced from the facts that A contains a strictly

positive contraction e of DA, and each element of M(DA)+ is the sum T + S + a,

where a ∈ A, and T, S ∈ M(DA)+ are in M(DA) strictly convergent sequences of

mutually orthogonal positive elements of A.

Thus, the natural *-isomorphism from N (DA)/Ann(A,Q(X,B)) → M(DA)

defines a natural C(γX)-algebra isomorphism

F (X; A,B) ∼= A′ ∩M(DA) .

This isomorphism allows to see, that F (X; ·, ·) is a “stable” invariant, i.e., F (X; A⊗
K, B⊗K) is naturally C(γX)-module isomorphic to F (X; A,B). In fact this follows
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easily from the natural C(γX)-module isomorphisms

(DA)⊗K ∼= D(A⊗K)

and

(A⊗K)′ ∩M(DA ⊗K) ∼= A′ ∩M(DA) .

Let πY : Q(X,B) → Q(X,B)|Y = Cb(X,B)|Y denote the natural C(γX)-

modular epimorphism, and denote by D|Y the image πY (D) ⊆ Q(X,B)|Y of a

subset D ⊆ Q(X,B), in particular, f |Y := πY (f).

We generalize F (X; A,B) to closed subsets Y ⊆ γX :

F (X,Y ; A,B) := ((A|Y )′ ∩ (Q(X,B)|Y ))/Ann((A|Y ), (Q(X,B)|Y )) .

Again one can show that F (X,Y ; A,B) is a stable invariant in the above consid-

ered sense. Our old definition of F (X; A,B) becomes F (X, γX; A,B) in the new

terminology.

The map πY maps Ann(A,Q(X,B)) into Ann((A|Y ), (Q(X,B)|Y )), and maps

A′ ∩Q(X,B) into (A|Y )′ ∩ (Q(X,B)|Y ).

It is not clear, for which Y one has (A′ ∩Q(X,B))|Y = (A|Y )′ ∩ (Q(X,B)|Y )

see Questions A.12.3.

We have Ann(A,Q(N, B))|Y 6= Ann((A|Y ), (Q(N, B)|Y )) for B := C and Y =

{ω} ⊆ γN a suitable free ultrafilter and A = C∗(f) for non-zero non-negative

f ∈ Q(C) = `∞(N)/c0(N) with 0 ∈ Spec(f) not isolated and ω ∈ γN a boundary

point of the support of f .

It follows, that πY does not necessarily define an isomorphism from

F (X; A,B)|Y onto F (X,Y ; A,B). In particular, the fibers F (X; A,B)|ω of

the C(γX)-algebra can not be identified with F (X, {ω};A,B).

The situation is less complicate if A ⊆ B. In particular, the algebras

F (X,Y ; A,A) are stable invariants that have fibers F (X, {ω};A,B) with ω ∈ Y .

Questions A.12.3. Let A′ ∩Q(X,B) and F (X;A,B) as in Remark A.12.2.

Here are some questions related to a possible or impossible reduction of prop-

erties of asymptotic invariants F (X;A,B) to properties of its fibers F (ω;A,B):

When (A′ ∩Q(X,B))|Y = (A|Y )′ ∩ (Q(X,B)|Y ) ?

What are the fibers F (X;A,B)ω of F (X;A,B) ?

Is it clear from the definition of F (X;A,B) that F ({ω};A,B) is a quotient of

F (X;A,B)|{ω} ?

Let a, b ∈ Q(X,B) self-adjoint contractions with commuting πω(a) and πω(b).

Does there exist commuting self-adjoint a′, b′ ∈ Q(X,B) with πω(a′) = πω(a) and

πω(b′) = πω(b) ?

Let f, g ∈ Cb(X,B) self-adjoint contractions with a = f + C0(X,B) and b =

g + C0(X,B). When we can find self-adjoint f0 ∈ C0(X,B) and a continuous
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function µ : X → [1,∞) such that, for f1 = f + f0,

h(x) := (2µ(x))−1

∫ µ(x)

−µ(x)

eitf1(x)g(x)e−itf1(x) dt

has the property πω(b′) = πω(b) and ab′ = b′a for b′ := h+ C0(X,B) ?

Is there a “universal” continuous function τ : R+ → R+ with τ(0) = 0, such

that τ is increasing and has the following property?

If a, b ∈ C+ are contractions with ‖ab‖ < ε, then, for every δ > 0, there is a

contraction d ∈ C with d(a− δ)+ = 0 and ‖db− bd‖+ ‖d∗bd− b‖ ≤ τ(ε).

Continuous maps into canonical commutation relations could give counterex-

amples?

Remark A.12.4. Let ω ∈ β(N), f ∈ `∞(N)+ with f(ω) = 0. It is not difficult

to see that there is a sequence S = {n1, n2, . . .} ⊆ N (where nk < nk+1), such that

limk f(nk) = 0, i.e., f |S ∈ c0(S).

(On finds a sequence n1 < n2 < . . . in N with nk ∈ Xk := f−1[0, 1/k] ⊆ N,

because each Xk is an infinite subset of N.)

A subset S with f |S ∈ c0(S) can be found in the ultrafilter defined by ω, i.e.,

with χ(S)(ω) = 1 , if and only if, ω ∈ γN is in the interior of βN ∩ f−1(0).

Remark A.12.5. Suppose that X and Y are non-compact σ-compact locally

compact spaces, that X is finite-dimensional, and that ψ : X → Y is a proper

continuous map.

Then ψ extends naturally to a continuous map βψ : βX → βY with βψ(γX) =

βψ(βX) ∩ γY . Take ω ∈ γX := βX \X and let ω′ := βψ(ω).

Now let B a C *-algebra, and S ⊆ CPin(B) a convex set of approximately inner

completely positive contractions, such that S is closed in point-norm topology.

If, for each (point-norm) continuous map x ∈ X 7→ Vx ∈ S, the map Vω : Bω →
Bω is ideal preserving, then, for each (point-norm) continuous map y ∈ Y 7→Wy ∈
S, the map Wω′ : Bω′ → Bω′ is ideal preserving.

Notice that every σ-compact non-compact l.c. space Y has a proper continuous

map ψ : Y → R+. This leads to the following question.

Question A.12.6. Let ω ∈ β(R+) \ R+, and B a C *-algebra.

Suppose that Vω : Bω → Bω is ideal preserving for every bounded (point-norm)

continuous map t ∈ R+ 7→ Vt ∈ CPin(B).

Does B satisfy the condition (i) of Definition 2.0.4 ?

The problem here is the following: Let n ∈ N 7→ Vn ∈ CPin(B) is a given

sequence of approximately inner c.p. contractions. Can it be extended to t ∈
R+ 7→ Vt ∈ CPin(B) point-norm continuous, with same properties of Vω on Bω for

ω ∈ γ(R+) as for Vω with ω ∈ γ(N) ?
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13. Order unit spaces and pre-ordered semigroups

Order-unit spaces are the spaces of continuous affine functions on compact

convex subsets of locally convex real vector spaces. We use them to derive some

results on the extension of states of pre-ordered abelian semigroups with order unit.

We denote by Q the rational numbers (and not the quaternions) during Section 13.

The results are basic, but they are also known and proved with other or similar

methods a long time ago.

Definition A.13.1. An order unit space is a triple (B,B+, e), where B is a

real Banach space, B+ is a closed convex cone in B and e ∈ B+ is a distinguished

element of the cone B+, such that −e 6∈ B+ and for every x ∈ B holds:

The vectors te+ x and te− x are both in B+, if and only if, t ≥ ‖x‖.

B is partially ordered by

x ≤ y ⇔ y − x ∈ B+ .

A state of B is a monotone (i.e., order preserving) R-linear map λ : B → R from

B into R with λ(e) = 1.

We denote by E(B) ⊆ B∗ the set of states of B equipped with the σ(B∗, B)-

topology. Then E(B) is a compact convex set with this topology (cf. Part (ii) of

Proposition A.13.2).

Proposition A.13.2. Let B = (B,B+, e) and B1 = (B1, (B1)+, e1) order

unit spaces (in particular real Banach spaces), and let Y ⊆ B denote an additive

subgroup of B with e ∈ Y .

(i) Closed linear subspaces L of B with e ∈ L are again order unit spaces, if

we let L+ := B+ ∩ L.

(ii) An additive map λ : B → R is positive (i.e., λ(B+) ⊆ R+), if and only if,

λ is R-linear and bounded with ‖λ‖ = λ(e).

In particular, the positive states functionals λ ∈ B∗ with λ(e) = 1 and

‖λ‖ ≤ 1, and E(B) is a compact convex subset of B∗ with *weak topology

(i.e., σ(B∗, B)-topology).

(iii) For each x ∈ B there is a state λ with |λ(x)| = ‖x‖. In particular, B is

in a natural way an order unit subspace of C(E(B)).

(iv) For every continuous linear functional f ∈ B∗ there are (not necessarily

unique) states λ1, λ2 ∈ E(B) and α, β ∈ R+ with f = αλ1 − βλ2 and

α+ β = ‖f‖.
(v) An element x ∈ B is in the interior (B+)◦ of B+, if and only if, there is

n ∈ N with e ≤ nx.

(vi) An additive subgroup Y of B with e ∈ Y separates the states of B, if and

only if,
⋃
n(1/n)Y = {(1/n)x ; x ∈ Y } is dense in B.

(vii) Suppose that φ : B → B1 is a unital additive map, (i.e., φ(e) = e1 and

φ(x + y) = φ(x) + φ(y) for all x, y ∈ B), and let Y ⊆ B an additive

subgroup such that {(1/n)x ; x ∈ Y } is dense in B.
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The following properties (1)–(5) are equivalent and imply that φ is

R-linear.

(1) φ is monotone (i.e., is order preserving: φ(B+) ⊆ (B1)+ ).

(2) ρ ◦ φ ∈ E(B) for every state ρ ∈ E(B1).

(3) φ is a contraction.

(4) φ is continuous, and, for x ∈ Y , the existence of n ∈ N with e ≤ nx

implies the existence of m ∈ N with e1 ≤ mφ(x).

(5) φ((B+)◦) ⊆ (B1)+.

(viii) If Y is as in (vii), and the unital additive map φ : B → B1 is monotone,

then the following properties are equivalent:

(a) B+ = φ−1(φ(B) ∩ (B1)+).

(b) For every λ ∈ E(B) exists ρ of B1 with λ = ρ ◦ φ.

(c) φ is isometric.

(d) For x ∈ Y , the existence of m ∈ N with e1 ≤ mφ(x) implies the

existence of n ∈ N with e ≤ nx.

(e) b ∈ (B+)◦, if and only if, φ(b) ∈ ((B1)+)◦.

(ix) Suppose that a subset F ⊆ E(B) is norming for B (or that F is norming

on a rationally dense additive subgroup Y of B in the sense that ‖y‖ =

supf∈F |f(y)| for each y ∈ Y ).

Then the convex hull of F is σ(B∗, B)-dense in E(B).

In particular, this implies: If K is a compact convex subset of a locally

convex real vector space V , then the space Affc(K) ⊆ C(K) of all contin-

uous affine functions f : K → R is an order unit space, and E(Affc(K))

is naturally isomorphic to K.

(x) (B,B+, e) is naturally isomorphic to the ordered space Affc(E(B)) ⊆
C(E(B)) of all real-valued continuous affine functions on the (*weakly)

compact convex subset E(B) ⊆ B∗.

Proof. (i): (L,L+ := B+ ∩ L, e) satisfies the axioms of an order unit space,

because the definition is “local”, i.e., requires only the (norm-)completeness of the

space and the cone, and that any (at most) two-dimensional subspace Re + Rx is

an order unit space.

(ii): Since −e 6∈ B+ and e ∈ B+, it follows that te− e, te+ e ∈ B+, if and only

if, t ≥ 1. Thus, ‖e‖ = 1.

Let U := {x ∈ B ; ‖x‖ < 1} denote the open unit ball of B. The sets δe+B+

(δ > 0) are contained in the interior of B+, because e + U ⊆ B+ and δe + B+ ⊆
δ(e+ U) +B+ .

Let λ : B → R an additive map with λ((B+)◦) ⊆ [0,∞). Then λ is Q-linear.

Since re ± x = (r − ‖x‖)e + (‖x‖e − x) ∈ (B+)◦ for rational r > ‖x‖, we get

0 ≤ λ(re+x) = rλ(e)±λ(x) for all rational numbers r > ‖x‖. Thus, ‖λ‖ <∞ and

λ(e) ≥ ‖λ‖ . On the other hand, ‖λ‖ = ‖λ‖ · ‖e‖ ≥ λ(e).
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Let b ∈ B, then b ∈ B+, if and only if, ‖(‖b‖e) − b‖ ≤ ‖b‖. Indeed: If b 6= 0,

then a := ‖b‖−1b ∈ B+, if and only if, e− (e− a) = a ∈ B+ and e+ (e− a) ∈ B+,

if and only if, ‖e− a‖ ≤ 1.

Let λ ∈ B∗ with ‖λ‖ = λ(e). Then |λ(e)‖b‖ − λ(b) | ≤ λ(e)‖b‖ for all b ∈ B+,

which implies that λ(b) ≥ 0.

Since ‖e‖ = 1, there exists λ ∈ B∗ with λ(e) = 1, by Hahn-Banach extension,

i.e., E(B) 6= ∅.

The subset E(B) of λ ∈ B∗ with ‖λ‖ ≤ 1 and λ(e) = 1 is a *weakly closed

subset of the unit ball (B∗)≤1 of B∗. The latter is compact in the *weak topology

(:= σ(B∗, B)-topology).

(iii): It suffices to consider the case ‖b‖ = 1.

Let δ := 2−max(‖e− b‖, ‖e+ b‖) ≥ 0. Then (1− δ)e± b = (2− δ)e− (e∓ b) ∈ B+ ,

which implies (1 − δ) ≥ ‖b‖ = 1 and δ = 0. It follows that ‖e − b‖ = 2 or

‖e + b‖ = 2. We may suppose ‖e + b‖ = 2, because we can replace b by (−b). By

Hahn-Banach extension, there is λ ∈ B∗ with ‖λ‖ = 1 and λ(e+ b) = 2. It follows

that ‖λ‖ = λ(e) = 1 = λ(b). Thus, λ ∈ E(B) by Part (ii), and ‖b‖ = |λ(b)|.

(iv): It suffices to consider the case of f ∈ B∗ with ‖f‖ = 1. Let T (λ1, λ2, α) :=

αλ1− (1−α)λ2 for λ1, λ2 ∈ E(B) and α ∈ [0, 1]. Then T is a (*weakly) continuous

map from the compact set K := E(B)× E(B)× [0, 1] into the (*weakly) compact

set B∗≤1 := {g ∈ B∗ ; ‖g‖ ≤ 1 }. In particular, the image T (K) of T is closed.

Straight calculation shows that T (K) is also convex and T (K) = −T (K). Since

the subset E(B) = T (E(B) × E(B) × {1}) is norming for B, a standard Hahn-

Banach separation argument shows that T (K) = (B∗)≤1. In particular, there are

α, β ∈ [0,∞) and λ1, λ2 ∈ E(B) with α+ β = ‖f‖ = 1 and αλ1 − βλ2 = f .

(v): If x ∈ (B+)◦ then x − (1/n)e ∈ (B+)◦ for sufficiently big n ∈ N, in

particular nx − e ∈ B+. Conversely, if nx − e ∈ B+, then x = (1/n)e + y with

y := x− (1/n)e ∈ B+. Thus, x ∈ y + (1/n)(e+ U) ⊆ B+ for the open unit ball U

of B, cf. proof of Part (ii). Hence, x ∈ (B+)◦.

(vi): Let λ1, λ2 ∈ E(B). λ1(x) = λ2(x) for all x ∈ Y , if and and only if,

Z := {(1/n)x ; x ∈ Y } is in the kernel of λ1−λ2. If Z is dense in B, then λ1 = λ2,

and the elements of Y separate the states.

Now let Y an additive subgroup of B with e ∈ Y . Then Z := {(1/n)x ; x ∈
Y } = spanQ(Y ) is norm-dense in spanR(Y ). Thus, if Z is not dense in B, then

there exists f ∈ B∗ with ‖f‖ = 1 and f(x) = 0 for all x ∈ Y . By Part (iv), there

are states λ1, λ2 ∈ E(B) and α ∈ [0, 1] with f = αλ1 − (1− α)λ2 . Since e ∈ Y , it

follows that 0 = f(e) = 1− 2α. Hence, λ1(x) = λ2(x) for x ∈ Y and λ1 6= λ2.

It follows, that Z must be dense in B if Y separates the states.

(vii): The additivity of φ implies that φ(rb) = rφ(b) for all rational numbers

r ∈ Q. Thus, if φ satisfies (3), then φ is R-linear. The implications (1)⇒(5) is

obvious.
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(5)⇒(2): The map ρ ◦ φ : B → R is additive and ρ ◦ φ(e) = ρ(e1) = 1 for

ρ ∈ E(B1). If φ((B+)◦) ⊆ (B1)+ , then ρ ◦ φ is an additive map from B to R that

is not negative on (B+)◦. It follows that ρ ◦ φ is continuous by an argument in the

proof of Part (ii). Then ρ ◦ φ(B+) ⊆ [0,∞) , and Part (ii) shows ρ ◦ φ ∈ E(B).

(2)⇒(3): If ρ ◦ φ ∈ E(B) for every state ρ ∈ E(B1), then ‖φ(b)‖ =

supρ∈E(B1) |ρ ◦ φ(b)| ≤ ‖b‖ by Parts (ii) and (iii).

(3)⇒(1): Let x ∈ B+ and m,n ∈ N with m/n > ‖x‖. Then me ± (me −
nx) ∈ B+ and, thus, ‖me − nx‖ ≤ m. It follows ‖me1 − nφ(x)‖ ≤ m. Thus

nφ(x) = me1 − (me1 − nφ(x)) ∈ (B1)+.

(1)⇒(4): Let x ∈ Y and n ∈ N with nx − e ∈ B+, then nφ(x) − e1 ∈ (B1)+.

The map φ is continuous, because (1) implies (3).

(4)⇒(5): Let Z :=
⋂
n(1/n)Y = spanQ(Y ). If z = (1/k)y ∈ Z∩(B+)◦ with y ∈

Y and k ∈ N, then y ∈ Y ∩(B+)◦. By Part (v), there is n ∈ N with ny−e ∈ B+. By

assumptions, it follows that there is m ∈ N with mφ(y)−e1 ∈ (B1)+. In particular,

φ(z) = (1/(mk))((mφ(y)− e1) + e1) ∈ (B1)+. Hence, φ( (B+)◦ ∩ Z ) ⊆ (B1)+ .

Since φ is continuous by assumptions, φ maps the closure M of (B+)◦ ∩Z into

(B1)+ . By assumption, Z is dense in B. Thus Z is dense in each open subset of

B, in particular (B+)◦ ⊆ M .

(viii): Since φ is unital and increasing (i.e., φ(B+) ⊆ (B1)+), φ is a unital

contraction by Part (vii). By (v), x ∈ (B+)◦, if and only if, there is n ∈ N with

nx − e ∈ B+. Thus nφ(x) − e1 ∈ (B1)+, and φ(x) ∈ ((B1)+)◦, if x ∈ (B+)◦. It

shows that, under our assumptions, the properties (a), (c) and (e) are equivalent

to:

(a’) φ(B+) ⊃ (B1)+ ∩ φ(B).

(c’) ‖ψ(x)‖ ≥ ‖x‖ for all x ∈ B.

(e’) φ((B+)◦) ⊃ ((B1)+)◦.

(c)⇒(e): Let x ∈ B with φ(x) ∈ ((B1)+)◦. There is m ∈ N with φ(b) :=

mφ(x)− e1 ∈ (B1)+ for b := mx− e ∈ B, cf. Part (v). In the proof of Part (ii) we

have seen that φ(b) ∈ (B1)+ implies ‖te1 − φ(b)‖ ≤ t for t := ‖φ(b)‖ = ‖b‖. Thus

‖‖b‖e− b‖ = ‖te1− φ(b)‖ ≤ ‖b‖, which implies b = nx− e ∈ B+, as shown in proof

of Part (ii). Thus, x ∈ (B+)◦ by Part (v).

(e)⇒(a): Let φ(x) ∈ (B1)+, then φ(x) + δe1 ∈ ((B1)+)◦ for each δ > 0, by

Part (v). It follows x+ δe ∈ B+ for each δ > 0, i.e., x ∈ B+.

(a)⇒(c): If B+ = φ−1(φ(B) ∩ (B1)+), then we get from ‖φ(b)‖e1 ± φ(x) ∈
(B1)+, that ‖φ(b)‖e ± x ∈ B+. Thus ‖x‖ ≤ ‖φ(x)‖ for all x ∈ B, and φ is

isometric.

(c)⇒(b): The map φ defines an isometric unital isomorphism from B onto the

closed subspace L := φ(B) with e1 ∈ L. If λ ∈ E(B), then ρ′ := λ ◦ φ−1 : L → R
is in E(L). There is an extension ρ ∈ (B1)∗ of ρ′ with ‖ρ‖ = ‖ρ′‖ = 1. Thus,

ρ ∈ E(B1) by Part (ii), and λ ◦ φ = λ′ ◦ φ = ρ.
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(b)⇒(c): By Part (iii), for b ∈ B,

‖b‖ = sup
λ∈E(B)

|λ(b)| = sup
ρ∈E(B1)

|ρ(φ(b))| = ‖φ(b)‖ .

(e)⇒(d): Suppose that x ∈ Y and m ∈ N satisfy e1 ≤ mφ(x). Then φ(x) ∈
((B1)+)◦ by Part (v), and (e) implies that x ∈ (B+)◦. Again, Part (v) implies that

there is n ∈ N with e ≤ nx.

(d)⇒(c): Let y ∈ Y and p, q ∈ N with (p/q) > ‖φ(y)‖. Then pe1 ± qφ(y) ∈
(B1)+. Thus φ(xk) − e1 ∈ (B1)+ for xk := (p + 1)e + (−1)kqy ∈ Y , k ∈ {1, 2}.
By assumption (d), there are n1, n2 ∈ N with nkxk − e ∈ B+. Since (nk(p + 1) −
1)/(nkq) ≤ (p + 1)/q, we get Thus ((p + 1)/q)e ± y ∈ B+, and (p + 1)/q ≤ ‖y‖.
Since inf{(p + 1)/q ; p/q > t} = t for each t ∈ R+, we obtain ‖φ(y)‖ ≥ ‖y‖ for all

y ∈ Y . This carries over to all z ∈ Z =
⋃
n(1/n)Y , i.e., ‖z‖ ≤ ‖φ(z)‖ for all z ∈ Z.

It follows ‖b‖ = ‖φ(b)‖ for all b ∈ B, because Z is dense in B and ‖φ‖ ≤ 1.

(ix): Suppose that Y ⊆ B is an additive subgroup such that spanR(Y ) is

dense in B, and that F ⊆ E(B) satisfies ‖y‖ = supf∈F |f(y)| for each y ∈ Y . Let

M(b) := supf∈F |f(b)| for b ∈ B. Then M(b) is a semi-norm on B with M(b) ≤ ‖b‖,
the set Z := {(1/n)x ; x ∈ Y } = spanQ(Y ) is norm-dense in B, and M(z) = ‖z‖
for all z ∈ Z. Thus, M(b) = ‖b‖ on all b ∈ B, i.e., F is norming for B.

Suppose now that F is norming on B. Let G ⊆ E(B) denote the *weak closure

of the the convex hull of F . Then G is convex, compact, and is norming on B.

Suppose that G 6= E(B). Then, by Hahn-Banach separation, there exist b ∈ B
and f ∈ E(B) such that f(b) 6∈ {g(b) ; g ∈ G}. Since G is compact and convex,

there are α, β ∈ R with {g(b) ; g ∈ G} = [α, β]. Let c := 2b − (α + β)e, then

f(c) 6∈ {g(c) ; g ∈ G} = [α − β, β − α]. Thus, ‖c‖ = supg∈G |g(c)| = β − α and

|f(c)| > ‖c‖, which contradicts f ∈ E(B).

Let K a compact convex subset of a locally convex vector space V . Then the

continuous linear functionals f ∈ V ∗ separate the point of K and f |K ∈ Affc(K).

The set Affc(K) of continuous affine functions on K is a closed subspace of C(K)

that contains 1.

The natural map k ∈ K 7→ δkE(C(K)) ⊆ C(K)∗ is continuous. The re-

strictions k̂ of δk to the elements of Affc(K) are in the state space E(Affc(K)) of

Affc(K). The map k 7→ k̂ is continuous, affine (= convex) and injective. Thus, K̂

is a norming closed convex subset of the state space of Affc(K). Thus, k 7→ k̂ is

surjective. It follows that k 7→ k̂ is an affine topological isomorphism from K onto

E(Affc(K)).

(x): The natural map B 3 b 7→ b̂ ∈ Affc(E(B)) ⊆ C(E(B)) with b̂(λ) := λ(b).

Is unital and isometric by Part (iii). By Part (ix), the natural map from E(B) into

E(Affc(E(B))) is bijective. It follows that B̂ ⊆ Affc(E(B)) separates the states

of Affc(E(B)). Now Part (vi) shows that B̂ = Affc(E(B)). Thus, b 7→ b̂ defines

a natural unital isometric isomphism from (B,B+, e) onto the order unit space

Affc(E(B)) ⊆ C(E(B)). �
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Lemma A.13.3. Let V be a real vector space, K ⊆ V a convex cone in V and

u ∈ K such that −u 6∈ K and that, for every x ∈ V there exists n = n(x) ∈ N with

nu− x ∈ K.

Define P (x) := inf{m/n ; m,n ∈ N, mu± nx ∈ K } .

Then P is a seminorm on V .

Let V0 the space of v ∈ V with P (v) = 0, let π(x) := x + V0 the quotient map

π : V → V/V0 and define a Norm ‖ · ‖ on V/V0 by ‖π(x)‖ = P (x).

(i) The completion B of the normed space V/V0 becomes an order unit space

with order unit e := π(u) = u+ V0 and B+ := π(K).

(ii) (B,B+, e) is naturally order-unit isomorphic to the space of affine func-

tions on the σ(V ′, V )-compact convex set of linear maps λ : V → R with

λ(K) ⊆ R+ and λ(u) = 1.

(iii) π(x) is in the interior of B+, if and only if, there is n ∈ N with nx−u ∈ K.

(iv) Suppose that X is an additive subgroup of of V , such that u ∈ X and V

is the real linear span of X, and that ψ : X → B1 is an additive map from

X into an order unit space (B1, (B1)+, e1) with ψ(u) = e1.

If the existence of n ∈ N with nx − e ∈ K implies the existence of

m ∈ N with mψ(x) − e1 ∈ (B1)+, then there is a unique unital linear

contraction η : B → B1 with η(π(x)) = ψ(x) for all x ∈ X.

This is in particular the case, if the map ψ : X → B1 is order pre-

serving, i.e., if ψ(x) ≤ ψ(y) if y − x ∈ K.

(v) The map η : B → B1 in (iv) is isometric, if and only if, for each x ∈ X,

the existence of n ∈ N with nx − e ∈ K is equivalent to the existence of

m ∈ N with mψ(x)− e1 ∈ (B1)+.

Proof. Clearly P (x) = P (−x), P (u) = 1 (by −u 6∈ K) and P (0) = 0. If

t ∈ R+ satisfies tu ± x ∈ K, then su ± x = (tu ± x) + (s − t)u ∈ K for all s ≥ t.

Thus, P (x) = inf{t ≥ 0 ; tu ± x ∈ K}. Since, for t, s > 0, tu ± x ∈ K ⇔
(st)u± sx ∈ K, we get P (sx) = sP (x) for s > 0 and x ∈ V .

If t1, t2 ≥ 0 and t1u ± x, t2u ± y ∈ K implies (t1 + t2)u ± (x + y) ∈ K. Thus

P (x+ y) ≤ P (x) + P (y). Thus, P is a semi-norm on V .

(i): Since (P (x)+ε)u±x ∈ K for all ε > 0, we have (‖π(x)‖+ε)e±π(x) ∈ B+

for all x ∈ V . The map y 7→ (‖y‖ + ε)e − y is continuous on B and takes values

in B+ for all y ∈ π(V ) = V/V0. Since B+ is closed, we get ‖y‖e − y ∈ B+ for

all y ∈ B. It follows te − y = (‖y‖e − y)+ ∈ B+ for all y ∈ B and t ≥ ‖y‖. In

particular, e + U ⊆ B+ for the open unit ball U of B, and e is contained in the

interior of B+.

If y ∈ B and s ≥ 0 satisfies se ± y ∈ B+ then for every ε > 0, there are

x1, x2 ∈ K and z ∈ V with ‖se + y − π(x1)‖ < ε, ‖se − y − π(x2)‖ < ε and

‖y−π(z)‖ < ε. It implies P (su+z−x1) < 2ε, P (se−z−x2) < 2ε and ‖y‖ ≤ P (z)+ε.
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It follows (2ε)u + (su + z − x1) ∈ K and (2ε)u + (su − z − x2) ∈ K. Since

x1, x2 ∈ K, we get (2ε) + s ≥ P (z) and, finally, s ≥ ‖y‖ − 3ε. Thus, se ± y ∈ B+

and s ≥ 0 imply s ≥ ‖y‖, and (B,B+, e) is an order unit space.

(ii): We have (P (x)+ε)u±x ∈ K for x ∈ V and all ε > 0. Thus, |λ(x)| ≤ P (x)

for all linear maps λ : V → R with λ(u) = 1 and λ(K) ⊆ R+. Since V/V0 is

dense in B, there is a unique linear functional ρ : B → R with ρ ◦ π = λ and

‖ρ‖ ≤ 1. The functional ρ is positive and unital, because π(K) is dense in B+ and

ρ(e) = λ(u) = 1.

Clearly, λ := ρ ◦ π is a linear map from V to R with λ(K) ⊆ R+ and λ(u) = 1, if

ρ : B → R is a positive linear functional on B with ρ(e) = 1.

The σ(Lin(V,R), V )-topology on the convex set of linear maps λ : V → R with

λ(K) ⊆ R+ and λ(u) = 1 gives it a structure of a compact convex set E(V,K, u).

The (algebraic and affine) isomorphism E(B)→ E(V,K, u), given by ρ 7→ ρ◦π, is is

an affine homeomorphism, because π(V ) is dense in B. By Proposition A.13.2(ix),

the order unit space (B,B+, e) is naturally order-unit isomorphic to the space of

real-valued continuous affine functions on the compact convex set E(B) of states

on B.

(iii): If nx − u ∈ K, then nπ(x) − e ∈ B+, which implies that π(x) is in the

interior of B+ by Proposition A.13.2(v).

Suppose that π(x) is in the interior of B+, then there is n ∈ N with π(x) −
(2/n)e ∈ B+, i.e., π(nx− 2u) ∈ B+. Since B+ is the closure of π(K), there exists

y ∈ V and k ∈ K with nx − 2u = y + k and P (y) = ‖π(y)‖ < 1. It follows that

u+ y ∈ K (by definition of P (y)). Hence nx− u = (y + u) + k ∈ K.

(iv): Suppose that ψ : X → B1 is an additive map with ψ(u) = e1, and suppose

that, for each x ∈ X, the existence of n ∈ N with nx− u ∈ K implies the existence

of m ∈ N with mψ(x)− e1 ∈ (B1)+.

Let p, n ∈ N with p/n > P (x) = ‖π(x)‖, then pu±nx ∈ K, and ((p+1)u±nx)−
e ∈ K. Thus, there is m ∈ N with m((p+1)e1±nψ(x))−e1 ∈ (B1)+. It follows, that

(m(p+1)−1)e1±mnψ(x) ∈ (B1)+. Hence ‖ψ(x)‖ ≤ (p+1−1/m)/n ≤ p/n+1/n.

Since we can approximate P (x) ≥ 0 from above by rational p/n with arbitrary

large denominator n, we get ‖ψ(x)‖ ≤ P (x) for all x ∈ X.

The Q-linear hull of X is given by W :=
⋃
n(1/n)X. The map ψ : X →

B1 naturally extends to W by ψ0((1/n)x) := (1/n)ψ(x). The extension is well-

defined and Q-linear, because (nm)−1(mpx± nqy) = (1/n)(px)± (1/m)(qy) maps

to (nm)−1(mpψ(x) ± nqψ(y)) = (1/n)(pψ(x)) ± (1/m)(qψ(y)). We have P (w) ≥
‖ψ0(w)‖ for all w ∈ W , because this holds for w ∈ X. In particular, ψ0(w) = 0 if

w ∈ V0.

Consider the set Y := π(X) ⊆ B. It satisfies the assumptions on Y of Parts

(vi, vii, viii) of Proposition A.13.2, because V is the real span of X. In particular,

the rational span Z :=
⋃
n(1/n)π(X). of Y is dense in the real span of X, hence is

dense in B. Let z = (1/n)π(x) ∈ Z.
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We define η0(z) := ψ0(w) for z ∈ Z and w ∈W with π(w) = z. The definition

is correct, because π(w′) = π(w) is equivalent to P (w′ −w) = 0 by definition of V0

and π : V → B. Thus ‖ψ0(w′ − w)‖ ≤ P (w′ − w) = 0 and ψ0(w′) = ψ0(w). We

have ‖z‖ = P (w) ≥ ‖ψ0(w)‖ = ‖η0(z)‖.

The map η0 : Z → B1 satisfies η0 ◦ π = ψ0. It follows that η0 is Q-linear and

contractive.

Since V is the real span of X, and since π(V ) is dense in B, the rational span

Z of Y is dense in B. Thus, the unital contractive Q-linear map η0 : Z → B1

uniquely extends to a unital contractive R-linear map η : B → B1. This map

satisfies η ◦ π(x) = ψ(x).

Since η : B → B1 is a unital linear contraction, the map η is increasing.

(v): Let η : B → B1 an isometric linear map with η(π(x)) = ψ(x) for all x ∈ X.

Then η(e) = η(π(u)) = ψ(u) = u1. Since η unital and contractive, η(B+) ⊆ (B1)+,

by Proposition A.13.2(vii). If nx−u ∈ K, then nπ(x)−e ∈ B+ and η(nπ(x)−e) =

nψ(x)− e1 ∈ (B1)+. If there is m ∈ N with η(mπ(x)− e) = mψ(x)− e1 ∈ (B1)+,

then mπ(x)− e ∈ B+ by Proposition A.13.2(viii,a).

Conversely, suppose that ψ : X → B1 is additive and unital, and suppose that,

for each x ∈ X, the existence of n ∈ N with nx − u ∈ K is equivalent to the

existence of m ∈ N with mψ(x)− e1 ∈ (B1)+. Then, by part (iv), there is a unique

unital linear contraction η : B → B1 with η(π(x)) = ψ(x) for all x ∈ X.

The set Y := π(X) satisfies the assumptions of Proposition A.13.2(viii,d):

Z =
⋃
n(1/n)Y is dense in B, and for y ∈ Y ,the existence of m ∈ N with e1 ≤ mη(y)

implies the existence of n ∈ N with e ≤ ny. Indeed: If e1 ≤ mη(y) and x ∈ X with

y = π(x), then mψ(x) − e1 = mη(y) − e1 ∈ (B1)+, which implies, by assumption

on X, the existence of n ∈ N with nx − u ∈ K, i.e., ny − e = π(nx − u) ∈ B+.

Thus, the unital linear contraction η is isometric by the equivalence of properties

(viii,c) and (viii,d) in Proposition A.13.2(viii). �

Now we use the above elementary material on order-unit spaces for a study of

scaled abelian semigroups.

Definition A.13.4. Let S denote an abelian semigroup. S is preordered by

the relation x <S y if the relation is transitive and invariant under addition, i.e.,

x <S z if x <S y and y <S z, x+w <S y+w for all w ∈ S. We do not require that

x <S x, therefore we write x ≤S y if x <S y or x = y. The preordered semigroup

(S,<S) is partially ordered if x ≤S y and y ≤S x imply x = y. (If it is clear,

which S and preorder <S is ment, we simply write < and ≤ for <S respectively

≤S .)

An element u ∈ S is an order unit in the preordered abelian semigroup (S,<S)

if x ≤ x + u for all x ∈ S, and, for every y ∈ S, there is n = n(y) ∈ N such that

y ≤ nu and u ≤ y + nu ( 7 ). Usually there are many different order units in S.

7The properties x ≤ x+ u and that u ≤ y+ nu follow automatically, if S has a zero element

0 with 0 ≤ x for all x ∈ S.
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An abelian preordered semigroup (S , <S , u) with a distinguished order unit

u ∈ S will be called a scaled (abelian) semigroup.

A state on S is an order preserving additive map λ : S → R with λ(u) = 1.

Lemma A.13.5. Suppose that V and W are vector spaces over the rational

numbers Q.

(i) The natural Z-modul morphism V ⊗Z W → V ⊗Q W is an isomorphism.

(ii) η : v 7→ v ⊗Z 1 is a natural Q-linear monomorphism from V into the real

vector space V ⊗Z R = V ⊗Q R.

(We identify V with its image in V ⊗Q R.)

(iii) Let U ⊆ V ⊗Z R an open subset with respect to an locally convex topology

O on V ⊗Z R. Then V ∩ U is dense in U with respect to O.

(iv) For every subset X ⊆ V , and for every (not necessarily separated) locally

convex topology on V ⊗Z R, the rational convex hull convQ(X) of X in V

is dense in the real convex hull convR(X) of X in V ⊗Z R.

(v) convR(X) ∩ V = convQ(X) holds in V ⊗Z R.

The observations (i)-(v) imply the following observation:

Suppose that T : V → W is an additive map, ν : W → [0,∞) is a semi-norm

on W ⊗Z R, X ⊆ W is a subset of W , and that there exists v1 ∈ V ⊗Z R, such

that (T ⊗Z idR)(v1) is in the interior of convR(X) ⊆ W ⊗Z R with respect to the

topology on W ⊗Z R defined by ν.

Then there exists v2 ∈ V such that T (v2) ∈ W is in the interior of convQ(X)

with respect to ν.

Proof. Since the tensor products are the algebraic tensor products, the state-

ments reduces to V,W of finite dimension (over Q, i.e., V ∼= Qn and W ∼= Qm as

vector spaces over Q), and to finite subsets X of V ∼= Qn.

Then the proofs automatically reduce to the following easy observations:

(i): There are natural isomorphisms Q⊗Z Q ∼= Q, and, therefore, also natural

isomorphisms

Qn ⊗Z Qm ∼= Qnm ∼= Qn ⊗Q Qm .

(ii): By Part (i), there is a natural isomorphism V ⊗Z R ∼= V ⊗Q R, because R
is a Q-vector space. In case V = Qm, the natural isomorphism induces the natural

embedding of Qm in Rm. The injectivity of η : v 7→ v ⊗Z 1 then follows from the

injectivity of natural embedding Qn → Rm = Qm ⊗Z R.

(iii): The finest locally convex topology on Rn is identical with the topology

induced by the norm ‖(x1, . . . , xn)‖∞ := maxj |xj |. Thus, every open subset U of

Rn with respect to any (not necessarily separated) locally convex topology O of Rn

is the union of products I1 × · · · × In of open intervals Ik ⊆ R. It follows that the

vectors with rational coordinates are dense U with respect to to the topology O,

because U1 ∩ U = ∅ if U1 ∈ O and U1 ∩ U does not contain a vector with rational

coordinates.



13. ORDER UNIT SPACES AND PRE-ORDERED SEMIGROUPS 1137

(iv): Any R-convex combination
∑m
j=1 αjvj = p ∈ Rn of v1, . . . , vm ∈ Qn can

be approximated by a convex combination of the v1, . . . , vm with rational αj ≥ 0

with
∑
j αj = 1, because the rational points are dense in the (m − 1)-dimensional

standard simplex S ∈ Rm (by part (iii) applied to the inverse T−1(S) of a suitable

affine injective map T : Rm−1 → Rm with T (0) = (1/m, . . . , 1/m) and rational

entries in its coefficient matrix).

(v): convR(X) ∩ V = convQ(X) comes from the case where V ∼= Qn. Let

X = {v1, . . . , vm} ⊆ Qn is a finite subset, and
∑
j αjvj = v0 ∈ Qn, with αj ∈

(0,∞),
∑
αj = 1. Then we can form the matrix A ∈ Mm,n+1(Q) with columns

aj = (vj , 1)>, and let b ∈Mn+1,1(Q) the column b = (v0, 1). Then A · x0 = b with

x0 = [α1, . . . , αn]> ∈ Mn,1(R) . It follows that the matrices A and the extended

matrix (A, b) have same rank (calculated in R). Since both matrices have rational

entries, the ranks are also equal if calculated in Q. Thus there is a solution of

A · x1 = b with x1 = [β1, . . . , βn]> ∈ Mn,1(Q) . If B ∈ Mn+1,m(Q) is a generalized

inverse of A then T : y ∈Mm,1(R) 7→ (1m−BA)y+Bb is an affine map from Rm ∼=
Mm,1(R) onto the set of all solutions x ∈M (

m,1R) of Ax = b. The set T−1(0,∞)m

is an open convex subset of Rm that is not empty, because (0,∞)m is open in Rm

and x0 ∈ (0,∞)m by assumption. By part (ii), we get that Qm ∩ T−1(0,∞)m is

not empty, i.e., there is x2 ∈ (0,∞)m ∩Qm with Ax2 = b. This means that v0 is a

rationally-convex combination of v1, . . . , vm. �

The following key lemma is an observation of B. Blackadar and M. Rørdam

[86]. It provided a useful “almost” cancellation property.

Lemma A.13.6. If (S, <S , u) is a scaled abelian semigroup, then, for x, y ∈ S,

there exists m, p ∈ N with mx+(p+1)u ≤ my+pu , if and only if, there are n ∈ N
and z ∈ S with nx+ u+ z ≤ ny + z.

Proof. If mx + (p + 1)u ≤ my + pu, then we let n := m and z := pu. To

show the non-trivial direction, it suffices to show that x+u+ z ≤ y+ z implies the

existence of m, p ∈ N with mx + (p + 1)u ≤ my + pu, because we can rename nx

and ny by x and y in the statement.

If xj , yj , z ∈ S satisfy xj + z ≤ yj + z (j = 1, 2), then

x1 + x2 + z ≤ x1 + y2 + z ≤ y1 + y2 + z .

Induction gives that nx+ z ≤ ny + z for all n ∈ N if x+ z ≤ y + z.

If x1, x2 ∈ S, then there is n ∈ N with x1 ≤ x2 + nu: Indeed, there are

n1, n2 ∈ N with a ≤ n1u, b ≤ n2u and u ≤ b+n2u. It follows n1b ≤ b+ (n1−1)n2u

and a ≤ b+ nu for n := (2n1 − 1)n2.

Let x, y, z ∈ S with x+ u+ z ≤ y+ z. There are k, ` ∈ N such that u ≤ z+ ku

and z ≤ ku, u ≤ y+`u, y ≤ `u. It follows z ≤ k(y+`u). Let x′ = x+`u, y′ = y+`u.

Then z ≤ ky′, x′ + u+ z ≤ y′ + z, thus nx′ + nu+ z ≤ ny′ + z for all n ∈ N. Take

above a := kx′ + u and b := z, then there is n ∈ N with kx′ + u ≤ nu+ z. We get

(n+ k)x′ + u = nx′ + kx′ + u ≤ nx′ + nu+ z ≤ ny′ + z ≤ (n+ k)y′ .
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It implies mx+ (p+ 1)u ≤ my + pu for m := n+ k, p := (n+ k)`. �

Proposition A.13.7. Suppose that (S, < , u) is a scaled abelian semigroup

such that m,n ∈ N and mu ≤ nu imply m ≤ n.

Then there is an order unit space B(S) = (B,B+, e) and a unital additive map

γ : S → B with γ(u) = e, such that, for every state λ on (S, < , u), there is exactly

one state ρ on B with λ = ρ ◦ γ . Furthermore:

(i) Natural universality: If B1 is an oder unit space, and ψ : S → B1 is

monotone, unital and additive, then there is a unique monotone unital

linear map T : B(S)→ B1 with T ◦ γ = ψ.

(ii) There are equivalent:

(ii.1) γ(y)− γ(x) is in the interior of B+.

(ii.2) There exist m, p ∈ N such that mx+ (1 + p)u ≤ my + pu.

(ii.3) λ(x) < λ(y) for all states λ of S.

(iii) An additive unital map ψ from S to an order unit space (B1, (B1)+, e1) is

monotone, if and only if, the inequality x+u ≤ y in S implies ψ(x) ≤ ψ(y)

for x, y ∈ S ( 8 ).

(iv) For a monotone additive unital map ψ : S → B1 are equivalent:

(iv.1) There is an isometric unital map I : B → B1 with I(γ(x)) = ψ(x)

for x ∈ S.

(iv.2) If there is n ∈ N with nψ(x) + e1 ≤ nψ(y), then there exist m, p ∈ N
with mx+ (p+ 1)e ≤ my + pe (i.e., γ(y)− γ(x) is in the interior of

B+ by (ii)).

(iv.3) For every state λ on S there exists a state ρ on B1 with λ = ρ ◦ ψ.

Proof. Let Gr(S) denote the Grothendieck group of S, and let

Gr(S)+ := {[y]− [x] ; x, y ∈ S, x ≤S y} .

Then for each g ∈ Gr(S) there are s, t ∈ S with g = [s]− [t].

By Definition A.13.4, there are m,n ∈ N with s ≤ nu, u ≤ t+ nu and t ≤ nu.

We get g = ([nu]− [t])− ([nu]− [s]) ∈ Gr(S)+ −Gr(S)+ and g ≤ g+ ([nu]− [s]) =

[nu]− [t] ≤ 2n[u] . Thus, (Gr(S),Gr(S)+, [u]) is a scaled abelian group with order

g ≤ h ⇔ g − h ∈ Gr(S)+ and order unit [u].

It turns out for x, y ∈ S that [x] ≤ [y] in Gr(S), if and only if, there is z ∈ S with

x+z ≤ y+z. Indeed, x+z ≤ y+z implies [y]− [x] ∈ Gr(S)+. If [y]− [x] ∈ Gr(S)+

then there are x1, x2, s ∈ S with x1 ≤ x2 and y + x1 + s = x + x2 + s =: t. Thus

x+ z = t+ x1 ≤ t+ x2 = y + z for z := x1 + x2 + s.

By Lemma A.13.6 it follows that there is n ∈ N with n[x] + [u] ≤ n[y] in Gr(S)

(i.e., that there exists z ∈ S with nx + z + u ≤ ny + z), if and only if, there are

m, p ∈ N with mx+ (p+ 1)u ≤ my + pu in S.

We define a pre-ordered R-vector space (V,K,w) by V := Gr(S) ⊗Z R, w :=

[u]⊗Z 1 and K is the convex cone of V := Gr(S)⊗Z R generated by Gr(S)+ ⊗Z 1 .

8It implies then that φ(y)− φ(x) is in the interior of the positive cone (B1)+.
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Since Q⊗ZR = Q⊗QR = R, we get from Lemma A.13.5, that Gr(S)⊗ZQ→ V

is injective and that (Gr(S)⊗ZQ)∩K =
⋃
n(Gr(S)+⊗Z1/n). Hence, (g⊗1) ∈ K, if

and only if, there exists n ∈ N with ng ∈ Gr(S)+. In particular, ([y]− [x])⊗1 ∈ K,

if and only if, there are m ∈ N and z ∈ S with mx+ z ≤ my + z.

Suppose −w = ([u] − [2u]) ⊗ 1 ∈ K, then there is m ∈ N (w.l.o.g.) with

2mu+ z ≤ mu+ z in S. By LemmaA.13.6, there are n, q ∈ N with n((2m− 1)u) +

(q + 1)u ≤ nmu + qu, i.e., ku ≤S `u with mn + q =: ` < k := n(2m − 1) + q + 1.

This contradicts our assumption that ku ≤ `u implies k ≤ `.

Since −w 6∈ K, (V,K,w) is a scaled R-vector space, as considered in Lemma

A.13.3. We define, B(S) := (B,B+, e) as the order unit space that is obtained from

the scaled R-vector space (V,K,w) in Lemma A.13.3, and let γ(x) := π([x]⊗Z 1),

where π : V → B is the quotient map v ∈ V 7→ v + V0 ∈ V/V0 ⊆ B as considered

in Lemma A.13.3.

Since g ∈ G 7→ g ⊗Z 1 ∈ V and π are monotone and unital, we get that

γ : S → B is a monotone, unital additive map. Thus λ := ρ ◦ γ is a monotone

additive unital map, if ρ is a state of B(S).

It is obvious, that every state λ : S → R uniquely factorizes through Gr(S)

and then through (V,K,w), i.e., for every state λ of S there is a unique state ρ′

on (V,K,w) and then a unique state ρ on (B,B+, e) (by Lemma A.13.3(iv) with

(B1, (B1)+, u1) := (R,R+, 1)) with ρ(γ(x)) = ρ′([x] ⊗ 1) = λ(x) for all λ ∈ E(S).

It follows from Lemma A.13.3(ii), that there is a unique isometric unital order

isomorphism ι from B onto Affc(E(S)) with ι(γ(x)) = ι(π([x] ⊗ 1))(λ) = λ(x) for

all x ∈ S.

(i): Suppose that ψ : S → B1 is monotone, unital and additive map into an

order unit space B1. Since B1 is an R-vector space, the map factorizes through a

linear map [ϕ] : V = Gr(S)⊗Z R→ B1 with ψ(x) = [ψ]([x]) for x ∈ S.

The map [ψ] is unital and order preserving, and X := Gr(S)⊗Z Q satisfies the

assumptions of Lemma A.13.3(iv).

Have to show:

There is a unique monotone unital linear map T : B(S)→ B1 with T ◦ γ = ψ.

That means: Existence by construction ... and proof of uniqueness ... e.g. by

use of separating states on B1.

If x ≤ y then mx + u ≤ (mx + u) for any m ∈ N. It follows that there are

n, q ∈ N with n(mφ(x)) + (q + 1)v ≤ n(mφ(x) + v) + qv. Thus nmλ(φ(x)) ≤
(n− 1) + nmλ(φ(x)) and λ(φ(x)) ≤ λ(φ(x)) + (1/m) for all m ∈ N and all states λ

on (B1, (B1)+, e1).

to be filled in ?? �

Corollary A.13.8. Let (S , < , u), (T , < , v) scaled abelian semigroups, and

φ : S → T an additive map with φ(u) = v.
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If mv ≤T nv implies m ≤ n (for n,m ∈ N), then φ has the following properties

(i) and (ii).

(i) λ ◦ φ is a state of S for each state λ of T ,

if and only if,

for x, y ∈ S, the inequality x + u ≤ y implies the existence of n, q ∈ N
with nφ(x) + (q + 1)v ≤ nφ(y) + qv.

(ii) For every state ρ of S there is a state λ of T with ρ = λ ◦ φ,

if and only if,

for x, y ∈ S, the existence of m, p ∈ N with mx + (p + 1)u ≤ my + pu is

equivalent to the existence of n, q ∈ N with nφ(x) + (q+ 1)v ≤ nφ(y) + qv.

Proof. (i): Suppose that for each x, y ∈ S with x+ u ≤ y there are n, q ∈ N
with nφ(x) + (q + 1)v ≤ nφ(y) + qv, then 1/n ≤ λ(φ(y)) − λ(φ(x)) for all states

λ : T → R on (T,<T , v). Thus x+u ≤ y implies λ(φ(x)) ≤ λ(φ(y)). Since (R,R+, 1)

is an order unit space, we get from Part(iii) of Proposition A.13.7, that the additive

unital maps λ ◦ φ : S → R are monotone, i.e., that the λ are states on (S , <S , u).

Suppose, conversely, that λ ◦ φ is a state on (S, <S , u) for all states λ on

(T, <T , v). If x + u ≤ y then λ(φ(y) − φ(x)) ≥ 1 for all states λ on (T, <T , v).

This implies the existence of n, q ∈ N such that nφ(x) + (l + q)v ≤ nφ(y) + qv, by

part (ii) of Proposition A.13.7,

(ii): By part (i) and by Proposition A.13.7, there is a unique unital monotone

linear map ψ : B(S) → B1 := Affc(E(T )) ∼= B(T ) with ψ(γS(x))(λ) = λ(φ(x)) for

all x ∈ S and λ ∈ E(T ).

Suppose that nφ(x) + (p + 1)v ≤ nφ(xy) + pv in T implies the existence of

m, p ∈ N withmx+(p+1)e ≤ my+pe in S. If there is k ∈ N with kψ(x)+e1 ≤ kψ(y)

in (B(T ), B(T )+, eT ) then 1/k ≤ λ(φ(y))−λ(φ(x)) for every state λ on T . If follows

the existence of n, q ∈ N with nφ(x) + (p+ 1)v ≤ nφ(xy) + pv in T , by part (ii) of

Proposition A.13.7. By assumption, there arem, p ∈ N withmx+(p+1)e ≤ my+pe.

Thus, ψ : B(S) → Affc(E(T )) satisfies the condition in part (iv.2) of Propo-

sition A.13.7(iv). It implies that for every state ρ on S there is a state ρ′ on

Affc(E(T )) with ρ(x) = ρ′(ψ(γS(x))) for x ∈ S. Since E(T ) is compact and con-

vex, it follows that there is λ ∈ E(T ) with ρ′(γT (y)) = λ(y) for all y ∈ T . Thus,

ρ(x) = ρ′(ψ(γS(x)) = ρ′(γT (φ(x)) = λ(φ(x)) .

By Proposition A.13.7, there is a state λ on T such that ρ′(γT (y)) = λ(y) for

all y ∈ T .

γ(y)− γ(x) is in the interior of B(S)+ , iff, there are m, p ∈ N with mx+ (p+

1)u ≤ my + pu.

For every state λ on S there exists a state ρ on B1 with λ = ρ ◦ ψ.

Suppose that for every state ρ on S there is a state λ on T with λ◦φ = ρ, then

ψ is isometric by
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?????????????? reference?

For every state ρ of S there is a state λ of T with ρ = λ ◦ φ, if and only if, for

x, y ∈ S, the existence of m, p ∈ N with mx+ (p+ 1)u ≤ my + pu is equivalent to

the existence of n, q ∈ N with nφ(x) + (q + 1)v ≤ nφ(y) + qv.

Let η : T → B(T ) ∼= Affc(E(T )) denote the natural unital additive map from T

into is universal order unit space (B(T ), B(T )+, eT ) (cf. Proposition A.13.7), and

let ψ := η ◦ φ.

By part (iii) of Proposition A.13.7, the additive unital map ψ : S → B(T )

from S to the order unit space (B(T ), B(T )+, eT ) is monotone, if and only if, the

inequality x+ u ≤ y in S implies φ(x) ≤ φ(y) for x, y ∈ S.

to be filled in ??

A.13.7 �

Corollary A.13.9. If (S1, < , u) is a scaled subgroup of (S, < , u) (with in-

duced order), then B(S1) → B(S) is isometric. In particular, every state of S1

extends to a state of S.

Proof. Consider the inclusion map φ : S1 3 x 7→ x ∈ S and let x, y ∈ S1.

There are n, p ∈ N with nx+(p+1)u ≤ ny+pu in S1, if and only if, nφ(x)+(p+1)u ≤
nφ(y) + pu. Now apply part (ii) of Corollary A.13.8 and Proposition A.13.7. �

Corollary A.13.10. Suppose that the scaled abelian semigroup (S, < , u) has

a zero element 0 with 0 ≤ x for all x ∈ S.

If a ∈ S satisfies λ(a) = 0 for all states λ of S, then there exists n(a, u) ∈ N
such that

2na ≤ nu for all n ≥ n(a, u) .

Proof. The proof includes the case, that φ ≡ 0 is the only monotone additive

map φ : S → R.

If φ(x) ≡ 0 is the only monotone linear map φ : S → R, then there is no state

on the sub-semigroup T = N · u of S with induced preorder and order-unit u (by

Corollary A.13.9). It follows that there is m ∈ N with (m + 1)u ≤ mu, because

otherwise there is a state on (T,<S |T, u) that extends to (S,<S , u) by Corollary

A.13.9. We get (n+ `)u ≤ nu for all n ≥ m and ` ∈ N (by induction over `). There

is k ∈ N with a ≤ ku. Thus, 2na ≤ 2nku ≤ nu for all n ≥ m.

If mu ≤ nu always implies m ≤ n, then, by Proposition A.13.7(ii), there are

m, p ∈ N with 3ma+ (p+ 1)u ≤ (m− 1)u+ (p+ 1)u, because 1 ≤ λ(u)− λ(4a) for

all states λ of S.

It implies q3ma+ (p+ 1)u ≤ q(m− 1)u+ (p+ 1)u for all q ∈ N (by induction

over q, cf. proof of Lemma A.13.6). There is k ∈ N with a ≤ ku and k ≥ p+ 1. We

get (q3m+1)a ≤ (q(m−1)+k)u for all q ∈ N. If n ∈ N∩ [q(m−1)+k, (q3m+1)/2]

then 2na ≤ nu. Let q ≥ (2m−3+2k)/(m+2) then q3m+1 ≥ 2((q+1)(m−1)+k).
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It follows that

[n0,∞) ⊆
⋃
q∈N

[q(m− 1) + k, (q3m+ 1)/2]

for n0 := q0(m− 1) + k with q0 := 1 + [(2m− 3 + 2k)/(m+ 2)]. �

14. Approximate intertwining of inductive limits

We have to work sometimes with C *-systems that are inductive limits of com-

pletely positive contractions on non-unital C *-algebras.

Some text missing? ??

We write B∞ := `∞(B)/c0(B) for a Banach space B. Recall that B∞ is a

C *-algebra in case that B is a C *-algebra. Then B∞ is the same as B∞ in the

terminology Q(X,B) := Cb(X,B)/C0(X,B) used in Chapter 6 for locally compact

spaces X (here X := N). More generally, we define B∞ for a sequence B1, B2, . . .

of Banach algebras or C *-algebras by

B∞ := (
∏
n

Bn)/(
⊕
n

Bn) = `∞(B1, B2, . . .)/c0(B1, B2, . . .).

A sequence of contractions Vn : An → Bn defines a contraction V∞ : A∞ → B∞

by

V∞((a1, a2, . . .) + c0(A1, A2, . . .) := (V1(a1), V2(a2), . . .) + c0(B1, B2, . . .)

for (a1, a2, . . .) ∈ `∞(A1, A2, . . .), a norm-bounded sequence with an ∈ An.

to be filled in: basics on indlim(Tn : Bn → Bn+1) ??

The following lemmata collect some basic facts on inductive limits of linear con-

tractions on Banach spaces and c.p. contractions on C *-algebras. We use notations

⊕nBn = c0(B1, B2, . . .) ⊆ c0(L(H)) and ΠnBn = `∞(B1, B2, . . .) ⊆ `∞(L(H)) for

closed subspaces of L(H) with sufficiently big Hilbert space H (which plays only

an intermediate role).

Lemma A.14.1. Suppose that A1, A2, . . . and B1, B2, . . . are Banach spaces, and

that Sn : An → An+1 and Tn : Bn → Bn+1 are contractions.

There is a natural isometric embedding indlim(Tn : Bn → Bn+1) ⊆ B∞ given

by the maps ηn : Bn → B∞ defined by

ηn(b) := (0, · · · , 0, b, Tn(b), Tn+1Tn(b), . . . ) + (⊕nBn) ,

where b ∈ Bn is on the n-th position. We write also Tn,∞ instead of ηn.

Let Vn : An → Bn, Wn : Bn → An+1 contractions, and let Sn := WnVn, Tn :=

Vn+1Wn.

only up to small εn ?

Then there is a natural isometry

indlim(Sn : An → An+1) ∼= indlim(Tn : Bn → Bn+1)
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given by V∞| indlim(Sn : An → An+1) and W∞| indlim(Tn : Bn → Bn+1), where

V∞ : A∞ → B∞ and W∞ : B∞ → A∞ are given on representatives of elements in

A∞ and B∞ by

(a1, a2, . . .) 7→ (V1(a1), V2(a2), . . .) ,

respectively

(b1, b2, . . .) 7→ (0,W1(b1),W2(b2), . . .) .

Suppose now that the An and Bn are operator spaces (respectively are C*-spaces

or C*-algebras). The above given isomorphism is completely isometric (respectively

completely positive, respective is a C*-algebra isomorphism), if, for every k ∈ N
there is n(k) ∈ N such that Vn ⊗ idk and Wn ⊗ idk are contractive (respectively

are positive, i.e., have positive second conjugates; respective the Vn, Wn are C*-

morphisms).

Proof. We have Tk,∞(Vk(a)) = V∞(Sk,∞(a)) for a ∈ Ak because, for n > k

and a ∈ Ak,

Vn(Wn−1Vn−1(· · · (WkVk(a)) · · · )) = Tn−1(· · · (Tk(Vk(a)) · · · )) .

Thus V∞ maps indlim(Sn : An → An+1) into indlim(Tn : Bn → Bn+1).

A similar argument shows that W∞ maps indlim(Tn : Bn → Bn+1) into

indlim(Sn : An → An+1).

Straight calculation shows that W∞ ◦ V∞ = S∞ and V∞ ◦W∞ = T∞, for the

maps S∞ : A∞ → A∞ and T∞ : B∞ → B∞ given on representatives by

(a1, a2, . . . , an, an+1 . . .) 7→ (0, S1(a1), S2(a2), . . . , Sn−1(an−1), Sn(an), . . .) ,

and

(b1, b2, . . . , bn, bn+1 . . .) 7→ (0, T1(b1), T2(b2), . . . , Tn−1(bn−1), Tn(bn), . . .) .

The operators S∞ and T∞ are contractions and fix the images of

indlim(Sn : An → An+1) ⊆ A∞, respectively of indlim(Tn : Bn → Bn+1) ⊆ B∞.

Indeed: On representatives one has S∞(Sn,∞(an)) = Sn,∞(an) for an ∈ An.

Thus, the restriction of V∞ defines an isometric linear isomorphism from

indlim(Sn : An → An+1) onto indlim(Tn : Bn → Bn+1) with the restriction of W∞

to indlim(Tn : Bn → Bn+1) as inverses.

Suppose now that the An and Bn are operator spaces, matrix operator sys-

tems, or C *-spaces (all not necessarily unital). It follows, that this isomorphism is

completely isometric (respectively are matrix-order isomorphisms) if V∞ and W∞

are completely contractive (respectively completely positive) on the images of the

respective images of the inductive limits.

It suffices to suppose that for each k ∈ N there is n(k) ∈ N such that Vn ⊗ idk

and Wn ⊗ idk are contractions (respectively are positive) for each n ≥ n(k). �
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Lemma A.14.2. Suppose that B1, B2, . . . are separable Banach spaces and that

Gn ⊆ L(Bn, Bn+1) are subsets of linear contractions from Bn into Bn+1. If, for

each n ∈ N, the operator Tn : Bn → Bn+1 is in the point-norm closure of Gn ( =

closure of Gn in strong operator topology), then there exist g1, g2, . . .G, such that in

`∞(B1, B2, . . .)/c0(B1, B2, . . .) the related inductive limits coincide:

indlim(gn : Bn → Bn+1) = indlim(Tn : Bn → Bn+1) .

We identify here the inductive limits with their canonical corresponding closed

subspaces of B∞ := `∞(B1, B2, . . .)/c0(B1, B2, . . .).

Proof. There exist sequences b1,n, b2,n, . . . ∈ Bn that are dense in Bn, for each

n ∈ N.

We define Tm,n : Bm → Bn for n ≥ m, by Tm,m = id (identity map of Bm),

Tn,n+1 := Tn Tm,n := Tn−1 ◦ · · · ◦ Tm+1 ◦ Tm for n > m. We denote by

Tm,∞ : Bm → X := indlim(Tn : Bn → Bn+1) ⊆ B∞

the defining morphisms from Bm into X. Recall that for our realization X ⊆ B∞

of indlim(Tn : Bn → Bn+1) holds

Tm,∞(b) = (0, . . . , 0, b, Tm,m+1(b), Tm,m+2(b), . . .) + c0(B1, B2, . . .)

for b ∈ Bm. Then Tm,∞ = Tn,∞ ◦ Tm,n .

The set {Tm,∞(bk,m) ; k,m ∈ N} is dense in X := indlim(Tn : Bn → Bn+1),

because X is the closure of
⋃
m Tm,∞(Bm).

We find linear subspaces Ln ⊆ Bn and gn ∈ Gn of finite dimension, such that

(i) Ln contains the sets Tn−1(Ln−1)∪gn−1(Ln−1) , { b1,n, b2,n, . . . , bn,n } , and

{Tk,n(bj,k) ; 1 ≤ k ≤ n − 1, j ≤ n} , and {gk,n(bj,k) ; 1 ≤ k < n − 1, j ≤
n} , where gk,n := gn−1 ◦ · · · ◦ gk+1 ◦ gk for 1 ≤ k < n− 1.

(ii) ‖Tn(b)− gn(b)‖ ≤ 2−n‖b‖ for b ∈ Ln .

Then Tn(Ln) ⊆ Ln+1, gn(Ln) ⊆ Ln+1, and indlim(Tn : Ln → Ln+1) and

indlim(gn : Ln → Ln+1) are the same closed subspaces of (
∏
n Ln)/(

⊕
n Ln) ⊆ B∞,

because, Tm,∞(Lm) ⊆ Tn,∞(Ln) and gm,∞(Lm) ⊆ gn,∞(Ln) for n ≥ m, and be-

cause, for b ∈ Lm,

‖Tm,∞(b)− gm,∞(b)‖ ≤ ‖b‖ ·
∑
n≥m

‖(Tn − gn)|Ln ‖ ≤ ‖b‖ · 21−m .

The set {Tm,∞(bk,m) ; m, k ∈ N} is dense in indlim(Tn : Bn → Bn+1). The element

Tm,n(bk,m) is in Ln for n > max(k,m). Thus, Tm,∞(bk,m) = Tn,∞(Tm,n(bk,m)) ∈
Tn+1,∞(Ln+1). It shows that indlim(Tn : Ln → Ln+1) is the same closed subspace of

B∞ as indlim(Tn : Bn → Bn+1). Since also gm,n(bk,m) is in Ln for n > max(k,m),

a similar argument shows that

indlim(gn : Ln → Ln+1) = indlim(gn : Bn → Bn+1) .

It is obvious that the resulting isomorphisms are, e.g. , C *-algebra isomor-

phisms if the intertwining maps are e.g. C *-morphisms. �
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15. Intersection with sums of left and right ideals

The following Remark allows to circumvent in some cases the rather engaged

general (semi-constructive) reduction to relatively weakly injective separable sub-

spaces of operator spaces given in Section 14.

Remark A.15.1. The sum L+R ⊆ B of a closed left ideal L and a closed right

ideal R of a C *-algebra B is always a closed subspace of B, see Proposition A.15.2.

Thus, if D is a C *-subalgebra of B with the property that (D ∩ L) + (D ∩ R)

is dense in D ∩ (L+R) then automatically (D ∩ L) + (D ∩R) = D ∩ (L+R).

Density of (D ∩ L) + (D ∩ R) in D ∩ (L + R) is a very special situation. The

following trivial example shows this:

Let B = C⊕C, L := C⊕0, R := 0⊕C and D := C·(1, 1). Then D∩(L+R) = D

but D ∩ L = {0} and D ∩R = {0}.

But in the very particular case of Lemma B.14.1 where B is a C *-algebra,

G ⊆ B separable subset, X is a closed left ideal and Y is a closed right ideal of B,

we need only Part (2) of Sublemma B.14.2 to get a separable C *-algebra D with

G ⊆ D and (D ∩X) + (D ∩ Y ) dense in D ∩ (X + Y ).

Then the equality follows from next Proposition A.15.2.

Proposition A.15.2. Let L a closed left ideal and R a closed right ideal of a

C*-algebra A. Consider the intersections D := L∗ ∩ L and E := R∗ ∩R. Then

(i) D and E are hereditary C*-subalgebras A that are identical with the sets

of products L∗ · L = {a∗b ; a, b ∈ L} = D, respectively R ·R∗ = E .

(ii) L and R are the element-wise products L = A · D and R = E · A,

where, e.g. , A · D := { a · d ; d ∈ D , a ∈ A } .

(iii) Let η := πL∩R : a 7→ a + (L ∩ R) denotes the quotient map from A onto

A/(L ∩R). For any x ∈ L and y ∈ R holds

max
(
‖η(x)‖, ‖η(y)‖

)
≤ ‖η(x+ y)‖ ≤ 2 max

(
‖η(x)‖, ‖η(y)‖

)
.

(iv) The algebraic sum L+R is a closed linear subspace of A.

(v) The second conjugate operator space of A/(L+R) is naturally isomorphic

to the ternary algebra (1 − q)A∗∗(1 − p), where p and q are the “open”

support projections in A∗∗ for the hereditary C*-subalgebras D = L∗ ∩ L
and E = R∗ ∩R of A. In particular,

‖πL+R(a)‖ = ‖(1− q)a(1− p)‖ for all a ∈ A . (15.1)

Here L∗ (respectively R∗) mean the right ideal (respectively left ideal) given by

L∗ := {a∗ ; a ∈ L} and R∗ := {a∗ ; a ∈ R} , – not the dual spaces. Our approach

here ignores the general theory of operator spaces, because we try to derive all from

basic knowledge about Functional analysis, as e.g. the “Krein bi-polar theorem” for

convex subsets in locally convex vector spaces ... All that we show here prove in

the same way the corresponding results for the operator-matrix norms, because
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e.g. Mn(A/L) ∼= Mn(A)/Mn(L) and Mn(A) ∼= Mn⊗A, ... etc. The following proof

is not minimal, because contains some additional observations.

Proof. Clearly, D := L∗ ∩ L = D2 because D is a C *-algebra and every

element of a C *-algebra is the product of two elements, e.g. by using polar decom-

position and roots of positive elements.

The closed left ideal L is a non-degenerate right module for the C *-algebra D.

Thus L = L ·D by the Cohen factorization theorem A.11.1.

Then A · D ⊆ L, L = L · D and L ⊆ A give that A · D = L . Since D is a

hereditary C *-subalgebra, we get D = D3 ⊆ DAD ⊆ D. It follows D = D2 ⊆
L∗ · L = DA2D ⊆ D.

Similar considerations, – or passage to the left ideal R∗ := {a∗ ; a ∈ R} –, show

also the corresponding results for closed right ideals of A and E := R∗ ∩R.

Since (L ∩R) ·D ⊆ L ∩R and E · (L ∩R) ⊆ L ∩R we get that

dist(f · x, L ∩R) ≤ ‖f‖ · dist(x, L ∩R)

for f ∈ E and x ∈ A, and

dist(x · g, L ∩R) ≤ ‖g‖ · dist(x, L ∩R)

for g ∈ D, and x ∈ A.

Let η := πL∩R. Then obviously ‖η(x + y)‖ ≤ ‖η(x)‖ + ‖η(y)‖ ≤
2 max

(
‖η(x)‖, ‖η(y)‖

)
.

We show that max
(
‖η(x)‖, ‖η(y)‖

)
≤ ‖η(x+ y)‖ :

Let x ∈ L and y ∈ R. Then η((x + y)(x∗x)1/n) = η(x(x∗x)1/n), because

y(x∗x)1/n ∈ L ∩R. We get an estimate

dist((x+ y)(x∗x)1/n, L ∩R) ≤ ‖x‖2/n dist((x+ y), L ∩R) ,

because (x∗x)1/n ∈ D .

It follows that for all n ∈ N, ‖η(x(x∗x)1/n)‖ = ‖η((x + y)(x∗x)1/n)‖ ≤
‖x‖2/n‖η(x+ y)‖. On the other hand, ‖η(x)‖ ≤ ‖η(x(x∗x)1/n)‖+ ‖x−x(x∗x)1/n‖.

Since limn→∞ ‖x‖2/n = 1 and limn→∞ ‖x − x(x∗x)1/n‖ = 0, we obtain that

‖η(x)‖ ≤ ‖η(x+ y)‖. In the same way we get that ‖η(y)‖ ≤ ‖η(x+ y)‖.

It follows that the natural linear map from B := L/(L∩R)⊕∞R/(L∩R) onto

the image C := η(L+ R) ⊆ A/(L ∩ R) of the sum L+ R ⊆ A is a bijective linear

map that maps the Banach space B onto the normed vector space C. The above

given estimates show now that the norm on B induced by this map is equivalent to

the given complete norm on B. Thus, B is also a Banach space with this new norm,

and C is a Banach space with respect to the norm on C induced from A/(L ∩R).

This implies that C is closed in A/(L∩R). It follows that L+R = η−1(C) is closed

in A.
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Therefore A/(L + R) is a well-defined Banach space. It is in a natural way

an operator space, because we can in above observations A, L and R replace by

Mn(A) ∼= Mn ⊗A, Mn(L) and Mn(R).

The general theory of Banach spaces A shows that for closed linear subspaces

X of A the bi-dual space (A/X)∗∗ is naturally isomorphic to A∗∗/wcl(X), where

wcl(X) is the σ(A∗∗, A∗)-closure of X. It is identical with the bi-polar Xoo of X

in A∗∗. It holds dist(a,X) = dist(a,Xoo) measured with the norm in A∗∗. Thus

‖πX(a)‖ = ‖πXoo(a)‖ for all a ∈ A.

In case of (matrix-normed) operator spaces this carries over to the matrix spaces

Mn(A), Mn(X) and Mn(A/X) ∼= Mn(A)/Mn(X).

The σ(A∗∗, A∗) closure of L + R in A∗∗ is A∗∗p + qA∗∗, where p, q ∈ A∗∗ are

the “open” projections corresponding to the hereditary C *-subalgebras D and E

respectively.

The second conjugate of A/(L + R) is the quotient of A∗∗ by the bi-polar of

L+R in A∗∗. The bi-polar of L+R is just the σ(A∗∗, A∗)-closure of L+R in A∗∗.

It contains the sum of A∗∗p ∼= L∗∗ and qA∗∗ ∼= R∗∗, and it is not difficult to see

that the unit-ball of A∗∗p+q A∗∗ is σ(A∗∗, A∗)-compact. Here p and q are the open

projections in A∗∗ corresponding to the hereditary C *-subalgebras D = L∗∩L and

E := R∗∩R of A. Thus,
(
A/(L+R)

)∗∗
is natural isomorphic to A∗∗/(A∗∗p+q A∗∗).

It is easy to check that the norm of π(A∗∗p+q A∗∗)(a) for a ∈ A∗∗ is equal to

‖(1− q)a(1− p)‖ .

In particular, ‖πL+R(a)‖ = ‖(1− q)a(1− p)‖ for all a ∈ A .

In every W∗-algebra M holds: If p, q ∈M are projections, then

dist(a,Mp+ qM) = ‖(1− q)a(1− p)‖ for all a ∈M .

This is the case because (1− q)a(1− p)− a ∈Mp+ qM and the map T : M 3 a 7→
(1− q)a(1− p) is a linear contraction with T 2 = T and kernel = Mp+ qM .

It follows that ‖πL+R(a)‖ = dist(a,A∗∗p + qA∗∗) = ‖(1 − q)a(1 − p)‖ for all

a ∈ A. �

Corollary A.15.3. If L and R are closed left and right ideals of a C*-algebra

A and B ⊆ A a separable C*-subalgebra of A then there exists a separable C*-algebra

C ⊆ A such that B ⊆ C and

B ∩ (L+R) ⊆ (C ∩ L) + (C ∩R) .

Proof. By Proposition A.15.2(iv,v), the linear subspace L+R is closed in A.

Thus B∩ (L+R) is a closed separable subspace of L+R and of B. We find a dense

sequence {b1, b2, . . .} in the unit-ball of the separable Banach space B ∩ (L + R).

In L + R are elements cn ∈ L and dn ∈ R such that bn = cn + dn. The separable

C *-algebra C of A generated by B and {c1, c2, . . . ; d1, d2, . . .} has the properties

that B ⊆ C, and that C ∩L and C ∩R are closed left and right ideals of C, and, by
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Proposition A.15.2, (C∩L)+(C+R) is a closed subspace of C that contains a dense

subset of B∩ (L+R) ⊂ C. Thus, B ⊆ C and B∩ (L+R) ⊆ (C ∩L) + (C ∩R) . �

16. Surjectivity and control of perturbations

Let E and F be Banach spaces and T a bounded linear map from E into

F . If X and Y are subsets of E, then cl(X) means the (norm-) closure of X,

wcl(X) ⊆ E∗∗ is the σ(E∗∗, E∗)-closure of X in the second conjugate space E∗∗ of

E, and distH(X,Y ) denotes the Hausdorff distance between subsets X,Y ⊆ E (or

X,Y ⊆ E∗∗ or – more generally – subsets of any metric space E) that is given by

distH(X,Y ) := sup{dist(a, Y ),dist(b,X) ; a ∈ X, b ∈ Y } .

We denote by S the open unit ball of E.

Does def. of f(x, T ) fit the case of T := π(c(.)d) ?

Suppose that there exists a function f(t) of t ∈ (0, 2] with the properties that

limt→0 f(t) = 0 and that if a, b ∈ S and ‖T (a) − T (b)‖ < x then dist(a, S ∩
T−1(T (b)) ≤ f(x) .

This allows to show that T maps the closed unit ball S of E onto the closure

of T (S) :

Since T is bounded, T (S) is contained in the closure of T (S).

Let g1, g2, . . . ∈ T (S) ⊆ F a Cauchy sequence that converges to some h∞ ∈ F .

Find a subsequence h1, h2, . . . of (gn) such that for each e ∈ T−1(hn)∩S there

exists e′ ∈ T−1(hn+1)∩S with ‖e′−e‖ ≤ f(‖hn+1−hn‖) and
∑
n f(‖hn+1−hn‖) <

∞.

The latter requires only that limx→0 f(x) = 0 if we pass to a suitable sub-

sequence of (hn) of (gn).

Then one finds step-wise en ∈ T−1(hn) with
∑
n ‖en − en+1‖ < ∞. It follows

that (en) converges to some e∞ ∈ S and T (e∞) = h∞.

We define a function f(x, T ) for x ∈ (0,∞) by

Definition A.16.1.

f(x, T ) := sup{ distH
(
S ∩ T−1(T (a)), S ∩ T−1(T (b))

)
; a, b ∈ S, ‖T (a− b)‖ ≤ x } .

Clearly f(x, T ) is an increasing function of x ∈ (0,∞). The perturbation con-

stant per(T ) will be defined by per(T ) := limx→0 f(x, T ) .

Proposition A.16.2. Let x 7→ f(x, T ) the above defined function.

(i) f(x, T ) is a continuous increasing function on ]0,∞[.

(ii) per(T ) = 0 implies T (cl(S)) = cl(T (S)).

(iii) f(x, T ) = f(x, T ∗∗) for every x > 0.
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Here T ∗∗ means the second adjoint operator of T . f(x, T ) is the infimum of all

numbers y > 0 such that given b ∈ S, d ∈ T (S) with ‖T (b) − d‖ ≤ x there exists

a perturbation b + h of b inside S such that ‖h‖ ≤ y and T (b + h) = d. Thus,

per(T ) = 0 says that a small perturbation inside T (S) can be realized by a small

perturbation inside S. The proofs and further results will be given in

Section ?? (= in old A).

Now let A be a C *-algebra and L,R closed left and right ideals with open

support projections l and r in A∗∗ respectively, i.e., l, r are the open projec-

tions in A∗∗ satisfying A∗∗l = wcl(L) and rA∗∗ = wcl(R), cf. [767, vol.I,

chp.III.,def.6.19,cor.6.20], [616, thm.3.10.7, prop.3,11.9, rem.3.11.10].

Put q = 1 − l and p = 1 − r. Let b, d be elements of A∗∗ in the multiplier

algebraM(A) of A such that pbb∗p is invertible in pA∗∗p with inverse g and qd∗dq

is invertible in qA∗∗q with inverse h.

The algebraic sum R+L is a closed linear subspace of A, wcl(L+R) = A∗∗l+

rA∗∗ and ‖πL+R(a)‖ = ‖(1− r)a(1− l)‖ for all a ∈∈ A by Proposition A.15.2.

We denote by π = πL,R the quotient map A→ A/(L+R) given by c→ c+L+R

and denote by π(b(.)d) the map given by c→ bcd+ L+R for c ∈ A.

Proposition A.16.3. f(x, T ) ≤ x(‖g‖ ‖h‖)1/2 + (2x(‖g‖ ‖h‖)1/2)1/2, where

T := π(b(.)d).

The Proof follows from Corollaries ?? (old cor.A.2.9 ???) and ?? (old cor.A.3.2

???) (cf. Section ?? old A.4?).

We obtain from Propositions A.16.2(ii) and A.16.3 immediately the following

corollary:

Corollary A.16.4. Under the above assumptions concerning A, L, R, b and

d the quotient map A→ A/(L+R) maps b(cl(S))d onto a closed set.

In particular the quotient map maps the closed unit ball of A onto the closed

unit ball of A/(L+R).

For every positive integer n, the map [bj,k]n → [pbj,kq]n from Mn(A∗∗) ∼=
Mn(A)∗∗ onto Mn(pA∗∗q) is a contraction and has kernel Mn(A∗∗l + rA∗∗) =

Mn(wcl(L+R)) ∼= wcl(Mn(L+R)); passage to the quotient space defines an isomet-

ricMn–bimodule isomorphism from (Mn(A)/Mn(L+R))∗∗ ∼= Mn(A∗∗)/Mn(wcl(L+

R)) onto Mn(pA∗∗q). On the other hand there is a natural Mn–bimodule isomor-

phism from Mn(A/(L + R)) onto Mn(A)/Mn(L + R). The matrix norms induced

by these isomorphisms give A/(L + R) the structure of a matrix normed space in

the sense of

Effros [EF2]

such that the second conjugate matrix normed space is completely isometrically

isomorphic to pA∗∗q, an operator subspace of A∗∗ and C *-triple system,

cf. Section ??.
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If moreover A is unital and L = {b∗ : b ∈ R} then p = q and, under the above

identifications, A/(L + R) = pAp ⊆ pA∗∗p becomes a matrix order unit space in

the sense of [235] with matrix order unit p ∈ A/(L + R) such that the second

conjugate matrix order unit space is just the unital C *-algebra pA∗∗p, thus then

A/(L + R) is an operator space in the sense of [245]. More generally we call a

matrix order unit space X a C*-system if its second conjugate matrix order unit

space X∗∗ is unitally matrix order isomorphic to a unital C *-algebra. Then X is

an operator system in the sense of

??? ??? [C/E2],

i.e., a closed unital and selfadjoint linear subspace of a C *-algebra together

with the matrix order inherited from the inclusion. The C *-algebra structure on

X∗∗ is uniquely determined as the second conjugate matrix order unit structure of

the given one on X and we can define the left multiplier algebra M`(X), the right

multiplier algebra Mr(X) and the multiplier algebra M(X) of X as follows:

M`(X) := {b ∈ X∗∗ : bX ⊆ X}, Mr(X) := {b ∈ X∗∗ : Xb ⊆ X}, M(X) :=

M`(X) ∩Mr(X). Here we identify X with its canonical and isometric image in

X∗∗ by the evaluation map evX : X → X∗∗ . The algebras M`(X) and Mr(X)

are closed subalgebras of X∗∗ contained in X (more precisely: in the image of

evX : X → X∗∗), M`(X) = {b∗ : b ∈ Mr(X)} and the multiplier algebra M(X)

of X is a unital C *-algebra which is unitally completely positively and completely

isometrically contained in the operator system X. In our special case A/(L+R) is

identified with pAp(⊆ pA∗∗p ⊆ A∗∗) and Mr(A/(L+R)) = {pbp ; b ∈ A, pApbp ⊆
pAp}, M(A/(L+R)) = {pbp ; b ∈ A, pbpAp+ pApbp ⊆ pAp}.

LetD be a hereditary C *-subalgebra ofA (i.e.D closed, selfadjoint andDAD ⊆
D). An element b ∈ A that satisfies Db ⊆ D (respectively bD ⊆ D, bD +Db ⊆ D)

a right normalizer (respectively left normalizer, normalizer) of D in A. The right

normalizers, left normalizers, normalizers obviously form closed operator algebras

N r(D), N `(D) and N (D) respectively, N r(D) = {b∗ : b ∈ N `(D)} and N (D) =

N `(D)∩N r(D) is a C *-subalgebra of A. Notice that L = A ·D and R = D ·A are

closed left and right ideals of A, respectively, whose support projections in A∗∗ are

equal that of D (i.e., are equal to the unit element of D∗∗ = wcl(D) ⊆ A∗∗). From

definitions we see that L = cl(AD) = A ·D ⊆ N r(D), R = cl(DA) ⊆ N `(D) and

D ⊆ N (D) are closed ideals of N r(D), N `(D) and N (D) respectively.

We define A//D := A/(cl(AD) + cl(DA)), the (unital) quotient–C*-system of

the unital C *-algebra A with respect to the hereditary C*-subalgebra D of A. We

denote again by πD : A→ A//D the quotient map b 7→ b+ cl(AD) + cl(DA). Now

we are in position to state the main result of this section.

Theorem A.16.5. Let A be a unital C*-algebra. D a hereditary C*-subalgebra

of A, A//D := A/(AD +DA) the quotient–C*-system of A with respect to D and

πD : A→ A//D the quotient map.
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(i) The restriction of πD to N r(D) (resp. to N `(D)) is a Banach algebra

epimorphism ontoMr(A//D) (resp. ontoM`(A//D)) with kernel cl(AD)

(resp. cl(DA)),

(ii) for every positive integer n, πD ⊗ idn maps the closed unit ball of

N r(Mn(D)) = Mn(N r(D)) ⊆Mn(A)

onto the closed unit ball of

Mn(Mr(A//D)) ⊆Mn(A//D) ∼= Mn(A)//Mn(D) ,

(iii) πD| N (D) is a C*-algebra epimorphism from the (two-sided) normalizer

algebra N (D) ⊆ A of D onto the multiplier algebra M(A//D) of A//D

with kernel ideal ker(πD| N (D)) = D .

As a corollary we get the following which can be seen as alternative formulation

of

REFERENCE ?

Theorem ?? in view of Proposition ??.

Corollary A.16.6. Let A and C be unital C*-algebras, B a unital closed

subalgebra of C and V : A//D → C a unital completely isometric map such that

B ∪ {b∗b : b ∈ B} ⊆ Im(V ). Then there exists a unital closed subalgebra E of A

such that

(i) E ∩ (cl(AD) + cl(DA)) = cl(AD),

(ii) V ◦ πD|E is a Banach algebra epimorphism form E onto B with kernel

cl(AD) and

(iii) the induced map [V ◦πD]0 : E/cl(AD)→ B is completely isometric, where

B is equipped with the matrix norms induced by C and E/cl(AD) is

equipped with the matrix norms induced by the inclusion A/cl(AD) ⊆
A∗∗p.

If moreover B is a C*-subalgebra of C then there exists a unital C*-subalgebra F

of A such that

(iv) F ∩ (cl(DA) + cl(AD)) = D and

(v) V ◦ πD|F is a C*-algebra epimorphism from F onto B with kernel D.

With other words and under the assumptions of Corollary A.16.6: B is a C *-

quotient algebra of a C *-subalgebra of A if B is a C *-subalgebra of C. Theorem

?? and Corollary ?? are proven in Section ??.

??? Give ref. to suitable place In a forthcoming paper we shall show:

The assumptions of Corollary ?? are satisfied with the CAR-algebra A := M2∞

and with D,C and V suitably chosen if and only if B is separable and exact in the

sense of [KI2], cf. [KI4].
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Notice that all proofs work both in real and complex case. There are shorter

proofs if one is interested only in the results of Theorem ??(iii) and Corollary

??(iv,v).

The results presented here are essentially reworking of material which has been

circulating as preprint since 1989. Results similar to those of Corollary ???1.3???

and Theorem ???1.4(i)??? are also contained in preprints of L. Brown [BR], where

he gives proofs using different methods and estimates.

17. On perturbation of unitaries

Change here all signs to Halmos unitary !

If b is a contraction on a Hilbert space we denote by U(b) ∈M2(A) the “Halmos

unitary” matrix defined in Remark 4.2.4, i.e., the matrix[
b , −(1− bb∗)1/2

(1− b∗b)1/2, b∗

]
.

We are going to prove the following Proposition A.17.1 and its Corollary A.17.2.

Proposition A.17.1. Let A denote a complex (or real) unital C*-algebra, u

a unitary in A and p, q a pair of projections in A such that ‖puq‖ < 1. Then for

every contraction b in pAq there exists a unitary ũ in A such that pũq = b and

‖u− ũ‖ = ‖U(puq)− U(b)‖ .

Corollary A.17.2. Let A be a unital C*-algebra (real or complex), p, q

nonzero projections in A and T the natural map from A onto pAq given by

T (a) = paq (a in A). Then the perturbation function f(x, T ) of T , cf. Definition

A.16.1, can be estimated by f(x, T ) ≤ x+ (2x)1/2.

We need some preliminary lemmata. To simplify notation, let diag(a, b, . . .)

denote the diagonal matrix with diagonal elements a, b, . . . , let M(c) be the matrix[
c , −(p− cc∗)1/2

(q − c∗c)1/2, c∗

]
if c is a contraction in pAq and let us denote by Z the matrix[

0, 1

1, 0

]
.

Lemma A.17.3. Let A be a C*-algebra, p, q projections in A, a in pAq, d in

qAp such that a and

N :=

[
a , −(p− aa∗)1/2

(q − a∗a)1/2, d

]
are contractions in M2(A).

Then M(a) satisfies M(a)∗M(a) = diag(q, p) , M(a)M(a)∗ = diag(p, q) .

If moreover ‖a‖ < 1 then d = a∗.
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Proof. (1 − aa∗)1/2p = p(1 − aa∗)1/2 = (p − aa∗)1/2 and q(1 − a∗a)1/2 =

(1−a∗a)1/2q = (q−a∗a)1/2 because aa∗ ≤ p, aa∗ ≤ q and paq = a . It follows that

a∗(p−aa∗)1/2 = (q−a∗a)1/2a∗, (p−aa∗)1/2a = a(q−a∗a)1/2, and (q−a∗a)1/2d =

(1−a∗a)1/2d. Put M := M(a). Using these identities straightforward computations

show M∗M = diag(q, p) and MM∗ = diag(p, q) . Moreover

M∗N = diag(q, p− aa∗ − ad) + diag(c, 0)Z

where c := a∗(p − aa∗)1/2 + (q − a∗a)1/2d. But ‖M∗N‖ ≤ ‖M∗‖ · ‖N‖ ≤ 1 by

the assumptions on N and the above observations concerning M . Looking to the

(1, 1)-element of (M∗N)(M∗N)∗ we obtain ‖q + cc∗‖ ≤ 1. On the other hand

c = qc by the above identities. Thus q + cc∗ = q(q + cc∗)q ≤ q, i.e., c = 0. It

follows:

(1− a∗a)1/2(−a∗) = −a∗(p− aa∗)1/2 = (q − a∗a)1/2d = (1− a∗a)1/2d .

If ‖a‖ < 1 then (1− a∗a)1/2 is invertible and d = −a∗. �

Lemma A.17.4. Let be A, a, p and q as in Lemma A.17.3 and ‖a‖ < 1. If the

matrix

V :=

 a, (p− aa∗)1/2, g

(q − a∗a)1/2, d, h

f, k, e


is a partial isometry in M3(A) such that V ∗V = diag(q, p, s) and V V ∗ =

diag(p, q, r) then f = g = h = k = 0 , d = −a∗ , e∗e = s and ee∗ = r.

Proof. The upper left 2×2-sub-matrix of V must be a contraction in M2(A).

By Lemma A.17.3, d = −a∗ because ‖a‖ < 1. Using now the equality V V ∗ =

diag(p, q, r) from d = −a∗ we get gg∗ = 0, hh∗ = 0, and using V ∗V = diag(q, p, s),

we obtain f∗f = 0, k∗k = 0. From f = g = h = k = 0 it follows that e∗e = s and

ee∗ = r . �

Lemma A.17.5. Let p, q, r, s be projections in a unital C*-algebra A and v, w ∈
A such that v∗v = q, ww∗ = p, p+ r + vv∗ = 1 and q + s+ w∗w = 1. Put

D :=

 p, v, r

0, 0, 0

0, 0, 0

 , E :=

 q, w∗, s

0, 0, 0

0, 0, 0

 , F (y) :=

 y, 0, 0

0, 0, 0

0, 0, 0

 .
And G(y) := D∗F (y)D , H(y) := E∗F (y)E , T (y) := D∗F (y)E if y is in A.

Then, for each y ∈ A,

(i)

T (y) =

 pyq, pyw∗, pys

v∗yq, v∗yw∗, v∗ys

ryq, ryw∗, rys

 .

(ii) G and H are injective C*-morphisms from A into M3(A) such that G(1) =

diag(p, q, r) and H(1) = diag(q, p, s).

(iii) T is an isometry from A into M3(A) such that T (y)T (y)∗ = G(yy∗) and

T (y)∗T (y) = H(y∗y) for y ∈ A.
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(iv)

T (a+ vb+ cw + vdw + e) =

 a, c, 0

b, d, 0

0, 0, e


if e ∈ rAs, a ∈ pAq, b ∈ qAq, c ∈ pAp and d ∈ qAp.

(v) If y ∈ A then the equality

T (y) =

 a, c, 0

b, d, 0

0, 0, e


implies y = a+vb+cw+vdw+e with e ∈ rAs, a ∈ pAq, b ∈ qAq, c ∈ pAp
and d ∈ qAp.

(vi) An element y = a+vb+cw+vdw+e satisfying the conditions of Part(iv) is

a unitary of A if and only if the upper left 2×2–submatrix is a partial isom-

etry (say W ) in M2(A) with W ∗W = diag(q, p) and WW ∗ = diag(p, q)

and e is a partial isometry with e∗e = s and ee∗ = r .

Proof. (i) is obvious.

(ii,iii): We denote M3(A) by B and the projection diag(1, 0, 0) = F (1) by

P . Then F defines a unital C *-algebra isomorphism from A onto PBP . By our

assumptions DD∗ = P = EE∗. Thus z → D∗zE, z → D∗zD and z → E∗zE

define linear isometries from PBP onto D∗DBE∗E, D∗DBD∗D and E∗EBE∗E

respectively. Moreover the latter two are unital C *-algebra isomorphisms.

T (y)T (y)∗ = D∗F (y)EE∗F (y∗)D = D∗F (yy∗)D = G(yy∗)

and T (y)∗T (y) = H(y∗y). Hence T is an isometry from A onto D∗DBE∗E and

G,H are unital *-isomorphisms from A onto D∗DBD∗D and E∗EBE∗E respec-

tively. Computations show that G(1) = D∗D = diag(p, q, r) and H(1) = E∗E =

diag(q, p, s).

(iv): By the assumptions on p, q, r, s, w, v we have ws = qs = rv = rp = pv =

wq = 0 . Put y := a+ vb+ cw + vdw + e . Then by the assumptions on a, b, c, d, e

we have ry = e = ys = rys. With g = y − e by (i) it follows that

T (y) =

 pgq, pgw∗, 0

v∗gq, v∗gw∗, 0

0, 0, e

 .
Using pv = wq = 0 we get pgq = paq = a, pgw∗ = cww∗ = cp = c, v∗gq = v∗vb =

qb = b and v∗gw∗ = v∗vdww∗ = qdp = d.

(v): As we have seen in the proofs of (ii) and (iii), T defines an isometry from

A onto diag(p, q, r)B diag(q, p, s).

From T (y) = diag(p, q, r)T (y) diag(q, p, s) we see that a = paq, b = qbq, etc.

Put z := a+ vb+ cw + vdw + e. Then by (iv), T (z) = T (y). But ker(T ) = 0, i.e.

y = z.
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(vi): By (ii), (iii) and (iv),

W ∗W = diag(q, p), WW ∗ = diag(p, q), e∗e = s and ee∗ = r if and only if

T (y)∗T (y) = H(1) and T (y)T (y)∗ = G(1) if and only if

H(1− y∗y) = 0 and G(1− yy∗) = 0 if and only if

y∗y = 1 = yy∗ .

�

Proof of Proposition A.17.1. :

We put a = puq. Then ‖a‖ < 1, (1 − a∗a)−1/2 and (1 − aa∗)−1/2 exist. Let

v = (1 − p)uq(1 − a∗a)−1/2 and w = (1 − aa∗)−1/2pu(1 − q). We have v∗v =

(1− a∗a)−1/2qu∗(1− p)uq(1− a∗a)−1/2 = (1− a∗a)−1/2(q− a∗a)(1− a∗a)−1/2 = q

because qa∗a = a∗a = a∗aq. Similarly we obtain ww∗ = p. In particular w and v

are partial isometries. By definitions of v and w we have (1−p)v = v, w(1−q) = w,

(1− p)uq = v(1− a∗a)1/2 = vq(1− a∗a)1/2 = v(q − a∗a)1/2 ,

and pu(1− q) = (p− aa∗)1/2w. Thus

vv∗ ≤ 1− p, w∗w ≤ 1− q, v∗uq = (q − a∗a)1/2

and puw∗ = (p − aa∗)1/2. Put r = 1 − p − vv∗ and s = 1 − q − w∗w. Then

p, v, r, q, w, s satisfy the assumptions of Lemma A.17.5 and T (u) defined there satis-

fies T (u)∗T (u) = H(u∗u) = H(1) = diag(q, p, s), T (u)T (u)∗ = G(1) = diag(p, q, r)

by Lemma A.17.5(ii,iii). Moreover, by Lemma A.17.5(i) and the above equations,

the Lemma A.17.4 applies to T (u):

T (u) =

 a, (p− aa∗)1/2, 0

(q − a∗a)1/2, −a∗, 0

0, 0, e


with e∗e = s, ee∗ = r. We put ũ = b + v(q − b∗b)1/2 + (p − bb∗)1/2w − vb∗w + e.

By Lemma A.17.5(iv),

T (ũ) =

 b, (p− bb∗)1/2, 0

(q − b∗b)1/2, −b∗, 0

0, 0, e

 .
By Lemma A.17.3 and Lemma A.17.5(vi), the element ũ is a unitary in A. We have

‖u− ũ‖ = ‖T (u− ũ)‖ = ‖M(a)−M(b)‖.
Now if c ∈ pAq then U(c) = M(c) + diag(1− p, 1− q)Z.

Thus ‖u− ũ‖ = ‖U(a)− U(b)‖ = ‖U(puq)− U(b)‖. �

Lemma A.17.6. Let be a, b contractions and h, k positive selfadjoint operators

on a Hilbert space. Then

(i) ‖h1/2 − k1/2‖ ≤ ‖h− k‖1/2,
(ii) ‖a∗a− b∗b‖ ≤ 2‖a− b‖,
(iii) ‖U(a)− U(b)‖ ≤ ‖a− b‖+ (2‖a− b‖)1/2.
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Proof. (i): Let t = ‖h− k‖. Then h+ t ≤ (h1/2 + t1/2)2 and k ≤ h+ t. The

function g(t) = t1/2 is operator monotone on [0,∞), cf. [767, Prop.I.6.3].

Thus k1/2 ≤ (h + t)1/2 ≤ h1/2 + t1/2 and we can interchange k and h in this

inequality.

(ii): a∗a− b∗b = a∗(a− b) + (a− b)∗b.

(iii): Let

c := diag
(
(1− aa∗)1/2 − (1− bb∗)1/2, (1− a∗a)1/2 − (1− b∗b)1/2

)
.

By (i) and (ii) we get ‖c‖ ≤ (2‖a− b‖)1/2.

We have U(a)− U(b) = diag(a− b, (a− b)∗) + cZ. �

Proof of Corollary A.17.2. :

Let be a, b ∈ A and x > 0 such that pbq = b, ‖a‖ < 1, ‖b‖ < 1 and ‖paq − b‖ < x.

Define P := diag(p, 0), Q := diag(q, 0), B = diag(b, 0) and u := U(a) (almost

Halmos unitary). Then u is a unitary in M2(A) such that PuQ = diag(paq, 0),

‖PuQ‖ ≤ ‖a‖ < 1 and ‖PuQ−B‖ = ‖paq − b‖ < x .

Moreover PBQ = B and ‖B‖ = ‖b‖ < 1. By Proposition A.17.1 there exists

a unitary ũ ∈ M2(A) such that ‖u − ũ‖ = ‖U(PuQ) − U(B)‖ and diag(pcq, 0) =

PũQ = B = diag(b, 0) where c means the (1,1)–element of the unitary 2×2–matrix

ũ. Looking at the (1,1)–element of u− ũ by Lemma A.17.6(iii) we obtain ‖a− c‖ ≤
‖u− ũ‖ ≤ ‖U(PuQ)−U(B)‖ < x+(2x)1/2 . On the other hand, ‖c‖ ≤ ‖ũ‖ = 1 and

pcq = b. Now let 0 < t < 2. Put s = 1− (t/2) and e = (p+ s(1− p))c(q+ s(1− q)).
Then peq = pcq = b, ‖e− c‖ ≤ 2(1− s) = t, ‖a− e‖ < t+ x+ (2x)1/2,

‖(p+ s(1− p))cq‖ ≤ (1− s)‖b‖+ s‖cq‖ ≤ 1− (1− s)(1− ‖b‖)

and ‖e‖ ≤ 1− (1− s)2(1− ‖b‖) < 1.

Thus, f(x, T ) ≤ x+ (2x)1/2 by Lemma 2.3(i) (of some other paper!) ?. �

18. Open projections, C*-spaces and Kadison transitivity

Others:

C *-space,

(unital) C *-system,

Non-unital C *-system,

adding a unit,

inductive limits of C *-systems,

nuclear C *-systems: nuclearity criteria,

inductive limits with residually nuclear maps,

Check if ‘‘quasi-state’’ can be mixed up with ‘‘quasi-trace state’’

???

Partly TRANSPORT from old Chp. 2:
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List of equivalent properties

of open projections is given below.

Definition A.18.1. Let A a C *-algebra.

The projection p ∈ A∗∗ is open (with respect to A) if A∗∗p is the σ(A∗∗, A)-

closure of the left ideal Lp := {a ∈ A ; a(1− p) = 0}.

A projection q ∈ A∗∗ is closed if p := 1− q is an open projection.

The following proposition given equivalent characterizations of open projections

p ∈ A∗∗, respectively of closed projections q = 1 − p ∈ A∗∗. (We use for a linear

functional ϕ ∈ A and its normal extension to A∗∗ the same notation ϕ, i.e., we

identify A∗ and the predual (A∗∗)∗ of the bi-dual W*-algebra A∗∗ in a natural

way.)

Proposition A.18.2. Let A a C*-algebra, p ∈ A∗∗ a projection and q := 1−p.

The following are equivalent:

(i ) p is open (i.e., q is closed).

(ii ) p is the (unique) smallest projection in A∗∗ with ap = a for all a ∈ A+

with a(1− p) = 0.

(iii ) The convex cone C(q) of all normal positive functionals on A∗∗ with

ϕ(q) = ‖ϕ‖ (i.e., with ϕ(p) = 0) is σ(A∗, A)-closed in A∗.

(iv ) The convex subset

Q(q) := {ϕ ∈ (A∗)+ ; ϕ(q) = 0 , ‖ϕ‖ ≤ 1}

of the quasi-state space Q(A) ⊆ A∗ of A is σ(A∗, A)-closed (i.e., is a

weakly closed face of Q(A)).

(v ) The left A∗∗-module A∗q is σ(A∗, A)-closed in A∗.

(vi ) A∗∗p is the σ(A∗∗, A∗)-closure of A ∩ (A∗∗p).

(vii) The projection p is the least upper bound in A∗∗ for the set {a ∈ A+ ; ap =

a, ‖a‖ ≤ 1} of positive contractions.

(viii) The projection p ∈ A∗∗ is the support projection of the hereditary C*-

subalgebra D ⊆ A of A defined by D := {a ∈ A ; (aa∗ + a∗a)q = 0 }.
(ix) This property is not? sufficient ?:

For every pure state ϕ of A with ϕ(p) = 1, (i.e., ϕ(q) = 0) there exists

a ∈ A+ with ‖a‖ = 1, ap = p and ϕ(a) = 1.

(It delivers that p ≥ q for some open projection. Let Lp = {b ∈
A b(1− p) = 0} it is a left ideal with open support projection

Hope? Perhaps next has to be added:

If ψ is a quasi-state on A with ψ(p) = 1 then there exists a pure state

ϕ in the weakly closed face of Q(A) generated by ψ with ϕ(p) 6= 0.

Or: p is determined by its discrete part.

The equivalences of Parts (i)-(viii) are – at least implicitly – contained in the

book of G.K. Pedersen, cf. [616, thm. 3.6.11,thm. 3.10.7] and its proofs, or are
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obvious reformulations of each other. We prove here only the equivalence of the

Parts (viii) and (ix).

Proof. (viii)⇒(ix): If p ∈ A∗∗ is an open projection and ϕ ∈ A∗+ is a pure

state on A with ϕ(1− q) = 0, then ϕ|D is a state on D.

This restriction to D is pure on D: If ψ1 and ψ2 are states on D with ψ1 +ψ2 =

2ϕ then this happens also for the all (the unique) normal extensions ψk of ψk to

states on A∗∗ and implies that ψ1 = ψ2 = ϕ.

By ????? excision lemma??? reference ???? there exists for the pure state ϕ|D
an positive contraction a ∈ D+ with ϕ(a) = 1. Clearly, 1 = ϕ(a) ≤ ‖a‖ ≤ 1, and

ap = a. because a ∈ D+.

(ix)⇒(viii): Suppose that for every pure state ϕ of A with ϕ(p) = 1, (i.e.,

ϕ(q) = 0) there exists a ∈ A+ with ‖a‖ = 1, ap = p and ϕ(a) = 1.

Let L := {a ∈ A ; a(1 − p) = 0} = {a ∈ A ; ap = a} . Then L is a closed

left ideal of A and the positive contractions in L generate L. Clearly the open

support projection q ∈ A of the hereditary C *-subalgebra L∗ ∩ L satisfies again

(1 − p)q(1 − p) = 0. Thus qp = q and r ≤ q for all open projections r ∈ A∗∗ with

r(1− p) = 0. �

Notice that Part (ix) of Proposition A.18.2 is a non-commutative version of the

original definition of F. Hausdorff of open subsets U ⊆ X of a metric space X: U

is open, if and only if, for each point x ∈ U there exists a (bounded) continuous

function f ∈ Cb(X)+ with f(x) = 1, ‖f‖ ≤ 1 such that the support of f is contained

in U .

Notice that ???????

Before next:

Here we have first to show that

a ∈ A 7→ a+ (R+ L) ∈ A/(R+ L) maps

the closed unit-ball onto the closed unit ball.!!!

One of the obvious consequences is the following Corollary is equivalent to the

“advanced Kadison transitivity” in Lemma 2.1.15(i,ii).

Corollary A.18.3. If p ∈ A∗∗ is a projection such that pA∗∗p has finite

dimension (as vector space) then p is a closed projection and there is a closed left-

ideal L ⊆ A such that A∗∗(1− p) is the σ(A∗∗, A∗)-closure of L in A∗∗.

In particular, the natural map a ∈ A→ pap defines an isometric isomorphism

from A/(L∗ + L) onto pA∗∗p, that maps the closed unit-ball of A onto the closed

unit-ball of pA∗∗p.

It is well known for Banach spaces that πX maps the open unit-ball of a Banach

space A maps onto the open unit ball of A/X for each closed linear subspace of X.

Notice that R + L is a closed subspace of a C *-algebra A for any closed left-

ideals L and right ideals R, cf. Proposition A.15.2.
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The bipolar of R+L (= σ(A∗∗, A∗)-closure of R+L) is identical with A∗∗P +

QA∗∗, where P and Q are the open support projections of the hereditary C *-

subalgebras R∗ ∩R and L∗ ∩L. The second adjoint of (A/(R+L))∗∗ of A/(R+L)

is naturally isomorphic to A∗∗/(A∗∗P +QA∗∗). All this spaces are matrix-normed

operator spaces and the canonical isomorphisms are complete isometries. It is easy

to see that A∗∗/(A∗∗P +QA∗∗) is naturally completely isometric isomorphic to the

ternary C *-algebra (1−Q)A∗∗(1− P ).

Remark A.18.4. The Proposition A.18.6 and Theorem ??

main content:

(A//D) ∩M(A//D) ∼= N (D)/D

yields an alternative, more general, conceptual and algebraic proof of the exis-

tence of a C *-subalgebra B ⊆ A with the property that a ∈ B 7→ pap ∈ pA∗∗p is

a *-epimorphism onto pA∗∗p if pA∗∗p is finite-dimensional, as derived in Remark

A.20.1 from the Kadison transitivity theorem.

In fact the proof is completely independent from the use of the non-commutative

Lusin theorem [616, thm. 2.7.3] and is independent from all textbook versions of the

Kadison transitivity theorem. It gives an alternative and “almost algebraic” proof

of the Kadison transitivity theorem without any approximation arguments. (But

uses the uniform Hölder continuity of that what we call “restricted perturbation”).

Let p∗ = p ∈ A∗∗ a non-zero projection in the socle of A∗∗, i.e., pA∗∗p is finite-

dimensional. The set Sp(A) of f ∈ A∗ with ‖f‖ ≤ 1 = f(p) is identical with the

set of all normal states on pA∗∗p. The set of states on pA∗∗p is compact in norm

of pA∗p ⊆ A∗ if pA∗∗p is finite dimensional.

Since the σ(A∗, A)-topology is Hausdorff and is continuous with respect to the

norm on A∗, it follows that Sp(A) is compact in the σ(A∗, A)-topology.

By ??? Proposition ??, the σ(A∗, A)-compactness of Sp(A) = Cp(A
∗∗)

It seems better to consider the

quasi-states

in Q(A) ?... No consequent terminology!!!

ρ on A with ρ(1 − p) = 0. And then require that this set is σ(A∗, A) closed.

Then apply then bi-polar theorem ...

Give -- or refer to -- Definition of the convex set

Cp(M) := {f ∈M∗ ; ‖f‖ = 1, f(p) = 1}.

Open-ness of 1− p is not proven now!!!

implies that p ∈ A∗∗ is a closed projection, i.e., there is a closed left ideal L ⊆ A
such that A∗∗(1− p) is the σ(A∗∗, A∗)-closure of L.

Then p is a closed projection in A∗∗ with respect to A, i.e., the hereditary C *-

subalgebra D := {a ∈ A ; ap = 0 = pa} has (1− p) as its open support projection
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qD of D in A∗∗, respectively (1 − p)A∗∗(1 − p) ∼= D∗∗ is equal to the σ(A∗∗, A∗)-

closure of D ⊆ A∗∗. We let L := A ·D = span(A ·D). It is a closed left-ideal of A

with σ(A∗∗, A∗)-closure equal to A∗∗(1− p).

If L is a closed left-ideal of A, and q ∈ A∗∗ is the open support projection of

L, i.e.,

L∗∗ ∼= A∗∗q = L
σ(A∗∗,A∗)

,

then there is a natural isomorphism pAp ∼= (A/(R + L))∗∗ for R := {a∗ ; a ∈ L}
and p := 1− qL.

Let D := R ∩ L. The C *-space A//D := A/(R + L) ∼= pAp ⊆ A∗∗ is c.p. and

completely isometrically isomorphic to pAp ⊆ pA∗∗p and (A//D)∗∗ ∼= pA∗∗p as

matrix-normed and matrix-ordered spaces. Since pA∗∗p has finite dimension, it

follows that (A//D) ∼= pAp = pA∗∗p.

By Theorem ?? the quotient N (D)/D by D of the (two-sided) normalizer C *-

algebra N (D) := {a ∈ A ; aD ∪ Da ⊆ A} of D is naturally isomorphic to the

intersection pAp ∩M(A//D) of A//D ∼= pAp with the C *-subalgebra

M(A//D) := {T ∈ pA∗∗p ; TpAp ∪ pApT ⊆ pAp}

of two-sided multipliers of the subset A//D ⊆ (A//D)∗∗ ∼= pA∗∗p .

Since pAp ∼= A//D is σ(A∗∗, A∗) dense in pA∗∗p ∼= (A//D)∗∗ and, in our special

case, pA∗∗p is of finite dimension, we get that M(A//D) = pAp = pA∗∗p. Thus,

the restriction V |B to B := N (D) of the c.p. contraction V : a ∈ A 7→ pap ∈ pA∗∗p
is a *-epimorphism from B onto pA∗∗p ∼=M(A//D) ∼= N (D)/D.

New attempt Dec.2016:

Define a projection q = q∗q ∈ A∗∗ as open projection if q is the support

projection q := qD of a hereditary C *-subalgebra D of A.

A projection p ∈ A∗∗ is - by definition - a closed projection if 1 − p ∈ A∗∗ is

open.

Lemma A.18.5. Let p ∈ A∗∗ a projection.

The projection q := 1− p ∈ A∗∗ is open, if an only if, the set Sp(A) of f ∈ A∗

with ‖f‖ = f(p) ≤ 1 is σ(A∗, A)-closed and for each pure state g ∈ A∗ with g(p) = 0

there exists an element a ∈ A+ with ‖a‖ = g(a) = 1 and f(a) = 0 for all f ∈ Sp(A).

Proof. If the projection 1 − p is open then the set of b ∈ A with bp = 0 is a

closed left ideal L of A and q := 1−p ∈ A∗∗ is the support projection of D := L∗∩L
(this by definition of open projections).

In particular f(a) = 0 for all f ∈ Sp(A) and a ∈ D, and conversely f(p) = 1 for

all normal states f on A∗∗ with f(D) = 0. Clearly, the set of normal states with

f(D) = {0} is closed in the σ(A∗, A)-topology.

Thus, if g ∈ A∗ is a pure state with g(p) = 0 then g|D is a pure state of D. It

follows that there exists a contraction a ∈ D+ with g(a) = 1, cf. [616, thm. 2.7.5].

Thus f(a) = 0 for all f ∈ Sp(A).
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Notice that generally a ∈ A+ and f(a) = 0 for all f ∈ Sp(A) is equivalent to

a(1− p) = a.

The set L := {b ∈ A ; f(b∗b) = 0 ∀ f ∈ Sp(A)} is the maximal closed left-ideal

of A with the property L · p = {0} .

The support projection Q ∈ A∗∗ of the hereditary C *-subalgebra D := L∗ ∩ L
of A is an open projection with Qp = 0.

Suppose that Q 6= q := 1 − p. Then there exists a pure state ρ ∈ A∗ with

ρ(Q) = 0 and ρ(p) < 1:

This is the case because S1−Q(A) is a σ(A∗, A)-compact convex set of states

with the property that each extreme point f of S1−Q(A) is also an extreme point

of of the quasi-state space of A, hence is a pure state of A with f(Q) = 0.

Each f ∈ S1−Q(A) is the σ(A∗, A) limit of convex combinations of extreme

points in S1−Q(A) (as it holds for every compact convex set). Thus, if there is no

pure state h ∈ A∗ with h(Q) = 0 and h(p) < 1, then Q = 1− p, which contradicts

our assumption Q 6= q := 1− p.

But if h ∈ A∗ is a pure state on A with h(q) = 0 and h(p) < 1, then we can

consider the irreducible representation R : A→ L(H) corresponding to h. There is

a cyclic vector x ∈ H with ‖x‖ = 1 such that h(a) := 〈R(a)x, x〉 for all a ∈ A.

Let R : A∗∗ → L(H) also denote the normalization of R. Then R(Q)x = 0 and

‖R(p)x‖ < 1. Thus y := γ(x − R(p)x) ∈ H with γ := ‖x − R(p)x‖−1 satisfies

R(Q)y = 0, R(p)y = 0 and ‖y‖ = 1. The normal state g(a) := 〈R(a)y, y〉 on A∗∗

is pure and satisfies g(1− (Q+ p)) = 1.

In particular, the assumption 1 − Q − p 6= 0 gives a pure state on A with

g(Q) = 0 and g(p) = 0.

But by assumption, there exists a ∈ A+ with ‖a‖ = 1 = g(a) and ap = 0. This

implies a ≤ Q and g(Q) 6= 0.

Thus, Q = 1 − p (i.e., 1 − p is open) if for each pure state g ∈ A∗ with

g(p) = 0 there exists an element a ∈ A+ with ‖a‖ = g(a) = 1 and f(a) = 0 for all

f ∈ Sp(A). �

Is it also equivalent to each of the following ???

The norm-closed left-ideal

L := (A∗∗(1− p)) ∩A = { a ∈ A ; ap = 0 }

of A is σ(A∗∗, A∗)-dense in A∗∗(1− p).

This is equivalent to:

A∗p := {f ∈ A∗ ; f(ap) = f(a)} is σ(A∗, A)-closed.

Clearly, L is a closed left-ideal of A and L ⊆ A∗∗(1− p).

Let qL ∈ A∗∗ denote the open support projection corresponding to L, i.e.,

qL := sup{d ∈ A+ ; d ≤ 1, d ∈ L} .
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Then the σ(A∗∗, A∗)-closure of L is A∗∗qL and qL ≤ 1− p.

Let L be σ(A∗∗, A∗)-dense in A∗∗(1 − p). Then A∗∗qL = A∗∗(1 − p), hence

qL = 1− p.

A∗p = {f ∈ A∗ ; f(ap) = f(a), for all a ∈ A } = {f ∈ A∗ ; f(A(1− p)) = 0} .

It says that A∗p = {f ∈ A∗ ; f(L) = {0} } . The right side is L⊥ in A∗ and is

there σ(A∗, A)-closed.

THE HARD stuff is the opposite direction:

Suppose p ∈ A∗∗ is a projection with the property that A∗ ·p is σ(A∗, A)-closed.

(Then pA∗p = (p · A∗) ∩ (A∗ · p) is σ(A∗, A)-closed by σ(A∗, A)-continuity of

f → f on A∗ given by the map f(a) := f(a∗) .)

Thus, there is closed subspace X of A such that ?????

(A/X)∗ ∼= A∗ · p ???

?????

Let Lp := {a ∈ A ; ap = 0} i.e., Lp = A∩(A∗∗(1−p)) = {a ∈ A ; a = a(1−p)}.

And Lp is a closed left-ideal of A. Let Q denote the open support projection

of A with A∗∗Q = Lp with respect to σ(A∗∗, A∗)-topology. We get Q ≤ (1− p).

Thus p ≤ 1−Q, and pA∗p is a subspace of (A/(L∗p+Lp))
∗ ∼= (1−Q)A∗∗(1−Q)

HERE starts the difficulty of this rather special approach:

Is Q = 1− p ????

Are p and Q determined by the there restrictions to the “discrete” type-I part

of A∗∗ ?

There are natural bijections between the following fairly different types of ele-

ments in A∗∗, quotient spaces of A, subspaces of A and certain subsets of A∗:

(a) closed projections in A∗∗

(b) open projections in A∗∗

(c) quotient C *-spaces A//D := A/(L∗ + L) (with matrix order and matrix

norms induced from A (respectively A∗∗).

(d) closed left-ideals L ⊆ A

(e) closed right-ideals R ⊆ A

(f) hereditary C *-subalgebras D of A given by D := L∗ ∩ L respectively D :=

R∗ ∩R.

(g ??) hereditary σ(A∗, A)-closed convex sub-cones K of A∗+. (The K should

be of form R+ · Cp(A∗∗) for some projection p ∈ A∗∗.)

(h ??) the set Sp(A) of f ∈ A∗ with ‖f‖ ≤ 1 = f(p) is σ(A∗, A)-closed.

(if 1− p is open ???).

Uses Lemma:
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Each hereditary norm-closed sub-cone K of the positive part (M∗)+ of the

predual M∗ of a W*-algebra M is of the form Kq = (qM∗q)+
∼= ((qMq)∗)+ for

some projection q ∈M .

0 6= p ∈ M := A∗∗ is a closed projection, if and only if, the unit ball of Kp is

σ(A∗, A)-closed, if and only if, Sp(A) = Cp(M) := {f ∈ M∗ ; ‖f‖ ≤ 1 = f(p)} is

σ(A∗, A)-compact.

In particular, every projection p ∈ A∗∗ with pA∗∗p of finite dimension (as a

vector-space over R) is a closed projection.

This gives, e.g. by [616, thm. 1.5.2, thm. 3.10.7, cor. 3.10.8, prop. 3.11.9], the

equivalences:

D ⊆ A hereditary C *-subalgebra,

D 7→ D+, D+ is hereditary closed convex cone in A+,

M ⊆ A+ hereditary closed convex cone, build M 7→ L(M) := {a ∈ A ; a∗a ∈
M } then L(M) is closed left-ideal of A.

L ⊆ A closed left-ideal, L 7→ DL := D(L) := L∗ ∩ L, DL := L∗ ∩ L is a

hereditary C *-subalgebra of A.

Directly to L from D without passing through D+:

Let L(D) := D ·A. To see that this a closed left-ideal simply apply Cohen factor-

ization to the left Banach D-module L := span(D ·A) ⊆ A . It gives L = D · L ⊆
D ·A ⊆ L .

The projection p ∈ A∗∗ is a closed projection for A, with p := 1 − q, if and

only if,

q ∈ A∗∗ open projection for A.

A projection q ∈ A∗∗ is an open projection,

if and only if,

q = l.u.b.{a ∈ A+ ; a ≤ q} in A∗∗,

if and only if,

the closed left ideal Lq := {a ∈ A ; aq = a} has σ(A∗∗, A∗)-closure = A∗∗q.

A non-zero projection 0 6= p ∈M := A∗∗ is closed,

if and only if,

Sp(A) = Cp(M) := {f ∈ M∗ ; ‖f‖ ≤ 1 = f(p)} with M := A∗∗ is σ(A∗, A)-

closed,

if and only if,

Cp(A
∗∗) is σ(A∗, A)-compact,

if and only if,

q := 1− p is open in A∗∗,

if and only if,
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A∗p := {f ∈ A∗ ; f((·)p) = f} is closed in A∗ with respect to σ(A∗, A)-

topology.

Missing:

D 7→ A//D := A/(L∗ + L),

X := A//D 7→ q := 1X∗∗ ∈ A∗∗ closed projection, unit of the second conjugate

X∗∗ ∼= qA∗∗q of X. Given by q := 1− pD.

Passage to the open support projection qD ∈ A∗∗ of D is given by qD := 1− q.

Proposition A.18.6. Let A a C*-algebra and p ∈ A∗∗ a (self-adjoint) projec-

tion.

The following are equivalent:

(i) p is a closed projection,

(ii) 1− p is an open projection,

(Definition of “open” ?

1 − p is the l.u.b. in A∗∗ of an upward directed family positive con-

tractions in A?)

(iii) 1− p is the least upper bound of {a ∈ A+ ; a ≤ 1− p}.
(iv) The convex subset Cp(A

∗∗) = Sp(A) := {f ∈ A∗ ; ‖f‖ ≤ 1 = f(p)} of A∗

is σ(A∗, A)-closed.

(v) Cp(A
∗∗) (= Sp(A)) is σ(A∗, A)-compact.

(vi) The closed left-ideal L := {a ∈ A ; ap = 0} of A has σ(A∗∗, A∗)-closure

equal to A∗∗(1− p).

If p ∈ A∗∗ is a non-zero projection, then the σ(A∗, A)-compactness of Sp :=

{f ∈ A∗ ; ‖f‖ ≤ 1 = f(p)} implies that p ∈ A∗∗ is a closed projection, i.e., there is

a closed left ideal L ⊆ A such that A∗∗(1− p) is the σ(A∗∗, A∗)-closure of L.

Next is cited where !!!

Compare with following lemmata.

The proof of the below stated Proposition A.21.4 concerning excision of pure

states use a reduction method to the separable case that is established for arbitrary

operator spaces and Banach spaces in full generality by the following Lemma B.14.1

and then applied for our basic observation on operator space quotients of C *-

algebras in Remark A.18.9.

Since we use them here the first time, we place here some “easy” facts – i.e.,

those that does not discuss the residually equivariant behavior of quotients by sums

L+ R of left and right ideals L and R. We need reduction to separable subspaces

with same perturbations conditions for quotients, because Ext-theory, KK-theory

and our version of a stable but un-suspended E-theory (continuous versions of the

approximate kind of E-theory used by Elliott and Rørdam) have to do with non-

separable corona spaces.

We start with a very general observation:
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Lemma A.18.7. Let (R1, ρ1) and (R2, ρ2) metric spaces of bounded diameters

≤ 2, T : R1 → R2 a contractive map with T (R1) dense in R2.

Suppose that (R1, ρ1) is complete (i.e., each Cauchy sequence in R1 with respect

to the metric ρ1 has a limit in R1).

Need an increasing continuous function γ ∈ C([0, 1],R) with γ(0) = 0, t ≤ γ(t)

and with the property:

If a, b ∈ R1 then there exists for each ε > 0 an element c ∈ R1 such that

ρ2(T (c), T (b)) < ε and ρ1(a, c) < γ(ρ2(T (a), T (b))) + 2ε ≤ 3γ(ρ2(T (a), T (b))).

Suppose that there exists a function a continuous function λ on [0, 2] with

λ(0) = 0 and the property that for p1, p2 ∈ R1 and ε > 0 there exists p3 ∈ R1

with ρ2(T (p3), T (p2)) < ε and ρ1(p1, p3) ≤ λ(ρ2(p1, p2)) + ε ????

???? Then T is surjective ????.

Proof. Find an decreasing sequence r1 > r2 > · · · in (0, 1) such that∑
n λ(3nrn) <∞. In particular lim rn = 0.

Let q ∈ R2. There exist p1, p2, . . . ∈ R1 with ρ2(pn, q) < rn/2. Thus

ρ2(pm, pn) ≤ (rm + rn)/2.

Find Pm,n ∈ R1 with ???

??

Idea: ????

Take a point q ∈ R2. Given any sequence qn ∈ T (R1) with limn ρ2(qn, q) = 0

“quickly enough”, we can select a sub-sequence rk := qnk such that in the inverses

T−1(B(rk, δk)) of small balls around the rk one finds inductively elements pk that

build a Cauchy sequence in R1 ... �

Let E a Banach space and S the open unit ball of E. Recall that the Hausdorff

distance between two bounded convex subsets K1,K2 of the Banach space E is

given by

distH(K1,K2) := inf { t ∈ [0,∞) ; K1 ⊆ K2 + tS and K2 ⊆ K1 + tS } .

Definition A.18.8. Let E a real or complex Banach spaces X ⊆ E a (not

necessarily closed) linear subspace, S the open unit-ball of E and t ∈ (0,∞).

Define for a, b ∈ S the Hausdorff distance between the intersection K(a,X) :=

S ∩ (a+X) and K(b,X) = S ∩ (b+X) of the affine spaces a+X and b+X with

the open unit-ball S of E by

ρ(a, b) := distH(K(a,X),K(b,X)) .

We define the function of restricted perturbation t 7→ f(t; X) of the quotient map

πX by

f(t; X) := sup{ρ(a, b) ; a, b ∈ S, ‖πX(a− b)‖ ≤ t }
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It turns out that t → f(t; L∗1 + L2) is Hölder continuous near 0 if L1 and L2

are closed left ideals of a C *-algebra E. The point is that

f(t; L∗1 + L2) ≤ f(t; p1E
∗∗ + E∗∗p2)

for the (open) support projections p` of the σ(E∗∗, E∗) closures E∗∗p` of L`, an the

latter is easily to estimate by an at zero Hölder continuous function of t.

The function f(t; X) estimates in a symmetric way for given elements a, b ∈ E
with max(‖a‖ , ‖b‖) < 1 the best value for the solution of the following “restricted

perturbation” problem:

Let a+X = πX(a) and b+X = πX(b). What is the infimum =: λ(a, b) ≤ ‖a− b‖
of ‖a− c‖ over all c ∈ b+X with ‖c‖ < 1?

Because then, for each ε > 0, we can find c = c(ε) ∈ E with ‖c‖ < 1 and

πX(c) = πX(b) and

‖a− b‖+ ε ≥ ε+ λ(a, b) ≥ ‖a− c‖ ≥ ‖πX(a)− πX(b)‖ .

We have that λ(a, b) ≤ f(‖πX(a)− πX(b)‖;X) . ?????

Need place for A CLEAR STATEMENT on the estimate of

f(t; L∗1 + L2) ≤ f(t; p1A
∗∗ +A∗∗p2) ≤ t+ (2t)1/2

!! ?? !!

Remark A.18.9. Let A denote a C *-algebra, L ⊆ A a closed left ideal, R ⊆ A
a closed right ideal, D a hereditary C *-subalgebra of A. We use the notations

DL := L∗ ∩ L, DR := R∗ ∩R, LD := span(A ·D).

Let ψ(α) := α+ (2α)1/2 for α ∈ [0,∞) .

??

Then there are the following elementary observations, cf. [431]:

(i) The vector space sum R+ L is a closed linear subspace of A.

The bi-duals and bi-polars in A∗∗ are given by L∗∗ ∼= (Lo)o = A∗∗pL

where pL := pD ∈ A∗∗ is the open support projection of L respectively of

D := L∗ ∩ L. Similarly R∗∗ = (Ro)o for closed right ideals.

The bi-polar ∼= (R+L)∗∗ in the W*-algebra A∗∗ is identical with the

(always σ(A∗∗, A∗)-closed) subspace

A∗∗q + pA∗∗ = (1− p)A∗∗q + pA∗∗q + pA∗∗(1− q)

where p, q ∈ A∗∗ are the “open” support projections of the hereditary

C *-algebras DL := L∗ ∩ L and DR := R∗ ∩R of A.

The bi-dual operator space (A/(R+ L))∗∗ is naturally isomorphic to

the ternary algebra (triple product algebra) (1− q)A∗∗(1− p) ⊆ A∗∗.
In particular, (A/(L∗ + L))∗∗ ∼= (1− q)A∗∗(1− q) is a W*-algebra.

The isomorphisms and natural embeddings are all completely isomet-

ric, and the quotient maps are completely contractive, because we can
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here alway replace A,R,L,D and p, q by Mn(A),Mn(R),Mn(L),Mn(D)

and p⊗ 1n, q ⊗ 1n for n ∈ N.

The below considered constructions remain compatible via the obvi-

ous canonical completely isometric isomorphisms if we tensor by Mn, as

e.g. N (D,A)⊗Mn
∼= N (D ⊗Mn, A⊗Mn) for N (D,A) in Part (iv).

(ii) Let x, y ∈ A/(R + L) with ‖x‖, ‖y‖ ≤ 1 and a ∈ A with ‖a‖ ≤ 1 and

πR+L(a) = x, then there exist b ∈ A with ‖b‖ ≤ 1 that satisfies πR+L(b) =

y and

‖a− b‖ ≤ ψ(‖ y − x ‖) .

In particular, we get the important fact that the quotient map πR+L

maps the closed unit-ball of A onto the closed unit-ball of A/(R+ L).

(iii) Let D := L∗ ∩ L ⊆ A and A//D := A/(L∗ + L) the operator system

defined by D.

Then L := A ·D = span(A ·D) (because D ⊂ L and L is a right D-

module), and (A//D)∗∗ is an operator system that is naturally isomorphic

to the W*-algebra (1−qD)A∗∗(1−qD), where qD denotes the open support

projection of D in A∗∗.

(iv) LetM(A//D) ⊂ (1−pD)A∗∗(1−pD) denote the C *-algebra of two-sided

multipliers

T ·A//D , A//D · T ⊆ A//D

of the space A//D ⊆ (1− pD)A∗∗(1− pD).

The natural epimorphism πD from the two-sided normalizer algebra

N (D,A) := {a ∈ A ; aD ∪Da ⊆ D}

of D in A into

A//D := A/(L∗ + L) ⊆ (1− pD)A∗∗(1− pD)

maps N (D,A) onto (A//D) ∩M(A//D), and has kernel

Ann(D,A) := {a ∈ A ; aD = {0} = Da } .

(v) An element a ∈ A is in N (D,A) if and only if πL∗+L(a∗a) =

πL∗+L(a∗)πL∗+L(a) and πL∗+L(aa∗) = πL∗+L(a)πL∗+L(a∗) , i.e., if

and only if a is in the multiplicative domain of πL∗+L.

(vi) The first part of this conclusion is also a corollary of a

more elementary proposition: Corollary A.15.3!!

For every separable C *-subalgebra G ⊆ A there exists a separable

C *-subalgebra B ⊆ A such that G ⊆ B,

B ∩ (L∗ + L) = (B ∩ L)∗ + (B ∩ L) ,

and B/(B ∩ L) → A/L is completely isometric, and (in addition) that

b ∈ B and b(D ∩ B) ⊆ D ∩ B for D := DL implies bD ⊆ D and the

natural map B//(B ∩D) → A//D is completely isometric and defines a

*-monomorphism

(B//(B ∩D)) ∩M(B//(B ∩D))→ (A//D) ∩M(A//D) .
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(vii) If A is unital, then naturally M(A//D) ∼= N (A,D)/Ann(A,D) and B

can be chosen such that in addition to the properties in (vi), B unital with

1B = 1A, N (B,B ∩D) ⊆ N (A,D) and Ann(B,B ∩D) = B ∩Ann(A,D).

19. On non-unital C*-systems

needed:

operator systems, C *-systems (definitions), nuclear operator system,

c.p. and c.i. maps

needed statements:

indlim nuclear if maps are nuclear,

perhaps also:

indlim is C *-space, B//D is C *-space,

nuclear OS is C *-space

definitions and listing of some result appear also further below.

?? ????

Matrix-normed operator spaces (X, ‖ · ‖n) can be defined as closed linear sub-

spaces of L(H). An axiomatic characterization as Banach spaces X with a family of

matrix norms ‖·‖n on Mn(X) = X⊗Mn has been given by E. Effros and Z.-J. Ruan,

[245], that satisfy ‖a ⊕ b‖m+n = max(‖a‖m, ‖b‖n) and ‖αcβ‖n ≤ ‖α‖‖c‖m‖β‖ for

a, c ∈ Mm(X), b ∈ Mn(X), α ∈ Mn,m, β ∈ Mm,n, cf. [245]. If X is completely

isometric embedded in L(H) then the Banach space second conjugate X∗∗ of X is

naturally embedded in the C *-algebra L(H)∗∗ as a σ(L(H)∗∗,L(H)∗)-closed linear

subspace. One can see immediately that the norm-closed unit balls of the bi-dual

Banach spaces

(Mn(X))∗∗ ∼= Mn(X∗∗) ⊆ Mn(L(H)∗∗) = (Mn(L(H))∗∗

are just the σ((Mn(X))∗∗, (Mn(X))∗) closures of the unit-balls of Mn(X). Notice

that this definition is completely independent from any chosen norm on Mn(X∗) ∼=
Mn⊗X∗ that is equivalent on the subspaces X∗ ∼= eij⊗X∗ to the usual dual Banach

space norm on X∗, because the σ((Mn(X))∗∗, (Mn(X))∗) topology depends only

form the equivalence classes of norms on Mn(X)∗ = Mn(X∗) = Mn ⊗ X∗ and

nothing else. For example, one can here use the usual Banach dual norms ‖ · ‖∗n
on Mn ⊗ X∗ that satisfy ‖f ⊕ g‖∗m+n = ‖f‖∗m + ‖g‖∗n instead of ‖f ⊕ g‖∗m+n =

max(‖f‖∗m, ‖g‖∗n). This can be also abstractly described as the bi-dual matrix-

normed space that is given by applying construction of matrix normed operator

space X∗ of X with matrix norms given the isomorphisms Mn(X∗) ∼= CB(X,Mn)

by E. Effros and Z.J. Ruan in [245, sec. 3.2]. The natural inclusion Mn(X) ↪→
Mn(X∗∗) is isometric by [245, prop. 3.2.1]. But the above mentioned canonical

isometry of Mn(X∗∗) ∼= Mn(X)∗∗ is a – formally – stronger statement.

Lemma A.19.1. Let A a C*-algebra, ρ1, ρ2 ∈ A∗ Hermitian with ‖ρ1‖ = ‖ρ2‖ =

1. Suppose that there exists b, c ∈ (A∗∗)+ with

‖b+ c‖ = ‖b− c‖ = max(‖b‖, ‖c‖) = 1 = ρ1(b− c)
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and ρ1(βb+ αc) = ρ2(βb+ αc) for all α, β ∈ R. Then for the polar decompositions

ρj = ρj+ − ρj− holds ρ1(b) = ρ2(b) = ρj+(b) = ‖ρj+‖, and ρ1(c) = ρ2(c) =

−ρj−(c) = −‖ρj−‖.

Proof. Recall that the polar decompositions ρj = ρj+ − ρj− of ρ2 and ρ2

satisfy 1 = ‖ρj+ + ρj−‖ = ‖ρj+‖+ ‖ρj−‖.

Let tj := ρj+(b) + ρj−(c), sj := ρj+(c) + ρj−(b)). Then 1 = ρj(b− c) = tj − sj
and 1 ≥ (ρj+ + ρj−)(b + c) = tj + sj . They imply sj = 0 and ρj(b) = ρj+(b),

ρj(c) = −ρj−(c), for j = 1, 2.

On the other hand, 1 = ‖ρj+‖+ ‖ρj−‖ ≥ tj = 1, ‖ρj+‖ ≥ ρj+(b) and ‖ρj−‖ ≥
ρj−(c), that gives ρj+(b) = ‖ρj+‖ and ρj−(c) = ‖ρj+‖. Now use that ρ1 = ρ2 on

Rb+ Rc. �

Remark A.19.2. A general (= not necessarily order-unital) operator system

X is a closed linear subspace X of a C *-algebra A such that X is invariant under

passage to adjoints (i.e., a ∈ X ⇔ a∗ ∈ X), and such that for each n ∈ N, a = a∗ ∈
Mn(X) ⊆ Mn(A) and δ > 0 there exist b, c ∈Mn(X)+ := Mn(A)+ ∩Mn(X) with

‖b+ c‖ = max(‖b‖ , ‖c‖) ≤ ‖a‖ and ‖a− (b− c)‖ < δ .

If A is unital and 1 ∈ X, then this property is trivially satisfied with b := (‖a‖1 +

a)/2, c := (‖a‖1 − a)/2 and δ = 0. The condition implies that functionals

f : Mn(X) → C with f(T ) ≥ 0 for T ∈ Mn(X)+ satisfy ‖f‖ = sup{f(T ) ; T ∈
Mn(X)+ ‖T‖ = 1} , and (therefore) norm-preserving extensions of f to a her-

mitian functional g : Mn(A) → C are positive functionals on Mn(A). The con-

dition also implies that hermitian linear functionals f on Mn(X) have decompo-

sitions f = f+ − f− into positive functionals f+ and f− on Mn(X) that satisfy

‖f‖ = ‖f+ + f−‖ = ‖f+‖ + ‖f−‖ . The decompositions with this properties are

not necessarily unique, but the norms ‖f+‖ and ‖f−‖ are independent from the

chosen decomposition with this property, cf. Lemma A.19.1 and use the *weak

compactness in A∗∗ ⊕ A∗∗ of the set of pairs (b, c) with b, c ∈ X∗∗+ ⊆ A∗∗ and

‖b+ c‖ ≤ 1.

It gives immediately, that the *weak closure (∼= Mn(X∗∗)) of Mn(X) in

Mn(A)∗∗ ∼= Mn(A∗∗) contains a unique element En with the property f(En) = ‖f‖
for each positive functional of f on Mn(X). In this way, each Mn(X∗∗)sa becomes

an order-unit space, and X∗∗ a unital operator system (with norms defined by the

order-unit norms on Mn(X∗∗).

It allows to show that every completely positive contraction V : X → L(H)

extends to a completely positive contraction V e : A → L(H). In this way we

get a “universal” c.p.c. map Vu : X → B for some suitable C *-algebra B. We

choose B such that Vu(X) generates B and call C∗max(X) := B (together with

Vu : X → C∗max(X)) the universal C*-algebra generated by the (not necessarily

unital) operator system X. There is a natural C *-morphism h : C∗max(X) → A

such that h ◦ Vu(x) = x for all x ∈ X.
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The induced norms on Mn(X) and the closed cones of positive elements

Mn(X)+ provide X with a structure of matrix-norms and matrix orders ( 9 ).

Let, more generally, X ⊆ A and Y ⊆ B self-adjoint closed subspaces of C *-

algebras A and B, and let T : X → Y ⊆ B a linear map. We call T completely

positive (respectively completely contractive, completely isometric) if the

natural extensions T ⊗ idn of T to maps from Mn(X) ∼= X ⊗Mn to Mn(Y ) are

positive (respectively contractive, isometric) for every n = 1, 2, . . .. We write later

c.p. , c.c. and c.i. maps (respectively).

We say that two self-adjoint closed subspaces X ⊆ A ⊆ L(H) and Y ⊆ B ⊆
L(K) are c.i. and c.p. isomorphic , if and only if, there are c.p. and c.c. maps

V : L(H)→ L(K) and W : L(K)→ L(H) with WV |X = idX and VW |Y = idY .

The second conjugate space X∗∗ of a selfadjoint closed subspace X ⊆ A is

naturally isomorphic to the σ(A∗∗, A∗)-closure of X ⊆ A∗∗. It is easy to check

(because Mn(X)∗∗ ↪→ Mn(A)∗∗ is isometric) that the matrix-norms induced by

Mn(A∗∗) ∼= Mn(A)∗∗ on Mn(X∗∗) are the same as the second conjugate norms (i.e.,

bi-polar norms) on Mn(X∗∗) under the natural isomorphisms Mn(X)∗∗ ∼= Mn(X∗∗)

(of vector spaces).

We say that inclusion X ↪→ A is admissible if the σ(Mn(X)∗∗,Mn(X)∗)-

closure of Mn(A)+ ∩Mn(X) is the same as Mn(A)∗∗+ ∩Mn(X)∗∗ for each n ∈ N.

This is e.g. the case if every bounded positive functional on Mn(A)+ ∩ Mn(X)

extends to a positive functional on Mn(A)+ with same norm. In general, the

inclusion X ↪→ A is not admissible. But an arguments with bi-polars shows that

X ↪→ A is admissible if X is an operator system (not necessarily unital) and is

equipped with the matrix norms and orders induced on Mn(X) by Mn(A) . On the

other hand, there always exists a C *-algebra B and c.p. and c.c. maps V : X → B

and W : B → L(H) such that WV (x) = x for x ∈ X and V (X) ↪→ B is admissible

( 10 )

If X ⊆ A is admissible in A then an argument using the bi-polar shows:

X∗∗ ⊆ A∗∗ is an operator system, if and only if, X ⊆ A is an operator system.

Suppose that X is a self-adjoint closed subspace of A and that X∗∗ (with bi-

dual matrix norms and orders of the matrix norms coming from matrix orders of X)

is c.i. and c.p. isomorphic to a C *-algebra M . Then M is necessarily a W*-algebra.

Any (not necessarily unital) completely isometric and completely positive map

V from a unital C *-algebra C into an other C *-algebra B (in our case with B =

A∗∗) satisfies V ⊗ idn(c) ∈ Mn(B)+ if and only if c ∈ Mn(C)+ . (In fact, it is

enough to require that C is a matrix ordered space with an order unit such that

the matrix norms are given by the induced order norm: ‖c‖ ≤ 1 for c∗ = c ∈Mn(C)

if and only if −1⊗ 1n ≤ c ≤ 1⊗ 1n.)

9One can give axiomatic descriptions of, not necessarily order-unital, operator systems inde-

pendent from inclusions X ↪→ A into C *-algebras – using ideas of Effros and Ruan [245].
10 Here we consider A as C *-subalgebra of L(H), and that V is a c.i. and c.p. isomorphism

from X onto V (X).
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It follows: If X∗∗ is c.i. and c.p. isomorphic to a C*-algebra, then X is a – not

necessary order-unital – operator system, ( 11 ).

Then any c.i. and c.p. embedding V : X ↪→ B into a C *-algebra B satisfies

that Mn(B)+ ∩ V ⊗ idn(Mn(X)) = V ⊗ idn(Mn(A)+ ∩Mn(X)), and – therefore –

that V (X) ↪→ B is admissible. In particular, the natural embedding X ↪→ X∗∗ is

admissible.

Since completely positive and completely isometric maps T from a C *-algebra

onto an other C *-algebra is always a C *-algebra isomorphism, we get that the C *-

algebra structure on X∗∗ is uniquely determined if X ⊆ A is admissible and X∗∗

is c.i. and c.p. isomorphic to a C *-algebra. We can define the multiplier algebra

M(X) of a C *-system X by

M(X) := {a ∈ X∗∗ ; aX ∪Xa ⊆ X} .

It is a C *-subalgebra of X∗∗. If I : X → Y is a c.i. and c.p. map from X onto

a self-adjoint closed subspace Y ⊆ B of a C *-algebra B then Y is an operator

system with Y ∗∗ c.i. and c.p. isomorphic to a C *-algebra, I∗∗ : X∗∗ → Y ∗∗ is an

isomorphism of C *-algebras and M(I) := I∗∗|M(X) is a C *-isomorphism from

M(X) onto M(Y ).

Examples where X∗∗ (together with its matrix norms and orders) is isomorphic

to a C *-algebra are:

(1) Let X := B//D := B/(BD+DB) ⊆ A := (1−pD)B∗∗(1−pD) where D is

a hereditary C *-subalgebra of a C *-algebra B and pD ∈ B∗∗ is the “open” support

projection of D with D∗∗ = pDB
∗∗pD (12). The matrix norms and matrix orders

on Mn(X) that are induced by the inclusion X ⊆ A are easily seen to be the same

as those induced by the quotient maps Mn(B) → Mn(B//D) ∼= Mn(B)//Mn(D).

Therefore, X∗∗ is naturally c.i. and c.p. isomorphic to the von Neumann algebra

(1− pD)B∗∗(1− pD).

(2) More generally, Y ⊆ X and the quotients X//Y := X/Z are in a natural

manner operator systems (with second conjugates isomorphic to the C *-algebras

pX∗∗p respectively (1− p)X∗∗(1− p)) if

(i) X∗∗ is c.i. and c.p. isomorphic to a C *-algebra,

(ii) the σ(X∗∗, X∗)-closure of Y in X∗∗ is a hereditary C *-subalgebra pX∗∗p

of X∗∗ for a projection p ∈ X∗∗ , and

(iii) Z is the set of z ∈ X with ρ(z) = 0 for all positive functionals ρ on A ⊃ X
with ρ(Y ) = {0}, i.e., Z = X ∩ (pX∗∗ +X∗∗p).

(Then there is a natural c.i. and c.p. embedding X//Y ⊆ A//D where D is the

hereditary C *-subalgebra of A generated by Y .)

11 We consider X∗∗ together with the second conjugate matrix norms on Mn(X∗∗) ∼=
Mn(X)∗∗ and the σ(Mn(X)∗∗,Mn(X)∗)-closure of Mn(A)+ ∩Mn(X) as matrix-order structure.

12 The closed linear span R ⊆ B of DB := {db ; d ∈ D, b ∈ B} is a non-degenerate left

D-module. Thus DR = R ⊆ DB ⊆ R by the Cohen factorization theorem, because D has a

bounded approximate unit.
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(3) A special case of (2) with X//Y = X/Y , Y = Z is obtained if Y ⊆ X is an

M-ideal of X (i.e., the subspace Y ⊥ of X∗ is `1-complemented in X∗ : X∗ = Y ⊥+L

with ‖f + l‖ = ‖f‖ + ‖l‖ for f, l ∈ X∗ with f(Y ) = {0} and l ∈ L), because then

there is a central projection p in the center of the W*-algebra X∗∗ such that pX∗∗

is the weak closure of Y in X∗∗ .

(4) Inductive limits indlim(Tn : Bn → Bn+1) are C *-systems, if B1, B2, . . . are

C *-algebras and Tn : Bn → Bn+1 are c.p. contractions, cf. Lemma A.19.6(v).

(5) All nuclear operator systems (that are not necessarily unital), are C *-

systems (cf. Proposition A.19.4).

Definition A.19.3. Let A a C *-algebra and X ⊆ A a self-adjoint closed

subspace of A. Then X is a (not necessarily with order-unit equipped) C*-

system if X is a (not necessarily order-unital) operator system and there exists

a c.i. and c.p. map I from a C *-algebra M onto X∗∗, i.e., the second conjugate

operator system X∗∗ is c.i. and c.p. isomorphic to a C *-algebra.

A similar definition for general C *-spaces would be completely wrong, because

there exist separable operator spaces that have injective C *-algebras as second

conjugate, but are not C *-spaces and are not nuclear (are even not exact).

The unique C *-algebra structure on X∗∗ allows to define the multiplier al-

gebra M(X) ⊆ X∗∗ by

M(X) := {a ∈ X∗∗ ; aX ∪Xa ⊆ X} .

A closed subspace X ⊆ A is nuclear if, for every x1, . . . , xn ∈ X and δ > 0,

there are k ∈ N and completely positive contractions V : A → Mk , W : Mk → A

with W (Mk) ⊆ X and ‖WV (xj)− xj‖ < δ for j = 1, . . . , n.

It is easy to see that nuclear X must be an operator system (that is not neces-

sarily order-unital).

Below we see that X is moreover a C *-system, cf. Lemma ??. (???

lem:6.?nuc.cst.syst ???)

A C *-system X is nuclear if X is a nuclear subspace of the C *-algebra X∗∗.

Proposition A.19.4. Let X 6= 0 a separable (not necessarily unital) matrix-

ordered and matrix-normed space. TFAE:

(i) X is nuclear.

(ii) X is completely isometric and completely order isomorphic to the inductive

limit of completely positive contractions Vn : Mkn →Mkn+1
.

(iii) X∗∗ is completely isometric and completely order isomorphic to an injec-

tive W*-algebra.

(iv) There exists hereditary C*-subalgebras D ⊆ E ⊆M2∞ of the CAR-algebra

M2∞ = M2 ⊗M2 ⊗ · · · and a completely isometric matrix-order isomor-

phism from X onto E//D := E/(E ·D +D · E).
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Remarks A.19.5. Before we start with the proof of Proposition A.19.4 we

remind the reader that a (not necessarily unital) operator system X is a very special

kind of much more general operator spaces defined and considered by E. Effros and

Zh.-J. Ruan in [245].

The (as Banach space) separable operator systems are always completely iso-

metric isomorphic to the quotient space A/(R + L) of some separable C *-algebra

A by a sum R + L of a closed right ideal R of A and and closed left ideal L of A.

The algebraic sum is always closed, cf. Proposition A.15.2(iv)

An operator system has in addition to its matrix norms an involution map

x ∈ X → x∗ ∈ X and a matrix order structure with the property that the second

order operator space X∗∗ contains an order unit 1 ∈ X∗∗ with the property that

−1n⊗ 12 ≤ x⊗ p12 + x∗⊗ p21 ≤ 1n⊗ 12 is equivalent to ‖x‖ ≤ 1 for x ∈Mn(X∗∗).

(Here the order unit 1 ∈ X∗∗ is often not in X itself, and pjk ∈M2 denote matrix

units and 12 := p11 + p22.)

In this case holds: If X is an operator system and is in addition a C*-space (as

reminded below), then X∗∗ is a W*-algebra.

A C*-ternary space (also called “C*-space”) X is by definition is an oper-

ator space that has the following two properties:

(c*-sp 1) The second conjugate operator-space X∗∗ of X is completely isometric

isomorphic to a ternary algebra (triple product algebra) pMq for some

W*-algebra M and projections p, q ∈M .

(c*-sp 2) The natural completely isometric embedding η : X ↪→ X∗∗ of X into X∗∗

is weakly injective, i.e., there is a completely contractive projection P from

X4∗ onto the σ(X4∗, X∗∗∗) closure of the image of η∗∗(X) of the natural

C *-ternary morphism η from the W*-ternary algebra X∗∗ into X4∗.

The general definition of relative weakly injective linear maps T : X ↪→ A

into a C *-ternary algebra A is that T is completely isometric and that there is a

completely contractive σ(A∗∗, A∗)-continuous linear projection

P : A∗∗ → T ∗∗(X∗∗) ⊆ A∗∗

with the property that P ◦T ∗∗ = T ∗∗. The existence of this embedding shows that

the operator space X is a C *-space (C *-ternary system).

An operator space X is weakly injective , if and only if, a suitable completely

isometric linear embedding of X into L(H) for some Hilbert space H is relative

weakly injective.

All separable C *-ternary spaces are completely isometric isomorphic to quo-

tient operator spaces C∗(T )/(L+R) of the universal C *-algebra C∗(T ) generated

by a single contraction T , with sum L + R of a suitable closed left-ideal L and a

closed right-ideal R of C∗(T ) (this follows easily from the results of [472]).
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An operator system X is a (not necessarily unital) C*-system if X∗∗ is com-

pletely isometric and order isomorphic to a W*-algebra and the natural inclusion

map η : X ↪→ X∗∗ is relative weakly injective in X∗∗.

It is known that all (non-unital) separable C *-systems X admit a canonical

unitization X̂ that is completely order isomorphic to C∗(F∞)/(L∗ + L) for some

closed left ideal L of C∗(F∞), cf. [472].

It is not difficult to see that all inductive limits A1 → A2 → · · · defined by

completely positive unital maps Vn : An → An+1 are C *-systems, cf. [472].

Proof of Proposition A.19.4. (i)⇒(ii): The definition of nuclearity for

separable operator systems X is equivalent to the existence of

(α) linear subspaces X1 ⊆ X2 ⊆ · · · ⊆ X with dim(Xn) < ∞ and
⋃
nXn

dense in X, and

(β) completely positive contractions Tn : Mkn → Xn+1 and Sn : Xn → Mkn

such that ‖(Tn ◦ Sn)|Xn‖ < 2−n.

It follows that X = indlimn(Tn ◦ Sn) : Xn → Xn+1. One can check this in X∞ :=

`∞(X)/c0(X) by comparing it in X∞ on the subsets Xn with the inductive limit

X = indlimn(ιn : Xn → Xn+1) for the natural inclusion maps ιn from Xn into

Xn+1. The asymptotic of the approximately commuting diagrams allow to see that

X ∼= indlimn→∞Wn := Tn ◦ Sn : Xn → Xn+1

by comparing the restrictions of the iterates

Wk,` := W` ◦ . . . ◦Wk : Xk → X`

on Xn ⊆ Xk for fixed n ∈ N and large n < k < `. It shows that the natural

embedding in X modulo c0(X) in X∞ coincides with this inductive limit, because

it has a natural embedding into X∞ given for x ∈ Xn by

Wn,∞(x) = (0, . . . , 0, x,Wn(x),Wn+1Wn(x), . . .) + c0(X) .

The complete isometry from X onto the map

x ∈ X 7→ (S1(x), S2(x), . . .) + c0(Mk1
,Mk2

, . . .)

defines an a completely isometric and completely positive map from X onto the

inductive limit defined by the sequence of c.p. contractions Vn := Sn+1◦Tn : Mkn →
Mkn+1

. The defining morphisms for the inductive limit of the Vn are given by

Vn,n+` := Vn+` ◦ . . . ◦ Vn+1 ◦ Vn : Mkn →Mkn+`

and for an ∈Mkn by

Vn,∞(an) = (0, . . . , 0, an, Vn(an), Vn+1Vn(an), . . .) + c0(Mk1
,Mk2

, . . .) .

Clearly this happens also for the map ???????

To be filled in ??

(ii)⇒(iv):
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(iv)⇒(iii):

(iii)⇒(i): �

Lemma A.19.6. Suppose that A,B1, B2, . . . are C*-algebra, that Tn : Bn →
Bn+1 (n = 1, 2, . . .) are completely positive contractions and that X ⊆ A is a

closed subspace of A, that is invariant under passage to adjoints, i.e., X = X∗ :=

{x∗ x ∈ X}.

Then

(i) Suppose that there is a c.p. contraction V : A→ A∗∗ such that V (x) = x ∈
A ⊆ A∗∗ for x ∈ X, V (A) is contained in the σ(A∗∗, A∗)-closure of X

in A∗∗ and (V ⊗ idn)(Mn(A)+) is contained in the σ(Mn(A)∗∗,Mn(A)∗)-

closure of Mn(A)+ ∩Mn(X)) in Mn(A∗∗) ∼= Mn(A)∗∗.

Then X is a C*-system.

(ii) If X is a C*-system and ψ : X → C is a c.i. and c.p. map into a C*-

algebra C such that ψ(X) generates C, then there exists a unique *-algebra

morphism ϕ from C into X∗∗ with ϕ(ψ(x)) = x for x ∈ X.

(iii) If, for every x1, . . . , xn ∈ X and δ > 0, there is a completely positive

contractions V : A → A, such that V (A) ⊆ X and ‖xj − V (xj)‖ < δ for

j = 1, . . . , n, then X is a (not necessarily unital) C*-system.

(iv) X ⊆ A is a C*-system if X is a nuclear subspace of A.

(v) indlim(Tn : B → B) ⊆ `∞(B)/c0(B) is a C*-system.

(vi) If the maps Tn : B → B are nuclear, then the C*-system

indlim(Tn : B → B) is nuclear.

Proof. (vi): We show: If the Bn are separable (not necessarily unital)

C *-algebras and the maps Tn : Bn → Bn+1 are nuclear c.p. contractions, then

indlimn(Tn : Bn → Bn+1) is a separable nuclear C *-space.

This reduces to the case, where Bn is of finite dimension by Lemma A.14.2 and

Lemma A.14.1.

In the non-separable case is indlimn(Tn : Bn → Bn+1) the union of nuclear

subspaces given by indlimn(Sn : An → An+1) for separable C *-subalgebras An ⊆
Bn with Tn(An) ⊆ An+1, such that Sn := Tn|An is still an nuclear map from An

into An+1.

to be filled in ??

Let X := indlimn(Sn : An → An+1), where the An are separable and the Sn

are nuclear. Consider the natural embedding X ⊆ `∞(A1, A2, . . .)/c0(A1, A2, . . .) .

In the separable case we can find a increasing sequence Z1 ⊆ Z2 ⊆ · · · of finite-

dimensional subspaces of X, and subspaces Yk ⊆ Ak of finite dimension, such that⋃
k Zk is dense in X, Sk(Yk) ⊆ Yk+1 and Zk = Sk,∞(Yk) for all k ∈ N. Then we

find ?????????? and

c.p. contractions Vk : Mµ(k) → Ak+1, Wk : Ak → Mµ(k), such that Vk ◦
Wk : Ak → Ak+1 have the property that for Lk := Yk ∪ Vk−1(Mµ(k−1)) ⊆ Ak holds
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‖(Vk ◦ Wk − Sk)|Lk‖ < 8−k. It follows that X = indlimk→∞(Sk : Yk → Yk+1)

and X = indlimk→∞(Vk ◦Wk : Lk → Lk+1) with matrix order and matrix norm

inherited from `∞(A1, A2, . . .)/c0(A1, A2, . . .).

This implies, by Lemma A.14.1, that the matrix-normed and matrix-

ordered space X is completely isometric and completely order isomorphic to

C := indlimk→∞(Wk+1 ◦ Vk : Mµ(k) → Mµ(k+1) . The Tk := Wk+1 ◦ Vk are

c.p. contractions.

By Proposition A.19.4 it follows that C and therefore X is a nuclear (not

necessarily unital) C *-system.

????? �

Remark A.19.7. “Non-unital” modifications of the proofs in [438] show that:

Compare next Definitions with those in work of J.Pisier or Effros–Lance ???

(1) There is a C *-algebra C and a hereditary C *-subalgebra D ⊆ C such that

C//D ∼= indlim(Tn : B → B) by a completely isometric and completely positive

isomorphism.

(Use Stinespring dilation and [438, lem.2.5], compare the arguments in [472].)

(2) Every separable C *-system X is isomorphic to C//D for some separable

C *-algebra C and hereditary C *-algebra D ⊆ C.

(Compare [472, prop.5] for the unital case.)

(3) Let X a C *-system, i.e., X (considered e.g. as X ⊆ L(H) for some H)

is a matrix-ordered operator space with second conjugate X∗∗ isometrically order

isomorphic to a W*-algebra M and there is a normal conditional expectation PX

from M∗∗ onto the σ(M∗∗,M∗)-closure of the image of the canonical map from X

into M∗∗ given by the natural map X → X∗∗∗∗ ∼= M∗∗. This latter assumption is

equivalent to the requirement that X ⊆ X∗∗ is relatively weakly injective in X∗∗,

which can be expressed equivalently that the natural map from X ⊗max C∗(F2) to

X∗∗ ⊗max C∗(F2) is injective (in an isometric sense). Here ⊗max is taken on the

category of tannery algebras extended to operator spaces X with X∗∗ isomorphic

to a W*-ternary algebra pMq.

(To understand the latter extra requirement check by examples that PX defines

a normal c.p. contraction from M into M∗∗ that is usually very different from both

of the central normal embedding M ∼= pM ·M∗∗ and of the non-normal natural

inclusion of M into M∗∗.)

Then: X is nuclear,

if and only if,

the second conjugate operator system X∗∗ is an injective C *-algebra,

if and only if,

the inclusion map from X into the W*-algebra X∗∗ is weakly nuclear.
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(Modify here [438, lem.2.8] for the implication

X∗∗ injective ⇒ X nuclear .

The other directions follows from (X∗∗)op ⊗max X = (X∗∗)op ⊗min X (where the

tensor products are defined by the natural inclusion of X in the W*-algebra X∗∗)

???????? Find reference ????????? by an argument of E. Effros and Ch. Lance

[241, thm. ???] that uses here the standard representation of X∗∗ and (X∗∗)op in

the sense of U. Haagerup).

If this is the case and X is separable then one can take C := M2∞ in (2).

(4) Similar arguments show the analogs for C *-operator spaces X ∼= C/(L+R)

of the results (2) and (3) for separable C *-spaces X, (by definition operator spaces

X with with X∗∗ completely isometric to pMq for some von-Neumann-algebra M

and projections p, q ∈M .)

Lemma A.19.8. Suppose that D is a hereditary C*-subalgebra of a C*-algebra

B with corresponding “open” support projection p := pD ∈ B∗∗. Let

M(B//D) := {a ∈ (B//D)∗∗ : a(B//D) ∪ (B//D)a ⊆ B//D } .

(o) The natural isomorphisms

(B//D)∗∗ ∼= B∗∗/(pB∗∗ +B∗∗p) ∼= (1− p)B∗∗(1− p)

are unital and completely isometric. They equip (B//D)∗∗ with the unique

von-Neumann algebra structure that is compatible with the bi-adjoint ma-

trix order unit structure on B//D. It holds B//D = (1−p)B(1−p) if we

naturally identify (1−p)B∗∗(1−p) ∼= (B//D)∗∗ and consider all operators

as elements of (1− p)B∗∗(1− p).
(i) M(B//D) is a C*-subalgebra of (B//D)∗∗, and M(B//D) ∩ (B//D) is

a closed ideal of M(B//D) .

The ideal M(B//D) ∩ (B//D) is natural isomorphic to N (D)/D by

the canonical epimorphism B 3 b 7→ b + R + L ∈ B//D = B/(R + L),

where L and R denote the closures of BD respectively DB.

(ii) An element x ∈ (1− p)B∗∗(1− p) is in M(B//D) ∩ (B//D), if and only

if, x, x∗x, xx∗ ∈ B//D ⊆ (1− p)B∗∗(1− p).
(iii) If we identify N (D)/D and M(B//D) ∩ (B//D) naturally via πR+L,

then, for every closed ideal J of B,

πD(N (D) ∩ J) = πR+L(J) ∩ πD(N (D)) .

(iv) Suppose that that T : B//D → C is a completely positive and completely

isometric map from B//D into a C*-algebra C.

If a C*-subalgebra A of C is contained in T (B//D) then γ := T−1|A
is a *-monomorphism from A into B//D ∩M(B//D) ∼= N (D)/D.

(v) Let Ann(D,J) := {b ∈ B ; bD +Db ⊆ J } .

If J is closed ideal of B, then J ⊆ Ann(D,J) and

πJ(Ann(D,J)) = Ann(πJ(D)) := Ann(πJ(D), {0}) .
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In particular, πJ(D) is essential in B/J , if and only if, Ann(D,J) = J .

In particular, N (D) ∩Ann(D,J) = N (D) ∩ J for all J / B.

If πJ(D) is essential in B/J then

N (D) ∩Ann(D,J) = N (D) ∩ J .

(vi) Suppose that Ann(D,J) = J for all J / B. Then there is a unique *-

monomorphism

λ : N (D)→M(D)

such that λ|D = idD and

λ(N (D) ∩ J) = λ(N (D)) ∩M(D,D ∩ J)

for all J / B.

In particular,

πD ◦ λ(N (D)) ∩ πD(M(D,D ∩ J)) = πD ◦ λ(N (D) ∩ J)) .

(vii) If B is separable, then there exist a completely positive contraction

V : B//D := B/(L+R)→M(D)/D such that V | N (D) = πD ◦ λ and

V
(
πL+R(J)

)
⊆ πD

(
M(D,D ∩ J)

)
for all J / B .

Proof. Ad (o) and (i): If B is unital, then M(B//D) ⊆ B//D and the

statements (o) and (i) are contained in [437, thm.1.4] (in the unital case).

If B is non-unital, we can pass to the unitization B̃ = B + C · 1 of B and

have B̃∗∗ ∼= B∗∗ ⊕ C. Let e denote the unit of B∗∗ in B̃∗∗. Then p ≤ e, B//D =

(e− p)B(e− p) = (1− p)B(1− p) and

B//D ⊆ B̃//D = (1−p)B̃(1−p) ⊆ (e−p)B(e−p)⊕C·(1−e) = B//D⊕C·(1−e) .

It follows B̃//D = (1− p)B(1− p) +C · (1− p) = B//D+C(1− p) and, therefore

B//D = (B̃//D) ∩ (e− p)B∗∗(e− p) ,

and M(B̃/D) ∩ (e− p)B∗∗(e− p) = M(B̃//D) ∩B//D .

If x ∈M(B//D) ∩B//D, then x(B//D) + (B//D)x ⊆ B//D and x(1− e) =

(1 − e)x = x ∈ B̃//D. Thus x ∈ M(B̃//D) ∩ B//D. If y ∈ M(B̃//D), then

y = x + z(1 − p) with x ∈ B//D and z ∈ C. Since (1 − p)c = c = c(1 − p) for

c ∈ B̃//D, we get x(B//D)+(B//D)x ⊆ (B̃//D)∩(e−p)B∗∗(e−p). The right side

is equal to B//D, which shows thatM(B̃//D) = (M(B//D)∩B//D)+C · (1−p).

The normalizer algebra N (D) ⊆ B of D in B, is the intersection of B with the

normalizer algebra N (D) + C · 1 of D in B̃.

By [437, thm.1.4(iii), lem.4.9], the natural epimorphism from B̃ onto the unital

C *-system B̃//D defines a unital *-epimorphism from N (D) +C · 1 ⊆ B̃ = B+C·
onto M(B̃/D) = M(B//D) + C · (1 − p) ⊆ B̃//D = B//D + C · (1 − p) with

kernel D. It follows that the natural epimorphism from B onto B//D defines a

*-epimorphism from N (D) onto M(B//D) ∩B//D with kernel = D.

Ad(ii): Let e with eB̃∗∗ = B∗∗ as in the proof of parts (o,i).
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If x, x∗x, xx∗ ∈ B//D ⊆ B̃//D, then x ∈ M(B̃//D) ∩ B//D = M(B//D) ∩
B//D by [437, lem.4.8(ii)] and proof of part(i).

Conversely, x, x∗x, xx∗ ∈ B//D if x is inM(B//D)∩B//D ⊆ (1−p)B∗∗(1−p),
because M(B//D) ∩ B//D is a closed ideal of the C *-subalgebra M(B//D) of

(1− p)B∗∗(1− p) by part(i).

Ad(iii): Because πD and πL+R| N (D) are the same, πD(N (D)∩J) is contained

in πD(N (D)) ∩ πL+R(J).

If a ∈ J and πL+R(a) ∈ πD(N (D)), then there exists b ∈ N (D) with b − a ∈
R + L. If we apply the quotient map πJ from B onto B/J to b, then πJ(b) ∈
πJ(R) + πJ(L), and πJ(b) is in the normalizer algebra N (πJ(D)).

Since πJ(R) and πJ(L) are the closed right and left ideals generated by πJ(D),

we have that N
(
πJ(D) ∩ (πJ(R) + πJ(L))

)
= πJ(D) . It follows πJ(b) ∈ πJ(D),

i.e., b ∈ D+ J . If b = d+ c with d ∈ D and c ∈ J , then c = b− d ∈ N (D) ∩ J and

πD(c) = πD(a).

Ad(iv): Since T is completely positive and completely isometric, it fol-

lows that γ : A → B//D is completely positive and completely isometric.

Thus, in (B//D)∗∗ ∼= (1 − p)B∗∗(1 − p) holds γ(a)∗γ(a) ≤ γ(a∗a) and

a∗a ≤ T ∗∗(γ(a)∗γ(a)) ≤ a∗a. It gives γ(a∗a) = γ(a)∗γ(a) for a ∈ A, i.e.,

γ : A → γ(A) ⊆ (B//D)∗∗ is a C *-morphism. Hence γ(A) ⊆ M(B//D) by part

(ii).

Ad(v): Let J / B. We get J ⊆ Ann(D,J) from the definition Ann(D,J) :=

{b ∈ B ; bD +Db ⊆ J } .

An element b ∈ B satisfies πJ(bD) = πJ(b)πJ(D) = {0} if and only if bD ⊆ J .

Thus,

πJ(Ann(D,J)) = Ann(πJ(D)) := Ann(πJ(D), 0) .

It follows that N (D) ∩Ann(D,J) = N (D) ∩ J if πJ(D) is essential in B/J .

If πD(N (D)∩Ann(D,J)) = πD(N (D)∩J), and πJ(bD) = πJ(b)πJ(D) = {0},
then b∗b ∈ Ann(D,J)

More????? proof: Lemma A.19.8 ??

Ad(vi):

Ad(vii): �

20. Open projections and Kadison transitivity

Remark A.20.1. We use the following lemmata and the Lemma 2.2.3 in the

proof of Proposition 2.2.5 and in proofs in Chapter 3.

The proofs do not allow something “up to ε” instead they require “precise”

algebraic variants of the Kadison transitivity theorem (cf. [616, thm. 2.7.5]) for
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projections p∗ = p ∈ A∗∗ with pA∗∗p of finite linear dimension (i.e., p is in the

C *-algebra-“socle” of A∗∗ considered as C *-algebra).

The variant [616, thm. 2.7.5] of the Kadison transitivity theorem implies that,

for each projection q ∈ pA∗∗p, there exists a self-adjoint contraction a∗ = a ∈ A,

‖a‖ ≤ 1 with p− 2q = (1− 2q)p = ap .

It shows that the natural C *-morphism A0 := p′ ∩ A 3 a 7→ ap ∈ pMp is

surjective.

The theorem [616, thm. 2.7.5] covers also that case of any projections p in

the “socle” socle(A∗∗) of A∗∗, because there exists a normal non-degenerate *-

representation D : A∗∗ → L(H) such that D|pA∗∗p is faithful and D(p) has finite

rank, i.e., Dim(D(p)H) <∞, cf. Lemma 2.1.15(i).

Here the (french) notation “socle” (“pedestal”, “base”?) of a Banach *-algebra

B is defined (since ca. 1950) by

socle(B) := {b ∈ B ; Dim(b∗Bb) <∞} .

See ?????

It gives that for each selfadjoint contraction b∗ = b ∈ pA∗∗p = pAp there is a

self-adjoint contraction a∗ = a in A with pa = ap = b .

Notice that all this happens also in the cases of real C *-algebras, C *-ternary

algebras etc., e.g. in the case of real C *-algebras, the same result with skew-adjoint

elements b∗ = −b ∈ A :

Then c := e12 ⊗ b− e21 ⊗ b is self-adjoint in (p⊕ p)M2(A)(p⊕ p) = M2(pAp) .

A self-adjoint contraction a∗ = a ∈M2(A), a(p⊗p) = (p⊗p)a and a(p⊗p) = c

satisfies for its entries

[ajk] = e11 ⊗ a11 + e12 ⊗ a12 + e21 ⊗ a21 + e22 ⊗ a22

that a∗12 = a21, a∗11 = a11, a∗22 = a22, pajk = ajkp, pa11 = 0, pa22 = 0, pa12 = b,

pa∗12 = −b. Thus, a := (1/2)(a12 − a∗12) is skew-adjoint and pa = ap = b.

It follows that p commutes with a and pap2 = pap. Hence, a is in the multi-

plicative domain Mult(V ) ⊆ A of the completely positive map

V : a ∈ Ã→ pap ∈ pA∗∗p .

Since the finite-dimensional real C *-algebra pA∗∗p is the linear span of its pro-

jections, the restriction of V to the C *-subalgebra Mult(V ) of A is a *-epimorphism

from Mult(V ) onto pA∗∗p.

In particular, for each irreducible representation d : A→ L(H), we get that for

x, y ∈ H with ‖x‖ = ‖y‖ = 1 there exists e ∈ A with d(e)x = y and ‖e‖ = 1. Then

ψ(e∗e) = 1 if ψ denotes the pure state ψ(a) := 〈d(a)x, x〉 .

Compare Remark A.18.4 for an alternative proof of the existence of a C *-sub-

algebra B ⊆ A such that B 3 b 7→ pbp ∈ pA∗∗p is a *-epimorphism.
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21. On excision of pure states

We need non-separable and “precise” versions of well-known excision results

e.g. in [6]. Here we consider only excision for pure states on C *-algebras A. The

idea is, to show that every separable C *-subalgebra is contained in an eventually

bigger separable C *-subalgebra with the property that the restriction of the pure

state to this bigger one is again a pure state. For use in proofs, recall here that all

hereditary C *-subalgebras D of separable C *-algebras are σ-unital.

HERE some comments (important ??, check it, erase unnecessary discussions):

Before the proofs of some Lemmata and the Proposition A.21.4 let us mention

some of the conclusions from them. One of it is the following important property:

For every C*-algebra A and any pure state ϕ on A, the separable C*-subalgebras

B of A with the property that ϕ|B is again an irreducible state on B build an upward

directed net of separable C*-subalgebras of A such that each separable C*-subalgebra

of A is contained in one member of this net.

In particular, A is the (algebraic, set-theoretic) union of this special separable

C *-subalgebras, and one can combine it with a countable number of other properties

of separable C *-subalgebras of A, as considered in other sections in the Appendices

A and B, e.g. B can be chosen that it is relative weakly injectivity in A, that all

ideals of B are intersections of ideals of A with B .... And we can see that A is the

set-theoretic union of the upward directed family of all separable C *-algebras that

have all this countably many properties together...

The sequence (en)n≥1 of elements in B ⊆ A with G ⊆ B in Proposition ??

“excises” in a very sharp sense the restriction ϕ|B of the pure state ϕ . If one

allows to do the same with some more general nets of positive contractions for

some state ϕ on A then this ϕ can be “excised”, if and only if, ϕ is in the σ(A∗, A)-

closure of the pure states on A – compare [6, def. 2.1, prop. 2.2] for this more

general excision property, which is not equivalent to our demand of accuracy for

our definition of “strict excision”.

Here we equip the reader with necessary information on this topic to understand

our methods for a detailed study of sufficient conditions on simple C *-algebras

A that cause pure infiniteness of A. (In fact we provide a big list of equivalent

properties for simple C *-algebras in Sections 2 to 4 of Chapter 2 that each imply

or are equivalent to pure infiniteness.)

The here constructed special fixed element e is a contraction that “supports”

ϕ sharply if A is separable and G = A, i.e., then the extreme point ϕ of the quasi-

state space A, i.e., the set of all linear functional on A of norm one, is the unique

peak point for suitable e ∈ A+ and e ≤ 1 with A = eAe.

For given pure states ϕ on separable or non-separable A there are many positive

contractions e of norm ‖e‖ = 1 with the property that ϕ is a peak point of e ∈ A+

if A has no sub-quotient of type I, e.g. et for t ∈ (0,∞).
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We use another terminology that describes all with help of quotient C *-spaces

A/(L∗ + L) build from C *-algebras by using left-ideals L because those anyway

play a role in some of our proofs e.g. for the embedding theorem.

For non-separable A one gets usually only a convex subset of positive contrac-

tion k ∈ A+ with ϕ(k) = 1. Then ϕ(k2) = 1. If ϕ 6= ψ for some other pure state ψ

then there exists a positive contraction k ∈ A+ with

min(ϕ(k), ψ(k)) < max(ϕ(k), ψ(k)) = 1

by application of Kadison transitivity to projections in p ∈ A∗∗ with pA∗∗p isomor-

phic to M2 or C⊕ C.

This follows e.g. from Remark A.18.9 by considering the C *-algebra

A/
(
(Lϕ ∩ Lψ)∗ + (Lϕ ∩ Lψ)

)
.

It is an, – at most 4-dimensional and at least 2-dimensional –, quotient C *-space of

A (which is automatically a C *-algebra because of its finite dimension as a vector

space).

Lemma A.21.1. Let E a C*-algebra and J /E a non-zero σ-unital closed ideal

of E such that E/J is one-dimensional.

Then E contains a strictly positive contraction e ∈ E+ such that πJ(e) = 1E/J

and that e− e2 is a strictly positive element of J .

Proof. Let ψ(t) := min(t, 1) for t ∈ [0,∞). Since E/J is one-dimensional,

there is unique element d ∈ (E/J)+ with ‖d‖ = 1, i.e., d = 1E/J . Let g ∈ E a lift

of d, i.e., πJ(g) = d1/2 = d . Then c := ψ(g∗g) is a positive contraction c ∈ E+

with πJ(c) = d = 1E/J . By assumption, J+ contains a strictly positive element h.

We may suppose that ‖h‖ = 1/2, – otherwise replace h by ‖2h‖−1h.

We have now c ∈ E+ with 0 ≤ c ≤ 1 in E + C · 1 ⊆ M(E) ⊆ E∗∗ and

πJ(c) = 1E/J and a strictly positive element h ∈ J+ for J with norm ‖h‖ = 1/2 .

Then 1/2 ≤ 1− h ≤ 1 and 2 · 1 ≤ (1− h)−1 in M(E) . (Here 1 denotes the unit of

M(E).)

This implies that c+h is strictly positive in E and c+h ≤ (1−h)−1 ∈M(E) .

We define a positive contraction by

e := (1− h)1/2(c+ h)(1− h)1/2 ∈ E+ .

The element e is strictly positive in E because (1−h)1/2 is invertible inM(E) and

c+ h is strictly positive in E.

Obviously (1 − h)1/2h(1 − h)1/2 = h − h2 ∈ J+ and c1/2hc1/2 ∈ J+. Thus

πJ(e) = πJ(c) = 1E/J by the MvN-equivalence

(1− h)1/2c(1− h)1/2 ∼MvN (c− c1/2hc1/2) .

It implies e− e2 ∈ J+ because 0 ≤ e ≤ 1 .

If we use that 0 ≤ c ≤ 1 to get e ≤ (1 − h)1/2(1 + h)(1 − h)1/2 = 1 − h2, i.e.,

that h2 ≤ 1− e. It implies that e1/2h2e1/2 ≤ e− e2 ∈ J+.
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The contraction h2 is strictly positive in J because h is strictly positive in J .

Now observe that if J is a closed ideal, h2 is strictly positive in J and e is strictly

positive in E, then e1/2h2e1/2 is strictly positive in J . �

Definition A.21.2. Let A C *-algebra and ρ a state on A. We say that ρ has

the excision property if there exists a net of positive contractions {eτ}τ∈Σ ⊆ A+

that satisfy that ρ(eτ ) = 1 for all τ ∈ Σ and

lim
τ∈Σ
‖ eτaeτ − ρ(a)e2

τ ‖ = 0 .

We say that a state ρ on A has the strict excision property if A contains a

positive contraction e ∈ A+ with ρ(e) = 1 such that

lim
n→∞

‖enaen − ρ(a)e2n‖ = 0 for all a ∈ A .

It is not difficult to see that a state ρ on A with the property that there exists

e ∈ A+ with ‖e‖ ≤ 1, ρ(e) = 1 and limn ‖enaen− ρ(a)e2n‖ = 0 must be necessarily

a pure state on A:

The assumptions show that ‖e‖ = 1, i.e., there is a pure state λ on A with λ(e) = 1.

Then λ(xek) = λ(ekx) = λ(x) for all x ∈ A, and this implies limn (λ(a)−ρ(a)) = 0 ,

for all a ∈ A, i.e., ρ = λ is pure.

Lemma A.21.3. Let B separable C*-algebra, ρ a state on B.

The state ρ is a pure state on B, if and only if, there exists e ∈ B+ with

‖e‖ = 1, ρ(e) = 1 and

{b ∈ B; ρ(b) = 0} ⊆ (e− e2)B +B(e− e2) . (21.1)

In particular, then ρ has the strict excision property in Definition A.21.2, i.e., there

there exists e ∈ B+ with ρ(en) = 1 = ‖e‖ for all n ∈ N, and

lim
n→∞

‖enben − ρ(b)e2n‖ = 0 for all b ∈ B .

Proof. Suppose that ρ is a state on B and e ∈ B+ with ρ(e) = 1 = ‖e‖.
Then 1 ≤ ρ(e)2 ≤ ρ(e2) ≤ ρ(e) = 1, It follows that 0 ≤ e − e2 ≤ e and 0 ≤
ρ((e − e2)2) ≤ ρ(e − e2) = 0 imply that ρ((e − e2)b∗b(e − e2)) = 0 for all b ∈ B.

Thus, ρ(b∗b) = 0 for all b ∈ L := B(e− e2). It says that the closed left ideal L

is contained in Lρ := {b ; b ∈ B, ρ(b∗b) = 0}, i.e., L ⊆ Lρ. It is easy to see that

always L∗ρ + Lρ ⊆ ρ−1(0). If we combine this containment with the containment

ρ−1(0) ⊆ L∗ + L in (21.1), then we get that

ρ−1(0) = L∗ρ + Lρ .

But this shows that the state ρ is a pure state, because [616, prop. 3.13.6.(i,ii)]

says that ρ is pure state on B, if and only if, L∗ρ + Lρ = ρ−1(0), i.e., ρ is a pure

state, if and only if, L∗ρ + Lρ is equal to the null-space of ρ.

Now let ρ be a pure state on the separable C *-algebra B. We are going to

show that there exists a strictly positive contraction e ∈ B+ with ρ(e) = 1, that
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satisfies with L := B(e− e2) the equation

ρ−1(0) = L∗ + L .

In particular, then e is a strictly positive contraction in B, L∗+L+C · e = B, and

e− e2 is a strictly positive element of L∗ ∩ L.

A special case of the Kadison transitivity theorem shows then the existence of

c ∈ B+ with ‖c‖ = ρ(c) = 1 , cf. [616, thm. 2.7.5, thm. 3.13.2(vi)]. – or use our

more engaged Lemma 2.1.15(ii,iii) for that.

The positive contraction c ∈ B+ satisfies then 1 = ρ(c)2 ≤ ρ(c2) ≤ ρ(c) = 1.

Thus, ρ(c2) = 1 and ρ(c− c2) = 0 .

Let h : B → L(H) the corresponding irreducible representation with cyclic

vector v ∈ H corresponding to ρ, i.e., ‖v‖ = 1 and 〈h(b)v, v〉 = ρ(b) for b ∈ B. Then

‖c‖ = 1 = ρ(c) = ρ(c2) and c ≥ 0 imply that h(c)v = v, because ‖(1− h(c))v‖2 =

〈h(c)v, h(c)v〉+ 〈v, v〉 − 〈v, h(c)v〉 − 〈h(c)v, v〉 = ρ(c2) + 1− 2ρ(c) = 0 , – here with

idH is denoted by 1.

It follows that ρ(b) = ρ(bc) = ρ(cbc) = ρ(cb) for all b ∈ B . In particular,

ρ(cb∗bc) = ρ((bc)∗bc) = ρ(b∗b) for all b ∈ B.

Thus, the closed left ideal L := {b ∈ B ; ρ(b∗b) = 0} of B has the property

L · c ⊆ L . Notice that B = L∗ +L+C · c, because L∗ +L is the kernel of the pure

state ρ and ρ(c) = 1 .

Since B is separable, the hereditary C *-subalgebra D := L∗ ∩L of B contains

a strictly positive element g ∈ D+ for D. The positive part D+ of D consists of all

b ∈ B+ with ρ(b) = 0. In particular, c− c2 ∈ D+. It follows that g + c is a strictly

positive element of B.

The relation L · c ⊆ L impies that D · c ⊆ D and c · D ⊆ D. It says that

the E := D + C · c is a C *-subalgebra of B, D is a closed ideal of E, ρ|E is a

character on E with kernel equal to D and ρ(ξ · c) = ξ for all ξ ∈ C, i.e., E/D is

one-dimensional. If we identify C naturally with πD(E) = E/D, then the quotient

map πD is just the character ρ|E.

By Lemma A.21.1, E contains a strictly positive contraction e ∈ E+ such that

πD(e) = 1E/D and that e − e2 is a strictly positive element of D = L∗ ∩ L that is

the kernel of ρ|E – if we adjust the identification of C with E/D such that 1 ∈ C
corresponds to 1E/D, i.e., ρ|E maps e and c in D + C · c onto the unit-element of

E/D ∼= C · ρ(c) = C by the character ρ|E with ρ(e) = ρ(c) = 1.

Now we return to B = L∗ +L+C · c. We got also B = L∗ +L+C · e, because

ρ(e) = ρ(c) and L∗ +L is the kernel of ρ. Since e− e2 is a strictly positive element

of D = L∗ ∩L (by above construction of e), it follows that L = B ·D = B · (e− e2)

and L∗ = (e− e2) ·B .

Finally we estimate the norms ‖enben − ρ(b)e2n‖ for large n ∈ N:

Each element b ∈ B = L∗ + L + C · e can be written as b = b1 + b2 + α · e with

b∗1 ∈ L, b2 ∈ L, α ∈ C. Then ρ(b) = α and the equation L = Be(1− e) implies
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that, for given δ ∈ (0, 1), there exist c1, c2 ∈ B with ‖b1 − e(1 − e)c1‖ < δ and

‖b2 − c2e(1 − e)‖ < δ. Notice that ‖enc1(1 − e)en‖ ≤ ‖c1‖‖(1 − e)en‖ and use

that limn→∞ ‖en(1− e)‖ = 0 to get that limn ‖enben − ρ(b)e2n‖ ≤ 3δ for arbitrary

δ ∈ (0, 1). �

The following Proposition is essentially [93, lem. 2.14]. But we give here to-

gether with Lemma A.21.3 a more detailed proof, because it plays a basic role for

proofs of some other results.

Proposition A.21.4. Let ϕ be a pure state on a C*-algebra A and G ⊆ A a

separable C*-subalgebra.

Then there exist a separable C*-subalgebra B ⊆ A and an element e ∈ B+ with

the properties G ⊆ B, ‖e‖ = 1, ϕ(e) = 1 and

{b ∈ B; ϕ(b) = 0} ⊆ (e− e2)B +B(e− e2) .

In particular, ϕ|B is a pure state on B and has the strict excision property in

Definition A.21.2 by Lemma A.21.3.

It shows that every pure state on a C*-algebra A has the excision property of

Definition A.21.2.

Proof of Proposition A.21.4. Let ϕ ∈ A∗+ a pure state, i.e., an extreme

point of the convex set of positive linear functionals on A of norm = 1. There

are many equivalent properties of a state ϕ that imply that ϕ is a pure state,

e.g. by [616, prop. 3.13.6(i,ii)]: The closed left ideal L := Lϕ of A defined by

L := Lϕ := {a ∈ A ; ϕ(a∗a) = 0} satisfies ϕ−1(0) = L∗ + L, if and only if, ϕ is a

pure state on A.

compare with text:

Then a special case of the Kadison transitivity theorem shows the existence of

c ∈ A+ with ‖c‖ = ϕ(c) = 1 , e.g. use [616, thm. 2.7.5, thm. 3.13.2(vi)] or use our

farer going Lemma 2.1.15(ii,iii) to get such c ∈ A+.

The purity of ϕ implies that

{a− ϕ(a)c ; a ∈ A} = L∗ + L = ker(ϕ) ,

cf. [616, thm. 3.13.2(iv), prop. 3.13.6] for the second equation. It yields that

P : A→ A defined by P (a) := a−ϕ(a)c maps A into ker(ϕ) and satisfies P (a) = a

for all a ∈ ker(ϕ), ‖P‖ ≤ 2 and P 2 = P , i.e., is a linear projection of norm ‖P‖ ≤ 2

from A onto ker(ϕ).

The maps a ∈ A 7→ ϕ(a) · c ∈ A and idA are completely positive contractions.

Thus, the map P (a) := a − ϕ(a)c on A has a cb-norm ‖P‖cb ≤ 2 , in particular

‖P‖ ≤ 2 . Obviously, ϕ(P (a)) = 0 for all a ∈ A, – i.e., P (A) ⊆ ϕ−1{0} –, and

ϕ(a) = 0 implies P (a) = a. Thus, ϕ−1{0} ⊆ P (A). It shows that

P (A) = ϕ−1{0} = L∗ + L and P 2 = P .
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In particular, P (a) = a if and only if a ∈ L∗+L . The same arguments (– but with

b ∈ B in places of a –) show that P (B) = B ∩ (L∗+L) for every linear subspace B

of A with c ∈ B ( 13 ).

The projection map P has following property: If B1 ⊆ B2 ⊆ · · · and B :=⋃
nBn then P (B) =

⋃
n P (Bn) .

Now let G ⊆ A a separable C *-subalgebra of A, and let B1 the separable C *-

subalgebra of A generated by G∪ {c} . Then (L∗ +L)∩B1 = P (B1), in particular

P (B1) ⊆ B1 .

By the – here very crucial – Corollary A.15.3, there exists a separable C *-

subalgebra B2 ⊆ A with the properties that B1 ⊆ B2 and

B1 ∩ (L∗ + L) ⊆ (L∗ ∩B2) + (L ∩B2) .

We can repeat this construction and argument by induction, and get an increasing

sequence of separable C *-subalgebras B1 ⊆ B2 ⊆ B3 ⊆ · · · of A with the property

Bn ∩ (L∗ + L) ⊆ (L∗ ∩Bn+1) + (L ∩Bn+1) ⊆ Bn+1 ∩ (L∗ + L) .

Let B denote the closure of
⋃
n∈NBn . Then, for all n ∈ N ,

Bn ∩ (L∗ + L) ⊆ (L∗ ∩B) + (L ∩B) ⊆ B ∩ (L∗ + L) .

(Use here that (L ∩B) ⊆ B ∩ (L∗ + L) and L ∩Bn+1 ≤ L ∩B.)

The space
⋃
nBn ∩ (L∗ + L) is dense in B ∩ (L∗ + L):

P (Bn) = Bn ∩ (L∗ + L) and P (B) = B ∩ (L∗ + L), because c ∈ Bn ⊆ B . Since P

is a bounded projection and
⋃
nBn is dense in B we get that

⋃
n P (Bn) is dense in

P (B).

The sum (L∗ ∩ B) + (L ∩ B) is the sum of a closed left and closed right ideal

of B. Sums K∗ +K := {x∗ + y ; x, y ∈ K ⊆ B} build by closed left ideals K ⊆ B
of B are always closed subspaces of B by Proposition A.15.2.

We get that P (B) ⊆ (L∗ ∩ B) + (L ∩ B) , because Bn ∩ (L∗ + L) = P (Bn) ⊆
Bn+1 ∩ L∗ +Bn+1 ∩ L and ‖P‖ ≤ 2.

It follows that P (B) = B ∩ (L∗ + L) = B ∩ ϕ−1{0} is equal to (L∗ ∩ B) +

(L ∩ B) and is the kernel of the restriction ψ := ϕ|B of ϕ to B. Notice that

b ∈ L ∩ B, if and only if, ψ(b∗b) = 0 , i.e., L ∩ B = Lψ, where Lψ := {b ∈
B ; ψ(b∗b) = 0}. The characterization of pure states on B, given by the above

cited [616, prop. 3.13.6(i,ii)], shows that ψ := ϕ|B is a pure state on B, because ψ

satisfies the purity criterium ψ−1(0) = L∗ψ + Lψ .

Notice that G ⊆ B1 ⊆ B and that B is separable.

13 Notice here that it could be that ϕ|B is not a pure state on a C *-subalgebra B of A with

c ∈ B ... except in some special cases where ϕ|B is the only state ρ on B with ρ(c) = 1. For

example, take A := M2, c := 12 and let B ⊆ A the diagonal elements in A. Then ϕ([αjk]) =

2−1
∑
jk αjk is a pure state on A but not on B.
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By Lemma A.21.3 there exists an element e ∈ B+ with the properties ‖e‖ = 1,

ϕ(e) = 1 and

{b ∈ B; ϕ(b) = 0} ⊆ (e− e2)B +B(e− e2) ,

and B has the strict excision property of Definition A.21.2.

Since we can do this selection procedure for every given separable subset G of

A with with respect to a given fixed pure state of A, we can see that each pure state

of A has the (in general not “strict”) excision property of Definition A.21.2. �

22. Some technical functions on [0, 1]

We use often for some very elementary approximation technics the increasing

piecewise linear functions hn ∈ C0(0, 1]+ with break points at 2−n, n = 0, 1, 2, . . .,

given by

hn(t) := min(1,max(2nt− 1, 0)) for t ∈ [0, 1], n = 0, 1, . . . .

In the C *-algebra C0(0, 1] and n ∈ N they are given by

h0 := 0 , h1 := (2f0 − 1)+ , . . . , hn := (2nf0 − 1)+ − (2n−1f0 − 1)+ ,

where f0 ∈ C0(0, 1] denotes the identity map f0(t) := t on (0, 1].

The below listed properties of the hn can be easily seen on the intervals

[2−n, 2−(n−1)], because the functions hn are linear on two of this intervals and

take outside them only the values 0 and 1:

(i) hn|[0, 2−n] = 0, hn|[2−n, 2−(n−1)] is the linear map

hn(t) := (2−(n−1) − 2−n)−1(t− 2−n) for t ∈ [2−n, 2−(n−1)]

and hn|[2−(n−1), 1] = 1. In particular, hn ∈ Cc(0, 1]+ ⊂ C0(0, 1]+ for all

n ∈ N, and h0 := 0 on [0, 1] .

(ii) The set (2−n, 1] is the open support of hn in [0, 1], and is contained in

h−1
n+1(1) = [2−n, 1] . In particular,

0 ≤ hn+1hn = hn ≤ hn+1 ≤ 1 for all n ∈ N .

(iii) The non-negative function hn+1 − hn has support in the open interval

(2−(n+1), 2−(n−1)), i.e., is zero on [0, 2−(n+1)] and [2−(n−1), 1], is linear

increasing on [2−(n+1), 2−n] with value (hn+1−hn)(2−n) = 1 and is linear

decreasing on [2−n, 2−(n−1)].

In particular, hn+2(t)− hn+1(t) = 1− hn+1(t) for t ∈ [2−(n+1), 2−n] .

(iv) The restriction to [2−(n+1), 2n] of the, – in C0(0, 1] absolute convergent

and on all intervals [1/n, 1] uniformly convergent –, series

∞∑
n=0

2−n(hn+1(t)− hn(t))

is on [2−(n+1), 2n] just equal to the increasing linear function

2−(n+1)(1 + hn+1)|[2−(n+1), 2n]

with values 2−(n+1) and 2−n at the end-points.
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Thus, the series
∑∞
n=0 2−n(hn+1 − hn) converges uniformly on [0, 1],

and converges absolute in the Banach space C0(0, 1] to f0(t) := t, because

∞∑
n=0

2−n‖hn+1 − hn‖ ≤ 2 .

(v) The hn have the othogonality property hn(hn+2 − hn+1) = 0 .

(vi) For each γ ∈ (0, 1] only finitely many functions hn − hn−1 have support

in [γ, 1]. In particular,
∑
n≥1(hn − hn−1) converges on each interval [γ, 1]

uniformly to 1.

(vii) The functions ψn := (hn − hn−1)1/2 ∈ C0(0, 1] (applied to t = f0(t)) are

well-defined, have support in in [2−n, 2−n4].

In particular, ψnψm = 0 for |n−m| > 1.

(viii) The sum
∑
n=1 ψ

2
n converges in the multiplier algebra M

(
C0(0, 1]

) ∼=
Cb

(
(0, 1]

)
strictly to 1, because

∑
n=1(hn − hn−1) converges on each in-

terval [2−n, 1] uniformly to 1 = limn hn. (See Remark 5.1.1(2) concerning

strict convergence.)

An Application of the functions h1, h2, ... is the below given simple Example

A.22.1. It shows that the ≈-classes in W (A) and the corresponding ≈-classes in

Cu(A) are not the same for A := C0(0, 1]. Notice that the Pedersen ideal of this

C *-algebra A is Cc(0, 1] and our “small Cuntz semigroup CS(A)” defined and used

in

where ????????

is also different from W (A) and Cu(A) . (But here Cu(A) has “good compari-

son” because of Dim((0, 1]) = 1 !)

Check calculations and notations in example:

Seems to be no real progress with comparison.

But it is likely to be true ... Perhaps pass to M2n(C0(0, 1]) ... and combine with

the hn

Example A.22.1. The ≈-classes in W (A) and the corresponding ≈-classes in

Cu(A) are not the same for A := C0(0, 1].

Consider A := C0(0, 1] and define gn(t) :=
(

2−n(hn+1(t) − hn(t))
)1/2

. Let

T :=
∑∞
n=1 gn ⊗ p1,n .

Then T ∈ C0(0, 1]⊗K and TT ∗ = (
∑
g2
n)⊗ p11 = f0 ⊗ p11 for f0(t) := t, but

the “almost diagonal” matrix

check formula for T ∗T !!!

T ∗T =
∑
n

gngn+1 ⊗ pn,n+1 + gngn−1 ⊗ pn+1,n +
∑
n

2−n(hn+1 − hn)⊗ pnn

is not contained in
⋃
nMn(A).
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23. K1-injectivity and generalized Kuiper theorem

Compare with related topics in Section 2 of Chapter 4

in particular with the squeezing property in Definition 4.2.14.

It is the basic observation used in the proof of Part(c) of

Proposition 4.2.15.

We reformulate some technical lemmata of J. Cuntz and N. Higson in [172]

and [180], that we use for example to derive generalizations of Kuiper’s Theorem

[505] in the spirit of J. Cuntz, N. Higson [180] and J. Mingo [557] by generalizing

their ideas to C *-algebras that have our “squeezing” Property (sq) of Definition

4.2.14.

We modify ideas in [180] to get a proof of the following easier applicable

Lemma.

Lemma A.23.1. If B is a σ-unital and stable, then, for every separable C*-sub-

algebra C of M(B), e ∈ C and ε > 0, there exist isometries S, T ∈ M(B) with

T ∗CS ⊆ B, T ∗S = 0 and ‖T ∗eS‖ < ε.

Proof. The stability of B causes that for each given b ∈ B and ε > 0 there

exists an isometry r ∈M(K) ⊆M(B) such that ‖r∗br‖ < ε (with r depending on

b and ε).

Thus, if we later are only interested in showing thatM(B) has the “squeezing”

Property (sq) in Definition 4.2.14 for A := M(B), then it is enough to find, for a

given a ∈M(B), isometries S, T ∈M(B) with T ∗aS ∈ B and S∗T = 0.

The claimed property S∗T = 0 is not important for this proof, because we

could replace a considered sequence b1, b2, . . . of contractions in M(B) anyway by

Q∗b1R,Q
∗b2R, . . . with isometries Q,R ∈ M(B) with Q∗R = 0 for this proof,

because the isometries QS and RT have the additional orthogonality property

(RT )∗(QS) = 0.

We describe now a selection method that shows for a given separable C *-

subalgebra C of M(B) the existence of isometries S, T ∈ M(B) with orthogonal

ranges and the property that S∗CT ⊆ B .

Let c1, c2, . . . ∈M(B) a sequence of contractions inM(B). Likewise this could

be a sequence that is dense in the unit ball of a given separable C *-subalgebra C

of M(B) and with c1 := c the particular element that should be squeezed below

ε > 0 with help of “squeezing isometries” S and T inM(B), i.e., with the additional

property ‖S∗cT‖ < ε .)

We describe an inductive selection method for the construction of isometries

S, T ∈ M(B) with S∗T = 0 and S∗cnT ∈ B for all n ∈ N , such that we can apply

Remark 5.1.1(2) concerning strict convergence on M(B) for σ-unital stable B :

The stability of B is equivalent to the existence of a sequence s1, s2, . . . ∈ M(B)

of isometries with the property that
∑
k sks

∗
k converges strictly to 1 ∈ M(B), i.e.,
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with respect to the strict topology onM(B), cf. Remark 5.1.1(8) and Lemma 5.1.2.

In particular, the sequence k ∈ N→ ‖s∗kb‖+ ‖bsk‖ converges to 0 for each b ∈ B.

Describe first the selection process.

Because now comes an other observation

about producing new isometries:

The sums
∑
n sλ(n)s

∗
λ(n) converge in M(B) strictly to a projection if λ : n ∈

N→ λ(n) ∈ N is an injective map. Moreover, the sum
∑
n sλnfn converges strictly

to an isometry Sλ ∈M(B) if f1, f2, . . . ∈M(B) is any sequence with the property

that
∑
n f
∗
nfn converges strictly to 1 in M(B) by Remark 5.1.1(2).

??

We use the following method to construct isometries in M(B):

Let e ∈ B+ a strictly positive contraction with ‖e‖ = 1. Apply the functions

hn, ψn ∈ C0(0, 1]+ as defined in Section 22 with ψn = (hn−hn−1)1/2 to e ∈ A, i.e.,

fn := ψn(e) = (hn(e)−hn−1(e))1/2 ∈ A+ . The
∑
n f

2
n converges strictly inM(A)

to 1M(A) and
∑
n 2−nhn(e) is absolute convergent to e in A.

< Check above?

Thus S :=
∑∞
n=1 sλ(n)fn converges strictly to an isometry in M(A) if∑

n=1 sns
∗
n converges strictly to 1M(A) by (two-fold application of) Remark

5.1.1(2).

If κ(n) ∈ N is another strictly increasing sequence, then for each b ∈M(A) the

sequence

∑
m,n

fns
∗
κ(m)bsλ(n)fn

unconditional ??? Has to be checked !!!

is strictly convergent in M(A) with limit = T ∗bS ∈ M(A) for the isometries

T :=
∑∞
n=1 sκ(n)fn and above defined S.

Let b1, b2, . . . ∈M(A)+ a sequence of positive contractions.

We find inductively a sequences of even numbers kn ∈ 2 · N with k1 := 2,

kn < kn+1 and odd numbers `n ∈ 1 + 2 · N with `n < `n+1 that satisfy

‖(s`n)∗bjskmfm‖ < 4−n for all j ≤ n and m < n and ‖fm(s`m)∗bjskn‖ < 4−n

for all j ≤ n and m < n.

Beginning step:

Since bjs2f1 ∈ A for j ∈ {1, 2} there exists an odd number `1 > 1 with

‖s∗`1bjs2f1‖ < 1/4 for j ∈ {1, 2}.

Then use that f1s
∗
`1
bj are in A for j ≤ 3. It follows that there exists even

k2 ∈ N with k2 > 2 and ‖f1(s`1)∗bjsk2
‖ < 4−n for all j ≤ 3.

Still to define/arrange the selection procedure!
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Let m ∈ N an odd natural number, and given isometries skj , j = 1, . . . ,m then

find an even index `m ∈ N such that `m > `m−1 and ‖s∗`mbnskjfj‖ < 4−n for all

n ≤ m+ 2 and j < m .

Then go one step higher and select the next odd index km+1 in a similar way.

We select below suitable sequences fn ∈ B+ and injective maps κ : N→ N with

odd values and λ : N→ N with even values such that S∗λbnSκ ∈ B for all n ∈ N.

Let e ∈ B+ a strictly positive element with ‖e‖ = 1 . The stability of B implies

that 0 is not isolated in the spectrum Spec(e) ⊆ [0, 1] . We take the piecewise linear

functions hn(ξ) := min(1,max(2nξ − 1, 0)) (with break points at 0, 2−n, 21−n and

1), that is defined in Section 22 (and studied there in every detail), and consider

the non-negative functions ϕn(ξ) :=
(
hn(ξ) − hn−1(ξ)

)1/2
for n = 1, 2, . . ., where

we let h0 := 0. Notice that ϕm · hn = ϕm for m ≤ n− 1.

Then the series
∑
n ϕn(ξ)2ξ converges uniformly on [0, 1] to f0, where f0(ξ) :=

ξ, cf. Property (iv) in Section 22.

It follows that the contractions fn := ϕn(e) ∈ A+ and en := hn+1(e) ∈ A+

have the property that fmen = fm for all m ≤ n and
∑
n f

2
ne converges in norm

inside B to e ∈ B.

Refere to Property (iv???) in Section 22???

Hence,
∑
n f

2
n converges strictly to 1M(B) in M(B).

The above observations imply that Sκ :=
∑
n sκ(n)fn is an isometry in M(A)

for each strictly increasing map κ : N 3 n 7→ κ(n) ∈ N for the above defined

fn ∈ A+.

If the ranges of two injective maps κ : N → N and λ : N → N are disjoint

then the isometrics Sλ and Sκ have orthogonal ranges. (And if the intersection

κ(N) ∩ λ(N) is a finite subset of N then S∗κSλ ∈ B .)

Start with k1 := 1, and define inductively strictly increasing maps κ : n 7→ kn ∈
N with odd kn and λ : n 7→ `n ∈ N with even `n such that

‖en+2s
∗
`mbjskn+1‖ < ε · 2−(n+3)/(n+ 1)

for all m ≤ n and j ≤ n+ 2, and kn+1 > max(kn, `n) and that in the next step

‖s∗`n+1
bjskmen+2‖ < ε · 2−(n+4)/(n+ 2)

for all m ≤ n+ 1 and j ≤ n+ 2, and `n+1 > max(`n, kn).

It is possible to find the desired odd number kn+1 and then the desired even

number `n+1, because the sum
∑
n sns

∗
n of the range projections converges strictly

to 1 and this implies, e.g. for the finitely many elements en+2s
∗
`m
bj ∈ B with

m ≤ n+ 1 and j ≤ n+ 2 that limν→∞ ‖en+2s
∗
`m
bjsν‖ = 0 .

Estimates to be checked again.

In particular the case j = 1. ??

For each j ∈M the element S∗λbjSκ ∈M(B) is contained in B :
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For fixed bj in the sequence (b1, b2, . . .) the summands X1,j := f1s
∗
`1
bjsk1

f1

and partial sums

X`,j :=
∑̀
m,n=1

fns
∗
`nbjskmfm

are in B. For each bj
∑
` ‖X`+1,j−X`,j‖ <∞, because ‖X`+1,j−X`,j‖ < ε·2−(n+1)

for n ≥ j. It implies convergence in B itself.

In the particular case b1 := c , we get ‖S∗λcSκ‖ < ε, because we have managed

that the norm of X1,1 and of all (X`+1,1 −X`,1) is small enough to get the desired

estimate.

To see that X := limn Sn ∈ B and S∗bjT ∈ M(B) are equal for it suffices to

see that cS∗bjTd = cXd for all c, d ∈ B . But this is evident even with c = d := e

and easy to see

It follows S∗CT ⊆ B and S, T are isometries with S∗T = 0 if the sequence

b1, b2, . . . is dense in the positive part of the unit ball of C ⊆M(B) .

�

Remark A.23.2. Lemma A.23.1 implies that A := M(B) has the “squeezing”

Property (sq) of Definition 4.2.14. Therefore, all non-zero quotients of A ⊗max D

for unital C *-algebras D are K1-bijective, by Proposition 4.2.15.

This covers the results of [180], e.g. that U(M(B)) = U0(M(B)) and that all

pointed homotopy groups πn(U(M(B)), 1) are trivial ( 14 ).

M. Mingo [557] obtained the following generalization of Kuiper’s theorem in

the special case where B = C ⊗K for unital C *-algebras C.

Theorem A.23.3 (J.Cuntz, N. Higson,[180]). Let B σ-unital stable C*-algebra,

and A a unital C*-algebra.

The K∗-groups of M(B) ⊗ A and M(B) ⊗max A are trivial, and any quotient

algebra of M(B)⊗max A is K1-injective.

The unitary groups U of the algebrasM(B)⊗maxA are connected (with respect

to the operator-norm topology), and have only trivial homotopy groups πn(U , 1) = 0.

Every continuous map from a locally finite CW-complex X into U is homotopic

in U to the constant map X 3 x 7→ 1 .

Proof. The C *-algebra M(B) has the “squeezing” property (sq) of Defi-

nition 4.2.14 by Lemma A.23.1. It causes the property (sq) for all C *-algebras

(M(B) ⊗max A) ⊗ C(X), all unital C *-algebras A and compact Polish spaces X

(e.g. let X := Sn). The property (sq) of M(B) implies K1-injectivity of this alge-

bras.

14 The there deduced contractibility of the non-separable (!) Banach-space manifold

U(M(B)) requires some set-theoretic discussion that is not given in detail. We doubt that it

is possible without using a version of the Axiom of Choice (which is not provable), that should be

mentioned.
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The infinite repeat D := δ∞ ⊗max idA satisfies D ⊕ id ∼= D. It implies that

K∗(M(B)⊗max A) = 0 for all C *-algebras.

The K1-triviality and K1-injectivity for all X = Sn imply together that every

continuous map from a locally finite CW-complex into U is homotopic in U to the

constant map 1. �

The following Corollary A.23.4 (see J.Cuntz, N. Higson,[180]) of Theorem

A.23.3 uses that a complete metrizable space that is locally uniformly homeomor-

phic to a (not necessarily separable !) Banach space is homotopic to a (locally

finite) CW-complex, cf. [556] for open subsets of separable Banach spaces and

[542, chp. IV, lem.5.2, cor.5.5] for the non-separable case ( 15 ). Then the vanish-

ing of the – by 1 – pointed homotopy groups yields that U(C) is contractible if

U(C(Sn)⊗ C) = U0(C(Sn)⊗ C) for each n ∈ N. It implies:

Corollary A.23.4. If B is stable and σ-unital and A is unital, then the uni-

tary groups U(M(B)⊗A) and U(M(B)⊗max A) are contractible.

Remark A.23.5. The following independent conclusion does not use arguments

from [542] (dependent from additional axioms on set theory?):

If A is unital and B is stable and σ-unital, then each C*-quotient C 6= {0} of

M(B)⊗max A satisfies U(C)/U0(C) ∼= K1(C) .

Indeed: The quotients C have Property (sq) of Definition 4.2.14 and are K1-

bijective by Proposition 4.2.15.

24. Tensor Intersection lemma

Next lemma to App.B? To Reduction to separable case?

In the following lemma X ⊗ν Z means the closure of X � Z in the completion

A⊗ν B of the algebraic tensor product A�B with respect to a C *-norm ‖ · ‖ν on

A � B. Notice that, e.g. in the case of the maximal C *-tensor product A ⊗max B

of C *-algebras A and B, one has for C *-subalgebras C ⊂ A not necessarily that

the natural C *-morphism C ⊗max B → A⊗max B is injective. This C *-morphism

is injective for all C *-algebras B if and only if C is relatively weakly injective in

A (i.e., if there is a c.p. map V : A → C∗∗ with V (c) = c for c ∈ C ⊆ A), because

– otherwise – the natural *-epimorphism C ⊗max B → C �B ⊂ A ⊗max B is not

injective for B = C∗(F2).

The following Lemma is the Intersection Lemma [438, lem. 3.9].

Lemma A.24.1. Let A, B Banach spaces and N : A � B → R+ a norm on

A ⊗ B with N(a ⊗ b) ≤ γ1‖a‖ · ‖b‖ for some γ1 < ∞. Let A ⊗N B denote the

completion of A � B w.r.t. N . Furthermore let X ⊂ A and Y ⊂ B closed linear

15 [542] does not say what kind of set theory axioms are precisely needed in case of open

subsets of non-separable Banach spaces.
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subspaces such that there is net of linear maps Tµ : B → Y and γ2 < ∞ with

N((id⊗Tµ)(z)) ≤ γ2N(z) for z ∈ A�B, and ‖Tµ(y)−y‖ → 0 for all y ∈ Y . Then

X �B ∩A� Y = X � Y

in the completion of A�B w.r.t. N .

In particular,

(C ⊗ν B) ∩ (A⊗ν Y ) = C ⊗ν Y

for C*-algebras A, B, C*-norms ‖ · ‖ν on the algebraic tensor product A � B,

any C*-subalgebra C ⊂ A and sums Y = L + R ⊆ B (respectively intersection

Y = L ∩R) of closed right ideals R and closed left ideals R of B.

Proof. Let z ∈ X �B ∩ A� Y and ε > 0. Define δ := ε/(3 + 2γ2). We find

z1 ∈ X�B and z2 ∈ A�Y with N(zj−z) < δ for j = 1, 2. Let ak ∈ A and yk ∈ Y
with z2 =

∑
k ak ⊗ yk . By assumption, there is Tµ with N(z2 − (id⊗Tµ)(z2)) ≤

γ1

∑
k ‖ak‖‖Tµ(yk)− yk‖ < δ . Since (id⊗Tµ)(z1) ∈ X ⊗ Y and

z − (id⊗Tµ)(z1) = (z − z2) + (z2 − (id⊗Tµ)(z2)) + (id⊗Tµ)(z2 − z1) ,

we get dist(z,X � Y ) ≤ δ + δ + γ2(2δ) < ε, – with respect to the semi-norm N on

A�B. �

25. Characterization of closed ideals by inner automorphisms

Lemma A.25.1. Let A a (complex) C*-algebra and let X ⊆ A+ a hereditary,

closed convex cone in A+, exp(−ih)X exp(ih) ⊆ X for all h = h∗ ∈ A with ‖h‖ < π,

then X is the positive part J+ of a closed ideal J of A.

Proof. There should be also some reference to text books

e.g. Pedersen, Kadison, Dixmier, ??? ...

It is ”easy to see” that the hereditary C *-subalgebra J of A generated by the

linear span of X has the property that X is dense in J+ := A+∩J . Thus, X = J+.

The hereditary C *-subalgebra J is an ideal of A, because it is invariant under

conjugation with unitaries exp(ih) (and exp(−ih)) from any set S ⊆ A of elements

h = h∗ that has dense linear span in A, because then the open support projection

of the hereditary C *-subalgebra J is necessarily in the center of A∗∗. (In case of a

”real” C *-algebra A one has here to take as S a suitable set of k ∈ A with k∗ = −k
and to apply that exp(−k)X exp(k) ⊆ X and to rediscover X.)

Therefore it suffices for a proof to show that the linear subspace J := (X −
X) + i(X−X) is a hereditary C *-subalgebra and that J+ = X if X is a hereditary

sub-cone of A+ that satisfies exp(−ih)X exp(ih) ⊆ X for all h∗ = h ∈ A.

We show that a hereditary, closed convex cone X ⊆ A+, has the property

A+ ∩ (X −X) = X and that this implies that X −X is closed in A and, therefore,

J := (X − X) + i(X − X) is a closed linear subspace of A with the property

J+ := A+ ∩ J = X.
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Moreover we show that X = A+ ∩ LX for the subset LX ⊆ A defined by

LX := {a ∈ A ; a∗a ∈ X } and that LX is a closed left-ideal of A. It implies that

J = L∗X ∩ LX , i.e., that J is a hereditary C *-subalgebra of A.

If x1 − x2 ≥ 0, x2 ∈ A+ and x1 ∈ X then x1 ≥ x1 − x2 ≥ 0. It follows

x1 − x2 ∈ X because X is hereditary.

Let LX := {a ∈ A ; a∗a ∈ X}. Then LX is a closed left ideal of A and

X = A+ ∩ LX .

Indeed: Use that x2 ≤ ‖x‖x and (a−b)∗(a−b)+(a+b)∗(a+b) = 2(a∗a+b∗b) and

that X +X ⊂ X, 2X = X, X is hereditary and closed. In particular x ∈ A+ ∩LX
for all x ∈ X, because x2 ∈ X for all x ∈ X by x2 ≤ ‖x‖x .

Conversely, if y ∈ A+ ∩ LX then y2 ∈ X. But δ(y − δ)+ ≤ y2 for all δ ∈ (0, 1).

It yields that (y − δ)+ ∈ X for each δ ∈ (0, 1). Since X is closed, it results that

X = A+ ∩ LX . In particular (X − X) + i(X − X) = L∗X ∩ LX is a hereditary

C *-subalgebra of A. �

26. On the Corona Factorization Property (CFP)

Proposition A.26.1. Let A denote a non-zero simple σ-unital C*-algebra of

real rank zero.

If A ⊗ K contains an infinite projection and A has the corona factorization

property (CFP), then A is purely infinite.

By definition, a C *-algebra A has the Corona Factorization Property

(CFP), if and only if, every full projection P in the multiplier algebra M(A ⊗ K)

of A ⊗ K is properly infinite, i.e., P ⊕S,T P - P in M(A ⊗ K) for isometries

S, T ∈M(A⊗K) with S∗T = 0.

Here a projection P ∈M(A⊗K) is full inM(A⊗K) if the ideal J ofM(A⊗K)

generated by P is equal to M(A⊗K).

This is obviously equivalent to the property that a finite Cuntz sum Q :=

P ⊕ P ⊕ · · · ⊕ P ∈ M(A ⊗ K) and an isometry R ∈ M(A ⊗ K) exists with the

property RR∗ ≤ Q.

How to produce full projections? By sequences of properly infinite pro-

jections in A⊗K?

Others from old Part in Part B:

We discuss the corona factorization property (CFP) for some classes of σ-unital

C *-algebras of real rank zero.

Does the Elliott conjecture hold for simple, separable, unital, nuclear C *-

algebras A of real rank zero that have no non-trivial lower semi-continuous 2-quasi-

trace?
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The latter property (no non-trivial l.s.c. 2-quasi-traces) is equivalent to the

existence of a properly infinite projection in A ⊗ K, and we can pass to some

algebra p(A⊗Mn)p that contains a unital copy of O2.

A more general open question is:

Has every separable nuclear simple C*-algebra A of real rank zero the following

“corona factorization property”?

(CFP): Every full projection in P ∈M(A⊗K) is properly infinite.

(Then the projection P is the range P = TT ∗ of an isometry T ∈ M(A⊗K),

because M(A⊗K) has trivial K∗-groups.)

(It is equivalent to:

If p ∈M(A⊗K) is a projection with 1 - (p⊕ p) then 1 - p.)

Every simple purely infinite σ-unital C *-algebra A has property (CFP) because,

– for σ-unital (!) A –, the stable corona Qs(A) :=M(A⊗K)/(A⊗K) is simple (and

then automatically purely infinite), if and only if, A is simple and purely infinite,

cf. Corollary 2.2.11(i). It implies thatM(A⊗K) is (strongly) purely infinite. Since

K∗(M(A⊗K)) = {0} it follows that each full projection inM(A⊗K) is the range

of an isometry.

For simple σ-unital A ⊗ K and every non-zero projection p ∈ A ⊗ K, p(A ⊗
K)p⊗K ∼= A⊗K. Thus we may suppose that A is unital if A is simple and p.i.

An ideal system preserving isomorphism p(A ⊗ K)p ⊗ K ∼= A ⊗ K exists if A

is σ-unital and A ⊗ K contains a projection p ∈ A ⊗ K that generates A ⊗ K as a

closed ideal.

It comes from P := δ∞(p) ∈ M(A⊗K) as P (A⊗K)P ∼= p(A⊗K)p⊗K and

the fact that there is an isometry s ∈M(A⊗K) with ss∗ = P .

Let T ∈M(A⊗K)+ a positive contraction with ‖πA⊗K(T )‖ = 1 . Define with

matrix units ejk ∈ K and identify c0(C) with c0 := C∗(e11, e22, · · · ) ⊂ K and let

gn :=
∑n
k=1 1⊗ ekk ∈ 1⊗ c0 .

We find an increasing quasi-central approximate unit for C∗(T ) ⊆ M(A ⊗ K)

in the convex hull of the approximate unit consisting of the projections gn ∈ A⊗K.

This can be seen from our cf. Lemma B.23.1 or arguments in the proof

for [616, thm. 3.12.14] and combine them with the arguments for [616,

cor. 3.12.15,cor. 3.12.16].

To be shown:

We find projections pn ∈ c0 ⊂ K with pn :=
∑tn
k=rn

ekk where tn−1 + 1 < rn ≤ tn

are in N, ‖(1 ⊗ pn)T (1 ⊗ pn)‖ ≥ (n − 1)/n, pnpm = 0 for m 6= n, (1 ⊗ pn)gn = 0,

and ‖(1⊗ pk)T (1⊗ pn)‖ < 1/n2 for k < n .

Notice here that for T ∈M(A⊗K)+ and q :=
∑n−1
k=1 pk ∈ K holds (1⊗ q)T =

lim`(1⊗ q)T1 ∈M(A⊗K) It has to be checked if there exists the pn!

Notice that
∑
n 1⊗pn converges strictly to a projection Q ∈ (1M(A)⊗M(K)) ⊆

M(A⊗K) .
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If such p1, p2, . . . exist, then there are contractions dn ∈ A⊗K

(likely such that d∗ndn ≤ 1⊗ enn and dn ∈ (1⊗ pn)(A⊗K)(1⊗ enn))

with 1 ≥ d∗n(1 ⊗ pn)T (1 ⊗ pn)dn ≥ (1 − 2/n)(1 ⊗ enn). Check Conjecture:∑
n(1⊗ pn)dn(1⊗ enn) is strictly convergent to a contraction S ∈M(A⊗K) with

1− S∗TS ∈ A⊗K.

One can find/use a partial isometries U ∈ M(K) with ennU
∗ = en,rn , i.e.,

with ennU
∗ = en,nen,rn where ern,rn ≤ pn for all n ∈ N. The sum Γ :=

∑
n(1 ⊗

pn)dn(1 ⊗ en,`n) converges strictly in M(A ⊗ K) and defines a contraction. Let

S := Γ ◦ U .

Then S is a contraction in M(A ⊗ K) such that 1 − S∗TS ∈ A ⊗ K and this

shows that Qs(A) is simple if A is σ-unital, simple and purely infinite. See above

attempt.

The strong pure infiniteness of M(A) is known if A is s.p.i. and σ-unital !

More general: (With K := K(`2(N)).) If σ-unital A is s.p.i. then M(A⊗K) is

s.p.i. (It requires to show that M(A) is s.p.i. if A is σ-unital and A is s.p.i. )

It implies in particular that A has (CFP), because each (non-zero) projection

in M(A ⊗ K) \ (A ⊗ K) is properly infinite if the stable corona Qs(A) is purely

infinite, because K0(Qs(A)) = 0.

The stable corona Qs(A) is simple if and only if A σ-unital, simple and p.i. if

and only if Qs(A) is simple and purely infinite, cf. Corollary 2.2.11.

Check:

Are some relations between [670, prop. 9.3] (on CFP) and our non-existence

of “infinitesimal” sequences??!!

(Is not very likely.)

Corona Factorization Property (CFP):

“Every full projection in the multiplier algebraM(A⊗K) of A⊗K is properly

infinite.”

(Who has really introduced this definition?)

If T1, . . . , Tn ∈ M(A ⊗ K) exists with
∑n
k=1 T

∗
kPTk = 1, then P is properly

infinite, i.e., there exists S ∈M(A⊗K) with 1− S∗PS ∈ A⊗K.

???? Is Def. of what???

Is it equivalent to the following if A is σ-unital?:

(CFPI) := “Corona-full are properly infinite” defined by:

“Every full projection of Qs(A) is properly infinite.”

Implies (CFP), because if P is a full projection inM(A⊗K) then πA⊗K(P ) is

a full projection in Qs(A). By (CFPI) there exists a contraction R ∈ M(A ⊗ K)

with 1 − R∗PR ∈ A ⊗ K. We can find an isometry X ∈ M(K) such that ‖1 −
(1⊗X)∗R∗PR(1⊗X)‖ < 1/4. Thus, there exists an element Y ∈M(A⊗K) with
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Y ∗PY = 1. Then T := PY is an isometry with TT ∗ ≤ P . It follows that P is

properly infinite. Now use that K0(M(A ⊗ K)) = {0} and get that [P ] = [1], i.e.,

there is an isometry Z ∈M(A⊗K) with ZZ∗ = P .

(Similar arguments show that each full element of M(A⊗K)+ dominates the

range of an isometry if this is the case for every full element of Qs(A).)

Thus, we can show that (CFPI) implies (CFP).

Consider now the property (of ?????):

If 1 - P ⊕ P then 1 - P for projections P ∈M(A⊗K).

This property implies (CFP), because a projection P is full in M(A ⊗ K) if

there exist n ∈ N such that [1] ≤ 2n[P ] in Cu(M(A⊗K)).

There is a projection Q ∈ Cu(M(A⊗K)) with [Q] = 2n−1[P ]. Thus 1 - Q⊕Q.

reduces to [1] ≤ [Q] = 2n−1[P ].

It follows also from (CFP), because 1 - P⊕P implies that P is a full projection

in M(A⊗K).

More on the question if (CFP) implies (CFPI) (in case that A has real rank

zero):

Let T ∈ M(A ⊗ K)+ a positive contraction, with π(T ) = T + (A ⊗ K) a

projection in Qs(A) for π := πA⊗K.

When does there exist Yk := 1⊗Xk that such that π(Yk) is unitary and Y ∗1 TY2

is a partial isometry?

If π(T ) is a full projection in Qs(A) the there are elements S1, . . . Sn ∈M(A⊗K)

with 1−
∑
k S
∗
kTSk ∈ A⊗K

There exists an isometry I ∈ 1⊗M(K) with
∑
k I
∗S∗kTSkI = 1M(A)⊗ 1M(K).

Seems that we need a stronger property, e.g. that every full positive contraction

T in M(A⊗K) with π(T ) a projection is properly infinite ...

Then (1− T )T ∈ A⊗K.

Let G := f(T ) for f(t) := 1 for t ≥ 1/4 and f(t) := 0 for t ≤ 1/8 and

f(t) := 8t − 1 on [1/8, 1/4]. Then π(G) = π(T ), G(T − 1/4)+ = (T − 1/4)+ and

G ≤ 4T .

If π(T ) is full in Qs(A), then π(sTs∗) is full in Qs(A).

But it is not clear if sTs∗ can be “extended” to a projection inM(A⊗K) such

that ????

Let S := (T − 1/2)
1/2
+ ∈ M(A ⊗ K), and a0 ∈ A+, b0 ∈ K strictly positive

contractions. Notice GS = S = SG. And let D := S(A⊗K)S the hereditary

C *-subalgebra of A ⊗ K generated by the strictly positive element S(a0 ⊗ b0)S of

D.

We find d1, . . . , dn ∈ M(A ⊗ K) with
∑
j d
∗
jSdj = 1. Thus, L := (A ⊗ K)S is

not contained in a non-trivial closed ideal of A.
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Thus, D a “full” hereditary C *-subalgebra of A ⊗ K. Gd = d = dG for all

d ∈ D.

Next ‘‘green’’ to be shown:

We find a projection P ∈ M(A ⊗ K) and an element z ∈ A ⊗ K such that

zz∗ = S(a0 ⊗ b0)S and z∗z is a strictly positive element of P (A⊗K)P .

Does there exists an element Y ∈M(A⊗K) with Y Y ∗ ≥ P and Y ∗Y G = Y ∗Y ?

Is P full in M(A⊗K)?

The true question is:

Can we find for each full projection Q in Qs(A) a full projection P ∈ M(A ⊗ K)

such that π(P ) - Q.

OK. Above seems not to work. !!!

Other approach:

Let d1, . . . , dn ∈ M(A ⊗ K) (w.l.o.g.) with
∑
k π(dk)∗π(T )π(dk) = 1 and

‖
∑
k d
∗
kdk‖ ≤ 1.

Here “w.l.o.g.”, because we can replace the dk by ek := T 1/2dkS, with some

suitable isometry S ∈M(A⊗K).

Then
∑
k π(ek)∗π(ek) = 1, and we can lift the column

[π(e1), . . . , π(en)]>, which defines a partial isometry in Mn(Qs(A)), of norm = 1 to

a contraction in M(A⊗K).

Then there exists isometry S ∈ 1M(A)⊗M(K) with ‖1−
∑
k S
∗d∗kTdkS‖ < 1/4

and 1−
∑
k S
∗d∗kTdkS ∈ A⊗K.

Let D := (
∑
k S
∗d∗kTdkS)−1/2. Then 1 =

∑
k R
∗
kTRk in M(A⊗K) for Rk :=

dkSD. ...

Suppose (!) now that T ∈ M(A ⊗ K) itself is a full projection and that each

full projection in Qs(A) is properly infinite.

Then we can take n = 1 and get isometry R ∈M(A⊗K) with R∗TR = 1, i.e.,

T ≥ RR∗, R∗R = 1.

Thus, T is full and infinite, RO2R
∗ ∈ TM(A ⊗ K)T , RsTs∗R∗ ≤ T and

RtTt∗R∗ ≤ T . Thus [T ] + [T ] ≤ [T ] ≤ [1], [1] ≤ [T ].

Can we lift each projection in Qs(A) to a projection in M(A⊗K) ?

Is not possible in general, because the elements of the K0-groups are represented

by projections and K0(M(A⊗K)) = 0 .

Then we can consider the case ?????

If every closed (two-sided) ideal of A has the Corona Factorization Property,

then we say that A has the strong Corona Factorization Property.

Or is this the “strong” (CFP)? : See the green text further below!

It is known that A has property (CFP) if A′ ∩ Aω does not have a character,

cf. [467, thm. 4.2]. But the converse implication is wrong:
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The example [467, ???] is a simple purely infinite exact unital separable C *-

algebra A that has property (CFP) but where A′ ∩A∞ has a character.

Where it is shown that A′ ∩A∞ has a character for A in example ????

Thus the opposite direction is wrong.

Give citation for ‘‘no character’’ on A′ ∩ A∞ of example. Likely

in [467]

It follows from [467, thm. 4.2] that for every σ-unital C *-algebra A the algebra

A⊗Z has property (CFP), because of Z ⊗ Z ⊗ · · · ∼= Z.

This is because one can show that each separable C *-subalgebra ofM(K⊗A⊗
Z) commutes modulo K⊗A⊗Z with a unital copy of Z.

Check now outlined proof

of property (CFP) for A⊗Z !

The preparations for [467, thm. 4.2] and the many needed technical facts from

other papers make it useful to give a more elementary proof of property (CFP) for

the algebras A⊗Z.

A less engaged proof can be based on the property Z ∼= Z ⊗ Z ⊗ · · · and that

there is a unital C *-morphism η : Z → E(Z,Z) ⊆ C([0, 1],Z ⊗Z) with π0 ◦ η(a) =

1⊗ a and π1 ◦ η(a) = a⊗ 1.

Thus, in the stable corona each “full” projection P is also properly infinite,

because – by the above mentioned property – the elements t1, . . . , tn ∈M(K⊗A⊗Z)

with t∗1Pt1 + . . .+ t∗nPtn = 1 (calculated modulo K⊗A⊗Z) and a unital copy of

O2 generate a separable C *-subalgebra of M(K⊗ A⊗ Z) that commutes modulo

K⊗A⊗Z with a unital copy of Z.

Let B := C∗(P, t1, . . . , tn, s1, s2;R) the free C *-algebra – with relations R

given by s∗1s1 = s∗2s2 = s1s
∗
1 + s2s

∗
2 = 1, P ∗ = P = P 2 and

∑
k t
∗
kPtk = 1,

‖tk‖ ≤ 1 –. Then one can see that 1 ⊗ P is in the C *-algebra tensor product

Z ⊗ C∗(P, t1, . . . , tn, s1, s2;R) a properly infinite full projection:

(n+ 1)[1] = [1] ≤ n[P ] ≤ n[1] = [1]

After Z-tensoring this becomes [1] = [P ] in the Cuntz semigroup W (Z ⊗
C∗(P, t1, . . . , tn, s1, s2;R)) and carries then over to the stable corona.

Look to the explicit formula in the green below given calculation.

What about replacing Z by infinite tensor products of A(n, 2) with fixed n ≥ 3,

where A(n, 2) := C∗(a1, . . . an, b1, . . . bn, R) with relations (R) given by:

(R) := {
n∑
k=1

a∗kak = 1, b∗jaj = 0, b∗j bj = a∗jaj , j = 1, . . . , n} .

The A(n, p) are similar defined and are contained ???? in suitable tensor products

of A(n, 2):

Instead a1, . . . an, b1, . . . bn we consider ak` (k = 1, . . . , n, ` = 1, . . . , p) with∑n
k=1 a

∗
k,1ak,1 = 1, a∗k,`ak,m = δ`,ma

∗
k,1ak,1.
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Which elements of O∞ ⊗A(n, p) are full in O∞ ⊗A(n, p) ???

In particular, those of form 1⊗X with X looking how ???∑
`=1 t

∗
`Pt` = 1 Gets only elements Yk with

Y ∗k (P ⊗ 1)Yk = 1⊗ a∗k,1ak,1. (Does not work so simple as it was hoped.)

Question:

Can we prove Z-absorption for separable simple unital nuclear A if A satisfies

(CFP)?

There exist a separable simple exact unital C *-algebra A that is p.i. (thus

Qs(A) := M(A ⊗ K)/(A ⊗ K) is simple and s.p.i., ... give citation for simplicity

and p.i. of Qs(A) !!!), but A′ ∩Aω has a character:

The algebra A := C∗(F2)⊗R is an example with is property.

Give citation for the character on A′ ∩Aω in case A := C∗(F2)⊗R !!!

Where is the algebra R defined ?

It follows (from which conditions ?) that each full projection in M(A ⊗ K) is

the range of an isometry in M(A ⊗ K). Thus, this algebra A has the (CFP) but

A′ ∩A∞ has a character.

Has (at least) A′∩A∞ a character if A is a simple unital separable and nuclear

C *-algebra that does not satisfy (CFP)?

It is known that separable unital A has (CFP) if A′ ∩ A∞ has no character,

see: [467, thm. 4.3].

But it is not known if stably infinite simple A with (CFP) is infinite ?????

Does (CFP) of simple separable A imply that A′ ∩A∞ has no character?

Answer: No! Counterexample with exact A is in [467]. (But this counterex-

ample is not nuclear!)

What happens for exact simple separable unital p.i. A? Has A (CFP) ??

(Answer: Yes). Notice that simple p.i. A are s.p.i. !!!

Proposition ?? says that M(A⊗K) s.p.i. if A is a σ-unital s.p.i. C *-algebra.

Thus, s.p.i. σ-unital A have property (CFP).

Part (2) of Theorem [499, thm.3.1] says that property (CFP) for separable B

passes to non-zero quotients.

This shows that P is properly infinite modulo K⊗A⊗Z.

By Remark 5.10.3, this implies that P = TT ∗ for some isometry

T ∈M(K⊗A⊗Z).

(Reference? What about converse in simple nuclear case?)

(Here “full” means equivalently that a finite Cuntz sum P ⊕ P ⊕ . . .⊕ P of P

in M(A⊗K) majorize 1, which implies that this sum is properly infinite.)

Open question:
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Are all simple (separable, nuclear) stably infinite C *-algebras of real rank zero

automatically purely infinite?

Long standing question? Compare Chp. 2.!

By [581, cor. 5.16], a separable simple C *-algebra of real rank zero with the

Corona Factorization Property (CFP) is either stably finite or purely infinite.

This was also proved in an unpublished paper by S. Zhang, who didn’t explic-

itly introduce/mention the (CFP). (He simply considered something like it – or

something equivalent to it – for granted).

S. Zhang: (Reference ??? unpublished)

If A is a simple C *-algebra of real rank zero with Property (CFP), then A is

either stably finite or purely infinite.

(One can pass to the case of σ-unital simple C *-algebras, by passage to suitable

separable subalgebras to drop the separability assumption by passing to a suitable

separable C *-subalgebra.)

The example A0 := C∗red(F2) ⊗ R is simple, exact and p.i. (thus is s.p.i.).

Simple σ-unital purely infinite C *-algebras have the (CFP) (cite for proof?). But

F (A0) has a character. Thus (CFP) does not imply that F (A) has no character if

A is exact, simple and p.i.

A result for non-simple σ-unital C *-algebra A of real rank zero says:

[581, cor. 5.15]: Let A be a σ-unital C *-algebra of real rank zero, and let p be

a projection in A such that the m-fold direct sum p⊕ p⊕ . . .⊕ p is properly infinite

(in Mm(A)) for some natural number m. Then p itself is properly infinite if one of

the following two conditions (i) or (ii) below hold:

(i) Every ideal in A has the (CFP)

(ii) A has the (CFP) and p is a full projection in A.

(The Part (i) should immediately follow from Part (ii).)

It comes from:

[581, thm. 5.13]: Let A be a σ-unital C *-algebra of real rank zero. Then V (A)

has the strong Corona Factorization Property (for monoids ), if and only if, every

ideal I in A has the Corona Factorization Property (for C *-algebras).

Is here A suppose to be stable? [581, lem. 5.6]: Let A be a σ-unital C *-algebra,

let P be a properly infinite, full projection in M(A) and let p ≤ P be a projection

in A. Then P − p is properly infinite and full in M(A).

[581, lem. 5.7]: Let A be a C *-algebra, let {pn} and {qn} be sequences of

pairwise orthogonal projections in A such that the sums P =
∑∞
n=1 pn and Q =∑∞

n=1 qn are strictly convergent in the multiplier algebra M(A), and hence define

projections P and Q in M(A).
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(i) Suppose that there are sequences {kn} and {`n} of natural numbers such

that 1 ≤ k1 < `1 < k2 < `2 < k3 < · · · , and such that

[pn] ≤ [qkn ] + [qkn+1] + . . .+ [qln ]

for all n ∈ N. Then P - Q in M(A).

(ii) If P - Q inM(A), then for every natural number k there exists a natural

number ` such that

[p1] + [p2] + . . .+ [pk] ≤ [q1] + [q2] + . . .+ [q`]

in V (A).

Proof of (i): For each n, let sn ∈ A be a partial isometry with

s∗nsn = pn , sns
∗
n ≤ qkn + qkn+1 + . . .+ qln .

As the sums
∑
pn and

∑
qn are strictly convergent, it follows that the sum

S :=
∑∞
n=1 sn is strictly convergent in M(A). Hence P = S∗S ∼ SS∗ ≤ Q.

From [467, thm. 4.3] (When central sequence algebras have a character.) we

get:

Theorem 4.3 :

Let A be a unital separable C *-algebra such that the central sequence algebra

F (A) has no characters. Then A has the strong Corona Factorization Property.

D. Kucerovsky and P.W. Ng show in [499, thm. 3.1] that the quotient of any

separable C *-algebra with the Corona Factorization Property again has the Corona

Factorization Property.

“It follows from this result that the quotient of any separable C *-algebra with

the strong Corona Factorization Property again has the strong Corona Factorization

Property.”

It was shown in [670, prop. 6.3] that A⊗max (
⊗

maxD) has the strong Corona

Factorization Property.

(For D with what kind of properties??? Likely D has to be unital and without

characters???)

The corollary [581, cor. 5.16]: says that a separable simple C *-algebra of real

rank zero with the Corona Factorization Property is either stably finite or purely

infinite.

(It shows that we could add the (CFP) to the assumptions of (Q1) then the

answer becomes positive. Moreover (Q1.implies.CFP for A), (Q1.implies.pi of A),

(Q1.implies.F (A) has no character) and (Q1.implies. ... are equivalent positive

answers.)

(It was also proved in an unpublished paper by S. Zhang, but without explicit

realizing / recognition that something like the (CFP) is needed.)

(One can drop the separability assumption by passing to suitable separable

C *-subalgebras.)
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There exist exact simple separable unital C *-algebras, e.g. C∗ρ(F2)⊗R, that are

purely infinite but have not the (CFP). (Because F (C∗ρ(F2)⊗R) has a character.)

If A is separable simple and σ-unital and F (A) has not a character then A has

(CFP).

( Recall: (CFP) = ”Corona factorization property” )

END of (CFP) Discussion !

27. On dense algebraic Ideals

The following definition is perhaps not identical with the definition given by

Pedersen in his book [616] on C*-algebras A ... He requires (!) that his dense ideal

is ”hereditary”.

We consider later the set A0,+ of all ε-cut downs of positive elements in A+

and show that this set is contained in any dense algebraic ideal J of A. We do not

know if the Pedersen ideal is identical with the algebraic ideal A0 of A generated

by all cut-down elements (a− ε)+ for a ∈ A+.

The ideal A0 is dense in A and is contained in any dense algebraic ideal of A.

Since the Pedersen ideal of A contains all the cut-down elements (a− ε)+ (for

a ∈ A+ and ε > 0), it is likely that they are the same: Find a proof ...

Consider first the case A := C0(0,∞) ... ???

But ?????

Are semi-finite (2-)quasi-traces on the Pedersen ideal l.s.c.?

Thm. 1.3.3.: (in Pedersen Book) The set A+ is a closed real cone in Asa, and

x ∈ A+, if and only if, x = y∗y for some y ∈ A.

Thm. 1.3.5.: (in Pedersen Book) If 0 ≤ x ≤ y then a∗xa ≤ a∗ya for all a ∈ A
and ‖x‖ ≤ ‖y‖.

Prop. 1.4.5.: (in Pedersen Book) Let x ∈ A and x∗x ≤ a ∈ A+. If 0 < α < 1/2,

then there exists u ∈ A with ‖u‖ ≤ ‖a(1/2)−α‖ such that x = uaα.

(The element u ∈ A is not necessarily unitary.)

Sec. 5.6.: The minimal dense ideal. (But Pedersen considered only ”hereditary”

algebraic ideals. The true minimal dense ideal is the ideal ideal

Thm. 5.6.1.: (in Pedersen Book, p.175) !!!!!!! For each C*-algebra A there is a

dense hereditary ideal K(A), which is minimal among all dense ideals. (of A).

My question: Is it identical with the algebraic ideal of A that is generated by

the set of all ε-cut-downs (a− ε)+? (Here a ∈ A+ and ε ∈ (0, ‖a‖).)

Proof of Pedersen Thm. 5.6.1: Let K((0,∞)) := set of all continuous function

on (0,∞) with compact support (inside (0,∞)). Define

K(A)0 := {f(x) : x ∈ A+, f ∈ K((0,∞))+}.
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Let

K(A)+ := {x ∈ A+ : x ≤
n∑
k=1

xk, xk ∈ K(A)0}

so that K(A)+ is the smallest hereditary cone in A+ containing K0(A).

If K(A) denotes the linear span of K(A)+ we conclude as in (Pedersen Book)

Proposition(5.1.3) that K(A) is a hereditary (!!!) *-algebra with (K(A))+ =

K(A)+.

Since u∗f(x)u = f(u∗xu) for any unitary u ∈ Ã we have u∗K(A)0u = K(A)0,

and (as in subsection 5.2.1 of Pedersen book) this implies that K(A) is an ideal:

If u is a unitary in Ã = A+ C1 then

4u∗x = 4(x1/2u)∗x1/2 =

3∑
k=0

ik(1 + iku)∗x(1 + iku)

(the polarization identity), ... ?

Let (fn) be a sequence in K(A) ...

Now use that each element of Ã is a combination of unitaries ...

28. Dimension-Functions in Sense of J.Cuntz

The following definition of Dimension functions (is quoted to J.Cuntz).

Definition A.28.1. Let D : XA →??? be a (non-negative) semi-finite Dimen-

sion function on XA :=
⋃
nMn(Ped(A)) ”in sense of J.Cuntz”.

Claim: D(a) = D(a∗a), D(a) ≤ D(b) if a - b.

D∗(a) := supε>0D((a− ε)+)

Then

α 0 ≤ D(a) ≤ D∗(a) for all a ∈ X,

β D∗ is again a Dimension function,

γ D −D∗ is a Dimension function,

δ If D is a Dimension function, then then the kernel Ker(D) satisfies

Ker(D) = (
⋃
n

Mn(Ped(A))) ∩ (
⋃
n

Mn(J))

for some (closed ?) ideal J of A.

ε ? (D −D∗)∗ = D∗ −D∗ = 0 ?

Has it following property?: D(a) 6= 0 implies D(b) 6= 0 for some b.

Are semi-finite (2-) quasi traces on the “Pedersen ideal” l.s.c.?

Are semi-finite Dimension functions (in the sense of J.Cuntz ) “lower semi-

continuous”?





APPENDIX B

Exact C*-algebras and examples

We discuss in this Appendix B some facts related e.g. to the following questions:

(0) Passage to suitable separable subalgebras that preserve important proper-

ties of the algebra.

(1) Monotone maps between partially ordered sets.

(2) Some properties of exact C *-algebras.

(3) Example of a nuclear and approximately inner c.p. map that is not residually

nuclear, and its relation to the possible existence of group vN-algebras that are not

weakly exact. (Is there an example of Ozawa of vN-alg. that is not “weakly exact”?)

(4) Example of a (simple?) unital nuclear separable C *-algebra A and a unital

*-monomorphisms ι : A ↪→ O2 of A into the Cuntz algebra O2 such that there is no

conditional expectation from O2 onto ι(A) .

It shows that there exist unital *-monomorphisms ι1 and ι2 of a (simple?)

unital nuclear separable C *-algebra A with the property that if we tensor the ιk

with idO2
, then the unital *-monomorphisms idO2

⊗ιk : O2⊗A→ O2⊗O2
∼= O2 of

the nuclear C *-algebras O2 ⊗A are not unitarily equivalent, – even not equivalent

if we change it by an automorphism of O2
∼= O2 ⊗ O2 and an automorphism of

O2 ⊗ A, because the existence/non-existence of conditional expectations onto the

image remains unchanged if we tensor with O2 and apply any of this operations.)

(5) Some open questions concerning p.i. algebras.

(6) Examples of D where O(Prim(D)) is not the projective limit of lattices

O(Xn) of Hausdorff l.c. spaces Xn with lower s.c. and monotone upper s.c. maps

from O(Xn+1) into O(Xn).

(7) A family of pi-sun C *-algebras that exhausts the UCT-classes up to KK-

equivalence.

(8) This is more a conjecture than a given proof:

If the “exponential length” of all unitaries in U0(A) in a unital A is bounded

by some constant γ ∈ (0,∞) then U0(A) is uniformly contractible, i.e., there exists

an (uniformly) continuous map

ψ : U0(A)× [0, 1]→ U0(A)

such that ψ((u, 0)) = 1 and ψ((u, 1)) = u

1207
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(The proof uses [553, thm. 3.2”], because

φ(u) := {(h1, . . . , hn) ∈ An ; h∗k = −hk , u = exp(h1) · . . . · exp(hn) }

is an l.s.c. carrier φ : U0(A) 7→ F(An). if φ(u) is non-empty on each u ∈ U0(A).

The l.s.c.-property of φ has to be checked again !!!

Open and at the same time closed subsets of complete metric spaces are com-

plete metric spaces, hence are para-compact.

We use this to get an alternative proof of the uniform contractibility of

U(M(A)) for all σ-unital stable C *-algebras A. (NOW STILL OPEN QUESTION

!!!).

1. Operations on Multiplier algebras (1)

List of properties of Multiplier algebras:

A σ-unital (and e ∈ A+ strictly positive contraction):

If e ∈ B ⊆ A then the natural C *-morphism h : B → A given by the inclusion

map defines defines a *-monomorphism fromM(B) intoM(A). The image consists

of all T ∈M(A) with Te, eT ∈ B.

For each separable C *-subalgebra C of M(A) exists separable B ⊆ A with

e ∈ B, and eC ∪ Ce ∈ B.

In particular C ⊆M(B) ⊆ A.

If J ⊆ A is closed ideal then A/J has the strictly positive element f := πJ(e).

If D ⊆M(A/J) is a separable C *-subalgebra, then there exists a separable C *-

subalgebra B of A such that e ∈ B and Df∪fD ⊆ πJ(B). Thus, D ⊆M(πJ(B)) ⊆
M(A/J). Then the natural epimorphism πJ |B from B onto πJ(B) defines an epi-

morphism fromM(B) ⊆M(A) ontoM(πJ(B)), and D ⊆M(πJ(B)) ⊆M(A/J).

In particular, D ⊆M(πJ)(M(A)). Thus,M(πJ) : M(A)→M(A/J) is surjective.

Compare with Remark B.1.1 !!!

Remark B.1.1 (Non-commutative Tietze extension). Let A a σ-unital C *-

algebra, i.e., there exists a an element e ∈ A+ with ‖e‖ = 1 that is a strictly

positive element of A.

Then for every closed ideal J of A the natural (on bounded parts strictly con-

tinuous) C*-morphism M(πJ) : M(A)→M(A/J) is surjective.

The kernel of M(πJ) is N (A, J) := {T ∈M(A) ; Te, eT ∈ J}.

In case where A is separable, this is [616, prop. 3.12.10].

If A is not separable and e ∈ A+ as strictly positive element with ‖e‖ = 1 then,

for every unital separable C *-subalgebra B ⊆M(A/J) there exists a separable C *-

subalgebra E ⊆ A with e ∈ E and BD ∪DB ⊆ D for D := πJ(E) ∼= E/(J ∩ E).

The strictly continuous extension M(πJ∩E) : M(E) → M(E/(J ∩ E)) of the

epimorphism πJ∩E : E → E/(J ∩ E) ∼= D is surjective by [616, prop. 3.12.10].
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The algebra B is contained in M(D) ⊆ M(A/J) – if we naturally identify

M(D) with the two-sided multipliers of D in M(A/J). In the same way M(E)

is naturally isomorphic to algebra the two-sided multipliers of E in M(A). The

strictly continuous extension M(πJ) : M(A) → M(A/J) of πJ maps M(E) into

M(D). It becomes there under natural identification of E/(J∩E) with D the same

as the natural strictly continuous unital C *-morphism M(πE∩J) from M(E) into

M(E/(J ∩ E)).

Thus, B ⊆M(A/J) is contained in the image of M(πJ) : M(A)→M(A/J).

Above has to be discussed / reformulated

2. Actions and monotone maps

The Chapter 0 of [321] could be a reference for this section, but all results

mentioned here are elementary exercises for the reader. Recall that a set Y with

transitive, reflexive and antisymmetric relation x ≤ y is a partially ordered set

(poset). We need only very special posets, namely those that are order isomorphic

or order anti-isomorphic to the lattice of the ideals (or: ideal lattice) of a ring.

Obviously, the family O(X) of open subsets of a T0 space X and the family

F(X) of closed subsets of X, and the set X itself are all partially ordered sets with

the inclusions U ⊆ V , F ⊆ G, and x ≤ y if and only if x ∈ {y} .

The order reversing isomorphisms F 7→ X \F and U 7→ X \U show that F(X)

is just the opposite ordered space of O(X).

Subsets Z of O(X) or F(X) have unique inf Z a and supZ, i.e., they are

complete lattices. Moreover O(X) is a Heyting algebra (also called frame), because

W ∩
⋃
γ

Uγ =
⋃
γ

W ∩ Uγ .

The infimum
∧
{Uγ} is the interior (

⋂
γ Uγ)◦ of the intersection of a family {Uγ} ⊆

O(X). The supremum in F(X) of a family of closed subsets is the closure of its

union.

A closed subset F of a T0 space X is prime if it is not the union of two closed

subsets F1, F2 ⊆ F , that are both different from F . Equivalently this means: If

F ⊆ Z1 ∪ Z2, then F ⊆ Z1 or F ⊆ Z2. A T0 spaces X is sober (also called

point-wise complete, or point-complete ) if each prime closed subset F ⊆ X is the

closure of a point of X.

For any T0 space X there is a unique (up to natural isomorphisms) sober space

Xc and an embedding η : X → Xc such that U ∈ O(Xc) 7→ η−1(U) ∈ O(X) is a

lattice isomorphism. Xc is called the sobrification of X.

In particular, each sober T0 space X is completely determined likewise by each

of the lattices O(X) or F(X).

The sobrification Prim(A)c of the space of primitive ideals Prim(A) is naturally

isomorphic to prime(A) (the space of prime ideals of A) if A is a C *-algebra.
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If A is a C *-algebra, then there are natural order isomorphisms I(A) ∼=
O(Prim(X)) and order reversing isomorphism from the lattice of closed ideals I(A)

onto onto F(A).

I(A), O(X), F(X) as posets

lower s.c. and upper s.c. maps

case I(A) (lattice of closed sets of

notation ↑ X, ↑ t, ↓ X , ↓ t

Galois connections

Definition B.2.1. Let X and Y posets and φ : Y → X and ψ : X → Y maps

that satisfy:

(i) φ and ψ are monotone (order preserving), and

(ii) the relations φ(y) ≥ x and y ≥ ψ(x) are equivalent for all (x, y) ∈ X × Y .

Then (φ, ψ) is called Galois connection or adjunction between X and Y .

The map φ is the upper adjoint and ψ is the lower adjoint.

Let C ⊆ CP(A,B) a matricially operator-convex cone. Consider the lower

semi-continuous action ΨC : I(B) → I(A) and the upper semi-continuous action

ΦC : I(A)→ I(B) as defined in Definition ??. Then (ΨC ,ΦC) is a Galois connection,

and ΨC is the upper adjoint and ΦC is the lower adjoint of the connection.

The following proposition equips us with the in Chapters 3 and 6 needed ob-

servation on Galois connections.

Proposition B.2.2. Let X and Y partially ordered sets and φ : Y → X and

ψ : X → Y monotone (increasing) maps.

(i) The formula ψ(x) := inf φ−1(↑ x) for x ∈ X defines a lower adjoint of φ

(such that (φ, ψ) is a Galois connection), if φ(inf Z) = inf φ(Z) so far as

inf Z exists in X, and Y is a complete lattice, or Y is a complete semi-

lattice and φ : Y → X is co-final (i.e., for all x ∈ X there is y ∈ Y with

x ≤ φ(y) — or equivalently: φ−1(↑ x) 6= ∅ ).

(ii) If (φ, ψ) is a Galois connection, then ψ(x) := minφ−1(↑ x) for all x ∈ X
and φ(y) := maxψ−1(↓ y) for all y ∈ Y .

In particular, they determine each other.

(iii) If (φ, ψ) is a Galois connection, then the upper adjoint φ is inf-preserving

and the lower adjoint ψ is sup-preserving.

(iv) compare products with id

(v) when ψ ◦ φ or ψ ◦ φ is identity?

definitions and uniqueness of adjoints

uniqueness of the upper and lower Galois adjoints

in particular, the upper and the lower map of a Galois connection determine

each other uniquely.



3. TOPOLOGICAL ACTIONS 1211

A reference could be [321, chp. 0].

3. Topological actions

Let L denote a set (or a lattice), X and Y topological spaces, Ψ1 : L → O(X)

and Ψ2 : L → O(Y ) map (increasing if L is a lattice). We say that an increasing

map Ψ: O(Y )→ O(X) is fitting (or Ψ1-Φ2 compatible) if Ψ(Ψ2(`)) ⊃ Ψ1(`) for

` ∈ L.

Recall that a map Ψ: O(Y ) → O(X) is is lower semi-continuous if the image

Ψ(V ) of the interior V := (
⋂
α Vα)◦ of the set

⋂
α Vα is the interior of

⋂
α Ψ(Vα) ,

for each family {Vα} of open subsets Vα ⊆ Y . Lower s.c. actions Ψ are increasing.

Lemma B.3.1. Let L denote a set (or a lattice), X and Y topological spaces,

Ψ1 : L → O(X) and Ψ2 : L → O(Y ) maps (increasing if L is a lattice).

(i) Let S and A sets and (ψ, α) ∈ S ×A 7→Wψ,α ∈ O(X) a map. Then⋂
α

⋂
ψ

Wψ,α

◦◦ =

⋂
ψ

(⋂
α

Wψ,α

)◦◦ .
(ii) If S 6= ∅ is a set of lower semi-continuous maps Ψ: O(Y ) → O(X), then

the map

Ψ′ : O(Y ) 3 V 7→ (
⋂

Ψ∈S
Ψ(V ))◦ ∈ O(X)

is lower semi-continuous.

(iii) There is a minimal element Ψ′ : O(Y )→ O(X) in the set S of the fitting

lower s.c. maps, i.e., Ψ′(V ) ⊆ Ψ(V ) for every open subset V of Y and

every fitting l.s.c. map Ψ: O(Y )→ O(X) .

Moreover, Ψ′(V ) ⊃
⋃
`∈L(V ) Ψ1(`) for every open subset V of Y , where

L(V ) := {` ∈ L ; Ψ2(`) ⊆ V } .

(iv) If Ψ2(`1) ⊆ Ψ2(`2) implies Ψ1(`1) ⊆ Ψ1(`2) for `1, `2 ∈ L, and if x ∈⋂
α Ψ1(`α) 6= ∅ implies the existence of ` ∈ L with Ψ2(`) ⊆ Ψ2(`α) for all

α ∈ A and x ∈ Ψ1(`), then the minimal fitting map Ψ′ in part (iii) satisfies

Ψ′(V ) =
⋃
`∈L(V ) Ψ1(`) for each V ∈ O(Y ), and Ψ′(Ψ2(`)) = Ψ1(`) for

all ` ∈ L.

(v) An increasing map Ψ: O(Y )→ O(X) is lower semi-continuous,

if and only if,

the map

λ : Y 3 y → λ(y) := X \Ψ(Y \ {y}) ∈ F(X)

from Y to F(X) satisfies λ(y) ⊆
⋃
z∈Z λ(z) for each subset Z ⊆ Y and

y ∈ Z,

if and only if,

the function g(y) := sup f(λ(y)) is lower semi-continuous for every

bounded lower semi-continuous function f : X → [0,∞).
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Proof. (i): Since (
⋂
ψWψ,α)◦ is contained in Wψ,α for each (ψ, α), we get

that
⋂
α(
⋂
ψWψ,α )◦ is contained in

⋂
αWψ,α for each ψ ∈ S. Thus, the interior of⋂

α (
⋂
ψ Wψ,α )◦ is contained in (

⋂
αWψ,α)◦ for each ψ ∈ S. This implies that

(⋂
α

⋂
ψ

WΨ,α

◦ )◦ ⊆ (⋂
ψ

(⋂
α

Wψ,α

)◦ )◦
.

The interior of
⋂
ψ(
⋂
αWψ,α)◦ is contained in

⋂
α(
⋂
ψWψ,α)◦ by a similar argument.

(ii): Let {Vα}α∈A a family of open subsets of Y , and let WΨ,α := Ψ(Vα)

for Ψ ∈ S and α ∈ A. Then Ψ′((
⋂
α Vα)◦) is the interior of

⋂
Ψ Ψ

(
(
⋂
α Vα)◦

)
=⋂

Ψ(
⋂
αWΨ,α)◦ (by lower semi-continuity of Ψ ∈ S). On the other hand,⋂

α Ψ′(Vα) =
⋂
α(
⋂

ΨWΨ,α)◦ by definition of Ψ′ and of WΨ,α. Now apply part (i)

and the definition of lower semi-continuity.

(iii): Let Ψ0(V ) := X for all open subsets V ⊆ Y (including the case V = ∅).
It is lower s.c. and is fitting. Thus, the set S of fitting l.s.c. maps Ψ: O(Y )→ O(X)

is not empty.

Let Ψ′(V ) ∈ O(X) denote the interior of the set
⋂

Ψ∈S Ψ(V ) for each V ∈ O(Y ).

Then, Ψ1(`) ⊆ Ψ′(Ψ2(`)) for all ` ∈ L and Ψ′ : O(Y ) → O(X) is lower semi-

continuous by part (ii). Since Ψ′ ∈ S, it is the minimal l.s.c. map Ψ ∈ S. Since Ψ′

is fitting, Ψ1(`) ⊆ Ψ′(V ) for each ` ∈ L with Ψ2(`) ⊆ V .

(iv): We define L(V ) := {` ∈ L ; Ψ2(`) ⊆ V } . Then,
⋂
α L(Vα ) =

L( (
⋂
α Vα )◦) , ` ∈ L(Ψ2(`)) for ` ∈ L, and L(V1) ⊆ L(V2) for V1 ⊆ V2.

Now let Φ(V ) :=
⋃
`∈L(V ) Ψ1(`) for V ∈ O(Y ). Then Ψ1(`) ⊆ Φ(Ψ2(`)) for

` ∈ L, Φ(V ) ⊆ Ψ′(V ) for all V ∈ O(Y ) (by Part (iii)), and Φ(V1) ⊆ Φ(V2) for

V1 ⊆ V2. In particular, Φ((
⋂
α Vα)◦) is contained in the interior of

⋂
α Φ(Vα).

The reversed inclusion can be derived from the rather strong assumption, that

x ∈
⋂
α Ψ1(`α) 6= ∅ implies the existence of ` ∈ L with Ψ2(`) ⊆ Ψ2(`α) for all

α ∈ A and x ∈ Ψ1(`).

In particular Φ is lower s.c. and fitting. Thus, Φ(V ) ⊃ Ψ′(V ).

Since `2 ∈ L(Ψ2(`2)) = {`1 ∈ L ; Ψ2(`1) ⊆ Ψ2(`2)}, we have Ψ1(`1) ⊆ Ψ1(`2)

for `1 ∈ L(Ψ2(`2)), if Ψ2(`1) ⊆ Ψ2(`2) implies Ψ1(`1) ⊆ Ψ1(`2). Thus Ψ′(Ψ2(`)) =

Ψ1(`) in this case.

(v): We write λ(Z) for the union
⋃
z∈Z λ(z) ⊆ X.

Suppose that Ψ: O(Y ) → O(X) is an increasing lower semi-continuous map,

i.e.,

(
⋂
τ

Ψ(Uτ ))◦ = Ψ((
⋂
τ

Uτ )◦) .

Let Z ⊆ Y , then y ∈ Z, if and only if,

Y \ {y} ⊃ Y \ Z = (
⋂
z∈Z

Y \ {z})◦ .
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It follows that

Ψ(Y \ {y}) ⊃ (Ψ(
⋂
z∈Z

Y \ {z}))◦ .

The right side is the same as X \ λ(Z), by the rule X \ (
⋂
τ Vτ )◦ =

⋃
τ (X \ Uτ ).

Thus, λ(y) ⊆ λ(Z) for each subset Z ⊆ Y and y ∈ Z.

Suppose that the map

λ : Y 3 y → λ(y) := X \Ψ(Y \ {y}) ∈ F(X)

from Y to F(X) satisfies:

λ(y) ⊆ λ(Z) for each subset Z ⊆ Y and y ∈ Z.

Let f : X → [0,∞) l.s.c., and let g(y) := sup f(λ(y)). Then W := f−1[0, t] is closed,

and y ∈ Z := g−1[0, t], if and only if, λ(y) ⊆ W . Since W is closed and λ(Z) ⊆ W

we have λ(y) ⊆W for all y ∈ Z. Thus, g−1[0, t] is closed for all t ∈ [0,∞), i.e., g is

l.s.c.

Suppose that the function g(y) := sup f(λ(y)) is lower semi-continuous for

every bounded lower semi-continuous function f : X → [0,∞).

Consider the map F : F(Y )→ F(X) given by F (Z) := X\Ψ(Y \Z). F is increasing.

F ({y}) = λ(y).

We must show that
⋃
F (Zτ ) has closure F (

⋃
Zτ ) for each family {Zτ} of closed

subsets of Y . Since F is increasing,⋃
F (Zτ ) ⊆ F (

⋃
Zτ ) .

Let Z :=
⋃
Zτ . Then Z =

⋃
z∈Z {z}, and⋃
F (Zτ ) ⊃

⋃
z∈Z

F ({z}) = λ(Z)

holds because F is increasing. Let U := X \ λ(Z) and let f : X → [0, 1] the

characteristic function of U . Then g(y) := sup f(λ(y)) is lower s.c. and the closed

subset G := g−1(0) is given by y ∈ Y with λ(y) ∈ λ(Z). In particular, G contains

the closure of Z. We get F (Z) ⊆ X \ U . Thus,

F (
⋃
Zτ ) = F (Z) ⊆ λ(Z) ⊆

⋃
F (Zτ ) .

�

4. Some properties of exact C*-algebras

Definition B.4.1. We say that a C *-subalgebra E ⊆ A is a regular subal-

gebra of A, if, for all closed ideals J1, J2 of A,

(i) E ∩ (J1 + J2) = (E ∩ J1) + (E ∩ J2), and

(ii) J1 = J2 if E ∩ J1 = E ∩ J2.
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In other words this says, that Ψup
A,E(J) := E ∩ J defines a continuous action of

X := Prim(A) on E in the sense of Definition 1.2.6, because of (i), and this action

is injective if considered as a map from OX ∼= I(A) into I(E), by (ii).

It is shown in [464] that A ⊗ O2 contains a regular Abelian C *–subalgebra

E for every separable nuclear C *-algebra A. We obtain in Chapter 12, that this

implies the same for separable exact C *-algebras A.

The Lemma 2.2.3 yields another useful result:

Proposition B.4.2. Suppose that A and B are separable C*-algebras, and

that A is exact.

(i) Every primitive ideal J of A⊗B is a sum J = (J1⊗B) + (A⊗J2), where

J1 and J2 are primitive ideals of A and B, respectively.

(ii) Every closed ideal J of A⊗B is the closure of the sum of the family of all

elementary ideals J1⊗ J2 ⊆ J containing in J , where J1 ⊆ A and J2 ⊆ B
are closed ideals.

Here ‘‘elementary’’ ideals are defined as the

tensor products J1 ⊗ J2 ??

(iii) The 1-1-map from Prim(A)× Prim(B) onto Prim(A⊗B) which is given

by (i) is a homeomorphism from the Tychonoff product of Prim(A) and

Prim(B) onto Prim(A⊗B).

(iv) If E ⊆ A and F ⊆ B are C*-subalgebras which separate the closed ideals

of A and B, in the sense that e.g. E ∩ J1 = E ∩ J2 implies J1 = J2, then

again E ⊗ F separates the closed ideals of A⊗B.

If, moreover, E and F are regular subalgebras of A and B in the sense

of Definition B.4.1, then E ⊗ F is a regular subalgebra of A⊗B.

Proof. (i): The tensor product d = d1⊗d2 of irreducible representations d1 of

A and d2 of B is irreducible. d defines a faithful representation of (A/J1)⊗ (B/J2),

where J1 and J2 are the kernels of d1 and d2. Since A and, therefore, A/J1 and J1

are exact, the kernels of A⊗B → A⊗ (B/J2), of (A/J1)⊗B → (A/J1)⊗ (B/J2)

and of J1 ⊗ B → J1 ⊗ (B/J2) are A ⊗ J2, (A/J1) ⊗ J2 and J1 ⊗ J2, respectively.

Since exact C *-algebras are locally reflexive, the kernels of A ⊗ B → (A/J1) ⊗ B
and of A⊗ (B/J2)→ (A/J1)⊗ (B/J2) are J1⊗B and J1⊗ (B/J2). Thus the kernel

of d is (J1 ⊗B) + (A⊗ J2), as the 3×3-lemma shows.

Thus λ : (J1, J2) 7→ J1⊗B+A⊗J2 maps Prim(A)×Prim(B) into Prim(A⊗B).

A general irreducible representation d of A ⊗ B defines commuting factorial

representations d1 of A and d2 of B, such that d(a⊗ b) = d1(a)d2(b). By a result of

J. Dixmier, the kernels J1 of d1 and J2 of d2 are primitive. (J1 ⊗B) + (A⊗ J2) is

contained in the kernel of d, and d defines a C *-norm on the algebraic tensor product

A/J1 � B/J2 which majorize the spatial norm, cf. [704, prop.1.20.5,prop.1.22.7].

Thus the kernel of d is (J1 ⊗B) + (A⊗ J2).

(ii):
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Check again

Let J0 be the closure of the sum of all elementary ideals which are contained

in J . Suppose that there exists d ∈ J+ such that d is not in J0. Then, by (i), there

exists primitive ideals J1 ⊆ A and J2 ⊆ B such that J0 ⊆ J1⊗B+A⊗J2 and A⊗
B → (A/J1)⊗ (B/J2) maps d into a non-zero positive element of (A/J1)⊗ (B/J2).

Thus there exist pure states ϕ on A and ψ on B such that ϕ ⊗ ψ(J0) = 0 and

ϕ⊗ ψ(d) > 0. By Lemma 2.2.3, there exists z ∈ A⊗ B, e ∈ A+ and f ∈ B+ with

z∗z ∈ dAd, e⊗ f = zz∗, ϕ(e) > 0 and ψ(f) > 0. Hence e⊗ f ∈ J , ϕ⊗ψ(e⊗ f) > 0

and the elementary ideal generated by e⊗ f is contained in J0. A contradiction to

the choice of ϕ and ψ.

(iii): Every open subset of the Tychonoff product Prim(A) × Prim(B) is the

union of cartesian products Y ×Z of open subsets Y of Prim(A) and Z of Prim(B).

They correspond to closed ideals K1 ⊆ A and K2 ⊆ B, and λ maps Y × Z onto

the open subset of Prim(A ⊗ B) which corresponds to K1 ⊗K2. Thus, by (ii), λ

maps the open subsets of the Tychonoff product Prim(A)×Prim(B) onto the open

subsets of Prim(A⊗B).

(iv): The natural map J 7→ E ∩ J defines a monotone map Ψ1 := Ψup
A,E from

the open subsets of Prim(A) into the open subsets of Prim(E) (∼= closed ideals

of E), which satisfies the conditions (ii),(iii) and (iv) of Definition 1.2.6. E and

F separate the closed ideals of A and B, if and only if, Ψ1 and Ψ2 := Ψup
B,F are

injective.

We consider Ψ3 := Ψup
A⊗B,E⊗F as a map from the open subsets of Prim(A) ×

Prim(B) into the open subsets of Prim(E) × Prim(F ). By the monotony and

by condition (ii) of Definition 1.2.6 for Ψ3, it is enough to check the injectivity

of the map Ψ3 on the base of the topology of Prim(A) × Prim(B). This base

is given by the cartesian products of open subsets of Prim(A) and of Prim(B).

Ψ3(Y × Z) = Ψ1(Y ) × Ψ2(Z), for open subsets Y of Prim(A) and Z of Prim(B),

because, for closed ideals J ⊆ A and K ⊆ B, (E⊗F )∩(J⊗K) = (E∩J)⊗(F ∩K).

The latter identity follows from the exactness of E ⊆ A. The cartesian product

map Ψ1 ×Ψ2 is injective, because Ψ1 and Ψ2 are injective.

Now suppose that, moreover, that E is regular in A and that F is regular in

B. E and F are regular, if and only if, moreover, Ψ1 and Ψ2 satisfy condition (i)

of Definition 1.2.6, e.g., Ψ1(Z1 ∪ Z2) = Ψ1(Z1) ∪ Ψ1(Z2) for open subsets Z1 and

Z2 of Prim(A). We want to deduce that Ψ3(X1 ∪X2) = Ψ3(X1)∪Ψ3(X2) for open

subsets X1 and X2 of Prim(A⊗B).

By the monotony and by condition (ii) of Definition 1.2.6 for Ψ3, it suffices to

show that, for open subsets Yk of Prim(A) and Zk of Prim(B),

Ψ3(
⋃

1≤k≤n

Yk × Zk) ⊆
⋃

1≤k≤n

Ψ3(Yk × Zk) .

Note that Ψ1(Prim(A)) = Prim(E) and Ψ2(Prim(B)) = Prim(F ).
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If J ⊆ A and K ⊆ B are closed ideals, then the natural epimorphism from

A ⊗ B onto (A/J) ⊗ (B/K) has kernel A ⊗ K + J ⊗ B, because A is exact and,

therefore, locally reflexive. The same applies to J ∩ E, K ∩ F , E and F , and

E/(E ∩ J)⊗ F/(F ∩K) is a subalgebra of A/J ⊗B/K. Thus

((A⊗K) + (J ⊗B)) ∩ (E ⊗ F ) = (E ⊗ F ) ∩ (A⊗K) + (E ⊗ F ) ∩ (J ⊗B),

which means that

Ψ3(Y × Prim(B)) ∪Ψ3(Prim(A)× Z) = Ψ3((Y × Prim(B)) ∪ (Prim(A)× Z)) .

Let (I1, I2) be a point of Prim(E) × Prim(F ) which is not in in the union of

the sets Ψ1(Yk) × Ψ2(Zk) for k = 1, . . . , n. Then there are subsets S and T of

{1, . . . , n}, with S ∪ T = {1, . . . , n}, such that I1 is not in
⋃
k∈S Ψ1(Yk) and I2 is

not in
⋃
k∈T Ψ2(Zk).

Since E and F are regular subalgebras, we have Ψ1(Y ) =
⋃
k∈S Ψ1(Yk) and

Ψ2(Z) =
⋃
k∈T Ψ2(Zk), where Y :=

⋃
k∈S Yk and Z :=

⋃
k∈T Zk.

Thus (I1, I2) is not in (Ψ1(Y )× Prim(F )) ∩ (Prim(E)×Ψ2(Z)). The latter is

the same as Ψ3((Y × Prim(B)) ∩ (Prim(A)× Z)) .

But Ψ3 is monotonous, and
⋃
Yk ×Zk ⊆ (Y ×Prim(B)) ∩ (Prim(A)×Z). �

Corollary B.4.3. Suppose that A1, A2, . . . is a sequence of separable exact

C*-algebras (with An unital for n ≥ n0).

(i) There is a natural homeomorphism from the Tychonoff product

Prim(A1)× Prim(A2)× . . . onto Prim(A1 ⊗A2 ⊗ . . .).

(ii) If Bn are regular C*-subalgebras of An, n = 1, 2, . . ., then B1 ⊗ B2 ⊗ . . .
is a regular C*-subalgebra of A2 ⊗A2 ⊗ . . . .

Proof. Let A := A1 ⊗ A2 ⊗ . . ., Cn := A1 ⊗ A2 ⊗ . . . ⊗ An, Dn := An+1 ⊗
An+2 ⊗ . . ., and let 1n denote the unit element of Dn. Then, for every closed

ideal J of A, A/J is the inductive limit of πJ(Cn ⊗ 1n). Thus J is the inductive

limit both of Jn ⊗ 1n and, therefore, of Jn ⊗ Dn, where Jn ⊆ Cn is defined by

Jn ⊗ 1n = (Cn ⊗ 1n) ∩ J .

(i): By Proposition B.4.2, we get that every primitive ideal of A is the closure

of the sum of ideals Cn−1 ⊗ Jn ⊗ Dn, where Jn is a primitive ideal of An for

n = 1, 2, . . . .

Conversely, let Jn ⊆ An a sequence of primitive ideals. We find pure states ψn

on An which define irreducible representations with kernel Jn. By [704, prop. 4.3.4],

the infinite tensor product of pure states is pure. Thus, the kernel of the natural

epimorphism from A onto the infinite tensor product of the quotients An/Jn is

primitive. This shows the set-theoretic isomorphism of Prim(A) with the Tychonoff

product of the sequence Prim(An). The topological isomorphism means that one

can find for both a bases of the topology which is mapped by the set-theoretic

isomorphism onto each other. By definition of the Tychonoff product this means
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that every ideal of A is the closure of a sum of ideals J1 ⊗ . . . ⊗ Jn ⊗ Dn. This

follows from Proposition B.4.2 and the remark at the beginning of the proof.

(ii): By, Proposition B.4.2(iv), for n = 1, 2, . . ., Gn := B1 ⊗ . . . ⊗ Bn ⊗ 1n

is a regular subalgebra of Cn ⊗ 1n. This and Gn ⊆ Gn+1 imply that the closure

B1 ⊗B2 ⊗ . . . of
⋃
nGn is regular in the closure A of

⋃
n Cn. �

If we combine Proposition B.4.2 with the criteria in [432], we get:

Corollary B.4.4. A separable C*-algebra A is exact, if and only if, for every

separable C*-algebra B, the natural map from Prim(A)×Prim(B) to Prim(A⊗B),

which is induced by the tensor product of irreducible representations, is a topological

isomorphism. The isomorphism is the same as in Proposition B.4.2(i).

Remark B.4.5.

(1) A lower s.c. quasi-trace τ : A+ → [0,∞] is 2-additive if and only if it is an

integral τ(a) =
∫∞

0+
D((a − t)+) dt of a lower s.c. sub-additive dimension function

D : A → [0,∞]. One gets D back from τ by D(a) = supδ>0 τ(fδ(a
∗a)), where

fδ(t) := min(δ−1(t− δ)+, 1) for δ > 0.

(2) Every lower semi-continuous 2-quasi-trace τ : A → [0,∞] on an exact

C *-algebra is additive. (In case of a unital A this is a result of Haagerup and

Thorbjørnsen, [342] and [348, cor. 9.14]. It extends to the non-unital case by the

below given Lemma B.4.6.)

(3) Every lower semi-continuous dimension function D : A→ [0,∞] on A inte-

grates to a l.s.c. 2-quasi-trace τD on A+ by τD(a) =
∫∞

0+
D((a− t)+)dt.

(4) A stable simple C *-algebra A contains a (non-zero) properly infinite pro-

jection, if and only if, there is no non-zero dimension function D on the Pedersen

ideal of A (cf. Blackadar and Cuntz [78]).

(??? This should be also my remark in the 1994 book from Canada workshop

???)

(5) Summing up (1)–(4), we get:

If A is simple and exact, then T+(A) = {0} if and only if A is stably infinite.

In particular, simple stably projection-less exact C*-algebras have always non-zero

additive traces, cf. [441]. The T+(A) = {0} implies for simple nuclear A that

A⊗K contains a (non-zero) properly infinite projection.

Lemma B.4.6. Let τ : A+ → [0,∞] a lower semi-continuous 2-quasi-trace.

(i) The map τ and its dimension function D : A→ [0,∞] are order monotone

on A+, and D with respect to Cuntz majorization a - b on A+.

(ii) If, for every contraction c ∈ A+ with τ(c) < ∞, the restriction τ |B+ is

additive for B := {a ∈ A ; ac = a = ca}, then τ is additive on A+.

(iii) If τ(A+) ⊆ [0,∞) then γ := sup{τ(a) ; ‖a‖ ≤ 1, a ∈ A+} < ∞ and

τ̃(b + z1) := zγ + τ(b+) − τ(b−) (for b + z1 ∈ Ã+) defines a bounded

2-quasi-trace on the unitization Ã of A.
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Proof. (i): Let D : A→ [0,∞] the l.s.c. dimension function corresponding to

τ , i.e.,

D(a) := lim sup
δ>0,γ>0

τ((((a∗a)− δ)+)γ)

and let 0 ≤ a ≤ b or a - b.

Then (a−t)3
+ ≤ (a−t)+(b−t)+(a−t)+ ≤ ‖b‖(a−t)2

+, because (b−t)+ ≤ b ≤ ‖b‖
by (b − t)+ = (b − t) + (b − t)− ≤ b and (a − t)+ − (a − t)− = a − t ≤ b − t ≤
(b− t)+ and the order preserving map X 7→ (a− t)+X(a− t)+ on X∗ = X implies

(a− t)3
+ ≤ (a− t)+(b− t)+(a− t)+.

It induces: For ε > δ > 0 there is x ∈ A with x∗x = fε(a) and xx∗fδ(b) = xx∗.

It follows τ(fδ(a)) ≤ τ(fε(b)) ≤ D(b). Thus D(a) ≤ D(b). From D(aα) = D(a)

and the monotony and centrality of D it follows D((a− t)+) ≤ D((b− t)+) for all

t > 0 if 0 ≤ a ≤ b. Since τ(a) =
∫∞

0+
D((a− t)+) dt, we get from it that τ(a) ≤ τ(b),

(ii): Let a, b ∈ A+ with τ(a) + τ(b) <∞.

Then ?????

show that τ((a− ε)+ + (b− ε)+) <∞ ???? Fill Proof in !!! ??

(iii): Suppose that γ = ∞ then there exists positive contractions a1, a2, . . . ∈
A+ with τ(an) > 4n. Then a :=

∑
2−nan is a positive contraction in A with

an ≤ 2na, and 4n < 2nτ(a) for all n ∈ N by part (i). Thus τ(a) =∞, contradicting

????? that ???

If b ∈ A and z ∈ C then b + z1 ≥ 0 implies z ≥ 0, b∗ = b and ‖b−‖ ≤ z.

Thus τ̃(b + z1) ≥ 0 for b + z1 ≥ 0. If 0 ≤ bj + zj1 (j = 1, 2) commute, then b1

and b2 commute. The additivity of τ on C∗(b1, b2) induces the additivity of τ̃ on

C∗(b1, b2, 1)+.

It follows that τ̃ is a bounded local quasi-trace on Ã with bounded lower semi-

continuous rank-function D̃(x + z1) = γ if z 6= 0 and D̃(x) = D(x) for x ∈ A and

z ∈ C.

???????????????????? check

the point is the existence of D̃2 !! �

5. Approximate divisible algebras

Remark B.5.1. Recall that a separable C *-algebra B is called approximately

divisible if there exist a sequence of unital *-morphisms hn : M2 ⊕M3 → M(B)

with limn→∞ ‖hn(a)b− bhn(a)‖ = 0 for all a ∈M2 ⊕M3 and b ∈ B.

B := A⊗O∞ is approximately divisible for every separable C*-algebra A.

(Proof: C∗(s1, s2, · · · ) ∼= O∞ ∼= O∞ ∼= O∞ ⊗ O∞ ⊗ · · · by Corollary F(ii), –

or the argument following Corollary H –, and M2 ⊕M3 is unitally contained in

O∞ = C∗(s1, s2, . . .).
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This is because we can take M3 := C∗(sis
∗
j ; 1 ≤ i, j ≤ 3) and M2 :=

C∗(tkt
∗
` ; 1 ≤ k, ` ≤ 2), where t1, t2 are suitable partial isometries with t1t

∗
1 + t2t

∗
2 =

p := 1− (s1s
∗
1 + s2s

∗
2 + s3s

∗
3) and t∗1t1 = t∗2t2 = q := 1− (s1s

∗
1 + s2s

∗
2).

The existence of t1 and t2 follows from K0(O∞) ∼= Z, with [p] = −2 and

[q] = −1 and the pure infiniteness of pO∞p, e.g. by cf. Lemma 4.2.6.

In fact, the projections r := s4qs
∗
4 + s5qs

∗
5 and p satisfy r ≤ p and −2 = [p] =

[r] ∈ K1(O∞). Thus p and r are MvN-equivalent in O∞. Let z ∈ O∞ a partial

isometry with zz∗ = p and z∗z = r. The partial isometries t1 := zs4q, t2 := zs5q

have the desired property.

It is known that the infinite tensor product (M2 ⊕M3)⊗∞ := (M2 ⊕M3) ⊗
(M2 ⊕M3) ⊗ · · · contains the GICAR-algebra unitally, which is a simple unital

AF-algebra defined by the “Pascal triangle” with multiplicities given by the integer

coefficients of the polynomials Pn(t) := (t+ 1)n, cf. [270].

Every infinite-dimensional simple unital AF-algebra contains the Jiang-Su al-

gebra Z, [391, cor. 6.3]. It implies that A ⊗ Z ∼= A for all “approximately

divisible” A, i.e., those A that have a unital C *-morphism of M2 ⊗ M3 into

F (A) := (A′ ∩ Aω)/Ann(A,Aω). (The F (A) is a“stable” invariant of separable

C *-algebras A in the sense that F (A) ∼= F (A⊗K).)

It seems that one can replace the assumption of approximate divisibility in

most applications by the weaker requirement that A tensorial absorbs Z, i.e., that

A ⊗ Z ∼= A. The main reason could be something like the pull-back proposition

[690, prop. 6.5] of M. Rørdam.

E.g., separable exact A is strongly p.i., if A ∼= A ⊗ Z and every l.s.c. trace

τ : A+ → [0,∞] takes only values in {0,∞}. (For separable nuclear A holds also

the converse, because then A ∼= A⊗O∞ and one can use that O∞ ⊗Z = O∞.)

Is above partly shown in Chapter 2?

That A⊗Z s.p.i. for nuclear separable

trace-less A is [690, thm. 5.2].

The proof in [690, thm. 5.2] shows

that this holds also for exact trace-less A,

and more generally for all C *-algebras

that have only trivial l.s.c. traces. ???????

Further topics. To be filled in. ??

6. Positions of C*-subalgebras in O2

There exist a separable unital nuclear C *-algebra A and a unital monomor-

phisms i : A→ O2 of A into the Cuntz algebra O2, such that, there does not exist

a conditional expectation from O2 onto i(A).

But all separable unital nuclear C *-algebras A have a unital *-monomorphism
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ι : A→ O2 such that there exists a conditional expectation from O2 onto ι(A), i.e.,

a completely positive contraction E : O2 → ι(A) with E ◦ ι = ι.

There is an interesting connection to some conjecture on equivalence of embed-

dings that are in “sufficiently general position” (see below).

Weaker results on embeddings ι : A ↪→ O2, as there are (for example):

One finds always for separable unital nuclear C *-algebras A at least one unital

embedding ι : A ↪→ O2 such that there is a conditional expectation E from O2 onto

ι(A).

On the other hand, for any other embedding κ : A ↪→ O2, there is a norm-

continuous path t ∈ [0,∞) 7→ U(t) into the unitary group of O2 such that U(0) = 1

and limt→∞ ‖U(t)∗ι(a)U(t)−κ(a)‖ for all a ∈ A. One can use this to show that for

the (more general type of) embedding κ : A ↪→ O2 there is a norm-continuous path

t ∈ [0,∞) 7→ V (t) into the isometries in O2 such that limt→∞ ‖V (t)∗κ(a)V (t) −
κ(a)‖ for all a ∈ A and limt→∞ dist(V (t)∗bV (t), κ(A)) = 0 for all b ∈ O2 . (This

could replace the non-existing conditional expectations onto κ(A) by expectations

in an approximate sense.)

The examples below produce also counter-examples

to the above question ???,

but are also counter-examples to the following more interesting question (which

was suggested by the above recalled results and by the example of finite-

dimensional A):

We call a separable unital nuclear C *-algebra A transportable in O2, if, for

any two unital *-monomorphisms i : A ↪→ O2, and j : A ↪→ O2 in general position

there is an automorphism ψ of O2 with ψ ◦ i = j.

We say that a unital *-monomorphisms i : A ↪→ O2, is in general position if

the commutant i(A)′ ∩ O2 of the image i(A) in O2 contains a copy of O2 unitally.

Let i : O2 → O2 and j : O2 → O2 in general position. Is there an automorphism

of O2 ⊗O2 that conjugates i⊗ id and i⊗ id?

Case: O2 ⊗ C[0, 1] → O2 unital and injective and O2 ⊗ O2 → O2 an isomor-

phism?

Is there an automorphism of O2 ⊗O2 that maps 1⊗ i(A) onto 1⊗ j(A)?

Obviously all unital *-monomorphisms of finite-dimensional C *-algebras A are

unitary equivalent in O2. It implies that each *-monomorphism of A is in general

position, and that A is “transportable” inside O2.

We do not know if separable unital AF-algebras A are transportable in O2 .

Perhaps one could find a unital endomorphism ι : M2∞ ↪→ M2∞ such that there

does not exist a conditional expectation from M2∞ onto ι(M2∞). (Compare the

below given reasoning.)

Then the ??????
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The below given examples show that C[0, 1] is not transportable in O2 :

There exists nuclear A and unital embeddings i : A ↪→ O2 and j : A ↪→ O2

such that there is a conditional expectation from O2 onto i(A), but that there does

not exist a conditional expectation from O2 onto j(A) (see the examples discussed

below). It yields that for i′(a) = i(a)⊗ 1 and j′(a) = j(a)⊗ 1 there does not exist

a *-isomorphism ψ of O2⊗O2 (∼= O2) with ψ ◦ i′ = j′ (see the explanation below).

Let A a separable unital nuclear C *-algebra.

First:

If one uses the proof of the existence of embeddings j : A ↪→ O2 with help of the

generalized Voiculescu-Weyl-vonNeumann theorem 5.4.1 (with O2 ⊗ K in place of

the compact operators K) and with help of Ext(A,O2) = 0, then one gets (as an

additional result) that the unital embedding j : A ↪→ O2 can be found such that

there is a conditional expectation P from O2 onto j(A). (In fact the conditional

expectation can be chosen “extreme”, i.e., that P is an extreme point in the convex

set of contractive linear maps from O2 into O2.)

Second:

If i : A ↪→ O2 is an other unital embedding such that there does not exist a

conditional expectation from O2 onto i(A), then there does not exist an isomor-

phism ψ of O2 ⊗ O2 with ψ(j(a) ⊗ 1) = i(a) ⊗ 1 for a ∈ A, because otherwise

E(b) := id⊗ f(ψ(P (b)⊗ 1)) for b ∈ O2 and a (fixed pure) state f on O2 defines a

conditional E expectation from O2 onto i(A).

Third:

If A is a nuclear C *-subalgebra of a separable unital nuclear C *-algebra B such

that 1B ∈ A and such that there does not exist a conditional expectation from B

onto A (We list below some examples), then:

If k : B ↪→ O2 is a unital embedding and if we define i := k|A as the restriction

of k to A, then there can not exist any conditional expectation E from O2 onto

i(A) = k(A), because otherwise k−1 ◦E ◦k would be a conditional expectation from

B onto A.

Some Examples:

(o) Suppose that D is a hereditary C *-subalgebra of a unital C *-algebra B such

that the normalizer algebra N (D) := {b ∈ B ; bD + Db ⊆ D} is different from

A := D + C1 and that bD 6= {0} for all b ∈ B+ \ {0}. Then there does not exist a

conditional expectation E from B onto A.

(Here C denotes the complex numbers.)

Indeed, (E(b)− b)∗(E(b)− b)d = 0 for all b ∈ N (D), d ∈ D, i.e., E| N (D) = id.

It yields e.g. the following two examples (i) and (ii):

(i) Consider O2 as a C *-subalgebra of L(`2) (by some unital *-representation).

Let K denote the compact operators, and let A := K+ C1, B := K+O2.

(ii) Let B := T , A := K+C1 , where T denotes the Toeplitz algebra, generated

as C *-algebra by the Toeplitz operator T (i.e. the unilateral shift of `2).
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(iii) Consider the natural continuous epimorphism σ from the Cantor space

Ω := {0, 1}∞ onto [0, 1] given by

σ : (a1, a2, ...) 7→
∞∑
n=1

an2−n .

Then γ : f ∈ C[0, 1] 7→ γ(f) := f ◦ σ ∈ C(Ω) gives a unital embedding of C[0, 1]

into C(Ω) =
⊗∞

n=1(C⊕ C) ⊆M2∞ .

The pairs A ⊆ B with A := γ(C[0, 1]) and B := C(Ω) or with B := M2∞ have

the property that there does not exist a conditional expectation from B onto A,

because the continuous map σ is not open.

(It is an exercise to check that σ is not open, and that this implies the non-

existence of the conditional expectation onto A .)

Some Remarks:

A related open question is:

Suppose that i, j : A ↪→ O2 are unital embeddings such that there are extremal

conditional expectations from O2 onto i(A), respectively onto j(A). Is there an

automorphism ψ of O2 ⊗O2 with ψ(i(a)⊗ 1) = j(a)⊗ 1 for all a ∈ A?

It is likely that there exists simple separable nuclear unital C *-algebras A ⊆ B
such that 1B ∈ A and such that there does not exist conditional expectation from

B onto A. (Perhaps, even with A ∼= B ∼= M2∞?)

Then it would follow that there are unital endomorphisms i : O2 ↪→ O2 such that

there does not exist a conditional expectation from O2 onto i(O2), because O2
∼=

A⊗O2 ⊆ B ⊗O2
∼= O2. (This would show that the position of i(O2) in O2 could

be very random.)

(It seems likely that O2 is not transportable in O2).

7. Quotients of nuclear maps

Example of a nuclear and approximately inner c.p. map that is not residually

nuclear.

Its relation to the existence of group vN-algebras that are not weakly exact.

Here we explain the reason for principal difficulties with nuclear maps (coming

from the existence of non-exact discrete groups), and we point out, that nuclear

and approximately inner (respectively nuclear and Ψ-equivariant) c.p. maps are in

general not residually nuclear if they are ideal-system preserving.

We introduce also some tools that allow to overcome this problems at least in

special cases.

Lemma B.7.1. Suppose that M is a W*-algebra with faithful normal state ρ

and let b1, b2, . . . ∈M+.
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(i) If
∑
n ρ(bn) ≤ 1, then for each ε > 0 there exists a projection p ∈M such

that

ρ(1− p) ≤ ε and ‖
k∑

n=1

pbnp‖ ≤ ε−1 for all k ∈ N . (7.1)

(ii) Let d, c1, c2, . . . ∈M contractions such that
∑
n ρ(bn) ≤ 1 for the elements

bn := (d− cn)∗(d− cn) ∈M+ .

If p ∈M is a projection that satisfies the inequalities (7.1) of part (i)

for this b1, b2, . . . ∈M+ then

lim
n
f(pcnp) = f(pdp) for all f ∈M∗ .

Proof. (i): The functions gt(x) := x/(1 + t−1x) = t(1 − 1/(1 + t−1x)) on

[0,∞) are operator monotone continuous functions, cf. [616, sec. 1.3.7]. They

satisfy gs(x) ≤ gt(x) ≤ x for s ≤ t, gt(x) ≤ t for all x ≥ 0, and |x− gt(x)| ≤ t−1α2

for x ∈ [0, α]. Let ak :=
∑k
n=1 bn, then 0 ≤ gt(ak) ≤ gt(ak+1), ‖gt(ak)‖ ≤ t,

more ?? check again?

It follows that the increasing sequence (gt(ak))k of positive elements of M has

an ultra-weak limit (at first only an ultra-weak cluster point) A(t) ∈ M+ with

‖A(t)‖ ≤ t and gt(ak) ≤ A(t). Then dk := (A(t) − gt(ak))1/2 ∈ M+ is a bounded

sequence with limk ψ(d∗kdk) = 0 for all positive normal functionals ψ on M . It

follows that (dk) converges ultra-strongly to zero, and implies that d2
k also converges

ultra-strongly to zero, i.e., A(t) is uniquely determined and is the ultra-strong limit

of (gt(ak))k in M .

Since gt(ak)gs(ak) = gs(ak)gt(ak), gs(ak) ≤ gt(ak) for s ≤ t and ρ(gt(ak)) ≤
ρ(ak) ≤ 1, we get for the strong limits limk gt(ak) = A(t) ∈ M+ that A(t)A(s) =

A(s)A(t), A(s) ≤ A(t) for s ≤ t and ρ(A(t)) ≤ 1 for all t ∈ [0,∞). Let C denote

the commutative W*-subalgebra of M generated by 1 and A(m) (m ∈ N). Let

qm ∈ C the support projection of (A(m) − ε−1)+, i.e., qm = 1 − pm, where pm

is the support of the annihilator of (A(m) − ε−1)+ in C. Then qm ≤ qm+1 and

ε−1qm ≤ A(m). Thus, ρ(qm) ≤ ε for all m ∈ N. It follows that p := 1−
∨
m qm ∈ C

satisfies pA(m)p = A(m)p ≤ ε−1p for all m ∈ N and ρ(1 − p) = supm ρ(qm) ≤ ε.

We get pgm(ak)p ≤ pA(m)p ≤ ε−1p for all k,m ∈ N. If we fix (arbitrary) k ∈ N
and let m tend to ∞, then this shows that pakp ≤ ε−1p for all k ∈ N.

(ii): If f is a (not-necessarily normal) state on M , then |f(p(d − cn)p)|2 ≤
f(pbnp) . Thus,

∑
n |f(pdp) − f(pcnp)|2 ≤ ε−1f(p) . In particular limn f(pcnp) =

f(pdp) . Finally use that M∗ is the linear span of the states on M . �

Lemma B.7.2. Suppose that M is a W*-algebra, A is a separable C*-algebra

and C ⊆ CP(A,M) a matrix operator-convex cone.

If V : A → M is in the point-ultraweak closure of C, then there is a net of

projections pµ such that pµV (·)pµ is in the point-norm closure of C and the net

{pµ} converges strongly to 1M .
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In particular, if e ∈ A+ satisfies V (e) = 0, then there is a net of contractions

Tµ ∈ C in the point-norm closure of C with Tµ(e) = 0 such that Tµ converges in

point-ultra-strong topology to V .

Proof. We can replace in the statement C ⊆ CP(A,M) by its point-norm clo-

sure C, which is again an m.o.c. cone. Then C is a hereditary sub-cone of CP(A,M)

in the sense thatW1+W2 ∈ C impliesW1,W2 ∈ C, cf. Corollary 3.6.28. LetR denote

the set of b ∈M such that b∗V (·)b ∈ C. Since (b+c)∗V (·)(b+c)+(b−c)∗V (·)(b−c) =

2b∗V (·)b+2c∗V (·)c and C is hereditary, point-norm closed and invariant under com-

position with inner c.p. maps, it follows that R is a (norm-) closed right-ideal of M .

The hereditary C *-subalgebra D := R∗ ∩R of M contains an approximate unit pσ

of D consisting of projections. Let R1 denote the weak closure and let E ∈M the

projection with EM = R1. Then pσ converges ultra-strongly to E, pσV (·)pσ ∈ C,
and {pσV (·)pσ}σ converges to EV (·)E in point-ultra-strong topology. In particular,

E =
∨
{p ; p ∈ R, p2 = p = p∗} . It remains to show that E = 1M .

Since for every non-zero projection P ∈M there is a non-zero countably decom-

posable projection Q ∈M with Q ≤ P , it suffices to show that for every countably

decomposable projection Q there is a projection p ≤ Q with p ∈ R. If we replace

M , V and C by QMQ, QV (·)Q and QCQ := {QW ( · )Q ; W ∈ C}, then the proof

reduces to the case, where M has a faithful normal state ρ.

We introduce the norm ‖b‖ρ := ρ(b∗b)1/2 on M . The topology defined by the

norm ‖ ·‖ρ coincides on bounded parts of M with the (ultra-)strong topology on M .

A separation argument shows that that V : A → M is moreover in the point-

*ultra-strong closure of of C if V is in the point-ultra-weak closure of C. We may

suppose that ‖V ‖ ≤ 1, then Lemma 3.1.8 implies that V can be approximated in

point-strong topology by contractions W ∈ C .

Let C1 the convex set of W ∈ C with ‖W‖ ≤ 1, and let (an) denote a sequence

that is dense in the unit ball of A. We find Wn ∈ C1 with ‖V (ak)−Wn(ak)‖ρ < 8−n

for k ≤ n. Let bn :=
∑
k≤n(V (ak)−Wn(ak))∗(V (ak)−Wn(ak)) . Then

∑
ρ(bn) ≤ 1.

Thus, for each ε > 0, there is a projection p := p(ε) ∈ M with ρ(1 − p) ≤ ε and∑∞
n=1 pbnp ≤ ε−1p , cf. Lemma B.7.1(i). It follows from Lemma B.7.1(ii) that

limn f(pWn(ak)p) = f(pV (ak)p) for every bounded linear functional f ∈ M∗ on

M and every k. Since C1 ⊆ L(A,M) consists of contractions and since {a1, a2, . . .}
is dense in the unit ball of A, the map pV (·)p is in the point-σ(M,M∗) closure of

the convex subset p(C1)p := {pW (·)p ; W ∈ C1}. Thus pV (·)p is the point-norm

closure of p(C1)p ⊆ C, i.e., pV (·)p ∈ C, p ∈ R. �

Remark B.7.3. A special case of Lemma B.7.2 is:

Suppose that M is a W*-algebra, A is separable, V : A→M is weakly nuclear and

that e ∈ A+ satisfies V (e) = 0. Then there is a net of (norm-)nuclear contractions

Tµ : A→M with Tµ(e) = 0 and Tµ → V in point-ultrastrong topology.

It is in general not possible to find factorable maps Tµ with this property. See the

following Remark B.7.4.
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Remark B.7.4. Let C ⊆M(D) and V : C → B with V (C∩D) = {0} a nuclear

map. Then VD(c + d) := V (c) for c ∈ C and d ∈ D is a well-defined completely

positive map from the C *-algebra C+D into B, because (C+D)/D ∼= C/(C ∩D)

naturally.

When VD : C +D → B is again a nuclear map ? (It is an equivalent formula-

tion of the general quotient problem for nuclear maps in Remark 3.1.2(iv), as our

considerations below indicate.)

From [238] and [438] it follows that VD is nuclear if C is exact (see Remark

B.7.8). Clearly, VD is nuclear if [V ]C∩D : C/(C ∩D)→ B is nuclear.

For a long time it was expected that VD is always nuclear. But N. Ozawa [597]

has shown that the von Neumann algebra generated by the regular representation

of a non-exact discrete group is not weakly exact. M. Gromov [335] has shown the

existence of discrete non-exact groups. (And Guentner and Kaminker [338] and

Ozawa [592] discovered this connections between Gromov’s work to non-exactness.)

By Definition 3.1.1, a map T : C → N from a C *-algebra C to a von Neumann

algebra N is weakly nuclear if T is the point-wise weak limit of factorable maps

( 1 ), compare Definition 3.1.1.

By [597] there exists a von-Neumann algebra that is not weakly exact. That

means (equivalently) that there exists a von Neumann factor N of type II1 with

separable predual N∗ and a weakly nuclear maps T from a separable C *-algebra C

into N and a closed ideal J of C such that T (J) = {0} and that [T ]J : C/J → N

is not weakly nuclear.

It implies that the same happens with a (norm-)nuclear map V : C → N with

V (J) = {0} (in place of T ): An Egoroff type argument (see B.7.2) shows that

every weakly nuclear c.p. contraction T : C → N from a separable C *-algebra C

into a von Neumann algebra with separable predual N∗ is the point-strong limit

of a sequence of (norm-)nuclear c.p. contractions Vn : C → N with Vn(J) = {0}.
It follows that [Vn]J : C/J → N is not weakly nuclear for almost all n ∈ N. In

particular, [V ]J : C/J → N is not nuclear for suitable n ∈ N and V := Vn.

Let I := Ann(J) denote the annihilator of J in C, let p ∈ C∗∗ be the support

projection of J in the second conjugate C∗∗ of C and consider E := C∗(C, p) ⊆ C∗∗,
D := I + pE. Then E = C + pE = C +D is naturally a C *–subalgebra of M(D),

a ∈ C → (1p)a ∈ E defines a C *-morphism W : C/J → C + D = E such that

[V ]J = VD ◦W . Thus VD : C +D → N can not be (weakly) nuclear.

In a similar way one finds a C *-subalgebra C1 ⊆ B := C ⊕ N⊗L(`2) and

an inner c.p. contraction W : B → B such that (W |C1) : C1 → B is nuclear but

not residually nuclear (with respect to the action of Prim(B) on C1): Stinespring

dilation and application of an infinite repeat lead to a *-representation ρ of C into

the von Neumann algebra tensor product N⊗L(`2) and a projection e ∈ L(`2) of

1It is also a point-τ(N,N∗)-limit of factorable maps, because the set of factorable maps is an

operator convex cone.
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rank one, such that V (a) ⊗ e = (1 ⊗ e)ρ(a)(1 ⊗ e) for all a ∈ C. Let ρ1(a) :=

(a, ρ(a)) ∈ B, C1 := ρ1(C) and W (b) := (0, 1⊗ e)b(0, 1⊗ e) for b ∈ B. Then W |C1

is nuclear and is inner in B, but is not residually nuclear on C1 ⊆ B.

We use the following Lemmata B.7.5 and B.7.7 and the Definitions B.7.6 to

bypass the above mentioned problems at least under certain good conditions.

Lemma B.7.5. Let V : A → M(B) ⊆ B∗∗ a completely positive map from A

into the multiplier algebra M(B) of B. Then the following are equivalent:

(i) For every d ∈ B the completely positive map a ∈ A 7→ d∗V (a)d ∈ B is

nuclear.

(ii) V is a weakly nuclear map from A to the W*-algebra B∗∗ in sense of

Definition 3.1.1 if V is considered as a completely positive map from A to

the second conjugate B∗∗ of B

Proof. One can see from the definition (of weakly nuclear maps), that the

weakly nuclear maps build a point-weakly closed m.o.c. cone ⊆ L(A,B∗∗). Since

the unit-ball B is *-strongly dense in the unit-ball of B∗∗ (by Kaplansky density

theorem), a map V : A → B∗∗ is weakly nuclear, if and only if, the maps a 7→
d∗V (a)d are weakly nuclear for every d ∈ B.

Old Prop. 3.1.9(i) has been changed. Compare again!!

No! Next is not Part of Proposition 3.1.9(i-iv) !!!

By Proposition 3.1.9(i), the map a ∈ A 7→ d∗V (a)d ∈ B is nuclear, if and only

if, it is weakly nuclear as a map from A to B∗∗, cf. Proposition 3.1.9(i). �

Definition B.7.6. We call a completely positive map V : A→M(B) weakly

nuclear if V satisfies the equivalent conditions (i) and (ii) of Lemma B.7.5.

An example of a weakly nuclear completely positive map is given by B := K(H),

V : A→ L(H) a faithful *-representation of A. It is nuclear if and only if A is exact,

cf. Remark 3.1.2(ii) and Corollary 5.6.3.

Let D ⊆ B be a hereditary C *-subalgebra of a C *-algebra B. D is a corner of

B, if there is a projection p ∈M(B) such that D = pBp. Certainly the (two-sided)

annihilator {b ∈ B : bD = 0 = Db} of D is just the orthogonal corner (1−p)B(1−p)
of pBp. A corner is σ-unital if B is σ-unital, because the compression pbp of a

strictly positive element b of B is a strictly positive element of pBp. The unital, in

particular σ-unital, Calkin algebra Q(K) contains hereditary C *-subalgebras which

are not σ-unital.

We say that a *-subalgebra E ⊆ B generates a corner of B if the closure D

of EBE is a corner of B. The annihilator of E in B is then a corner of B, and is

therefore σ-unital if B is σ-unital.

A hereditary C *-subalgebra D ⊆ B is full , if it generates B as a closed ideal.

A theorem of L.G. Brown [107] says that B ⊗K and D⊗K are isomorphic if B is

σ-unital and D is a σ-unital full hereditary C *-subalgebra of B. The isomorphism
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is induced in the sense of Remark 2.3.1 by an element z ∈ B ⊗K such that z∗z is

an strictly positive element of B⊗K and zz∗ is a strictly positive element of D⊗K,

cf. Corollary 5.5.6.

A subalgebra D of a C *-algebra A will be called an essential subalgebra if

zero is the only left annihilators of D in A, i.e., if aD = {0} implies a = 0.

It is easy to see, that an ideal I of a C *-algebra A is essential if and only if it

has non-zero intersection with every non-zero ideal of A.

An extension E, i.e. an exact sequence 0 → J → E → A → 0 (defined by the

epimorphism η : E → A), is semisplit if there is a completely positive contraction

V : A→ E with η ◦ V = idA.

Lemma B.7.7. Suppose C is C*–subalgebras ofM(D), and that V : C →M(B)

is a weakly nuclear completely positive contraction. Then:

(i) Ṽ (c + z1) := V (c) + z1 is a unital weakly nuclear map from the (outer)

unitization C̃ of C into M(B).

(ii) If C ∩D generates a corner of D, then every weakly nuclear contraction

V : C → M(B) with V (C ∩ D) = {0} and with V (C ∩ (1 + D)) ⊆ {1}
extends naturally to a unital weakly nuclear map W : D+C+C1→M(B)

with W (D) = 0 by W (d+c+ξ1) := V (c)+ξ1 for d ∈ D, c ∈ C 1 ∈M(D)

and ξ ∈ C.

Proof. (i): For a contraction d ∈ C holds V (d∗d) ≤ 1, b∗V (d∗cd)b + zb∗b =

b∗V (d∗(c + z)d)b + zb∗(1 − V (d∗d))b, and c + z1 7→ z 7→ zb∗(1 − V (d∗d))b is a

nuclear c.p. map, because 1 is not in C if the unit element 1 is outer adjoined.

Therefore, for contractions d ∈ C, c+ z1 7→ b∗V (d∗cd)b+ zb∗b is nuclear as a sum

of two nuclear maps. The map c + z1 7→ b∗Ṽ (c + z1)b is the point-norm limit of

those maps.

(ii): Let C1 := D + C + C1 ⊆M(D) .

If 1 ∈ C + D then C1 = D + C and C1/D ∼= C/(D ∩ C) . If 1 6∈ D + C

then C1 = D̃ + C (respectively C1/D ∼= ˜C/(D ∩ C)) is the outer unitization of

D+C (respectively of C/(D∩C) ). The condition V (C ∩ (1 +D)) ⊆ {1} says that

[V ]D∩C : C/(D ∩ C) ∼= (D + C)/D →M(B) is unital if 1 ∈ C +D. We can define

in both cases a unital c.p. map W : C1 →M(B) by W := [V ] ◦ πD, respectively by

its extension to the outer unitization of C+D. Here [V ] := [V ]D∩C : (C+D)/D ∼=
C/(D ∩ C) → M(B) is well-defined because V (D ∩ C) = {0}. Thus, W is a

well-defined, unital c.p. map with W (D) = {0}. In both cases holds

W (d+ c+ ξ1M(D)) = W (c+ ξ1) = V (c) + ξ1M(B) .

It suffices to prove that for every b ∈ B the c.p. map Wb : c+d 7→ b∗V (c)b is nuclear,

because the outer unitization of W is then also weakly nuclear.

Let p ∈ M(D) the orthogonal projection such that pDp is the closure of (C ∩
D)D(C ∩ D). Then E := (1 − p)D(1 − p) is the (two-sided) annihilator {d ∈
D ; d(C ∩ D) = 0 = (C ∩ D)d} of C ∩ D. Therefore CE ⊆ E, EC ⊆ E and
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pc(1 − p) = 0, i.e., pc = cp for c ∈ C. Thus F := E + C is a C *-algebra, E is an

ideal of F ⊆ M(D), F commutes with p and pF = pC. C ∩ E = C ∩ (D ∩ E) =

(C ∩ D) ∩ E = 0. Therefore T |F is the composition of F → F/E ∼= C with

c ∈ C → b∗V (c)b. Thus T |F is nuclear and T (F ∩D) = 0.

Let X be any C *-algebra. By the criteria in Remark 3.1.2(i), the algebraic

tensor product idX �(T |F ) : X � F → X � B extends to completely positive map

S1 from the minimal (=spatial) tensor product X⊗F into the maximal C *-algebra

tensor productX⊗maxB. Since S1(X�(F∩D)) = 0, we have that S1(X⊗(F∩D)) =

0. Since F commutes with p, F ∩ D = p(F ∩ D)p + (1 − p)(F ∩ D)(1 − p). But

E = (1 − p)(F ∩D)(1 − p) and C ∩D ⊆ p(F ∩D)p ⊆ p(C ∩D)p = C ∩D. Thus

F ∩D = (C ∩D) + E . It follows that D is the closure of D(F ∩D).

It is now the essential point of the proof that, therefore, the distance lemma

[438, lem. 3.9] applies and gives the identity (X ⊗F )∩ (X ⊗D) = X ⊗ (F ∩D) in

the C *-algebra X ⊗ (C +D) for every C *-algebra X .

It follows (X ⊗ (C +D))/(X ⊗D) ∼= (X ⊗ F )/(X ⊗ (F ∩D)), because X ⊗D
is a closed ideal of F ⊗ (C +D).

Let S2 : (X ⊗ F )/(X ⊗ (F ∩D))→ X ⊗max B be the completely positive map

that is induced by S1. The composition of X ⊗ (C +D)→ (X ⊗F )/(X ⊗ (F ∩D))

with the completely positive map S2 defines a completely positive map S3 from

X ⊗ (C +D) into X ⊗max B. The restriction of S3 to the algebraic tensor product

is just idX �T .

Since S3 can be found for every C *-algebra X, T is nuclear by the criteria in

Remark 3.1.2(i). �

Remark B.7.8. To understand the essential point of the proof of Lemma

B.7.7(ii), the reader should note, that the intersection formula (F ⊗C)∩ (F ⊗D) =

F⊗(C∩D) holds for every C *-algebra D and C ⊆M(D), if and only if, F is exact.

This happens even if we consider here only separable C and require, in addition,

that D is a simple, purely infinite and separable C *-algebra.

The intersection formula it true for every pair of C *-algebras C,D ⊆ L(H), if

and only if, F satisfies the slice map property (S) of S. Wassermann. The Property

(S) implies exactness, but it is unknown if (S) is equivalent to exactness.

On the other hand, for every C *-algebra F , every locally reflexive C *-algebra

C ⊆M(D), one can show that (F ⊗C)∩ (F ⊗D) = F ⊗ (C ∩D). (The ideal C ∩D
of C is a locally reflexive C *-subalgebra of D.)

Thus our proof of Lemma B.7.7(ii) also shows that the natural extension VD

of V to C + D with VD(D) = 0 is weakly nuclear if C is locally reflexive in the

sense of [238] (without any assumptions about the behavior of C ∩ D in D). All

exact C *-algebras are locally reflexive, cf. [432, rem. on p. 71] (compare [802] for

the case of separable C *-algebras).
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8. Questions about pure infiniteness

compare and sort following questions !! Below, we list some open ques-

tions concerning the verification of pure infiniteness, and K1-injectivity.

Question B.8.1. Denote by A ∗ B the unital universal free C *-algebra of

unital A and B, and define the free joint Efree of A and B by

Efree(A,B) := {f ∈ C([0, 1], A ∗B) ; f(0) ∈ A ∗ 1 , f(1) ∈ 1 ∗B } .

(1) Suppose that A is non-unital, separable and locally purely infinite.

Does there exist n ∈ N such that the unit of Mn(M(A)) is properly infinite?

(It is the case for weakly purely infinite A, or ifM(A) itself is locally purely infinite.

in the sense of Definition 2.0.3)

(2) Suppose that A is unital and weakly p.i. (respectively locally p.i.) and that

1A/J is properly infinite for every non-zero closed ideal {0} 6= J / A.

Is 1A properly infinite if A is not prime ?

It leads to the –equivalent– question, whether or not n-purely infinite quotients of

the unital C *-subalgebra Efree(O∞,O∞) of C([0, 1],O∞∗O∞) have properly infinite

unit elements. See the farer going question (8) below.

(3) Let D := {z ∈ C ; |z| ≤ 1} and S1 = ∂D. Then C(D) is naturally

isomorphic to the (unital) algebra cone(C(S1)) and the corresponding epimorphism

from C(D) onto C(S1) is given by ϕ(f) := f |S1. Let f0(z) := z and u := ϕ(f0).

The unitary u defines an inner automorphism σ(x) := u∗xu of O∞ ∗ C(S1). One

can show ( 2 ) that a positive answer to the following question implies a positive

answer to question (2):

Does the pull-back

(O∞ ∗ C (D))⊕π,σ◦π (O∞ ∗ C (D))

of the unital epimorphisms

π := id ∗ϕ : (O∞ ∗ C (D))→
(
O∞ ∗ C

(
S1
))

and of σ ◦ π have a properly infinite unit?

(Unfortunately, it is likely that (3) has a negative answer. And it seems that the

same happens for O2 – in place of O∞.)

(4) Suppose that A is a purely infinite (non-simple) algebra, and a ∈ A+.

Are the (unital!) fibers of the upper (!) semi-continuous C*–bundle

F (C∗(a), A) := ({a}′ ∩Aω)/Ann(a,Aω)

over Spec(a) purely infinite?

(The fibers are 2-p.i. by [443].)

More precise and actual citation?

2 by [448, prop.1.6,rem.1.15(2), prop.A.4], because two unital *-endomorphisms of O∞ are

approximately unitarily equivalent by Theorem B
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(5) Are the fibers Bt (of F (C∗(a), A) , t ∈ Spec(a) ) K1-injective ?

(I.e., is U0(Bt) the kernel of the natural map U(Bt)→ K1(Bt) .)

(6) Is O∞ ∗ C(S1) K1-injective ?

With other words:

Does there exist v ∈ U0(O∞ ∗ C(S1)) with ut1 = vt1, where t1, t2, . . . (respec-

tively u) are the canonical generators of O∞ (respectively of C(S1))?

If the answer is positive, then U(B)/U0(B) ∼= K1(B). for every unital algebra B

that contains a a copy of O∞ unitally. (The answer could be negative. The question

is possibly related to question (3). See also Proposition 4.3.6(iv).)

(7) Is O∞ ∗ O∞ K1-injective?

Note that (6) and (7) are related, because unital copies of O∞ in a unital C *–

algebra A are unitarily homotopic by a continuous path u(t) ∈ U(A), and one can

manage that [u(t)]1 = 0 in K1(A).

(Since hi : O∞ → A, i = 1, 2, are unital, it follows from Theorem B – and from the

UCT for O∞ – that there is a continuous path u(t) in the unitaries of A such that

limt→∞ ‖u(t)∗h1(b)u(t)− h2(b)‖ = 0.)

Perhaps, O∞ ∗ O∞ and O∞ ∗ C(S1) are KK-equivalent.

At least, there are unital *-morphisms α : O∞ ∗O∞ → O∞ ∗C(S1) (α(a∗1) :=

a∗1 and α(1∗a) := (1∗U)∗(a∗1)(1∗U)) and β : O∞ ∗C(S1)→ Cb(R+,O∞ ∗O∞)

(β(a ∗ 1) = a∗1, β(U) := u) such that π ◦ β◦ is the natural – constant – embedding

from O∞ ∗ O∞ into Q(R+,O∞ ∗ O∞).)

(8) Does Efree(O∞,O∞) contain a non-trivial projection?

Is the unit of Efree(O∞,O∞) properly infinite?

(9) Let J a separable weakly purely infinite C *–algebra such that there

is a sequence of positive contractions e1, e2, . . . ∈ J+ and contractions vn,k,

such that envm,k = vm,k, vn,kem = vm,k, enem = em, for m < n, k, l ∈ N,

v∗m,kvn,l = δk,lδm,ne
2
n for k, l,m, n ∈ N, moreover, we suppose that (en) is an

approximate unit of J .

Is the unit 1M(J) of M(J) infinite?

(10) Suppose, in addition to the assumptions of (9), that J of (9) is an ideal of

a unital C *-algebra A and that there is a *-monomorphism ϕ : C0(0, 1]⊗O∞ ↪→ A

with ϕ(f0 ⊗ 1) =
∑
n 2−nen.

Is the unit of A properly infinite?

A positive answer would imply that weakly purely infinite algebras are purely

infinite, and that purely infinite algebras A satisfy the assumption of the question

(12).

(11) Suppose that a1, a2 ∈ A+ are stable elements of A (i.e., Dk := akAak is

stable for k = 1, 2 ).
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Is a1 + a2 a properly infinite element of A?

A positive answer would imply that locally purely infinite algebras are purely

infinite, and that every purely infinite algebra A satisfies the assumption of the

question (12).

(But it is even unknown whether or not sums of σ-unital stable ideals have a

properly infinite strictly positive element.

What happens in the case where D1 and D2 are ideals of A and where A is

moreover locally purely infinite? )

(12) Suppose that F (C,A) := (C ′ ∩ Aω)/Ann(C,Aω) has a properly infinite

unit for every separable commutative C *-subalgebra C of A.

Is A strongly purely infinite?

(13) Suppose that A is p.i. Is C([0, 1], A) p.i.?. (It is 2-p.i.)

Special case:

Let A a purely infinite separable nuclear C *-algebra. Is C([0, 1], A) purely

infinite?.

For simple A the answer is positive, because simple p.i. algebras are strongly p.i.

(14) Are local p.i. C*-algebras A with the global Glimm halving property purely

infinite?

(A is p.i. if and only if A is l.p.i. and the sum D = (D1 +D2)A(D1 +D2) of any

two stable hereditary C *-subalgebras D1 and D2 of A contains a family (Dτ )τ of

stable hereditary C *-subalgebras of A such that each element of the Pedersen ideal

of D can be approximated by elements from
⋃
τ A(Dτ )A – only elements of the

union, not sums of them! –.)

The next question asks what happens with pure infiniteness if we have a con-

ditional expectation of finite index onto a subalgebra.

Question B.8.2. Suppose that A ⊆ B (both not necessarily simple) and that

P : B → A is a conditional expectation from B onto A of finite index, i.e., P |A =

idA, ‖P‖ = 1, and there exists 0 < λ < ∞ with λ−1b ≤ P ⊗ idn(b) for all b ∈
(B⊗Mn)+ and n ∈ N. (Note that the existence of P implies that A is unital if and

only if B is unital, and that then P must be necessarily unital. More generally, A

is a non-degenerate C *-subalgebra of B in the non-unital case. This can be seen

by passage to the second conjugate P ∗∗.)

What about of the following statements (1)–(6) concerning versions of pure

infiniteness?

(1) Every l.s.c. 2-quasi-trace of A is trivial, if and only if, every l.s.c. 2-quasi-

trace of B is trivial.

(2) A is locally p.i., if and only if, B is locally p.i.

(3) A is p.i. (respectively is weakly p.i., strongly p.i.), if and only if, B is p.i.

(respectively is weakly p.i., strongly p.i.).
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(4) If B is unital, then 1A is stably properly infinite (respectively is prop-

erly infinite), if and only if, 1B is stably properly infinite (respectively is properly

infinite).

(5) There are a *-monomorphism h : B → A⊗K and a conditional expectation

P ′ : D → h(B) of finite index from the hereditary C *-algebra D of A⊗K generated

by h(B) onto h(B).

(6) If ϕ : A → F is a *-epimorphism onto a finite AW*-factor F , then there

exists a finite AW*-algebra G with finite-dimensional centre and a *-epimorphism

ψ : B → G, a unital *-morphism ε : F → G and a conditional expectation E : G→
ε(F ) of finite index, such that ε ◦ ϕ = ψ|A and ψ ◦ P = E ◦ ψ.

(Alternatively, and almost equivalent: If the multiplier algebraM(X)∩X of a

not-necessarily unital C *-system X contains a finite AW*-factor F ⊆ M(X) ∩X
and if there is a conditional expectation from X onto F of finite index, then X =

M(X) and X is a finite AW*-algebra with finite centre.)

(7) For every b ∈ B+ there are n ∈ N, a projection q ∈Mn and a ∈ (A⊗Mn)+

such that b⊗q is Cuntz-equivalent to a in B⊗Mn. (At least, if J = (A∩J)B(A∩J)

for each closed ideal J of B, and I = A ∩ span(BIB) for each closed ideal of I of

A.)

Questions B.8.3. Are inductive limits A of pi(n) algebras A1, A2, . . . again

pi(n)?

Can the ultra-product
∏
ω Ak of pi(n) algebras Ak (k = 1, 2, . . . ) have a non-

zero finite-dimensional quotient? (Equivalently: Is the c0-sum of pi(n) C*-algebras⊕
k Ak a pi(n) algebra? )

Is there a general function f : N→ N such that A⊗K is pi(f(n)) if A is pi(n) ?

The implication

{ A is pi(n) } ⇒ { A has property pi-m for some m ≥ n }
(m depending on A) was shown by an indirect argument (showing that Aω is l.p.i.

and, therefore, Aω is traceless). Our there given argument does not indicate a way

to find a uniform bound for m (if n ∈ N is given).

Fix n ∈ N. Suppose that A is σ-unital, has no non-zero finite-dimensional

quotient A/J of dimension ≤ n, and that for each a ∈ A+, positive b ∈ span(AaA)

and ε > 0 there are d1, . . . , dn ∈ A such that ‖b−
∑
j d
∗
jadj‖ < ε.

Further let e ∈ A a strictly positive element of A. Then each hereditary C*-

subalgebra Ak := (e− 1/k)+A(e− 1/k)+ is pi(n), by Lemma 2.12.4(iii).

Hence, positive answers to the above (equivalent) questions, would imply, that

one can replace the condition (ii) in Definition 2.0.4 by the (possibly weaker) con-

dition that A has no quotient A/J of dimension ≤ n2.

Question B.8.4. Is the unit 1F of a unital weakly purely infinite C*-algebra

F properly infinite?



8. QUESTIONS ABOUT PURE INFINITENESS 1233

By definition, F is pi(n) for some n ∈ N. We know at least that 1F ⊗ 1m is

properly infinite for some m ∈ N, because pi(n) implies that F is l.p.i.

Proof of Corollary 2.7.18

Proposition ??, that there exists m ≥ n such that a ⊗ 1m is properly infinite

for every element 0 6= a ∈ A. In particular 1A ⊗ 1m is properly infinite.

A positive answer would imply that every weakly p.i. algebra is purely infinite.

Moreover, this would imply that each weakly p.i. algebra is commutant-p.i. in the

sense of Definition 2.16.6.

Question B.8.5. Is every commutant-p.i. algebra A (cf. Def. 2.16.6), strongly

purely infinite?

Question B.8.6. Suppose that Prim(A) is isomorphic to the Hilbert cube

[0, 1]∞ and that each fiber (= each simple quotient) is isomorphic to O2.

Is A purely infinite?

(The question considers a special case of [462, ques. 4.8].)

Is A purely infinite if A is weakly purely infinite?

Question B.8.7. l.p.i. implies w.p.i.?

w.p.i. implies p.i.?

p.i implies l.c.p.i.?

l.c.p.i. implies c.p.i.?

c.p.i. implies s.p.i.?

(Is special case of [462, ques. 4.8].)

Merge below blue questions into above questions

??????

Question B.8.8. Is the unit of M(aAa) p.i. if a ∈ A+ is properly infinite in

A? ([462, ques.3.10])

A special open question is: Is the unit of M(A) properly infinite if A is a

separable purely infinite algebra?

Question B.8.9. a, b ∈ A+ commuting and (a − t)+ and (b − t)+ properly

infinite or zero for all t > 0. Is a+ b properly infinite?

(It is a special case of [462, ques.3.10].)

Question B.8.10. Let A a separable unital C *-algebra and that J and K are

closed ideals of A with J ∩K = {0}. Suppose that the units 1A/J and 1A/K are

properly infinite in A/J and A/K. It is easy to see that 1A⊗ 12 is properly infinite

in M2(A).

Is 1A properly infinite in A ?

If the unitary group of A/(J + K) is connected, then the answer is positive.

(Notice that A = A/(J∩K) is just the pull-back A/J⊕µ,νA/K of the epimorphisms

µ : A/J → A/(J +K) and ν : A/K → A/(J +K).)
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The question considers a test case of the question whether the proper infinite-

ness of a projection p ∈ A can be verified by looking only to p + J in all prime

quotients A/J .

Question B.8.11. Suppose that A is separable and is w.p.i. and a, b ∈ A+ are

stable contractions such that a+ b is strictly positive in A.

Does there exist a stable element c = c(γ) ∈ A+ such that (a + b − γ)+ is in

the closed ideal of A generated by c ?

The question is equivalent to the question, if every w.p.i. algebra is p.i. (And

then, automatically, every p.i. algebra is c.p.i.)

Question B.8.12. IsM(A) weakly purely infinite if A is weakly purely infinite

and σ-unital?

Question B.8.13. Is the unit of M(A) properly infinite if A is purely infinite

and σ-unital?

9. On the properties “IR” and “stable rank one”

It’s all related to the almost ridiculous Part (xvii) of Proposition 2.2.1.

ALL HAS TO BE SORTED!!

DESIRE OF Remark 2.2.2:

See Section 9 in Appendix B for the definitions of “Property IR” and “stable

rank one”, and for an explanation, why Part (xvii) of Proposition 2.2.1 is one of the

needed observations for the proof of the Brown-Friis-Rørdam alternative for simple

C *-algebras with Property IR between pure infiniteness and “stable rank one”.

BEGIN OF LIST OF MATERIAL

Definition B.9.1. A C *-algebra B has stable rank one if each element

of B + C · 1M(B) is in the operator-norm closure of the invertible elements in

C∗(B, 1M(B)) = B + C · 1M(B) ⊆M(B).

Obviously, C *-algebras B that contain an infinite projection do not have this

is never the case for any simple purely infinite C *-algebras.)

A is simple, and has the property that each element T of A+C ·1 ⊆M(A) that

is not in the norm-closure of invertible elements of A+C ·1 must be right-invertible

or left-invertible in A+C·1, – which would be the correct interpretation of Property

IR in the special case of simple C *-algebras A – then this property holds also for

(A⊕+C · 1M(A))⊕ C and for any non-zero hereditary C *-subalgebra D ⊆ A, i.e.,

also for D+C · 1 ⊆ A+C · 1 holds that any element that can not be approximated

by invertible elements in D+C · 1 is left- or right-invertible (but is not invertible).

This passage to hereditary C *-subalgebras is a key point and is equivalent to

the Morita equivalence of property IR on the class of simple C *-algebras.
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It seems that it suffices to consider: passage to M2(A), to inductive limits, and

to (non-zero) corners of (simple) C *-algebras, to get Morita equivalence of property

IR.

The same happens with property “real rank zero”.

as the property that there exists a hereditary C *-subalgebra

there exist elements in Ã := A + C · 1 ⊆ M(A) that are not in the closure of

of the invertible elements ... ,if and only if, A contains an infinite projection. Thus

????

Each element in A + C · 1 ⊆ M(A) that is not in the closure of the set of

invertible elements in A+C · 1 has a left or a right inverse (but not both of them)

and A + C has not stable rank one, i.e., the invertible elements are not dense in

A+C. (Or is Mn(A+C) to consider also? And its stabilizations ...? Is it a stable

problem?)

This gives immediately that A+C contains a non-unitary isometry ... Delivers

a projection in A. Then to every non-zero hereditary C *-subalgebra of A...?

It carries over to D+C for all non-zero hereditary C *-subalgebras D of A (by

stabilization ?)

ABOVE TEXT VERY RANDOM!

COMPARE WITH BELOW

GIVE ONLY SHORT SUMMARIES ...

The C *-algebras with stable rank one are – in a sense – opposites to (weak)

purely infinite C *-algebras, ... at least in case of simple C *-algebras.

Definition B.9.2. A C *-algebra B has “stable rank one” (denoted by “SR1 ”)

if each element of B+C·1M(B) ⊆M(B) can be approximated in norm by invertible

elements in B + C · 1 .

It is easy to see from the definition that the class of C *-algebras with stable

rank one are invariant under following operations:

( i) forming direct sums B1 ⊕B2,

( ii) passage to quotients B/J ,

(iii) forming of inductive limits, e.g. B has SR1 if there are C *-subalgebras

B1 ⊂ B2 ⊂ · · · ⊂ B of C *-subalgebras Bn with SR1 such that
⋃
nBn is

dense in B,

(iv) pBp has SR1 if B has SR1 and p∗ = p ∈M(B) is a projection.

(v) M2(B) has SR1 if B has SR1. (use a modification of the classical Gauss

algorithm here in an approximate manner). It follows that Mn(B) has

SR1 (in conjunction with Part (iv)).

(vi) B ⊗K has SR1 if B has SR1.

(vii) B has SR1 and separable and A is a separable C *-algebra that is Morita

equivalent to B then A has SR1.

WHAT about hereditary subalgebras/ideals?
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The following Lemma B.9.3 is due to L.G. Brown [109].

Lemma B.9.3. Let D a hereditary C*-subalgebra of B and d ∈ D+C·1 ⊆M(B).

Suppose that there exists a sequence (bn) of elements in bn ∈ B +C · 1 that are

invertible in B + C · 1 and satisfy limn ‖bn − d‖ = 0. Then there exists a sequence

of cn ∈ D + C · 1 that are invertible in D + C · 1 and satisfy limn ‖cn − d‖ = 0 .

It allows to show that (non-zero) simple C *-algebras A are purely infinite if A

has not SR1 but satisfies property IR.

Next is my Definition!! Better name needed?

Definition B.9.4. We say (for a moment and only here) that an element

x ∈ B +C · 1M(B) ⊆M(B) is “well-behaved” if, for every closed ideal J ⊆ B of B,

the element πJ(x) is invertible in (B + C)/J if πJ(x) is left or right invertible in

(B + C)/J .

If B is simple, then this says that x ∈ B + C · 1M(B) is “well-behaved” if x is

invertible if it is left or right invertible.

If, for example, πJ(x) is neither left- nor right-invertible for all closed ideals J

of B, then x is well-behaved

Notice that P. Friis and M. Rørdam have 1996 in [305] the following property IR

that sounds a bit like a weakening of the property SR1 ???, but is rather different.

Definition B.9.5. A C *-algebra B has the property IR if each element b ∈
B + C · 1 ⊆ M(B), that is “well-behaved” in sense of Definition B.9.4, is in the

norm-closure of the invertible elements in B + C · 1 .

Thus property IR causes:

If b ∈ B + C · 1 is not in the norm-closure of the invertible elements in B + C · 1
and B has property IR, then there exists an closed ideal J of B such that πJ(b) is

left- or right-invertible but is not invertible in (B + C · 1)/J .

The point is now the following: Is it the Proposition 2.2 ???

If b = c + λ1M(B) (with c ∈ B) can be approximated by invertible elements

in B + C · 1M(B) and D is a hereditary C *-subalgebra of B with c ∈ D, then

c+ λ1M(D) can be approximated by invertible elements of c+ λ1M(D)

(Lemma of Brown, which one?).

Theorem B.9.6. Simple C*-algebras with property IR have stable rank one or

are purely infinite.

For the proof see [305] and [109].

Can proceed as follows:

If A is simple and has property IR and A has not stable rank one.
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Then every non-zero hereditary C *-subalgebra D of A has not stable rank one,

because “stable rank one” is invariant under Morita equivalence.

So, if A has not stable rank one, then D can not have stable rank one.

If D has not stable rank one then there exists d ∈ D such that d or d+ 1M(A)

can not be approximated by invertible elements in D + C · 1.

The point is now, that one must show that d (or d+1) can not be approximated

by invertible elements in A+C·1 if d (or d+1) can not be approximated by invertible

elements in D + C · 1 ⊆M(A).

– This is because IR is not proven to be Morita equivalent so far –

Possible way:

1.) Passage to M2(A), 2.) Passage to corner, 3.) to inductive limits, ...

If there is no passage to σ-unital hereditary C *-subalgebras, this does not help

...

How to check if IR passes to hereditary C *-subalgebras D: All closed ideals of

D are intersections J ∩D with closed ideals J of A.

Let d ∈ D ⊆ A well-behaved in D + C · 1M(D), is it then also well-behaved in

A+ C · 1M(D)?

And conversely?

Suppose that πJ(d) + z1 is approx-invertible in A + C · 1, the also approx-

invertible in D + C · 1 ? And conversely?

(Is it not so, that there exists ρ > 0 such that d− z1M(A) is not invertible for

every z ∈ C with |z| < ρ?

Otherwise, we find a zero-sequence zn ∈ C with d − zn invertible in for every

n ∈ N and |zn| → 0. Then d is in the closure if the invertible elements in D+C · 1.

Multiplying d or d + 1 with a constant we may suppose that d − z1 is not

invertible for all z ∈ C with |z| ≤ 1.

That implies that, e.g. , d can not be approximated by invertible elements in

A+ C1 because ...

If T is invertible, then (T − z) is invertible for all z ∈ C with |z| < ‖T−1‖ ??

and ‖T − d‖ < γ, implies Spec(T ) ⊆ (γ ◦D2) + Spec(d),

‖1− T−1d‖ ≤ ‖T−1‖ · ‖T − d‖

?????

Now in the class of C *-algebras ?????

(Other idea:

Try to show directly that D+C1 has also property IR, because then we get directly

that d (or d+ 1) are right or left invertible. It is a sort of invariance of property IR

under Morita equivalence.)
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(But a Lemma/Preposition of L.G. Brown gives this!).

L.G. Brown:

Is it the proposed Proposition 2.2 ???

The intersection of D + C · 1M(A) with the operator-norm closure in M(A) of

the invertible elements in A + C · 1M(A) is equal to the operator-norm closure of

the invertible elements in D + C · 1 in M(A).

All ???? inside ????? in M(A)?

If ????

If A has property IR, this implies that d (or d + 1) is right-invertible or left-

invertible in A or A+ C · 1M(A).

If d+ 1 is not invertible but is right-invertible in A+ C1, it implies that there

exists right-inverse R = e+z1 ∈ A+C·1cM for d+1M shows that (e+z1)(d+1) = 1

(respectively (e+ z1)d = 1).

Thus, ‖e + z1‖2(1 + d)∗(d + 1) ≥ 1 and d + 1 (respective d) is right invertible

in D + C1 by [(1 + d)∗(d + 1)]−1(1 + d)∗. Thus, D + C · 1 contains a non-unitary

isometry ...

Perhaps there exists a proof that works without Lemma of Brown?

The “opposite” direction is “Corollary 1.11”:

Any purely infinite simple C *-algebra satisfies property IR.

Here is a collection of excerpts:

Material for Part (xvii) of Proposition 2.2.1!!!

ON BROWN CRITERIUM:

M. Rieffel: “Stable rank one”:

GL(Ã) is dense in Ã.

For a unital C *-algebra A, P. Friis and M. Rørdam [305] defined R(A) as

follows:

The element a is in R(A) if and only if there does not exist a (closed two-sided) ideal

I such that πI(a) is one-sided invertible but not invertible, where πI : A→ A/I is

the quotient map.

They then said that A satisfies IR if R(A) is in the (norm) closure of GL(A).

Of course it is obvious that GL(A) ⊆ R(A), since no element that is one-sided

invertible but not invertible (in some quotient algebra of A) can be approximated

by invertible elements of A.

For non-unital A, they said A satisfies IR if Ã does. Here Ã = A if A is unital and

Ã = C∗(A, 1) ⊆M(A) if A is not unital.

For expository purposes we introduce a formally weaker property, but in Propo-

sition 2.2 we will show it is equivalent.

An arbitrary C *-algebra A satisfies IR0 if every element of R(A+) ∩ (1 + A) is in
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the closure of GL(A+) .

Obviously IR0 is equivalent to IR in the unital case, but for non-unital A we are

leaving open (for now) the possibility that R(Ã)∩A is not contained in the closure

of GL(A+) .

Lemma 1.2. (cf. [4, Theorem 3.5]).

Let B be a proper hereditary C *-subalgebra of a unital C *-algebra A, and identify

B+ with B + C1. For t in 1 +B, if t ∈ GL(A), then t ∈ GL(B+).

Proposition 1.9.

If A is the direct limit of an upward directed family {Bi} of hereditary C *-

subalgebras, and if each Bi satisfies IR, then A satisfies IR.

Corollary 1.10.

If A has an approximate identity of projections, in particular if A is of real rank

zero, then A satisfies IR if and only if pAp satisfies IR for each projection p in A.

Corollary 1.11.

Any purely infinite simple C *-algebra satisfies property IR.

Theorem 2.5.

Let I be a closed two-sided ideal of a C *-algebra A. Then A has IR if and only if

both I and A/I have IR and invertibles lift from Ã/I to Ã.

Theorem 3.2.

Let A be a C *-algebra of real rank zero. Then A has IR, if and only if, whenever

p and q are projections in A generating the same ideal, then (1 − p) ∼ (1 − q) in

A+ implies p ∼ q.

Proposition 4.1.

If A is a simple C *-algebra, then A has IR if and only if either A has stable rank

one or A is purely infinite.

My comment: “stable rank one” is in case of simple C *-algebras what ? ...

It was pointed out in [305] that stable rank one implies IR

(“Stable rank in this sense was introduced by Rieffel [9] and stable rank one

means that GL(Ã) is dense in Ã.”)

(Thus, in case of simple A, excluding “stable rank one” means that there exist

elements in Ã that can not be approximate by invertible elements.)

Rieffel showed in [9] that C *-algebras of stable rank one satisfy a stronger

cancellation property: If p and q have the same image in K0(A), then p ∼ q. Of

course p ∼ q implies that p and q generate the same ideal I and have the same

image in K0(I). We show next that stable IR implies a

?????

Proof.
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For the direction not already proved, assume that A has IR and is not of stable

rank one. We need to show that every non-zero hereditary C *-subalgebra B of A

contains a non-zero projection and that every non-zero projection is infinite.

For the first, note that B cannot have stable rank one, since B is strongly

Morita equivalent to A and the stable rank one property is preserved by strong

Morita equivalence. We may assume B is not unital, and thus B̃ can be identified

with B + C · 1 ⊆ Ã. Then there must be t ∈ 1 + B such that t 6∈ R(B̃) (since B

has IR by Proposition 1.4). Since the only relevant quotient of B̃ is B̃ itself, t is

one-sided invertible but not invertible, and B contains a proper isometry u. Then

1−uu∗ is the desired non-zero projection in B. For the second, let p be a non-zero

projection in A, and let B = pAp. The same sort of reasoning as above shows that

there is a proper isometry in B, whence p is infinite. �

Decide what is really needed from below!!

Some More Text from L.G. Brown, to support the relation of this this Di-

chotomy Property with the rather simple property in Part (xvii) of Proposition

2.2.1:

Text comes mainly from [109]:

For a non-unital C *-algebra A, Ã denotes the result of adjoining an identity,

and Ã if A is unital. Let A+ denote Ã if A is non-unital and A+ := A⊕ C if A is

unital.

DEFINITION OF R(A) and IR:

For a unital C *-algebra A, Friis and Rørdam [305] defined R(A) as follows:

The element a is in R(A), if and only if, there does not exist a (closed two-

sided) ideal J such that πJ(a) is one-sided invertible but not invertible, where

πJ : A → A/J is the quotient map. They then said that A satisfies IR if R(A) is

in the (norm) closure of GL(A).

Of course it is obvious that GL(A) ⊆ R(A), since no element that is one-sided

invertible but is not invertible (in some quotient algebra of A) can be approximated

by invertible elements of A.

For non-unital A, they said A satisfies IR if Ã does.

We introduce a formally weaker property, but in Proposition 2.2 we will show

it is equivalent.

An arbitrary C*-algebra A satisfies IR0 if every element of R(A+)∩ (1 +A) is

in the closure of GL(A+).

Obviously IR0 is equivalent to IR in the unital case, but for non-unital A we

are leaving open (for now) the possibility that R(Ã) ∩ A is not contained in the

closure of GL(Ã).

Lemma [305, lem. 4.3] shows that direct products (also known as `∞-direct

sums) of C *-algebras with IR have IR, and the proof contains the assertion that IR
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passes to ideals (see Remark 1.5 below for more on this). We proceed to generalize

the latter result. Our proof relies on Proposition 2.2, but the result is included in

this section for expository purposes.

Lemma 1.2.

([114, thm. 3.5]).

Let B be a proper hereditary C *-subalgebra of a unital C *-algebra A, and identify

B+ with B +C · 1, where 1 means 1A. For all t in 1 +B holds: If t ∈ GL(A), then

t ∈ GL(B+).

Proposition 1.4.

Any hereditary C *-subalgebra of a C *-algebra with IR also has IR.

(HERE A CRITICAL REMARK TO [305, lem. 4.3])

Remark 1.5.

The argument given in the proof of [305, lem. 4.3] for the fact that any ideal I in

a C *-algebra with IR also has IR actually shows only that I has IR0. Of course

this is remedied by our Proposition 2.2, but it is not hard to see, without using any

results from the present paper, that [305, lem. 4.3] is correct as stated.

Proposition 1.6.

Let B be a hereditary C *-subalgebra of a unital C *-algebra A. Then (1 + B) ∩
R(A) ⊆ R(B + C · 1).

DEFINITION OF R(A) is where ???

Example 1.7.

The last result is not true for elements of B; i.e., B ∩R(A) need not be contained

in R(B + C · 1).

To see this let A0 be a non-unital purely infinite simple C *-algebra, let A := Ã0,

and let B := pAp for a non-zero projection p in A0. If u is a proper isometry in

B, then u 6∈ R(B + C · 1), since B + C · 1 ∼= B ⊕ C, but u ∈ R(A), since the only

relevant quotient of A is A itself.

Lemma 1.8.

If A is the direct limit of a directed family {Bi} of hereditary C *-subalgebras, and

if each Bi satisfies IR0, then A satisfies IR0.

Proposition 1.9.

If A is the direct limit of

an upward directed

family {Bi} of hereditary C *-subalgebras, and if each Bi satisfies IR, then A

satisfies IR.

What is correct??
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If A is the direct limit of

a directed family {Bi} of hereditary C *-subalgebras, and if each Bi satisfies IR0,

then A satisfies IR0.

10. Uniform global Glimm halving

Remark B.10.1. Let Aω := `∞(A)/Jω, and B ⊆ Aω a C *-subalgebra. We

define

F (B,A) := (B′ ∩Aω)/Ann(B,Aω)

and the special case F (A) := F (A,A).

One can formulate “uniform variations” of the global Glimm halving property

for A, respectively of the non-existence of characters on A:

(i) There is (universal) n ∈ N such that, for every a ∈ A+, c ∈ A+ with

‖c‖ ≤ 1, ca = a, and ε > 0, there exists b, d1, . . . , dn ∈ A, b ∈ aAa, b2 = 0,

‖b‖ = 1, ‖[b, a]‖ < ε, ‖[dj , a]‖ < ε,
∑
d∗j bb

∗dj = c.

(ii) For all a∗ = a ∈ Aω, F (C∗(a), A) has the global Glimm halving property

(Notice here that F (C∗(a+), A)⊕ F (C∗(a−), A) ∼= F (C∗(a), A).)

(iii) Aω has the global Glimm halving property, i.e., for all a ∈ (Aω)+, ε > 0,

there exist bε,a ∈ a(Aω)+a with b2ε,a = 0, (a − ε)+ ∈ I(bε,a) (i.e., for

every δ ∈ (0, ε), there exist n = n(δ) and d1, . . . , dn ∈ Aω such that∑
j d
∗
j (b
∗
ε,abε,a)dj = (a− (ε+ δ))+ ).

(iv) There is (universal) n ∈ N such that for a, c ∈ A+ with ‖c‖ = 1 and

ca = a there exists b ∈ A with b2 = 0, cb = bc = b and d1, . . . , dn ∈ A
with

∑
d∗j (bb

∗ + b∗b)dj = a.

(v) No hereditary C *-subalgebra of Aω has a character 6= 0. (It suffices to

consider σ-unital hereditary subalgebras.)

(vi) There exists (universal) n ∈ N, such that for all a, c ∈ A+, ‖c‖ = 1, ca = a

there are b1, . . . , bn, d1, . . . , dn ∈ A with b2j = 0, ‖bj‖ = 1, cbj = bjc = bj ,

cdj = djc = dj , and
∑
d∗j (b

∗
j bj + bjb

∗
j )dj = a.

Then (i)⇔(ii), (iii)⇔(iv), and (v)⇔(vi). Moreover (iv)⇒(vi).

11. Examples that exhaust the UCT-class

The following Lemma B.11.1 shows that every Z2-graded countable Abelian

group G = G0 ⊕G1 is isomorphic to K∗(C0(X)) for some Polish l.c. space X that

is locally homeomorphic to an at most 3-dimensional CW-complex – optical not

visibly because some of them can be considered as topological subspaces of R7 but

not of R6 or the they can be in the “visible” class of subsets of R3. In particular,

each separable C*-algebra in the UCT class is KK-equivalent to C0(X) for at least

one of such X.

Lemma B.11.1. Let W denote the compact Alexandroff (one-point)-completion

of N × R. If G is a countable Abelian group, then there exists a continuous map



11. EXAMPLES THAT EXHAUST THE UCT-CLASS 1243

ϕ : W → W such that ϕ(∞) = ∞ and that K1(X) = 0 and K0(X) ∼= G for

X := Y \ ((0, 1]× {∞}) where Y denotes the mapping cone of

Y := ((0, 1]×W ) ∪ϕW

of ϕ.

Proof. Let Z∞ denote the free Abelian group with free generators y1, y2, . . ..

If x1, x2, . . . ∈ G is a sequence that generates G, then there is an epimorphism

λ : Z∞ → G with λ(yp) := xp. We can suppose that 0 appears in the sequence (xn)

infinitely often. Then the kernel F ⊆ Z∞ of λ is not finitely generated. By [308,

thm. 14.2], there is an isomorphism µ : Z∞ → F from Z∞ onto F .

It is not difficult to see that there is an automorphism σ of Z∞ (given by an

inductively selected new basis y′1, y
′
2, . . . of Z∞), such that ν := µ ◦ σ : Z∞ → Z∞

has the property that

ν(yp) =

lp∑
j=kp

gp,jyj

with kp ≤ lp, gp,j ∈ Z and limp→∞ kp =∞.

It follows that it suffices to define suitable continuous maps ϕp from Cp :=

{p} × S1 ∼= (R ∪ {∞}) (where we identify R with {eis ; s ∈ (0, 2π)}) onto the

rosette

Wp := ({kp, kp + 1, . . . , lp − 1, lp} × R) ∪ {∞} .

The latter is the identification of the points (j, 1) (representing our infinite point

of Wp) in the mp := 1 + lp − kp disjoint copies Cj = {j} × S1 of S1. There exists

maps ϕp : Cp →Wp that satisfy ϕp(∞) :=∞ and that the maps

K1(ϕp) : K1(Wp)→ K1(Cp)

satisfy K1(ϕp)[Uj ] = gj [Vp] in K1(Wp). Here Uj : Wp → S1 and Vp : Cp → S1 are

defined by Uj(k, z) := 1 if k 6= j and Uj(j, z) := z, and by Vj(j, z) := z. The map

ϕp : Cp →Wp can be defined as follows:

Select t0 = 0 ≤ t1 ≤ · · · ≤ tmp = 2π with tj−1 = tj if gj = 0 and tj−1 < tj if gj 6= 0.

If gj = 0, let ϕp((p, e
tj2πi)) := (j, 1) =∞. If gj 6= 0, then define homeomorphisms

γj : [tj−1, tj ]→ [0, 2|gj |π] by the affine maps γj(s) := (s− tj−1)(tj − tj−1)−12gjπ if

gj > 0 and γj(s) := (tj−s)(tj−tj−1)−12|gj |π if gj < 0. Now define ϕp((p, e
2πs)) :=

(j, eiγj(s)) ??? for s ∈ [tj−1, tj ] (where we identify all (j, 1) with ∞).

Then we define ϕ : W →W by ϕ((p, z)) := ϕp((p, z)) -

Let Y := ((0, 1] × W ) ∪ϕ W denote the mapping cone of ϕ : W → W . It

follows, that X := Y \ ((0, 1]× {∞}) is locally a 2-dimensional CW-complex, that

K1(W ) = K1(N× R) ∼= Z∞ and that K1(ϕ) : K1(N× R)→ K1(N× R) defines the

monomorphism ν : Z∞ → Z∞. In particular,

K1(C0(ϕ)) : K1(C0(N× R))→ K1(C0(N× R))

is an injective map with co-kernel isomorphic to G.
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The Mayer-Vietoris sequence shows that the 6-term K∗-sequence of the short-

exact sequence

C0((0, 1)× (N× R)→ C0(X)→ C0(N× R)

(defined by a pull-back) has injective boundary map

∂ : K1(C0(N× R))→ K0(C0((0, 1)× (N× R)) ∼= K1(C0(N× R))

given by K1(C0(ϕ)). Since K1(C0((0, 1) × (N × R)) = K0(C0(N × R)) = 0, we get

K1(X) = K1(C0(X)) = 0 and K1(X) = K0(C0(X)) ∼= G. �

Remark B.11.2. If the group G is finitely generated then one can take for X

with K0(X) ∼= G and K1(X) = 0 likewise:

(i) X := a finite disjoint union of points and of pointed Moore spaces

(D/ ∼n) \ {0}

(For construction of Moore spaces see [692, ex.12.2]), or – alternatively –

(ii) X := the mapping cone of a continuous map from a not necessarily finite

cloverleaf (A×R)∪{∞} into a not necessarily finite cloverleaf (or a point)

(B×R)∪{∞}, where A is a finite set of cardinality |A| = minimal number

of generators of G and |B| ≤ |A| (and B can be empty).

12. S.p.i. subalgebras B with Hausdorff Prim(B)

We say that a C *-algebra D can be locally approximated by C*-subalgebras B

with Hausdorff primitive ideal space Prim(B), if, for every finite subset X ⊆ D and

for each ε > 0, there is a C *-subalgebra B := B(X, ε) ⊆ D of D such that Prim(B)

is Hausdorff and dist(x,B) := infb∈B ‖x− b‖ < ε for every x ∈ X.

It is likely that Theorem ??K?? can be used to show, that this property can

be reformulated as a property of the primitive ideal space Prim(D) alone, provided

that D is separable and nuclear and D ∼= D ⊗O2 ⊗K :

If B ⊆ D has Hausdorff Y := Prim(B), then the action I(D) ∼= O(Prim(D))→
O(Y ) of Prim(D) on Y is l.s.c. and monotone upper s.c. Conversely those actions

define C *-morphisms from C0(Y,O2 ⊗K) into D.

Consider all local approximations of this type.

Is the above local “Hausdorff” approximation property equivalent to the fol-

lowing property:

Property (???): The family of adjoint maps from C0(Y )+ to the Dini functions

on Prim(D) contain in its images every finite set of Dini functions on Prim(D) up

to ε > 0.

We give an almost minimal example D, that can not be locally approximated

by C *-subalgebras B with Hausdorff primitive ideal space Prim(B), and contains

regular abelian C *-subalgebras with rather different properties.

Proofs are not complete ??
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Remark B.12.1. Let A := {f ∈ C([0, 1],M2) ; f(1) ∈ ∆} where ∆ denotes the

diagonal matrices of M2.

We fix a unital monomorphism h1 : M2(O∞)→ O2 and a non-degenerate mono-

morphism h2 : (O2 ⊕O2)⊗K→ O∞ ⊗K.

Further let D := A⊗O2 ⊗K, D1 := {f ∈ C([0, 1],O2) ; f(1) ∈ h1(∆⊗O∞)},
and let

D2 := {f ∈ C([0, 1],O∞ ⊗K) ; f(1) ∈ h2((O2 ⊕O2)⊗K)} .

Then:

(1) The abelian C *-subalgebra B := C([0, 1],∆) of A is regular in A and in

D, but B ↪→ A does not define a KK(Prim(A), ·, ·) equivalence.

(2) D can not be locally approximated by C *-subalgebras of D that have

Hausdorff primitive ideal spaces.

(3) The algebras D0 := D, D1 and D2 have same primitive ideal spaces, and

contain regular abelian C *-algebras C0, C1 respectively C2, such that the

inclusion maps define KK(Prim(Dk); ·, ·)-equivalences (k = 0, 1, 2).

Proof. We embed A into D by A 3 a 7→ a⊗ r ∈ D := A⊗O2 ⊗K, where r

is a non-zero projection in O2 ⊗K. Notice that Prim(A) ∼= Prim(D) by restriction

of primitive ideals I / D 7→ I ∩A / A.

The two characters χ1 and χ2 on ∆ define characters on A and, therefore, define

closed points x1 and x2 of Prim(A) (and of Prim(D)). Since [0, 1) is naturally

homeomorphic to the primitive ideal space of the closed ideal C0([0, 1),M2) of A,

there is an open subset U of Prim(A) that is homeomorphic to [0, 1). The closed

complement is Prim(A) \ U = {x1, x2} , where x1 and x2 denote the kernels of χ1

respectively χ2.

Since A ⊆ C([0, 1], M2), the set-valued map µ(t) := {t} for t ∈ [0, 1) and

µ(1) := {x1, x2} from [0, 1] = Prim(C([0, 1], M2)) into Prim(A) is lower semi-

continuous and is montone upper semi-continuous. The corresponding map

Φ0 : O([0, 1]) → O(Prim(A)) ∼= O([0, 1) ∪ {x1, x2})

is given by Φ0(V ) := V if 1 6∈ V and Φ0(V ) := (V ∩ (0, 1]) ∪ {x1, x2}.

Clearly, B ∼= C([0, 1]) ⊕ C([0, 1]) is a commutative C *-subalgebra of A (and,

hence of D) that separates the ideals of A (and, hence, that of D).

The set-valued map Φ from Prim(A) into the closed subsets of Prim(B) ∼=
[0, 1] × {1, 2} satisfies Φ(xj) = {(1, j)} for j = 1, 2 and Φ(t) = {(t, 1), (t, 2)} for

t ∈ [0, 1).

The montone upper semi-continuity and the lower semi-continuity of the corre-

sponding map Ψ from the lattice of open subsets of Prim(A) to the lattice of open

subsets of Prim(B) imply that in good cases (e.g. if B separable and exact)

?????????????????
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we may suppose that B ⊆ A⊗O2

We have for the injective map Ψ: O(Prim(A)) → O(Prim(B)), that an open

subset of W of Prim(B) ∼= [0, 1] × {1, 2} is in the image of Ψ, if and only if,

(t, 1), (s, 2) ∈W and s, t ∈ [0, 1) imply that (t, 2), (s, 1) ∈W .

It follows ????

that the image of Ψ consists of the family of open subsets of V ×{1, 2}\G with

V an open subset of [0, 1] and G a subset of {(1, 1), (1, 2)}.

If I is a closed ideal of A, then (I ∩ B) contains a strictly positive element of

I : This is clear, if I ⊆ C0([0, 1),M2), because then I = C0(Y,M2) for some open

subset of Y of [0, 1).

In the other cases, there is an open subset Y of [0, 1] with

????????????????????????

Suppose now that for every finite subset Z ⊆ D. and every epsilon there is

C *-subalgebra F of D such that dist(z, F ) < ε for all z ∈ Z.

The two projections p = 1 ⊗ e11 ⊗ r and q = 1 ⊗ e22 ⊗ r of B and its sum

1⊗ 12 ⊗ r are (up to MvN-equivalence) the only non-zero projections in D.

Indeed: If Q ∈ D is a projection, it defines a continuous map Q(t) from [0, 1]

to M2⊗O2⊗K with Q(1) ∈ ∆⊗O2⊗K. If we let P (t) := Q(1) for t ∈ [0, 1], then

Q and P are in D and

Qs := Q(s+ ts)

?????????

is a homotopy that connects Q and P in the projections of D.

Now use that all non-zero projections in ∆ ⊗ O2 ⊗ K are MvN-equivalent to

the above mentioned three,

????

We have: If. P,Q,R1, R2 are projections in D such that R1 is MvN-equivalent

to R2 in B, R1 + P = p and R2 +Q = q, then R1 = R2 = 0.

Indeed: The Ri must be in the intersection of the primitive ideals defined by

the characters χk on A, Thus, the Ri are in the ideal C0([0, 1),M2)⊗O2⊗K of D,

which contains only the zero projection.

???????????

check last until here

Since ?????

The reason should be the contradictory observation, that such an inductive

limit decomposition eventually would lead to a continuous map f from [0, 1] into

the Hausdorff space of subsets of {1, 2, 3} which is not constant:
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Let C := C([0, 1],M2)⊗O2. To see such a map, the reader should remark that

then also A⊗O2 has such an inductive limit decomposition by unital subalgebras

with Hausdorff primitive ideal spaces. Thus, eventually, one finds, at least after

application of an inner automorphism of A ⊗ O2, a C *-subalgebra B of A ⊗ O2

which has Hausdorff primitive ideal space Y := Prim(B) and contains the constant

diagonal projections p = diag(1, 0) and q = diag(0, 1) of M2 ∩A ⊆ C, and contains

also a contraction b of A with ‖bb∗(0) − p‖ < 1/8 and ‖b∗b(0) − q‖ < 1/8. In

particular, B is unital. The two primitive ideals I1 and I2 of A⊗O2 corresponding

to the point 1 of Prim(C) ∼= [0, 1] separate p and q. Thus there are primitive ideals

J1 ⊃ I1 ∩ B and J2 ⊃ I2 ∩ B of B with p ∈ J1, q 6∈ J1, p 6∈ J2 and q ∈ J2.

Every primitive ideal J3 of B which contains the intersection of B with the kernel

of the evaluation map g 7→ g(0) contains neither p nor q. Let Z1 and Z2 be the

open and closed subsets of Y which correspond to the norm functions p̂ and q̂

respectively. Since p+ q = 1, Z1 ∪Z2 = Y . Therefore, the open and closed subsets

W1 := Z1 \Z1 ∩Z2, W2 := Z2 \Z1 ∩Z2 and W3 := Z1 ∩Z2 define a partition of Y

with Jn ∈Wn, n ∈ {1, 2, 3}.

Since Prim(B) is Hausdorff and B is unital, we get that there are four orthog-

onal projections P,Q,R1, R2 in B such that R1 is MvN-equivalent to R2 in B,

R1 + P = p and R2 +Q = q.

Above, we have seen, that this can not happen in A⊗O2.

??????

To be explained ??

We define a continuous and open map λ from Y onto {1, 2, 3} by λ(x) := n for

x ∈Wn and n ∈ {1, 2, 3}.

Then

f : t ∈ [0, 1] 7→ λ(Y \Ψup
B,C([0, 1] \ {t}))

is a map from [0, 1] into the Hausdorff space of subsets of {1, 2, 3}, and f(0) = {3},
f(1) = {1, 2}, which leads to a contradiction. Recall here that Ψup

B,C is a set-valued

upper semi-continuous and monotone lower semi-continuous map. Thus f satisfies

f(S) = f(S) for every subset S of [0, 1]. �

Next proofs not complete ??

Remark B.12.2. Let A a unital C *-algebra with Hausdorff Prim(A) and p, q ∈
A projections with ‖p + q − 1‖ < 1 such that {(p − q)2}′ ∩ A has again Hausdorff

primitive ideal space.

Then A decomposes into a direct sum A ∼= B⊕C such that C∗(π2(p), π2(q), 1C)

is a commutative C *-subalgebra of C, π2(q) = 1C − π2(p), and that 1 ⊗
C∗(π1(p), π1(q), 1B) is contained in a 2-homogenous C *-subalgebra ∼= C(Y,M2) of

O2 ⊗B with Y an open and closed subset of X × [0, π/2].

Next has to be checked !
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Moreover, it can be managed that the induced unital C *-morphism

h : C∗(P,Q, 1)→ 1⊗ C∗(π1(p), π1(q), 1B)

extends to a unital C *-morphism C([0, π/2],M2)→ O2 ⊗B.

Above seems not to be obvious !!

Check if extension exists for irreducible rep’s of B !!

Let D := {f ∈ C([0, 1],M2) ; f(1) diagonal}. The quotient

O2 ⊗ (C∗(P,Q, 1)|[π/4, π/2]) ∼= O2 ⊗D

of O2 ⊗ C∗(P,Q, 1) does not contain a unital C *-subalgebra A that satisfies 1 ⊗
(P |[π/4, π2]) ∈ A and dist(1⊗(Q|[π/4, π2]);A) < 1/32 and has Hausdorff primitive

ideal space.

This non-existence implies that the C *-algebras

K⊗O2 ⊗ [C0([0, π/2),M2) + CP + C(1− P )] ∼= K⊗O2 ⊗D

and

K⊗O2 ⊗ C∗(P,Q, 1)

can not be an inductive limit of C *-algebras An with Hausdorff primitive ideal

spaces Prim(An).

It follows that the lattice I(C∗(P,Q, 1)) ∼= O(Prim(C∗(P,Q, 1))) of open sub-

sets of the (non-coherent) primitive ideal space Prim(C∗(P,Q, 1)) of C∗(P,Q, 1) can

not be an algebraic limit of lattices O(Xn) for locally compact Hausdorff spaces Xn

with respect to lower s.c. and monotone upper s.c. actions of Xn+1 on Xn.

Proof. The C *-algebra A0 := C([0, π/2],M2) and its C *-subalgebra

C∗(P,Q, 1) can be described by a universal C *-algebra C∗(R,S) with follow-

ing universal relations:

R is a partial isometry, i.e., RR∗R = R, with relations R2 = 0 and (R−R∗)4 =

−(R−R∗)2. And S satisfies 0 ≤ S∗ = S ≤ −(R−R∗)2 and SR = RS.

In particular, −(R − R∗)2 is the unit element of C∗(R,S), C∗(R) ∼= M2, S

is in the centre of C∗(R,S) and S has spectrum Spec(S) ⊆ [0, 1]. It follows that

arcsin(S) is a well-defined positive element in the centre of C∗(R,S), has spectrum

in [0, π/2] and C∗(arcsin(S)) = C∗(S). It follows that the natural C *-morphism

from M2⊗C(Spec(arcsin(S))) onto C∗(R, arcsin(S)) = C∗(R,S) is an isomorphism.

To define a unital C *-morphism λ from C∗(R,S) onto C([0, π/2],M2) ∼= M2⊗
C[0, π/2] we can choose the matrix-unit R(ϕ) := e21 and S(ϕ) := sin(ϕ)12. This

epimorphism shows in particular that Spec(S) = [0, 1] and Spec(arcsin(S)) =

[0, π/2]. Notice that λ(S2) = (P − Q)2 is a positive contraction in the centre

of A0 and λ(S) = |P −Q|.

An inverse µ : C([0, π/2],M2) → C∗(R,S) of λ can be defined by the natural

epimorphism from C([0, π/2],M2) = M2 ⊗ C(Spec(arcsin(S))) onto C∗(R,S), i.e.,

is determined by a µ(e2,1) := R and µ(f0 ·12) := arcsin(S) for f0(t) := t on [0, π/2].
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Then µ(M2) = C∗(R) ⊆ C∗(R,S), µ(P ) = R∗R ∈ C∗(R), µ(Z) = R − R∗,
µ((P −Q)2) = S2, µ(H) = arcsin(S) · Z, and µ(Q) = exp(−H)R∗R exp(µ(H).

Let A a unital C *-algebra and p, q ∈ A projections such that p and 1 − p are

full projections in {(p−q)2}′∩A. Let B := O2⊗({(p−q)2}′∩A). Then there exists

a partial isometry V ∈ B with V ∗V = 1⊗ p and V V ∗ = 1⊗ (1− p), because 1B is

properly infinite and 1⊗ p and 1⊗ (1− p) are full and properly infinite projections

in O2 ⊗B, cf. Lemma 4.2.6(ii).

If we let T := 1 ⊗ |p − q|, then U(1 ⊗ q) = (1 ⊗ p)U for U := exp(arcsin(T ) ·
(V − V ∗)) and there is a unique unital C *-morphism ρ : C∗(R,S) → B ⊆ O2 ⊗ A
with ρ(R) = V and ρ(S) := T . Then ρ(Z) = ρ(R +R∗) = V + V ∗, ρ((P −Q)2) =

ρ(S2) = T 2 = 1⊗ (p− q)2,

ρ(H) = ρ(arcsin(S) · Z) = (1⊗ arcsin(|p− q|))(V − V ∗) .

Why ρ(Q) = 1⊗ q ???

It follows that ρ(P ) = ρ(R∗R) = 1 ⊗ p, ρ(H) = ρ(arcsin(S) · (R − R∗)) =

(1⊗ arcsin(|p− q|)) · (V − V ∗), and

ρ(Q) = exp(−ρ(H))(1⊗ p) exp(ρ(H)) = 1⊗ q .

Let A a unital C *-algebra with Hausdorff primitive ideal space X := Prim(A)

and p ∈ A a projection. Then X is compact and the generalized Gelfand transforms

p̂ : x ∈ X 7→ ‖πx(p)‖ = ‖p+ Jx‖ ∈ [0, 1] and

1̂− p : x ∈ X 7→ ‖πx(1− p)‖ = ‖(1− p) + Jx‖ ∈ [0, 1]

are continuous functions on X with values in {0, 1} such that max( p̂ , 1̂− p ) = 1,

because Dini functions on compact Hausdorff spaces X are continuous on X.

The support U1 of p̂ (respectively U2 of 1̂− p ) is the open subset of X cor-

responding to the closed ideal J1 of A generated p (respectively J2 generated by

1− p). Since 1− p̂ (respectively 1− 1̂− p) is continuous and non-negative, its sup-

port is open. Thus, U1 and U2 are open and compact subsets of X. In particular

U1 and U2 are also closed subsets of the Hausdorff space X. Then V := U1 ∩ U2,

W1 := U1 \V and W2 := U2 \V are disjoint open and closed subsets of the compact

Hausdorff space X with X = V ∪W1 ∪W2.

Since the Jk correspond to Uk = Wk ∪ V , the ideal K := J1 ∩ J2 has open and

closed support V in X = Prim(A). Recall that 1 ∈ J1 + J2 = A, πJ1
(p) = 0 and

πJ2
(p) = 1.

Let I denote the closed ideal of A corresponding to the open and compact subset

V of X. Then I +K = A, J1 + J2 = A and K ∩ I = {0}. If we define B1 := A/I,

D1 := A/J1 and D2 := A/J2. Then πI |K is an isomorphism from K onto B1,

and πK |I defines an isomorphism from I onto C1 := A/K ∼= D1 ⊕D2, where the

isomorphism from C1 onto D1 ⊕ D2 is induced by a ∈ A 7→ πJ1
(a) ⊕ πJ2

(a). In
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particular, πI(p) and πI(1− p) are full projections of B1. Since πJ1
(p)⊕ πJ2

(p) =

0⊕ 1, it follows that πK(p) is in the centre of the unital C *-algebra C1.

Is next the critical case?

Let q ∈ A another projection and and let Y := arcsin(Spec(|p − q|)). Recall

that there is a natural unital C *-morphism from C(X × Y ) into {(p − q)2}′ ∩ A
which makes {(p−q)2}′∩A into a C(F )-algebra for some closed subset F of X×Y .

Our assumptions imply that the C(F )-algebra {(p − q)2}′ ∩ A is in a natural way

a C *-bundle over X × arcsin Spec(|p− q|).

Then πK(q) and πK(p) commute in C1, and we can repeat the arguments with

(πI({(p− q)2}′ ∩A), πI(q)) in place of (A, p).

We get finally a direct sum decomposition A ∼= B ⊕ C such that π1 : A → B

and π2 : A → C have the property that π1(p), 1 − π1(p), π1(q) and 1 − π1(q) are

projections in B which are full in {π1(p − q)2}′ ∩ B, and that π2(qp) = π2(pq).

Notice that B = π1(A) and {π1(p− q)2}′ ∩B have Hausdorff primitive ideal space

Y that is homeomorphic to an open and closed subset of X ∼= Prim(A), respectively

of X × arcsin(Spec(|p− q|)).

To simplify notation we suppose from now on that A itself has the property that

p, 1− p, q, 1− q are full projections (and that X := Prim(A) is Hausdorff) and that

(p− q)2 is an essential element of the centre of A, i.e., that Ann((p− q)2, A) = {0}.

In the considered case, we still have that our additional assumption ‖(p+ q)−
1‖ = ‖(1 − p) − q‖ < 1 remains in charge in the new A, – our renamed B and

π1(p), π1(q).

If we apply part (v) of Lemma 4.1.3 to 1 − p, q in place of p, q then we get

−h∗ = h ∈ C∗(p, q, 1) ⊆ A with ‖h‖ = arcsin ‖p + q − 1‖ < π/2 and php = 0 =

(1 − p)h(1 − p) such that exp(−h)(1 − p) exp(h) = q. Thus h = a − a∗ for some

a ∈ A with a = pa(1− p) and ‖a‖ = arcsin ‖p+ q − 1‖.

Need ???

the existence of c ∈ O2 ⊗ pA(1 − p) with cc∗ = 1 ⊗ p, c∗c = 1 ⊗ (1 − p) and

b ∈ A+ with bp = pb, bq = qb and a = bc

???????

We can use that 1 ⊗ (p − q)2 is in the centre of O2 ⊗ A and that 1 ⊗ p and

1⊗ (1− p) are both full and properly infinite projections of O2 ⊗A.

Explicit formula for H|[0, ψ] for study of the inclusion

C∗(P,Q, 1)|[0, π/4] ⊆ C([0, π/4],M2).

An explicit formula for H|[0, ψ] ∈ C∗(P,Q)|[0, ψ] for ψ ∈ [0, π/2) is given by

H(ϕ) := ϕ(e2,1 − e1,2).

Notice that

PQ(ϕ)(1− P ) = P exp(−H)(ϕ)P · P exp(H)(ϕ)(1− P ) = − cos(ϕ) sin(ϕ)e1,2 .
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and

PQ(ϕ)(1− P )− (1− P )Q(ϕ)P = cos(ϕ) sin(ϕ)Z

and (P −Q(ϕ))2 = sin(ϕ)212, because

Q(ϕ)− P = [cos(ϕ),− sin(ϕ)]>[cos(ϕ),− sin(ϕ)]− P = sin(ϕ)I

with I = [αjk] with α11 = − sin(ϕ) = −α22, α12 = α21 = − cos(ϕ), i.e., orthogonal

with determinant −1, I2 = 12. Similarly: (P +Q(ϕ)− 1)2 = (Q(ϕ)− (1− P ))2 =

cos(ϕ)212.

I.e., always (p− q)2 + (p+ q − 1)2 = 1, |p− q| and |p+ q − 1| are in the centre

of C∗(p, q, 1).

Alternatively one can use symmetry of sin and cos at π/4 (= 45◦).

H := a − a∗, a = −ϕe1,2 for a = CPQ(1 − P ) with C := D−1 arcsin |P − Q|
where D := (1− (P −Q)2)1/2 · |P −Q|

?????????.

Let A ⊆ O2 ⊗ (C∗(P,Q, 1)|[π/4, π/2]) a unital C *-subalgebra such that p0 :=

1O2 ⊗ P |[π/4, π/2] ∈ A. Suppose that X := Prim(A) is Hausdorff. Since A is

separable and unital, X is second countable and compact, i.e., is a compact Polish

space.

Each quotient C *-algebra of C[π/4, π/2] ⊗ A has again Hausdorff primitive

ideal space. Thus, the C *-subalgebra C∗(C[π/4, π/2] · 1, A) generated by A and

C[π/4, π2] ·1 is a again a unital C *-subalgebra of O2⊗ (C∗(P,Q, 1)|[π/4, π/2]) that

contains p0 and has again a Hausdorff primitive ideal space. Thus, we can suppose

in addition that 1⊗ C[π/4, π/2] is contained in A.

If we use that O2
∼= O2 ⊗ O2 ⊗ · · · , then we can tensor here all algebras

in question again by O2 and suppose moreover that O2 ⊗ A ∼= A. Then A is

purely infinite and the MvN-equivalence classes of projections in A are in 1-1-

correspondence with the open and compact subsets of X.

Since A ⊆ O2⊗C∗(P,Q, 1)|[π/4, 1π/2] is contained in C([π/4, π/2],O2⊗M2) ∼=
O2 ⊗ C[π/4, π/2] and 1 ⊗ C[π/4, π/2] ⊆ A is contained in the centre of O2 ⊗
(C∗(P,Q, 1)|[π/4, π/2]), the C *-algebra A is C *-bundle over [π/4, π/2], i.e., is the

C *-algebra of continuous sections of a continuous field

ϕ ∈ [π/4, π/2] 7→ Aϕ ⊆ O2 ⊗M2 ⊆ O2 .

The same happens with the C *-subalgebras p0Ap0 and (1− p0)A(1− p0) of A,

because, they are invariant under multiplications with 1⊗f where f ∈ C[π/4, π/2].

The generalized Gelfand transforms â(J) := ‖a+ J‖ for J ∈ Prim(A) ∼= X are

Dini functions on X. The class of Dini functions on Hausdorff spaces X coincides

with the bounded non-negative continuous functions f ∈ C0(X) with σ-compact

locally compact open support f−1(0,∞) in X. The Gelfand transforms q̂ ∈ C0(X)

of projections q ∈ A are the characteristic functions of open and compact subsets

of X corresponding to the closed ideal span(AqA) generated by q.
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Let J1 ⊆ A the closed ideal of A generated by p := 1⊗ (P |[π/4, π/2]), J2 ⊆ A

the closed ideal generated by 1− p = 1⊗ (1−P )|[π/4, π/2] and U1, U2 ⊆ X are the

corresponding open subsets.

Their characteristic functions are given by p̂ and by 1̂− p = 1 − p̂. It implies

that U1 and U2 are compact (and open) and satisfy U1 ∪ U2 = X.

The set F := X \ (U1∩U2) is an open and compact subset of X and is a metric

space with F1 := F ∩U1 and F2 := F ∩U2, that are disjoint open and closed subsets

of F with F = F1 ∪ F2.

To be filled in ??

Suppose that the lattice I(C∗(P,Q, 1)) is an algebraic limit of the lattices

O(Xn), where the corresponding actions are l.s.c. and monotone upper s.c.

Then the corresponding actions

Ψn : O(Xn+1)→ O(Xn)

are induced from suitable C *-morphisms

C0(Xn,K⊗O2)→ C0(Xn+1,K⊗O2)

and K ⊗ O2 ⊗ C∗(P,Q, 1) is isomorphic to an inductive limit of C0(Xn,K ⊗ O2)

coming from suitable compatible C *-morphisms

φn : C0(Xn,K⊗O2)→ K⊗O2 ⊗ C∗(P,Q, 1) .

For some n0 there exists a unitary u ∈ M(K ⊗ O2 ⊗ C∗(P,Q, 1)) and projections

r, s ∈ C0(Xn,O2) such that s ≤ r e11 ⊗ 1 ⊗ 1 = u∗φn0(e11 ⊗ r)u, e11 ⊗ 1 ⊗ p =

u∗φn0((e11 ⊗ s)u and dist( q; φn0(e11 ⊗ (rC0(Xn0 ,O2)r)) < 1/32.

The proof depends from above un-verified local uniqueness !!!

�

13. Approximate locally liftable maps

Let J / A a closed ideal. We say that a completely contractive linear map

T : C → A/J (e.g. T = idA/J) is ε-approximately locally liftable if for every finite-

dimensional subspace X ⊆ C there is a completely contractive linear map S =

S(T,X,ε) : X → A with ‖πJ ◦ S − ηX‖ ≤ ε. The map T is approximately locally

liftable if T is ε-approximately locally liftable for all ε > 0. The map T is locally

liftable if T is ε-approximately locally liftable for ε = 0.

Let A ⊆ L(H) and denote by F the hereditary C *-subalgebra of L(H) that is

generated by J . ThenA∩F = J , F is approximately injective (in the sense of [238]),

and A+F is C *-algebra with the intersection properties (F ⊗D)∩(A⊗D) = J⊗D
and ((A+F )⊗D)/(F ⊗D) = (A⊗D)/(A⊗J) (because J contains an approximate

unit of F ). The approximation arguments in [238] show that on each separable

C *-subalgebra C1 ⊆ C there is a complete contraction S : C1 → A + F with

πF ◦ S = T |C1 if T : C → A/J (and then T : C → (A + F )/F ) is approximately

locally liftable.
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In fact, it follows (by using arguments in [238]) that T : C → A/J is approxi-

mately locally liftable (into A), if and only if, T : C → (A+F )/F is locally liftable,

if and only if, on every separable C *-subalgebra C1 ⊆ C there is a completely

contractive map S1 : C1 → A+ F with πF ◦ S1 = T |C1 .

If we apply this to T = idA/J , then we get: idA/J is approximately locally

liftable, if and only if, J ⊗D → A⊗D → (A/J)⊗D is exact for every C*-algebra

D.

For exact A (and more generally for “locally reflexive” A in the sense of [238])

it is true that W : A/J → B is nuclear if V = W ◦ πJ is nuclear.

Indeed, more generally, one can check with help of the criteria (i) in Remark 3.1.2.

????? that the identity map idA/J of A/J is locally liftable, in the sense that

for every subspace X ⊂ A/J of finite dimension and every ε > 0 there exists a

completely (1 + ε)-contractive map T : X → A with πJ ◦ T = idX , then this is

sufficient to prove the nuclearity of W if W ◦ πJ is nuclear on A:

This can be seen by an (elementary but unpleasant) approximation and extension

argument, or by the following more conceptual argument.

If idA/J is locally liftable, then (the reader can check that) Give argument for

proof!

J ⊗D → A⊗D → (A/J)⊗D

is an exact sequence for each C *-algebra D.

If A is locally reflexive, then this sequence is exact, – almost directly by the

definition of (matricial) local reflexivity.

One can show that the local reflexivity of A is equivalent to the (metric) ex-

actness of all sequences

L⊗D → A⊗D → (A/L)⊗D

for all closed left-ideals L ⊆ A and all C *-algebras D.

Give refs or arguments for proof of this!

14. Reductions to separable subspaces (sep 1)

The following lemma on “reductions to the separable case” is used in some cases,

where we need to apply a kind of “excision” methods. Such type of reductions can

be managed by iterated application of the variant [553, prop. 7.2] by E. Michael of

the Bartle-Graves theorem [52, thm. 4]. Our elementary “separable” selection of

sequences does not involve the axiom of choice for sets of uncountable cardinalities

(as all selections principles do implicitly!), but we use the Open Mapping Theo-

rem that is an application of the (almost – but not really – “constructive”) Baire

category theorem.

Lemma B.14.1. Let B denote a Banach space, and let X,Y ⊂ B closed linear

subspaces of B, such that the (algebraic) sum X + Y is closed in B.
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Then for every separable linear subspace G ⊆ B there exist a separable closed

linear subspace D of B such that D has following properties:

(i) G ⊆ D,

(ii) (D ∩X) + (D ∩ Y ) = D ∩ (X + Y ) ,

(iii) dist(d, V ) = dist(d, V ∩ D) for all d ∈ D, where V means each of the

closed subspaces X + Y , X, Y and X ∩ Y of B.

If B is a C*-algebra, then a separable C*-subalgebra D of B with properties

(i)–(iii) can be found.

If B is an operator space, and Mn(X) and Mn(Y ) are equipped with the induced

matrix norms then a separable closed subspace D of B can be found such that D

satisfies in addition the matrix versions (iii*) of Part (iii):

(iii*) dist(d,Mn(V )) = dist(d,Mn(V ∩D)) for all d ∈Mn(D), n ∈ N, where V

stands for each of the spaces X ∩ Y , X, Y and X + Y .

That the linear space X+Y of B is closed in B is a necessary extra assumption

because there exist closed linear subspaces X and Y e.g. of C[0, 1] and of L1[0, 1]

such that the algebraic sum X + Y is not closed.

Give Refs. to counter examples !

The proof of Part (ii) uses the open mapping theorem.

We prove first a sub-lemma that describes an inductive selection procedure.

Sublemma B.14.2. Let B a closed linear subspace of L(H) for some Hilbert

space H, and X,Y closed linear subspaces of B such that X + Y is closed in B.

Let G ⊆ B a separable subset of B.

Then there are separable closed linear subspaces G1, G2, . . . of B that have the

following properties:

(1) G ⊆ Gn ⊆ Gn+1 for all n ∈ N
(2) Gn ∩ (X + Y ) is contained in the closure of the linear subspace

(Gn+1 ∩X) + (Gn+1 ∩ Y ) of Gn+1 ∩ (X + Y ).

(3) ‖(idn⊗πV ∩Gn+1
)(b)‖ ≤ ‖(idn⊗πV )(b)‖ for all b ∈ Mn(Gn) , where V

stands for each of the four closed subspaces X, Y , Z := X+Y and X ∩Y
of B, and idn⊗πV denotes the quotient map Mn(B) 7→Mn(B)/Mn(V ).

If B is a C*-algebra, then separable C*-subalgebras Gn of B with properties (1)–(3)

can be found for n = 1, 2, . . ..

Proof of Sublemma B.14.2. The Property (3) splits into the 4 cases where

V := X, V := Y , V := X + Y or V := X ∩ Y . Each of (1), (2) and of the 4

cases of (3) can be considered separately for any given separable subspace Gn ⊆
B (in place of any given separable G ⊆ B), i.e., we get six separable subspaces

Gn+1,1, Gn+1,2, Gn+1,3, . . . , Gn+1,6 of B that are as desired in steps (1),(2) and

(3) independently. Then any separable subspace Gn+1 ⊆ B that contains the six
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subspaces Gn+1,k (k = 1, . . . , 6) satisfies the conditions (1)–(3) with respect to the

given Gn.

If, moreover, B is a C *-algebra, then this shows that we can take as Gn+1 any

separable C *-subalgebra of B that by the Gn+1,k (k = 1, . . . , 6).

Therefore it suffices to find independently for given separable G ⊆ B (e.g. for

G := Gn with before constructed Gn ⊆ B) and for each property (k), k = 1, 2, 3,

and each part of (3) a “solution” Gn+1 ⊇ Gn with the in (1)–(3) listed properties.

Ad(1): It is an “input” condition: Given any separable subset G, e.g. G :=

Gn ⊇ B, then any separable subspace Gn+1,1 of B with G ⊆ Gn+1,1 satisfies (1).

Ad(2): Let G any closed separable linear subspace of B, (e.g. G := Gn if Gn

is constructed before). Then G ∩ (X + Y ) is separable and closed. Take a dense

sequence z1, z2, . . . ∈ G∩ (X +Y ), and find xn ∈ X and yn ∈ Y with zn = xn + yn.

Let F any closed separable subspace of B that contains the closed linear span of

the elements of G and of {x1, y1, x2, y2, . . .}. Then G∩ (X + Y ) is contained in the

closure of the linear subspace (F ∩X) + (F ∩Y ) of F ∩ (X +Y ). And we can take

Gn+1,2 := F .

Ad(3): Recall that ‖(idn⊗πV )(b)‖ = dist(b,Mn(V )) for all b ∈Mn(B).

Given any G (e.g. G := Gn, a before selected Gn) and let V one of the 4 listed

spaces (resp. operator spaces) X,Y,X+Y,X∩Y in B. Take a sequence of matrices

g1, g2, . . . that is dense in the unit ball of Mn(G). For each gk ∈ Mn(G) we find

hk ∈Mn(V ) such that

‖gk − hk‖ ≤ (1 + 2−k) · dist(gk,Mn(V )) .

We can take as Gn+1,k (k ∈ {1, 2, 3, 4} here depending on the considered V )

any separable closed linear subspace of B that contains all entries of the matri-

ces h1, h2, . . ., because it is not difficult to see that it has then the property that

dist(g,Mn(Gn+1,k ∩ V )) = dist(g,Mn(V )) for all g ∈Mn(G) ( 3 ).

If this is done for all V ∈ {X,Y,X+Y,X ∩Y } then any separable closed linear

subspace Gn+1 of B that contains Gn+1,1∪. . .∪Gn+1,4 has the property that, for all

g ∈ M(G) holds dist(g,Mn(Gn+1) ∩Mn(V )) = dist(g,Mn(V )) for the considered

spaces V ⊆ B, �

Proof of Lemma B.14.1. If B is a Banach space B, and X ⊆ B and Y ⊆ B
are closed linear subspaces, then we could consider B as a closed subspace of the

C *-algebra `∞(M) for a set M of suitable cardinality. Thus it suffices to consider in

the following always operator spaces, i.e., closed linear subspaces of a given closed

linear subspace B ⊆ L(H).

Let G, G1, G2, . . . as in Sublemma B.14.2, define G∞ :=
⋃
nGn and D := G∞.

Notice that Part (3) of Sublemma B.14.2 is equivalent to dist(b,Mn(V ∩Gn+1)) =

dist(b,Mn(V )) for all b ∈Mn(Gn). It implies dist(b,Mn(V ∩D)) = dist(b,Mn(V ))

3 Use here that for each contraction g ∈ Mn(G) and ε > 0 there is an infinite subset R of N
such that ‖g − gk‖ < ε for each k ∈ R.
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for b ∈Mn(G∞) and each n ∈ N. This carries over to all b ∈Mn(D) and V ∩D in

place of V ∩G∞, because Mn(D) is the norm-closure of Mn(G∞) . It implies that

for every n ∈ N and V ⊆ B (V ∈ {X + Y,X, Y,X ∩ Y }) holds that the natural

injective linear map idn⊗πV from Mn(D)/Mn(D ∩ V ) into B/Mn(V ) of norm ≤ 1

is a complete isometry, as one can see from the formula

dist(b,Mn(D ∩ V )) ≤ dist(b,Mn(V )) for all b ∈Mn(D) .

It turns out that D is a closed linear subspace of B that satisfies all conditions

(i), (ii) and (iii*) in Lemma B.14.1:

Clearly condition (i) follow from G ⊆ G1.

If, in addition, B is a C *-algebra, then the Gn in Conditions (1)–(3) of Sub-

lemma B.14.2 can be chosen as C *-subalgebras of B. I.e. we can then suppose that

all Gn (n = 1, 2, . . .) are C *-algebras, that G∞ :=
⋃
nGn is a *-subalgebra of B,

and that D := G∞ is a separable C *-subalgebra of B.

The condition (iii) follows from the Property (3) of Sublemma B.14.2 for the

operator system D. The isomorphisms Mk
∼= pMnp for all projections p ∈Mn with

rank = k < n, shows that the operator space D :=
⋃
n Gn satisfies

dist(d,Mn(V ∩D)) = dist(d,Mn(V )) for all d ∈Mn(D),

for each V ∈ {X + Y, X, Y, X ∩ Y } and every n ∈ N, because this is true for all

d ∈ Gk with k > n, by Part (3) of Sublemma B.14.2.

Clearly the sum (D∩X)+(D∩Y ) is contained in D∩ (X+Y ), because D∩X
and D ∩ Y are closed subspaces of the closed subspace D ∩ (X + Y ) of B.

We show that the linear space (D ∩X) + (D ∩ Y ) is dense in D ∩ (X + Y ) :

Property (2) of Sublemma B.14.2 with V := X + Y and the there constructed

Gn ⊆ Gn+1 ⊆ · · · satisfy

Gn ∩ (X + Y ) ⊆ (Gn+1 ∩X) + (Gn+1 ∩ Y ) ⊆ (D ∩X) + (D ∩ Y ) .

It implies that

(
⋃
n

Gn) ∩ (X + Y ) ⊆ (D ∩X) + (D ∩ Y ) ⊆ D ∩ (X + Y ) .

Thus, (D ∩X) + (D ∩ Y ) is dense in D ∩ (X + Y ) if (
⋃
nGn) ∩ (X + Y ) is dense

in D ∩ (X + Y ).

To show the latter, let V := X + Y and y ∈ D ∩ V , Then y ∈ D, πV (y) = 0

and, by density of
⋃
nGn in D, there exist a sequence nk ∈ N with nk < nk+1 and

elements dk ∈ Gnk such that y = limk dk and limk πV (dk) = 0.

Recall that any closed subspace V of B holds (idn⊗πV )(p11⊗ b) = p11⊗πV (b)

for b ∈ B for the quotient map πV : B → B/V from B, i.e.,

dist(b, V ) = ‖πV (b)‖ = ‖(idn⊗πV )(p11 ⊗ b)‖ .

Thus, if we take n := nk in Part (3) of Sublemma B.14.2, then we obtain that

‖πG1+nk
∩V (dk)‖ ≤ ‖πV (dk)‖ for dk ∈ Gnk . It follows that there exists ek ∈
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G1+nk ∩ V with ‖ek − dk‖ ≤ ‖πV (dk)‖ . Hence limk ‖ek − dk‖ = 0 and limk ‖ek −
y‖ = 0, i.e., y ∈

⋃
n(Gn ∩ V ).

It says that
⋃
n(Gn ∩ V ) is dense in D ∩ V and implies that the subspace

(D ∩X) + (D ∩ Y ) is dense in D ∩ (X + Y ) = D ∩ V .

Next we show that the dense linear subspace (D∩X)+(D∩Y ) of D∩(X+Y ) is

closed in D∩ (X+Y ). This shows then the predicted equality (D∩X)+(D∩Y ) =

D ∩ (X + Y ) in Part(ii), and finishes the proof.

From now on let V := X ∩ Y ⊆ B.

By Part (3) of Sublemma B.14.2 we have that dist(g,Gn+1∩V ) ≤ dist(g, V ) for

g ∈ Gn . Thus, dist(g,D ∩ V ) = dist(g, V ) for all g ∈ G∞ . Since G∞ is dense in D

it follows that the restriction to D of the quotient map πV : b ∈ B → b+ V ∈ B/V
defines an linear isometry η from the quotient spaceD/(D∩V ) into B/V with kernel

D ∩ V = D ∩X ∩ Y . In particular, η|(D ∩X)/(D ∩ V ) and η|(D ∩ Y )/(D ∩ V )

are isometries into the subspaces X/V respectively Y/V of (X+Y )/V . We denote

this restrictions of η by η1 and η2.

Recall that the space D∩V is a closed subspace of each of the closed subspaces

D ∩X, D ∩ Y and (D ∩X) + (D ∩ Y ) = D ∩ (X + Y ). Thus, if the linear space

η(D ∩X) + η(D ∩ Y ) is closed in (X + Y )/V then (D ∩X) + (D ∩ Y ) is closed in

D ∩ (X + Y ), because

(D ∩X) + (D ∩ Y ) = η−1(η(D ∩X) + η(D ∩ Y )) .

This implies finally the predicted equation (D ∩X) + (D ∩ Y ) = D ∩ (X + Y ).

The natural linear map T from the Banach space X/V ⊕∞ Y/V with norms

‖(x+ V, y + V )‖ := max
(
‖πV (x)‖, ‖πV (y)‖

)
onto (X + Y )/V that is given by

T (x+ V, y + V ) := (x+ y) + V

is surjective and has norm ≤ 2. The T is also injective because x + y = v ∈ V

implies that x = v − y ∈ X ∩ Y = V , thus x, y ∈ V . The Open Mapping Theorem

shows that the inverse T−1 : (X+Y )/V → X/V ⊕∞Y/V of the linear isomorphism

T is bounded. In particular, T maps each closed subspace of X/V ⊕1 Y/V onto a

closed subset of (X + Y )/V .

The map η1⊕η2 from (D∩X)/(D∩V )⊕∞ (D∩Y )/(D∩V ) into X/V ⊕∞Y/V
is an isometry. Thus, its image is a closed subspace of X/V ⊕1 Y/V . It follows that

T maps this image onto a closed subspace of (X + Y )/V . Calculation shows that

T ◦ (η1⊕η2) maps (D∩X)/(D∩V )⊕∞ (D∩Y )/(D∩V ) onto η(D∩X)+η(D∩Y ).

Thus, η(D ∩X) + η(D ∩ Y ) is closed in (X + Y )/V . �

15. Passage to separable subalgebras (sep 2)

We define for a, b ∈ A and ε > 0 minimal numbers n := n(b, a, ε) with the

property that there exist c1, . . . , cn, d1, . . . , dn ∈ A with δ := ‖b−
∑
k d
∗
kack‖ < ε .
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The latter inequality implies by Lemma 2.1.9 that there exists a rational number

ρ and ` ∈ N with δ < ρ < ε such that there exist c1, . . . , cn ∈ A with (b − ρ)+ =∑
k c
∗
kack if a, b ∈ A+.

New more precise text:

We define numbers n(b, a, ε;B) and γ(b, a, ε;B) ≥ n(b, a, ε;B) (the latter only

in case a, b ∈ B+ and ‖a‖ = ‖b‖ = 1) for C *-subalgebras B of A and non-zero a, b ∈
B with b in the closed ideal J(a) of B generated by a, by letting n := n(b, a, ε;B)

the minimal number n ∈ N such that there exist c1, . . . , cn, d1, . . . dn ∈ B with

‖b−
∑n
j=1 d

∗
jacj‖ < ε . We can here take dj = cj if a, b ∈ B+, cf. Remark B.15.1.

Moreover n(b, a, ε) = n((b∗b)1/2, (a∗a)1/2, ε).

The number ν := ν(b, a; ε) for a, b ∈ B+ is the smallest number ν ∈ N with the

property that there exists contractions c1, . . . , cν ∈ B such that ‖b−
∑n
j=1 d

∗
jacj‖ <

ε .

What about definition of above defined γ?

Equivalently: There exists X,Y ∈Mn(B) with ‖b⊗ p11 − Y ∗(a⊗ 1n)X‖ < ε .

This is because we can replace here X,Y ∈Mn(B) by the columns [c1, . . . , cn]> :=

X · (1⊗ p11) and [d1, . . . , dn]> := Y · (1⊗ p11) and vice versa. Here 1 denotes the

unit element of the multiplier algebra of M(A).

Remark B.15.1. If a, b ∈ B+ and there exists by c1, . . . , cn, d1, . . . , dn ∈ A

with ‖b−
∑
j d
∗
jacj‖ < ε then there exists f ∈ A such that ej := (cj +dj)f satisfies

‖b−
∑
j e
∗
jaej‖ < ε.

Indeed, if a, b ∈ B+ then we can use that for the positive elements g := b⊗ p11

and h := a ⊗ 1n holds also ‖2g − (Y ∗hX + X∗hY )‖ < 2ε. It implies that there

exists δ ∈ (0, ε) such that 0 ≤ 2g ≤ (Y ∗hX +X∗hY ) + 2δ(1⊗ 1n).

Clearly, byX∗hY = 0, (Y ∗hX+X∗hY )+(X∗hX+Y ∗hY ) = (X+Y )∗h(X+Y ),

which gives that 0 ≤ g ≤ T ∗hT+δ·(1⊗n) for T :=
√

2(X+Y ) ∈Mn(A). By Lemma

2.1.9, there exists a contraction d ∈ Mn(A)+ with d∗(T ∗hT )d = (g − (ε + δ)/2)+.

In particular, ‖g − Z∗hZ‖ < ε for Z := Td.

Thus, with [e1, . . . , en]> := Z(1⊗ p11) we get ‖b−
∑n
j=1 e

∗
jaej‖ < ε.

Important are Parts (iii) and (iv)

Proposition B.15.2. For every C*-algebra A and every separable subset X ⊂
A of A there exists a separable C*-subalgebra B of A with X ⊂ B such that B has

the following additional properties:

(i) The natural C*-morphism C ⊗max B → C ⊗max A is injective for all

separable C*-algebras C (i.e., B is ”relative weakly injective” in A),

( Are properties (i) and (iii) equivalent ? )

(ii) The natural maps (C ⊗min B)/(Y ⊗min B) 7→ (C ⊗min A)/(Y ⊗min A) are

isometric for all separable C*-algebras C and closed subspaces Y of C.

??? Or better ?:

Require metric version of the “intersection property”:
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(Y ⊗min A) ∩ (C ⊗min B) = Y ⊗min B .

Let Z1 ⊆ Z2 and Z3 ⊆ Z2 operator spaces (closed linear subspaces of

L(`2)).

What has to be required on this spaces?

that the natural map from Z1/(Z1 ∩ Z3) to Z2/Z3 is completely iso-

metric ???

(iii) For each k ∈ N, a, b ∈Mk(B)+ and δ > 0 holds that for every c1, . . . , cn ∈
Mk(A) there exists d1, . . . , dn ∈Mk(B) with ‖dj‖ ≤ ‖cj‖ for j = 1, . . . , n

and

‖b−
∑
k

d∗kadk‖ ≤ δ + ‖b−
∑
k

c∗kack‖ .

(iv) For every a, b ∈ B and ε > 0, n(b, a, ε;B) = n(b, a, ε;A) and

γ(b, a, ε;B) = γ(b, a, ε;A) if a, b ∈ B+ and ‖a‖ = ‖b‖ = 1.

(Where n(...) and γ(...) are defined ?)

(v) (B ∩ I1) + (B ∩ I2) = B ∩ (I1 + I2) for any closed ideals I1 and I2 of A.

??? ( ⊇ is in question!!! and by out-devision of I1∩I2 we can suppose

that l1·I2 = {0}. But the question is if one finds separable Bm that satisfies

at least one of the properties and this Bm are contained in the Bn with

n > m ... then the inductive limits gives this ”all properties” B ...)

In particular, every closed ideal J of B is the intersection J = B∩I of a closed

ideal I of A with B.

Proof. To be filled in ??

??? Reduce (v) to σ-unital A with approximate unit in B and A = I1 + I2

generated as ideals by B ∩ (I1 + I2). ???

B ⊆ A ⊆ A∗∗ leads to B∗∗ ⊆ A∗∗ in the sense that B∗∗ is naturally isomorphic

to the σ(A∗∗, A∗)-closure of B ⊆ A∗∗ in A∗∗.

It seems that B is ”relative weakly injective” in A, if and only if there exists a

c.p. contraction P from A into B∗∗

(A positive contraction would be enough, because its restriction can be nor-

malised to a completely positive contraction S from A∗∗ into B∗∗ ⊆ A∗∗ with the

property that S(b) = b for all b ∈ B ⊆ A∗∗.

Since one can do this with B ⊗Mn ⊆ A⊗Mn, one can obtain by cluster-point

arguments that there is a completely positive contraction T from A into B∗∗ ⊆ A∗∗

with the property that T (b) = b for all b ∈ B.

�

16. Reductions to separable cases (sep 3)

An important technical property in the study of residually nuclear maps be-

tween non-simple C *-algebras is the notion of local reflexivity for closed subspaces

B ⊆ L(H) introduced by Effros and Haagerup in [238]:
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Definition B.16.1. A closed subspace B ⊆ L(H) (i.e., an operator space with

its system of matrix norms) is locally reflexive if, for every finite-dimensional

subspaces X ⊆ B∗∗, F ⊆ B∗, and ε > 0 there is a linear map T : X → B that

satisfies the following properties (i) and (ii):

(i) |f(T (x))− x(f)‖ ≤ ε‖x‖ · ‖f‖ for all x ∈ X, f ∈ F , and

(ii) T is completely contractive, i.e., ‖T ⊗ idn ‖ ≤ 1 for all n ∈ N for the

maps T ⊗ idn : X ⊗Mn → B ⊗Mn with norms on X ⊗Mn induced from

B∗∗ ⊗Mn ⊆ L(H⊗ Cn)∗∗.

Remark B.16.2. One can find for each n ∈ N a linear map T : X → B that

satisfies property (i) and ‖T⊗idn ‖ ≤ 1 by the local reflexivity of the Banach spaces

B⊗Mn, but in general such T does not exist that it satisfies also ‖T ⊗ idn+k ‖ ≤ 1

for k ∈ N.

Does it say that there could exist Xk ⊆ B∗∗ and Yk ⊆ B∗ of

finite dimension such that,

for all Tk ∈ L(Xk, B) with (i) holds that

limk→∞ ‖Tk ⊗ idk ‖ =∞ ?

All exact C *-algebras (or, more generally, 1-exact operator spaces) are locally

reflexive. It is not known if locally reflexive C *-algebras are exact in general.

Local reflexivity passes to C *-quotients and C *-subalgebras (in particular,∏
nMn is not locally reflexive, because it contains C∗(F∞) as a C *-subalgebra).

The class of locally reflexive C *-algebras A is invariant under tensor products

with K and Mn .

But it is so far unknown if tensor products of locally reflexive A with M2∞

(and – therefore – also min-tensor products with arbitrary exact C *-algebras) again

become locally reflexive. It is also not known if the class of locally reflexive C *-

algebras are invariant under inductive limits (at least for suitably “controlled” nets

of C *-morphisms?).

Local reflexivity is not preserved under passage to stable coronas, asymptotic

coronas, multiplier algebras, and ultra-powers of A if A is not sub-homogenous (i.e.,

if A has only irreducible representations of dimension ≤ n for some n ∈ N).

Indeed, it is not difficult to see that stable coronas, asymptotic coronas, mul-

tiplier algebras, and ultra-powers of A are sub-Stonean C *-algebras. Recall that

sub-Stonean C *-algebras C have the property that for orthogonal positive contrac-

tions a, b ∈ C+ there are orthogonal positive contractions c, d ∈ C+ with ca = a

and db = b.

Sub-Stonean C *-algebras C have the property that B1(`∞) = V (B1(C)) for

every c.p. contraction V : C → `∞ with V (B1(C)) ∩ c0 dense in B1(c0) (where

B1(X) means the closed unit ball of a Banach space X).
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If a C *-algebra C with the latter property contains a C *-subalgebra D, that

has
⊕

nMn as a quotient, then C contains a C *-subalgebra E, such that E has a

quotient that is isomorphic to
∏
nMn = `∞(C,M2,M3, . . .).

The following more general property of a C *-algebra C, stated as follows, is

equivalent to the property that C has no non-zero closed ideal of type-I:

For every non-zero positive e ∈ C+ in the C*-algebra C, the σ-unital heredi-

tary C*-subalgebra eCe contains a C*-subalgebra D ⊆ eCe such that
∏
nMn =

c0(C,M2,M3, . . .) is a quotient of the C*-algebra D.

A non-zero C *-algebra C is sub-homogenous, i.e., there exists nC ∈ N such

that all irreducible representations of C have dimension ≤ nC , if and only if, there

does not exist a C *-subalgebra D ⊆ C with the property that
∏
nMn is a quotient

C *-algebra of D. (For a proof of this criteria it suffices to consider only the type-I

algebras by Glimm’s sub-quotient theorem, saying that each separable non-type-I

C *-algebra C contains a hereditary C *-subalgebra D such that C = D · C + C ·
D +N (D,C) and N (D,C)/D ∼= M2∞).

The full group C *-algebras C∗(G) of a lattices G in non-compact semi-simple

Lie groups are not exact (and even not locally reflexive) because they all contain a

copy of C∗(F2) and every separable unital C *-algebra is a quotient of its subalgebra

C∗(F∞).

The reduced group C *-algebras C∗red(G) are all exact for G in this class of

discrete groups.

Remark B.16.3. Suppose that A ⊆M is a C *-subalgebra of a W*-algebra M .

Then centre of the *-ultra-strong closure of A in M contains a family of mutually

orthogonal projections {pκ} such thatQ := 1−
∑
κ pκ satisfiesQA = AQ = {0}, and

that each pκ can be decomposed in M into a sum of a family mutually orthogonal

countably decomposable projections in M of cardinality ≤ density of A.

(It suffices to consider the case where M = A∗∗.)

What was the original remark ??? Good for? ??

Questions B.16.4. Given a semi-finite properly infinite W*-algebra M and a

separable C *-subalgebra A ⊆M .

Does there exist a family of mutually orthogonal countably decomposable pro-

jections pγ ∈ A′ ∩M with
∑
pγ = 1 such that following properties (i)–(iii) are

satisfied?

(i) pγ is properly infinite,

(ii) for every weakly l.s.c. trace τ : N+ → [0,∞] (on the positive part of N :=

{pγ ; γ ∈ Γ }′ ∩M) there is a weakly l.s.c. trace τ ′ : M+ → [0,∞] with

τ |A+ = τ ′|A+,

(iii) for every projection p in the centre of N there is a projection q in the

centre of M with ‖ap‖ = ‖aq‖ for all a ∈ A .
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Does there exist a separable unital C *-subalgebra A ⊆ C ⊆ M (with M a

W*-algebra) such that following properties (i)–(iv,v????) are satisfied

(i) O2 is unitally contained in C, δ∞(C) ⊆ C and δ∞⊕ id unitarily equivalent

to δ∞ by unitaries in C (for the weakly continuous δ∞ : M →M).

(ii) Every closed ideal I of C is the intersection of a closed ideal of M with

C.

(iii) For every projection p in the centre of M there is q in the centre of C

with ‖ap‖ = ‖aq‖ for all a ∈ A.

(iv) C ∩K is an essential ideal of C.

(v) C ∩K is stable (????????).

local lifting, local lifting property,

locally liftable exact sequences

weakly injective algebras,

relatively weakly injective subalg.,

approximately injective algebras

Recall that A⊗B denotes the minimal C *-algebra tensor product of A and B.

Lemma B.16.5. Let A and B C*-algebras, where A is separable and B is σ-

unital.

(i) If X is a separable Banach space, C ⊆ L(X,B) a point-norm closed set

of contractions, J a σ-unital closed ideal of B. If for all S, T ∈ C and for

every contraction a ∈ J+, the element

aS(·)a+ (1− a2)1/2T (·)(1− a2)1/2

is again in C, then πJ ◦ C is point norm closed in L(X,B/J) .

(ii) A c.p. map V : A→ B/J is locally c.p. liftable (or c.b. liftable ???) if

J ⊗ L(`2)→ B ⊗ L(`2)→ (B/J)⊗ L(`2)

is exact. If, moreover ?????. See Effros –Haagerup.

(iii) B is locally reflexive, if and only if,

Jτ ⊗ L(`2)→ Bτ ⊗ L(`2)→ B∗∗ ⊗ L(`2)

is exact, if and only if, the natural C*-morphism form B∗∗ ⊗max L(`2)

into (B ⊗ L(`2))∗∗ factorizes over B∗∗ ⊗min L(`2).

(iv) More ??????????????

Proof. (i): We use metrics on L(X,B) and L(X,B/J) that define the point-

norm topologies: Let x1, x2, . . . ∈ X a sequence that dense in the unit-ball of

X. Then let ρ0(T, S) :=
∑
n 2−n‖T (xn) − S(xn)‖ and similarly defined ρ1 on

L(X,B/J). Obviously ρ1(πJ ◦ T, πJ ◦ S) ≤ ρ0(T, S) and ρ0(T, S) ≤ ‖T − S‖.

Moreover, if E := {eτ} ⊂ J+ is a with respect to the separable C *-subalgebra

C∗(T (X) ∪ S(X)) ⊆ B quasi-central approximate unit, then ρ1(πJ ◦ T, πJ ◦ S) is
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equal to

inf{ ρ0

(
(1− eτ )1/2T (·)(1− eτ )1/2, (1− eτ )1/2S(·)(1− eτ )1/2

)
; eτ ∈ F } .

Let C 3 Tn : X → B such that πJ ◦ Tn converges in point-wise to some map

S : X → B/J .

Can select nk ∈ N that ρ1(πJ ◦ Tnk , πJ ◦ Tnk) < 4−k. Then we define a new

sequence Rk ∈ L(X,B) with the property that ρ0(Rk, Rk+1) < 2−k with help step

by step modification by replacing the Tnk+1
by

Rk+1 := (1− fk)1/2Tnk+1
(·)(1− fk)1/2 + f

1/2
k Rk(·)f1/2

k

with suitably chosen fk ∈ F ⊆ J+. It follows that the Rk ∈ C converge in point-

norm on X to a map R ∈ C with πJ(R) = S .

To be filled in ??

�

17. Singly generated separable C*-algebras (sep. 4)

Lemma B.17.1. Let E denote a unital C*-algebra with properly infinite unit

and s1, s2 ∈ E isometries with orthogonal ranges: s∗jsk = δj,k1, and let e ∈ E+

denote a positive contraction.

Then the singly generated C*-subalgebra C∗(X) = C∗(X∗, X) of E generated

by the element

X := X(s1, s2, e) := s1 ·
(
1 + s1(2 + e)−1s∗2 + s2(2 + e)−1s∗1

)
is identical with the C*-subalgebra C∗(s1, s2, e) ⊆ E generated by the elements

{s1, s2, e} ⊆ E .

Proof. Obviously X(s1, s2, e) ∈ C∗(s1, s2, e) ⊆ E by definition of X and

C∗(s1, s2, e) = C∗(s1, s2, a) for a := (2 + e)−1 by e = a−1 − 2.

Recall that s1, s2 ∈ A, s∗jsk = 1A and that a := (2 + e)−1 ∈ A+ is invertible

with estimates 1/3 ≤ a ≤ 1/2 .

We define Y := s1(1 + s1as
∗
2 + s2as

∗
1). Consider f := s1as

∗
2 + s2as

∗
1. Then

f∗ = f , fs1 = s2a and f2 = s1a
2s∗1 + s2a

2s∗2 . Thus ‖f‖ ≤ 1/2, and it follows that

1/2 ≤ h := 1 + f ≤ 3/2 .

This element h allows to rewrite the above defined Y as X = s1h .

We show that the C *-subalgebra C∗(X) = C∗(X∗, X) of A generated by X

contains s1, s2 and a, i.e., that C∗(X) = C∗(s1, s2, a) . Then 1 ∈ C∗(X) and

e = a−1 − 2 ∈ C∗(X), i.e., C∗(X) = C∗(s1, s2, e) .

The above discussion allows to see the following formulas: X∗X = h2 ≥ 1/4 ,

s1 = X(X∗X)−1/2 = Xh−1 ∈ C∗(X), 1 = s∗1s1, f = h − 1 = (X∗X)1/2 − 1

and fs1 = s2a . Thus, s1, f, 1 ∈ C∗(X) and a2 = as∗2s2a = s∗1f
2s1. Since, by
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assumptions, a ≥ 1/3 we get that a, a−1, e = a−1 − 2 ∈ C∗(X), and finally that

s2 = fs1a
−1 ∈ C∗(X). �

Compare next Proposition with [770, thm.2.3] and the Remark B.17.3 con-

cerning other attempts to prove Proposition B.17.2.

Proposition B.17.2. If E is a separable C*-algebra with a properly infinite

unit element, then there exists a unital C*-morphism ψ : O∞ → E and E is singly

generated as C*-algebra.

Proof. Let s1, s2 ∈ E isometries with s∗1s2 = 0. Then let tk := sk1s2 for

k = 1, 2, . . . . The elements tk ∈ E satisfy that t∗j tk = δj,k1E for j, k ∈ N, i.e., the

t1, t2, t3, . . . define a unital C *-morphism from O∞ into E .

By separability of E, there exists a norm-dense sequence a1, a2, . . . in the pos-

itive contractions in E. The positive contraction

e :=

∞∑
k=1

sk(2k + ak)−1s∗k ∈ E+

has the property that the C *-subalgebra C∗(t1, t2, e) of E generated by {t1, t2, e} is

identical with E, because sk, 1E ∈ C∗(t1, t2) for all k ∈ N and (2k + ak)−1 = s∗kesk

gives that ak = (s∗kesk)−1 − 2k1E is in C∗(t1, t2, e) .

Thus, E is singly generated by the element X(t1, t2, e) ∈ E defined in Lemma

B.17.1. �

Remark B.17.3. The authors H. Thiel and W. Winter of [770, thm.2.3] quote

Nagisa [567] who had referenced the result [770, thm.2.3] (and thus Proposition

B.17.2) to the author (E.K.) of this book. Probably M. Nagisa was informed that

the author wrote in some evening discussion ( or in a break between talks ) some-

times in the 1990th in MF Oberwolfach a formula on the blackboard in the discus-

sion room that did show that every properly infinite unital (4) separable C *-algebra

is singly generated. It could be that this proof was different from the here given

proof of Proposition B.17.2, but it was definitely different from all of the (incom-

plete) proof of [770, thm.2.3]. Thus, unfortunatly we couldn’t use it as citation

here, had to give our own proof. H. Thiel and W. Winter quote for the proof of

[770, thm.2.3] an argument in the proof of [580, thm. 9]. But this quoted argument

does not carry over to an element Y :=
∑
k≥1(skaks

∗
k + 1/2ksk) with spectrum of

ak = a∗k in [4−n/2, 4−n] as considered in their proof, because they claim – and

need/use it (!) in their proof –

Check next red text carefully again!!!

Perhaps, the constructions give two self-adjoint elements that

generates all?

... that the spectrum of Y is contained in {0}∪
⋃∞
k=1[4−n/2, 4−n]. But this is not

the case in general, e.g. consider the there given formula in case where A := O∞

4It is the case if and only if the algebra contains a copy of O∞ unitally!
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with generating isometries s1, s2, . . . satisfying s∗jsk = δj,k the spectrum of the

element
∑
k 4−ksks

∗
k+2−ksk is exactly equal to {0}∪

⋃
k≥1(4−k+2−kD), where D is

the unit-disc, in particular the spectrum is not contained in {0}∪
⋃
k≥1[4−k/2, 4−k] .

Unfortunately this gap in the arguments for the proof of [770, thm.2.3] given by

H. Thiel and W. Winter harms then any further argument of their proof.

Further details concerning sums of invertible positive elements and non-

unitary isometries s1, s2, . . . ∈ E with s∗jsk = δj,k:

Let us consider elements X ∈ E defined by

X :=
∑
k≥1

(skaks
∗
k + γksk) ,

where the ak are positive with Spec(ak) ⊆ [αk, βk] for “suitable” 0 < βk+1 <

αk < βk . One can show that the spectrum of such element X is contained {0} ∪⋃
k≥1([αk, βk] + γkD) where D := {z ∈ C ; |z| ≤ 1} is the unit disc.

Below we give a more precise formula for Spec(X) that allows to deduce that

our, in Remark B.17.3 mentioned, special example Y :=
∑∞
n=1 4−nsnsn + 2−nsn

in O∞ it is precisely equal to {0} ∪
⋃
n(4−n + 2−nD) .

Let Pn :=
∑n
k=1 sks

∗
k and consider stepwise the “triangular” decompositions

of X as

X = PnXPn + (1− Pn)X(1− Pn) + PnX(1− Pn) .

It allows to identify X with an upper triangular matrix in M2(E) with entries

X11 = PnXPn, X12 = PnX(1 − Pn) and X22 = (1 − Pn)X(1 − Pn). This is

possible, because all X of the above defined type satisfy (1− Pn)XPn = 0 for this

projections Pn. It implies that

{0} ∪ Spec(X) = {0} ∪ Spec(PnXPn) ∪ Spec((1− Pn)X(1− Pn)) .

If we proceed with n ∈ N by induction then we can see that this leads to

Spec(X) ∪ {0} = {0} ∪
∞⋃
k=1

Spec(ak + γksk) .

Here we have used that (skaks
∗
k + γksk)sks

∗
k = sk(ak + γksk)s∗k . Using that

Spec(S) = D for every non-unitary isometry S ∈ E, this leads to the estimate

Spec(ak + γksk) ⊆ {0} ∪ (Spec(ak) + γkD) .

In the special case where X is build with scalars ak = βk · 1E , and limk βk = 0

and limk γk = 0 it gives the precise equation

Spec(X) = {0} ∪
⋃
k

(βk + γkD) .

This applies in particular to the above defined special element Y ∈ O∞ .

An other special case is the case where λ :=
∑
k γ

2
k < ∞ and limk βk = 0

we get that S := λ−1/2
∑
γksk is an isometry in E and with a :=

∑
k skaksk the

C *-algebra C∗(a, S) contains automatically all sk and ak, i.e., is identical with

C∗(a1, a2, . . . ; s1, s2, . . .) .
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Our conclusion is that the basic question for the study of above discussed

phenomena should be:

Under which circumstances holds that a, S ∈ C∗(a+S) ⊂ L(`2) for a given positive

invertible operator a ∈ L(`2) and a non-unitary isometry S ∈ L(`2)?

Here `2 := `2(N) and the isometry S should have an infinite dimensional co-

kernel (1−SS∗)`2, e.g. up to unitary equivalence S ∈ L(`2) can be defined with an

ONB by Sen := e2n.

More calculations. To be checked again.

No final decision obtained if the weakly separated case works:

Even if one selects the positive numbers more carefully, namely such that

([αk, βk] + γkD) ∩ ([α`, β`] + γ`D) = ∅ ,

for k 6= `, then we still have to struggle to obtain at least two of the isometries to

get the rest of all. This “weak” disjointness holds, e.g. in the case where we take

αk := 2−2k, βk := 2αk and γk := (αk − βk+1)/4 = αk/8 , because then

αk+1 = αk/4 < βk+1 = αk/2 < αk < 2αk = βk

and

βk+1 + γk+1 < αk − γk .

It follows from αk+1 = αk/4 βk+1 = αk/2 and γk = αk+1/2 = αk/8 .

This particular choice causes at least that there exist unitaries u1, u2, . . . ∈
C∗(X) that have the very weak property that at least skuk ∈ C∗(X), because

the above defined very particular αk, βk and γk satisfy the additional conditions

γk < α2
k/(2βk) . (obtained form βk = 2αk and γk = αk/8 ).

It is not unlikely that there is some possible repair of the arguments in the

proof of [770, thm.2.3] if one takes the γk very small in relation to to the lower

bounds αk > 0 of invertible elements ... but we doubt this.

But then one can only find (not necessarily selfadjoint) idempotents Pk ∈
C∗(X) with PkX = skaks

∗
k + γksk .

An other calculation gives skaks
∗
k+γksk = Y +Z with Y := sk(ak+γksk)s∗k and

Z := γksk(1− sks∗k) satisfy ZY = 0, Z2 = 0, (1− sks∗k)Z = 0 and (1− sks∗k)Y = 0.

In particular,

{0} ∪ Spec(Y + Z) = {0} ∪ Spec(Y ) = Spec(ak + γksk)

for the invertible positive contraction ak .

18. On asymptotically estimating functions

Let A := L(`2), and let F : (a, b) ∈ A × A → A and G : (a, b) ∈ A × A → A

with the properties that G(a, b) = 0 implies that F (a, b) = 0 and that there exists
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a bund γ ∈ (0,∞) such that max{ ‖F (a, b)‖, ‖G(a, b)‖ } ≤ γ for all contractions

a, b ∈ A . We require moreover that for (a1, a2, . . .), (b1, b2, . . .) ∈ `∞(A) holds

F (πc0(A)(a1, a2, . . .), πc0(A)(b1, b2, . . .) ) = πc0(A)(F (a1, b1), F (a2, b2), . . .)

– by suitable “local” re-imbedding of parts of `∞(A)/c0(A) into L(`2) –, and

G(πc0(A)(a1, a2, . . .), πc0(A)(b1, b2, . . .) ) = πc0(A)G(an, bn)‖ .

Likewise, for F is would be enough to have

‖F (πc0(A)(a1, a2, . . .), πc0(A)(b1, b2, . . .) )‖ ≥ lim inf
n
‖F (an, bn)‖ ,

and for G that

‖G(πc0(A)(a1, a2, . . .), πc0(A)(b1, b2, . . .) )‖ ≤ lim sup
n
‖G(an, bn)‖ .

Then there is a general method for such F and G that decides if there exists

an increasing continuous function ϕ ∈ C0(0, 1]+ with ‖F (a, b)‖ ≤ ϕ(‖G(a, b)‖) for

all contractions a, b ∈ A :

Fix t ∈ (0, 1] and take the supremum S(t) over the norms ‖F (a, b)‖ for all

contractions a, b with ‖G(a, b)‖ ≤ t and call it ??? ...

It is certainly ≤ γ and t 7→ S(t) is increasing.

There exist increasing continuous functions ϕ(t) on (0, 1] with S(t) ≤ ϕ(t) and

limt→0 ϕ(t) = limt→0 S(t).

If 0 < µ := limt→0 S(t), then there exist sequences of contractions a1, a2, . . .

and b1, b2, . . . with ‖G(an, bn)‖ < 2−n and ‖F (an, bn)‖ ≥ µ− 2−n .

19. An elementary matrix norm bound

A simple explanation for the estimate in Remark 2.1.10 goes as follows:

We can write each matrix a = [ajk] ∈Mn(A) as a sum of n sub-matrices RL(`)

or as sum of n sub-matrices LR(`) that have the property that RL(`)∗RL(`) and

LR(`)∗LR(`) are diagonal matrices. Thus the sub-matrices have norms ‖RL(`)‖
and ‖LR(`)‖ that is ≤ the maximum of the norms of there entries ajk . Then use

that

a =

n∑
`=1

RL(`) =

n∑
`=1

LR(`) .

Such sub-matrices can be selected as follows :

RL(`) for ` ∈ {1, . . . , n} the sub-matrix given with entries ajk at the places (j, k)

with j + k = ` mod (n) i.e., with the elements

{ a1,`−1, a2,`−2, . . . , a`−2,2, a`−1,1 ; a`,n, a`+1,n−1, . . . , an−1,`+1, an,`

on its given places and zero’s otherwise. It is on 45o degree from right to left

downward directed lines.
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Similarly let LR(`) for ` ∈ {1, . . . , n} denote the sub-matrix with entries on

the left to right downward directed lines, parallel to the main diagonal LR(n) =

diag(a11, a22, . . . , ann) :

The sub-matrix LR(`) is non-zero only on places (j, k) with j − k = ` mod (n) :

{ a1,`, a2,`+1 , . . . , a`−1,n−1, a`,n ; a`+1,1, a`+2,2, a`+3,3, . . . , an−1,`−1, an,`

All sub-matrices RL(`) and LR(`) have the property that the products

??????

Only the case of the right-to-left downward diagonal a1,n, a2,n−1, . . . , an,1 (with

j+k = 1 mod(n)) splits not into two – in orthogonal boxes contained – sub-matrices.

The same happens with the lines that are parallel to the main diagonal

a1,1, a2,2, . . . , an,n .

20. On flip-invariant subalgebras of A⊗A

Let A a C *-algebra and let γ : A ⊗ A → A ⊗ A the unique *-automorphism

given by γ(a⊗ b) = b⊗ a for a, b ∈ A. We call it the flip automorphism on A⊗A.

It would be helpful to know more on the fix-point algebras of the flips on

O2 ⊗O2, O∞ ⊗O∞ and P∞ ⊗ P∞ ∼= (1− s1s
∗
1)O∞(1− s1s

∗
1) = O∞st .

Also on Z ⊗ Z ?

More generally what about the fix-point algebra of the flip on On⊗On, Mn∞⊗
Mn∞ ? Are they simple?

The flip algebra (A⊗A)γ is nuclear if (and only if ??) A is nuclear.

Is (A⊗A)γ also simple ??? (seems to be if we can say something on the case of

tensorial Z absorption, but the flip algebras in Mn⊗Mn or K⊗K are not simple.)

if A is simple and unital without quotient of finite dimension? The fix-point

algebras of the flips on Mn∞⊗Mn∞ are simple (except possible the case P∞⊗P∞),

and they have all a central sequence of copies of E2 (the latter with exception of

Mn∞ ⊗Mn∞ or of the Jiang-Su algebra).

It makes them pi-sun C *-algebras if the fix-point algebras of the flip on Mn∞⊗
Mn∞ is simple ????

and Why this?

The inductive limit for the latter is give by unital Mf(k) ⊕Mg(k) →Mf(k+1) ⊕
Mg(k+1). This happens with some “over-crossing” and Mf(k) ⊕Mg(k) is unitally

contained in Mnk ⊗Mnk , in particular n2k = f(k) + g(k)). f(k) := nk(nk + 1)/2,

g(k) := nk(nk − 1)/2.

Iteration rules are given by f(k + 1) := βn(f(k), g(k)) := f(k)n(n + 1)/2 +

g(k)n(n− 1)/2,
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g(k + 1) := γn(f(k), g(k)) := f(k)n(n− 1)/2 + g(k)n(n+ 1)/2 .

It comes from the rule for eigenvalues of the flip-unitary for Mn ⊗ Mn on

`2(n)⊗ `2(n):

Plus: n+ (n2 − n)/2 = n(n+ 1)/2 and Minus: (n2 − n)/2 = n(n− 1)/2.

Check of f(k) + g(k) = n2k is OK:

g(k + 1) = nk(nk + 1)n(n− 1)/4 + nk(nk − 1)n(n+ 1)/4 = nk+1(nk+1 − 1)/2 ,

and

f(k + 1) := f(k)n(n+ 1)/2 + g(k)n(n− 1)/2 = nk+1(nk+1 + 1)/2 .

Is there a variant of next prop.

for A = B ⊗Z?

Proposition B.20.1. Let A := B ⊗ O∞ and let γ : A ⊗ A → A ⊗ A the flip

isomorphism γ(a1 ⊗ a2) := a2 ⊗ a1.

Then the fix-point algebra (A ⊗ A)γ has only ideals I that are intersections of

ideals J of A⊗A with (A⊗A)γ :

I = (A⊗A)γ ∩ J .

The flip-algebra (A ⊗ A)γ contains in its multiplier algebra a central sequence

of unital copies of O∞.

In particular, (A⊗A)γ is simple and purely infinite if B is simple and exact.

Proof. It is easy to see (why ⊆ ??) that for each closed ideal I of A⊗A the

set I + γ(I) is a γ-invariant closed ideal of A⊗A with

(A⊗A)γ ∩ (I + γ(I)) = (A⊗A)γ ∩ I .

We show that if 0 ≤ b ∈ (A⊗A)γ and c ∈ (A⊗A)+ is contained in the ideal I

of A⊗A generated by b then the element c+γ(c) is in the closed ideal J of (A⊗A)γ

generated by b :

Let 0 ≤ b ∈ (A⊗A)γ with ‖b‖ = 1, c ∈ (A⊗A)+ in the ideal of A⊗A generated

by b and ε ∈ (0, 1/4). Then there exists g1, . . . , gn ∈ A⊗A with ‖c−
∑n
k=1 g

∗
kbgk‖ <

ε. Define η := ε/(n2 + 1)(1 + C2), where δ := max{‖g1‖, . . . , ‖gn‖}.

Since b can be approximated by elements in the algebraic tensor product A�A
there exist isometries s1, . . . , sn, sn+1, . . . , s2n ∈ M(A) with mutually orthogonal

ranges and the property that ‖(sk ⊗ sn+k)b− b(sk ⊗ sn+k)‖ < η for above defined

η and k ∈ {1, . . . , n}.

The norms of (sk ⊗ sn+k)∗b(sk ⊗ sn+k)− b and of (sj ⊗ sn+j)
∗b(sk ⊗ sn+k) for

j 6= k are less than η.
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Now let h :=
∑
k(sk ⊗ sn+k)gk. The norm of δ−2

(
h∗bh−

∑n
k=1 g

∗
kbgk

)
can be

estimated by∑
k

‖(sk ⊗ sn+k)∗b(sk ⊗ sn+k)− b‖ +
∑
j 6=k

‖(sj ⊗ sn+j)
∗b(sk ⊗ sn+k)‖ ≤ n2η .

Recall that γ(h) =
∑
k(sn+k ⊗ sk)γ(gk) .

It follows that γ(h)∗h = 0, ‖γ(h)∗bγ(h)− γ(c)‖ < ε and

‖γ(h)∗bh‖ ≤ δ2
( n∑
k,`=1

‖(sn+j ⊗ sj)∗b(sk ⊗ sn+k)‖
)
≤ δ2n2η .

It gives that

‖ (c+ γ(c))− (h+ γ(h))∗b(h+ γ(h)) ‖ ≤ 2(ε+ δ2n2η) < 4ε .

Notice that c ≤ c+ γ(c) and that c+ γ(c) and h+ γ(h) are in (A⊗A)γ .

Thus, each ideal of the fix-point algebra (A⊗A)γ of the flip automorphism on

A⊗A is the intersection J ∩ (A⊗A)γ of an ideal J of A⊗A with (A⊗A)γ .

Let (sn), (tn) ⊂ M(A) sequences of isometries with limn→∞
(
‖sna − asn‖ +

‖tna − atn‖
)

= 0 for each a ∈ A, and s∗ntn = 0, then sn ⊗ sn, tn ⊗ tn ∈
(
M(A) ⊗

M(A)
)γ ⊆ M((A ⊗ A)γ)

)
, the isometries (sn ⊗ sn)n and (tn ⊗ tn)n are central

sequences for all elements of A⊗A. �

Question B.20.2. What happens if A ∼= B ⊗ E(M2∞ ,M3∞)?

What happens in case that A is approximately divisible?

Corollary B.20.3. If A is a pi-sun C*-algebra then its flip-algebra (A⊗A)γ

is again a pi-sun algebra.

Proof. It is clear that (A ⊗ A)γ is separable, unital and nuclear because

V (a) := (1/2)(a + γ(a)) is a unital conditional expectation from the separable,

unital and nuclear algebra A⊗A onto (A⊗A)γ . By Corollary F(ii), A ∼= A⊗O∞
for all pi-sun algebras A. Thus Proposition B.20.1 applies to A and gives that

(A ⊗ A)γ is simple and contains a central sequence of copies of O∞. (Recall here

that O∞ ∼= O∞ ⊗ O∞ ⊗ · · · and that C∗(skntn, k = 1, 2, . . .) is isomorphic to O∞
for each pair of isometries sn, tn with s∗ntn = 0.) �

21. On ideal structure of crossed products

Remark B.21.1. Let X a non-compact locally compact Hausdorff space. Then

X is a completely regular space, i.e., for each closed subset F ⊆ X and x ∈ X \ F
there exists g ∈ C0(X)+ with g(x) = 1, ‖g‖ = 1 and g(F ) = {0}. We denote

by β(X) the Stone-Cech compactification of X (maximal compact Hausdorff space

with X as a dense subspace). Recall that it can be defined equivalently by the

property that each continuous map φ : X → Z from X into a compact (Hausdorff)

space Z uniquely extends to a continuous map β(φ) : β(X)→ Z. An other descrip-

tion of β(X) is the the set of characters of Cb(X) with σ(Cb(X)∗,Cb(X))-topology,
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i.e., as Gelfand character space of Cb(X). Thus, there is a natural isomorphism

Cb(X) ∼= C(β(X)) by Gelfand-Naimark. and each continuous map from X into a

compact metric space M – e.g. a closed disk – extends to a continuous map from

β(X) into M .

Let A a C *-algebra and let Y ⊂ γ(X) a non-empty compact subset of the

corona space γ(X) := β(X) \X of X.

If we use the natural isomorphism C(β(X)) ∼= Cb(X) then Cb(X,A) becomes

the C(β(X))-algebra of continuous sections in a suitable continuous field of C *-

algebras {Ay ; y ∈ β(X)} over β(X). This is because the norm function map

f ∈ Cb(X,A) 7→ N(f) ∈ Cb(X) defined by N(f)(x) := ‖f(x)‖. It satisfies with

N(f)h = N(hf) for h ∈ C0(X). This defines Cb(X,A) as continuous field over

β(X) :

(1. ) Cb(X,A) is a Cb(X)-algebra:

If g : X → A in Cb(X,A) and f ∈ Cb(X), then (f ·g) ∈ Cb(X,A) for (f ·g)(x) =

f(x)g(x).

(2. ) There is a natural norm function N : g ∈ Cb(X,A) → N(g) ∈ Cb(X)+

that satisfies N(f ·g) = |f |·N(g), N(g1+g2) ≤ N(g1)+N(g2) and N(g∗g) = N(g)2.

The property (1.) and (2.) together impliy that Cb(X,A) the algebra of con-

tinuous sections for the continuous field (Aω ; ω ∈ β(X) ). Here Aω is the quotient

defined the C *-seminorm N(·)(ω) and is isomorphic to Cb(X,A)/(Jω · Cb(X,A))

with Jω equal to the kernel of the evaluation character f 7→ f(ω) on Cb(X) for

ω ∈ β(X). For our applications it is an important point that Cb(X,A) is also a

lower s.c. field of C *-algebras. and not only an upper s.c. field of C *-algebras over

the compact space β(X).

If Y is a closed subspace of β(X), then we can form the “restriction” C *-

algebra Cb(X,A)|Y := Cb(X,A)/JY , where JY is the ideal of bounded A-valued

continuous functions f ∈ Cb(X,A) with the property that the function g(x) :=

‖f(x)‖ in Cb(X) = C(β(X)) satisfies g|Y = 0, i.e., JY is the closed ideal of Cb(X,A)

generated C0(β(X) \ Y ) · Cb(X,A).

One can here also think of Cb(X,A) as an ideal of Cb(X, Ã ) where Ã denotes

A if A is unital and A+ C1 ⊆M(A) otherwise

We write always Aω for Cb(X,A)|Y if Y = {ω} for a point ω ∈ β(X) \X and,

sometimes, also AY for Cb(X,A)|Y .

(There are good reasons for the requirement Y ∩X = ∅ on Y .)

Well-known examples are A∞ := Cb(X,A)|Y for X = N, Y := β(N)\N, Aω :=

Cb(X,A)|Y for X = N, Y := {ω} where ω ∈ β(N) \ N is a point (corresponding to

a free ultra-filter on N) or Q(X,A) := Cb(X,A)|Y for Y := γ(X) = β(X) \X.

Let fa(x) := a for x ∈ X and a ∈ A. The map A 3 a 7→ fa(x) ∈ Cb(X,A)

defines a natural *-monomorphism from A into Cb(X,A) with JY ∩A = {0} for all

non-empty Y ⊂ β(X) \X.
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Therefore, there are natural *-monomorphisms A ↪→ Cb(X,A)|Y . We

identify A with the image of A under this embedding. The hereditary C *-

subalgebras ACb(X,A)A (respectively A(Cb(X,A)|Y )A) of Cb(X,A) (respec-

tively of Cb(X,A)|Y ) will be denoted by EA or E(X,A) (respectively EA|Y or

E(X,A)|Y ).

It turns out that σ-unital A (or E(X,A)|Y ) is essential in Cb(X,A)|Y for at

least one Y 6= ∅, if and only if, A is unital.

In particular, A is a degenerate C *-subalgebra of Cb(X,A)|Y if A is non-unital

but σ-unital (and X is non-compact).

It follows that there are natural unital *-monomorphisms ϕ1 : M(A) ⊂
Cb(X,M(A))|Y →???? and ϕ2 : M(A) → M(EA|Y ). The morphism ϕ2 is

strictly continuous, because ϕ2|A is essential in EA (by definition of EA|Y ).

The natural morphism ϕ : M(A) ⊂ Cb(X,M(A))|Y is unital and injective and

satisfies ϕ(a) ∈ A ⊂ Cb(X,A)|Y .

The algebra Cb(X,A)|Y is an ideal of the unital algebra Cb(X,M(A))|Y , there-

fore, there is a natural unital *-morphism ψ : Cb(X,M(A))|Y →M(Cb(X,A)|Y ) ,

with kernel π(I), where π denotes the natural epimorphism from Cb(X,M(A))

onto Cb(X,M(A))|Y and I is the ideal of g ∈ Cb(X,M(A)) with gf ∈ JY for all

f ∈ Cb(X,A).

It holds ϕ(M(A)) ∩ ker(ψ) = {0}, because (ϕ(b)f)(x) = af(x) for b ∈ M(A),

x ∈ X, and bf |Y = 0 for all b ∈ Cb(X,A) implies bA = {0}. Thus, ψ ◦ϕ : M(A)→
M(Cb(X,A)|Y ) is a unital *-monomorphism with ψ◦ϕ(a) = a ∈ A ⊂ Cb(X,A)|Y .

Thus, ψ◦ϕ(M(A)) ⊂ N (Cb(X,A)|Y,EA) and the induced unital *-morphism from

M(A) intoM(EA) is the unique strictly continuous extension of the non-degenerate

*-monomorphism A→ EA.

If T ∈ L(A,B) is a bounded linear map, then TX(f)(x) := T (f(x)) defines

a bounded linear map TX : Cb(X,A) → Cb(X,B) with TX(JY ) ⊂ TX(JY ) for

Y ⊂ β(X), i.e., TX(f)|Y = 0 if f |Y = 0. It allows to define the linear quotient

map TY : Cb(X,A)|Y → Cb(X,B)|Y , i.e., TY satisfies TY (f |Y ) = TX(f)|Y and

TY (a) = T (a) for all a ∈ A.

The map L(A,B) 3 T → TY ∈ L(Cb(X,A)|Y,Cb(X,B)|Y ) is linear and isometric.

If α : A→ B is a *-morphism (respectively *-monomorphism, *-isomorphism, com-

pletely positive) then αY : Cb(X,A)|Y → Cb(X,B)|Y is a *-morphism (respec-

tively *-monomorphism, *-isomorphism, completely positive) with αY (a) = α(a) ∈
B for all a ∈ A. If T (a) = cad for c, d ∈ M(A), then TY : Cb(X,A)|Y →
Cb(X,A)|Y satisfies TY (f |Y ) = ψ ◦ ϕ(c) · (f |Y ) · ψ ◦ ϕ(d) for f ∈ Cb(X,A), and

TY (f |Y ) = c · (f |Y )d if f |Y ∈ EA = A(Cb(X,A)|Y )A.

In particular, if α ∈ Aut(A) and M := (Cb(X,A)|Y )∗∗ p the support projection

of EA in M , then αY ∈ Aut(Cb(X,A)|Y ), αY (A) = A, αY (EA) = EA, (αY )∗∗(A′∩
M) = A′ ∩M and (αY )∗∗(p) = p.
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Moreover, if α = Ad(u) (i.e., α(a) = uau∗ for a ∈ A, where u ∈ M(A) is

unitary), then αY = Ad(U) for U = V |Y , where V (x) := u for x ∈ X.

???????????????????????

Lemma B.21.2. Let u ∈ M(A) unitary, and B := Cb(X,A)|Y where Y 6= ∅ is

a closed subset of β(X) \ X (e.g. if X = N then B := A∞, B := Aω are of this

kind).

The *-isomorphism µ := Ad(u)Y ∈ Aut(B) (cf. Remark B.21.1) is induced on

B by γu(f)(t) := Ad(u)(f(t)) := uf(t)u∗ for t ∈ R+ and f ∈ Cb(R+, A), and is

given by the inner automorphism Ad(U) : B 3 b 7→ UbU∗ ∈ B, for the unitary

U := ψ ◦ ϕ(u) in ψ(ϕ(M(A))) ⊂ ψ(Cb(X,M(A)) ⊂M(B).

In particular, Ad(U)(a) = Ad(u)(a) for all a ∈ A.

The second conjugate Ad(U)∗∗ : B∗∗ → B∗∗ is given by Ad(U)∗∗(b) =

η(U)bη(U)∗, where η : M(B) → B∗∗ means the natural strictly–*ultra-strongly

continuous unital monomorphism.

The σ(B∗∗, B∗)-closure of A in B∗∗ is naturally W*-isomorphic to A∗∗ via a

natural isomorphism η1 : A∗∗ → B∗∗. Let q = η1(1) ∈ B∗∗ denote the unit of

η1(A∗∗) ⊂ B∗∗, and identify M(A) naturally with its image in A∗∗.

Then

(i) η1(a) = q · η ◦ ψ ◦ ϕ(a) for all a ∈M(A).

(ii) A′ ∩B∗∗ = η1(A∗∗)′ ∩B∗∗ and Ad(U)∗∗(A′ ∩B∗∗) = A′ ∩B∗∗.
(iii) Ad(U)∗∗(q) = q ∈ A′ ∩B∗∗ and qAd(U)∗∗(b) = qb for all b ∈ A′ ∩B∗∗,

In particular ab = aAd(U)∗∗(b) for all a ∈ A and b ∈ A′ ∩B∗∗.

Proof. ??

pB∗∗p is the second conjugate of ABA,

????? �

Lemma B.21.3. Suppose that A ⊂ B := Cb(X,A)|Y is as in Remark B.21.1,

α ∈ Aut(A), and q ∈ B∗∗ denotes the support projection of the hereditary C*-

subalgebra ABA = EA|Y of B. Let β := αY : B → B denote the natural extension

of α to B (cf. Remark B.21.1).

Then β(q) = q, q is in the centre of A′ ∩B∗∗, and β(A′ ∩B∗∗) = A′ ∩B∗∗.

If there are κ ∈ (0, 1) and a unitary u ∈ M(A) with ‖α − Ad(u)‖ ≤ 2κ, then

‖β(p)− p‖ ≤ κ for all projections p ∈ (A′ ∩B∗∗)q.

In particular, if p is a projection in A′ ∩B∗∗, then aβ∗∗(p)p = 0 for all a ∈ A
implies that qp = 0 = qβ∗∗(p).

Proof. The linear map β − Ad(U) is equal to the natural extension (α −
Ad(u))Y of α − Ad(u) ∈ L(A,A) to a bounded linear operator of Cb(R+, B)|Y ,

where U ∈M(B) is defined as in Lemma B.21.2. It follows ‖β −Ad(U)‖ ≤ 2κ .
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Since β(a) = α(a) for all a ∈ A, we get β∗∗(A′∩B∗∗) = A′∩B∗∗ and β∗∗(q) = q.

The projection q is in the centre of B∗∗, because q is in the σ(B∗∗, B∗)-closure of

A and commutes with A.

By Lemma B.21.2, Ad(U)∗∗(b) = b for all b ∈ (A′∩B∗∗)q. Thus, for projections

p ∈ (A′ ∩B∗∗)q,

2‖p− β∗∗(p)‖ = ‖(q − 2p)− β∗∗(q − 2p)‖ ≤ 2κ .

The equation Aβ∗∗(p)p = {0} implies β∗∗(qp)qp = 0. But then ‖β∗∗(qp)−qp‖ ≤
κ < 1 implies that 0 = qp = qβ∗∗(p) = β∗∗(qp). �

22. On semi-projective relations

Next Def. makes no sense !? In this formulation... only?

Definition B.22.1. An operator-polynomial relation R : Fn → B∞ (on ele-

ments of a subset F of a C *-algebra A) is semi-projective on Fn if there exists for

each element X ∈ Fn with R(X) = 0 a sequence Xk ∈ Fn with R(Xk) = 0 and

limk ‖Xk −X‖ = 0 .

23. Non-2-sub-additive quasi-traces exist.

We list some more details than given at the reference places:

Where is the ”reference place”?

The unital type-I C *-algebra A is a (very special) unital extension E :

0→ c0(K)→ E →ψ C([0, 1]2)→ 0 .

It means that the closed ideal J generated by all commutators in the unital C *-

algebra E is isomorphic to c0(K) ∼= c0 ⊗ K. The commutative quotient E/J of

E is isomorphic to C([0, 1]2) and, if ψ : E → C([0, 1]2) is the defining map for the

extension, then the (central) unital quasi-trace τE on E is given by τA ◦ πc0(K),

where τA is the Aarnes quasi-state on C([0, 1]2).

The following says: C := C([0, 1]n) is a ”projective” C *-algebra ? In the sense:

If ψ : C → B/J is a unital *-monomorphism, then there exists a unital *-morphism

φ : C → B with φ = πJ ◦ ψ.

But what happens with the question concerning additivity, if µ is a quasi trace

then for all strictly commuting elements a, b in the image holds additivity ... ???

THE NEW OBSERVATION IS:

Because C([0, 1]2) is projective inside the class of unital Abelian C *-algebras

one gets that an extension with `∞(K) can be modified to an extension by c0(K)

such that πc0(K)(C
∗(S, T )) ∩ `∞(K) = {0} .

It gives an extension 0→ c0(K)→ E → C([0, 1]2) that has the property that

(1) E is a type I C *-algebra with Abelian quotient of Dimension = 2.
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(2) This extension has the property that every local unital quasi-trace τ on

C([0, 1]2) is additive on τ |C∗(x, 1)+ for all normal elements x ∈ E.

(3) The composition τE := τA ◦ πc0(K) is a is additive on each commutative

C *-subalgebra of E. But is not 2-sub-additive.

Why is it not 2-sub-additive ??

(4) There exist elements x, y ∈ E+ with τE(x) = 0, τE(y) = 0 and τE(x+y) = 1.

The restriction map

C0(X) 3 f 7→ f |Z ∈ C(Z) ∼= C([0, 1]2)

defines an epimorphism from A/J ∼= C0(X) onto C([0, 1]2) and has the property

that ?????????

It is not unlikely that one can manage that that X = Z ∼= [0, 1]2 using the

index-preserving compressions (T ∗)n(·)Tn on the Toeplitz algebra

0→ K(`2)→ T = C∗(T )→ Cf(S1) .

Then one would get a honest extension 0→ c0(K)→ A→ C([0, 1]2) .

But we need that ‖[(T ∗)naTn, (T ∗)nbTn]‖ becomes small if ab − ba ∈
K(`2)

for positive contraction a, b ∈ L(`2) with ab− ba ∈ K.

We use the following Lemma:

Lemma B.23.1. Let a, b ∈ L(`2) positive contractions that satisfy ab− ba ∈ K,

p ∈ K a projection and ε(0, 1/2]. Then there exists a positive contraction c ∈ K
such that p ≤ c, ‖ca− ac‖ < ε , ‖cb− bc‖ < ε and

‖(1− c)a(1− c)2b(1− c)− (1− c)a(1− c)2b(1− c)‖ < ε .

I.e. (1−c)a(1−c) and (1−c)b(1−c) commute up to ε and are compact perturbations

of a and b.

Proof. It is essentially the existence of an approximate unit {en ∈ A+ ; n =

1, 2, . . .} in σ-unital C *-algebras A that satisfies enen+1 = en, ‖en‖ = 1 and is

quasi-central with respect to a separable C *-subalgebra B ⊆M(A), – in the sense

that limn ‖ben − enb‖ = 0 for all b ∈ B.

The proof uses obvious modifications of the proof of [616, thm. 3.12.14], and

has to observe that the arguments for [616, cor. 3.12.15,cor. 3.12.16] work also

for σ-unital A and separable B ⊆ M(A). It shows that we can find a sequence

(en) with this properties inside the (algebraic) convex hull of any given countable

approximate unit {p1, p2, . . .} of σ-unital C *-algebra A that have the additional

property pnpn+1 = pn. (Such an approximate unit {pn ; n ∈ N } of A exists in

every σ-unital C *-algebra A.)

In our special case we apply this to A := K(`2) and take the projections pn ∈ A
of rank n ∈ N as approximate unit of A, that maps `2(N) to the linear span of the
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first n elements of the canonical basis of `2(N). Now let B := C∗(K(`2), a, b) ⊆
L(`2) =M(A). �

Remark B.23.2. Let f0 ∈ C([0, 1]) = C∗(f0, 1) denote the identity map

f0(t) := t for all t ∈ [0, 1] and let 1 ∈ C([0, 1]) denote the function that is constant

equal to 1.

The functions g, h ∈ C([0, 1]2) = C([0, 1]) ⊗ C([0, 1]) are the coordinate maps

g(x, y) = x and h(x, y) = y, corresponding to f0⊗1 and 1⊗f0 in the tensor product

notation.

Notice that C([0, 1]2) = C∗(g, h, 1) and that this means in the tensor notation

that C([0, 1])⊗ C([0, 1]) = C∗(f0 ⊗ 1, 1⊗ f0, 1⊗ 1).

Lemma B.23.3. The algebra C([0, 1]2) is the universal C*-algebra with respect

to the above given relations and has following properties:

If A is a unital C*-algebra that is generated by commuting positive contactions

S, T ∈ A and 1A, then there exists a unique C*-algebra morphism ϕ : C([0, 1]2)→ A

with ϕ(g) = S, ϕ(h) = T and ϕ(1) = 1A.

In particular, if S, T ∈ A are commuting positive contractions in a unital C*-

algebra A and if ψ : C∗(S, T, 1A)→ C([0, 1]2) is a unital C*-morphism with ψ(S) =

f and ψ(T ) = g then ψ is an isomorphism form C∗(S, T, 1A) onto C([0, 1]2).

Proof. The universality of C([0, 1]2) in the class of unital commutative C *-

algebras is easy to see, because C([0, 1]) is the universal unital C *-algebra generated

by a positive contraction, and C([0, 1]) is nuclear. This implies that any pair of

element-wise commuting unital C *-morphisms φ1, φ2 : C([0, 1])→ A define a unital

C *-morphism ϕ : C([0, 1]2)→ A with ϕ(g) = φ1(f0) and ϕ(h) = φ2(f0).

Let ψ : C∗(S, T, 1A) → C([0, 1]2) a unital C *-morphism with ψ(S) = g and

ψ(T ) = h. Then the universal epimorphism ϕ from C([0, 1]2) onto C∗(S, T, 1A)

satisfies ψ◦ϕ = id of C([0, 1]2), because ψ◦ϕ is unital, ψ◦ϕ(g) = g and ψ◦ϕ(h) = h .

Therefore ψ must be surjective and ϕ injective. Thus ψ and ϕ are isomorphisms. �

Let γn : S1 → [0, 1]2 a sequence of piecewise smooth continuous map that

contains in its uniform closure the set of all continuous maps γ : S1 → [0, 1]2 that

are piecewise smooth Jordan curves ( 5 ).

Denote by T ⊂ L(`2) the Toeplitz algebra. Notice that K ⊂ T and that there

is a natural isomorphism from C(S1) onto T /K ⊂ C, where C := L(`2)/K denotes

the Calkin algebra.

The maps γn define a sequence of unital C *-morphisms ϕn : C([0, 1]2) →
C(S1) ⊂ C and, therefore, a unital C *-morphism Φ: C([0, 1]2) → `∞(C(S1)) ⊂
`∞(C) .

5 I.e. the closure of the set of maps γn – but considered as positive contractions in C(S1)⊕
C(S1) – contains all those maps γ : S1 → [0, 1]2 that are piecewise smooth Jordan curves.
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The C *-morphism Φ is faithful on C([0, 1]2), and is a unital C *-monomorphism,

because for every point x ∈ [0, 1]2 there exists a piece-wise smooth Jordan curve

γ : S1 → [0, 1]2 with x ∈ γ(S1).

The generators {1,Φ(g),Φ(h)} ⊂ `∞(C(S1)) of can be lifted to 1 ∈ `∞(T ) ⊂
`∞(L(`2)) and to, not necessarily commuting, positive contractions X,Y ∈ `∞(T ) .

The positive contractions X = (x1, x2, . . .) and Y = (y1, y2, . . .) satisfy XY −Y X ∈
`∞(K). It follows that the n-th entries with πK(xn) = ϕn(g) and πK(yn) = ϕn(h)

can be modified step by step by a compact perturbation with elements in 1 + K,

as considered and shown in Lemma B.23.1. We get new positive contractions sn

and tn with xn − sn, yn − tn ∈ K and ‖sntn − tnsn‖ < 2−n. The new positive

contractions S := (s1, s2, . . .) and T := (t1, t2, . . .) in `∞(T ) ⊂ `∞(L(`2)) have the

properties that S −X,T − Y ∈ `∞(K),

ST − TS ∈ c0(K) ⊂ `∞(K) ⊂ `∞(T ) ,

S + `∞(K) = Φ(g) and T + `∞(K) = Φ(h). The new positive contractions S +

c0(K) and T + c0(K) are commuting positive contractions in `∞(T )/c0(K) and

the commutative unital C *-algebra D ⊂ `∞(T )/c0(K) generated by them (and

1) maps onto the C *-algebra Φ(C([0, 1]2)) ⊆ `∞(C(S1)) in a way that S + c0(K)

maps to Φ(g) and T + c0(K) maps to Φ(h). By the injectivity of Φ, it follows from

Lemma B.23.3 that π`∞(K) maps the commutative C *-algebra πc0(K)(C
∗(S, T, 1))

onto Φ(C([0, 1]2)) in a way that the canonical that the described generators are

respected.

??????? Alternative description: ?????

Since ST − TS ∈ c0(K) it follows that πc0(K)(S) and πc0(K)(T ) generate com-

mutative C *-subalgebra A of `∞(T )/c0(K) with the property that it is generated

by two commuting positive contraction, that gives

?????

It follows, that B := C∗(S, T, 1) + c0(K) is a C *-algebra with the property

B/c0(K) ∼= C([0, 1]2), because C∗(S, T, 1) ∩ `∞(K) = C∗(S, T, 1) ∩ c0(K) .

To be checked if we have moreover ???

For all normal elements b ∈ B (respectively b ∈ C∗(S, T, 1)+`∞(K)) holds that

the function f := πc0(K)(b) (respectively the function f := π`∞(K)(b)) in C([0, 1]2)

has zero winding numbers, – with respect to alls closed curves γ : S1 → [0, 1]2 in

[0, 1]2 and all points in C \ f(γ(S1)). (It is here not of interest if clockwise or

anti-clockwise parametrized.)

The extensions have the property that

f ∈ C([0, 1]2) ∼= (C∗(S, T, 1) + `∞(K))/`∞(K) ⊆ `∞(C(S1))

has only zero winding numbers,

???? if and only if, ???? “if” is O.K.

???? But what about the converse ?:

???? Suppose that f has only zero winding
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???? numbers. Then f can be approximately

???? factorized over 1-dimensional spaces:

???? Means if X is compact and metric space:

???? If f ∈ C(X) and ε > 0,

???? there exists g : X → Y

???? with Y 1-dimensional, and

???? h : Y → C with ???? ‖h ◦ g − f‖ < ε. ????

if there is a normal element in x ∈ `∞(K) + C∗(S, T, 1), i.e., x satisfies x∗x =

xx∗, with f = π`∞(K)(x) ( 6 ).

The latter is the case, if and only if, there exists, – for a given y ∈ C∗(S, T, 1)+

c0(K) ⊂ `∞(T ) with πc0(K)(y) = f –, an element z ∈ `∞(K) with the property

that z + y is normal: (z + y)∗(z + y) = (z + y)(z + y)∗. The element y satisfies

y∗y − yy∗ ∈ c0(K) by commutativity of (C∗(S, T, 1) + c0(K))/c0(K) .

(If one could here manage that y∗z, zy∗ ∈ c0(K), then one gets at least that

z∗z − zz∗ ∈ c0(K), but we don’t know that.)

It leads to the following question about contractions with index zero in the

Toeplitz algebra T :

Question B.23.4. Do we need for the determination of the winding numbers

only to look for invertible elements in C(S1)?

Let f ∈ C([0, 1]). We need for the conclusion that the restriction τA|C(f, 1)+

of the Aarnes quasi-state τA on C([0, 1])+ to the positive part of C(f, 1)+ is there

additive, the following property of the given f ∈ C([0, 1]):

For each continuous map γ : S1 → [0, 1]2 and z 6∈ f(γ(S1)) the winding number

w(f ◦ γ, z) is equal to zero.

It can happen that z ∈ f ◦ γ1(S1) for some other Jordan curve γ1(S1) ⊆ [0, 1]2

... So z can be in the spectrum of some other factor f ◦ γ1(S1) ⊆ [0, 1].

But we have at least the positive direction: If there exists a normal element

g ∈ C∗(S, T, 1) + `∞(K) with π`∞(K)(g) = f then all winding numbers are zero.

Question: Suppose that one of it is not zero. Does there exist a non-additive

quasi-state on C(f, 1)+ ?????

Does there exist for an increasing function g ∈ C0((0, 1]) with the following

property?:

Let X ∈ T a contraction with index index(X) = 0 and ‖X∗X − XX∗‖ < ε

then there exists Y ∈ T with Y ∗Y = Y Y ∗, X − Y ∈ K and ‖X − Y ‖ ≤ g(ε).

Can take here contraction X ∈ T with polar decomposition ZA = X for

positive self-adjoint A := (X∗X)1/2 ∈ T+ and Z ∈ L(H) an isometry with index

zero. It shows that one can replace Z by a unitary

6 We can here suppose that ‖x‖ = ‖f‖ = 1, because we can f multiply with a positive scalar

without changing the winding numbers of f and the normality of x, because all happens in the

commutative C *-algebra C∗(x, x∗) and its quotients.
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????. Get ???

Unfortunately, we do not know if this implies also the existence of a normal

element y ∈ C∗(S, T, 1) + c0(K).

Is this is equivalent (!) to the property that all the indices of the f := πc0(K)(y)

are zero?

It can be represented by a normal element in B [ or only that there is an element

x in `∞(K) such that f + x is normal ].

[Need only that the indices vanish !!!! This should not change by compact

perturbations ...]

(This is true if we consider the bigger C∗(S, T ) + `∞(K) instead.

Have then to show: If we have a normal representative in C∗(S, T ) + `∞(K)

then we have a normal representative in B. )

??? Similar observations ?? show that the map µ := τA ◦ϕ : B+ → [0,∞) from

the free product B := C[0, 1] ∗ C[0, 1] into [0,∞) is a unital quasi-trace that has

additive restrictions µ|C+ for each commutative C *-subalgebra C of B. It requires

only the additivity on C+ for all C := C∗(a+ ib) with commuting a, b ∈ B+.

Check next red and blue again! Look to the original notes and

compare.

The non-subadditive quasi-measure on µA on [0, 1]2 and the corresponding

non-2-sub-additive quasi-state τA on C([0, 1]2)+, given by J. Aarnes in [3], has

the property that there exists g, h ∈ C([0, 1]2)+ with τA(g) = 0, τA(h) = 0 and

τ(g + h) > 2. And it has the – for us important – property that the restriction

τA|C∗(1, f)+ is additive, if and only if, the function f : [0, 1]2 → C has zero “winding

numbers” with respect to closed (Jordan) paths in P ⊂ [0, 1]2 and points in C\f(P ).

Now take the universal unital free product C *-algebra B := C([0, 1])∗C([0, 1])

and the natural unital C *-algebra epimorphism ϕ : B → C([0, 1]2). One can show

that all images f = ϕ(b) ∈ C([0, 1]2) of normal elements, i.e., b ∈ B with b∗b = bb∗,

have only zero winding numbers. (The proof uses the natural relation between

winding numbers of parametrized closed curves and the index of operators in the

Toeplitz algebra 0 → K(`2) → T → C(S1) → 0 .) It implies that the restriction

µ|B+ of µ := τA ◦ ϕ is a unital quasi-trace of B = C([0, 1]) ∗ C([0, 1]). This µ can

not be 2-sub-additive because otherwise τA must be 2-sub-additive on C([0, 1]2)+,

by using here that the set of elements x ∈ B with µ(x∗x) = 0 must be a closed

ideal of B if µ is 2-sub-additive.

One can explore the relation between winding numbers of elements of C([0, 1]2)

and indices of the Toeplitz algebra T even more and take a sequence ψn : S1 →
[0, 1]2 of pice-wise smooth closed curves ψn : S1 → [0, 1]2 ∼= [0, 1] + i[0, 1] ⊆ C that

are uniformly dense in the set of all closed curves ψ : S1 → [0, 1]2. It defines a

sequence of unital C *-epimorphisms ϕn : C([0, 1]2)→ C(S1) ∼= T /K(`2).
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The latter sequence ϕn can be explored to show that there exist l.s.c. quasi-

traces τ on certain type I C *-algebras A :

It is an extension 0 → J → A →φ C([0, 1]2) → 0 with an ideal J that is an

extension of C0((0, 1)) (or of C0(0, 1] ?) by c0(K), that has the property that µA ◦φ
is not a 2-sub-additve, but is bounded and unital, is defined on all of A+, and has

additive restrictions to each commutative C *-subalgebras of A. Moreover, there

exists no “bound” γ ∈ (0,∞) with the property τ(a + b) ≤ γ · max(τ(a), τ(b)),

because it can happen that τ(a + b) > 0 – but µ(a) = 0 = µ(b) for some non-

commuting a, b ∈ A+ .

HERE is an older summary: J.F. Aarnes [3] described a ???????

There exists a unital extension 0 → c0(K) → A → C([0, 1]2) → 0 such that τ

is given by τ = τA ◦ φ, where τA denotes the example of a globally non-additive

unital quasi-state on C([0, 1]2) that is additive on each C *-subalgebra C∗(f, 1)

where f : [0, 1]2 → C factorizes approximately over a tree (that is in this case of

J.F. Aarnes described in [3]).

It should be better to give a citation, not an explanation?!!

Much more easy to handle, despite not of of type I, is the unital free product

B := C[0, 1]∗C[0, 1] and the non-2-subadditive quasi-state τ0 := τA◦π, where here π

denotes the natural C *-epimorphism π from B onto C([0, 1])⊗C[0, 1]) = C([0, 1]2) .

The key observation uses a suitable chosen unital *-monomorphism η from

C([0, 1]2) into

`∞(C(S1)) ∼= `∞(T )/`∞(K) ,

where here T := C∗(T ) ⊂ L(`2) means the Toeplitz algebra generated by the

forward shift Ten = en+1 on `2(N), and the defining countable family of maps

from C([0, 1]2) to C(S1) are given by a uniformly dense sequence in all pice-wise

linear continuous maps (could also take smooth maps) from S1 into [0, 1]2 = [0, 1]+

i[0, 1] ⊆ C. For each map γ : S1 → [0, 1]2 define a unital C *-morphism γ̂ : f 7→ f ◦γ
All this C *-morphisms lift to unital C *-morphisms from B into T , and define a

unital C *-morphism from B into `∞(T ).

Then the free product B = C[0, 1] ∗ C[0, 1] has an “universal lifting property”

that implies that all unital C *-morphisms h : B → C into the Calkin algebra C :=

L(`2)/K(`2) lift to unital C *-morphisms H : B → L(`2).

By using the BDF theory, this implies that each image of each normal element

maps to an element with the property that all entries have zero indices ...

????

BDF = Brown Douglas Fillmore

supports an index argument for the characterization of normal operators (mod-

ulo compact perturbation) among the essentially normal operators:
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An operator S ∈ L(`2) is a compact perturbation of a normal operator, if and

only if, all indices of S − λ are equal to zero for all λ 6∈ Spec(πK(S)), cf. [207,

cor. IX.7.4].

This implies that all winding-numbers for π(S) ∈ C([0, 1]2) are zero.

The construction shows that a function f ∈ C([0, 1]2) is the image π(g) of

a normal element g ∈ B, if and only if, f can be uniformly approximated by

functions fn ∈ C([0, 1]2) that factorize over a finite tree Tn (which is then automatic

homotopic to the root of Tn ), i.e., fn = ϕn ◦ ψn with ψn : [0, 1]2 → Tn and

ϕn : Tn → [0, 1]2 , limn ‖fn − f‖ = 0 .

An important property of such tree-factorable functions fn is that they are

homotopic inside there images fn([0, 1]2) ⊂ C to a constant map (or at least “inside

any neighbourhood of its image”, by a simpler proof).

It is not difficult to check that the Aarnes quasi-state µ0 on C([0, 1] × [0, 1])

becomes additive on the subalgebras C∗(f) ⊂ C([0, 1]2) generated by f with this

special property (being a uniform limit of tree-factorable functions on [0, 1]2). Thus

the restriction of τ0 := µ0 ◦ π every abelian C *-subalgebra of B := C[0, 1] ∗C[0, 1]

is additive. But µ0 ◦ π can not be additive, because π is surjective and the Aarnes

quasi-state µ0 is not additive on C([0, 1]2).

An application of quasi-diagonal elements shows that this implies the existence

of a unital type I C *-algebra A that has a non-additive quasi-state is an extension

c0(K)→ A→ C0((0, 1], ψ(B)) by modification of a C *-morphism ψ from the uniti-

zation of C0((0, 1], B) into `∞(T ) ⊆ `∞(L(`2)) constructed from the C *-morphism

that we have described above.

This equivalent properties of τ are long known for a sort of “normal” quasi-

states on finite AW*-algebras M , and the proof of the equivalence of the three

properties of τ goes over variants of suitable ultra-power constructions that give

on suitable hereditary C *-algebras D ⊆ A with τ |D+ bounded a C *-morphism

ϕ : D → M where M is a hereditary C *-subalgebra of an AW*-algebra such that

all maximal abelian C *-subalgebras of M are hereditary C *-subalgebras of Abelian

W*-algebras.

24. Central sequence algebras, the ε-test and its application.

The here given formulation and proof of the ε-test Lemma given in the Appen-

dix of [448] corrects also a really obvious(!) typo in the there given formulation

and proof of this Lemma.

To each free filter ω on the natural numbers N and to each C *-algebra A one

can associate the ultrapower Aω and the central sequence C *-algebra Aω ∩ A′ as

follows:
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Let cω(A) denote the closed two-sided ideal of the C *-algebra `∞(A) of bounded

sequences from A given by

cω(A) =
{

(an)n≥1 ∈ `∞(A) | lim
n→ω
‖an‖ = 0

}
.

We use the notation limn→ω αn (and sometimes just limω αn) to denote the limit

of a sequence (αn)n≥1 along the filter ω. This limit exists for all free ultra-filters ω

on N.

The ultrapower Aω is defined to be the quotient C *-algebra `∞(A)/cω(A); and

we denote by πω the quotient mapping `∞(A) → Aω. Let ι : A → `∞(A) denote

the ”diagonal” inclusion mapping ι(a) = (a, a, a, . . . ) ∈ `∞(A), a ∈ A; and define

ιω := πω ◦ ι : A → Aω. Both mappings ι and ιω are injective. We shall often

suppress the mapping ιω and view A as a sub-C *-algebra of Aω. The relative

commutant, Aω∩A′, then consists of elements of the form πω(a1, a2, a3, . . . ), where

(an)n≥1 is a bounded asymptotically central sequence in A. The C *-algebra Aω∩A′

is called a central sequence algebra.

We shall most often insist that the free filter ω is an ultrafilter, and we avoid

using A∞ := `∞(A)/c0(A) and A∞ := A′∩A∞, which have similar properties and

produce similar results (up to different selection procedures). One of the reasons is

that we need an epimorphism from Aω onto the W*-algebra Nω := `∞(N)/cτ,ω(N)

(to be defined below), cf. Theorem B.24.3 below, where N is the weak closure of

A in the GNS representation determined by a tracial state τ on A. The sequence

algebra N∞ := `∞(N)/cτ,0(N) (with cτ,0(N) the bounded sequences in N with

limn ‖a‖2,τ = 0) is not a W*-algebra. Another reason for preferring free ultra-

filters to general free filters is that, for A 6= C, simplicity of Aω is equivalent to pure

infiniteness and simplicity of A. The algebras Aω are the fibers of the continuous

field A∞ with base space β(N) \ N. The structure of this bundle appears to be

complicated.

Recall from [448] that if B is a C *-algebra and if A is a separable sub-C *-

algebra of Bω, then we define the central sequence algebra

F (A,B) := (A′ ∩Bω)/Ann(A,Bω).

This C *-algebra has interesting properties. For example, F (A,B) := F (A⊗K, B⊗
K). We let F (A) := F (A,A). The C *-algebra F (A) is unital if A is σ-unital. If

A is unital, then F (A) = A′ ∩ Aω. We refer to [448] for a detailed account on

the C *-algebras F (A,B) and F (A). We shall often, in the unital case, denote the

central sequence algebra Aω ∩A′ by F (A).

We have the following useful selection principle for sequences in the filter ω

with a countable number conditions from [448, Lemma A.1]. For completeness we

add a proof (7).

7 We correct here a misleading typo in the original proof given in [448]!.
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Lemma B.24.1 (The ε-test). Let ω be a free ultrafilter. Let X1, X2, . . . be any

sequence of sets and suppose that, for each k ∈ N, we are given a sequence (f
(k)
n )n≥1

of functions f
(k)
n : Xn → [0,∞].

For each k ∈ N define a new function f
(k)
ω :

∏∞
n=1Xn → [0,∞) by

f (k)
ω (s1, s2, . . .) := lim

n→ω
f (k)
n (sn), (sn)n≥1 ∈

∞∏
n=1

Xn.

Suppose that, for each m ∈ N and each ε > 0, there exists s = (s1, s2, . . .) ∈∏∞
n=1Xn such that f

(k)
ω (s) < ε for k = 1, 2, . . . ,m. It follows that there is t =

(t1, t2, . . .) ∈
∏∞
n=1Xn with f

(k)
ω (t) = 0 for all k ∈ N.

Proof. For each n ∈ N define a decreasing sequence (Xn,m)m≥0 of subsets of

Xn by Xn,0 = Xn and

Xn,m =
{
s ∈ Xn ; max{f (1)

n (s), . . . , f (m)
n (s)} < 1/m

}
,

for m ≥ 1. We let m(n) := sup{m ≤ n ; Xn,m 6= ∅}; and for each integer k ≥ 1,

let Yk := {n ∈ N ; k ≤ m(n)}. Fix some k ≥ 1. By assumption there exists

s = (sn) ∈
∏
nXn such that f

(j)
ω (s) < 1/k for 1 ≤ j ≤ k. This entails that

there exists a set Zk ∈ ω such that f
(j)
n (sn) < 1/k for 1 ≤ j ≤ k and for all

n ∈ Zk. This again implies that Xn,k 6= ∅ for all n ∈ Zk; which finally shows that

m(n) ≥ min{k, n} for all n ∈ Zk. It follows that Zk \ {1, 2, . . . , k − 1} ⊆ Yk, from

which we conclude that Yk ∈ ω (because ω is assumed to be free). Now,

lim
n→ω

1

m(n)
= lim inf

n→ω

1

m(n)
≤ inf

k
sup
n∈Yk

1

m(n)
≤ inf

k

1

k
= 0.

By definition of m(n) we can find tn ∈ Xn,m(n) ⊆ Xn for each n ∈ N. Put

t = (tn)n≥1. Then f
(k)
n (tn) ≤ 1/m(n) for all k < m(n) by definition of Xn,m(n), so

f (k)
ω (t) = lim

n→ω
f (k)
n (tn) ≤ lim

n→ω

1

m(n)
= 0,

for all k ≥ 1 as desired. �

Let N be a W*-algebra with separable predual and let τ be a faithful normal tracial

state on N . Consider the associated norm, ‖a‖2,τ = τ(a∗a)1/2, a ∈ N , on N . Let

Nω denote the W*-algebra `∞(N)/cω,τ (N), where cω,τ (N) consists of the bounded

sequences (a1, a2, · · · ) with limω ‖an‖2,τ = 0. (As mentioned above, if ω is a free

filter, which is not an ultrafilter, then Nω is not a W*-algebra.)

Remark B.24.2. Since the pre-dual N∗ of the W*-algebra N is separable,

the algebra N ′ ∩ Nω contains a copy of the hyper-finite II1 factor R with sepa-

rable predual, if and only if, for each k ∈ N there exists a sequence of unital *-

homomorphisms ψn : Mk → N such that limn→∞ ‖[ψn(t), a]‖2,τ = 0 for all t ∈Mk

and a ∈ N , if and only if, there is a ∗-homomorphism ϕ : M2 → N ′ ∩Nω such that

t ∈ N 7→ t · ϕ(1) ∈ Nω is faithful. (It suffices to consider elements t in the centre

of N .)
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This equivalence was shown by Dusa McDuff, [550], in the case where N is a

factor. She gets moreover that N ∼= N⊗R, if and only if, N has a central sequence

that is not hyper-central. Such a II1 factor is called a McDuff factor.

The result below was proved by Y. Sato in [707, Lemma 2.1] in the case where A

is nuclear. We give here an elementary proof of this useful result, that does not

assume nuclearity of A. The result implies that the central sequence C *-algebra

Aω ∩ A′ has a subquotient isomorphic to the hyperfinite II1 factor R whenever

A has a factorial trace so that the corresponding II1 factor, arising from GNS

representation with respect to that trace, is a McDuff factor. In Remark ?? in the

next section we show how one can give an easier proof of the theorem below using

that the kernel Jτ of the natural *-morphism Aω → Nω is a so-called σ-ideal. The

proof given below does not (explicitly) use σ-ideals.

Theorem B.24.3. Let A be a separable unital C*-algebra, τ be a faithful tracial

state on A, let N be the weak closure of A under the GNS representation of A with

respect to the state τ , and let ω be a free ultrafilter on N. It follows that the natural

morphisms

Aω → Nω , A′ ∩Aω → N ′ ∩Nω

are surjective.

Proof. Let πA and πN denote the quotient mappings `∞(A) → Aω and

`∞(N) → Nω, respectively. Denote the canonical map Aω → Nω by Φ, and

let Φ̃ : `∞(A)→ Nω denote the map Φ ◦ πA.

We show that Φ: Aω → Nω is surjective: If x = πN (x1, x2, . . . ) is an element

in Nω, then, by Kaplansky density theorem, there exists ak ∈ A with ‖ak‖ ≤
‖xk‖ and with ‖ak − xk‖2,τ ≤ 1/k. It follows that (a1, a2, . . . ) ∈ `∞(A) and that

Φ̃(a1, a2, . . . ) = x.

To prove that the natural map A′ ∩ Aω → N ′ ∩Nω is surjective, it suffices to

show that if b = (b1, b2, . . . ) ∈ `∞(A) is such that Φ̃(b) ∈ Nω ∩ N ′, then there is

an element c ∈ `∞(A) such that πA(c) ∈ Aω ∩ A′ and Φ̃(c) = Φ̃(b). Let such a

b ∈ `∞(A) be given, put B = C∗(A, b) ⊆ `∞(A), and put J = (Φ̃)−1(0)∩B. Notice

that an element x = (x1, x2, . . . ) ∈ `∞(A) belongs to the kernel (Φ̃)−1(0) of Φ̃ if

and only if limn→ω ‖xn‖2,τ = 0. Notice also that ba− ab ∈ J for all a ∈ A.

Let (d(k))k≥1 be an increasing approximate unit for J consisting of positive con-

tractions which is asymptotically central with respect to the separable C *-algebra

B. Then

0 = lim
k→∞

‖(1− d(k))
(
ba− ab

)
(1− d(k))‖

= lim
k→∞

‖(1− d(k))b(1− d(k))a− a(1− d(k))b(1− d(k))‖

for all a ∈ A.

We use the ε-test (Lemma B.24.1) to complete the proof:

Let (ak)k≥1 be a dense sequence inA. Let eachXn be the set of positive contractions
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in A. Define f
(k)
n : Xn → [0,∞) by

f (1)
n (x) = ‖x‖2,τ , f (k+1)

n (x) = ‖(1−x)bn(1−x)ak−ak(1−x)bn(1−x)‖, k ≥ 1 .

Notice that f
(1)
ω (d(`)) = limn→ω ‖d(`)

n ‖2,τ = 0 for all ` because each d(`) belongs to

J . Note also that

f (k)
ω (d(`)) = ‖(1− d(`))b(1− d(`))ak − ak(1− d(`))b(1− d(`))‖.

It is now easy to see that the ε-test in Lemma B.24.1 is satisfied, so there exists a

sequence d = (dn)n≥1 of positive contractions in A such that f
(k)
ω (d) = 0 for all k.

As f
(1)
ω (d) = 0 we conclude that Φ̃(d) = 0 .

Put c = (1− d)b(1− d). Then Φ̃(c− b) = 0, so Φ̃(c) = Φ̃(b). Since f
(k)
ω (d) = 0,

we see that cak − akc = 0 for all k ≥ 2. This shows that πA(c) ∈ Aω ∩A′. �

Correction to:

‘The UCT, the Milnor Sequence, and a Canonical Decomposition of the Kas-

parov Groups’ Author: Schochet C.L.

Source: K-theory, Volume 14, Number 2, June 1998 , pp. 197-199(3)

Publisher: Springer

Abstract: In this note we correct a mistake in K-Theory 10 (1996), 49–72. In

that paper we asserted that under bootstrap hypotheses the short exact sequence

(injective at the beginning and surjective at the end):

lim
←−

1 HomZ(K∗(Ai),K∗(B))→ Ext1
Z (K∗(A),K∗(B)) → lim

←−
Ext1

Z (K∗(Ai),K∗(B))

which arises in the computation of KK∗(A,B) is a split sequence. This is not

always the case. Thus KK∗(A,B) decomposes into the three components

HomZ (K∗(A),K∗(B)), lim
←−

Ext1
Z(K∗(Ai),K∗(B))

and

lim
←−

1 HomZ(K∗(Ai),K∗(B)).

However, this is a decomposition in the sense of composition series, not as three

direct summands. The same correction applies to the Milnor sequence. If there is

no prime p for which both K∗(A) and K∗(B) have p-torsion then the decomposi-

tion is indeed as direct summands. The other results of the paper are unaffected.

Keywords: KK-theory; Kasparov groups; Universal Coefficient Theorem; Milnor

sequence; KK-filtration; fine structure

Language: English Document Type: Regular paper

Affiliations: 1: Mathematics Department, Wayne State UniversityDetroit, MI

48202, U.S.A. E-mail: claude@math.wayne.edu





APPENDIX C

Temporary (!!) monitor and To-Do List

1. Circulation of Changes

We still have no example of a nuclear separable C *-algebra that is purely

infinite but is not strongly purely infinite !!! (2014, first discussed ?).

On simple C*-algebras A this two properties are the same! (For obvious reason!)

Def. equivalent to ”purely infinite” (p.i.):

The element a ∈ A+ is ”purely infinite” if a⊕ a - a (inside M2(A) and means

there that diag(a, a) - diag(a, 0) ). Here one can take also non-positive a ∈ A with

a⊕ a - a, because a ≈ a∗a ≈ (a∗a)∗ = a(a∗).

This is equivalent to the property of a ∈ A that If b ∈ A+ and b 6= 0 is in the

closed ideal I(a) of A generated by a, then b⊕ a - a.

( This is equivalent to a⊕ a - a and is the original definition of a being ”p.i.”

given by J. Cuntz ! Give here precise Citation of Definition in paper of Cuntz!!! )

The Definition C.1.1 is equivalent to a⊕ a - a for all a ∈ A+.

In general a ∈ A+ is called ”infinite” if there exists non-zero x ∈ A with

x⊕ a - a.

Lemma:

, Let A a C*-algebra and X ⊆ A a countable subset of A. The there exists a

( separable) C*-subalgebra B of A with the properties that X ⊆ B and for all

elements c, d ∈ K(`2)⊗B holds:

c - d in K(`2)⊗B, if and only if, c - d in K(`2)⊗A.

This separable C*-subalgebra B of A is mostly much bigger then the C*-

subalgebra generated by the separable X, but B is still a separable C*-algebra.

Moreover one can manage (by suitable enlarging of B by its construction) that

B is nuclear if A is nuclear.

(But notice here that exactness is anyway a hereditary property! And remind

that exactness is the same as Subnuclearity.) Give here citation!

This implies not only that elements of B are infinite (resp. purely infinite) in

B, if and only if, this elements are infinite (resp. purely infinite) in A (which is

usually a weaker property). This property of B implies also that each closed ideal

J of B is the intersection I ∩B = J

1287
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Definition C.1.1. A (non-zero) C*-algebra A is called purely infinite, if and

only if,

(i) The C*-algebra A has no characters, and

(ii) for every element a, b ∈ A+ \ 0 with b in the closed ideal I(a) of A, gener-

ated by a, there is a sequence of elements c1, c2, . . . ∈ A with limn c
∗
nacn =

b. (In the sense limn ‖b− c∗nacn‖ = 0.)

Observations concerning Definition C.1.1:

Part (ii) of the Definition C.1.1 of purely infinite (p.i.) C*-algebras A (also

called ”properly infinite” C*-algebras ?) is equivalent to:

For each d1, d2 ∈ A, a ∈ A+ and ε > 0 there exists d3 ∈ A with

‖d∗1ad1 + d∗2ad2 − d∗3ad3‖ < ε .

This equivalence can be shown by complete induction, because each element b ∈
I(a)+ for the closed ideal I(a) of A generated by a can be approximated arbitrary

near by elements of the kind

e∗1ae1 + e∗2ae2 + · · ·+ e∗naen ∈ I(a)+ .

We discuss here the ”permanence properties” of this definition of purely infinite

(= properly infinite ?) C*-algebras:

Proposition C.1.2. The class of purely infinite C*-algebras A as defined in

Definition C.1.1 has following permanence properties:

(i) Quotients, ideals, and hereditary C*-subalgebras,

(ii) Inductive limits of purely infinite C*-algebras,

(This is still not proven !!! But every positive element a ∈ A+ of

an inductive limit is the limit of a sequence of properly infinite positive

elements. It seems that the limit of p.i. elements is p.i., which gives the

proof.)

(iii) Every separable subset X of A is contained in a separable purely infinite

C*-subalgebra B of A. Moreover one can find such B with the property

that each ideal J of B is the intersection IcapB = J of a closed ideal of

B.

(Then X contained in B, that can be much bigger than C∗(X) ⊆ A.

Can we manage to find such a C*-subalgebra B that is in addition

relatively weakly injective in A? Unfortunately: It is Not known!?)

( But what about extensions? )

Observations:

Question: Can we prove that (all sorts of) purely infinite C*-algebras have the

Cuntz property:

For all a ∈ A+ holds a⊕ a - a.

This property should work also for inductive limits.
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If this is shown than one must show that Cuntz-pi of A implies that A is a p.i.

C*-algebra.

(But this depends from the definition of ”p.i.” etc.)

(It is then to show that hereditary C*-subalgebras of D of A have no characters.

But that is equivalent to the property that ρ(A)∩K(H) = {0} for each irreducible

representation ρ : A 7→ L(H) of A holds that ρ(A) ∩K(H) = 0.)

Remark C.1.3. Notice that, moreover, one can manage to find separable C*-

subalgebras Aτ of A in part (iv) of Proposition C.1.2 that are in addition relatively

weakly injective in A.

This follows from the general observation that each separable C*-subalgebra

B of A is contained in a separable C*-subalgebra D of A that is relatively weakly

injective in A, i.e. there exist a completely positive contraction E : A→ D∗∗ with

E(d) = d for all d ∈ D.

Where is this (= the latter) shown ?

Proof. Ad(i): Suppose that A is a p.i. C*-algebra, and J ⊂ A a (non-zero)

closed ideal. Then J and A/J can not have no characters.

(See considerations below.)

The part (ii) of Definition C.1.1 is moreover shown for all hereditary C*-

subalgebras.

Ad(ii): The case of inductive limits:

Since, by part (i), the properties of purely infinite C*-algebras pass to (non-

zero) quotients we can suppose that A is the inductive limit of C*-subalgebras

Aτ ⊆ A of A and the Aτ are purely infinite.

If A is a C*-algebra with a character ξ then every (e.g. separable) C*-

subalgebra B of A is in the kernel of ξ or the restriction ξ|B to B is a character.

Thus, if A is an inductive limit of C*-algebras Aτ without characters, then A has

no character.

Suppose that A is an inductive limit of an upward directed net of C*-

subalgebras Aτ ⊆ A and each Aτ is purely infinite. Then for each a, b ∈ A+ with

the property that b is contained in the closed ideal J of A generated by a, and

each chosen δ ∈ (0, 1) (small enough) there exists n ∈ N and d1, . . . , dn ∈ A with

‖b−
∑
k d
∗
kadk‖ < δ.

The problem is about the estimates ...

can be simplified if we use that we must show only that there exists for each

d1, d2 ∈ A and ε > 0 an element d3 ∈ A with the property that

‖d∗3ad3 − d∗1ad1 − d∗2ad2‖ < ε .
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Let γ > 0 (sufficiently small) and find b, e1, e2, e3 ∈ Aτ , with norms of a − b,
dj − ej (j = 1, 2) with norms below γ, and

‖e∗3be3 − e∗1be1 − e∗2be2‖ < γ .

then ?????????

??? This gives ???:

For each b ∈ A+ and each positive element c of the closed ideal J generated by

b there exists a sequence of elements xn ∈ A such that ‖c − x∗nbxn‖ converges to

zero.

Have the same problem: norm- estimate ‖e∗3be3 − e∗3ae3‖ and a way to come

from a to b ...

dj − ej for j = 1, 2, a− b have to be estimated:

Now we take γ > 0 small enough such that

e− b, a− f , gk − dk

‖e− b‖ , ‖a− f‖, ‖gk − dk‖ < γ can be chosen arbitrary small?

Find Aτ ⊆ A, such that it contains ????

Find h ∈ Aτ with ‖h∗fh −
∑
k g
∗
kfgk‖ (arbitrary small !) say < µ for some

before given µ > 0.

The problem is: ‖h‖ and ‖h∗fh− h∗ah‖ <???.

???? we can find Aτ ⊆ A and e, f, ? ∈ Aτ ????

Has to be studied more careful !!! It seems that the cut-down possibility (a−ε)+

plays a role ...

(1) If J ⊆ A is a nonzero closed ideal of A with J 6= A then J and A/J have

no characters:

Obviously all (closed) ideals J of A and quotients A/J have no characters if A

has no characters, because each character ξ of A/J defines the (non-zero) character

a 7→ χ(a) := ξ(πJ(a)) on A. But this can not exist by property (i) of A.

And if η is a character of J with kernel K. Then K is a closed ideal of A and

J/K ⊆ A/K is a closed ideal of A/K that is one-dimensional. Thus, J/K = C · p
for some projection p ∈ A/K. Since J/K is a closed ideal of A/K this implies that

x 7→ xp ∈ C · p for x ∈ A/K defines a character on A/K. Above we have seen that

the quotients A/K can not have a character. Thus, J can not have a character.

So far we have seen that closed ideals and quotients of A can not have a

character.

(The question about characters of hereditary C*-subalgebras of A will be con-

sidered further below in ????? .... )

Here is the general observation concerning this direction:
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Lemma:

Let D ⊆ A a hereditary C*-subalgebra of A (i.e. D = DAD = DAD) and I ⊆ D

a closed ideal of D. Then the closed ideal J ⊆ A of A generated by the hereditary

C*-subalgebra I of A has the property that J ∩D = I.

Remark:

The same happens with von-Neumann algebras M : Let P ∗P = P ∈M a projection

and Q a projection in the centrum c(PMP ) of PMP . Then let R in the centre c(M)

of M the smallest projection with the property RQ = Q, which means equivalently

that RM = RMR is the weak closure (i.e. the σ(M,M∗)-closure) of the linear span

of MQM .

Then R is the smallest projection in the centrum c(M) of M with the property

that RQ = Q, and it turns out that R, P and Q satisfy that RP = Q.

(3) Now let D ⊆ A a (non-zero) hereditary C*-sub-algebra of A. Suppose

that D has a character, say η. Let I ⊆ D denote the kernel-ideal of η. Then the

closed ideal J of A generated by I has the property that J ∩D = I (It is an exercise

Lemma! Cited above.) and that – therefore – C ∼= D/I ⊆ A/J is a one-dimensional

hereditary C*-subalgebra of A/J that is naturally isomorphic to C

and is needed for what ???

Thus, A/F contains an isomorphic image of some algebra of compact compact

operators ... on a Hilbert space (of dimension ≥ 1). But this was excluded by the

requirements that no hereditary C*-sub-algebra of A has a character.

(0) The elements cn in Part (ii) can be taken in aAb because the Part (ii) of

this definition can be expressed equivalently:

If nonzero b ∈ A+ is contained in the closed ideal of A generated by a ∈ A+

then, for every 0 < ε < ‖b‖, there exists δ > 0 and d ∈ A with d∗(a−δ)+d = (b−ε)+.

In particular, the Part(ii) passes automatically to all (non-zero) hereditary C*-

subalgebras D ⊆ A of A, i.e., if A is p.i., then D satisfies Part (ii) of Definition

C.1.1.

Let J ⊆ A a closed ideal and x, y ∈ (A/J)+ such that y is in the closed ideal

of x ∈ (A/J)+, and ε ∈ (0, ‖y‖).

Then there exist elements a ∈ A+ and d1, . . . dn ∈ A with πJ(a) = x and

‖πJ(b)−y‖ < δ for b := d∗1ad1 + · · ·+d∗1ad1 and δ := ε/3. By Part (ii) of Definition

C.1.1 there exists c ∈ A with ‖c ∗ ac− b‖ < δ. Thus, ‖πJ(c)∗xπJ(c)− y‖ < ε .

The Parts (i) is also satisfied for D: Suppose that D has a character φ, then

there exists a contraction e ∈ D+ with φ(e) = 1. It extends to a pure state ρ on A.

(Because in general states of D extend to states on A. Then the extreme points of

this extensions turn out to be pure state on A.)

And then ???

x, y ∈ (A/J)+ �
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(XXXX????)

It is not clear if strong pure infiniteness and the pure infiniteness are really

different !!!

Here is a definition that is equivalent to ”strongly purely infinite” (s.p.i.):

If S = [aj,k] ∈ M2(A)+ then there exists a sequence of diagonal matrices

Tn = sn⊕tn ∈M2(A) such that T ∗nSTn converges to the diagonal matrix a1,1⊕a2,2.

(Gives s∗na1,1sn ≈ a1,1, t∗na2,2tn ≈ a2,2, s∗na1,2tn ≈ 0, and t∗na2,1sn ≈ 0.)

Gives with aj,k := a for all cases j, k ∈ {1, 2} that a is properly infinite in A,

because s∗nasn ≈ a, t∗natn ≈ a s∗natn ≈ 0. It is equivalent a⊕ a - a, by considering

the case a1,1 := a, ai,j = 0 for (i, j) 6= 0.

Need to show my and others notations and definitions!

Definition of: ”approximately divisible” ?? where ??? Def. of: ”???” etc.

Some old citation changes:

Lemma ?? (Old Ref. lem:2.pure.state.excision ) was A.1.24 or: A.old.2.4 ??

Lemma ?? (Old Ref. lem:2.pure.state.excision ) or: A.old.2.4 also in old: A.8.1

Only 1-cited in proof of Lemma 2.2.3.

Lemma A.6.1 old A.1.9.

Lemmas = Lemmata ?? – ??? now named ??? (Old Ref. lem:2.pure.state.excision

)

New 2.1.22 = old.. lem:A.old.3.4c, also ??? old A.1.24 (=lem:A.old.2.4) - old

A.1.28,

2. Proposed changes (1)

Change it now, because it can produce misunderstandings !

1.) General notations for matrices (to be decided and then changed where

different notation was used):

Adjust in all chapters the use of

Mm,n(A) ∼= A⊗Mm,n(C) ∼= Mm,n(C)⊗A

by this rules:

The columns with n-entries should be in (1, n) -matrices ... ∈ Mn,1(A) ... not

in M1,n(A) !!!

Lin. Alg. book of Boseck S.76: Matrix of type (m,n) has m rows and n

columns. Set of this matrices denoted by Am,n. Am,r ·Ar,n ⊂ Am,n .

M. Koecher: K(m,n) set of matrices with m rows and n columns. K(m,r) ·
K(r,n) ⊂ K(m,n) .

H. Anton: m× n-matrix has m rows and n columns. m× r-matrix multiplied

with r × n-matrix is m× n-matrix. Transposed matrix of A denoted by AT .
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H.-J. Kowalsky: (m,n) -matrix has m rows and n columns.

G. Strang: m× n-matrix has m rows and n columns:

All have first rows: a1,1, a1,2, a1,3, ... next row: a2,1, a2,2, a2,3, ...

TO DO LIST: from Nov. 2014!!! Not done July/Aug 2021!!!

Adjust in all chapters of the book the use of ∼ and ≈ !!!

And the same with [a]∼, 〈a〉∼, [a]≈, 〈a〉≈ .
Also adjust all the matrix calculations to the above

cited terminology. ??

Chp 1. Careful check of Introduction.

Ad Chp.2:

Ad 2.1. Shorten: bundle version of C(X,A) with simple A.

Ad 2.2. Other parts only as overview article.

Ad Chp. 3. Check what is really needed later.

It would be good if we could show that:

Question:

Let A denote a separable exact unital C *-algebra and consider a unital nuclear

c.p. contraction V : A→M(O2 ⊗K) with V (a∗a)− V (a)∗V (a) ∈ O2 ⊗K.

Find a c.p. extension W : A⊗O2 →M(O2⊗K) with W (a⊗1)−V (a) ∈ O2⊗K
for a ∈ A and W (x∗x)−W (x)∗W (x) ∈ O2 ⊗K for x ∈ A⊗O2.

Perhaps, we can replace O2 by the infinite tensor product O2 ⊗ O2 ⊗ · · · and

try to adjust V with help of suitable elements of 1 +O2 ⊗K ... ???

In particular it should be interesting for nuclear A. (It is true if A is in

the UCT-class. Perhaps here is a critical point if canceling the important UCT-

assumption.)

( < −− Why it is true in UCT-class ?)

For exact A the question is less interesting because we can replace A by A⊗O2

at beginning of the embedding-proof for exact A in O2.

Since O2
∼= O2 ⊗ O2 ⊗ · · · , it is likely that O2 has the property that any

separable C *-subalgebra of Qs(O2) commutes with a unital copy of O2 in Qs(O2).

(Qs(O2) means here the ”stable” corona M(O2 ⊗K)/O2 ⊗K of O2 ?)

It could replace homotopy invariance considerations, because otherwise one gets

only unital embedding of A⊗O2 that are “extremal” in O2 for nuclear A but are

not extremal for A itself. (What means here “extremal”?)

It seems to be necessary to study following questions:
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Question: If A is a separable unital nuclear C *-algebra and ϕ : A → Qs(O2)

a unital *-monomorphism where

Qs(O2) := Q(O2 ⊗K) :=M(O2 ⊗K)/(O2 ⊗K)

It is likely that ϕ extends to ψ : A⊗O2 → Qs(O2) with ψ(a⊗ 1) = ϕ(a).

”Likely” only ???

Look what happens with the unital c.p. maps V from Mn to Qs(O2). Try to

find an ”arbitrary” small perturbation W of V that commutes with a unital copy

of O2 in Qs(O2).

Alternatively we could proof that:

Nuclear *-monomorphisms φ of exact unital separable A into s.p.i. “corona”

spaces C extends to A⊗O∞, i.e., that φ(A)′ ∩ C has a properly infinite unit.

(Where this is proved? Could prove?)

(What about c.p. maps from Mn to C? By doubling the rows that define this

maps ?)

Should be a consequence of a conclusion of a generalized Weyl–von-Neumann

theorem that could prove that φ dominates φ ⊕ φ. If C is s.p.i., e.g. in the case

where C is the corona C = Qs(B) of a σ-unital strongly p.i. C *-algebra B.

It gives that φ extends at least to ψ : A ⊗ O∞ → C with ψ(a ⊗ 1) = φ(a).

Remind here the definition of the Cuntz algebra:

O∞ := C∗(s1, s2, . . . ; s
∗
jsk = δjk1 ) .

Then ψ(1⊗p) for p = 1−s1s
∗
1 is the unit of a copy of O2 in pO∞p, and q := ψ(1⊗p)

is a full properly infinite element of C with 0 = [q] ∈ K0(C). (The embedding γ of

O2 in pO∞p will be denoted by γ : b ∈ O2 7→ γ(b) ∈ pO∞p and satisfies γ(1) = p.)

If, in addition, the algebra C has a properly infinite unit 1 with 0 = [1] ∈ K0(C)

(– as it is the case e.g. for all stable coronas C := Qs(B) or for quotients C of

Qs(B)∞ –) then there is an isometry T ∈ C with TT ∗ = q. (In fact, the requirement

that ψ(1⊗ p) is full and properly infinite implies that 1 is properly infinite in C.)

We can define a new unital ψ0 : A⊗O2 → C by ψ0(a⊗ b) := T ∗ψ(a⊗ γ(b))T .

Then a 7→ φ0(a) := ψ0(a ⊗ 1) is a nuclear unital *-monomorphism that com-

mutes with a copy of O2 unitally contained in φ0(A)′ ∩ C.

We can define φ back from this map by

φ(a) = ψ(a⊗1) = ψ(1⊗s2)∗ψ(a⊗p)ψ(1⊗s2) = (ψ(1⊗s2)∗T )ψ0(a⊗1)(T ∗ψ(1⊗s2)) .

Notice that V := T ∗ψ(1⊗s2) is an isometry with 1−V V ∗ full and properly infinite

in O2.

The remaining problem is the following:

Suppose that the “liftable” copy (in sense of given split extension) λ : A⊗O2 →
???? ???
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Now suppose that there exists a (“liftable”) nuclear unital *-monomorphism

λ : A⊗O2 → C with the property that there exists sequences of isometries t1, t2, . . .

and r1, r2, . . . such that, for all a ∈ A, λ(a ⊗ 1) = limn t
∗
nφ0(a)tn and φ0(a) =

limn r
∗
nλ(a⊗ 1)rn.

Apply a “fitting together” procedure to get with properties of the “corona

algebra” that there are isometries t and r with r∗λ(a⊗1)r = φ0(a) and s∗φ0(a)s =

λ(a ⊗ 1) for a ∈ A. Since both commute with (different ) unital copies of O2 in

its commutants it follows from Corollary 4.3.7 that φ0 and λ((·) ⊗ 1) are unitary

equivalent in C. (If C is a stable corona, then this equivalence is given by a product

of exponentials.)

In particular: check the material of concurring sections.

Use the beamer presentations (Muenster !!! details???), compare with its con-

tents.

Add needed case:

A ⊆ M(D), D ⊆ M(B) non-degenerate (necessary ??? only for M(D) ⊆
M(B), could be e.g. enough that DBD is a corner of B), D s.p.i.)

Then residually nuclear V : A→ B

– with respect to the action

J ∈ I(B) 7→ A ∩M(D,D ∩M(B, J))

–, is 1-step approximately inner in M(B).

(Or is section 2.2 ?? of Chp.???? 2? the right place for the proof of this?).

We could use the minimality of the m.o.c.c. of residually nuclear c.p. maps

among the cones with same invariant ideals:

It is enough to consider separable A, because non-separable A is the inductive

limit of a net of separable C *-sub-algebras Aτ ⊆ A with the following additional

properties:

For each countable subset X ⊆ A there is an separable Aτ with X ⊆ Aτ .

Each closed ideal of Aτ is the intersection of a closed ideal of A with Aτ , and Aτ

is residually relatively weakly injective in A in the sense that (Aτ/(Aτ ∩J))⊗maxF

is naturally a C *-subalgebra of (A/J)⊗max F for each C *-algebra F .

(It seems to turn out that it suffices to consider here only separable C *-algebras

F ?)

If A s.p.i. then Aτ can be chosen such that Aτ is in addition s.p.i.

It implies that the restriction V |Aτ of V to Aτ of each residually nuclear map

V : A → B with respect to some l.s.c. action Ψ of PrimB on A is also residually

nuclear with respect to the induced action of PrimB on Aτ , i.e., for I := Ψ(J) and

Iτ := I ∩ Aτ := Ψτ (J) holds: V (Iτ ) ⊆ J and [V |Aτ ] : Aτ/Iτ → B/J is nuclear,
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because [V |Aτ ] is equivalent to the restriction of [V ] : A/I → B/J to πI(Aτ ) ⊆ A/I
by the isomorphism [πI ] : Aτ/Iτ → πI(Aτ ).

If Bτ is a separable C *-subalgebra of B such that V (Aτ ) ⊆ Bτ , “symbolic”

invariance HΨ(Aτ )Bτ ⊗ K ⊆ Bτ ⊗ K, each closed ideal of Bτ is the intersection

of a closed ideal of B with Bτ and Bτ is residually weakly injective in B, then

V |Aτ : Aτ → Bτ is still residually nuclear with respect to the “induced” action

Φ: I(Bτ )→ I(A) given by Φ(J) := Ψ(BJB) ∩Aτ .

Here we simplify notation:

BJB denotes the closed linear span of the set of products b1cb2 with c ∈ J and

b1, b2 ∈ B. Indeed, J = Bτ ∩BJB,

V (Φ(J)) ⊆ V (Aτ ) ∩BJB ⊆ Bτ ∩BJB = J

and [V ] : Aτ/Φ(J) → Bτ/J is nuclear, because V (Aτ ) ⊆ Bτ , [V ] : Aτ/Φ(J) =

Aτ/(Aτ ∩ BJB) → B/BJB is nuclear, and there is a natural isomorphism from

Bτ/J onto π(Bτ ) ⊆ B/BJB which is relatively weakly injective in B/BJB by

assumption.

Another question is to find suitable separable C *-sub-algebras Bτ of B such

that for a given action H(Aτ )Bτ ⊆ Bτ and, for J ∈ I(B),

(H|Aτ )−1(M(Bτ , J ∩Bτ )) = Aτ ∩H−1(M(B, J)) .

More generally: Let E ⊆ M(B) and F ⊆ B separable C *-subalgebras, S a

countable family of closed ideals of B.

Find a separable C *-subalgebra C ⊆ B that contains F and satisfies EC ⊆ C,

each closed ideal I of C is the intersection I = C ∩ J of a closed ideal J of B with

C, and E ∩ M(B, J) = H−1(M(C,C ∩ J)) for all closed ideals J of B (for the

*-homomorphism H : E →M(C) with H(e)c = ec for e ∈ E and c ∈ C).

What about the desire that C is relatively injective in B? Or is approximately

injective in B?

Can we find such C with the additional property that there exists a normal

conditional expection from B∗∗ (or from D∗∗ with D := CBC) onto C∗∗? Perhaps,

this seems to be equivalent to the injectivity of the natural morphism

C ⊗ F 7→ B ⊗ F

for all (separable) C *-algebras F .

Reduce to separable case? Here necessary?

The idea would be to compare the composition Cnuc of the l.s.c. action Ψ1 of

PrimB on D composed with Cnuc of the l.s.c. action Ψ2 of PrimD on A with the

Cnuc of the l.s.c. action of PrimB on A:

If the composition Ψ2 ◦Ψ1 defines the same action as Ψ, and if the m.o.c. cone

Cnuc(Ψ2;A,D) and Cnuc(Ψ1;D,B) separate Ψ2 respectively Ψ1, then the minimality
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of Cnuc(Ψ;A,B) among the m.o.c.c. with same induced action delivers that

Cnuc(Ψ;A,B) ⊆ Cnuc(Ψ2;A,D) ◦ Cnuc(Ψ1;D,B) .

Since – at the present state of text – we do not know that (for separable A, B

and D) every l.s.c. action Ψ between there ideal lattices can be separated by the

corresponding m.o.c.c. of Ψ-residually nuclear maps, we get some more work:

We have to show that we can the question reduce to the cases of (other) separa-

ble A, B and D with the additional property that B and D contain regular abelian

C *-subalgebras C.

WHERE is ”regular C *-subalgebra” defined?

Perhaps by the property that each pure state can be extended to a pure state

in a unique manner?

We fix a residually nuclear c.p. map V : A→ B with respect to an action Ψ of

Prim(B) that has the following property:

The – lower semi-continuous – action Ψ: I(B) → I(A) is given by Ψ(J) :=

H−1(M(B, J)) where H : A→M(B) is a *-homomorphism with the property that

H – in the topology of point-wise strict convergence – 1-step innerly approximately

factorizes through H1 : A→M(D) and H2 : D →M(B) in a sense that the maps

a 7→ b∗H(a)b can be approximated in point-norm topology of maps of the form

a 7→ c∗H2(d∗H1(a)d)c for suitable c ∈ B and d ∈ D depending on b ∈ B. Moreover

we require that D is strongly p.i.

Since it suffices to show that for given a1, . . . , an ∈ A+, and ε > 0 there is

b ∈ B with ‖V (aj)− b∗H(aj)b‖ < ε for j = 1, . . . , n, it suffices to consider suitable

separable C *-sub-algebras Aτ , Bτ and Dτ of A, B and D, such that a1, . . . , an ∈ Aτ
and that the Aτ , Bτ , Dτ same property the restrictions of H, H1 and H2 have the

same

This can be done by replacing first A by its “good” separable C *-algebras Aτ

that contains a1, . . . , an – as described above. Since V (aj) is contained in the closed

ideal generated by b∗H(aj)b (b ∈ B) and is – at the same time – also in the closed

ideal generated by c∗H2(d∗H1(aj)d)c (c ∈ B, d ∈ D) we find a separable C *-sub-

algebra Aτ 3 a1, . . . an of A, a separable C *-subalgebra Bτ of B and a separable

strongly p.i. subalgebra Dτ of D such that H(Aτ )Bτ ⊆ Bτ , H2(Dτ )Bτ ⊆ Bτ ,

H1(Aτ )Dτ ⊆ Dτ and that a 7→ b∗H(a)b can be approximated by the restrictions

to Aτ .

Then we replace D and B by suitable σ-unital hereditary C *-subalgebras Dτ

and Bτ such that H1(Aτ )Dτ = Dτ and H2(Dτ )Bτ = Bτ .

This is possible, because ?????

The following covers only the case where the action of prime(B) on A is also

monotone upper s.c.

Can’t see any reason for this!
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The good approach to separable Dτ and Bτ is the study of the Dini-function:

X Dini-space, Y locally q-compact sober T0 space, e.g. X := Prim(A), Y :=

prime(B). Ψ: O(Y )→ O(X) l.s.c. and monotonous upper s.c. Then (equivalently)

each Dini-function f on X defines a a Dini function on Y .

Since the set of Dini-functions on X (e.g. X = Prim(A)) is uniformly separable,

one has to find in a C *-algebra corresponding to Y a sequence of elements that

correspond to a dense sequence in the image of the Dini functions on X.

Then one enlarge it to a suitable Bτ with all the needed properties.

Older approach:

(1) Reduction to A separable, D and B σ-unital. Then all can be reduced to

the case where D, B are also separable, by careful selection of the separable full

C *-sub-algebras of B and D that have the same “semi-metrics” ρ(a, b;n) ∈ [0,∞]

than those coming from B respectively from D.

(Use here: If A separable, then V (A) ⊆ B generates a separable C *-

subalgebra.)

(2) Then consider the maps that factorize over abelian C *-subalgebras of Dω ⊆
M(B)ω →M(Bω).

(2’) Or (perhaps better), consider equivariant c.p. maps A→ Dω that factorize

over abelian C *-subalgebras of Dω. Approximate them by 1-step inner c.p. maps.

(3) Then go from separable abelian C *-subalgebras C ⊆ Dω →M(Bω) equi-

variant to Bω and approximate the residually nuclear c.p. maps by 1-step inner

maps.

Use here the embedding C ⊆ C ⊗O∞ ⊆ Dω

(4) Show that the maps from (1)-(3) define the l.s.c. action of I(Bω) → I(A)

of prime(Bω) on A.

(5) Show that the point norm closure of the set of maps A → Bω defined by

(1)-(3) is an m.o.c. cone. (The convexity via Cuntz criterion has to be shown).

(6) All? ???

Passage to the non-degenerate case by compressions:

B and D first by the hereditary C *-subalgebras C := ADAB · (Bω) · BADA
and E := AD · (ADA)ω ·DA (that is naturally contained in the multiplier algebra

M(C) of C) of the ultra-powers of B and E, to obtain separable “regular” abelian

C *-subalgebras, that are suitable for the problem.

One of the points is to show that residual nuclear V : A → B is also residual

nuclear as map from A into C – one with respect to the l.s.c. action Ψ1 of I(B)

on I(A), the other with respect to the l.s.c. action Ψ2 of I(C) on I(A) –, which

needs a check that I := Ψ2(J) = Ψ1(J ∩B). Then [V ]I : A/I → B/(J ∩B) ⊆ C/J
is again nuclear, and it follows that V : A→ C is again residually nuclear.
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Now fix a residually nuclear map from V : A → B. We find separable C *-

algebras F of C and G of E such that AG = G, GF = F , G is strongly p.i., G and

F contain regular Abelian C *-subalgebras, each closed ideal of G is the intersection

of a closed ideal of E with G, each closed ideal C

????????????????

Concerning work on Chp. 4. :

4a) Perhaps: Study of K1-injectivity on extra place?

Give short !!! proof of Cuntz lemma on ” full properly infinite projections ” ?

4b) Clean presentation of the “basic proposition”? Now a Theorem ?

4c) Again case: A ⊆ E (via H0) J ideal of E, V : A→ J 1-step inner (approx-

imately ?).

Suppose E ⊃ A separable, for all separable X ⊆ E and Y ⊆ J , there exists a

positive contraction e ∈ E (?) with ex = xe for all x ∈ X and ey = y = ye for all

y ∈ Y .

How the Grothendieck group looks like?

When there is a “majorizing” element? At least of larger semigroup?

Consider an abelian semigroup S with following property:

There exists x1 ∈ S with:

For each x ∈ S there exists y ∈ S with x + y = x1. Then there exists x0 with

2x1 + x0 = x1. Thus 2x0 + 2x1 = x0 + x1. Then x+ y + x0 + x1 = x0 + 2x1 = x1

shows that S + x1 is a subgroup of the semigroup S, and is isomorphic to the

Grothendieck group of S and its ”zero” element is equal x0 + x1.

(h1 : A→ J) ∈ S(A,E,H0, J) (last good notation?) with property:

If [h] ∈ S(A,H0, E) with h(A) ⊆ J we get/require that [h] ∈ S(A, h1, E).

Special case: x = s∗t∗H0ts, y =???, (1− ss∗)t∗H0(·)t(1− ss∗) ∈ S(A,H0, E).

implies h1 ⊕ h1 - h1 ?

Does it imply the existence and uniqueness of h0 ??

Ad Chp. 5

Ad 5a) Partial results for A ⊆ O2 perhaps only to list?

Anyway now shifted to Appendix B ?

At least of consequences of the more general results (on WvN, Ext)?

5b) More systematic “stable” section. Select only the later needed, e.g. for

asymptotic morphisms, Rørdam’s criteria ...

5c) Ext(C ; A,B) in case B s.p.i. “Kasparov for C”.
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5d) Homotopy invariance (even of Ext(A,O2) = Extnuc(A,O2)) follows first

from Kasparov’s homotopy invariance of KK -theory,

and from δ2 ∼ id on O2:

Perhaps one shows (before) that the unital endomorphism δ2 is unitarily homo-

topic to identity map of O2.

5e)

Ext(C ; A,B) in front of other Ext-notion?

5f) Characterization of “zero” element of Ext(C ; A,B):

B σ-unital and stable,

H : A⊗O2 ↪→M(B)/B,

A stable, A exact, inclusion H nuclear, in case of C = CPnuc(Ψ; A,B).

But H must be fitting with the related “action” Ψ.

It must be underlined that “stability” of the corresponding extension algebra

is only granted if the map H dominates zero.

(This is always reached if one tensors – again ? – with K.)

One problem is: When Qs(B) is strongly p.i? Same with M(B)?

Positive if B ∼= B ⊗ O∞ (∼= B ⊗ D∞). Then moreover every separable C *-

subalgebra of B “commutes approximately” with a unital copy of O∞ in B∞.

This should carry over to Qs(B). (Still a conjecture!)

Equivariant H:

πB(M(B, J))∩H(A⊗ 1) = H((A∩M(B, J))⊗ 1) for all closed ideals J of B.

It should follow that a 7→ H(a⊗1) is unitary equivalent to πB◦H0 : A→ Qs(B).

Important:

Is it better to start with the classification of A⊗O2 → Qs(B) nuclear?

It is not so useful in case of A nuclear and B = K⊗O2, because it would not

allow to show that the lift is the range of a c.p. projections that is an ?? what ??

in the set of unital positive maps.

5g) Is it possible to prove the triviality of

Ext(C; A ⊗ D2, B) and Ext(C; A,B ⊗ D2) directly? Not using KK ? (Here D2 =

O2 ⊗ O2 ⊗ · · · and the point is that we do not borrow the homotopy - invariance

from KK.)

Partly from suitable material from Chapter 3?

A general Theorem about unitary equivalence in Q(B) (for B stable and σ-

unital) of morphisms h1, h2 : A⊗O2 ↪→ Q(B) would be useful.
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Minimally necessary: h1(a⊗ 1) and h2(a⊗ 1) generate the same closed ideal of

Q(B) for each a ∈ A+.

There is (by some Corollary in 4) a unitary in Q(B) that makes them unitary

equivalent. The Q(B) is K1-bijective.

In case B = O2 ⊗ K we can use that B ∼= B ⊗ O2 ⊗ O2 ⊗ · · · . It gives that

any separable C *-subalgebra of Q(O2 ⊗ K) commutes with a unital copy of O2.

Since it commutes also with some countable approximations by c.p. maps of a C *-

morphism from a separable C *-algebra A into Q(O2 ⊗ K), and since Q(O2 ⊗ K)

has trivial K∗-groups

Similar problems appear in the study of Prim-space extensions. (By getting

them manageable by tensor them ⊗O2.)

E.g. if Hk(a) := hk(a⊗1) have weakly nuclear c.p. lifts, A separable and exact,

H1(a) and H2(a) generate the same ideal of Q(B) for each a ∈ A+.

If A is stable (respectively the corresponding general extension stable), then it

should be possible to give the equivalence by a unitary in U0(Q(B)).

The needed basic informations have to be developed (in parts) in Chapters 3

and 4.

Chp. 6:

Embedding Theorem needs the characterization of the “big zero-element” of

Ext(C ; A,B).

A exact, stable and separable, B stable, σ-unital and strongly p.i.

C = CPnuc(A,B)∩CP(Ψ;A,B) with Ψ: O(Prim(B))→ O(Prim(A)) l.s.c. and

monotone u.s.c. (that is weaker than u.s.c. ???)

Requires to use and study C ⊗ idO2
What is needed really and minimally?

Chp 7.

New chapter 7:

equal to old Chapter 10 (or 11?)

plus first parts of old Chapter 9.

More ????

3. List of Changes: labels and names

(Wanted: Ref. to Definition of “properly infinite element” c ∈ A+ ?) for

Reference ‘sec2:basics.factorize.infinite’ ??? Possible: 1

LaTeX Warning: Reference ‘NOref:WvN.Aomega.implies.WvN.A.?’ on page

48 undefined on input line 5174. (?? seems not to exist in book ??? chapter 12 ??)
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LaTeX Warning: Reference ‘thm:3.?black.out??PrfUses:WvN.implies.Spi’ on

page 48 undefined on input line 5187. [48]

eksec3..Part1.tex [236] Chapter 3

4. Ref’s and Cite to be fixed — not up to date

5. Temporary references / compare with my way

What is the precise definition of ”Cuntz semigroup”?

From Black.Robert.Tik.Toms.Wint.2010 [85]:

sec:2.2. The Cuntz semigroup. Let A be a C*-algebra. Let us consider on

(A ⊗ K)+ the relation a - b if vnbv
∗
n → a (i.e., the sequence (vnbv

∗
n)n converges

to a for the considered a, b ∈ (A ⊗ K)+) for some sequence (vn) in A ⊗ K. Let us

write a ∼ b if a - b and b - a. In this case we say that a is Cuntz equivalent to

b. Let Cu(A) denote the set (A⊗K)+/ ∼ of Cuntz equivalence classes. We use 〈a〉
to denote the class of a in Cu(A). It is clear that

〈a〉 6 〈b〉 ⇔ a - b

defines an order on Cu(A). We also endow Cu(A) with an addition operation by

setting

〈a〉+ 〈b〉 := 〈a′ + b′〉 ,

where a′ and b′ are orthogonal and Cuntz equivalent to a and b respectively (the

choice of a′ and b′ does not affect the Cuntz class of their sum). The semigroup

W(A) is then the sub-semigroup of Cu(A) of Cuntz classes with a representative in⋃
nMn(A)+.

Alternatively, Cu(A) can be defined to consist of equivalence classes of count-

ably generated Hilbert modules over A. The equivalence relation boils down to

isomorphism in the case that A has stable rank one, but is rather more compli-

cated in general. We do not require the precise definition of this relation in the

sequel, and so omit it; the interested reader may consult [5] or [1] for details.

[1] P. Ara, F. Perera, and A. S. Toms. K-theory for operator algebras. Classi-

fication of C*-algebras, Commun. Contemp. Math. To appear.(2008?)

[5] Coward, K.T., Elliott, G.A., Ivanescu, C., [2008], The Cuntz semigroup as

an invariant for C*-algebras, J. Reine Angew. Math. 623, 161–193.

” We note, however, that the identification of these two approaches to Cu(A) is

achieved by associating the element 〈a〉 to the class of the Hilbert module a`2(A).

If X is a countably generated Hilbert module over A, then we use [X] to denote its

Cuntz equivalence class; with this notation the sub-semigroup W(A) is identified

with those classes [X] for which X is finitely generated. ”

( E.K.: I can not see how this fits bijectively together with the - classes in

A⊗K...)

2.4. Functionals and Cu.
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Let S be a semigroup in the category Cu. A functional on S is a map λ : S →
[0,∞] that is additive, order preserving, preserves suprema of increasing sequences

and satisfies λ(0) = 0. We use F (S) to denote the functionals on S. We will make

use of a lemma, established in [268].

3. THE RADIUS OF COMPARISON

3.1.Original definition.

The radius of comparison was originally introduced in [18 ??] as an invariant

for unital C*-algebras. (18 is cited in [268])

Let A be a unital C*-algebra, and let QT1
2(A) denote the set of normalized 2-

quasi-traces on A. The radius of comparison of A, denoted by rc(A), is the infimum

of the set of real numbers r > 0 with the property that a, b ∈ t∞n=1Mn(A) (or noted

a, b ∈
⊔∞
n=1Mn(A) ) satisfy a - b whenever

dτ (〈a〉) + r < dτ (〈b〉), τ ∈ QT1
2(A) . (5.1)

By the results of Subsection 2.4 (??) (of which paper/book ??), this is equivalent

to the demand that x, y ∈ Cu(A) satisfy x 6 y whenever

λ(x) + r < λ(y) ,

for all λ ∈ F (Cu(A)) which are normalized in the sense that λ(〈1A〉) = 1. The

motivation for this definition comes from the stability properties of topological

vector bundles.

4.4.?? When is W(A) hereditary?

Recall that W (A) is the sub-semigroup of Cu(A) of elements 〈a〉 with a ∈
Mn(A)+ for some n. In fact, W(A) is the original definition of the Cuntz semigroup.

Here we consider the question of when this sub-semigroup is hereditary, i.e., has

the property that if x 6 y in Cu(A) and y ∈W(A), then x ∈W(A).

We prove that finite ”radius of comparison” suffices. This result was previously

unknown, even in the case of ”strict comparison”.

Theorem 4.4.1.???

Let A be a C*-algebra for which the projections in every quotient of A ⊗ K
are finite. Let a ∈ A+ be strictly positive and suppose that rA,a < k ∈ N . If

〈b〉 ∈ Cu(A) is such that

λ(〈b〉) 6 nλ(〈a〉) for all λ ∈ F (Cu(A)) ,

for some n ∈ N, then b is Murray–von-Neumann equivalent to an element of

M2(n+k)(A)+.

Lemma 4.4.2.???

If b1 and b2 are Murray–von-Neumann equivalent to elements in Mn(A) then

b1 + b2 is Murray–von-Neumann equivalent to an element in M2n(A).

(Case n = 1 checked ???)

Question 4.4.3.???



1304 C. TEMPORARY (!!) MONITOR AND TO-DO LIST

Is there a C*-algebra for which W(A) is not a hereditary subset of Cu(A)?

6. Collection of Definitions of pure infinite C*-algebras

In the separate paper is a shorter and more transparent (??) calculation of the

inequalities below?

Beginning here: Collections of Defs for p.i.

This is NOW (2022 !!!) only for my private use!!! (improving of estimates

started July 2021)

It could be useful for the study of extensions of p.i. algebras ???

The below considered estimates are used to prove and improve the following

estimate:

Let a, b ∈ A+ positive contractions, then, using polar decomposition of a− b in

positive and negative parts (a− b)+ and (a− b)− = (b− a)+ of

a− b = (a− b)+ − (a− b)− .

It gives that a − (a − b)+ = b − (b − a)+, by using that (a − b)− = (b − a)+.

This symmetry allows to estimates the norms of a − (a − b)+ and b − (b − a)+

by using the norms of (a + b) − |a − b| and b − (a − b)− = b − (b − a)+. Since

|a− b| = (a− b)+ + (a− b)− it follows that

a+ b− ((a− b)+ + (a− b)−) = (a− (a− b)+) + (b− (a− b)−)

Since the two terms at the right side are equal and

|a− b| =
√

(a− b)2 = (a− b)+ + (a− b)− ,

we get here immediately that

2(a− (a− b)+) = (a+ b)− |a− b| = 2(b− (b− a)+) .

If we use that |a− b| =
√

(a− b)2 and a+ b are (positive) roots of the positive

operators X := (a − b)2 and Y := (a + b)2. For all positive operators X,Y ∈ A+

holds

2‖a− (a− b)+‖ = ‖Y 1/2 −X1/2‖ ≤ (‖Y −X‖)1/2 .

We get in our special case that Y −X = 2(ab+ ba),

‖Y 1/2 −X1/2‖ ≤ ‖Y −X‖1/2 ≤ 2‖ab‖1/2,

and finally that

‖b− (b− a)+‖ = ‖a− (a− b)+‖ = (1/2)‖(a+ b)− |a− b|‖ ≤ ‖ab‖1/2

PROOF of ‖Y 1/2−X1/2‖ ≤ ‖Y −X‖1/2 ? (Refer to Pedersen book, concerning

citation on operator monotone functions. But there exits other papers on this –

cite them also!).



6. COLLECTION OF DEFINITIONS OF PURE INFINITE C*-ALGEBRAS 1305

Y ≤ X + γ · 1 with γ := ‖Y −X‖ implies

Y 1/2 ≤ (X + γ)1/2 ≤ X1/2 + γ1/2

The estimate (β + γ)1/2 ≤ β1/2 + γ1/2 for β, γ ∈ (0,∞) is easy to see by taking on

both sides quadrants. Thus ‖Y 1/2 −X1/2‖ ≤ ‖Y −X‖1/2, and in our special case

where X and γ · 1 we get ?????? )

In this special case we get Y −X = 2(ab+ ba), and ‖Y −X‖ ≤ 4‖ab‖, hence

‖(a− (a− b)+)‖ = ‖(b− (b− a)+)‖ ≤ ‖ab‖1/2 .

See below, but with other notations, because of desired generality.

We use here the ”operator monotony”: It is e.g. given in the book C*-algebras

and their automorphism groups of G.K. Pedersen:

Prop. (1.3.8): Let X,Y ∈ L(H) positive operators. If 0 < ‖Y −X‖ ≤ 1, then

The operator function t 7→ tβ is operator monotone on R+ for β ∈ (0, 1).

We use this in case β = 1/2 for the proof of following Result:

Lemma: For all positive operators X,Y ∈ L(H)+ holds the inequality of norms:

‖Y 1/2 −X1/2‖ ≤ ‖Y −X‖1/2 .

And, therefore,

‖Y −X‖ ≤ ‖Y 2 −X2‖1/2

Proof: Notice that this follows by the symmetries in X and Y , – as e.g. ‖Y −
X‖ = ‖X − Y ‖ that we consider here as the ‖Y −X‖·??? · idH –, from the general

observation that the operator monotony (which says that 0 ≤ a ≤ b implies 0 ≤
a1/2 ≤ b1/2) implies that

Y 1/2 ≤ X1/2 + ‖Y −X‖1/2 ,

because Y ≤ (X+‖Y −X‖·idH) and, always, (X+‖Y −X‖)1/2 ≤ X1/2+‖Y −X‖1/2,

because C ∗ (X, ‖Y −X‖ · idH) is commutative.

By symmetry between X and Y it follows that

X1/2 ≤ Y 1/2 + ‖Y −X‖1/2

using ‖Y −X‖ = ‖X − Y ‖. Thus,

‖X1/2 − Y 1/2‖ ≤ ‖Y −X‖1/2 .

So, it is enough to apply the operator monotony with β = 1/2 to the obvious

inequality Y ≤ X + ‖Y −X‖. We get that Y 1/2 ≤ (X + ‖Y −X‖)1/2 by operator

monotony. And,- similarly -, X1/2 ≤ (Y + ‖Y −X‖)1/2.

The operator X and the scalar ‖Y − X‖ (– here considered as the operator

‖Y −X‖ · idH ∈ L(H)+ –) are in a commutative C*-subalgebra of L(H). There, in

the commutative C*-algebra C∗(X, ‖Y −X‖·idH) ⊆ L(H), all monotone increasing

continuous functions apply to the positive elements in commutative C*-algebras as
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order-monotone function ... like: 0 ≤ Z∗ = Z 7→ Z := X + ‖Y − X‖. Thus,

(X + ‖Y −X‖)1/2 ≤ X1/2 + ‖Y −X‖1/2,

By taking squares one can see that this is in the commutative C*-subalgebra

C∗(X, ‖Y −X‖ · 1) equivalent to the obvious inequality

X + ‖Y −X‖ ≤ X + ‖Y −X‖+ 2(‖Y −X‖ ·X)1/2.

?????????

This works because for all nonnegative numbers(!) u and v holds that

(u+ v)1/2 ≤ u1/2 + v1/2,

because we have then that u+ v ≤ u+ v + 2(uv)1/2.

This carries over to all positive and elements u, v ∈ A+ ... ???

Here is something missing:

It follows for positive contractions A,B that

‖(A+B)−
√

(A−B)2‖ ≤ 2‖AB‖1/2

for positive contractions A,B. ??

(Above it is better explained!)

Want to know:

‖A− (A−B)+‖ ≤ 2‖AB‖1/2

It comes from C := A+B and D := |A−B| and

C2 −D2 = (A2 +AB +BA+B2)− (A2 −AB −BA+B2) = 2(AB +BA) .

Thus, ‖C2 −D2‖ ≤ 4‖AB‖ and

‖C −D‖ ≤ (‖C2 −D2‖)1/2 ≤ 2‖AB‖1/2 .

Above calculations have the following desired application:

Let 0 ≤ A,B ≤ 1 in a C*-algebra then

2(A− (A−B)+) = (A+B)−
√

(A−B)2 = (A+B)− |A−B|

It follows that

‖A+B − |A−B|‖ ≤ 2‖AB‖1/2

and ‖A− (A−B)+‖ ≤ ‖AB‖1/2.

Notice here also that: AB = 0 if and only if A− (A−B)+ = 0.

The above shown later used application is:

‖B − (A−B)−‖ = ‖A− (A−B)+‖ ≤ ‖AB‖1/2 .

!!! Other topic now below !!!:
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7. On passage to suitable separable (!) C*-subalgebras

Let X ⊆ A a countable (or norm-separable) subset of a C*-algebra A, then

there exists a separable C*-subalgebra B of A that contains X, and such that

X ⊆ B ⊆ A have following properties:

1.) b1 -Mn(B) b2, if and only if, b1 -Mn(A) b2 for all b1, b2 ∈Mn(B) and n ∈ N.

2.) B ⊆ A is exact, if A is exact.

( (2.) Means ”Exactness is hereditary”. Where is it proved ? Give reference

and/or outline of proof.)

Let (more general) B a C*-subalgebra of an ”exact” C*-algebra A. A⊗min C
is defined by the minimal C*-norm on the algebraic tensor product A⊗ C.

The algebras B ⊗min J − − > B ⊗min C − − > B ⊗min C/J are natural

subalgebras of the algebras

A⊗min J −− > A⊗min C −− > A⊗min C/J

Notice here that A ⊗min C − − > A ⊗min C/J and B ⊗min C − − > B ⊗min

C/J are always surjective, and are well-defined from the algebraic tensor products

A⊗ C −− > A⊗ C/J by completion with the minimal C*-norms.

We see elow that B ⊗min J is the kernel of B ⊗min C − − > B ⊗min C/J if

A⊗min J is the kernel of A⊗min C −− > A⊗min C/J .

If the kernel of B⊗minC−− > B⊗minC/J would be different from B⊗min J
then it must be bigger than B ⊗min J . But if A is exact, then this kernel is always

contained in (A⊗min J) ∩ (B ⊗min C).

If we take approximate units eσ ∈ B+ and fτ ∈ J+ of B and of J , then

Yσ,τ := (eσ ⊗ fτ )X(eσ ⊗ fτ )

converges to X for each element of X ∈ (A⊗min J) ∩ (B ⊗min C). But, each Yσ,τ

is contained in B ⊗min J . Thus,

(A⊗min J) ∩ (B ⊗min C) = B ⊗min J

and it shows that B ⊆ A is exact, if A is exact.

Notice here that there is a natural isomorphism A ⊗min C/J ∼= (A ⊗min

C)/(A⊗min J) for exact C*-algebras A.

The question is equivalent to:

Is the kernel (A⊗min J)∩B ⊗min C ⊂ A⊗min C of B ⊗min C −− > (A⊗min

C)/(A⊗min J) bigger than B ⊗min J ?

In general this kernels are contained in

F (B,C; J) := {x ∈ B ⊗min C;ϕ⊗ id(x) ∈ J}?

And we can ask the stronger question: Is F (B,C; J) = (A ⊗min J) ∩ B ⊗min C
under which circumstances?
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If one can it reduce (!) to the separable case for A the one can use that

B ⊆ A ⊆ O2 proves exactness of B.

This would then require to show that exactness is preserved under inductive

limits ... in addition.

(give Ref’s !!!)

3.) If A is nuclear, then B can be chosen nuclear, by an iteration argument for

B becoming a suitable inductive limit X ⊆ B1 ⊆ B2 ⊆ · · · and let B the closure of⋃
nBn.

(One can moreover manage that B is approximately injective, weakly injective

etc. if A has such properties, also (??) slice-map properties (??) could be earned

from A ...??? Check this carefully !!!). (Below is an other reduction attempt ...)

Now let A be a separable C*-algebra and let J a closed ideal of A, and a0 ∈ J
a strictly positive contraction for J , i.e. with

J = Aa0A = a0Aa0 = a0Ja0 .

Assume (from now on) that a0 is properly infinite, i.e., a0⊕a0 -J a0 in J (and

then also a0 ⊕ a0 -A a0 and vice versa). Notice that a0 ⊕ a0 -B a0 also for every

C*-subalgebra B of A with J ⊆ B.

Suppose that A/J contains an infinite element x ∈ (A/J)+, i.e., there exists

nonzero y ∈ (A/J)+ with x⊕ y -A/J x. Then the closed ideal I of A/J generated

by all the elements y ∈ (A/J)+ with x ⊕ y - x contains (by separability of A/J)

a strictly positive contraction z ∈ I+. (And z is non-zero because because I+ is

non-zero.)

This implies that z(A/J)z and (A/J)z(A/J) are both dense in I.

It turns out that x ⊕ z -A/J x and – since I is an ideal where z is a strictly

positive contraction – that also z⊕z -A/J z, i.e., that z is properly infinite in A/J .

We can lift z to a positive contraction a1 ∈ A+ with πJ(a1) = z.

Then can consider the positive element e := a0 + (1− a0)1/2a1(1− a0)1/2 with

πJ(e) = a1 and e ≥ a0.

Thus, J ⊆ eAe and πJ(eAe) = I.

Is e infinite? Even this is not clear!

Is a0 ⊕ e - e and is a1 ⊕ e - e ?

Can we also take a0 + a
1/2
1 (1− a0)a

1/2
1 ???

Here some minimal conditions that let hope that A is p.i. ( =: all nonzero

elements are ”infinite”):

(0) This part (0) is true for all C*-algebras:

The J. Cuntz relation a -A b is compatible with with the corresponding relation

in hereditary C*-subalgebras:
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If D ⊆ A is a hereditary C*-subalgebra of A and a, b ∈ D satisfy a -A b in A,

then also a -D b in D.

If cnbdn converges to a in A where cn, dn ∈ A, then one finds encnfn, gndnhn ∈
rAr ⊆ D , for r := a∗a + aa∗ + b∗b + bb∗, such that (encnfn)b(gndnhn) converges

to a ∈ rAr.

It is possible to find for every separable subspace X ⊆ A (or every countable

subset Y ⊆ A of A) a separable C*-subalgebra C ⊆ A that contains X (respectively

contains Y ) such that for a, b ∈ K ⊗ C holds a - b in K ⊗ C, if and only if, a - b

in K ⊗ C. Remind here a -D b for positive elements a, b ∈ D in a C*-algebra D

means that there exists a sequence (dn) in D with a = lim1→∞ - d∗nbdn.

(In addition one can C select as a nuclear C*-subalgebra of A if A is nuclear,

this is automatic for exactness, but it is an open question if C ⊇ X can be always

chosen that there exists in addition a conditional expectation from A∗∗ onto C∗∗.)

(0) Original definition of pure infiniteness of a C*-algebra A is that a⊕ a -A a
for all a ∈ A+. (It says that there exists sequences (cn) and (dn) in A such that

c∗nacn and d∗nadn converge both to a, but c∗nadn converges to 0.)

(1) Minimal requirements (!) to the idea of ”p.i.” C*-algebras are:

(1a) For every hereditary C*-subalgebra D of A and every pure state ρ on D

there exists elements d, e ∈ D+ with ρ(e) > 0 and e⊕ d - d.

(Then A contains a closed ideal J with e ∈ J , and f ⊕ d - d for all f ∈ J .)

Notice here that the question if every non-zero positive contraction b ∈ A+ is

properly infinite (p.i.) is equivalent to the following question:

If D := bAb is the hereditary C*-subalgebra of A that contains b as strictly

positive element of D, then for each element c of the closed ideal J of A generated

by D there exists sequences (en) and (fn) in A with c = lim enbfn.

Here one can pass to suitable separable C*-subalgebras B ⊆ A of A, or of D,

with the property that for b, c ∈ B holds b -B c, if and only if, b -A c. This implies

also that each (closed) ideal of B is the intersection of B with a closed ideal of A.

The same can be done with A⊗K(`2) and its C*-subalgebra B ⊗K(`2).

To exclude also the cases C ∼= D or K ∼= D for hereditary C*-subalgebras of

A/J one has to suppose that ??????

But we must to say much more! For example:

If E is a hereditary C*-subalgebra ... ????

Then B satisfies again (1a) and the question if every positive contraction of b

of B ?????

(1c) Possibly (formally) ”stronger” as (1a) is the following:

For every closed ideal J 6= A (that can be J = {0}) and (non-zero) hereditary

C*-subalgebra D of A/J , the algebra D contains an ”infinite” element 0 6= d ∈ D+

(i.e. that d is non-zero).
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It is defined by the property that there exists non-zero e ∈ D+ with e⊕d -D d,

i.e. it means that there exists a sequences of elements fn, gn ∈ D with limn fn ∗
dfn = d, limn gn ∗ dfn = 0 and limn gn ∗ dgn = e.

??? Thus, ???? e⊕??? is in the ideal of A/J one-step map by d ?????

Since ????

(Or is here also e ∈ A/J allowed?

Yes is allowed, because the elements e ∈ A/J with e ⊕ d -A/J d build a

closed ideal K of A/J . The intersection K ∩ D of K with D is identical with

......................... ?????)

In particular, then each (!) nonzero hereditary C*-sub-algebra D of A has no

character.

Equivalently expressed: A has no irreducible representation that contains in its

image non-zero compact operators on a Hilbert space. Or: A does not contain two

ideals I ⊆ J ⊆ A such that J/I is isomorphic to the algebra of compact operators

K(H) on an infinite dimensional or (non-zero) finite dimensional Hilbert space H.

We call a ∈ A+ infinite if there exists some non-zero element b ∈ A+ such that

a ⊕ b - a. Here we use the Cuntz-majorization x - y in A ⊗ K, and a ⊕ b means

the the 2× 2 matrix in M2(A) with diagonal entries a and b.

Let the following be a ”suitable”(?) definition of a ”locally purely infinite”

C*-algebra A:

For every closed ideal J of A and (nonzero) hereditary C*-sub-algebra D of

A/J there exists an infinite element in D (which is then infinite A/J), but for

hereditary C*-sub-algebras D of A/J this is the same as being infinite in D).

Questions:

(Q1) Is this class of C*-algebras invariant under passage to hereditary sub-

algebras and quotients?

(Q2) Is every separable subset X of A contained in a (suitable) separable C*-

sub-algebra B of A that is again a ”locally purely infinite C*-algebra”?

The reduction to the separable case is very important. One should take those

separable C*-sub-algebras B ⊆ A with the property that elements in B ⊗ K have

the same - −− relations in B ⊗K as in A⊗K.

But the important point is: If b ∈ B is infinite in A then b should be infinite

in B. ... And this for all hereditary sub-algebras ...

It seems ”easy” to show that inductive limits of locally purely infinite C*-

algebras are again locally purely infinite.

The point is: How looks like a hereditary subalgebra of a quotient of this

inductive limit?

Is it itself an inductive limit? (Of useful things).
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On reduction to the separable case:

Let X ⊆ A a separable subset of A.

Then there exists a separable C*-sub-algebra B of A that contains X and has

the property that for all a, b ∈ B holds: a -B b, if and only if, a -A b. It implies

also that each closed ideal of B is is an intersection of a closed ideal of A with B.

(But in general B does not separate the ideals of A.)

8. MORE on infinite elements

Let A a C*-algebra ...

Let A a separable C*-algebra and D a hereditary C*-sub-algebra. Let h ∈ D,

denote by I(h) the closed ideal of elements a ∈ A with a ⊕ h -A h, then the

intersection I(h)∩D has the property that b ∈ (I(h)∩D), if and only if, b⊕h -D h.

(Check this again! Seems to work.)

Moreover I(h) is generated by I(h) ∩D.

If I(h) or I(h)∩D contain a strictly positive contraction c ∈ A+ (i.e. cAc dense

in I(h), or cAc is dense in I(h) ∩ D) then c is properly infinite and I(h) = I(c)

respectively I(h) ∩D = I(c) ∩D.

Such element c ∈ A+ exists if A or D is separable.

It should be equivalent to require that for each ????

A question of Bruce Blackadar:

Is it possibly true that the classifiable simple C*-algebras are precisely the

(simple) inductive limits of sequences of semiprojective (separable) nuclear C*-

algebras?

E.K.: What is the Definition of semiprojective C*-algebras?

Kind of approximate lifting property? ????

9. On ideals generated by n-homogenous elements

Let A a C*-algebra and Hn the (smallest) hereditary C*-subalgebra of A that

is generated (or only ”defined”) by the n-homogenous elements in A+.

Definition: An element a ∈ A+ is n-homogenous, if and only if, there exists a

C*-algebra morphism

ϕ : C0((0, 1],Mn) = C0((0, 1])⊗Mn 7→ A

with the property that a = γ · ϕ(f0 ⊗ 1n) for some γ ∈ (0,∞) and f0(t) := t, for

t ∈ (0, 1].
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Hn is the smallest hereditary C*-subalgebra of A that is generated by the

convex combinations of the n-homogenous elements in A+. Since the set of n-

homogenous is invariant under automorphisms of A, – especially by inner auto-

mophisms –, it follows that Hn is a closed ideal of A.

This ideal Hn has the property that A/Hn has only irreducible representations

on Hilbert spaces of dimensions ≤ (n− 1).

(as ideal and not necessarily fixing ???)

GO ON NOW !!!!!!

10. On order in A+ for C*-algebras A:

It is very likely that the result in the following proposition is well-known, but

we could not find a reference for it in text-books.

Proposition:

If two elements a, b ∈ A+ satisfy a ≤ b, then for each γ > 1 there exists an operator

d ∈ C ∗ (a, b) ⊆ A with d∗bd = aγ .

What happens ????

What we really later need is that:

If two elements a, b ∈ A+ satisfy a ≤ b then there exists for each ε ∈ (0, ‖a‖)
an element dinA with the property d∗bd = (a− ε)+.

Similar problem: If ‖a− b‖ < γ < min(‖a‖, ‖b‖) Does there exists d ∈ A with

(a− γ)+ = d∗bd ?

Proof: ...

It suffices to consider the case a 6= 0 (by rescaling later a, b and d with non-

negative real numbers). Moreover, it suffices to consider only the case where A :=

C ∗ (a, b).

We consider the multiplier algebra M(A) and write γ (and δ) in place of γ ·
1M(A) (and in place of δ · 1M(A)), and consider mainly δ = 2−n for n := 1, 2, ....

Let en := (b+2−n)−1/2a1/2 and dn := en ·aλ with λ = (γ−1)/2, i.e., γ = 1+2λ.

We (want to ???) show that the dn converge to an element of d ∈ C ∗ (a, b)

with d∗bd = aγ and ‖b‖ ≤ 1.

??? is really

Use that ‖en‖2 = ‖ene∗n‖ = ‖e∗nen‖

and then that ‖dn‖ ≤ ‖a‖λ · ‖en‖ and estimate by

ene
∗
n = (b+2−n)−1/2a(b+2−n)−1/2 ≤ (b+2−n)−1/2b(b+2−n)−1/2 = (b+2−n)−1b .

In particular ‖en‖ ≤ 1 for all n = 1, 2, ....

Recall that en = (b+ 2−n)−1/2a1/2.
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The definition of en shows that e∗n(b+ 2−n)en = a. It is equivalent to e∗nben =

a − 2−ne∗nen, If the (en) converges in A to an element e ∈ C ∗ (a, b) ⊆ A then

e∗be = a and ‖e‖ ≤ 1.

The problem is that this en do not converge in A (itself)?

dn := en · aλ with λ = (γ − 1)/2, i.e., γ = 1 + 2λ.

All is now proven up to the estimate of ‖dn − dm‖:

‖dn − dm‖ ≤ ‖a‖λ‖en − em‖ If ‖a‖≤1 then we get same estimates ... ???

Recall that en := (b+ 2−n)−1/2a1/2 and dn := en · aλ,

Xn := (b+ 2−n)−1/2b1/2 converges in the point norm ???

Let fn,m := (b+ 2−n)−1/2 − (b+ 2−m)−1/2. Since 0 ≤ x ≤ y implies

Then f∗n,m = fn,m and (dn− dm) · (dn− dm)∗ = fn,mafn,m. Now a ≤ b implies

that

fn,mafn,m ≤ fn,mbfn,m = [b1/2(b+ 2−n)−1/2 − b1/2(b+ 2−m)−1/2)]2 .

??? It follows that (dn) is a Cauchy sequence in A if ??? (??)

Then ‖dn − dm‖2 = ‖(dn − dm)(dn − dm)∗‖, and a ≤ b implies that ?????

(dn−dm)(dn−dm)∗ ≤ ((b+2−n)−1/2−(b+2−m)−1/2)b((b+2−n)−1/2−(b+2−m)−1/2)

11. On dense (algebraic) ideals of C*-algebras:

Let A a C*-algebra and let J ⊆ A an algebraic ideal of A that is dense in A,

i.e., for every a ∈ A there exists a sequence (cn) in J with ‖a − cn‖ < 1/n. Here

we do not require that J is invariant under the involution c 7→ c∗, i.e. we do not

here require that c ∈ J implies that c∗ ∈ J .

Precisely expressed: J is a norm-dense linear subspace of A with the properties

b · a, a · b ∈ J for all b ∈ J and a ∈ A.

One can see from this defining properties that J∗ := {c∗; c ∈ J} ⊆ A is again a

dense algebraic ideal in A, because the involution x→ x∗ is isometric in A and the

inclusions a∗ · J ⊆ J and J · a∗ ⊆ J for a ∈ A imply that J∗ · a ⊆ J∗ and a · J∗ ⊆ J∗
for all a ∈ A.

It follows that the sets of products J∗ ·J and J ·J∗ are contained in J∗ ∩J and

are both dense sets in A, that are invariant under multiplication by elements from

A.

Thus, the intersection J∗ ∩ J ⊆ J is again a dense ideal of A because (J∗ · J)∪
(J · J∗) ⊆ J∗ ∩ J .

If J is a dense algebraic ideal of A, then J has following properties:

(1) for every a ∈ A+ and 0 < ε < 1 there exists b ∈ J+ := A+ ∩ J with

‖a− b‖ < ε.
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Proof of property (1): It is enough to consider the case where a ∈ A+ has norm

‖a‖ = 1. Then ‖a1/2‖ = ‖a‖1/2 = 1. Let β := (1 + ε)1/2 − 1, i.e., (1 + β)2 = 1 + ε

and ε = β2 + 2β.

Since J is dense in A, there exists c ∈ J with ‖a1/2−c‖ < β. Then c∗c ∈ A+∩J
and it follows that ‖a− c∗c‖ < β(2 +β) = ε by using the following general estimate

in C*-algebras A:

If x, y ∈ A and ‖x− y‖ < β, then

‖x∗x− y∗y‖ < β · (‖x‖+ ‖y‖) ≤ β · (β + 2‖x‖)

because ‖y‖ ≤ ‖x‖+ ‖y − x‖. Then take here x := a1/2 and y := c.
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[48] Barlak, S., Szabó G., [2020], Approaching the UCT problem via crossed products of the

Razak-Jacelon algebra, Groups Geom. Dyn., 14(1), 137–149.
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[88] , [1996], Deformations de C*-algèbres de Hopf, Bull. Soc. Math. France 124, 141–215.

[89] , [1997], Subtriviality of continuous fields of nuclear C*-algebras, (with an appendix

by E. Kirchberg), J. reine angew. Math. 489, 133–149.

[90] , [2005?], Deformations of infinite projections, Preprint 2005?.

[91] , [2010], K1-injectivity for properly infinite C*-algebras, Clay Math. Proc. 11, 49–54.

[92] , Kirchberg, E. [2004], Global Glimm halving for C*-bundles, J. Operator Theory

52, 385–420.

[93] , Kirchberg, E. [2004], Non-simple purely infinite C*-algebras: the Hausdorff case,

J. Funct. Analysis 207, 461–513.

[94] , Rohde R., Rørdam M. [2008], Properly infinite C(X)-algebras and K1-injectivity,

J. Noncommutative Geometry 2(3), 263–282.

[95] , Wassermann S., [2007], Exact C*-bundles, Houston Journal of Mathematics, 33(4),

1147–1159.

[96] Boca, F., [1991], Free products of completely positive maps and spectral sets, J. Funct. Anal-

ysis 97, 251–263.

[97] Bonkat, A., [2002], Bivariante K-Theorie für Kategorien projektiver Systeme von C*-

Algebren, Ph.D. thesis, Westfälische Wilhelms-Universität, 2002.



BIBLIOGRAPHY 1319

[98] F. F. Bonsall, J. Duncan, Numerical ranges of operators on normed spaces and of elements

of normed algebras, London [1971].

[99] F. F. Bonsall, J. Duncan, Complete Normed Algebras, Springer, Berlin etc. [1973].

[100] J. Bosa, J. Gabe, A. Sims, S. White, The nuclear dimension of O∞-stable C*-algebras,

arXiv:1906.02066v1, math.OA.
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[183] , Krieger, W. [1980], A class of C*-algebras and topological Markov chains, In-

vent. Math. 56, 251–268.

[184] , Li, X. [2010], The regular C*-algebra of an Integral Domain, Quanta of maths, Clay

Math. Proc. 11, 149–170, Amer. Math. Soc., Providence, RI.

[185] , Li, X. [2009], K-theory of ring C*-algebras associated to function fields,

arXiv:0911.5023v1, 2009.

[186] , Pedersen, G.K. [1979] Equivalence and traces on C*-algebras, J. Funct. Analysis

33, 135–164.

[187] , Skandalis, G. [1986], Mapping cones and exact sequences in KK-theory, J. Operator

Theory 15:1, 163–180.

[188] Dadarlat, M. [1994], Shape theory and asymptotic morphisms for C*-algebras, Duke

Math. J. 73, 687–711.

[189] , [2000], Nonnuclear subalgebras of AF-algebras, American J. Math. 122:3, 581–597.

[190] , [2000], Approximate Unitary Equivalence and the Topology of Ext (A, B). In: Cuntz

J., Echterhoff S. (eds) C*-Algebras. Springer, Berlin, Heidelberg.

[191] , [2006], Continuous fields of C*-algebras over finite dimensional spaces, Preprint:

math.OA/0611405.

[192] , [2007], The homotopy groups of the automorphism group of Kirchberg algebras,

J. Noncommut. Geom. 1(1), 113–139.

[193] , [2009], Fiberwise KK-equivalence of continuous fields of C*-algebras, J. K-Theory 3,

205–219.

[194] , [2011], A stably contractible C*-algebra which is not contractible, Preprint (2011?),

all references are from before 2003, Paper published?

[195] On the classification of nuclear C*-algebras, Proc. London Math. Soc. (3) 85 (2002) 168–210

[196] , Elliott, G. [2007], One-parameter continuous fields of Kirchberg algebras, Com-

mun. Math. Phys. 274(3), 795–819.

(first preprint in 2005)

[197] , Hirshberg, I., Toms, A.S., Winter, W., [2009], The Jiang-Su algebra does not always

embed, Math. Res. Lett. 16(1), 23–26. International Press 2009.

(Preprint arXiv:0712.2020v1)

[198] , Loring, T. [1996], Classifying C*-algebras via ordered, mod-p K-theory,

Math. Ann. 305, 601–616.

[199] , Pasnicu, C. [2005], Continuous fields of Kirchberg C*-algebras, Journal of Func-

tional Analysis 226(2), 429–451.

(Preprint: November 17, 2004.)

[200] , Penning, U. [2013], Unit spectra of K-Theory from strongly self-absorbing C*-

algebras, Algebr. Geom. Topol. 15(2015),137–168. arXiv:

1306.2583v1



BIBLIOGRAPHY 1323

[201] , Penning, U. [2014], A Dixmier-Douady Theory for strongly self-absorbing C*-

algebras II: the Brauer group, Journal of Noncommutative Geometry 9(4), 1661–6952.

[202] , Toms, A.S., [2009], A universal property for the Jiang–Su algebra, Adv. Math. 220,

341–366.

[203] , Toms, A.S., [2010], Ranks of operators in simple C*-algebras, J. Funct. Analy-

sis 259(5), 1209–1229.

[204] , Winter, W. [2007], On the KK-theory of strongly self-absorbing C*-algebras, pre-

print: math.OA/0704.0583

[205] , Winter, W. [2008], Trivialization of C(X)-algebras with strongly self-absorbing

fibres, Bull. Soc. Math. France, 136, 575–606.

[206] Davidson, K.R., [1991], Lifting positive elements in C*-algebras, Integral Eq. and Operator

Theory 14, 183–191.

[207] Davidson, K.R., [1996], C*-algebras by example, Fields Institute monographs, AMS, Provi-

dence, Rhode Island.

[208] Davie, A.M., [1976], Classification of essentially normal operators, in “Spaces of Ana-

lytic Functions”, Seminar Kristiansand, Norway, June 9-14, 1975, Eds.: O. B. Bekken,

B.K. Øksendal, A. Stray, Lecture Notes in Mathematics, Vol. 512, 31–55.

[209] De Schreye, D., Van Daele, A. [1981], A new technique to deal with Cuntz-algebras,

Math. Annalen 257, 257–501.
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[217] Dixmier, J. [1969], Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris.

(Engl. translation by Ch. Lance: C*-algebras, North Holland, Amsterdam (1982).)

[218] , Douady, A., [1963], Champs continus d’espaces hilbertiens et de C*-algèbres,
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[350] , Winsløw, C. [2000], The Effros-Maréchal topology in the space of von Neumann

algebras, Journal of Functional Analysis 171, 401–431.
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[699] , , [1987], The Künneth theorem and the universal coefficient theorem for

Kasparov’s generalized K-functor, Duke Math. J. 55, 431–474.



1342 BIBLIOGRAPHY

[700] Efren Ruiz, [2007], A classification theorem for direct limits of extensions of circle algebras

by purely infinite C*-algebras, J. Operator Theory 58(2), 311–349.

[701] Ruiz, E., Sims A., Sørensen, A.P.W., [2015], UCT Kirchberg algebras have nuclear dimension

one, Advances in Mathematics, 279, 1–28.

[702] Ruiz, E., Sims, A., Tomforde, M., [2015], The nuclear dimension of graph C*-algebras, Adv.

Math. 272, 96–123.

[703] ”Russo-Dye theorem”, see “Dye” in citation [222].

[704] Sakai, S., [1971], C*-algebras and W*-algebras, Ergebnisse der Mathematik, Bd. 60,

Springer, Berlin Heidelberg New York.

[705] Sarkowicz, P., [2019], Exact C*-algebras and the Kirchberg-Phillips Nuclear Embedding The-

orem, A thesis presented to the University of Waterloo, Ontario, Canada.

[706] Sato, Y., [2008], The Rohlin property for automorphisms of the Jiang-Su algebra,

arXiv:0908.0135.

[707] , [2011], Discrete amenable group actions on von Neumann algebras and invariant

nuclear C*-algebras, arXiv:1104.4339.

[708] , [2012], Trace spaces of simple nuclear C*-algebras with finite-dimensional extreme

boundary, Preprint 2012, arXiv:1209.3000v1.

[709] , [2019], Actions of amenable groups and crossed products of Z-absorbing C*-

algebras, Advanced Studies in Pure Mathematics, 80, 189–210.

[710] Sato, Y., White, S., Winter, W., [2015], Nuclear dimension and Z-stability, Inventiones

mathematicae, 202, 893–921.

[711] Schafhauser, C.P., [2015], AF embeddings of graph algebras, J. Operator Theory 74, 177–

182.

[712] Schafhauser, C.P., [2015], Cuntz–Pimsner algebras, crossed products, and K-theory,

J. Funct. Anal., 269, 2927–2946.

[713] Schafhauser, Ch., [2018], A new proof of the Tikuisis-White-Winter theorem, J. Reine

Angew. Math., 759, 291–304 (2000) published 8. March 2018.

[714] Schochet, C., [1981], Topological methods for C*-algebras I: spectral sequences, Pacific J.

Math., 96, 193–211.

[715] , [1982], Topological methods for C*-algebras II: geometric resolutions and the
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