Recognizing groups in Erdős geometry and model theory

Artem Chernikov

UMD/UCLA

Mathematics Münster Mid-term Conference
25 March 2024, Münster, Germany

History: arithmetic and geometric progressions

Given two sets A, B in a field K, we define

- their sumset $A+B=\{a+b: a \in A, b \in B\}$,
- their productset $A \cdot B=\{a \cdot b: a \in A, b \in B\}$.

Example

Let $A_{n}:=\{1,2, \ldots, n\}$.

- $\left|A_{n}+A_{n}\right|=2\left|A_{n}\right|-1=O\left(\left|A_{n}\right|\right)$.
- Let $\pi(n)$ be the number of primes in A_{n}. As the product of any two primes is unique up to permutation, by the Prime Number Theorem we have

$$
\left|A_{n} \cdot A_{n}\right| \geq \frac{1}{2} \pi(n)^{2}=\Omega\left(\left|A_{n}\right|^{2-o(1)}\right) \text {. }
$$

History: sum-product phenomenon

- This generalizes to arbitrary arithmetic progressions: their sumsets are as small as possible, and productsets are as large as possible.
- For a geometric progression, the opposite holds: productset is as small as possible, sumset is as large as possible.
- These are the two extreme cases of the following result.
- [Erdős, Szemerédi] There exists some $c \in \mathbb{R}_{>0}$ such that: for every finite $A \subseteq \mathbb{R}$,

$$
\max \{|A+A|,|A \cdot A|\}=\Omega\left(|A|^{1+c}\right)
$$

- Conjecture (widely open): holds with exponent $2-\varepsilon$ for any $\varepsilon>0$.

Elekes: generalization to polynomial expansion

- Since polynomials combine addition and multiplication, a "typical" polynomial $f \in \mathbb{R}[x, y]$ should satisfy

$$
|f(A \times B)|=\Omega\left(n^{1+c}\right)
$$

for some $c=c(f)$ and all finite $A, B \subseteq \mathbb{R}$ with $|A|=|B|=n$.

- Doesn't hold when only one of the operations occurs between the two variables:
- f is additive, i.e. $f(x, y)=g(h(x)+i(y))$ for some univariate polynomials g, h, i (as then $|f(A \times B)|=O(n)$ for A, B such that $h(A), i(B)$ are arithmetic progressions).
- f is multiplicative, i.e. $f(x, y)=g(h(x) \cdot i(y))$ for some univariate polynomials g, h, i (as then $|f(A \times B)|=O(n)$ for A, B such that $h(A), i(B)$ are geometric progressions).

Elekes-Rónyai

- But these are the only exceptions!
- [Elekes, Rónyai] Let $f \in \mathbb{R}[x, y]$ be a polynomial of degree d that is not additive or multiplicative. Then for all $A, B \subseteq \mathbb{R}$ with $|A|=|B|=n$ one has

$$
|f(A \times B)|=\Omega_{d}\left(n^{\frac{4}{3}}\right)
$$

- The improved bound and the independence of the exponent from the degree of f is due to [Raz, Sharir, Solymosi].
- Analogous results hold with \mathbb{C} instead of \mathbb{R} (and slightly worse bounds).
- The exceptional role played by the additive and multiplicative forms suggests that (algebraic) groups play a special role made precise by [Elekes, Szabó].

Elekes-Szabó theorem

- [Elekes-Szabó'12] provide a conceptual generalization: for any algebraic surface $R\left(x_{1}, x_{2}, x_{3}\right) \subseteq \mathbb{R}^{3}$ so that the projection onto any two coordinates is finite-to-one, exactly one of the following holds:

1. (power saving) there exists $\gamma>0$ s.t. for any finite $A_{i} \subseteq_{n} \mathbb{R}$ we have

$$
\left|R \cap\left(A_{1} \times A_{2} \times A_{3}\right)\right|=O\left(n^{2-\gamma}\right) .
$$

2. (locally equivalent to a group) There exist open sets $U_{i} \subseteq \mathbb{R}$ and $V \subseteq \mathbb{R}$ containing 0 , and analytic bijections with analytic inverses $\pi_{i}: U_{i} \rightarrow V$ such that

$$
\pi_{1}\left(x_{1}\right)+\pi_{2}\left(x_{2}\right)+\pi_{3}\left(x_{3}\right)=0 \Leftrightarrow R\left(x_{1}, x_{2}, x_{3}\right)
$$

for all $x_{i} \in U_{i}$.

- Alternative regime: working over \mathbb{C}, for R irreducible get that it is in coordinate-wise finite-to-finite algebraic correspondence with the graph of addition on a 1-dimensional algebraic group.
- If $f\left(x_{1}, x_{2}, x_{3}\right)=x_{3}-x_{1}-x_{2}$, arithmetic progressions witness no power saving.

Generalizations of the Elekes-Szabó theorem

Let $R \subseteq X_{1} \times \ldots \times X_{r}$ be a (semi-)algebraic variety with finite-to-one projection onto any $r-1$ coordinates, $\operatorname{dim}\left(X_{i}\right)=m$.

1. [Elekes, Szabó'12] $r=3$, any m (grids in general position, correspondence with a complex algebraic group of $\operatorname{dim}=m$);
2. [Raz, Sharir, de Zeeuw'18] $r=4, m=1$;
3. [Raz, Shem-Tov'18] $m=1, R$ of the form $f\left(x_{1}, \ldots, x_{r-1}\right)=x_{r}$;
4. [Hrushovski'13] Pseudofinite dimension, connection to modularity of certain matroids;
5. Related work: [Raz, Sharir, de Zeeuw'15], [Wang'15]; [Bukh, Tsimmerman' 12], [Tao'12]; [Jing, Roy, Tran'19];
6. [Bays, Breuillard'18] any r and m, any co-dim over \mathbb{C}, recognized that groups are abelian — but no bounds on γ;
7. [C., Peterzil, Starchenko'21] Any r and m, any R definable in an o-minimal structure and explicit bounds on γ.
8. [Bays, Dobrowolski, Zou'21] Relaxing general position/abelianity to nilpotence in special cases.
9. [C., Peterzil, Starchenko'24] Any r, m, any co-dim, bounds.

One-dimensional semi-algebraic case

Theorem (C., Peterzil, Starchenko)

Assume $r \geq 3, R \subseteq \mathbb{R}^{r}$ is semi-algebraic, such that the projection of R to any $r-1$ coordinates is (generically) finite-to-one. Then exactly one of the following holds.

1. For any finite $A_{i} \subseteq_{n} \mathbb{R}, i \in[r]$, we have

$$
\left|R \cap\left(A_{1} \times \ldots \times A_{r}\right)\right|=O_{R}\left(n^{r-1-\gamma}\right),
$$

where $\gamma=\frac{1}{3}$ if $r \geq 4$, and $\gamma=\frac{1}{6}$ if $r=3$.
2. There exist open sets $U_{i} \subseteq \mathbb{R}, i \in[r]$, an open set $V \subseteq \mathbb{R}$ containing 0 , and homeomorphisms $\pi_{i}: U_{i} \rightarrow V$ such that

$$
\pi_{1}\left(x_{1}\right)+\cdots+\pi_{r}\left(x_{r}\right)=0 \Leftrightarrow R\left(x_{1}, \ldots, x_{r}\right)
$$

for all $x_{i} \in U_{i}, i \in[r]$.

Grids in general position

- When $R \subseteq X_{1} \times \ldots \times X_{r}$ with $\operatorname{dim}\left(X_{i}\right)=m>1$, it is necessary to restrict to grids in general position.
- A set $A \subseteq X_{i}$ is in (D, ν)-general position if $|A \cap Y| \leq \nu$ for every algebraic subset $Y \subseteq X$ with dimension $<m$ and degree $\leq D$.
- A grid $A=A_{1} \times \ldots \times A_{r}$ is in (D, ν)-general position if each $A_{i} \subseteq X_{i}$ is in (D, ν)-general position.
- Example: if $m=1$ and D is fixed, then for ν large enough every set $A \subseteq \mathbb{C}$ is in (D, ν)-general position.

General semi-algebraic case

Theorem (C., Peterzil, Starchenko)

Assume $r \geq 3, R \subseteq X_{1} \times \cdots \times X_{r}$ are semi-algebraic with $\boldsymbol{\operatorname { d i m }}\left(\boldsymbol{X}_{\boldsymbol{i}}\right)=\boldsymbol{m}$, and the projection of R to any $r-1$ coordinates is finite-to-one. Then one of the following holds.

1. There exists $D=D(R)$ such that for any ν and any finite $A_{i} \subseteq_{n} X_{i}$ in (D, ν)-general position, $i \in[r]$, we have

$$
\begin{array}{r}
\left|R \cap\left(A_{1} \times \ldots \times A_{r}\right)\right|=O_{R, \nu}\left(n^{r-1-\gamma}\right), \\
\text { for } \gamma=\frac{1}{8 m-5} \text { if } s \geq 4, \text { and } \gamma=\frac{1}{16 m-10} \text { if } s=3
\end{array}
$$

2. There exist semialgebraic relatively open sets $U_{i} \subseteq X_{i}, i \in[s]$, an abelian Lie group $(G,+)$ of dimension m and an open neighborhood $V \subseteq G$ of 0 , and semi-algebraic homeomorphisms $\pi_{i}: U_{i} \rightarrow V, i \in[s]$, such that for all $x_{i} \in U_{i}, i \in[s]$

$$
\pi_{1}\left(x_{1}\right)+\cdots+\pi_{s}\left(x_{s}\right)=0 \Leftrightarrow R\left(x_{1}, \ldots, x_{s}\right)
$$

Remarks

1. In fact, our theorem is for R definable in an arbitrary o-minimal expansion of \mathbb{R} - so R can be defined not only using polynomial (in-)equalities, but also e.g. using e^{x} and restricted analytic functions. Recently generalized to arbitrary co-dimension (this is codim 1 case).
2. We also have an analog over algebraically closed fields of characteristic 0 (here we get a finite-to-finite correspondence with an algebraic group), and more generally for differentially closed fields, etc.
3. One ingredient - improved Szemeredi-Trotter style incidence bounds in o-minimal structures ([Basu, Raz], [C., Galvin, Starchenko]).
4. Another -a higher arity generalization of the (abelian) Group Configuration theorem of Zilber and Hrushovski on recognizing groups from a "generic chunk" (and more generally - local version of the coordinatization of projective geometries). We discuss a simple purely combinatorial special case:

First ingredient: Recognizing groups, 1

1. Assume that $(G,+, 0)$ is an abelian group, and consider the r-ary relation $R \subseteq \prod_{i \in[r]} G$ given by $x_{1}+\ldots+x_{r}=0$.
2. Then R is easily seen to satisfy the following two properties, for any permutation of the variables of R :

$$
\begin{gather*}
\forall x_{1}, \ldots, \forall x_{r-1} \exists!x_{r} R\left(x_{1}, \ldots, x_{r}\right), \tag{P1}\\
\forall x_{1}, x_{2} \forall y_{3}, \ldots y_{r} \forall y_{3}^{\prime}, \ldots, y_{r}^{\prime}\left(R(\bar{x}, \bar{y}) \wedge R\left(\bar{x}, \bar{y}^{\prime}\right) \rightarrow\right. \tag{P2}\\
\left.\left(\forall x_{1}^{\prime}, x_{2}^{\prime} R\left(\bar{x}^{\prime}, \bar{y}\right) \leftrightarrow R\left(\bar{x}^{\prime}, \bar{y}^{\prime}\right)\right)\right) .
\end{gather*}
$$

We show a converse, assuming $r \geq 4$:

Recognizing groups, 2

Theorem (C., Peterzil, Starchenko)

Assume $r \in \mathbb{N}_{\geq 4}, X_{1}, \ldots, X_{r}$ and $R \subseteq \prod_{i \in[r]} X_{i}$ are sets, so that R satisfies (P1) and (P2) for any permutation of the variables. Then there exists an abelian group $\left(G,+, 0_{G}\right)$ and bijections $\pi_{i}: X_{i} \rightarrow G$ such that for every $\left(a_{1}, \ldots, a_{r}\right) \in \prod_{i \in[r]} X_{i}$ we have

$$
R\left(a_{1}, \ldots, a_{r}\right) \Longleftrightarrow \pi_{1}\left(a_{1}\right)+\ldots+\pi_{r}\left(a_{r}\right)=0_{G} .
$$

- If $X_{1}=\ldots=X_{r}$, property (P1) is equivalent to saying that the relation R is an ($r-1$)-dimensional permutation on the set X_{1}, or a Latin $(r-1)$-hypercube, as studied by Linial and Luria. Thus the condition (P2) characterizes, for $r \geq 3$, those Latin r-hypercubes that are given by the relation " $x_{1}+\ldots+x_{r-1}=x_{r}$ " in an abelian group.
- If R is semi-algebraic and X_{i} are semi-algebraic, then G and π_{i} can be chosen semi-algebraic as well.

Some remarks

- For $r=4$, and fixed $a_{3}, a_{4}, R\left(x_{1}, x_{2}, a_{3}, a_{4}\right)$ is the graph of a bijection $f_{a_{3}, a_{4}}: X_{1} \rightarrow X_{2}$ by (P1).
- Let $\mathcal{F}:=\left\{f_{a_{3}, a_{4}}:\left(a_{3}, a_{4}\right) \in X_{3} \times X_{4}\right\}$.
- Fix any $f_{0} \in \mathcal{F}$. For $f, f^{\prime} \in \mathcal{F}$, let $f+f^{\prime}:=f \circ f_{0}^{-1} \circ f^{\prime}$.
- Then one shows $(\mathcal{F},+)$ is an abelian group with identity f_{0} using (P2) for various permutations of the coordinates.
- In the general case, have to work with only generically defined finite-to-finite correspondences (in o-minimal - on infinitesimal neighborhoods in some non-standard extension of \mathbb{R}), and the group is built on their germs.

Counting edges in bipartite graphs

- Let $G=(A, B, I)$ with $I \subseteq A \times B$ be a bipartite graph.
- For $k \in \mathbb{N}$, let $K_{k, k}$ be the complete bipartite graph with each part of size k. Cauchy-Schwarz gives you:

Fact
[Kốvári, Sós, Turán, '54] For each $k \in \mathbb{N}$ there is some $c \in \mathbb{R}$ such that: for any bipartite graph G and $A \subseteq U, B \subseteq V$ with $|A|=|B|=n$, if $I(A, B)$ is $K_{k, k}$-free, then $|I(A, B)| \leq c n^{2-\frac{1}{k}}$.

- So if G is $K_{2,2^{-}}$-free, then $|I(A, B)|=O\left(n^{\frac{3}{2}}\right)$.
- Optimal up to a constant! Witnessed by the point-line incidence graph on the affine plane over $\mathbb{F}_{p^{n}}$ as $n \rightarrow \infty$.

Example: point-line incidences on the plane

- Let $I \subseteq \mathbb{R}^{2} \times \mathbb{R}^{2}$ be the incidence relation between points and lines on the real plane, i.e.

$$
I\left(x_{1}, x_{2} ; y_{1}, y_{2}\right) \Longleftrightarrow x_{2}=y_{1} x_{1}+y_{2}
$$

- Then I is semialgebraic and $K_{2,2}$-free (for any two points belong to at most one line, and vice versa).
- Utilizing the geometry of the reals (cell decomposition / polynomial method):

Fact (Szémeredi-Trotter '83)
For A a set of n points and B a set of n-lines, $|I(A, B)|=O\left(n^{\frac{4}{3}}\right)$.

- Importantly: $\frac{4}{3}<\frac{3}{2}$.

Second ingredient: better "incidence bounds" in o-minimal

structures

- Szémeredi-Trotter theorem has numerous generalizations for semialgebraic graphs, e.g. [Pach, Sharir'98], [Elekes, Szabó'12], [Fox, Pach, Sheffer, Suk, Zahl '15], and to o-minimal structures:

Theorem (C., Galvin, Starchenko'16)
If $I \subseteq U \times V$ is a binary relation definable in a distal structure \mathcal{M} (includes o-minimal structures, but also e.g. \mathbb{Q}_{p}) and E is
$K_{2,2}$-free, then there is some $\delta>0$ such that: for all
$A \subseteq_{n} U, B \subseteq_{n} V$ we have $|I \cap A \times B|=O\left(n^{\frac{3}{2}-\delta}\right)$.

- The power saving γ in the main theorem can be estimated explicitly in terms of this δ.
- Explicit bounds on δ are known in some special cases: for $E \subseteq M^{2} \times M^{2}$ for an o-minimal \mathcal{M}, also $O\left(n^{\frac{4}{3}}\right)([C$., Galvin, Starchenko'16] or [Basu, Raz'16]) - optimal.

Recognizing fields

- For the semialgebraic $K_{2,2}$-free point-line incidence relation $R=\left\{\left(x_{1}, x_{2} ; y_{1}, y_{2}\right) \in \mathbb{R}^{4}: x_{2}=y_{1} x_{1}+y_{2}\right\} \subseteq \mathbb{R}^{2} \times \mathbb{R}^{2}$ we have the (optimal) lower bound $\left|R \cap\left(V_{1} \times V_{2}\right)\right|=\Omega\left(n^{\frac{4}{3}}\right)$.
- To define it we use both addition and multiplication, i.e. the field structure.
- This is not a coincidence - any non-trivial lower bound on the exponent of R allows to recover a field from it:

Theorem (joint with A. Basit, S. Starchenko, T. Tao, C. Tran)
Assume that $\mathcal{M}=(M,<, \ldots)$ is o-minimal and
$R \subseteq M_{d_{1}} \times \ldots \times M_{d_{r}}$ is a definable relation which is $K_{k, \ldots, k}$-free, but $\left|R \cap \prod_{i \in[r]} V_{i}\right| \neq O\left(n^{r-1}\right)$ for $V_{i} \subseteq_{n} M_{x_{i}}$. Then a real closed field is definable in the first-order structure $(M,<, R)$.

Ingredients

- Optimal Zarankiewicz bound for semilinear hypergraphs:

Theorem (BCSTT)

For any integers $r \geq 2, s \geq 0, k \geq 2$ there are $\alpha=\alpha(r, s, k) \in \mathbb{R}$ and $\beta=\beta(r, s) \in \mathbb{N}$ such that: for any finite K_{k}, \ldots, k-free semilinear r-hypergraph $H=\left(V_{1}, \ldots, V_{r} ; E\right)$ with $E \subseteq \prod_{i \in[r]} V_{i}$ of complexity $\leq s$ we have

$$
|E| \leq \alpha n^{r-1}(\log n)^{\beta}
$$

- In particular, $|E|=O\left(n^{1+\varepsilon}\right)$ for $r=2$ and any $\varepsilon>0$.
- The trichotomy theorem for o-minimal structures from model theory [Peterzil, Starchenko'98]: any non-trivial matroid defined by algebraic closure in an o-minimal structure is either locally modular (behaves like span in a vector space), or a real closed field can be defined.
In a very special case: let $X \subseteq \mathbb{R}^{n}$ be a semialgebraic but not semilinear set. Then $\cdot{ }_{[0,1]^{2}}$ is definable in $(\mathbb{R},<,+, X)$.

Thank you!

- György Elekes and Endre Szabó, "How to find groups? (and how to use them in Erdös geometry?)", Combinatorica (2012)
- Artem Chernikov, Kobi Peterzil and Sergei Starchenko, "Model-theoretic Elekes-Szabó for stable and o-minimal hypergraphs", Duke Mathematical Journal, to appear
- Artem Chernikov, Sergei Starchenko, "Model-theoretic Elekes-Szabó in the strongly minimal case", Journal of Mathematical Logic (2021)
- A. Basit, A. Chernikov, S. Starchenko, T. Tao, C. Tran, "Zarankiewicz's problem for semilinear hypergraphs", Forum of Mathematics, Sigma (2021)
- Martin Bays and Emmanuel Breuillard, "Projective geometries arising from Elekes-Szabó problems", Ann. Sci. Ec. Norm. Supér. (2021),

