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History: arithmetic and geometric progressions

Given two sets A,B in a field K , we define
◮ their sumset A+ B = {a+ b : a ∈ A, b ∈ B},
◮ their productset A · B = {a · b : a ∈ A, b ∈ B}.

Example
Let An := {1, 2, . . . , n}.
◮ |An + An| = 2 |An|− 1 = O (|An|).
◮ Let π (n) be the number of primes in An. As the product of

any two primes is unique up to permutation, by the Prime
Number Theorem we have
|An · An| ≥ 1

2π (n)2 = Ω

|An|2−o(1)


.



History: sum-product phenomenon

◮ This generalizes to arbitrary arithmetic progressions: their
sumsets are as small as possible, and productsets are as large
as possible.

◮ For a geometric progression, the opposite holds: productset is
as small as possible, sumset is as large as possible.

◮ These are the two extreme cases of the following result.
◮ [Erdős, Szemerédi] There exists some c ∈ R>0 such that: for

every finite A ⊆ R,

max {|A+ A| , |A · A|} = Ω

|A|1+c


.

◮ Conjecture (widely open): holds with exponent 2 − ε for any
ε > 0.



Elekes: generalization to polynomial expansion

◮ Since polynomials combine addition and multiplication, a
“typical” polynomial f ∈ R [x , y ] should satisfy

|f (A× B)| = Ω

n1+c



for some c = c (f ) and all finite A,B ⊆ R with |A| = |B | = n.
◮ Doesn’t hold when only one of the operations occurs between

the two variables:
◮ f is additive, i.e. f (x , y) = g (h (x) + i (y)) for some

univariate polynomials g , h, i
(as then |f (A× B)| = O (n) for A,B such that h (A) , i (B)
are arithmetic progressions).

◮ f is multiplicative, i.e. f (x , y) = g (h (x) · i (y)) for some
univariate polynomials g , h, i
(as then |f (A× B)| = O (n) for A,B such that h (A) , i (B)
are geometric progressions).



Elekes-Rónyai

◮ But these are the only exceptions!
◮ [Elekes, Rónyai] Let f ∈ R [x , y ] be a polynomial of degree d

that is not additive or multiplicative. Then for all A,B ⊆ R
with |A| = |B | = n one has

|f (A× B)| = Ωd


n

4
3


.

◮ The improved bound and the independence of the exponent
from the degree of f is due to [Raz, Sharir, Solymosi].

◮ Analogous results hold with C instead of R (and slightly worse
bounds).

◮ The exceptional role played by the additive and multiplicative
forms suggests that (algebraic) groups play a special role —
made precise by [Elekes, Szabó].



Elekes-Szabó theorem
◮ [Elekes-Szabó’12] provide a conceptual generalization: for any

algebraic surface R(x1, x2, x3) ⊆ R3 so that the projection
onto any two coordinates is finite-to-one, exactly one of the
following holds:

1. (power saving) there exists γ > 0 s.t. for any finite Ai ⊆n R
we have

|R ∩ (A1 × A2 × A3)| = O(n2−γ).

2. (locally equivalent to a group) There exist open sets Ui ⊆ R
and V ⊆ R containing 0, and analytic bijections with analytic
inverses πi : Ui → V such that

π1(x1) + π2(x2) + π3(x3) = 0 ⇔ R(x1, x2, x3)

for all xi ∈ Ui .

◮ Alternative regime: working over C, for R irreducible get that
it is in coordinate-wise finite-to-finite algebraic correspondence
with the graph of addition on a 1-dimensional algebraic group.

◮ If f (x1, x2, x3) = x3 − x1 − x2, arithmetic progressions witness
no power saving.



Generalizations of the Elekes-Szabó theorem
Let R ⊆ X1 × . . .× Xr be a (semi-)algebraic variety with
finite-to-one projection onto any r − 1 coordinates, dim(Xi ) = m.

1. [Elekes, Szabó’12] r = 3, any m (grids in general position,
correspondence with a complex algebraic group of dim = m);

2. [Raz, Sharir, de Zeeuw’18] r = 4, m = 1;
3. [Raz, Shem-Tov’18] m = 1, R of the form f (x1, ..., xr−1) = xr ;
4. [Hrushovski’13] Pseudofinite dimension, connection to

modularity of certain matroids;
5. Related work: [Raz, Sharir, de Zeeuw’15], [Wang’15]; [Bukh,

Tsimmerman’ 12], [Tao’12]; [Jing, Roy, Tran’19];
6. [Bays, Breuillard’18] any r and m, any co-dim over C,

recognized that groups are abelian — but no bounds on γ;
7. [C., Peterzil, Starchenko’21] Any r and m, any R definable in

an o-minimal structure and explicit bounds on γ.
8. [Bays, Dobrowolski, Zou’21] Relaxing general

position/abelianity to nilpotence in special cases.
9. [C., Peterzil, Starchenko’24] Any r ,m, any co-dim, bounds.



One-dimensional semi-algebraic case

Theorem (C., Peterzil, Starchenko)
Assume r ≥ 3, R ⊆ Rr is semi-algebraic, such that the projection
of R to any r − 1 coordinates is (generically) finite-to-one. Then
exactly one of the following holds.

1. For any finite Ai ⊆n R, i ∈ [r ], we have

|R ∩ (A1 × . . .× Ar )| = OR


nr−1−γ


,

where γ = 1
3 if r ≥ 4, and γ = 1

6 if r = 3.
2. There exist open sets Ui ⊆ R, i ∈ [r ], an open set V ⊆ R

containing 0, and homeomorphisms πi : Ui → V such that

π1(x1) + · · ·+ πr (xr ) = 0 ⇔ R(x1, . . . , xr )

for all xi ∈ Ui , i ∈ [r ].



Grids in general position

◮ When R ⊆ X1 × . . .× Xr with dim(Xi ) = m > 1, it is
necessary to restrict to grids in general position.

◮ A set A ⊆ Xi is in (D, ν)-general position if |A ∩ Y | ≤ ν for
every algebraic subset Y ⊆ X with dimension < m and degree
≤ D.

◮ A grid A = A1 × . . .× Ar is in (D, ν)-general position if each
Ai ⊆ Xi is in (D, ν)-general position.

◮ Example: if m = 1 and D is fixed, then for ν large enough
every set A ⊆ C is in (D, ν)-general position.



General semi-algebraic case
Theorem (C., Peterzil, Starchenko)
Assume r ≥ 3, R ⊆ X1 × · · ·× Xr are semi-algebraic with
dim (Xi ) = m, and the projection of R to any r − 1 coordinates is
finite-to-one. Then one of the following holds.

1. There exists D = D(R) such that for any ν and any finite
Ai ⊆n Xi in (D, ν)-general position, i ∈ [r ], we have

|R ∩ (A1 × . . .× Ar )| = OR,ν


nr−1−γ


,

for γ = 1
8m−5 if s ≥ 4, and γ = 1

16m−10 if s = 3.
2. There exist semialgebraic relatively open sets Ui ⊆ Xi , i ∈ [s],

an abelian Lie group (G ,+) of dimension m and an open
neighborhood V ⊆ G of 0, and semi-algebraic
homeomorphisms πi : Ui → V , i ∈ [s], such that for all
xi ∈ Ui , i ∈ [s]

π1(x1) + · · ·+ πs(xs) = 0 ⇔ R(x1, . . . , xs).



Remarks
1. In fact, our theorem is for R definable in an arbitrary

o-minimal expansion of R — so R can be defined not only
using polynomial (in-)equalities, but also e.g. using ex and
restricted analytic functions. Recently generalized to arbitrary
co-dimension (this is codim 1 case).

2. We also have an analog over algebraically closed fields of
characteristic 0 (here we get a finite-to-finite correspondence
with an algebraic group), and more generally for differentially
closed fields, etc.

3. One ingredient — improved Szemeredi-Trotter style incidence
bounds in o-minimal structures ([Basu, Raz], [C., Galvin,
Starchenko]).

4. Another – a higher arity generalization of the (abelian) Group
Configuration theorem of Zilber and Hrushovski on recognizing
groups from a “generic chunk” (and more generally — local
version of the coordinatization of projective geometries). We
discuss a simple purely combinatorial special case:



First ingredient: Recognizing groups, 1

1. Assume that (G ,+, 0) is an abelian group, and consider the
r -ary relation R ⊆


i∈[r ] G given by x1 + . . .+ xr = 0.

2. Then R is easily seen to satisfy the following two properties,
for any permutation of the variables of R :

∀x1, . . . , ∀xr−1∃!xrR(x1, . . . , xr ), (P1)

∀x1, x2∀y3, . . . yr∀y ′3, . . . , y ′r

R(x̄ , ȳ) ∧ R(x̄ , ȳ ′) → (P2)


∀x ′1, x ′2R(x̄ ′, ȳ) ↔ R(x̄ ′, ȳ ′)


.

We show a converse, assuming r ≥ 4:



Recognizing groups, 2

Theorem (C., Peterzil, Starchenko)
Assume r ∈ N≥4, X1, . . . ,Xr and R ⊆


i∈[r ] Xi are sets, so that R

satisfies (P1) and (P2) for any permutation of the variables. Then
there exists an abelian group (G ,+, 0G ) and bijections πi : Xi → G
such that for every (a1, . . . , ar ) ∈


i∈[r ] Xi we have

R(a1, . . . , ar ) ⇐⇒ π1(a1) + . . .+ πr (ar ) = 0G .

◮ If X1 = . . . = Xr , property (P1) is equivalent to saying that
the relation R is an (r − 1)-dimensional permutation on the
set X1, or a Latin (r − 1)-hypercube, as studied by Linial and
Luria. Thus the condition (P2) characterizes, for r ≥ 3, those
Latin r -hypercubes that are given by the relation
“x1 + . . .+ xr−1 = xr ” in an abelian group.

◮ If R is semi-algebraic and Xi are semi-algebraic, then G and πi
can be chosen semi-algebraic as well.



Some remarks

◮ For r = 4, and fixed a3, a4, R(x1, x2, a3, a4) is the graph of a
bijection fa3,a4 : X1 → X2 by (P1).

◮ Let F := {fa3,a4 : (a3, a4) ∈ X3 × X4}.
◮ Fix any f0 ∈ F . For f , f ′ ∈ F , let f + f ′ := f ◦ f −1

0 ◦ f ′.
◮ Then one shows (F ,+) is an abelian group with identity f0

using (P2) for various permutations of the coordinates.
◮ In the general case, have to work with only generically defined

finite-to-finite correspondences (in o-minimal — on
infinitesimal neighborhoods in some non-standard extension of
R), and the group is built on their germs.



Counting edges in bipartite graphs

◮ Let G = (A,B , I ) with I ⊆ A× B be a bipartite graph.
◮ For k ∈ N, let Kk,k be the complete bipartite graph with each

part of size k . Cauchy-Schwarz gives you:

Fact
[Kővári, Sós, Turán, ’54] For each k ∈ N there is some c ∈ R such
that: for any bipartite graph G and A ⊆ U,B ⊆ V with
|A| = |B | = n, if I (A,B) is Kk,k -free, then |I (A,B)| ≤ cn2− 1

k .

◮ So if G is K2,2-free, then |I (A,B)| = O(n
3
2 ).

◮ Optimal up to a constant! Witnessed by the point–line
incidence graph on the affine plane over Fpn as n → ∞.



Example: point-line incidences on the plane

◮ Let I ⊆ R2 × R2 be the incidence relation between points and
lines on the real plane, i.e.

I (x1, x2; y1, y2) ⇐⇒ x2 = y1x1 + y2.

◮ Then I is semialgebraic and K2,2-free (for any two points
belong to at most one line, and vice versa).

◮ Utilizing the geometry of the reals (cell decomposition /
polynomial method):

Fact (Szémeredi-Trotter ’83)
For A a set of n points and B a set of n-lines, |I (A,B)| = O


n

4
3


.

◮ Importantly: 4
3 < 3

2 .



Second ingredient: better “incidence bounds” in o-minimal
structures

◮ Szémeredi-Trotter theorem has numerous generalizations for
semialgebraic graphs, e.g. [Pach, Sharir’98], [Elekes,
Szabó’12], [Fox, Pach, Sheffer, Suk, Zahl ’15], and to
o-minimal structures:

Theorem (C., Galvin, Starchenko’16)
If I ⊆ U × V is a binary relation definable in a distal structure M
(includes o-minimal structures, but also e.g. Qp) and E is
K2,2-free, then there is some δ > 0 such that: for all
A ⊆n U,B ⊆n V we have |I ∩ A× B | = O(n

3
2−δ).

◮ The power saving γ in the main theorem can be estimated
explicitly in terms of this δ.

◮ Explicit bounds on δ are known in some special cases: for
E ⊆ M2 ×M2 for an o-minimal M, also O(n

4
3 ) ([C., Galvin,

Starchenko’16] or [Basu, Raz’16]) — optimal.



Recognizing fields

◮ For the semialgebraic K2,2-free point-line incidence relation
R = {(x1, x2; y1, y2) ∈ R4 : x2 = y1x1 + y2} ⊆ R2 × R2 we
have the (optimal) lower bound |R ∩ (V1 × V2)| = Ω(n

4
3 ).

◮ To define it we use both addition and multiplication, i.e. the
field structure.

◮ This is not a coincidence — any non-trivial lower bound on the
exponent of R allows to recover a field from it:

Theorem (joint with A. Basit, S. Starchenko, T. Tao, C. Tran)
Assume that M = (M, <, . . .) is o-minimal and
R ⊆ Md1 × . . .×Mdr is a definable relation which is Kk,...,k -free,
but |R ∩


i∈[r ] Vi | ∕= O(nr−1) for Vi ⊆n Mxi . Then a real closed

field is definable in the first-order structure (M, <,R).



Ingredients
◮ Optimal Zarankiewicz bound for semilinear hypergraphs:

Theorem (BCSTT)
For any integers r ≥ 2, s ≥ 0, k ≥ 2 there are α = α(r , s, k) ∈ R
and β = β(r , s) ∈ N such that: for any finite Kk,...,k -free semilinear
r -hypergraph H = (V1, . . . ,Vr ;E ) with E ⊆


i∈[r ] Vi of

complexity ≤ s we have

|E | ≤ αnr−1 (log n)β .

◮ In particular, |E | = O(n1+ε) for r = 2 and any ε > 0.
◮ The trichotomy theorem for o-minimal structures from model

theory [Peterzil, Starchenko’98]: any non-trivial matroid
defined by algebraic closure in an o-minimal structure is either
locally modular (behaves like span in a vector space), or a real
closed field can be defined.
In a very special case: let X ⊆ Rn be a semialgebraic but not
semilinear set. Then · ↾[0,1]2 is definable in (R, <,+,X ).



Thank you!
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