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The singularity problem
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The incompressible Euler/Navier Stokes equation:

￼ ,


for viscosity ￼ , velocity ￼  and pressure ￼ .


Open Problem: For the 3-D Euler/Navier-Stokes, does there exist smooth initial data ￼  leading to the 
formation of a singularity in finite time?


Eligindi '19 answered the question for non-smooth ￼  Euler initial data (cf. Elgindi Ghoul Masmoudi '19). An 
analogous result was proven by Chen Hou '19 for the case of Euler with cylindrical boundary. 


Blow up for Euler with cylindrical boundary from smooth initial data was proven by Chen-Hou ’22/‘23!

∂tv + v ⋅ ∇v + ∇p−νΔv = 0, div v = 0
ν > 0 v p

v(0,t) = v0

C1,α
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Self-similar analysis: 

Shock like singularities as a model



Toy Problem: Burgers’ equation
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Consider the Burgers' equation

￼   where  ￼  .


Let ￼  be the characteristic induced by ￼ , starting at ￼ :


￼  .

Then, one can solve Burgers' via characteristics


￼  .

∂tu + u∂xu = 0 u(x,0) = u0

ηy0 u y0

ηy0(t) = y0 + u0(y0)t

u ∘ ηy0 = u0(y0)
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Taking a derivative of ￼  and following characteristics 


￼  .


Thus, if ￼ , then


￼  .


If ￼ , then a singularity forms at time ￼ .

u
d
dt

(ux ∘ ηy0) = − u2
x ∘ ηy0

u′￼0(y0) = α

ux ∘ ηy0 =
α

αt + 1

α < 0 −
1
α
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Self-similar analysis simplifies the search for singularities by extracting the blow-up profile, describing the 
behavior at the location and time of the singularity.


For the Burgers’ equation ￼ . Consider the ansatz


￼ .


The PDE reduces to the ODE

￼ .

ut + uu′￼ = 0
u(x, t) = (1 − t)λU( x

(1 − t)1+λ

y

)

−λU + ((1 + λ)y + U) U′￼ = 0
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The self-similar equation

￼ ,


has implicit solution

￼   for any constant ￼ .


For ￼  to be smooth ￼  ￼ , and ￼  to defined globally ￼  ￼  odd and ￼ . We are left with


￼  for ￼ 


The corresponding solutions are odd.

−λU + ((1 + λ)y + U) U′￼ = 0

y = − U − CU1+ 1
λ C

U ⟹ 1 +
1
λ

∈ ℕ U ⟹ 1 +
1
λ

C > 0

λ =
1

2i + 2
i = 0,1,2,…
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For ￼ , i.e., ￼ , setting ￼ , the explicit solution ￼  is


￼ 


￼   is stable modulo the symmetries of Burgers' equation: Suppose ￼  solves Burgers' then define ￼  by


￼ 


for ￼ . Then, ￼  solves


￼ 


All eigenvalues with positive real part of ￼  are generated by the symmetries of Burgers' (Collot-Ghoul-
Masmoudi '18). Such a self-similar solution is said to be stable.

i = 0 λ = 1
2 C = 3! = 6 Ū

Ū(y) = − y
2 +( 1

27 + y2

4 )
1
2

1
3

− y
2 +( 1

27 + y2

4 )
1
2

1
3

Ū u Ũ
u(x, t) = (1 − t)λ(Ū(y) + Ũ(y, s))

s = − log(T − t) Ũ
∂sŨ + (1 + Ū′￼)Ũ + ((1 + λ)y + Ū)Ũ′￼

−ℒŨ

= (nonlinear terms in Ũ)

ℒ
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Computer assisted proof by example:

Implosion for compressible fluid



Implosion Setup
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Isentropic, spherically symmetric Euler


￼ .


The self-similar ansatz:


  ￼ ,


where ￼  is the rescaled sound speed, ￼ . Setting ￼  leads to the autonomous ODE


￼ 


∂tu + u∂Ru +
1
γρ

∂Rργ = 0 and ∂tρ +
1

R2
∂R(R2ρu) = 0

u(R, t) = (1 + λ) R
T − t U(log( R

(T − t)1+λ )) and σ(R, t) = (1 + λ)α−
1
2 R

T − t S(log( R
(T − t)1+λ ))

σ = 1
α ρα α = γ − 1

2 ξ = log( R
(T − t)1+λ )

dU
dξ =

NU(U, S)
D(U, S) , and dS

dξ =
NS(U, S)
D(U, S) .
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Merle Raphaël Rodnianski Szeftel ’19
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For a.e. ￼ , there exists a countably infinite sequence of self-similar solutions to isentropic Euler. The 
velocity and density blow up at the origin.


The existence of non-smooth imploding shock wave solutions is a classical result of Guderley ’42.

γ > 1
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Compressible Navier-Stokes
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Isentropic 3D compressible Navier-Stokes with constant viscosity:


￼ 


for ￼  and ￼ . 


Merle Raphaël Rodnianski Szeftel et al. '19: there exists imploding solutions to NS for a.e. ￼  with 

mildly decaying density.

∂t(ρu) + div(ρu ⊗ u) + ∇p(ρ) − μ1Δu − (μ1 + μ2)∇div u = 0 ,
∂tρ + div(ρu) = 0 ,

μ1 ≥ 0 2μ1 + μ2 ≥ 0

1 < γ <
2 + 3

3
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B Cao-Labora Gómez-Serrano ‘22
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• Do imploding solutions for Euler exist for all ￼ ? 

• Can one construct imploding solutions to the Navier-Stokes equation with initial density constant at infinity?


Main result:

• There exists smooth self-similar imploding solutions for all ￼ . 


• For the case ￼  (diatomic gas, e.g. oxygen, hydrogen, nitrogen),  there exists a countably infinite 
sequence of  imploding solutions.


• Simplified proofs of linear stability and non-linear stability.


• Asymptotically self-similar imploding solutions to NS for ￼  for initial density constant at infinity.


γ > 1

γ > 1
γ = 7

5

γ = 7
5
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Phase portrait of ODE
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Toy Problem: Barrier Argument
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Consider the autonomous ODE: 


￼ .


Suppose we want to see if the curve

￼  for ￼ ,


acts as a barrier for the ODE. In particular, we want to show


￼  for all ￼ ,


which is equivalent to showing

￼ ,


for all ￼ .

dx
dt

=
y + x2

(x + 4)2
=

N1

D1

dy
dt

=
−x − y2

(x − y + 4)2
=

N2

D2

r(t) = (t3, t − 2t2) t ∈ [0,1]

·r⊥(t) ⋅ ( N1

D1
,

N2

D2 ) (x,y)=r(t)
≤ 0 t ∈ [0,1]

·r⊥(t) ⋅ (N1D2, N2D1) |(x,y)=r(t) ≤ 0

t ∈ [0,1]
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Expanding the condition 

￼  for ￼ ,


in ￼ leads to the 13th order polynomial condition


￼  for ￼ ,


which is equivalent (after dividing by ￼ ) to checking


￼  for ￼ .

·r⊥(t) ⋅ (N1D2, N2D1) |(x,y)=r(t) ≤ 0 t ∈ [0,1]

t

−3t4 (t3 + 4)2(t(4t − 3) + 1) +
1
2

(t − 2)t (t5 − 2t + 1)(t(t(t + 2) − 1) + 4)2 ≤ 0 t ∈ [0,1]

−t

3t3 (t3 + 4)2(t(4t − 3) + 1) −
1
2

(t − 2)(t5 − 2t + 1)(t(t(t + 2) − 1) + 4)2 ≥ 0 t ∈ [0,1]
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Interval arithmetic
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Replace arithmetic operators ￼  acting on ￼  with interval arithmetic operators 
￼  acting on intervals:


￼ 


￼ 


For this example, we choose radii of powers of two.

{ + , − , × , ÷ } ℝ
{[ + ], [ − ], [ × ], [ ÷ ]}

5 ± 2−4 [ + ] 3 ± 2−7 = 8 ± 2−3

5 ± 2−4 [ × ] 3 ± 2−7 = 15 ± 2−2
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Interval Arithmetic SageMath implementation
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def check_positivity(divisions):

    # declare t to be a symbolic variable

    t = var('t')    


    # define the polynomial

    f(t) = 3*t^3*(4 + t^3)^2*(1 + t*(-3 + 4*t)) - (1/2)*(-2 + t)*(1 - 2*t + t^5)*(4 + t*(-1 + t*(2 + t)))^2


    # check if polynomial is positive on each subinterval

    for i in range(divisions):

        # define the interval

        interval = RBF(RIF(i/divisions,(i+1)/divisions))

        # evaluate the polynomial on the interval

        check = RBF(f(interval))

        # print the midpoint, radius, and positivity

        print (check.mid(), "+/-",check.rad(), check>0)

check_positivity(13)


14.2320562004355 +/- 1.8402061 True
11.1498422010209 +/- 1.7248105 True
8.61055964292719 +/- 1.6924691 True
6.53495632964663 +/- 1.7562538 True
4.89928321978891 +/- 1.9547040 True
3.80904861562007 +/- 2.3609177 True
3.58923339843750 +/- 3.0933264 True
4.90733564216300 +/- 4.4653752 True
8.95287286089665 +/- 6.6677609 True
17.7064640258238 +/- 10.041640 True
34.3443711368435 +/- 15.858239 True
63.8416146936019 +/- 25.182072 True
113.859875062410 +/- 39.538814 True

check_positivity(10)


13.7319096680717 +/- 2.4033513 True
9.94519217465356 +/- 2.2604430 True
7.01329109072685 +/- 2.3163407 True
4.83017592207281 +/- 2.6566253 True
3.60764251775374 +/- 3.4963810 True
4.21019282599796 +/- 5.2965599 False
8.65928043033235 +/- 8.8737563 False
20.9688498675823 +/- 15.087557 True
48.5618811141393 +/- 27.722346 True
104.646729755676 +/- 49.986929 True



Physics-Informed Neural Networks: 

A novel approach to finding self-similar singularities



Luo-Hou Scenario
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Consider incompressible Euler in the exterior of a cylindrical boundary ￼ .


Luo-Huo '14 gave compelling numerical evidence for blow-up in this setting, 
suggestive of asymptotic self-similar scaling. See also Childress '87 and Pumir 
Siggia ’92.


A rigorous proof of blow-up from smooth initial data was proven by Chen-Hou ’22/
‘23!

r ≥ 1
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Self-similar blow up for 2-D Boussinesq
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The 2-D Boussinesq equations:

￼ .


Self-similar ansatz:


￼ ,


which lead to 

￼ 


￼ .

A nice smooth solution implies blow up for Boussinesq. 


Self-similar Euler = Self-similar Boussinesq + decaying terms.

∂tu + u ⋅ ∇u + ∇p = (0,θ), div u = 0 and ∂tθ + u ⋅ ∇θ = 0

u = (1 − t)λU(y), θ = (1 − t)−1+λΘ(y),  for y = (x1, x2)
(1 − t)1+λ

−λU + ((1 + λ)y + U) ⋅ ∇U + ∇P = (0, − Θ),
(1 − λ)Θ + ((1 + λ)y + U) ⋅ ∇Θ = 0, and div U = 0
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Wang-Lai-Gomez-Serrano-B ’23 PRL
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Self-similar
solution:

Equation
residue:



Neural Network vs Fourier Series
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Córdoba-Córdoba-Fontelos (CCF) equation
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For Córdoba-Córdoba-Fontelos (CCF) equations are


￼   where  ￼  .


Assume the self-similar ansatz:


￼ .


With the change of coordinates  ￼ ,  we obtain the self-similar equations


	 ￼ .

ωt − uωx − ωux+μ(−Δ)α/2ω = 0 u = ∫
x

0
(Hω)(s) ds = Λ−1ω

ω =
1

1 − t
Ω ( x

(1 − t)1+λ )
y = x

(1 − t)1+λ

Ω + ((1 + λ)y − U)∂yΩ − Ω∂yU−μe(α(1+λ)−1)s(−Δ)α/2ω = 0 where U = Λ−1Ω
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Open Problem
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(Córdoba Córdoba Fóntelos '05, Li Rodrigo '08, Dong ’08, Kiselev '10):


• Blow up occurs for ￼ .


• Global-wellposedness holds for ￼ .


In self-similar coordinates, the dissipative term decays exponentially if ￼ . Thus, blow up for 
￼  is attainable using inviscid self-similar solutions if


￼ .


To address the open range ￼ , one needs ￼ .

0 ≤ α < 1
2

α ≥ 1

α(1 + λ) < 1
0 ≤ α < 1

λ <
1
α

− 1
1
2 < α < 1 λ < 1
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PINN setup for CCF equation
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Equation residues:


  ￼ 


 where ￼  is a numerical Hilbert transform. 

Additional constraints:

￼ , ￼ , ￼  and ￼  are both odd.

f1 = Ω + ((1 + λ)y − U)∂yΩ − Ω∂yU

f2 = ∂yU − H̃Ω
H̃

Ω(y0) = c0 lim
n→±∞

Ω = 0 Ω U

Denote the two networks as ￼  and ￼ , where ￼ , ￼  are the weights and biases respectively, 
defining the network. As functions of ￼ , ￼  and ￼  are smooth functions with explicit expressions, that can 
analytically differentiated. 

The network is trained in terms of a loss function that samples the equation residues (and its derivatives) at 
random collocation points in the domain and takes into account the constraints.

Ω(y, w, b) U(y, w, b) w b
y Ω U



Results
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The linearization of unstable solution has an extra unstable eigenvalue￼ , in addition to the two 
eigenvalues ￼  from symmetries. For the stable solution ￼  and for the unstable solution ￼ .

≈ 0.367
0,1 λ ≈ 1.181 λ ≈ 0.606
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Early stage of training:   Range: 100 - 50000.     Frame gap is 100 iteration



Questions?


