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Mariam Alhawaj
University of Toronto, Canada

Generalized pseudo-Anosov Maps and Hubbard Trees

The Nielsen-Thurston classification of the mapping classes proved that every orienta-
tion preserving homeomorphism of a closed surface, up to isotopy is either periodic,
reducible, or pseudo-Anosov [2]. Pseudo-Anosov maps have particularly nice structure
because they expand along one foliation by a factor of λ > 1 and contract along a
transversal foliation by a factor of 1

λ
[3]. The number λ is called the dilatation of the

pseudo-Anosov. Thurston showed that every dilatation λ of a pseudo-Anosov map is an
algebraic unit, and conjectured that every algebraic unit λ whose Galois conjugates lie
in the annulus Aλ = {z : 1

λ
< |z| < λ} is a dilatation of some pseudo-Anosov on some

surface S.

Pseudo-Anosovs have a huge role in Teichmuller theory and geometric topology. The re-
lation between these and complex dynamics has been well studied inspired by Thurston.

In my research, I develop a new connection between the dynamics of quadratic poly-
nomials on the complex plane and the dynamics of homeomorphisms of surfaces. In
particular, given a quadratic polynomial, we show that one can construct an extension
of it which is generalized pseudo-Anosov homeomorphism. Generalized pseudo-Anosov
means the foliations have infinite singularities that accumulate on finitely many points
[3]. We determine for which quadratic polynomials such an extension exists. My con-
struction is related to the dynamics on the Hubbard tree which is a forward invariant
subset of the filled Julia set that contains the critical orbit.

[1] Mariam Alhawaj. Generalized pseudo-Anosov Maps and Hubbard Trees. In prepa-
ration.

[2] Benson Farb, Dan Margalit. A primer on mapping class groups. 2012 by Princeton
University Press, ISBN 978-0-691-14794-9

[3] Andre de Carvalho and Toby Hall. Unimodal generalized pseudo-Anosov maps.
Geom. Topol., 8:11271188, 2004.

[4] David Fried. Growth rate of surface homeomorphisms and ow equivalence. Ergodic
Theory Dynam. Systems, 5(4):539563, 1985.

[5] William P. Thurston. Entropy in dimension one. In Frontiers in complex dynamics,
volume 51 of Princeton Math. Ser., pages 339384. Princeton Univ. Press, Princeton,
NJ, 2014.
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Marco Amelio
WWU Münster, Germany

Non-split sharply 2-transitive groups of odd characteristic

A group G is said to be sharply n-transitive if there exists a set X with at least n
elements on which the group acts in such a way that, for any two n-tuples (x1, ..., xn)

and (y1, ..., yn) of pairwise different elements there is exactly one g ∈ G with g.xi = yi,
i = 1, ..., n.

A sharply 2-transitive group is said to split if it has a non-trivial abelian normal sub-
group. Moreover, if involutions (that is, elements of order 2) have fix-points, then there
is a G-equivariant bijection between X and the set of involutions of G (considering the
action of G on its set of involutions by conjugation). In this case, the characteristic of
G is defined as the order of the product of two involutions. If involutions do not have
fix-points, the group is said to have characteristic 2.

A typical example of a sharply 2-transitive group is the affine group of a field AGL(1, K)
∼= K+ o K∗ (for its natural action on K). If a sharply 2-transitive group splits it can
always be seen as the affine group of a near-field (that is, a field but with only one
distributive law).

All finite sharply 2-transitive groups split, as shown in [1] and [2]. In the infinite case,
the first constructions of sharply 2-transitive groups that do not split (or alternatively,
that do not appear as the affine group of a near-field) were shown in [3] (for charac-
teristic 2) and in [4] (for characteristic 0).

The aim of our work is to construct non-split sharply 2-transitive groups of characteristic
other than 0 or 2, using small cancellation techniques introduced in [5].

[1] Hans Zassenhaus. Kennzeichnung endlicher linearer Gruppen als Permutations-
gruppen. In Abhandlungen aus dem Mathematischen Seminar der Universität Ham-
burg, volume 11, pages 17-40. Springer, 1935.

[2] Hans Zassenhaus. Über endliche fastkörper. In Abhandlungen aus dem Mathematis-
chen Seminar der Universität Hamburg, volume 11, pages 187-220. Springer, 1935.

[3] Eliyahu Rips, Yoav Segev and Katrin Tent. A sharply 2-transitive group without a
non-trivial abelian normal subgroup. J. Eur. Math. Soc. (JEMS), 19(10):2895-2910,
2017.

[4] Eliyahu Rips and Katrin Tent. Sharply 2-transitive groups of characteristic 0. J.
Reine Angew. Math., 2019(750):227-238, 2019.

[5] Rémi Coulon. Partial periodic quotients of groups acting on a hyperbolic space.
Annales de l’Institut Fourier, 66(5) 1773-1857, 2016.

2



Simon André
University of Münster, Germany

Geometric group theory, model theory and multiply transitive group actions

Part of my research lies at the interface of geometric group theory and model theory
(the study of mathematical structures from the point of view of first-order logic). Deep
connections between these two areas have emerged from the resolution by Sela of a
famous question asked by Tarski around 1945, establishing that non-abelian free groups
cannot be distinguished from each other by means of a first-order sentence. One of the
results I proved in this direction can be roughly stated as follows (see [1]).

Theorem. Let G be a finitely generated group and let G′ be a hyperbolic group. If G is
indistinguishable from G′ by means of a first-order sentence, then G is a hyperbolic group.

This result shows that hyperbolicity is highly intrinsic (at least among finitely generated
groups).

More recently, I have started working on multiply transitive group actions, and more
specifically on sharply 2-transitive and sharply 3-transitive groups. Let n ≥ 1 be an
integer; an action of a group G on a set X of cardinality at least n is said to be sharply
n-transitive if for any n-tuples (x1, . . . , xn), (y1, . . . , yn) of pairwise distinct elements of
X, there exists a unique element of G mapping (x1, . . . , xn) to (y1, . . . , yn). A group
G is said to be sharply n-transitive if it acts sharply n-transitively on some set X (with
|X| ≥ n). For instance, for any field K, the natural action of the affine group KoK∗ on
K is sharply 2-transitive, and the natural action of PGL2(K) on K ∪ {∞} is sharply 3-
transitive. Until recently, it was an open problem whether all sharply 2 and 3-transitive
groups are of this form. The first counterexamples were constructed by Rips, Segev and
Tent a few years ago. I proved the following result in collaboration with Tent (see [2]).

Theorem. There exist infinite simple sharply 2-transitive groups. In particular, they are
not of the form K oK∗.

In collaboration with Guirardel, I proved that these groups can even be finitely gener-
ated. Our proof relies on small cancellation theory over relatively hyperbolic groups.

[1] Simon André, Hyperbolicity and cubulability are preserved under elementary
equivalence, Geom. Topol., 2020.

[2] Simon André and Katrin Tent. Simple sharply 2-transitive groups. Trans. Amer.
Math. Soc. (to appear), 2023.
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Naomi Andrew
University of Oxford, UK

Automorphisms, actions on trees, and free-by-cyclic groups

I’m interested in actions on trees, automorphisms, and how these interact: so far this
has involved thinking about free groups, free products, free-by-cyclic groups, one ended
hyperbolic or relatively hyperbolic groups, amongst others. Another thread (not unique
to me) is the analogy between mapping class groups and Out(Fn), which extends to an
analogy between free-by-cyclic groups and fibred three manifolds.

One technique involves using actions on trees that, while they aren’t canonical, are “in-
variant enough” – they are preserved by a finite index subgroup of automorphisms. In
this case that subgroup itself admits an action on the same tree, and it can be analysed
using this action. We used this to show that certain free-by-cyclic groups have finitely
generated outer automorphism group [2], and used similar techniques (and, somewhat
surprisingly, some free-by-cyclic groups!) to think about centralisers of certain elements
of Out(Fn) [3].

On the other hand, some groups admit no actions on trees (except, of course, trivial
actions with a global fixed point) – this is known as Serre’s Property FA. Groups with FA
include the automorphism groups of some free products, for instance of four or more
copies of the same finite group [1].

I’m currently thinking about automorphisms of Leary–Minasyan groups (HNN exten-
sions of Zn, generalising Baumslag–Solitar groups), centralisers of outer automorphisms
of [various adjectives might go here] hyperbolic groups, homological and cohomologi-
cal properties of free-by-cyclic groups and their analogies with fibred three manifolds,
as well as removing the word “certain” from the results about Out(Fn o Z) and cen-
tralisers in Out(Fn).

[1] Naomi Andrew. Serre’s property (FA) for automorphism groups of free products. J.
Group Theory, 24(2):385–414, 2021.

[2] Naomi Andrew and Armando Martino. Free-by-cyclic groups, automorphisms and
actions on nearly canonical trees. J. Algebra, 604:451–495, 2022.

[3] Naomi Andrew and Armando Martino. Centralisers of linear growth automor-
phisms of free groups arXiv:2205.12865 [math.GR]
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Raphael Appenzeller
ETH Zürich, Switzerland

Generalized trees and buildings

Trees (from graph theory) and 0-hyperbolic metric spaces can be given a common
framework as Λ-trees [1], where Λ = Z for trees and Λ = R for 0-hyperbolic met-
ric spaces. In the general setup, Λ is an ordered abelian group, examples include also
Q and Z × Z with a lexicographical ordering. Affine Λ-buildings are a generalization
of both simplicial affine buildings (Λ = Z) and Euclidean buildings (Λ = R). Affine
buildigs are a higher-dimensional version of trees, in fact the one-dimensional affine
Λ-buildings are exactly the Λ-trees without leaves.

I am working on the axiomatics of Λ-trees and Λ-buildings [2,3], as well as on a con-
struction of an affine Λ-building that uses algebraic groups and real closed fields [4].
In analogy to Teichmüller theory, where a surface group acts on a symmetric space,
one can define actions of surface groups on these affine Λ-buildings and possibly learn
something about them this way [5].

Recently I have also been interested in Lean [6], a computer-program that allows to
formalize and prove mathematical statements. I have used Lean to formalize the notion
of Λ-trees and to prove some statements about them.

[1] I. M. Chiswell, Introduction to Λ-trees, River Edge, NJ: World Scientific Publishing
Co. Inc., ISBN 981-02-4386-3, 2001.

[2] C. Bennett, P. Schwer, K. Struyve, On axiomatic definitions of non-discrete affine
buildings, Adv. Geom., 14(3):381-412, 2014.

[3] R. Appenzeller, (In)dependence of axioms of Λ-trees, arXiv:2112.02704, 2021.

[4] L. Kramer, K. Tent, Affine Λ-buildings, ultrapowers of Lie groups and Riemannian
symmetric spaces: an algebraic proof of the Margulis conjecture, arXiv:math/0209122,
2002.

[5] M. Burger, A. Iozzi, A. Parreau, M. B. Pozzetti, The real spectrum compactification of
character varieties: characterizations and applications, Comptes Rendus. Mathéma-
tique, 359(4):439-463, doi : 10.5802/crmath.123, 2021.

[6] Lean theorem prover, https://leanprover.github.io/.
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Macarena Arenas
University of Cambridge, United Kingdom

Non-positively curved cube complexes and large-dimensional hyperbolic groups

Currently my main focus is the study of cubulated, large-dimensional hyperbolic groups.
I have a method for producing a wide variety of examples of such groups, and I
am currently working on exploiting this method to try to construct families of large-
dimensional hyperbolic groups with exotic properties. I am interested in questions
regarding different notions of dimension for cubulated hyperbolic groups, and in the
finiteness properties of their subgroups.

One of the main tools I utilise is cubical small-cancellation theory, which is a general-
isation of ‘classical’ small-cancellation theory. This is a very powerful tool for proving
results about quotients of (often hyperbolic) cubulated groups. Some of my work fo-
cuses on proving structural results for groups that arise from ‘cubical presentations’ sat-
isfying good cubical small-cancellation conditions. For instance, understanding when
this cubical presentations are aspherical spaces, and when they give rise to hyperbolic
quotients.

6



Lucía Asencio Martín
Newcastle University, UK

Folding groups, monoids and step traces

Hi! :)

For the last few years I have been interested in free groups and in different ways that
they can be studied. During my master’s thesis I learned about free groups from a geo-
metric and algorithmical point of view, using Stallings automata and Stallings foldings.

I recently moved to the UK to start my PhD in Newcastle University, where I am inter-
ested in understanding more about these foldings not only for free groups but also for
RAAGs.

The aim is to understand how Stallings ideas can be extended to work with trace
monoids, which are the equivalent of RAAGs in the category of monoids, and with
step traces, which are a generalisation of trace monoids that is used to model parallel
computing problems.
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Pranav Asrani
University of Münster, Germany

I am a Masters student and I have studied Geometric Group Theory in courses at Mün-
ster during the past year. I have been interested in the interaction of Differential Geom-
etry on manifolds and the algebraic tools used to study them partly motivated by my
interest in Gromov’s work.

My interest in Geometric Group theory was also motivated by the paradox of Banach
and Tarski wherein the proof uses tools from amenability which naturally arises in the
context of Geometric Theory.
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Pénélope Azuelos
University of Bristol, UK

Actions on (generalisations of) trees

Since starting my PhD in September, I’ve mostly been thinking about groups which act
on trees, CAT(0) cube complexes and median spaces more generally. I’m also interested
in learning more about the asymptotic cones of these spaces.

Over the past few months I have also been thinking about subgroup spaces of countable
groups. Together with Damien Gaboriau, we are working on finding the perfect kernels
of these spaces for groups that admit certain actions on trees, including for example
groups with infinitely many ends.
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Shaked Bader
Oxford University, United Kingdom

Higher rank hyperbolicity and homological isoperimetric inequalities

The Poincaré duality theorem, a classical theorem by Poincaré, states that for a closed,
orientable, n-manifold M there are isomorphisms Hk(M) ∼= Hn−k(M) given by cap
product with the fundamental class. By definition of group cohomology, the same holds
for the fundamental group of an aspherical, closed, oriented n-manifold. A natural class
of groups that arise from this result is the class of Poincaré duality groups.

Definition. A group G is an n-Poincaré duality group if Hn(G,ZG) ∼= Z, where Z is given
with the trivial G-module structure, and for all G-modules N , there are isomorphisms
Hk(G,N) ∼= Hn−k(G,N).

Whether finitely presented Poincaré duality groups are exactly the fundamental gruops
of aspherical, closed, oriented n-manifolds is an open question for n ≥ 3. We will study
finitely presented Poincaré duality groups.

In a recent work [1], Kleiner and Lang introduced a notion of higher rank hyperbolicity
defined in terms of homological isoperimetric inequalities. A slightly different version
of the inequality appears naturally in the study of Poincaré duality groups by Kielak and
Kropholler [2]. We aim to show that the Kleiner–Lang definition can be used in place
of Kielak–Kropholler’s version. Once this is done, the next step would be to investigate
the action of a Poincaré duality group on the boundary that Kleiner–Lang defined using
their notion of higher rank hyperbolicity.

[1] Kleiner, B., Lang, U. Higher rank hyperbolicity. Invent. math. 221, 597–664 (2020).
https://doi.org/10.1007/s00222-020-00955-w

[2] Kielak, Dawid and Kropholler, Peter (2021) Isoperimetric inequalities for Poincaré
duality groups. Proceedings of the American Mathematical Society, 149 (11), 4685-
4698. (doi:10.1090/proc/15596).
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Giuseppe Bargagnati
Università di Pisa, Italy

Simplicial volume of open manifolds

I am a PhD student in topology at Pisa University. I am working in the area of sim-
plicial volume and bounded cohomology, which lies between geometric topology and
algebraic topology, and has deep connections with differential geometry and geometric
group theory.

The simplicial volume was defined by Gromov in his pioneering 1982 article [Gro82].
Despite being purely homotopic in nature, the simplicial volume is deeply related to the
geometric structures that a manifold can carry. It is known that, if a closed manifold
admits a hyperbolic metric, then its simplicial volume is strictly positive (and in fact it
is proportional to the Riemannian volume, and the proportionality constant depends
only on the dimension). On the other hand, the simplicial volume of a closed manifold
vanishes if the fundamental group of the manifold is amenable. In the context of non-
compact oriented manifolds without boundary, the situation changes; in fact, it turns
out that the simplicial volume of the hyperbolic space Hn vanishes for n ≥ 2 and that an
open manifold with amenable fundamental group may have either vanishing or infinite
simplicial volume.

During my PhD I have been studing the simplicial volume of open manifolds; in par-
ticular, in a joint work with my advisor Prof. Roberto Frigerio [BF22], we proved that
the simplicial volume of an open contractible 3-manifold M vanishes if and only if M
is homeomorphic to R3, and is infinite otherwise. With the same techniques, we also
proved that the spectrum of simplicial volume (i.e., the possible values that the sim-
plicial volume can assume) of irreducible 3-manifolds is contained in the one of closed
3-manifolds.

Moreover, I proved that for certain classes of manifolds (namely, inward tame manifolds
and simply connected at infinity manifolds) the finiteness of the simplicial volume is
guaranteed by the amenability of the fundamental group at infinity [Bar22].

In my future research I would like to make steps toward the computation of the spec-
trum of simplicial volume of open 3-manifolds, and to explore more connections of
simplicial volume and bounded cohomology with geometric group theory.

[Gro82] M. Gromov, Volume and bounded cohomology Inst. Hautes Études Sci. Publ.
Math., 1982.

[BF22] G. Bargagnati and R. Frigerio, Simplicial volume of contractible 3-manifolds
Trans. Am. Math. Soc., 2022.

[Bar22] G. Bargagnati, Simplicial volume of manifolds with amenable fundamental group
at infinity arXiv, https://arxiv.org/abs/2207.10525, 2022.
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Oussama Bensaid
Max Planck Institute for Mathematics, Bonn, Germany

Embeddings between groups and metric spaces

I am interested in the coarse geometry of spaces of non-positive curvature, such as sym-
metric spaces and Euclidean buildings. During my Ph.D. thesis, I have been interested
in coarse embeddings between such spaces. Coarse embeddings have been introduced
by Gromov [1] in the 80’s, and they generalize quasi-isometric embeddings when the
control functions are not necessarily affine. A map f : (X, dX) → (Y, dY ) is a coarse
embedding if there exist functions ρ± : [0,∞) → [0,∞) such that ρ−(r) → ∞ as r → ∞
and for all x, y ∈ X

ρ−(dX(x, y)) ≤ dY (f(x), f(y)) ≤ ρ+(dX(x, y)).

For example, the embedding of Rn into Hn+1 as a horosphere is a coarse embedding
that is exponentially distorted. Note also that a subgroup inclusion between finitely
generated groups is always a coarse embedding, while it is a quasi-isometric embedding
only when the subgroup in question is undistorted. An important feature of CAT(0)
spaces, and in particular symmetric spaces of noncompact type and Euclidean buildings,
is their rank, which is the maximal dimension of an isometrically embedded copy of a
Euclidean space. We can show that for these spaces, the rank is monotonous under
coarse embeddings:

Theorem. [2] Let X = S × B be of rank k, where S is a product of symmetric spaces of
noncompact type and B is a product of Euclidean buildings.
If Y is a proper cocompact CAT(0) space of rank < k, then there is no coarse embedding
from X to Y .

We can show a similar result for mapping class groups in the target space. When
we restrict the target to symmetric spaces and Euclidean buildings, we can allow the
domain to have a Euclidean factor of dimension 1. A Euclidean factor of dimension ≥
2 in the domain is not allowed because of the horospherical embeddings R2 → H3.

[1] M. Gromov, Asymptotic invariants of infinite groups. Geometric group theory,
2:1–295, 1993.

[2] O. Bensaid, (2022). Coarse embeddings of symmetric spaces and Euclidean build-
ings. arXiv preprint:2201.06442.
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Federica Bertolotti
Scuola Normale Superiore di Pisa, Italy

Simplicial volume of mapping tori

I am doing my Ph.D. in Pisa with Roberto Frigerio and I am interested in the simplicial
volume of mapping tori. Before saying anything more about my research, let me spend
a few words on these two objects.

Let M be an oriented closed manifold and f : M → M be an orientation preserving
homeomorphism. The mapping torus with monodromy f and fiber M is given by

Ef = M × [0, 1]/ ∼ ,

where (x, 1) ∼ (f(x), 0) for every x ∈M . In particular, the mapping tori are exactly the
manifolds fibering over S1.

The simplicial volume is a homotopy invariant that measures the complexity of closed
oriented manifolds in terms of singular simplices (to be more accurate, in terms of
singular chains). Despite the topological definition, the simplicial volume has several
implications on the geometry that a manifold can carry: just to mention an example,
if a manifold M admits a negatively curved Riemannian metric, then it has positive
simplicial volume and, on the other hand, if the metric has non-negative Ricci tensor,
then the simplicial volume vanishes.

Given M an oriented closed connected manifold, I denote by MCG(M) the mapping
class group ofM , i.e. the set of homotopy classes of orientation preserving self-homotopy
equivalences of M . In order to study the simplicial volume of mapping tori, Roberto
Frigerio and I defined in [1] a length function on the mapping class group of M , and
we called it filling volume:

FV: MCG(M)→ R≥0.

This map can be seen as a kind of dynamical invariant that weighs the complexity of
the action of a mapping class on the set of singular simplices of M . In the same paper
we proved that for every orientation preserving self-homeomorphism f : M → M , the
filling volume FV([f ]) of the mapping class [f ] ∈ MCG(M) represented by f is given by
the simplicial volume of the mapping torus with monodromy f and fiber M . Moreover,
thanks to this invariant, we proved some vanishing results on the simplicial volume of
mapping tori.

Now I am trying to understand better this map. The hope is to find even more ap-
plications and, maybe, to find some conditions on the monodromy guaranteeing the
positivity of the simplicial volume of the associated mapping torus.

[1] Federica Bertolotti, Roberto Frigerio (2022) Length functions on mapping class
groups and simplicial volumes of mapping tori, arXiv:2205.10846.
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Lara Beßmann
University of Münster, Germany

Universal groups for right-angled buildings and automatic continuity

Universal groups have been introduced by Burger and Mozes in [1] to study lattices
in products of trees. They are subgroups of the automorphism group of a locally finite
regular tree such that the action around a vertex is contained in a prescribed permuta-
tion group. Varying the permutation group leads to different universal groups that are
all acting on the same tree. The automorphism group of the tree can be endowed with
the topology of pointwise convergence. A neighbourhood basis of the identity is then
given by pointwise stabilisers of finite sets of vertices. Hence, the universal groups are
topological groups with respect to the subspace topology. These groups are not only
interesting to study lattices but also provide nice examples of locally compact totally
disconnected topological groups and moreover also of infinite simple groups.

More recently, they have been generalised to right-angled buildings by De Medts, Silva,
and Struyve in [2]. For the definition of a universal group over a right-angled building
of type (W, I) are |I| many local permutation groups necessary and they prescribe the
action on the panels. The properties of the universal group depend highly on the prop-
erties of the local groups. For example, a universal group is discrete if and only if all
local groups act freely. Hence, these groups provide even more examples of topological
groups with different properties and we can control which properties a universal group
has by choosing the local permutation groups in a suitable way.

I study automatic continuity for universal groups defined over right-angled buildings.
The main question I work on is, which conditions on the universal group ensure that
any abstract group homomorphism from an arbitrary Polish group into this universal
group is continuous. This leads then for example to results on the uniqueness of the
Polish group topology of the universal group.

[1] M. Burger and S. Mozes. Groups acting on trees: From local to global structure.
Publications mathématiques de l’IHÉS 92 (2000), no. 1, pp. 113-150.

[2] T. De Medts, A. C. Silva, and K. Struyve. Universal groups for right-angled buildings.
Groups Geom. Dyn. 12 (2018), no. 1, pp. 231-287.
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Nicolás Bitar
Université Paris-Saclay, France

Symbolic dynamics on finitely generated groups

My research takes place in the area of symbolic dynamics over finitely generated groups.
The main objects of study are subshifts, that is, sets of maps x : G → A from a finitely
generated group G to a finite alphabet A subject to constraints specified as a collection
of forbidden patterns. These spaces have a natural left G-action gx(h) = x(g−1h), called
the shift. In fact, this action characterizes subshifts as the closed G-invariant subsets
of AG for the product topology. These spaces were originally conceived as symbolic
encodings of group actions, but have become objects of interest in themselves.

In particular, I study how different group properties place structural and algorithmic
constraints on the properties of subshifts. Perhaps the quintessential example of this
is the Domino Problem. The problem asks if given a finite set of forbidden patterns
it is possible to determine if the subshift they define – known as a subshift of finite
type – is empty. The decidability of this problem has been shown to be a commensura-
bility invariant for finitely generated groups and a quasi-isometry invariant for finitely
presented ones. In fact, the main open problem is the Domino Conjecture: a finitely
generated group has decidable Domino Problem if and only if the group is virtually free.
It is here that using tools from geometric group theory becomes essential. For instance,
as the decidability of the problem is inherited by subgroups, through the Dunwoody-
Stallings Theorem, we can restrict ourselves to the study of one-ended groups. In this
direction, we proved that, due to their graph of groups decomposition, non-Z General-
ized Baumslag-Solitar groups have undecidable Domino Problem [1].

More generally, I am interested in questions ranging from variants of the Domino Prob-
lem to the realizability of subsets of subgroups as stabilizers of shifts of finite type.
Most of these problems have been extensively studied in the case of finitely generated
free abelian groups. Within this class of groups, there is drastically different behavior
between the one dimensional and the higher dimensional cases. What geometrical and
combinatorial aspects of Z and Zd account for this difference? I aim to understand this
difference and expand these results to finitely generated groups.

The use of tools and ideas borrowed from other domains has already proven to be a
successful strategy. As an example, notions from computability theory have proven es-
sential to characterize which entropies are realizable for subshifts of finite type over
Z2. I believe that the interplay between these areas, namely, computability theory, geo-
metric group theory and symbolic dynamics can shed light at the connections between
algebraic structures and their capabilities to symbolically encode computation.

[1] Aubrun, N., Bitar, N., & Huriot-Tattegrain, S. (2022). Strongly Aperiodic SFTs on
Generalized Baumslag-Solitar groups. arXiv preprint arXiv:2204.11492.
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Regular normal forms for groups, and related properties

I’m a 3rd year PhD student under the supervision of Tatiana Nagnibeda. The central ob-
ject in my research would be regular normal forms. A regular normal form for G = 〈S〉
is a language L ⊂ S∗ recognized by a finite state automaton, such that the evaluation
map ·̄ : L → G is bijective. I’m usually interested in proving negative results, so a first
question was whether we can find groups without any regular normal form. Somehow
regular left-invariant orders pop up, and things can be done [1]. Even if your favorite
group admits regular normal form, just knowing how normal forms look like might be
interesting. Indeed, several properties of groups can be restated as the existence of a
regular normal form with additional properties. Most notably,

• A group is automatic if it admits a regular normal form s.t. any words v, w ∈ L
ending up at neighboring elements v̄, w̄ fellow-travel. Perhaps the most intriguing
question regarding automaticy is “Is Thompson’s group F (bi)automatic?”. More
generally, finding new obstructions to (bi)automaticy would be interesting.

• The complete growth series of group G = 〈S〉 is the formal series

Γ(G,S)(z) =
∑
g∈G

g · z‖g‖S ∈ NG[[z]].

The rationality of Γ(G,S) should be thought as an intermediary property between
admitting a geodesic regular normal form (i.e., |w| = ‖w̄‖S for all w ∈ L) and
admitting a quasi-geodesic regular normal form (i.e., |w| ≤ C ‖w̄‖S).

A conjecture is that complete growth series of nilpotent groups should never be
rational, unless the group is actually virtually abelian. In joint work with Pierre
Bagnoud, we treated the case of Heisenberg groups [2], and more generally of
2-step-nilpotent groups. This work is based on geometric properties of the group
and its Malcev completion, and particularly the existence of dead ends elements
(or related elements). The conjecture as a whole remains to be settled.

Lately, I have also been interested at other types of growths of groups (specifically
cogrowth and geodesic growth) and their associated languages (the Word Problem and
the full language of geodesics). This has renewed my interest into random walks on
groups, and particularly asymptotics of return probabilities.

[1] Corentin Bodart, Rational cross-sections, bounded generation and orders on groups,
Preprint arXiv:2210.04219 (2022).

[2] Pierre Alderic Bagnoud and Corentin Bodart, Dead ends and rationality of complete
growth series, Preprint arXiv:2210.07868 (2022).
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Quasi-morphisms on groups of diffeomorphisms

We study the group Diff0(M) of smooth diffeomorphisms on a compact connected man-
ifold M which are isotopic to the identity. These groups are known to be perfect (this
goes back to results of Mather and Thurston in the 1970s). More recently, the ques-
tion of boundedness of conjugation-invariant norms (and thus uniform perfectness) on
these groups was brought up in [2]. For manifolds whose dimension is three or greater
than five, by [2] and results due to Tsuboi [3], it is known that their Diff0 is uniformly
perfect.

In two dimensions, the picture is drastically different: The only surface known to al-
low no unbounded conjugation-invariant norm is the 2-spere. For most surfaces of
higher genus, both orientable and not, [1] provides a method to construct non-trivial
homogeneous quasi-morphisms on their Diff0. By the duality theorem of Bavard, this
implies that the commutator length is a unbounded conjugation-invariant norm and the
group is not uniformly perfect. One of the few remaining surfaces where this question
is still open is the Möbius strip. The goal of our research is to construct a homoge-
neous quasi-morphism on Diff0 of the Möbius strip by considering the action of these
diffeomorphisms on simple closed curves.

[1] Jonathan Bowden, Sebastian Hensel, and Richard Webb. Quasi-morphisms on sur-
face diffeomorphism groups. In J. Amer. Math. Soc., 35:211-231, 2022.

[2] Dmitri Burago, Sergei Ivanov, and Leonid Polterovich. Conjugation-invariant norms
on groups of geometric origin. In Groups of Diffeomorphisms, volume 52 of Advanced
Studies in Pure Mathematics, pages 221-250. Math. Soc. Japan, 2008.

[3] Takashi Tsuboi. On the uniform perfectness of diffeomorphism groups. In Groups
of Diffeomorphisms, volume 52 of Advanced Studies in Pure Mathematics, pages 221-
250. Math. Soc. Japan, 2008.
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Finiteness properties for non discrete groups

In the field of discrete groups there are some statements about their finiteness proper-
ties and there are known examples for groups that are of type Fn but not of type Fn+1

[1].

In which cases of non discrete groups is it possible to give a good definition of being of
type Fn? And how we can find examples of groups which are of type F∞ or which are
of type Fn but not of type Fn+1.

The idea is now to find some non discrete groups which are similar to discrete groups
for which the finiteness properties are known. One way is to use Thompson like groups,
since for the Thompson group F it is known that it is of type F∞. So we have a prove
structure for this group and can try to use this sheme to prove similar statements for
Thompson like groups. A construction of Thompson like groups is described in [2].

Another way to construct groups is the construction of Simon Smith [3], the idea here
is not to use proofs of the finiteness conditons of similar groups. Here we want to
construct groups with specific topological properties. So we can construtct in this way
totally disconnected locally compact groups.

A way to define finiteness properties for tdlc groups is given in [4]. Now I have a
construction idea for examples and I have a way to define finiteness in the totally
disconnected locally compact case. The next step would be to combine both and try to
find such examples of groups.

[1] Finitness properties of groups, Kenneth S. Brown,
https://core.ac.uk/download/pdf/82012275.pdf

[2] Almos-automorphisms of trees, coloning systems and finitness properties, Skipper
and Zaremsky, https://arxiv.org/pdf/1709.06524.pdf

[3] A product for permutation groups and topological groups, Simon M. Smith,
https://arxiv.org/pdf/1407.5697.pdf

[4] Finitness properties of totally disconnected locally compact groups, I. Castellano
and G. Corob Cook, https://arxiv.org/pdf/1901.08470.pdf
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Perspectivities and root groups in buildings

My research focuses on spherical buildings. A building is spherical if its Weyl group
is finite. If ∆ is a spherical building, the perspectivities in ∆ generate a groupoid that
encodes the geometry of ∆ very well. In my research I strive to provide more insight
into this groupoid.

Jacques Tits proved that all higher dimensional spherical buildings have the Moufang
property. [2] A spherical building ∆ of rank at least two has the Moufang property if
for each root α of ∆, the root group Uα acts transitively on the set of all apartments
of ∆ containing α. [1] A first goal of my research is to try to construct a sequence of
perspectivities with which the root automorphisms of subbuildings can be displayed.

[1] Richard M. Weiss, The Structure of Spherical Buildings, Princeton University Press,
2003.

[2] Jacques Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Math-
ematics 386 (1974).
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Group Cohomology

I am currently a 1st year Masters’ Student in WWU Münster.

Here, in this sem, I am studying unstable homotopy theory(right now,magic cube is
going on),giving a talk on group cohomology(the topological view with applications in
groups acting on spheres),Riemannian Geometry I (upto Jacobi fields), and giving a
talk in Serre spectral sequence.

I am whole-heartedly interested in Geometry and topology and studying,learning and
working out topology from a geometric view-point as far as possible. Previously, I have
done an internship in Morse Theory from Milnor’s book(upto Reeb’s theorem). I am
very much eager to learn Geometric topology and classification theory of Riemannian
manifolds.

Next semester, I will be taking a course on stable homotopy theory(by the same profes-
sor who is taking unstable homotopy theory now).

I already have a Masters’ in Mathematics from India, where I read Bredon’s, Janich’s
and Hatcher’s book on Algebraic Topology . We learnt about CW and simplicial com-
plexes, fundamental groups,singular homology of spaces ,Kunneth and abelianisation
of 1st fundamental group, deck transformations and group actions on spheres; and ex-
tensively solved Hatcher’s exercise problems apart from the assignments given by our
instructor.

Again, in 3rd semester, I read singular cohomology,calculation of cohomology rings of
standard spaces,cup and cap products,Poincare Duality; with Higher homotopy theory-
cellular approximation,Postnikov towers,Hurewicz(for both single and pair of spaces),fibre
bundles,(co)fibrations, fibration sequence and Barrett-Puppe sequence.

In my last MSc from India, I also learnt representation theory of Lie algebras.
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Infinite type surfaces and marked hyperbolic structures

Broadly, I like thinking about:

• surfaces, the hyperbolic/conformal structures they carry, and various related met-
ric/combinatorial spaces (eg. Teichmüller space, curve graph)

• hyperbolic geometry and generalizations of Gromov hyperbolicity (eg. hierarchi-
cally hyperbolic spaces, projection complexes)

An infinite type surface is a surface whose fundamental group is infinitely generated.
In recent years there has been a large surge of energy dedicated to their study and it
remains an incredibly fertile and active field. See [3] for a list of open questions and
[1] for a survey.

Lately I’ve been thinking about how (big) mapping classes distort hyperbolic metrics
on an infinite type surface, and importing tools from Teichmüller theory of finite type
surfaces to the infinite type world.

In ongoing joint work with Ara Basmajian, we investigate the space of marked hyper-
bolic structures on a surface and show big mapping classes satisfy a trichotomy stated
in terms of how they distort hyperbolic metrics. This point of view is very much inspired
by Bers’ proof of the celebrated Nielsen-Thurston classification for finite type surfaces
[2].

[1] Javier Aramayona and Nicholas G. Vlamis. "Big mapping class groups: an overview."
In Ken’ichi Ohshika and Athanase Papadopoulos, editors, In the Tradition of
Thurston: Geometry and Topology, chapter 12, pages 459–496. Springer, (2020).

[2] Lipman Bers "An extremal problem for quasiconformal mappings and a theorem by
Thurston," Acta Mathematica, Acta Math. 141(none), 73-98, (1978)

[3] Yassin Chandran, Priyam Patel, and Nicholas G. Vlamis. "Infinite-type surfaces and
mapping class groups: open problems", available at http://qcpages.qc.cuny.edu/
~nvlamis/Papers/InfTypeProblems.pdf, (2021)
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Finiteness properties of solvable S-arithmetic groups

I am a first-year postdoc in Gießen working in the research group of Stefan Witzel. My
research at the moment focuses on the finiteness properties of solvable S-arithmetic
subgroups of linear groups. Recall that a group is said to have the finiteness property
Fn if it admits a K(G, 1) with finite n-skeleton. More precisely, I am thinking about
Σ-invariants of solvable S-arithmetic subgroups of linear groups. The Σ-invariants of
a group G, defined in [1], are geometric invariants of G that encode the finiteness
properties of all subgroups H of G containing [G,G].

Prior to this, my PhD research centered on constructions of equivariant compactifica-
tions of Bruhat-Tits buildings of (quasi-)reductive groups G and the study of the rela-
tionships between the geometry of these compactifications and the geometry of various
G-spaces [2, 3]. Consequently, I am also broadly interested in linear algebraic groups
in general and their associated geometries: flag varieties, wonderful completions, sym-
metric spaces, buildings etc.

[1] R. Bieri, B. Renz, Valuations on free resolutions and higher geometric invariants of
groups, Commentarii mathematici Helvetici, 63(3):464–497, 1988.

[2] D. Chanfi, Wonderful compactifications of Bruhat-Tits buildings in the non-split
case, arXiv:2011.00349, to appear in Israel J. Math.

[3] D. Chanfi, Polyhedral compactifications of Bruhat-Tits buildings of quasi-reductive
groups, arXiv:2206.04775.
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Riemannian metric with non-positive curvature on branched coverings

My research focuses on 4-manifolds that are modeled on H2 × H2. They have a form
M = (H2×H2)/Γ where Γ is a discrete subgroup of Isom(H2×H2) acting geometrically
on H2 × H2. For a codimension 2 totally geodesic submanifold N of M , I consider a
branched covering M → M branched over N . I’m interested in non-positively curved
Riemannian metrics on the branched covering M .

In [1], Stadler introduced an interesting example where M is of the form Σg×Σg where
Σg is a closed surface of genus g andN = ∆ is the diagonal ofM . In this case, he proved
that there is no Riemannian metric onM with non-positive sectional curvature. I’m par-
ticularly interested in other cases with different types of submanifoldN ofM = Σg×Σg.

For the case that N is of the diagonal type (i.e., it is locally diagonal. In other words,
projections to each factor are surjective), we observed that there is no smooth metric
on M with non-positive curvature by using Stadler’s obstruction in [1]. For the case
that N is locally a product {point} × H2, I constructed a smooth non-positively curved
metric on M that is equal to the pull-back metric by the branched covering map for
sufficiently large radius. The metric construction is motivated by the metric smoothing
in [2]. Recently, my advisor Lafont and I work on the remaining case that N is locally
a product {geodesic} × {geodesic}.

Another project that I’m working on with Lafont and Skipper(ENS Paris), is group the-
oretic version of branched covering spaces.

[1] Stadler, Stephan. "An obstruction to the smoothability of singular nonpositively
curved metrics on 4-manifolds by patterns of incompressible tori." Geometric and
Functional Analysis 25.5 (2015): 1575-1587.

[2] Constantine, D., et al. "Fat flats in rank one manifolds." Michigan Mathematical
Journal 68.2 (2019): 251-275.
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Hyperbolic manifolds and arithmetic groups

A (finite-volume) hyperbolic manifold M is realized a quotient Hn/Γ where Γ acts
on Hn properly discontinously by isometries. The number theoretical aspects of the
elements of Γ as matrices in Isom(Hn) ∼= SO(n, 1;R) have many consequences on the
geometry of the manifold such as its volume, its symmetries, the lengths of geodesics,
or the existence of totally geodesic submanifolds.

There has been a lot of progress in the understanding of hyperbolic 3-manifolds since
the first YGGT in 2012. However, very little is known in higher dimensions. A well-
known method to construct hyperbolic manifolds in any dimensions is through arith-
metic groups which arise from quadratic forms over totally real number fields. Such
manifolds are called arithmetic hyperbolic manifolds of simplest type. One may also
construct non-arithmetic hyperbolic manifolds by cutting and pasting pieces of arith-
metic hyperbolic manifolds. There are many interesting questions one can ask about
these manifolds and their fundamental groups. I am particularly interested in under-
standing the relationship between the geometry of such hyperbolic manifolds and the
arithmetic invariants of their fundamental groups.
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Decision problems in groups and extensions

I am in my 3rd year of my PhD, and my project focuses on the following question.

Question. Let G be a virtual right-angled Artin group (RAAG), i.e. there exists a finite
index subgroup H ≤ G such that H is a RAAG. What can we say about conjugacy in G?

This is a somewhat vague question, so let me formalise some of the ideas I’ve been
studying so far:

1. Is the conjugacy problem solvable in G?

2. What type of conjugacy growth does G have?

3. What happens when we replace RAAG with graph products?

By the Milnor-Schwarz Lemma, any group G of this form is quasi-isometric to a RAAG.
Quasi-isometries are a classic tool in geometric group theory, and many properties, such
as hyperbolicity and standard growth, are quasi-isometry invariant. However, the con-
jugacy problem does not in general pass through a quasi-isometry [1], and it is still
open as to whether conjugacy growth is a quasi-isometry invariant.
My work has focused on twisted conjugacy, CAT(0) groups and formal language the-
ory. Since RAAGs have linear-time conjugacy problem [3], I am also interested in the
complexity of the conjugacy problem in G. Other topics of interest include equations in
groups and other decision problems.

[1] D. Collins, C. Miller; The conjugacy problem and subgroups of finite index. Proceed-
ings of the London Mathematical Society, s3-34(3):535-556, 1977

[2] Crisp, Godelle, Wiest; The conjugacy problem in subgroups of right-angled Artin
groups. Journal of Topology, 2(3):442-460, 2009

[3] Crowe; Conjugacy languages in virtual graph products (to appear)
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Geometric structures associated to Anosov representations.

I am interested in representations ρ : Γ → G of discrete groups Γ into semi-simple Lie
groups G, in particular interested when Γ is a surface group. In particular I like to
think about some special unions of connected components of the space of representa-
tions of a surface groups that have been shown to only contain discrete and faithful
representations: such component are called Higher Teichmüller components.

This is the case for fuchsian representations when G = PSL(2,R), Hitchin representa-
tions for G = PSL(n,R) or any real split simple Lie group, or maximal representations
when G is of hermitian type and tube type, for instance G = Sp(2n,R). These families
of examples fit in the more general notion of Θ-positivity .

Representations in all know higher Teichmüller components satisfy some dynamical
properties called the Anosov properties, which were introduced by Labourie . An inter-
esting question is to determine which Anosov representations a given group can have. I
am interested in particular in the case of Borel Anosov representations of surface groups
in Sp(4,R) [1].

I am also interested in geometric structures in the sense of (G,X)-structures. A (G,X)-
structure on a manifold M induces a holonomy map ρ : π1(M) → G, and in some
cases connected components of representations, up to conjugation correspond via this
map to spaces of (G,X)-structures on a manifold. For instance fuchsian, i.e discrete
and faithful, representations of the fundamental group of a closed orientable surface
Sg of genus g ≥ 2 corresponds to (marked) hyperbolic structures, i.e. (PSL(2,R),H2)-
structures on Sg.

Some cocompact domains of discontinuity in flag manifold have been constructed for
Anosov representations, therefore such representations are the holonomy of a manifold
M that admits Γ as one of it’s quotients. I try to show that these domains fiber over
the universal cover of the surface, so the manifold M is a fiber bundle over the surface,
and I am interested in characterizations of the geometric structures arising through this
construction

To work on these questions I like to study symmetric spaces of non-compact type and
their compactifications.

[1] Maximal and Borel Anosov representations in Sp(4,R), https://arxiv.org/abs/
2201.05584.
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A unified approach to Euclidean Buildings and Symmetric Spaces

Let X be either a Euclidean building or a symmetric space of non-compact type and
consider its ideal boundary ∂X. Currently, I am studying the following problem:

Given ∂X, can one reconstruct the space X?

Given a proper CAT(-1) spaceX, one can define the cross ratio on four boundary points,
using the Gromov product (see [3]). In [1], Bourdon shows how the cross ratio on
four boundary points ω(α, β; γ, δ) can be used to find the distance between two points
p(α, β; γ), p(α, β; δ) ∈ X. Using this, I can uniformly reconstruct a rank 1 Euclidean
building or rank 1 symmetric space of non-compact type from its ideal boundary.

Looking forward, I wish to uniformly prove that ∂X has the structure of a spherical
building and use this structure to find a uniform proof that one can reconstruct X of
higher rank.

[1] Marc Bourdon, Sur le birapport au bord des CAT(-1)-espaces, Publications mathéma-
tiques de l’IHÉS, 83, 95-104, (1996).

[2] Martin R. Bridson and André Haefliger, Metric Spaces of Non-Positive Curvature,
Springer, 1999.

[3] Sergei Buyalo and Viktor Schroeder, Elements of Asymptotic Geometry. European
Mathematical Society, 2007.

[4] Thomas Foertsch and Viktor Schroeder, Hyperbolicity, CAT(-1)-spaces and the
Ptolemy Inequality, Mathematische Annalen, 350, 339-356, (2010).
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Rigidity properties for group actions

Fixed point properties of affine group actions on Banach spaces and spectral gap of
affine group actions on low-dimensional manifolds are fundamental rigidity properties
with applications in various areas of mathematics. One such application is the con-
struction of expanders, which are sequences of finite, highly connected, sparse graphs
with an increasing number of vertices.

An important source of rigidity properties are actions of groups with Kazhdan’s property
(T) (for example SL(n,R) and SL(n,Z) for n ≥ 3) or strengthenings of this property,
such as Lafforgue’s strong property (T). Strong property (T) can be viewed as the trivial
representation being isolated among all representations with small exponential growth
on Banach spaces with nontrivial type (or on other classes of Banach spaces). In a
series of joint works with M. de la Salle, I proved strong property (T) for higher rank
Lie groups with respect to various large classes of Banach spaces (see e.g. [1]).

Another source of rigidity properties, in particular of spectral gap, comes from taking
into account the geometry of the action. In joint work with G. Arzhantseva, D. Kielak,
and D. Sawicki, I constructed the first examples of group actions with spectral gap on
surfaces of arbitrary genus > 1. In our actions, the acting group is F2, which is far from
having property (T). A major application of our actions is the construction of a new
type of expanders with surprising large-scale geometric features.

[1] T. de Laat and M. de la Salle, Strong property (T) for higher rank simple Lie groups,
Proc. London Math. Soc. 111 (2015), 936-966.

[2] G. Arzhantseva, D. Kielak, T. de Laat, and D. Sawicki, Spectral gap on origami sur-
faces, preprint (2021), arXiv:2112.11864.
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Predoctoral researcher.

In a broad sense, I am interested in interactions between Topology, Geometry and
Group Theory (unexpected, eh?). Specifically, I have been studying Mapping Class
Groups of finite type surfaces, Curve complexes and other hyperbolic spaces associated
to surfaces.

The main problem of my thesis is to extend the classification of homomorphisms be-
tween Mapping Class Groups given by Aramayona and Souto in [1]. In this direction,
I am currently trying to understand pseudo-Anosov transformations and Teichmüller
spaces.

As for my previous work, I have proven the finite rigidity of Non-separating Curve com-
plexes in [3]. Also, jointly with Aramayona and Fernández, we addressed a question of
Zaremsky regarding the hyperbolicity of Matching Arc complexes in [2].

[1] Javier Aramayona and Juan Souto. Homomorphisms between mapping class
groups. Geometry & Topology vol. 16, no. 4 (2013).

[2] Javier Aramayona, Alejandro Fernández and Rodrigo de Pool. Expositiones Mathe-
maticae vol. 40, no. 2 (2021).

[3] Rodrigo de Pool. Finite rigid sets of Non-separating Curve complex. Preprint
(2022). arXiv: 2210.05317 [math]
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Non-associative algebras for exceptional algebraic groups

Linear algebraic groups are matrix groups defined by polynomials. Among the objects
of most interest in this theory are the exceptional groups.

Recently, a class of non-associative algebras that have these exceptional groups as sym-
metries have been discovered [1, 2]. The motivation for these constructions was orig-
inally to study the unique equivariant algebra structure on the second smallest irre-
ducible representation of E8, but it can be used to construct algebras for other types as
well.

I have been studying these algebras to find different constructions (such as in [3]) and
discern more of their properties. One exciting direction is the field of axial algebras, a
link that was studied in [1].

[1] Tom De Medts and Michiel Van Couwenberghe. "Non-associative Frobenius alge-
bras for simply laced Chevalley groups." Transactions of the American Mathematical
Society 374.12 (2021): 8715-8774.

[2] Maurice Chayet and Skip Garibaldi. "A class of continuous non-associative algebras
arising from algebraic groups including E8." Forum of Mathematics, Sigma. Vol. 9.
Cambridge University Press, 2021.

[3] Jari Desmet. "Non-associative Frobenius algebras for typeG2 and F4." arXiv preprint
arXiv:2204.05913 (2022).
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Complex Hyperbolic Geometry and Flat Surfaces

Background: Anyone interested in hyperbolic manifolds is secretly interested in lattices
in Lie groups, specifically the Lie group PO(1, n) ≈ Isom(Hn). In general, one can find
lattices in Lie groups with a certain number theoretic construction. Such lattices are
called arithmetic, and the celebrated arithmeticity theorem of Margulis says that pretty
much any lattice you find your hands on is actually an arithmetic one. The only Lie
groups that might contain nonarithmetic lattices are PO(1, n), the isometries of (real)
hyperbolic space Hn, and PU(1, n), the isometries of complex hyperbolic space CHn.

In this story, Thurston reinterpreted results of Deligne and Mostow by considering the
moduli space of flat cone metrics on the sphere. This space is topologically isomorphic
to the classical moduli space of a punctured sphere, but the data of the flat structure
yields a natural complex hyperbolic metric on moduli space. Each choice of flat surface
data gives a representation of the mapping class group MCG(S0,n+3) → PU(1, n), and
Thurston found that a few special choices of the flat surface data give representations
whose images are essentially the only known nonarithmetic lattices here [3].

Current work: Veech showed that Thurston’s flat surface story could analogously be
told one genus up, by considering flat cone metrics on the torus. The details of the
geometry on this moduli space were explored more recently in [2]. At present I am
working to flesh out this story, to find which flat surface data on the torus could yield
mapping class group representations whose images are lattices in PU(1, n). Hopefully
I will have some answers to this by the time we are meeting in Münster!

Other work: Again working from Thurston’s flat cone sphere technology, I explored the
connection between Thurston’s representations MCG(S0,m+3)→ PU(1,m) and special-
izations of the Burau representation of braid groups Bn → GLn−1(Z[t±]). The complex
hyperbolic structures on moduli space occasionally extend to orbifold structures, and I
leveraged this to place some restrictions on the kernel of the n = 4 Burau representation
[1]. This is the last case for which faithfulness of the Burau representation is unknown,
and this faithfulness question in particular has strong connections to the question of
whether the Jones polynomial detects unknots.

[1] Ethan Dlugie, The Burau representation and shapes of polyhedra, arXiv:2210.06561.

[2] Selim Ghazouani, Luc Pirio, Moduli spaces of flat tori with prescribed holonomy,
Geometric and Functional Analysis 27 (2017), no. 6, 1289-1366.

[3] William P. Thurston, Shapes of polyhedra and triangulations of the sphere, The Ep-
stein Birthday Schrift, 1998, 511-549.
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Rigidity & Flexibility of Random Walks on Hyperbolic Groups

My research is in the intersection of geometric group theory and ergodic theory. Specif-
ically, I am interested in “random” aspects of groups that are “weakly hyperbolic” where
both terms are broadly construed.

The central theme of recent projects that I have worked on has been understanding
the stationary actions of hyperbolic groups. Given a hyperbolic group Γ and a prob-
ability µ on Γ, a space X with a measure ν is a stationary space if the measure ν is
invariant under the Γ action on average according to µ. Precisely, ν is invariant under
convolution: µ ∗ ν =

∫
Γ
g∗ν dµ(g) = ν. If X is compact, then such a µ always exists.

When µ is a probability measure, the study of these spaces can almost be divided into
two separate problems; understanding measure preserving actions, and understanding
stationary boundaries. See the article by Furstenberg and Glasner [2] for details. For
weak assumptions on Γ and µ, the Gromov boundary of Γ is an example of a stationary
boundary, but there are typically many more boundaries. I have studied these spaces
primarily through the lens of entropy theory [1].

I am also interested in study random groups: their boundaries; and random walks on
random groups. It is well known that for certain parameters in the Gromov model of
random groups, the resulting random group almost surely is both hyperbolic, and has
property (T). Both of these features have interesting implications for random walks on
these groups and the stationary boundaries of these groups.

[1] Samuel Dodds, On the Lattice of Boundaries and the Entropy Spectrum of Hyperbolic Groups (2022),
available at arXiv:2211.04554.

[2] Hillel Furstenberg and Eli Glasner, Stationary dynamical systems, Dynamical numbers—interplay
between dynamical systems and number theory, Contemp. Math., vol. 532, Amer. Math. Soc., Provi-
dence, RI, 2010, pp. 1–28, DOI 10.1090/conm/532/10481. MR2762131
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Big mapping class groups in dimensions 1 and 2

I study the groups of topological symmetries of infinite-type surfaces and graphs. An
infinite-type surface, S, is a surface that has “infinitely much" topology, i.e. its fun-
damental group is not finitely generated. For a graph, Γ, infinite-type means locally
finite and infinite. The groups I study are Map(S) and Map(Γ), the mapping class
group of a surface S and a (locally finite) graph Γ. For surfaces, Map(S) is the group
of orientation-preserving homeomorphisms up to homotopy and for graphs, Map(Γ) is
the group of proper homotopy equivalences up to proper homotopy.

These definitions are not dependent on the surfaces or graphs being infinite-type. When
S and Γ are of finite-type, Map(S) and Map(Γ) are exactly the standard mapping
class group of a finite-type surface and the outer automorphism group of a free group,
Out(Fn), respectively. These are two groups that have a rich dictionary between them.
In the infinite-type setting, Map(Γ), was defined by Algom-Kfir–Bestvina [1] as a “big"
analogue of the mapping class group of an infinite-type surface.

I am interested in studying the properties of these groups and how they relate to each
other as well as to their finite-type counterparts. In the surface setting, I have studied
abelianizations of these big mapping class groups [2]. In the graph setting, together
with Hannah Hoganson and Sanghoon Kwak [3], we have studied the coarse geometry
of these groups using the framework developed by Rosendal [4].

[1] Yael Algom-Kfir and Mladen Bestvina. Groups of proper homotopy equivalences of
graphs and Nielsen realization. arXiv preprint arXiv:2109.06908, 2021.

[2] George Domat. Big pure mapping class groups are never perfect. arXiv preprint
arXiv:2007.14929, 2020. Appendix with Ryan Dickmann, To appear in Mathemati-
cal Research Letters.

[3] George Domat, Hannah Hoganson, and Sanghoon Kwak. Coarse geometry of pure
mapping class groups of infinite graphs. arXiv preprint arXiv:2201.02559, 2022. To
appear in Advances in Mathematics.

[4] Christian Rosendal. Coarse geometry of topological groups, volume 223 of Cambridge
Tracts in Mathematics. Cambridge University Press, Cambridge, 2022.
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Linear representations of finitely generated infinite groups

I am interested in representations of finitely generated infinite groups and their connec-
tions to various fields such as geometry, topology, dynamics, and commutative algebra.
Among the types of questions that inspire me are: Given a finitely generated group Γ

arising in topology (for instance, as the fundamental group of some compact mani-
fold M), is there an embedding of Γ in a Lie group G that reflects the topological origin
of Γ (for instance, an embedding that is the holonomy of some (G,X)-structure on M ,
where X is a homogeneous space of G)? How much do the linear representations of
a given finitely generated group Γ tell us about the group’s intrinsic geometry? For
example, the group Γ might contain an infinite-order element γ generating an undis-
torted cyclic subgroup; is this witnessed by some matrix representation ρ of Γ with the
property that ρ(γ) possesses an eigenvalue of infinite order? Say we are given a finitely
generated matrix group Γ; can we elucidate its structure by manipulating Γ, for in-
stance by deforming the generators or Galois-conjugating the entries? If Γ lies in some
Lie group G, can we find another embedding ρ : Γ→ G that is fundamentally different
from the inclusion? For instance, if Γ is discrete, we could ask for ρ to be dense; we
could instead stipulate that ρ also be discrete but not continuously deformable to the
inclusion; or, if Γ preserves some geometric feature of a homogeneous space of G, we
could require that ρ(Γ) lack this property. By attaching geometric or dynamical signif-
icance to a linear representation ρ of Γ, can we deduce properties of ρ (for instance,
that ρ is faithful, or that ρ satisfies the more delicate property that it maps no nontrivial
element of Γ to a unipotent, or to a matrix with zero top-right entry) that would be
difficult to detect algebraically?
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Free and one-relator groups

One of my projects concerns which curves generate the homology of a finite cover of
a (possibly punctured) surface. Farb & Hensel asked in [1] if the homology of a finite
cover of a punctured surface is always generated by components of lifts of primitive
elements. They show that, if the deck group of a regular cover Γ of a punctured surface
is abelian or two-step nilpotent, Hprim

1 (Γ;Q) = H1(Γ;Q). The answer to the general
question is no, however: some counterexamples of low index can be found in [3], and
in [2] the authors show that, for any union U of finitely many Aut(Fn)-orbits, there are
covers of punctured surfaces such that the homology generated by lifts of elements in
U are not sufficient to span the homology of the cover. In particular, there are covers of
punctured surfaces such that the homology generated by lifts of simple closed curves
is insufficient to generate the homology of the cover. Autumn Kent has asked whether
the homology generated by components of lifts of nonfilling curves is sufficient to span
the homology of the cover. I’m trying to answer a weaker question: is the homology
of every subgroup of a free group Fn generated by components of lifts of elements in a
proper free factor of Fn?

I’m also interested in one-relator groups. A question I’ve been trying to answer is: is
there an infinite chain of proper marked surjections of one-relator groups? A marked
surjection is one from a group presentation with an ordered basis to another group
presentation with an ordered basis such that the map respects the ordering. Baumslag
and Solitar showed in [4] that BS(2, 3) ∼= 〈a, b | ab2a−1b−3〉 has an infinite chain of
marked surjections (which are isomorphisms onto the image) given by a 7→ a, b 7→ b2,
but the presentations are two-related after the first iteration.

[1] "Finite covers of graphs, their primitive homology, and representation theory," Ben-
son Farb and Sebastian Hensel, arXiv:1610.08819, 2016.

[2] "Simple closed curves, finite covers of surfaces, and power subgroups of Out(Fn),"
Justin Malestein and Andrew Putman, arXiv:1708.06486, 2017.

[3] "Graph coverings and (im)primitive homology: some new examples of exception-
ally low degree," Destine Lee, Iris Rosenblum-Sellers, Jakwanul Safin, and Anda
Tenie, arXiv:2008.13714, 2020.

[4] "Some two-generator one-relator non-Hopfian groups," Gilbert Baumslag and Don-
ald Solitar, Bulletin of the American Mathematical Society, 1962, volume 68, pages
199-201.
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Quasi-Isometry Problem of Right-Angled Coxeter and Artin groups

I am a third year PhD student under the supervision of Dr. Christopher Cashen. I am
interested in the Quasi-Isometry (QI) Problem of finitely generated groups admitting a
certain splitting as a graph of groups, the so-called JSJ decomposition. This decompo-
sition provides a QI-invariant.

In my first article [3], I give a description of this QI-invariant for a certain class of
(in particular non-hyperbolic) Right-Angled Coxeter Groups (RACG) in terms of the
defining graph. This generalizes work of Dani-Thomas [2] for the hyperbolic setting.
Under some additional assumption, the QI-invariant even gives a complete solution to
the QI-problem.

The analogous QI-invariant for Right-Angled Artin groups (RAAGs) was developped by
Margolis in [4] and can be used to compare RAAGs with RACGs. I am curious whether
this interplay can help to extend the work of Dani-Levcovitz [1] determining when
certain RACGs graphs are commensurable and hence QI to a RAAG.

[1] Pallavi Dani and Ivan Levcovitz, Right-angled Artin subgroups of right-angled Coxeter
and Artin groups, arXiv preprint arXiv:2003.05531 (2020).

[2] Pallavi Dani and Anne Thomas, Bowditch’s JSJ tree and the quasiisometry classifica-
tion of certain Coxeter groups, J. Topol. 10 (2017), no. 4, 1066–1106.

[3] Alexandra Edletzberger Quasi-Isometries for certain Right-Angled Coxeter groups,
arXiv preprint arXiv:2112.10463 (2021).

[4] Alex Margolis, Quasi-isometry classification of right-angled Artin groups that
split over cyclic subgroups, Groups, Geometry, and Dynamics 14 (2020), no. 4,
1351–1417.
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Local-to-Global Rigidity and Buildings; Measure and Orbit Equivalence

My research is at the interface of geometric and measured group theories. On the one
hand I study groups and graphs at a local scale through their microscopic structure,
on the other hand I’m interested in their large scale behaviour, that is to say their
asymptotic geometry.

Concerning the local point of view, the idea is to determine to what extent the local
geometry of a graph determines its global structure. Formally, a vertex-transitive
graph G is called Local-to-Global rigid if there exists R > 0 such that every other graph
whose balls of radius R are isometric to the balls of radius R in G is covered by G.
Examples include trees, the usual Cayley graph of Zm [1] or the Bruhat-Tits building of
SLn(Qp) for n 6= 3 [6] . Relying on this last example I showed that torsion-free lattices
in SLn(Qp) are LG-rigid [3]. I am now interested in the case of triangular buildings
(n = 3) and some other graphs such as horospherical products.

From the asymptotic point of view, I study groups through the prism of orbit equiv-
alence. The idea here is to compare and quantify how close two actions of two
groups are. Formally we say that two groups are orbit equivalent (OE) if there exists
a probability space on which they both act freely, measure preservingly and with the
same orbits. Ornstein and Weiss showed that all infinite amenable groups are OE to Z.
To refine this notion and distinguish amenable groups, Delabie et al. [2] hence in-
troduced a quantified version of OE. I’m interested in building such OE with prescribed
quantification [4,5] and extend these results into the non-amenable world, for example
to right-angled Arting groups.

[1] I. Benjamini and D. Ellis, On the structure of graphs which are locally indistinguish-
able from a lattice, Forum of Mathematics, Sigma 4 (2016).

[2] Delabie et al. Quantitative measure equivalence between amenable groups, February
2020, arXiv:2002.00719 [math.GR]

[3] A. Escalier, Local-to-Global-rigidity of lattices in SLn(K). Annales de l’Institut
Fourier, Online first, 39 p. arxiv:1512.02775 [math.GR]

[4] A. Escalier. Building prescribed quantitative orbit equivalence with the group of inte-
gers, February 2022. arXiv:2202.10312 [math.GR].

[5] A. Escalier. Sofic approximations and optimal quantitative orbit equivalence, May
2022. arxiv:2205.12137 [math.GR].

[6] M. de la Salle and R. Tessera. Local-to-global rigidity of Bruhat–Tits buildings. Illi-
nois J. Math. 60 (2016), no. 3-4, 641–654.
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Growth and formal languages

My research interests fall into two broad categories, which intersect non-trivially.

Growth
The growth function of a finitely generated group is the function γ(n) which counts the
number of elements contained in the ball of radius n in the Cayley graph. Up to course
bi-lipshitz equivalence, γ(n) is a quasi-isometry invariant. Gromov famously charac-
terised the groups for which γ(n) is a polynomial as the virtually nilpotent groups.
There are many variants of the growth function, including the conjugacy growth func-
tion c(n), which counts the conjugacy classes intersecting the ball of radius n. In con-
trast to standard growth, conjugacy growth fails even to be a commensurability invari-
ant, although the known counter-examples are not finitely presented. In recent work
[3], I derive asymptotic estimates for the conjugacy growth of certain class 2 nilpotent
groups, and conjecture that within the class of virtually nilpotent groups, c(n) is in fact
a quasi-isometry invariant. I am also very interested in the formal power series associ-
ated to various growth functions, and exploring when these are rational, algebraic, or
holonomic.

Formal Languages
Consider fixing a normal form η : G→ S∗ for a group G (generated by S), and study the
formal language properties of subsets of η(G) or η(G)k. For example, we represent the
‘multiplication table’ of G as the formal language {x#y#z : xy =G z, x, y, z ∈ η(G)}.
More generally we can study G’s algebraic sets (solutions sets to equations) or definable
sets (in the sense of first order logic). There is a growing body of work showing that
many of these sets can be described as so-called EDT0L languages (for example [1], [4],
[2]). A topic that I am interested in exploring is what algebraic or geometric properties
of a group might be related to the formal language properties of the above sets.

[1] L. Ciobanu, V. Diekert and M. Elder, Solution sets for equations over free groups
are EDT0L languages, Internat. J. Algebra Comput. 26 (2016), no. 5, 843-886.

[2] L. Ciobanu and A. Evetts, Rational sets in virtually abelian groups: languages and
growth, arXiv:2205.05621

[3] A. Evetts, Conjugacy growth in the higher Heisenberg groups, Glasg. Math. J. (to
appear), arXiv:2111.06443

[4] A.Evetts and A. Levine, Equations in virtually abelian groups: languages and
growth, Internat. J. Algebra Comput. 32 (2022), no. 3, 411-422.
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Geometry and quasi-isometry classification of horospherical products

Horospherical products are a family of metric spaces containing both continuous and
discrete examples, from solvable Lie groups R n (N1 × N2) to Cayley graphs of lamp-
lighter groups. I first got interested in the coarse geometry of these horospherical
products, through a description of their geodesics and visual boundary.
I am currently working on the classification up to quasi-isometry of families of solvable
Lie groups, using a geometric rigidity property of their quasi-isometries.

Geometry of horospherical products
Let (X, dX) and (Y, dY ) be two Gromov hyperbolic spaces with Busemann functions
h1 : X → R and h2 : Y → R. The horospherical product X ./ Y is defined to be the
subset of X × Y consisting of pairs (x, y) satisfying h1(x) + h2(y) = 0. Examples are:

• Tn ./ Tn = Cay (Zn−1 o Z)

• Tn ./ H2 is the 2-Cayley complex of BS(1, n− 1).

• (RnA1 N1) ./ (RnA2 N2) = RnDiag(A1,−A2) (N1 ×N2) (hence H2 ./ H2 = Sol)

Where N1, N2 are two simply connected nilpotent Lie groups, and where A1, A2 are
two matrices whose eigenvalues have positive real parts.
We show in [2] that a wide family of distances on X ./ Y only differ from a constant.
We also give a description of geodesics in X ./ Y , they are essentially constructed from
two consecutive geodesics of X and Y .

Quasi-isometry classification
Eskin, Fisher and Whyte proved in [1] that for X, Y = Tn or H2, any quasi-isometry
between two horospherical products is close to a map that splits on the X- and Y -
coordinates. During my PhD, I generalised this result to a family of horospherical prod-
ucts, including any simply connected, negatively curved Lie group for X and Y .
For example, it implies that if R nDiag(A1,−A2) (N1 ×N2) and R nDiag(A′

1,−A′
2) (N ′1 ×N ′2)

are quasi-isometric, then tr(A1)
tr(A2)

=
tr(A′

1)

tr(A′
2)

.

[1] A. ESKIN, D. FISHER, K. WHYTE, Coarse differentiation of quasi-isométries I: Spaces
not quasi-isometric to Cayley graphs. Annals of Mathematics Volume 176 (2012),
221-260.

[2] T. FERRAGUT, Geodesics and Visual boundary of Horospherical Products.
(arXiv:2009.04698) (2020)
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Algebraic fibring and agrarian invariants

A group G is algebraically fibred if there is an epimorphism G → Z with finitely gener-
ated kernel. The definition is motivated by a theorem of Stallings, which states that if
G = π1(M) is the fundamental group of a closed 3-manifold M and there is an algebraic
fibration ϕ : G → Z, then ϕ is induced by a topological fibration f : M → S1 [1]. In
other words, M is a surface bundle over the circle and ϕ is induced by the projection.

In 2020, Kielak showed that algebraic fibring is (virtually) equivalent to the vanishing
of the first `2-Betti number. More precisely, he proved that if G is a finitely generated
virtually RFRS group, then G virtually algebraically fibres (i.e. there is a subgroup
H 6 G of finite index that algebraically fibres) if and only if β(2)

1 (G) = 0 [2]. This
generalises and gives an algebraic proof of a celebrated result of Agol [3], which was a
key step in proving Thurston’s virtually fibred conjecture.

To prove his algebraic fibring theorem, Kielak uses the fact that the pth `2-Betti number
of a RFRS group G (more generally, of a group satisfying the Atiyah Conjecture) is the
vector space dimension of the group homology Hp(G;D(G)). Here, D(G) is the Linnell
skew-field of G, a skew-field with a ring epimorphism QG ↪→ D(G). Thus, `2-Betti
numbers of RFRS groups are examples of agrarian invariants.

If R is a ring, G is a group, andD is a skew-field, then a ring homomorphism RG→ D is
call an agrarian map. This turns D into an RG-module and we can define the homology
modules TorRGp (R,D). The agrarian Betti numbers or D-Betti numbers βDp (G) are then
the D-vector space dimensions of these homology modules. If F is a skew-field and G

is a RFRS group, then Jaikin-Zapirain showed that FG embeds into a ‘nice’ skew-field
DFG [4]. In the case F = Q, the skew-fields DFG and D(G) coincide. I am interested in
these generalisations of `2-Betti numbers, their connections to algebraic fibring, and in
investigating to what extent they can provide natural positive characteristic analogues
of usual `2-invariants.

[1] John Stallings. On fibering certain 3-manifolds. In Topology of 3-manifolds and re-
lated topics, pages 95-100. Prentice-Hall, Englewood Cliffs, N.J., 1962.

[2] Dawid Kielak. Residually finite rationally solvable groups and virtual fibring. J.
Amer. Math. Soc., 33(2):451-486, 2020

[3] Ian Agol. Criteria for virtual fibering. J. Topol., 1(2):269-284, 2008.

[4] Andrei Jaikin-Zapirain. The universality of Hughes-free division rings. Selecta Math.
(N.S.), 27(4):Paper No. 74, 33, 2021
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Braid groups and mapping class groups

I am interested in braid groups and mapping class groups. These groups are intimately
related by the evaluation map. For Artin’s braid groups the evaluation map induces an
isomorphism from the mapping class group of a disk with n punctures Map(Dn) to the
n-stranded braid group Bn. This approach to braid groups, yields a lot of tools for the
study of braid groups.

In my ongoing PhD project I study braid and mapping class groups over orbifolds ΣΓ

with finitely many orbits of cone points. These orbifold braid groups are of interest
since some of them are related to certain Artin groups, see [1]. For the orbifolds ΣΓ

I observed: While the mapping class groups are torsion-free, the braid groups have
elements of finite order. In particular, the evaluation map from the mapping class group
Map(Σn

Γ) to the braid group Bn(ΣΓ) is an epi- but not an isomorphism in this case. In
my PhD project I study the implications of this difference on the structure of orbifold
braid groups.

[1] Daniel Allcock. Braid pictures for Artin groups. Trans. Amer. Math. Soc.,
354(9):3455-3474, 2002.
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When are wreath products Hopfian?

I am a third-year PhD student at ETH Zürich, in Switzerland. So far my research has fo-
cused on bounded cohomology and stability of metric approximations of groups. More
recently, I have started getting closer to geometric and combinatorial group theory.

One project along these lines is joint work with Henry Bradford. The (standard, re-
stricted) wreath product is a very natural construction, that given two finitely generated
groups ∆,Γ, outputs a third finitely generated group ∆ o Γ. This is a great construction
because on the one hand it is very visual and amenable to explicit computations, and
on the other hand it produces very interesting examples. So it is a natural question in
combinatorial group theory to ask which properties of ∆ and Γ pass to ∆ o Γ.

Along these lines, Gruenberg proved in [2] that ∆ oΓ is residually finite if and only if ∆

and Γ are residually finite, and either Γ is finite or ∆ is abelian. A related property is the
following: we say that a group is Hopfian if every self-epimorphism is an isomorphism.
The relation comes from the fact, due to Malcev, that finitely generated residually finite
groups are Hopfian [3]. Could there be a characterization for Hopficity of wreath
products as nice as the one of Gruenberg for residual finiteness? This question was
asked in Henry’s lightning talk at the last edition of YGGT.

Shortly before the start of this edition, we now know that the problem is infinitely
harder. Restricting to the special case in which ∆ is finitely generated abelian, we
already have an equivalence with Kaplansky’s stable finiteness conjecture: a longstanding
open problem about algebraic properties of group rings. The conjecture is satisfied by
huge classes of groups, for instance all sofic groups, all surjunctive groups, and all
torsion-free groups that satisfy the Kaplansky’s zero divisor or idempotent conjectures.

[1] H. Bradford, F. Fournier-Facio. Hopfian wreath products and the stable finiteness
conjecture. arXiv preprint arXiv:2211.01510, 2022.

[2] K. W. Gruenberg. Residual properties of infinite soluble groups. Proceedings of the
London Mathematical Society 7:29-62, 1957.

[3] A. I. Malcev. On isomorphic matrix representations of infinite groups. Matematich-
eskii Sbornik 50.3:405-422, 1940.
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Surface subgroups made to order and profinite rigidity

A famous conjecture of Gromov’s, inspired by the Virtual Haken Conjecture, states that
every one-ended word-hyperbolic group contains a (quasiconvex) surface subgroup;
this is known as the Surface Subgroup Conjecture. A prominent class of groups for
which the surface subgroup conjecture has been settled by Wilton [2] is the class of
hyperbolic fundamental groups of graphs of free groups amalgamated along cyclic sub-
groups. Central to the resolution of the surface subgroup conjecture in this case is a
deep theorem of Calegari [1, Rationality Theorem], stating that the stable commuta-
tor length function on a free group (which is closely related to maps of surfaces with
boundary into graphs) always takes rational values. The proof relies on solving a lin-
ear programming problem: achieving the best outcome of a carefully-crafted target
function under linear constraints. However, only the existence of such a solution (and
hence a surface subgroup) is guaranteed, and the surface subgroup it produces remains
a mystery.

My research hopes to unravel some of this mystery by introducing improvements on
Wilton’s techniques, which will produce an array of surface subgroups "made to order".
More specifically, if G is a hyperbolic group that splits as a graph of free groups with
cyclic edge groups, and g lies in a vertex group of G, then there is a surface subgroup
π1Σ ≤ G containing gn for some n ∈ Z. The prime potency of this result lies in its
applications to the study of profinite rigidity, specifically within the class of limit groups:
I aim to use these specialized surface subgroups for detecting splittings of limit groups
from their finite quotients. This will also give rise to a rich family of groups that are
profinitely rigid within the class of limit groups.

I am also interested in connections between geometric group theory and mathematical
logic, and have worked on problems related to the first-order theory of acylindrically
hyperbolic groups and right-angled Artin groups.

[1] Danny Calegari, scl, MSJ Memoirs, vol. 20, Mathematical Society of Japan, Tokyo,
2009.

[2] Henry Wilton, Essential surfaces in graph pairs, Journal of the American Mathemat-
ical Society, 31 (2018), no. 4, 893–919.
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Relationships between Conical Limit Points and Stable Subgroups

A well known fact about hyperbolic geodesic spaces is the Morse Lemma: given a
geodesic [x, y] and a quasi-geodesic φ whose endpoints lie on [x, y], φ stays within a
bounded neighborhood of [x, y] where the bound depends only on the quality of the
quasi-geodesic and the hyperbolicity constant. This lemma was then turned into a
definition by Matthew Cordes so it can be applied in more settings. Given a proper
geodesic metric space X and a geodesic γ, we call γ an N -Morse geodesic if, for any
(K,C)-quasi-geodesic φ whose endpoints lie on γ, we have that φ lies in the N(K,C)

neighborhood of γ, where N : R × R → R+ is a function called the Morse gauge of γ.
Fixing a base point in X, we can then define the Morse strata X(N)

e : the set of all points
x ∈ X so that [e, x] is N -Morse.

The collection of these Morse strata have some remarkable properties, notably, the
collection of all Morse strata of a given base point forms a cover of the space X, and
each X

(N)
e is hyperbolic. Using these ideas, we can construct an analog to the visual

boundary of a hyperbolic space for X, called the Morse boundary. The study of Morse
geodesic rays and the Morse boundary have been important tools for studying wide
classes of spaces, such as mapping class groups and CAT(0) spaces. The Morse strata,
in some sense, “sees the hyperbolic directions in the space."

Studying the Morse boundary has been the focus of my research, where I am studying
under Matthew Gentry Durham as a fifth year PhD student. I am currently working on
generalizing the classifications of quasi-convex isometry groups into the Morse setting.
In particular, I am working on the connections between conical limit points in the Morse
boundary of a group and its stable subgroups.
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Asymptotic geometry of mapping tori of non-positively curved groups

Under the supervision of Claudio Llosa Isenrich I have been working on the asymptotic
geometry of mapping tori of groups with a particular focus on non-positively curved
(NPC) groups. For a finitely presented groupG = 〈S | R〉 and an automorphims φ : G→
G, the mapping torus of φ is the group Mφ = G oφ Z which admits the following finite
presentation

Mφ = 〈S, t | R, t−1xt = φ(x), for each x ∈ S〉.

An interesting class of NPC groups that has been at the center of my attention is the one
of right-angled Artin groups (RAAGs): given a finite simplicial graph Γ one associates to
it a group AΓ with one generator for each vertex v ∈ V (Γ) and a relation [v, w] for each
edge {v, w} ∈ E(Γ). They naturally interpolate between free and free-abelian groups.

During the first part of my thesis, my focus has been on the complexity of the word
problem for the groups AΓ oφ Z as measured by their Dehn functions. Geometrically,
the Dehn function of a group G = π1(M) quantifies simple connectivity of the universal
cover M̃ of a closed Riemannian manifold: every closed loop in M̃ bounds a disc, the
Dehn function measures the area of this filling disc.

Special cases in which the full classification of Dehn functions of AΓ oφ Z is known are:
when AΓ is a free group (see Bridson and Groves [1]) and when AΓ is a free-abelian
group (see Bridson, Gersten, and Pitett [1,2]). Aside from this very little is known. The
most recent progress was achieved by Pueschel and Riley [3], who fully classified the
Dehn functions for (i) AΓ a direct products of two free groups and (ii) the remaining
cases of |V (Γ)| ≤ 3.

As shown by [1–3] there is a close relation between the Dehn function of AΓ oφ Z
and the growth formula of the defining automorphism φ: grφ,V (Γ)(n) = max{|φn(v)| :

v ∈ V (Γ)}. Motivated by this I have recently become interested in understanding the
growth of automorphisms of RAAGs.

[1] The quadratic isoperimetric inequality for mapping tori of free group automor-
phisms, M. Bridson and D. Groves, American Mathematical Soc., 2010.

[2] Isoperimetric inequalities for the fundamental groups of torus bundles over the
circle, M. Bridon and Ch. Pittet, Geometriae Dedicata, 1994.

[3] The optimal isoperimetric inequality for torus bundles over the circle, m. Bridson
and S. Gersten, The Quarterly Journal of Mathematics. Oxford. Second Series, 1996.

[4] Dehn functions of mapping tori of right-angled Artin groups, K. Pueschel and T.
Riley, T., arXiv:1906.09368, 2019.
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Groups of automorphisms of regular rooted trees

Groups of automorphisms of regular rooted trees are a rich source of examples with
interesting properties in group theory, and they have been used to solve very important
problems. The first Grigorchuk group, defined by Grigorchuk [3] in 1980, is one of the
first instances of an infinite finitely generated periodic group, thus providing a negative
solution to the General Burnside Problem. It is also the first example of a group with
intermediate growth [4], hence solving the Milnor Problem. Many other groups of au-
tomorphisms of rooted trees have since been defined and studied. Important examples
are the Gupta-Sidki p-groups [5], for p a prime, and the second Grigorchuk group [3].
These are again finitely generated infinite periodic groups and they belong to the large
family of the so-called Grigorchuk-Gupta-Sidki groups (GGS-groups, for short).

At the moment I am working on the lower central series of the GGS-groups. In other
words trying to understand the terms γi(G) of the lower central series of the GGS-group
G. The terms γi(G) are examples of verbal subgroups, i.e. subgroups generated by the
values of a word in a group. More precisely, γi(G) is generated by the values in G of the
commutator [x1, . . . , xi] of length i. A nice introduction to this topic can be found in [2].

I am also working on some of the properties of another group called Brunner-Sidki-
Viera group. The properties I am studying are between others: Hausdorff dimension,
p-congruence subgroup property, indices of their maximal subgroups. More abut the
topic can be found in [1].

[1] A.M. Brunner, S. Sidki, A.C Vieira, A just-nonsolvable torsion-free group defined on
the binary tree.

[2] G. A. Fernández-Alcober and A. Zugadi-Reizabal, GGS-groups: order of congruence
quotients and Hausdorff dimension, Trans. Amer. Math. Soc. 366 (2014), no. 4,
1993–2017.

[3] R. I. Grigorchuk, On Burnside’s problem on periodic groups, Funktsional. Anal. i
Prilozhen. 14 (1980), no. 1, 53–54.

[4] ——, On the Milnor problem of group growth, Dokl. Akad. Nauk SSSR 271 (1983),
no. 1, 30–33.

[5] N. Gupta and S. Sidki, On the Burnside problem for periodic groups, Math. Z. 182
(1983), no. 3, 385–388.
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GGT, group rings, and computation

The current focus of my research is the series of conjectures about group rings com-
monly attributed to Kaplansky. For a group G and field K, the group ring K[G] is the
K-vector space on basis G with multiplication extending the group product linearly.
An illustrative example: if G = Z = 〈t〉, we just get the ring of Laurent polynomials
in t. An element of the form kg for k ∈ K \ {0} and g ∈ G is called a trivial unit (its
multiplicative inverse being k−1g−1.)

The Kaplansky conjectures. If G is torsion-free, then the group ring K[G] has

• no non-trivial units

• no non-zero zero divisors

• no idempotents other than 0 and 1.

For any G, possibly with torsion, the group ring K[G] is

• directly finite, i.e. every left-invertible element is right-invertible.

The unit conjecture is known to be false when K has positive characteristic [1] and
the direct finiteness conjecture is known to be true when K has characteristic zero by
an analytic argument of Kaplansky. Otherwise the conjectures are wide open but some
are known to be true when the group has certain properties (sometimes assuming K to
have characteristic zero), such as being elementary amenable, virtually special or sofic.

I’m generally interested in approaching questions from a computational perspective.
Some other things I like to think about are one-relator groups, free-by-cyclic groups,
and profinite groups.

[1] Giles Gardam. A counterexample to the unit conjecture for group rings. Ann. of
Math. (2), 194(3):967–979, 2021.
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Analysis and probability theory on infinite groups

My research interests lie somewhere between the worlds of functional analysis, geomet-
ric group theory and probability theory. In particular, I am interested in probabilistic
properties of infinite groups and in harmonic functions with certain properties on in-
finite groups. I am also interested in stability questions (i.e stability in permutations
and Hilbert-Schmidt stability). Another topic of my research are unitary (or uniformly
bounded) representations of discrete and locally compact groups and various connec-
tions and applications to operator algebras.

[1] Gerasimova M., Gruber D., Monod N., Thom A. (2020). Asymptotics of Cheeger
constants and unitarisability of groups. Journal of Functional Analysis, 278(11),
108457.

[2] Gerasimova M., Osin D. (2020). On invertible elements in reduced C∗-algebras of
acylindrically hyperbolic groups. Journal of Functional Analysis, 279(7), 108689.

[3] Gerasimova M., Shchepin K. (2021). Virtually free groups are p-Schatten stable.
arXiv preprint arXiv:2107.10032.

[4] Amir G., Gerasimova M., Kozma G., Harmonic functions with gradient going to zero
(in preparation)
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Random walks and quasi-isometries

I am in my third year of PhD studies under the supervision of Alessandro Sisto. My
research is on random walks on hyperbolic-like groups and how these intereact with
quasi-isometries.

The study of random walks on finitely generated groups can be traced back to the
seminal work of Kesten in the 1950s [1]. In recent years, there has been a significant
amount of work done looking at random walks on hyperbolic groups (see for example
[2]) and more generally on acylindrically hyperbolic groups ([3], [4]).

As geometric group theory is devoted to the study of "large-scale" geometry of groups
and spaces, a natural question to ask is how do random walks interact with quasi-
isometries. Namely, if we have a quasi-isometry f : G → H where we know the group
H, are there any results we can infer about a random walk on G ?

In general, for a random walk on G, there is no corresponding random walk on H that
one can study. This issue can be resolved by studying the more general framework of
Markov chains as a "quasi-isometry invariant" theory. Looking at these Markov chains
allows us to get some interesting results on their behaviour in H and whence in the
group G. As an application, we get a Central Limit Theorem of the random walk in G,
under some geometric assumptions on the group H.

[1] Harry Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92
(1959), 336–354, DOI 10.2307/1993160. MR109367

[2] Sébastien Gouëzel, Local limit theorem for symmetric random walks in Gromov-
hyperbolic groups, J. Amer. Math. Soc. 27 (2014), no. 3, 893–928, DOI
10.1090/S0894-0347-2014-00788-8. MR3194496

[3] P. Mathieu and A. Sisto, Deviation inequalities for random walks, Duke Math. J. 169
(2020), no. 5, 961–1036, DOI 10.1215/00127094-2019-0067. MR4079419

[4] Joseph Maher and Giulio Tiozzo, Random walks on weakly hyperbolic groups,
J. Reine Angew. Math. 742 (2018), 187–239, DOI 10.1515/crelle-2015-0076.
MR3849626
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Combinatorics, groups and more

During my PhD, I studied diverse topics. The general idea was always to study graphs
associated to algebraic, geometric or concrete objects. Among the objects I studied :

• combinatorial maps and their generalizations. We proved that such combinatorial
objects can have any finite group of automorphisms, and we describe an algorithm
to construct such a combinatorial structure with given symmetry group

• combinatorial methods for enumerating subgroups of groups of the form ∆q :=

Z2 ∗ Zq for q ≥ 3 prime by studying the Stallings graphs

• objects closely related to Teichmüller space, in particular a combinatorial model
that focuses on the so-called wide part of the moduli space

• graphs as a model for trophic interactions to try to detect vulnerability in ecolog-
ical networks modelling microbiomes.

Now for the post-doc, I am working on a project aiming at studying high-dimensional
expanders and understand their connection with Kac-Moody Steinberg algebras and/or
groups.

[1] Bottinelli, R., Grave de Peralta, L., Kolpakov, A.. 2020. Telescopic groups and sym-
metries of combinatorial maps. Algebraic Combinatorics, Volume 3 (2020) no. 2 p.
483-508.

[2] Grave de Peralta, L.,Mulot, M. Vulnerability detection in trophic networks, a com-
munity based approach. (To be submitted, soon!)

[3] Grave de Peralta, L., Kolpakov. A. Expansion properties of pants graphs of surfaces.
(In preparation)

[4] Grave de Peralta, L., Subgroup enumeration and statistics of Hecke groups. (In
preparation)
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The automorphism group of right-angled buildings

Currently, I am working on my master thesis with Prof. Tent. The goal is to give
a model theoretic proof, that the automorphism group of right-angled buildings with
countable valencies is simple. For finite valencies the result was obtained by Caprace
in [1] and De Medts et. al. showed it in [2] for any valencies. However, I will use
a different modeltheoretic approach. Tent and Ziegler introduced in [4] stationary
independence to prove the simplicity of the automorphism groups of certain countable
structures. I am going to apply this to the right-angled buildings as prime models of
the free pseudospaces of dimension n as introduced in [3].

After my master thesis, I am considering entering a PhD program in GGT. Therefore, I
appreciate connecting with people working in GGT and learning about their research.
Especially different approaches to GGT spark my interest, for example from a more
topological background.

[1] Caprace, Pierre-Emmanuel. "Automorphism groups of right-angled buildings: sim-
plicity and local splittings." arXiv preprint arXiv:1210.7549 (2012).

[2] De Medts, Tom, Ana C. Silva, and Koen Struyve. "Universal groups for right-angled
buildings." Groups, Geometry, and Dynamics 12.1 (2018): 231-287.

[3] Tent, Katrin. "The free pseudospace is n-ample, but not (n+ 1)-ample." The Journal
of Symbolic Logic 79.2 (2014): 410-428.

[4] Tent, Katrin, and Martin Ziegler. "On the isometry group of the Urysohn space."
Journal of the London Mathematical Society 87.1 (2013): 289-303.
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University of Illinois at Chicago, United States

(Relatively) hyperbolic groups and CAT(0) cube complexes

I am interested in many things – hyperbolic groups, relatively hyperbolic groups, CAT(0)

spaces, mapping class groups, limit groups, 3–manifold groups, etc.

Recently, I have done a lot of working on relatively hyperbolic groups acting on CAT(0)

cube complexes, cocompactly but not properly. One result I am proud of is joint work
with Jason Manning [3], in which we prove:

Theorem. Suppose that G is a hyperbolic group acting cocompactly on a CAT(0) cube
complexX so that cell stabilizers are quasi-convex and virtually special. ThenG is virtually
special.

In papers with Teddy Einstein [1,2] I have developed the theory of relatively geometric
actions of relatively hyperbolic groups on CAT(0) cube complexes, and have proved
analogues of Agol’s Theorem and Haglund–Wise’s Canonical Completion and Retraction
in this setting. We are working on a relatively geometric version of Wise’s Quasi-convex
hierarchy theorem.

[1] E. Einstein and D. Groves, Relative cubulations and groups with a 2–sphere bound-
ary, Compositio Mathematica, 156 (2020), 862-867.

[2] E. Einstein and D. Groves, Relatively geometric actions on CAT(0) cube complexes,
Journal of the London Mathematical Society, 105 (2022), 691–708.

[3] D. Groves and J.F. Manning, Hyperbolic groups acting improperly, Geometry and
Topology, to appear.
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Lattices in non-positive curvature

I am interested in lattices (discrete groups with finite covolume) in isometry groups
of CAT(0) spaces. I enjoy discovering exotic lattices with strange properties. For ex-
ample I constructed the first example of a group acting geometrically on a product of
(locally-finite) trees or right-angled buildings which is not virtually torsion-free [1]. I
constructed the first examples of irreducible cocompact lattices which fibre over the
circle [3]. In joint work with Motiejus Valiunas [4] we constructed a group acting ge-
ometrically on the product of a hyperbolic plane and a locally-finite tree which is a
hierarchically hyperbolic group but is not biautomatic.

More recently I have become interested in the Flat Closing Conjecture and the Rank
Rigidity Conjecture which predict deep structural information about CAT(0) groups.
The first conjecture states that if a group Γ acts geometrically on CAT(0) space with
an isometrically embedded copy of En, then Γ contains a Zn subgroup. The second
conjecture roughly states that every sufficiently nice CAT(0) space of higher rank is a
symmetric space, a Euclidean building, or splits as a direct product.

I am also interested in group cohomology (e.g. BNSR invariants, coherence, fibring,
and `2-cohomology), hierarchical hyperbolicity (and related notions), K-theory with
respect to the isomorphism conjectures, profinite rigidity, and quasi-isometries of pairs.

[1] Sam Hughes. Graphs and complexes of lattices, 2021, submitted.
arXiv: 2104.13728 [Math.GR]

[2] Sam Hughes. Irreducible lattices fibring over the circle, 2022, submitted.
arXiv: 2201.06525 [Math.GR]

[3] Sam Hughes and Motiejus Valiunas. Commensurating HNN extensions: hierarchical
hyperbolicity and biautomaticity, 2022, submitted.
arXiv: 2203.11996 [Math.GR]

[4] Sam Hughes. Lattices in a product of trees, hierarchically hyperbolic groups, and
virtual torsion-freeness. Bulletin of the London Mathematical Society 54(4), 1413–
1419, 2022.

[5] Sam Hughes. A note on the rational homological dimension of lattices in positive
characteristic, to appear in Glasgow Mathematical Journal.
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Hyperbolic manifolds that fiber over the circle

I am a fourth year PhD student at Scuola Normale, and my advisor is Bruno Martelli.
My main research topic is hyperbolic geometry, particularly constructing manifolds by
glueing copies of hyperbolic polytopes.
During my PhD I worked with Bruno Martelli and Matteo Migliorini on the project of
investigating the existence of hyperbolic manifolds of dimension n > 3 that are also a
fibered bundle over S1. This phenomenon is quite common for hyperbolic 3-manifolds
(they all fiber up to a finite cover), but it is also strange, since the fiber is highly not
compatible with the hyperbolic structure of the manifold. When the dimension is higher
than 3, this condition is even stronger, since Mostow rigidity implies that the fiber can-
not admit a hyperbolic metric at all. When the dimension is even, a simple Euler
characteristic argument shows that it is impossible for such a fibration to occur, so the
first dimension that is worth investigating is n = 5.
Adapting a very nice "combinatorial game" from [1] to a 5-dimensional right-angled hy-
perbolic polytope P5, we managed to construct a cusped hyperbolic 5-manifold fibering
over S1. The existence of such a manifold answers a long standing open problem in ge-
ometric group theory: a finite type group which does not contain any Baumslag–Solitar
subgroup BS(m,n) is not necessarily hyperbolic.

[1] K. JANKIEWICZ – S. NORIN – D. T. WISE, Virtually fibering right-angled Coxeter
groups, Journal of the Institute of Mathematics of Jussieu, 20(3), 957-987.

[2] G. ITALIANO – B. MARTELLI – M. MIGLIORINI, Hyperbolic manifolds that fiber alge-
braically up to dimension 8, accepted for publication in J. Inst. Math. Jussieu

[3] G. ITALIANO – B. MARTELLI – M. MIGLIORINI, Hyperbolic 5-manifolds that fiber over
S1, Invent. math. (2022)

54



Adele Jackson
University of Oxford, United Kingdom

Algorithms and 3-manifolds

A surprising number of algorithmic questions in 3-manifolds have not yet been resolved.
For example, it is not known how to determine if a knot is ribbon. While the decidability
of the homeomorphism problem for 3-manifolds was resolved by Perelman’s proof of
Thurston’s geometrisation conjecture [1], it is unknown whether the problem is in NP.
These sorts of questions have some interesting links here with complexity theory: if
determining the genus of a knot is in NP, as a consequence NP and co-NP would be the
same complexity class [2], which is widely thought to be false. Similarly, if recognising
the unknot were NP-hard, then NP and co-NP would be the same.

As, for 3-manifolds, the piecewise linear category and the topological category are
equivalent, the main techniques in this area are to study surfaces in triangulations
of 3-manifolds. I am interested in understanding how these triangulations reflect the
topology of the 3-manifold, and developing new combinatorial representations of topo-
logical data. For example, I worked with others to construct a new type of diagram for
links in arbitrary compact orientable 3-manifolds. I have also been working on the size
of minimal triangulations of Seifert fibered surfaces. I’m particularly interested in ap-
plying geometric group theory techniques to these types of questions, and seeing how
3-manifold techniques can perhaps be used in the group theory setting.

[1] Agol, I., Hass, J. and Thurston, W., 2006. The computational complexity of
knot genus and spanning area. Transactions of the American Mathematical Society,
358(9), pp.3821–3850.

[2] Brand, J., Burton, B.A., Dancso, Z., He, A., Jackson, A. and Licata, J., 2022. Arc
diagrams on 3-manifold spines. arXiv preprint arXiv:2202.02007.

[3] Kuperberg, G., 2019. Algorithmic homeomorphism of 3-manifolds as a corollary of
geometrization. Pacific Journal of Mathematics, 301(1), pp.189–241.
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Various topics in geometric group theory

Here are the main themes of my research:

• Artin groups. They generalize braid groups, and are closely related to Coxeter
groups. I am interested in the existence and non-existence of actions of Artin
groups on nonpositively curved spaces, their “NPC-like" features, and their profi-
nite properties.

• Non-positive curvature. I study CAT(0) cube complexes, as well as more general
CAT(0) spaces. For example, I am interested in obstructions to actions on such
spaces, and rigidty of CAT(0) structures on groups.

• Algebraic fibering and coherence. A group algebraically fibers if it admits and
epimorphism to Z with finitely generated kernel. A group is coherent if every
finitely generated subgroup is finitely presented. I study those properties in terms
of the geometry of a group.
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Measured-combinatorial generalizations of group properties

My research lies in the broad area of measured group theory. A probability measure
preserving (p.m.p.) group action induces an equivalence relation on the underlying
space defined by being in the same orbit. I am interested in how group properties
translate and generalize to the measured-combinatorial setting of equivalence relations.

In a current project with my PhD advisor Łukasz Grabowski (Leipzig) and Sam Mellick
(McGill) we study property (T) of p.m.p. Borel equivalence relations. An example of
such object is the equivalence relation induced by a p.m.p. action of a group with
property (T). However, we show that examples not coming from group actions can be
constructed using Poisson point processes. Once in the measured setting, we show that
equivalence relations with property (T) have cost 1, generalizing results from [4].

An equivalence relation may be endowed with further combinatorial information by
means of a graphing. A graphing is a graph defined on a standard probability space
by measure-preserving Borel automorphisms. For instance, one may obtain such auto-
morphisms from p.m.p. actions of groups. Via graphings, we realize the classes of an
equivalence relation as connected components of a graph.

I am interested in those graphings whose connected components embed measurably
in a topological manifold. In an on-going project I aim to show that a large class of
graphings with planar connected components are treeable, extending results from [1]
and [5]. Treeability implies that a graphing is sofic [2], realizes its cost [3], and does
not have property (T). In the future, I would like to understand treeability, soficity and
property (T) for graphings with connected components embedding measurably in Rn.

Apart from the above, I am also working on other projects related to the Haagerup
property, expansion properties of graphings and other equivalence relation invariants
such as `2-Betti numbers.

[1] C. T. Conley, D. Gaboriau, A. S. Marks, and R. D. Tucker-Drob, One-ended spanning
subforests and treeability of groups, 2021. Available in Arxiv: 2104.07431.

[2] G. Elek and G. Lippner, Sofic equivalence relations, Journal Functional Analysis 258
(2010), no. 5, 1692–1708.

[3] D. Gaboriau, Coût des relations d’équivalence et des groupes, Inventiones Mathemat-
icae, 139 (2000), 41–98.

[4] T. Hutchcroft and G. Pete, Kazhdan groups have cost 1, Inventiones Mathematicae
221, 873-–891 (2020).

[5] A. Timar, Unimodular random one-ended planar graphs are sofic,2022. Available in
Arxiv: 1910.01307.
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Fixed Point Subgroups in Artin Groups

I am a first year student of Laura Ciobanu.

For any group G and any φ ∈ Aut(G), the set of fixed points of φ, {g ∈ G|φ(g) = g},
form a subgroup of G. I am interested in understanding the fixed point subgroups
of Artin groups, in particular dihedral Artin groups. This research will use tools from
Bass-Serre theory and one-relator group theory.

An Artin group can be defined by a finite graph (V,E) with a labelling function l : E →
N. Given such a graph the associated Artin group has a generator v for each v ∈ V .
Each edge e = {v, w} is associated to a relation vwvw... = wvwv... where the length of
the words on each side of the equality is l(e). A dihedral Artin group is an Artin group
defined by a graph with two vertices.

The paper [1] allows us to write explicit actions of the automorphism groups of dihe-
dral Artin groups on trees, so the automorphism groups can be found using Bass-Serre
theory. I plan to use this concrete understanding of the automorphisms to start under-
standing the fixed point subgroups.

I hope to generalise this work with Dihedral Artin groups to a broader class of Artin
groups.

[1] Gilbert, Nick & Howie, James & Metaftsis, V. & Raptis, E.. (1999). Tree Actions of
Automorphism Groups. Journal of Group Theory. 3. 10.1515/jgth.2000.017.
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A combinatorial higher-rank hyperbolicity condition

Generalizations and variations of Gromov hyperbolicity belong to the most present
themes in geometric group theory today; among these are relative hyperbolicity, semi-
hyperbolicity and hierarchical hyperbolicity. In [1], the authors have built the founda-
tions for a notion of higher rank hyperbolicity, that complements and to some extent
encompasses these concepts. Their results hold for higher rank symmetric spaces, and
more generally all CAT(0) and Busemann spaces of rank n in an asymptotic sense.

In recent work [2] we continue the investigation of these higher-rank hyperbolicity
phenomena, with focus on a more foundational, partly combinatorial aspect. In par-
ticular, we explore a coarse 2(n + 1)-point inequality for general metric spaces that
reduces to Gromov’s quadruple definition of δ-hyperbolicity in the case n = 1 and,
if δ = 0, to an inequality characterizing metric spaces of combinatorial dimension at
most n due to Dress. This unifying condition, referred to as (n, δ)-hyperbolicity, turns
out to possess a variety of remarkable properties, tying up higher-rank hyperbolicity
with (coarsely) injective metric spaces, injective hulls, and some recent developments
in geometric group theory. Some sample results are the following. The `∞-product of
(ni, δ)- hyperbolic spaces Xi, i = 1, 2, is (n1 + n2, δ)-hyperbolic. In particular, the `∞-
product of n δ-hyperbolic spaces is (n, δ)-hyperbolic. In general, (n, ∗)-hyperbolicity is
preserved under rough isometries, yet quasi-isometry invariance is granted for the class
of coarsely injective metric spaces. Further, the asymptotic rank of an (n, δ)-hyperbolic
space X is at most n, and the notion also passes directly to the injective hull of X.
Every (n, δ)-hyperbolic metric space, without any further assumptions, possesses a slim
(n + 1)-simplex property analogous to the slimness of quasi-geodesic triangles in Gro-
mov hyperbolic spaces.

Ongoing research focuses on further investigation of the classes of spaces in question.
Is there an embedding theorem for (n, ∗)-hyperbolic spaces? Can one say something
interesting about boundaries at infinity of (n, ∗)- hyperbolic spaces? Is there a relation
between (n, δ)-hyperbolic spaces and coarse median spaces? We aim to contribute in
establishing a solid and diverse theory of rank n hyperbolic spaces in the context of
generalised nonpositive curvature, with robust characterisations and definitions. [2]

[1] Bruce Kleiner and Urs Lang, Higher rank hyperbolicity, Invent. Math. 221 (2020),
no. 2, 597–664.

[2] M. Jørgensen, U. Lang, A combinatorial higher-rank hyperbolicity condition,
arXiv:2206.08153v2 [math.MG].
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Non-positive curved groups and spaces and their boundaries

My work has two main topics: boundaries of finitely generated groups, and non-
positively curved complexes such as CAT(0) cube complexes and systolic complexes.

Stalling’s theorem, a fundamental theorem in geometric group theory, illustrates that
the behavior of a finitely generated group at infinity carries information about the struc-
ture of the group. Here, the behavior at infinity is studied by the space of ends.
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[G : Z] < ∞ G = A ∗C B or G = A∗C , C finite
|A/C| ≥ 3, |B/C| ≥ 2

Figure 1: Stalling’s theorem about finitely generated groups G.

Boundaries are other topological spaces at infinity that consist of equivalence classes of
geodesic rays. An important example is the Gromov boundary of hyperbolic groups. The
research of Gromov, Bowditch, Bestvina-Mess, Whyburn and others result in:
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a closed
simple curve
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[G : Z] < ∞ G = A ∗C B or G = A∗C ,
|C| <∞, |A/C| ≥ 3, |B/C| ≥ 2

Figure 2: A variant of Stalling’s theorem for the Gromov boundary ∂G of a hyperbolic
group G.

Recently the Gromov boundary was generalized to the Morse boundary of finitely gener-
ated groups by Cordes based on the work of Charney–Sultan. It captures the hyperbolic-
like behavior at infinity. My research on boundaries is inspired by the problem to gener-
alize Figure 2 to Morse boundaries. In this problem the interplay of Euclidean-like and
hyperbolic-like behavior of a group plays an important role. This interplay fascinates
me in my research on visual boundaries and group actions on non-positively curved
complexes such as CAT(0) and systolic complexes.
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Automatic continuity in a Čech-complete setting

Given two topological groups G and H and a homomorphism f : G → H it is com-
mon to ask, if f preserves the topological structure i.e. if f is continuous. While not
every homomorphism between arbitrary topological groups is going to be continuous,
I am interested in special conditions on G and H under which every abstract homo-
morphism is automatically continuous. More precisely I study conditions for discrete
groups H under which every homomorphism from any Čech-complete (e.g. locally
compact or completely metrizable) group to H is continuous. As a starting point for
this, I generalized a result of Dudley[1], which states, that any homomorphism from
any Čech-complete group to Z is already continuous and introduced the following def-
inition (based on notations by Connor and Corson):

A discrete group H is called Čc-slender if every Homomorphism from any
Čech-complete group to H is continuous.

Čc-slender groups have to be torsion-free (since there are discontinuous homomor-
phisms from the compact group

∏
N Z/pZ→ Z/pZ), so one might ask, what results we

might expect for groups with torsion. More precisely, I am interested in conditions on
the torsion subgroups of a discrete group H under which every homomorphism from
any Čech-complete group to H is either continuous or has small image. In joined work
with Möller and Varghese[3] we showed first results for this in a locally compact set-
ting. In (upcoming) work, I showed first results (in a Čech-complete setting), where H
is a Graphproduct and whereH is an Automorphismgroup of a right-angled Artingroup.

[1] R. M. Dudley, Continuity of homomorphisms. Duke Math. J. 28 ,(1961), 587–594.

[2] G. R. Conner; S. M. Corson, A note on automatic continuity. Proc. Amer. Math. Soc.
147,(2019), 1255–1268.

[3] D. Keppeler; P. Möller; O. Varghese, Automatic continuity for groups whose torsion
subgroups are small. Journal of Group Theory, (2022).
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Coarse geometry of groups and spaces

Definition. Let (X, dX) and (Y, dY ) be metric spaces. A map f : X → Y is a coarse
embedding if there exist non-decreasing functions ρ−, ρ+ : [0,∞)→ [0,∞) such that:

• For every x1, x2 ∈ X, we have that

ρ−(dX(x1, x2)) 6 dY (f(x1), f(x2)) 6 ρ+(dX(x1, x2)).

• As t→∞, we have that ρ−(t)→∞.

Coarse embeddings are a generalisation of quasi-isometric embeddings, where we re-
lax the requirement that the distances in the two spaces have a linear relationship.
This allows us to consider natural scenarios that are not covered by quasi-isometric
embeddings; for example, the inclusion of a finitely generated subgroup into a finitely
generated group may not be a quasi-isometric embedding, but it will always be a coarse
embedding.

An obvious question to ask is, given X and Y , does there exist a coarse embedding
f : X → Y ? Unlike with quasi-isometries, which in many cases have been well studied,
there are some seemingly simple examples of spaces for which we do not know the
answer to this question. For instance, does there exist a coarse embedding f : H3 →
H2 × T , where T is a 3-regular tree?

One way of approaching such a question is to look at properties that are invariant under
coarse embeddings, such as growth, asymptotic dimension, and separation profiles.
Broadly speaking, my current main project is to investigate various coarse invariants,
and to find interesting examples where they provide an obstruction to the existence of
coarse embeddings.

In previous projects I have studied the geometry of quasi-trees [1], and product set
growth in acylindrically hyperbolic groups, especially right-angled Artin groups and
mapping class groups [2].

[1] Alice Kerr. Tree approximation in quasi-trees. Preprint, arXiv:2012.10741, 2020.

[2] Alice Kerr. Product set growth in mapping class groups. Preprint, arXiv:2103.12643,
2021.
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Finiteness-Properties of S-Arithmetic Groups

We say a group H is virtually of type F , if there are Γ ≤ H of finite index and a
contractible Γ-CW complex X, such that the action is cocompact and free.
Let G be a linear algebraic group over Q (for example G = SLn) then a subgroup of
G(Q) is called arithmetic, if it is commensurable withG(Q)∩GLn(Z). Considering a ring
Z[ 1

N
] instead of Z we get the definition of an S-arithmetic group. Canonical examples

are SLn(Z) resp. SLn(Z[1
p
]).

The natural action of SLn(Z) on the symmetric space X = SLn(R)/ SO(n) (in the case
n = 2 for example, we just get the well known action on the hyperbolic plane given
by ( a bc d ).z = az+b

cz+d
) is not cocompact, but has only finite stabilisers and one can find a

torsion free, finite index subgroup Γ. To get a cocompact action, Raghunathan[R68]
constructed a smooth, Γ invariant function X → [0,∞[ with no critical values outside a
compact intervall [0, r], and such that the induced funtion Γ\X → [0,∞[ is proper. Now
Morse-Theory (see for example [M63]) tells us, that there is a cocompact Γ subspace
Y ⊂ X which is a deformation retract, thus contractible.
The following Theorem is due to Borel and Serre [BS76]:

Theorem. Any S-arithmetic subgroup of a connected, reductive algebraic group over Q is
virtually of type F .

Consider the induced action of H = SLn(Z[1
p
]) on the product of the symmetric space

and a so called Bruhat-Tits Building (in case n = 2, the latter is just the p + 1 regular
tree), given by the diagonal embedding H → SLn(R) × SLn(Qp), h 7→ (h, h). Again,
one can find a finite index subgroup Γ ≤ H, that acts freely but not cocompactly.
To fix this, Borel and Serre added a boundary to the symmetric space part, in a way
that doesn’t change the topology, but still is compatible with the action.

My project is to find a new proof of the Borel-Serre Theorem via constructing a Morse
function on the product space, in a similar way as Raghunathan did. Later we also want
to apply Morse Theory to so called approximate subgroups; this is a symmetric subset Λ

of a group G that contains the neutral element and fullfills the property ΛΛ ⊂ FΛ for
some finite set F ⊂ G.

[R68] M.S. Raghunathan, A Note on Quotients of Real Algebraic Groups by Arithmetic
Subgroups, Invent. Math. (1968), 318-335.

[M63] J. Milnor, Morse theory. Annals of Mathematics Studies, No. 51 Princeton Uni-
versity Press, Princeton, N.J. 1963.

[BS76] A. Borel, J.P. Serre, Cohomologie d’immeubles et de groupes S -aithmetiques,
Topology 15 (1976), 211-232.
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L2-invariants in finite characteristic and torsion growth

I am interested in algebraic topology, mostly in the area of L2-invariants (but I also like
to think about algebraic K- and L-theory). At the moment, I am mainly thinking about
questions related to the growth of Betti numbers (in finite characteristic) or torsion in
integral homology of a space under towers of finite coverings.

L2-invariants, such as L2-Betti numbers b(2)
k or L2-torsion ρ(2), are variants of the clas-

sical invariants that are defined for possibly noncompact spaces X taking a cocompact
action of a group G into account. They are closely related to questions in geometric
group theory and geometry. For example, if M is an odd dimensional closed connected
hyperbolic manifold, the L2-torsion ρ(2)(M̃ ; π1(M)) is given by its volume (up to a con-
stant depending only on the dimension) so L2-torsion can be thought of as some volume
like invariant.

It is a fundamental question how these L2-invariants are related to their classical coun-
terparts. The famous approximation theorem by Lück says that the L2-Betti numbers
are given by

b
(2)
k (X;G) = lim

i→∞

bk(X/Gi;Q)

[G : Gi]

where the (Gi)i form a suitable decreasing sequence of finite index normal subgroups of
G. At the moment, I am thinking about analogues of this result for Betti numbers with
Fp-coefficients or L2-torsion. One motivation for this is the following problem about
profinite rigidity of 3-manifolds:

Suppose that M and N are two closed connected hyperbolic 3-manifolds such that the
profinite completions of their fundamental groups are isomorphic. Are M and N then
already homeomorphic?

Interestingly, an approximation result for L2-torsion would at least show that M and
N have the same volume. By a result of Thurston, there are only finitely many closed
hyperbolic 3-manifolds of the same volume. This would give a partial answer to the
question.
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Ore localizations, closures of group rings, and algebraic fibrings

Let me show you some guidelines that I have collected during my three years so far as
a PhD student and that have at least some degree of truth to them in the context of my
research.

• Groups are torsion free.

• Abelian groups are not interesting.

• The Heisenberg group is cool.

• Everyone has at least one misconception about non-commutative rings.

• While we now distinguish “fields” and “skew fields”, the terms used to be “com-
mutative field” and “field”. The old way was better.

• The best formulation of the Atiyah conjecture does not mention `2-betti-numbers.

The rest of this text will be an attempt in trying to justify where I came up with these.

For a communitative domain, there is a field of fractions (such as Z and Q). Generally
speaking, this does not work for non-commutative rings. Although there is something
called the Ore Condition, which guarantees the existence of a field of fractions.

A good reason to care about non-commutative rings is the study of group homology:
The homology is constructed from a sequence of ZG-modules and ZG is non-commuta-
tive if G is non-abelian. We would like to study the dimension of homology. However,
it is a priori not even clear, what the dimension of a module should be. On the other
hand, we know what the dimension of a vector space is.

A not-so-obscure ZG-module that satisfies the Ore Condition is the Von Neumann Alge-
bra NG. However, ZG itself only satisfies the Ore Condition if G is amenable. So, in an
attempt to scavenge as many of the nice field-like properties of Ore(NG), we consider
the division closure of ZG inside Ore(NG). This leads to a whole bouquet of interesting
questions about division closures. Well known among them is the Atiyah conjecture,
which asks if the division closure is again a skew field.

Another nice property of the field of fractions is that it is flat over the base ring. This
means that one cannot get “more” homology by changing coefficients from some ring
to it’s field of fractions. But since the field of fractions need not exist, the closest we can
get is some division closure and we ask again, what properties we can recover. These
questions about group homology can be linked to fibrings. That is, is there a map
G→ Z with finitely generated kernel? More recently, I’ve been trying to generalize this
notion to maps with other codomains.
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I am a student of mathematics at the University of Münster (third semester of my
master’s degree). My general interests are in algebraic topology and geometric group
theory. So far, within these fields, I have taken courses in Münster: Algebraic Topology
1, 2 and Geometric Group Theory (GGT) 1, 2. This semester I am attending the seminar
"Topics in Geometric Group Theory" where I will be talking about mapping class groups
of surfaces. My first explicit contact with geometric group theory was in the course
GGT 1, when we proved that a group G is free if and only if it acts freely and with-
out edge inversion on a tree. At that time I really enjoyed the geometric-topological
proof of this theorem. The GGT 2 lecture was entirely devoted to geometric group the-
ory, especially to metric spaces of non-positive curvature. We discussed topics such as:
groups as metric spaces, group actions, geodesic spaces, model spaces En, Sn, Hn, com-
parison triangles, CAT(κ) spaces, Mn

κ - polyhedral complexes, Gromov’s link condition,
Berestovskii’s theorem, CAT(0) cube complexes, hyperplanes, halfspace systems. Partic-
ipation in the conference would be a great opportunity for me to deepen my knowledge
in geometric group theory, within which I would like to write my master’s thesis.
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Classifiability of crossed product C∗-algebras

My research lies at the intersection of C∗-algebras, dynamical systems, and K-theory.
A C∗-algebra is a self-adjoint norm-closed algebra of bounded linear operators on a
complex Hilbert space. I am particularly interested in determining dynamically when
the crossed product C∗-algebra C(X) o G associated to an action of a discrete group G
on a compact space X is classifiable in the sense of the following theorem:

Theorem (see [2] for a list of references). Unital, simple, separable, nuclear, Z-stable
C∗-algebras satisfying the Universal Coefficient Theorem are classified by K-theory and
traces.

When G is a non-amenable group, there is a set of necessary conditions on the action
(amenability, minimality and topological freeness) that become sufficient when com-
bined with a condition called dynamical comparison. Interestingly, this condition au-
tomatically follows from the necessary ones for many classes of non-amenable groups
such as acylindrically hyperbolic groups or Baumslag-Solitar groups [1]. Our proofs
use boundary actions associated to geometric actions on various types of non-positively
curved spaces.

My goal is to push these results (and similar results for amenable groups) further to a
larger class of groups. Since the main input to these types of theorems usually come
from geometric group theory, I want to learn more about the subject. This is my moti-
vation to participate in the Young Geometric Group Theory workshop.

[1] Gardella, E., Geffen, S., Kranz, J., and Naryshkin, P. (2022). Classifiability of crossed
products by nonamenable groups. arXiv:2201.03409.

[2] Winter, W. (2018). Structure of nuclear C*-algebras: from quasidiagonality to classifi-
cation and back again. Proceedings of the International Congress of Mathematicians
(ICM 2018) (In 4 Volumes) Proceedings of the International Congress of Mathe-
maticians 2018.
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Mapping Class Groups of Infinite Graphs — “Big Out(Fn)”

Surfaces and graphs are closely related; there are many parallels between the mapping
class groups of finite-type surfaces and finite graphs, where the mapping class group
of a finite graph is Out(Fn) — the outer automorphism group of a free group of finite
rank. A recent surge of interest in infinite-type surfaces and their mapping class groups
begs a natural question: What is the mapping class group of an “infinite” graph? (Hint:
It is not Out(F∞); it is quasi-isometric to a point. See [4].)

In [1], Algom-Kfir and Bestvina give an answer by defining the mapping class group of
a locally finite, infinite graph Γ as:

Map(Γ) = {Proper homotopy equivalences Γ→ Γ}/proper homotopy.

They showed that Map(Γ) is Polish (separable and completely metrizable), and for
infinite-type Γ that Map(Γ) is homeomorphic to Z∞, which is not compactly generated.

As geometric group theorists, we are interested in the coarse-geometry of Map(Γ). Here
we use Rosendal’s framework for coarse geometry of non-locally compact groups. He
showed a group that is generated by a coarsely bounded set has a well-defined quasi-
isometry type equipped with the word metric. Kathryn Mann and Kasra Rafi [2]
used this framework to study which mapping class groups of infinite-type surfaces have
coarsely bounded generating sets.

Motivated by their work, George Domat, Hannah Hoganson, and I [3] took the first
step toward the corresponding program for graphs by classifying when the pure map-
ping class group PMap(Γ) is coarsely bounded, and when PMap(Γ) is locally coarsely
bounded(a necessary condition for having coarsely bounded generating set).

Theorem (See [3, Figure 1,2] for the flowcharts). There are complete classifications of
locally finite, infinite graphs Γ that have coarsely bounded PMap(Γ) or that have locally
coarsely bounded PMap(Γ).
As a next step, we are studying possible topological generating sets for PMap(Γ), which
would help to classify which Γ has PMap(Γ) with a coarsely bounded generating set.

[1] Y. Algom-Kfir and M. Bestvina. Groups of proper homotopy equivalences of graphs
and Nielsen realization. arXiv preprint arXiv:2109.06908, 2021.

[2] K. Mann and K. Rafi. Large scale geometry of big mapping class groups. preprint
arXiv:1912.10914, 2019. To appear in Geom. Topol.

[3] G. Domat, H. Hoganson, and S. Kwak. Coarse geometry of Pure mapping class groups
of Infinite graphs. preprint arXiv:2201.02559, 2022. To appear in Adv. Math.

[4] G. Domat, H. Hoganson, and S. Kwak. The automorphism group of the infinite rank
free group is coarsely bounded. New York J. Math. 28 (2022), 1506–1511.
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Rigidity of group actions on spaces with hyperbolic features

I am currently a second year PHD student under the supervision of Thomas Haettel.

I am interested in understanding the rigidity of actions of groups having the strong
property (T ) .

Vincent Lafforgue defined this strengthening of the Kazdhan property (T ) ([1]) in his
paper ([2]). Instead of looking at unitary representation of Hilbert space, the strong
property (T ) implies a fixed point result for representations with a small exponential
growth of the norm. De la Salle have proved in ([3]) that higher-rank lattices, for ex-
ample SL(n,Z) for n ≥ 3, satisfy this strong property (T ).

Lafforgue proved the following result which shows that groups with property strong
(T ) are more rigid than groups satisfying only Kazdhan property (T ) :

Theorem. Let G be a group with the strong Property (T ). Any action of G by isometries
on a bounded valency Gromov-hyperbolic graph has a bounded orbit.

This theorem implies in particular that hyperbolic groups cannot have strong property
(T ) in contrary with Kazdhan property (T ).

So far, I tried to generalized this result for groups that generalized hyperbolicity, like
coarse median groups ([4]) or relatively hyperbolic groups ([5]).

[1] B. Bekka, P. de la Harpe & A. Valette – New Mathematical Monographs, Kazhdan’s
property (T) 11 , Cambridge University Press, Cambridge, 2008.

[2] V. Lafforgue – « Un renforcement de la propriété (T) », Duke Math. J. 143 (2008),
no. 3, p. 559–602.

[3] M. de la Salle – « Strong property (T) for higher rank lattices », (2017), arXiv
:1711.01900.

[4] B. H. Bowditch – « Coarse median spaces and groups », Pacific J. Math. 261 (2013),
no. 1, p. 53–93.

[5] Brian H. Bowditch, Relatively hyperbolic groups, Int. J. Algebra Comput. 22 (2012),
no. 3, 1250016 (66 pages).
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Random walks on CAT(0) spaces and boundary theory

I am a PhD student in the Topology and Dynamics team in Laboratoire de Mathéma-
tiques d’Orsay, Université Paris-Saclay, and expect to receive my PhD in June of 2023.
My field of research belongs to Geometric Group Theory. More specifically, I use tech-
niques from the theory of Dynamical Systems to study rigidity phenomena on groups,
boundary theory, and spaces of non-positive curvature.

Let G be a discrete group acting by isometries on a CAT(0) space X, and let µ be a prob-
ability measure on G such that its support generates G as a semigroup. Consider the
sequence ω = (ωi)i, where the ω′is are chosen independently according to the measure
µ. The random walk (Zn(ω))n on G generated by µ is then defined by Zn(ω) = ω1 . . . ωn.
Taking o ∈ X, we study the asymptotic behaviour of the random variables (Zn(ω)o)n.
One of the key ideas in the study of such limit laws is the use of boundary theory. This
is also a recurring theme for the study of rigidity phenomena on groups, as for instance,
boundary maps and Furstenberg theory are involved in the original proof of Margulis’
Super-rigidity Theorem.

The first part of my PhD was devoted to study limit laws of the random walk (Zn(ω)o)n
if we assume that G acts with rank one isometries. It is often useful to think of rank
one elements as isometries that satisfy hyperbolic-like properties. In this sense, trying
to apply methods from the rich theory of hyperbolic spaces (see for example [3]) to the
class of CAT(0) spaces who possess rank one geodesics has been a recurring theme in
my research. In this setting, I proved that (Zn(ω)o)n converges to a point in the visual
boundary ∂∞X, and that the hitting measure is the unique stationary measure on X.
If we assume further moment conditions on the measure µ, I proved that the drift (the
speed at which the random walk goes to infinity) is almost surely positive, and that it
satisfies a central limit theorem, see [1] and [2].

Buildings were introduced by Bruhat and Tits in order to give a good framework for the
study of semisimple Lie groups over non-Archimedean local fields. Another subject in
my thesis was the study random walks on Ã2-buildings. With the use of recent results
in boundary theory for CAT(0) spaces, we can prove that there is a unique stationary
measure on the spherical building at infinity and study further limit laws.

[1] Corentin Le Bars, Random walks and rank one isometries on CAT(0) spaces,
arXiv:2205.07594 (2022)

[2] Corentin Le Bars, Central limit theorem on CAT(0) spaces with contracting isome-
tries, arXiv:2209.11648 (2022)

[3] Joseph Maher and Giulio Tiozzo, Random walks on weakly hyperbolic groups, J.
Reine Angew. Math., vol.742 (2018)

70



Corentin Le Coz
University of Ghent, Belgium

Coarse geometry and cryptography

My topic of research lies in the intersection of geometric group theory, discrete mathe-
matics, and cryptography.

Separation profile and coarse geometry During my PhD, I’ve studied separation
profile, a coarse geometric invariant defined in term of expansion of subgraphs.

An interesting behaviour of this invariant is the fact that it distinguishes nilpotent and
non-nilpotent solvable groups [1]. There is also a relationship with splittings of hy-
perbolic groups [3]. Using separation profiles, I’ve been able to prove the following
results:

Theorem. [2] There exist bounded degree graphs of asymptotic dimension one that do not
coarsely embed in any finite product of bounded degree trees.

Theorem. [2] For any ε ∈ (0, 1), there exists a hyperfinite sequence of bounded degree
graphs (Γn)n≥0, such that cp(Γn) �p (log |Γn|)1−ε, where cp is the Lp compression exponent.

Post-Quantum Hash functions My group theory experience led me to study hash
functions, fundamental tools in cryptography. In [4], we apply Tillich-Zémor scheme to
Cayley graphs of SLn(Fp) constructed by Arzhantseva and Biswas, having the proper-
ties that they are expander graphs with large girth, two desirables properties for hash
functions, that we claim to be resistant to quantum computers.

Future I’m interested in a better understanding of coarse geometric invariants (asymp-
totic dimension, Poincaré profiles, etc.). A line of research I am currently working on
is the relationship between coarse geometry and relative hyperbolicity. I would also
like to work more on group-based cryptography. Higher dimensional expanders and
expanding linear spaces are two possible direction of development in this domain.

[1] C. Le Coz and A. Gournay. Separation profiles, isoperimetry, growth and compres-
sion. arXiv:1910.11733.

[2] C. Le Coz. Poincaré profiles of lamplighter diagonal products. arXiv:2007.04709.

[3] N. Lazarovich and C. Le Coz. Hyperbolic groups with logarithmic separation profile.
arXiv:2110.13595 .

[4] C. Le Coz, C. Battarbee, R. Flores, T. Koberda, and D. Kahrobaei. Higher dimen-
sional platforms for Tillich-Zémor hash functions. arXiv:2207.03987.
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Growth spectrum in groups à la Gromov

I am interested in growth and combinatorial problems in groups that involve the follow-
ing ingredients: simple counting arguments; metric inequalities imposing non-positive
curvature conditions such that Gromov’s inequality or Behrstock’s inequality; and geo-
metric small cancellation theory. Keeping only these ingredients in mind, it turns out
that a large part of my work consists on coming up with the precise tree-like picture.
The main goal of my research is to understand better some collections of volume en-
tropy that I will introduce below. Using a very general point of view, one can still
produce non-trivial results for relatively hyperbolic groups, CAT(0) groups, mapping
class groups or graphical small cancellation groups at the same time.

Let G be a group acting properly by isometries on a metric space (X, d). Let p ∈ X. The
metric ball B(n) of radius n ∈ N+ is the set of elements g ∈ G such that d(gp, p) ≤ n.
The volume entropy ω(G,X) is a non-negative number that measures the exponential
growth rate of the volume of metric balls B(r). It is defined as the limit

ω(G,X) = lim sup
n→∞

1

n
log |B(n)|.

This number is related to the topological entropy in dynamical systems, to the geodesic
flow in Riemannian geometry or to the conformal dimension in Kleinian groups. It is
not a number easy to compute and coincides with the critical exponent of the Poincaré
series P (s) =

∑
g∈G e

−sd(p,gp). Lately, I have been studying the following sets:

1. The subgroup growth spectrum, i.e. the set of ω(H,X) such that H ≤ G.

2. The quotient growth spectrum, i.e. the set of ω(G/H,X/H) such that H ≤ G. This
definition makes sense even if H is not a normal subgroup, thinking about the
growth of cosets G/H or the growth in the Schreier graph with respect to H.

3. The algebraic growth spectrum, i.e. the set of ω(HS, XS), where S is a finite sym-
metric subset of G, HS = 〈S〉 and XS is the Cayley graph of HS with respect to
S. We say that G has uniform growth if there exist ωG > 0 such that for every S
either HS is virtually nilpotent or ω(HS, XS) ≥ ωG.

In my first paper [1], I proved that if G contains a contracting isometry and H is an
infinite index quasi-convex subgroup of G, then ω(H,X) < ω(G,X) provided that G is
not virtually cyclic, and ω(G/H,X/H) = ω(G,X) with no further restrictions on G. At
present, I am studying uniform growth in a joint work with Markus Steenbock.

[1] Constricting elements and the growth of quasi-convex subgroups.
arXiv:2206.06749
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Topological properties of algebraic groups

I research various topological structures on groups, I am particularly interested in al-
gebraic groups over Cp - the completion of the algebraically closed field Qp which is a
complete but not a local field. In the case of algebraic groups over local fields it was
shown by H.Omori [1] for R and later by Bader-Gelander [2] for any local field that
semi simple groups have the property that any continuous homomorphism from the
group into any other topological group has a closed image, I am currently interested in
extending these result for semi-simple algebraic groups over Cp.

Also I am interested in applications of ergodic theory in algebraic groups. In particular
Howe-Moore like properties for not necessarily semi-simple algebraic groups over value
fields.

[1] Omori, Hideki. "Homomorphic images of Lie groups." Journal of the Mathematical
Society of Japan 18.1 (1966): 97-117.

[2] Bader, Uri, and Tsachik Gelander. "Equicontinuous actions of semisimple groups."
arXiv preprint arXiv:1408.4217 (2014).
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Describing solutions to group equations using languages

I am a Research Fellow at the University of Manchester. Some of my work involves de-
scribing solutions to equations in groups using formal languages. Formally, an equation
in a group G is an element ω ∈ G ∗ FV , where FV is the free group on a finite set V ,
called the set of variables. A solution is any homomorphism φ : G ∗ FV → G that fixes
G pointwise, and such that (ω)φ = 1. This can be thought of as replacing the variables
with elements of G.

In 2016 Ciobanu, Diekert and Elder proved that solutions to systems of equationsin
free groups can be expressed using EDT0L languages [1], which also gave bounds on
the amount of memory needed to solve certain decision problems. The use of EDT0L
languages to describe solutions has been successfully used in a variety of other classes
of groups, including hyperbolic groups, RAAGS, virtually abelian groups, and in the
case of single equations, the Heisenberg group. Currently, Laura Ciobanu and I are
working on showing the central extensions of hyperbolic groups are amongst this class
of groups.

[1] L. Ciobanu, V. Diekert, and M. Elder. Solution sets for equations over free groups
are EDT0L languages. Internat. J. Algebra Comput., 26(5):843–886, 2016.

[2] A. Evetts and A. Levine. Equations in virtually abelian groups: Languages and
growth. Internat. J. Algebra Comput., 32(3):411–442, 2022.

[3] A. Levine Equations in virtually class 2 nilpotent groups. Groups Complex. Cryptol.,
14(1):1–17, 2022.

[4] A. Levine. EDT0L solutions to equations in group extensions. arXiv e-prints,
arXiv:2108.09390, 2021.

[5] A. Levine. Formal languages, quadratic Diophantine equations and the Heisenberg
group. arXiv e-prints, arXiv:2203.04849, 2022.
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Geometry of Amenable Groups and Metric Spaces

I am interested in the geometry of various amenable metric spaces, especially those
related to solvable groups.

My first paper focused on a recently-defined invariant called Scaling Group of a metric
space [1]. In it, I leveraged the classification of quasi-isometries of various solvable Lie
groups to exhibit spaces achieving every finitely-generated Scaling Group [2].

My current work focuses on quasi-isometries of iterated wreath products, i.e. groups of
the form Z/mZ o (Z/nZ o Z). The goal is to generalize the work of Eskin-Fisher-Whyte
in [3,4] inductively to more complicated metric spaces. I have preliminary results clas-
sifying all quasi-isometries that satisfy certain additional assumptions.

[1] Genevois and Tessera, Measure scaling quasi-isometries, 2021.

[2] Levitin, Metric Spaces of Arbitrary Finitely-Generated Scaling Group, 2022.

[3] Eskin, Fisher, and Whyte, Coarse differentiation of quasi-isometries I: spaces not
quasi-isometries to Cayley graphs, 2012.

[4] Eskin, Fisher, and Whyte, Coarse differentiation of quasi-isometries II: Rigidity for Sol
and Lamplighter groups, 2013.

75



Kevin Li
Universität Regensburg, Germany

Classifying spaces for families of subgroups

I am a postdoc working with Prof. Clara Löh.

I work in the areas of geometric group theory and algebraic topology. My research is
loosely focused around classifying spaces for families of subgroups and their equivariant
Bredon cohomology.

Group G Model for EFING

graph of finite groups Bass–Serre tree
right-angled Coxeter group Davis complex

hyperbolic group Rips complex
mapping class group Teichmüller space

Out(Fn) Culler–Vogtmann outer space

Let G be a group and let FIN denote the family of finite subgroups of G. The classi-
fying space EFING is a G-CW-complex with finite stabilisers such that for every finite
subgroup H of G, the fixed-point set (EFING)H is contractible. For an arbitrary fam-
ily F of subgroups of G, the classifying space EFG is defined similarly.

I have studied the equivariant bounded cohomology of such classifying spaces [2] and
obtained vanishing results for bounded cohomology and `2-Betti numbers in the pres-
ence of amenable open covers [4]. Using constructions for classifying spaces of small
dimension, I have computed the amenable category for right-angled Artin groups [3]
and Farber’s topological complexity for certain relatively hyperbolic groups [1].

Currently, I am thinking about vanishing for gradient invariants of residually finite
groups, such as mod p homology growth and torsion homology growth, as well as
about different notions of equivariant cohomological dimension for groups G with an
action by another group Γ.

[1] K. Li. On the topological complexity of toral relatively hyperbolic groups.
Proc. Amer. Math. Soc., 150(3):967–974, 2021.

[2] K. Li. Bounded cohomology of classifying spaces for families of subgroups.
To appear in Algebr. Geom. Topol., arXiv:2105.05223, 2021.

[3] K. Li. Amenable covers of right-angled Artin groups.
Preprint, arXiv:2204.01162, 2022.

[4] K. Li, C. Löh, and M. Moraschini. Bounded acyclicity and relative simplicial volume.
Preprint, arXiv:2202.05606, 2022.
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Hyperbolic low dimensional groups

Since the introduction of hyperbolic groups by Gromov in the 80’s, a wealth of powerful
tools have been developed to study them. Thus, when studying a class of groups, a
classification of those that are hyperbolic can be very useful.

My current research focuses on the hyperbolicity of low dimensional groups and, in
particular, one-relator groups; that is, groups of the form F (Σ)/〈〈w〉〉, where F (Σ)

denotes the free group generated by Σ. One of my recent results in this direction
establishes hyperbolicity for all 2-free one-relator groups.

The best possible hyperbolicity result one could hope for in the class of one-relator
groups is known as Gersten’s conjecture. Motivated by the fact that hyperbolic groups
cannot contain certain one-relator subgroups, known as Baumslag–Solitar groups

BS(m,n) = 〈a, t | tamt−1 = an〉,

Gersten made the following conjecture:

Conjecture (Gersten’s conjecture). A one-relator group is hyperbolic if and only if it
contains no Baumslag–Solitar subgroups.

Such a dichotomy is known to hold for several classes of groups: Coxeter groups (Mous-
song), free-by-cyclic groups (Brinkmann), 3-manifold groups (Perelman), virtually spe-
cial groups (Caprace, Haglund) and, most recently, ascending HNN-extensions of free
groups (Mutanguha). However, one cannot hope to go too far in this direction as there
exist groups of finite type that are not hyperbolic and do not contain Baumslag–Solitar
subgroups (Italiano, Martelli, Migliorini).
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Topological Tits Alternative of Big Mapping Class Groups

In 1985, McCarthy discovered Tits alternative of mapping class groups of finite type
surfaces:

Theorem ([1]). Let S be a surface of finite type and H be a subgroup of the mapping
class group of S. Then H either contains a free subgroup of 2 generators, or it is virtually
abelian.

It is widely known that the same results do not hold for big mapping class groups, i.e.
the mapping class groups of surface with infinite ends or genus, see [2,3] for example.
But the conterexamples at our disposal are constructed by starting with a countable
amenable group for which Tits alternative fails and by embedding this group into a
big mapping class group. Yet those construction do not take the topological structure
into account and a topological form of Tits alternative that strengthen the dichotomy
of amenability and non-amenability will certainly be of one’s interest.

On the conference Mapping class groups and Out(Fn), Fanoni suggested that “the entire
family of all big mapping class groups might be a too big to be treated with”. One may
start by considering only a particular subfamily of big mapping class groups, where the
surface admits a non-displaceable subsurface, so that it can act non-elementarily and
continuously on a Gromov hyperbolic space (see [4]).

In an outcoming paper of the author, one will present the dynamic of amenable groups
acting continuously on separable geodesic and Gromov hyperbolic spaces by isometries.
The main tools exploited in the paper is the general discussion of groups acting on uni-
form spaces, ultralimit of metric spaces, and horicompactification of Gromov hyperbolic
spaces or metric functionals on a metric space. Broader applications of the result other
than big mapping class groups will also be considered.

[1] John McCarthy. A“Tits-alternative” for subgroups of surface mapping class groups.
Trans. Amer. Math. Soc., 291(2) :583–612, 1985.

[2] Justin Lanier and Marissa Loving. Centers of subgroups of big mapping class groups
and the tits alternative. Glasnik matematǐcki, 55(1): 85-91, 2020.

[3] Daniel Allcock. Most big mapping class groups fail the Tits alternative. Algebraic &
Geometric Topology, 21(7): 3675-3688, 2021.

[4] Camille Horbez, Yulan Qing, & Kasra Rafi. Big mapping class groups with hyper-
bolic actions: classification and applications. Journal of the Institute of Mathematics
of Jussieu, (2021): 1-32, 2021.
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Reflection length in non-affine Coxeter groups

The focus of my PhD project is reflection length in non-affine Coxeter groups. Cox-
eter groups are direct products of finitely generated reflection groups, each acting on a
sphere, a Euclidean space or a hyperbolic space. An element in a Coxeter group corre-
sponds to a finite sequence of reflections in the according spaces. For a fixed element,
this sequence is not necessarily unique. The minimal number of reflections that suffices
to represent a certain group element is called the reflection length of this element.

In the spherical, as well as in the Euclidean case, the reflection length is bounded and
formulas exist. On the contrary, by a result of Kamil Duszenko, the reflection length
function is unbounded on all Coxeter groups that do not split into a direct product of
spherical and Euclidean reflection groups (non-affine Coxeter groups). Almost nothing
beyond this result is known.
Even though the reflection length is unbounded, it already seems difficult not only to
compute it but also to find elements with large reflection length in some non-affine
Coxeter groups.
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Finitely generated subgroups in big mapping class groups

The mapping class group of a surface S is the isotopy classes of orientation-preserving
homeomorphisms of S. Mapping class groups of surfaces form an important class of
groups that has ramifications in several areas of mathematics. The case of compact
surfaces is very different from the case where the surface is not compact. In case the
surface is compact, the mapping class group of S is finitely generated and has been
studied with a variety of tools. In the case of a non-compact surface S, the surface
is called large and the mapping class group of S is no longer finitely generated, and
no longer equal to the group of quasi-conformal homeomorphisms of the surface S.
Hence classical tools of geometric group theory and differential geometry are no longer
available to study the mapping class group.

However, any group is the inductive limit of its finitely generated subgroups. This
viewpoint allows to handle several algebraic questions, hence the importance of under-
standing infinite families of finitely generated subgroups. In general, nested families of
finitely generated subgroups have no geometrical interpretation, but one could start by
looking at those who do.

In this project we will be looking at concrete ways to build large classes of finitely
generated subgroups. One concrete question could be:

Question: Can SL(n,Z), Out(Fn) or Mod(Sg) be subgroups of Mod(S) for S a big sur-
face?

First we will start by reading the existing literature on finitely generated subgroups
in classical and large mapping class groups, in particular Crisp and Paris’ construc-
tion embedding Artin groups in mapping class groups [2] or Allcok’s construction of
Grigorchuck’s groups in Mod(S) in case where S has infinitely many ends [1]. While
investigating possible finitely generated subgroups, the student will keep in mind the
following

Question: Find obstructions for a group to be a subgroup of the mapping class group of a
given large surface.

Moreover, we will keep testing the finitely generated subgroups for standard geometric
group theory properties, like property (T), amenability, hyperbolicity, etc.

[1] D. Allcock: Most large mapping class groups do not satisfy Tits’ alternative.

[2] J. Crisp, L. Paris. The solution of a conjecture by Tits on the subgroups generated
by squares of the generators of an Artin group.
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Representation theory of chamber systems

I am interested in various aspects of groups acting on discrete structures. Currently,
my focus is on the representation theory of groups acting on chamber systems, with
an eye towards local to global results. In particular, I am investigating conditions for
Kazhdan’s property (T) to hold. In this context, I have found that there is a subalgebra
of the group algebra whose representation theory seems to reflect the representation
theory of the group. I call it the Hecke algebra.

When the chamber system is a building, it is isomorphic to the usual Iwahori-Hecke
algebra, which is a deformation of the underlying Coxeter group. In general, it seems
possible to give a similar presentation of the Hecke algebra by studying residues of rank
2 in the chamber system (which are edge-transitive bipartite graphs).

It is a classical result that property (T) is equivalent to the existence of a spectral gap
for the Laplace operator. In my setting, it is an element of the Hecke algebra, and
it becomes possible to study its spectrum by considering appropriate C∗-completions.
In fact, it seems that the existence of a spectral gap can be witnessed within the un-
completed Hecke algebra (see [1] for a similar result in the case of finitely generated
groups).

At the moment, my main result is an application of a local criterion for the existence
of a spectral gap. It involves estimating spectral quantities called representation angles
at the level of residues of rank 2. The main question that remains open is whether
this criterion is a necessary condition too, which seems to be the case based on a list
of examples given in [2]. It would also be interesting to describe to which extent the
representation theory of the Hecke algebra reflects the representation theory of the
group, as in the case for groups acting sufficiently transitively on semi-regular trees, for
instance (see [3]).

Some keywords. Chamber systems, buildings, C∗-algebras, harmonic analysis on tdlc
groups, semi-simplicity.

[1] Ozawa, Noncommutative real algebraic geometry of Kazhdan’s property (T).

[2] Caprace, Conder, Kaluba, Witzel, Hyperbolic generalized triangle groups, property
(T) and finite simple quotients.

[3] Matsumoto, Analyse harmonique dans les systèmes de Tits bornologiques de type
affine.
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Groups acting on trees and their outer automorphisms

Many groups of interest to geometric group theorists act on trees; for example free
groups, surface groups, Baumslag–Solitar groups, fundamental groups of 3-manifolds,
groups with more than one end and so on. Thanks to Bass–Serre theory, not only is the
structure of a group acting on a tree well understood, but group actions on trees may
be used to construct new examples of groups with interesting properties.

When a group G acts on a tree without global fixed point, it typically acts on many trees
in many ways. For example, the free group of rank n acts geometrically on the universal
covering tree of any finite connected graph with Euler characteristic 1−n, but there are
stranger actions of Fn on trees as well. For another, any collection of disjoint, essential
simple closed curves on a connected surface gives rise to an action of the fundamental
group of that surface on a “dual” tree.

Thanks to work of Culler–Morgan, Culler–Vogtmann, Forester, Clay and Guirardel–
Levitt, there is a rich theory of deformations of actions of groups on trees. This allows
us to organize the many actions of a group G on trees into deformation spaces. One
reason having a deformation space is useful is that you can reframe some questions so
that the solution becomes clear: for example, maybe a certain property X varies con-
tinuously over the deformation space, so we can conclude the existence of a tree action
with value Y for property X by the Intermediate Value Theorem.

Another reason deformation spaces are interesting is the following: Suppose G acts on
a tree T and that Φ: G → G is an automorphism. Then there is a new action of G
on T by the rule that g sends a point p ∈ T to the point Φ(g).p, in other words, in
the new action, g acts the way Φ(g) acted under the old action. This new tree action
depends only on the outer class ϕ ∈ Out(G), so the group Out(G) acts on the collection
of deformation spaces of tree actions for G. I’d like to advocate for calling the stabilizer
of a given deformation space under this action the “modular group” of the deformation
space, or the “mapping class group” of an associated graph of groups. These groups are
very interesting to me and are just beginning to be understood.

For example, here is an open problem whose solution would be very interesting to
me. Let G be a finitely generated virtually free group (so it has a free subgroup of
finite index). It has an Out(G)-invariant deformation space of actions on trees with
finite stabilizers. Krstić and Vogtmann proved that this space (or really its spine, which
is a simplicial complex) is contractible, which has the nice corollary that the virtual
cohomological dimension of the virtually torsion-free group Out(G) is finite.

Problem. Give invariants associated to G that compute the virtual cohomological di-
mension of Out(G). Find a natural action of Out(G) on a complex of that dimension.
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Zeta functions and group actions on trees and buildings

T. Weigel and G. Willis introduced the concept of double coset Dirichlet series ζG,K of a
totally disconnected locally compact group G with respect to a compact open subgroup
K ≤ G. Namely,

ζG,K(s) =
∑

KgK∈K\G/K

[KgK : K]−s,

where K\G/K is the set of K-double cosets of G and [KgK : K] counts the number of
(left) translates of K that cover KgK.
The definition originates from BN-pairs: when (G,K) is a BN-pair, each [KgK : K] and
ζG,K have an explicit interpretation in terms, respectively, of the Bruhat-Tits building
and the growth series of the Weyl group associated to the pair.

Inspired by [1], my current research is focused on the study of ζG,K when G has a
(sufficiently transitive) continuous and proper action on trees or buildings. The broad
goal is to read some structural properties back from the analytic ones of the series. E.g.,
characterizing the vanishing of the abscissa of convergence and deciding whether the
value in−1 of the meromorphic continuation of ζG,K is the inverse of the Euler-Poincarè
characteristic of G. As suggested by some examples, my ultimate goal is to interpret
the outcomes in terms of the (topological) simplicity of the group.

The main strategy involved is to reduce the computation of ζG,K to counting problems
in terms of geometric/combinatorial features of the space. For instance, when G acts
on a tree, one reduces to counting geodesics with a common starting vertex.

Recently, I started investigating whether a similar geometric approach can be carried
over to a slightly different context such as the submodule zeta functions (cf. [3, §. 2]).

[1] I. Castellano, G. Chinello, and Th. Weigel. "The Hattori-Stallings rank, the Euler
characteristic and the ζ-functions of a totally disconnected locally compact group". In
preparation, (2022)

[2] B. Marchionna. "The double-coset zeta function for groups acting weakly locally ∞-
transitively on locally finite trees". In preparation, (2022)

[3] T. Rossmann, "Computing topological zeta functions of groups, algebras and modules,
I". Proc. London Math. Soc. (3) 110, (2015), pp. 1099-1134
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Intersections of Parabolic Subgroups in Sufficiently Large-Type Artin Groups

I am interested in studying Artin groups and their properties. More specifically, I am
focused on answering the question of whether or not the set of parabolic subgroups of
a particular Artin group is closed under intersection. There have been several results
which answer affirmatively for certain classes of Artin groups, but the question is open
in general. Classes of Artin groups for which this result is known include spherical type
[5], FC-type [3], [4], large-type [1], and (2, 2)-free two-dimensional [2].

Currently I am studying the case for Artin groups of sufficiently large type: Artin groups
whose defining graph has the property that any triangle (i.e. any triple of vertices
mutually joined by edges) is either labelled by all 2’s or whose labels are all 3 or greater.

[1] Martín A. Blufstein. (2022). Parabolic subgroups of two-dimensional Artin groups
and systolic-by-function complexes. to appear in Bulletin of the London Mathemat-
ical Society, arXiv:2108.04929.

[2] María Cumplido, Volker Gebhardt, Juan González-Meneses, and Bert Wiest.
(2019). Advances in Mathematics, 352, 572-610.

[3] María Cumplido, Alexandre Martin, and Nicolas Vaskou. (2022). Parabolic sub-
groups of large-type Artin groups. Mathematical Proceedings of the Cambridge
Philosophical Society, 1-22.

[4] Philip Möller, Luis Paris, and Olga Varghese. On parabolic subgroups of Artin
groups. (2022). arXiv:2201.13044

[5] Rose Morris-Wright. (2021). Parabolic subgroups in FC-type Artin groups. Journal
of Pure and Applied Algebra, 225(1), 106468.
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Fibered Face theory for free-by-cyclic groups

Some research interests of mine include Fibered Face theory for free-by-cyclic groups,
Bass-Serre theory, mapping class groups, and Culler-Vogtmann outer space.

My current research aims to build on work by Dowdall, Kapovich, and Leininger. They
considered the mapping torus Zf = Γ× [0, 1]/(x, 1) ∼ (f(x), 0), where Γ is a finite graph
with no valence–1 vertices, and f : Γ → Γ is an expanding irreducible train track map.
This mapping torus has a natural suspension semiflow, ψ, by flowing along the [0, 1]

direction. The Fried Cone is the cone in H1(Zf ,R) of classes which are positive on all
closed orbits of ψ. Dowdall, Kapovich, and Leininger proved that for any primitive in-
tegral class, u, in the Fried cone, there is a corresponding graph embedded in Zf which
is dual to u and transverse to ψ [1].

My goal is to prove that such a dual transverse graph also exists for primitive integral
classes in the boundary of the Fried Cone. A similar result has been proven for the
mapping torus Mf = S × [0, 1]/(x, 1) ∼ (f(x), 0), where f is a pseudo-Anosov map on a
surface, S, of genus g (with g ≥ 2) [2].

[1] S. Dowdall, I. Kapovich, and C. Leininger, Dynamics on free-by-cyclic groups

[2] M. Landry, Y. Minsky, S. Taylor, A polynomial invariant for Veering Triangulations
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Quasi-isometries of relatively hyperbolic groups with an elementary hierar-
chy

Quasi-isometry is an equivalence relation on finitely generated groups. Gromov pro-
posed in [1] the problem of classifying all finitely generated groups up to quasi-isometry.
Many interesting classes of groups have been shown to be closed under quasi-isometry.

In [2], Sela introduced the class of limit groups. Limit groups play an important role in
Sela’s work on the Tarski problem about the elementary theory of free groups. Among
other results, Sela showed that limit groups are exactly the finitely generated fully
residually free groups, and that each limit group has a finite cyclic hierarchy. This
hierarchy can be described as a finite rooted tree, where the descendants of a vertex
correspond to the vertex groups of a cyclic splitting of the parent.

I have studied a class of relatively hyperbolic groups which come equipped with hi-
erarchies that resemble Sela’s hierarchy for a limit group in [3]. This class, which I
call AT EH, consists of groups which are hyperbolic relative to virtually abelian sub-
groups, and has a finite hierarchy over virtually abelian groups. There is one additional
condition on how each peripheral subgroup can act on the splittings in the hierarchy.
Using tools from the theory of special cube complexes, I have shown that groups in
AT EH share some properties with virtual limit groups, such as being subgroup separa-
ble and being virtually torsion free. Additionally, my work shows that AT EH is closed
under quasi-isometry. In particular, if G ∈ AT EH and G′ is quasi-isometric to G, then
G′ ∈ AT EH.

[1] M. Gromov. Asymptotic invariants of infinite groups, Geometric Group Theory 2
(1993), 1–295

[2] Z. Sela, Diophantine geometry over groups I: Makanin-Razborov diagrams. Publica-
tions Mathématiques de l’IHÉS 93 (2001), 31-105

[3] A. Messerla, Quasi-isometries of relatively hyperbolic groups with an elementary hier-
archy. in preparation.
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Splitting Triangle Artin Groups As Graphs of Free Groups

Having only just embarked on my research journey, the primary focus of my research
so far has been triangle Artin groups – specifically in the context of splittings as graphs
of free groups. I endeavor to use geometric methods in order to better understand
the underlying structure of some of the more mysterious triangle Artin groups, namely
Art23n for n ≥ 6.
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Algorthmic Properties of Coxeter Shadows

Coxeter shadows were first introduced by Graeber and Schwer in [1], as follows:
Choose an orientation of your Coxeter complex, so that for ever hyperplane you get
exactly one corresponding positive and negative half space. Consider a minimal gallery
γ = (cf = c0, p1, c1, . . . , pn, cn = x) with alcoves ci and panels pi connecting the fun-
damental alcove with the alcove corresponding to the group element x. Now you
can fold the gallery γ at the panel pi by reflecting the remaining part of the gallery
(ci, pi+1, ci+1, . . . , pn, cn) on the hyperplane Hp ⊃ pi to obtain a new gallery ending in
rHp(x) 6= x. Collecting all the group elements you can construct from γ by folding the
gallery onto positive half spaces with respect to your chosen orientation, you get the
shadow of x (with respect to your orientation).

Folded galleries are related to retractions in Bruhat-Tits buildings and have a variety
of applications, see further [3, 4]. Shadows themselfes generalize the Bruhat order
of the Coxeter group and also have relations to many algebraic structures like affine
Deligne-Lusztig varieties, MV-polytopes and Hall-Littlewood polynomials. They find
applications e.g. in represenation theory and arithmetic geometry, see [2]. As my PhD
project I am studying algorithmic properties of Coxeter Shadows in finite and affine
Coxeter groups, trying to understand how hard it is to decide whether a given group
element y is contained in the shadow of another element x with respect to a fixed
orientation, and, if possible, provide effective algorithms that do so.

[1] Marius Graeber and Petra Schwer: Shadows in Coxeter Groups, Annals of Combina-
torics 24 (1), pp. 119-147, Springer Science and Business Media LLC, 2020.

[2] Petra Schwer: Shadows in the Wild - Folded Galleries and Their Applications, Jahres-
bericht der Deutschen Mathematiker-Vereinigung, pp. 3-41, 2022.

[3] Stéphane Gaussent and Peter Littelmann: LS Galleries, the Path Model, and MV Cy-
cles, Duke Mathematical Journal 127, 2005.

[4] Arun Ram: Alcove walks, Hecke algebras, spherical functions, crystals and column
strict tableaux, arXiv, 2006.
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Hyperbolic manifolds fibering on S1

In my research I study hyperbolic manifolds and fibrations over the circle (i.e. fiber
bundles with S1 as base space).

While the topic is very well understood in dimension 3, in higher dimension almost
nothing is known.

As part of my research, in a joint work with Giovanni Italiano and Bruno Martelli,
we tried to construct such fibrations in high dimension. To do so, we used the com-
binatorial game from [1], which from a hyperbolic right-angled polytope produces a
hyperbolic manifold M equipped with a map f : M → S1. Depending on some condi-
tions, this map may possess some good properties: it might be a fibration if we are really
lucky, or at least it may be an algebraic fibration, meaning that f∗ : π1(M)→ π1(S1) = Z
is surjective with finitely generated kernel.

Using this, we first proved the following:

Theorem ([2]). There exist hyperbolic n-manifolds for every 5 ≤ n ≤ 8 which alge-
braically fiber.

Later, we managed to refine the result in dimension 5.

Theorem ([3]). There exist hyperbolic 5-manifolds which fiber over the circle.

Using this, we could find an answer to a well-known open question.

Corollary. There exists a hyperbolic group G which has a subgroup H < G which is of
finite type but is not hyperbolic.

Lately, we are trying to understand better this manifold, in order to find a good descrip-
tion for the monodromy.

[1] Kasia Jankiewicz, Sergey Norin, and Daniel T. Wise, Virtually fibering right-
angled Coxeter groups. Journal of the Institute of Mathematics of Jussieu (2021),
20:957–987

[2] Giovanni Italiano, Bruno Martelli, Matteo Migliorini, Hyperbolic manifolds that fiber
algebraically up to dimension 8, arXiv:2010.10200

[3] Giovanni Italiano, Bruno Martelli, Matteo Migliorini, Hyperbolic 5-manifolds that
fiber over S1. Invent. math. (2022). doi.org/10.1007/s00222-022-01141-w
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Simplicial volume of Davis’ cube complexes

I am interested in topology, geometry and group theory; during my PhD I am studying
some problems about bounded cohomology (of topological spaces or discrete groups)
and simplicial volume (of manifolds).

One specific problem I worked on during last year was about two notions of “bounded-
ness” for cohomology classes of a group, one being weaker than the other; in the paper
[1] we have constructed the first example of a finitely presented group for which these
two notions do not coincide (for cohomology in degree 2). Our construction involved
finding a group together with a Lipschitz “projection” onto an infinite cyclic subgroup,
satisfying certain conditions.

Another problem I am currently interested in is a particular case of the following famous
(at least among people studying simplicial volume) question of Gromov:

Question (Gromov) Consider a connected closed manifold which is aspherical (i.e.,
its universal cover is contractible) and has vanishing simplicial volume. Is its Euler
characteristic equal to 0?

There is a very nice construction, due to Davis, that outputs a cube complex whenever
given a simplicial complex as input. If the simplicial complex is homeomorphic to Sn−1,
then the output is a topological manifold of dimension n. Moreover, if the simplicial
complex is also flag (this is a combinatorial condition: the complex coincides with the
clique-complex of its 1-skeleton), then the output is a locally CAT(0) manifold.

I think that this family of manifolds constitutes an interesting testing ground for Gro-
mov’s question, and I am trying to understand when these manifolds have vanishing or
positive simplicial volume. Already in dimension n = 4, i.e., flag 3-spheres giving rise
to 4-manifolds, this seems a quite hard challenge. At least, much harder than in lower
dimensions: for n = 3 I have found a nice characterization of flag 2-spheres giving
positive simplicial volume, and for n ≤ 2 the problem is trivial.

[1] Weakly bounded cohomology classes and a counterexample to a conjecture of Gromov,
joint work with Dario Ascari. arXiv:2207.03972.
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Profinite topology and non-positive curvature in groups

My main interest lies in groups satisfying non-positive curvature conditions, such as
(relatively) hyperbolic groups and CAT(0) cubulated groups. The focus of my current
projects is to try to better understand profinite topologies in such groups. One thing I
am particularly interested in is clarifying the somewhat strange relationship between
profinite properties and (quasi)convexity in subgroups of non-positively cured groups.
In the setting of hyperbolic groups, for example, profinite closure of all quasiconvex
subgroups is known to be equivalent to residual finiteness of all hyperbolic groups [1],
itself a well-known open problem.

In a recent work [2], we obtained a sort of combination theorem for quasiconvex sub-
groups in a large class of relatively hyperbolic groups using the profinite topology. We
also showed that arbitrary products of quasiconvex subgroups are profinitely closed
in such groups, with consequences to limit groups, Kleinian groups, and fundamental
groups of certain graphs of free groups.

In future, I’m hoping to be able to better understand the algebraic structure of sub-
groups given by our combination theorem, generalise our results about products to
other classes of non-positively curved groups, and develop new examples of groups of
non-positive curvature with interesting profinite properties.

[1] I. Agol, D. Groves, J. Manning, Residual finiteness, QCERF and fillings of hyperbolic
groups.

[2] A. Minasyan, L. Mineh Quasiconvexity of virtual joins and separability of products in
relatively hyperbolic groups.
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Locally compact groups and automatic continuity for groups from GGT

My research consists of multiple projects in different areas of mathematics.

The first project revolves around locally compact groups. In 2017, two papers by
Caprace, Reid and Willis (see [1], [2]) opened up a new approach to the study of to-
tally disconnected locally compact groups. In these papers, multiple (boolean) lattices
are constructed from these groups and studied. This turns out to be especially powerful
if the group in question is (topologically) simple. The general aim of this project is to
see if these new methods can be generalized to more general, not totally disconnected
locally compact groups and ideally find a suitable definition of a "semi-simple" locally
compact group. Since the connected locally compact groups are the other end of the
spectrum and are well-studied using the theory of (pro-)lie groups (see [3]), I am cur-
rently investigating these groups.
More precisely, for a boolean lattice, one has to find "complements" in a suitable manner
for (locally) normal subgroups. In the connected case, we have found multiple notions
that seem to be a suitable definition for a "quasi-complement". Furthermore in three
cases (compact connected, locally compact abelian and connected locally compact re-
ductive groups), quasi-complements exist for a suitable definition. Since this approach
appears to be working in both the connected and the totally disconnected case, it seems
to be plausible that a similar approach may be fruitful in a more general setting which
is the current state of the project.

The other projects I am working on are almost all related to automatic continuity of
some form. The general question is the following: Given two topological groups L,G
and an algebraic homomorphism ϕ : L → G, can we find algebraic conditions on L,G

and ϕ ensuring that ϕ is continuous? The first result in this direct is due to Dudley (see
[4]) and states that any homomorphism from a locally compact Hausdorff group to a
free (abelian) group is continuous. This question has been studied for many groups
that are usually studied in GGT. It turns out that often times either the image of the
homomorphism is "small" or the homomorphism is continuous.

[1] P.-E.-Caprace, C. Reid, G. Willis. Locally normal subgroups of totally disconnected
groups. Part I: General theory. Forum Math. Sigma 5 (2017), e11, 76 pp.

[2] P.-E.-Caprace, C. Reid, G. Willis. Locally normal subgroups of totally disconnected
groups. Part II: Compactly generated simple groups. Forum Math. Sigma 5 (2017),
e12, 89 pp.

[3] K. H. Hofmann, S. A. Morris, The Lie Theory of Connected Pro-Lie Groups. EMS 2007.

[4] R. M. Dudley, Continuity of homomorphisms. Duke Math. J. 28 ,(1961), 587–594.
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Finiteness Properties of Irrational Slope Thompson Groups

Irrational Slope Thompson Groups are variations on Thompson’s Group and the family
of Brown-Thompson groups where the interval is divided asymmetrically, allowing for
slopes of irrational gradient with irrational breakpoints between. While these groups
share many properties with Brown-Thompson groups, the also defy convention in other
scenarios, most notably, it has been shown that they are unable to embed into Thomp-
son’s Group, which sets them apart from the Brown-Thompson groups.

Finiteness properties are another area in which irrational slope Thompson groups may
differ from the Brown-Thompson groups. While Cleary was able to show that the sim-
plest example of an irrational slope Thompson Group, known as Fτ is F∞, and a subset
have known finite presentations, the full landscape of these groups remains unknown
with regards to their finiteness properties. In particular, the BNSR invariant, a group
invariant which reveals the finiteness properties of certain subgroups, has only been
calculated for Fτ .

[1] Brita Nucinkis, Jose Burillo and Lawrence Reeves. "An Irrational-Slope Thompson’s
Group",

[2] Robert Bieri, Walter Neumann and Ralph Strebel. "A Geometric Invariant of Dis-
crete Groups",
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Grafting in (higher) Teichmüller theory

I am interested in Teichmüller theory and in particular I am currently studying an op-
eration called grafting and an action it induces on Teichmüller space.

Given a closed orientable surface S of genus g ≥ 2, its Teichmüller space T (S) classifies
hyperbolic metrics on S up to isotopy. Such a surface with a hyperbolic metric is always
covered metrically by the hyperbolic plane H2, on which the group π1(S) acts as deck
transformations via isometries, where the action depends on the chosen hyperbolic
metric on S. Every point in T (S) is indeed identified by a unique (up to conjugacy)
discrete and faithful representation ρ : π1(S)→ PSL2(R) = Isom+(H2).

A path in T (S) corresponds to a continuous deformation of such a representation,
which coincides with a continuous deformation of a hyperbolic metric. A well studied
family of deformations are those obtained by shearing, that is by cutting the surface
along geodesic laminations (suitable sets of disjoint geodesics in S) and letting the dif-
ferent components of the surface slide along these cuts in some suitable way. Thurston
first introduced these deformations, which he called earthquakes. Shearing deforma-
tions are a useful tool, since they generate the whole tangent space of T (S), they link
any two point in T (S) and also their generalization to higher Teichmüller theory al-
ready gave interesting results.

Higher Teichmüller theory arises by replacing PSL2(R) with another higher rank Lie
group G and studying the character variety (i.e. the space of such representations up to
conjugacy) and questioning whether it does classify geometric structures on S, as in the
case of PSL2(R). Among the many partial answers to these questions, we have a result
of Hitchin that shows that for G = PSLn(R) there is a connected component Hn(S),
named after him, of the character variety made by discrete and faithful representations.
Thus, by seeing PSLn(R) as group of isometries of the associated symmetric space Xn,
one can see Hitchin representations as geometric actions of π1(S) on the space Xn

(which in the case n = 2 is the hyperbolic plane) and try to give this way a geometric
interpretation to shearing deformations generalized to this context.

We can roughly say that in Hitchin components shearing has more degrees of freedom
and then its geometric behaviour is better modelled by a combination of the classical
shearing and another operation called grafting. Grafting is a geometric operation that
takes a hyperbolic surface, a closed geodesic γ on it and replaces, via cut-and-paste, the
geodesic γ with a flat cylinder γ × [0, t]. Currently I am studying the flow induced on
T (S) as follows: given a hyperbolic structure, we do the grafting, produce a geodesic
current from the obtained surface and, thanks to recent results of Sapir and Hensel,
project it back to another point in T (S). The hope is that understanding this model
may also help us to better understand shearing in the Hitchin component.
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`2-methods in abstract and profinite group theory

The study of `2-invariants was initiated by Atiyah in the context of Riemannian mani-
folds and, in the context of abstract groups, it essentially consists on understanding the
homology groups of an abstract group G with coefficients in the module `2G (i.e. the
Hilbert space of real functions on G with bounded `2-norm). In this abstract setting,
it may seem more natural to simply study the homology groups Hn(G;ZG) (for exam-
ple for questions about duality). Nevertheless, these are generally harder to compute
and the former ones admit analytical tools such as a von Neumann dimension function.
Also, possibly surprising, the groups Hn(G; `2G) contain much algebraic information
about G.

My research is mostly focused on the first L2-Betti number b(2)
1 (G), which is the di-

mension of H1(G; `2G). More precisely, I study when b
(2)
1 (G) can be read off from the

profinite completion Ĝ (using Lück’s approximation-type principles) to infer algebraic
properties of G (which will be, in fact, profinite invariants).

For example, in [1] it is seen how in some cases the computation of b(2)
1 (G) allows to

detect the centre of a group by looking at Ĝ (even if, in general, this is not a profinite
invariant, as proven by Lubotzky). In [3], b(2)

1 (G) turns out to be useful for constructing
residually nilpotent groups because they seem to detect if there is a kernel in the natural
map of a groupG→ Gp̂ to its pro-p completion. This idea is due to Jaikin-Zapirain, how
had already shown that ICE groups can be densely embedded into free pro-p groups.

If S is a free group (resp. a surface group), then b
(2)
1 (S) = b1(S) − 1 (resp. b(2)

1 (S) =

b1(S) − 2), where b1 is the usual first Betti number. It is studied in [2] how particular
and rare are these features and how useful they are to study pro-soluble invariants of S
(such as being residually-p), which, as shown by Lubotzky, are not generally invariant.

[1] I. Morales, On the profinite rigidity of free and surface groups. Preprint available at
https://arxiv.org/abs/2211.12390

[2] Appendix to Characterising surface groups by their virtual second betti number, by J.
Fruchter. Preprint available at https://arxiv.org/abs/2209.14925

[3] A. Jaikin-Zapirain and I. Morales, Parafree fundamental groups of graphs of free
groups. Preprint available at https://arxiv.org/abs/2110.11655
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I am interested in understanding geometry of (hyperbolic) groups using and combining
tools from probability theory, ergodic theory and C* algebras. For instance, in a recent
work with my PhD student (K. Recke) we provided a characterization of amenability
using group-invariant percolation on Cayley graphs and decomposition of Schur multi-
pliers of Roe Algebras via a group-invariant compactification of probability measures.
Currently we are working on extending this result to explore further geometric proper-
ties of groups using percolation tools.
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Random Group Actions on CAT(0) Cube Complexes

A cube complex X is a complex formed from a collection of Euclidean cubes by iden-
tifying faces of cubes via isometries. The link of a 0-cell x ∈ X0 is a complex with a
simplex for each corner of a cube containing x, and inclusion of simplices corresponds
to inclusion of the associated corners. A simplicial complex is flag if all sets of pairwise
adjacent 0-cells in the 1-skeleton span simplices. A simply-connected cube complex is
CAT(0) if links are flag simplicial complexes. In this situation, the standard Euclidean
metrics on each cube induce a CAT(0) metric on the complex.

A midcube of a cube [−1, 1]n is the subspace defined by setting a single coordinate to
0. A hyperplane in a CAT(0) cube complex is a connected, nonempty subspace which
intersects each cube in a midcube. Complements of hyperplanes have two connected
components. The partitions induced by hyperplanes encode the structure of a CAT(0)

cube complex. If a group action preserves a fixed collection of partitions, then one
recovers an action on a “dual” CAT(0) cube complex using a construction of Sageev.

Given a finite set S = {s1, . . . , sn} of generators, there are ≈ (2n−1)L reduced words of
length L over S ∪ S−1. For some d ∈ (0, 1), a random group at density d and length L is
given by a presentation 〈S | R〉, where R is a collection of (2n− 1)dL reduced words of
length L chosen uniformly at random. One says a random group at a particular density
satisfies property Q if the probability of Q approaches 1 as L → ∞. Although many
random groups act without a global fixed point on finite dimensional cube complexes, it
is conjectured that the dimension of these cube complexes must grow with L. Working
in this direction, I proved the following theorem.

Theorem. Let G = 〈S | R〉 be a random group at any density with |S| ≥ 7. Any action of
G on a CAT(0) square complex has a global fixed point.

Proving the above theorem involved defining a notion of progression for a regular lan-
guage over S given an action of a free group FS → Aut(X) on a CAT(0) cube complex
X. I believe these ideas can generalize to higher dimensions at the cost of a stronger
bound on the number of generators. I am interested in the following:

Problem. Generalize the Theorem to high dimensional cube complexes.

[1] Random group actions on CAT(0) square complexes; Zachary Munro; submitted for
publication; arXiv:2210.06378

[2] Random groups do not split, Francois Dahmani and Vincent Guirardel and Piotr
Przytycki, Mathematische Annalen 349 no.3 (2011), 657-673.
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Master’s student application

As I am still a Master student, I have not yet begun my own research. However, I have
been attending courses and seminars on GGT since I started my studies at Münster and
plan on applying for PhD positions related to this field, and so it would be really helpful
for me to attend this conference, both to learn more about what I already know and to
discover current research topics on the area.

In my first year at WWU I attended two courses on GGT covering topics like free groups,
Serre graphs and trees, group presentations, amalgamation, HNN-extensions, CAT(0)
spaces and cube complexes, Right angled Artin groups, hyperplanes and halfspaces and
cubulation of Coxeter groups. Besides, in the present semester I am taking part on a
seminar on topics on GGT, where I already gave a talk on Small Cancellation Theory.

Ever since I started attending the first course on it, I enjoyed GGT very much, as it
covers many of the areas I have always found most interesting, such as Topology, Group
Theory and even Logic. Among the topics I have already come across, what I found
most intriguing were graphs and trees, Coxeter groups, Right angled Arting groups and
Small Cancellation Theory. Moreover, I would like to learn more about the relation that
GGT has with Geometric Topology, in particular about topics like mapping class groups,
braid groups or knot theory.
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Subgroups of Fundamental Groups of Non-positively Curved Cube Com-
plexes

My research has been generalizing the results of Kapovich and Myasnikov in Stallings
Foldings and Subgroups of Free Groups to fundamental groups of non-positively curved
cube complexes. In particular, I have been using the idea of completions found in
Subgroups of Right-Angled Coxeter Groups Via Stallings-Like Techniques by Dani and Lev-
covitz and Folding-like Techniques for CAT(0) Cube Complexes by Ben-Zvi, Kropholler,
and Lyman. In the case of a non-positively curved cube complex X, the completion of a
subgroup H ≤ π1(X) creates a map f : M 7→ X, such that the induced homomorphism
of fundamental groups is an inclusion with f∗(π1(M)) ∼= H. We can then study the cube
complex M to determine various properties of H.

I have also been interested in techniques in Coxeter Groups, 2-Completion, Perimeter
Reduction and Subgroup Separability by Schupp and how they can be applied to a larger
class of groups.
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Dynamics of Free Group Automorphisms

The mapping torus of a free group automorphism is also known as a free-by-cyclic
group. I am particularly interested in how the dynamics of an automorphism determine
the geometry of its mapping torus and vice-versa. For instance, Peter Brinkmann proved
that the automorphism is atoroidal — i.e. has no periodic conjugacy class of nontrivial
elements — if and only if the mapping torus is hyperbolic.

I would like to give a similar geometric characterization of an automorphism that is
atoroidal and fully irreducible — i.e. has no periodic conjugacy class of nontrivial proper
free factors. To this end, I am developing canonical forms for free group automorphisms
that might lead to canonical geometric decompositions of free-by-cyclic groups.
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Quasiisometries and regular languages

I am interested in finding connections between geometric (i.e. invariant under quasi-
isometry) and computational properties of finitely generated groups. A nice result of
this form is this: a finitely generated group G is hyperbolic if and only if the (λ, ε)-
quasigeodesics form a regular language for all λ ∈ Q≥1 and ε ∈ R≥0. This follows from
work of Holt and Rees [1] and Hughes, Nairne and Spriano [2].

I also like all things related to coarse/quasisometric/bilipschitz/rough-isometric em-
beddings between groups and metric spaces. In the paper [3], I looked at quasiiso-
metric embeddings between solvable Baumslag-Solitar groups, and more generally be-
tween treebolic spaces.

Recently, inspired by the results of Buyalo, Dranishnikov and Schroeder [4], I have
been wondering about when you can quasiisometrically embed groups into products of
binary trees.

[1] “Regularity of quasigeodesics in a hyperbolic group”, Derek F. Holt and Sarah Rees,
International Journal of Algebra and Computation 13.5 (2003)

[2] “Regularity of quasigeodesics characterises hyperbolicity”, Sam Hughes, Patrick S.
Nairne and Davide Spriano, https://arxiv.org/abs/2205.08573 (2022)

[3] “Embeddings of Trees, Cantor Sets and Solvable Baumslag-Solitar Groups”, Patrick
S. Nairne, https://arxiv.org/abs/2204.03983 (2022)

[4] “Embedding of hyperbolic groups into products of binary trees”, Sergei Buyalo,
Alexander Dranishnikov and Viktor Schroeder, Inventiones Mathematicae 169
(2007)
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Fock-Goncharov coordinates for representations into SO(p, q)

I am a second-year PhD student in Heidelberg where my advisor is Anna Wienhard.
Broadly speaking, my research falls into the area of Higher Teichmüller Theory. The
(classical) Teichmüller space can be viewed as the space of all marked hyperbolic struc-
tures on a given topological surface S (of negative Euler characteristic). From a more
algebraic point of view, it is a connected component of the representation variety

Hom(π1(S),PSL(2,R))/PSL(2,R)

which consists entirely of discrete and faithful representations. You can imagine that
endowing the surface S with a hyperbolic structure means that its Riemannian uni-
versal cover is isometric to the hyperbolic plane H2 and its fundamental group acts by
isometries. Higher Teichmüller Theory is the following generalisation of this: A higher
Teichmüller space is a connected component of the representation variety

Hom(π1(S), G)/G

for some (usually higher rank, real) Lie group G which contains only discrete and
faithful representations. There are several examples of these, for instance they are
known to exist when G is a so-called split real group.

In the case where S has some punctures (or boundary) and G is split real, Fock and
Goncharov [1] introduced a framework for coordinates on the representation variety
and gave a complete construction of these for G = SL(n,R). Interestingly, these co-
ordinates carry a cluster structure, meaning that different coordinate systems can be
obtained from each other by moves called cluster mutations. These preserve positivity
of the coordinates, meaning that the set of positive representations is well-defined. In
fact, this is a higher Teichmüller space.

All known examples of higher Teichmüller spaces can be understood using the notion of
Θ-positivity introduced by Guichard and Wienhard [2], which also predicts new classes
of examples.

One of these is the case G = SO(p, q) and I am currently part of a project in which we
are constructing Fock-Gonachrov coordinates for these representations. An interesting
aspect of this is that it should provide us with a new class of non-commutative cluster
algebras, which we are currently investigating.

[1] V. Fock & A. Goncharov, Moduli Spaces of Local Systems and Higher Teichmüller
Theory, Publ. Math. Inst. Hautes Études Sci. 103, 2006.

[2] O. Guichard & A. Wienhard, Positivity and Higher Teichmüller Theory, Proceedings
of the 7th European Congress of Mathematics, 2016.

102



Martin Nitsche
Karlsruhe Institute of Technology, Germany

Human property (T) proofs based on the SDP-approach

A discrete group Γ with finite generating set S = S−1 ⊂ Γ has Kazhdan’s property (T)
if for any group representation ρ : Γ→ B(H) the operator

∑
s∈S 1− ρ(s) has vanishing

spectrum in the interval (0, ε), for some ε > 0 not depending on ρ. This is a much
studied rigidity property, but proving it for a given group is typically difficult.

In 2016, Ozawa [1] established a new method to prove property (T) via semidefinite
programming (SDP), by finding with the computer a decomposition of the group Lapla-
cian ∆ :=

∑
s∈S 1 − s ∈ R[Γ] as a sum

∑
i xi
∗xi, xi ∈ R[Γ]. Starting with the case of

n = 5 [2], this new method was successfully applied to prove property (T) for the au-
tomorphism groups of the free groups Aut(Fn), n ≥ 4. To date, this is the only known
property (T) proof for Aut(Fn).

The computer generated decomposition is huge and does not exhibit any recognizable
pattern. I am currently interested in extracting information from the computer proof,
specifically for the groups Aut(Fn) as n→∞. Ideally, I hope to obtain a decomposition
of ∆ as above that is fully motivated by human understanding of the group instead of
a brute force or numerical computer search.

One way to approach this task is to study the dual problem associated to the prop-
erty (T) SDP, which is to prove that non-trivial 1-cocycles on Γ cannot be harmonic.
With this dual perspective the algebraic decomposition problem becomes amenable to
geometric intuition [3]. The restriction to the asymptotic case n→∞ leads to simplifi-
cations that can be more easily expressed in the dual.

Aside from group Laplacians, I am also interested in applying similar methods to study
the spectral properties of other operators that can be expressed in terms of group alge-
bras.

[1] N. Ozawa. Noncommutative real algebraic geometry of Kazhdan’s property (T ).
J. Inst. Math. Jussieu, 15:85–90, 2016.

[2] M. Kaluba, P. Nowak and N. Ozawa. Aut(F5) has property (T ). Math. Ann.,
375:1169–1191, 2019.

[3] M. Nitsche.Computer proofs for Property (T), and SDP duality. ArXiv:2009.05134.
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An extension of Teichmüller/Outer space for hyperbolic groups

I like studying discrete groups acting isometrically on non-positively curved spaces.
This last year, I’ve been thinking of a version of Teichmüller/Outer space for arbitrary
hyperbolic groups.

Given a non-elementary hyperbolic group Γ, we consider the set of all the left-invariant,
hyperbolic pseudo metrics on Γ that are quasi-isometric to a word metric. These pseudo
metrics are exactly the ones induced by (looking at orbits of) proper and cobounded
isometric actions of Γ on geodesic hyperbolic metric space. The space of metric structures
is DΓ, the quotient of this set under the equivalence relation of rough similarity, which
we equip with a metric inspired by Thurston’s distance on Teichmüller space.

We can see DΓ as a (thick) version of Teichmüller/Outer space valid for an arbitrary
hyperbolic group. Indeed, if Γ is a hyperbolic surface group, then DΓ contains a copy
of Teichmüller space, and similarly, DΓ contains the Outer space when Γ is free. This
space encodes many other interesting actions and constructions, such as word metrics,
Green metrics, marked negatively curved Riemannian metrics, geometric cubulations,
geodesic currents, and Anosov representations. There are lots of interesting questions
about how all these sets interact inside DΓ, and I’d be happy to discuss them!

All the actions mentioned above have different flavors, but they fit together nicely since
DΓ is contractible, separable, and unbounded (even when Out(Γ) is finite!). Moreover,
with Stephen Cantrell, we showed that DΓ is geodesic and that there are plenty of bi-
infinite geodesics, which we used to define a boundary ∂DΓ for DΓ. There are some
natural questions about DΓ that one may ask: is it uniquely geodesic? is it convex? is
it non-positively curved somehow?

I’m also interested in studying the action of Out(Γ) on DΓ induced by pullback, which is
isometric and proper. I presume there is a Nielsen-Thurston classification for elements
of Out(Γ) in terms of the dynamics of the action on DΓ ∪ ∂DΓ, and I wonder to what
extent we can extend this classification to arbitrary subgroups of Out(Γ).

[1] S. Cantrell, E. Oregón-Reyes. Manhattan geodesics and the boundary of the space
of metric structures on hyperbolic groups. Preprint (2022), arXiv:2210.07136.

[2] E. Oregón-Reyes. The space of metric structures on hyperbolic groups. Journal of
the LMS, to appear. arXiv:2204.12545.
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Handlebody Groups and Disk Complexes

The handlebody group Hg is defined as the mapping class group of a three-dimensional
handlebody Vg of genus g ≥ 0. These groups have been shown to have similarities and
differences, both strong, with mapping class groups of surfaces and Out(Fn) (see [5]
for a survey of such results). In an attempt to transfer ideas from the successful study
of mapping class groups of surfaces via their action on curve complexes, an analogous
complex, called the disk complex, has been defined for the handlebody group. The
disk complex D(Vg) is defined as the flag complex whose vertices correspond to iso-
topy classes of meridians, i.e. essential simple closed curves on ∂Vg that bound a disk
embedded in Vg, with two vertices connected by an edge, if there are disjoint represen-
tatives in the respective isotopy classes. The disk complexes D(Vg) have been shown
to have infinite diameter and to be Gromov hyperbolic for g ≥ 2 [4, 7]. In the case of
curve complexes, an even stronger statement has been proven, namely that the curve
complexes C(Sg) are uniformly hyperbolic for g ≥ 2, in the sense that the hyperbolicity
constant is independent of the genus g of the surface [1–3,6,8]. Uniform hyperbolicity
of the disk complexes, however, remains unknown, and is the problem I am currently
most interested in.

[1] Aougab, T. (2013). Uniform hyperbolicity of the graphs of curves. Geometry &
Topology, 17(5), 2855-2875.

[2] Bowditch, B. (2014). Uniform hyperbolicity of the curve graphs. Pacific journal of
mathematics 269.2, 269-280.

[3] Clay, M., Rafi, K., & Schleimer, S. (2015). Uniform hyperbolicity of the curve graph
via surgery sequences. Algebraic & Geometric Topology, 14(6), 3325-3344.

[4] Hamenstädt, U. (2016). Hyperbolic relatively hyperbolic graphs and disk graphs.
Groups, Geometry, and Dynamics, 10(1), 365-405.

[5] Hensel, S. (2018). A primer on handlebody groups. Handbook of Group Actions, 14,
143-177.

[6] Hensel, S., Przytycki, P., & Webb, R. C. (2015). Slim unicorns and uniform hy-
perbolicity for arc graphs and curve graphs. Journal of the European Mathematical
Society, 17(4), 755–762.

[7] Masur, H., & Schleimer, S. (2013). The geometry of the disk complex. Journal of
the American Mathematical Society, 26(1), 1-62.

[8] Przytycki, P., & Sisto, A. (2015). A note on acylindrical hyperbolicity of mapping
class groups. arXiv preprint arXiv:1502.02176.
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Complex hyperbolic lattices acting on spaces

My current projects are in several areas: low-dimensional topology, hyperbolic geome-
try, dynamics on translation surfaces and geometric group theory. The common under-
lying topic is hyperbolic geometry and group actions. While I am not so early career,
only this year, after moving to Bristol, I have been learning about several tools in ge-
ometric group theory and looking for new project which can use both my expertise in
complex hyperbolic geometry and the topics I have learnt about.

I. Complex hyperbolic geometry: I study lattices in PU(n, 1), the space of holomor-
phic isometries of complex hyperbolic space. I have built fundamental domains
for some known lattices and look at representations of them in PGL(3,C). I am
now working on ways to build new lattices using either complex hybridisation or
moduli spaces of flat surfaces of low genus. Moreover, together with Mark Ha-
gen and Thomas Ng, I have started investigating what interesting questions can
arise by looking at complex hyperbolic reflection groups acting on, for example,
hierarchically hyperbolic spaces or CAT (0) cube complexes.

II. Asymptotic growth of closed geodesics on non-orientable surfaces: On an orientable
surface, the number of closed curves with bounded length grows exponentially
when the length increases. A celebrated result of Mirzakhani tells us that if we
restrict to curves of a given mapping class group orbit, the growth is polynomial.
Very little is known about the non-orientable case. With Gendulphe, Erlandsson
and Souto we explored some of the tools from the orientable case that fail, namely
the action of the mapping class group on the space of (projective) measured lami-
nations. We are now working towards an asymptotic growth theorem in the spirit
of Mirzakhani.

III. Symbolic coding of geodesic flow on translation surfaces: Starting from a polygonal
representation for the translation surface, it is possible to code linear trajectories
using labels of sides of the polygons. It is then natural to ask how to characterise
the set of sequences obtained in this way from trajectories and whether one can
recover the angle of the original trajectory. This has been studied in the case of
regular polygons and in a joint work with Davis and Ulcigrai, I characterised the
sequences in a class of translation surfaces called Bouw-Möller surfaces. This also
has an interpretation in terms of the Teichmüller space of deformations of the
surface. I am now working with Corinna Ulcigrai to generalise this to a generic
Veech surface.
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Master student registration

As I am currently doing my Master’s Degree, I am not yet conducting any research. I
have, however, attended 2 courses on GGT so far and have been taking part on a GGT
seminar this semester, and would very much enjoy seeing what higher level research
in the area looks like. My main interest in GGT is its intersection with the field of
geometric topology.

107



Leon Pernak
Universität des Saarlandes, Germany

Computational properties of Self-similar groups

In 1980 Rostislav I. Grigorchuk constructed in [1] a group which served as an interest-
ing example in several ways: The group has intermediate growth, i.e. grows stronger
than polynomially but less than exponentially, answering a question by Milnor. It also
is an infinte finitely generated torsion group, which is a counter-example to a prob-
lem famously proposed by Burnside in 1902. Finally, the group is amenable, but not
elementary amenable.

One construction of the Grigorchuk group is as a group acting on a regular rooted tree.
More precisely, let T be the infinite n-ary tree with distinguished root vertex v. The
group of graph automorphisms of T that fix v is denoted by Aut(T ). There are several
ways to describe elements and subgroups of Aut(T ), for example through input/output
automata or their actions on words over an alphabet preserving prefixes. Another way
is a recursive definition like the following:

Fix n = 2 and define the graph automorphism a : T → T to be the permutation of the
children of v and their respective subtrees. Further, define recursively

b = (a, c), c = (a, d), d = (id, b)

where x = (y, z) defines an automorphism on T which acts on the subtree below the
left child of v as y and on the subtree below the right child as z. The group generated
by a, b, c, d is called the Grigorchuk group and denoted by G.

The recursive structure of above definition naturally leads to a computational perspec-
tive. It turns out that for example, both the word and the conjugacy problem are decid-
able over G. Even further, Lysenok, Miasnikov and Ushakov showed in [3] that there
is an algorithm that solves any quadratic equation in an arbitrary number of variables
over G.

I am interested in applying the methods which turned out to be successful in study-
ing algorithmic problems of the Grigorchuk group to a wider array of groups acting on
rooted trees, among them branch groups, weakly branch groups and groups of function-
ally recursive automorphisms. Besides, I am generally curious about using geometric
methods for solving algorithmic problems over groups.

[1] Grigorčuk, R.I.: “On Burnside’s problem on periodic groups”, (Russian) Funkt-
sional. Anal. i Prilozhen. 14 (1980), no. 1, 53–54.

[2] Lysenok, I., Miasnikov, A., Ushakov, A.: “Quadratic equations in the Grigorchuk
group”, arXiv:1304.5579
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Macroscopic invariants of manifolds

A Riemannian manifold (M, g) has macroscopic dimension at most n (dimmcM ≤ n) if
there is a continuous map g : M → Kn to a n-dimensional simplicial complex Kn with a
uniform upper bound b on the size of preimages : diam(g−1(y)) < b for all y ∈ Kn. This
concept was originally introduced by Gromov [1] to phrase the conjecture: a closed
n-manifold M which admits a Riemanninan metric with positive scalar curvature satisfies
dimmc M̃ ≤ n− 2.

I am interested in homological descriptions of macroscopic dimension, examples, non-
examples and other related discussion in this area. For example, Dranishnikov [2]
proved that for a closed oriented n-manifold with fundamental group G and classifying
map f : M → BG, dimmc M̃ ≤ n − 1 is equivalent to the condition that the image
of the fundamental class f∗([M ]) lies in a particular subgroup Hsm

n (BG) of Hn(BG).
[3] In this case, the lift of f to the universal covers f̃ : M̃ → EG can be deformed
to a map with image in the n − 1 skeleton of EG by a bounded homotopy for any
choice of proper geodesic metric on BG and the image of [M̃ ] in locally finite homology
f̃∗([M̃ ]) ∈ H lf

n (EG;Z) is zero.

With this characterisation of "smallness" one can investigate how macroscopic dimen-
sion of submanifolds of codimension q ≥ 1 relate to the macroscopic dimension of
M . Engel proved in [4] that under certain conditions there is a "wrong way map"
H∗(M) → H∗−q(N) which induces a map H∗(BG) → H∗−q(Bπ1N) sending Hsm

n (BG)

to Hsm
n−q(Bπ1N). I would like to see where these maps send higher codimensional ob-

struction classes as well as generalise the notion to other spaces (for example, CAT(0)
spaces or systolic complexes).

[1] M. Gromov, Positive curvature, macroscopic dimension, spectral gaps and higher sig-
natures, Functional analysis on the eve of the 21st century, Vol II (New Brunswick,
NJ, 1993), Progress in Mathematics 132 Birkhäuser Boston, 1996, pp. 1-213

[2] A. N. Dranishnikov On macroscopic dimension of universal coverings of closed mani-
folds, Tr. Mosk. Mat. Obs. 74 (2013), no. 2, 279-296

[3] M. Brunnbauer, B. Hanke, Large and small group homology, J. Topol. 3 (2010), no.
2, 463-486

[4] A. Engel, Wrong way maps in uniformly finite homology and homology of groups, J.
Homotopy Relat. Struct. 13 (2018), no. 2, 423-441
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Quaternionic Triangle Groups and Quadratic Forms

My research is at the intersection of group theory, geometry, and arithmetic. Specifi-
cally, my thesis is related to arithmetic triangle groups - groups which on one hand are
generated by reflections in the sides of a triangle in the spherical or hyperbolic plane,
and on the other hand are isomorphic to an arithmetic group. For each arithmetic trian-
gle group, I hope to (1) connect the geometry of a triangular tiling to the arithmetic of
quaternions, and (2) apply this to classical number theory, e.g., variations on quadratic
forms.

The prototype is found in the work of J.H. Conway (Ch. 1, Sensual Quadratic Form). In
his case, the arithmetic group is PGL2(Z), which is isomorphic to the (2, 3,∞) triangle
group. The quaternion algebra is the "split" one, i.e., the matrix algebra M2(Z). The
triangular tiling of the hyperbolic plane has an arithmetic connection, with vertices,
edges, faces connected to what Conway calls primitive lax vectors, lax bases, and lax
superbases in Z2. In this way, the shape of the tiling tells us about Z-bases of Z2 and
how they overlap. Conway applies this to largely replace the challenging work of Gauss
(Disquisitiones, 1801) on binary quadratic forms with a straightforward and geometric
approach.

My current work seeks analogues for the (`,m, n) triangle group,
∆(`,m, n) = 〈e, f, g|e2 = f 2 = g2 = (ef)` = (fg)m = (ge)n = −1〉.

When such a triangle groups is arithmetic, Takeuchi connects it to a number field F ,
and a quaternion algebra B/F . I seek to go deeper, identifying a specific quaternion
order A ⊂ B over the ring of integers O ⊂ F , a specific kind of O-basis of A such that
A = O +Oα +Oβ +Oγ, and a specific kind of isomorphism PA× ∼= ∆+(`,m,m) (the
even triangle group). This stage of my research is nearing completion in the spherical
case and the hyperbolic case is next.

With this connection established, I pursue the analogue of Conway’s lax vectors, bases,
and superbases. This is more difficult, as the vertices, edges, and triangles seem re-
lated to certain roots of unity in the quaternion order A, and at the same time to
quadratic (over O) subalgebras of the quaternion order A. This should elucidate the
precise connection between the geometry of the triangle group and the arithmetic of
the quaternion algebra, and is my goal for the next year of research.

Finally, just as Conway’s "topograph" (the tiling of type (2, 3,∞)) was useful in the
theory of binary quadratic forms, I hope that the other triangular tilings shed light
on a different sort of binary quadratic form. Just as Conway’s topograph relates to
the classification of binary quadratic forms under GL2(Z)-equivalence, I expect the
triangular tilings to relate to the classification of trace-zero quaternions in the order A,
under a twisted conjugation action (α 7→ gαḡ).
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Extending Sigma-invariants to locally compact topological groups

The features of a group being finitely generated or finitely presented are well-known
to be, respectively, the n = 1 and n = 2 cases of the property Fn: a group G is said
to be of type Fn if it admits a classifying space K(G, 1) with finite n-skeleton. Towards
the end of the last century, the question of when such finiteness conditions descend to
subgroups of G led to the discovery of the homotopical Sigma-invariants Σn(G) and
their homological counterparts Σn(G;A) (for A a ZG-module). Intuitively, Σn(G) can
be thought of as the set of group homomorphims χ : G→ R for whichG is “of type Fn in
the direction of χ”, with the classical property Fn being equivalent to 0 ∈ Σn(G). In the
literature, Sigma-invariants are often called BNSR-invariants due to Bieri, Neumann,
Strebel and Renz [1–3], who pioneered the theory.

If G is equipped with a locally compact topology, one can consider the “compactness
properties” Cn introduced by Abels and Tiemeyer [4], which specialize to Fn in the dis-
crete case. Kouchloukova has generalized the properties C1,C2 to invariants Σ1

top,Σ
2
top

[5], and one of my current interests is in studying a uniform definition of Σn
top, and

extending classical results of Sigma-theory to these more general invariants.

I am also interested in geometric topology, and have worked on questions related to
knot theory [6] and spatial graphs [7].

[1] R. Bieri, W. Neumann, R. Strebel, A geometric invariant of discrete groups, Invent.
Math. 90, 451–477 (1987)

[2] R. Bieri, B. Renz, Valuations on free resolutions and higher geometric invariants of
groups. Comment. Math. Helv. 63, No. 3, 464–497 (1988)

[3] B. Renz, Geometrische Invarianten und Endlichkeitseigenschaften von Gruppen, doc-
toral dissertation available on the author’s website: https://esb-dev.github.io/
publ.html (1988)

[4] H. Abels, A. Tiemeyer, Compactness properties of locally compact groups, Transform.
Groups 2, No. 2, 119–135 (1997)

[5] D. Kochloukova, On the topological invariants Σ1
top and Σ2

top for extensions of (Lie
groups over a p-adic field)-by-abelian groups, J. Algebra 282, No. 2, 538–574 (2004)

[6] S. Friedl, C. Kausik, J. P. Quintanilha, An algorithm to calculate generalized Seifert
matrices, J. Knot Theory Ramifications 31, No. 11, Article ID 2250068 (2022)

[7] S. Friedl, L. Munser, J. P. Quintanilha, Y. Santos-Rego, Canonical decompositions
and algorithmic recognition of spatial graphs, arXiv:2105.06905 [math.GT]
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Asymptotic group theory and groups acting on rooted trees

My research focuses on asymptotic group theory and geometric group theory. I find in-
terest in investigating problems in asymptotic group theory, particularly in understand-
ing arithmetic and analytic properties of zeta functions encoding group theoretical data,
which led to my work on the emerging field of representation growth of groups acting
on infinite rooted trees. My PhD thesis contains a study of the asymptotic distribution
of finite-dimensional irreducible complex representations of groups acting which acts
faithfully on infinite rooted trees and exhibit strong self-similarity features.

My primary expertise revolves around groups acting on rooted trees. Inspired by the
Basilica group, together with Petschick, in [1], we introduce a general construction
called the Basilica operation that produces an infinite family of Basilica groups from a
given group of automorphisms of a rooted tree. We investigate which properties of
groups of automorphisms of rooted trees are preserved under the Basilica operation.
For groups that display strong self-similarity features, we develop new techniques for
computing their Hausdorff dimension, which is generally difficult to calculate. Further-
more, we investigate an analogue of the classical congruence subgroup problem, which
is studied in the context of arithmetic groups. In [2], together with Thillaisundaram,
we study maximal subgroups of certain Basilica groups and prove that they are of finite
index in the corresponding Basilica groups

[1] J. M. Petschick and K. Rajeev, On the Basilica operation, Groups Geom. Dyn., to
appear, available at arXiv:2103.05452.

[2] K. Rajeev and A. Thillaisundaram, Maximal subgroups of Basilica groups, available
at arXiv:2109.12503.
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Decision problems for word problem algorithms and other descriptions of
groups

Global decision problems for groups take the form: is there an algorithm that, given a
certain description of a group, determines if this group has such and such properties?
The study of decision problems for groups goes back to Max Dehn, who was motivated
by the study of manifolds via their fundamental group. However, as the fundamental
group of a manifold is most often computed via a finite presentation, Dehn introduced
decision problems not in full generality, but only for finite presentations.
My work deals with decision problems for other descriptions of groups, and in particular
for groups described by word problem algorithms. This is equivalent to considering
groups described by their labelled Cayley graph (i.e. with edges marked by generators),
and thus one tries to answer the problem:

• What can we say about a group given by an algorithm that produces its labelled
Cayley graph?

This problem turns out to be very interesting for several reasons. In particular, it must
be studied thanks to the topology of the space of marked groups, as in practice semi-
decidable sets correspond to open subsets of the space of marked groups. There are sev-
eral theories that should be able to help us understand the link between computability
on the space of marked groups and topology: one could hope to apply results of effec-
tive descriptive set theory ([2]), or continuity results of computable analysis, for example
from [3].

However, the space of marked groups is a Polish space that is not an "effectively Polish
space", and my work has consisted in showing that many results one could have hoped
to apply to the space of marked groups in fact do not apply there.
A question of particular importance is the continuity problem on the space of marked
groups: must the computable functions defined on the space of marked groups be
continuous?

[1] Emmanuel Rauzy, Computable analysis on the space of marked groups, 2021.

[2] Emmanuel Rauzy, Remarks and problems about algorithmic descriptions of groups,
2021.

[3] Yiannis N. Moschovakis, Descriptive set theory. Studies in Logic and the Founda-
tions of Mathematics, 1980

[4] Ceitin, G.S. Algorithmic operators in constructive metric spaces. 1962
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Big Mapping Class Groups

I am a third year PhD student at the University of Utah. I am broadly interested in
big mapping class groups. I have studied topics from [1] including curves, surfaces,
hyperbolic geometry, the Milnor-Schwarz lemma, mapping class group basics, genera-
tion of the mapping class group by Dehn twists, lantern relations and first homology of
Map(S), and the Dehn-Nielson-Baer theorem under the guidance of my advisor Priyam
Patel. During this last year I have been working on a expository paper Thurston’s The-
orem: Entropy in Dimension One[2], which is available on the archive at [5]. I have
also read The First Integral Cohomology of Pure Mapping Class Groups [3] earlier this
semester and am currently reading Large Scale Geometry of Big Mapping Class Groups
[4] with graduate student peers. This semester I have also been reading about Outer
Space under the guidance of Mladen Bestvina. By the end of the summer I hope to be
working on a research problem.

[1] Farb B Margalit D. A Primer on Mapping Class Groups. Princeton: Princeton Univer-
sity Press; 2012. doi:10.1515/9781400839049

[2] Thurston, William P. “Entropy in Dimension One.” arXiv: Dynamical Systems
(2014): n. pag.

[3] Javier Aramayona, Priyam Patel, Nicholas G Vlamis, The First Integral Co-
homology of Pure Mapping Class Groups, International Mathematics Re-
search Notices, Volume 2020, Issue 22, November 2020, Pages 8973–8996,
https://doi.org/10.1093/imrn/rnaa229

[4] Mann, Kathryn, and Kasra Rafi. “Large scale geometry of big mapping class groups."
arXiv preprint arXiv:1912.10914 (2019).

[5] Dickmann, R., Domat, G., Hill, T., Kwak, S., Ospina, C., Patel, P., & Rechkin,
R. (2022). Thurston’s Theorem: Entropy in Dimension One. arXiv preprint
arXiv:2209.15102.
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Discontinuity domains on PSL2(C) character variety

Let Γ be a hyperbolic group, G = PSL2(C) the isometry group of the 3-dimensional
hyperbolic space H3 and X(Γ, G) be the space of conjugacy classes of homomorphism
form Γ to G. There is an action of the outer automorphism group Out(Γ) on X(Γ, G)

and it is well-known that Out(Γ) preserves the open set CC(Γ, G) of convex-cocompact
representations and acts on it properly discontinuously.

A natural question that arises from this fact is (Q) : can we find an open set of X(Γ, G),
which is Out(Γ)-invariant, contains strictly the set of convex-cocompact representa-
tions, and on which the action of Out(Γ) is properly discontinuous ?

On one hand, when Γ is the fundamental group of a closed, connected and orientable
surface of genus g > 2, Goldman [1] conjectured that the action of Out(Γ) on X(Γ, G)\
CC(Γ, G) is ergodic. Hence, if this conjecture happens to be true, we would have a
negative answer to (Q).
On the other hand, if Γ is a free group, Minsky [2] introduced the set PS(Γ, G) of
primitive-stable representations which has all the wanted properties to give a positive
answer to (Q).

I am currently trying to give a positive answer to (Q) for a large class of torsion-free,
one ended hyperbolic group using the canonical JSJ decomposition and the ideas from
[3].

[1] W. Goldman, "Topological components of spaces of representations,"

[2] Y. Minsky, "On dynamics of Out(Fn) on PSL2(C) characters"

[3] R. Canary, M. Lee, M. Stover "Amalgam Anosov representations"
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Subgroup distortion in the mapping class group

Let G be a finitely generated group, with some generating set SG. If G is a subgroup of
another finitely generated group H, and we extend SG to a finite generating set SH of
H, we can view Cay(G) as a subset of Cay(H). Therefore ‖g‖G ≥ ‖g‖H for every g ∈ G,
since the ambient graph contains more edges and, potentially, some shortcuts between
vertices in G. More generally, for arbitrary finite generating sets, this inequality will
hold up to a multiplicative constant, i.e. ‖g‖G ≥ C · ‖g‖H .

The converse, however, is not always true; for certain pairs of groups G < H, the
shortcuts we take in the ambient graph can be very efficient, so the embedding of G in
H is not quasi-isometric. In that case, we say that G is distorted in H. For example, G is
at least exponentially distorted in H if there exists a sequence (gn) ⊆ G such that ‖gn‖G
grows exponentially in n while ‖gn‖H grows only linearly.

Note that distortion is a form of worst-case behavior. A group can have distorted sub-
sequences and yet the subgroup norm of other elements can be comparable to the
ambient group norm. Given some element g of an e.g. exponentially distorted G in H,
one can ask what its H-norm is, and hope to obtain a finer estimate than the bounds
known from the exponential distortion.

I am interested in studying the norm of point-pushing maps in the mapping class group
of a punctured surface S with χ(S) < 0: in the Birman exact sequence [1]

1→ π1(S, x0)
Push→ MCG(S, x0)→ MCG(S)→ 1

the image of the fundamental group is exponentially distorted in MCG(S, x0) [2]. I
would like to understand ‖Push(γ)‖MCG(S,x0) in terms of the information that can be
extracted from the curve γ.

[1] Birman, J.S. (1969), Mapping class groups and their relationship to braid groups.
Comm. Pure Appl. Math., 22: 213-238. https://doi.org/10.1002/cpa.3160220206

[2] Nathan Broaddus, Benson Farb, Andrew Putman, Irreducible Sp-representations
and subgroup distortion in the mapping class group. Comment. Math. Helv. 86
(2011), no. 3, pp. 537–556 DOI 10.4171/CMH/233
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Geodesics on hyperbolic 2-orbifolds and knots complements

My research interests are in the areas of low dimensional topology, hyperbolic geometry
and geometric group theory. Most of my research has been focused on problems relating
the geometry of 3-dimensional manifolds and closed curves on surfaces.

Due to the Hyperbolization Theorem, we know precisely when does a given compact
3-manifold admits a hyperbolic metric, that is a metric with constant curvature −1.
Moreover, by the Mostow’s Rigidity Theorem this geometric structure is unique, mean-
ing that any geometric invariant is also a topological invariant. However, finding effec-
tive and computable connections between the geometry and topology is a challenging
problem. Most of the results fit into the theme of making the geometrization program
more concrete and effective.

One of my current research project is to better understand the geometry of some link
complements in the projective unit tangent bundle of a given hyperbolic surface. These
links come from canonical lifts of closed geodesics, corresponding to periodic orbits of
the geodesic flow. This is joint work with Tommaso Cremaschi, Andrw Yarmola and
Dídac Martínez.

A second project is understanding the action of the homeomorphism group of a surface
on the fine curve graph. We wish to create a dictionary linking dynamical properties of
homeomorphisms acting on the surface to the geometry of the action on the fine curve
graph. This is joint work with Jonathan Bowden and Richard Webb.

A third project focus on giving a normal form for free homotopy classes closed curves on
triangular hyperbolic 2-orbifolds with at least one cusp, in such a way the corresponding
cutting sequence has no ambiguity (not passing through a conical point), minimizes the
word length and the self-intersection among all representants. This is joint work with
Max Neumann.

[1] A. Rodríguez . A lower bound for the volumes of complements of periodic geodesics J.
London Math. Soc. (2) 00 (2020) 1-27.

[2] T. Cremaschi, and A. Rodríguez. Hyperbolicity of link complements in Seifert fibered
spaces Algebraic & Geometric Topology 20 (2020) 3561–3588.

[3] T. Cremaschi, A. Rodríguez, and A. Yarmola. On volumes and filling collections of
multicurves, arXiv:1911.02732, 2020.

[4] A. Rodríguez . Periods of continued fractions and volumes of modular knots comple-
ments, arXiv:2008.12436, 2021.

[5] J. Bowden, S. Hensel, and R. Webb. Quasi-morphisms on surface diffeomorphism
groups arXiv:1909.07164, 2019. To appear in J. Amer. Math. Soc.
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Generalized hyperbolicity and the mapping class group

A central theme of my work building bridges between Gromov’s hyperbolic groups and
the mapping class group of a surface. While the mapping class group is not hyperbolic,
it exhibits many features reminiscent of hyperbolic geometry. Thus, several generaliza-
tions of hyperbolic geometry (e.g. hierarchical hyperbolicity, relative hyperbolicity, and
Morse geodesics) give powerful tools for understanding the mapping class group. For
example, my collaborators and I have used hierarchical hyperbolicity to elucidate the
geometry of complexes that the mapping class group acts [1,2] and Morse geodesics to
understand the convex cocompact subgroups of the mapping class group [3,4].

Some questions/topics that I am interested in:

• Does there exists a convex cocompact closed surface group? Is every finitely
generated and purely pseudo-Anosov subgroup convex cocompact? These open
problems have strong implications for the geometry of surface bundles and sur-
face group extensions as convex cocompact subgroups essentially characterize the
Gromov hyperbolicity of these extensions.

• Developing a robust notion of “geometric finiteness” in the mapping class group.
There are several naturally occurring examples of subgroups that ought to be
considered geometrically finite (e.g. Veech groups, curve stabilizers), but no sat-
isfying definition has been established.

• What is the geometry of the “framed mapping class groups” studied by Calderon,
Salter, and Hamenstädt? Are they hierarchically hyperbolic?

• Which groups are hierarchically hyperbolic? Artin groups and free-by-cyclic groups
seem to be promising places to find new examples.

• The boundary of hierarchically hyperbolic groups.

[1] Thickness and relative hyperbolicity for graphs of multicurves, with Kate Vokes. Jour-
nal of Topology

[2] From hierarchical to relative hyperbolicity, International Mathematics Research No-
tices.

[3] Regularity of Morse geodesics and growth of stable subgroups, with Matthew Cordes,
Davide Spriano, and Abdul Zalloum. Journal of Topology

[4] The local-to-global property for Morse quasi-geodesics, with Davide Spriano and
Hung C. Tran. Mathematische Zeitschrift
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Groups, spaces, and invariants

In my work I aim at getting a better understanding of groups and spaces of arith-
metic, Lie-theoretic, combinatorial, or low-dimensional nature. Here are some exam-
ples of groups that I like: S-arithmetic groups such as the lattice SLn(Z) ≤ SLn(R), the
Baumslag–Solitar group BS(1, p) ≤ GL2(Z[1

p
]), and the lamplighter group Cp o Z ≤

GL2(Fp[t, t−1]); Thompson groups such as the braided variant of R. Thompson’s V

or the golden-ratio group Fτ ; Coxeter groups, such as the hyperbolic triangle group
∆(2, 3, 7) ≤ Isom(H2); locally compact groups such GLn(R), SLn(Qp), or profinite and
pro-p groups. On the geometric front, spaces that I enjoy include, but are not limited
to: symmetric spaces, buildings (spherical and affine), and simplicial complexes re-
sembling them — such as coset complexes; low-dimensional structures, such as Haken
manifolds and spatial graphs; and Cantor sets.

I thus like the interplay between algebra, geometry, and topology, using tools from one
area to solve a problem originating from — or motivated by — the other. Consequently,
interesting invariants — such as (co)homology rings, BNSR Σ-invariants, or homo-
topical finiteness properties — and questions revolving around (twisted) conjugacy or
decision problems play a role in my research.

Let me briefly mention some recent projects. In the article [1], Petra Schwer and I
introduced the Coxeter galaxy, a space encoding isomorphism types of Coxeter systems.
The goal of this space is to give a new perspective on the (still open) isomorphism
problem for Coxeter groups, making it more tractable and allowing for some natural
refinements and new questions. In the realm of S-arithmetic groups, Benjamin Brück,
Robin Sroka and I showed that the top-dimensional rational cohomology of many clas-
sical arithmetic groups vanishes [2], extending the well-known case of SLn(Z). And
in an ongoing recent project jointly with Brita Nucinkis and Lewis Molyneux, we are
investigating the Σ-invariants of the golden-ratio Thompson group Fτ . Along the way we
address a question of Strebel about computing, under mild assumptions, Σ-invariants
of an overgroup from the Σ-invariants of well-behaved subgroups of finite index.

[1] Santos Rego, Y. and Schwer, P., The Galaxy of Coxeter groups, Preprint (2022),
arXiv:2211.17038, pp. 30.

[2] Brück, B., Santos Rego, Y. and Sroka, R. J., On the top-dimensional cohomology of
arithmetic Chevalley groups, Preprint (2022), arXiv:2210.12784, pp. 8.
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Nonpositively curved manifolds

I am interested in understanding nonpositively curved manifolds and groups using vi-
sual boundaries and large scale geometry. The classical notion of curvature is the sec-
tional curvature of Riemannian manifolds. A generalized notion of nonpositive curva-
ture for the bigger class of geodesic spaces is given by CAT(0) spaces. A natural question
to ask is: how are these two notions of non-positive curvature related?

In low dimensions, the two classes of closed manifolds are the same: (1) manifolds
supporting a Riemannian metric of non-positive sectional curvature, and (2) manifolds
supporting a locally CAT(0) metric. For dimensions ≥ 4, there are examples of closed
locally CAT(0) manifolds that do not support a smooth Riemannian structure with non-
positive sectional curvature. For dim ≥ 5, Davis-Januskiewicz [1] showed that for each
n ≥ 5, there is a piecewise flat, non-positively curved closed manifold Mn whose uni-
versal cover M̃n is not simply connected at infinity. This, in particular, means that M̃n

is not homeomorphic to Rn, and hence M cannot have a smooth non-positively curved
Riemannian metric.

The techniques for dim = 4 involve constructing a “knottedness” or “linking” in the
boundary at infinity of M̃ which gives the obstruction to non-positively curved Rieman-
nian smoothing [2,3]. I am currently extending the knotting obstruction to dimensions
≥ 5. For higher dimensions we consider knotting and linking spheres of co-dimension
2. Unfortunately the same methods do no work and we need to develop new tools
to detect the obstruction to Riemannian smoothing within the manifold instead of the
boundary at infinity. These consist of large scale coarse homotopy and homology in-
variants of pairs of spaces.

[1] M. Davis and T. Januszkiewicz, Hyperbolization of polyhedra, J. Differential Geom-
etry 34 (1991), 347-388.

[2] M. Davis, T. Januszkiewicz and J.-F. Lafont, 4-dimensional locally CAT(0)-manifolds
with no Riemannian smoothings, Duke Math. Journal 161 (2012), 1-28.

[3] B. Sathaye, Link obstruction to Riemannian smoothings of locally CAT(0) 4-manifolds,
arXiv:1707.03433
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Big Mapping Class Groups: Geometry and Randomness

I study big mapping class groups, which are the mapping class groups of infinite-type
surfaces. In particular, I’ve discovered a family of surfaces whose mapping class groups’
geometries are captured up to quasi-isometry by their actions on a particular curve
graph [1]. The graph is easy to describe, but beyond “it’s definitely not hyperbolic”
and “there is a natural cubical structure” I haven’t been able to discover many of its
features. Come talk to me about this if you like thinking about the large-scale geometry
of infinite-valence simplicial graphs.

One of my more recent projects has been trying to answer the following question: what
does (the mapping class group of) a “typical” infinite-type surface look like? That is,
if we draw a surface randomly out of a hat, what properties does it(’s mapping class
group) have? This question is natural because a lot of results in big mapping class
groups depend on some assumption about the underlying surface (e.g. infinite genus, a
tame end space, the existence of a non-displaceable subsurface) and we don’t currently
have a good way to describe how exceptional or generic these results actually are.

[1] Anschel Schaffer-Cohen. Graphs of curves and arcs quasi-isometric to big mapping
class groups. To appear in Groups, Geometry, and Dynamics. https://arxiv.org/
abs/2006.14760
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Harmonic analysis of locally compact groups.

I am studying the tight interactions existing between the algebraic and geometrical
properties of locally compact groups and the regularity of their unitary representations.
For instance an old conjecture of C.Nebbia states that a group of automorphisms of a
semi-regular tree is 2-transitive on the boundary of the tree if and only if its represen-
tations are all CCR (the associated ∗-representation of the maximal C∗-algebra range
inside the compact operators).

Most of my research so far concerns totally disconnected locally compact (t.d.l.c.)
groups like groups of automorphsisms of trees or buildings. These t.d.l.c. groups
are characterized amoung locally compact groups by the property of admitting a ba-
sis of neighbourhood of the identity consisting of compact open subgroups (b.o.n.c.o.).
The existence of such a basis has various direct consequences on the representation
theory of these groups. For isntance, every representaiton of a t.d.l.c. group admits
non-zero invariant vectors for at least one of its compact open subgroups. It natural
to ask whether additional properties of the b.o.n.c.o.’s of the group provides additional
information on the representation theory. Inspired by the work of G.I. Ol’shanskii who
completely classified the equivalence classes of irreducible unitary representations of
the full group of automorphisms of a thick regular tree, my work provide a positive
answer to this question. Amoung other things I have enlightened a particular kind of
factorization properties under-which I can describe the irreducible representations of
the group admitting invariant vectors for a small enough compact open subgroup [1].
This work has various applications on automorphisms groups of trees and buildings.
One of these is the complete classification of the irreducibles of the automorphsisms
groups of trees whose local action at every vertex contains the alternating group, lead-
ing to the conclusion that these groups are all CCR and hence providing a a significant
contribution to Nebbia’s CCR conjecture on trees [2].

[1] L.Semal, Unitary representations of totally disconnected locally compact groups
satisfying Ol’shanskii’s factorization, arXiv preprint 2021

[2] L.Semal, Radu groups acting on trees are CCR arXiv preprint 2022.
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Normal generators of Out(Fn)

Let Sg denote a connected, closed, orientable surface of genus g. The mapping class
group Mod(Sg) is the group of homotopy classes of orientation-preserving homeomor-
phisms of Sg. If an element of Mod(Sg) that has normal closure equal to the whole
group, we say that the element normally generates Mod((Sg) and we call this element,
the normal generator. In 2018, Justin Lanier and Dan Margalit [1] have proved the
following theorem.

Theorem. For g ≥ 3, every nontrivial periodic mapping class that is not a hyperelliptc
involution normally generates Mod(Sg).

The outer automorphism group Out(Fn) of the free group Fn is in many ways analogous
to Mod(Sg). See [2]. Marc Culler has showed that any finite subgroup of Out(Fn) can
be realized as a group of automotphisms of a graph with fundamental group Fn[3].
My current work is on finding the normal closure of a periodic element in Out(Fn)

by studying the automorphism of a graph. I have proved that for the graph which
is a wedge of n circles, we do have a very similar result as Lanier and Margalit have
given. Notice that the graph automorphism group of a wedge of n circles is the signed
permutation group S±n ∼= Sn o Zn2 .

Theorem. The normal closure of any nontrivial permutation element in S±n is the whole
group.

I am working on the finite order automorphism of a general graph with fundamental
group Fn, which the graph of a wedge of n circles is only a special case.

[1] Justin Lanier, Dan Margalit, Normal generators for mapping class groups are abun-
dant. Comment. Math. Helv. 97 (2022), no. 1, pp. 1–59

[2] Mladen Bestvina, and Michael Handel, Train tracks and automorphisms of free
groups. Annals of Mathematics (2), vol. 135 (1992), no. 1, pp. 1–51.

[3] M. Culler, Finite groups of outer automorphisms of a free group, Contribu- tions
to group theory, 197–207, Contemp. Math., 33, Amer. Math. Soc., Providence, R.I.,
1984.
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Gerneralization of Thurston’s Lipschitz metric

Consider a connected oriented surface S of negative Euler characteristic. Thurston
defined in [1] an asymmetric metric on Teichmüller space:

L(x, y) := log sup
α∈S

`y(α)

`x(α)
, for x, y ∈ T (S)

where S is the set of isotopy classes of simple closed curves on S.

Walsh managed to prove in [2] that the horofunction boundary of Teichmüller space
with this Lipschitz metric is the same as the Thurston boudary, namely the space of
projective measured laminations.

Now there are several different kinds of generalization of Lipschitz metric, for example,
Anosov representation [3] and the space of projective filling geodesic currents [4].
There might be other possible generalization, for example, to the space of flat cone
metrics.

I am interested in computing the horoboundary for the generalized Lipschitz metric
and how it reflects the geometry of the corresponding space.

[1] Thurston, W. Minimal stretch maps between hyperbolic surfaces. ArXiv Preprint
Math/9801039. (1998)

[2] Walsh, C. The horoboundary and isometry group of Thurston’s Lipschitz metric.
ArXiv Preprint ArXiv:1006.2158. (2010)

[3] Carvajales, L., Dai, X., Pozzetti, B. & Wienhard, A. Thurston’s asymmetric metrics
for Anosov representations. ArXiv Preprint ArXiv:2210.05292. (2022)

[4] Sapir, J. An extension of the Thurston metric to projective filling currents. ArXiv
Preprint ArXiv:2210.08130. (2022)
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Mapping class group related complexes, pseudo-Anosovs, and more!

Broadly, I study the mapping class group, which is the group of homeomorphisms of
a surface, up to homeomorphism. The mapping class group is important for under-
standing 3-manifolds, many of which can be constructed by crossing a surface with an
interval, and then gluing the "ends" via a homeomorphism. You can determine geomet-
ric information about 3-manifolds constructed this way from purely topological data
about the gluing homeomorphism. Mapping class groups and their actions on other
spaces also provide a rich field of examples of results in geometric group theory.

I’ve done work involving the arc complex and flip graph, similar to the better known
curve complex. My work involved finding a sort of "finite basis" for automorphisms of
these complexes, and these automorphisms are in correspondence with mapping class
group elements.

Recently, I’ve been working on a project involving stretch factors of pseudo-Anosov
homeomorphisms, which are the generic elements of the mapping class group. These
stretch factors have certain algebraic properties that can be used to understand the
structure of the Veech group associated to that homeomorphism. The Veech group
helps us understand the geometric structure induced on the surface by the pseudo-
Anosov homeomorphism.

I’ve also taken an interest in computational topology, and computational mathematics
more generally. I’m particularly interested in machine learning applications and topo-
logical data analysis.

If you’re interested in any of the topics described above, I’d love to talk!
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Groups acting on Cantor sets

My research focuses primarily on groups acting on infinite trees and on boundaries of
infinite trees, which can be identified with Cantor spaces. This is a large class of groups;
for instance it contains all residually finite groups but also many of the known examples
of infinite simple groups.

Groups acting on rooted trees often exhibit unusual properties while still being tractable.
A well-studied example of such a group is the group introduced by Grigorchuk. The
Grigorchuk group was the first group known to have intermediate growth (answering
a question of Milnor) and to be amenable but not elementary amenable (answering a
question of Day). In addition, it is a finitely generated, infinite, torsion group, and has
many other interesting properties. In the wake of Grigorchuk’s discovery, entire fami-
lies of suprising and accessible groups that act on rooted trees have been discovered.
Another set of groups which appears prominently in my research is the Thompson’s
groups, in particular the ones known as T and V and their generalizations due to Hig-
man. These are groups of homeomorphisms of the Cantor set and provided the first
examples of finitely presented, infinite simple groups.

This area of research overlaps with many fields within mathematics including group
theory, geometry, topology, ring theory, dynamics, graph theory, descriptive set theory,
logic and universal algebra. Many of my results have come by combining different
areas of mathematics. For instance with Stefan Witzel and Matthew C. B. Zaremsky,
we combined self-similar groups, i.e. groups like the Grigorchuk group, with Higman-
Thompson groups to construct the first simple groups with the prescribed topological
finiteness properties of being type Fn−1 but not Fn (generalizations of being finitely gen-
erated and finitely presented) for all n > 2, answering a question due to Rémy which
gave a new infinite family of quasi-isometry classes of finitely presented simple groups.
Likewise in my work with Xiaolei Wu, we considered the labeled braided Higman-
Thompson groups. By proving that particular examples of these could be identified
with the so-called asymptotic mapping class groups, we were able to apply tools from
the well studied area of mapping class groups to prove the ribbon Higman-Thompson
groups statisfy homological stability. This provided the first such result for dense sub-
groups of a big mapping class group. A third example of this was my joint work with
Benjamin Steinberg where we produced most lamplighter groups of the form A oZ for a
finite abelian group A as bireversible automata groups. In order to understand exactly
which groups we had produced, we studied local rings and classified exactly which
abelian groups can be the additive group of a finite commutative ring having two units
whose difference is a unit.
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Artin groups and spaces of non-positive curvature

I am interested in actions of Artin groups on spaces of non-positive curvature. For
simplicial complexes Januszkiewicz and Swiatkowski introduced the notion of systolic
complexes as a combinatorial form of non-positive curvature.

In [1], I investigate systolicity for Garside groups. Garside groups were introduced by
Dehornoy and Paris as a generalization of spherical Artin groups. The Garside structure
on a group naturally gives a presentation leading to a simplicial Cayley graph, we call
this the Garside presentation of a Garside group. In [1] I give a classification of the
Garside groups for which the flag complex of the Cayley graph, with respect to the
Garside presentation is systolic. For n,m ∈ N, the group

Gn,m = 〈x1, . . . , xn | prod(x1, . . . , xn;m) = prod(x2, . . . , xn, x1;m) = . . .

= prod(xn, x1, . . . , xn−1;m)〉,

where prod(x1, . . . , xp; 0) = e and prod(x1, . . . , xp;m) = x1x2 . . . xpx1x2 . . .︸ ︷︷ ︸
m

, is systolic.

More recently I have been studying the following class of groups: consider a simplicial
graph Γ with maps f : V (Γ) → N≥2 ∪ {∞} and m : E(Γ) → N≥2 such that for every
edge e = {v, w} with f(v) ≥ 3 we have m(e) = 2. The Dyer groups associated to such a
graph is given by the following presentation:

D = 〈xv, v ∈ V | xf(v)
v = e if f(v) 6=∞,

[xv, xu]m(e) = [xu, xv]m(e) for all e = {u, v} ∈ E〉,

where [a, b]k = aba . . .︸ ︷︷ ︸
k

for any a, b ∈ D, k ∈ N and we denote the identity with e. Coxeter

groups and right angled Artin groups are examples of Dyer groups. I recently showed
that Dyer groups are finite index subgroups of Coxeter groups. Moreover I constructed
a generalization of the Davis-Moussong complex better suited to Dyer groups.

[1] Mireille Soergel Systolic complexes and group presentations, Accepted in Groups,
Geometry and Dynamics, 2022
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The Atiyah Conjecture for pro-p groups

If G is a countable group and `2(G) is the complex Hilbert space with orthonormal
basis G, one can view every n × m matrix A over the group ring C[G] as a bounded
linear operator from `2(G)n to `2(G)m by left multiplication. It’s von Neumann rank
rkG(A) is defined as the von Neumann trace of the orthogonal projection onto `2(G)nA,
the closure of it’s image. Let lcm(G) denote the supremum of the orders of the finite
subgroups of G.

The strong Atiyah conjecture predicts that, if lcm(G) is finite, then rk(A) is an inte-
gral multiple of 1

lcm(G)
for every such matrix A. This is a very strong conjecture, as for

instance it implies Kaplansky’s zero divisor conjecture for C[G] and characterizes the
division closure of C[G] inside the von Neumann algebra of affiliated operators of `2(G)

as it’s universal division ring of fractions: the “largest possible” division ring containing
C[G]. It is known to hold for many classes of groups, such as finite groups, elementary
amenable groups, free groups, free-by-cyclic groups and fundamental groups of hyper-
bolic 3-manifolds with empty or toroidal boundary. Moreover, if Gi E G is a chain of
finite index normal subgroups with trivial intersection, the Lück approximation theo-
rem tells us that rkG/Gi

(Ai) converges to rkG(A), where Ai is the reduction of the matrix
A modulo Gi. This motivates the following variant of the Atiyah conjecture:

If G is a finite group and A is an n × m matrix over the group algebra Fp[G], we can
define the normalized rank

rkG(A) =
rkFp A

|G|
.

If G is a countably based pro-p group and Gi Eo G is a chain of open normal subgroups
of G with trivial intersection, we define the rank of a matrix A over the completed
group algebra Fp[[G]] = lim←−Fp[G/Gi] as the limit

rkG(A) = lim
i→∞

rkG/Gi
(Ai) ,

in analogy with the Lück approximation theorem in the discrete case. If lcm(G) is finite,
then the strong Atiyah conjecture for pro-p groups says that rkG(A) should be an integral
multiple of 1

lcm(G)
.

As in the discrete case, this is a strong conjecture with analogous implications for
the completed group algebra Fp[[G]]. However, it’s validity is established for far fewer
groups: so far it is only known for torsion-free p-adic analytic pro-p groups and sub-
direct products of those (such as free pro-p groups and pro-p completions of surface
groups). I’m currently studying this conjecture and related themes for certain classes of
pro-p groups that are the pro-p analogues of classes for which we know the conjecture
to hold in the discrete case, such as free-by-cyclic pro-p groups.
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Hyperbolic models for CAT(0) spaces

My main research focus are various notion of non-positive curvature in group theory
and their interplay. For instance, I care about groups that are hyperbolic, (acylindrically,
relatively, hierarchically) hyperbolic, CAT(0), cubical. . .

A recent project I am excited about [1] is joint work with H. Petyt and A. Zalloum on
hyperbolic models for CAT(0) spaces. Two of the most well-studied topics in geometric
group theory are CAT(0) cube complexes and mapping class groups. This is in part
because they both admit powerful combinatorial-like structures that encode interest-
ing aspects of their geometry: hyperplanes for the former and curve graphs for the
latter, and recent years, analogies between the two theories have become more and
more apparent. However, the considerably larger class of CAT(0) spaces is left out of
this analogy, as the lack of a combinatorial-like structure presents a difficulty in im-
porting techniques from those areas. With Petyt and Zalloum, we develop versions of
hyperplanes and curve graphs for them, and prove results about rank-one elements,
asymptotic cones, visual boundary and WPD actions.

[1] Harry Petyt, Davide Spriano and Abdul Zalloum, Hyperbolic models for CAT(0)
spaces, arXiv2207.14127.
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Geometry of spaces with upper curvature bounds

Setup

I am interested in the geometry of CAT(κ) spaces. These are synthetic generalizations
of Riemannian manifolds with sectional curvature at most κ and injectivity radius at
least π√

κ
where the curvature bound is expressed by triangle comparison.

Rank Rigidity

It has been conjectured by Werner Ballmann that CAT(0) spaces with enough symme-
tries are subject to the following dichotomy. Let X be a locally compact geodesically
complete CAT(0) space with a geometric group action Γ y X. Then either X contains a
Γ-periodic axis which does not bound a flat half-plane, or X is a Riemannian symmetric
space of higher rank, a Euclidean building of higher rank, or X splits non-trivially as a
metric product. I would like to confirm this statement.

Optimal isoperimetric inequalities

A metric space X satisfies the Euclidean isoperimetric inequality for curves, if every
closed curve c of finite length bounds a Sobolev disc u ∈ W 1,2(D,X) with

Area(u) ≤ 1

4π
· Length(c)2.

In a landmark paper, Lytchak-Wenger showed that a locally compact geodesic space
is CAT(0) if and only if it satisfies the Euclidean isoperimetric inequality for curves.
Together with Stefan Wenger we are currently trying to remove the local compactness
assumption.

Embeddedness of minimal surfaces

With Paul Creutz we are proving the following theorem. Let Z be a CAT(κ) space and
Γ ⊂ Z a Jordan curve. If the total curvature τ satisfies

τ(Γ) < 4π − κ · Fillarea(Γ),

then any least area disc filling Γ is embedded.
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Random walks on Cayley and Schreier graphs

Throughout my PhD, I have explored several somewhat varying questions related to
amenability. My first topic concerns a specific group. In his article [1], Monod de-
fines a class of groups H(A) of piecewise projective homeomorphisms on the real line,
depending on a subring A of R. They never have a free subgroup, and if A is dense
Monod proves them to be non-amenable by comparing the orbit equivalence relation
with that of PSL2(A). I studied H(Z), the amenability of which is an open question.
It is known that a group is non-amenable if and only if every non-degenerate measure
on it has non-trivial Poisson boundary. I have obtained in [2] the non-triviality of the
Poisson boundary for certain classes of measures. Specifically, I have shown that for a
finitely generated subgroup of H(Z), either it is solvable or any strictly non-degenerate
measure on it with finite first moment has non-trivial Poisson boundary. Further de-
veloping from that, I have also shown in [3] similar results for induced random walks
on Schreier graphs. In particular, those results extend (slightly) what was previously
known about random walks on Thompson’s group F (which is a subgroup of H(Z)).

Afterwards, I worked on a different subject - studying the exact values of Følner func-
tions for a given group and generating set. In [4] I have obtained those values as well
as the sets where they are obtained for the wreath product Z o Z/nZ and a generating
set containing the translation on the index, as well as a unit function for every element
of Z/nZ.

Currently, I am working on whether similar results to those in [2] can be obtained on
groups of affine integer exchange transformations. My result can be extended without
much difficulty to the claim that finitely generated subgroup of H(Z) is either solvable
or does not have property FW . Results have been obtained by Juschenko, Matte Bon,
Monod et de la Salle on AIET groups that satisfy a stronger property than property FW .
I am interested in describing IET groups with property FW .

[1] N. Monod, Groups of piecewise projective homeomorphisms. Proc. Natl Acad. Sci.
USA 110(12):4524–4527, mar 2013. doi:10.1073/pnas.1218426110

[2] B. Stankov, Non-triviality of the Poisson boundary of random walks on the group
H(Z) of Monod. Ergodic Theory and Dynamical Systems, 41(4):1160-1189, apr
2021. doi:10.1017/etds.2019.76

[3] B. Stankov, Convergence towards the end space for random walks on Schreier
graphs. Journal of Theoretical Probability, may 2021. doi:10.1007/s10959-021-
01104-6.

[4] B. Stankov. Exact descriptions of Følner functions and sets on wreath products and
Baumslag-Solitar groups. preprint, nov 2021. arXiv:2111.09158.
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Geometry of Outer Space

Outer Space CVn was introduced by Marc Culler and Karen Vogtmann in [1] to study
the outer automorphism group Out(Fn). It can be seen as the analogue of Teichmüller
space for graphs, namely points in Outer Space CVn correspond to equivalence classes
of finite metric graphs without leaves together with a marking, that is a homotopy
equivalence with the rose Rn with n petals. Similar to Thurston’s metric in Teichmüller
space, Stefano Francaviglia and Armando Martino introduced in [2] an asymmetric
metric called the Lipschitz metric for Outer Space by the supremal stretching of curves.
As this supremal stretching is realised by one of finitely many candidates, it can be
explicitly computed e.g. with the algorithm implemented in [4].

Typically geodesics in Outer Space are far from being unique. This leads to the notion
of envelopes, that is the set of all points lying on a geodesic between two given points.
Using envelopes we proved in [5], that the isometry group of reduced Outer Space is
the isometry group of Outer Space, which is by [3] Out(Fn) for n > 2 and PGL2(Z)

for n = 2. Furthermore envelopes yield a construction of piecewise unique geodesics
between any two given points and a local geodesic which is dense in CVn. One future
goal is to use envelopes to give a simplified proof that Outer Space is contractible.

In [5] we further studied isometric embeddings between Outer Spaces. We introduced
two families of isometric embeddings coming from finite index subgroups and free fac-
tors of free groups. While the isometric embeddings coming from finite index subgroups
of Fn for n > 2 exhibit some sort of rigidity, the embeddings coming from finite index
subgroups of F2 and free factors yield continuous families of isometric embeddings. It
is still unknown, if there exist isometric embeddings which do not come from these
algebraic constructions.

[1] Culler, M. & Vogtmann, K. Moduli of graphs and automorphisms of free groups. In-
ventiones Mathematicae. 84, 91-119 (1986), https://doi.org/10.1007/BF01388734

[2] Francaviglia, S. & Martino, A. Metric properties of Outer Space. Publicacions
Matemàtiques. 55, 433-473 (2011), https://doi.org/10.5565/PUBLMAT_55211_09

[3] Francaviglia, S. & Martino, A. The isometry group of Outer
Space. Advances In Mathematics. 231, 1940-1973 (2012),
https://dx.doi.org/10.1016/j.aim.2012.07.011

[4] Steinhart, C. CV-Lipschitz-Calculator. (2018), https://gitlab.com/ctst/CV-Lipschitz-
Calculator, https://gitlab.com/ctst/CV-Lipschitz-Calculator

[5] Steinhart, C. Isometric maps between Outer Spaces. (2021),
https://dx.doi.org/10.22028/D291-35505
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A Marked Moduli Space for Infinite Type Surfaces

I am a fifth-year PhD student. Currently, I am interested in understanding mapping
class groups of infinite type surfaces via action on a space of marked hyperbolic struc-
tures. In a forthcoming paper, we define the space of marked, complete, Nielsen-convex
hyperbolic structures on a surface S of negative (but not necessarily finite) Euler char-
acteristic. The emphasis is on infinite type surfaces. As a set, this is defined in exact
analogy with the Teichmüller space of compact or finite type surfaces:

Definition (Set of marked, complete, Nielsen-convex hyperbolic structures).

T (S) =

{
(X, f)

∣∣∣∣∣X is a complete Nielsen-convex hyperbolic surface

f : S → X is a homeomorphism

}/
∼ (1)

where (X1, f1) ∼ (X2, f2) if there is an isometry ϕ : X1 → X2 isotopic to f2 ◦ f−1
1 .

Here we have adopted the term Nielsen-convex from work of Alessandrini, Liu and
others ([1, Definition 4.3]). A complete hyperbolic surface X is Nielsen-convex if the
convex core of X equals X.

We topologise T (S) in a natural way by considering the injection into
Hom(π1(S),PSL(2,R))/PSL(2,R). The main theorem of our paper is that the mapping
class group of S, which is a non-discrete topological group if S is an infinite type surface,
acts continuously on this marked moduli space.

Theorem. The change of marking action A : MCG(S)× T (S)→ T (S) given by

A([ψ], [X, f ]) = [X, f ◦ ψ−1] (2)

is a continuous map.

[1] Daniele Alessandrini, Lixin Liu, Athanase Papadopoulos, Weixu Su, and Zongliang
Sun. On Fenchel-Nielsen coordinates on Teichmüller spaces of surfaces of infinite
type. Annales Academiae Scientiarum Fennicae Mathematica, 36:621–659, Aug 2011.

[2] John Hamal Hubbard. Teichmüller theory and applications to geometry, topology, and
dynamics. Vol. 1. Matrix Editions, Ithaca, NY, 2006. Teichmüller theory, With contri-
butions by Adrien Douady, William Dunbar, Roland Roeder, Sylvain Bonnot, David
Brown, Allen Hatcher, Chris Hruska and Sudeb Mitra,With forewords by William
Thurston and Clifford Earle.

[3] William P. Thurston. Earthquakes in two-dimensional hyperbolic geometry, volume
112 of London Math. Soc. Lecture Note Ser., pages 91–112. Cambridge Univ. Press,
Cambridge, 1986.
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Rearrangement Groups of Fractals and Invariable Generation

I am studying the family of rearrangement groups, defined by J. Belk and B. Forrest in
[2]. These groups are a natural generalization of Thompson groups F , T and V , which
are groups of certain piecewise linear hoemomorphisms of the unit interval, the unit
circle and the Cantor set, respectively, and can also be built as automata groups ([3] is
widely regarded as a standard introduction to Thompson groups). Each rearrangement
group essentially acts on a limit space X, built as the limit of a sequence of graphs,
by homeomorphisms that “rearrange” the self-similar pieces of X. Rearrangements can
be represented as isomorphisms of graphs or as forest pair diagrams, which naturally
generalize the concept of tree pair diagram commonly used for Thompson groups.

In [5] I studied the rearrangement group TA of the Airplane Julia set, proving that,
just like the rearrangement group TB of the Basilica Julia set (originally studied in [1]
by Belk and Forrest), it is finitely generated and its commutator subgroup [TA, TA] is
simple and finitely generated. I also showed that, differently from TB, the index of the
commutator subgroup of TA is infinite.

Davide Perego and I recently proved that every sufficiently transitive rearrangement
group is not Invariably Generated ([4]), where by Invariable Generation of a group G

we mean that there exists an S ⊆ G such that, for every choice gs ∈ G for s ∈ S, the
group G is generated by {sgs | s ∈ S}.

I am currently working on decision problems in this family of groups.

[1] J. Belk and B. Forrest. “A Thompson group for the basilica”. In: Groups Geom. Dyn.
9.4 (2015), pp. 975–1000. DOI: 10.4171/GGD/333.

[2] J. Belk and B. Forrest. “Rearrangement groups of fractals”. In: Trans. Amer. Math.
Soc. 372.7 (2019), pp. 4509–4552. DOI: 10.1090/tran/7386.

[3] J. W. Cannon, W. J. Floyd, and W. R. Parry. “Introductory notes on Richard Thomp-
son’s groups”. In: Enseign. Math. (2) 42.3-4 (1996), pp. 215–256.

[4] D. Perego and M. Tarocchi. A Class of Rearrangement Groups that are
not Invariably Generated. 2022. DOI: 10.48550/ ARXIV.2207.04235. URL:
https://arxiv.org/abs/2207.04235.

[5] M. Tarocchi. Generation and Simplicity in the Airplane Rearrangement Group. 2021.
DOI: 10.48550/ARXIV.2107.08744. URL: https://arxiv.org/abs/2107.08744.
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C̃2-buildings admitting panel-regular lattices

In April 2021, I started my PhD project under supervision of Stefan Witzel. We investi-
gate a class of Euclidean Buildings admitting a lattice, which is roughly speaking a pair
consisting of a certain contractible simplicial complex and a group that acts properly
and co-compactly on it. By construction, these buildings are identical locally but the
global structure can differ slightly. Currently, we try to understand this difference.
To be precise, the buildings are of type C̃2 and the lattices act regularly on two types
of panels (respectively one type of panel). They were introduced, besides a class of Ã2-
buildings, by Essert in [1]. The latter class has been studied by Witzel [2], who could
determine several properties of the buildings, such as their automorphisms groups and
isomorphism class, from purely combinatorial data. We aim for a similar understanding
of the C̃2-buildings.

[1] Essert, Jan: A geometric construction of panel-regular lattices for buildings of types
Ã2 and C̃2. Algebr.

[2] Witzel, Stefan: On panel-regular Ã2 lattices, Geometriae Dedicata, 191 (2017), 85-
135, arXiv:1608.07141.
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Geodesic currents for hyperbolic surfaces

I am a second year Ph.D student in Rennes. My advisor is Juan Souto. My research is
about hyperbolic surfaces, curves on surfaces and geodesic currents.

If S is a surface of negative Euler characteristic then a geodesic current of S is a π1(S)-
invariant Radon measure on the set, for some hyperbolic metric, of bi-infinite unori-
ented geodesics of the universal cover. The set C(S) of geodesic currents has been
introduced by Bonahon in [2] and since have find use in the study of 3-manifolds, in
Teichmüller theory, in dynamic, and in geometric group theory.

In [3], Bonahon recovered Thurston’s compactification of Teichmüller space using cur-
rents however, for some technical reasons (continuity of the intersection form, non-
existence of the Liouville current..), his argument only applies for closed surfaces. Dur-
ing the first year of my PhD I extended his proof to the case of non-compact finite area
surfaces. In a nutshell, it is to replace the Liouville current by sequences of random
geodesics. A preprint for that work is available on Arxiv [1] and has been submitted.

Currently, I am working on two other projects linked to Mirzakhani’s curve counting,
that is counting the curves of S in some mapping class group orbit. On the one side, I
want to obtain a generalized version of [6]: while Bell obtains a counting theorem for
arcs, I want to prove, along the lines of [5], a measure convergence result instead. This
would for example allow to count arcs with respect to more general notions of length.
Second, I am working on counting curves in the orbit under certain subgroups of the
mapping class group rather than by the whole mapping class group. More precisely, I
am interested in the action of centralizers of elements and subgroups of the mapping
class group.

[1] N. Bell, “Counting arcs on hyperbolic surfaces”, to be published in GGD,
arXiv:2011.13969

[2] F. Bonahon, “Bouts des Variétés Hyperboliques de Dimension 3”, Annals of Mathe-
matics 124 (1986), no. 1, p. 71-158

[3] F. Bonahon, “The geometry of Teichmüller space via geodesic currents”, Inventiones
mathematicae (1988), p. 139-162

[4] V. Erlandsson and J.Souto, “Mirzakhani’s curve counting and geodesic currents”,
Birkhäuser, Prog. in Math. vol.345 (2022)

[5] M. Trin, “Compactification of Teichmüller space via geodesic currents: the case of
non-compact finite area surfaces”, arXiv:2208.10763
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Conjugation-invariant norms on groups

Many questions in group theory can be recast as questions concerning conjugation-
invariant norms on said groups. To give an elementary example, consider a perfect
group G. Then each element g ∈ G can be written as a product of commutators. As-
suming ‖g‖c ∈ N0 is the minimal number of commutators needed, one easily sees that
the function ‖ · ‖c : G → [0,+∞) is invariant under conjugation by group elements.
This approach was used to study for example the commutator width of diffeomorphism
groups [1]. Other algebraic question concerning the groups can also be recast in terms
of conjugation-invariant norms for example the width of the group in terms of its con-
jugacy classes. More geometrically, an important subgroup of the "isometry group"
of a symplectic manifold (M,ω), the hamiltonian diffeomorphism group Ham(M,ω),
also admits a conjugation-invariant norm, the so-called Hofer norm ‖ · ‖Hofer that has
become one of the principal objects of study in symplectic topology.

However, assuming the group G in question is sufficiently non-abelian, the inner au-
tomorphism group of the group is quite massive, which heavily restricts the possible
conjugation-invariant norms on the group. For example, any non-discrete conjugation-
invariant norm on arithmetic matrix groups like SLn≥3(Z) is necessarily profinite. In
any case, I am currently interested in two problems in particular. The first one is quite
classical and concerns conjugation-invariant norms on more general arithmetic groups
than SLn(Z): Much of the previous results by myself and other researchers [2] on
conjugation-invariant norms on arithmetic groups seem strongly connected to a very
strong version of finite generation, called bounded generation. However, it is very
unclear which arithmetic groups actually satisfy this property and my interest is in un-
derstanding this property for other arithmetic groups as well as gaining a more precise
quantitative understanding of the known instances of bounded generation. Secondly,
I am interested in whether the restricted topologies the Hofer norm can induce on a
subgroup of Ham(M,ω) can be used to exclude the possibility that certain arithmetic
groups can act on symplectic manifolds at all. Tantalizingly (to me at least), this prob-
lem seems to be unconnected to bounded generation of arithmetic groups and instead
related to topological rigidity of certain profinite groups.

[1] Burago, Dmitri and Ivanov, Sergei and Polterovich, Leonid; Conjugation-invariant
norms on groups of geometric origin, https://arxiv.org/abs/0710.1412

[2] Alexander Trost; Bounded generation by root elements for Chevalley groups defined
over rings of integers of function fields with an application in strong boundedness,
https://arxiv.org/abs/2108.12254
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Anosov representations and restricted linearity of Gromov hyperbolic groups

My research concerns Anosov representations of Gromov hyperbolic groups, whose im-
ages comprise a particular class of discrete subgroups of Lie groups playing an impor-
tant role in higher Teichmüller theory and geometric group theory. Anosov representa-
tions were introduced by Labourie [Lab] in his seminal work on the Hitchin component
and further generalized by Guichard–Wienhard in [GW] to the class of all Gromov hy-
perbolic groups.

In the past years, I have mainly focused on imposing topological and geometric restric-
tions on the class of Anosov representations [CT], constructing pathological examples
of linear hyperbolic groups with restricted linearity properties [DT, TT] and exhibiting
examples of non-linear hyperbolic groups with certain finiteness properties.

[CT] R. Canary and K. Tsouvalas, Topological restrictions on Anosov representations, J.
Topol. 13 (2020) 1497-1520

[DT] S. Douba and K. Tsouvalas, Anosov groups that are indiscrete in rank one, preprint,
arXiv:2210.17549, 2022.

[GW] O. Guichard and A. Wienhard, Anosov representations: Domains of discontinuity
and applications, Invent. Math. 190 (2012), 357–438.

[Lab] F. Labourie, Anosov flows, surface groups and curves in projective space, Invent.
Math. 165 (2006), 51–114.

[TT] N. Tholozan and K. Tsouvalas, Linearity and indiscreteness of amalgamated prod-
ucts of hyperbolic groups, I.M.R.N., 2022.
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`2-Betti numbers and other homology growth invariants

In Algebraic Topology, a classical invariant is given by Betti numbers. Intuitively, they
measure how many ‘holes’ a space has. More formally, we define the n-th Betti number
of a space X as bn(X,Q) := dimQHn(X,Q).

Atiyah defined an equivariant sibling of the classical Betti numbers, the so-called `2-
Betti numbers b(2)

n (Gy X). Originally defined analytically, Lück’s approximation theo-
rem provides a different viewpoint to these numbers, viewing them as gradients, i.e.

Theorem (Lück approximation theorem). Let X be a finite type connected CW-complex.
Let G := π1(X) be residually finite, i.e. there exists a residual chain (Gi)i∈N (i.e. a sequence
of nested, normal, finite index subgroups whose intersection is trivial). Then, for all n ∈ N,
we have

b(2)
n (Gy X̃) = lim

i→∞

bn(Gi\X̃,Q)

[G : Gi]
.

One advantage of this viewpoint is that it is easy to generalise to different coefficient
fields and to construct different homology gradients. Similarly to `2-Betti numbers, also
these gradient invariants vanish for classifying spaces of amenable groups.

Theorem ([3, Theorem 1]). Let G be an finitely generated, infinite, amenable, residually
finite group, let (Gi)i∈N be a residual chain and let G y EG denote its classifying space.
Then, for all n ∈ N and fields K, we have

lim
i→∞

bn(Gi\EG,K)

[G : Gi]
= 0 and lim

i→∞

log | torsHn(Gi\EG,Z)|
[G : Gi]

= 0,

where | tors ·| is the size of the torsion subgroup.

I’m interested in the behaviour of these invariants in general and especially, what
their vanishing behaviour is. In a recent paper, Abert, Bergeron, Fraczyk and Gabo-
riau proved that vanishing of these two invariants follows follows from the cheap n-
rebuilding property [1, Theorem 10.20], providing a possible strategy for showing such
vanishing statements.

[1] M. Abert, N. Bergeron, M. Fraczyk, and D. Gaboriau. On homology torsion growth.
arXiv.2106.13051 (2021).

[2] H. Kammeyer, Introduction to `2-invariants. Cham: Springer (2019).

[3] A. Kar, P. Kropholler, and N. Nikolov, Math. Proc. Camb. Philos. Soc. 162, No. 2,
337–351 (2017).
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High-dimensional expanders and Kac–Moody–Steinberg groups

I just started my PhD in September 2022 under the supervision of Tom De Medts, as
part of a larger research project together with Pierre-Emmanuel Caprace and Timothée
Marquis (UCLouvain) with the goal to construct high-dimensional expanders using Kac-
Moody-Steinberg groups.

Expander graphs — graphs which are somewhat sparse but nevertheless sufficiently
connected — proved to have many applications in computer science and mathematics.
The notion of expander graphs has been extended to higher dimensions, giving rise
to (families of) simplicial complexes called high-dimensional expanders. Unlike in the
graph case, not all notions of high-dimensional expanders (e.g. spectral, topological,
coboundary) are equivalent, see [1] for a survey.
Probably the first construction of bounded degree high-dimensional expanders were
the Ramanujan complexes due to Lubotzky, Samuels and Vishne [2]. The construction
uses Bruhat–Tits buildings of algebraic groups over local fields, the expanders being
obtained as suitable quotients of such buildings by cocompact arithmetic lattices.
On the other hand, Kac-Moody-Steinberg (KMS) groups are fundamental groups of cer-
tain complexes of finite p-groups, where p is a fixed prime.
Our goal is to connect the theory of high-dimensional expanders with KMS-groups and
related geometric and algebraic objects.

I am still at the stage of reading more about the topic and understanding all the no-
tions and underlying theories, while also participating in a reading group on expander
graphs and various seminars in Ghent and Louvain-la-Neuve.

My master’s thesis, which I wrote at the University of Innsbruck, supervised by Tim
Netzer and Gemma de las Cuevas, looked at quantum generalizations of Latin squares
and magic squares using tools from free semi-algebraic geometry. This resulted in a
paper that we submitted for publication; see [4].

[1] Alexander Lubotzky. High dimensional expanders. In Proceedings of the Interna-
tional Congress of Mathematicians — Rio de Janeiro 2018. Vol. I. Plenary lectures,
page 705–730. World Sci. Publ., Hackensack, NJ, 2018.

[2] Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Explicit constructions of Ra-
manujan complexes of type Ãd. European J. Combin., 26(6):965–993, 2005.

[3] Gemma De las Cuevas, Tim Netzer, and Inga Valentiner-Branth. Magic squares:
Latin, Semiclassical and Quantum. arXiv:2209.10230, 2022.
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Finiteness properties

I am interested in geometric, algebraic/homological, as well as more classical finiteness
properties of groups. The latter includes properties such as residual finiteness and even
being virtually torsion-free [6], whereas the former involves group actions on certain
spaces or exact sequences of group modules.

An attractive feature of this topic is the way in which it draws on various aspects of
geometry and group theory to create exotic combinations. For example, Morse theory
[1] and cube complex geometry [7].

Finiteness properties often play a key role in the assumptions of many theorems in
geometric group theory; such as in the remarkable result of Gersten [2], where the
required condition for a subgroup of a low-dimensional hyperbolic group to be itself
hyperbolic, is for it to be almost finitely presented. Hyperbolic geometry in general
provides a rich playground for finiteness properties [5]. Indeed, the properties of sub-
groups of hyperbolic groups (only very recently has a subgroup of type F which is
non-hyperbolic emerged [3]), as well as their own classical finiteness properties [4],
remain mysterious.

[1] M. Bestvina and N. Brady. Morse theory and finiteness properties of groups.
Inventiones mathematicae, 129:445-470, 1997.

[2] S. Gersten. Subgroups of word hyperbolic groups in dimension 2. Journal of the
London Mathematical Society, 54(2):261–283, 1996.

[3] G. Italiano, B. Martelli and M. Migliorini.
Hyperbolic 5-manifolds that fiber over S1. Inventiones mathematicae, 2022.

[4] I. Kapovich and D. Wise. The equivalence of some residual properties of word-
hyperbolic groups. Journal of Algebra, 223(2):562–583, 2000.

[5] R. Kropholler and V. Vankov. Finitely generated groups acting uniformly properly
on hyperbolic space.
To appear in: Groups, Geometry and Dynamics, arXiv:2007.13880.

[6] I. Leary and V. Vankov. On the virtual and residual properties of a generalization of
Bestvina-Brady groups. Mathematische Zeitschrift, 302:2353-2373, 2022.

[7] V. Vankov. Virtually special non-finitely presented groups via linear characters.
Geometriae Dedicata, 216:44, 2022.
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Weaker forms of amenability: affine actions and approximation properties

My research lies at the intersection of functional analysis and group theory. I am par-
ticularly interested in generalisations of amenability arising from group actions on Ba-
nach spaces and finite-dimensional approximation properties of operator algebras. Two
key concepts for my research can be traced back to Haagerup’s highly influential work
[1] on the reduced C∗-algebra of the free group: weak amenability and the Haagerup
property. Although these properties are analytic in nature, their connections with the
geometry of groups have been extremely fruitful from the very beginning.

One of the problems I am interested in is understanding which classes of groups admit
proper uniformly Lipschitz affine actions on subspaces of L1, which can be thought
of as a weaker form of the Haagerup property. In [2], I showed that this holds for
groups acting properly on products of quasi-trees and for a subclass of weakly amenable
groups. Later, in [3], I was able to give a proof for all hyperbolic groups. Among the
many questions that still remain is whether SL(3,Z) admits such an action, which is
known not to hold for subspaces of Lp with p ∈ (1,∞).

Another topic I am interested in is the Dixmier problem, which connects unitarisability
of uniformly bounded representations with amenability. In [4], I studied an approxi-
mation property of groups, called Md-AP, whose origins lie in harmonic analysis and
operator algebras. I showed that unitarisable groups satisfying this new property are
amenable. Furthermore, the class of groups with Md-AP is much larger than the class of
amenable groups, and it includes all the groups of the form Γ o Λ, where Γ is amenable
and Λ acts properly on a finite-dimensional CAT(0) cube complex.

[1] Uffe Haagerup. An example of a nonnuclear C∗-algebra, which has the metric ap-
proximation property. Invent. Math., 50(3):279–293, 1978/79.

[2] Ignacio Vergara. Proper cocycles for uniformly bounded representations on sub-
spaces of L1. arXiv:2109.12949, 2021.

[3] Ignacio Vergara. Hyperbolicity and uniformly Lipschitz affine actions on subspaces
of L1. arXiv:2207.14691, 2022.

[4] Ignacio Vergara. The Md-approximation property and unitarisability. Proc. Amer.
Math. Soc., 151(3):1209-1220, 2023.
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Research Statement

I am graduate student at University of Oklahoma. I am working under the supervision
of Dr. Max Forester in Geometric group theory. Before joining as a graduate student at
OU, I completed my bachelors and masters degree in mathematics from Indian Institute
of Science Education and Research, Bhopal. For my final year project during masters, I
worked in the field of Topological K-theory.

I developed my interest in Geometric Group Theory after reading the notes by Brian
H. Bowditch titled ’A course on geometric group theory’ which introduces the basic
concepts of GGT, like model space for a finitely generated group (Caley graph), quasi
isometry, commensurabiity, Svarc-Milnor lemma, hyperbolic group and Gromov bound-
ary. I explored other topics like CAT(0) cube complex and its geometry, special cube
complex and, Marshall Hall’s theorem which states that every finitely generated group
of a finitely generated free group is virtually a free factor.
Currently, I am working on lattice of Aut(Xm,n); the set of combinatorial automorphism
of combinatorial model of Baumsslag-solitar group BS(m,n) (i.e. a locally finite CW
complex on which BS(m,n) acts freely and cocompactly). I am also doing a reading
course on Mapping Class Groups.
I aspire this workshop will give an insight on other interesting as well as cardinal topics
in GGT. I look forward to meet various people working in the field of GGT through this
workshop.
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Characterizing Sublinearly Morse Geodesics

I am a fourth year PhD student at University of California, Riverside, and my advisor
is Matthew Durham. My research involves characterizing sublinearly Morse geodesics
in new lights in order to gain more information about sublinear Morse boundaries of
CAT(0) spaces.

Definition. Let X be a proper geodesic metric space. A geodesic α in X is said to be N -
Morse if there exists a function N = N(K,C) such that for any (K,C)-quasi-geodesic φ
with endpoints on α, we have that φ is within the N−neighborhood of α.

Such a definition was inspired by the Morse Lemma for hyperbolic spaces. That is,
all geodesics in a Gromov hyperbolic space are N−Morse for some N . Thus, Morse
geodesics in any proper geodesic metric space can be interpreted as the “hyperbolic
directions" of that space. It is known that, when regarding hyperbolic spaces, a quasi-
isometry between hyperbolic spaces induces a homeomorphism on their visual bound-
aries. Such a statement isn’t true for non-Gromov hyperbolic spaces. However, when
one looks only at Morse geodesic rays emanating from a basepoint (which we define as
the Morse boundary), we get the following:

Theorem (Cordes 2016). Any quasi-isometry between proper geodesic metric spaces will
induce a homeomorphism on their Morse boundaries.

This above result can also be found when regarding the κ−Morse boundary as well
- where κ is some sublinear function. κ−Morse geodesics are defined similarly to
Morse geodesics except that the neighborhood of a κ−Morse geodesic that bounds
quasi-geodesics is allowed to grow in a sublinear fashion. This is a looser definition
than the original Morse geodesic definition.

When working in a CAT(0) space, one can characterize sublinearly Morse geodesics
using a new tool called curtains. For any geodesic α : I → X in a CAT(0) space, for any
interval [r− 1

2
, r+ 1

2
] ⊂ I of length 1, the curtain dual to α at r is h = π−1

α (α[r− 1
2
, r+ 1

2
])

where πα is the closest point projection of the space to α. A curtain in a CAT(0) space
is meant to have the same feel as a hyperplane in a CAT(0) cube complex. Such a tool
allows us to describe κ−Morse geodesics in a combinatorial fashion.

[1] Cordes, 2016, Morse Boundaries of Proper Geodesic Metric Spaces. arXiv:1502.04376

[2] Petyt, Spriano, Zalloum, 2022, Hyperbolic Models for CAT(0) spaces. arXiv:2207.14127

144



Christian Vock
Christian-Albrechts-Universität zu Kiel, Germany

Kac–Moody Symmetric Spaces

I am a PhD student of Ralf Köhl and I am interested in Kac–Moody groups and their
symmetric spaces. As a starting point, one can consider Kac–Moody algebras, which are
a generalization of Lie algebras to infinite dimensional Lie algebras with a generalized
Cartan matrix. This matrix provides all the important information to construct such an
algebra.
As in the theory of finite-dimensional semisimple Lie algebras, one can try to connect a
group to a Kac–Moody algebra which behave like Lie groups. Therefore, one needs the
Steinberg functor, which leads to a group containing mainly root groups (integrated
roots). To complete this group one needs to add the whole Cartan integrated subal-
gebra, so one defines the split torus scheme and finally the group is given by the free
product of the Steinberg functor together with the torus modulo of some relations that
arise on the way to construct this group.
My PhD project starts at this point. In [1], my thesis advisor and his colleagues estab-
lished a theory of symmetric Kac–Moody spaces that is similar to Riemannian symmet-
ric spaces. The main difference is that in the Riemannian case one has all the tools of
differential geometry at one’s disposal, but for symmetric Kac-Moody spaces one does
not. One powerful tool that remains, just like for Riemannian symmetric spaces of non-
compact type, is the combinatorial structure of a building at infinity. Thus, one can use
this machinery to study Kac–Moody symmetric spaces. The article [1] treats the theory
only for split real Kac–Moody symmetric spaces and only for a special type of gener-
alized Cartan matrices. So the first part of my project was to establish this theory for
all types of generalized Cartan matrices and to apply it also to the domain of complex
numbers.
The second part, which I am working on at the moment, is to apply the methods de-
veloped by Rèmy in [2] to symmetric Kac–Moody spaces. He developed a theory of
almost split Kac–Moody groups via Galois descent. Galois descent is well known, for
example, in the context of algebraic groups and vector spaces. In particular, for real
vector spaces, one can obtain a complex vector space by expanding the scalar field;
moreover, one can make a real basis of the vector space a complex basis. The idea of
Galois descent is that one finds a real subvector space of the complex vector space such
that the real basis of the subspace is just together with the complex scalars the basis of
the whole vector space.

[1] Walter Freyn, Tobias Hartnick, Max Horn, and Ralf Köhl. Kac–Moody symmetric
spaces. Münster J. Math. 13 (2020), 1–114.

[2] Bertrand Rémy. Groupes de Kac–Moody déployés et presque déployés. Astérisque,
(277):viii+348, 2002.
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Geometry of graphs associated to surfaces

My research so far has been around various combinatorial objects we can associate to
a (topological) surface S which have applications to the study of mapping class groups,
Teichmüller spaces and hyperbolic 3-manifolds. A first example is the curve graph,
which has a vertex for every isotopy class of homotopically non-trivial simple closed
curves in S. Masur and Minsky proved that the curve graph is Gromov hyperbolic, and
in a later paper gave a distance formula for the word metric on the mapping class
group MCG(S) in terms of projections to curve graphs of subsurfaces [1].

A generalisation of the ideas behind Masur–Minsky’s distance formula for MCG(S) is
the notion of a hierarchically hyperbolic space (HHS) defined by Behrstock, Hagen
and Sisto. Such a metric space is equipped with a family of projection maps to Gromov
hyperbolic spaces, satisfying a list of conditions which result in an analogous structure
to that of the mapping class group. In particular, every hierarchically hyperbolic space
has a distance formula like that for MCG(S). In [1], I proved that a family of graphs
associated to surfaces are hierarchically hyperbolic spaces. Jacob Russell (Rice Uni-
versity) used my result to prove that some of these graphs are relatively hyperbolic
spaces, and in joint work, we completed a classification of hyperbolicity and relative
hyperbolicity for this family of graphs [2].

I also really like combinatorial objects associated to 3-manifolds. The disc graph of
a handlebody V is the subgraph of the curve graph of ∂V (∂V is a surface) which
is spanned by those curves which bound discs in V . In [3], I gave an elementary
proof of a result of Hamenstädt that the disc graphs are uniformly quasiconvex in the
curve graphs. The disc graph has links to the study of Heegaard splittings and of
handlebody groups.

I’m interested too by connections of curve graphs and similar graphs to other areas.
For example, analogues of curve graphs for Artin groups, or sphere complexes used to
study Out(Fn).

[1] Howard A. Masur, Yair N. Minsky, Geometry of the complex of curves II: Hierarchical
structure : Geom. and Funct. Anal. 10 (2000) 902–974

[2] Kate M. Vokes, Hierarchical hyperbolicity of graphs of multicurves : Algebr. Geom.
Topol. 22 (2022) 113–151

[3] Jacob Russell, Kate M. Vokes, Thickness and relative hyperbolicity for graphs of mul-
ticurves : preprint (2020) arXiv:2010.06464.

[4] Kate M. Vokes, Uniform quasiconvexity of the disc graphs in the curve graphs : in
"Beyond Hyperbolicity", London Math. Soc. Lecture Note Ser. 454 (2019) 223–231
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Conjugacy classes and reflection length in affine Coxeter groups

Deciding whether two given group elements are conjugate is a classical problem in
group theory. In the setting of affine Coxeter groups conjugacy classes carry a geometric
structure. Currently, in my masters thesis, I aim to understand this geometric meaning
and connect it with the description of conjugacy classes given by Marquis in [1].

In any Coxeter group W the elements conjugate to the standard generators are called
reflections. For a given group element w ∈ W the minimal length of w written in this
expanded generating set is called reflection length of w. Petra Schwer conjectured a
new formula to compute the reflection length in affine Coxeter groups. As part of my
bachelors thesis I provided a proof to this formula for affine Coxeter groups of rank one
and two and showed one inequality in arbitrary rank [3].

In another project we computed connected components on unstructured regular tri-
angle grids [2]. We used the method of cubulating the regular triangle tiling of the
plane yielding a tiling by regular cubes. Using this one-to-one translation from trian-
gles to cubes efficient algorithms on cubical grids can be used to compute connected
components thereby solving the overall problem time-efficiently for large grids.

[1] T. Marquis, Structure of conjugacy classes in Coxeter groups, arXiv:2012.11015

[2] A. Voigt, P. Schwer, N. von Rotberg, N. Knopf, TriCCo – a cubulation-based method
for computing connected components on triangular grids, arXiv:2111.13761

[3] N. von Rotberg, Reflection length in affine Coxeter groups, bachelors thesis,
https://www.mathi.uni-heidelberg.de/~geodyn/teaching/Theses/BA_2020_
Noam%20von%20Rotberg%20(Pozzetti).pdf
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Which closed manifolds admit an Anosov diffeomorphism?

Anosov diffeomorphisms were introduced by D. Anosov as important examples of dif-
ferentiable dynamical systems. They combine both chaotic behaviour with structural
stability. For an exact definition, we refer to S. Smale’s survey on differentiable dynam-
ical systems [1]. The simplest example of an Anosov diffeomorphism is the map on

the torus R2/Z2 induced by the matrix
(

2 1

1 1

)
, which is called Arnold’s cat map. As of

this moment, it is still unknown which closed manifolds can admit an Anosov diffeo-
morphism. The only known examples are on infra-nilmanifolds, i.e. manifolds finitely
covered by a compact nilmanifold, and it is conjectured these are the only ones. One
possible direction towards solving this conjecture is to look at the induced automor-
phism of an Anosov diffeomorphism on the fundamental group of the manifold. One
would expect some sort of hyperbolic behaviour with respect to the word metric on the
group. One of the objectives of my PhD is to come up with a proper definition of a
hyperbolic automorphism on a finitely generated group and investigate how much the
existence of such an automorphism restricts the structure of the group.

This methodology is based on the related problem of determining the closed manifolds
which admit an expanding map. In this case, the induced morphism on the fundamen-
tal group is expanding with respect to the word metric and has an image of finite index.
It is not hard to show that a finitely generated group admitting such a morphism must
have polynomial growth and thus using Gromov’s celebrated theorem on groups of
polynomial growth [2], that such a group is virtually nilpotent. This, together with the
fact that the universal cover of a closed manifold admitting an expanding map is con-
tractible, lead to a proof that every expanding map on a closed manifold is topologically
conjugate to an affine map on an infra-nilmanifold.

[1] S. Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc., 73,:pp. 747-
817, 1967.

[2] Gromov, M. (1981). Groups of polynomial-growth and expanding maps. Publica-
tions Mathématiques. Institut Des Hautes Études Scientifiques, 53, 53–78.
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Rigidity and Right-Angled Coxeter Groups

I am a fifth year PhD student interested in rigidity results on quotients of model ge-
ometries of Right-Angled Coxeter Groups (RACGs). For example, closed surfaces glued
along simple closed curves, or surface amalgams, are branched covers of some of these
quotients (see [1]). Most recently, I have been studying marked length spectrum rigid-
ity of surface amalgams, which one can think of as a generalization of the classical
result that the lengths of 9g − 9 simple closed curves on a hyperbolic closed surface
completely determine the metric.

In the past, I have also studied topological rigidity on Davis orbicomplexes, K(G, 1)

spaces of RACGs (a collection of topological spaces is topologically rigid if an isomor-
phism on the level of fundamental groups induces a homeomorphism). While the class
of Davis orbicomplexes of 1-ended RACGs is known to be far from topologically rigid, I
found an infinite subcollection of orbicomplexes that is (see [2]).

While the abstract commensurability classification of RACGs rends the QI rigidity prob-
lem incredibly nuanced and messy, I am also happy to discuss any results in that direc-
tion, as that has also been an interest of mine.

[1] Pallavi Dani, Emily Stark, and Anne Thomas. Commensurability for certain right-
angled Coxeter groups and geometric amalgams of free groups. Groups, Geometry,
and Dynamics, 12(4):1273-1341, 2018.

[2] Yandi Wu. A topologically rigid set of quotients of the Davis complex. https://
arxiv.org/abs/2204.12028, 2022.
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Topology and geometry of Isom(H∞)

Similarly to Euclidean spaces, there is an infinite dimensional analog of the finite di-
mensional hyperbolic spaces.

Let H be a real separable Hilbert space and let Q be the quadratic form defined by
Q(x) = −x2

0 +
∑

i>1 x
2
i where the xi are the coordinates of x ∈ H in some fixed Hilbert

basis. The separable infinite dimensional hyperbolic space is

H∞ = {x ∈ H | Q(x) = −1, x0 > 0}.

As in finite dimension, there is a hyperbolic distance on H∞ which makes it a complete
geodesic CAT(−1) space. My main objects of study are the discrete subgroups of its
group of isometries Isom(H∞) = PO(∞, 1).

To define what a discrete subgroup Γ < Isom(H∞) is, we can

• either put a topology on Isom(H∞) (for example the pointwise convergence topol-
ogy as studied in [3] by Duchesne);

• or use the action Isom(H∞) y H∞ (for example by calling Γ discrete if it acts on
H∞ with discrete orbits).

Some issues already appear here, since these points of view are not equivalent contrary
to the finite dimensional setting, as described in [1].

I am interested in finding and studying new examples of subgroups of Isom(H∞) that
are (as) discrete (as possible) by generalizing constructions coming from the standard
case, such as Coxeter groups and groups generated by reflections. Another idea to
produce subgroups acting irreducibly on H∞ is to deform convex-cocompact represen-
tations coming from the exotic representations ρ : Isom(Hn) → Isom(H∞) studied by
Delzant, Monod and Py in [2] and [4].

[1] T. Das, D. Simmons and M. Urbański. Geometry and dynamics in Gromov hyper-
bolic metric spaces. Mathematical Surveys and Monographs 218 (2017).

[2] T. Delzant and P. Py. Kähler groups, real hyperbolic spaces and the Cremona group.
Compos. Math. 148, No. 1, 153-184 (2012).

[3] B. Duchesne. The Polish topology of the isometry group of the infinite dimensional
hyperbolic space. ArXiv:2005.12204.

[4] N. Monod and P. Py. An exotic deformation of the hyperbolic space. Am. J. Math.
136, No. 5, 1249-1299 (2014).
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Totally disconnected locally compact groups

I first studied the cohomology of groups using [2] during my masters. I wrote my
dissertation focused on crystallographic groups and an introduction to cohomology. It
focused on low dimensions and properties of the cohomology of finite and cyclic groups.
In particular, I interpreted definitions of crystallographic groups presented in [3] topo-
logically and algebraically. Algebraically, using cohomology, I proved Bieberbach’s three
theorems and the Main Theorem of Mathematical Crystallography. I provided examples
of how crystals may be distinguished in low dimensions.

Currently, I am in the first year of my PhD under the supervision of Professor Nucinkis at
Royal Holloway. I’m interested in totally disconnected locally compact groups. Follow-
ing my reading of [1], I hope to look at the finiteness conditions of totally disconnected
locally compact groups over the next few years

[1] K. Brown, Cohomology of groups. Springer-Verlag, New York.

[2] I. Castellano and T. Weigel, Rational discrete cohomology for totally disconnected
locally compact groups. J. Algebra, 453 (2016), 101–159.

[3] R. L. E. Schwarzenberger, N-dimensional crystallography Pitman (Advanced Pub-
lishing Program), Boston, Mass.- London, 1980.
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Kostant’s convexity theorem for split real Kac-Moody groups

Kostant’s convexity theorem is a classical result in the theory of Lie groups & Lie alge-
bras. It generalizes the famous Schur-Horn theorem from linear algebra that completely
determines the possible diagonal vectors of Hermitian matrices with a prescribed set of
eigenvalues. In this form, the theorem reduces to the following result. Let n ∈ N≥1,
d = (d1, . . . , dn) ∈ Rn be a point and denote by D the (n × n)-matrix whose diagonal
vector is d and whose off-diagonal entries are all equal to 0. For any complex unitary
(n×n)-matrixA, the conjugateADA−1 is a Hermitian matrix with eigenvalues d1, . . . , dn
and every such matrix is of this form. Moreover, its diagonal vector has real entries, so
the set S of all diagonal vectors of matrices of the form ADA−1, where A ∈ U(n), is a
subset of Rn. The Schur-Horn theorem asserts that S coincides with the convex hull of
the points {(dπ(1), . . . , dπ(n)) | π ∈ Sn} obtained from all permutations of d.

In the 1970’s, B. Kostant realized that the Schur-Horn theorem was a particular instance
of a far more general result in Lie theory. If G is a semisimple Lie group and G = KAN

an Iwasawa decomposition, every element g ∈ G can be uniquely written as g = kan

with k ∈ K, a ∈ A and n ∈ N and we denote the A-component by A(g) = A(kan) := a.
We then have A(kg) = A(g) for every k ∈ K, but there is no obvious way to compute
A(gk). Starting with an element in A, the subset of A obtained in this way from right
multiplication by elements of K has an explicit description. To formulate it, let g and a

be the Lie algebras of G and A, then the exponential map of G restricts to a bijection
exp : a → A whose inverse is denoted by log : A → a. Kostant’s convexity theorem
[1, Theorem 4.1] states that if a ∈ A is arbitrary, then

{A(ak) | k ∈ K} = exp conv(W · log(a)),

where W is the Weyl group of g with respect to a and conv(W · log(a)) denotes the
convex hull of the Weyl group orbit of log(a) ∈ a.

Kac-Moody groups are a generalization of semisimple Lie groups and share many of
their properties. A weaker version of Kostant’s theorem is also true in that setting
[2, Theorem 2], but a much closer analogue of Kostant’s statement also makes sense
for Kac-Moody groups. Its validity is a matter of ongoing research which has recently
also been linked to certain billiard models in quantum gravity.

[1] Kostant, Bertram. On convexity, the Weyl group and the Iwasawa decomposition. An-
nales scientifiques de l’École Normale Supérieure, Série 4, Tome 6 (1973) no. 4, pp.
413-455.

[2] Kac, Victor G. and Peterson, Dale. Unitary structure in representations of infinite-
dimensional groups and a convexity theorem. Inventiones mathematicae 76 (1984):
1-14.
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Zeta functions of induced representations

A representation % of a profinite group G is called strongly admissible, if it decomposes
into a direct sum of irreducible representations and if for each natural number n, the
number rn(%) of irreducible consistuents with dimension n is finite. The field of repre-
sentation growth is concerned with determining the dimensions of these constituents,
because we believe it will give us insight into the group structure of G.

You can assign a strongly admissible representation the zeta function

ζ%(s) =
∞∑
n=1

rn(%)

ns

Representations for which the zeta function has a finite abscissa of convergence are
called polynomially strongly admissible.

The General Linear Group G of degree n over the p-adic integers Zp acts on the set of
free submodules of Znp with rank m ≤ n/2. This gives rise to an induced representation
% = IndGS (1G), where 1G is the trivial representation ofG and S is the stabilizer subgroup
of G with respect to an arbitrary free submodule. Kionke co-authored a paper, in which
they determined the zeta function for the case m = 1 [1].

I am currently trying to determine the representation zeta function of the induced rep-
resentations for the cases m ≥ 2.

[1] S. Kionke, B. Klopsch, Zeta functions associated to admissible representations of com-
pact p-adic Lie groups, Trans. Amer. Math. Soc. 372 (2019), no. 11, 7677–7733.
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Arithmetics of higher Teichmüller spaces and thin groups

My research is centered around the interactions between number theory and low-
dimensional topology. A broad goal of mine is to understand discrete subgroups of
lattices in semisimple Lie groups which are Zariski dense. Such groups are known as
thin groups (cf. [3]) and have lead to rich areas of research in number theory in recent
years. For instance, tools such as Super Approximation and expander families have
been developed to study the various interesting properties of these groups (see [1]).

Among the thin groups, those which are free are relatively well understood compared
to those which are not, and so it is of interest to understand those thin groups which
are freely indecomposable, i.e. ones which do not decompose as a free product of two
smaller groups.

My work has been focused on studying the Hitchin component, an example of a higher
Teichmüller space (cf. [4]), to produce new examples of Zariski dense surface subgroups
of SL(n,R). This perspective was taken by Long and Thistlethwaite in [2] where the au-
thors use bending, a construction of Thurston’s, to produce Zariski dense surface groups
inside SL(2k + 1,Z). Their result provided the first examples of freely indecomposable
isomorphism types of thin groups in SL(n,Z) for infinitely many n.

In [5], I generalize the methods of [2] to show that any representation of a closed
surface group into SL(n,R) on the Hitchin component may be deformed using this same
bending construction to being Zariski dense, while preserving integrality properties of
the original representation. This reduces the problem of finding thin surface groups in
SL(n,R) to finding integral ones.

Many interesting questions along these lines remain open for future research. For in-
stance, it still seems largely difficult to understand for which n, SL(n,Z) contains a
surface subgroup. In general, studying the arithmetics of higher Teichmüller spaces
through methods of low-dimensional topology and geometric group theory provides
one possible path towards some answers to these and other related questions.
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