Oracle® Cryptographic Toolkit
Programmer’s Guide

Release 2.0.4

October 1997
Part No. A54082-02

ORACLE"

Enabling the Information Age™

Oracle® Cryptographic Toolkit Programmer’s Guide

Part No. A54082-02

Release 2.0.4

Copyright © 1996, 1997, Oracle Corporation. All rights reserved.

Printed in the U.S.A

Primary Author: Gilbert Gonzalez

Contributing Authors: Andre Srinivasan, Richard Wessman

Contributors: Paul Lambert, Patricia Markee, Kendall Scott, Sandy Venning

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inher-
ently dangerous applications. It shall be licensee's responsibility to take all appropriate fail-safe, back
up, redundancy and other measures to ensure the safe use of such applications if the Programs are
used for such purposes, and Oracle disclaims liability for any damages caused by such use of the Pro-
grams.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free.

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is deliv-
ered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are ‘commercial
computer software’ and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are ‘restricted computer software' and use, duplication and disclo-
sure of the Programs shall be subject to the restrictions in FAR 52..227-14, Rights in Data -- General,
including Alternate 111 (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

I RSA Secure ™

This product contains security software from RSA Data Security, Inc. Copyright 1994 RSA Data Security,
Inc. All rights reserved. This version supports International Security with RSA Public Key Cryptography,
MD2, MD5, and RC4.

This product contains encryption and/or authentication engines from RSA Data Security, Inc. Copyright
1996 RSA Data Security, Inc. All rights reserved.

Oracle and SQL*Plus are registered trademarks of Oracle Corporation, Redwood City, California. Oracle
Security Server, Oracle Enterprise Manager, Oracle Call Interface, Net8, PL/SQL, and Oracle8 are trade-
marks of Oracle Corporation, Redwood City, California.

All other product or company names are used for identification purposes only, and may be trademarks of
their respective owners.

Purpose

Preface

The Oracle Cryptographic Toolkit Programmer’s Guide provides independent applica-
tion programmers with programming interfaces to the services provided by the
Oracle Security Server.

Intended Audience

Structure
Part |

Chapter 1

Chapter 2

Chapter 3

The Oracle Cryptographic Toolkit Programmer’s Guide is designed to be used by both
Oracle and non-Oracle application programmers who require an interface to the
services provided by the Oracle Security Server. This document assumes that the
reader is familiar with the functionality of the Oracle Security Server, as described
in the Oracle Security Server Guide.

This manual contains three parts, seven chapters, and two appendices.

Concepts
The Concepts chapters contain the following information:

Overview
Provides definitions of the Oracle Security Server and the Oracle Cryptographic
Toolkit and states the purpose of this Programmer’s Guide

Data Types
Discusses public functions, data types, and data structures

Concepts
Discusses general security concepts and Oracle Cryptographic Toolkit concepts

Chapter 4

Chapter 5

Part 11

Chapter 6

Chapter 7

Part 111

Appendix A

Appendix B

Glossary

Using the Oracle Cryptographic Toolkit
Shows you how to program using the Oracle Cryptographic Toolkit

Random Number Generator
Shows users how to generate random data for their applications

Reference
The Reference chapters contain the following information:

OCI Functions for C
Describes each Oracle Call Interface (OCI) function in the Oracle Cryptographic
Toolkit

PL/SQL Functions
Describes each PL/SQL function in the Oracle Cryptographic Toolkit

Appendices
The Appendices contain reference information, including sample C programs,
sample PL/SQL programs, and OCI - API function mappings.

Sample PL/SQL Code
Contains sample PL/SQL programs

OCI - APl Mappings
Lists each OCI function that is directly mapped to an API function

Lists terms, abbreviations, and definitions used in this guide

Related Documents

For more information, see the following manuals;
« Oracle8™ Server Application Developer’s Guide
« Oracle Security Server™ Guide

« Programmer’s Guide to the Oracle Call Interface™

Conventions

The following conventions are used in this manual:

Convention Meaning
monospace Code examples and data type names are displayed in monospace
font.

italic Names of related manuals are displayed in italic font.

Vi

Send Us Your Comments

Oracle ® Cryptographic Toolkit Programmer’s Guide
Part No. A54082-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available).

You can send comments to us in the following ways

electronic mail: ossdoc@us.oracle.com

postal service:

Oracle Corporation

Documentation Manager: Enterprise Application Services
500 Oracle Parkway

Redwood City CA 94065

USA

If you would like a reply, please give your name, address, and telephone number below.

Contents

PIEIAICE ... i

Send US YOUIr COMMENTS ...t vii

Part | Concepts

1 Overview
1.1 What is the Oracle SECUILY SEIVEI?......ccoii e 2
111 Oracle SECUNILY SEIVEr FEATUIEScooiiiriie e 2
1.2 What is the Oracle Cryptographic TOOIKIt?.......cccccceviiiieiiccce e 4
1.3 Oracle Cryptographic Toolkit Functional Layers...........ccccooiiiiriiiiinine e 5
13.1 AP LYET ...t e 5
1.3.2 Cryptographic ENGiNe FUNCLIONSccci it 5
1.3.3 Persona/Zldentity FUNCHIONS. ..ot e 6
134 WallEt FUNCHIONS ..ottt sttt neeneas 6
1.4 Oracle Cryptographic TOOIKIt EIEMENTSccccevviiiiiiecec e 7
14.1 [0 (=] 01 (] 3 Y2 RR PRI 7
1.4.2 TRUSEEA TAENTITY ..o bbbttt 8
143 PEISONA. ...ttt 8
1.4.4 LAY L] 1= ORISR 9
15 TYPES OF INTEITACES ..ot 10
151 Oracle Call INTEITACEccvvveiiiiiecee e 10
15.2 PLZSQL INTEITACE ..ottt sttt s be e sresrae e 10

2 Data Types

21 DALA TYPES .ottt
211 NAME PrEfiXES ...ttt sttt
2.1.2 Crypto ENQGING STALE ...t
2.13 Crypto ENGINE FUNCLIONS. ..ottt
2.1.4 Lo 1= o () 0T 1Y/ o - R
2.15 PN TYPBS ettt b bbbt b bbb b b e e eneas
2.1.6 TDU FOMNATS.....ctiiiiitiiie ittt ettt bbb e bt bt sbe e nbe e ae e sbe s e e sbeeneenbe e st
217 ValiAALE STALE ..o bbbttt
2.1.8 UNIQUE ID ottt b bbb bbb e e e
2.1.9 THMESTAIMID ..ttt bbbt bbbt
2.2 DALA SEIUCTUIES ...ttt b bbbt bbb n b neenn e e
221 NZEBUFFEIBIOCK ... e e
222 (A LAV 1] =] OSSR
2.2.3 (P4 L1 =T £<To] o T U TP TP PP PP PPP
224 (04 1 Fo [T 0 |) YOS
3 Concepts
3.1 SECUTTEY CONCEPTS ...ttt ittt bbb bbb et b e bt bt e bt be e b e b et sbe b e nee e e e eneas
3.2 Oracle Cryptographic TOOIKit CONCEPLScoveverieirieiirieiriee e

4 Using the Oracle Cryptographic Toolkit

4.1 Basic Oracle Cryptographic Toolkit Program FIOW ...,
4.2 A Programming EXAMPIE.......c.ccieiici sttt
4.2.1 Using the Oracle Cryptographic TOOIKIT..........ccocoiiiiiiiic e
42.2 An Example: Generating a detached signature for an array of bytes............c.c.coc......

5 Random Number Generator

51 (@Y VAT, AR
5.2 T T ot o] 1 1
53 EXAIMIPIE. .t h bbbt bbb bbb e b e e e eneas

Part Il Reference

6 OCI Functions for C

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19

OCISECUNEYINITIAIIZE. ..ottt 2
(O 108 ot U 1V =T 0 01T T =SS 3
OCISECUNtYOPENWAIIET ...t b e 4
OCISECUNEYCIOSEWAIIET ...t 5
(O 108 R Tot U] YA @ 01T] ==Y o] o - RSP 6
OCISECUNtYCIOSEPEISONAcveiiieiiece ettt e s be st et eere et e e e nnas 7
O CISECUNTEYSTON .ttt bbbt bt bbb bbb bbbt b et b bbb es 8
L@ 108 ot U 1 A=) Y2 PSP 9
OCISECUNEYVAIIALE ...ttt s re et e stesrae e 11
OCISecuritySIgNDETACHE.c..ciiiiicee e 12
OCISecurityVerifyDetached ... 13
(O 108 I =Tot U]] Y] o =T o RSP PS 15
OCISeCUritySEEARANUOIM........cuiiiiiieiirecie et 16
OCISECUNItYRANAOMBYLESccuviviieiiiie ettt st seeresresresreseeneenees 17
OCISecurityRaNdOmMNUMDETcooii e 18
OCISECUNEYINITBIOCK ...ttt 19
OCISECUNTYREUSEBIOCK.......ccuiiiiiiiiiiiiisie et re e sre e nrenen 20
OCISECUNItYPUIGEBIOCKc.eiie ettt te e nre e 21
OCISECUNEYSEIBIOCK ...ttt 22

7 PL/SQL Functions

7.1
7.1.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.3
7.3.1
7.3.2
7.4

General PUIPOSE PrOCEAUIESc.oouciiiiriiiiiicisteesie sttt 2
Procedures Used by Applications That Use the Wallet..........c.ccoovovvivvinvncvcncecnnne, 3
DiIgital SIgNALUIE......eciiiece ettt e s re e e s be e e e s teesaenteenee e 7
R3] (o] o TP TR TSSOSO POTR TR 8
V2T 1 ST SRSPRRS 9
SIGNDELACHEA ... s 10
VErifyDEIACHEA.ciiiiiie e 11
HASH ... bbbttt 12
KEYEAHASN ... e e e 13
L F= TS o PSR 14
Random NUMDBEr GENEIAtiONccoci ittt 15

Xi

Part Ill Appendices

A Sample PL/SQL Code
Al SAMPIE PLZSQL PrOGIaM ..ottt sttt

B OCI - APl Mappings

B.1 Y F=T o] o1 1 o - TSP P TP TSP TTRPPPTPRPTP
B.1.1 OWVEIVIBW ..ottt e n s
B.1.2 OCIH - APT MAAPPINGS ..ottt ettt b ettt b b bbb e e e
B.2 OCI - API Mapping EXCEPLIONSccciiieiieriieiieie ettt
Glossary
Index

Xii

Figures

1-1 Relationship between TooIKit and SErVICES.........coviiiiiiiiiie e 4
1-2 FABNTITY ..t bbbt b et bttt 8
1-3 PEISONA. ...ttt 9
1-4 WVAIHTET ..ottt bbbt bbbt b et bt bbbt 9
4-1 Oracle Cryptographic ToolKit Program FIOW ... 2

Xiii

Xiv

Tables

2-1 DT U7 Bl Y/ o 1T S PP PP TP PPURPPPPPP 2
2-2 Data Structures and DeSCIIPTIONScoiiiiiiiiiiiiie e e e e e e e e 5
2-3 NZEBUFFEIBIOCK.eeeeiiiie e 5
2-4 NZEWVAITEE ...t e e e e e e e e e bbb e e e e e e e aeeeas 6
2-5 (074 (=T 0] o I VPP PPPPPPPPRPPPPPPPTRRON 6
2—-6 (174 1 Ko =T 0 |) Y2 PPN 6
6-1 OCISecurityInitialize HaNAIES............ovviiiiiiiiiceie e 2
6-2 OCISecurity Terminate ParamMEterS.cui i e ettt e e e e e e e e e e e e 3
6-3 OCISecurityOpenWallet ParamMetersS.........coueei it 4
64 OCISecurityCloseWallet ParamMeters.........couee ittt 5
6-5 OCISecurityOpenPersonNa PAraMELErS.uie e e i it iiiiiiiiieeet e e e e e e e e ree e e e e e e e e e aeaeanbeeeees 6
6—6 OCISECUNTtYOPENPEISONEA BITOISttiieeeteeee e et e e aaittbete ittt e e e e e e e s e aaibebbeeeeeeaeaeaeeaaannnreneees 6
6—7 OCISecurityCloSEPersona ParamMetersS.cueu ettt e e e e e e e e e e e e e e e aeaeeeees 7
6-8 OCISecUrityClOSEPErSONa EITOIScvvvviiiieiiiiiiieise e e e e e e e e e e e e e e e e e eeteeee e e e aeee e rrerar s 7
6-9 OCISECUNItYSIGN PAFAMETETS ...ttt e e e e et e e e e e e e e reabbeneeee 8
6—10 OCISecurityVerify ParamMeLersSooi ittt e e e e 9
6—11 OCISECUNtYVEIITY BITOIS....ciiiiiiieeieeeeee e e e e e e e e et e e 10
6—12 OCISecurityValidate Parameters.........cc.uuiiiiiiiiieaee e 11
6—13 OCISeCUrityValidate EITOrScocvieiiiieiiiiitiire e e e e e e e e e e e et e e s 11
6—14 OCISecuritySignDetached Parameters ...ttt 12
6—-15 OCISecuritySigNDEetaChed EITOrSuuuiuieiiiii i 12
6-16 OCISecurityVerifyDetached parameters.........cccccoiiiiiiiiiiiiiiiie e 13
6—17 OCISecurityVerifyDetaChed ErrOrSuuuueiiiiie e 14
6—18 OCISecurityHash Parameters........coooiiiiiiiiiiiiie e e e e 15
6—19 OCISECUNtYHASN EITOIScciiiiieeeeeeeeee e e e e e 15
6—20 OCISecuritySeedRandom PArAMELErSciiiiiiiiiiiiiiiiiee e e e 16
6—21 OCISecurityRandomBYLeS ParamMetersS.........cceii i iiiiiiiiiiiiieee e e e e 17
6—22 OCISecurityRandomNUMDBDEr PAramMEterS......cccoieiiiiiiiiiiiiieee e 18
6—23 OCISecurityINitBIOCK parameters.uuviiiiiiiiiei e 19
6—24 OCISecurityReuseBlOCK Parameters.uuiiiiiiiiiiiiiiiiiieieee e 20
6—25 OCISecurityPurgeBloCK Parameters............eeiiiiiiiiiiiiiiiiieiiee e 21
6—26 OCISecuritySetBIOCK PAramMEtersuuiiiiiiiiieeei i 22
7-1 PL/SQL Procedure and FUNCtion DeSCriptiONS........ccoviiiiiiiiiiiiiiiiieicieee e 1
7-2 PROCEDURE OPENWaIIEToeiiiiiiiiiie e 2
7-3 PROCEDURE OPENWaIIEToeiiiiiiiiiie e 3
7-4 PROCEDURE CIOSEWaIEToeiiiiiiiiiie et 3
7-5 PROCEDURE DeStroyWalletccoooiiiiiiieeeeiiss st e e e e e e e e e eeeeaannnnens 3
7-6 PROCEDURE StOrePEeISONGcociiiieiiiiiiit ettt e e e e e e e e e e e ee e e eeeeeenennees 4
-7 PROCEDURE OPENPEISONG......ccciiieeiiiiiiet ittt e e e e e e e e e e e e e eeeeeeeeeeeennnnes 4

XV

7-8 PROCEDURE CIOSEPEISONAcceiiiiiititieeieae e e e e e ettt e e e e e e e et e e e e e e e e e e s s nanneeeeees 4
7-9 PROCEDURE REMOVEPEISONEceevviiiiiiiiiiiiieaa e e e e e e e e e e e e aeeeee et et eeeeeeeeeanenenennnn s 4
7-10 PROCEDURE CreatePerSONa........cccoiiiiiiiiieeieeeeeeeeeteeeeeeeeee e e e e e e e 4
7-11 PROCEDURE ReMOVEIENTILYuuiiieiii i e e e e e e e e e 5
B A O =T = o [T o |) YRS 5
et G T A o To o 1= o {1 Y22 5
e I S (o] (=0 I U 1Y =T | o 1= o) YRS 6
T—=15 ValIOALE.. ..ttt e e et e e e e e e e et e e e e e e as 6
7-16 Sign parameters fOr FAW ata...........cooiiii i e e 8
7-17 Sign parameters fOr StrNQG ata. ..ot 8
7-18 Verify parameters fOor rawW data..........ooooviiiiiiiiiiie e 9
7-19 Verify parameters for String data............cooiiiiiiiiiiiiii e 9
7-20 SignDetached parameters for raw data...............eeeeeiieeiiiiiiiiiiiiee e 10
7-21 SignDetached parameters for String data.............ccccceeeiiiiiiiiiiiiie e 10
7-22 VerifyDetached parameters for raw data.............cccccoeeiiiiiiiiiiiiiie e 11
7-23 VerifyDetached parameters for String data...........cccccceeiiiiiiiiiiiiiieeee e 11
7-24 KeyedHash parameters for raw data...........ccuuvveiiiiiieiiiiniiieee e 13
7-25 KeyedHash parameters for string data..............eeeeiiiiiiiiiiiiiiieee e 13
7—26 Hash parameters fOr raW ataooooiiiiiiiiiiiiii e 14
7-27 Hash parameters for StriNg dataoooiiiiiiiiiiiiii e 14
7-28 SeedRandom parameters for NUMEriC data...........cccoeeeiiiiiiiiiiiiiiieee e 15
B-1 OCI Function Names and DeSCIIPLIONSuueeiiiieeaiiiiiiiiieiee et e e e e e 2

XVi

Part |

Concepts

Part I, Concepts, contains the following chapters:

Chapter 1, “
Chapter 2, “
Chapter 3, “
Chapter 4, “
Chapter 5, “

Overview”

Data Types”

Concepts”

Using the Oracle Cryptographic Toolkit”

Random Number Generator”

1

Overview

This chapter provides an overview of the Oracle Cryptographic Toolkit. The follow-
ing topics are discussed:

« “What is the Oracle Security Server?”

« “What is the Oracle Cryptographic Toolkit?”

« “Oracle Cryptographic Toolkit Functional Layers”
« “Oracle Cryptographic Toolkit Elements”

« “Types of Interfaces”

Overview 1-1

What is the Oracle Security Server?

1.1 What is the Oracle Security Server?

The Oracle Security Server is a portable security service that provides a centralized
global authentication and authorization framework. It provides enterprise security
by using public key cryptography to authenticate users, control user access to data,
and protect sensitive data. These functions are achieved through the use of public
key cryptography for encryption, digital signatures, and user authentication.

The Oracle Security Server uses X.509 v1 certificates as its authentication mecha-
nism. The X.509 v1 certificate is a standard format for digitally signed certificates
that contain information such as a user’s identity, authorizations, and public key
information.

X.509 v1 certificates are used to access secure network systems. Users obtain certifi-
cates so they can identify themselves, present their access credentials, and obtain a
secure network connection with other cryptographically secure users or systems.

1.1.1 Oracle Security Server Features
The Oracle Security Server supports the following features.

Certificate Authority Capability

Customers can create their own certificate authorities (CA), create certificates for
their users, and manage user authorizations and roles using the Oracle Security
Server.

A certificate authority is a trusted entity that certifies that other entities are who
they say they are. The CA is something of an electronic notary service: it generates
and validates electronic IDs in the form of certificates that are the equivalent of
driver’s licenses or passports. The CA uses its private key to sign each certificate:
an entity that receives a certificate from the CA can trust that signature just as a per-
son in real life can trust the written signature of a notary.

X.509 v1 Certificate

A certificate is a message, signed by the CA, stating that a specified public key
belongs to someone or something with a specified name. Certificates prevent some-
one from using a phony key to impersonate another party and also enable parties
to exchange keys without contacting a CA for each authentication. Distributing
keys in certificates is as reliable as if the keys were obtained directly from the CA.
Certificate-based authentication works even when the security database server is
temporarily unavailable.

1-2 Oracle Cryptographic Toolkit Programmer’s Guide

What is the Oracle Security Server?

The authentication mechanism used by the Oracle Security Server is based on the
International Telecommunications Union (ITU) X.509 v1 certificates. X.509 is a stan-
dard format for digitally signed certificates. It conveys a user’s identity and public
key data.

Certificate Revocation List (CRL)

A certificate revocation list (CRL) is a data structure, signed and timestamped by a
CA, that lists all of the certificates created by the CA that have not yet expired but
are no longer valid. CRLs are used to revoke security privileges and for compro-
mise management.

A party retrieving a certificate from the CA can check one or more CRLSs to see
whether that certificate has been revoked. However, since checking a CRL incurs
significant overhead, users may want to make these checks only for documents that
are especially important, or they may want to limit themselves to only random, or
periodic, checks of the CRLs.

Certificate Management Services

The Oracle Security Server Manager provides the user with a graphical user inter-
face that is used to create, store, and revoke certificates.

Oracle Enterprise Manager Administration Tool

The Oracle Security Server Manager is implemented as an Oracle Enterprise Man-
ager applet. This applet is a graphical user interface to the command line version of
the Oracle Security Server Manager.

Command Line Administration Tools

The Oracle Security Server Manager is also implemented as a set of command line
tools. These command line tools give you access to the same Oracle Security Server
features as the Oracle Enterprise Manager tool.

Overview 1-3

What is the Oracle Cryptographic Toolkit?

1.2 What is the Oracle Cryptographic Toolkit?

The Oracle Cryptographic Toolkit is an interface to the cryptographic services pro-
vided by the Oracle Security Server. It is intended to unify all cryptographic ser-
vices, including the use, storage, retrieval, import, and export of credentials. This
interface is used by both internal and external Oracle customers to add security
enhancements to their applications. External customers can use either OCI or PL/

SQL to access the Oracle Cryptographic Toolkit.

Refer to Figure 1-1, “Relationship between Toolkit and Services”, for an overview
of who uses the Oracle Security Server and the Oracle Cryptographic Toolkit and

how the two are related.

Figure 1-1 Relationship between Toolkit and Services

External Oracle

Applications
I
PL/SQL OClI
|
C
o I
Sign, Yerify, Open, Close, AP'
________ Encrypt, Hash Create, Delete” =~~~ """~ 7"777"
| Open, Close, ICreate, Delete |
Cr_yptographlc Personal!dentlty _gtotre, — | \Wallet Functions
Engine Functions Functions eteve
Abstract é)ry_ptographlc Repasitory /0
ngine
Software Hardware File Cracle Hardware

1-4 Oracle Cryptographic Toolkit Programmer’s Guide

Oracle Cryptographic Toolkit Functional Layers

The Oracle Cryptographic Toolkit presents an abstraction that hides keys and X.509
v1 certificates from the application. The application, then, works with wallets,
trusted identities, and personas. A wallet is a storage abstraction that can be
located on the file system, in a database, or in a hardware device; a trusted identity
is similar to a certificate; and a persona is a combination of a certificate and its asso-
ciated private key.

1.3 Oracle Cryptographic Toolkit Functional Layers

The Oracle Cryptographic Toolkit is comprised of four functional layers: an API
layer, a Cryptographic Engine Functions layer, a Persona/Identity Functions layer,
and a Wallet Functions layer. Refer to Figure 1-1, “Relationship between Toolkit
and Services”.

1.3.1 API Layer

The API layer contains three interfaces, or points of entry, into the Oracle Crypto-
graphic Toolkit. The three points of entry are OCI, PL/SQL, and raw C (for Oracle
internal customers only). The OCI and PL/SQL interfaces are actually wrappers
around the raw C interface.

1.3.2 Cryptographic Engine Functions

The Cryptographic Services layer consists of all the cryptographic services avail-
able to the Oracle Security Server. These services include the use, storage, retrieval,
import and export of credentials. This layer consists of two main components: a
cryptographic engine and an abstract cryptographic engine.

Cryptographic engine functions are built on top of a set of primitives presented by
the abstract cryptographic engine. The cryptographic engine issues a function call
to the abstract cryptographic engine. After it issues the function call, the crypto-
graphic engine verifies that the correct amount of memory is available for any out-
put from the abstract cryptographic engine and that the cipher keys are available in
the appropriate format. A cryptographic engine function provides a single interface
to the application. Following is a list of cryptographic engine functions.

Attached sign/verify

The signature generated from a message is attached to that message. The Oracle
Cryptographic Toolkit:

« supports both RSA and DSS signatures

« defines and supports an Oracle proprietary signature format

Overview 1-5

Oracle Cryptographic Toolkit Functional Layers

« will support industry standard signature formats such as PKCS #7 and
W3C DSig blocks

Detached sign/verify
The signature generated from a message is kept separate from that message. The
Oracle Cryptographic Toolkit:

« supports both RSA and DSS signatures

« defines and supports an Oracle proprietary signature format

« will support industry standard signature formats such as PKCS #7 and
W3C DSig blocks

Hash

The cryptographic checksum of an entity. Both MD5 and SHA hash algorithms are
supported.

Keyed hash

The cryptographic checksum of a message with an additional key folded in. Both
MD?5 and SHA hash algorithms are supported.

Random Numbers

Pseudo random number generation. The Oracle Cryptographic Toolkit generates
random integers, random sequences of bytes, and allows the application to change
the seed value.

1.3.3 Persona/ldentity Functions

The Wallet provides storage and retrieval of personas and identities for use with
various cryptographic engine functions. In order for an application to call the cryp-
tographic engine functions, the wallet must contain at least one persona. The Ora-
cle Cryptographic Toolkit relies on the persona to carry specific information about
what cryptographic algorithm to use with a cryptographic engine function. The
application configures the persona for a particular purpose and then uses one or
more cryptographic engine functions. The application can therefore treat a persona
as a set of security contexts: one for each cryptographic engine function.

1.3.4 Wallet Functions

The Wallet Functions layer implements one or more repositories referred to as wal-
lets. A wallet implements a single way to store, retrieve, and use credentials that

1-6 Oracle Cryptographic Toolkit Programmer’s Guide

Oracle Cryptographic Toolkit Elements

can be located on a file system, a database, or a hardware device. Applications
access one or more of these wallets to select personas and identities.

The wallet provides location transparency in two ways. First, the wallet can be
located on a file system, in a database, or in a hardware device. Second, each cre-
dential stored in a wallet can exist as a typed reference rather than as the actual cre-
dential.

The Oracle Cryptographic Toolkit wallet interface becomes a wrapper around the
wallet style interface presented by hardware devices. File-based wallets can be
treated like a wallet when the format of their credentials are well known. For exam-
ple, Oracle proprietary, Netscape, and Spyglass file based wallets can be treated as
wallets.

In this release, only the default wallet is supported; it is located on a file system.
The wallet’s location is defined with the oss.source_my wallet SQLNET.ORA
parameter .

Note: The wallet must be created using the osslogin command line
tool. Refer to Chapter 3, "Installing and Configuring the Oracle Security
Server", in the Oracle Security Server™ Guide.

1.4 Oracle Cryptographic Toolkit Elements

1.4.1 Identity

The Oracle Cryptographic Toolkit works with the following basic elements:
« “ldentity”
« “Trusted Identity”
= “Persona”
« “Wallet”

An identity is the public information for an entity. The identity of an object consists
of the binding of a public key and other public information for that entity. Every
identity has a type: for example, X.509 v1. Refer to Figure 1-2, “ldentity”, for an
illustration of the structure of an identity.

Overview 1-7

Oracle Cryptographic Toolkit Elements

Figure 1-2 Identity

Identity

|
has

v

Type

composed of

Certificate

X.509 Certificate Chain

1.4.2 Trusted Identity

A trusted identity (or trust point) is an identity that is considered trustworthy. This
trusted identity is then used to validate other identities. For example, an X.509 type
trusted identity is a Certificate Authority.

1.4.3 Persona

A persona contains an identity, the private information for an entity, a list of actions
that can be performed (for example, DSS, RSA, or symmetric key encryption), a set
of message formats, and a set of trusted identities. Each persona has a type that it
inherits from its identity: for example, X.509 v1.

Refer to Figure 1-3, “Persona”, for an illustration of a persona.

1-8 Oracle Cryptographic Toolkit Programmer’s Guide

Oracle Cryptographic Toolkit Elements

Figure 1-3 Persona

Persona

r Y

Identity Trusted
(self) Identities

1.4.4 Wallet

The Oracle Cryptographic Toolkit also works with one or more repositories called
wallets. Wallets are containers that store trusted identities and personas. Refer to
Figure 1-4, “Wallet”, for an overview of the relationship between these elements.

Figure 1-4 Wallet

Identity x
(self)

stored—= Persona

Zero or more |
Trusted stored
Identities

VWWallet

Overview 1-9

Types of Interfaces

1.5 Types of Interfaces

The Oracle Cryptographic Toolkit is accessed using two types of interfaces: the
Oracle Call Interface and the PL/SQL Interface.

1.5.1 Oracle Call Interface

Oracle client programs use the Oracle call interface to access Oracle Security Server
functions. Refer to Chapter 6, “OCI Functions for C”, for detailed Oracle call inter-
face programming information.

1.5.2 PL/SQL Interface

Oracle server programs use the Oracle PL/SQL interface to access Oracle Security
Server functions. Refer to Chapter 7, “PL/SQL Functions”, for detailed PL/SQL
interface programming information.

1-10 Oracle Cryptographic Toolkit Programmer’s Guide

2

Data Types

This chapter discusses Oracle Cryptographic Toolkit external datatype codes. The
following topics are covered:

« “Data Types”

« “Data Structures”

Data Types 2-1

Data Types

2.1 Data Types

Each data type name and its corresponding data type prefix used in the Oracle
Cryptographic Toolkit is listed as a subheading below. The table below each sub-
heading lists the possible data type values and their corresponding descriptions.

2.1.1 Name Prefixes

Each data type used in the Oracle Cryptographic Toolkit has a unique prefix. Fol-
lowing is a list of Oracle Cryptographic Toolkit data type names and prefixes.

Table 2-1 Data Types

Data Type Name Prefix Used
Crypto Engine State nzttces_
Crypto Engine Functions nzttcef

Identity Type
Cipher Types
TDU Formats
Validate State

nzttidenttype_
nzttciphertype_
nztttdufmt_

nzttvalstate_

Unique ID nzttid_
Timestamp nztttstamp_
2.1.2 Crypto Engine State
nzttces Enumerated type listing the current state of the cryptographic engine
(CE).
States are:

NZTTCES_CONTINUE
NZTTCES_END
NZTTCES_RESET

Continue processing input
End processing input

Reset processing and skip generating output

2-2 Oracle Cryptographic Toolkit Programmer’s Guide

Data Types

2.1.3 Crypto Engine Functions
nzttcef Enumerated type to show the cryptographic engine categories.

Types are:

NZTTCEF_DETATCHEDSIGNATURE Signature, detached from content

NZTTCEF_SIGNATURE Signature, combined with content
NZTTCEF_KEYEDHASH Keyed hash/checksum
NZTTCEF_HASH Hash/checksum
NZTTCEF_RANDOM Random byte generation
NZTTCEF_LAST Used for array size

2.1.4 |dentity Type
nzttldentType Enumerated type to indicate the type of identity.

Types are:

NZTTIDENTTYPE_X509v1 X.509v1
NZTTIDENTTYPE_X509v3 X509v3
NZTTIDENTTYPE_SYMMETRIC Symmetric

2.1.5 Cipher Types
nzttCipherType Enumerated type listing all possible cryptographic algorithms.

Types are:
NZTTCIPHERTYPE_MD5 MD5
NZTTCIPHERTYPE_SHA SHA

Data Types 2-3

Data Types

2.1.6 TDU Formats

nzttdufmt Enumerated type listing all possible toolkit data unit (TDU) formats.
Depending on the function and cipher used, some may not be available.

Types are:

NZTTDUFMT_PKCS7 PKCS7 format
NZTTDUFMT_RSAPAD RSA padded format
NZTTDUFMT_ORACLEV1 Oracle v1 format

2.1.7 Validate State

nzttValState Enumerated type listing states an identity can be in.
States are:
NZTTVALSTATE_NONE Needs to be validated
NZTTVALSTATE_GOOD Validated
NZTTVALSTATE_REVOKED Failed to validate
2.1.8 Unique ID
nzttid
nzttID Unique IDs for personas and identities repre-

sented with 128 bits

2.1.9 Timestamp

nztttstamp

nzttTStamp Timestamp as a 32 bit quantity in UTC

2-4 Oracle Cryptographic Toolkit Programmer’s Guide

Data Structures

2.2 Data Structures

Following is a list of Oracle Cryptographic Toolkit data structures. Each data struc-
ture is listed along with a brief description.

Table 2-2 Data Structures and Descriptions

Name of Data Structure Description

nzttBufferBlock This is an output parameter block used to describe each buffer

nzttWallet The Wallet structure contains a list of personas stored in that
wallet and private wallet information

nzttPersona The Persona structure contains information about a persona

nzttldentity The Identity structure contains information about an identity

2.2.1 nzttBufferBlock

A function uses an output parameter block to describe each buffer when that func-
tion needs to fill (and possibly grow) an output buffer. The flags_nzttBufferBlock
member tells the function whether the buffer can be grown. The buffer is automati-
cally reallocated when flags_nzttBufferBlock is 0.

The buflen_nzttBufferBlock member is set to the length of the buffer before the
function is called and equals the length of the buffer when the function is finished.
If buflen_nzttBufferBlock is 0, then the initial pointer stored in
buflen_nzttBufferBlock is ignored.

The usedlen_nzttBufferBlock member is set to the length of the object stored in the
buffer when the function is finished. If the initial buffer had a non zero length, then
it is possible that the object length is shorter than the buffer length.

The buffer_nzttBufferBlock member is a pointer to the output object. Refer to
Table 2-3, “nzttBufferBlock”.

Table 2-3 nzttBufferBlock

Type Name Description

uword flags_nzttBufferBlock Flags

size t buflen_nzttBufferBlock Total length of buffer

size_t usedlen_nzttBufferBlock Length of buffer actually used
ubl *buffer_nzttBufferBlock Pointer to buffer

Data Types 2-5

Data Structures

2.2.2 nzttWallet

The wallet structure contains one or more personas. Each of these personas con-
tains its private key, its identity, and trusted third party identities. All identities are
gualified with trust where the qualifier can indicate anything from untrusted to
trusted for specific operations. Refer to Table 2-4, “nzttWallet”.

Table 2—4 nzttWallet

Description

Type Name
size t npersona_nzttWallet
nzttPersona list_nzttWallet

nzttWalletPrivate private_nzttWallet

Number of personas in the wallet
List of personas in the wallet

Private wallet information

2.2.3 nzttPersona

The persona structure contains information about a persona. Refer to Table 2-5,

“nzttPersona”.

Table 2-5 nzttPersona

Type Name Description

nzttldentity myidentity nzttPersona My identity

size t nidents_nzttPersona Number of trusted identities
nzttldentity list_nzttPersona List of trusted identities

nzttPersonaPrivate private_nzttPersona

Opaque part of persona

2.2.4 nzttldentity

The identity structure contains information about an identity. Refer to Table 2-6,

“nzttldentity”.

Table 2—-6 nzttldentity

Type Name Description

size_t aliaslen_nzttldentity Length of alias

text alias_nzttldentity Alias

size t commentlen_nzttldentity Length of comment
text comment_nzttldentity Comment

nzttldentityPrivate private_nzttldentity

Opaque part of identity

2-6 Oracle Cryptographic Toolkit Programmer’s Guide

3

Concepts

This chapter discusses concepts behind the Oracle Cryptographic Toolkit. The fol-
lowing topics are discussed:

« “Security Concepts”

« “Oracle Cryptographic Toolkit Concepts”

Concepts 3-1

Security Concepts

3.1 Security Concepts

Following is a list of security concepts used in this document. Refer to Section 1.1.1,
“Oracle Security Server Features”, for an explanation of how these concepts apply
to the Oracle Cryptographic Toolkit.

Authentication

The recipient of an authenticated message can be certain of the message’s origin (its
sender). Authentication reduces the possibility that another person has imperson-
ated the sender of the message.

Authorization
The set of privileges available to an authenticated entity.

Certificate

An entity’s public key signed by a trusted identity (certificate authority) in the form
of a certificate. This certificate gives assurance that the entity’s information is cor-
rect and that the public key actually belongs to the entity.

Certificate Authority

An application that creates identities by signing public key certificates and stores
them in a database or a repository. The certificate authority signature certifies that
the information in the certificate is correct and the public key actually belongs to
the entity.

Confidentiality

A function of cryptography. Confidentiality guarantees that only the intended recip-
ient(s) of a message can view the message (decrypt the ciphertext).

Cryptography
The act of writing and deciphering in a secret code resulting in secure messages.

Decryption

The process of converting the contents of an encrypted message (ciphertext) back
into its original readable format (plaintext).

Digital Signature

A public key algorithm is used to sign the sender’s message with the sender’s pri-
vate key. The digital signature means that the document is authentic, has not been

3-2 Oracle Cryptographic Toolkit Programmer’s Guide

Security Concepts

forged by another entity, has not been altered, and cannot be repudiated by the
sender.

Encryption

The process of disguising the contents of a message and rendering it unreadable
(ciphertext) to anyone but the intended recipient.

Integrity
The guarantee that the contents of the message received were not altered from the
contents of the original message sent.

Non-repudiation
Undeniable proof of the origin, delivery, submission, or transmission of a message.

Public-Key Encryption

The process by which the sender of a message encrypts the message with the public
key of the recipient. Upon delivery, the message is decrypted with the recipient’s
private key.

Public/Private Key Pair

Each private key has an associated public key that anyone can access. Data
encrypted with a public key can be decrypted with its associated private key and
vice versa. However, data encrypted with a public key cannot be decrypted with a
public key.

X.509

The ISO authentication framework uses public key cryptography (X.509 protocols).
X.509 has a structure for public key certificates. This framework allows for authenti-
cation across networks to occur.

Concepts 3-3

Oracle Cryptographic Toolkit Concepts

3.2 Oracle Cryptographic Toolkit Concepts

Following is a list of Oracle Cryptographic Toolkit concepts. Refer to Section 1.3,
“Oracle Cryptographic Toolkit Functional Layers” for information on how these
concepts are implemented.

Cryptographic Engine
A cryptographic engine (CE) is an implementation of cryptographic functions. The
CE can be software based, such as RSA’s BSAFE, or it can be hardware based, such
as a FORTEZZA card.

Detached Signature

A detached signature gives you the ability to manipulate the message indepen-
dently of the signature for that message. Use a detached signature to sign an object
that can be used with or without signature verification (for example, applets and
database rows).

Entity
An entity is a person (physical or imaginary) or a process.

Enveloping

Enveloping is the process of digitally signing a message for authentication and
encrypting the message with the recipient’s public key for privacy. It provides both
sender verification and message privacy.

Identity

An identity is composed of the public key and any other public information for an
entity. The public information may include user identification data: an e-mail
address, for example.

Persona

A persona is the combination of an identity (public information) and its associated
private information. A persona’s type is inherited from that persona’s identity. A
persona is always protected by a password associated with the wallet.

Personal Resource Locator

The personal resource locator (PRL) acts as a reference to a group composed of a
persona, its self-identity, and its trusted identities. It is a string in the format:

type:parameters

3-4 Oracle Cryptographic Toolkit Programmer’s Guide

Oracle Cryptographic Toolkit Concepts

where type is one of the defined persona types and parameters is 0 or more param-
eters necessary to access the persona. The platform specific PRL can be specified
with:

default:

to indicate that the persona is contained inside the wallet and can provide an addi-
tional protection key that is specific for this persona.

Note: The value of the platform specific PRL above is default , because
only the default wallet is supported in this release of the Oracle Crypto-
graphic Toolkit.

Protection Set

A protection set is a list of tuples (elements) in the form ((cryptographic-function-1,
format, algorithm(s), parameter(s)) (cryptographic-function-2, format, algorithm(s),
parameter(s)), ...). It represents the current set of algorithms and message formats
to be used with the cryptographic functions.

Recipient Oriented Encryption

Recipient Oriented Encryption is the process of encrypting a message with a ran-
domly generated symmetric key and then encrypting the encrypted message with
the public key of the recipient.

Signature
See “Digital Signature”.

Symmetric Encryption

Symmetric Encryption is an encryption method where both of the communicating
parties agree on a secret key (or algorithm) that can be used to both encrypt and
decrypt a message.

Toolkit Data Unit

A toolkit data unit (TDU) is an encoding of possibly formatted and/or cryptograph-
ically altered data that is created by an application using the Oracle Cryptographic
Toolkit. The TDU is usually transferred to another application that, in turn, uses the
Oracle Cryptographic Toolkit to decrypt the TDU back into data. The TDU is the

Concepts 3-5

Oracle Cryptographic Toolkit Concepts

message granularity of the Oracle Cryptographic Toolkit, and it is transport inde-
pendent.

Trust Point

A trust point is a third party identity contained within a persona that is qualified
with a level of trust. The trust point is used when an identity is being validated as
the entity it claims to be.

Wallet

A wallet implements the storage and retrieval of credentials for use with various
cryptographic services. It represents a storage facility that is location and type trans-
parent once it is opened. A Wallet Resource Locator provides all the necessary infor-
mation to locate the wallet.

A Wallet Resource Locator (WRL) is a string in the format:
type:parameters

where type is one of the defined wallet types and parameters is 0, or more, parame-
ters necessary to access the wallet. The platform specific WRL can be specified with:

default:

to quickly access the default wallet.

Note: The value of the platform specific WRL above is default , because
only the default wallet is supported in this release of the Oracle Crypto-
graphic Toolkit.

3-6 Oracle Cryptographic Toolkit Programmer’s Guide

A

Using the Oracle Cryptographic Toolkit

This chapter shows you how to program using the Oracle Cryptographic Toolkit.
The following topics are discussed:

“Basic Oracle Cryptographic Toolkit Program Flow”

“A Programming Example”

Using the Oracle Cryptographic Toolkit 4-1

Basic Oracle Cryptographic Toolkit Program Flow

4.1 Basic Oracle Cryptographic Toolkit Program Flow

The following section describes the typical program flow for those who want to use
the Oracle Cryptographic Toolkit and provides program code examples for calling
the available functions. Refer to Figure 4-1, “Oracle Cryptographic Toolkit Program
Flow”, below, for an illustration of how a typical program flows using the Oracle
Cryptographic Toolkit.

Figure 4-1 Oracle Cryptographic Toolkit Program Flow

Initialize Environment

1

Allocate Handles and Data Structures

1

Use Cryptographic Services from the
Oracle Security Server

1

Free Handles

!

Disconnect

4.2 A Programming Example

This section first lists the programming steps to follow when you use the Oracle
Cryptographic Toolkit. The balance of this chapter provides the following sample
code for your use:

“An Example: Generating a detached signature for an array of bytes”

4-2 Oracle Cryptographic Toolkit Programmer’s Guide

A Programming Example

4.2.1 Using the Oracle Cryptographic Toolkit

Follow steps 1 - 5 to access the Oracle Security Server.

1.

Once the OCI process has been initialized with OCllInitialize and the environ-
ment has been initialized with OCIEnvInit (refer to the Programmer’s Guide to
the Oracle Call Interface), the security handle can be created with OCIHandleAl-
loc and initialized with OClSecuritylnitialize. The security handle is used with
subsequent calls to the Oracle Cryptographic Toolkit.

OCIEmor *error_handle = (OCIEror *) NULL,;
OCISecurity *security_handle = (OCISecurity *) NULL;

F
*The OCI process and environment have already been initialized.
*

OClHandleAlloc((dvoid *) env_handle, (dvoid **) &error_handle,
(ub4) OCI_HTYPE_ERROR,
(size_t) 0,(dvoid **) 0),

OClHandleAlloc((dvoid *) env_handle,
(dvoid **) &security_handle,
(ubd) OCI_HTYPE_SECURITY, (size_t) O,
(@void ™) 0);

OClSecurityinitialize(security_handle, error_handle);
Typically, an application will first need to open a wallet in order to get its per-
sona and gain access to the list of trusted identities. The wallet location is speci-

fied through a Wallet Resource Locator (WRL), and if the contents have been
protected with a password, the correct password must be provided as well.

nzttWallet wallet;

OClSecurityOpenWallet(security_handle, error_handle,
wrllen, wrl,

passlen, password,
&wallet)

Using the Oracle Cryptographic Toolkit 4-3

A Programming Example

3.

Next, an application will choose a persona from the wallet and open it to pre-
pare it for use.

nzttPersona *persona;

/k
* Use the first persona in the wallet.
*
persona = &walletlist_nzttWallet{O];

OCISecurityOpenPersona(security_handle, error_handle, persona);

The application can now perform a cryptographic function such as signing
some data:

nzttBufferBlock signature;

memset(&signature, 0, sizeof(signature));

OClSecuritySign(security_handle, error_handle, persona,
NZTTCES_END, strlen((char *)"Some data’),
"Some data", &signature);

During termination, the application should call OCIHandleFree to deallocate
the security handle once the wallet has been closed and the security subsystem
has been terminated.

OClSecurityCloseWallet(security_handle, error_handle, &wallet);
OCISecurityTerminate(security_handle, error_handle);
OClHandleFree((dvoid *) security_handle, OCl_HTYPE_SECURITY);

4-4 Oracle Cryptographic Toolkit Programmer’s Guide

A Programming Example

4.2.2 An Example: Generating a detached signature for an array of bytes

The following code sample shows you how to generate a detached signature for an
array of bytes. For brevity, errors are checked but are not displayed. Refer to Part
11, “Appendices”, for a complete code example.

#include <oratypes.h>

#indef OC|_ ORACLE
#include <oci.h>
#endif

#ifndef OCIDFN
#include <ocidfin.h>
#endif

#ifdef_ STDC__
#include <ociap.h>
#else

#include <ocikp.h>
#endif

static text phrase[] ="This is a static text phrase”;

intmain(argc, argv)

intargc;

char *argv;

{
nzttWallet wellet; FWallet structure */
nzttBufferBlock signature; * Detached signature */

nzttPersona *persona = (nzttPersona *)NULL; /* Persona used to sign */
OCIEnv *env_handle = (OCIEnv*NULL; /* OCl environement handle */
OCIEnor *error_handle = (OCIErmor *)NULL; /* OCl error handle */
OClSecurity *security_handle = (OCISecurity)NULL; * OCI security handle®/

I
* Clear out the wallet and signature structures so that if an
* error occurs before they are used, they are not mistaken for
* holding allocated memory.
*
/
memset(&wallet, 0, sizeofiwallet));
memset(&signature, 0, sizeof(signature));
I
* |Initialize the OCI process.
*
/

Using the Oracle Cryptographic Toolkit 4-5

A Programming Example

if (OCI_SUCCESS

1= OClinitialize((ub4) OCI_DEFAULT (dvoid *)0,(dvoid *(*)())0,
{ (@void *()0)0, (void(*)0)0))

goto exit;
}

*
* Initialize the OCI environment.
*
if (OCl_SUCCESS
1= OCIEnVInit(OCIEnv *)&env_handle,(ub4)OCI_DEFAULT, (size_t)0,
(dvoid *)0))
{
goto ext;
}

*
* Create an emor handle.
*
if (OCl_SUCCESS
= OClHandleAlloc((dvoid *)env_handle, (dvoid *)&error_handle,
(Ub)OCI_HTYPE_ERROR, (size_t)0, (dvoid **)0))
{
goto exit;
}

F
* Create a security handle
*
if (OCl_SUCCESS
I= OCIHandleAlloc((dvoid *)env_handle, (dvoid **)&security_handle,
(Ub4)OCI_HTYPE_SECURITY, (size_t)0, (dvoid **)0))
{
goto exit;
}

F
* |nitialize the security subsystem.
¥
if (OCI_SUCCESS != OClSecuritylnitialize(security_handle, emor_handle))
{
goto exit;
}

4-6 Oracle Cryptographic Toolkit Programmer’s Guide

A Programming Example

I

*QOpenthe wallet. Since NZT_DEFAULT _WRL is used as the wallet

*WRL, the platform specific default wallet will be used. Note,

*as well, that this wallet has no password (NZT_NO_PASSWORD).

*

if ©Cl_SUCCESS

1= OClSecurityOpenWallet(security_handle, error_handle,

stlen(NZT_DEFAULT_WRL), NZT_DEFAULT_WRL,
stlen(NZT_NO_PASSWORD), NZT_NO_PASSWORD,

&wallet))
{
goto exit;
}
F
* Use the first persona in the wallet.

*
persona = &wallet->list_nzttWallef0];

F
* Open the persona and prepare it for use.
¥
if OCI_SUCCESS
1= OClSecurityOpenPersona(security_handle, error_handle, persona))
{
goto exit;
}

I
* Create a detached signature for the phrase. This means that
*when the signature is verified, the original phrase will need to
* be provided since itis not attached to the signature. The
*variable signature contains the output.
%
/
if OCI_SUCCESS
1= OClSecuritySignDetached(security_handle, error_handle, persona,
NZTTCES_END, strien((char *)phrase),
phrase, &signature))
{
goto exit;
}

exit
DISCARD OClSecurityPurgeBlock(security_handle, error_handle, &signature);

Using the Oracle Cryptographic Toolkit 4-7

A Programming Example

}

DISCARD OClSecurityCloseWallet(security_handle, error_handle, &wallet);

F
* Free the various handles (if allocated). Delay freeing the error
*handle so that errors can be generated until the last possible
* moment.
¥
if (security_handle)
{
DISCARD OClSecurityTerminate(security_handle, emor_handle);
DISCARD OCIHandleFree((dvoid *)security_handle, OCI_HTYPE_SECURITY);
}

if emor_handle)

{
DISCARD OClHandleFree((dvoid *)error_handle, OCl_ HTYPE_ERROR);

}

if (env_handle)
{

DISCARD OCIHandleFree((dvoid *)env_handle, OCI_HTYPE_ENV);
}

relumO;

4-8 Oracle Cryptographic Toolkit Programmer’s Guide

D

Random Number Generator

This chapter discusses the Oracle Cryptographic Toolkit random number genera-
tor. The following topics are covered:

= “Overview”
= “Functions”

« “Example”

Random Number Generator 5-1

Overview

5.1 Overview

The random number generator is built on top of the Oracle Cryptographic Toolkit.
This tool is intended for users who want to generate random data for their applica-
tions.

5.2 Functions

The random number generator is composed of the following:

PROCEDURE Initialize (seed IN BINARY_INTEGER)

This procedure is used before the random number generator package is called. The
procedure takes a seed which initializes the random number generator. The seed
can be any value between -9999999999 and 9999999999.

Note: You must call this procedure before using any of the other
procedures or functions. Otherwise, an exception will be raised.

PROCEDURE Seed (seed IN BINARY_INTEGER)
This procedure resets the seed used by the random number generator.

FUNCTION Random RETURN BINARY_INTEGER
The function returns a random number between -9999999999 and 9999999999.

PROCEDURE Terminate
This procedure must be called when the package is no longer needed.

5.3 Example

The following code fragment is an example of how to use the random number gen-
erator package.

DECLARE
i BINARY_INTEGER;

BEGIN
dbms_random.initialize(19254);
i:=dbms_random.random;
INSERT INTO some_table VALUES();
dbms_random.terminate;

END;

5-2 Oracle Cryptographic Toolkit Programmer’s Guide

Example

Note: Itis not currently possible to use the return value of RAN-
DOM directly in a SQL statement. The following is not allowed, for
example:

INSERT_INTO some_table VALUES(DBMS_RANDOM.RANDOM);

Random Number Generator 5-3

Example

5-4 Oracle Cryptographic Toolkit Programmer’s Guide

Part ||

Reference

Part 11, Reference, contains the following chapters:
« “OCI Functions for C”
« “PL/SQL Functions”

6

OCI Functions for C

This chapter describes each Oracle Call Interface (OCI) function in the Oracle Cryp-
tographic Toolkit. Each OCI function description contains the following informa-
tion:

Purpose Describes what the function does

Parameter Descriptions Lists a detailed description of each parameter name along with
its description, mode, and type

Comments Gives detailed information about the OCI function and includes
an example
Errors Lists some of the possible values returned by the function.

Refer to Chapter 2, OCI Programming Basics, in the Programmer’s Guide to the Oracle
Call Interface™ for an overview of the steps involved in calling OCI functions.

Refer to Appendix B, “OCI - APl Mappings” for a list of OCI functions and the API
functions to which they map.

OCI Functions for C 6-1

OCISecuritylnitialize

6.1 OCISecuritylnitialize

OClSecuritylnitialize must be called after the user gets a security handle but before
any security function is called.

Error Handles
Error handles are passed as parameters to OCI calls. Error handles are allocated at
the beginning of an OCI application. The following handles are passed:

Table 6-1 OCISecurityinitialize Handles

Handle Type Handle Name
OClISecurity osshandle
OCIError error_handle

6-2 Oracle Cryptographic Toolkit Programmer’s Guide

OCISecurityTerminate

6.2 OClSecurityTerminate

Purpose
OCISecurityTerminate must be called after the user has finished using the security
routines.

Parameter Descriptions
Following is a list of parameters and their descriptions.

Table 6-2 OCISecurityTerminate parameters

Parameter Name Description
OCISecurity osshandle
OCIError error_handle

OCI Functions for C 6-3

OCISecurityOpenWallet

6.3 OCISecurityOpenWallet

Purpose
OCISecurityOpenWallet opens a wallet based on the wallet resource locator (WRL).

Parameter Descriptions
Following is a list of parameters, their descriptions, modes, and types.

Table 6-3 OCISecurityOpenWallet parameters

Parameter Name Description Mode Type
OCISecurity osshandle

OCIError error_handle

wrllen Length of wallet resource locator [IN] size t
wallet_resource_locator Wallet resource locator [IN] text
pwdlen Length of password [IN] size_t
password Password [IN] text
wallet Initialized wallet structure [IN] nzttWallet

Comments
Defaults: The platform specific WRL default is used when the WRL is
NZT_DEFAULT_WRL. Use the WRL type specific default (e.g., “oracle:”) when
only the wallet type is specified.

A wallet is opened and its password is verified by hashing it and comparing the
result with the password hash stored with the wallet. The list of personas and their
associated identities is built and stored into the wallet structure.

Implication: An Oracle based wallet can be implemented either in a user’s private
space or in world readable space.

6-4 Oracle Cryptographic Toolkit Programmer’s Guide

OCISecurityCloseWallet

6.4 OCISecurityCloseWallet

Purpose
OClSecurityCloseWallet closes a wallet based on the wallet resource locator (WRL).

Parameter Descriptions
Following is a list of parameters, their descriptions, modes, and types.

Table 6-4 OCISecurityCloseWallet parameters

Parameter Name Description Mode Type
OCISecurity osshandle

OCIError error_handle

wallet Initialized wallet structure [IN] nzttWallet

Comments

Closing a wallet also closes all personas associated with that wallet. Any changes
you have made to the persona will not automatically be saved.

Implication: An application can modify a persona, but the persona will revert to
what it was in the wallet if it is not explicitly saved.

OCI Functions for C 6-5

OCISecurityOpenPersona

6.5 OCISecurityOpenPersona

Purpose
OCISecurityOpenPersona opens a persona in a wallet.

Parameter Descriptions
Following is a list of parameters, their descriptions, modes, and types.

Table 6-5 OCISecurityOpenPersona parameters

Parameter Name Description Mode Type

OCISecurity osshandle

OCIError error_handle

persona Persona {IN/OUT} nzttPersona
Comments

A persona must be selected and opened before a cryptographic engine function can

be used. The opened persona then initializes the protection set to either the system

defaults or persona specific preferences. The opened persona also contains and

maintains any state information necessary for the cryptographic engine functions.
Returns

Following is a list of possible error codes returned by this function.

Table 6-6 OCISecurityOpenPersona errors

Error Explanation

NZERROR_TK_PASSWORD Password failed to decrypt persona
NZERROR_TK_BADPRL Persona resource locator did not work
NZERROR_RIO_OPEN Could not open persona (see network trace file)

6-6 Oracle Cryptographic Toolkit Programmer’s Guide

OCISecurityClosePersona

6.6 OCISecurityClosePersona

Purpose
OCISecurityClosePersona closes a persona in a wallet.

Parameter Descriptions
Following is a list of parameters, their descriptions, modes, and types.

Table 6-7 OCISecurityClosePersona parameters

Parameter Name Description Mode Type

OCISecurity osshandle

OCIError error_handle

persona Persona {IN/OUT} nzttPersona
Comments

A persona is not stored when it is closed; it only releases the memory associated

with the crypto engine.
Returns

Following is a list of possible error codes returned by this function.

Table 6-8 OCISecurityClosePersona errors

Error Explanation

NZERROR_OK Success

NZERROR_TK_PASSWORD Password failed to decrypt persona
NZERROR_TK_BADPRL Persona resource locator did not work
NZERROR_RIO_OPEN Could not open persona (see network trace file)

OCI Functions for C 6-7

OClSecuritySign

6.7 OCISecuritySign

Purpose
OCISecuritySign creates an attached signature.

Parameter Descriptions
Following is a list of parameters, their descriptions, modes, and types.

Table 6-9 OCISecuritySign parameters

Parameter Name Description Mode Type
OCISecurity osshandle

OCIError error_handle

persona Open persona acting as signer {IN} nzttPersona
signature_state State of the signature {IN} nzttces
input_length Length of this input part {IN} sizt_t

input This input part {OUT} ubl
buffer_block TDU buffer {IN/OUT} nzttBufferBlock

Comments

This function generates a signature that consists of a cryptographic checksum of
the data to be signed: encrypted with the private key of the signing persona. The
original data is then attached to the signature.

6-8 Oracle Cryptographic Toolkit Programmer’s Guide

OCISecurityVerify

6.8 OCISecurityVerify

Purpose

OCISecurityVerify verifies an attached signature.

Parameter Descriptions
Following is a list of parameters, their descriptions, modes, and types.

Comments

Table 6-10 OCISecurityVerify parameters

Parameter Name Description Mode Type
OCISecurity osshandle

OCIError error_handle

persona Persona {IN} nzttPersona
signature_state State of verification {IN} nzttces
siglen TDU length {IN} size_t
signature Token Data Unit {IN} ubl
extracted_message Extracted message {IN/OUT} nzttBufferBlock
verified TRUE if signature is verified {OUT} boolean
validated TRUE if signing identity validated {OUT} boolean
signing_party_identity Identity of signing party {OUT} nzttldentity

The data from the attached signature is used to generate a cryptographic checksum.
Then the signature part of the attached signature is decrypted using the signing

identity’s public key. The two checksums are then compared to verify they are iden-
tical. The signing identity is also validated to verify that it can be trusted and that it

has not expired.

OCI Functions for C 6-9

OCISecurityVerify

Returns
Following is a list of possible error codes returned by this function.

Table 6-11 OCISecurityVerify errors

Error Explanation

NZERROR_TK_CANTGROW Needed to grow output buffer but could not
NZERROR_TK_NOTOPEN Persona is not open
NZERROR_TK_NOTSUPP Function not supported with persona

6-10 Oracle Cryptographic Toolkit Programmer’s Guide

OCISecurityValidate

6.9 OCISecurityValidate

Purpose
OClSecurityValidate validates an identity.

Parameter Descriptions
Following is a list of parameters, their descriptions, modes, and types.

Table 6-12 OCISecurityValidate parameters

Parameter Name Description Mode Type

OCISecurity osshandle

OCIError error_handle

persona Persona {IN} nzttPersona

identity Identity {IN} nzttldentity

validated TRUE if identity was validated {OUT} boolean
Comments

An identity is validated for trust and to verify that it has not expired.
Returns

Following is a list of possible error codes returned by this function.

Table 6-13 OCISecurityValidate errors

Error Explanation
NZERROR_TK_NOTOPEN Persona is not open
NZERROR_TK_NOTSUPP Function not supported with persona

OCI Functions for C 6-11

OCISecuritySignDetached

6.10 OCISecuritySignDetached

Purpose

OCISecuritySignDetached generates a detached signature.

Parameter Descriptions

Comments

Returns

Following is a list of parameters, their descriptions, modes, and types.

Table 6-14 OCISecuritySignDetached parameters

Parameter Name Description Mode Type
OCISecurity osshandle

OCIError error_handle

persona Persona {IN} nzttPersona
signature_state State of signature {IN} nzttces
input_length Length of this input part {IN} size t

input This input part {IN} ubl

signature TDU buffer {IN/OUT} nzttBufferBlock

The function is identical to OClISecuritySign, but the data to be signed is not
attached to the signature. It generates a signature that consists of a cryptographic
checksum of the data to be signed, encrypted with the private key of the signing
persona.

Following is a list of possible error codes returned by this function.

Table 6-15 OCISecuritySignDetached errors

Error Explanation

NZERROR_TK_NOTSUPP Function not supported with persona

6-12 Oracle Cryptographic Toolkit Programmer’s Guide

OCISecurityVerifyDetached

6.11 OCISecurityVerifyDetached

Purpose
OCISecurityVerifyDetached verifies a detached signature.

Parameter Descriptions
Following is a list of parameters, their descriptions, modes, and types.

Table 6-16 OCISecurityVerifyDetached parameters

Parameter Name Description Mode Type
OCISecurity osshandle

OCIError error_handle

persona Persona {IN} nzttPersona
signature_state State of signature {IN} nzttces
data_length Length of data {IN} size t

data Data {IN} ubl

siglen Input TDU length {IN} size t
signature Input TDU {IN} ub1
verified TRUE if signature is verified {OUT} boolean
validated TRUE if signing identity validated {OUT} boolean
signing_party_identity lIdentity of signing party {OUT} nzttldentity

Comments

This function is identical to OCISecurityVerify, except the signature does not con-
tain the data that will allow it to be verified. The data is provided by the applica-
tion calling the function.

OCI Functions for C 6-13

OCISecurityVerifyDetached

Returns
Following is a list of possible error codes returned by this function.

Table 6-17 OCISecurityVerifyDetached errors

Error Explanation
NZERROR_TK_NOTOPEN Persona is not open
NZERROR_TK_NOTSUPP Function not supported with persona

6-14 Oracle Cryptographic Toolkit Programmer’s Guide

OCISecurityHash

6.12 OCISecurityHash

Purpose

OCISecurityHash generates a hash.

Parameter Descriptions

Comments

Returns

Following is a list of parameters, their descriptions, modes, and types.

Table 6-18 OCISecurityHash parameters

Parameter Name Description Mode Type
OCISecurity osshandle

OCIError error_handle

persona Persona {IN} nzttPersona
hash_state State of hash {IN} nzttces

input Length of this input {IN} size t
input_length This input {IN} ubl

hash Output TDU {IN/OUT} nzttBufferBlock

This hash is a cryptographic hash, or checksum, of the input.

Following is a list of some of the possible error codes returned by this function.

Table 6-19 OCISecurityHash errors

Error Explanation

NZERROR_TK_NOTSUPP Function not supported with persona

OCI Functions for C 6-15

OClSecuritySeedRandom

6.13 OCISecuritySeedRandom

Purpose
OClSecuritySeedRandom supplies a seed to the Oracle Cryptographic Toolkit.

Parameter Descriptions
Following is a list of parameters, their descriptions, modes, and types.

Table 6-20 OCISecuritySeedRandom parameters

Parameter Name Description Mode Type
OCISecurity osshandle

OCIError error_handle

persona nzttPersona
seed_length size t

seed ubl

6-16 Oracle Cryptographic Toolkit Programmer’s Guide

OCISecurityRandomBytes

6.14 OCISecurityRandomBytes

Purpose
OCISecurityRandomBytes generates a buffer block for random bytes.

Parameter Descriptions
Following is a list of parameters, their descriptions, modes, and types.

Table 6-21 OCISecurityRandomBytes parameters

Parameter Name Description Mode Type
OCISecurity osshandle

OCIError error_handle

persona Persona {IN} nzttPersona
number_of bytes desired Number of bytes desired {IN} size t
random_bytes Buffer block for bytes {IN/OUT} nzttBufferBlock

OCI Functions for C 6-17

OCISecurityRandomNumber

6.15 OCISecurityRandomNumber

Purpose
OCISecurityRandomNumber generates a random number.

Parameter Descriptions

Following is a list of parameters, their descriptions, modes, and types.

Table 6-22 OCISecurityRandomNumber parameters

Parameter Name Description Mode
OCISecurity osshandle

OCIError error_handle

persona Persona {IN}
random_number_ptr Number {OUT}

6-18 Oracle Cryptographic Toolkit Programmer’s Guide

OCISecuritylnitBlock

6.16 OCISecurityInitBlock

Purpose
OClSecuritylInitBlock initializes a buffer block.

Parameter Descriptions
Following is a list of parameters, their descriptions, modes, and types.

Table 6-23 OCISecuritylnitBlock parameters

Parameter Name Description Mode Type
OCISecurity osshandle

OCIError error_handle

buffer_block Buffer block {IN/OUT} nzttBufferBlock

Comments

The buffer block is initialized to be empty (all members are set to zero/NULL).
This block is allocated to memory as needed.

OCI Functions for C 6-19

OClSecurityReuseBlock

6.17 OCISecurityReuseBlock

Purpose
OCISecurityReuseBlock reuses a previously initialized, and possibly used, block.

Parameter Descriptions
Following is a list of parameters, their descriptions, modes, and types.

Table 6-24 OCISecurityReuseBlock parameters

Parameter Name Description Mode Type
OCISecurity osshandle

OCIError error_handle

buffer_block Buffer block {IN/OUT} nzttBufferBlock

Comments
This function sets the used length member of the buffer block to zero (0). It will
cause a block to be reused if it already has memory allocated to it.

6-20 Oracle Cryptographic Toolkit Programmer’s Guide

OCISecurityPurgeBlock

6.18 OCISecurityPurgeBlock

Purpose
OCISecurityPurgeBlock purges a buffer block of its memory.

Parameter Descriptions
Following is a list of parameters, their descriptions, modes, and types.

Table 6-25 OCISecurityPurgeBlock parameters

Parameter Name Description Mode Type
OCISecurity osshandle

OCIError error_handle

buffer_block Buffer block {IN/OUT} nzttBufferBlock

Comments

This command affects only the memory used by the buffer. It does not affect the
block itself.

OCI Functions for C 6-21

OClSecuritySetBlock

6.19 OCISecuritySetBlock

Purpose
OCISecuritySetBlock sets a buffer block to a known state.

Parameter Descriptions
Following is a list of parameters, their descriptions, modes, and types.

Table 6-26 OCISecuritySetBlock parameters

Parameter Name Description Mode Type
OCISecurity osshandle

OCIError error_handle

flags_to_set Flags to set {IN} uword
buffer_length Length of buffer {IN} size_t
used_buffer_length Used length of buffer {IN} size t
buffer_block Buffer {IN} ubl

Comments
This function allocates memory and stores a pointer in the buffer block.

6-22 Oracle Cryptographic Toolkit Programmer’s Guide

v

PL/SQL Functions

This chapter describes the PL/SQL interface to the Oracle Cryptographic Toolkit.
The PL/SQL procedures and functions are grouped into the following five func-
tional categories:

Section 7.1, “General Purpose Procedures”
Section 7.2, “Digital Signature”

Section 7.3, “Hash”

Section 7.4, “Random Number Generation”

Each PL/SQL function description contains the following information:

Table 7-1 PL/SQL Procedure and Function Descriptions

Purpose Describes what the procedure or function does

Parameter Descriptions Lists each parameter name along with its mode and type

PL/SQL Functions 7-1

General Purpose Procedures

7.1 General Purpose Procedures

The following functions and procedures are available to applications. They are con-
tained within the DBMS_CRYPTO_TOOLKIT package. Consult the file
DBMS_OCTK.SQL for a full listing of functions and procedures.

Initialize
Initialize starts the Oracle Cryptographic Toolkit operation. No additional parame-
ters are required.

Terminate

Terminate ends the Oracle Cryptographic Toolkit operation. No additional parame-
ters are required.

OpenWallet

OpenWallet opens a wallet based on a given wallet resource locator (WRL). There
are two versions of this procedure: one enables an application to use its own data
structure for the wallet, and the other lets the application use the wallet data struc-
ture that comes with the Oracle Cryptographic Toolkit.

Table 7-2 PROCEDURE OpenWallet

Parameter Name Mode Type
password IN VARCHAR?2
wallet IN OUT Wallet
persona_list ouT Persona_List
wallet_resource_locator [N VARCHAR2

7-2 Oracle Cryptographic Toolkit Programmer’s Guide

General Purpose Procedures

7.1.1 Procedures Used by Applications That Use the Wallet

The following functions and procedures are used by applications which want to
use the wallet kept by the Oracle Cryptographic Toolkit.

OpenWallet

OpenWallet opens a wallet based on a given wallet resource locator (optional).
There are two versions of this procedure. This version opens the wallet that is kept
internally by the package.

Table 7-3 PROCEDURE OpenWallet

Parameter Name Mode Type
password IN VARCHAR?2
persona_list ouT Persona_L.ist
wallet_resource_locator IN VARCHAR?2
CloseWallet

CloseWallet closes a wallet. This version uses the wallet that is kept internally by
the package. No parameters are needed for the function.

Table 7-4 PROCEDURE CloseWallet

Parameter Name Mode Type

DestroyWallet

DestroyWallet deletes a wallet bases on a given wallet resource locator. The wallet
resource locator is optional.

Table 7-5 PROCEDURE DestroyWallet

Parameter Name Mode Type
password IN VARCHAR?2
wallet_resource_locator IN VARCHAR?2

PL/SQL Functions 7-3

General Purpose Procedures

StorePersona
StorePersona stores a given persona in the specified wallet.

Table 7-6 PROCEDURE StorePersona

Parameter Name Mode Type
persona IN Persona
OpenPersona

OpenPersona opens a persona within a wallet.

Table 7-7 PROCEDURE OpenPersona

Parameter Name Mode Type

persona IN Persona

ClosePersona
ClosePersona closes a persona within a wallet.

Table 7-8 PROCEDURE ClosePersona

Parameter Name Mode Type
persona IN Persona
RemovePersona

RemovePersona removes a persona from a wallet.

Table 7-9 PROCEDURE RemovePersona

Parameter Name Mode Type
persona IN Persona
CreatePersona

CreatePersona creates a persona.

Table 7-10 PROCEDURE CreatePersona

Parameter Name Mode Type
cipher_type IN Cipher
private_information IN OUT Private_Persona_Information

7-4 Oracle Cryptographic Toolkit Programmer’s Guide

General Purpose Procedures

Table 7-10 PROCEDURE CreatePersona

Parameter Name Mode Type

prl IN OUT VARCHAR?2
alias IN VARCHAR2
longer_description IN VARCHAR?2
persona ouT Persona

Removeldentity
Removeldentity destroys an identity.

Table 7-11 PROCEDURE Removeldentity

Parameter Name Mode Type
identity ouT Identity

Createldentity
Createldentity creates an identity.

Table 7-12 Createldentity

Parameter Name Mode Type
identitytype IN Identity_Type
public_identity IN VARCHAR?2
alias IN VARCHAR?2
longer_description IN VARCHAR?2
trust_qualifier IN VARCHAR?2
identity ouT Identity
Abortldentity

Abortldentity aborts an identity.

Table 7-13 Abortldentity

Parameter Name Mode Type
identity IN OUT Identity
persona IN

PL/SQL Functions 7-5

General Purpose Procedures

StoreTrustedldentity
StoreTrustedldentity stores an identity as a trustpoint within a wallet.

Table 7-14 StoreTrustedldentity

Parameter Name Mode Type
identity IN OUT Identity
Validate

Validate uses the trusted identities associated with a persona to validate an identity.

Table 7-15 Validate

Parameter Name Mode Type
persona IN Persona
identity IN Identity
validated ouT BOOLEAN

7-6 Oracle Cryptographic Toolkit Programmer’s Guide

Digital Signature

7.2 Digital Signature

Use the following routines to create and verify digital signatures. There are two ver-
sions of each routine: one for raw data and another for strings. The routines are as
follows:

Section 7.2.1, “Sign”

Section 7.2.2, “Verify”

Section 7.2.3, “SignDetached”
Section 7.2.4, “VerifyDetached”

PL/SQL Functions 7-7

Digital Signature

7.2.1 Sign

Purpose
The Sign routine creates an attached signature.

Parameter Descriptions
Following is a list of parameters, their descriptions, modes, and types.

Table 7-16 Sign parameters for raw data

Parameter Name Mode Type

persona IN Persona

input IN RAW

signature ouT RAW

signature_state IN Crypto_Engine_State

Table 7-17 Sign parameters for string data

Parameter Name Mode Type

persona IN Persona

input_string IN VARCHAR?2
signature ouT RAW

signature_state IN Crypto_Engine_State

7-8 Oracle Cryptographic Toolkit Programmer’s Guide

Digital Signature

7.2.2 Verify

Purpose

The Verify routine verifies an attached signature.

Parameter Descriptions

Following is a list of parameters, their descriptions, modes, and types.

Table 7-18 \Verify parameters for raw data

Parameter Name Mode Type

persona IN Persona

signature IN RAW
extracted_message ouT RAW

verified ouT BOOLEAN

validated ouT BOOLEAN
signing_party_identity ouT Identity
signature_state IN Crypto_Engine_State

Table 7-19 Verify parameters for string data

Parameter Name Mode Type

persona IN Persona

signature IN RAW
extracted_message_string OUT VARCHAR?2

verified ouT BOOLEAN

validated ouT BOOLEAN
signing_party_identity ouT Identity
signature_state IN Crypto_Engine_State

PL/SQL Functions 7-9

Digital Signature

7.2.3 SignDetached

Purpose
The SignDetached routine generates a detached signature.

Parameter Descriptions
Following is a list of parameters, their descriptions, modes, and types.

Table 7-20 SignDetached parameters for raw data

Parameter Name Mode Type

persona IN Persona

input IN RAW

signature ouT RAW

signature_state IN Crypto_Engine_State

Table 7-21 SignDetached parameters for string data

Parameter Name Mode Type

persona IN Persona

input_string IN VARCHAR?2
signature ouT RAW

signature_state IN Crypto_Engine_State

7-10 Oracle Cryptographic Toolkit Programmer’s Guide

Digital Signature

7.2.4 VerifyDetached

Purpose

The VerifyDetached routine verifies a detached signature.

Parameter Descriptions

Following is a list of parameters, their descriptions, modes, and types.

Table 7-22 VerifyDetached parameters for raw data

Parameter Name Mode Type

persona IN Persona

data IN RAW

signature IN RAW

verified ouT BOOLEAN

validated ouT BOOLEAN
signing_party_identity OUT Identity
signature_state IN Crypto_Engine_State

Table 7-23 VerifyDetached parameters for string data

Parameter Name Mode Type

persona IN Persona

data_string IN VARCHAR?2
signature IN RAW

verified ouT BOOLEAN

validated ouT BOOLEAN
signing_party_identity OUT Identity
signature_state IN Crypto_Engine_State

PL/SQL Functions 7-11

Hash

7.3 Hash

Use the following routines to generate checksums. There are two versions of each
routine: one for raw data and another for strings. The routines are as follows:

Section 7.3.1, “KeyedHash”
Section 7.3.2, “Hash”

7-12 Oracle Cryptographic Toolkit Programmer’s Guide

Hash

7.3.1 KeyedHash

Purpose
The following KeyedHash routine generates a public key checksum.

Parameter Descriptions
Following is a list of parameters, their descriptions, modes, and types.

Table 7-24 KeyedHash parameters for raw data

Parameter Name Mode Type

persona IN Persona

input IN RAW

keyed_hash ouT RAW

hash_state IN Crypto_Engine_State

Table 7-25 KeyedHash parameters for string data

Parameter Name Mode Type

persona IN Persona

input_string IN VARCHAR?2
keyed_hash ouT RAW

hash_state IN Crypto_Engine_State

PL/SQL Functions 7-13

Hash

7.3.2 Hash

Purpose
The following Hash routine generates a checksum.

Parameter Descriptions
Following is a list of parameters, their descriptions, modes, and types.

Table 7-26 Hash parameters for raw data

Parameter Name Mode Type

persona IN Persona

input IN RAW

hash ouT RAW

hash_state IN Crypto_Engine_State

Table 7-27 Hash parameters for string data

Parameter Name Mode Type

persona IN Persona

input_string IN VARCHAR?2

hash ouT RAW

hash_state IN Crypto_Engine_State

7-14 Oracle Cryptographic Toolkit Programmer’s Guide

Random Number Generation

7.4 Random Number Generation

Use the DBMS_RANDOM package to generate random numbers. The routines con-
tained within the package are as follows.

SeedRandom
The following SeedRandom routine supplies a seed to the Oracle Cryptographic
Toolkit’s random number generator.

Parameter Descriptions
Following is a list of parameter names, their modes, and types.

Table 7-28 SeedRandom parameters for numeric data

Parameter Name Mode Type
seed IN BINARY_INTEGER
Random

The Random routine generates a random number between -9999999999 and
9999999999. This function returns a BINARY_INTEGER.

PL/SQL Functions 7-15

Random Number Generation

7-16 Oracle Cryptographic Toolkit Programmer’s Guide

Partlll

Appendices

Part 111, Appendices, contains the following reference information:
« “Sample PL/SQL Code”
« “OCI - APl Mappings”

A

Sample PL/SQL Code

This appendix contains a sample PL/SQL program written in C.
“Sample PL/SQL Program”

Sample PL/SQL Code A-1

Sample PL/SQL Program

A.1 Sample PL/SQL Program

Following is a sample PL/SQL program for your reference. Segments of this code
are numbered and contain narrative text explaining portions of the code.

declare
walletdbms_crypto_toolkitWallet;
persona_listdoms_crypto_toolkit.Persona._List;
personadbms_crypto_toolkit.Persona;
string_input VARCHAR2(6) = ‘123456
signature RAW(2048);
signing_party dbms_crypto_toolkit.Identity;
recipient doms_crypto_toolkit.Identity;

- Fags to indicate the package state.
initialized BOOLEAN = FALSE;
wallet_opened BOOLEAN :=FALSE;
persona_opened BOOLEAN :=FALSE;

operation_unsupported EXCEPTION,;

PRAGMA EXCEPTION_INIT (operation_unsupported, -28841);
ENCRYPTION_UNSUPPORTED_MESSAGE VARCHAR2(64) :=
0 ENCRYPTION UNSUPPORTED - IGNORING EXCEPTION **+,
encrypted_string VARCHAR2 (2048);

decrypted_string VARCHAR2 (2048);

extracted_string VARCHAR2 (128);

hash_sting VARCHARZ (2048);

string_verified BOOLEAN :=FALSE;

string_validated BOOLEAN = FALSE;

all_done BOOLEAN :=FALSE;

done_exception EXCEPTION,;

BEGIN
1. Start Oracle Cryptographic Toolkit operation.

dbms_outputput_line(> Initialize);
dbms_crypto_toolkit Initialize;
iniialized := TRUE;

A-2 Oracle Cryptographic Toolkit Programmer’s Guide

Sample PL/SQL Program

7.

Open a wallet at the default location.

doms_outputput_line(> OpenWallet);
doms_crypto_toolkit OpenWallet('serverl’, wallet, persona._list, ‘default’);
wallet_opened :=TRUE;

Establish the identity associated with the first persona in the new wallet as the
recipient.

dboms_outputput_line(>Alias ‘ || persona_list(1).alias);
dbms_outputput_line(>Comment || persona._list(1).comment);
persona.persona := persona_list(1).persona;

recipient. Descriptor := persona._list(1).identity;

Open the first persona.

doms_outputput_line(> OpenPersona);
dbms_crypto_toolkit. OpenPersona(persona);
persona._opened := TRUE;

Create an attached signature associated with the current persona.

doms_outputput_line(> Sign’);
dbms_crypto_toolkit.Sign(persona => persona, input => string_inpui,
signature => signature);

Verify the attached signature.

dboms_outputput_line(> \Verify);
doms_crypto_toolkit.\Verify(persona => persona,
signature => signature,
extracted _message => extracted string,
verified => string_verified,
validated => string_validated,
signing_pary_identity => signing_party);

IF string_validated THEN
dbms_outputput_line(> Validated’;

END IF;

IF string_verified THEN
doms_outputput_line(> Verified);

ENDIF;

Create a detached signature associated with the current persona.

dbms_outputput_line(> Sign detached);
dbms_crypt_toolkit.SignDetached(persona => persona,

Sample PL/SQL Code A-3

Sample PL/SQL Program

input => string_input,
signature => signature);

8. \erify the detached signature.

doms_outputput_line(> Verify detached);
dbms_crypto_toolkit.VerifyDetached(persona => persona,
data =>string_input,
signature => signature,
verified => string_verified,
validated => string_validated,
signing_party_identity => signing_party);

IF string_validated THEN
doms_outputput_line(> Validated);

ENDIF;

IF string_verified THEN
doms_outputput_line(> Verified);

ENDIF;

9. Generate a hash of the current message.

doms_outputput_line(> Hash);
doms_crypto_toolkit Hash(persona => persona,
input => sfring_input,
hash =>hash_string);

IF string_input = hash_string THEN
dbms_outputput_line(>Hash Succeeded);
ENDIF;

all_done =TRUE
RAISE done_exception;

EXCEPTION
WHEN others THEN

10. Close the current open persona.

IF persona_opened THEN
dbms_output.put_line(>ClosePersona.ClosePersona);
dbms_crypto_toolkit ClosePersona(personay;

ENDIF;

A-4 Oracle Cryptographic Toolkit Programmer’s Guide

Sample PL/SQL Program

BEGIN

11. Close the current open persona.

IF persona_opened THEN
doms_outputput_line(> ClosePersona);
dbms_crypto_toolkit. ClosePersona(persona);

ENDIF;

12. Close the open wallet.

IFwallet_opened THEN
dbms_outputput_line(> CloseWallet);
doms_crypto_toolkit. CloseWallet(wallet);

ENDIF;

13. Stop the Oracle Cryptographic Toolkit operation.
IF initialized THEN
doms_outputput_line(> Terminate);
dbms_crypto_toolkit TERMINATE;
ENDIF;

IF all_done = FALSE THEN

RAISE;
END;

Sample PL/SQL Code A-5

Sample PL/SQL Program

A-6 Oracle Cryptographic Toolkit Programmer’s Guide

B

OCI - API Mappings

This chapter lists each Oracle Call Interface (OCI) function that is directly mapped
to an Application Programming Interface (API) function. Definitions for each func-
tion are also provided. The following topics are discussed:

« “Mappings”
« “OCI - API Mapping Exceptions”

OCI - APl Mappings B-1

Mappings

B.1 Mappings

B.1.1 Overview

B.1.2 OCI - API

The Oracle Call Interface functions are direct mappings from the Oracle Security
Server Toolkit Application Programming Interface to the Oracle Call Interface.

Mappings

Table B-1, “OCI Function Names and Descriptions”, below lists each Oracle Secu-

rity Server OCI function along with its description.

Table B-1 OCI Function Names and Descriptions

OCI Name

Description

OCISecurityOpenWallet
OCISecurityCloseWallet
OClISecurityCreateWallet
OCISecurityDestroyWallet
OCISecurityStorePersona
OCISecurityOpenPersona
OClISecurityClosePersona
OCISecurityRemovePersona
OClSecurityCreatePersona
OCISecuritySetProtection
OClSecurityGetProtection
OCISecurityRemoveldentity
OCISecurityCreateldentity
OCISecurityAbortldentity

OClISecurityStoreTrusted
Identity

OClISecuritySign
OCISecuritySignExpansion
OClSecurityVerify

Open a wallet based on a WRL
Close a wallet

Create a new wallet

Destroy an existing wallet

Store a persona in a wallet

Open a persona

Close a persona

Remove a persona from a wallet
Create a persona

Modify the protection set in a persona
Get the protection set in a persona
Remove an identity from a persona
Create an ldentity

Discard an unstored identity

Store an identity with an associated trust

Generate an attached signature
Determine the size of the attached signature buffer

Verify an attached signature

B-2 Oracle Cryptographic Toolkit Programmer’s Guide

OCI - API Mapping Exceptions

Table B-1 OCI Function Names and Descriptions

OCI Name Description
OClSecurityValidate Validate an identity
OCISecuritySignDetached Generate a detached signature

OClSecuritySignDetExpansion Determine the size of buffer needed

OClSecurityVerifyDetached Verify a detached signature

OClISecurityKeyedHash Generate a keyed hash
OClSecurityKeyedHash Determine the space needed for a keyed hash
Expansion

OClISecurityHash Generate a hash

OClISecurityHashExpansion Determine the size of the TDU for the hash

OClSecuritySeedRandom supplies a seed to the Oracle Cryptographic Toolkit’s ran-
dom number generator

OClISecurityRandomBytes Generate a series of random bytes

OClSecurityRandomNumber Generate a random number

OCISecuritylInitBlock Initialize a buffer block
OCISecurityReuseBlock Reuse a buffer block

OCISecurityPurgeBlock Purge the memory used within a buffer block
OClSecuritySetBlock Set the block to a known state

B.2 OCI - API Mapping Exceptions

There are no OCI - APl mapping exceptions at this time.

OCI - APl Mappings B-3

OCI - APl Mapping Exceptions

B-4 Oracle Cryptographic Toolkit Programmer’s Guide

Glossary

API
See Application Programming Interface.

Application Programming Interface

A set of functions that allow applications written in C or C++ to communicate with
an operating system and issue SQL statements to one or more Oracle servers.

Certificate

A document that uses the signature of a trusted party to attest to the validity of its
information.

Ciphertext

The result of encrypting data into an apparently random and meaningless format.
Ciphertext must be decrypted to be converted into a readable format.

Decrypt

To restore an encrypted message to its original form, so the original message is
readable.

Digital Signature

A cryptographic checksum of data encrypted using an entity’s private key. The
result authenticates the signature as having been generated by an entity, and it pro-
tects the data from tampering, since the signature can be verified.

A digital signature is an example of a message. If the message is a PKCS#7 mes-
sage, the message is considered to be in PKCS format.

Glossary-1

Glossary-2

Encrypt

The transformation of data into an apparently random and meaningless format
(called ciphertext). The ciphertext is unreadable by anyone without the correct
decryption key.

Entity
A person (physical, imaginary, or otherwise) or a process.

Handle
A pointer to a storage area allocated by the API library.

Identity

The binding of a public key and other information to an entity. It is possible to have
more than one identity bound to an entity. Every identity has a type. Some better
known identity types are X.509 certificates and PGP certificates.

MD5

A message-digest hashing alogorithm that compresses a message of arbitrary
length into a 128-bit digest.

Message Format

The message format describes the layout and the contents of a message such as a
digital signature.

OCl
See Oracle Call Interface.

Oracle Call Interface

An application programming interface that allows applications written in C to inter-
act with one or more Oracle servers. See Programmer’s Guide to the Oracle Call Inter-
face.

Persona

An instance of your electronic personality. Each instance contains one or more ele-
ments such as an identity, the private key associated with the identity, and other
cipher keys. An entity may have more than one persona. A persona implies a set of
actions that can be used and a set of message formats that can be generated.

PL/SQL

PL/SQL is Oracle Corporation’s procedural language extension to Structured
Query Language (SQL).

RC4

An encryption algorithm.

Repository 10

An abstraction from the various repositories (e.g., file, database, hardware) used by
the wallet interface.

RIO

See Repository 10.

Sign

Data is signed using a persona from a wallet. The result may be formatted in a num-
ber of ways and may contain only the digital signature. The signed data may also

contain the original data, possibly encrypted, along with information about the
identity used for the signature.

SQL
See Structured Query Language.

Structured Query Language
A language used to query and manipulate databases.

TDU
See Toolkit Data Unit.

Toolkit Data Unit

An encoding of possibly formatted and/or cryptographically altered data that is
created by an application via the Oracle Security Server Toolkit. The toolkit data
unit is usually transferred to another application that uses the Oracle Security
Server Toolkit to decode the toolkit data unit back into data.

A toolkit data unit is the message granularity of the Oracle Security Server Toolkit,
and it is transport independent.

Glossary-3

Glossary-4

Trustpoint

One or more identities that are considered trustworthy and can be used to validate
other identities.

Verify

A formatted message that results from signing is verified using the identity that
signed the message. Verifying the signature does not mean that the data can be
trusted. The identity associated with the message should be validated using a trust-
point.

Wallet

A facility that acts as a container for credentials (identities, personas, and trust-
points). Each entity has one or more wallets, and each wallet, while logically identi-
cal, may exist on a file system or on a hardware device. The wallet may be
password protected.

A wallet may be shared (read only) across a network. In this case, the wallet should
only contain public information (i.e., identities and trust points).

Wallet Resource Locator
Specifies the wallet location.

WRL
See Wallet Resource Locator.

A
API Interfaces, 5
API Layer, 5

Attached sign/verify, 5

C

Certificate Authority (CA), 2
Certificate Management Services,
Certificate Revocation List (CRL),
Checksums
generating, 12
Concepts
Cryptographic Engine, 4
Detached Signature, 4
Entity, 4
Enveloping, 4
Identity, 4
Persona, 4
Personal Resource Locator, 4
Protection Set, 5
Recipient Oriented Encryption,
security, 2
Signature, 5
Symmetric Encryption, 5
Toolkit Data Unit, 5
Trust Point, 6
Wallet, 6
Cryptographic Engine functions,

D

3
3

5

5

data structures, 5

Index

Data type names, 2

DBMS_RANDOM, 15

Definitions
Authentication, 2
Authorization, 2
Certificate, 2
Certificate Authority, 2
Confidentiality, 2
Cryptography, 2
Decryption, 2
Encryption, 3
Integrity, 3
Non-repudiation, 3
Oracle Cryptographic Toolkit, 4
Oracle Security Server, 2
Public/Private Key Pair, 3
Public-Key Encryption, 3
X.509, 3

Detached sign/verify, 6

Digital signatures
PL/SQL routines for, 7

E

Examples
Generate a detached signature for an array of
bytes, 5
Random Number Generator, 2

F

Features
Oracle Security Server, 2
Functions

Index-1

Cryptographic Engine, 5

OoCl, 1
OClSecurityClosePersona, 7
OCISecurityCloseWallet, 5
OClISecurityHash, 15
OClISecuritylInitBlock, 19
OClSecuritylnitialize, 2
OClSecurityOpenPersona, 6
OClSecurityOpenWallet, 4
OClISecurityPurgeBlock, 21
OClSecurityRandomBytes, 17
OClISecurityRandomNumber, 18
OClSecurityReuseBlock, 20
OClSecuritySeedRandom, 16
OClSecuritySetBlock, 22
OClSecuritySign, 8
OClISecuritySignDetached, 12
OClISecurityTerminate, 3
OClSecurityValidate, 11
OClSecurityVerify, 9
OCISecurityVerifyDetached, 13

Oracle Call Interface. See Functions
OClI

Persona/ldentity, 6

PL/SQL
Digital Signature, 7
General Purpose, 2
Hash, 12
Random Number Generation, 15
Use Oracle Wallet, 3

Wallet, 6

H

Hash, 6

Identity
definition of, 7
Interfaces
Oracle call interface, 10
PL/SQL, 10

Index-2

K

Keyed hash, 6

M

Mapping
Exceptions, 3
Overview, 2

O

Oracle Call Interface, 10
Oracle Enterprise Manager, 3
Oracle Security Server Manager,

P

3

Persona
definition of, 8
PL/SQL functions
Abortldentity, 5
ClosePersona, 4
CloseWallet, 3
Createldentity, 5
CreatePersona, 4
DestroyWallet, 3
ilnitialize, 2
OpenPersona, 4
OpenWallet, 2
Removeldentity, 5
RemovePersona, 4
StorePersona, 3
StoreTrustedldentity, 6
Terminate, 2
Validate, 6
PL/SQL interface, 10
PL/SQL routines
Hash, 14
KeyedHash, 13
Random, 15
SeedRandom, 15
Sign, 8
SignDetached, 10
Verify, 9
VerifyDetached, 11

Prefixes
data type names, 2
Program Flow, 2
Programming Steps
Interface with the Oracle Security Server, 3

R

Random Number Generator, 2
Example, 2
Functions, 2
Relationship
between Oracle Cryptographic Toolkit and
Oracle Security Server Services, 9

S

Sample

PL/SQL Program, 2
Security concepts, 2
Signatures

DSS, 5

RSA, 5

T

Toolkit
Elements of, 7
Trusted Identity
definition of, 8

w

Wallet
definition of, 9

X

X.509 v1 Certificate, 2

Index-3

Index-4

	Preface
	Send Us Your Comments
	Contents
	1 Overview
	1.1� What is the Oracle Security Server?
	1.1.1� Oracle Security Server Features

	1.2� What is the Oracle Cryptographic Toolkit?
	1.3� Oracle Cryptographic Toolkit Functional Layer...
	1.3.1� API Layer
	1.3.2� Cryptographic Engine Functions
	1.3.3� Persona/Identity Functions
	1.3.4� Wallet Functions

	1.4� Oracle Cryptographic Toolkit Elements
	1.4.1� Identity
	1.4.2� Trusted Identity
	1.4.3� Persona
	1.4.4� Wallet

	1.5� Types of Interfaces
	1.5.1� Oracle Call Interface
	1.5.2� PL/SQL Interface

	2 Data Types
	2.1� Data Types
	2.1.1� Name Prefixes
	2.1.2� Crypto Engine State
	2.1.3� Crypto Engine Functions
	2.1.4� Identity Type
	2.1.5� Cipher Types
	2.1.6� TDU Formats
	2.1.7� Validate State
	2.1.8� Unique ID
	2.1.9� Timestamp

	2.2� Data Structures
	2.2.1� nzttBufferBlock
	2.2.2� nzttWallet
	2.2.3� nzttPersona
	2.2.4� nzttIdentity

	3 Concepts
	3.1� Security Concepts
	3.2� Oracle Cryptographic Toolkit Concepts

	4 Using the Oracle Cryptographic Toolkit
	4.1� Basic Oracle Cryptographic Toolkit Program Fl...
	4.2� A Programming Example
	4.2.1� Using the Oracle Cryptographic Toolkit
	4.2.2� An Example: Generating a detached signature...

	5 Random Number Generator
	5.1� Overview
	5.2� Functions
	5.3� Example

	6 OCI Functions for C
	6.1� OCISecurityInitialize
	6.2� OCISecurityTerminate
	6.3� OCISecurityOpenWallet
	6.4� OCISecurityCloseWallet
	6.5� OCISecurityOpenPersona
	6.6� OCISecurityClosePersona
	6.7� OCISecuritySign
	6.8� OCISecurityVerify
	6.9� OCISecurityValidate
	6.10� OCISecuritySignDetached
	6.11� OCISecurityVerifyDetached
	6.12� OCISecurityHash
	6.13� OCISecuritySeedRandom
	6.14� OCISecurityRandomBytes
	6.15� OCISecurityRandomNumber
	6.16� OCISecurityInitBlock
	6.17� OCISecurityReuseBlock
	6.18� OCISecurityPurgeBlock
	6.19� OCISecuritySetBlock

	7 PL/SQL Functions
	7.1� General Purpose Procedures
	7.1.1� Procedures Used by Applications That Use th...

	7.2� Digital Signature
	7.2.1� Sign
	7.2.2� Verify
	7.2.3� SignDetached
	7.2.4� VerifyDetached

	7.3� Hash
	7.3.1� KeyedHash
	7.3.2� Hash

	7.4� Random Number Generation

	A Sample PL/SQL Code
	A.1� Sample PL/SQL Program

	B OCI - API Mappings
	B.1� Mappings
	B.1.1� Overview
	B.1.2� OCI - API Mappings

	B.2� OCI - API Mapping Exceptions

	Glossary
	Index

