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Il Stochastische Differentialgleichungen

1 Starke Losbarkeit

Sei W ein r—dimensionaler Wiener-Prozess und seien

b:[0,00) x R — R? (entspricht der Geschwindigkeit eines Teilchens zum Zeit-
punkt ¢)

0:]0,00) x R? — R? (entspricht einer Stérung/einem Rauschen)

messbare Funktionen.
Zunéchst soll definiert werden, was unter einer starken Losbarkeit einer stochastischen

Differentialgleichung
dXt = b(t, Xt)dt + O-(t, Xt)th

mit Anfangsbedingung & zu verstehen ist.



Gegeben ein Wahrscheinlichkeitsraum (€2, F,P) mit einem r-dimensionalen Wiener-
Prozess (W;),,, und kanonischer Filtration

FV =o(W,:5<t).

Weiter ist die Startvariable £ eine von FW unabhéngige Zufallsvariable mit Werten in
R4,
Definiere

]_-t(o) =0({,Ws:s<t)
sowie das System der vernachlassigharen Mengen N durch
Ni={NcQ:34eFL und P(4) =0}.
Gehe iiber zur vervollstiandigten Filtration durch
F = o(FY UN)  fiir alle t >0
und

Fo=FY = FLL

>0

Definition 1.1. Fin stochastischer Prozess X ist starke Ldsung der stochastischen
Differentialgleichung
dXt = b(t, Xt)dt + O'(t, Xt)th

mat Startvariable &, wenn gilt:
(i) X ist adaptiert beziiglich (F;),s0,
(i) P(Xo =€) =1,

t t
(iti) [ |bi(s, Xs)lds + [ 07(s, Xs)ds < 0o P-fast sicher,
0 0

(iv) X erfillt die Integralgleichung
t t
X, =€+ f b(s, X, )ds + f (s, X,)dW,
0 0
welche komponentenweise definiert ist durch
t Lot
Xt(z) =& 4 / bi(s,X)ds+ )" / aij(s,Xs)dWs(]) fiir alle 1 <i<d,t>0.
0 =%

Bemerkung. Die Losung einer stochastischen Differentialgleichung kann als Output
eines dynamischen Systems interpretiert werden. X bestimmt die Entwicklung des Zu-
standes eines Teilchens in R unter Einfluss des Vektorfeldes b und des Rauschens W.
Die Stdirke des Einflusses des Rauschens wird bestimmt durch o.



b(t,X)  entspricht  einem  Geschwindigkeitsvek-
tor/Driftvektor zum Zeitpunkt t im Zustand X .

Blackbox

o(t, X) entspricht einer Strevungsma-
triz/Volatilitatsmatriz zum Zeitpunkt t um Zustand
X

Die Anderung der Lisung kann ﬁdherungsweise fiir kurze Zeiten beschrieben werden

durch

wi) - w
t+h t
Xion = Xy 2 b(t, Xo)h + o (t, Xy) : ~N((t, X)h,o(t, X))ot (t, X,)h?).
W) - w
t+h t

Der Output eines solchen dynamischen Systems sollte eindeutig vom Input abhéngen.
Dies fiihrt zur Definition der starken Eindeutigkeit.

Definition 1.2. Das Paar (b,0) erfillt die Figenschaft der starken Eindeutigkeit, falls
fiir jeden Warhrscheinlichkeitsraum (2, F,P) mit r—dimensionalen Wiener-Prozess W,
jede Startvariable & und fiir je zwei starke Losungen X,Y wvon

dXt = b(t, Xt)dt aF O'(t, Xt)th

mit Anfangswert & gilt
P(X;=Y; firallet>0)=1.

Beispiel 1.3. Seib:[0,00) xR — R beschrankt, messbar und nicht wachsend in x, d.h.
fur x <y gilt
b(t,z) >b(t,y) fir allet >0.

Seien X,Y Ldsungen von
dXt = b(t, Xt)dt + th

mit Anfangswert . Dann sind X und Y nicht unterscheidbar, d.h.
P(X =Y firallet>0)=1.
Beweis. Setze Z, .= X, -Y, fir alle t > 0.

Dann gilt
¢ t
Zi=+ [ X)ds + Wi-g - [ b(s,V,)ds -,
0 0
¢
:/b(s7Xs)—b(s,Ys)ds.
0
Damit gilt:

t
0< 22 “zazfzsdzs +(2),
0 T



=2 [ (X, - V) (s, X.) - b(s, Y2) ds

<0

<0.
=72=0=7,=0 fiir alle t > 0. O

Zunéchst sollen Bedingungen an b und o gestellt werden, sodass die starke Eindeutigkeit
folgt.
Vorbereitend benotigt man das Lemma von Gronwall:

Lemma 1.4 (Lemma von Gronwall). Seien T > 0 und g : [0,T] — R eine stetige
Funktion mit der Figenschaft

0<g(t)<a(t)+p f g(s)ds  fir allet<T
0

mit >0 und a: [0,T] — R integrierbar.
Dann gilt:

t
g(t) <a(t)+p f a(s)eP)ds  fiir alle t <T.
0

Bewezs. Betrachte

%(e‘ﬂt b[ g(s)ds) =ePlg(t) - Be P! ([ g(s)ds

= g(t) - 8 [ g(s)ds)
<ePla(t).
Also gilt

t t
e‘ﬁtfg(s)dsgfa(s)e‘ﬁsds.
0 0

Wegen der Voraussetzung folgt also
t
g(t) a(®)+ 8 [ gs)ds
0

<a(t) +5[a(s)eﬁ(t_s)ds.
0



Hieraus kann auf die starke Eindeutigkeit geschlossen werden, wenn eine lokale Lipschitz-
Bedingung erfiillt ist. Es gilt allgemein:

d
reRe:|x|? = 21 |z;?
7=

o eR>" 0|2 =Y oF
/L7]

Satz 1.5. Die Koeffizienten (b, o) erfillen die folgenden Bedingung:
Firn>1 gibt es eine Konstante K,, mit

[o(t,z) = bt y)|* + o (t,2) - ot y)|* < Kullz -y|*  fir allet >0, ]|, [y] <n.
Dann erfiillt die stochastische Differentialgleichung

dXt = b(t,Xt)dt+O'(t,Xt)th (1)
die Figenschaft der starken Findeutigkeit.

Bemerkung. Da die Figenschaft der starken Eindeutigkeit von dem Tupel (b,o) ab-
héngt, sagt man auch, dass das Tupel (b,o) die Figenschaft der starken FEindeutigkeit
erfillt.

Beweis. Sei (€2, F,P) mit Wiener-Prozess W und unabhéngiger Startvariable £. Seien
X, Y Losungen von Gleichung 7 zur Startvariable &.
Lokalisiere durch

T, =inf{t >0: | X;| > n oder |Y;]| >n}

Dann gilt:
tATn tATn
X =Y = f b(u, X)) - b(u,Y,)du + f o(u, X,,) —o(u,Y,)dW,.
0 0
Also gilt:

tATR tATR

BIXP =Y 2 =B [ b X0) = b Vadu+ [ o(u,X,) = ou,Yo)dW,?
0 0

tATH tATH

§2E||fb(u,Xu)—b(u,Yu)duH2+2E||fo(u,Xu)—a(u,Yu)quHQ
0 0

2

tATH tATR
Isometrie
<! QE([]b(u,Xu)—b(u,Yu)Hdu) +2]Efna(u,xu)-a(u,yu)umu
0 0
tATR tATH

Holder

USI 2tE / 16(u, X,) = b(u, Y,)|*du + 2E f lo(u, X,) - o(u, Y| *du
ngl.
0 0



2du.

t
<2(1 +t)anE||Xgn _ym
0

Gronwalls Lemma, angewendet auf
g9(u) =E[ X7 - Y|

liefert
g=0 fiir alle u <t.

= X»=Y]* furalleu<t
= X ™ ist nicht unterscheidbar von Y™  fir alle n € N
= X ist nicht unterscheidbar von Y. O

Fiir die Existenz einer Losung muss eine globale Lipschitz- und Wachstumsbedingung
gefordert werden. Dann kann durch Anwendung des Banach’schen Fixpunktsatzes eine
starke Losung eindeutig konstruiert werden.

Fiir jedes T' > 0 sei

LT = {X : X ist adaptiert, stetig, R? - wertig und Esup X? < co}.
t<T

3
Durch | X o1 := (E sup| X; HQ) wird LT zu einem Hilbertraum.
t<T
Wichtige Ungleichungen sind

Lemma 1.6. Fir jedes X € LT gilt:
' ¢ ¢
(i) Esup| [ Xydul® <T [ X3 dt,
t<T 0 0
¢ ¢
(i6) Esup| [ XodWiJ? <4 [ |X[3,dt.
t<T 0 0 ’
Beweis. (ii) folgt aus der Doob’schen Ly-Ungleichung fiir Martingale:

t t
Esup| [ X,dW, | < 4supE| [ X,aw,|?
t<T 0 t<T 0

t

" 4supE [ | X,]2du
0

Isometrie ¢

T
:4]E/||Xu||2du
0

T
- 4/E||Xu||2du
0



T
<4 f 1X 2, du.
0

Satz 1.7. Gegeben sei die stochastische Differentialgleichung
dXt = b(t,Xt)dt‘FO'(t,Xt)th. (2)

(b,0) erfillen eine globale Lipschitz- und Wachstumsbedingung der Form:
Zu jedem T' >0 gibt es eine Konstante K mat

(1) [6(t,2) = b(t,9) [ + o (t, ) - o (t,y)|* < K]z - y]?
(i) [o(t, )| + o (f,2)|* < K2(1+ |z]?)

fir alle t <T und x,y € R?.
Dann gibt es zu jedem Wahrscheinlichkeitsraum (2, F,P) mit r—dimensionalen Wiener-
Prozess W und unabhdngiger Startvariable &, die

E[[¢]* < 0o

erfillt, einen (F;),s, adaptierten Prozess X mit stetigen Pfaden, der die stochastische
Differentialgleichung (2) mit Anfangsbedingung Xo = £ ldst. Hierbei ist (Fy),,, die von
W und & erzeugte Filtration, die die usual conditions erfillt.

Weiter gibt es zu jedem T eine Konstante C' mit

| X137 < C(L+E[€]*)e .

Beweis. Fixiere T > 0. Die stochastische Differentialgleichung wird zunéchst bis T' ein-
deutig gelost durch ein Fixpunktargument:
Definiere einen Operator

A ¥ — LT

X+ [b(u,Xu)du+ /a(u,Xu)qu
0 0
Der Operator A ist wohldefiniert, da es eine Konstante C; gibt, mit

t
HA(X)H%t <CI(1L+E[E)? + [||X||2udu) fiir alle t <T,X e LZ. (3)
0

Entscheidend ist die Ungleichung
(Cat)"

n!

JA"(X) - A"(Y)]3, < |IX-Y|3, firallet<T,X.YeL] (4)



mit Cy = 2K (T +4).
Hieraus folgt

(i) A ist ein stetiger Operator (da A Lipschitz stetig ist mit Konstante (CQt) =)

(i) 3ng e N: Amo ist eine Kontraktion auf LI (denn ab ny wird (ci—f)n <1).

Wegen (i7) kann der Banach’sche Fixpunktsatz auf A" angewendet werden.

Also konvergiert zu jedem Startprozess Z € LL die Folge (A*0(2)), . gegen den eindeu-
tigen Fixpunkt X von Ao,

Wegen der Stetigkeit von A ist X auch ein Fixpunkt von A und damit eindeutige Losung
der stochastischen Differentialgleichung bis 7', denn

A(X) = Alim A(X)
- lim ACA(X)
- lim AM(A(X))
= X.
Beweis von Gleichung 4 durch Induktion:

IA: n=0= klar
ISSn—-n+1

|A™H(X) = A3,

= Esup] [ b, A"(X).) = b(u, A"(Y),)du + f o (1, AM(X ) = (1, AM(Y ) ) AW, |

0

<2Bsup| [ b A(X).) = b, A" (V) )dul? + | [ o AP(X).) =0, A"(V).)W

Lemma

<t [, A"(X)) = b ANV B udu+ 8 [ o AMX).) = o0, AM(Y)) B udu

Lipschitz- 8 n n 2
< 2K(T+4) | |AM(X) - A™(Y)|3..du

Bediﬁgung

t
v Cy
< 2K(T+4)—2‘fu”||X—Y||§udu
mn: ’

n+1

t
= fu”duHX—Y”%t
n! :
0

Cn+1
(n+ !

"X - Y3,



Es bleibt Gleichung 4 zu zeigen:
Wegen der linearen Wachstumsbedingung folgt fiir 2 € LT

Esup|b(s, X,)|?*+ Esupl|o(s, X,)|? < 2k*Esup(1 + | X,]?)
s<t s<t s<t
=2k*(1+| X3, firallet<T.

Also ist
b(',X.),O'(',X.) € Lg

und es gilt

S

s 2
||A<X>||3,t=E(sup|§+ [ o X [ a(u,xu>dwu|)
s<t 0

0

<3|E|¢)2 + Esupr b(u, X, )dul? + EsupH/ a(u,Xu)quHQ)
s<t s<t
0 0

t t
<3( Bl +t [ 1oC, X)Budura [ |o<-,X.>||3,udu)
0 0

t
<3 E]g[\2+k2(4+t)(t+[HXH%udu).
0

Hieraus folgt die Behauptung bei einer geeigneten Wahl von C'
Fiir den Fixpunkt X = A(X) folgt insbesondere

t
Esup|l X, = |X]5, = HA(X)H%tS01(1+E!\5\!2+fHX!\%,st)-
- 0

Anwendung des Gronwall’schen Lemmas mit

g(t) = | X3,
liefert
| X3, < CL(1+E[¢]?)ert t<T.

]

Aus der Monotoniebedingung fiir den Anfangswert kann auf eine Monotoniebedinung
fiir die Losung geschlossen werden.

Satz 1.8. (b,0) erfillen die Voraussetzungen aus Satz 1.7. Sei & eine Startvariable der
SDGL
dXt = b(t, Xt)dt + O'(t, X — t)dVVt

und set
tE|€[?P < 00 fiir alle p > 1.

Dann gibt es eine Konstante C', die nur von T,p und k abhdngt, so dass



Esupyy st | X5 % < C(1 + B[ Xy, |2P)eCC10) und
E supy, coct| Xo = Xio |2 < C(1+ E| X, |2)(t—to)?  fiir alle 0 <ty <t <T.

Das Theorem liefert insbesondere, dass das 2p—te absolute Moment der Losung endlich
ist, denn setze t, = 0, so ist X, = £ und

E| X |* < Esup| X,[* < O(1 +E[¢]*")e".
s<t

Beweis. Idee: Riickfithrung auf den Fall p = 1 durch Anwendung der Ito-Formel. Sei
d=1.
dXt = b(t, Xt)dt + O'(t, Xt)th

dX = aXP tdX, + %a(a -1)XP2d(X ),
= a XN (b(t, X,)dt + (4, X)W, + %a(a 1) XO20%(4, X, )dt
_ a Xl (t, X,)dW, + (axg-lb(t, X,) + %a(a S 1) X202, Xt)) dt
= p(t, X7)dt + o (t, X)dW,
Ausgefiihrt ist dies im Buch Kloeden/Platen, Numerical Methods ]

Ziel: Nachweis der Markov-Eigenschaft von starken Losungen von SDGL.

Gegeben sei ein Wahrscheinlichkeitsraum (€2, F,P) mit r—dimensionalen Wiener-Prozess
W und einem von W unabhéngigen Startvektor &.

Sei (F}),,, die von W und £ erzeugte vollsténdige Filtration und sei X eine starke Losung
von

dXt = b(t, Xt)dt + U(t, Xt)th

mit X() = g
Wir setzen voraus, dass fiir jeden Anfangswert (¢,7) € [0, o) x R? obige Differentialglei-
chung eindeutig durch einen Prozess

(X2%) o
gelost wird, d.h.
t+s t+s
X,fffg =y+ f b(u, X5¥)du + / o(u, X)W, — fiir alle s,t > 0.
t t

Man beachte, dass (W (t =) =W (%)) = (W'(5)),so €in Wiener-Prozess ist beziiglich
der Filtration (Fi.s),,, adaptiert beziiglich der von (W*(s)),,, erzeugten Filtration und
damit unabhéngig von F;.

Dies ist der Schliissel, um die Markov-Eigenschaft zu zeigen.

10



Satz 1.9. Erfillt die SDGL
dXt = b(t,Xt)dt‘f'O'(t,Xt)th, X[) :g

die obigen Vorraussetzungen, so ist die starke Lisung (X;),,, ein Markov-Prozess, d.h.

es gilt:
E(f(Xt+s)|-7:t) = E(f(Xt+s)|Xt)

fur alle t,s >0 und beschrinkte, messbare f.

Beweis. Als starke Losung der SDGL erfiillt X die Gleichung

t+s t+s
Xm—Xt:fb(u,Xu)du+fa(u,Xu)qu
t t

also
t+s t+s

Xt+s:Xt+[b(u,Xu)du+[o(u,Xu)qu.
t t

Deshalb gilt:
Xprs(u) = XX (W) fiir alle w e Q.

t+s

Genauer:
Bezeichne mit

F(t,t+s;y,w):= XY (w) fiirallet,s>0,yeR% weQ.
Dann ist
Xivs(w) = F(t,t+ s; Xy (w),w).
Dies ist eine Art Flussgleichung der SDE (stochastic differential equation)
Beachte: w — F(t,t + s;y,w) ist stochastisch unabhéngig von F;.
Man erhélt
E(f (Xe)lF2) =E(f(F(8 0+ 5 X:(), w)|[F) = 9(Xy)

mit g(y) =Ef(F(t.t+sy,-)).
Genauso folgt
E(f (X[ Xe) = Ef (F (81 + 55.X4,-))|X0) = 9(X3).

O
Bemerkung. Erliuterung der Markov Eigenschaft: 22.4.16
X/ (w) = F(t,y;t +s,w)

= Ht,t+s(y7 (VVHS(W) - Wt(w))ogugs)

Xpas(w) = XI5 (0) = Hy 4o (X (W), Wi (W) = Wi(w) ocucs

Da X; Fi—messbar ist und (Wiry — Wi)ocucs unabhingig von Fy ist, folgt die Markov-
Eigenschaft im folgenden Lemma:

11



Lemma 1.10. Seien (M;,9M;), (Mo, My) messbare Riume, sei (2, F,P) ein Wahr-
scheinlichkeitsraum und G eine Unter—o—Algebra von F. Seien X; : Q — M; und
X5:Q — My und h: (My x My, 9y @ M) — (R, B) messbare Abbildungen.

Es gelte:

(i) X, ist unabhingig von G.
(ii) Xo ist messbar beziglich G.
(iii) E(h(X1, X)) < co.

Dann gilt:

E(h(X1, X2)|G) = E(h(X1, X2)| X2)
= ]E(h(Xl,XQ)'XQ = ) (©) X2
= g(X3) mit g(y) = E(hi (X1, X2)| X2 = y) = E(h(X1,y)

Beweis. siche Ubung O

Definition 1.11. Ist die Losung der SDE zum Zeitpunkt t in x, so erreicht sie eine
Menge A € B¢ zum Zeitpunkt t + s mit Ubergangswahrscheinlichkeit

K(t,z;t+s,A)=P(X}" e A fir allet,z >0,z e R%.

Fiziert man t und s, so ist K(t,~t+s,-) ein (Ubergangs-)Kern des Markov-Prozesses
zut und t+s.

K(t,w,t‘f' S, A) = ]P(Xt+5 € A|Xt = x)
- P(X[% € A)
Wegen der Markov-Eigenschaft gilt
P(Xprs € A|ft) = P(XtJrs € A|Xt)
= K(t,Xt;t‘f'S,A)

Die Markov-Eigenschaft impliziert die Chapman Kolmogorov Gleichung:
Satz 1.12 (Chapman Kolmogorov Gleichung:). Sei X starke Lésung der SDE
dXt = b(t, Xt)dt + U(t, Xt)th, XO = 5

Sei (K (t,-5t+5,-)).s0 die Familie der Ubergangskerne.
Dann gilt:

K(t,z;t+s,A) :fK(t+h,y;t+s,A)K(t,x;t+h,dy)
R

12



fiir allet >0,7 € R4, Ae B4 h<s.
Beweis.

K(t,z;t+s,A) =P(X]" e A)

- EP(X/%, € Al
Magkov E]P)(Xt,x c A’Xttfg)

Eig t+s

= [ B(XE € A, = )PYE (dy)
R4

= [ (XY e )PXE (ay)
R4

= fK(t+h,y;t+s,A)K(t,x;t+h,dy)
R

]

Alternativ kann auch eine Beschreibung mittels Ubergangsoperatoren durchgefiihrt wer-
den.

Definition 1.13. Se:
bBe = {f : RY — R : messbar und beschrinkt}.

Fiir s,t >0 definiere den Ubergangsoperator Tit4s 2 DB — bB durch

Tousf(X) = Ef (X[

t+s

- [ F)K(t, 2t + s, dy).

Die Familie der Ubergangsoperatoren hat folgende Eigenschaften:
(l) Tt,t+s = Tt+h,t+5 (¢} E,t+h fur alle t, s> O, 0 < h <S8
(11) Tt,t =id = }ll_{% E,t+h
(ili) Tytesf 20 fiir alle f>0,s,620
(iv) Ty44s1 =1 fiir alle ¢, s > 0, wobei 1, =1 fiir alle 2 € R4

Haben die Ubergangskerne Dichtequotienten beziiglich des Lebesgue-Mafes, so kommt
man zu den sogenannten Ubergangsdichten:

K(t,x;t+s,A):fp(t,x;t+s,y)dy.
A
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Beispiel. Ein Wiener-Prozess hat die Ubergangsdichte

e_gil‘s(y_x)z

p(t,x;t+s,y) =
21rs

und
K(t,z;t+s,-) =N(z,s)

,da Inkremente von Wiener-Prozessen normalverteilt sind.

Inhaltlich zu Vorlesung 'Hoéhere Finanzmathematik’, SS 2016

| Modelle fiir Aktienmarkte

Ziel:
- Beschreibung der zeitlichen Entwicklung von Aktienkursen
- Charakterisierung der arbitragefreien Markte
- Bewertung von Derivaten

Technische Vorbemerkungen
- Semimartingale werden betrachtet auf einem Zeitintervall [0,7"). In der stochastischen
Analysis entspricht T gerade +oo.
- Lokalisation wird fiir [0,7") durchgefiihrt:
(My)o<i<t € i)ﬁgloc, wenn My = 0 und es existiert eine aufsteigende Folge (73, )ney von
Stoppzeiten mit M™ ist ein stetiges Martingal und sup 7, =T

neN

M € Mejoe <= M — My e M°

c,loc

M € M. 1oc ist nach T' fortsetzbar, falls llr% M, existiert P-fast sicher. Dann wird My
Vd
durch Myt = lm% M, definiert.
4

Bemerkung. Ist (M) := 111%<M>t < oo P—fast sicher, so existiert llmT M, P—fast sicher.
Ve 7

- (Ap)o<t<r heiltt stetiger FV-Prozess, falls A adaptiert ist mit stetigen Pfaden, die P—fast
sicher auf jedem [0,¢],¢ < T, von beschrankter Variation sind.
- (Xt)o<t<r heiflt stetiges Semimartingal, falls

X=Xo+M+A

mit M e OV

c,loc?

AeFV?
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loc

P—fast sicher fur alle 0 < ¢ < T erfillt.

t
- Durch ( [ HydM, wird ein stetiges lokales Martingal definiert. Existiert
0 0<t<T

¢
- Fir M € Mo ist H € L2 (M), falls (H(t))ost<r previsibel ist und [ H(s)2d(M),
0

t

lim [ H,dM_P-fast sicher
to7 )

so wird definiert

T t
f H.dM, = lim f H.dM..
2 tzT0

- Fir Ae FV, ist K € Li,.(A), falls K progressiv messbar ist und

t
f || dF Vig.q(A) < coP-fast sicher fiir alle 0 < £ < T,

0

t
Dann kann pfadweise ( f KSdAS) definiert werden.
0

0<t<T

1 Modellbeschreibung

Beschreibung eines Finanzmarktes

- Handelszeitraum [0,7)
- d risky assets (Aktien)

- Numeraire Asset (Geldmarktkonto) entspricht einem Verrechnungsfinanzgut. Prei-
se werden auch in Einheiten des Numeraire Assets notiert.

1.1 Ein Semimartingalmodell

1. Annahme

Die Quelle des Zufalls fiir die d risky assets wird bestimmt durch einen n—dimensionalen
Wiener-Prozess W = (W, ...,W,,). Es gibt also einen filtrierten Wahrscheinlichkeitsraum
(2 (Ft)oster » P) und ein n—dimensionalen Wiener-Prozess W, so dass (F)p die von
W erzeugte Wiener-Filtration ist.

Kurz: W bestimmt den Zufall im Markt.

2. Annahme

Sei (S;i(t)) i der Preisprozess des i—ten risky assets. Dann ist (.5;(t)),,, ein positives,
stetiges Semimartingal. Es gilt also

P(S;(t)>0 firalle0<t<T)=1 i=1,..,d.
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3. Annahme
Der Preisprozess (N (1)) des Numeraire Assets ist ein positives, stetiges Semimar-
tingal.

Bemerkung. - Die erste Annahme ist die eigentliche einschrankende Annahme.
Sie bestimmt, welcher latente (=verborgene) Zufall im Markt ist, der die Kurse
treibt.

- Die zweite Annahme ist eine notwendige und damit natirliche, um arbitragefreie
Mdrkte zu erhalten.

Kurz: Alle sinnvollen Finanzmarktmodelle miissen die zweite Annahme erfiillen.
- Die dritte Annahme ist dhnlich zur zweiten einzuordnen.

Bemerkung. Das Vorhandensein eines Numeraire Assets ist wichtig, um ausreichenden
Handel zu ermdglichen, der zu einer eindeutigen Bewertung von Derivaten fihrt. Hiufig
ist das Numeraire Asset ein Geldmarktkonto, dessen Preisprozess wir mit (8(t))ocer
bezeichnen wollen.

Definition. Ein Numeraire Asset ist ein Geldmarktkonto genau dann, wenn (N (t))ocser
etn positiver F'V,—Prozess ist.

Bemerkung. Oft wird das Geldmarktkonto als ’risikolose’ Geldanlage angesehen. Das
st insofern richtig, als das die Schwankungen in der Entwicklung des Geldmarktkontos
deutlich geringer sind als die Schwankungen der risky assets.

Folgerungen aus den Annahmen
1. Der Preisprozess des i—ten risky assets:
Ito Formel wird angewendet auf

X;(t) =InS;(t) firalle0O<t<T.

Man erhélt
1 1 1

dX;(t) = Si(t)dsi(t) T25,0°

d(S;):.

Fiir das Semimartingal

t
Yi(t)zfs'gu)db’i(u), fiir alle 0< ¢ < T
0 K

gilt

1
(Vi) = 0[ Sl

Also ist 1
AXi(t) = dY;() - (Vi)
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und damit 1
Xi(t) = Xi(0) + Yi(t) - 5 (Vi)

Somit folgt

- Si0exp (Y1) - 5020

Damit erfiillt .S; die stochastische Differentialgleichung
dS;(t) = S;(t)dY;(t), firale0<t<T

mit Anfangswert S;(0) € (0, c0).
Y; hat eine Semimartingalzerlegung der Form

mit M e M), CeFVY.
Wegen (Y;) = (M;) gilt also

‘$@)=5K0ﬁﬂp(ﬂﬂﬁ)—%UWﬁJemXC%ﬂL fiir alle 0 < ¢ < T,

S; erfiillt die SDE
dSi(t) = S;(¢) (dM;(t) +dCi(t)).

4. Annahme
Fiir alle 1 < ¢ < d hat C; P-fast sicher absolut stetige Pfade beziiglich des Lebesgue-
Mafes, d.h. es gibt progressiv messbare Prozesse (1;(t))gc mit

¢
f |pi(s)|ds < oo firalle0<t<T
0

so dass
qm:fm@@.
Also gilt:
Si(t) = Si(0) exp (Mz(t) - %(Mz>t) exp (/ M(s)ds)
bzw.

dS;(t) = S;(t)(dM;(t) + p(t)dt)
mit Anfangswert S;(0).
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Da eine Wiener-Filtration vorliegt, hat das lokale Martingal M; eine Darstellung der
Form

M;(t) = | oi(s)dW(s)

t

=3 [ au()aw(s)

0

LM3 oY~

mit vorhersehbaren Prozessen o1, ..., 04, mit
/ loi(s)|Pds < 0o fiir alle 0 <t < T.
0

Der Preisprozess des i—ten risky assets erfiillt also

Si(t)=5¢(0)exp( Oi(S)dW(S)—%fldi(S)IQdS)eXp(f m(S)dS)

0 0

fiir alle 0 <t < T und damit
dS;(t) = Si(t)(ps(t)dt + o3 (t)dW (1))

= S(6)(us(t)dt + iaij(t)de(t)).

2. Das Numeraire Asset

Hier kann analog argumentiert werden.

Es gibt einen R?-wertigen previsiblen Prozess (on (%)), und einen progressiven mess-
baren Prozess (1(t))ccp mit

¢
f lon(s)]Pds < oo fiiralle0<t < T
0

und
f [r(s)lds < oo flralle0<t<T
0
sodass
t t t
N(t) = N(0) exp ( [ oty s) - % UN(S)|2d3) exp ( / r(s)ds)
0 0 0

firalle 0<t<T.
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Also
dN(t) = N(t)(r(t)dt + on(t)dW (t))

= N (0)dt + 3 0wy (1A (1),

J=1

Ist on(t) =0, so liegt ein Geldmarktkonto vor und

% = exp (Of r(s)ds) =p(t) firalle0<t<T.
Also
dg(t) = (t)r(t)dt, 5(0) = 1.
1.2 Beispiele

a) Das klassische, eindimensionale Black-Scholes Modell
- konstante Volatilitat o >0
- konstante Aktienrendite p e R

- konstante Zinsrate r ¢ R

einem Wiener-Prozess, der die Aktie treibt.

Das bedeutet:
dS(t) = S(t)(udt + odW(t))

mit Anfangswert S; € (0, c0).
S(t) =S5(0)e" exp (UW(t) — %0225)
und

dN(t) = N(t)rdt, N(0)=1

also
N(t)y=e"=p(t), firale0O<t<T.

b) Das klassische mehrdimensionale Black-Scholes Modell
d Aktien

n treibende Wiener-Prozesse

konstante Volatilitatsmatrix o € R4xn

d konstante Aktienrenditen iy, ..., itq.
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d)

Dies bedeutet .
dS;(t) = Si(t) (mdt + Y o55dW;(t))

=1
mit S;(0) €0, 00) fiir alle 1 <7 < d bzw.

J

Si(t) = Si(0)et* exp (Z; o, ;W;(t) - % Y = 1"0%75) fiir alle 1 <7 <d.
i

Das Geldmarktkonto N geht analog zu a).

Das mehrdimensionale Black-Scholes Modell mit deterministischen Koeffizienten
wie b), ersetze aber pu, ..., iy und o durch Funktionen py, ..., ig : [0,7) — R und
0:[0,T) — R>" mit

¢

/|u(s)|ds<oo 0<t<T

0
und
t
fua(s)n?ds <oo 0<t<T.
0
Dann ist
dSi(t) = Si(t) ((t)dt + 3 oy (1)dW;(t)),  fiir alle 1 < < d.
j=1
Das mehrdimensionale Diffusionsmodell

- Volatilitdtsmatrix o : [0,7) x (0, 00)¢ —> Rxn

- Driftfunktion p:[0,7") x (0, 00)¢ — R4
Der d—dimensionale Preisprozess der risky assets ist dann starke Losung der SDE

dS;(t) = Si(t) (i (t, S(t))dt + > 03 (¢, S(t))dW; (1)),  fiir alle 1 <i <d.
j=1
Das Geldmarktkonto erfiillt
dp(t) = B(t)r(t,5(t))dt
d.h.
t
B(t) = exp (/ r(u, S(u))du) :

0

Wichtig ist: In einem Diffusionsmodell ist S ein d—dimensionaler Markov-Prozess
als starke Losung einer SDE.
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1.3 Handel

maximaler Handelszeitraum [0,7)

- Handeln kann man entsprechend einer Handelsstrategie (K, H), mit K = (K (%)) er
vorhersehbarer Prozess, der gegen (N (1)) integriert werden kann.

H = (H(t))oeer ist ein d-dimensionaler vorhersehbarer Prozess, der gegen S inte-
griert werden kann.

- K (t) entspricht der Anzahl an Anteilen im Numeraire Asset zum Zeitpunkt ¢.

- H;(t) entspricht der Anzahl an Anteilen im i—ten risky asset zum Zeitpunkt ¢.

- Eine Handelsstrategie (K, H) induziert eine Vermogensentwicklung

V() = KON + Y H()S:(?)

i=1

= K@N(@) +HE)S() 0<t<T

- Gewinnentwicklung
d
a(t) = f K(u)dN(u)+ Y [ Hi(u)dS:(u)
(0.4] 0.
:fK(u)dN(u)+[H(u)dS(u) fiir alle 0< ¢ < T
(0.4] (0.4]

]

Definition 1.4. Eine Handelsstrategie (K, H) heifst selbstfinanzierend, wenn der Ver-
mogenszuwachs nur duch Gewinn aus dem Handel besteht, d.h.

V(t) - V(0) = [ K(u)dN(u) + f H(u)dS(uw) fir alle D<t<T
(0,t] (0,t]

und in differentialer Notation:
V(t)= K(t)dN(t)+ H(t)dS(t)

- K()dN(t) + Zd:Hi(t)dSi(t).

Bei selbstfinanzierenden Handelsstrategien wird die Vermogensentwicklung, notiert in
Anteilen des Numeraire Assets, nur bestimmt durch die Anfangsnotierung (d.h. des
Anfangskapitals) und die Position in den risky assets (d.h. der Handelsstrategie).

Sei 57 (t) =% firalle 1 <i<d,0<t<T

und V*(t) = 53 fiiralle 0<¢<T.
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Satz 1.5. Fine Handelsstrategie (K, H) ist selbstfinanzierend genau dann, wenn

V(0)

"N

+[H(u)d5*(u) 0<t<T

qgilt.

Beweis. Dies folgt aus der partiellen Integrationsformel fiir Semimartingale.
Beweis fiir d =1 = n.
‘<’ Es gilt

t
V() = V*(0) + f H(u)dS*(u) fir alle 0<t < T.
0

Zu zeigen:
V() = V(0) + /K(u)dN(u) . fH(u)dS(u) fiir alle 0 < ¢ < T.

Mittels partieller Integration folgt:
AV (t) =dV*(t)N(t) =V*(t)dN(t) + N(t)dV*(t) + d(V*,N),.
Nach Voraussetzung gilt:
dV*(t) = H(t)dS* (1)
Zu berechnen ist dS*(t). Es gilt:

S 1

dS™(t) = d gy =S d N(t) N(t)ds(t) A5 5

~

und

1
N N(t)?d (t)+

= N(t)QdN(t) +

1

1
NG )O'N(t)dt
da dN(t) = N(t)(r(t)dt + o3 (t)dW (t)).

Also ist

sy - 29 vy + f[((tt)) o2 (£)dt ff((?) ()ow (1)t

dS*(t) = IO

?V(t)
Man beachte

d(V*,N)y = H(t)d(S*,N):
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- H(t)%a(t)N(t)aN(t)dt ~H(t)

= H(t)S(t)(o(t)on(t) —on(t)?)dt.

Insgesamt folgt also

S(t)
N(t)?

N@)on()N(H)oy(t)dt

dV (t) = V*(t)dN(t) + N(t)dS*(t) + H(t)S(t)(o(t)on(t) — on(t)?)dt
=V*(t)dN(t) + H(t)dS(t) - H(t)S*(t)dN(t)
+ H(t)S(t)ox(t)dt — H(t)S(t)on(t)o(t)dt
+H)S(t)(o(t)on(t) — on(t)?)dt
=H(t)dS(t)+(V*(t) - H(t)S™(t))dN(t)
= H(t)dS(t) + K(t)dN(t)

N % K(t)N(t)+H(t)S N
da V2 (1) = (@) = SR O = K@)+ H0)S* (1),

=

Ealog; s. Ubung.

]

Bemerkung. Bei einer selbstfinanzierenden Handelsstrategie (K, H) ist die Wertent-
wicklung, notiert in Anteilen des Numeraire Assets, eindeutig bestimmt durch die An-

fangsnotierung V*(0) = % und das Handeln in den risky assets, denn

V*(t) =V*(0) + f H(u)dS*(u)  firalle0<t<T.

Gibt man sich umgekehrt eine Anfangsnotierung V*(0) vor und eine Handelsstrategie H
beziiglich der risky assets, so gibt es genau einen previsiblen Prozess (K (t))g..p derart,

dass (K, H) selbstfinanzierend ist und
¢
V() = V*(0) + f H(u)dS*(u)  fiir alle0<t<T
0

erfillt.
Bestimmung von (K (t))ger:
Einerseits gilt:

V(1) = K(t) + H(t)dS* (1)

andererseits gilt wegen der Selbstfinanzierung

V(1) = V*(0) + f H(u)dS* (u).

Also gilt:

K(t) = V*(0) + f H(u)dS* (u) - H(H)S* (1).
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1.4 Arbitrage

Definition. FEine selbstfinanzierende Handelsstrategie (K, H) ist eine Arbitragemdg-
lichkeit, wenn sie ohne Anfangskapital ein positives Vermdgen schafft, d.h.

V(0) =0 und zlelzmT V(t)=V(T) 20 und P(V(T)>0) > 0.

Bemerkung. Beachte: Die Existenz von 111% V(t) wird vorausgesetzt.
7

Eine dquivalente Umformulierung ist:

Satz 1.6. Es gelte N(T) := 7PmT N(t) >0 P-fast sicher.
2

Dann gibt es eine Arbitragemaoglichkeit genau dann, wenn es einen previsiblen Prozess
(H(t))ocrer gibt mit

f H(u)dS* () > 0 und ]P( [ H(w)dS*(u) > 0) > 0.

Beweis. Die Voraussetzung stellt sicher, dass }H% V(t) existiert genau dann, wenn lim V*(t)
7

t T
existiert.
Wegen
T
V*(T) = V*(0) + f H(u)dS* (u)
=0 0
folgt die Behauptung. m

Bemerkung. Durch (H(t)),.r wird die Moglichkeit geschaffen, einen risikolosen Ge-
winn zu erzielen. Diese Fassung des Arbitragebegriffes ist allerdings zu allgemein, da
ein sinnvolles Modell wie z.B das Black-Scholes Modell eine Arbitragemdglichkeit bieten
wiirde.

Satz 1.7. Im Black-Scholes Modell gibt es Arbitragemaglichkeiten.

Beweis. Betrachte ein Black-Scholes Modell mit p = r. Es gilt
B = e

dS(t) = S(t)(rdt + cdW(t)), o>0

S*(t) = e "S(t) ist ein Martingal
dS*(t) = S*(t)odW (1)
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Gesucht ist ein vorhersehbarer Prozess (H(t)) o mit

t
lim Of H(u)dS* (u) = 1.

Dann kann man mittels H eine Arbitragemdoglichkeit konstruiert werden.
Ansatz:

V(t) = f H(u)dS* () = / H(u)oS™ (u) dW (w).
0 0 F(u)

Wihle H(u) so, dass
f(u)=H(u)oS*(u), 0<u<T

eine deterministische Funktion ist, mit
t
ff(u)Qdu< oo fiiralle0<t<T.
0

Wahle f so, dass
T
/ f(u)?du = oo
0

etwa 1
t) = .
1) = <=
Damit ist .
M(t) = [ d(w)dW (u)
0
und
t
(M), = [ F(u)?du  firalle 0<t<T
0
sowie
(M) = lim{(M); = co.
Setze
Ti=inf{0<t<T:M(t)=1}.
Dann ist
P(r<T)=1.
Definiere nun H durch .
H(u) = 25 (D) falls u <7 ‘
0 falls u > 7

25



Dann ist

[ H@as @) = [ f)1on(dv ()

= 7Tf(U)dW(U)

=M(tAT)
also

li f H(u)dS* (u) = M(7) = 1.

O

Konsequenz: Die Klasse der moglichen Handelsstrategien ist zu grof und muss geeignet
eingeschrankt werden.
Forderung: Beim Handel darf man sich nicht beliebig verschulden.

Definition 1.8. Eine selbstfinanzierende Handelsstrategie (K, H) heif$t zuldssig, wenn
es ein ¢ >0 gibt, mat
V*(t)>—-c firalle0<t<T.

Durch Anwenden von (K, H) kann man sich also nicht mehr als ¢ Einheiten des Nume-
raire Assets verschulden.

Definition 1.10. Ein Finanzmarkt heifit arbitragefrei, wenn es keine zuldssigen Arbi-
tragemaglichkeiten gibt.

Bemerkung. Mit dieser Definition ist auch das Black-Scholes Modell arbitragefrei, denn
mit der im Beweis angesprochenen Strategie konnte man zwar ein Arbitrage erzeugen,
doch musste man in Kauf nehmen sich zwischen dem Zeitpunkt 0 und T mit positiver
Wahrscheinlichkeit beliebig hoch zu verschulden. Durch die eingefiihrte untere Schranke
ist solch eine Strategie nicht mehr erlaubt.

Mit probabilistischen Methoden sollen arbitragefreie Mérkte angegeben werden. Dies
fiihrt zum Begriff des dquivalenten Martingalmafses.

Definition 1.11. Gegeben sein ein Finanzmarkt entsprechend (1.1). Ein Wahrschein-
lichkeitsmafs P* auf (2, Fr) heifit dquivalentes Martingalmafs, falls gilt:

(i) P* ~P auf (Q, Fr),
(i) (S} (t))oeser ist ein lokales Martingal beziiglich P* fiir alle 1 <i < d.

Markte mit adquivalentem Martingalmafs sind arbitragefrei:
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Satz 1.12. Euaistiert ein dquivalentes Martingalmaf, so gibt es keine zuldssigen Arbi-
tragemaoglichkeiten.

Beweis. Sei (K, H) eine selbstfinanzierende, zulissige Handelsstrategie. Dann gilt
t
V() = V*(0) + f H(u)dS*(u) fir alle 0< ¢ <T.
0

Also ist V* ein lokales Martingal beziiglich P*, das
Vi(t)>2-c firalle0<t<T

erfiillt.
Damit ist V* ein Supermartingal, welches nach dem Martingalkonvergenzsatz P*-fast sicher
konvergiert fiir t # T. Wegen dem Lemma von Fatou gilt fiir alle s:

E*(V*(T)|F,) = E* (liminf V" (1)|7,)

Fatou

< liminf E* (V™ (¢)|Fs)
t T
<V*(s).

Insbesondere gilt:

E*V*(T) < V(0)*.
]

Die Umkehrung von Satz 1.12 ist im Allgemeinen falsch. Auch wenn der Markt arbitra-
gefrei ist, kann man nicht auf die Existenz eines dquivalenten Martingalmafes schliefsen.
Hierzu muss der Handel eine etwas starke Bedingung erfiillen.

Definition 1.13. Fine Fr—messbare Abbildung C' >0 mit P(C' > 0) > 0 heifst free lunch
with vanishing risk, wenn es eine Folge von selbstfinanzierenden zuldssigen Handelss-
trategien ((Ky,, Hy,))nen und eine Folge (vy )nen € (0, 00) gibt, mit

(i) Vo((K,, H,)) <v,  fiir alle n €N,
(ii) Vr((Kn,Hy))>C  fir alle n €N,
(i4i) lim v, = 0.

FEin Finanzmarkt erfillt die No Free Lunch with Vanishing Risk (NFLVR) Bedingung,
wenn es keinen free lunch with vanishing risk gibt.
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Satz 1.14 (No Arbitrage Theorem). Gegeben sei ein Finanzmarkt entsprechend (1.1).
Dann sind dquivalent:

(i) Es ezistiert ein dquivalentes Martingalmaps.

(ii) Der Markt erfillt die NFLVR Bedingung.

Beweis. siehe Orginalpaper von Delbaen und Schachermayer. O

Mit Hilfe des Satzes von Girsanov kann man entscheiden, ob es ein dquivalentes Martin-
galmals gibt:

Satz 1.15. Gegen sei ein Finanzmarkt entsprechend (1.1). Es existiere N(T') := %H% N(t)
7

und N(T) > 0 P-fast sicher. Genau dann existiert ein dquivalentes Martingalmaf$ P*,
wenn es einen n—dimensionalen previsiblen Prozess (v(t))gor 9ibt mit

T
(i) [|v(s)]?ds < oo P-fast sicher,
0

(i) u(t) + o) (w(t) - on () = (r(t) — lon (D)2 + on(Ov(t)1  fir alle 0<t < T,

(i17) Eexp (OfTV(S)dW(S) = %OfT|V(S)|2dS) =1.

Beachte: 1 =(1,...,1)T
—
d

Beweis. '=’ Sei P* ein dquivalentes Martingalmafs. Dann ist der Dichteprozess

dP*
L =
" AP g

firalle 0<t<T

ein gleichgradig integrierbares Martingal mit

Ly =lim L, >0 P-fast sicher.
t T
Weiter hat L eine Exponentialmartingaldarstellung der Form
1
L = exp (M(t) _ §(M)t) fiir alle 0 < < T

mit lokalem Martingal M.
Setze
(M)(T) = lim( M)
Da auf {{M(T)) = oo}
M(t)
(M),

— 0 firt T,
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gilt
M) 1
(M), ~ 5) T

lnLt:M(t)—%(M)tI (M>t(

auf {{M)7 < oo}
Da L; >0 [P-fast sicher folgt somit

P({{M)r =00})=0 P-fast sicher

also
(M)r < 0o IP-fast sicher.

Der Martingaldarstellungssatz liefert einen previsiblen Prozess (v(t)), . mit

¢
f lv(s)fPds <oo fiiralle 0<t<T
0

und

t
M(t) = f V(s)dW(s) firalle 0<t<T,
0

Wegen (M)r < oo P-fast sicher ist

T
f lv(s)[?ds < oo P-fast sicher
0

und .
M(T) = lim M(t) = f v (5)dW (s).
4
0

Also folgt

T 1 T

LT:exp(f V(s)dW(s)—§f|y(5)|2ds)

0 0

und somit

1:ELT:Eexp(f V(s)dW(s)—%f|y(s)|2ds).

0
Damit gelten (¢) und (7).
zu (i7): Fir 1 <i < d gilt:

d5,(t) = S.(8) (s (D)t + 3 03y ()W (1)

J=1

AN(t) = N()(r(0)dt + 3 oy (H)dW (1)

J=1
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Die Ito-Formel liefert
1 1 1

SYOR _N(t)2 N+ TV
- N(t) (r(t)dt + on (t)dW (1)) + N )|aN(t)\ dt
- 755 (o (OF = r(e)d o (W ().
Partielle Integration impliziert
Si (t) 1

~ S,-(t) 2

0 ((lon ()7 =r(t))dt — on(t)dW (1))
E ; (pi(t)dt + o;(t)dW (1))
Si(t)

N(t) on(t)oi(t)dt.

Also folgt
dS; (t) = ST O ((lon ()P + pit) + on(O)oi(t) —r(t))dt + (0:(t) - on(£))dAW (). (5)

Der Satz von Girsanov liefert
t

Wj*(t):Wj(t)—/u(s)ds 1<j<n0<t<T
0

sind n unabhéngige Wiener-Prozesse beziiglich P*.
Eingesetzt in Gleichung 5 liefert dies

dS; (t) = S; (&) (lon (O + i (t) - on () oi(t) = r(t) + (0:(t) — on(t))r(t))dt
+S7(t)(oi(t) —on(t))dW™(t).
Also ist S} ein lokales Martingal genau dann wenn der dt—Term verschwindet. d.h.
lon () + i (t) + (03(t) = on (8))v(t) = 7(t) + on(t)oi(t)
<ui(t) +oi()v(t) —o;(t)oy(t) =r(t) - lon ()] + on(t)v(t).

Also gilt (i7). <=’ Mit Hilfe von (7) und (47) liefert der Satz von Girsanov ein dquivalentes |6.5.16
Wabhrscheinlichkeitsmaf P* mit

dB - = exp(of V(s)dW (s) - % _O/ |19(s)|2ds).

dP
Si(t) = %Eg, 0<t<T

ein lokales P*—Martingal ist fiir alle 1 <7 < d. O

(i1) impliziert, dass

30



Bemerkung 1.16. Ist N ein Geldmarktkonto, so lautet die Bedingung (ii) in Satz 1.15
p(t) + o)) =rt)1  fir ale0<t<T.

Beispiel 1.17. a) eindimensionales Black-Scholes Modell

dS(t) = S(t)(udt + odW(t))
45(t) = B(tyrdt

Setze ¥ = %= und
dP~*
dP

Dann ist P* ein dquivalentes Martingalmafs:
Beziiglich P* gilt:

= exp (19W(t) - 119215) :
5 2

dS(t) = S(t)(rdt + cdW* (t)

mit W*(t) = W (t) - vt.
Beziehungsweise dquivalent:

dS*(t) = S*(H)odW* (1)

b) mehrdimensionales Black-Scholes Modell

J=1

dB(t) = B(tyrdt

Ist die Gleichung
w+od=rl
durch ein 9 € R™ losbar, so existiert ein dquivalentes Martingalmafs P*.

dpP*
dpP

w 1
= exp (Z 0, W5(t) - §|19|2t)
F j=1

und

W*(t) = W(t) -0t

15t etn n—dimensionaler Wiener-Prozess beziiglich P*.
Auflerdem ist

AS,(t) = Si(t)(rdt + 3 0y d W7 (£)).

=1

Ist n =d und o invertierbar, so ist

=0 (~(u-r1)).
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¢) Black-Scholes mit deterministischen Koeffizienten

dSi(1) = Su(1) (s (£)dt + iaij(t)dﬂ/j(t))
d(t) = B(t)rdt

Ist die Gleichung
p(t) +o(t)d(t) =r(t)L  firalle0<t<T

durch ¥(t) € R™ losbar und gilt
T
f |9(s)|*ds < o0
0

so wird durch

dp*
dP

- = exp (Of V(s)dW (s) - % b/ |19(3)|2ds) 0<t<T

ein aquivalentes Martingalmaf$ definiert.

t
W (1) = W(t) - f 9(s)dt
0
st ein Wiener-Prozess beziiglich P* und

4Si(1) = SO (r(1)dt + Y oy (VAW (1)

J=1

beziiglich P* fiir alle 1 <i <d.

2 Bewerten von Derivaten
Wir betrachten einen Finanzmarkt entsprechend 1.1, das heifst
dSi(t) = Si(t) (ps(t)dt + Y 7;(t)dW;(t)) 1<i<d
j=1

AN(t) = N0 (r(0)dt + 3 oy (H)dW; (1)),

j=1

Wir setzen voraus, dass es ein dquivalentes Martingalmals P* gibt.
Beziiglich P* gibt es dann einen Wiener-Prozess W*, so dass

dS;(t) = 57 (t)oi(t)dW™ (t)
=S5*(t) Y oy (t)dW*(t) firalle1<i<d,0<t<T

J=1
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gilt.
Hierbei ist

0ij(t) =035(t) — on;(t)
und 5.(6)

Kurz:
ds*(t) = S*(t)o(t)dW™*(t)

Ein Derivat ist ein Vertrag, der zum Termin 7" eine zuféllige Auszahlung (/Ausschiittung)
C zusichert. Dies wird durch den Begriff des T-Claims formalisiert.

Definition 2.1. Ein T-Claim C' ist eine Fr—messbare Abbildung. C heifst replizierbar
zum Anfangskapital x € R, wenn es einen previsiblen Prozess H gibt mit

T
(1) % +{H(u)d5*(u) o

t
(i1) ([ H(u)dS* (u)) ist ein gleichgradig integrierbares P*—Martingal.
0 0<t<T

H ist dann eine Replikationsstrategie fir C zum Anfangskapital x € R.
x st der Betrag in Furo, der vom Verkdufer des Claims bendtigt wird, um das Risiko
der short Position im Derivat vollstindig zu eliminieren.

Bemerkung 2.2. Ist H eine Replikationsstrategie zum Anfangskapital x fiir einen
T—-Claim C, so wird durch (K (t),H(t))yccp mit

t
K(t) = % " f H(u)dS* (u) — H)S* (1) fir alle 0<t<T
0
eine selbstfinanzierende Handelsstrategie definiert mit Wertprozess (V (1)) ocer, S0 dass

V0= 3 ¢ Of H(u)dS*(u) fir alle0<t<T

~E(C"I)
beziehungsweise
V(t)=N@#)V*(t) = N(O)E(C*|F) 0<t<T.
Insbesondere ist damait C* integrierbar beziiglich P* und

T C
— ]E*C* - ]E*
N(0) N(T)

sowie
V(T)=C.

Ist C* > —a fiir ein a € Ryg, so ist (K, H) auch zuldssig.

33



t
Beweis. ( [ H(u)dS *(u)) ist ein gleichgradig integrierbares P*—Martingal mit
0

o<t<T

T
* x *
C N0 +b/H(u)dS (u).
Also gilt:

T

¥t / H(u)dS" (u)|7)

E*(C*|F) =E(

X

ot Of H(u)dS" (u)
=V*(t) 0<t<T.

Insbesondere ist .

N(0)’

E*C* =V*(0) =

]

Folgerung 2.3. Sind H, und Hy Replikationsstrategien des Claims C' zu den Anfangs-

kapitalien x1 und xo, so gilt

x1=Ty und /tHl(u)dS*(u):ftHQ(u)dS*(u)

fur alle0<t<T.

Beweis. Wegen Bemerkung 2.2 gilt

G o ) _
W—EO ——N(O)ﬁl’l i)
und
¢
x
Hi(u)dS*(u) =E*(C”
O ] (WS (u) = E*(C"|)

T

- N(QO) +fH2(u)dS*(u).

t t
Da 1 = x5 ist auch [ Hy(u)dS*(u) = [ Ha(u)dS*(u) fur alle 0< ¢ < T.
0 0
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Fiir einen replizierbaren Claim ist dessen arbitragefreier Wertprozess, notiert in An-
teilen des Numeraire Assets, bestimmt durch

(E* (O* |f;f) )0§t<T :

Satz 2.4. Sei C' ein replizierbarer T'- Claim zum Anfangskapital x und Replikationss-
trategie (H(t))gcper- Sei C* > —a fiir ein a > 0.
Dann gilt fir jedes dquivalente Martingalmafs P}
t
* * :E *
Ei(C"17) = 5707 * Of H(u)dS* (u)
=E*(C*|F) 0<t<T.

Beweis. 1. Schritt Zeige die Behauptung fiir beschranktes C*.
Es gilt wegen Bemerkung 2.2

T

N(0)

t

" f H(u)dS* (u) =E*(C*|F)  fiir alle 0< ¢ <T.
0

Wegen —a < C* < b ist auch

t
a< ﬁ N Of H(u)dS*(u)<b fiiralle 0<t<T.

t
Also ist das lokale Pj—Martingal ( [ H(u)dS *(u)) beschrénkt und somit ein gleich-
0

L. . . 0<t<T
gradig integrierbares P} —Martingal.

Also ist

X

(0) +/H(U)d5*(U)=E{(x+fH(u)dS*(u)|}.t)

“E{(C*|F,) firalle 0<t<T.

N

Insbesondere ist .
E;C* = =E*C".
O N(0)

2. Schritt C* > —a
Durch Zuriickfithrung auf den ersten Schritt kann man die Aussage zeigen. Dies ist aber
eine aufwendigere Argumentation. O
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Definition 2.5. Sei C' >0 ein replizierbarer Claim. Dann heifst
]E*C*

arbitragefreier Anfangspreis fiir C', notiert in Anteilen des Numeraire Assets.
N(0)E~C™ ist der arbitragefreie Anfangspreis in Euro.

(E*(C*|F2)) o<ter ist der arbitragefreie Preisprozess fiir C', notiert in Anteilen des Nu-
meraire Assets.

Dementsprechend ist (N (t)E*(C*|F;))oeper der arbitragefreie Preisprozess fiir C in Eu-
T0.

Bemerkung. Diese Definition ist sinnvoll, da ein um den Handel mit C' erweiterter
Finanzmarkt P* als dquivalentes Martingalmafs hat. Damit ist der erweiterte Markt ar-
bitragefres.

Genauer:

Setzt man

N(OE(C*|F,)  firalle0<t<T

als Preisprozess fiir C' im erweiterten Markt an, so hat dieser Markt P* als dquivalentes
Martingalmafs.

Die Frage stellt sich, wann Claims replizierbar sind. Eine einfache Antwort findet man
in sogenannten vollstdndigen Markten.

Definition 2.6. Ein Finanzmarkt heifst vollstindig genau dann, wenn es ein eindeutig
bestimmtes dquivalentes Martingalmaf gibt.

Anhand der Driftvektoren und Volatilitdten kann man entscheiden, ob der Markt voll-
standig ist:

dSi(1) = S (£) (us()dt + i ()dW;(t))  firalle 1<i<d

AN(t) = N(0)(r(0)dt + 3 ony (H)dW (1)

j=1

Die Bedingung (i¢) aus Satz 1.15 kann dquivalent umformuliert werden zu
pu(t) +o(t)9(t) =r(t)1 +o(t)on(t)

wobei
0ij(t) ==0;;(t) —on;(t) firallel<i<d, 1<j<n.

Satz 2.7. Ist n >d, so ist der Markt nicht vollstindig.
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Beweis. Existiert kein aquivalentes Martingalmafs, so ist der Markt per Definition nicht
vollstandig. Existiert aber ein dquivalentes Martingalmaft P*, so existiert ein weiteres
dquivalentes Martingalmafl, womit es kein eindeutiges mehr gébe, der Markt also nicht
vollstandig ist:
Sei P* ein dquivalentes Martingalmaf mit previsiblen R"-wertigen Prozess (U(t)),cr
mit
dP+
dP

t t
:exp(f I(s)dW (s) —%f |19(s)|2ds) fiir alle 0< ¢ < T
Fe 0 0

und sei
a()9(t) =r(t)1 — u(t) + o(t)on(t)
fir A @ P-fast alle (¢,w) erfiillt.
Wegen d < n ist Kern o(t) # {0} fir alle 0 < ¢ < 7. Wahle n(t) € Kern o(t) mit
In(t)] = 1 fiir alle 0 < ¢ < T. Benutze n zur Konstruktion eines weiteren dquivalentes

Martingalmafes.
Es gilt:

t
W (1) = W(t) - /ﬁ(s)ds fiir alle 0 < ¢ < T
0

ist ein Wiener-Prozess beziiglich P* und
dS*(t) = S*(t)o(t)dW™*(t).
Setze

L(t) = exp (/ n(s)dW=(s) - % fot |77(s)|2ds) fir alle 0 <t < T.

Wegen der Novikov Bedingung ist (L(t)) .y ein gleichgradig integrierbares Martingal.
t

(Alternative Argumentation nutzt Satz von Lévy: Setze B(t) = [ n(s)dW*(s),0<t <T.
0

t
Dann ist B ein lokales Martingal mit (B); = [ [n(s)[>ds = ¢. Also ist B ein Wiener-Prozess
0

——
=1

und L(t) = exp(B(t) - 3t) und somit ebenso ein P*~Martingal.)
Definiere ein Wahrscheinlichkeitsmafl P** durch
d]P)**
dP*

=L(t) furalleO0O<t<T.
Fi

Dann ist

W**(t)=W*(t)—fn(s)ds 0<t<T

ein Wiener-Prozess beziiglich P**.
Es gilt:

dS*(t) = S* () ()dW*(t)
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= S* (1) (t)(dW** () +n(t)dt)
=57 () (a()n(t) di+o(t)dW™ (1))

—_——
=0, da
neKern o(t)

= S* (D)o (H)dW* (2).

Also ist P** ein weiteres dquivalentes Martingalmaf. ]

Satz 2.8. Ist n<d und Kern o(t) = {0} fast sicher, so ist das Modell vollstindig, falls
r(L - pu(t) +o(t)on(t) = o()I(t)

fast sicher losbar ist und

T

Eexp([ﬁ(s)dW(s)—%[|19(s)|2ds):1.

Beweis. Da Kern o(t) = {0}, ist obiges ¥(¢) eindeutig. Wegen
T

Eexp( [ ﬁ(s)dW(s)—% |/ |19(s)|2ds):1

existiert genau ein dquivalentes Martingalmafs P*. Damit ist der Markt vollstandig. [

Satz 2.9. Es existiere ein dquivalentes Martingalmafs. Ist n = d und o(t) invertierbar
fiir A @ P—fast alle (t,w), so ist das Modell vollstindig.

Beweis.
pu(t) +o(t)d(t) =r(t)1 +o(t)on(t)

ist eindeutig 16sbar genau dann, wenn o(t) invertierbar ist. [

Satz. FEs existierte ein dquivalentes Martingalmaf. Ist n = d und
AP ({(t,w) :o(t) ist nicht invertierbar}) >0

so ist das Modell nicht vollstindig.

Beweis. Da
AP ({(t,w) : o(t) ist nicht invertierbar}) > 0

ist auf diesem Ereignis Kern o(t) # {0} und es kann, analog zu Satz 2.7 ein weiteres

daquivalentes Martingalmafl konstruiert werden. Damit ist das Modell nicht vollstéandig.
O

In einem vollstandigen Markt ist jeder integrierbare Claim replizierbar.
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Satz 2.10. Gegeben sei ein vollstindiger Markt mit eindeutigem dquivalenten Martin-
galmaf P*. Sei C' ein T-Claim mit E*|C*| < oo.
Dann existiert zum Anfangskapital z := N(0)E*C* eine Replikationsstrategie fir C.

Beweis. Der Martingaldarstellungssatz liefert eine stochastische Integraldarstellung des
gleichgradig integrierbaren P*—Martingals

E*(C*|FR) =E*C* + f a(u)dW*(u).

W+ ist ein Wiener-Prozess beziiglich P*.
Wegen der Vollstandigkeit ist n < d und o(t) ist injektiv fiir fast alle ¢.
Zu bestimmen ist ein d—dimensionaler previsibler Prozess H mit

fa(u)dW*(u)sz(u)dS*(u).

> [ sy (s) =3 [ Hi(wyds; (w)

7=1

~

M-

~
Il
—

S R

Hi(u)S; (u)oi; (u)dWy (u)

.M& o\ﬁ

S
1l
—_

H;i(u)S; (u)oi;(u)dW; (u)

)
Il
—_

Also ist zu 10sen

d
aj(u) = H;(u)S; (u)oyj(u) firalle1<j<n
i=1

bzw.
Hy(u)Si(u)
a(u) =o' (u) : :
Hy(u) S (u)
Da Kern o(t) = {0}, ist diese Gleichung eindeutig durch (H(u)).,y 10sbar. O

Da wir « nicht explizit gegeben haben, ist dieser Satz fiir die Praxis nicht sehr hilfreich.
Da hilft der PDE Ansatz:
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2.11 PDE Ansatz

Es liege ein vollstandiges Diffusionsmodell entsprechend d) in Beispiel 1.2 vor mit n = d,
d.h.

dSi(t) = Si(E)(r(t, S(0)dt + 3 03y (£, S(£))AWF (1)) fiir alle 1< i <d

dp(t) = B(t)r(t, S(t))dt

beziiglich des dquivalentes Martingalmafses P*. W* ist ein Wiener-Prozess beziiglich P~*.
Sei C'* ein T-Claim der Form

C=h(S(T))
it B LS o
Dann gibt es eine Replikationsstrategie mit Wertprozess (V (t))q;p, sodass
h(5(T)) )
V(t)=p5(t E*( Fi

:E*(h(S(T))exp (— [ r(u,S(u))du) |ft).

Im Diffusionsmodell ist .S ein d—dimensionaler Markov-Prozess. Deshalb gilt
T

V(t) = E* (h(S(T))exp (— f r(u,S(u))du)|S(t))

=v(t,5(1))

mit
v(t,x) =E* (h(S(T)) exp (— f r(u, S(u))du) |S(t) = :U) fiir alle 0 <t < T, x € (0, 00)4

=fh(yT)eXp(—[Tr(uyyu)dU)Kt(fﬁad?/)-

mit K;(xz,-) = P*(S(u))ust € |St = ) und y; die Realisierung eines Pfades von S(t) zum
Zeitpunkt ¢.

In vielen Diffusionsmodellen (Bedinung an o, h; hier nicht genauer ausgefiihrt) reicht die
Integrabilitétsbedingung E*|C*| < oo aus fiir die Glattheit von v, sodass die Ito-Formel
angewendet werden kann.

Es folgt:

do(t, S(t)) = Do (t, S(t))dt + i@xiv(t, S(t))dSi(t) + % S 00,0, 0(, S(8)d(S:. S,

1,5=1
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= Ow(t, S(t))dt + Zd:a%.v(t, S())Si(t)(r(t,S(t))dt + Zd;aij(t, S(t))dW; (t))
1
"3

d
2 (02,00,0(t, S(£))Si(1) S;(t) (00T )35 (¢, (1)) )dt

wegen

d(S;, S;j)e = d( sz(U)ZUZk(U Si(u))dWi (u), fS Zaﬂ(u S(w))dW; (u)):
‘C“k; [ sxu)am(u,sw))dvvg(u),z / 5 () (u, S ()W ()
5% >l f S (u, S (w))dW (u), ] S5 (w)a(u, S(u))dW; (u)),

k=11=

zd: Si(u)oik(u, S(u))S;(u)ojr(u, S(u))d(Wi, W' ),

Si(u)S;(u)(oo™ )i (u, S(u))du

Also folgt

do(t, S()) = (O (t, S(t)) + Za (L, SE)S:(H)r(t, S(1))
1
i)

d
2 00D v SIS0, (1) 00 )5 (1, S (1))
d
+ ;&Eiv(t, S(t))Si(t) ;a@-(t, S(t))dW; (t).
Da (871 (t)v(t, S(t)))ocer €in P*—Martingal ist, folgt

O (t,x) 28 ot x)xr(t,x) +1 218 O u(t, 2) (oo™ (t x) = r(t,x)v(t, z)

fir alle 0 <t < T,z € (0,00)7.
Also ist die Funktion
v (O7T) x (ano)d — R

Losung des Cauchy-Problems
Z@ w(t,x)zr(t,x) + = Z O, O, 0(t, )iz (00" )5 (t, ) = r(t, x)v(t, x)

ow(t,x)
zg 1

mit Endbedingung
limTv(t,x) = h(x).
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Die Losung dieser Differentialgleichung kann fiir gewohnlich nicht explizit gefunden wer-
den, wohl aber numerisch.
Mit diesem Ansatz erhélt man auch die Replikationsstrategie, denn

d d

AV (t) = dv(t,S(t)) = v(t, S(t))r(t)dt + > 0p,v(t, S(£))Si(t) Y 03 (¢, S(t))dW; (¢)
=1 k=1

impliziert mit partieller Integration

AV (1) = d% = 22 0e0(1, S(0)S7 (1) 2 (1 S(0)aW ()

d
=3 0,,0(t,5())dS; (t).
=1
Also folgt

d t
Vi =V (0)+ Y [ 0u0(uSw) dS; (u)
=y ———
H;(u)
mit V*(0) =V (0) =E*C* =v(0,5(0)).
Man erhélt also den sogenannten d—Hedge durch

Hi(t) =0,v(t,S(t)) firallel<i<d 0<t<T

K1) = V(1) = Y H(1)S ().

2.12 PDE Ansatz bei Barriere Optionen

Gegen sei ein eindimensionaler vollstandiger Finanzmarkt, d.h.

dS(t) = S(1)(r(t, S())dt + o (t, S())dW* (1))
dp(t) = B(t)r(t, S(t))dt

beziiglich des dquivalenten Martingalmafes P*.
[R(S(T))|

Fiir eine Funktion h : (0,00) — R mit E*W < oo soll die Preisfunktion einer
Barriere Option bestimmt werden.

Dabei sind Barriere Optionen mit Barrieren 0 < K < L < co Optionen, die wertlos werden,
wenn der Preisprozess des Underlyings wahrend der Laufzeit die Schranken unter- bzw.

iberschreitet, d.h. eine Knock-Out Barriere Option hat die Auszahlung
C=h(S(T))Lirsmy

mit
7 :=inf{u>t:S(u) < K oder S(u) > L}
fir alle 0 <t < T.
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Dies ist ein einfaches Beispiel einer pfadabhéngigen Option.
Der Preis von C' zur Zeit t erfiillt

p(C) = BOE"(C*|F)

=E~ (h(S(T)) exp (—

e

T(u, S(u))du) ]1{7-0>T}|~7:t)
=E* (h(S(T)) exp (— f r(u, S(u))du) ]1{T0>t}]1{7t>T}|ft)

=L B (h(S(T)) exp (— f r(u, S(u))du) ]l{n>T}|}—t)
= Tironyv(t, S(1))
mit
v(t,z) =E* (h(S(T)) exp (— / r(u, S(u))du) Lirsmy|S(t) = x) fir alle K <z < L.

Die Funktion v erfiillt eine PDE mit Rand- und Endbedingung.
Herleitung der PDE:
Da 71(t)p(C) =E*(C*|F;) 0<t<T ein P*-~Martingal ist, ist auch

6_1(t A TO)pt/\To(C) = B_l(t A To)U(t A To, S(t A To)) 0<t<T

ein P*—Martingal.
Ito-Formel angewendet auf v(t A 79, S(t A 79)) fiithrt auf die PDE

ov(t,x) + %xQJQ(t,x)ﬁzv(t, x) +r(t,x)xov(t,x) =r(t,z)v(t,x)

firalle 0<t<T,K <x < L.
Da tlim v(t,S(t)) = 0 P*—fast sicher folgen die Randbedingungen
7T

lirriv(t,x) =0 firalle0<t<T
x/

limo(t,z)=0 firalle0<t<T
oK

und Endbedingung
%irgv(t,x) =h(z) furalle K <z < L.
7
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2.13 Sharpe Ratio
Wir betrachten ein eindimensionales vollstédndiges Finanzmarktmodell
dS(t) = S(t)(u(t)dt +o(t)dW (t))
dp(t) = B(t)r(t)dt.
Beziiglich P kann dies als subjektive Einschitzung eines Investors interpretiert werden.

- pu(t) = r(t) ist die Uberschussrendite der Aktie.

- % ist der Sharpe Ratio der Aktie, d.h. das "Verhéltnis von Ertrag zu Risiko".
Bedeutung: Bewertung des Ertrages in Einheiten des Risikos(der Volatilitit) ~
Market Price of Risk.

- 9(t) = =00 g < ¢ < T fithrt zu einem Mafwechsel zum équivalenten Martin-

o(t)

galmals P*:
dP* : 1 [, )
= exp / I(s)dW(s) — = f V7(s)ds fir alle 0 <t < T.
dP |z J 2

Ist C' > 0 ein T-Claim mit E*|C*| < oo und E*(C*|F;) > 0 P-fast sicher, so kann
C als weiteres gehandeltes Finanzgut im Markt aufgefasst werden mit arbitragefreiem

Preisprozess
C(t)=pt)E(C*|F) 0<t<T.

Da C ein positives Semimartingal beziiglich P ist, gibt es eine Darstellung der Form
dC(t) = C(t)(pc(t)dt + oc(t)dW (1))
mit previsiblen Prozessen e und oc. Dabei ist
- pe die Rendite des Derivates und

- o¢ die Volatilitat des Derivates.

Beziiglich P* gilt, da (ﬁ(ﬁ'(t))o o ein P*—Martingal ist,
<t<

dO(t) = C(#)(r(t)dt + oo () AW (1)).

Da
AW*(t) = dW (t) - 9(¢)dt
folgt
dC(t) = C(t)((r(t) - oc(t)9(t))dt + oc(t)dW (t)).
Also gilt

pe(t) =r(t) —oc(t)d(1).
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Damit ist

pe(t) = r(t)
die Uberschussrendite von C.
Es gilt:

pe()=r(t) __y 10 -r(t)
oc(t) o(t)

Damit ist der Sharpe Ratio eine Invariante unter allen sinnvoll gehandelten Finanzgiitern
im Markt und wird durch die Girsanov Transformation bestimmt.
Bedeutung: Ein Investor kann in ein beliebiges Finanzgut investieren, da das Verhéltnis

von Ertrag zu Risiko konstant ist.

2.14 Konstruktion eines Geldmarktkontos im mehrdimensionalen, vollstindigen
Fall

Gegeben sei ein vollstdndiger Finanzmarkt der Form

dS;(t) = S;(t) (ps,i(t) + zd:agij(t)de(t)) fir alle 1 <i<d

AN(t) = N (1) (un (1) + z o, (DT (1))

mit einem d—dimensionalen Wiener-Prozess W, der den Zufall bestimmt.
Der Markt sei vollstandig, d.h.
O'ij(t) = USij(t)_UNj(t) fiir alle 1§i,j§d,0§t<T

ist eine invertierbare Matrix und durch

P+
dP

}_t:exp(!ﬁ(s)dW(s)—%Of|19(5)|2d5) 0<t<T

wird das eindeutige bestimmte dquivalente Martingalmafs definiert, wobei
I(t) = o () ((pw (1) = lon ()L + os(t)on(t) - ns(t))

¢
W=(t)=W(t) - f Y(s)ds d—-dimensionaler Wiener-Prozess beztiglich P*.
0

Es gilt beziiglich P*:
dS*(t) = S*(t)o(t)dW*(t)
und
ﬁ ) ﬁ((m(w = un () = on (D)0(1))dt = o (£)dW* (1))

Setze
r*(t) = —(lon(O)? = un(t) —on(t)9(t)) firalle 0<t<T.
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Dann gilt:
1

d——
N(t) N (t)
Dies bedeutet, dass der eindeutig bestimmte arbitragefreie Zinsratenprozess eines Geld-

marktkontos durch (r*(t)),., festgelegt ist.
Setze also

——(-r*(t)dt —on(t)dW™*(1)).

t
B(t) = exp (/ r*(s)ds) fir alle 0 <t < T.
0
Damit ist 4 der Preisprozess eines Geldmarktkontos mit Zinsrate r*, d.h.

dp(t) = (T)r*(t)dt, 5(0) =1

und
O] 1
N(t) B(t)dN(t) N(t)dﬁ(t)
0 L 80
0 e o (I (1) + e (i
_ B@)
= N(t)UN(t)dW ().

Also ist P* ein dquivalentes Martingalmafs beziiglich der d+1 risky assets Si, ..., Sg, 5 und
dem Numeraire Asset N. Ein Handel in diesen d + 2 Finanzgiitern hat keine zuléssigen
Arbitragemoglichkeiten.

Frage: Wie kann man das Geldmarktkonto replizieren?

Gesucht ist previsibler Prozess H, so dass

B(t)

1 t . )
W:W+O[H(U)d8 (u) firalle0<t<T.

Dann gibt es eine selbstfinanzierende Handelsstrategie mit Wertprozess

V(t)=p(t) firale0<t<T

Es gilt
p) _ B .
dN(t) = _N(t)UN(t)dW (1)
-3 ;)
und

dG*(t) = H(t)dS*(t)
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H;(t)dS; (t)

M&

<.
Il
—_

M= I~

H;( ﬂS%@}jmﬂﬂdW’a)

1 \2=1

J

Dies fiihrt auf die Gleichung

d
;Hi(t)Si*(t)aij(t) = _Jff((?) onj(t) firallel<j<d

o HOEHORNP
ol (t : =
mwms;w ) NO

bzw.

O'N(t)

bzw.
Hi(t)S;(t)
- L B®) Bt)
Oy (@) - e a0,
( Hy(t)S;(t) ) N(t) N(t)
Fiir den Aktienanteil

Hi(t)Si(t) _ Hi(t)S7 (1) _ Hi(t)S7 (1)

() SO R O}

1<i<d,0<t<T

bedeutet dies
m(t) = -(c7(t)) ton(t) fiiralle 0<t<T.

Ist

eXp(—faN(s)dW*(s)—%/|0N(s)|2ds) 0<t<T

0 0

ein gleichgradig integrierbares P*—Martingal, so ist das Geldmarktkonto durch die durch
H definierte selbstfinanzierte Handelsstrategie replizierbar.

Folgerung 2.11. Sind die Koeffizienten og,0n, pis, un konstant, so ist r* konstant. Es
liegt somit ein mehrdimensionales Black-Scholes Modell mit Zinsrate r* vor.

r* = py = |onf? + oy

Preise von Derivaten ergeben sich durch deren Black-Scholes Preise

3 Volatilitatsmodelle

Ziel: Aufstellung eines praxisrelevanten Modells.
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3.1 Kalibrierung eines Black-Scholes Modells
Modellbezeichnung;:
dS(t) = S(t)(rdt + cdW*(t))
dp(t) = B(t)rdt

fiir alle 0 <t <T" mit Volatilitdt o und Zinsrate 7.

Das Black-Scholes Modell wird vor allem bei kurzen Laufzeiten von T = 3,6 oder 9
Monaten gewéahlt. Die Zinsrate kann dann als Tagesgeldzinssatz, 3—Monats Zinssatz
oder #hnliches gewéhlt werden. Diese Parameter (7', r) werden extern festgesetzt.
Problem: Wie kann man ¢ bestimmen?

Losung: Die Volatilitét bestimmt den Preis eines Derivates. Anfangspreise (Marktpreise)
von gehandelten Calls und Puts stehen als zusétzliche Information fiir eine Kalibrierung
zur Verfiigung.

Im Black-Scholes Modell benotigt man den Marktpreis eines Calls um die Volatilitéit o
auszurechnen.

Genauer:

C(x,T,0,K)=E*e"(S(T)-K)*
ist der Marktpreis eines Calls mit Laufzeit T', Basis K, Anfangspreis x und Volatilitat
0. Bezeichnet Cy/(T, K) den Marktpreis dieses Calls mit Laufzeit 7' und Basis K, so
existiert genau ein
0 = Oimp1. (T, K)

mit der Eigenschaft
C(x,T,0,K)=Cy(T,K).

Oimpl. ist die implizite Volatilitat des Calls. Wére das Black-Scholes Modell korrekt,
so wire oimp1 (t, k) eine Konstante. Tatséchlich beobachtet man aber eine gekriimmte
Volatilitatsflache

(t,K) > Oimp.(t, K) 0<t<T,K>0.
Diese Kriimmung der Volatilitatsfliche wird als Smile-Effekt bezeichnet.
Bei festegehaltenem ¢ hat die Schnittkurze K ~ oy (¢, K) etwa die Gestalt

Oimpl.

,,,,,,,,,,,,,,,,, —  Okalib. ->> kalibriertes o

] r + 1 [
1

T

deep in the n’Joney deep olﬂt of the money

Xe-Tt
at the money

Zur Kalibrierung eines Black-Scholes Modells werden Calloptionen mit gleichen Lauf-
zeiten, aber unterschiedlichen Basispreisen gewahlt und o so bestimmt, dass der Fehler
zwischen Markt und Modellpreisen minimal wird.
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3.2 Kalibrierung eines Black-Scholes Modells mit deterministischer Volatilitat
Modellgleichungen:

dS(t) = S(t)(rdt +o(t)dW*(t))

dp(t) = B(t)rdt

0 :[0,T] — R,y ist eine deterministische Funktion mit fOT 0%(s)ds < co. T und r wurden
wieder extern festgelegt.

Zur Bestimmung von o werden die Marktpreise (Car(t,k))gcior x>0 PzW. deren impli-
zierte Volatilitatsflache (oimp.(t, K)), <t K50 SENULZE.

Wire das Black-Scholes Modell mit deterministischer Volatilitat korrekt, so ware die
Volatilitatsfunktion o festgelegt durch die Marktpreise (Chs(t, K))q o bei fixiertem K.
Argument:

t
Durch den Marktpreis Cy(t, K) ist [ 02(s)ds durch die impliziete Volatilitit oimp (¢, K)
0

eindeutig festgelegt. Durch Differation nach ¢ erhdlt man ¢? und damit o(¢) fiir alle
0<t<T.

Fiir jedes K > 0 erhélt man so eine Volatilitatsfunktion (o ())y<er-

Die Kriimmung der impliziten Volatilitdatsflache in K bedeutet, dass auch das Black-
Scholes Modell mit deterministischer Volatilitdt nicht sinnvoll ist.

Fiir eine Kalibrierung wiirde man aus den Funktionen (¢0(K)) ., diejenige bestimmen,
die die Marktpreise am besten erklart, d.h., den Fehler zwischen Markt- und Modell-
preisen minimiert.

3.3 Kalibrierung eines lokalen Volatilitatsmodells
Modellgleichungen:
dS(t) = S(t)(rdt +o(t,S(t))dW*(t))
dp(t) = B(t)rdt

o(t,x) bezeichnet fiir alle 0 <t < T und z > 0 die lokale Volatilitét.

Durch die Marktpreise (Car(t,k))oeser oo ist die lokale Volatilititsfunktion eindeutig

festgelegt.

Dies ist die Formel von Dupire:

0,C(t,K)+ KogC(t,K)
02.C(t,K)

Beweis. Ist f(t,-) die Dichte von S(t), d.h.
f(t,z)dx =P*(S(t) € dx)

1
§K202(t,K)= firalle 0<t<T,K >0.

so gilt:

O, K)=e f (x - K)*f(t,2)de
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-rt I{ (- K)f(t,2)dz
:6‘rt[fdyf(t,x)d:c
R
Fubini ¢
= e K/y[f(t,a:)dxdy.

O C(t, K) ”/f (t,x)dx
K

Also

und somit

0xC(t, K) = e f(t, K). (6)
Die 2. partielle Ableitung nach K des Call-Preises bestimmt die Dichte des Aktienpreises.
Im Diffusionsmodell erfiillt die Dichte f eine forward Kolmogorov Gleichung

01 (1,) = SO 0(1,0)(1,2)) - Du(ra f (1,))
= 282(1:2026, x)f(t,x)) —rf(t,x) —rzd. f(t,x).

Wegen Gleichung 6 gilt auch:
Ouf(t,2) = 0,(e"D*C(t,x)) = e *C(t,x) + e"0,0°C(t, ).
Also folgt mit f(¢,z) = e"92C(¢,x):
re™02C(t,x)+e"920,C(t, ) = e’"t%@g(xQJQ(t,x)@%C’(t,x))—re”@iC(t,x)—re”@xﬁgC(t, x)
und damit
020,C(t,x) = %85(:1@202(15, 2)02C(t, 7)) - r0*(20,C(t, 7))
- 83(%3:202(15, D)PC(H7) - red, Ot ).
Zweimal Aufintegrieren liefert Funktionen a(t), 5(¢) mit
202(t,2)02C(t, x) = 120, C(t,2) + ,C(t,z) + at)w + B(t)
Gilt (Randbedingung):
262(t,2)02C (t,z) = e "xa®(t,z) f(t,2) =5 0

Tr—>00

20,C(t, ) -t /f(ty)dy—>0

Tr—>00

so gilt a(t) = B(¢t) = 0 fiir alle 0 <¢ < T und damit folgt die Formel von Dupire. O
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In bisherigen Volatilitdtsmodellen geht man von der Vollstdndigkeit aus.

Verniinftig ist die Annahme: Es gibt exogene Faktoren, die den Kurs einer Aktie beein-
flussen.

Beispiele sind Ereignisse wie 11.09.2001, Naturkatastrophen, wie Erdbeben, politische
Ereignisse, wie Ausginge von Wahlen, Nahostkrise uvm. Deshalb sind Finanzmérkte
prinzipiell unvollstandig.

Ein einfacher Ansatz zur Modellierung bietet das stochastsiche Volatilitdtsmodell. Der
exogene Einfluss bestimmt die Unsicherheit, also die Volatilitdt in den Finanzmérkten.
Damit hiangen die Kurse von dem exogenen Einfluss ab.

3.4 Das allgemeine stochastische Volatilitatsmodell fiir eine Aktie

Auf die Preisentwicklung einer Aktie wirken eine exogene und eine endogene Quelle des
Zufalls, d.h.
dS(t) = S(t)(pdt + f(Y (£))dW (1))

Die Volatilitdt hdngt von einem stochastischen Prozess Y ab, der die Gleichung
dY (t) =0(Y (t))dt + o (Y (t))dZ(t)

erfiillt. W und Z sind dabei eindimensionale, korrellierte Wiener-Prozesse mit Korrelati-
onskonstante g € (-1,1). Das bedeutet, (W, Z), = ot. W entspricht dabei der endogenen
Quelle des Zufalls, Z der exogenen Quelle. o wird in der Regel als negativ angesehen, da
dann Aktienkurse und Volatilitét sich gegeldufig verhalten. Ein steigender Kurs fiihrt zu
einer sinkenden Volatilitdt und ein fallender Kurs zu einer steigenden Volatilitdat. Dies
ist der sogennante Leverage-Effekt.

Frage: Wann sind solche Gleichungen 16sbar?

Man 16st zuerst die Gleichung fiir Y und dann die fiir S.

Satz 3.5 (Losbarkeit der Volatilititsgleichung). Erfillen die Funktionen b und o die
lineare Wachstums- und Lipschitzbedinungen, d.h.

|b(x)| <1 +eolz|  fiir alle x € R
b(x) —b(y)| < clx—y| fir alle z,y e R

, analog fiir o, so kann der Satz tber die eindeutige starke Losbarkeit von SDGL an-
gewendet werden und man erhdlt zu jedem y € R eine eindeutige starke Lésung der
Gleichung

dY (t) =0(Y (t))dt +o(Y (t))dW(t), Yo=uy.

Allerdings ist die Lipischtbedingung fiir o bei interessanten Féllen nicht gegeben. Etwas
schwicher ist die Yamada-Watanabe Bedingung.

Definition 3.6. Eine Funktion g: R — R erfillt die Yamada-Watanabe Bedingung,
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falls es eine strikt wachsende Funktion
p: [Oa Oo) - [0,00)

gibt, mat

fir ein € >0, so dass
l9(z) = g9(W)l < p(lz - yl)

fir alle x,y € R.
Beispiel. g(z) =+\/|x|. Dann ist g nicht Lipischtzstetig, da

1
SV B S
}:1\{%9 (z) =lim +00

1
x\OQ\/E

Aber g erfillt die Yamada- Watanabe Bedingung mit p(x) = \/x.

Satz 3.7. Die Funktion b erfiille die lineare Wachstums- und Lipischtzbedingung. Die
Funktion o sei stetig und erfille die lineare Wachstums- und Yamada- Watanabe Bedin-

qung.
Dann ist die Gleichung

dY (t) = b(Y (£))dt + o (Y (£))dZ(t), Y(0)=y

eindeutig stark losbar.

Beweisidee. Die Stetigkeit von b und o liefert, dass die Gleichung schwach losbar ist.
Die Yamada-Watanabe Bedingung impliziert die pfadweise Eindeutigkeit der Losung.
Beides zusammen liefert die eindeutige starke Losbarkeit. O]

Bemerkung. Fir die Losung gult:

¢ ¢
Ef Y?2(s)ds = f EY?(s)ds < oo fiir alle t > 0.
0 0

3.8 Losbarkeit des stochastischen Volatilitatsmodells

Modellgleichungen:
dS(t) = S(t)(pdt + f(Y (£))dW(t))
dY (t) =b(Y (t))dt + o(Y (t))dZ(t)
(W, Z), = edt
Erfiillen b bzw. o die Voraussetzungen aus Satz 3.5 oder Satz 3.7 und ist f eine stetige

Funktion, so ist fiir jeden Startpunkt y € R und S(0) € R obiges System von stochasti-
schen DGL eindeutig losbar.
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Beweis. Die Annahme von Satz 3.5 und Satz 3.7 impliziert die Losbarkeit von Y. Die
Losung fiir S erhélt man wegen der Stetigkeit von f durch

S(t) :S(O)exp(f f(Y(s))dW(s)—%/f(Y(s))%s)e“t fiir alle ¢ > 0.

[]

Formulierung der Modellgleichungen mittels unkorrelierter Wiener-Prozessen.
. 57 _ 1 _ 0 . Tir . . . _
Ansatz: Ist W = —MW —MZ , so sind W und Z unabhéngige Wiener-Prozesse und

W =\/1-0*W + oZ.

es gilt

Dies folgt mittels Lévy:
W ist ein lokales Martingal und es gilt

— 1
(W) = W - —2—2),
1- 02 1- 02
1 2
- tv 2L -9 (W 2),
1-02 1-02 1- 02 y
ot
1 0? 20?

Dann ist

(. 2), = e (W, 2), ~

(Z,2), = —2 S
1-0

= t— t=
1- 0?2 \/1—92 \/1—Q2

Die Modellgleichungen lautet dann:

dS(t) = S(t)((udt + f(Y (1)) (V1 - 2dW (L) + 0dZ(t)))
dY (1) = b(Y (£))dt + o (Y (£))dZ(t)

und W und Z sind unabhéangige Wiener-Prozesse.

3.9 Beispiele fiir Volatilititsmodelle
(7) Hull-White Modell:

dS(t) =S(t)(udt +Y (t)dW(t))
dY (t) = Y (£)(0dt + £dZ(t))
(W, Z); = ot

mit g, 0 e R, >0 und g€ (-1,1).
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(i1) Stein-Stein Modell:

dS(t) = S(t)(udt+Y (t)dW(t))
dY (t) =q(m-Y(t))dt + odZ(t)
(W, Z) = ot
mit peR, g,0>0,m>0und pe (-1,1).
Die Volatilitdt wird also bestimmt durch einen Vasicek-Prozess.

Giinstig: Mean-reverting Eigenschaft.
(ii7) Heston Modell:

dS(t) = S(t)(udt + /Y (t)dW (t))
dY (t) = (a-bY (t))dt + /Y (t)dZ(t)
(W, Z) = ot

mit peR,¢>0,a,06>0 und g€ (-1,1).
Die quadratische Volatilitat ist ein sogenannter CIR, (Cox-Ingersoll-Ross) Prozess.
Y ist mean reverting, verbleibt aber in [0, co0) fiir alle Zeiten. Falls b > 0, so gilt

dY (t) = g (m — Y (£))dt + /Y (1) dZ (1)

qr = b,m = §,m return Level und ¢ Riickkehrrate. — Mean-reverting-Diffusion. Im [3.6.16

Hill-White Modell und Stein-Stein Modell sind die stochastischen DGL fiir die Volatili-
tatsprozesse explizit 16sbar. Die Analyse des CIR Prozesses ist etwas komplizierter, da
die Gleichung nicht explizit 16sbar ist.

3.10 CIR Prozess

Parameter
- Returnlevel m >0
- Wiederkehrrate ¢ > 0
- Diffusionskonstante o

Ein stochastischer Prozess (Y ()),,, heifit CIR Prozess zum Startpunkt y > 0, wenn er
die SDGL

dY () = g(m Y ())dt + o /Y (D) dW (), Y (0) =y

lost.

Bemerkung. Im Unterschied zum Vasicek Prozess hingt der Schwankungskoeffizient in
der Differentialgleichung vom Zustand durch y = o./y ab. Man kann zeigen, dass deshalb
der Prozess stets nicht negativ bleibt, d.h.

P(Y(t) >0  fir allet>0) =1.
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'\z'm Mittel

./be weiter weg vonm, desto weniger Schwankung,
also desto starker in Richtung m

0

Die 0 ist ein Randpunkt des Zustandraumes von Y. Ist 2gm > o2, so erreicht Y die 0
nie, d.h.
P(Y(t)>0  fir allet>0) =1.

Die Riickkehrrate zum langfristigen Mittel m ist grofS genug im Vergleich zur Diffusions-
konstanten o.

Ist 2gm < 02, so erreicht Y die 0 mit Wahrscheinlichkeit 1 und wird danach reflektiert
werden, d.h.

Fir 7o :=inf{t > 0:> Y (t) =0} ist
P(Tg < OO) =1.

Im Zustand y = 0 liegt eine positive Drift vor und eine zufdillige Schwankung von 0.
Deshalb wird der Prozess nach (0, 00) reflektiert.

Satz 3.11. Set Y ein CIR Prozess, d.h.
dY (t) =q(m =Y (t))dt + o\/Y (t)dW(t), Y(0)=ye>0.
Dann gilt:
(i) EY (t) =ye® +m(1 - e ) fir allet >0
(i) VarY(t) = y"f;(e‘qt —e2a) + m2—(;2(1 —e )2 fir alle t >0
(ii7) tl;m EY(t)=m
(iv) tllﬂm VarY (t) = 2=

Beweis. Fir jedes t > 0 und jedes n € N ist

t
E[Y”(s)ds<oo.
0

Weiter ist .

Y(t):y+fq(m Y ( s))ds+/ /Y (5)dW (s)
und

M (t) Z=[U\/Y(8)dW(8)
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ist fiir ¢ > 0 ein lokales Martingal mit
¢
E(M),; = IE/ %Y (s)ds < 0o fiir alle t > 0.
0
Damit ist M ein Martingal und es folgt

EY(t) :y+Efq(m—Y(3))ds

¢
:y+qmt—q/EY(s)ds.
0

Also 16st f(t) := EY (t) die gewohnliche DGL

f'(t) =-qf(t) +qm

zur Anfangsbedingung f(0) = y.
Mit dem Prinzip der Variation der Konstanten findet man

EY (t) = f(t) =ye ™+ m(1-e ).

Fiir die Berechnung der Varianz wird zunéchst das 2te Moment berechnet:
Partielle Integration liefert:

Y2(t):y2+2/Ys)dY(s)+(Y)s

=y2+2fX(s)q(m—Y(s))ds+2/Y(s)m/Y(s)dW(s)+fa2Y(s)ds.

0

Wegen

t

]E[Y2(S)JQY(s)ds:Efta2Y3(s)ds<oo

gilt
4 t t
EY2(t) = ¢ + 2quEY(s)ds - 2quY2(s)ds " f o*EY (5)ds.
0 0 0
Somit erfiillt g(¢) = EY2(¢) die gew6hnliche DGL

g'(t) = -2qg(t) + 2qm+0> f(t)

Inhomogenitét

mit f(t) = EY ().
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g wird durch Variation der Konstanten bestimmt.
Man erhalt

_ ,2,-2qt 201 _ ,—2qt 02m _ ,—2qt _ —-qt _ ,—2qt 0_2 _ —-qt _ ,—2qt
g(t) =y“e*"+m*(1-e )+—2 (1-e7*")+2(y-m)(e e ")+ —(y-m)(e e ).
q q

Zusammen mit
f2(t) = (EY (1))? = y%e 2 - 2yme™2% + m2e™2% + m? + 2m(y - m)e

folgt
2 2

VarY (t) = yg—(e—qt — ety 4 E(l — )2,
q 2q
[]

Durch Berechnung der Laplace-Transformierten kann man die eindimensionalen Rand-
verteilungen prinzipiell bestimmen.

3.12 Laplacetransformierte des CIR Prozesses

Sei (Y (1)), €in CIR Prozess, d.h.

dY (t) =q(m =Y (t))dt + oY (t)dW(t), Y(0)=y>0.

Dann ist die Laplace-Transformierte gegeben durch:
Ee 0 = oxp (~A\, T) - yG(A, 7))

mit

2qm 2qed”
ANT) =- 1
(A1) o? n(<72)\(6‘1T—1)+q(eqT+l)nLq(e‘lT—l))

2)\q
a?A(edT = 1) + q(ed” + 1) + q(ed” - 1)

GO\T) =

Beweis. Mittels der Ito-Formel kann man eine PDE herleiten fiir
u(t,y) = E(e DY (1) = ).

Diese kann man explizit 16sen.
Wegen der Markov-FEigenschaft gilt

E(eMD|F) =E(e™ DY (1))
= u(t, Y (1)).

Also ist (u(t,Y(t)))geer €in Martingal.
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Die Ito Formel liefert:
du(t, Y (1)) = duu(t, Y (£))dt + D,u(t, Y (1))dY (£) + %agu(t, Y (£))d(Y ),
= Oyult, Y (1)) q(m = Y (£))dt + Dyu(t, Y (1)) /Y (AW () + (L, Y (1)) dt
+ %&y@)agu(t, Y (1))dt

= (Qu(t,Y (1)) + %UQY(t)GZu(t, Y (1)) +q(m-Y(t))0,u(t,Y(t)))dt

1

20
+ Ou(t,Y ()oY (£)dW ().
Also erfiillt u die partielle DGL
Opu(t,y) + %JQWSU(t, y) +aq(m-y)oyu(t,y) =0 (7)
auf (0,7) x (0, c0) mit Endbedingung %i/r%u(t,y) = e~ fiir alle y > 0.
Die Losung dieses Cauchy-Problems erhélt man durch einen Ansatz der Form
u(t,y) =exp(=f(\, T =t) —yg(\, T —t)) firalley>0,0<t<T.

Ausrechnen der partiellen Ableitungen und Einsetzen in die Gleichung 7 fiihrt dann
dazu, dass g und f die gewohnlichen DGL

9(0) + 50%6(0) + ag(t) =0

f'(t) —qmg(t) =0

fur alle ¢ > 0 erfiillen mit Anfangsbedinung g(0) = A und f(0) = 0.
Die erste Gleichung ist eine Ricatti Gleichung und wird durch G(),-) gelost. f erhalt
man durch Aufintegrieren von g. ]

Man kann die Verteilung von Y (7") durch eine nicht zentrale y2—Verteilung ausdriicken.

Definition 3.12. Fir v € R\ =N ist die modifizierte Besselfunktion erster Ordnung Iy
definiert durch

= 1 kad 1

I — e B v ) T - y 2m
o(¥) nzon!F(n+19+1)y y nzon!F(n+?9+1)(2)

fur alle y > 0.

Fiir 9 € -N wird Iy(y) = I_y(y) gesetzt.

Die modifizierte Besselfunktion Iy ist eine Losung der gewohnlichen Differentialgleichung
yru"(y) +yu'(y) = (y* + 9*)u(y) = 0.

Ist ¥ ¢ —N, so ist (Iy, Iy ein Fundamentalsystem von Losungen fiir obige Gleichung.
Mit Hilfe von Iy kann man die Dichte einer nichtzentralen y2-Verteilung ausdriicken.
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Definition 3.13. Seien X,...,X,, unabhdngige normalverteilte Zufallsvariablen mit
Mittelwert m; und Varianz o? fir 1 <i<mn. Dann nennt man die Verteilung von

n Xz 2
U=3: ()

eine nichtzentrale x*>— Verteilung mit n Freiheitsgraden und Nichtzentralitdtsparameter

Kurz: U ~ x2(n, A).
U hat eine Dichte der Form

1(y i3 _uX
fremn () = 5(}) e 2 In 1 (VAY)L(0,00) ()

Allgemein kann der Parameter n durch einen nichtnegativen rellen Parameter § > 0
ersetzt werden.

Eine y2-Verteilung mit 0 > 0 Freiheitsgraden und Nichtzentralititsparameter A > 0 hat
die Dichte

D=

_ytA

Feen(y) = % (%)4_ € ng-l(\//\—y)]l(o,oo)(y)-

Satz 3.14. Sei Y ein CIR Prozess, d.h.

dY (t) =q(m =Y (t))dt + o\/Y (t)dW (t), Y(0)=1y0>0
Dann ist die Dichte o(t,y) von Y (t) gegeben durch

4qedt

f 4qetty
o?(ett -1)

Q(t,y)_ XQ(%’%) 0'2(6qt—1)

Hierdurch hat man die Ubergangsdichte des Markov-Prozesses (Y (t)),, bestimmt.
Beweis.

Moglichkeit 1: Man kann verifizieren, dass die Laplacetransformierte der angegeben
Dichte mit der Laplacetransformierten von Y (¢) iibereinstimmt. Dies tun wir aber nicht,
stattdessen:

Moglichkeit 2: Man betrachtet den quadratischen Besselprozess und stellt fest, dass der
CIR Prozess ein zeittransformierter quadratischer Besselprozess ist.

Definition 3.15. Sei § > 0. Die eindeutige Lisung der Gleichung

dX (£) = 8dt + 2/ X (@) dAW (), X(0) =100
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heifst quadratischer Besselprozess der Dimension § zum Startwert xq > 0.
Kurz: X ist ein BESQS, —Prozess.

Da x ~ /z die Yamada-Watanabe Bedingung erfiillt, ist die stochastische DGL eindeutig
l16sbar und damit ist X wohldefiniert.

Satz 3.16. Sei X ein BESQS, —Prozess. Dann gilt:
(i) EX(t) =xo+ 0t
(i1) VarX(t) = 4xgt + 20t?

(iii) E[exp (-AX ()] = (1 +2tA)"% exp (-£%)  fiir alle A>0,t>0

T
Beweis. Es gilt E [ X™(t)dt < oo fiir alle T'> 0,n € N. Wegen
0

X(T):x0+5T+2/\/X(s)dW(s)

gilt
EX(T) = zq + 6T
Weiter ist
T
X(T) = (o + 6T) =2 f VX (3)dW (s).
0
Also

VarX(T) = E[(X(T) - (w0 +6T))?]

_ 4R ([\/X(s)dW(s))

=4 —fX(s)dsl

T
:4/IEX(t)dt
0
T

=4/l’0+5tdt

0
= 40T + 2672

Zu (iii): Ansatz tiber PDE: Wegen der Markov Eigenschaft gilt
E [exp (-AX(T))|F:] =E[exp (-AX(T))|X(t)] = u(t, X (t)) firalleO0O<t<T.
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Ito-Formel angewendet auf u liefert:

du(t, X (1)) = Opu(t, X (t))dt + Oyu(t, X (£))dX () + %agu(t, X ())d(X ),
= (Byult, X (1)) + 00,u(t, X (£)) + 2X (£)02u(t, X (1)))
+ 2/ X () D,u(t, X (£))dW (t)
Da (u(t, X (t))),s €in Martingal ist, erfiillt u die PDGL
Owu(t,x) + 60,u(t, z) + 200%u(t,z) = 0
auf (0,7) x (0, 00) mit Endbedingung
limu(t, z) = exp(-Az)

fiir alle z > 0.
Ansatz fiir die Losung;:

u(t,z) =exp(=f(\, T =t) —g(\, T -t)x).
Es gilt:
Ou(t,x) =(f'N\T-t)+g N\, T -t)x)u(t,x)

Oeu(t,z) = —g(T - t)u(t,x)
O2u(t,z) = g*(T - t)u(t,z).

Einsetzen in die PDGL fiihrt zu
Opu(t, ) + 2202u(t, x) + 00,u(t, )
= (f'(T=1) + ¢/ (T~ t)x + 226> (T ~t) = 6g(T ) u(t,z) = 0

<z(g(T-t)+2¢*(T-t))+ f'(T-t)-0g(T-t)=0 firallez>0,0<T-t<T
<=g'(s) =-2¢*(s), f'(s)=0g(s) firalle0<s<T.

Die Endbedingung fiir u fithrt auf eine Anfangsbedingung fiir f und g¢:

g'(s) =-2¢°(s), g(0) =\
f'(s) =6g(s), f(0)=0.

Mittels Separation der Variablen kann die gew6hnliche DGL
2 =-222 2(0) =\

durch
A

>0
1420t

g(t) =
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gelost werden:

dz 1
— =-2t?, ———dz=dt
dt ’ 222 &
1 1 1
t(2) -t :—f—d -
(2) i?_), J 2 Y7o T o
Also ist
11
! — -
(:)+ 5% =32
A
t) =
<) =T o

Satz 3.17. Sei X ein BESQJ —Prozess, d.h.

dX (t) =odt + 2/ X (t)dW (t), x(0) =z >0.
Dann gilt:
(i) Ist xo=0 und § >0, so hat X (t) die Dichte

o(t,z) = fF(g,Zt)(x) fiir alle t > 0,2 > 0.
(i1) Ist zo >0 und 6 >0, so hat X(t) die Dichte
x .
o(t,x) = fx2(57wT0) (?) fir alle t > 0,2 > 0.
(i1i) Ist x>0 und § =0, so gilt

P(X(t) € A) = e384,y (A) + f olt, z)dz
A

1 T ..
Q(tﬂ):;f%(o,?)(?) fir alle t > 0,2 > 0.

Dabei hat die I'(a,b)— Verteilung die Dichte

xa’le’%]l(o,oo)(x)

fF(a,b) (l’) = b“F(a)

mit
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- a >0 der Gestaltsparameter,

- b>0 der Skalenparameter und

- I'(a) ={y“‘1e‘ydy fiir alle a >0 die Gammafunktion.

Beweis. (i). Sei zg = 0,6 >0. Dann ist
EeX(®) = (1+2At)5.

Man stellt durch Integration fest, dass dies die Laplacetransformierte einer I (g, Qt) —Verteilung
ist:

oo

f e‘”fr(gat)(a:)dx =(1+ 2)\t)_g fiir alle A > 0.
0
(it). Sei zg > 0,0 > 0. Setze A(X) := (1 +2t\)~1. Dann gilt:

oo{ ) ow(2282)
_ exp( 350) Z on()\)mg'

n=0 (Qt)nn'

A(A)”*g ist die Laplacetransformierte einer I' (n +2, 2t) —Verteilung, denn es gilt allge-
mein:
Zl ~ I‘(al,b), Zg ~ F(ag,b) = Zl + ZQ ~ F(a1 + ag, b)

Fiir die entsprechende Laplacetransformierte gilt dann

Ee—)\(zl+Z2) — Ee—)\Z1 €—>\ZQ

Weiter gilt dann:

D T\ & T [,
!6 A Q(t,.’]ﬂ')dm eXp( Qt)n ~ (Qt)on '/6 A fF(n+g,2t)($)dx
x ) n+7—1
:/e_/\xexp( 0+!15)Z i 2+ida:
2 nll (n+32) (2t)™
@(t,:v)

Hieraus folgt
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denn

2n+d °

(i)H i1t (WSO_:E):i (x $n;(_21t)

(i7) geht analog; siche Ubung. O

Durch Zeittransformation kann man aus einem Besselprozess einen CIR Prozess machen.

Satz 3.18. Sei Y ein CIR Prozess der Form
dY (t) = q(m =Y (t))dt + /Y (£)dW (t), Y (0) =120

mit ¢>0,m >0 und o > 0.

4gm

Sei X ein BESQ,;” —Prozess, also Lésung von

4 =
dX (t) = —22dt + 2/X ()W (2). (8)
o
Dann stimmt die Verteilung von Y (t) tberein mit der Verteilung von

e "X (n(t))
mat

77()— (eqt 1).

Beweis. n(t) = Z—:(eqt— 1) definiert eine bijektive Zeittransformation von [0, c0) mit
Ableitung

2
/ 0" qt
t) = —e®.
W'(t)=—e
Es gilt nun
n(t)

f VX (5)dTT(5) = f VX (n(u))dW (5(u))
- [ VX ((w))dM ()

mit M(u) == W(n(w)).
M ist ein Lo—Martingal mit (M), = n(t) fiir alle ¢ > 0.

Durch ,
B(t): f
0

dM(u), t>0



wird ein Wiener-Prozess definiert, denn

Deshalb gilt

n(t) t

[ VXA () = [ VX)W WdB(w).

Also folgt in Integralschreibweise von Gleichung 8:

n(t)

X(0(1) = w0+ “Ln(1) +2 [ VX (s)

g

4;]7;1’7(’5) +2 [ VX)W (w)dB(w)

=Y *

und damit

AX(n(1)) = "o/ (et + 2/ X)W (DB,

Partielle Integration liefert:

de™ X (n(t)) = e "dX (n(t)) - g™ X (n(t))dt

= et M (it + 207X (D)o (DAB(E) ~ g~ X (n(1)) e
= gmdt + o\ et/ X (n(t))dB(t) - ge " X (n(t))dt
=q(m-e X (n(t)))dt + o/ e X (n(t))dB(t).

Also erfiillt Y(t) = e 9* X (n(t)) die stochastische DGL

dY (t) = q(m - Y (t))dt + o\/Y (£)dB(t).

Also folgt die Behauptung. m

Ziel: Bestimmung eines dquivalenten Martingalmafes in einem stochastischen Volatili-
tatsmodell.

65



Allgemeiner Ansatz:
dS(t) = S(t)(pdt + f(Y(t))dW(t))
dY (t) =0(Y (t))dt + o(Y(t))dZ(t)
d(W,Z), = odt, oe(-1,1)
bzw.
dS(t) = S(t)(pdt + f(Y (1)) (V1 - 2dW (1) + 0dZ(1)))
dY (t) =b(Y (t))dt + o(Y (t))dZ(t)

mit unabhéngigen Wiener-Prozessen W, Z.
Aufgabe ist es, eine Girsanov-Transformation zu finden, sodass

dS(t) = S(t)(rdt + f(Y (1)) (\/1 - 0> dW* (t) + odZ*(t)))
ist. .
Bezeichne mit (F),,, die von W und Z erzeugte Wiener-Filtration.
Bezeichne mit (ft(l)) die von W und mit (.ﬁ(z))t die von Z erzeugte Wiener-

) ) 0 >0
Filtration.

Definition 3.19. Ein Marktpreisprozess fir Risiko ist ein stochastischer Prozess (€,7)
mit folgenden Eigenschaften

(i) & und~y sind previsibel (oder dquivalent progressiv messbar) beziiglich (ft@) )t .
>

t t
(i1) [ &%(s)ds < oo und [ ~%(s)ds < oo fiir alle t > 0 P-fast sicher.
0 0

& heifst Marktpreisprozess des Risikos fir die Aktie.
v heifit Marktpreisprozess des Risikos fiir die Volatilitdt.

Satz 3.20. Sei (§,7) ein Marktpreisprozess des Risikos. Gilt

EL™(T) = Eexp (— /(;Tfy(s)dZ(s) - % /OTny(s)ds) =1

so kann auf (2, Fr) ein Wahrscheinlichkeitsmafl P* definiert werden durch

P

= LE (¢
dIP (t)

Fi

mat

LEN (1) = exp(_[g(s)dW(s)—fy(s)dZ(s)—%f£2(8)+fy2(8)ds).
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fur allet <T. Dann sind
t
W)= W)+ [ &s)ds
0
und
t
Z*(t) = Z(t) + f ~(5)ds
0
unabhdingige Wiener-Prozesse auf (2, Fr).

Beweis. Entscheidend ist, dass £ previsibel beziiglich (}"t@))t . ist. Es gilt dann
>

ELEN(T) = EE(LEN(T)|FP)
-sLOME( [ dT6) - [ e islF?)

-1

= EL(’Y)(T)
=1
Beachte: .
(£(t)) 0 ist previsibel und (VV(t))t20 unabhéngig beziiglich (}—t@))po' O
Beziiglich P* gilt dann fiir Gleichung 3:
dS(t) = S(t) (= FY (D) (V1= 2E(E) + ov(0))dt + F(Y (1) (V1 - 2dW" (t) + 0dZ" (1))

dy (t)

(Y (t))-a(Y(t)))dt +o(Y(t))dZ*(t).
¢ bestimmt sich aus der Gleichung

r=p-fY(@)(V1-0%()+0v(1)).
Ist f(Y(t))+0 fir alle 0 <t < T P-fast sicher, so ist

g(t): u-r _ Q’}/(t)

VI-S@IYm) Vi-&

Gilt [ &2(¢t)dt < oo, so kann ein dquivalentes Martingalmal angegeben werden.

0
Es gilt:
T

f§2(t)dt<oo<:>0fm&<oo.

0

Zusammengefasst ergibt sich also
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Satz 3.21. Sei (§,7) ein Marktpreisprozess des Risikos mit

E exp (—f’y(s)dZ(s) —%/T”f(s)ds) =1.

T
Gilt { mdt < oo P-fast sicher, so wird maittels

£(t) = ——" ) geper

VI-2fY @) Ji-¢&

ein dquivalentes Martingalmaf$ P* definiert durch

P+
dP

Fi

= exp (— f v(s)dZ(s) - f £(s)dW (s) - % f 7v2(s) + fQ(S)ds) , 0<t<T

— t t
und W*(t) = W(t) + [ £&(s)ds und Z*(t) = Z(t) + [ v(s)ds sind unabhingige Wiener-
0 0

Prozesse beziiglich P*.

Beziiglich P* ist (e7S(t))yor ein lokales Martingal. Wann ist S*(t) = e"S(t) ein
P*-Martingal?
Setzen wir B(t) := /1 - 0?W*(t) + oZ* (1), so gilt

S (t) = s<0)exp( [ 1 ()aBs) - % / fQ(Y(S))dS)-

S* ist ein P*~Martingal, wenn

E*S*(T) = 5(0).
Da Y unabhéngig von W* ist, gilt

E'S*(T) = 5(0) < E* exp(@ [ rorpizs)- 5o [ fQ(Y(S))dS) -1
denn

B°S"(T) = SO exp ( (V@i eaw -3 [ a- 92)f2(Y(s))ds)

exp(f Qf(Y(S))dZ*(S)—%f&ﬂf(Y(S))dS)
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= S(O)E" exp( [orspazs)-5 [ QQf(Y(s))ds)

E’ (exp ( [Vi=@rrenaws)-3 [a- 92>f2<y<s>>ds) |fé”)

~~

=1

Anwendung auf das Heston-Modell, d.h.
dS(t) = S(t)(udt + /Y (t)dW(t), S(0)=s9>0
dY (t) =q(m =Y (t))dt + o\/Y (t)dZ(t), Y (0)=yo>0

mit ¢ >0, m >0, o >0.
Zu untersuchen ist

fo(Y(s))ds:fyzs)ds
da f(y) = /v.

Ist 2¢gm > o2, so erreicht der Prozess Y die 0 nie. Dann ist

T
1
0/ Y (s) ds < oo [P-fast sicher.

Ist 2gm > o2, so gilt

T
1
Ef([ Y(S)ds < oo [PP-fast sicher.

Dies kann zuriickgefiihrt werden auf eine entsprechende Aussage iiber den Bessel-Prozess.
4gm

Idee: Sei X ein BESQ,5” —Prozess. Dann gilt

AT
E ds < oo.
OfX(S) s < 00

Dies verifiziert man iiber die Dichte des Bessel-Prozesses




< 00.

Der letzte Schritt gilt wegen des asymptotischen Verhaltens der Besselfunktion in der
Néhe der Null.
Ist 2gm = 02, so gilt

Ist 2gm < o2, so gilt

Zusammengefasst:
Satz 3.22. Gegeben sei ein Heston-Modell

dS(t) = S(t)(udt +\/Y (t)dW (t)
dY (t) =q(m =Y (t))dt + o/ Y (t)dZ(t).
Dann gilt:

(i) Ist 2qm > 02, so gibt es zu jedem Marktpreis v der Volatilitdt, der

E(—[Ty(s)dZ(s) —%f’yQ(S)dS) S 1l

erfullt, ein Marktpreis € fir das Aktienrisiko, so dass durch & und ~y ein dquiva-
lentes Martingalmaf$ definiert wird.

(it) Ist 2gm < 02 und p #r, so gibt es kein dquivalentes Martingalmaf.

Berechnung eines Calloptionspreises im Heston-Modell.
Ansatz: Marktpreis der Volatilitéit ist proportional zur Volatilitat, d.h.

Y(t) = /Y (1)

fiir ein v € R. Dann ist

]Eexp(%f’f(s)ds)zEeXp(%[TY(S)&QdS)<oo.

Dies impliziert mit Hilfe des Novikov Kriteriums, dass

(exp ( j 1(5)dZ(s) f v?(s)ds))

o<t<T
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ein P-Martingal ist.
Durch
(1)

Vi- Q2\/Y(t) Ve

wird dann ein dquivalentes Martingalmafs definiert durch

—exp( ft7 (s)dZ(s ff(s)dW(s —%ftVZ(s)waQ(s)ds)

— t t
und W=(t) = W(t) + [ &(s)ds und Z*(t) = Z(t) + [ v(s)ds sind unabhingige Wiener-
0 0

£(t) =

Prozesse beziiglich P*.
Es gilt dann beziiglich P*:

dS(t) = S(t)(rdt +\/Y () (/1= 02dW* (£) + 0dZ* ()))
dY (t) = g(m - Y (£))dt + o /Y ()dZ* (t) - o JY (£)(t) dt

—_—
caY (t)

=(gm - (q+oa)Y (t))dt + oY (t)dZ*(t)
= (g+o0)( 3”;(1 ~Y())dt + oY (1)dZ" (1).

Es liegt also auch beziiglich P* ein Heston-Modell vor, da die quadratische Volatilitdt
ein CIR Prozess mit transformierten Parametern ist.

Fiir die Berechnung der Calloption ist zu berechnen 17.6.16

]E*e"’T(S(T) -K)*= E*e‘T’TS(T)]l{S(T)>K} - e"”TK]P’*(S(T) > K)
= S(O)P:(S(T) > K) - e " TKP*(S(T) > K)

Pyl 1
dP+ |z~ S(0)
Zu berechnen sind also P;(S(7T") > K') und P*(S(7T") > K'). Dies geschieht durch Bestim-

men der Fouriertransformierten von

e"S(t) fiiralle0<t<T.

X(T):=1InS(T)
beziiglich P und P~*.
Die Ito-Formel liefert
11
S(t) 2.52(t)

S(t)S(t)(rdt+\/Y(t )AW* (1)) - 25%) S2()Y (T)dt

dX (1) = ——dS(t) - d(S),
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= (= Y ()t VAV (1),

Zu betrachten ist
E* e = E*h(X(T),Y(T))

mit h(x,y) = e*. Auch eine Abhéngigkeit der Funktion A von y ist zu betrachten, da X
kein Markov-Prozess ist. Ausnutzen kann man aber die Markov-Eigenschaft von (X,Y"),
was zu einem PDE Ansatz fiihrt. Setze

u(t,z,y) =B (h(X(T),Y(T)|X() =2,Y(t) =y).
Dann gilt wegen der Markov-Eigenschaft

E*(h(X(T),Y(T)|F) =E*(h(X(T),Y(T))|X(t),Y (1))
=u(t, X(t),Y(1)).
Das bedeutet, dass u(t, X (t),Y (t)),t > 0, als bedingter Erwartungswert, ein P*—Martingal
ist.
Die Ito-Formel liefert

du(t, X (1), Y (1)) = dpult, X (1), Y ())dt + Dyu(t, X (), Y (£))dX (1)
#0yu(t, X (1), Y (DAY (1) + SoRu(t, X(2), Y (0)d(X),
+ %agu(t, X (1), Y (£)d{Y): + 0,0,u(t, X (£), Y (£))d(X, Y),
= 0, X (0), Y (1))t + D, X(0),Y () (r = 5V (1)

+ Opu(t, X (1), Y ()Y (0)dW™ (t) + dyu(t, X (£), Y (£))b(a - Y (t))dt
+Ayut, X (1), Y (£)o/Y ()dZ" (t) + %&%u(t,X(t), Y ()Y (t)dt

+ %0§u(t, X(1),Y(t))o?Y (t)dt + 9,0,u(t, X (t),Y (t))aY (t)odt
da (X,Y), = /Y (VY ()d(W*, Z*), = oV (t) odt
_ | du(t, X (1), Y (1)) + (r - %Y(t))(‘)xu(t,X(t), Y (1))
b =Y ()0,u(t, X (5, Y (1)) + 5 ¥ (u(t, X(0),Y (1))
+ %JQY(t)ﬁju(t,X(t), Y (£)) + 0oydudyult, X (1), Y (1)) |dt

+uu(t, X (1), Y ()WY () dW™ (1) + dyu(t, X (£), Y ()oY ()dZ* (1).

Also erfiillt u die partielle Differentialgleichung

atu(t) z, y) + (T - %y)awu(tﬂ z, y)
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1
+b(a-y)dyult,z,y) + Sydgult,,y))
1
+ §U2y6§u(t,x, Y) + 00y0,0yu(t, z,y)
=0
auf (0,7) x R x [0, 00) mit Endbedingung

}in%u(t,x,y) = e fiir alle 7 € R,y € [0, 00).
Ve

Als Ansatz fiir eine Losung wahlt man
u(t,x,y) =exp(C\(T = t) + D\(T - t)y + idx)

mit Funktionen C), D) : [0,00) — R.
Ausrechnen der partiellen Ableitung und Einsetzen in die partielle Differentialgleichung
fithrt auf die gewohnlichen Differentialgleichungen

D4(s) = (~b+ihoo) D(s) + 50*D(s) = 5iA~ 5N
Ci(s) =abD(s) + riX

mit Anfangsbedingungen C,(0) = 0= Dy(s).
Die Differentialgleichung fiir D ist eine Ricatti-Gleichung und man erhélt

b—ioco\+d 1-ed

D, (t) =
A(0) o 1 - gedt
mit
_b-ooXi+d
I poNi—d

d=+/(b—-1i00\)2 +c2(i)\ + \2)

Aufintegrieren liefert fiir C":

_ dt
On(t) = riMt + “—2 ((b—zpa/\+d)t—21n(1 Jc ))
o 1-g¢

Also ist die Fouriertransformierte
u(A) =E* (e*XMNX(0) = 2,Y(0) = o)

= U’(07 X, yO)
=exp (C\(T) + Dx(T)yo +iAxo)

Man erhéalt
P*(S(T)>K)=P*(X(T)>InK)
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durch Fourierinversion

. 11 P e Ky ())
P (S(T)>K)_§+;OfRe(T)d>\.

Dieses Integral wird numerisch gelost.

Weiter ist P;(S(7T") > K) zu bestimmen, wobei

dP} I 1
- () = —
.~ 50° " 50

S*(t) = L(t).

Es gilt
ds*(t) = S*(t)\VY (t)dW*(t).

Also als Dorleans-Exponential:

L(t):exp(/\/Y(s)dW*(s)—%fY(s)ds).

Girsanov liefert die Wiener-Prozesse
t
W = W*(t)—(W*,f\/Y(s)dW*(s))t
0

Z* = Z*(t)—(Z*,/\/Y(s)dW*(s))t

0

mit
(W**’Z**>t — <W*’Z*)t — Qt'
Es gilt:

v, [ VTl [ VTR, [ T
(27, [ VY ()dW*(s)), = [ VY ()27, W), = [ VY (s)ads

Einsetzen liefert
dX(t) = (r - %Y(t))dt YDAV (1)
(- %Y(t))dt N O N GONTOL
(r+ %Y(t))dt YAV (1)
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dY (1) = b(a - Y (1))dt + o/Y (£)dZ* (1)
= b(a- Y (#))dt + o /Y ()dZ** () + o /Y (DY (D)edt

(b 00) ( b f‘bga _ Y(t)) it + o /Y (D2 (1)

Lbi(ar - Y (8))dt + oY (1)dZ (1)

Mit der gleichen Methode wie oben kann man die Fouriertransformierte von X (7') =
In S(T) bestimmen.
Man erhélt

ur(N) = Ef (e MX(0) = 20,Y(0) = yo)
= exp (C{V(T) + DY (T)yo + iAo )

mit

_ dit
C(t) = rirt + GO igod 4 dy)t - 21 [ 190
o’ l-g

by —iooA+d; 1—edht
Df\l)(t)z 1~ LOOA+ Gy e

o2 1-greht

mit

_ b1 - QO’Z)\ + d1

by - 00iN\—dy

dy =\/(0oNi = by)2 + 02(A\2 = i)).

a1

Durch Fourierinversion kann dann
P (S(T) > K) =P;(X(T) >In(K)

ausgerechnet werden.

Anwendung in der Praxis:

Das Heston-Modell ist unvollstéandig. Die Frage ist, welches dquivalente Martingalmafs
zur Bewertung benutzt wird.

Ansatz:

Kalibrierung eines Heston-Modells an die beobachtbaren Marktpreise fiir Calloptionen.
Die Parameter des Modells sind

q Wiederkehrrate,
m Returnlevel der Volatilitét,
« Proportionalitatsfaktor im Marktpreis der Volatitlitét,

o Schwankung der Volatilitét,
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o Korrelation zwischen Aktie und Volatilitat.

Diese Parameter bestimmen iiber die Heston-Formel den Modellpreis der Calloption.
Man bestimmt die Parameter so, dass Modell- und Marktpreise moglichst gut {iberein-
stimmen. Das so kalibrierte Modell benutzt man dann, um kompliziertere Derivate, die
keine Marktpreise haben, zu bewerten.

Il Bondmarktmodelle

1 Short rate Modelle
1.1 Allgemeine Annahmen

- Handelszeitraum [0,7*].

- Die Quelle des Zufalls im Bondmarkt wird beschrieben durch einen n—dimensionalen
Wiener-Prozess (W (1)) o<per+-

- Die Information im Markt ist die von W erzeugte Wiener-Filtration (F;) ;-

- Die risky assets in diesem Modell sind T-Bonds. Ein T-Bond ist ein Wertpapier,
das seinem Inhaber in 7" 1 Euro auszahlt mit 7' < T™*. Dabei ist T' die Falligkeit
des Bonds.

Es werden keine Koupons (Zinsen) wihrend der Laufzeit gezahlt.

Ein T-Bond hat einen Preisprozess
(B(t,T))ocser -
Folgende Annahmen werden gefordert:
(1) B(T,T) =1,
(it) B(t,T),0<t<T,ist ein positives Semimartingal mit stetigen Pfaden,

(i1i) Der beschrinkte Variationsanteil von (B(¢,T))
ziiglich des Lebesgue-Mafes.

o<t<r hat absolut-stetige Pfade be-

(iv) (B(t,T)),cper+> als Funktion in T', hat P-fast sicher differenzierbare Pfade, d.h.
B(t,T) ist differenzierbar in T fiir P- alle w bei festem t.

Folgerungen aus den Annahmen
Aus (i7) und (i77) ergibt sich, analog zum Aktienmarktmodell, dass (B(t,T")),.r €ine
stochastische Differentialgleichung der Form

dB(t,T) = B(t,T)(u(t, T)dt + o (t, T)dW (1))

= BOLT)(u(t. T)dt + 3 oy (t, T)AW, (1))

J=1
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erfiillt (argumentiere analog tiber X (¢) =In B(¢,T"), dann Ito etc.), mit previsiblen Pro-

zessen (1(t, 1)) oeper und (0(t, 7)) ocrer -
Aus (iv) folgt, dass der short rate Prozess

r(t) = _8% In(B(t,T))|r=

wohldefiniert ist.
Durch die short rate wird ein Geldmarktkonto

t

p(t) = exp(/r(s)ds), 0<t<T”

0

bzw.

dp(t) = p(t)r(t)dt, 0<<T*
definiert.

1.2 Konstruktion eines arbitragefreien Marktes

Wir haben in diesem Modell n Wiener-Prozesse, die den Zufall bestimmen, aber unend-
lich viele risky assets, da fiir jedes T" € [0, 7] ein neuer T-Bond definiert wird. Deshalb
braucht man Bedingungen an die Driftfunktionen und Volatilitdten, dass das Modell
arbitragefrei wird.

Betrachte zunéchst n = 1.

Aufgabe ist es, ein dquivalentes Martingalmak zu bestimmen.

Um eine Girsanovtransformation zu bestimmen, braucht man lediglich ein risky asset,

d.h. ein T-Bond.
Wahle T = T und betrachte das Modell

dp(t) = B(t)r(t)dt
dB(t,T*) = B(t, T*)(u(t, T*)dt + o (t, T*)dW (1))

Es existiert ein dquivalentes Martingalmaf P* genau dann fiir

p(t, T*) —r(t)
o(t,T*)

Eexp (/T*ﬁ(s)dW(s) - % il@(s)ds) =1.

I(t) = - fir alle 0 <t <T™

wenn gilt:

Dann wird durch

dpP*
dP

¢ | ) *
ft=exp(0f19(s)dvv(s)—§0/19 (s)ds), 0<t<T
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ein dquivalentes Martingalmafs auf Fr- definiert und

W (t) = W(t) —fﬁ(s)ds, 0<t<T"

ist ein Wiener-Prozess beziiglich P*. Dann gilt beziiglich P*:
dB(t,T*) = B(t,T*)(r(t)dt + o(t,T*)dW™(t)).
Fiir T-Bonds mit kiirzerer Laufzeit T' < T™* ergibt sich

dB(t.T) = B(t,T)(u(t,T)dt + o(t, T)dW (1))
= B, T)((u(t,T) + o (t, T)O())dt + o (t, T)AW* (1)).

B(tT) L . :
(—5( o) >OStST ist ein lokales P*—~Martingal genau dann, wenn

p(t,T) +o(t, T)0(t) =r(t).
Also miissen die Driftfunktionen u(-,7") und Volatilitaten o(-,7T") die Gleichung
w(t, TY+o(t, T)dt)=r(t) firalle0<t<T
erfiillen, bzw.

r(0) - p(T) o) - p(T)

fiir alle 0 <t < T
o(t, T) o(t,T7) Hrate

Diese Bedingung ist nicht verwunderlich, denn in einem von einem Wiener-Prozess getrie-
benen arbitragefreien Markt ist der Sharpe Ratio eines jeden risky assets eine Invariante.
Man konnte auch gleich so argumentieren:

Durch den T*-Bond ist der Sharpe Ratio durch

p(t, 1) -r(t) _
sy -

eindeutig festgelegt.
Jedes weitere Finanzgut im arbitragefreien Markt hat den gleichen Sharpe Ratio, das
heifst es gilt
t,T)—r(t t,T*)—r(t
MET) = r(0) ) 0T =r()

- fur alle 0 <t < T.
o(t,T) o(t,T) e

Sei nun n =d € N.
Wihle d Falligkeiten mit
Ty <Ty<...<Ty.

Betrachte den Markt

dp(t) = B(t)r(t)dt
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dB(t,T;) = B(t, T;) (u(t, T;)dt + o (¢, T;)dW (t))

= BTt Tt + Y. oy (0 T (1))

J=1

Ist die Matrix
o(t)=0,(t,T;)1<i<d
1<j<d

invertierbar fiir alle ¢ <77, so kann ¥(t) definiert werden durch

H(thl)
I(t) = (t) | r(t)1 - : :
p(t, Ta)

Eexp([ ﬂ(s)dW(s)—%fh?(s)\st):l

Gilt weiter

so wird durch
dP*
dP

=exp(f ﬁ(s)dW(s)—%W(s)Pds)

Fi
ein dquivalentes Martingalmafs definiert und

t

W*(t):W(t)—fﬁ(s)ds

0

ist ein Wiener-Prozess beziiglich P*.
Es gilt:

dB(t.T)) = B(t,T,)(r(t)dt + i o3 (¢, T) AW (1))

=1

Also ist (B(t’Ti) ein lokales P*—Martingal fiir alle 1 <7 < d.

B(t) )OStSTl
Der gesamte Bondmarkt ist fiir t < 77 arbitragefrei genau dann, wenn (Bg(l(tg)

lokales P*—Martingal ist fiir alle 7" < T7.
Dann ist fir T < T7:

ein

)OStST

dB(t,T) = B(t,T)(u(t, T)dt + i o, (£, T)dW,(t))

j=1

= B(t, T)(u(t,T)+ Y, 0;(t,T)0;(t))dt + > o (¢, T)dW; (t)).

j=1 j=1

Also muss gelten

d
p(t, T)+ > 0;(t,T)0;(t) =r(t) firalle0<t<T.
P
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Damit sind alle T-Bonds mit Falligkeit vor T} lokale P*—Martingale. Da man frei ist in
der Wahl der d risky assets, konnen die Zeitpunkte 77, ..., T; in der Realitdt sehr nah an
T™* liegen, sodass nur eher vernachlédssigbar wenige T'-Bonds nicht beriicksichtigt werden.
Betrachtet man z.B. T* = 3 Jahre, so konnen die Zeitpunkte 77, ..., T; 10 Sekunden, 20
Sekunden und 30 Sekunden vor T* gewahlt werden.

Motivation der short rate

Frage: Was fiir eine Rendite kann fiir ein risikoloses Investment zwischen 7" und 7} in ¢
garantiert werden?

Anwort: Betrachte den T7-Bond als Basisgut und vereinbare zum Termin 7" ein Termin-
geschift (Forward) auf den T3-Bond. Der Terminpreis (Forwardpreis in t), vereinbart in
t, auf den 77—-Bond ist aus Arbitragegriinden eindeutig bestimmt durch

B(t7 Tl)
Ft,T:1)) =
& T:T) B(t,T)
das heifst, fiir F'(¢,7;7}) in T erhdlt man einen 77-Bond in 7. Fiir 1 Euro gehe m
Termingschéfte ein und erhalte T ZIF-Tl) = g((f 7T::)) Ti1—-Bonds. Diese sind in 77 jeweils 1

Euro wert. Also erhalt man einen Gewinn von 5((;’;?) -1 Euro.

Dieser entspricht bei stetiger Verzinsung einer Rendite von Rq(¢;T,T}), die sich aus

B(#,T)

exp ((Th -T)Re(t;T,Th)) = B(t,T))

berechnet. Lasst man in

1
_T(lnB(t,Tl) -InB(t,T))

RC(t7TaT1) = _T

1

die Intervallange T7 — T gegen Null streben, erhélt man die stetige forwardrate f zum
Termin 7" in ¢ durch

f(t,T) = Jim Re(t,T,Ty) = -0 n B(4,T).

Im Modell wird vorrausgesetzt, dass die stetigen forwardrates existieren.

Bemerkung.

B(t,T)=exp(InB(t,T))

roo
:exp(—f—%lnB(t,s)ds)

t

:exp(—ff(t,s)ds)
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Preise von Nullkouponanleihen ergeben sich also aus den forwardrates und umgekehrt.
Die short rate r(t) ist die forwardrate in ¢, also

()= F(1.1) = Jim Ro(t:1.T})
1
>t 1) -t

(In B(t,T1) - In B(t,1)
=0

= - 8T|T=t In B(t, T)

1.3 Short rate Modelle

Ausgehend von der Entwicklung fiir die short rate soll ein arbitragefreies Bondmarkt-
modell entwickelt werden. Anzugeben sind

- ein Wahrscheinlickeitsraum (2, Fr-, P), wobei sich Fr- durch einen Wiener-Prozess
W ergibt,

- eine Familie von Bondpreisen (B(t,T)) . fiir jedes T < T,

- ein dquivalentes Wahrscheinlichkeitsmaf P* auf (€2, Fr+), so dass (BET
lokales Martingal ist beziiglich P* fiir alle T" < T™*.

Betrachte also einen n—dimensionalen Wiener-Prozess W mit Wiener-Filtration (F;):so
beziiglich eines Wahrscheinlichkeitsmafes P. Fixiere T7* > 0. Damit ist (2, Fr«,P) fest-
gelegt.

1. Annahme: Die short rate ist eine Diffusion, das heifst, sie ist eine starke Losung der
stochastischen DGL

dr(t) =m(t,r(t))dt+o(t,r(t))dW (1)

— ot (£))dt + il(sj(t, r(£)dW;(1)

mit Anfangsbedingung r(0) =g € R.

m:[0,T*]xR — Rund §:[0,7*] x R — R sind so zu wihlen, dass eine solche Losung
existiert.

2. Annahme: Es existiert ein zu [P dquivalentes Wahrscheinglichkeitsmaft P* auf (€, Frp+)
mit

dP*
dP | 5,

_ L(t) = exp([ 9(s)dW* (s) - % f |79(5)|2d5) fiir alle 0 <t < T*

wobei ¥(t) = 9(t,r(t)) fir alle t < T* fiir eine Funktion ¢ :[0,7*] x R — R™.
3. Annahme: Sei E* -1~ < oo fiir alle T < T*, wobei

B(T)
B(t) = exp (f r(s)ds) :

0
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Dann wird durch
B(.T) = 50 ( 5517 )
_gr [ 2
- (5(T) 'ft)

(exp( / : >ds)|ft)

fiir alle t < T ein arbiragefreies Bondmarktmodell mit &quivalentem Martingalmalfs P*

definiert, denn
B(t,T)

=K~ Fel, t<T
B(t) (B(T)l )
ist ein P*-Martingal.

Im folgenden soll B(t,T") und dessen Volatilitit o(¢,T") berechnet werden:
Wegen der 2. Annahme definiert

W (¢) :W(t)—fﬁ(s,r(s))ds

einen n—dimensionalen Wiener-Prozess beziiglich P*. Es gilt:

dr(t) = m(t,r(t))dt + 5(t,r(t))dW (1)
= (m(t,r (1)) + éﬁj(t,'r’(t))éij(t,r(t)))dt Lot r(0)dW ™ (2).

Also ist r eine Diffusion beziiglich P*:
dr(t) =b(t,r(t))dt+6(t,r(t))dW*(t)

mit
b(t,r(t)) =m(t,r(t)) +9(t,r(t))o(t,r(t)).

Die Markov-Eigenschaft von r beziiglich P* impliziert

B(t,T)=E* (exp (— [ r(s)ds) |.7-"t)

t

=E* (exp (— / r(s)ds) |7"(t))

=vr(t,r(t))

vp(t,r) =E* (exp (— / r(s)ds) Ir(t) = 7’) :

t

mit
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Ito-Formel angewendet auf vy impliziert:
dB(t,T) = dvp(t,r(t))
= 0r (1, (1)) + By (1, (1))dr(t) + 50 (1, (1) d(r)
= [&w(tﬂ”(t)) + Opvr (L, r(1))b(t, (1)) + %%UT(W(U)M(L 7”(t))lz] dt
+ Opop(t,7(£)8(t,r(£))dW* (t)
Also erfiillt vy die partielle DGL
Ayor(t, 1) +b(t, )0 (t,1) + %|§(t, r)[fovr(t,r) = rup(t,r)
auf (0,7) x R mit Endbedingung
limvr(t,r) = 1.

Durch Losen dieser partiellen DGL kann man die Bondpreise explizit berechnen. Auch
gewinnt man deren Volatilitdten mittels

Oyvr(t,r(t))
vr(t,r(t))

o(t,T)

dB(t,T) = B(t,T)(r(t)dt + 5(t,r(t))dW™ ().

Bemerkung. Figentlich ist der Wechsel zum Majf§ P* nicht notwenig. Formal bedeutet
dies, dass man ¥(t,r) = 0 setzt. Dann ist P* = P. Dies ist das sogenannte Matingal
Modelling.

1.4 Beispiele fiir short rate Modelle

a) Vasicek Modell
Einfaktormodell, n =1,

dr(t) =b(a-r(t))dt + 5dW (t)

mit b,a,d > 0.
- Vasicek-Prozess

- Returnlevel a
- Wiederkehrrate b

Losen der partiellen DGL fiihrt zu
B(t,T) = exp (-h(T - t) - r(t)g(T - 1))
mit

0?2 02 N | obs
h(S):(a—ﬁ)s+(b—2—a)(l—eb)g—ﬁ%(l—e%)
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9(s) = (1-e™)
Die Rendite (Yield) Y (¢,T") erhédlt man aus

exp((T-t)Y(t,T)) =

BG.T)
SY(ET) = Ti_t(h(T “ 1)+ g(T - )r(t))

Y(t,-) ist die Rendite der Nullkouponanleihe, als Funktion der Filligkeit. Die Anfangs-
renditenkurve ist

Y (0,7) = 2 (9(T)r(0) + h(T)).

Die Rendite héngt affin von der short rate ab. Deshalb ist das Vasicek Modell ein Beispiel
fiir ein affines Bondmarktmodell. Fiir den Bondpreis gilt:

dB(t,T) = B(t,T)(r(t)dt —g(T = )5 AW (1)).
o(t,T)

Dann ist

o(t,T) = ~g(T — )5

die Volatilitat des T-Bonds. o(t,T") ist deterministisch. Dies bedeutet, dass die Bewer-
tung eines Derivates im Vasicek Modell analog zur Bewertung in einem Black-Scholes
Modell mit deterministischer Volatilitét erfolgen kann.

b) Das Cox-Ognersoll-Ross Modell (CIR Modell)
dr(t) =b(a—r(t))dt+o\/r(t)dW (t)

mit b, a,d >0 und 2ab > §2.
Losen der partiellen DGL ergibt

B(t,T) = exp (-M(T - 1) = g(T = )r(t))

mit
2ab 476('”3)3
hs) = 62 = ( (27 +Db)(e?s=1) +4vy
2(e?s-1)
9(s) = (2y+Db)(e?s -1) +4~y
und

1
V= 5\/ b2 + 242
Damit ist das CIR Modell ebenfalls ein affines Bondmarktmodell mit

dB(t,T) = B(t,T)(r(t)dt —g(T - )o\/r(t) dW ().

o(t,T)
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1.5 Bewertung in short rate Modellen

Gegeben sei ein arbitragefreies short rate Modell, das von einem n—dimensionalen Wiener-
Prozess getrieben wird. Gibt es Falligkeiten 77 < ... < T}, sodass

o(t) = (o;(t, Tz’))mJSn

invertierbar ist fiir alle 0 < ¢ <77, so ist das Modell vollstédndig, da dann das dquivalente
Martingalmafl eindeutig bestimmt ist.
Deshalb kann jeder T-Claim C' mit E*|%| < oo eindeutig arbitragefrei durch

C

po(C) :E*m

heute in Euro bewertet werden.
Entsprechend in ¢ durch

(€)= BOE" (im) |

B(T)
Zur Berechnung ist es vorteilhaft, den Forwardpreis
po(C)
F,7;C) = =—F——+*<
( ) ) ) B(O7 T)
bzw.

F(t,T;C) = %

zu bestimmen mit Hilfe des sogenannten Forwardmartingalmafses in 7.

Definition 1.6. Das Forwardmartingalmafl Py zum Termin T > 0 ist das zum Nume-
raire (B(t,T))oqer gehorige dquivalente Martingalmap.
Genauer:

(Z) PT ~ P> auf (Q,]:T)

(i1) Fur jedes Basisfinanzgut S ist (Bigt%))o oy ein lokales Pr—Martingal.
) <t<

5(t)

BGT) ist der sogennante Termin-/Forwardpreis in t.

Zur Bestimmung von Pr:

Wegen
B(t,T) ( 1 )
=E" | —|F |, 0<t<T
s A
ist 28D a1 bedingter Erwartungswert ein P*—Martingal fiir alle 0 <¢ <T.

B(t)
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Also wird durch

dPr|  B(t,T) 1
dP |y, B(t) B(0,T)

—_—— —/—
P*-MG, aber Normier-
E*=B(0,T)+0 ungsfak-

= L(t), 0<t<T

ein zu P* dquivalentes Wahrscheinlichkeitsmafs definiert.
Es gilt fiir jedes Basisgut S, dass

S(1)
Ft,T:5):=——~-, 0<t<T
( 9 ) ) B(t’ T) ?
ein lokales Pr—Martingal ist genau dann, wenn
S(1)
L(t 0<t<T
B(t7T) ( )7

ein lokales P*—Martingal ist.

Da
S(t) () - Sty B(t,T) 1  St) 1
B(,T)""" B(t.T) t) B(O,T) At) BO,T)
ist F'(¢t,T;5) ein lokales Pr—Martingal fiir alle 0 < ¢ <7. Damit ist Py das Forwardmar-

tingalmaf zum Termin 7.
Ist T # T, so ist

(B(t,Tl)

B(t7 T) )OStST/\Tl

ein Pr—Martingal.
Bemerkung 1.7. Wegen

dB(t,T) = B(t,T)(r(t)dt + o(t, T)dW* ()

zexp(/ta(s,T)dW*(s —%[t lo(s, T)Pds)

t
T(4) = W (t) - fcr(sT s, 0<t<T
0

gilt
dPp
dP~ | £,

und

definiert einen Wiener-Prozess beziglich Pr.

Anwendung bei der Bewertung von Derivaten

Sei E* ‘% < oo, C' ein T-Claim und p,(C') = 5(t)E* ( (CT)|}}) fir alle 0 <t <T.
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Der Forward-/Terminpreis zum Termin 7" auf den Claim erfillt

F(t,T;C) = gécjz)
LB [ C
“BOT) (ﬂ(T) 'ft)

_ B ¢ 1
Bayes-Formel -> = B(t, T) Er (/B(T) L(T) ‘f;g) L(t)

=Er(C|F).

Alternativ hdtte man, anstatt mit P* anzugfangen, auch die Bewertung mittels P durch-
fithren konnen, da Py das dquivalente Martingalmaf zum Numeraire B(-,T") ist.

C
Er (mu:t) =Er (C|F)

ist dann der Preis von C', notiert in Anteilen des Numeraire Assets. Der Europreis ergibt
sich durch Multiplizieren mit dem Preis des Numeraire Asset, d.h.

pi(C) =Er(C|F)B(t,T)

bzw.

F(1,T;C) = g;ﬁ) - Ex(CIF).

1.8 Berechnung des Callpreises
1.7.16

Bondmarktmodell

daquivalentes Martingalmafs P*

- T1—Bond als risky asset

Derivat ist der Call auf den T;-Bond mit Ausiibungszeitraum 7' < 77, d.h.

C=(B(T,T}) - K)*.

Fiir die Bewertung betrachte das Forwardmartingalmafs zum Termin 7', gegeben durch

dPr|  B#,T) 1
dP |z, B(t) B(0,T)

Zu berechnen ist

ET((B(T,Tl)—K)+|]:t), fir alle 0 <t < T.
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Es gilt:

Er(C|F) = Er (B(T, T)1 (1> F:) = Br (K1 perm)s il F).

Weiter ist
dPp ~ B(t,T) 1
dP~ Fi ) B(t) B(OaT)
und
dPrp, ~ B(t,Ty) 1
dP* |z, B(t) B(0,Th)

Da nach Bayes Er(Y L(T)|F;) = Ep, (Y|F,)L(t) gilt, ist

Er (B(T7 Tl)ﬂ{B(T,T1)>K}|-7:t) =En (1{B(T,T1)>K}|-7:t) F(tu T T1)
=Pr, (B(T, 1) > K|F) F(t,T;T).
Somit folgt fiir die Bewertung des Claims
Er(C|F) = F(t, T Th)Pr, (B(T,Th) > K|F) - KPr(B(T,11) > K|F)
bzw. fiir den arbitragefreien Preis

p(C) = B(t, T)Er(C|F)
= B(t,T\)Pr, (B(T,T1) > K|F) - KB(t, T)Pr(B(T,T}) > K|F,).

Bis hierhin gilt diese Bewertung fiir jedes Bondmarktmodell. Erst die explizite Berech-
nung von Pr, (B(T,Ty) > K|F;) bzw. Pr(B(T,T}) > K|F;) hingt vom gewéhlten Bond-
marktmodell ab.

Im Vasicek Modell gilt:

dB(t,T) = B(t,T)(r(t)dt + o (t, T)dW* ()
dB(t,T)) = B(t,T))(r(t)dt + o (t, T))dW* ()

Dann gilt mit Ito

dFE(t,T;Th) = F(t,T;Ty) (o (t, T1) - o(t,T))dW™(t)
n(t)

wobel
¢

WT(t) = W (t) - [ o(t,T)dt

Wiener-Prozess beziiglich P7. Die durch die Ito-Formel entstandenen Drift-Terme werden
in W7 verarbeitet.
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Wegen

dPr, F(t,T;T)) / T 1 f
kY I G RV $)dWT(s) - = d
dPr |~ F(0,T;T)) eXp( n(s 5 | m(s)ds

WTi(t) = WT(t) - f n(s)ds

st

ein Wiener-Prozess beziiglich Py, .
Also gilt
dF(t,T;Ty) = F(t,T; T)n(t)dW T (t) + F(¢,T; Ty)n(t)dt.

Im Vasicek Modell ist n eine deterministische Funktion, weshalb die bedingte Wahr-
scheinlichkeit durch die Normalverteilung bestimmt sind.
Genauer:

Pr(B(T,Ty) > K|F) =Pr(F(T,T;T)) > K|F)

————
exp —Martingal

= IP’T( (F(t,T; Tl)exp(/ n(s)dWT(s) - /772(3)d3) > K|]—})
F+—mb t

=IP’T(F(75,T; 1) > K|ft)

unabhéngig von F;

:PT(eXp(an(s)dWT(s)——fn (S)ds) > F(t? Tl))

1 F(t,T;Tl) _ l T 2 d
n 7 [ 1P(s)ds

\/th 2(s)ds

]P)Tl(B(TyTl) > K|ft) = ]P)Tl(}?(j_'7 T, Tl) > K|ft)

= IPTI(eXp (fn(s)dWTl(S) + % f”g(s)ds) g ﬁ)

t

=P

und analog:

F TT I
In Z&TT) %an(s)ds
t

\/tf772(5)d5
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Beachte:

o(t,T)=-g(T-1t)6 = _% (1 _ e—b(T—t)) ’

o(t,T1) =-g(T1 - t)0 = _g (1 _ e—b(Tl—t)) 7

n(t) — % (e—b(Tl—t) _ e—b(T—t))

_ gebt (e‘le _ e—bT)

1.9 Berechnung von Capletpreisen
- Bondmarktmodell
- dquivalentes Martingalmafs P*

- Ein Caplet ist ein Zinsderivat, dass eine Absicherung eines variablen Zinssatzes
erlaubt:

Hierzu betrachtet man ein Zeitintervall [T,T;]. Die diskrete (bis T') variable Zinsrate
einer risikolosen Kapitalverzinsung zwischen 7" und 7; ist

1 1
-1 ,
Tl—T(B(T,Tl) )

denn fiir 1 Euro, den man zum Zeitpunkt 7" in 7}-Bonds investiert, erhélt man ﬁ

T,-Bonds. Diese sind in T} ﬁ Euro wert. Dann ist

1

— 1
B(T,T')

der Gewinn, welcher einer jahrlichen Kapitalrendite von

| 1
(B(T,Tl)—l):: Ra(T 1)

=T —_
—_— —— Zinsrate
Zeitraum Gewinn

entspricht, wenn als Zinsmethode eine diskrete Verzinsung gewéhlt wird.
Ein Caplet zum Zeitintervall [T, T}] gibt dem Inhaber das Recht, den variablen Koupon

(I -T)R4(T, T7) = ﬁ -1

gegen einen festen Koupon
(I -TK

mit fester Zinsrate K in T zu tauschen.
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Man erhalt folgende Auszahlung in 7;:

1
B(T7 Tl)

_ (ﬁ _(1+ K(T, —T)))+.

Zur Berechnung des Capletpreises wird der Terminpreis in 7} des Derivates berechnet.
Es gilt:

((Ty - T)Ry(T,Ty) - (T - T)K)" :( —1-(Ty —T)K)+

Er, (ﬁ (14 (T —T)K) B, (% _(1+ (T —T)K))

= Eq, (F(T,Ty;T) - (1+ (Ty - T)K))"

Der Terminpreis (F'(t,71;7)) o €ines T-Bonds ist ein Py, —Martingal.

Dann gilt:
dF(t,Ty; T) = F(t, Ty; T)n(t)dWw™ (t),
dB(t,T) = B(t,T)(r(t)dt + o(t,T)dW*(t)),
dB(t,T1) = B(t,T1)(r(t)dt + o(t, Ty)dW*(t))
und

n(t) = U(ta T) - U(ta Tl)
Also folgt

Epn F(T,Tv; T)L (p(r 101514 (1 -T)K ) = F(0>T1;T)PT(F(T, Ty;T)>1+ (T - T)K)

da
dPr|  F(,1T;7T)
dPr, |,  F(0,T;T)
Also gilt:
1 +
Ep | ——— -1+ (L -T)K
Tl(B(T,Tl) (1+(h-T) )

=F(0,Ty; T)Pr(F(T, Ty;T) > 1+ (T1 - T)K)
-1+ (T -T)K)Pr, (F(T,T;T) > 1+ (T - T)K).

Als arbitragefreien Preis erhélt man

CI(0) == B0, T))Eq, (ﬁ (14 (T - T)K)

= B(0,T)Pr(F(T,T;T) > 1+ (T - T)K)
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(1+(Ty - T)K)
- B(0,TY)

Pz, (F(T,Ty;T) > 1+ (Ty - T)K).
Analog erhélt man als Preis in t:
1 +
Ep | = -1+ (T -TK
Tl(B(T7T1) ( +( 1 ) |‘Ft)
=F(t, Ty; T)Pr(F(T,Ty;T) > 1+ (Ty - T)K|F,)
~(1+ (T -T)K)Pr, (F(T,Ty;T) > 1+ (T - T)K|F,)

bzw. als arbitragefreien Anfangspreis

C1(0) = B(t,T))Er, ( ~(1+ (T —T)Klft)+

B(T,T)
= B(t,T)Pr(F(T,Ty;T) > 1+ (T; - T)K|F,)
- (1+ (T -T)K)B(0,Th)Pr, (F(T,T1; T) > 1 + (T1 - T) K| F).

Die explizite Berechnung von Py und Pz, hingt vom gewéhlten Modell ab. Im Vasicek
Modell gilt zum Beispiel

AF (t,T3;T) = F(t, Ti; T)(t)dWw ™ (1)

mit
n(t)=o(t,T)-o(t,T1)

welches deterministisch ist in .

Wegen
¢ ¢
dPr F(t,Tl,T) f T ].f 9
=———— =¢Xx $)dW*i(s) — = s)ds
Py, |, " FO.1:T) p(o n(s) (s) =3 0 n°(s)

ist
W (t) == WTi(t) - f n(s)ds

ein Wiener-Prozess beziiglich Pr.
Man erhalt

IEDT1(F(T‘7T’1;T’) >1+ (Tl _T)K|ft) = (I)(hl(F(taTlaT)vt))

und
Pr(F(T,Ty;T) > 1+ (Ty - T)K|F,) = ® (ho(F(t,T1;T), 1)) .

Dabei ist

T
lnm - %{772(S)d5
T
[ (s)ds
t
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und

T
In m + %{nz(S)dS

\ /thnQ(s)ds

1.10 Caplets, Caps, Floorlets und Floors

hg(ﬂ?, t) =

Ein Cap ist eine Aneinanderreihung von Caplets. Zu vorgegebener Tenorstruktur
To<Ti<..<T,

betrachtet man die zu den Zinsperioden [T;_;,T;] gehorenden Caplets, die das Recht
geben, den in T;_; fixierten, variablen Koupon gegen einen festen Koupon (7; - T;_1) K
in T} zu tauschen.
Ein Cap induziert also folgenden Auszahlungsstrom: Zu jedem T; ergibt sich eine Aus-
zahlung der Form

(Ra(Ti1, T}) - K)*(T; - Try).

Bezeichnet fiir t < Ty Cl;(t) den Preis des i—ten Caplets, so ist
Cap(t) = ) Cli(t)
izl

der Preis des Caps in t.
In der Praxis nutzt man Caps um sich gegen variable Zinsraten nach oben abzusichern.
In einem Kreditvertrag beispielsweise wird als Kouponzahlung fiir die i-te Zinsperiode
der variable Zinssatz

R(Tiy, T)(Ts - Troy)

als Koupon vereinbart.

Man mochte sichergehen, dass ein bestimmtes Zinsniveau K nicht iibertroffen wird.
Deshalb kauft man sich ein Cap fiir die passende Tenorstruktur zum Festzinssatz K.
Dann wird im i—ten Zeitintervall die moglich Differenz

Ry(Ti-1, 1) - K

durch den Cap bereitgestellt. Die Kosten der Absicherung zum Zeitpunkt ¢ < Tj sind
gegeben durch den Preis des Caps Cap(t).

Satt Caplet und Cap kann man auch Floorlet und Floor analog definieren. Dies sind
Zinsderivate mit Auszahlung

(K - Ra(T;-1,T7))"

in 7;.
Anwendung:
Man muss die Koupons eines Festzinskredits zur Tenorstruktur

T0<T1<...<Tn
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bezahlen und méchte, wenn es giinstig ist, diese durch variable Koupons bedienen.
Losung: Kaufe einen Floor, der zur Tenorstruktur des Festzinskredits passt. Ist in der
i—ten Zinsperiode

K > Ru(Ti1,T))

so reicht Ry(T;_1,T;) zum Bedienen der Koupons aus, da die Differenz
K - Ry(Ti-1, Ty)

durch den Floorlet finanziert wird.

1.11 Swaps
Es gibt
Payer-Swap = Cap — Floor
Receiver-Swap = Floor — Cap
Genauer:
- Tenorstruktur

To<T<..<T,

- Festzinssatz K,
- Nominal N.

Ein Swap ist ein Tauschgeschéft, das in jeder Zinsperiode die variablen Zinsen gegen den
festen Zinssatz tauscht. Dabei gibt es keine Option den Swap auszufiihren oder nicht, es
wird in jeder Periode getauscht. Dann gilt beim Payer-Swap:

In T; ergibt sich die Auszahlung

N(T;,-Ti-1)(Ry(T;-1,T;) - K), firallel<i<n
und beim Receiver-Swap ergibt sich

N(T; = Ty )(K - Ry(Ti-1,T;)),  fiir alle 1 <i <n.

Bewertung von Swaps

Erinnerung: In ¢ kann man durch Termingeschéfte auf den T;-Bond zum Termin 7;_,
den Gewinn

B(t,T;-1)

B(t,T)
fiir ein Investment von 1 Euro zwischen T;_; und 7 realisieren. Dies entspricht einem
diskreten jahrlichen Zinssatz von

1 B(t,T;-1)
Q4(t;Ti-1,T;) = T -T, ( B(t T; _1)

1
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der s.g. Forwardzinsrate.
Beachte:
Q4(Ti-1;Ti1, 1) = Ra(Ti-1, T5).

Bemerkung. &,(t;7T;_1,T;) ist der Terminpreis von Ry(T;-1,T;) zum Termin T;.

Beweis.

1 1
Ry(Ti-y,T;) = -1
(T, ) E—ﬂ4(BuLhﬂ) )

und

1 1
Er T;— 77—; =Er, -1
T,L(Rd( 1 )|ﬂ) T; (T'z _]’i71 (B(Ebﬂ) )|ﬂ)

1 B(TiiflaTlifl)
-E, -1
TZ(T‘i_T;L—l ( B(E—hﬂ) )|ft)

(Er,(F (T3, T3 Tima)|F2) - 1)

T T -Ti

1
= (F(t,T;;Ti1) -1
E_j—;,l( (7 1) )

1 (B4T)
- CZ“%_T’i—l B(t,ﬂ)
= Qd(tﬂ—laﬂ)

]

Damit erhélt man auch den arbitragefreien Europreis in ¢ der Auszahlung Ry(7;_1,T;)
in T;:

B(t.T})®4(t; 111, T;) = (B(t,Ti1) - B(t,T3))

1
Ti =T
Dies liefert den Preis des Payer-Swaps in t:
Swap(t) = N 3 (Ti = Tia )(Pa(t; Tir, T3) - K)B(t,T)
i=1
=N (B(t,Ti-1) - B(t,T;)) - N Y (Ti - T,-1) B(t, T;)
i=1 i=1
= N(B(t,To) - B(t,T)) - N Y (T, - T,-1) B(t, T7).
i=1
Was bedeutet es, wenn

Swap(t) > 0 = Die Auszahlung der variablen Koupons sind in ¢ mehr wert, als die
der festen.

Swap(t) < 0 = Die Auszahlung der variablen Koupons sind in ¢ weniger wert, als
die der festen.
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Swap(t) = 0 = Die Auszahlung der variablen und festen Koupons sind in ¢ gleich
viel wert.

Anwendung: Ein variabel verzinster Kredit hat kein Zinsénderungsrisiko. Durch Ein-
gehen einer Swapposition kann aus dem Festzinskredit ein variabel verzinster Kredit
gemacht werden und dadaurch das Zinsdnderungsrisiko eliminiert werden.

Der Festzins K, bei dem Swap(t) = 0 gilt, nennt man Swaprate Rgyqp(t). Diese kann
man auf 2 Arten bestimmen:

1. Méglichkeit:

K = Rsuap(t) < SNT, - To) B4 T) (Ba(t, Tt T,) ~ ) = 0

i=1

o (L= Ta) B T)u(E T T) = K Y(T~ Tr) B4 )

1= =1
n
<y

i=1

(T; -Ti1)B(t,T))
(T, - To ) B(L, T})

Qy(t;T5-1,T;) = K.

M=

k=1

wi(t)
Also gilt:
Rswap(t) = Y, wi(t)@a(t; Ti1, T0).

i=1

2. Moglichkeit:

Swap(t) =0 < B(t,Ty) - N(t,T,) = Kzn:(Tz -Ti1)B(t, Ti)

i=1

o BT -B®T)

21 (T, - T,-)B(t,T})

Also

B(t,Ty) - B(t,T,
RSwap(t) == ( 0) ( ) .
2 (Ti-T-)B(tT)

Der Preis des Swaps kann auch mit der Swaprate ausgedriickt werden:
Swap(t) = B(t,Ty) - B(t,T,) - K Y (T; - T;-1) B(t, T;)

i=1

- Ruap()) (T~ Ti) B(ULT) - K (T, - Ty B(1. )

= (RSwap(t) - K) i(Tz - Ti—l)B(ta Ti)

N(#)

= (Rswap(t) = K)N(t)
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1.12 Swaption

Eine Payer-Swaption gibt dem Inhaber das Recht, in Tj in einen Payer-Swap mit Tenor-
struktur
To<Ti<...<T,

und Festzinssatz K einzusteigen.
Eine Swaption wird in 7j ausgefiihrt, wenn

Swap(Ty) > 0.

Sie verusacht den Zahlungsstrom eines Swaps in T1,...T;,. Dieser Zahlungsstrom wird
in Ty durch Swap(Ty) bewertet. Daher kann eine Swaption als Tp—Claim interpretiert
werden mit Auszahlung

C = Swap(Ty)™*.

Es gilt:
Su}a/p(jj(])Jr = (RSwap(TO) - K)+N(T0)

Bewertung einer Swaption

Hierzu betrachtet man den Swapratenprozess (Rswap(?)) oo, und fithrt einen Mafwech-
sel zu einem Mafs Pg,q, durch. Beziiglich diesem Mafs ist der Swapratenprozess dann ein
Martingal.

Definition. Se:

N(t)=>(T;-T;.1)B(t,T;)  fir alle 0 <t < T.
i-1

Ein Wahrscheinlichkeitsmafl Pgya, heifit Swapmartingalmaf, wenn es das dquivalente
Martingalmafs zum Numeraire N ist, d.h.

(Z) ]P)Swap NPTO auf (Q7fTo);

(i1) (% ist ein lokales Pgyqp—Martingal fiir alle Basisfinanzgiiter S.

>0§t§TO

Bestimmung von Pgyqp:

dPSwap

= L(t).
- (t)

Fi

Es gilt: % ist ein lokales Pg,q,—Martingal genau dann, wenn %L(t) ein lokales

P, —Martingal ist.
Weiter gilt:

Bséfi)% ist ein lokales P, —Martingal, fiir das gilt

S) S
B(t,Ty) N(t)

L(t)c
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fir eine Konstante c. Also ist N 1
L(t) = —.
( ) B(t, T()) c

Wegen der Normierung gilt also

B(t,To) N(0)
Also definiert
dPSwap
dPr,

_ N() B(0,Ty)
"~ B(t,Ty) N(0) ’

fiir alle 0 <t <Tj

Fi
das Swapmartingalmafk.
Fiir die arbitragefreie Bewertung ergibt sich somit als arbitragefreier Europreis

g

Zur Berechung ist also der Swapratenprozess unter Psyq, zu bestimmen. (Rswap(t))oeer,
ist ein positives Pgyqp—Martingal.
Also gibt es einen previsiblen Prozess g4y, so dass

dRSwap(t) = RSwap(t)USwap(t)dWSwap(t)

pe(C) = N(t)Esuwap ( (stap(TJDV)(;OI)()+N(To)

<:>pt(0) = N(t)ESwap ((RSwap - K)+|ft) :

mit Weyaep Wiener-Prozess beziiglich Pgyqp.

Prinzipiell kann man die Volatilitat og,q, der Swaprate berechnen, doch ist die Formel
sehr kompliziert und kann nicht fiir effektive Berechnungen genutzt werden. Deshalb
werden Vereinfachungen benutzt.

Die einfachste Methode ist anzunehmen, dass (0swap(t))geseq, €ine deterministische Funk-
tion in ¢ ist. Dann ergibt sich als Swaption-Preis die Formel von Black, die analog zur
Black-Scholes Formel ausgerechnet werden kann.

2 Libor Marktmodell

Das Libor Marktmodell ist beliebt bei Banken, da es ein Zinsmodell ist, das von beob-
achtbaren Markpreisen ausgeht. Modelliert werden die diskreten Fowardraten/Liborraten
a(t, Tia, T7).

2.1 Aufbau des Modells
Gegeben sei eine Tenorstruktur
T0<T1<...<TN

mit Intervalllangen
0= Ti - T,
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Die T;-Bonds i = 0, ..., N-1, bilden die Basisfinanzgiiter mit Preisprozessen (B(t,7}))ocer,
i=0,..., N-1. Der Ty~Bond dient als Numeraire Asset mit Preisprozess (B(t,Tn))<r, -
Hierdurch wird ein zeitstetiges Finanzmarktmodell definiert mit N Basisfinanzgiitern
und dem Tny—Bond als Numeraire Asset.

Beachte: Das i—te Finanzgut steht nur bis 7; zur Verfiigung und kann anschliefend nicht
mehr zum Hedgen verwendet werden.

Annahmen:

- Die Quelle des Zufalls wird beschrieben durch einen d-dimensionalen Wiener-
Prozess (W(t)),5,- Das heift wir haben einen filtrierten Wahrscheinlichkeitsraum
(2, (F1) 150 » P) mit (F}),,, Wiener-Filtration eines d-dimensionalen Wiener-Prozesses.

- Die Preisprozesse der N+1 Bonds sind stetige, positive Semimartingale mit B(T;,T;) =
1 fiir allei=0,...,N.

- Das Modell ist arbitragefrei. Es existiert also ein Wahrscheinlichkeitsmaf Pp, auf

(2, Fr, ), sodass
(Z) PTN ~ P auf (Q,fTN),
(i7) ( B(t.T) )0 o ist ein lokales Py, —Martingal fiir alle 0 <i < N - 1.

B(t,Tn)

B(t,T;) )
B(tTN) Jo<t<T,

Wir fordern die leicht stérkere Bedingung, dass (
ist fiir alle 0 <i < N - 1.

ein Pr, —Martingal

Bemerkung. Pp, ist das Forwardmartingalmaf$ zum Termin T, da es das dquivalente
Martingalmap zum Numeraire Asset (B(t,TN))ocper, 5t

Bemerkung. In der Definition des Modells wird bewusst kein Geldmarktkonto verwen-
det, da man so das Problem nicht bekommt, die short rate nicht beobachten zu kénnen.

Fiir die Zinsperiode von T; 1 nach 7T; ist der diskrete Forwardzinssatz zum Zeitpunkt
t <T; gegeben durch

L;(t) = @4(t; Tia, Ti)

(BT
5‘( B(t.T;) )

Das ist die i—te Liborrate.
Annahme: Fiir jedes 1 <4 < N ist der Liborratenprozess L; ein strikt positives Semimar-
tingal.

o B(,T1)  B(LT)/B(,Ty)

B(t,T;)  B(t,T;)/B(t,Tv)

ist auch L; ein Semimartingal ist. Die Positivitéit ist die Annahme, die getroffen wird.
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2.2 Terminal Measure

Das Wabhrscheinlichkeitsmafs Py, wird auch als Terminal Measure bezeichnet, da T
der letzte Zeitpunkt auf der Tenorstruktur ist. Beziiglich P, wird die Entwicklung der
Liborrate prinzipiell geklart.

Wir beginnen mit (Ly(t))ocper,

wo= - (e

ist nach Voraussetzung ein Py, —Martingal . Deshalb existiert ein previsibler R¢—wertiger
Prozess (0™ ())cper,_,» S0dass

dLy(t) = Ly(t)o™ (t)dW (t)

= Ly(t) i oM () dw; ().

j=1

o) (t) | bestimmt die Volatilititen der N Liborraten. Das Martingal Ly bestimmt

den Mafiwechsel zum Forwardmartingalmaft Py, ,:

dPr,
dPr,

_ B(t,TN_l) B(O,TN) _ 6NLN(t)+1
= B(t,TN) B(O,TN_l) 5NLN(O)+1

= Ry (t)

Somit folgt

dRy(t) = -dLy (1)

onL (0)
Jy
~ onLn(0) +

3 5NLN(t)
=B T+ 1

LN(t)a(N>(t)dW(t)
oM (t)dW (t).
Wir erhalten also eine Exponentialdarstellung fiir den Dichtequotientenprozess:

t L[| dnIn(s) ?
_ _ONLN(S) (N) 4 NLNAS
Rn(t) exp(0 5NLN(t)+1J (s)dW (s 20[ ds)

SnIn(s)+1 7(s)

Der Satz von Girsanov liefert einen Wiener-Prozess W (-1 definiert durch

WD (1) = W(t) - [ 55NLN(S)

WU(N)(S)dS

beziiglich Prp,_,.
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Im néchsten Schritt wird die Dynamik der N - 1-ten Liborrate

1 B(taTN—Q) 1
(B(thN—l) B )

LN—l(t) = 5

N-1

bestimmt.
Ly_; ist ein positives Semimartingal beziiglich Pp, . Deshalb gibt es previsible Prozesse

(U(N‘l)(t))ogng2 und (“(N_l)(t))OStsTN,gv sodass

dLy_y = Ly_1()(uN=D () dt + oD (£)dW (t)).
Da Ly_ ein Pr, - Martingal ist, ist (,u(N‘l)(t)) eindeutig bestimmt. Wegen

onLn(t) & (V)

gD
AW (t) = dW (t)+5NLN(t)+1

(t)dt

folgt durch Einsetzen

OnLn(t)

(1) = s 005

o—<N>(t)a<N—1>(t))dt+a<N—1>(t)dW<N—1>(t))

Da Ly_; ein Py,  —Martingal ist, muss

InLn(t)
5NLN(t) +1
5NLN(t) (N)

R SN A OGRS
- j:15NLN(t)+1O] (t)a; " (1).

P (0) = - o (oD (1)

Das Pr,_,—Martingal Ly_; bestimmt den Mafwechsel zum Forwardmartingalmaf Pr,, ,:

d]P)TN_Q _ B(t,TN_Q) B(O,TN_l) _ 5N—1LN—1 (t) +1
d]P)TN,l £ B(t, TN—I) B(O, TN_Q) (5N_1LN_1(O) +1

=: RN_1 (t)

Somit folgt analog:

On_1Ln_1(t
(1) = Boa(0)5 2522 0 0 )

Girsanov liefert den Wiener-Prozess W (V-2)

5N—1LN—1(S)

(N-D(s)d
o s)ds
N-1Ln-1(s) +1 (5)

t
WWﬂm=WWﬂm-[5
0

beziiglich Pp,,_, fiir alle 0 <t < T _s.
Dies kann man induktiv fortsetzen. Man erhélt also folgendes Ergebnis:
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Beziiglich Pz, haben die Liborraten (Li(t))oer, 1 <@ < N, die Dynamik

dLi(t) = Li(t) ( S s (t)dt + a“)(t)dW(t))

k=i+1
mit
Ok Ly (1)
(5kLk(t) +1

Fiir die Forwardmartingalmafse Py, ..., Py, gilt

nik(t) = o (t)a®(1).

Py, |
dPr,

6 Li(0) + 1

= Ri(t)

Fi

und

dLi(t) = Li(t)o® (£)dW O (t)
mit Wiener-Prozess W beziiglich Pr,.

2.3 Das lognormale Libormarktmodell

Tenorstruktur 7o < T < ... < T,

B(t,T;_
- Li(t) = £ (S -1), 0<i< T,

Py, Forwardmartingalmaf,

- Z=(Z,...,Zy) ein N-dimensionaler korrelierter Wiener-Prozess mit

(Z, Z1)e = ot

fiirkil:—1<gkl<1.

Jeder Wiener-Prozess treibt eine Liborrate. Durch die Abhédngigkeit in den Kom-
ponenten des Wiener-Prozesses erhélt man auch eine Abhéngigkeit der Liborraten.

Man beachte, dass mit Hilfe von Girsanov wie in Unterunterabschnitt 2.2 N-dimensionale
Wiener-Prozesse Z () = (Zl(l), o Z](\;)) beziiglich P, konstruiert werden kdnnen mit
Korrelation (le)lgkjlng#.

Im lognormalen Libormarktmodell wird angenommen, dass die Liborraten folgende Dy-
namik erfiillt:

dL;(t) = Li() X ()dZ P (¢)

fiir alle 1 <7 < N und deterministische Funktionen \;, ..., Ay.
Beziiglich Py, ist also die i—te Liborate L;(t) eine lognormalverteilte Zufallsvariable.
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2.4 Bewertung von Caplets im lognormalen Libormarktmodell
In der Zinsperiode [T;_1,T;] liefert ein Caplet die Auszahlung
1 (B(T1, Ti1) '
S(Li(Ti) - K)* =0 = [ sl ) - K
(LlTi) - K) (5( B(Ti1,Th)

in T;.
Bewertung:
Berechnung des Terminpreises zum Termin 7;:

L;(T;_
Er, (Li(Ti-1) = K)"6i|F) = 6:; Li(¢)Er, Zi) Vrrysxy | = 06K P (Li(Timr) > K| F)
—_— ~log N'

pos. MG

=6;Li(t)Qr,(Li(Tir) > K|Ft) = 6; KPr, (Li(Ti-1) > K| F).

Wegen .
dLi(t) = Li()X(£)dZ (¢)
folgt
Pr, (Li(Ti-1) > K|Fy) = ®(ha(Li(1), 1))
und wegen

AL(1) = L(OMABO (1) ~ S\ (D) L)t

beziiglich Qr, folgt
Qr,(Li(Ti-1) > K|F) = @(ha(Li(t), 1))

Dabei sind -
bt = InZ+3 [, A2(s)ds
\/[tTH N (s)ds
und

InL -1 [T 22(s)ds

hQ(xat) = T
[T A2 (s)ds

Der arbitragefreie Europreis in ¢ ist somit
Cli(t) = B(t, T,)6i(Li(t)2(ha (Li(t), 1)) - K@(ha(Li(t),1))).

Dies ist die Formel von Black fiir Caplets. Mit Hilfe dieser Formel kann man auch Cap-
Preise berechnen und zur Kalibrierung des Modells nutzen.
Bemerkung zur Kalibrierung: Die Parameter des Modells sind

- deterministische Volatilitatsfunktionen Ay, ..., Ay, die in der Praxis durch endlich
viele Parameter spezifiziert werden.

- Korrelation gy, der treibenden Wiener-Prozesse.

103



Beobachtbare Grofen sind
- Cap-Preise
- Swaption-Preise.

Fiir jedes Ty < T,, < ... < T < Ty, innerhalb der Tenorstruktur, sicht man den Cap-
und Swaption-Preis. Man berechnet den Marktpreis mit Hilfe der Formel von Black
fiir Caplets bzw. Swaptions (Formel geht analog). Man bestimmt dann die Parameter
so, dass Markt- und Modellpreise méglichst gut iibereinstimmen. Die Betrachtung von
Swaptions ist notwendig, da sonst keine Aussage iiber die Korrelation getroffen werden
konnte.

2.5 Weitere Libormarktmodelle

a) Diffusionsmodelle
dL;(t) = Li(t)\i(t)o(Li(t))dZ (1)

- )\; ist eine deterministische Funktion der Zeit

- o ist eine Funktion des Zustandes.

Dies entspricht dem Diffusionsansatz bei den Aktienmodellen.

b) Liborratenmodell mit stochastischer Volatilitét

- Das Analogon zum Heston Modell

Die Volatilitdat de i—ten Liborrate wird exogen bestimmt durch

oi(t) =V(ON(t), 1<i<N

mit V' ein CIR-Prozess beziiglich Pr, der Form
dV(t) =a(b-V(t))dt +c\/V(t)dB(t)

und )\; eine deterministische Funktion der Zeit.

Beziiglich Pp,, sind Zi, ..., Zy, B korrelierte Wiener-Prozesse. Beim Mafwechsel zu

P7, erhélt man korrelierte Wiener-Prozesse Zl(i)7 e Z](é), B und es ergibt sich eine
Anderung in der Drift fiir die Dynamik von V.

Man erhalt folgende Struktur

dLi(t) = L)X ()N V (£)dZ ()
dV (t) = a(b-C()V(t))dt + e/ V ()dBD(t).
Wie eine Kalibrierung in der Praxis umgesetzt wird, ist in den Masterarbeiten von Ha-

sow, Santen, Hiilsbusch und Cresnik genauer ausgefiihrt (vgl. Homepage von Dr. Paulsen,
http://wwwmath.uni-muenster.de/statistik/paulsen/Abschlussarbeiten/Masterarbeiten/(21
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