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Übersicht:
1. Aktienmodelle

⋅ Allgemeines von einem Wiener-Prozess getriebenes Semimartingalmodell

- Aufstellung des Modells

- Bestimmung der äquivalenten Martingalmaße

- Bewertung von Derivaten

- Bestimmung von Replikationsstrategien

⋅ Spezielle Modelle

- Stochastische Volatilitätsmodelle (z.B. Heston-Modell)

2. Rentenmärkte

⋅ Informelle Einführung (z.B. Bonds, Floor, Swap)

⋅ Shortrate Modelle/Zinsstrukturmodelle

- Vasicek-Modelle

- CIR-Modelle

⋅ Libor Markt Modelle

Inhaltlich zu Vorlesung ’stochastische Analysis’, WS 2015/2016

III Stochastische Differentialgleichungen
15.4.16

1 Starke Lösbarkeit

Sei W ein r−dimensionaler Wiener-Prozess und seien

b ∶ [0,∞) × Rd Ð→ Rd (entspricht der Geschwindigkeit eines Teilchens zum Zeit-
punkt t)

σ ∶ [0,∞) ×Rd Ð→ Rd (entspricht einer Störung/einem Rauschen)

messbare Funktionen.
Zunächst soll definiert werden, was unter einer starken Lösbarkeit einer stochastischen
Differentialgleichung

dXt = b(t,Xt)dt + σ(t,Xt)dWt

mit Anfangsbedingung ξ zu verstehen ist.
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Gegeben ein Wahrscheinlichkeitsraum (Ω,F ,P) mit einem r−dimensionalen Wiener-
Prozess (Wt)t≥0 und kanonischer Filtration

FWt = σ(Ws ∶ s ≤ t).

Weiter ist die Startvariable ξ eine von FW unabhängige Zufallsvariable mit Werten in
Rd.
Definiere

F (0)
t ∶= σ(ξ,Ws ∶ s ≤ t)

sowie das System der vernachlässigbaren Mengen N durch

N ∶= {N ⊆ Ω ∶ ∃A ∈ F (0)
∞ und P(A) = 0}.

Gehe über zur vervollständigten Filtration durch

F (1)
t ∶= σ(F (0)

t ∪N) für alle t ≥ 0

und
Ft ∶= F (1)

t+ = ⋂
ε>0

F (1)
t+ε .

Definition 1.1. Ein stochastischer Prozess X ist starke Lösung der stochastischen
Differentialgleichung

dXt = b(t,Xt)dt + σ(t,Xt)dWt

mit Startvariable ξ, wenn gilt:

(i) X ist adaptiert bezüglich (Ft)t≥0,

(ii) P(X0 = ξ) = 1,

(iii)
t

∫
0

∣bi(s,Xs)∣ds +
t

∫
0

σ2
ij(s,Xs)ds < ∞ P-fast sicher,

(iv) X erfüllt die Integralgleichung

Xt = ξ +
t

∫
0

b(s,Xs)ds +
t

∫
0

σ(s,Xs)dWs

welche komponentenweise definiert ist durch

X
(i)
t = ξ(i) +

t

∫
0

bi(s,Xs)ds +
r

∑
j=1

t

∫
0

σij(s,Xs)dW (j)
s für alle 1 ≤ i ≤ d, t ≥ 0.

Bemerkung. Die Lösung einer stochastischen Differentialgleichung kann als Output
eines dynamischen Systems interpretiert werden. X bestimmt die Entwicklung des Zu-
standes eines Teilchens in Rd unter Einfluss des Vektorfeldes b und des Rauschens W .
Die Stärke des Einflusses des Rauschens wird bestimmt durch σ.
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Blackbox

b(t,X) entspricht einem Geschwindigkeitsvek-
tor/Driftvektor zum Zeitpunkt t im Zustand X.

σ(t,X) entspricht einer Streuungsma-
trix/Volatilitätsmatrix zum Zeitpunkt t um Zustand
X.

Die Änderung der Lösung kann näherungsweise für kurze Zeiten beschrieben werden
durch

Xt+h −Xt ≈ b(t,Xt)h + σ(t,Xt)
⎛
⎜⎜
⎝

W
(1)
t+h −W

(1)
t

⋮
W

(r)
t+h −W

(r)
t

⎞
⎟⎟
⎠
∼ N(b(t,Xt)h,σ(t,Xt)σT (t,Xt)h2).

Der Output eines solchen dynamischen Systems sollte eindeutig vom Input abhängen.
Dies führt zur Definition der starken Eindeutigkeit.

Definition 1.2. Das Paar (b, σ) erfüllt die Eigenschaft der starken Eindeutigkeit, falls
für jeden Warhrscheinlichkeitsraum (Ω,F ,P) mit r−dimensionalen Wiener-Prozess W ,
jede Startvariable ξ und für je zwei starke Lösungen X,Y von

dXt = b(t,Xt)dt + σ(t,Xt)dWt

mit Anfangswert ξ gilt
P(Xt = Yt für alle t ≥ 0) = 1.

Beispiel 1.3. Sei b ∶ [0,∞)×RÐ→ R beschränkt, messbar und nicht wachsend in x, d.h.
für x ≤ y gilt

b(t, x) ≥ b(t, y) für alle t ≥ 0.

Seien X,Y Lösungen von
dXt = b(t,Xt)dt + dWt

mit Anfangswert ξ. Dann sind X und Y nicht unterscheidbar, d.h.

P(X = Y für alle t ≥ 0) = 1.

Beweis. Setze Zt ∶=Xt − Yt für alle t ≥ 0.
Dann gilt

Zt = ξ +
t

∫
0

b(x,Xs)ds +Wt − ξ −
t

∫
0

b(s, Ys)ds −Wt

=
t

∫
0

b(s,Xs) − b(s, Ys)ds.

Damit gilt:

0 ≤ Z2
t

Itō= 2

t

∫
0

ZsdZs + ⟨Z⟩t
±
=0
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= 2

t

∫
0

(Xs − Ys)(b(s,Xs) − b(s, Ys))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤0

ds

≤ 0.

⇒ Z2
t = 0⇒ Zt = 0 für alle t ≥ 0.

Zunächst sollen Bedingungen an b und σ gestellt werden, sodass die starke Eindeutigkeit
folgt.
Vorbereitend benötigt man das Lemma von Gronwall:

Lemma 1.4 (Lemma von Gronwall). Seien T > 0 und g ∶ [0, T ] Ð→ R eine stetige
Funktion mit der Eigenschaft

0 ≤ g(t) ≤ α(t) + β
t

∫
0

g(s)ds für alle t ≤ T

mit β ≥ 0 und α ∶ [0, T ] Ð→ R integrierbar.
Dann gilt:

g(t) ≤ α(t) + β
t

∫
0

α(s)eβ(t−s)ds für alle t ≤ T.

Beweis. Betrachte

d

dt

⎛
⎝
e−βt

t

∫
0

g(s)ds
⎞
⎠
= e−βtg(t) − βe−βt

t

∫
0

g(s)ds

= e−βt(g(t) − β
t

∫
0

g(s)ds)

≤ e−βtα(t).

Also gilt

e−βt
t

∫
0

g(s)ds ≤
t

∫
0

α(s)e−βsds.

Wegen der Voraussetzung folgt also

g(t) ≤ α(t) + β
t

∫
0

g(s)ds

≤ α(t) + β
t

∫
0

α(s)eβ(t−s)ds.
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Hieraus kann auf die starke Eindeutigkeit geschlossen werden, wenn eine lokale Lipschitz-
Bedingung erfüllt ist. Es gilt allgemein: 15.4.16

x ∈ Rd ∶ ∥x∥2 =
d

∑
i=1

∣xi∣2

σ ∈ Rd×r ∶ ∥σ∥2 = ∑
i,j
σ2
ij

Satz 1.5. Die Koeffizienten (b, σ) erfüllen die folgenden Bedingung:
Für n ≥ 1 gibt es eine Konstante Kn mit

∥b(t, x) − b(t, y)∥2 + ∥σ(t, x) − σ(t, y)∥2 ≤Kn∥x − y∥2 für alle t ≥ 0, ∥x∥, ∥y∥ ≤ n.

Dann erfüllt die stochastische Differentialgleichung

dXt = b(t,Xt)dt + σ(t,Xt)dWt (1)

die Eigenschaft der starken Eindeutigkeit.

Bemerkung. Da die Eigenschaft der starken Eindeutigkeit von dem Tupel (b, σ) ab-
hängt, sagt man auch, dass das Tupel (b, σ) die Eigenschaft der starken Eindeutigkeit
erfüllt.

Beweis. Sei (Ω,F ,P) mit Wiener-Prozess W und unabhängiger Startvariable ξ. Seien
X,Y Lösungen von Gleichung 7 zur Startvariable ξ.
Lokalisiere durch

τn = inf{t ≥ 0 ∶ ∥Xt∥ ≥ n oder ∥Yt∥ ≥ n}
Dann gilt:

Xτn
t − Y τn

t =
t∧τn

∫
0

b(u,Xu) − b(u,Yu)du +
t∧τn

∫
0

σ(u,Xu) − σ(u,Yu)dWu.

Also gilt:

E∥Xτn
t − Y τn

t ∥2 = E∥
t∧τn

∫
0

b(u,Xu) − b(u,Yu)du +
t∧τn

∫
0

σ(u,Xu) − σ(u,Yu)dWu∥2

≤ 2E∥
t∧τn

∫
0

b(u,Xu) − b(u,Yu)du∥2 + 2E∥
t∧τn

∫
0

σ(u,Xu) − σ(u,Yu)dWu∥2

Isometrie≤ 2E
⎛
⎝

t∧τn

∫
0

∥b(u,Xu) − b(u,Yu)∥du
⎞
⎠

2

+ 2E
t∧τn

∫
0

∥σ(u,Xu) − σ(u,Yu)∥2du

Hölder≤
Ungl.

2tE
t∧τn

∫
0

∥b(u,Xu) − b(u,Yu)∥2du + 2E
t∧τn

∫
0

∥σ(u,Xu) − σ(u,Yu)∥2du
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≤ 2(1 + t)Kn

t

∫
0

E∥Xτn
u − Y τn

u ∥2du.

Gronwalls Lemma, angewendet auf

g(u) = E∥Xτn
u − Y τn

u ∥

liefert
g ≡ 0 für alle u ≤ t.

⇒Xτn
u = Y τn

u für alle u ≤ t
⇒Xτn ist nicht unterscheidbar von Y τn für alle n ∈ N
⇒X ist nicht unterscheidbar von Y .

Für die Existenz einer Lösung muss eine globale Lipschitz- und Wachstumsbedingung
gefordert werden. Dann kann durch Anwendung des Banach’schen Fixpunktsatzes eine
starke Lösung eindeutig konstruiert werden.
Für jedes T > 0 sei

LT2 ∶= {X ∶X ist adaptiert, stetig, Rd −wertig und E sup
t≤T

X2
t < ∞}.

Durch ∥X∥2,T ∶= (E sup
t≤T

∥Xt∥2)
1
2

wird LT2 zu einem Hilbertraum.

Wichtige Ungleichungen sind

Lemma 1.6. Für jedes X ∈ LT2 gilt:

(i) E sup
t≤T

∥
t

∫
0

Xudu∥2 ≤ T
t

∫
0

∥X∥2
2,tdt,

(ii) E sup
t≤T

∥
t

∫
0

XudWu∥2 ≤ 4
t

∫
0

∥X∥2
2,tdt.

Beweis. (ii) folgt aus der Doob’schen L2-Ungleichung für Martingale:

E sup
t≤T

∥
t

∫
0

XudWu∥2 ≤ 4 sup
t≤T

E∥
t

∫
0

XudWu∥2

Isō-=
Isometrie

4 sup
t≤T

E
t

∫
0

∥Xu∥2du

= 4E
T

∫
0

∥Xu∥2du

= 4

T

∫
0

E∥Xu∥2du
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≤ 4

T

∫
0

∥X∥2
2,udu.

Satz 1.7. Gegeben sei die stochastische Differentialgleichung

dXt = b(t,Xt)dt + σ(t,Xt)dWt. (2)

(b, σ) erfüllen eine globale Lipschitz- und Wachstumsbedingung der Form:
Zu jedem T > 0 gibt es eine Konstante K mit

(i) ∥b(t, x) − b(t, y)∥2 + ∥σ(t, x) − σ(t, y)∥2 ≤K∥x − y∥2

(ii) ∥b(t, x)∥2 + ∥σ(t, x)∥2 ≤K2(1 + ∥x∥2)

für alle t ≤ T und x, y ∈ Rd.
Dann gibt es zu jedem Wahrscheinlichkeitsraum (Ω,F ,P) mit r−dimensionalen Wiener-
Prozess W und unabhängiger Startvariable ξ, die

E∥ξ∥2 < ∞

erfüllt, einen (Ft)t≥0 adaptierten Prozess X mit stetigen Pfaden, der die stochastische
Differentialgleichung (2) mit Anfangsbedingung X0 = ξ löst. Hierbei ist (Ft)t≥0 die von
W und ξ erzeugte Filtration, die die usual conditions erfüllt.
Weiter gibt es zu jedem T eine Konstante C mit

∥X∥2
2,T ≤ C(1 +E∥ξ∥2)eCt.

Beweis. Fixiere T > 0. Die stochastische Differentialgleichung wird zunächst bis T ein-
deutig gelöst durch ein Fixpunktargument:
Definiere einen Operator

A ∶ LT2 Ð→ LT2

X ↦ ξ +
⋅

∫
0

b(u,Xu)du +
⋅

∫
0

σ(u,Xu)dWu

Der Operator A ist wohldefiniert, da es eine Konstante C1 gibt, mit

∥A(X)∥2
2,t ≤ C1(1 +E∥ξ∥2 +

t

∫
0

∥X∥2,udu) für alle t ≤ T,X ∈ LT2 . (3)

Entscheidend ist die Ungleichung

∥An(X) −An(Y )∥2
2,t ≤

(C2t)n
n!

∥X − Y ∥2
2,t für alle t ≤ T,X.Y ∈ LT2 (4)
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mit C2 = 2K(T + 4).
Hieraus folgt

(i) A ist ein stetiger Operator (da A Lipschitz stetig ist mit Konstante (C2t)n
n! )

(ii) ∃n0 ∈ N ∶ An0 ist eine Kontraktion auf LT2 (denn ab n0 wird (C2t)n
n! < 1).

Wegen (ii) kann der Banach’sche Fixpunktsatz auf An0 angewendet werden.
Also konvergiert zu jedem Startprozess Z ∈ LT2 die Folge (Akn0(Z))k∈N gegen den eindeu-
tigen Fixpunkt X von An0 .
Wegen der Stetigkeit von A ist X auch ein Fixpunkt von A und damit eindeutige Lösung
der stochastischen Differentialgleichung bis T , denn

A(X) = A( lim
k→∞

Akn0(X))

= lim
k→∞

A(Akn0(X))

= lim
k→∞

Akn0(A(X))

=X.

Beweis von Gleichung 4 durch Induktion:
IA: n = 0⇒ klar
IS: n→ n + 1

∥An+1(X) −An+1(Y )∥2
2,t

= E sup
s≤t

∥
s

∫
0

b(u,An(X)u) − b(u,An(Y )u)du +
s

∫
0

σ(u,An(X)u − σ(u,An(Y )u)dWu∥2

≤ 2E sup
s≤t

∥
s

∫
0

b(u,An(X)u) − b(u,An(Y )u)du∥2 + ∥
s

∫
0

σ(u,An(X)u) − σ(u,An(Y )u)dWu∥2

Lemma≤
1.6

2t

t

∫
0

∥b(⋅,An(X)⋅) − b(⋅,An(Y )⋅)∥2
2,udu + 8

t

∫
0

∥σ(⋅,An(X)⋅) − σ(σ,An(Y )⋅)∥2
2,udu

Lipschitz-
≤

Bedingung
2K(T + 4)

t

∫
0

∥An(X) −An(Y )∥2
2,udu

IV≤ 2K(T + 4)C
n
2

n!

t

∫
0

un∥X − Y ∥2
2,udu

≤ C
n+1
2

n!

t

∫
0

undu∥X − Y ∥2
2,t

= Cn+1
2

(n + 1)!t
n+1∥X − Y ∥2

2,t

8



Es bleibt Gleichung 4 zu zeigen: 19.4.16
Wegen der linearen Wachstumsbedingung folgt für x ∈ LT2

E sup
s≤t

∥b(s,Xs)∥2 +E sup
s≤t

∥σ(s,Xs)∥2 ≤ 2k2E sup
s≤t

(1 + ∥Xs∥2)

= 2k2(1 + ∥X∥2
2,t für alle t ≤ T.

Also ist
b(⋅,X⋅), σ(⋅,X⋅) ∈ LT2

und es gilt

∥A(X)∥2
2,t = E

⎛
⎝

sup
s≤t

∥ξ +
s

∫
0

b(u,Xu)du +
s

∫
0

σ(u,Xu)dWu∥
⎞
⎠

2

≤ 3
⎛
⎝
E∥ξ∥2 +E sup

s≤t
∥

s

∫
0

b(u,Xu)du∥2 +E sup
s≤t

∥
s

∫
0

σ(u,Xu)dWu∥2
⎞
⎠

≤ 3
⎛
⎝
E∥ξ∥2 + t

t

∫
0

∥b(⋅,X⋅)∥2
2,udu + 4

t

∫
0

∥σ(⋅,X⋅)∥2
2,udu

⎞
⎠

≤ 3
⎛
⎝
E∥ξ∥2 + k2(4 + t)(t +

t

∫
0

∥X∥2
2,udu

⎞
⎠
.

Hieraus folgt die Behauptung bei einer geeigneten Wahl von C1

Für den Fixpunkt X = A(X) folgt insbesondere

E sup
s≤t

∥Xs∥2 = ∥X∥2
2,t = ∥A(X)∥2

2,t ≤ C1(1 +E∥ξ∥2 +
t

∫
0

∥X∥2
2,sds).

Anwendung des Gronwall’schen Lemmas mit

g(t) = ∥X∥2
2,t

liefert
∥X∥2

2,t ≤ C1(1 +E∥ξ∥2)eC1t t ≤ T.

Aus der Monotoniebedingung für den Anfangswert kann auf eine Monotoniebedinung
für die Lösung geschlossen werden.

Satz 1.8. (b, σ) erfüllen die Voraussetzungen aus Satz 1.7. Sei ξ eine Startvariable der
SDGL

dXt = b(t,Xt)dt + σ(t,X − t)dWt

und sei
tE∥ξ∥2p < ∞ für alle p ≥ 1.

Dann gibt es eine Konstante C, die nur von T, p und k abhängt, so dass
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E supt0≤s≤t∥Xs∥2p ≤ C(1 +E∥Xt0∥2p)eC(t−t0) und

E supt0≤s≤t∥Xs −Xt0∥2p ≤ C(1 +E∥Xt0∥2p)(t − t0)p für alle 0 ≤ t0 ≤ t ≤ T .

Das Theorem liefert insbesondere, dass das 2p−te absolute Moment der Lösung endlich
ist, denn setze t0 = 0, so ist Xt0 = ξ und

E∥Xt0∥2p ≤ E sup
s≤t

∥Xs∥2p ≤ C(1 +E∥ξ∥2p)eCt.

Beweis. Idee: Rückführung auf den Fall p = 1 durch Anwendung der Itō-Formel. Sei
d = 1.

dXt = b(t,Xt)dt + σ(t,Xt)dWt

dXα
t = αXα−1

t dXt +
1

2
α(α − 1)Xα−2

t d⟨X⟩t

= αXα−1
t (b(t,Xt)dt + σ(t,Xt)dWt) +

1

2
α(α − 1)Xα−2

t σ2(t,Xt)dt

= αXα−1
t σ(t,Xt)dWt + (αXα−1

t b(t,Xt) +
1

2
α(α − 1)Xα−2

t σ2(t,Xt))dt

= µ(t,Xα
t )dt + σ̃(t,Xα

t )dWt

Ausgeführt ist dies im Buch Kloeden/Platen, Numerical Methods

Ziel: Nachweis der Markov-Eigenschaft von starken Lösungen von SDGL.
Gegeben sei ein Wahrscheinlichkeitsraum (Ω,F ,P) mit r−dimensionalen Wiener-Prozess
W und einem von W unabhängigen Startvektor ξ.
Sei (Ft)t≥0 die vonW und ξ erzeugte vollständige Filtration und sei X eine starke Lösung
von

dXt = b(t,Xt)dt + σ(t,Xt)dWt

mit X0 = ξ.
Wir setzen voraus, dass für jeden Anfangswert (t, y) ∈ [0,∞)×Rd obige Differentialglei-
chung eindeutig durch einen Prozess

(X t,y
t+s)s≥0

gelöst wird, d.h.

X t,y
t+s = y +

t+s

∫
t

b(u,X t,y
u )du +

t+s

∫
t

σ(u,X t,y
u )dWu für alle s, t ≥ 0.

Man beachte, dass (W (t − s) −W (t))s≥0 = (W t(s))s≥0 ein Wiener-Prozess ist bezüglich
der Filtration (Ft+s)s≥0 adaptiert bezüglich der von (W t(s))s≥0 erzeugten Filtration und
damit unabhängig von Ft.
Dies ist der Schlüssel, um die Markov-Eigenschaft zu zeigen.
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Satz 1.9. Erfüllt die SDGL

dXt = b(t,Xt)dt + σ(t,Xt)dWt, X0 = ξ

die obigen Vorraussetzungen, so ist die starke Lösung (Xt)t≥0 ein Markov-Prozess, d.h.
es gilt:

E(f(Xt+s)∣Ft) = E(f(Xt+s)∣Xt)
für alle t, s ≥ 0 und beschränkte, messbare f .

Beweis. Als starke Lösung der SDGL erfüllt X die Gleichung

Xt+s −Xt =
t+s

∫
t

b(u,Xu)du +
t+s

∫
t

σ(u,Xu)dWu

also

Xt+s =Xt +
t+s

∫
t

b(u,Xu)du +
t+s

∫
t

σ(u,Xu)dWu.

Deshalb gilt:
Xt+s(u) =X t,Xt(ω)

t+s (ω) für alle ω ∈ Ω.

Genauer:
Bezeichne mit

F (t, t + s; y,ω) ∶=X t,y
t+s(ω) für alle t, s ≥ 0, y ∈ Rd, ω ∈ Ω.

Dann ist
Xt+s(ω) = F (t, t + s;Xt(ω), ω).

Dies ist eine Art Flussgleichung der SDE (stochastic differential equation)
Beachte: ω ↦ F (t, t + s; y,ω) ist stochastisch unabhängig von Ft.
Man erhält

E(f(Xt+s)∣Ft) = E(f(F (t, t + s;Xt(⋅), ω)∣Ft) = g(Xt)
mit g(y) = Ef(F (t, t + s; y, ⋅)).
Genauso folgt

E(f(Xt+s)∣Xt) = Ef(F (t, t + s;Xt, ⋅))∣Xt) = g(Xt).

Bemerkung. Erläuterung der Markov Eigenschaft: 22.4.16

X t,y
t+s(ω) = F (t, y; t + s,ω)

=Ht,t+s(y, (Wt+s(ω) −Wt(ω))0≤u≤s)

Xt+s(ω) =X t,Xt(ω)
t+s (ω) =Ht,t+s(Xt(ω), (Wt+u(ω) −Wt(ω))0≤u≤s

Da Xt Ft−messbar ist und (Wt+u −Wt)0≤u≤s unabhängig von Ft ist, folgt die Markov-
Eigenschaft im folgenden Lemma:
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Lemma 1.10. Seien (M1,M1), (M2,M2) messbare Räume, sei (Ω,F ,P) ein Wahr-
scheinlichkeitsraum und G eine Unter−σ−Algebra von F . Seien X1 ∶ Ω Ð→ M1 und
X2 ∶ ΩÐ→M2 und h ∶ (M1 ×M2,M1 ⊗M2) Ð→ (R,B) messbare Abbildungen.
Es gelte:

(i) X1 ist unabhängig von G.

(ii) X2 ist messbar bezüglich G.

(iii) E(h(X1,X2)) < ∞.

Dann gilt:

E(h(X1,X2)∣G) = E(h(X1,X2)∣X2)
= E(h(X1,X2)∣X2 = ⋅) ○X2

= g(X2) mit g(y) = E(h1(X1,X2)∣X2 = y) = E(h(X1, y)

Beweis. siehe Übung

Definition 1.11. Ist die Lösung der SDE zum Zeitpunkt t in x, so erreicht sie eine
Menge A ∈ Bd zum Zeitpunkt t + s mit Übergangswahrscheinlichkeit

K(t, x; t + s,A) = P(X t,x
t+s ∈ A für alle t, x ≥ 0, x ∈ Rd.

Fixiert man t und s, so ist K(t, ⋅; t + s, ⋅) ein (Übergangs-)Kern des Markov-Prozesses
zu t und t + s.

K(t, x; t + s,A) = P(Xt+s ∈ A∣Xt = x)
= P(X t,x

t+s ∈ A)

Wegen der Markov-Eigenschaft gilt

P(Xt+s ∈ A∣Ft) = P(Xt+s ∈ A∣Xt)
=K(t,Xt; t + s,A)

Die Markov-Eigenschaft impliziert die Chapman Kolmogorov Gleichung:

Satz 1.12 (Chapman Kolmogorov Gleichung:). Sei X starke Lösung der SDE

dXt = b(t,Xt)dt + σ(t,Xt)dWt, X0 = ξ.

Sei (K(t, ⋅; t + s, ⋅))t,s≥0 die Familie der Übergangskerne.
Dann gilt:

K(t, x; t + s,A) = ∫
R

K(t + h, y; t + s,A)K(t, x; t + h, dy)
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für alle t ≥ 0, x ∈ Rd,A ∈ Bd, h < s.

Beweis.

K(t, x; t + s,A) = P(X t,x
t+s ∈ A)

= EP(X t,x
t+s ∈ A∣Ft+s

Markov=
Eig

EP(X t,x
t+s ∈ A∣X t,x

t+s)

= ∫
Rd

P(X t,x
t+s ∈ A∣X t,x

t+h = y)PX
t,x
t+h(dy)

= ∫
Rd

P(X t+h,y
t+s ∈ A)PXt,x

t+s(dy)

= ∫
R

K(t + h, y; t + s,A)K(t, x; t + h, dy)

Alternativ kann auch eine Beschreibung mittels Übergangsoperatoren durchgeführt wer-
den.

Definition 1.13. Sei

bBd ∶= {f ∶ Rd Ð→ R ∶ messbar und beschränkt}.

Für s, t ≥ 0 definiere den Übergangsoperator Tt,t+s ∶ bBd Ð→ bBd durch

Tt,t+sf(X) = Ef(X t,x
t+s)

= ∫ f(y)K(t, x; t + s, dy).

Die Familie der Übergangsoperatoren hat folgende Eigenschaften:

(i) Tt,t+s = Tt+h,t+s ○ Tt,t+h für alle t, s ≥ 0,0 ≤ h < s

(ii) Tt,t = id = lim
h→0

Tt,t+h

(iii) Tt,t+sf ≥ 0 für alle f ≥ 0, s, t ≥ 0

(iv) Tt,t+s1 = 1 für alle t, s ≥ 0, wobei 1x = 1 für alle x ∈ Rd

Haben die Übergangskerne Dichtequotienten bezüglich des Lebesgue-Maßes, so kommt
man zu den sogenannten Übergangsdichten:

K(t, x; t + s,A) = ∫
A

p(t, x; t + s, y)dy.
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Beispiel. Ein Wiener-Prozess hat die Übergangsdichte

p(t, x; t + s, y) = 1√
2πs

e−
1
2s

(y−x)2

und
K(t, x; t + s, ⋅) = N(x, s)

,da Inkremente von Wiener-Prozessen normalverteilt sind.

Inhaltlich zu Vorlesung ’Höhere Finanzmathematik’, SS 2016

I Modelle für Aktienmärkte
22.4.16

Ziel:

- Beschreibung der zeitlichen Entwicklung von Aktienkursen

- Charakterisierung der arbitragefreien Märkte

- Bewertung von Derivaten

Technische Vorbemerkungen
- Semimartingale werden betrachtet auf einem Zeitintervall [0, T ). In der stochastischen
Analysis entspricht T gerade +∞.
- Lokalisation wird für [0, T ) durchgeführt:
(Mt)0≤t<T ∈ M0

c,loc, wenn M0 = 0 und es existiert eine aufsteigende Folge (τn)n∈N von
Stoppzeiten mit M τn ist ein stetiges Martingal und sup

n∈N
τn = T .

M ∈Mc,loc⇔M −M0 ∈M0
c,loc

M ∈ Mc,loc ist nach T fortsetzbar, falls lim
t↗T

Mt existiert P−fast sicher. Dann wird MT

durch MT = lim
t↗T

Mt definiert.

Bemerkung. Ist ⟨M⟩T ∶= lim
t↗T

⟨M⟩t < ∞ P−fast sicher, so existiert lim
t↗T

Mt P−fast sicher.

- (At)0≤t<T heißt stetiger FV-Prozess, falls A adaptiert ist mit stetigen Pfaden, die P−fast
sicher auf jedem [0, t], t < T, von beschränkter Variation sind.
- (Xt)0≤t<T heißt stetiges Semimartingal, falls

X =X0 +M +A

mit M ∈M0
c,loc,A ∈ FV 0

c

14



- Für M ∈ Mc,loc ist H ∈ L2
loc(M), falls (H(t))0≤t<T previsibel ist und

t

∫
0

H(s)2d⟨M⟩s
P−fast sicher für alle 0 ≤ t < T erfüllt.

- Durch (
t

∫
0

HsdMs)
0≤t<T

wird ein stetiges lokales Martingal definiert. Existiert

lim
t↗T

t

∫
0

HsdMsP-fast sicher

so wird definiert
T

∫
0

HsdMs = lim
t↗T

t

∫
0

HsdMs.

- Für A ∈ FVc ist K ∈ Lloc(A), falls K progressiv messbar ist und

t

∫
0

∣Ks∣dFV[0,s](A) < ∞P-fast sicher für alle 0 ≤ t < T.

Dann kann pfadweise (
t

∫
0

KsdAs)
0≤t<T

definiert werden.

1 Modellbeschreibung
26.4.16

Beschreibung eines Finanzmarktes

- Handelszeitraum [0, T )

- d risky assets (Aktien)

- Numeraire Asset (Geldmarktkonto) entspricht einem Verrechnungsfinanzgut. Prei-
se werden auch in Einheiten des Numeraire Assets notiert.

1.1 Ein Semimartingalmodell

1. Annahme
Die Quelle des Zufalls für die d risky assets wird bestimmt durch einen n−dimensionalen
Wiener-ProzessW = (W1, ...,Wn). Es gibt also einen filtrierten Wahrscheinlichkeitsraum
(Ω, (Ft)0≤t<T ,P) und ein n−dimensionalen Wiener-Prozess W , so dass (Ft)0≤t<T die von
W erzeugte Wiener-Filtration ist.
Kurz: W bestimmt den Zufall im Markt.
2. Annahme
Sei (Si(t))0≤t<T der Preisprozess des i−ten risky assets. Dann ist (Si(t))t≥0 ein positives,
stetiges Semimartingal. Es gilt also

P(Si(t) > 0 für alle 0 ≤ t < T ) = 1 i = 1, ..., d.
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3. Annahme
Der Preisprozess (N(t))0≤t<T des Numeraire Assets ist ein positives, stetiges Semimar-
tingal.

Bemerkung. - Die erste Annahme ist die eigentliche einschränkende Annahme.
Sie bestimmt, welcher latente (=verborgene) Zufall im Markt ist, der die Kurse
treibt.

- Die zweite Annahme ist eine notwendige und damit natürliche, um arbitragefreie
Märkte zu erhalten.

Kurz: Alle sinnvollen Finanzmarktmodelle müssen die zweite Annahme erfüllen.

- Die dritte Annahme ist ähnlich zur zweiten einzuordnen.

Bemerkung. Das Vorhandensein eines Numeraire Assets ist wichtig, um ausreichenden
Handel zu ermöglichen, der zu einer eindeutigen Bewertung von Derivaten führt. Häufig
ist das Numeraire Asset ein Geldmarktkonto, dessen Preisprozess wir mit (β(t))0≤t<T
bezeichnen wollen.

Definition. Ein Numeraire Asset ist ein Geldmarktkonto genau dann, wenn (N(t))0≤t<T
ein positiver FVc−Prozess ist.

Bemerkung. Oft wird das Geldmarktkonto als ’risikolose’ Geldanlage angesehen. Das
ist insofern richtig, als das die Schwankungen in der Entwicklung des Geldmarktkontos
deutlich geringer sind als die Schwankungen der risky assets.

Folgerungen aus den Annahmen
1. Der Preisprozess des i−ten risky assets:
Ito Formel wird angewendet auf

Xi(t) = lnSi(t) für alle 0 ≤ t < T.

Man erhält
dXi(t) =

1

Si(t)
dSi(t) −

1

2

1

Si(t)2
d⟨Si⟩t.

Für das Semimartingal

Yi(t) =
t

∫
0

1

Si(u)
dSi(u), für alle 0 ≤ t < T

gilt

⟨Yi⟩t =
t

∫
0

1

Si(u)2
d⟨Si⟩u.

Also ist
dXi(t) = dYi(t) −

1

2
d⟨Yi⟩t
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und damit
Xi(t) =Xi(0) + Yi(t) −

1

2
⟨Yi⟩t.

Somit folgt

Si(t) = Si(0) exp (lnSi(t) − lnSi(0))

= Si(0) exp(Yi(t) −
1

2
⟨Yi⟩t) .

Damit erfüllt Si die stochastische Differentialgleichung

dSi(t) = Si(t)dYi(t), für alle 0 ≤ t < T

mit Anfangswert Si(0) ∈ (0,∞).
Yi hat eine Semimartingalzerlegung der Form

Yi(t) =Mi(t) +Ci(t), für alle 0 ≤ t < T

mit M ∈M0
c,loc,C ∈ FV 0

c .
Wegen ⟨Yi⟩ = ⟨Mi⟩ gilt also

Si(t) = Si(0) exp(Mi(t) −
1

2
⟨Mi⟩t) exp(Ci(t)), für alle 0 ≤ t < T.

Si erfüllt die SDE
dSi(t) = Si(t)(dMi(t) + dCi(t)).

4. Annahme
Für alle 1 ≤ i ≤ d hat Ci P−fast sicher absolut stetige Pfade bezüglich des Lebesgue-
Maßes, d.h. es gibt progressiv messbare Prozesse (µi(t))0≤t<T mit

t

∫
0

∣µi(s)∣ds < ∞ für alle 0 ≤ t < T

so dass

Ci(t) =
t

∫
0

µi(s)ds.

Also gilt:

Si(t) = Si(0) exp(Mi(t) −
1

2
⟨Mi⟩t) exp

⎛
⎝

t

∫
0

µi(s)ds
⎞
⎠

bzw.
dSi(t) = Si(t)(dMi(t) + µi(t)dt)

mit Anfangswert Si(0).
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Da eine Wiener-Filtration vorliegt, hat das lokale Martingal Mi eine Darstellung der
Form

Mi(t) =
t

∫
0

σi(s)dW (s)

=
n

∑
i=1

t

∫
0

σij(s)dWj(s)

mit vorhersehbaren Prozessen σi1, ..., σin, mit

t

∫
0

∣σi(s)∣2ds < ∞ für alle 0 ≤ t < T.

Der Preisprozess des i−ten risky assets erfüllt also

Si(t) = Si(0) exp
⎛
⎝

t

∫
0

σi(s)dW (s) − 1

2

t

∫
0

∣σi(s)∣2ds
⎞
⎠

exp
⎛
⎝

t

∫
0

µi(s)ds
⎞
⎠

für alle 0 ≤ t < T und damit

dSi(t) = Si(t)(µi(t)dt + σi(t)dW (t))

= Si(t)(µi(t)dt +
n

∑
j=1

σij(t)dWj(t)).

2. Das Numeraire Asset
Hier kann analog argumentiert werden.
Es gibt einen Rd−wertigen previsiblen Prozess (σN(t))0≤t<T und einen progressiven mess-
baren Prozess (r(t))0≤t<T mit

t

∫
0

∣σN(s)∣2ds < ∞ für alle 0 ≤ t < T

und
t

∫
0

∣r(s)∣ds < ∞ für alle 0 ≤ t < T

sodass

N(t) = N(0) exp
⎛
⎝

t

∫
0

σN(s)dW (s) − 1

2

t

∫
0

∣σN(s)∣2ds
⎞
⎠

exp
⎛
⎝

t

∫
0

r(s)ds
⎞
⎠

für alle 0 ≤ t < T .
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Also

dN(t) = N(t)(r(t)dt + σN(t)dW (t))

= N(t)(r(t)dt +
n

∑
j=1

σNj(t)dWj(t).

Ist σN(t) ≡ 0, so liegt ein Geldmarktkonto vor und

N(t)
N(0) = exp

⎛
⎝

t

∫
0

r(s)ds
⎞
⎠
= β(t) für alle 0 ≤ t < T.

Also
dβ(t) = β(t)r(t)dt, β(0) = 1.

1.2 Beispiele

a) Das klassische, eindimensionale Black-Scholes Modell

- konstante Volatilität σ > 0

- konstante Aktienrendite µ ∈ R
- konstante Zinsrate r ∈ R
- einem Wiener-Prozess, der die Aktie treibt.

Das bedeutet:
dS(t) = S(t)(µdt + σdW (t))

mit Anfangswert S0 ∈ (0,∞).

S(t) = S(0)eµt exp(σW (t) − 1

2
σ2t)

und
dN(t) = N(t)rdt, N(0) = 1

also
N(t) = ert = β(t), für alle 0 ≤ t < T.

b) Das klassische mehrdimensionale Black-Scholes Modell

- d Aktien

- n treibende Wiener-Prozesse

- konstante Volatilitätsmatrix σ ∈ Rd×n

- d konstante Aktienrenditen µ1, ..., µd.
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Dies bedeutet
dSi(t) = Si(t)(µidt +

n

∑
j=1

σijdWj(t))

mit Si(0) ∈ 0,∞) für alle 1 ≤ i ≤ d bzw.

Si(t) = Si(0)eµit exp(
n

∑
j=1

σijWj(t) −
1

2
∑
j

= 1nσ2
ijt) für alle 1 ≤ i ≤ d.

Das Geldmarktkonto N geht analog zu a).

c) Das mehrdimensionale Black-Scholes Modell mit deterministischen Koeffizienten
wie b), ersetze aber µ1, ..., µd und σ durch Funktionen µ1, ..., µd ∶ [0, T ) Ð→ R und
σ ∶ [0, T ) Ð→ Rd×n mit

t

∫
0

∣µ(s)∣ds < ∞ 0 ≤ t < T

und
t

∫
0

∥σ(s)∥2ds < ∞ 0 ≤ t < T.

Dann ist

dSi(t) = Si(t)(µi(t)dt +
n

∑
j=1

σij(t)dWj(t)), für alle 1 ≤ i ≤ d.

d) Das mehrdimensionale Diffusionsmodell

- Volatilitätsmatrix σ ∶ [0, T ) × (0,∞)d Ð→ Rd×n

- Driftfunktion µ ∶ [0, T ) × (0,∞)d Ð→ Rd

Der d−dimensionale Preisprozess der risky assets ist dann starke Lösung der SDE

dSi(t) = Si(t)(µi(t, S(t))dt +
n

∑
j=1

σij(t, S(t))dWj(t)), für alle 1 ≤ i ≤ d.

Das Geldmarktkonto erfüllt

dβ(t) = β(t)r(t, S(t))dt

d.h.

β(t) = exp
⎛
⎝

t

∫
0

r(u,S(u))du
⎞
⎠
.

Wichtig ist: In einem Diffusionsmodell ist S ein d−dimensionaler Markov-Prozess
als starke Lösung einer SDE.
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1.3 Handel
29.4.16

- maximaler Handelszeitraum [0, T )

- Handeln kann man entsprechend einer Handelsstrategie (K,H), mitK = (K(t))0≤t<T
vorhersehbarer Prozess, der gegen (N(t))0≤t<T integriert werden kann.

H = (H(t))0≤t<T ist ein d−dimensionaler vorhersehbarer Prozess, der gegen S inte-
griert werden kann.

- K(t) entspricht der Anzahl an Anteilen im Numeraire Asset zum Zeitpunkt t.

- Hi(t) entspricht der Anzahl an Anteilen im i−ten risky asset zum Zeitpunkt t.

- Eine Handelsstrategie (K,H) induziert eine Vermögensentwicklung

V (t) =K(t)N(t) +
d

∑
i=1

Hi(t)Si(t)

=K(t)N(t) +H(t)S(t) 0 ≤ t < T

- Gewinnentwicklung

G(t) = ∫
(0,t]

K(u)dN(u) +
d

∑
i=1
∫

(0,t]

Hi(u)dSi(u)

= ∫
(0.t]

K(u)dN(u) + ∫
(0,t]

H(u)dS(u) für alle 0 ≤ t < T

Definition 1.4. Eine Handelsstrategie (K,H) heißt selbstfinanzierend, wenn der Ver-
mögenszuwachs nur duch Gewinn aus dem Handel besteht, d.h.

V (t) − V (0) = ∫
(0,t]

K(u)dN(u) + ∫
(0,t]

H(u)dS(u) für alle 0 ≤ t < T

und in differentialer Notation:

dV (t) =K(t)dN(t) +H(t)dS(t)

=K(t)dN(t) +
d

∑
i=1

Hi(t)dSi(t).

Bei selbstfinanzierenden Handelsstrategien wird die Vermögensentwicklung, notiert in
Anteilen des Numeraire Assets, nur bestimmt durch die Anfangsnotierung (d.h. des
Anfangskapitals) und die Position in den risky assets (d.h. der Handelsstrategie).
Sei S⋆i (t) ∶=

Si(t)
N(t) für alle 1 ≤ i ≤ d,0 ≤ t < T

und V ⋆(t) ∶= V (t)
N(t) für alle 0 ≤ t < T .
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Satz 1.5. Eine Handelsstrategie (K,H) ist selbstfinanzierend genau dann, wenn

V ⋆(t) = V (0)
N(0) +

t

∫
0

H(u)dS⋆(u) 0 ≤ t < T

gilt.

Beweis. Dies folgt aus der partiellen Integrationsformel für Semimartingale.
Beweis für d = 1 = n.
’⇐’ Es gilt

V ⋆(t) = V ⋆(0) +
t

∫
0

H(u)dS⋆(u) für alle 0 ≤ t < T.

Zu zeigen:

V (t) = V (0) +
t

∫
0

K(u)dN(u) +
t

∫
0

H(u)dS(u) für alle 0 ≤ t < T.

Mittels partieller Integration folgt:

dV (t) = dV ⋆(t)N(t) = V ⋆(t)dN(t) +N(t)dV ⋆(t) + d⟨V ⋆,N⟩t.

Nach Voraussetzung gilt:
dV ⋆(t) =H(t)dS⋆(t)

Zu berechnen ist dS⋆(t). Es gilt:

dS⋆(t) = d S(t)
N(t) = S(t)d 1

N(t) +
1

N(t)dS(t) + d⟨S,
1

N
⟩t

und

d
1

N(t) = − 1

N(t)2
dN(t) + 1

N(t)3
d⟨N⟩t

= − 1

N(t)2
dN(t) + 1

N(t)σ
2
N(t)dt

da dN(t) = N(t)(r(t)dt + σ2
N(t)dW (t)).

Also ist

dS⋆(t) = 1

N(t)dS(t) −
S(t)
N(t)2

dN(t) + S(t)
N(t)σ

2
N(t)dt − S(t)

N(t)σ(t)σN(t)dt.

Man beachte

d⟨V ⋆,N⟩t =H(t)d⟨S⋆,N⟩t

22



=H(t) S(t)
N(t)σ(t)N(t)σN(t)dt −H(t) S(t)

N(t)2
N(t)σN(t)N(t)σN(t)dt

=H(t)S(t)(σ(t)σN(t) − σN(t)2)dt.

Insgesamt folgt also

dV (t) = V ⋆(t)dN(t) +N(t)dS⋆(t) +H(t)S(t)(σ(t)σN(t) − σN(t)2)dt
= V ⋆(t)dN(t) +H(t)dS(t) −H(t)S⋆(t)dN(t)
+H(t)S(t)σ2

N(t)dt −H(t)S(t)σN(t)σ(t)dt
+H(t)S(t)(σ(t)σN(t) − σN(t)2)dt

=H(t)dS(t) + (V ⋆(t) −H(t)S⋆(t))dN(t)
=H(t)dS(t) +K(t)dN(t)

da V ⋆(t) = V (t)
N(t) =

K(t)N(t)+H(t)S(t)
N(t) =K(t) +H(t)S⋆(t).

’⇒’
Analog; s. Übung.

Bemerkung. Bei einer selbstfinanzierenden Handelsstrategie (K,H) ist die Wertent-
wicklung, notiert in Anteilen des Numeraire Assets, eindeutig bestimmt durch die An-
fangsnotierung V ⋆(0) = V (0)

N(0) und das Handeln in den risky assets, denn

V ⋆(t) = V ⋆(0) +
t

∫
0

H(u)dS⋆(u) für alle 0 ≤ t < T.

Gibt man sich umgekehrt eine Anfangsnotierung V ⋆(0) vor und eine Handelsstrategie H
bezüglich der risky assets, so gibt es genau einen previsiblen Prozess (K(t))0≤t<T derart,
dass (K,H) selbstfinanzierend ist und

V ⋆(t) = V ⋆(0) +
t

∫
0

H(u)dS⋆(u) für alle 0 ≤ t < T

erfüllt.
Bestimmung von (K(t))0≤t<T :
Einerseits gilt:

V ⋆(t) =K(t) +H(t)dS⋆(t)
andererseits gilt wegen der Selbstfinanzierung

V ⋆(t) = V ⋆(0) +
t

∫
0

H(u)dS⋆(u).

Also gilt:

K(t) = V ⋆(0) +
t

∫
0

H(u)dS⋆(u) −H(t)S⋆(t).
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1.4 Arbitrage

Definition. Eine selbstfinanzierende Handelsstrategie (K,H) ist eine Arbitragemög-
lichkeit, wenn sie ohne Anfangskapital ein positives Vermögen schafft, d.h.

V (0) = 0 und lim
t↗T

V (t) =∶ V (T ) ≥ 0 und P(V (T ) > 0) > 0.

Bemerkung. Beachte: Die Existenz von lim
t↗T

V (t) wird vorausgesetzt.

Eine äquivalente Umformulierung ist:

Satz 1.6. Es gelte N(T ) ∶= lim
t↗T

N(t) > 0 P-fast sicher.
Dann gibt es eine Arbitragemöglichkeit genau dann, wenn es einen previsiblen Prozess
(H(t))0≤t<T gibt mit

T

∫
0

H(u)dS⋆(u) ≥ 0 und P
⎛
⎝

T

∫
0

H(u)dS⋆(u) > 0
⎞
⎠
> 0.

Beweis. Die Voraussetzung stellt sicher, dass lim
t↗T

V (t) existiert genau dann, wenn lim
t↗T

V ⋆(t)
existiert.
Wegen

V ⋆(T ) = V ⋆(0)
´¹¹¹¹¸¹¹¹¹¹¶

=0

+
T

∫
0

H(u)dS⋆(u)

folgt die Behauptung.

Bemerkung. Durch (H(t))0≤t<T wird die Möglichkeit geschaffen, einen risikolosen Ge-
winn zu erzielen. Diese Fassung des Arbitragebegriffes ist allerdings zu allgemein, da
ein sinnvolles Modell wie z.B das Black-Scholes Modell eine Arbitragemöglichkeit bieten
würde.

Satz 1.7. Im Black-Scholes Modell gibt es Arbitragemöglichkeiten.

Beweis. Betrachte ein Black-Scholes Modell mit µ = r. Es gilt

- β(t) = ert

- dS(t) = S(t)(rdt + σdW (t)), σ > 0

- S⋆(t) = e−rtS(t) ist ein Martingal

- dS⋆(t) = S⋆(t)σdW (t)
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Gesucht ist ein vorhersehbarer Prozess (H(t))0≤t<T mit

lim
t↗T

t

∫
0

H(u)dS⋆(u) = 1.

Dann kann man mittels H eine Arbitragemöglichkeit konstruiert werden.
Ansatz:

V (t) =
t

∫
0

H(u)dS⋆(u) =
t

∫
0

H(u)σS⋆(u)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

f(u)

dW (u).

Wähle H(u) so, dass
f(u) =H(u)σS⋆(u), 0 ≤ u < T

eine deterministische Funktion ist, mit

t

∫
0

f(u)2du < ∞ für alle 0 ≤ t < T.

Wähle f so, dass
T

∫
0

f(u)2du = ∞

etwa
f(t) = 1√

T − t
.

Damit ist

M(t) ∶=
t

∫
0

d(u)dW (u)

und

⟨M⟩t =
t

∫
0

f(u)2du für alle 0 ≤ t < T

sowie
⟨M⟩T = lim

t↗T
⟨M⟩t = ∞.

Setze
τ ∶= inf{0 ≤ t < T ∶M(t) = 1}.

Dann ist
P(τ < T ) = 1.

Definiere nun H durch

H(u) =
⎧⎪⎪⎨⎪⎪⎩

f(u)
σS⋆(u) falls u ≤ τ
0 falls u > τ

.
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Dann ist
t

∫
0

H(u)dS⋆(u) =
t

∫
0

f(u)1(0,τ](u)dW (u)

=
t∧τ

∫
0

f(u)dW (u)

=M(t ∧ τ)

also

lim
t↗T

t

∫
0

H(u)dS⋆(u) =M(τ) = 1.

Konsequenz: Die Klasse der möglichen Handelsstrategien ist zu groß und muss geeignet 3.5.16
eingeschränkt werden.
Forderung: Beim Handel darf man sich nicht beliebig verschulden.

Definition 1.8. Eine selbstfinanzierende Handelsstrategie (K,H) heißt zulässig, wenn
es ein c > 0 gibt, mit

V ⋆(t) ≥ −c für alle 0 ≤ t < T.

Durch Anwenden von (K,H) kann man sich also nicht mehr als c Einheiten des Nume-
raire Assets verschulden.

Definition 1.10. Ein Finanzmarkt heißt arbitragefrei, wenn es keine zulässigen Arbi-
tragemöglichkeiten gibt.

Bemerkung. Mit dieser Definition ist auch das Black-Scholes Modell arbitragefrei, denn
mit der im Beweis angesprochenen Strategie konnte man zwar ein Arbitrage erzeugen,
doch musste man in Kauf nehmen sich zwischen dem Zeitpunkt 0 und τ mit positiver
Wahrscheinlichkeit beliebig hoch zu verschulden. Durch die eingeführte untere Schranke
ist solch eine Strategie nicht mehr erlaubt.

Mit probabilistischen Methoden sollen arbitragefreie Märkte angegeben werden. Dies
führt zum Begriff des äquivalenten Martingalmaßes.

Definition 1.11. Gegeben sein ein Finanzmarkt entsprechend (1.1). Ein Wahrschein-
lichkeitsmaß P⋆ auf (Ω,FT ) heißt äquivalentes Martingalmaß, falls gilt:

(i) P⋆ ∼ P auf (Ω,FT ),

(ii) (S⋆i (t))0≤t<T ist ein lokales Martingal bezüglich P⋆ für alle 1 ≤ i ≤ d.

Märkte mit äquivalentem Martingalmaß sind arbitragefrei:
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Satz 1.12. Existiert ein äquivalentes Martingalmaß, so gibt es keine zulässigen Arbi-
tragemöglichkeiten.

Beweis. Sei (K,H) eine selbstfinanzierende, zulässige Handelsstrategie. Dann gilt

V ⋆(t) = V ⋆(0) +
t

∫
0

H(u)dS⋆(u) für alle 0 ≤ t < T.

Also ist V ⋆ ein lokales Martingal bezüglich P⋆, das

V ⋆(t) ≥ −c für alle 0 ≤ t < T

erfüllt.
Damit ist V ⋆ ein Supermartingal, welches nach demMartingalkonvergenzsatz P⋆-fast sicher
konvergiert für t↗ T . Wegen dem Lemma von Fatou gilt für alle s:

E⋆(V ⋆(T )∣Fs) = E⋆(lim inf
t↗T

V ⋆(t)∣Fs)
Fatou≤ lim inf

t↗T
E⋆(V ⋆(t)∣Fs)

≤ V ⋆(s).

Insbesondere gilt:
E⋆V ⋆(T ) ≤ V (0)⋆.

Die Umkehrung von Satz 1.12 ist im Allgemeinen falsch. Auch wenn der Markt arbitra-
gefrei ist, kann man nicht auf die Existenz eines äquivalenten Martingalmaßes schließen.
Hierzu muss der Handel eine etwas stärke Bedingung erfüllen.

Definition 1.13. Eine FT−messbare Abbildung C ≥ 0 mit P(C > 0) > 0 heißt free lunch
with vanishing risk, wenn es eine Folge von selbstfinanzierenden zulässigen Handelss-
trategien ((Kn,Hn))n∈N und eine Folge (vn)n∈N ∈ (0,∞) gibt, mit

(i) V0((Kn,Hn)) ≤ vn für alle n ∈ N,

(ii) VT ((Kn,Hn)) ≥ C für alle n ∈ N,

(iii) lim
n→∞

vn = 0.

Ein Finanzmarkt erfüllt die No Free Lunch with Vanishing Risk (NFLVR) Bedingung,
wenn es keinen free lunch with vanishing risk gibt.

27



Satz 1.14 (No Arbitrage Theorem). Gegeben sei ein Finanzmarkt entsprechend (1.1).
Dann sind äquivalent:

(i) Es existiert ein äquivalentes Martingalmaß.

(ii) Der Markt erfüllt die NFLVR Bedingung.

Beweis. siehe Orginalpaper von Delbaen und Schachermayer.

Mit Hilfe des Satzes von Girsanov kann man entscheiden, ob es ein äquivalentes Martin-
galmaß gibt:

Satz 1.15. Gegen sei ein Finanzmarkt entsprechend (1.1). Es existiere N(T ) ∶= lim
t↗T

N(t)
und N(T ) > 0 P-fast sicher. Genau dann existiert ein äquivalentes Martingalmaß P⋆,
wenn es einen n−dimensionalen previsiblen Prozess (ν(t))0≤t<T gibt mit

(i)
T

∫
0

∣ν(s)∣2ds < ∞ P-fast sicher,

(ii) µ(t) + σ(t)(ν(t) − σN(t)) = (r(t) − ∣σN(t)∣2 + σN(t)ν(t))1 für alle 0 ≤ t < T ,

(iii) E exp(
T

∫
0

ν(s)dW (s) − 1
2

T

∫
0

∣ν(s)∣2ds) = 1.

Beachte: 1 = (1, ...,1
´¹¹¹¹¸¹¹¹¹¹¶

d

)T

Beweis. ’⇒’ Sei P⋆ ein äquivalentes Martingalmaß. Dann ist der Dichteprozess

Lt =
dP⋆
dP

∣
Ft

für alle 0 ≤ t < T

ein gleichgradig integrierbares Martingal mit

LT = lim
t↗T

Lt > 0 P-fast sicher.

Weiter hat L eine Exponentialmartingaldarstellung der Form

Lt = exp(M(t) − 1

2
⟨M⟩t) für alle 0 ≤ t < T

mit lokalem Martingal M .
Setze

⟨M⟩(T ) ∶= lim
t↗T

⟨M⟩t.

Da auf {⟨M(T )⟩ = ∞}
M(t)
⟨M⟩t

Ð→ 0 für t↗ T,

28



gilt

lnLt =M(t) − 1

2
⟨M⟩t = ⟨M⟩t (

M(t)
⟨M⟩t

− 1

2
) Ð→ −∞

auf {⟨M⟩T < ∞}.
Da Lt > 0 P-fast sicher folgt somit

P({⟨M⟩T = ∞}) = 0 P-fast sicher

also
⟨M⟩T < ∞ P-fast sicher.

Der Martingaldarstellungssatz liefert einen previsiblen Prozess (ν(t))0≤t<T mit

t

∫
0

∣ν(s)∣2ds < ∞ für alle 0 ≤ t < T

und

M(t) =
t

∫
0

ν(s)dW (s) für alle 0 ≤ t < T.

Wegen ⟨M⟩T < ∞ P-fast sicher ist

T

∫
0

∣ν(s)∣2ds < ∞ P-fast sicher

und

M(T ) = lim
t↗T

M(t) =
T

∫
0

ν(s)dW (s).

Also folgt

LT = exp
⎛
⎝

T

∫
0

ν(s)dW (s) − 1

2

T

∫
0

∣ν(s)∣2ds
⎞
⎠

und somit

1 = ELT = E exp
⎛
⎝

T

∫
0

ν(s)dW (s) − 1

2

T

∫
0

∣ν(s)∣2ds
⎞
⎠
.

Damit gelten (i) und (iii).
zu (ii): Für 1 ≤ i ≤ d gilt:

dSi(t) = Si(t)(µi(t)dt +
n

∑
j=1

σij(t)dWj(t)

dN(t) = N(t)(r(t)dt +
n

∑
j=1

σNj(t)dWj(t)
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Die Itō-Formel liefert

d
1

N(t) = − 1

N(t)2
dN(t) + 1

N(t)3
d⟨N⟩t

= − 1

N(t)(r(t)dt + σN(t)dW (t)) + 1

N(t) ∣σN(t)∣2dt

− 1

N(t)((∣σN(t)∣2 − r(t))dt − σN(t)dW (t)).

Partielle Integration impliziert

d
Si(t)
N(t) = Si(t)d

1

N(t) +
1

N(t)dSi(t) + d⟨Si,
1

N
⟩t

= Si(t)
N(t)((∣σN(t)∣2 − r(t))dt − σN(t)dW (t))

+ Si(t)
N(t)(µi(t)dt + σi(t)dW (t))

− Si(t)
N(t)σN(t)σi(t)dt.

Also folgt

dS⋆i (t) = S⋆i (t)((∣σN(t)∣2 + µi(t) + σN(t)σi(t) − r(t))dt + (σi(t) − σN(t))dW (t)). (5)

Der Satz von Girsanov liefert

W ⋆
j (t) =Wj(t) −

t

∫
0

ν(s)ds 1 ≤ j ≤ n,0 ≤ t < T

sind n unabhängige Wiener-Prozesse bezüglich P⋆.
Eingesetzt in Gleichung 5 liefert dies

dS⋆i (t) = S⋆i (t)(∣σN(t)∣2 + µi(t) − σN(t)σi(t) − r(t) + (σi(t) − σN(t))ν(t))dt
+ S⋆i (t)(σi(t) − σN(t))dW ⋆(t).

Also ist S⋆i ein lokales Martingal genau dann wenn der dt−Term verschwindet. d.h.

∣σN(t)∣2 + µi(t) + (σi(t) − σN(t))ν(t) = r(t) + σN(t)σi(t)
⇔µi(t) + σi(t)ν(t) − σi(t)σN(t) = r(t) − ∣σN(t)∣2 + σN(t)ν(t).

Also gilt (ii). ’⇐’ Mit Hilfe von (i) und (ii) liefert der Satz von Girsanov ein äquivalentes 6.5.16
Wahrscheinlichkeitsmaß P⋆ mit

dP⋆
dP

∣
Ft
= exp

⎛
⎝

t

∫
0

ϑ(s)dW (s) − 1

2

t

∫
0

∣ϑ(s)∣2ds
⎞
⎠
.

(ii) impliziert, dass

S⋆i (t) =
Si(t)
N(t) , 0 ≤ t < T

ein lokales P⋆−Martingal ist für alle 1 ≤ i ≤ d.
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Bemerkung 1.16. Ist N ein Geldmarktkonto, so lautet die Bedingung (ii) in Satz 1.15

µ(t) + σ(t)ϑ(t) = r(t)1 für alle 0 ≤ t < T.

Beispiel 1.17. a) eindimensionales Black-Scholes Modell

dS(t) = S(t)(µdt + σdW (t))
dβ(t) = β(t)rdt

Setze ϑ = −µ−rσ und
dP⋆
dP

∣
Ft
= exp(ϑW (t) − 1

2
ϑ2t) .

Dann ist P⋆ ein äquivalentes Martingalmaß:
Bezüglich P⋆ gilt:

dS(t) = S(t)(rdt + σdW ⋆(t)
mit W ⋆(t) =W (t) − ϑt.
Beziehungsweise äquivalent:

dS⋆(t) = S⋆(t)σdW ⋆(t)

b) mehrdimensionales Black-Scholes Modell

dSi(t) = Si(t)(µidt +
n

∑
j=1

σijdWj(t)) für alle 1 ≤ i ≤ d,0 ≤ t < T

dβ(t) = β(t)rdt

Ist die Gleichung
µ + σϑ = r1

durch ein ϑ ∈ Rn lösbar, so existiert ein äquivalentes Martingalmaß P⋆.

dP⋆
dP

∣
Ft
= exp(

n

∑
j=1

ϑjWj(t) −
1

2
∣ϑ∣2t)

und
W ⋆(t) =W (t) − ϑt

ist ein n−dimensionaler Wiener-Prozess bezüglich P⋆.
Außerdem ist

dSi(t) = Si(t)(rdt +
n

∑
j=1

σijdW
⋆
j (t)).

Ist n = d und σ invertierbar, so ist

ϑ = σ−1(−(µ − r1)).
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c) Black-Scholes mit deterministischen Koeffizienten

dSi(t) = Si(t)(µi(t)dt +
n

∑
j=1

σij(t)dWj(t))

dβ(t) = β(t)rdt

Ist die Gleichung
µ(t) + σ(t)ϑ(t) = r(t)1 für alle 0 ≤ t < T

durch ϑ(t) ∈ Rn lösbar und gilt
T

∫
0

∣ϑ(s)∣2ds < ∞

so wird durch

dP⋆
dP

∣
Ft

= exp
⎛
⎝

t

∫
0

ϑ(s)dW (s) − 1

2

t

∫
0

∣ϑ(s)∣2ds
⎞
⎠

0 ≤ t < T

ein äquivalentes Martingalmaß definiert.

W ⋆(t) =W (t) −
t

∫
0

ϑ(s)dt

ist ein Wiener-Prozess bezüglich P⋆ und

dSi(t) = Si(t)(r(t)dt +
n

∑
j=1

σij(t)dW ⋆
j (t))

bezüglich P⋆ für alle 1 ≤ i ≤ d.

2 Bewerten von Derivaten

Wir betrachten einen Finanzmarkt entsprechend 1.1, das heißt

dSi(t) = Si(t)(µi(t)dt +
n

∑
j=1

σij(t)dWj(t)) 1 ≤ i ≤ d

dN(t) = N(t)(r(t)dt +
n

∑
j=1

σNj(t)dWj(t)).

Wir setzen voraus, dass es ein äquivalentes Martingalmaß P⋆ gibt.
Bezüglich P⋆ gibt es dann einen Wiener-Prozess W ⋆, so dass

dS⋆i (t) = S⋆i (t)σi(t)dW ⋆(t)

= S⋆(t)
n

∑
j=1

σij(t)dW ⋆(t) für alle 1 ≤ i ≤ d,0 ≤ t < T
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gilt.
Hierbei ist

σij(t) ∶= σij(t) − σNj(t)
und

S⋆i (t) =
Si(t)
N(t) .

Kurz:
dS⋆(t) = S⋆(t)σ(t)dW ⋆(t)

Ein Derivat ist ein Vertrag, der zum Termin T eine zufällige Auszahlung (/Ausschüttung)
C zusichert. Dies wird durch den Begriff des T−Claims formalisiert.

Definition 2.1. Ein T−Claim C ist eine FT−messbare Abbildung. C heißt replizierbar
zum Anfangskapital x ∈ R, wenn es einen previsiblen Prozess H gibt mit

(i) x
N(0) +

T

∫
0

H(u)dS⋆(u) = C
N(T ) =∶ C⋆

(ii) (
t

∫
0

H(u)dS⋆(u))
0≤t<T

ist ein gleichgradig integrierbares P⋆−Martingal.

H ist dann eine Replikationsstrategie für C zum Anfangskapital x ∈ R.
x ist der Betrag in Euro, der vom Verkäufer des Claims benötigt wird, um das Risiko
der short Position im Derivat vollständig zu eliminieren.

Bemerkung 2.2. Ist H eine Replikationsstrategie zum Anfangskapital x für einen
T−Claim C, so wird durch (K(t),H(t))0≤t<T mit

K(t) = x

N(0) +
t

∫
0

H(u)dS⋆(u) −H(t)S⋆(t) für alle 0 ≤ t < T

eine selbstfinanzierende Handelsstrategie definiert mit Wertprozess (V (t))0≤t<T , so dass

V ⋆(t) = x

N(0) +
t

∫
0

H(u)dS⋆(u) für alle 0 ≤ t < T

= E⋆(C⋆∣Ft)
beziehungsweise

V (t) = N(t)V ⋆(t) = N(t)E⋆(C⋆∣Ft) 0 ≤ t < T.
Insbesondere ist damit C⋆ integrierbar bezüglich P⋆ und

x

N(0) = E⋆C⋆ = E⋆ C

N(T )
sowie

V (T ) = C.
Ist C⋆ ≥ −a für ein a ∈ R>0, so ist (K,H) auch zulässig.
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Beweis. (
t

∫
0

H(u)dS⋆(u))
0≤t<T

ist ein gleichgradig integrierbares P⋆−Martingal mit

C⋆ = x

N(0) +
T

∫
0

H(u)dS⋆(u).

Also gilt:

E⋆(C⋆∣Ft) = E⋆( x

N(0) +
T

∫
0

H(u)dS⋆(u)∣Ft)

= x

N(0) +
t

∫
0

H(u)dS⋆(u)

= V ⋆(t) 0 ≤ t < T.

Insbesondere ist
E⋆C⋆ = V ⋆(0) = x

N(0) .

Folgerung 2.3. Sind H1 und H2 Replikationsstrategien des Claims C zu den Anfangs-
kapitalien x1 und x2, so gilt

x1 = x2 und
t

∫
0

H1(u)dS⋆(u) =
t

∫
0

H2(u)dS⋆(u)

für alle 0 ≤ t < T .

Beweis. Wegen Bemerkung 2.2 gilt

x1

N(0) = E⋆C⋆ = x2

N(0) ⇒ x1 = x2

und

x1

N(0) +
t

∫
0

H1(u)dS⋆(u) = E⋆(C⋆∣Ft)

= x2

N(0) +
t

∫
0

H2(u)dS⋆(u).

Da x1 = x2 ist auch
t

∫
0

H1(u)dS⋆(u) =
t

∫
0

H2(u)dS⋆(u) für alle 0 ≤ t < T .
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Für einen replizierbaren Claim ist dessen "̈arbitragefreier"̈ Wertprozess, notiert in An-
teilen des Numeraire Assets, bestimmt durch

(E⋆(C⋆∣Ft))0≤t<T .

Satz 2.4. Sei C ein replizierbarer T−Claim zum Anfangskapital x und Replikationss-
trategie (H(t))0≤t<T . Sei C⋆ ≥ −a für ein a > 0.
Dann gilt für jedes äquivalente Martingalmaß P⋆1

E⋆
1(C⋆∣Ft) =

x

N(0) +
t

∫
0

H(u)dS⋆(u)

= E⋆(C⋆∣Ft) 0 ≤ t < T.

Beweis. 1. Schritt Zeige die Behauptung für beschränktes C⋆.
Es gilt wegen Bemerkung 2.2

x

N(0) +
t

∫
0

H(u)dS⋆(u) = E⋆(C⋆∣Ft) für alle 0 ≤ t < T.

Wegen −a ≤ C⋆ ≤ b ist auch

−a ≤ x

N(0) +
t

∫
0

H(u)dS⋆(u) ≤ b für alle 0 ≤ t < T.

Also ist das lokale P⋆1−Martingal (
t

∫
0

H(u)dS⋆(u))
0≤t<T

beschränkt und somit ein gleich-

gradig integrierbares P⋆1−Martingal.
Also ist

x

N(0) +
t

∫
0

H(u)dS⋆(u) = E⋆
1(x +

T

∫
0

H(u)dS⋆(u)∣Ft)

= E⋆
1(C⋆∣Ft) für alle 0 ≤ t < T.

Insbesondere ist
E⋆

1C
⋆ = x

N(0) = E⋆C⋆.

2. Schritt C⋆ ≥ −a
Durch Zurückführung auf den ersten Schritt kann man die Aussage zeigen. Dies ist aber
eine aufwendigere Argumentation.

10.5.16
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Definition 2.5. Sei C ≥ 0 ein replizierbarer Claim. Dann heißt

E⋆C⋆

arbitragefreier Anfangspreis für C, notiert in Anteilen des Numeraire Assets.
N(0)E⋆C⋆ ist der arbitragefreie Anfangspreis in Euro.
(E⋆(C⋆∣Ft))0≤t<T ist der arbitragefreie Preisprozess für C, notiert in Anteilen des Nu-
meraire Assets.
Dementsprechend ist (N(t)E⋆(C⋆∣Ft))0≤t<T der arbitragefreie Preisprozess für C in Eu-
ro.

Bemerkung. Diese Definition ist sinnvoll, da ein um den Handel mit C erweiterter
Finanzmarkt P⋆ als äquivalentes Martingalmaß hat. Damit ist der erweiterte Markt ar-
bitragefrei.
Genauer:
Setzt man

N(t)E⋆(C⋆∣Ft) für alle 0 ≤ t < T
als Preisprozess für C im erweiterten Markt an, so hat dieser Markt P⋆ als äquivalentes
Martingalmaß.

Die Frage stellt sich, wann Claims replizierbar sind. Eine einfache Antwort findet man
in sogenannten vollständigen Märkten.

Definition 2.6. Ein Finanzmarkt heißt vollständig genau dann, wenn es ein eindeutig
bestimmtes äquivalentes Martingalmaß gibt.

Anhand der Driftvektoren und Volatilitäten kann man entscheiden, ob der Markt voll-
ständig ist:

dSi(t) = Si(t)(µi(t)dt +
n

∑
j=1

σij(t)dWj(t)) für alle 1 ≤ i ≤ d

dN(t) = N(t)(r(t)dt +
n

∑
j=1

σNj(t)dWj(t)

Die Bedingung (ii) aus Satz 1.15 kann äquivalent umformuliert werden zu

µ(t) + σ(t)ϑ(t) = r(t)1 + σ(t)σN(t)

wobei
σij(t) ∶= σij(t) − σNj(t) für alle 1 ≤ i ≤ d,1 ≤ j ≤ n.

Satz 2.7. Ist n > d, so ist der Markt nicht vollständig.
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Beweis. Existiert kein äquivalentes Martingalmaß, so ist der Markt per Definition nicht
vollständig. Existiert aber ein äquivalentes Martingalmaß P⋆, so existiert ein weiteres
äquivalentes Martingalmaß, womit es kein eindeutiges mehr gäbe, der Markt also nicht
vollständig ist:
Sei P⋆ ein äquivalentes Martingalmaß mit previsiblen Rn−wertigen Prozess (ϑ(t))0≤t<T
mit

dP⋆
dP

∣
Ft

= exp
⎛
⎝

t

∫
0

ϑ(s)dW (s) − 1

2

t

∫
0

∣ϑ(s)∣2ds
⎞
⎠

für alle 0 ≤ t < T

und sei
σ(t)ϑ(t) = r(t)1 − µ(t) + σ(t)σN(t)

für λ⊗ P−fast alle (t, ω) erfüllt.
Wegen d < n ist Kern σ(t) ≠ {0} für alle 0 ≤ t < T . Wähle η(t) ∈ Kern σ(t) mit
∣η(t)∣ = 1 für alle 0 ≤ t < T . Benutze η zur Konstruktion eines weiteren äquivalentes
Martingalmaßes.
Es gilt:

W ⋆(t) =W (t) −
t

∫
0

ϑ(s)ds für alle 0 ≤ t < T

ist ein Wiener-Prozess bezüglich P⋆ und

dS⋆(t) = S⋆(t)σ(t)dW ⋆(t).

Setze

L(t) ∶= exp
⎛
⎝

t

∫
0

η(s)dW ⋆(s) − 1

2 ∫
t

0
∣η(s)∣2ds

⎞
⎠

für alle 0 ≤ t < T.

Wegen der Novikov Bedingung ist (L(t))0≤t<T ein gleichgradig integrierbares Martingal.

(Alternative Argumentation nutzt Satz von Lévy: Setze B(t) =
t

∫
0

η(s)dW ⋆(s),0 ≤ t < T .

Dann ist B ein lokales Martingal mit ⟨B⟩t =
t

∫
0

∣η(s)∣2
´¹¹¹¹¹¸¹¹¹¹¹¹¶

=1

ds = t. Also ist B ein Wiener-Prozess

und L(t) = exp(B(t) − 1
2t) und somit ebenso ein P⋆−Martingal.)

Definiere ein Wahrscheinlichkeitsmaß P⋆⋆ durch
dP⋆⋆
dP⋆

∣
Ft

= L(t) für alle 0 ≤ t < T.

Dann ist

W ⋆⋆(t) =W ⋆(t) −
t

∫
0

η(s)ds 0 ≤ t < T

ein Wiener-Prozess bezüglich P⋆⋆.
Es gilt:

dS⋆(t) = S⋆(t)σ(t)dW ⋆(t)
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= S⋆(t)σ(t)(dW ⋆⋆(t) + η(t)dt)
= S⋆(t)(σ(t)η(t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0, da

η∈Kern σ(t)

dt + σ(t)dW ⋆⋆(t))

= S⋆(t)σ(t)dW ⋆⋆(t).

Also ist P⋆⋆ ein weiteres äquivalentes Martingalmaß.

Satz 2.8. Ist n < d und Kern σ(t) = {0} fast sicher, so ist das Modell vollständig, falls

r(t)1 − µ(t) + σ(t)σN(t) = σ(t)ϑ(t)

fast sicher lösbar ist und

E exp
⎛
⎝

T

∫
0

ϑ(s)dW (s) − 1

2

T

∫
0

∣ϑ(s)∣2ds
⎞
⎠
= 1.

Beweis. Da Kern σ(t) = {0}, ist obiges ϑ(t) eindeutig. Wegen

E exp
⎛
⎝

T

∫
0

ϑ(s)dW (s) − 1

2

T

∫
0

∣ϑ(s)∣2ds
⎞
⎠
= 1

existiert genau ein äquivalentes Martingalmaß P⋆. Damit ist der Markt vollständig.

Satz 2.9. Es existiere ein äquivalentes Martingalmaß. Ist n = d und σ(t) invertierbar
für λ⊗ P−fast alle (t, ω), so ist das Modell vollständig.

Beweis.
µ(t) + σ(t)ϑ(t) = r(t)1 + σ(t)σN(t)

ist eindeutig lösbar genau dann, wenn σ(t) invertierbar ist.

Satz. Es existierte ein äquivalentes Martingalmaß. Ist n = d und

λ⊗ P ({(t, ω) ∶ σ(t) ist nicht invertierbar}) > 0

so ist das Modell nicht vollständig.

Beweis. Da
λ⊗ P ({(t, ω) ∶ σ(t) ist nicht invertierbar}) > 0

ist auf diesem Ereignis Kern σ(t) ≠ {0} und es kann, analog zu Satz 2.7 ein weiteres
äquivalentes Martingalmaß konstruiert werden. Damit ist das Modell nicht vollständig.

In einem vollständigen Markt ist jeder integrierbare Claim replizierbar.
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Satz 2.10. Gegeben sei ein vollständiger Markt mit eindeutigem äquivalenten Martin-
galmaß P⋆. Sei C ein T−Claim mit E⋆∣C⋆∣ < ∞.
Dann existiert zum Anfangskapital x ∶= N(0)E⋆C⋆ eine Replikationsstrategie für C.

Beweis. Der Martingaldarstellungssatz liefert eine stochastische Integraldarstellung des
gleichgradig integrierbaren P⋆−Martingals

E⋆(C⋆∣Ft) = E⋆C⋆ +
t

∫
0

α(u)dW ⋆(u).

W ⋆ ist ein Wiener-Prozess bezüglich P⋆.
Wegen der Vollständigkeit ist n ≤ d und σ(t) ist injektiv für fast alle t.
Zu bestimmen ist ein d−dimensionaler previsibler Prozess H mit

t

∫
0

α(u)dW ⋆(u) =
t

∫
0

H(u)dS⋆(u).

n

∑
j=1

t

∫
0

αj(s)dW ⋆
j (s) =

d

∑
i=1

t

∫
0

Hi(u)dS⋆i (u)

=
d

∑
i=1

n

∑
j=1

t

∫
0

Hi(u)S⋆i (u)σij(u)dW ⋆
j (u)

=
n

∑
j=1

t

∫
0

d

∑
i=1

Hi(u)S⋆i (u)σij(u)dW ⋆
j (u)

Also ist zu lösen

αj(u) =
d

∑
i=1

Hi(u)S⋆i (u)σij(u) für alle 1 ≤ j ≤ n

bzw.

α(u) = σT (u)
⎛
⎜
⎝

H1(u)S⋆1 (u)
⋮

Hd(u)S⋆d(u)

⎞
⎟
⎠
.

Da Kern σ(t) = {0}, ist diese Gleichung eindeutig durch (H(u))0≤u<T lösbar.

Da wir α nicht explizit gegeben haben, ist dieser Satz für die Praxis nicht sehr hilfreich.
Da hilft der PDE Ansatz: 13.5.16
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2.11 PDE Ansatz

Es liege ein vollständiges Diffusionsmodell entsprechend d) in Beispiel 1.2 vor mit n = d,
d.h.

dSi(t) = Si(t)(r(t, S(t))dt +
n

∑
j=1

σij(t, S(t))dW ⋆
j (t)) für alle 1 ≤ i ≤ d

dβ(t) = β(t)r(t, S(t))dt

bezüglich des äquivalentes Martingalmaßes P⋆. W ⋆ ist ein Wiener-Prozess bezüglich P⋆.
Sei C⋆ ein T−Claim der Form

C = h(S(T ))

mit E⋆ ∣h(S(T ))∣
β(T ) < ∞.

Dann gibt es eine Replikationsstrategie mit Wertprozess (V (t))0≤t<T , sodass

V (t) = β(t)E⋆ (h(S(T ))
β(T ) ∣Ft)

= E⋆ ⎛
⎝
h(S(T )) exp

⎛
⎝
−

T

∫
t

r(u,S(u))du
⎞
⎠
∣Ft

⎞
⎠
.

Im Diffusionsmodell ist S ein d−dimensionaler Markov-Prozess. Deshalb gilt

V (t) = E⋆ ⎛
⎝
h(S(T )) exp

⎛
⎝
−

T

∫
t

r(u,S(u))du
⎞
⎠
∣S(t)

⎞
⎠

= v(t, S(t))

mit

v(t, x) = E⋆ ⎛
⎝
h(S(T )) exp

⎛
⎝
−

T

∫
t

r(u,S(u))du
⎞
⎠
∣S(t) = x

⎞
⎠

für alle 0 ≤ t < T,x ∈ (0,∞)d

= ∫ h(yT ) exp
⎛
⎝
−

T

∫
t

r(u, yu)du
⎞
⎠
Kt(x, dy).

mit Kt(x, ⋅) = P⋆(S(u))u≥t ∈ ⋅∣St = x) und yt die Realisierung eines Pfades von S(t) zum
Zeitpunkt t.
In vielen Diffusionsmodellen (Bedinung an σ,h; hier nicht genauer ausgeführt) reicht die
Integrabilitätsbedingung E⋆∣C⋆∣ < ∞ aus für die Glattheit von v, sodass die Ito-Formel
angewendet werden kann.
Es folgt:

dv(t, S(t)) = ∂tv(t, S(t))dt +
d

∑
i=1

∂xiv(t, S(t))dSi(t) +
1

2

d

∑
i,j=1

∂xi∂xjv(t, S(t))d⟨Si, Sj⟩t
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= ∂tv(t, S(t))dt +
d

∑
i=1

∂xiv(t, S(t))Si(t)(r(t, S(t))dt +
d

∑
j=1

σij(t, S(t))dW ⋆
j (t))

+ 1

2

d

∑
i,j=1

(∂xi∂xjv(t, S(t))Si(t)Sj(t)(σσT )ij(t, S(t)))dt

wegen

d⟨Si, Sj⟩t = d⟨
⋅

∫
0

Si(u)
d

∑
k=1

σik(u,Si(u))dW ⋆
k (u),

⋅

∫
0

Sj
d

∑
l=1

σj,l(u,S(u))dW ⋆
l (u)⟩t

= d⟨
d

∑
k=1

⋅

∫
0

Si(u)σik(u,S(u))dW ⋆
k (u),

d

∑
l=1

⋅

∫
0

Sj(u)σjk(u,S(u))dW ⋆
l (u)⟩t

=
d

∑
k=1

d

∑
l=1

d⟨
⋅

∫
0

Si(u)σik(u,S(u))dW ⋆
k (u),

⋅

∫
0

Sj(u)σjl(u,S(u))dW ⋆
l (u)⟩t

=
d

∑
k,l=1

Si(u)σik(u,S(u))Sj(u)σjk(u,S(u))d⟨W ⋆
k ,W

⋆
l ⟩u

= Si(u)Sj(u)(σσT )ij(u,S(u))du

Also folgt

dv(t, S(t)) = (∂tv(t, S(t)) +
d

∑
i=1

∂xiv(t, S(t))Si(t)r(t, S(t))

+ 1

2

d

∑
i,j=1

∂xi∂xjv(t, S(t))Si(t)Sj(t)(σσT )ij(t, S(t)))dt

+
d

∑
i=1

∂xiv(t, S(t))Si(t)
d

∑
j=1

σij(t, S(t))dW ⋆
j (t).

Da (β−1(t)v(t, S(t)))0≤t<T ein P⋆−Martingal ist, folgt

∂tv(t, x) +
d

∑
i=1

∂xiv(t, x)xir(t, x) +
1

2

d

∑
i,j=1

∂xi∂xjv(t, x)xixj(σσT )ij(t, x) = r(t, x)v(t, x)

für alle 0 ≤ t < T,x ∈ (0,∞)d.
Also ist die Funktion

v ∶ (0, T ) × (0,∞)d Ð→ R

Lösung des Cauchy-Problems

∂tv(t, x) +
d

∑
i=1

∂xiv(t, x)xir(t, x) +
1

2

d

∑
i,j=1

∂xi∂xjv(t, x)xixj(σσT )ij(t, x) = r(t, x)v(t, x)

mit Endbedingung
lim
t↗T

v(t, x) = h(x).
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Die Lösung dieser Differentialgleichung kann für gewöhnlich nicht explizit gefunden wer-
den, wohl aber numerisch.
Mit diesem Ansatz erhält man auch die Replikationsstrategie, denn

dV (t) = dv(t, S(t)) = v(t, S(t))r(t)dt +
d

∑
i=1

∂xiv(t, S(t))Si(t)
d

∑
k=1

σij(t, S(t))dW ⋆
j (t)

impliziert mit partieller Integration

dV ⋆(t) = dv(t, S(t))
β(t) =

d

∑
i=1

∂xiv(t, S(t))S⋆i (t)
d

∑
j=1

σij(t, S(t))dW ⋆
j (t)

=
d

∑
i=1

∂xiv(t, S(t))dS⋆i (t).

Also folgt

V ⋆(t) = V ⋆(0) +
d

∑
i=1

t

∫
0

∂xiv(u,S(u))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Hi(u)

dS⋆i (u)

mit V ⋆(0) = V (0) = E⋆C⋆ = v(0, S(0)).
Man erhält also den sogenannten δ−Hedge durch

Hi(t) = ∂xiv(t, S(t)) für alle 1 ≤ i ≤ d,0 ≤ t < T

K(t) = V ⋆(t) −
d

∑
i=1

Hi(t)S⋆i (t).

2.12 PDE Ansatz bei Barriere Optionen

Gegen sei ein eindimensionaler vollständiger Finanzmarkt, d.h.

dS(t) = S(t)(r(t, S(t))dt + σ(t, S(t))dW ⋆(t))
dβ(t) = β(t)r(t, S(t))dt

bezüglich des äquivalenten Martingalmaßes P⋆.
Für eine Funktion h ∶ (0,∞) Ð→ R mit E⋆ ∣h(S(T ))∣

β(T ) < ∞ soll die Preisfunktion einer
Barriere Option bestimmt werden.
Dabei sind Barriere Optionen mit Barrieren 0 ≤K < L ≤ ∞ Optionen, die wertlos werden,
wenn der Preisprozess des Underlyings während der Laufzeit die Schranken unter- bzw.
überschreitet, d.h. eine Knock-Out Barriere Option hat die Auszahlung

C = h(S(T ))1{τ0>T}

mit
τt ∶= inf{u ≥ t ∶ S(u) ≤K oder S(u) ≥ L}

für alle 0 ≤ t < T .
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Dies ist ein einfaches Beispiel einer pfadabhängigen Option.
Der Preis von C zur Zeit t erfüllt

pt(C) = β(t)E⋆(C⋆∣Ft)

= E⋆ ⎛
⎝
h(S(T )) exp

⎛
⎝
−

T

∫
t

r(u,S(u))du
⎞
⎠
1{τ0>T}∣Ft

⎞
⎠

= E⋆ ⎛
⎝
h(S(T )) exp

⎛
⎝
−

T

∫
t

r(u,S(u))du
⎞
⎠
1{τ0>t}1{τt>T}∣Ft

⎞
⎠

= 1{τ0>t}E⋆ ⎛
⎝
h(S(T )) exp

⎛
⎝
−

T

∫
t

r(u,S(u))du
⎞
⎠
1{τt>T}∣Ft

⎞
⎠

= 1{τ0>t}v(t, S(t))

mit

v(t, x) = E⋆ ⎛
⎝
h(S(T )) exp

⎛
⎝
−

T

∫
t

r(u,S(u))du
⎞
⎠
1{τt>T}∣S(t) = x

⎞
⎠

für alle K < x < L.

Die Funktion v erfüllt eine PDE mit Rand- und Endbedingung.
Herleitung der PDE:
Da β−1(t)pt(C) = E⋆(C⋆∣Ft) 0 ≤ t < T ein P⋆−Martingal ist, ist auch

β−1(t ∧ τ0)pt∧τ0(C) = β−1(t ∧ τ0)v(t ∧ τ0, S(t ∧ τ0)) 0 ≤ t < T

ein P⋆−Martingal.
Ito-Formel angewendet auf v(t ∧ τ0, S(t ∧ τ0)) führt auf die PDE

∂tv(t, x) +
1

2
x2σ2(t, x)∂2

xv(t, x) + r(t, x)x∂xv(t, x) = r(t, x)v(t, x)

für alle 0 ≤ t < T,K < x < L.
Da lim

t↗τ0
v(t, S(t)) = 0 P⋆−fast sicher folgen die Randbedingungen

lim
x↗L

v(t, x) = 0 für alle 0 ≤ t < T

lim
x↘K

v(t, x) = 0 für alle 0 ≤ t < T

und Endbedingung
lim
t↗T

v(t, x) = h(x) für alle K < x < L.
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2.13 Sharpe Ratio
24.5.16

Wir betrachten ein eindimensionales vollständiges Finanzmarktmodell

dS(t) = S(t)(µ(t)dt + σ(t)dW (t))
dβ(t) = β(t)r(t)dt.

Bezüglich P kann dies als subjektive Einschätzung eines Investors interpretiert werden.

- µ(t) − r(t) ist die Überschussrendite der Aktie.

- µ(t)−r(t)
σ(t) ist der Sharpe Ratio der Aktie, d.h. das "Verhältnis von Ertrag zu Risiko".

Bedeutung: Bewertung des Ertrages in Einheiten des Risikos(der Volatilität) ↝
Market Price of Risk.

- ϑ(t) = −µ(t)−r(t)σ(t) 0 ≤ t < T führt zu einem Maßwechsel zum äquivalenten Martin-
galmaß P⋆:

dP⋆
dP

∣
Ft

= exp
⎛
⎝

t

∫
0

ϑ(s)dW (s) − 1

2

t

∫
0

ϑ2(s)ds
⎞
⎠

für alle 0 ≤ t < T.

Ist C > 0 ein T−Claim mit E⋆∣C⋆∣ < ∞ und E⋆(C⋆∣Ft) > 0 P−fast sicher, so kann
C als weiteres gehandeltes Finanzgut im Markt aufgefasst werden mit arbitragefreiem
Preisprozess

C(t) = β(t)E⋆(C⋆∣Ft) 0 ≤ t < T.
Da C ein positives Semimartingal bezüglich P ist, gibt es eine Darstellung der Form

dC(t) = C(t)(µC(t)dt + σC(t)dW (t))

mit previsiblen Prozessen µC und σC . Dabei ist

- µC die Rendite des Derivates und

- σC die Volatilität des Derivates.

Bezüglich P⋆ gilt, da ( 1
β(t)C(t))

0≤t<T
ein P⋆−Martingal ist,

dC(t) = C(t)(r(t)dt + σC(t)dW ⋆(t)).

Da
dW ⋆(t) = dW (t) − ϑ(t)dt

folgt
dC(t) = C(t)((r(t) − σC(t)ϑ(t))dt + σC(t)dW (t)).

Also gilt
µC(t) = r(t) − σC(t)ϑ(t).
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Damit ist
µC(t) − r(t)

die Überschussrendite von C.
Es gilt:

µC(t) − r(t)
σC(t)

= −ϑ(t) = µ(t) − r(t)
σ(t) .

Damit ist der Sharpe Ratio eine Invariante unter allen sinnvoll gehandelten Finanzgütern
im Markt und wird durch die Girsanov Transformation bestimmt.
Bedeutung: Ein Investor kann in ein beliebiges Finanzgut investieren, da das Verhältnis
von Ertrag zu Risiko konstant ist.

2.14 Konstruktion eines Geldmarktkontos im mehrdimensionalen, vollständigen
Fall

Gegeben sei ein vollständiger Finanzmarkt der Form

dSi(t) = Si(t)(µS,i(t) +
d

∑
j=1

σSij(t)dWj(t)) für alle 1 ≤ i ≤ d

dN(t) = N(t)(µN(t) +
d

∑
j=1

σNj(t)dWj(t))

mit einem d−dimensionalen Wiener-Prozess W , der den Zufall bestimmt.
Der Markt sei vollständig, d.h.

σij(t) ∶= σSij(t) − σNj(t) für alle 1 ≤ i, j ≤ d,0 ≤ t < T

ist eine invertierbare Matrix und durch

dP⋆
dP

∣
Ft

= exp
⎛
⎝

t

∫
0

ϑ(s)dW (s) − 1

2

t

∫
0

∣ϑ(s)∣2ds
⎞
⎠

0 ≤ t < T

wird das eindeutige bestimmte äquivalente Martingalmaß definiert, wobei

ϑ(t) = σ−1(t)((µN(t) − ∣σN(t)∣2)1 + σS(t)σN(t) − µS(t))

W ⋆(t) =W (t) −
t

∫
0

ϑ(s)ds d − dimensionaler Wiener-Prozess bezüglich P⋆.

Es gilt bezüglich P⋆:
dS⋆(t) = S⋆(t)σ(t)dW ⋆(t)

und
d

1

N(t) = 1

N(t)((∣σN(t)∣2 − µN(t) − σN(t)ϑ(t))dt − σN(t)dW ⋆(t)).

Setze
r⋆(t) = −(∣σN(t)∣2 − µN(t) − σN(t)ϑ(t)) für alle 0 ≤ t < T.
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Dann gilt:

d
1

N(t) = 1

N(t)(−r
⋆(t)dt − σN(t)dW ⋆(t)).

Dies bedeutet, dass der eindeutig bestimmte arbitragefreie Zinsratenprozess eines Geld-
marktkontos durch (r⋆(t))0≤t<T festgelegt ist.
Setze also

β(t) = exp
⎛
⎝

t

∫
0

r⋆(s)ds
⎞
⎠

für alle 0 ≤ t < T.

Damit ist β der Preisprozess eines Geldmarktkontos mit Zinsrate r⋆, d.h.

dβ(t) = β(T )r⋆(t)dt, β(0) = 1

und

d
β(t)
N(t) = β(t)d 1

N(t) +
1

N(t)dβ(t)

= − β(t)
N(t) (r⋆(t)dt + σN(t)dW ⋆(t)) + β(t)

N(t)r
⋆(t)dt

= − β(t)
N(t)σN(t)dW ⋆(t).

Also ist P⋆ ein äquivalentes Martingalmaß bezüglich der d+1 risky assets S1, ..., Sd, β und
dem Numeraire Asset N . Ein Handel in diesen d + 2 Finanzgütern hat keine zulässigen
Arbitragemöglichkeiten.
Frage: Wie kann man das Geldmarktkonto replizieren?
Gesucht ist previsibler Prozess H, so dass

β(t)
N(t) = 1

N(0) +
t

∫
0

H(u)dS⋆(u) für alle 0 ≤ t < T.

Dann gibt es eine selbstfinanzierende Handelsstrategie mit Wertprozess

V (t) = β(t) für alle 0 ≤ t < T

Es gilt

d
β(t)
N(t) = − β(t)

N(t)σN(t)dW ⋆(t)

= −
d

∑
j=1

β(t)
N(t)σNj(t)dW

⋆
j (t)

und

dβ⋆(t) =H(t)dS⋆(t)
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=
d

∑
i=1

Hi(t)dS⋆i (t)

=
d

∑
i=1

Hi(t)S⋆i (t)
d

∑
j=1

σij(t)dW ⋆
j (t)

=
d

∑
j=1

(
d

∑
i=1

Hi(t)S⋆i (t)σij(t))dW ⋆
j (t).

Dies führt auf die Gleichung

d

∑
i=1

Hi(t)S⋆i (t)σij(t) = −
β(t)
N(t)σNj(t) für alle 1 ≤ j ≤ d

bzw.

σT (t)
⎛
⎜
⎝

H1(t)S⋆1 (t)
⋮

Hd(t)S⋆d(t)

⎞
⎟
⎠
= − β(t)

N(t)σN(t)

bzw.
⎛
⎜
⎝

H1(t)S⋆1 (t)
⋮

Hd(t)S⋆d(t)

⎞
⎟
⎠
= (σT (t))−1 (− β(t)

N(t)σN(t)) = − β(t)
N(t)(σ

T )−1σN(t).

Für den Aktienanteil

πi(t) ∶=
Hi(t)Si(t)
V (t) = Hi(t)S⋆i (t)

V ⋆(t) = Hi(t)S⋆i (t)
β(t)
N(t)

1 ≤ i ≤ d,0 ≤ t < T

bedeutet dies
π(t) = −(σT (t))−1σN(t) für alle 0 ≤ t < T.

Ist

exp
⎛
⎝
−

t

∫
0

σN(s)dW ⋆(s) − 1

2

t

∫
0

∣σN(s)∣2ds
⎞
⎠

0 ≤ t < T

ein gleichgradig integrierbares P⋆−Martingal, so ist das Geldmarktkonto durch die durch
H definierte selbstfinanzierte Handelsstrategie replizierbar.

Folgerung 2.11. Sind die Koeffizienten σS, σN , µS, µN konstant, so ist r⋆ konstant. Es
liegt somit ein mehrdimensionales Black-Scholes Modell mit Zinsrate r⋆ vor.

r⋆ = µN − ∣σN ∣2 + σNϑ

Preise von Derivaten ergeben sich durch deren Black-Scholes Preise

3 Volatilitätsmodelle
27.5.16

Ziel: Aufstellung eines praxisrelevanten Modells.
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3.1 Kalibrierung eines Black-Scholes Modells

Modellbezeichnung:

dS(t) = S(t)(rdt + σdW ⋆(t))
dβ(t) = β(t)rdt

für alle 0 ≤ t < T mit Volatilität σ und Zinsrate r.
Das Black-Scholes Modell wird vor allem bei kurzen Laufzeiten von T = 3,6 oder 9
Monaten gewählt. Die Zinsrate kann dann als Tagesgeldzinssatz, 3−Monats Zinssatz
oder ähnliches gewählt werden. Diese Parameter (T, r) werden extern festgesetzt.
Problem: Wie kann man σ bestimmen?
Lösung: Die Volatilität bestimmt den Preis eines Derivates. Anfangspreise (Marktpreise)
von gehandelten Calls und Puts stehen als zusätzliche Information für eine Kalibrierung
zur Verfügung.
Im Black-Scholes Modell benötigt man den Marktpreis eines Calls um die Volatilität σ
auszurechnen.
Genauer:

C(x,T, σ,K) ∶= E⋆e−rT (S(T ) −K)+

ist der Marktpreis eines Calls mit Laufzeit T , Basis K, Anfangspreis x und Volatilität
σ. Bezeichnet CM(T,K) den Marktpreis dieses Calls mit Laufzeit T und Basis K, so
existiert genau ein

σ = σimpl.(T,K)
mit der Eigenschaft

C(x,T, σ,K) = CM(T,K).
σimpl. ist die implizite Volatilität des Calls. Wäre das Black-Scholes Modell korrekt,
so wäre σimpl.(t, k) eine Konstante. Tatsächlich beobachtet man aber eine gekrümmte
Volatilitätsfläche

(t,K) ↦ σimpl.(t,K) 0 < t < T,K > 0.

Diese Krümmung der Volatilitätsfläche wird als Smile-Effekt bezeichnet.
Bei festegehaltenem t hat die Schnittkurze K ↦ σimpl.(t,K) etwa die Gestalt

σimpl.

k] [ ] [
Xe−rt

at the money

deep in the money deep out of the money

σkalib. -> kalibriertes σ

Zur Kalibrierung eines Black-Scholes Modells werden Calloptionen mit gleichen Lauf-
zeiten, aber unterschiedlichen Basispreisen gewählt und σ so bestimmt, dass der Fehler
zwischen Markt und Modellpreisen minimal wird.
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3.2 Kalibrierung eines Black-Scholes Modells mit deterministischer Volatilität

Modellgleichungen:

dS(t) = S(t)(rdt + σ(t)dW ⋆(t))
dβ(t) = β(t)rdt

σ ∶ [0, T ] Ð→ R>0 ist eine deterministische Funktion mit ∫
T

0 σ2(s)ds < ∞. T und r wurden
wieder extern festgelegt.
Zur Bestimmung von σ werden die Marktpreise (CM(t, k))0≤t<T,K>0 bzw. deren impli-
zierte Volatilitätsfläche (σimpl.(t,K))0≤t<T,K>0 genutzt.
Wäre das Black-Scholes Modell mit deterministischer Volatilität korrekt, so wäre die
Volatilitätsfunktion σ festgelegt durch die Marktpreise (CM(t,K))0≤t<T bei fixiertem K.
Argument:

Durch den Marktpreis CM(t,K) ist
t

∫
0

σ2(s)ds durch die impliziete Volatilität σimpl.(t,K)
eindeutig festgelegt. Durch Differation nach t erhält man σ2 und damit σ(t) für alle
0 ≤ t < T .
Für jedes K > 0 erhält man so eine Volatilitätsfunktion (σK(t))0≤t<T .
Die Krümmung der impliziten Volatilitätsfläche in K bedeutet, dass auch das Black-
Scholes Modell mit deterministischer Volatilität nicht sinnvoll ist.
Für eine Kalibrierung würde man aus den Funktionen (σ(K))K>0 diejenige bestimmen,
die die Marktpreise am besten erklärt, d.h., den Fehler zwischen Markt- und Modell-
preisen minimiert.

3.3 Kalibrierung eines lokalen Volatilitätsmodells

Modellgleichungen:

dS(t) = S(t)(rdt + σ(t, S(t))dW ⋆(t))
dβ(t) = β(t)rdt

σ(t, x) bezeichnet für alle 0 ≤ t < T und x > 0 die lokale Volatilität.
Durch die Marktpreise (CM(t, k))0≤t<T,k>0 ist die lokale Volatilitätsfunktion eindeutig
festgelegt.
Dies ist die Formel von Dupire:

1

2
K2σ2(t,K) = ∂tC(t,K) +K∂KC(t,K)

∂2
KC(t,K) für alle 0 ≤ t < T,K > 0.

Beweis. Ist f(t, ⋅) die Dichte von S(t), d.h.

f(t, x)dx = P⋆(S(t) ∈ dx)

so gilt:

C(t,K) = e−rt
∞

∫
0

(x −K)+f(t, x)dx
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= e−rt
∞

∫
K

(x −K)f(t, x)dx

= e−rt
∞

∫
K

x

∫
K

dyf(t, x)dx

Fubini= e−rt
∞

∫
K

∞

∫
y

f(t, x)dxdy.

Also

∂KC(t,K) = −e−rt
∞

∫
K

f(t, x)dx

und somit
∂2
KC(t,K) = e−rtf(t,K). (6)

Die 2. partielle Ableitung nachK des Call-Preises bestimmt die Dichte des Aktienpreises.
Im Diffusionsmodell erfüllt die Dichte f eine forward Kolmogorov Gleichung

∂tf(t, x) =
1

2
∂2
x(x2σ2(t, x)f(t, x)) − ∂x(rxf(t, x))

= 1

2
∂2
x(x2σ2(t, x)f(t, x)) − rf(t, x) − rx∂xf(t, x).

Wegen Gleichung 6 gilt auch:

∂tf(t, x) = ∂t(ert∂2
xC(t, x)) = rert∂2

xC(t, x) + ert∂t∂2
xC(t, x).

Also folgt mit f(t, x) = ert∂2
xC(t, x):

rert∂2
xC(t, x)+ert∂2

x∂tC(t, x) = ert1
2
∂2
x(x2σ2(t, x)∂2

xC(t, x))−rert∂2
xC(t, x)−rert∂x∂2

xC(t, x)

und damit

∂2
x∂tC(t, x) = 1

2
∂2
x(x2σ2(t, x)∂2

xC(t, x)) − r∂2
x(x∂xC(t, x))

= ∂2
x(

1

2
x2σ2(t, x)∂2

xC(t, x) − rx∂xC(t, x).

Zweimal Aufintegrieren liefert Funktionen α(t), β(t) mit
1

2
x2σ2(t, x)∂2

xC(t, x) = rx∂xC(t, x) + ∂tC(t, x) + α(t)x + β(t)

Gilt (Randbedingung):

x2σ2(t, x)∂2
xC(t, x) = e−rtxσ2(t, x)f(t, x) x→∞Ð→ 0

x∂xC(t, x) = −e−rtx
∞

∫
x

f(t, y)dy x→∞Ð→ 0

∂tC(t, x) x→∞Ð→ 0

so gilt α(t) = β(t) = 0 für alle 0 ≤ t < T und damit folgt die Formel von Dupire.
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In bisherigen Volatilitätsmodellen geht man von der Vollständigkeit aus. 31.5.16
Vernünftig ist die Annahme: Es gibt exogene Faktoren, die den Kurs einer Aktie beein-
flussen.
Beispiele sind Ereignisse wie 11.09.2001, Naturkatastrophen, wie Erdbeben, politische
Ereignisse, wie Ausgänge von Wahlen, Nahostkrise uvm. Deshalb sind Finanzmärkte
prinzipiell unvollständig.
Ein einfacher Ansatz zur Modellierung bietet das stochastsiche Volatilitätsmodell. Der
exogene Einfluss bestimmt die Unsicherheit, also die Volatilität in den Finanzmärkten.
Damit hängen die Kurse von dem exogenen Einfluss ab.

3.4 Das allgemeine stochastische Volatilitätsmodell für eine Aktie

Auf die Preisentwicklung einer Aktie wirken eine exogene und eine endogene Quelle des
Zufalls, d.h.

dS(t) = S(t)(µdt + f(Y (t))dW (t))
Die Volatilität hängt von einem stochastischen Prozess Y ab, der die Gleichung

dY (t) = b(Y (t))dt + σ(Y (t))dZ(t)

erfüllt.W und Z sind dabei eindimensionale, korrellierte Wiener-Prozesse mit Korrelati-
onskonstante % ∈ (−1,1). Das bedeutet, ⟨W,Z⟩t = %t. W entspricht dabei der endogenen
Quelle des Zufalls, Z der exogenen Quelle. % wird in der Regel als negativ angesehen, da
dann Aktienkurse und Volatilität sich gegeläufig verhalten. Ein steigender Kurs führt zu
einer sinkenden Volatilität und ein fallender Kurs zu einer steigenden Volatilität. Dies
ist der sogennante Leverage-Effekt.
Frage: Wann sind solche Gleichungen lösbar?
Man löst zuerst die Gleichung für Y und dann die für S.

Satz 3.5 (Lösbarkeit der Volatilitätsgleichung). Erfüllen die Funktionen b und σ die
lineare Wachstums- und Lipschitzbedinungen, d.h.

∣b(x)∣ ≤ c1 + c2∣x∣ für alle x ∈ R
∣b(x) − b(y)∣ ≤ c∣x − y∣ für alle x, y ∈ R

, analog für σ, so kann der Satz über die eindeutige starke Lösbarkeit von SDGL an-
gewendet werden und man erhält zu jedem y ∈ R eine eindeutige starke Lösung der
Gleichung

dY (t) = b(Y (t))dt + σ(Y (t))dW (t), Y0 = y.

Allerdings ist die Lipischtbedingung für σ bei interessanten Fällen nicht gegeben. Etwas
schwächer ist die Yamada-Watanabe Bedingung.

Definition 3.6. Eine Funktion g ∶ R Ð→ R erfüllt die Yamada-Watanabe Bedingung,
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falls es eine strikt wachsende Funktion

ρ ∶ [0,∞) Ð→ [0,∞)

gibt, mit
ε

∫
0

1

(ρ(x))2
ds = +∞

für ein ε > 0, so dass
∣g(x) − g(y)∣ ≤ ρ(∣x − y∣)

für alle x, y ∈ R.

Beispiel. g(x) =
√

∣x∣. Dann ist g nicht Lipischtzstetig, da

lim
x↘0

g′(x) = lim
x↘0

1

2

1√
x
= +∞

Aber g erfüllt die Yamada-Watanabe Bedingung mit ρ(x) = √
x.

Satz 3.7. Die Funktion b erfülle die lineare Wachstums- und Lipischtzbedingung. Die
Funktion σ sei stetig und erfülle die lineare Wachstums- und Yamada-Watanabe Bedin-
gung.
Dann ist die Gleichung

dY (t) = b(Y (t))dt + σ(Y (t))dZ(t), Y (0) = y

eindeutig stark lösbar.

Beweisidee. Die Stetigkeit von b und σ liefert, dass die Gleichung schwach lösbar ist.
Die Yamada-Watanabe Bedingung impliziert die pfadweise Eindeutigkeit der Lösung.
Beides zusammen liefert die eindeutige starke Lösbarkeit.

Bemerkung. Für die Lösung gilt:

E
t

∫
0

Y 2(s)ds =
t

∫
0

EY 2(s)ds < ∞ für alle t > 0.

3.8 Lösbarkeit des stochastischen Volatilitätsmodells

Modellgleichungen:

dS(t) = S(t)(µdt + f(Y (t))dW (t))
dY (t) = b(Y (t))dt + σ(Y (t))dZ(t)

d⟨W,Z⟩t = %dt
Erfüllen b bzw. σ die Voraussetzungen aus Satz 3.5 oder Satz 3.7 und ist f eine stetige
Funktion, so ist für jeden Startpunkt y ∈ R und S(0) ∈ R obiges System von stochasti-
schen DGL eindeutig lösbar.
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Beweis. Die Annahme von Satz 3.5 und Satz 3.7 impliziert die Lösbarkeit von Y . Die
Lösung für S erhält man wegen der Stetigkeit von f durch

S(t) = S(0) exp
⎛
⎝

t

∫
0

f(Y (s))dW (s) − 1

2

t

∫
0

f(Y (s))2ds
⎞
⎠
eµt für alle t ≥ 0.

Formulierung der Modellgleichungen mittels unkorrelierter Wiener-Prozessen.
Ansatz: Ist W̃ = 1√

1−%2
W − %√

1−%2
Z, so sind W̃ und Z unabhängige Wiener-Prozesse und

es gilt
W =

√
1 − %2W̃ + %Z.

Dies folgt mittels Lévy:
W̃ ist ein lokales Martingal und es gilt

⟨W̃ ⟩t = ⟨ 1√
1 − %2

W − %√
1 − %2

Z⟩t

= 1

1 − %2
t + %2

1 − %2
t − 2

%

1 − %2
⟨W,Z⟩t
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

%t

= 1

1 − %2
t + %2

1 − %2
t − 2%2

1 − %2
t

= t.

Dann ist

⟨W̃ ,Z⟩t =
1√

1 − %2
⟨W,Z⟩t −

%√
1 − %2

⟨Z,Z⟩t =
%√

1 − %2
t − %√

1 − %2
t = 0

Die Modellgleichungen lautet dann:

dS(t) = S(t)((µdt + f(Y (t))(
√

1 − %2dW̃ (t) + %dZ(t)))
dY (t) = b(Y (t))dt + σ(Y (t))dZ(t)

und W̃ und Z sind unabhängige Wiener-Prozesse.

3.9 Beispiele für Volatilitätsmodelle

(i) Hull-White Modell:

dS(t) = S(t)(µdt + Y (t)dW (t))
dY (t) = Y (t)(θdt + ξdZ(t))

⟨W,Z⟩t = %t

mit µ, θ ∈ R, ξ > 0 und % ∈ (−1,1).
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(ii) Stein-Stein Modell:

dS(t) = S(t)(µdt + Y (t)dW (t))
dY (t) = q(m − Y (t))dt + σdZ(t)

⟨W,Z⟩t = %t

mit µ ∈ R, q, σ > 0,m ≥ 0 und % ∈ (−1,1).
Die Volatilität wird also bestimmt durch einen Vasicek-Prozess.
Günstig: Mean-reverting Eigenschaft.
(iii) Heston Modell:

dS(t) = S(t)(µdt +
√
Y (t)dW (t))

dY (t) = (a − bY (t))dt + c
√
Y (t)dZ(t)

⟨W,Z⟩t = %t

mit µ ∈ R, c > 0, a, b ≥ 0 und % ∈ (−1,1).
Die quadratische Volatilität ist ein sogenannter CIR (Cox-Ingersoll-Ross) Prozess.
Y ist mean reverting, verbleibt aber in [0,∞) für alle Zeiten. Falls b > 0, so gilt

dY (t) = qL(m − Y (t))dt + c
√
Y (t)dZ(t)

qL = b,m = a
b ,m return Level und qL Rückkehrrate. ↪ Mean-reverting-Diffusion. Im 3.6.16

Hill-White Modell und Stein-Stein Modell sind die stochastischen DGL für die Volatili-
tätsprozesse explizit lösbar. Die Analyse des CIR Prozesses ist etwas komplizierter, da
die Gleichung nicht explizit lösbar ist.

3.10 CIR Prozess

Parameter

- Returnlevel m > 0

- Wiederkehrrate q > 0

- Diffusionskonstante σ

Ein stochastischer Prozess (Y (t))t≥0 heißt CIR Prozess zum Startpunkt y > 0, wenn er
die SDGL

dY (t) = q(m − Y (t))dt + σ
√
Y (t)dW (t), Y (0) = y

löst.

Bemerkung. Im Unterschied zum Vasicek Prozess hängt der Schwankungskoeffizient in
der Differentialgleichung vom Zustand durch y ↦ σ

√
y ab. Man kann zeigen, dass deshalb

der Prozess stets nicht negativ bleibt, d.h.

P(Y (t) ≥ 0 für alle t ≥ 0) = 1.
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0

m
im Mittel

je weiter weg vonm, desto weniger Schwankung,
also desto stärker in Richtung m

Die 0 ist ein Randpunkt des Zustandraumes von Y . Ist 2qm ≥ σ2, so erreicht Y die 0
nie, d.h.

P(Y (t) > 0 für alle t ≥ 0) = 1.

Die Rückkehrrate zum langfristigen Mittel m ist groß genug im Vergleich zur Diffusions-
konstanten σ.
Ist 2qm < σ2, so erreicht Y die 0 mit Wahrscheinlichkeit 1 und wird danach reflektiert
werden, d.h.
Für τ0 ∶= inf{t ≥ 0 ∶> Y (t) = 0} ist

P(τ0 < ∞) = 1.

Im Zustand y = 0 liegt eine positive Drift vor und eine zufällige Schwankung von 0.
Deshalb wird der Prozess nach (0,∞) reflektiert.

Satz 3.11. Sei Y ein CIR Prozess, d.h.

dY (t) = q(m − Y (t))dt + σ
√
Y (t)dW (t), Y (0) = y0 > 0.

Dann gilt:

(i) EY (t) = ye−qt +m(1 − e−qt) für alle t ≥ 0

(ii) VarY (t) = y σ2

q (e−qt − e−2qt) + mσ2

2q (1 − e−qt)2 für alle t ≥ 0

(iii) lim
t↗∞

EY (t) =m

(iv) lim
t↗∞

VarY (t) = mσ2

2q

Beweis. Für jedes t > 0 und jedes n ∈ N ist

E
t

∫
0

Y n(s)ds < ∞.

Weiter ist

Y (t) = y +
t

∫
0

q(m − Y (s))ds +
t

∫
0

σ
√
Y (s)dW (s)

und

M(t) ∶=
t

∫
0

σ
√
Y (s)dW (s)
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ist für t ≥ 0 ein lokales Martingal mit

E⟨M⟩t = E
t

∫
0

σ2Y (s)ds < ∞ für alle t ≥ 0.

Damit ist M ein Martingal und es folgt

EY (t) = y +E
t

∫
0

q(m − Y (s))ds

= y + qmt − q
t

∫
0

EY (s)ds.

Also löst f(t) ∶= EY (t) die gewöhnliche DGL

f ′(t) = −qf(t) + qm

zur Anfangsbedingung f(0) = y.
Mit dem Prinzip der Variation der Konstanten findet man

EY (t) = f(t) = ye−qt +m(1 − e−qt).

Für die Berechnung der Varianz wird zunächst das 2te Moment berechnet:
Partielle Integration liefert:

Y 2(t) = y2 + 2

t

∫
0

Y s)dY (s) + ⟨Y ⟩s

= y2 + 2

t

∫
0

X(s)q(m − Y (s))ds + 2

t

∫
0

Y (s)σ
√
Y (s)dW (s) +

t

∫
0

σ2Y (s)ds.

Wegen

E
t

∫
0

Y 2(s)σ2Y (s)ds = E
t

∫
0

σ2Y 3(s)ds < ∞

gilt

EY 2(t) = y2 + 2qm

t

∫
0

EY (s)ds − 2q

t

∫
0

EY 2(s)ds +
t

∫
0

σ2EY (s)ds.

Somit erfüllt g(t) = EY 2(t) die gewöhnliche DGL

g′(t) = −2qg(t) + 2qm + σ2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Inhomogenität

f(t)

mit f(t) = EY (t).
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g wird durch Variation der Konstanten bestimmt.
Man erhält

g(t) = y2e−2qt+m2(1−e−2qt)+σ
2m

2q
(1−e−2qt)+2(y−m)(e−qt−e−2qt)+σ

2

q
(y−m)(e−qt−e−2qt).

Zusammen mit

f 2(t) = (EY (t))2 = y2e−2qt − 2yme−2qt +m2e−2qt +m2 + 2m(y −m)e−qt

folgt

VarY (t) = yσ
2

q
(e−qt − e−2qt) + mσ

2

2q
(1 − e−qt)2.

Durch Berechnung der Laplace-Transformierten kann man die eindimensionalen Rand-
verteilungen prinzipiell bestimmen.

3.12 Laplacetransformierte des CIR Prozesses

Sei (Y (t))t≥0 ein CIR Prozess, d.h.

dY (t) = q(m − Y (t))dt + σ
√
Y (t)dW (t), Y (0) = y > 0.

Dann ist die Laplace-Transformierte gegeben durch:

Ee−λY (T ) = exp (−A(λ,T ) − yG(λ,T ))

mit

A(λ,T ) = −2qm

σ2
ln( 2qeqT

σ2λ(eqT − 1) + q(eqT + 1) + q(eqT − 1))

G(λ,T ) = 2λq

σ2λ(eqT − 1) + q(eqT + 1) + q(eqT − 1) .

Beweis. Mittels der Ito-Formel kann man eine PDE herleiten für

u(t, y) = E(e−λY (T )∣Y (t) = y).

Diese kann man explizit lösen.
Wegen der Markov-Eigenschaft gilt

E(e−λY (T )∣Ft) = E(e−λY (T )∣Y (t))
= u(t, Y (t)).

Also ist (u(t, Y (t)))0≤t<T ein Martingal.
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Die Ito Formel liefert:

du(t, Y (t)) = ∂tu(t, Y (t))dt + ∂yu(t, Y (t))dY (t) + 1

2
∂2
yu(t, Y (t))d⟨Y ⟩t

= ∂yu(t, Y (t))q(m − Y (t))dt + ∂yu(t, Y (t))σ
√
Y (t)dW (t) + ∂tu(t, Y (t))dt

+ 1

2
σ2Y (t)∂2

yu(t, Y (t))dt

= (∂tu(t, Y (t)) + 1

2
σ2Y (t)∂2

yu(t, Y (t)) + q(m − Y (t))∂yu(t, Y (t))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

!=0

)dt

+ ∂yu(t, Y (t))σ
√
Y (t)dW (t).

Also erfüllt u die partielle DGL

∂tu(t, y) +
1

2
σ2y∂2

yu(t, y) + q(m − y)∂yu(t, y) = 0 (7)

auf (0, T ) × (0,∞) mit Endbedingung lim
t↗T

u(t, y) = e−λy für alle y ≥ 0.
Die Lösung dieses Cauchy-Problems erhält man durch einen Ansatz der Form

u(t, y) = exp (−f(λ,T − t) − yg(λ,T − t)) für alle y > 0,0 ≤ t < T.
Ausrechnen der partiellen Ableitungen und Einsetzen in die Gleichung 7 führt dann
dazu, dass g und f die gewöhnlichen DGL

g′(t) + 1

2
σ2g2(t) + qg(t) = 0

f ′(t) − qmg(t) = 0

für alle t ≥ 0 erfüllen mit Anfangsbedinung g(0) = λ und f(0) = 0.
Die erste Gleichung ist eine Ricatti Gleichung und wird durch G(λ, ⋅) gelöst. f erhält
man durch Aufintegrieren von g.

Man kann die Verteilung von Y (T ) durch eine nicht zentrale χ2−Verteilung ausdrücken. 7.6.16

Definition 3.12. Für ϑ ∈ R∖−N ist die modifizierte Besselfunktion erster Ordnung Iϑ
definiert durch

Iϑ(y) =
∞
∑
n=0

1

n!Γ(n + ϑ + 1)y
ϑ+2n = yϑ

∞
∑
n=0

1

n!Γ(n + ϑ + 1)(
y

2
)2n

für alle y > 0.
Für ϑ ∈ −N wird Iϑ(y) = I−ϑ(y) gesetzt.

Die modifizierte Besselfunktion Iϑ ist eine Lösung der gewöhnlichen Differentialgleichung

y2u′′(y) + yu′(y) − (y2 + ϑ2)u(y) = 0.

Ist ϑ ∉ −N, so ist (Iϑ, I−ϑ ein Fundamentalsystem von Lösungen für obige Gleichung.
Mit Hilfe von Iϑ kann man die Dichte einer nichtzentralen χ2−Verteilung ausdrücken.
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Definition 3.13. Seien X1, ...,Xn unabhängige normalverteilte Zufallsvariablen mit
Mittelwert mi und Varianz σ2

i für 1 ≤ i ≤ n. Dann nennt man die Verteilung von

U =
n

∑
i=1

(Xi

σi
)

2

eine nichtzentrale χ2−Verteilung mit n Freiheitsgraden und Nichtzentralitätsparameter

λ =
n

∑
i=1

(mi

σi
)

2

.

Kurz: U ∼ χ2(n,λ).
U hat eine Dichte der Form

fχ2(n,λ)(y) =
1

2
(y
λ
)
n
4
− 1

2

e−
y+λ
2 In

2
−1(

√
λy)1(0,∞)(y)

Allgemein kann der Parameter n durch einen nichtnegativen rellen Parameter δ ≥ 0
ersetzt werden.
Eine χ2−Verteilung mit δ ≥ 0 Freiheitsgraden und Nichtzentralitätsparameter λ > 0 hat
die Dichte

fχ2(δ,λ)(y) =
1

2
(y
λ
)
δ
4
− 1

2

e−
y+λ
2 I δ

2
−1(

√
λy)1(0,∞)(y).

Satz 3.14. Sei Y ein CIR Prozess, d.h.

dY (t) = q(m − Y (t))dt + σ
√
Y (t)dW (t), Y (0) = y0 > 0

Dann ist die Dichte %(t, y) von Y (t) gegeben durch

%(t, y) = 4qeqt

σ2(eqt − 1)fχ2( 4mq

σ2
,

4qy0
σ2(eqt−1))

( 4qeqty

σ2(eqt − 1))

Hierdurch hat man die Übergangsdichte des Markov-Prozesses (Y (t))t≥0 bestimmt.
Beweis.
Möglichkeit 1: Man kann verifizieren, dass die Laplacetransformierte der angegeben
Dichte mit der Laplacetransformierten von Y (t) übereinstimmt. Dies tun wir aber nicht,
stattdessen:
Möglichkeit 2: Man betrachtet den quadratischen Besselprozess und stellt fest, dass der
CIR Prozess ein zeittransformierter quadratischer Besselprozess ist.

Definition 3.15. Sei δ ≥ 0. Die eindeutige Lösung der Gleichung

dX(t) = δdt + 2
√
X(t)dW (t), X(0) = x0 ≥ 0
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heißt quadratischer Besselprozess der Dimension δ zum Startwert x0 ≥ 0.
Kurz: X ist ein BESQδ

x0−Prozess.

Da x↦√
x die Yamada-Watanabe Bedingung erfüllt, ist die stochastische DGL eindeutig

lösbar und damit ist X wohldefiniert.

Satz 3.16. Sei X ein BESQδ
x0−Prozess. Dann gilt:

(i) EX(t) = x0 + δt

(ii) VarX(t) = 4x0t + 2δt2

(iii) E [exp (−λX(t))] = (1 + 2tλ)− δ2 exp (− x0λ
1+2tλ

) für alle λ ≥ 0, t > 0

Beweis. Es gilt E
T

∫
0

Xn(t)dt < ∞ für alle T > 0, n ∈ N. Wegen

X(T ) = x0 + δT + 2

T

∫
0

√
X(s)dW (s)

gilt
EX(T ) = x0 + δT.

Weiter ist

X(T ) − (x0 + δT ) = 2

T

∫
0

√
X(s)dW (s).

Also

VarX(T ) = E [(X(T ) − (x0 + δT ))2]

= 4E
⎡⎢⎢⎢⎢⎢⎣

⎛
⎝

T

∫
0

√
X(s)dW (s)

⎞
⎠

2⎤⎥⎥⎥⎥⎥⎦

= 4E
⎡⎢⎢⎢⎢⎣

T

∫
0

X(s)ds
⎤⎥⎥⎥⎥⎦

= 4

T

∫
0

EX(t)dt

= 4

T

∫
0

x0 + δtdt

= 4x0T + 2δT 2

Zu (iii): Ansatz über PDE: Wegen der Markov Eigenschaft gilt

E [exp (−λX(T )) ∣Ft] = E [exp (−λX(T )) ∣X(t)] = u(t,X(t)) für alle 0 ≤ t < T.
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Ito-Formel angewendet auf u liefert:

du(t,X(t)) = ∂tu(t,X(t))dt + ∂xu(t,X(t))dX(t) + 1

2
∂2
xu(t,X(t))d⟨X⟩t

= (∂tu(t,X(t)) + δ∂xu(t,X(t)) + 2X(t)∂2
xu(t,X(t)))

+ 2
√
X(t)∂xu(t,X(t))dW (t)

Da (u(t,X(t)))t≥0 ein Martingal ist, erfüllt u die PDGL

∂tu(t, x) + δ∂xu(t, x) + 2x∂2
xu(t, x) = 0

auf (0, T ) × (0,∞) mit Endbedingung

lim
t↗T

u(t, x) = exp(−λx)

für alle x ≥ 0.
Ansatz für die Lösung:

u(t, x) = exp(−f(λ,T − t) − g(λ,T − t)x).

Es gilt:

∂tu(t, x) = (f ′(λ,T − t) + g′(λ,T − t)x)u(t, x)
∂xu(t, x) = −g(T − t)u(t, x)
∂2
xu(t, x) = g2(T − t)u(t, x).

Einsetzen in die PDGL führt zu

∂tu(t, x) + 2x∂2
xu(t, x) + δ∂xu(t, x)

= (f ′(T − t) + g′(T − t)x + 2xg2(T − t) − δg(T − t))u(t, x) != 0

⇔x(g′(T − t) + 2g2(T − t)) + f ′(T − t) − δg(T − t) = 0 für alle x > 0,0 < T − t < T
⇔g′(s) = −2g2(s), f ′(s) = δg(s) für alle 0 < s < T.

Die Endbedingung für u führt auf eine Anfangsbedingung für f und g:

g′(s) = −2g2(s), g(0) = λ
f ′(s) = δg(s), f(0) = 0.

Mittels Separation der Variablen kann die gewöhnliche DGL

z′ = −2z2, z(0) = λ

durch
g(t) = λ

1 + 2λt
, t ≥ 0
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gelöst werden:
dz

dt
= −2t2, − 1

2z2
dz = dt

t(z) − t(z0)
±
=0

= −
z

∫
z0

1

2y2
dy = 1

2z
− 1

2λ
.

Also ist

t(z) + 1

2λ
= 1

2z

⇔z(t) = λ

1 + 2λt

10.6.16

Satz 3.17. Sei X ein BESQδ
x0−Prozess, d.h.

dX(t) = δdt + 2
√
X(t)dW (t), x(0) = x0 > 0.

Dann gilt:

(i) Ist x0 = 0 und δ > 0, so hat X(t) die Dichte

%(t, x) = fΓ( δ
2
,2t)(x) für alle t > 0, x ≥ 0.

(ii) Ist x0 > 0 und δ > 0, so hat X(t) die Dichte

%(t, x) = fχ2(δ,x0
t
) (
x

t
) für alle t > 0, x ≥ 0.

(iii) Ist x0 > 0 und δ = 0, so gilt

P(X(t) ∈ A) = e−
x0
2t δ{x0}(A) + ∫

A

%(t, x)dx

mit
%(t, x) = 1

t
fχ2(0,

x0
t
) (
x

t
) für alle t > 0, x ≥ 0.

Dabei hat die Γ(a, b)−Verteilung die Dichte

fΓ(a,b)(x) =
1

baΓ(a)x
a−1e−

x
b1(0,∞)(x)

mit
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- a > 0 der Gestaltsparameter,

- b > 0 der Skalenparameter und

- Γ(a) =
∞

∫
0

ya−1e−ydy für alle a > 0 die Gammafunktion.

Beweis. (i). Sei x0 = 0, δ > 0. Dann ist

Ee−λX(t) = (1 + 2λt) δ2 .

Man stellt durch Integration fest, dass dies die Laplacetransformierte einer Γ ( δ
2 ,2t)−Verteilung

ist:
∞

∫
0

e−λxfΓ( δ
2
,2t)(x)dx = (1 + 2λt)− δ2 für alle λ ≥ 0.

(ii). Sei x0 > 0, δ > 0. Setze A(λ) ∶= (1 + 2tλ)−1. Dann gilt:

Ee−λX(t) = A(λ) δ2 exp(−x0

2t
) exp(x0A(λ)

2t
)

= exp(−x0

2t
)

∞
∑
n=0

xn0A(λ)n+ δ2
(2t)nn!

.

A(λ)n+ δ2 ist die Laplacetransformierte einer Γ (n + δ
2 ,2t)−Verteilung, denn es gilt allge-

mein:
Z1 ∼ Γ(a1, b), Z2 ∼ Γ(a2, b) ⇒ Z1 +Z2 ∼ Γ(a1 + a2, b).

Für die entsprechende Laplacetransformierte gilt dann

Ee−λ(Z1+Z2) = Ee−λZ1e−λZ2

Weiter gilt dann:

∞

∫
0

e−λx%(t, x)dx = exp(−x0

2t
)

∞
∑
n=0

xn0
(2t)nn!

∞

∫
0

e−λxfΓ(n+ δ
2
,2t)(x)dx

=
∞

∫
0

e−λx exp(−x0 + x
2t

)
∞
∑
n=0

xn0x
n+ δ

2
−1

n!Γ (n + δ
2
) (2t)2n+ δ

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
%(t,x)

dx.

Hieraus folgt

%(t, x) = 1

2t
( x
x0

)
δ
4
− 1

2

e−
x0+x
2t I δ

2
−1 (

√
x0x

t
)

= 1

t
fχ2(δ,x0

t
) (
x

t
) .
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denn

( x
x0

)
δ
4
− 1

2 1

2t
I δ

2
−1 (

√
x0x

t
) =

∞
∑
n=0

xn0x
n+ δ

2
−1

n!Γ (n + δ
2
) (2t) 2n+δ

2

.

(iii) geht analog; siehe Übung.

Durch Zeittransformation kann man aus einem Besselprozess einen CIR Prozess machen.

Satz 3.18. Sei Y ein CIR Prozess der Form

dY (t) = q(m − Y (t))dt + σ
√
Y (t)dW (t), Y (0) = y0 ≥ 0

mit q > 0,m ≥ 0 und σ > 0.

Sei X ein BESQ
4qm

σ2
y0 −Prozess, also Lösung von

dX(t) = 4qm

σ2
dt + 2

√
X(t)dW̃ (t). (8)

Dann stimmt die Verteilung von Y (t) überein mit der Verteilung von

e−qtX(η(t))

mit
η(t) ∶= σ

2

4q
(eqt − 1) .

Beweis. η(t) = σ2

4q (eqt − 1) definiert eine bijektive Zeittransformation von [0,∞) mit
Ableitung

η′(t) = σ
2

4
eqt.

Es gilt nun

η(t)

∫
0

√
X(s)dW̃ (s) =

t

∫
0

√
X(η(u))dW̃ (η(u))

=
t

∫
0

√
X(η(u))dM(u)

mit M(u) ∶= W̃ (η(u)).
M ist ein L2−Martingal mit ⟨M⟩t = η(t) für alle t ≥ 0.
Durch

B(t) ∶=
t

∫
0

1√
η′(u)

dM(u), t ≥ 0
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wird ein Wiener-Prozess definiert, denn

⟨B⟩t =
t

∫
0

1

η′(u)d⟨M⟩u

=
t

∫
0

1

η′(u)dη(u)

=
t

∫
0

1

η′(u)η
′(u)du

= t.

Deshalb gilt
η(t)

∫
0

√
X(s)dW̃ (s) =

t

∫
0

√
X(η(u))

√
η′(u)dB(u).

Also folgt in Integralschreibweise von Gleichung 8:

X(η(t)) = y0 +
4qm

σ2
η(t) + 2

η(t)

∫
0

√
X(s)dW̃ (s)

= y0 +
4qm

σ2
η(t) + 2

t

∫
0

√
X(η(u))

√
η′(u)dB(u)

und damit
dX(η(t)) = 4qm

σ2
η′(t)dt + 2

√
X(η(t))

√
η′(t)dB(t).

Partielle Integration liefert:

de−qtX(η(t)) = e−qtdX(η(t)) − qe−qtX(η(t))dt

= e−qt4qm
σ2

η′(t)dt + 2e−qt
√
X(η(t))

√
η′(t)dB(t) − qe−qtX(η(t))dt

= qmdt + σ
√
e−qt

√
X(η(t))dB(t) − qe−qtX(η(t))dt

= q(m − e−qtX(η(t)))dt + σ
√
e−qtX(η(t))dB(t).

Also erfüllt Y (t) = e−qtX(η(t)) die stochastische DGL

dY (t) = q(m − Y (t))dt + σ
√
Y (t)dB(t).

Also folgt die Behauptung.

Ziel: Bestimmung eines äquivalenten Martingalmaßes in einem stochastischen Volatili-
tätsmodell.
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Allgemeiner Ansatz:

dS(t) = S(t)(µdt + f(Y (t))dW (t))
dY (t) = b(Y (t))dt + σ(Y (t))dZ(t)

d⟨W,Z⟩t = %dt, % ∈ (−1,1)
bzw.

dS(t) = S(t)(µdt + f(Y (t))(
√

1 − %2dW̃ (t) + %dZ(t)))
dY (t) = b(Y (t))dt + σ(Y (t))dZ(t)

mit unabhängigen Wiener-Prozessen W̃ ,Z.
Aufgabe ist es, eine Girsanov-Transformation zu finden, sodass

dS(t) = S(t)(rdt + f(Y (t))(
√

1 − %2dW̃ ⋆(t) + %dZ⋆(t)))
ist.
Bezeichne mit (Ft)t≥0 die von W̃ und Z erzeugte Wiener-Filtration.
Bezeichne mit (F (1)

t )
t≥0

die von W̃ und mit (F (2)
t )

t≥0
die von Z erzeugte Wiener-

Filtration.

Definition 3.19. Ein Marktpreisprozess für Risiko ist ein stochastischer Prozess (ξ, γ)
mit folgenden Eigenschaften

(i) ξ und γ sind previsibel (oder äquivalent progressiv messbar) bezüglich (F (2)
t )

t≥0
.

(ii)
t

∫
0

ξ2(s)ds < ∞ und
t

∫
0

γ2(s)ds < ∞ für alle t ≥ 0 P-fast sicher.

ξ heißt Marktpreisprozess des Risikos für die Aktie.
γ heißt Marktpreisprozess des Risikos für die Volatilität.

Satz 3.20. Sei (ξ, γ) ein Marktpreisprozess des Risikos. Gilt

EL(γ)(T ) = E exp(−∫
T

0
γ(s)dZ(s) − 1

2 ∫
T

0
γ2(s)ds) = 1

so kann auf (Ω,FT ) ein Wahrscheinlichkeitsmaß P⋆ definiert werden durch

dP⋆
dP

∣
Ft

= L(ξ,γ)(t)

mit

L(ξ,γ)(t) ∶= exp
⎛
⎝
−

t

∫
0

ξ(s)dW̃ (s) −
t

∫
0

γ(s)dZ(s) − 1

2

t

∫
0

ξ2(s) + γ2(s)ds
⎞
⎠
.
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für alle t ≤ T . Dann sind

W ⋆(t) = W̃ (t) +
t

∫
0

ξ(s)ds

und

Z⋆(t) = Z(t) +
t

∫
0

γ(s)ds

unabhängige Wiener-Prozesse auf (Ω,FT ).

Beweis. Entscheidend ist, dass ξ previsibel bezüglich (F (2)
t )

t≥0
ist. Es gilt dann

EL(ξ,γ)(T ) = EE(L(ξ,γ)(T )∣F (2)
T )

= EL(γ)(T )E(∫
T

0
ξ(s)dW̃ (s) − ∫

T

0

1

2
ξ2(s)ds∣F (2)

T )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

= EL(γ)(T )
= 1

Beachte:
(ξ(t))t≥0 ist previsibel und (W̃ (t))

t≥0
unabhängig bezüglich (F (2)

t )
t≥0

.

Bezüglich P⋆ gilt dann für Gleichung 3: 14.6.16

dS(t) = S(t) ((µ − f(Y (t))(
√

1 − %2ξ(t) + %γ(t)))dt + f(Y (t))(
√

1 − %2dW ⋆(t) + %dZ⋆(t)))
dY (t) = (b(Y (t)) − σ(Y (t)))dt + σ(Y (t))dZ⋆(t).

ξ bestimmt sich aus der Gleichung

r = µ − f(Y (t))(
√

1 − %2ξ(t) + %γ(t)).

Ist f(Y (t)) ≠ 0 für alle 0 ≤ t < T P-fast sicher, so ist

ξ(t) = µ − r√
1 − %2f(Y (t))

− %γ(t)√
1 − %2

.

Gilt
T

∫
0

ξ2(t)dt < ∞, so kann ein äquivalentes Martingalmaß angegeben werden.

Es gilt:
T

∫
0

ξ2(t)dt < ∞⇔
T

∫
0

1

f 2(Y (t))dt < ∞.

Zusammengefasst ergibt sich also
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Satz 3.21. Sei (ξ, γ) ein Marktpreisprozess des Risikos mit

E exp
⎛
⎝
−

T

∫
0

γ(s)dZ(s) − 1

2

T

∫
0

γ2(s)ds
⎞
⎠
= 1.

Gilt
T

∫
0

1
f2(Y (t))dt < ∞ P-fast sicher, so wird mittels

ξ(t) = µ − r√
1 − %2f(Y (t))

− %γ(t)√
1 − %2

, 0 ≤ t < T

ein äquivalentes Martingalmaß P⋆ definiert durch

dP⋆
dP

∣
Ft

= exp
⎛
⎝
−

t

∫
0

γ(s)dZ(s) −
t

∫
0

ξ(s)dW̃ (s) − 1

2

t

∫
0

γ2(s) + ξ2(s)ds
⎞
⎠
, 0 ≤ t < T

und W ⋆(t) = W̃ (t) +
t

∫
0

ξ(s)ds und Z⋆(t) = Z(t) +
t

∫
0

γ(s)ds sind unabhängige Wiener-

Prozesse bezüglich P⋆.

Bezüglich P⋆ ist (e−rtS(t))0≤t<T ein lokales Martingal. Wann ist S⋆(t) = e−rtS(t) ein
P⋆−Martingal?
Setzen wir B(t) ∶=

√
1 − %2W ⋆(t) + %Z⋆(t), so gilt

S⋆(t) = S(0) exp
⎛
⎝

t

∫
0

f(Y (s))dB(s) − 1

2

t

∫
0

f 2(Y (s))ds
⎞
⎠
.

S⋆ ist ein P⋆−Martingal, wenn
E⋆S⋆(T ) = S(0).

Da Y unabhängig von W ⋆ ist, gilt

E⋆S⋆(T ) = S(0) ⇔ E⋆ exp
⎛
⎝
%

T

∫
0

f(Y (s))dZ⋆(s) − 1

2
%2

T

∫
0

f 2(Y (s))ds
⎞
⎠
= 1

denn

E⋆S⋆(T ) = S(0)E⋆ exp
⎛
⎝

T

∫
0

√
1 − %2f(Y (s))dW ⋆(s) − 1

2 ∫
T

0
(1 − %2)f 2(Y (s))ds

⎞
⎠

exp
⎛
⎝

T

∫
0

%f(Y (s))dZ⋆(s) − 1

2

T

∫
0

%2f(Y (s))ds
⎞
⎠
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= S(0)E⋆ exp
⎛
⎝

T

∫
0

%f(Y (s))dZ⋆(s) − 1

2

T

∫
0

%2f(Y (s))ds
⎞
⎠

E⋆ ⎛
⎝

exp
⎛
⎝

T

∫
0

√
1 − %2f(Y (s))dW ⋆(s) − 1

2

T

∫
0

(1 − %2)f 2(Y (s))ds
⎞
⎠
∣F (2)
T

⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

Anwendung auf das Heston-Modell, d.h.

dS(t) = S(t)(µdt +
√
Y (t)dW (t), S(0) = s0 > 0

dY (t) = q(m − Y (t))dt + σ
√
Y (t)dZ(t), Y (0) = y0 > 0

mit q > 0, m > 0, σ > 0.
Zu untersuchen ist

T

∫
0

f−2(Y (s))ds =
T

∫
0

1

Y (s)ds

da f(y) = √
y.

Ist 2qm ≥ σ2, so erreicht der Prozess Y die 0 nie. Dann ist

T

∫
0

1

Y (s)ds < ∞ P-fast sicher.

Ist 2qm > σ2, so gilt

E
T

∫
0

1

Y (s)ds < ∞ P-fast sicher.

Dies kann zurückgeführt werden auf eine entsprechende Aussage über den Bessel-Prozess.

Idee: Sei X ein BESQ
4qm

σ2
y0 −Prozess. Dann gilt

E
T

∫
0

1

X(s)ds < ∞.

Dies verifiziert man über die Dichte des Bessel-Prozesses

E
T

∫
0

1

X(s)ds =
T

∫
0

E 1

X(s)ds

=
T

∫
0

∞

∫
0

1

x
f(s, x)dxds

=
T

∫
0

∞

∫
0

1

x

1

s
fχ2(δ, y0

s
) (
x

s
)dxds
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< ∞.

Der letzte Schritt gilt wegen des asymptotischen Verhaltens der Besselfunktion in der
Nähe der Null.
Ist 2qm = σ2, so gilt

E
T

∫
0

1

Y (s)ds = ∞.

Ist 2qm < σ2, so gilt

0 < P
⎛
⎝

T

∫
0

1

Y (s)ds = +∞
⎞
⎠
< 1.

Zusammengefasst:

Satz 3.22. Gegeben sei ein Heston-Modell

dS(t) = S(t)(µdt +
√
Y (t)dW (t)

dY (t) = q(m − Y (t))dt + σ
√
Y (t)dZ(t).

Dann gilt:

(i) Ist 2qm ≥ σ2, so gibt es zu jedem Marktpreis γ der Volatilität, der

E
⎛
⎝
−

T

∫
0

γ(s)dZ(s) − 1

2

T

∫
0

γ2(s)ds
⎞
⎠
= 1

erfüllt, ein Marktpreis ξ für das Aktienrisiko, so dass durch ξ und γ ein äquiva-
lentes Martingalmaß definiert wird.

(ii) Ist 2qm < σ2 und µ ≠ r, so gibt es kein äquivalentes Martingalmaß.

Berechnung eines Calloptionspreises im Heston-Modell.
Ansatz: Marktpreis der Volatilität ist proportional zur Volatilität, d.h.

γ(t) = α
√
Y (t)

für ein α ∈ R. Dann ist

E exp
⎛
⎝

1

2

T

∫
0

γ2(s)ds
⎞
⎠
= E exp

⎛
⎝

1

2

T

∫
0

Y (s)α2ds
⎞
⎠
< ∞.

Dies impliziert mit Hilfe des Novikov Kriteriums, dass

⎛
⎝

exp
⎛
⎝
−

t

∫
0

γ(s)dZ(s) − 1

2

t

∫
0

γ2(s)ds
⎞
⎠
⎞
⎠

0≤t<T
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ein P−Martingal ist.
Durch

ξ(t) = µ − r√
1 − %2

√
Y (t)

− % γ(t)√
1 − %2

wird dann ein äquivalentes Martingalmaß definiert durch

dP⋆
dP

∣
Ft
= exp

⎛
⎝
−

t

∫
0

γ(s)dZ(s) −
t

∫
0

ξ(s)dW̃ (s) − 1

2

t

∫
0

γ2(s) + ξ2(s)ds
⎞
⎠

und W ⋆(t) = W̃ (t) +
t

∫
0

ξ(s)ds und Z⋆(t) = Z(t) +
t

∫
0

γ(s)ds sind unabhängige Wiener-

Prozesse bezüglich P⋆.
Es gilt dann bezüglich P⋆:

dS(t) = S(t)(rdt +
√
Y (t)(

√
1 − %2dW ⋆(t) + %dZ⋆(t)))

dY (t) = q(m − Y (t))dt + σ
√
Y (t)dZ⋆(t) − σ

√
Y (t)γ(t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
σαY (t)

dt

= (qm − (q + σα)Y (t))dt + σ
√
Y (t)dZ⋆(t)

= (q + σα)( qm

q + σα − Y (t))dt + σ
√
Y (t)dZ⋆(t).

Es liegt also auch bezüglich P⋆ ein Heston-Modell vor, da die quadratische Volatilität
ein CIR Prozess mit transformierten Parametern ist.
Für die Berechnung der Calloption ist zu berechnen 17.6.16

E⋆e−rT (S(T ) −K)+ = E⋆e−rTS(T )1{S(T )>K} − e−rTKP⋆(S(T ) >K)
= S(0)P⋆1(S(T ) >K) − e−rTKP⋆(S(T ) >K)

mit
dP⋆1
dP⋆

∣
Ft
∶= 1

S(0)e
−rtS(t) für alle 0 ≤ t < T.

Zu berechnen sind also P⋆1(S(T ) >K) und P⋆(S(T ) >K). Dies geschieht durch Bestim-
men der Fouriertransformierten von

X(T ) ∶= lnS(T )

bezüglich P⋆1 und P⋆.
Die Ito-Formel liefert

dX(t) = 1

S(t)dS(t) −
1

2

1

S2(t)d⟨S⟩t

= 1

S(t)S(t)(rdt +
√
Y (t)dW ⋆(t)) − 1

2

1

S2(t)S
2(t)Y (T )dt
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= (r − 1

2
Y (t))dt +

√
Y (t)dW ⋆(t).

Zu betrachten ist
E⋆eiλX(T ) = E⋆h(X(T ), Y (T ))

mit h(x, y) = e−λx. Auch eine Abhängigkeit der Funktion h von y ist zu betrachten, da X
kein Markov-Prozess ist. Ausnutzen kann man aber die Markov-Eigenschaft von (X,Y ),
was zu einem PDE Ansatz führt. Setze

u(t, x, y) ∶= E⋆(h(X(T ), Y (T )∣X(t) = x,Y (t) = y).

Dann gilt wegen der Markov-Eigenschaft

E⋆(h(X(T ), Y (T )∣Ft) = E⋆(h(X(T ), Y (T ))∣X(t), Y (t))
= u(t,X(t), Y (t)).

Das bedeutet, dass u(t,X(t), Y (t)), t ≥ 0, als bedingter Erwartungswert, ein P⋆−Martingal
ist.
Die Ito-Formel liefert

du(t,X(t), Y (t)) = ∂tu(t,X(t), Y (t))dt + ∂xu(t,X(t), Y (t))dX(t)

+ ∂yu(t,X(t), Y (t))dY (t) + 1

2
∂2
xu(t,X(t), Y (t))d⟨X⟩t

+ 1

2
∂2
yu(t,X(t), Y (t))d⟨Y ⟩t + ∂x∂yu(t,X(t), Y (t))d⟨X,Y ⟩t

= ∂tu(t,X(t), Y (t))dt + ∂xu(t,X(t), Y (t))(r − 1

2
Y (t))dt

+ ∂xu(t,X(t), Y (t))
√
Y (t)dW ⋆(t) + ∂yu(t,X(t), Y (t))b(a − Y (t))dt

+ ∂yu(t,X(t), Y (t))σ
√
Y (t)dZ⋆(t) + 1

2
∂2
xu(t,X(t), Y (t))Y (t)dt

+ 1

2
∂2
yu(t,X(t), Y (t))σ2Y (t)dt + ∂x∂yu(t,X(t), Y (t))σY (t)%dt

da ⟨X,Y ⟩t = σ
√
Y (t)

√
Y (t)d⟨W ⋆, Z⋆⟩t = σY (t)%dt

= [∂tu(t,X(t), Y (t)) + (r − 1

2
Y (t))∂xu(t,X(t), Y (t))

+ b(a − Y (t))∂yu(t,X(t), Y (t)) + 1

2
Y (t)∂2

xu(t,X(t), Y (t))

+ 1

2
σ2Y (t)∂2

yu(t,X(t), Y (t)) + %σy∂x∂yu(t,X(t), Y (t))]dt

+ ∂xu(t,X(t), Y (t))
√
Y (t)dW ⋆(t) + ∂yu(t,X(t), Y (t))σ

√
Y (t)dZ⋆(t).

Also erfüllt u die partielle Differentialgleichung

∂tu(t, x, y) + (r − 1

2
y)∂xu(t, x, y)
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+ b(a − y)∂yu(t, x, y) +
1

2
y∂2

xu(t, x, y))

+ 1

2
σ2y∂2

yu(t, x, y) + %σy∂x∂yu(t, x, y)

= 0

auf (0, T ) ×R × [0,∞) mit Endbedingung

lim
t↗T

u(t, x, y) = eiλx für alle x ∈ R, y ∈ [0,∞).

Als Ansatz für eine Lösung wählt man

u(t, x, y) = exp(Cλ(T − t) +Dλ(T − t)y + iλx)

mit Funktionen Cλ,Dλ ∶ [0,∞) Ð→ R.
Ausrechnen der partiellen Ableitung und Einsetzen in die partielle Differentialgleichung
führt auf die gewöhnlichen Differentialgleichungen

D′
λ(s) = (−b + iλ%σ)D(s) + 1

2
σ2D2(s) − 1

2
iλ − 1

2
λ2

C ′
λ(s) = abD(s) + riλ

mit Anfangsbedingungen Cλ(0) = 0 =Dλ(s).
Die Differentialgleichung für D ist eine Ricatti-Gleichung und man erhält

Dλ(t) =
b − iσ%λ + d

σ2

1 − edt
1 − gedt

mit

g = b − %σλi + d
b − %σλi − d

d =
√

(b − i%σλ)2 + σ2(iλ + λ2)

Aufintegrieren liefert für C:

Cλ(t) = riλt +
ab

σ2
((b − i%σλ + d)t − 2 ln(1 − gedt

1 − g )) .

Also ist die Fouriertransformierte

u(λ) = E⋆ (eiλX(T )∣X(0) = x0, Y (0) = y0)
= u(0, x0, y0)
= exp (Cλ(T ) +Dλ(T )y0 + iλx0)

Man erhält
P⋆(S(T ) >K) = P⋆(X(T ) > lnK)
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durch Fourierinversion

P⋆(S(T ) >K) = 1

2
+ 1

π

∞

∫
0

Re(e
−iλ lnKu(λ)

iλ
)dλ.

Dieses Integral wird numerisch gelöst.
Weiter ist P ⋆

1 (S(T ) >K) zu bestimmen, wobei

dP⋆1
dP⋆

∣
Ft
= 1

S(0)e
−rtS(t) = 1

S(0)S
⋆(t) =∶ L(t).

Es gilt
dS⋆(t) = S⋆(t)

√
Y (t)dW ⋆(t).

Also als Dorleans-Exponential:

L(t) = exp
⎛
⎝

t

∫
0

√
Y (s)dW ⋆(s) − 1

2

t

∫
0

Y (s)ds
⎞
⎠
.

Girsanov liefert die Wiener-Prozesse

W ⋆⋆ =W ⋆(t) − ⟨W ⋆,

t

∫
0

√
Y (s)dW ⋆(s)⟩t

Z⋆⋆ = Z⋆(t) − ⟨Z⋆,

t

∫
0

√
Y (s)dW ⋆(s)⟩t

mit
⟨W ⋆⋆, Z⋆⋆⟩t = ⟨W ⋆, Z⋆⟩t = %t.

Es gilt:

⟨W ⋆,

t

∫
0

√
Y (s)dW ⋆(s)⟩t =

t

∫
0

√
Y (s)d⟨W ⋆⟩s =

t

∫
0

√
Y (s)ds

⟨Z⋆,

t

∫
0

√
Y (s)dW ⋆(s)⟩t =

t

∫
0

√
Y (s)d⟨Z⋆,W ⋆⟩s =

t

∫
0

√
Y (s)%ds

Einsetzen liefert

dX(t) = (r − 1

2
Y (t))dt +

√
Y (t)dW ⋆(t)

= (r − 1

2
Y (t))dt +

√
Y (t)dW ⋆⋆ +

√
Y (t)

√
Y (t)dt

= (r + 1

2
Y (t))dt +

√
Y (t)dW ⋆⋆(t)
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dY (t) = b(a − Y (t))dt + σ
√
Y (t)dZ⋆(t)

= b(a − Y (t))dt + σ
√
Y (t)dZ⋆⋆(t) + σ

√
Y (t)

√
Y (t)%dt

= (b − %σ) ( ab

b − %σ − Y (t))dt + σ
√
Y (t)dZ⋆⋆(t)

=∶ b1(a1 − Y (t))dt + σ
√
Y (t)dZ⋆⋆(t)

Mit der gleichen Methode wie oben kann man die Fouriertransformierte von X(T ) =
lnS(T ) bestimmen.
Man erhält

u1(λ) = E⋆
1 (eiλX(T )∣X(0) = x0, Y (0) = y0)

= exp (C(1)
λ (T ) +D(1)

λ (T )y0 + iλx0)

mit

C
(1)
λ (t) = riλt + a1b1

σ2
((b1 − i%σλ + d1)t − 2 ln(1 − g1ed1t

1 − g1

))

D
(1)
λ (t) = b1 − i%σλ + d1

σ2

1 − ed1t
1 − g1ed1t

mit

g1 =
b1 − %σiλ + d1

b1 − %σiλ − d1

d1 =
√

(%σλi − b1)2 + σ2(λ2 − iλ).

Durch Fourierinversion kann dann

P⋆1(S(T ) >K) = P⋆1(X(T ) > ln(K)

ausgerechnet werden.
Anwendung in der Praxis:
Das Heston-Modell ist unvollständig. Die Frage ist, welches äquivalente Martingalmaß
zur Bewertung benutzt wird.
Ansatz:
Kalibrierung eines Heston-Modells an die beobachtbaren Marktpreise für Calloptionen.
Die Parameter des Modells sind

q Wiederkehrrate,

m Returnlevel der Volatilität,

α Proportionalitätsfaktor im Marktpreis der Volatitlität,

σ Schwankung der Volatilität,
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% Korrelation zwischen Aktie und Volatilität.

Diese Parameter bestimmen über die Heston-Formel den Modellpreis der Calloption.
Man bestimmt die Parameter so, dass Modell- und Marktpreise möglichst gut überein-
stimmen. Das so kalibrierte Modell benutzt man dann, um kompliziertere Derivate, die
keine Marktpreise haben, zu bewerten.

II Bondmarktmodelle
21.6.16

1 Short rate Modelle

1.1 Allgemeine Annahmen

- Handelszeitraum [0, T ⋆].

- Die Quelle des Zufalls im Bondmarkt wird beschrieben durch einen n−dimensionalen
Wiener-Prozess (W (t))0≤t≤T ⋆ .

- Die Information im Markt ist die von W erzeugte Wiener-Filtration (Ft)0≤t≤T ⋆ .

- Die risky assets in diesem Modell sind T−Bonds. Ein T−Bond ist ein Wertpapier,
das seinem Inhaber in T 1 Euro auszahlt mit T ≤ T ⋆. Dabei ist T die Fälligkeit
des Bonds.

Es werden keine Koupons (Zinsen) während der Laufzeit gezahlt.

Ein T−Bond hat einen Preisprozess

(B(t, T ))0≤t≤T .

Folgende Annahmen werden gefordert:

(i) B(T,T ) = 1,

(ii) B(t, T ), 0 ≤ t ≤ T , ist ein positives Semimartingal mit stetigen Pfaden,

(iii) Der beschränkte Variationsanteil von (B(t, T ))0≤t≤T hat absolut-stetige Pfade be-
züglich des Lebesgue-Maßes.

(iv) (B(t, T ))t≤T≤T ⋆ , als Funktion in T , hat P-fast sicher differenzierbare Pfade, d.h.
B(t, T ) ist differenzierbar in T für P− alle ω bei festem t.

Folgerungen aus den Annahmen
Aus (ii) und (iii) ergibt sich, analog zum Aktienmarktmodell, dass (B(t, T ))0≤t≤T eine
stochastische Differentialgleichung der Form

dB(t, T ) = B(t, T )(µ(t, T )dt + σ(t, T )dW (t))

= B(t, T )(µ(t, T )dt +
n

∑
j=1

σj(t, T )dWj(t))
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erfüllt (argumentiere analog über X(t) = lnB(t, T ), dann Ito etc.), mit previsiblen Pro-
zessen (µ(t, T ))0≤t≤T und (σ(t, T ))0≤t≤T .
Aus (iv) folgt, dass der short rate Prozess

r(t) ∶= − ∂

∂T
ln(B(t, T ))∣T=t

wohldefiniert ist.
Durch die short rate wird ein Geldmarktkonto

β(t) ∶= exp
⎛
⎝

t

∫
0

r(s)ds
⎞
⎠
, 0 ≤ t ≤ T ⋆

bzw.
dβ(t) = β(t)r(t)dt, 0 ≤≤ T ⋆

definiert.

1.2 Konstruktion eines arbitragefreien Marktes

Wir haben in diesem Modell n Wiener-Prozesse, die den Zufall bestimmen, aber unend-
lich viele risky assets, da für jedes T ∈ [0, T ⋆] ein neuer T−Bond definiert wird. Deshalb
braucht man Bedingungen an die Driftfunktionen und Volatilitäten, dass das Modell
arbitragefrei wird.
Betrachte zunächst n = 1.
Aufgabe ist es, ein äquivalentes Martingalmaß zu bestimmen.
Um eine Girsanovtransformation zu bestimmen, braucht man lediglich ein risky asset,
d.h. ein T−Bond.
Wähle T = T ⋆ und betrachte das Modell

dβ(t) = β(t)r(t)dt
dB(t, T ⋆) = B(t, T ⋆)(µ(t, T ⋆)dt + σ(t, T ⋆)dW (t))

Es existiert ein äquivalentes Martingalmaß P⋆ genau dann für

ϑ(t) = −µ(t, T
⋆) − r(t)

σ(t, T ⋆) für alle 0 ≤ t ≤ T ⋆

wenn gilt:

E exp
⎛
⎜
⎝

T ⋆

∫
0

ϑ(s)dW (s) − 1

2

T ⋆

∫
0

ϑ2(s)ds
⎞
⎟
⎠
= 1.

Dann wird durch

dP⋆
dP

∣
Ft

= exp
⎛
⎝

t

∫
0

ϑ(s)dW (s) − 1

2

t

∫
0

ϑ2(s)ds
⎞
⎠
, 0 ≤ t ≤ T ⋆
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ein äquivalentes Martingalmaß auf FT ⋆ definiert und

W ⋆(t) =W (t) −
t

∫
0

ϑ(s)ds, 0 ≤ t ≤ T ⋆

ist ein Wiener-Prozess bezüglich P⋆. Dann gilt bezüglich P⋆:

dB(t, T ⋆) = B(t, T ⋆)(r(t)dt + σ(t, T ⋆)dW ⋆(t)).

Für T−Bonds mit kürzerer Laufzeit T < T ⋆ ergibt sich

dB(t, T ) = B(t, T )(µ(t, T )dt + σ(t, T )dW (t))
= B(t, T )((µ(t, T ) + σ(t, T )ϑ(t))dt + σ(t, T )dW ⋆(t)).

(B(t,T )
β(t) )

0≤t≤T
ist ein lokales P⋆−Martingal genau dann, wenn

µ(t, T ) + σ(t, T )ϑ(t) = r(t).

Also müssen die Driftfunktionen µ(⋅, T ) und Volatilitäten σ(⋅, T ) die Gleichung

µ(t, T ) + σ(t, T )ϑ(t) = r(t) für alle 0 ≤ t ≤ T

erfüllen, bzw.

r(t) − µ(t, T )
σ(t, T ) = ϑ(t) = r(t) − µ(t, T

⋆)
σ(t, T ⋆) für alle 0 ≤ t ≤ T

Diese Bedingung ist nicht verwunderlich, denn in einem von einemWiener-Prozess getrie-
benen arbitragefreien Markt ist der Sharpe Ratio eines jeden risky assets eine Invariante.
Man könnte auch gleich so argumentieren:
Durch den T ⋆−Bond ist der Sharpe Ratio durch

µ(t, T ⋆) − r(t)
σ(t, T ⋆) = −ϑ(t)

eindeutig festgelegt.
Jedes weitere Finanzgut im arbitragefreien Markt hat den gleichen Sharpe Ratio, das
heißt es gilt

µ(t, T ) − r(t)
σ(t, T ) = −ϑ(t) = µ(t, T

⋆) − r(t)
σ(t, T ⋆) für alle 0 ≤ t ≤ T.

Sei nun n = d ∈ N.
Wähle d Fälligkeiten mit

T1 < T2 < ... < Td.
Betrachte den Markt

dβ(t) = β(t)r(t)dt
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dB(t, Ti) = B(t, Ti)(µ(t, Ti)dt + σ(t, Ti)dW (t))

= B(t, Ti)(µ(t, Ti)dt +
d

∑
j=1

σj(t, Ti)dWj(t))

Ist die Matrix
σ(t) ∶= σj(t, Ti)1≤i≤d

1≤j≤d

invertierbar für alle t ≤ T1, so kann ϑ(t) definiert werden durch

ϑ(t) = σ−1(t)
⎛
⎜
⎝
r(t)1 −

⎛
⎜
⎝

µ(t, T1)
⋮

µ(t, Td)

⎞
⎟
⎠

⎞
⎟
⎠
.

Gilt weiter

E exp
⎛
⎝

T1

∫
0

ϑ(s)dW (s) − 1

2

T1

∫
0

∣ϑ(s)∣2ds
⎞
⎠
= 1

so wird durch
dP⋆
dP

∣
Ft
= exp

⎛
⎝

t

∫
0

ϑ(s)dW (s) − 1

2
∣ϑ(s)∣2ds

⎞
⎠

ein äquivalentes Martingalmaß definiert und

W ⋆(t) =W (t) −
t

∫
0

ϑ(s)ds

ist ein Wiener-Prozess bezüglich P⋆.
Es gilt:

dB(t, Ti) = B(t, Ti)(r(t)dt +
d

∑
j=1

σj(t, Ti)dW ⋆
j (t)).

Also ist (B(t,Ti)
β(t) )

0≤t≤T1
ein lokales P∗−Martingal für alle 1 ≤ i ≤ d.

Der gesamte Bondmarkt ist für t ≤ T1 arbitragefrei genau dann, wenn (B(t,T )
β(t) )

0≤t≤T
ein

lokales P⋆−Martingal ist für alle T ≤ T1.
Dann ist für T ≤ T1:

dB(t, T ) = B(t, T )(µ(t, T )dt +
d

∑
j=1

σj(t, T )dWj(t))

= B(t, T )((µ(t, T ) +
d

∑
j=1

σj(t, T )ϑj(t))dt +
d

∑
j=1

σj(t, T )dW ⋆
j (t)).

Also muss gelten

µ(t, T ) +
d

∑
j=1

σj(t, T )ϑj(t) = r(t) für alle 0 ≤ t ≤ T.
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Damit sind alle T−Bonds mit Fälligkeit vor T1 lokale P⋆−Martingale. Da man frei ist in
der Wahl der d risky assets, können die Zeitpunkte T1, ..., Td in der Realität sehr nah an
T ⋆ liegen, sodass nur eher vernachlässigbar wenige T−Bonds nicht berücksichtigt werden.
Betrachtet man z.B. T ⋆ = 3 Jahre, so können die Zeitpunkte T1, ..., Td 10 Sekunden, 20
Sekunden und 30 Sekunden vor T ⋆ gewählt werden.

Motivation der short rate
24.6.16

Frage: Was für eine Rendite kann für ein risikoloses Investment zwischen T und T1 in t
garantiert werden?
Anwort: Betrachte den T1−Bond als Basisgut und vereinbare zum Termin T ein Termin-
geschäft (Forward) auf den T1−Bond. Der Terminpreis (Forwardpreis in t), vereinbart in
t, auf den T1−Bond ist aus Arbitragegründen eindeutig bestimmt durch

F (t, T ;T1) =
B(t, T1)
B(t, T )

das heißt, für F (t, T ;T1) in T erhält man einen T1−Bond in T . Für 1 Euro gehe 1
F (t,T ;T1)

Termingschäfte ein und erhalte 1
F (t,T ;T1) = B(t,T )

B(t,T1) T1−Bonds. Diese sind in T1 jeweils 1
Euro wert. Also erhält man einen Gewinn von B(t,T )

B(t,T1) − 1 Euro.
Dieser entspricht bei stetiger Verzinsung einer Rendite von RC(t;T,T1), die sich aus

exp ((T1 − T )RC(t;T,T1)) =
B(t, T )
B(t, T1)

berechnet. Lässt man in

RC(t;T,T1) = −
1

T1 − T
(lnB(t, T1) − lnB(t, T ))

die Intervallänge T1 − T gegen Null streben, erhält man die stetige forwardrate f zum
Termin T in t durch

f(t, T ) = lim
T1→T

RC(t, T, T1) = −∂T lnB(t, T ).

Im Modell wird vorrausgesetzt, dass die stetigen forwardrates existieren.

Bemerkung.

B(t, T ) = exp (lnB(t, T ))

= exp
⎛
⎝
−

T

∫
t

− ∂
∂s

lnB(t, s)ds
⎞
⎠

= exp
⎛
⎝
−

T

∫
t

f(t, s)ds
⎞
⎠
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Preise von Nullkouponanleihen ergeben sich also aus den forwardrates und umgekehrt.
Die short rate r(t) ist die forwardrate in t, also

r(t) = f(t, t) = lim
T1→t

RC(t; t, T1)

= lim
T1→t

− 1

T1 − t
(lnB(t, T1) − lnB(t, t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

= − ∂T ∣T=t lnB(t, T )

1.3 Short rate Modelle

Ausgehend von der Entwicklung für die short rate soll ein arbitragefreies Bondmarkt-
modell entwickelt werden. Anzugeben sind

- ein Wahrscheinlickeitsraum (Ω,FT ⋆ ,P), wobei sich FT ⋆ durch einenWiener-Prozess
W ergibt,

- eine Familie von Bondpreisen (B(t, T ))0≤t≤T für jedes T ≤ T ⋆,

- ein äquivalentes Wahrscheinlichkeitsmaß P⋆ auf (Ω,FT ⋆), so dass (B(t,T )
β(t) )

0≤t≤T
ein

lokales Martingal ist bezüglich P⋆ für alle T ≤ T ⋆.

Betrachte also einen n−dimensionalen Wiener-Prozess W mit Wiener-Filtration (Ft)t≥0

bezüglich eines Wahrscheinlichkeitsmaßes P. Fixiere T ⋆ > 0. Damit ist (Ω,FT ⋆ ,P) fest-
gelegt.
1. Annahme: Die short rate ist eine Diffusion, das heißt, sie ist eine starke Lösung der
stochastischen DGL

dr(t) =m(t, r(t))dt + δ(t, r(t))dW (t)

=m(t, r(t))dt +
n

∑
j=1

δj(t, r(t))dWj(t)

mit Anfangsbedingung r(0) = r0 ∈ R.
m ∶ [0, T ⋆]×RÐ→ R und δ ∶ [0, T ⋆]×RÐ→ R sind so zu wählen, dass eine solche Lösung
existiert.
2. Annahme: Es existiert ein zu P äquivalentes Wahrscheinglichkeitsmaß P⋆ auf (Ω,FT ⋆)
mit

dP⋆
dP

∣
Ft

= L(t) = exp
⎛
⎝

t

∫
0

ϑ(s)dW ∗(s) − 1

2

t

∫
0

∣ϑ(s)∣2ds
⎞
⎠

für alle 0 ≤ t ≤ T ⋆

wobei ϑ(t) = ϑ(t, r(t)) für alle t ≤ T ⋆ für eine Funktion ϑ ∶ [0, T ⋆] ×RÐ→ Rn.
3. Annahme: Sei E⋆ 1

β(T ) < ∞ für alle T ≤ T ⋆, wobei

β(t) = exp
⎛
⎝

t

∫
0

r(s)ds
⎞
⎠
.
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Dann wird durch

B(t, T ) = β(t)E⋆ ( 1

β(T ) ∣Ft)

= E⋆ ( β(t)
β(T ) ∣Ft)

= E⋆ ⎛
⎝

exp
⎛
⎝
−

T

∫
t

r(s)ds
⎞
⎠
∣Ft

⎞
⎠

für alle t ≤ T ein arbiragefreies Bondmarktmodell mit äquivalentem Martingalmaß P⋆
definiert, denn

B(t, T )
β(t) = E⋆ ( 1

β(T ) ∣Ft) , t ≤ T

ist ein P⋆−Martingal.
Im folgenden soll B(t, T ) und dessen Volatilität σ(t, T ) berechnet werden:
Wegen der 2. Annahme definiert

W ⋆(t) =W (t) −
t

∫
0

ϑ(s, r(s))ds

einen n−dimensionalen Wiener-Prozess bezüglich P⋆. Es gilt:

dr(t) =m(t, r(t))dt + δ(t, r(t))dW (t)

= (m(t, r(t)) +
n

∑
j=1

ϑj(t, r(t))δij(t, r(t)))dt + δ(t, r(t))dW ⋆(t).

Also ist r eine Diffusion bezüglich P⋆:

dr(t) = b(t, r(t))dt + δ(t, r(t))dW ⋆(t)

mit
b(t, r(t)) =m(t, r(t)) + ϑ(t, r(t))δ(t, r(t)).

Die Markov-Eigenschaft von r bezüglich P⋆ impliziert

B(t, T ) = E⋆ ⎛
⎝

exp
⎛
⎝
−

T

∫
t

r(s)ds
⎞
⎠
∣Ft

⎞
⎠

= E⋆ ⎛
⎝

exp
⎛
⎝
−

T

∫
t

r(s)ds
⎞
⎠
∣r(t)

⎞
⎠

= vT (t, r(t))

mit

vT (t, r) = E⋆ ⎛
⎝

exp
⎛
⎝
−

T

∫
t

r(s)ds
⎞
⎠
∣r(t) = r

⎞
⎠
.
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Ito-Formel angewendet auf vT impliziert:

dB(t, T ) = dvT (t, r(t))

= ∂tvT (t, r(t)) + ∂xvT (t, r(t))dr(t) +
1

2
∂2
xvT (t, r(t))d⟨r⟩t

= [∂tvT (t, r(t)) + ∂xvT (t, r(t))b(t, r(t)) +
1

2
∂2
xvT (t, r(t))∣δ(t, r(t))∣2]dt

+ ∂xvT (t, r(t))δ(t, r(t))dW ⋆(t)

Also erfüllt vT die partielle DGL

∂tvT (t, r) + b(t, r)∂xvT (t, r) +
1

2
∣δ(t, r)∣2∂2

xvT (t, r) = rvT (t, r)

auf (0, T ) ×R mit Endbedingung

lim
t↗T

vT (t, r) = 1.

Durch Lösen dieser partiellen DGL kann man die Bondpreise explizit berechnen. Auch
gewinnt man deren Volatilitäten mittels

dB(t, T ) = B(t, T )(r(t)dt + ∂xvT (t, r(t))
vT (t, r(t))

δ(t, r(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

σ(t,T )

)dW ⋆(t).

Bemerkung. Eigentlich ist der Wechsel zum Maß P⋆ nicht notwenig. Formal bedeutet
dies, dass man ϑ(t, r) = 0 setzt. Dann ist P⋆ = P. Dies ist das sogenannte Matingal
Modelling.

1.4 Beispiele für short rate Modelle
24.6.16

a) Vasicek Modell
Einfaktormodell, n = 1,

dr(t) = b(a − r(t))dt + δdW (t)
mit b, a, δ > 0.
- Vasicek-Prozess
- Returnlevel a
- Wiederkehrrate b
Lösen der partiellen DGL führt zu

B(t, T ) = exp (−h(T − t) − r(t)g(T − t))

mit

h(s) = (a − δ2

2b2
) s + (δ

2

b2
− a)(1 − e−bs) 1

b
− σ2

2b2

1

2b
(1 − e−2bs)
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g(s) = 1

b
(1 − e−bs)

Die Rendite (Yield) Y (t, T ) erhält man aus

exp ((T − t)Y (t, T )) = 1

B(t, T )

⇔Y (t, T ) = 1

T − t(h(T − t) + g(T − t)r(t))

Y (t, ⋅) ist die Rendite der Nullkouponanleihe, als Funktion der Fälligkeit. Die Anfangs-
renditenkurve ist

Y (0, T ) = 1

T
(g(T )r(0) + h(T )).

Die Rendite hängt affin von der short rate ab. Deshalb ist das Vasicek Modell ein Beispiel
für ein affines Bondmarktmodell. Für den Bondpreis gilt:

dB(t, T ) = B(t, T )(r(t)dt−g(T − t)δ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

σ(t,T )

dW (t)).

Dann ist
σ(t, T ) = −g(T − t)δ

die Volatilität des T−Bonds. σ(t, T ) ist deterministisch. Dies bedeutet, dass die Bewer-
tung eines Derivates im Vasicek Modell analog zur Bewertung in einem Black-Scholes
Modell mit deterministischer Volatilität erfolgen kann.

b) Das Cox-Ognersoll-Ross Modell (CIR Modell)

dr(t) = b(a − r(t))dt + δ
√
r(t)dW (t)

mit b, a, δ > 0 und 2ab ≥ δ2.
Lösen der partiellen DGL ergibt

B(t, T ) = exp (−h(T − t) − g(T − t)r(t))

mit

h(s) = −2ab

δ2
ln( 4γe(γ+

b
2
)s

(2γ + b)(e2γs − 1) + 4γ
)

g(s) = 2(e2γs − 1)
(2γ + b)(e2bs − 1) + 4γ

und

γ = 1

2

√
b2 + 2δ2.

Damit ist das CIR Modell ebenfalls ein affines Bondmarktmodell mit

dB(t, T ) = B(t, T )(r(t)dt−g(T − t)δ
√
r(t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
σ(t,T )

dW (t)).
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1.5 Bewertung in short rate Modellen

Gegeben sei ein arbitragefreies short rate Modell, das von einem n−dimensionalenWiener-
Prozess getrieben wird. Gibt es Fälligkeiten T1 < ... < Tn, sodass

σ(t) ∶= (σj(t, Ti))1≤i,j≤n

invertierbar ist für alle 0 ≤ t < T1, so ist das Modell vollständig, da dann das äquivalente
Martingalmaß eindeutig bestimmt ist.
Deshalb kann jeder T−Claim C mit E⋆∣ C

β(T ) ∣ < ∞ eindeutig arbitragefrei durch

p0(C) = E⋆ C

β(T )

heute in Euro bewertet werden.
Entsprechend in t durch

pt(C) = β(t)E⋆ ( C

β(T ) ∣Ft) .

Zur Berechnung ist es vorteilhaft, den Forwardpreis

F (0, T ;C) = p0(C)
B(0, T )

bzw.
F (t, T ;C) = pt(C)

B(t, T )
zu bestimmen mit Hilfe des sogenannten Forwardmartingalmaßes in T .

Definition 1.6. Das Forwardmartingalmaß PT zum Termin T > 0 ist das zum Nume-
raire (B(t, T ))0≤t≤T gehörige äquivalente Martingalmaß.
Genauer:

(i) PT ∼ P⋆ auf (Ω,FT ).

(ii) Für jedes Basisfinanzgut S ist ( S(t)
B(t,T ))0≤t≤T

ein lokales PT−Martingal.

S(t)
B(t,T ) ist der sogennante Termin-/Forwardpreis in t.

Zur Bestimmung von PT :
Wegen

B(t, T )
β(t) = E⋆ ( 1

β(T ) ∣Ft) , 0 ≤ t ≤ T

ist B(t,T )
β(t) als bedingter Erwartungswert ein P⋆−Martingal für alle 0 ≤ t ≤ T .
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Also wird durch

dPT
dP⋆

∣
Ft
= B(t, T )

β(t)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

P⋆−MG, aber
E⋆=B(0,T )≠0

1

B(0, T )
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
Normier-
ungsfak-

tor

=∶ L(t), 0 ≤ t ≤ T

ein zu P⋆ äquivalentes Wahrscheinlichkeitsmaß definiert.
Es gilt für jedes Basisgut S, dass

F (t, T ;S) ∶= S(t)
B(t, T ) , 0 ≤ t ≤ T

ein lokales PT−Martingal ist genau dann, wenn

S(t)
B(t, T )L(t), 0 ≤ t ≤ T

ein lokales P⋆−Martingal ist.
Da

S(t)
B(t, T )L(t) =

S(t)
B(t, T )

B(t, T )
β(t)

1

B(0, T ) = S(t)
β(t)

1

B(0, T )
ist F (t, T ;S) ein lokales PT−Martingal für alle 0 ≤ t ≤ T . Damit ist PT das Forwardmar-
tingalmaß zum Termin T .
Ist T1 ≠ T , so ist

(B(t, T1)
B(t, T ) )

0≤t≤T∧T1

ein PT−Martingal.

Bemerkung 1.7. Wegen

dB(t, T ) = B(t, T )(r(t)dt + σ(t, T )dW ⋆(t))

gilt
dPT
dP⋆

∣
Ft

= exp
⎛
⎝

t

∫
0

σ(s, T )dW ⋆(s) − 1

2

t

∫
0

∣σ(s, T )∣2ds
⎞
⎠

und

W T (t) ∶=W ⋆(t) −
t

∫
0

σ(s, T )ds, 0 ≤ t ≤ T

definiert einen Wiener-Prozess bezüglich PT .

Anwendung bei der Bewertung von Derivaten

Sei E⋆ ∣C∣
β(t) < ∞, C ein T−Claim und pt(C) = β(t)E⋆ ( C

β(T ) ∣Ft) für alle 0 ≤ t ≤ T .
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Der Forward-/Terminpreis zum Termin T auf den Claim erfüllt

F (t, T ;C) = pt(C)
B(t, T )

= β(t)
B(t, T )E

⋆ ( C

β(T ) ∣Ft)

Bayes-Formel -> = β(t)
B(t, T )ET ( C

β(T )
1

L(T ) ∣Ft)L(t)

= ET (C ∣Ft).

Alternativ hätte man, anstatt mit P⋆ anzugfangen, auch die Bewertung mittels PT durch-
führen können, da PT das äquivalente Martingalmaß zum Numeraire B(⋅, T ) ist.

ET ( C

B(T,T ) ∣Ft) = ET (C ∣Ft)

ist dann der Preis von C, notiert in Anteilen des Numeraire Assets. Der Europreis ergibt
sich durch Multiplizieren mit dem Preis des Numeraire Asset, d.h.

pt(C) = ET (C ∣Ft)B(t, T )

bzw.
F (t, T ;C) = pt(C)

B(t, T ) = ET (C ∣Ft).

1.8 Berechnung des Callpreises
1.7.16

- Bondmarktmodell

- äquivalentes Martingalmaß P⋆

- T1−Bond als risky asset

- Derivat ist der Call auf den T1−Bond mit Ausübungszeitraum T < T1, d.h.

C = (B(T,T1) −K)+ .

Für die Bewertung betrachte das Forwardmartingalmaß zum Termin T , gegeben durch

dPT
dP⋆

∣
Ft

= B(t, T )
β(t)

1

B(0, T ) .

Zu berechnen ist

ET ((B(T,T1) −K)+∣Ft) , für alle 0 ≤ t ≤ T.
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Es gilt:

ET (C ∣Ft) = ET (B(T,T1)1{B(T,T1)>K}∣Ft) −ET (K1{B(T,T1)>K}∣Ft).

Weiter ist
dPT
dP⋆

∣
Ft

= B(t, T )
β(t)

1

B(0, T )
und

dPT1
dP⋆

∣
Ft

= B(t, T1)
β(t)

1

B(0, T1)
.

Da nach Bayes ET (Y L(T )∣Ft) = ET1(Y ∣Ft)L(t) gilt, ist

ET (B(T,T1)1{B(T,T1)>K}∣Ft) = ET1 (1{B(T,T1)>K}∣Ft)F (t, T ;T1)
= PT1 (B(T,T1) >K ∣Ft)F (t, T ;T1).

Somit folgt für die Bewertung des Claims

ET (C ∣Ft) = F (t, T ;T1)PT1(B(T,T1) >K ∣Ft) −KPT (B(T,T1) >K ∣Ft)

bzw. für den arbitragefreien Preis

pt(C) = B(t, T )ET (C ∣Ft)
= B(t, T1)PT1(B(T,T1) >K ∣Ft) −KB(t, T )PT (B(T,T1) >K ∣Ft).

Bis hierhin gilt diese Bewertung für jedes Bondmarktmodell. Erst die explizite Berech-
nung von PT1(B(T,T1) >K ∣Ft) bzw. PT (B(T,T1) >K ∣Ft) hängt vom gewählten Bond-
marktmodell ab.
Im Vasicek Modell gilt:

dB(t, T ) = B(t, T )(r(t)dt + σ(t, T )dW ⋆(t))
dB(t, T1) = B(t, T1)(r(t)dt + σ(t, T1)dW ⋆(t))

Dann gilt mit Ito

dF (t, T ;T1) = F (t, T ;T1)(σ(t, T1) − σ(t, T )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

η(t)

)dW T (t)

wobei

W T (t) =W ⋆(t) −
t

∫
0

σ(t, T )dt

Wiener-Prozess bezüglich PT . Die durch die Ito-Formel entstandenen Drift-Terme werden
in W T verarbeitet.
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Wegen
dPT1
dPT

∣
Ft

= F (t, T ;T1)
F (0, T ;T1)

= exp
⎛
⎝

t

∫
0

η(s)dW T (s) − 1

2

t

∫
0

η2(s)ds
⎞
⎠

ist

W T1(t) =W T (t) −
t

∫
0

η(s)ds

ein Wiener-Prozess bezüglich PT1 .
Also gilt

dF (t, T ;T1) = F (t, T ;T1)η(t)dW T1(t) + F (t, T ;T1)η(t)dt.
Im Vasicek Modell ist η eine deterministische Funktion, weshalb die bedingte Wahr-
scheinlichkeit durch die Normalverteilung bestimmt sind.
Genauer:

PT (B(T,T1) >K ∣Ft) = PT (F (T,T ;T1) >K ∣Ft)

= PT(F (t, T ;T1)
F (T,T ;T1)
F (t, T ;T1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
exp−Martingal

>K ∣Ft)

= PT((F (t, T ;T1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ft−mb

exp
⎛
⎝

T

∫
t

η(s)dW T (s) − 1

2

T

∫
t

η2(s)ds
⎞
⎠
>K

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
unabhängig von Ft

∣Ft)

= PT( exp
⎛
⎝

T

∫
t

η(s)dW T (s) − 1

2

T

∫
t

η2(s)ds
⎞
⎠
> K

F (t, T ;T1)
)

= Φ

⎛
⎜⎜⎜⎜⎜
⎝

ln F (t,T ;T1)
K − 1

2

T

∫
t

η2(s)ds
√

T

∫
t

η2(s)ds

⎞
⎟⎟⎟⎟⎟
⎠

und analog:

PT1(B(T,T1) >K ∣Ft) = PT1(F (T,T ;T1) >K ∣Ft)

= PT1( exp
⎛
⎝

T

∫
t

η(s)dW T1(s) + 1

2

T

∫
t

η2(s)ds
⎞
⎠
> K

F (t, T ;T1)
)

= Φ

⎛
⎜⎜⎜⎜⎜
⎝

ln F (t,T ;T1)
K + 1

2

T

∫
t

η2(s)ds
√

T

∫
t

η2(s)ds

⎞
⎟⎟⎟⎟⎟
⎠

.
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Beachte:

σ(t, T ) = −g(T − t)δ = −δ
b
(1 − e−b(T−t)) ,

σ(t, T1) = −g(T1 − t)δ = −
δ

b
(1 − e−b(T1−t)) ,

η(t) = δ
b
(e−b(T1−t) − e−b(T−t))

= δ
b
ebt (e−bT1 − e−bT )

1.9 Berechnung von Capletpreisen

- Bondmarktmodell

- äquivalentes Martingalmaß P⋆

- Ein Caplet ist ein Zinsderivat, dass eine Absicherung eines variablen Zinssatzes
erlaubt:

Hierzu betrachtet man ein Zeitintervall [T,T1]. Die diskrete (bis T ) variable Zinsrate
einer risikolosen Kapitalverzinsung zwischen T und T1 ist

1

T1 − T
( 1

B(T,T1)
− 1) ,

denn für 1 Euro, den man zum Zeitpunkt T in T1−Bonds investiert, erhält man 1
B(T,T1)

T1−Bonds. Diese sind in T1
1

B(T,T1) Euro wert. Dann ist

1

B(T,T1)
− 1

der Gewinn, welcher einer jährlichen Kapitalrendite von

1

T1 − T´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
Zeitraum

( 1

B(T,T1) − 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Gewinn

) =∶ Rd(T,T1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Zinsrate

entspricht, wenn als Zinsmethode eine diskrete Verzinsung gewählt wird.
Ein Caplet zum Zeitintervall [T,T1] gibt dem Inhaber das Recht, den variablen Koupon

(T1 − T )Rd(T,T1) =
1

B(T,T1)
− 1

gegen einen festen Koupon
(T1 − T )K

mit fester Zinsrate K in T1 zu tauschen.
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Man erhält folgende Auszahlung in T1:

((T1 − T )Rd(T,T1) − (T1 − T )K)+ = ( 1

B(T,T1)
− 1 − (T1 − T )K)

+

= ( 1

B(T,T1)
− (1 +K(T1 − T )))

+

.

Zur Berechnung des Capletpreises wird der Terminpreis in T1 des Derivates berechnet.
Es gilt:

ET1 (
1

B(T,T1)
− (1 + (T1 − T )K)

+

= ET1 (
B(T,T )
B(T,T1)

− (1 + (T1 − T )K))
+

= ET1 (F (T,T1;T ) − (1 + (T1 − T )K))+

Der Terminpreis (F (t, T1;T ))0≤t≤T eines T−Bonds ist ein PT1−Martingal.
Dann gilt:

dF (t, T1;T ) = F (t, T1;T )η(t)dW T1(t),
dB(t, T ) = B(t, T )(r(t)dt + σ(t, T )dW ⋆(t)),
dB(t, T1) = B(t, T1)(r(t)dt + σ(t, T1)dW ⋆(t))

und
η(t) = σ(t, T ) − σ(t, T1).

Also folgt 5.7.16

ET1F (T,T1;T )1{F (T,T1;T )>1+(T1−T )K} = F (0, T1;T )PT (F (T,T1;T ) > 1 + (T1 − T )K)

da
dPT
dPT1

∣
Ft

= F (t, T1;T )
F (0, T1;T ) .

Also gilt:

ET1 (
1

B(T,T1)
− (1 + (T1 − T )K)

+

=F (0, T1;T )PT (F (T,T1;T ) > 1 + (T1 − T )K)
− (1 + (T1 − T )K)PT1(F (T,T1;T ) > 1 + (T1 − T )K).

Als arbitragefreien Preis erhält man

Cl(0) ∶= B(0, T1)ET1 (
1

B(T,T1)
− (1 + (T1 − T )K)

+

= B(0, T )PT (F (T,T1;T ) > 1 + (T1 − T )K)
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− (1 + (T1 − T )K)
B(0, T1)

PT1(F (T,T1;T ) > 1 + (T1 − T )K).

Analog erhält man als Preis in t:

ET1 (
1

B(T,T1)
− (1 + (T1 − T )K ∣Ft)

+

=F (t, T1;T )PT (F (T,T1;T ) > 1 + (T1 − T )K ∣Ft)
− (1 + (T1 − T )K)PT1(F (T,T1;T ) > 1 + (T1 − T )K ∣Ft)

bzw. als arbitragefreien Anfangspreis

Cl(0) = B(t, T1)ET1 (
1

B(T,T1)
− (1 + (T1 − T )K ∣Ft)

+

= B(t, T )PT (F (T,T1;T ) > 1 + (T1 − T )K ∣Ft)
− (1 + (T1 − T )K)B(0, T1)PT1(F (T,T1;T ) > 1 + (T1 − T )K ∣Ft).

Die explizite Berechnung von PT und PT1 hängt vom gewählten Modell ab. Im Vasicek
Modell gilt zum Beispiel

dF (t, T1;T ) = F (t, T1;T )η(t)dW T1(t)

mit
η(t) = σ(t, T ) − σ(t, T1)

welches deterministisch ist in t.
Wegen

dPT
dPT1

∣
Ft

= F (t, T1;T )
F (0, T1;T ) = exp

⎛
⎝

t

∫
0

η(s)dW T1(s) − 1

2

t

∫
0

η2(s)ds
⎞
⎠

ist

W T (t) ∶=W T1(t) −
t

∫
0

η(s)ds

ein Wiener-Prozess bezüglich PT .
Man erhält

PT1(F (T,T1;T ) > 1 + (T1 − T )K ∣Ft) = Φ (h1(F (t, T1;T ), t))

und
PT (F (T,T1;T ) > 1 + (T1 − T )K ∣Ft) = Φ (h2(F (t, T1;T ), t)) .

Dabei ist

h1(x, t) =
ln x

1+(T1−T )K − 1
2

T

∫
t

η2(s)ds
√

T

∫
t

η2(s)ds
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und

h2(x, t) =
ln x

1+(T1−T )K + 1
2

T

∫
t

η2(s)ds
√

T

∫
t

η2(s)ds
.

1.10 Caplets, Caps, Floorlets und Floors

Ein Cap ist eine Aneinanderreihung von Caplets. Zu vorgegebener Tenorstruktur

T0 < T1 < ... < Tn

betrachtet man die zu den Zinsperioden [Ti−1, Ti] gehörenden Caplets, die das Recht
geben, den in Ti−1 fixierten, variablen Koupon gegen einen festen Koupon (Ti − Ti−1)K
in Ti zu tauschen.
Ein Cap induziert also folgenden Auszahlungsstrom: Zu jedem Ti ergibt sich eine Aus-
zahlung der Form

(Rd(Ti−1, Ti) −K)+(Ti − Ti−1).
Bezeichnet für t ≤ T0 Cli(t) den Preis des i−ten Caplets, so ist

Cap(t) =
n

∑
i=1

Cli(t)

der Preis des Caps in t.
In der Praxis nutzt man Caps um sich gegen variable Zinsraten nach oben abzusichern.
In einem Kreditvertrag beispielsweise wird als Kouponzahlung für die i-te Zinsperiode
der variable Zinssatz

Rd(Ti−1, Ti)(Ti − Ti−1)
als Koupon vereinbart.
Man möchte sichergehen, dass ein bestimmtes Zinsniveau K nicht übertroffen wird.
Deshalb kauft man sich ein Cap für die passende Tenorstruktur zum Festzinssatz K.
Dann wird im i−ten Zeitintervall die möglich Differenz

Rd(Ti−1, Ti) −K

durch den Cap bereitgestellt. Die Kosten der Absicherung zum Zeitpunkt t ≤ T0 sind
gegeben durch den Preis des Caps Cap(t).
Satt Caplet und Cap kann man auch Floorlet und Floor analog definieren. Dies sind
Zinsderivate mit Auszahlung

(K −Rd(Ti−1, Ti))+

in Ti.
Anwendung:
Man muss die Koupons eines Festzinskredits zur Tenorstruktur

T0 < T1 < ... < Tn
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bezahlen und möchte, wenn es günstig ist, diese durch variable Koupons bedienen.
Lösung: Kaufe einen Floor, der zur Tenorstruktur des Festzinskredits passt. Ist in der
i−ten Zinsperiode

K > Rd(Ti−1, Ti)
so reicht Rd(Ti−1, Ti) zum Bedienen der Koupons aus, da die Differenz

K −Rd(Ti−1, Ti)

durch den Floorlet finanziert wird.

1.11 Swaps

Es gibt

Payer-Swap = Cap − Floor
Receiver-Swap = Floor −Cap

Genauer:

- Tenorstruktur
T0 < T1 < ... < Tn

- Festzinssatz K,

- Nominal N .

Ein Swap ist ein Tauschgeschäft, das in jeder Zinsperiode die variablen Zinsen gegen den
festen Zinssatz tauscht. Dabei gibt es keine Option den Swap auszuführen oder nicht, es
wird in jeder Periode getauscht. Dann gilt beim Payer-Swap:
In Ti ergibt sich die Auszahlung

N(Ti − Ti−1)(Rd(Ti−1, Ti) −K), für alle 1 ≤ i ≤ n

und beim Receiver-Swap ergibt sich

N(Ti − Ti−1)(K −Rd(Ti−1, Ti)), für alle 1 ≤ i ≤ n.

Bewertung von Swaps
8.7.16

Erinnerung: In t kann man durch Termingeschäfte auf den Ti−Bond zum Termin Ti−1

den Gewinn
B(t, Ti−1)
B(t, Ti)

− 1

für ein Investment von 1 Euro zwischen Ti−1 und Ti realisieren. Dies entspricht einem
diskreten jährlichen Zinssatz von

Φd(t;Ti−1, Ti) =
1

Ti − Ti−1

(B(t, Ti−1)
B(t, Ti)

− 1)
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der s.g. Forwardzinsrate.
Beachte:

Φd(Ti−1;Ti−1, Ti) = Rd(Ti−1, Ti).

Bemerkung. Φd(t;Ti−1, Ti) ist der Terminpreis von Rd(Ti−1, Ti) zum Termin Ti.

Beweis.

Rd(Ti−1, Ti) =
1

Ti − Ti−1

( 1

B(Ti−1, Ti)
− 1)

und

ETi(Rd(Ti−1, Ti)∣Ft) = ETi (
1

Ti − Ti−1

( 1

B(Ti−1, Ti)
− 1) ∣Ft)

= ETi (
1

Ti − Ti−1

(B(Ti−1, Ti−1)
B(Ti−1, Ti)

− 1) ∣Ft)

= 1

Ti − Ti−1

(ETi(F (Ti−1, Ti;Ti−1)∣Ft) − 1)

= 1

Ti − Ti−1

(F (t, Ti;Ti−1) − 1)

= 1

Ti − Ti−1

(B(t, Ti−1)
B(t, Ti)

− 1)

= Φd(t;Ti−1, Ti)

Damit erhält man auch den arbitragefreien Europreis in t der Auszahlung Rd(Ti−1, Ti)
in Ti:

B(t, Ti)Φd(t;Ti−1, Ti) =
1

Ti − Ti−1

(B(t, Ti−1) −B(t, Ti)).

Dies liefert den Preis des Payer-Swaps in t:

Swap(t) = N
n

∑
i=1

(Ti − Ti−1)(Φd(t;Ti−1, Ti) −K)B(t, Ti)

= N
n

∑
i=1

(B(t, Ti−1) −B(t, Ti)) −N
n

∑
i=1

(Ti − Ti−1)B(t, Ti)

= N(B(t, T0) −B(t, Tn)) −N
n

∑
i=1

(Ti − Ti−1)B(t, Ti).

Was bedeutet es, wenn

Swap(t) > 0⇒ Die Auszahlung der variablen Koupons sind in t mehr wert, als die
der festen.

Swap(t) < 0⇒ Die Auszahlung der variablen Koupons sind in t weniger wert, als
die der festen.
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Swap(t) = 0⇒ Die Auszahlung der variablen und festen Koupons sind in t gleich
viel wert.

Anwendung: Ein variabel verzinster Kredit hat kein Zinsänderungsrisiko. Durch Ein-
gehen einer Swapposition kann aus dem Festzinskredit ein variabel verzinster Kredit
gemacht werden und dadaurch das Zinsänderungsrisiko eliminiert werden.
Der Festzins K, bei dem Swap(t) = 0 gilt, nennt man Swaprate RSwap(t). Diese kann
man auf 2 Arten bestimmen:
1. Möglichkeit:

K = RSwap(t) ⇔
n

∑
i=1

(Ti − Ti−1)B(t, Ti)(Φd(t;Ti−1, Ti) −K) = 0

⇔
n

∑
i=1

(Ti − Ti−1)B(t, Ti)Φd(t;Ti−1, Ti) =K
n

∑
i=1

(Ti − Ti−1)B(t, Ti)

⇔
n

∑
i=1

(Ti − Ti−1)B(t, Ti)
n

∑
k=1

(Tk − Tk−1)B(t, Tk)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ωi(t)

Φd(t;Ti−1, Ti) =K.

Also gilt:

RSwap(t) =
n

∑
i=1

ωi(t)Φd(t;Ti−1, Ti).

2. Möglichkeit:

Swap(t) = 0⇔ B(t, T0) −N(t, Tn) =K
n

∑
i=1

(Ti − Ti−1)B(t, Ti)

=⇔ B(t, T0) −B(t, Tn)
n

∑
i=1

(Ti − Ti−1)B(t, Ti)
=K.

Also
RSwap(t) =

B(t, T0) −B(t, Tn)
n

∑
i=1

(Ti − Ti−1)B(t, Ti)
.

Der Preis des Swaps kann auch mit der Swaprate ausgedrückt werden:

Swap(t) = B(t, T0) −B(t, Tn) −K
n

∑
i=1

(Ti − Ti−1)B(t, Ti)

= RSwap(t)
n

∑
i=1

(Ti − Ti−1)B(t, Ti) −K
n

∑
i=1

(Ti − Ti−1)B(t, Ti)

= (RSwap(t) −K)
n

∑
i=1

(Ti − Ti−1)B(t, Ti)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N(t)

= (RSwap(t) −K)N(t)
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1.12 Swaption

Eine Payer-Swaption gibt dem Inhaber das Recht, in T0 in einen Payer-Swap mit Tenor-
struktur

T0 < T1 < ... < Tn
und Festzinssatz K einzusteigen.
Eine Swaption wird in T0 ausgeführt, wenn

Swap(T0) ≥ 0.

Sie verusacht den Zahlungsstrom eines Swaps in T1, ...Tn. Dieser Zahlungsstrom wird
in T0 durch Swap(T0) bewertet. Daher kann eine Swaption als T0−Claim interpretiert
werden mit Auszahlung

C = Swap(T0)+.
Es gilt:

Swap(T0)+ = (RSwap(T0) −K)+N(T0).

Bewertung einer Swaption

Hierzu betrachtet man den Swapratenprozess (RSwap(t))0≤t≤T0 und führt einen Maßwech-
sel zu einem Maß PSwap durch. Bezüglich diesem Maß ist der Swapratenprozess dann ein
Martingal.

Definition. Sei

N(t) ∶=
n

∑
i=1

(Ti − Ti−1)B(t, Ti) für alle 0 ≤ t ≤ T0.

Ein Wahrscheinlichkeitsmaß PSwap heißt Swapmartingalmaß, wenn es das äquivalente
Martingalmaß zum Numeraire N ist, d.h.

(i) PSwap ∼ PT0 auf (Ω,FT0),

(ii) ( S(t)N(t))0≤t≤T0
ist ein lokales PSwap−Martingal für alle Basisfinanzgüter S.

Bestimmung von PSwap:
dPSwap
dPT0

∣
Ft

=∶ L(t).

Es gilt: S(t)
N(t) ist ein lokales PSwap−Martingal genau dann, wenn S(t)

N(t)L(t) ein lokales
PT0−Martingal ist.
Weiter gilt:
S(t)
B(t,T0 ist ein lokales PT0−Martingal, für das gilt

S(t)
B(t, T0)

= S(t)
N(t)L(t)c
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für eine Konstante c. Also ist
L(t) = N(t)

B(t, T0)
1

c
.

Wegen der Normierung gilt also

L(t) = N(t)
B(t, T0)

B(0, T0)
N(0) .

Also definiert
dPSwap
dPT0

∣
Ft

= N(t)
B(t, T0)

B(0, T0)
N(0) , für alle 0 ≤ t ≤ T0

das Swapmartingalmaß.
Für die arbitragefreie Bewertung ergibt sich somit als arbitragefreier Europreis

pt(C) = N(t)ESwap (
(RSwap(T0) −K)+N(T0)

N(T0)
∣Ft)

⇔pt(C) = N(t)ESwap ((RSwap −K)+∣Ft) .

Zur Berechung ist also der Swapratenprozess unter PSwap zu bestimmen. (RSwap(t))0≤t≤T0
ist ein positives PSwap−Martingal.
Also gibt es einen previsiblen Prozess σSwap, so dass

dRSwap(t) = RSwap(t)σSwap(t)dWSwap(t)

mit WSwap Wiener-Prozess bezüglich PSwap.
Prinzipiell kann man die Volatilität σSwap der Swaprate berechnen, doch ist die Formel
sehr kompliziert und kann nicht für effektive Berechnungen genutzt werden. Deshalb
werden Vereinfachungen benutzt.
Die einfachste Methode ist anzunehmen, dass (σSwap(t))0≤t≤T0 eine deterministische Funk-
tion in t ist. Dann ergibt sich als Swaption-Preis die Formel von Black, die analog zur
Black-Scholes Formel ausgerechnet werden kann.

2 Libor Marktmodell
12.7.16

Das Libor Marktmodell ist beliebt bei Banken, da es ein Zinsmodell ist, das von beob-
achtbaren Markpreisen ausgeht. Modelliert werden die diskreten Fowardraten/Liborraten
Φd(t, Ti−1, Ti).

2.1 Aufbau des Modells

Gegeben sei eine Tenorstruktur

T0 < T1 < ... < TN

mit Intervalllängen
δi = Ti − Ti−1.
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Die Ti−Bonds i = 0, ...,N−1, bilden die Basisfinanzgüter mit Preisprozessen (B(t, Ti))0≤t≤Ti ,
i = 0, ...,N−1. Der TN−Bond dient als Numeraire Asset mit Preisprozess (B(t, TN))0≤t≤TN .
Hierdurch wird ein zeitstetiges Finanzmarktmodell definiert mit N Basisfinanzgütern
und dem TN−Bond als Numeraire Asset.
Beachte: Das i−te Finanzgut steht nur bis Ti zur Verfügung und kann anschließend nicht
mehr zum Hedgen verwendet werden.
Annahmen:

- Die Quelle des Zufalls wird beschrieben durch einen d−dimensionalen Wiener-
Prozess (W (t))t≥0. Das heißt wir haben einen filtrierten Wahrscheinlichkeitsraum
(Ω, (Ft)t≥0 ,P)mit (Ft)t≥0 Wiener-Filtration eines d−dimensionalenWiener-Prozesses.

- Die Preisprozesse derN+1 Bonds sind stetige, positive Semimartingale mitB(Ti, Ti) =
1 für alle i = 0, ...,N .

- Das Modell ist arbitragefrei. Es existiert also ein Wahrscheinlichkeitsmaß PTN auf
(Ω,FTN ), sodass
(i) PTN ∼ P auf (Ω,FTN ),

(ii) ( B(t,Ti)
B(t,TN ))0≤t≤Ti

ist ein lokales PTN−Martingal für alle 0 ≤ i ≤ N − 1.

Wir fordern die leicht stärkere Bedingung, dass ( B(t,Ti)
B(t,TN ))0≤t≤Ti

ein PTN−Martingal
ist für alle 0 ≤ i ≤ N − 1.

Bemerkung. PTN ist das Forwardmartingalmaß zum Termin TN , da es das äquivalente
Martingalmaß zum Numeraire Asset (B(t, TN))0≤t≤TN ist.

Bemerkung. In der Definition des Modells wird bewusst kein Geldmarktkonto verwen-
det, da man so das Problem nicht bekommt, die short rate nicht beobachten zu können.

Für die Zinsperiode von Ti−1 nach Ti ist der diskrete Forwardzinssatz zum Zeitpunkt
t ≤ Ti gegeben durch

Li(t) ∶= Φd(t;Ti−1, Ti)

= 1

δi
(B(t, Ti−1)
B(t, Ti)

− 1)

Das ist die i−te Liborrate.
Annahme: Für jedes 1 ≤ i ≤ N ist der Liborratenprozess Li ein strikt positives Semimar-
tingal.
Da

B(t, Ti−1)
B(t, Ti)

= B(t, Ti−1)/B(t, TN)
B(t, Ti)/B(t, TN)

ist auch Li ein Semimartingal ist. Die Positivität ist die Annahme, die getroffen wird.
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2.2 Terminal Measure

Das Wahrscheinlichkeitsmaß PTN wird auch als Terminal Measure bezeichnet, da TN
der letzte Zeitpunkt auf der Tenorstruktur ist. Bezüglich PTN wird die Entwicklung der
Liborrate prinzipiell geklärt.
Wir beginnen mit (LN(t))0≤t≤TN−1 :

LN(t) = 1

δN
(B(t, TN−1)
B(t, TN) − 1)

ist nach Voraussetzung ein PTN−Martingal . Deshalb existiert ein previsibler Rd−wertiger
Prozess (σ(N)(t))0≤t≤TN−1 , sodass

dLN(t) = LN(t)σ(N)(t)dW (t)

= LN(t)
d

∑
j=1

σ
(N)
j (t)dWj(t).

(σ(N)(t)) bestimmt die Volatilitäten der N Liborraten. Das Martingal LN bestimmt

den Maßwechsel zum Forwardmartingalmaß PTN−1 :

dPTN−1

dPTN
∣
Ft

= B(t, TN−1)
B(t, TN)

B(0, TN)
B(0, TN−1)

= δNLN(t) + 1

δNLN(0) + 1
=∶ RN(t)

Somit folgt

dRN(t) = δN
δNLN(0) + 1

dLN(t)

= δN
δNLN(0) + 1

LN(t)σ(N)(t)dW (t)

= RN(t) δNLN(t)
δNLN(t) + 1

σ(N)(t)dW (t).

Wir erhalten also eine Exponentialdarstellung für den Dichtequotientenprozess:

RN(t) = exp
⎛
⎝

t

∫
0

δNLN(s)
δNLN(t) + 1

σ(N)(s)dW (s) − 1

2

t

∫
0

∣ δNLN(s)
δNLN(s) + 1

σ(N)(s)∣
2

ds
⎞
⎠

.
Der Satz von Girsanov liefert einen Wiener-Prozess W (N−1), definiert durch

W (N−1)(t) =W (t) −
t

∫
0

δNLN(s)
δNLN(s) + 1

σ(N)(s)ds

bezüglich PTN−1 .
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Im nächsten Schritt wird die Dynamik der N − 1-ten Liborrate

LN−1(t) =
1

δN−1

(B(t, TN−2)
B(t, TN−1)

− 1)

bestimmt.
LN−1 ist ein positives Semimartingal bezüglich PTN . Deshalb gibt es previsible Prozesse
(σ(N−1)(t))0≤t≤TN−2 und (µ(N−1)(t))0≤t≤TN−2 , sodass

dLN−1 = LN−1(t)(µ(N−1)(t)dt + σ(N−1)(t)dW (t)).

Da LN−1 ein PTN−1− Martingal ist, ist (µ(N−1)(t)) eindeutig bestimmt. Wegen

dW (t) = dW (N−1)(t) + δNLN(t)
δNLN(t) + 1

σ(N)(t)dt

folgt durch Einsetzen

dLN−1(t) = LN−1(t)((µ(N−1)(t)+ δNLN(t)
δNLN(t) + 1

σ(N)(t)σ(N−1)(t))dt+σ(N−1)(t)dW (N−1)(t))

Da LN−1 ein PTN−1−Martingal ist, muss

µ(N−1)(t) = − δNLN(t)
δNLN(t) + 1

σ(N)(t)σ(N−1)(t)

= −
d

∑
j=1

δNLN(t)
δNLN(t) + 1

σ
(N)
j (t)σ(N−1)

j (t).

Das PTN−1−Martingal LN−1 bestimmt den Maßwechsel zum Forwardmartingalmaß PTN−2 :

dPTN−2

dPTN−1
∣
Ft

= B(t, TN−2)
B(t, TN−1)

B(0, TN−1)
B(0, TN−2)

= δN−1LN−1(t) + 1

δN−1LN−1(0) + 1
=∶ RN−1(t).

Somit folgt analog:

dRN−1(t) = RN−1(t)
δN−1LN−1(t)

δN−1LN−1(t) + 1
σ(N−1)(t)dWN−1(t).

Girsanov liefert den Wiener-Prozess W (N−2)

W (N−2)(t) =W (N−1)(t) −
t

∫
0

δN−1LN−1(s)
δN−1LN−1(s) + 1

σ(N−1)(s)ds

bezüglich PTN−2 für alle 0 ≤ t ≤ TN−2.
Dies kann man induktiv fortsetzen. Man erhält also folgendes Ergebnis: 15.7.16
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Bezüglich PTN haben die Liborraten (Li(t))0≤t≤Ti−1 ,1 ≤ i ≤ N , die Dynamik

dLi(t) = Li(t)(−
N

∑
k=i+1

ηik(t)dt + σ(i)(t)dW (t))

mit
ηik(t) ∶=

δkLk(t)
δkLk(t) + 1

σ(i)(t)σ(k)(t).

Für die Forwardmartingalmaße PT1 , ...,PTN gilt

dPTi−1
dPTi

∣
Ft

= δiLi(t) + 1

δiLi(0) + 1
= Ri(t)

und
dLi(t) = Li(t)σ(i)(t)dW (i)(t)

mit Wiener-Prozess W (i) bezüglich PTi .

2.3 Das lognormale Libormarktmodell

- Tenorstruktur T0 < T1 < ... < TN ,

- Li(t) = 1
δi
(B(t,Ti−1)
B(t,Ti) − 1) , 0 ≤ t ≤ Ti−1,

- PTi Forwardmartingalmaß,

- Z = (Z1, ..., ZN) ein N−dimensionaler korrelierter Wiener-Prozess mit

⟨Zk, Zl⟩t = %klt

für k ≠ l ∶ −1 < %kl < 1.

Jeder Wiener-Prozess treibt eine Liborrate. Durch die Abhängigkeit in den Kom-
ponenten des Wiener-Prozesses erhält man auch eine Abhängigkeit der Liborraten.

Man beachte, dass mit Hilfe von Girsanov wie in Unterunterabschnitt 2.2N−dimensionale
Wiener-Prozesse Z(i) = (Z(i)

1 , ..., Z
(i)
N ) bezüglich PTi konstruiert werden können mit

Korrelation (%kl)1≤k,l≤N,k≠l.

Im lognormalen Libormarktmodell wird angenommen, dass die Liborraten folgende Dy-
namik erfüllt:

dLi(t) = Li(t)λi(t)dZ(i)
i (t)

für alle 1 ≤ i ≤ N und deterministische Funktionen λ1, ..., λN .
Bezüglich PTi ist also die i−te Liborate Li(t) eine lognormalverteilte Zufallsvariable.
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2.4 Bewertung von Caplets im lognormalen Libormarktmodell

In der Zinsperiode [Ti−1, Ti] liefert ein Caplet die Auszahlung

δi(Li(Ti−1) −K)+ = δi (
1

δi
(B(Ti−1, Ti−1)
B(Ti−1, Ti)

− 1) −K)
+

in Ti.
Bewertung:
Berechnung des Terminpreises zum Termin Ti:

ETi ((Li(Ti−1) −K)+δi∣Ft) = δiLi(t)ETi(
Li(Ti−1)
Li(t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pos. MG

1{Li(Ti−1)>K}) − δiKPTi(Li(Ti−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∼logN

>K ∣Ft)

= δiLi(t)QTi(Li(Ti−1) >K ∣Ft) − δiKPTi(Li(Ti−1) >K ∣Ft).

Wegen
dLi(t) = Li(t)λi(t)dZ(i)

i (t)
folgt

PTi(Li(Ti−1) >K ∣Ft) = Φ(h2(Li(t), t))
und wegen

dLi(t) = Li(t)λi(t)dB(i)(t) − 1

2
λi(t)Li(t)dt

bezüglich QTi folgt
QTi(Li(Ti−1) >K ∣Ft) = Φ(h1(Li(t), t)).

Dabei sind

h1(x, t) =
ln x

K + 1
2 ∫

Ti−1
t λ2

i (s)ds√
∫
Ti−1
t λ2

i (s)ds
und

h2(x, t) =
ln x

K − 1
2 ∫

Ti−1
t λ2

i (s)ds√
∫
Ti−1
t λ2

i (s)ds
.

Der arbitragefreie Europreis in t ist somit

Cli(t) = B(t, Ti)δi(Li(t)Φ(h1(Li(t), t)) −KΦ(h2(Li(t), t))).

Dies ist die Formel von Black für Caplets. Mit Hilfe dieser Formel kann man auch Cap-
Preise berechnen und zur Kalibrierung des Modells nutzen.
Bemerkung zur Kalibrierung: Die Parameter des Modells sind

- deterministische Volatilitätsfunktionen λ1, ..., λN , die in der Praxis durch endlich
viele Parameter spezifiziert werden.

- Korrelation %kl der treibenden Wiener-Prozesse.
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Beobachtbare Größen sind

- Cap-Preise

- Swaption-Preise.

Für jedes T0 < Tα < ... < Tβ < TN , innerhalb der Tenorstruktur, sieht man den Cap-
und Swaption-Preis. Man berechnet den Marktpreis mit Hilfe der Formel von Black
für Caplets bzw. Swaptions (Formel geht analog). Man bestimmt dann die Parameter
so, dass Markt- und Modellpreise möglichst gut übereinstimmen. Die Betrachtung von
Swaptions ist notwendig, da sonst keine Aussage über die Korrelation getroffen werden
könnte.

2.5 Weitere Libormarktmodelle

a) Diffusionsmodelle

dLi(t) = Li(t)λi(t)σ(Li(t))dZ(i)(t)
- λi ist eine deterministische Funktion der Zeit

- σ ist eine Funktion des Zustandes.

Dies entspricht dem Diffusionsansatz bei den Aktienmodellen.

b) Liborratenmodell mit stochastischer Volatilität

- Das Analogon zum Heston Modell

Die Volatilität de i−ten Liborrate wird exogen bestimmt durch

σi(t) =
√
V (t)λi(t), 1 ≤ i ≤ N

mit V ein CIR-Prozess bezüglich PTN der Form

dV (t) = a(b − V (t))dt + c
√
V (t)dB(t)

und λi eine deterministische Funktion der Zeit.

Bezüglich PTN sind Z1, ..., ZN ,B korrelierte Wiener-Prozesse. Beim Maßwechsel zu
PTi erhält man korrelierte Wiener-Prozesse Z(i)

1 , ..., Z
(i)
N ,B(i) und es ergibt sich eine

Änderung in der Drift für die Dynamik von V .

Man erhält folgende Struktur

dLi(t) = Li(t)λi(t)
√
V (t)dZ(i)

i (t)
dV (t) = a(b − ζ(t)V (t))dt + c

√
V (t)dB(i)(t).

Wie eine Kalibrierung in der Praxis umgesetzt wird, ist in den Masterarbeiten von Ha-
sow, Santen, Hülsbusch und Cresnik genauer ausgeführt (vgl. Homepage von Dr. Paulsen,
http://wwwmath.uni-muenster.de/statistik/paulsen/Abschlussarbeiten/Masterarbeiten/(21.07.2016)).
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