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4.15 Bestimmung von äquivalenten Martingalmaßen . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.15.1 CRR Modell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Bewerten von Derivaten 49
5.1 Claim und Hedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Satz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Superreplizierbare Claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Satz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5 Das Bipolartheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5.1 Definition ((konvexer) Kegel, Bipolar) . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.2 Das Bipolartheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.6 Beweis des Bipolartheorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.7 Upper und lower hedging Preise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.7.1 Satz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.8 Charakterisierung der arbitragefreien Preise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.8.1 Definition (arbitragefreier Preis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.8.2 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.9 Erweitertes Finanzmarktmodell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.9.1 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
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1 Informelle Einführung

Zweiteilung von Finanzgütern in

1. Basisfinanzgüter

2. derivative Finanzgüter

Zu 1. gehören zB -Aktien
-festverzinsliche Wertpapiere

Bonds
-Rohstoffe

Öl
Edelmetalle
Agrarprodukte

Diese werden gehandelt auf

Aktienmärkte
Rentenmärkte
Warenmärkte

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Kassamärkte

Zu 2. gehören zB -Optionen auf Aktien
-Swaps (Zinsderivat)
-futures
-forwards

1.1 Option

Unterscheidung in Kauf- und Verkaufsoptionen:
Eine Kaufoption (Call) gibt das Recht, ein Basisfinanzgut (Underlying) zu einem im voraus bestimm-
ten fixen Preis, dem Ausübungspreis (strike, Basis), während (amerikanische Option) oder am Ende
der Laufzeit (europäische Option) der Option zu kaufen.

Eine Verkaufsoption (Put) gibt das Recht, ein Basisgut zu einem im voraus bestimmten Preis, während
(USA) oder am Ende der Laufzeit (EU) der Option zu verkaufen.

Eine Option ist ein unbedingtes Termingeschäft, da keine Verpflichtung zum Kauf bzw. Verkauf
besteht.

1.2 long, short Position

In der Regel geht der Läufer eines Finanzgutes eine long Position ein, ein Verkäufer eine short Position
ein, etwa

long call =̂ Käufer eines Calls, Callinhaber

short call =̂ Verkäufer eines Calls, Stillhalter(/writer/Zeichner)

long put =̂ Käufer einer Verkaufsoption, Putinhaber

short put =̂ Verkäufer einer Verkaufsoption, Put Stillhalter (/writer)

long Aktie =̂ Käufer einer Aktie, Aktienbesitzer

short Aktie =̂ Verkäufer einer Aktie

Durch einen Leerverkauf (shortselling) kann ein Basisgut, etwa Aktien, verkauft werden, ohne, dass
man dieses vorher besitzen muss.
Hierzu leiht man sich das Basisgut von einer Bank und verkauft dieses.

Finanzmathematik WS 14/15
1

zum Inhaltsverzeichnis
Dozent: PD Dr. Volkert Paulsen



1.3 Payoff- und Profitdiagramme

Positionen in Finanzgütern bergen Chancen und Risiken. Veranschaulichungen durch Payoff- und Profit-
diagrammen.
Payoff: Aufgetragen wird der Wert der Position gegen den Preis des Underlyings
Profit: analog zum Payoff unter Berücksichtigung von Kosten (=̂ Anfangswert der Position)

1.4 Beispiele:

Option mit Laufzeit T , Underlying mit Preis ST in T .

a) long call mit strike K
Payoff: (ST −K)+, denn

ST ≤K: Keine Ausübung

ST >K:

- leihe K Euro

- Nutze diese Option, um 1 Aktie zu erhalten

- Verkaufe diese für ST Euro

- Zahle K Euro zurück

Insgesamt: ST −K Euro als Auszahlung

ST0 K

Payoff

Kosten: Anfangspreis des Calls: c > 0
Profit: (ST −K)+ − c

ST
0

K

-c

Profit

b) long put mit strike K
Payoff: (K − ST )+, denn

ST >K: Keine Ausübung

ST ≤K:

- leihe die Aktie

- Nutze diese Option und verkaufe die Aktie zum Kurs von K

- Kaufe die Aktie für ST und gebe diese zurück

Insgesamt: K − ST Euro als Payoff
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ST0 K

Payoff

Kosten: Anfangspreis des Puts: p > 0
Profit: (ST −K)+ − c

ST
0

K

-p

Profit

c) short call mit strike K

Payoff: −(ST −K)+

Profit: c − (ST −K)+

ST
0

K

Payoff

ST
0

K

c

Profit

d) short put mit strike K

Payoff: −(K − ST )+

Profit: p − (K − ST )+
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ST
0

K

Payoff

ST
0

K

p
Profit

1.5 Strategien

Durch Kombination von einfachen Positionen bildet man Strategien.

1.6 Beispiele:

a) Absicherung einer Aktie:

- Aktie heute zum Kurs S0 =K gekauft

- zur Absicherung gegen Kursverlust in T wird eine Putoption zur Basis K gekauft.

- Gesamtposition:

long Aktie long put Gesamt

Kosten K p K + p
Payoff ST (K − ST )+ ST + (K − ST )+ = max(K,ST )
Profit ST −K (K − ST )+ − p ST −K + (K − ST )+ − p = −p1{ST ≤K} + (ST − (K + p))1{ST >K}

ST
0

K

-p

Profit

b) long straddle

Idee: Spekulation auf eine starke Kursänderung (egal ob nach oben und unten):

long call long put Gesamt

Kosten c p c + p
Payoff (ST −K)+ (K − ST )+ ∣ST −K ∣
Profit ∣ST −K ∣ − (c + p)
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ST
0

K

-(c+p)

Profit

c) Bullish Vertical Spread

Idee: Risikoarme Spekulation auf ein Anziehen des Kurses:

long call (strike K1) short call (strike K2 >K1) Gesamt

Kosten c1 −c2 c1−c2 > 0 (Call K1 ist mehr wert
als Call K2)

Payoff (ST −K1)+ −(ST −K2)+ (ST − K1)1{K1<ST <K2} +
(K2 −K1)1{ST >K2}

ST
0

K1 K2

c2 − c1

Profit

d) Butterfly Spread

Idee: Risikoarme Spekulation auf eine Seitwärtsbewegung des Kurses:
Basispreise K1 <K2 <K3

long call (strike K1) long call (strike K3) 2× short call (strike K2) Gesamt

Kosten c1 c3 −2c2 c1 + c3 − 2c2

Payoff (ST −K1)1{K1<ST <K2} + (2K2 −K1 − ST )1{K2<ST <K3} + (2K2 − (K1 +K3))1{ST >K3}

ST
0

K1 K2 K3

2c2 − c1 − c2

Profit

1.7 Arbitrage

Ein Arbitrage ist eine Möglichkeit, durch Handel mit Finanzgütern einen risikolosen Profit zu erzielen.
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1.8 Beispiel:

New York Frankfurt

Aktie 130$ 100€

Wechselkurs 1€ 1,27$

Arbitragemöglichkeit:

- leihe 100€

- kaufe die Aktie in FF

- verkaufe sie in NY

- tausche 127$ in 100€

- gebe 100€ zurück

⇒ risikoloser Profit von 3$

1.9 Grundannahme

Im Handel mit Finanzgütern gibt es kein Arbitrage. Dies ist das No-Arbitrage-Prinzip.
Aus dem No-Arbitrage-Prinzip kann man das Replikationsprinzip folgern:

1.10 Replikationsprinzip

Haben zwei verschiedene KombinationenK,L von ausschüttungsfreien Finanzgütern zu einem zukünftigen
Zeitpunkt T immer den gleichen Wert, so haben sie auch zum gegenwärtigen Zeitpunkt den gleichen Wert.
Die Kombination K repliziert den Payoff der Kombination L und umgekehrt.

Argumentation:

K habe den Anfangswert V0 ∈ R und den zufälligen Wert VT in T .
L habe den Anfangswert W0 ∈ R und den zufälligen Wert WT in T .
Es gelte VT =WT .
Behauptung: V0 =W0

Angenommen: V0 >W0

Dann kann man durch short selling von K ein Arbitrage erzielen:

- short selling in K

- gehe long in L

⇒ Zu Beginn ein Gewinn von V0 −W0 > 0

- handeln entsprechend L bis T

- verkaufe L in T

- erhalte WT = VT

- kaufe K für VT und gebe die Position K zurück

Am Ende: Glattstellen der Positionen: WT − VT = 0

⇒ Risikoloser Gewinn von V0 −W0 > 0.

Angenommen V0 <W0

Analog zu oben mit K und L vertauscht.
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1.11 Nullkouponanleihen

festverzinsliches Wertpapier

- Fälligkeit T (Maturity)

- Zahlung von 1€ in T

- keine Kouponzahlung während der Laufzeit

- B(t, T ) bezeichne den Preis dieser Anleihe zum Zeitpunkt t < T .

- 0 < B(t, T ) < 1 ist der Regelfall

Durch die Nullkouponanleihen wird die Veränderung des Geldwertes mit der Zeit wiedergegeben. Den
Preis B(t, T kann man als Diskontfaktor auffassen, der Preise in T in Preise in t umrechnet. Ein Euro in
T hat einen Wert vono B(t, T ) Euro in t.

1.12 Put-Call-Parität

Seien c(S0,K,T ) und p(S0,K,T ) die Anfangspreise einer Call bzw Put-Option mit Laufzeit T und strike
K.
Sei S0 und ST der heutige Preis bzw der Preis zum Zeitpunkt T des Underlyings.
Dann gilt:

S0 + p(S0,K,T ) = c(S0,K,T ) +KB(0, T )

Argumentation:

Betrachte folgende zwei Kombinationen:

I long Aktie long Put

II long call K× long in Nullkouponanleihe mit Fälligkeit in T

Wert in Zeitpunkt T :

I ST + (K − ST )+ = max(ST ,K)

II (ST −K)+ +K = max(ST ,K)

Replikationsprinzip liefert:
S0 + p(S0,K,T ) = c(S0,K, c) +KB(0, T )

1.13 forward

- unbedingtes Termingeschäft

- Termin T ist Ausübungszeitpunkt

- Underlying mit Preisen S0 heute und ST in T

- zwei Parteien A,B

- Terminpreis FT festgelegt zum Vertragsabschluss

- keine Kosten bei Vertragsabschluss

in T :

- A zahlt an B Terminpreis FT

- B liefert das Underlying

- A hat die long Position von forward

- B hat die short Position von forward
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Zusammenhang zwischen Termin- und Spotpreis des Underlyings:

S0: gegenwärtiger Preis/ Spotpreis

FT : Terminpreis zum Termin T

Dann gilt:
FTB(0, T ) = S0

Argumentation

Betrachte folgende Kombinationen:

I long im Forward zum Termin T, FT× long in Nullkouponanleihe mit Fälligkeit T

II long im Underlying

Wert zum Zeitpunkt T :

I ST − FT
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
forward

+ FT
°

Nullkouponanleihe

= ST

II ST

Replikationsprinzip liefert:
FTB(0, T ) = S0

1.14 Digitale Option

Recht auf Auszahlung eines festen Geldbetrags (etwa 1€) bei Eintreten eines auslösenden Ereignisses.
z.B.:

- digitaler Call: 1{ST ≥K}

- digitaler Put: 1{ST ≤K}

1.15 Eigenschaften des Callpreises

Sei c(S0, T,K) der Preis eines Calls auf ein Underlying S mit Laufzeit T , strike K und Anfangspreis S0

des Underlyings. Dann gilt:

i) c(S0, T,K) ≥ max(0, S0 −KB(0, T )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

innerer Wert
des Calls

)

ii) c(S0, T,K) ≤ S0 obere Grenze des Calls

iii) K1 ≤K2 ⇒ c(S0, T,K1) ≥ c(S0, T,K2)

iv) K1 <K2 ⇒ B(0, T )(K2 −K1) ≥ c(S0, T,K1) − c(S0, T,K2)

v) K1 <K2 <K3 ⇒ c(S0, T,K2) ≤ K3−K2

K3−K1
c(S0, T,K1) + K2−K1

K3−K1
c(S0, T,K3) Konvexität in K

K
0

S0

B(0,T )

c(K)
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Sei p(S0, T,K) der Preis eines Puts auf ein Underlying S mit Laufzeit T , strike K und Anfangspreis S0

des Underlyings. Dann gilt:

i) p(S0, T,K) ≥ max(0,KB(0, T ) − S0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

innerer Wert
des Puts

)

ii) p(S0, T,K) ≤KB(0, T ) obere Grenze des Puts

iii) K1 ≤K2 ⇒ p(S0, T,K1) ≤ p(S0, T,K2)

iv) K1 <K2 ⇒ B(0, T )(K2 −K1) ≥ p(S0, T,K2) − p(S0, T,K1)

v) K1 <K2 <K3 ⇒ p(S0, T,K2) ≤ K3−K2

K3−K1
p(S0, T,K3) + K2−K1

K3−K1
p(S0, T,K1)

1.16 Zinsmethoden

Frage: Wie kann man Kapitalrenditen durch annualisierte Zinssätze beschreiben?
Antwort: Man vereinbart eine Zinsmethode und eine Zählkonvention
Genauer: Ein Kapital N wird zum Zeitpunkt t wie eine Nullkouponanleihe mit Fälligkeit in T angelegt.
in t: erhalte für N insgesamt N

B(0,T ) T -Bonds.

in T : die Position hat einen Wert von N
B(0,T ) .

Gewinn: N
B(0,T ) −N = N( 1

B(0,T ) − 1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Rendite der
Investition

).

R(t, T ) ∶= 1
B(0,T ) − 1 kann als Kapitalrendite interpretiert werden, die ein Investment zwischen t und T

hervorbringt.
Ziel: Beschreibung durch einen jährlichen Zinssatz:

1.16.1 lineare Zinsmethode

entspricht einer linearen Verteilung der jährlichen Zinsen auf die Laufzeit.

R(t, T ) = (T − t)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
Laufzeit

rlin

rlin ist der jährliche Zinssatz bei linearer Zinsmethode

Beispiel: Anlagezeitraum: Ein Monat

- Rendite von 0,5% = 50bp (Basispunkte; 1bp = 0,01%)

- Also rlin = 0,5% ⋅ 12 = 6%

1.16.2 periodische Zinsmethode

Ein erzielter Gewinn in einem Zeitraum (t, T ] soll durch einen annualisierten Zinssatz r beschrieben
werden. Dazu wird der Zeitraum (t, T ] in m äquidistante Perioden eingeteilt und der jährliche Zins r auf
m Perioden linear verteilt. Setze ti ∶= t + i ⋅ T−tm i = 0, ...,m

In jeder Periode von ti−1 nach ti wird also ein Kapital mit einer periodischen Renditer ⋅ T−t
m

verzinst.
Unter Berücksichtigung von Zineszins ergibt sich so eine Kapitalentwicklung der Form

Km(r, t, T ) ∶= (1 + rT − t
m

)
m

= 1 +R(t, T )

Durch Auflösen nach r erhält man also den zu einem Gewinn R(t, T ) entsprechenden Zinssatz.

1.16.3 stetige Zinsmethode

Die stetige Zinsmethode ergibt sich als Grenzübergang aus der periodischen Zinsmethode, wenn die
Intervalllänge der Teilintervalle gegen 0 strebt.
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konstante Zinsrate r: Hier ergibt sich

lim
m→∞

Km(r, t, T ) = er(T−t) = 1 +R(t, T )

Durch Auflösen nach r erhält man wieder den zu einem Gewinn R(t, T ) entsprechenden Zinssatz r.

nicht konstante Zinsrate: Eine variierende Zinsratenfunktion r ∶ [0,∞) Ð→ R liefert eine Kapitalent-
wicklung der Form

K(r, t, T ) = exp(∫
T

t
r(s)ds)

zwischen t und T .

1.17 Festzinsanleihe

- festverzinsliches Wertpapier

- Nominal N

- Fälligkeit T

- Zinstermine t1 < t2 < ... < tn ≤ T

- Koupons K1,K2, ...,Kn

In der Regel werden Koupons als Zins auf das Nominal gezahlt, d.h. Ki = N ⋅R(ti − ti−1),R Zinsrate bei
linearer Verzinsung.
Bewertung zum Zeitpunkt t < t1, mit Hilfe einer Modifikation des Replikationsprinzips:

I Halte Festzinsanleihe

II Halte Ki Nullkouponanleihen mit Fälligkeit ti, i = 1, ...,m und halte N Nullkouponsanleihe mit
Fälligkeit T

Beide Strategien erzeugen den gleichen Zahlungsstrom an Ausschüttungsmenge: K1 in t1, ..., Kn in tn ,
N in T .

Das Replikationsprinzip liefert, dass die Preise in t < t1 übereinstimmen müssen.
Dies bedeutet, dass der Preis der Festzinsanleihe in t < t1 gegeben ist durch

m

∑
i=1

KiB(t, ti) +NB(t, T )

1.18 Variabel verzinsliche Aktie (/Floater/ FRN (Floating Rate Note))

- Nominal N

- Fälligkeit T

- Startpunkt t0

- Zinszahlungstermine t1 < t2 < ... < tn = T mit t0 < t1

- nachschüssige Kouponzahlungen K1, ...,Kn entsprechend den für die Periode geltenden Marktzins

F (ti−1, ti−1, ti) =
1

ti − ti−1
( 1

B(ti−1, ti)
− 1)

also

Ki = NF (ti−1, ti−1, ti)(ti − ti−1) = N ( 1

B(ti−1, ti)
− 1) i = 1, ..., n

Bewertung in t0 durch folgende replizierende Handelsstrategie:

- Rollierende Anlage des Nominals bis zum jeweiligen nächsten Zinstermin.
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Genauer

- In t0: kaufe N
B(t0,t1) t1-Bonds für N€ (die ich ja habe) und halte bis t1

- In t1:

- Reinvestiere das N in die zweite Zinsperiode durch Kauf von N
B(t1,t2) t2-Bonds

- Ausschüttung der Zinszahlung von

N
B(t0,t1) −N = NF (t0, t0, t1)(t1 − t0)

=K1

⋮

- In tn:

- Rückzahlung des Nominals N

- Ausschüttung der letzten Zinszahlung

N

B(t0, tn)
−N =Kn

⇒ Gleiche Zahlungsströme an Zinszahlungen und gleicher Endwert
⇒ Replikationsprinzip liefert gleiche Anfangsbewertung: N in t0.
In t < t0 ist der Preis NB(t, t0).

1.19 Swap

Ein Zinsswap liefert die Möglichkeit, das Zinsänderungsrisiko einer Festzinsanleihe zu vermeiden:

- Tauschgeschäft

- beim Zinsswap werden feste gegen variable Zinsen getauscht

- Tenorstruktur: t0 < t1 < ... < tn

- jährlicher Festzinssatz R

- Nominal N , das zur Berechnung der Zinsen dient

- Unterscheidung in Payer - und Reciever Swap, ausgehend von der Festzinsseite

Am Ende einer jeden Periode werden die festen Zinsen

NR(ti − ti−1)

gegen die variablen Zinsen
NF (ti−1, ti−1, ti)(ti − ti−1)

getauscht.
Das führt zum Zahlungsstrom

N(ti − ti−1)(F (ti−1, ti−1, ti) −R) i = 1, ...,m

beim Payer Swap und
N(ti − ti−1)(R − F (ti−1, ti−1, ti)) i = 1, ...,m

beim Reciever Swap.
Ein Payer Swap kann repliziert werden durch folgende Handelsstrategie:

− long in FRN
− short in Festzinsanleihe

} zum Nominal N , Zinszahlungsmethode passend zur Tenorstruktur
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Deshalb ergibt sich für den Preis des Payer Swap(t) in t ≤ t0:

Payer Swap(t) = NB(t, t0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Preis der FRN in t

−
⎛
⎜⎜
⎝
∑ni=1NRB(t, ti)(ti − ti−1) +NB(t, tn)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Preis Festzinsgeschäft

⎞
⎟⎟
⎠

= N (B(t, t0) −B(t, n) −∑ni=1R(ti − ti−1)B(t, ti))

Der faire Festzins R liegt dann in t vor, wenn Payer Swap(t) = 0 gilt, also wenn

R = B(t, t0) −B(t, n)
∑ni=1(ti − ti−1)B(t, ti)

R ist dann die sogenannte Swaprate in t.

2 Aktuarielle Bewertung von Zahlungsströmen

Ziel: Bewertung von Zahlungsverpflichtungen, die durch biometrische Risiken verursacht werden.
Biometrische Risiken sind zum Beispiel:

- Todesfall

- Invalidität

2.1 Zahlungsströme und deren Bewertung

-Zeitdiskrete, periodische Sichtweise. Die Zeit wird in Jahren gemessen.

2.2 Definition (Zahlungsstrom)

Ein Zahlungsstrom (Z(n))n∈N ist eine Folge von nicht negativen reellen Zahlen.
Z(n) =̂ Auszahlung zum Zeitpunkt n.

Frage: Was ist der heutige Kapitalwert der durch den Zahlungsstrom verursachten Zahlungsverpflichtun-
gen.
Antwort: Summe der abdiskontierten Zahlungen.
Genauer: Für jedes n ∈ N gibt B(k,n), der Preis der Nullkouponanleihe mit Fälligkeit n zum Zeitpunkt
k, den Wert einer in n fälligen Zahlungsverpflichtung von 1€ an.
Deshalb definieren wir:

V0(Z) = ∑∞
n=0Z(n)B(0, n) =̂ Summe aller auf den Anfang abdiskontierten

Zahlungsverpflichtungen; Kapitalwert heute

und

Vm(Z) = ∑∞
k=0Z(m + k)B(m,m + k) =̂ Summe aller nach m fälligen auf den Zeitpunkt m

abdiskontierten Zahlungsverpflichtungen

Vm(Z) ist das Kapital, das zum Zeitpunkt m benötigt wird, um die zukünftigen Zahlungsverpflichtungen
erfüllen zu können.

In der Praxis, insbesondere bei der Kalkulation von Lebensversicherungen, wird von einer periodischen
Verzinsung bzw. Diskontierung ausgegangen. Es wird also eine periodische Rendite r bzw. ein periodischer
Diskontfaktor v = 1

1+r angenommen. Damit ergibt sich dann

⇒ B(m,n) = vn−m ∀0 ≤m ≤ n.

2.3 Personenversicherung und deren Bewertung

Ziel: Mathematische Beschreibung und Analyse einer Personenversicherung.
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2.4 Definition (Personenversicherung)

Eine Personenversicherung ist eine Quadrupel

Γ = (t, s, b, T )

mit Zahlungsströmen (t(n))n∈N0 , (s(n))n∈N0 , (b(n))n∈N0 und (0,∞)-wertiger Zufallsvariablen T .

2.5 Interpretation

- T ist eine zufällige Ausfallzeit, z.B. : Restlebensdauer

- Todesfallspektrum (t(n))n∈N0 : t(n) ≥ 0 entspricht einer Auszahlung in n, bei Ausfall in der n-ten
Periode.

- Erlebungsspektrum (s(n))n∈N0 : s(n) ≥ 0 entspricht einer Auszahlung in n, wenn n erreicht wird.

- Beitragsspektrum (b(n))n∈N0 : b(n) ≥ 0 entspricht einer Prämieneinzahlung in n, wenn n erreicht
wird.

Aus Sicht eines Versicherungsunternehmens erzeugt eine Personenversicherung die folgende Zahlungs-
ströme:

Ausgabenstrom:

A(n) = s(n)1{T>n} + t(n)1{n−1<T≤n} n ∈ N0

A(0) = s(0)

Einnahmestrom:

I(n) = b(n)1{T>n} n ∈ N0

Bewertung aus heutiger Sicht durch

V0(A) = s(0) +∑∞
n=1 s(n)1{T>n}B(0, n) +∑∞

n=1 t(n)1{n−1<T≤n}B(0, n)

V0(I) = ∑∞
n=0 b(n)1{T>n}B(0, n)

V0(A) heutiger Kapitalwert des zufälligen Zahlungsstroms
IE(V0(A)) ist der mittlerer Kapitalwert der zukünftigen Zahlungsverpflichtungen:

IE(V0(A)) = s(0) +
∞
∑
n=1

s(n)B(0, n)P(T > n) +
∞
∑
n=1

t(n)B(0, n)P(n − 1 < T ≤ n)

IE(V0(I)) ist der mittlerer Kapitalwert der zukünftigen Einnahmen:

IE(V0(I)) =
∞
∑
n=0

b(n)B(0, n)P(T > n)

2.6 Definition (Barwert, fair)

IE(V0(A)) heißt Barwert der durch die Versicherung induzierten Zahlungsverpflichtungen.
IE(V0(I)) heißt Barwert der durch die Versicherung induzierten Einnahmen.
Eine Personenversicherung heißt ausgewogen/fair, wenn

IE(V0(A)) = IE(V0(I)) < ∞

Ist IE(V0(A)) < ∞ oder IE(V0(I)) < ∞, so ist

IE(V0(A)) − IE(V0(I))

der Barwert der Versicherung.
Dies ist als Ausgangspreis zu interpretieren, den ein Versicherungsunternehmen verlangt.
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2.7 Äquivalenzprinzip

Man wähle (t, s, b) so, dass die Versicherung fair ist. Dies kann man zur Beitragskalkulation benutzen,
indem zu vorgegebenem Todesfall-und Erlebensfallspektrum das Beitragsspektrum b so bestimmt wird,
dass die Versicherung fair ist.

2.8 Klassische Beispiele

- versichert wird eine Person

- biometrisches Risiko ist das Todesfallrisiko

- Ausfallzeit ist deshalb die Restlebenszeit der Person

2.8.1 Todesfallversicherung

- Todesfallsumme M

- Laufzeit n

- konstante periodische Prämienzahlung p

Induzierte Zahlungsströme:

A(k) =M1{k−1<T≤k} k = 1, ..., n

A(k) = 0 sonst

I(k) = p1{T>k} k = 0, ..., n − 1

I(k) = 0 sonst

V0(A) = ∑nk=1MB(0, k)1{k−1<T≤k}

V0(I) = ∑n−1
k=0 pB(0, k)1{T>k}

Also

IE(V0(A)) = ∑nk=1MB(0, k)P(k − 1 < T ≤ k)

IE(V0(I)) = ∑n−1
k=0 pB(0, k)P(T > k)

2.8.2 In der Praxis:

- Restlebenszeit wird durch das Alter bestimmt: Tx ist die Restlebenszeit eines x-Jährigen.

- Sationaritätsannahme:

P(Tx > t∣Tx > s) = P(Tx+s > t − s) ∀0 ≤ s ≤ t

- qx ∶= P(Tx ≤ 1) 1-jährige Sterbewahrscheinlichkeit eines x-Jährigen

- px ∶= 1 − qx = P(Tx > 1) 1-jährige Überlebenswahrscheinlichkeit eines x-Jährigen

- kpx = P(Tx > k) = P(Tx > 1)P(Tx > k∣Tx > 1)
= pxP(Tx+1 > k − 1) = ... = px ⋅ px+1 ⋅ ... ⋅ px+k−1

- kqx ∶= 1 −k px = P(Tx ≤ k)
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Eintrittsalter x:
Bezeichnung für M = 1:

∣nAx ∶=
n

∑
k=1

vkP(k − 1 < Tx ≤ k)

Bezeichnung für p = 1:

ä
x∶n∣ ∶=

n−1

∑
k=0

vkP(Tx > k)

Die Todesfallversicherung ist fair, wenn
M∣nAx = päx∶n∣

n = ∞ entspricht Todesfall ohne zeitliche Beschränkung
Bezeichnung:

Ax =
∞
∑
k=1

vkP(k − 1 < T ≤ k)

äx =
∞
∑
k=0

vkP(Tx > k)

2.8.3 aufgeschobene Rentenversicherung

- Eintrittalter x

- Aufschubzeit m Jahre

- Bezugszeit n Jahre

- Rentenhöhe R

- Beitragshöhe p

Modellierung:

- T = Tx Restlebenszeit eines x-Jährigen

- t(k) = 0 ∀k ∈ N0

- s(k) = 0 k = 0, ...,m − 1

- s(m + k) = R k = 0, ..., n − 1

- b(k) = p k = 0, ...,m − 1

- b(k) = 0 sonst

Induzierte Zahlungsströme:

Ausgaben:

A(m + k) = R1{Tx>m+k} k = 0, ..., n − 1

A(k) = 0 sonst

Einnahmen:

I(k) = p1{Tx>k} k = 0, ...,m − 1

Barwert der Ausgaben:

IE(V0(A)) = ∑n−1
k=0 Rv

m+kP(Tx >m + k) = Rm∣näx

Barwert der Einnahmen:

IE(V0(I)) = p∑m−1
k=0 vkP(Tx > k) = päx∶m∣

Die Versicherung ist fair, wenn Rm∣näx = päx∶m∣ gilt.

Für n = ∞ (also eine lebenslange Rente) setze:

m∣äx ∶=
∞
∑
k=0

vm+kP(Tx >m + k)
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2.8.4 Erlebensfallversicherung

- Eintrittalter x

- Laufzeit n Jahre

- Erlebensfallsumme M , Auszahlung bei Überleben von n Jahren

- konstante Prämie p während der Laufzeit

Modellierung:

- T = Tx Restlebenszeit eines x-Jährigen

- t(k) = 0 ∀k ∈ N0

- s(n) =M

- s(k) = 0 ∀k ∈ N0/{n}

- b(k) = p k = 0, ..., n − 1

- b(k) = 0 sonst

Induzierte Zahlungsströme:

Ausgaben:

A(n) =M1{Tx>n}

A(k) = 0 sonst

Einnahmen:

I(k) = p1{Tx>k} k = 0, ..., n − 1

Barwert der Ausgaben:

IE(V0(A)) =M vnP(Tx > n)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶nEx

=MnEx

Barwert der Einnahmen:

IE(V0(I)) = päx∶n∣
Die Versicherung ist fair, wenn MnEx = päx∶n∣ gilt.

2.8.5 gemischte Versicherung (kapitalgebundene Lebensversicherung)

- Kombination aus Todesfall- und Erlebensfallversicherung

- Eintrittalter x

- Laufzeit n Jahre

- VS M , fällig bei Tod während der Laufzeit oder bei Überleben der Laufzeit

- konstante Prämie p während der Laufzeit

Modellierung:

- T = Tx Restlebenszeit eines x-Jährigen

- t(k) =M k = 1, ...n

- t(k) = 0 sonst

- s(n) =M

- s(k) = 0 sonst
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- b(k) = p k = 0, ..., n − 1

- b(k) = 0 sonst

Induzierte Zahlungsströme:

Ausgaben:

A(k) =M1{k−1<Tx≤k} k = 1, ..., n − 1

A(n) =M (1{n−1<Tx≤n} + 1{Tx>n})

A(k) = 0 sonst

Einnahmen:

I(k) = p1{Tx>k} k = 0, ..., n − 1

Barwert der Ausgaben:

IE(V0(A)) =M (∣nAx +n Ex)

Barwert der Einnahmen:

IE(V0(I)) = päx∶n∣

Die Versicherung ist fair, wenn M (∣nAx +n Ex) = päx∶n∣ gilt.
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2.9 Beispiele im Überblick:

aufgeschobene
Rentenversicherung

Erlebensfall-
versicherung

gemischte
Versicherung

Voraussetzungen -Eintrittalter x
-Aufschubzeit m Jahre
-Bezugszeit n Jahre
-Rentenhöhe R
-Beitragshöhe p

-Eintrittalter x
-Laufzeit n Jahre
-Erlebensfallsumme M ,
Auszahlung bei Überleben
von n Jahren
-konstante Prämie p
während der Laufzeit

-Kombination aus
Todesfall- und
Erlebensfallsversicherung
-Eintrittalter x
-Laufzeit n Jahre
-VS M , fällig bei Tod
während der Laufzeit
oder bei Überleben
der Laufzeit
-konstante Prämie p
während der Laufzeit

Modellierung -T = Tx Restlebenszeit
eines x-Jährigen
-t(k) = 0 ∀k ∈ N0

-s(k) = 0 k = 0, ...,m − 1
-s(m + k) = R
k = 0, ..., n − 1
-b(k) = p k = 0, ...,m − 1
-b(k) = 0 sonst

-T = Tx Restlebenszeit
eines x-Jährigen
-t(k) = 0 ∀k ∈ N0

-s(n) =M
-s(k) = 0 ∀k ∈ N0/{n}
-b(k) = p k = 0, ..., n−1
-b(k) = 0 sonst

-T = Tx Restlebenszeit
eines x-Jährigen
-t(k) =M k = 1, ...n
-t(k) = 0 sonst
-s(n) =M
-s(k) = 0 sonst
-b(k) = p k = 0, ..., n−1
-b(k) = 0 sonst

induzierte
Zahlungsströme

-A(m + k) = R1{Tx>m+k}
k = 0, ..., n − 1
-A(k) = 0 sonst
-I(k) = p1{Tx>k}
k = 0, ...,m − 1

-A(n) =M1{Tx>n}
-A(k) = 0 sonst
-I(k) = p1{Tx>k}
k = 0, ..., n − 1

-A(k) =M1{k−1<Tx≤k}
k = 1, ..., n − 1
-A(n) =M (1{n−1<Tx≤n} + 1{Tx>n})
-A(k) = 0 sonst
-I(k) = p1{Tx>k}
k = 0, ..., n − 1

Bewertung -IE(V0(A)) =
∑n−1
k=0 Rv

m+kP(Tx > m +
k) = Rm∣näx
-IE(V0(I)) =
p∑m−1

k=0 vkP(Tx > k) =
pä
x∶m∣

-IE(V0(A)) =
M vnP(Tx > n)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶nEx

=MnEx

-IE(V0(I)) = päx∶n∣

-IE(V0(A)) =M (∣nAx +n Ex)
-IE(V0(I)) = päx∶n∣

Versicherung
ist fair, wenn

Rm∣näx = päx∶m∣ MnEx = päx∶n∣ M (∣nAx +n Ex) = päx∶n∣

Für n = ∞ lebenslange Rente: m∣äx ∶=
∑∞
k=0 v

m+kP(Tx >m + k)

2.10 Deckungskapital

Betrachtet wird der Fall einer deterministischen Zinsentwicklung, d.h. B(k,m) ∈ (0,1) deterministisch
∀n ∈ N, k ≤ n.
Man beobachtet, dass anfangs die Prämieneinnahmen pro Jahr höher sind als die zu erwartenden Aus-
gaben pro Jahr. Dies führt zum Aufbau einer Prämienreserve.
Gegen Ende sind die zu erwartenden Leistungen pro Jahr höher als die Prämien pro Jahr. Diese werden
durch die aufgebaute Prämienreserve finanziert.
Der Deckungskapitalverlauf spiegelt den Auf- und Abbau der Prämienreserve wieder.

2.11 Definition ((prospektives) Deckungskapital)

Gegeben sei eine allgemeine Personenversicherung Γ = (t, s, b, T ). Sei (A(n))n∈N und (I(n))n∈N der Zah-
lungsstrom der Ausgaben bzw Einnahmen.
Das nach m Jahren gebildete Deckungskapital D(m) ist definiert als die Differenz der Barwerte der
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dann zukünftigen Ausgaben und Einnahmen, wobei die Diskontierung auf das Ende des m-ten Jahres
vorgenommen wird, d.h.:

D(m) = IE(Vm(A)∣T >m) − IE(Vm(I)∣T >m) ∀m ∈ N0

Dies ist die Definition des s.g. prospektiven Deckungskapitals (vorausschauende Methode).
Für m = 0 ist D(0) der Barwert der Versicherung.
Bei einer fairen Versicherung ist D(0) = 0.

2.12 Bemerkung:

−IE(Vm(A)∣T >m) = IE

⎛
⎜⎜
⎝
∑∞
k=0A(m + k)B(m,m + k)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∼vk

∣T >m
⎞
⎟⎟
⎠

= ∑∞
k=0 t(k +m)B(m,m + k)P(m + k − 1 < T ≤m + k∣T >m)

+∑∞
k=0 s(k +m)B(m,m + k)P(T >m + k∣T >m)

- IE(Vm(I)∣T >m) = ∑∞
k=0 b(m + k)B(m,m + k)P(T >m + k∣T >m)

2.13 Beispiele

2.13.1 Todesfallversicherung

- Eintrittalter x

- VS M = 1

- Laufzeit n Jahre

- A(k) = 1{k−1<Tx≤k} k = 1, ..., n

- I(k) = p1{Tx>k} k = 0, ..., n − 1 mit p = ∣mAx

ä
x∶n∣

konstante Prämie

Dx(m) = ∑n−mk=1 vkP(m + k − 1 < Tx ≤m + k∣Tx >m)
−∑n−m−1

k=0 pvkP(Tx >m + k∣Tx >m)
= ∑n−mk=1 vkP(k − 1 < Tx+m ≤ k) − p∑n−m−1

k=0 vkP(Tx+m > k)
= ∣n−mAx+m − pä

x+m∶n−m∣

2.13.2 Todesfall mit unbegrenzter Laufzeit

Dx(m) = ∑∞
k=1 v

kP(m + k − 1 < Tx ≤m + k∣Tx >m)
−∑∞

k=0 pv
kP(Tx >m + k∣Tx >m)

= ∑∞
k=1 v

kP(k − 1 < Tx+m ≤ k) − p∑∞
k=0 v

kP(Tx+m > k)
= Ax+m − päx+m m = 0,1,2, ...

2.13.3 Erlebensfallversicherung

- Eintrittsalter x

- Laufzeit von n Jahren

- VS 1

- A(k) = 1{Tx>k} k = n

- A(k) = 0 sonst

- I(k) = p1{Tx>k} k = 0, ..., n − 1

- I(K) = 0 sonst
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Fair, wenn pä
x∶n∣ =n Ex.

Deckungskapitalverlauf:
Dx(m) = vn−mP(Tx > n∣Tx >m) − p∑n−m−1

k=0 vkP(Tx >m + k∣Tx >m)
Station-=
arität

vn−mP(Tx+m > n −m) − p∑n−m−1
k=0 vkP(Tx+m > k)

= n−mEx+m − pä
x+m∶n−m∣

Jahre
0

1

2.13.4 gemischte Versicherung

Das ist eine Todesfall- und Erlebensfallversicherung. Deshalb ergibt sich der Deckungskapitalverlauf aus
der Summe der Deckungskapitalien der einzelnen Versicherungen:

- Laufzeit n Jahre

- Eintrittsalter x

Dx(m) = A
x+m∶n−m∣ − päx+m∶n−m∣ mit pä

x∶n∣ = Ax∶n∣

Jahre
0

1

2.13.5 aufgeschobene Rentenversicherung

- Eintrittsalter x

- Aufschubzeit n Jahre

- Rentenbezugszeit bis zum Tod

- Rentenhöhe 1

Ausgaben:

- A(n + k) = 1{Tx>n+k} k = 0,1, ...

Einnahmen:

- I(k) = p1{Tx>k} k = 0, ..., n − 1
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Fair, wenn pä
x∶n∣ =∣n äx

Deckungskapitalverlauf:

⋅ Für m = 0, ..., n − 1:
Dx(m) = ∑∞

k=0 v
n−m+kP(Tx+m > n −m + k) − p∑n−m−1

k=0 vkP(Tx+m > k)
= ∣n−mäx+m − pä

x+m∶n−m∣

⋅ Für m = n:
Dx(m) = äx+m = äx+n

⋅ Für m > n:
Dx(m) = äx+m

Jahre
0

n

äx+n

Weitere Beispiele für Personenversicherungen, bei denen die Ausfallzeit nicht durch die Restlebenszeit
einer einzelnen Person gegeben ist:

2.14 Personengemeinschaften/ Verbundene Leben

Wir betrachten n Personen mit Restlebensdauern T1, ..., Tn. Aus diesen wird eine Ausfallzeit der Gemein-
schaft definiert durch

T = f(T1, ..., Tn)
für eine geeignete Funktion f .

2.15 Beispiel:

Für n = 2 ∶ T = min(T1, T2) = T1 ∧ T2 oder
T = max(T1, T2) = T1 ∨ T2

2.16 Bemerkung:

Bei unabhängigen T1, ..., Tn kann die Verteilung von max(T1, ..., Tn) und min(T1, ..., Tn) ausgerechnet
werden:
P(max(T1, ..., Tn) ≤ t) = P(T1 ≤ t, ..., Tn ≤ t)

=
n

∏
i=1

P(Ti ≤ t)
P(min(T1, ..., Tn) > t) = P(T1 > t, ..., Tn > t)

=
n

∏
i=1

P(Ti > t)

2.17 Beispiel:

Todesfallversicherung eines Ehepaars:

- Eintrittsalter Person 1: x

- Eintrittsalter Person 2: y

- Laufzeit n Jahre

- VS M wird fällig, wenn einer der beiden stirbt (also beim ersten Tod)

- Prämie p wird solange bezahlt, wie beide leben

Modellierung:
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- Setze Txy = Tx ∧ Ty

- t(k) =M k = 1, ...n

- t(k) = 0 sonst

- s(k) = 0 ∀k ∈ N0

- b(k) = p k = 0, ..., n − 1

- b(k) = 0 sonst

Dann beschreibt Γ = (t, s, b, Txy) eine Versicherung für verbundene Leben auf den ersten Tod.
Zahlungsströme:

- A(k) =M1{k−1<T−xy≤k} k = 1, ..., n

- I(k) = p1{Txy>k}

Die Versicherung ist fair, wenn

p
n−1

∑
k=0

vkP(Txy > k) =M
n

∑
k=1

vkP(k − 1 < Txy ≤ k)

Es gilt: P(Txy > k) = P(Txy > k∣Txy > k − 1)P(Txy > k − 1)
= P(Tx+k−1,y+k−1 > 1)P(Txy > k − 1)
= P(Tx+k−1 > 1)P(Ty+k−1 > 1)P(Txy > k − 1)
⋮
= P(Tx+k−1 > 1)P(Ty+k−1 > 1) ⋅ ... ⋅ P(Tx > 1)P(Ty > 1)

und P(k − 1 < Txy ≤ k) = P(Txy ≤ k∣Txy > k − 1)P(Txy > k − 1)
= P(Tx+k−1,y+k−1 ≤ 1)P(Txy > k − 1)
= (1 − P(Tx+k−1,y+k−1 > 1))P(Txy > k − 1)
= (1 − P(Tx+k−1 > 1)P(Ty+k−1 > 1))P(Txy > k − 1)

2.18 Konkurrierende Ausscheideursachen

- Ausfallzeit T

- mehrere konkurrierende Ausscheideursachen. Welche Ursache zum Ausscheiden führt, ist zufällig
und wird durch eine {1, ...,m}-wertige ZV J beschrieben.

- Leistung bei Ausfall hängt von der Ausscheideursache ab.

Die Modellierung erfolgt dadurch, dass die Todesfallleistung ersetzt, bzw. modifiziert, wird durch eine
Familie von Ausfallleistungen.

2.19 Definition (Personenversicherung unter m konkurrierenden Risiken)

Sei T eine (0,∞)-wertige ZV und J eine {1, ...,m}-wertige ZV. Seien (tj)j=1,...,m, s und b Zahlungsströme.
Dann heißt Γ = ((tj)j=1,...,m, s, b, T, J) Personenversicherung unter m konkurrierenden Risiken.

2.20 Interpretation

Anfangszustand:

- T =̂ Verweilzeit im Anfangszustand

- J =̂ zufälligen Wahl einer Ausscheideursache

- tj(n) =̂ Leistung bei Ausfall in der n-ten Periode wegen Ursache j

- s(n) =̂ Leistung bei einer Verweildauer größer n

- b(n) =̂ Beitrag bei Ausfall nach n.
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Zahlungsströme:

- A(k) = ∑mj=1 tj(k)1{k−1<T≤k,J=j} + s(k)1{T>k}

- I(k) = b(k)1{T>k}

Bewertung:

- IE(V0(A)) = ∑∞
k=1∑mj=1 tj(k)vkP(k − 1 < T ≤ k, J = j) +∑∞

k=0 s(k)vkP(T > k)

- IE(V0(I)) = ∑∞
k=0 b(k)vkP(T > k)

Für eine praktische Berechnung der Wahrscheinlichkeiten muss die Sationaritätsannahme modifiziert
werden:

2.21 Definition (stationär)

Eine Familie (Tx)x∈N0 von Ausfallzeiten zusammen mit einer {1,⋯,m}-wertigen Zufallsvariablen J heißt
stationär, wenn

P(Tx ≤ n + k, J = j∣Tx > n)) = P(Tx+n ≤ k, J = j)
für alle n ∈ N0, k ∈ N, j ∈ {1, ...,m}

2.22 Lemma

Ist ((Tx)x∈N0 , J) stationär, so auch (Tx)x∈N0 .

Beweis.
P(Tx ≤ n + k∣Tx > n) = ∑mj=1 P(Tx ≤ n + k, J = j∣Tx > n)

= ∑mj=1 P(Tx+n ≤ k, J = j)
= P(Tx+n ≤ k)

Setze qx,j ∶= P(Tx ≤ 1, J = j) als Wahrscheinlichkeitkeit eines x-Jährigen im folgenden Jahr wegen der
Ursache j auszuscheiden.
qx ∶= P(Tx ≤ 1) = ∑mj=1 qx,j einjährige Ausscheidewahrscheinlichkeit eines x-jährigen.
px ∶= 1 − qx einjährige Verweilwahrscheinlichkeit eines x-Jährigen.
Wegen der Stationarität gilt dann:
P(Tx > n) = P(Tx > n∣Tx > n − 1) ⋅ ... ⋅ P(Tx > 1)

= px+n−1 ⋅ ... ⋅ px
bzw:
P(n − 1 < Tx ≤ n,J = j) = P(n − 1 < Tx ≤ n,J = j∣Tx > n − 1)P(Tx > n − 1)

= P(Tx+n−1 ≤ 1, J = j)P(Tx > n − 1)
= qx+n−1,jP(Tx > n − 1)

Für eine Berechnung der Barwerte genügt es also, die qx,j zu spezifizieren.

2.23 Beispiel: Invalidenrente

- Eintrittsalter x

- Grundzustand: aktiv a

- Mögliche Ausscheideursachen:

• Invalidität

• Tod

Bei Invalidität wird eine lebenslange Rente der Höhe R gezahlt.

Modell:

- Tx entspricht der Verweilzeit im Zustand a

- P(Tx > k) bedeutet als Aktiver k Jahre zu überleben
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- J = 1 entspricht Invalidität

- J = 2 entspricht Tod

- Laufzeit n (Restlaufzeit bis zur gesetzlichen Rente)

- t1(k) = Räx+k entspricht der Leistung bei Invalidität im k-ten Jahr; Barwert des Rentenanspruchs
k = 1, ..., n

- t2(k) = 0 k ∈ N0

- s(k) = 0 k ∈ N0

- b(k) = p k = 0, ..., n − 1

Bewertung:

- IE(V (A)) = ∑nk=1Rax+kv
kP(k − 1 ≤ Tx < k, J = j) = R∑nk=1 ax+kv

kqx+k−1,1P(Tx > k − 1)

- IE(V (I)) = p∑n−1
k=0 v

kP(Tx > k)

Notation:

- i(y) ∶= qy,1 einjährige Invalidisierungswahrscheinlichkeit eines y-Jährigen Aktiven

- qay ∶= qy,2 einjährige Sterbewahrscheinlichkeit eines y-Jährigen Aktiven

- qy ∶= qay + i(y) Wahrscheinlichkeit eines aktiven y-Jährigen im nächsten Jahr auszuscheiden

3 Exkurs: stochastische Prozesse

3.1 Definitionen

3.2 Definition (Wahrscheinlichkeitsraum, Zeitparameter, Zustandstraum,
stochastischer Prozess, Filtration, Informationsverlauf, Information, adaptiert)

Sei (Ω,F ,P) ein Wahrscheinlichkeitsraum.

Sei T ⊆ R eine Zeitparametermenge.

Sei (E,E) ein messbarer Raum als Zustandsraum.

Eine Familie (Xt)t∈T von E-wertigen ZV heißt stochastischer Prozess.

Eine Familie von Unter-σ-Algebren F heißt Filtration, wenn Fs ⊆ Ft für alle s ≤ t und s, t ∈ T .

(Ft)t∈T gibt einen Informationsverlauf wieder.

Ft entspricht einer Information, die bis zum Zeitpunkt t verfügbar ist.

(Xt)t∈T heißt adaptiert bzgl. der Filtration (Ft)t∈T , falls gilt: Xt ist messbar bzgl. Ft ∀t ∈ T .

In der Regel: T ⊆ N0 oder T ⊆ [0,∞),E = Rd,E = B(Rd)

Beispiel: Die Preisentwicklung von d Finanzgütern kann man durch einen stochastischen Prozess (Xt)t∈T
mit Werten in Rd beschrieben werden:
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3.3 Das N-Perioden-CRR Modell (Cox-Ross-Rubinstein Modell)

Ω = {0,1}N ,F = P(Ω),0 < d < u,Yn ∶ Ω // R
ω
� // uωn ⋅ d1−ωn

Sn = Y1 ⋅ Y2 ⋅ ... ⋅ Yn der Preis nach n Perioden:

1

u

u2

u3

ud

u2d

d2ud

d2

d3

S(n)n=0,...,N Verlauf einer Aktie über N Perioden. Zusätzlich zur Aktie

betrachtet man ein Geldmarktkonto: ( (1 + r)n
S(n) ) beschreibt im CRR

Modell den Verlauf der Preise dieser beiden Basisfinanzgüter.

3.4 (geometrischer) Random Walk

Sei (Yn)n∈N0 eine Folge von iid ZV. Sei Y0 unabhängig von (Yn)n∈N. Durch Sn ∶= Y0 +∑nk=1 Yk n ∈ N0

wird ein sogenannter Random Walk definiert.

Durch Sn = Y0 ⋅
n

∏
i=1
Yi n ∈ N0 wird ein geometrischer Random Walk definiert.

Die Aktie im CRR Modell ist ein geometrischer Random Walk.

3.5 Bedingter Erwartungswert

Sei (Ω,F ,P) ein Wahrscheinlichkeitsraum, G eine Unter-σ-Algebra von F . Sei X ∶ Ω→ R messbar bzgl F
und IEX existiere.
Dann heißt Z ∶ Ω→ R eine Version des bedingten Erwartungswertes von X bzgl G, wenn gilt:

i) Z ist messbar bzgl G

ii) ∫AZdP = ∫AXdP ∀A ∈ G

Schreibweise: Z = IE(X ∣G)
Ist G = σ(Y ) für eine ZV Y , so schreib man auch IE(X ∣G) = IE(X ∣σ(Y )) = IE(X ∣Y ).

3.6 Existenz und Eindeutigkeit

Gegeben seien die Bezeichnungen wie in 3.5.
Dann existiert der bedingte Erwartungswert von X bzgl G und ist P-f.s. eindeutig bestimmt, d.h. erfüllen
Z1, Z2 die Bedingungen aus 3.5, so gilt:

Z1 = Z2 P-f.s.

Beweis.
Existenz:

1. Fall: X ≥ 0

µ(A) = ∫AXdP, A ∈ G definiert ein σ-endliches Maß auf (Ω,G) mit µ << P.

Satz von Radon-Nikodym liefert ein G-messbares Z mit µ(A) = ∫AZdP für alle A ∈ G.

Also Z = IE(X ∣G)

2. Fall: X beliebig
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Zerlege X =X+ −X−

IE(X+∣G), IE(X−∣G) existierten nach Fall 1.

∫AXdP = ∫AX+dP − ∫AX−dP
= ∫A IE(X+∣G)dP − ∫A IE(X−∣G)dP
= ∫A IE(X+∣G) − IE(X−∣G)dP ∀A ∈ G

Also ist E(X+∣G) − IE(X−∣G) = IE(X ∣G)

Eindeutigkeit:

Seien Z1, Z2 bedingte Erwartungswerte.

∫{Z1−Z2> 1
n }Z1 −Z2dP = ∫{Z1−Z2> 1

n }XdP − ∫{Z1−Z2> 1
n }XdP = 0

⇒ P(Z1 −Z2 > 1
n
) = 0 ∀n ∈ N

⇒ P(Z1 −Z2 > 0) = 0
analog⇒ P(Z2 −Z1 > 0) = 0

⎫⎪⎪⎬⎪⎪⎭
⇒ Z1 = Z2P-f.s.

3.7 Beispiel:

Seien X1, ...,Xn iid, IE∣X1∣ < ∞. Sei Sn = ∑ni=1Xi

⇒ Frage: IE(X1∣Sn)?
⇒ Vermutung: IE(X1∣Sn) = IE(X2∣Sn) = ... = IE(Xn∣Sn)
Dann gilt: nIE(X1∣Sn) = ∑ni=1 IE(Xi∣Sn) = IE(∑ni=1 ∣Sn) = IE(Sn∣Sn) = Sn
⇒ IE(X1∣Sn) = 1

n
Sn

Wieso ist IE(X1∣Sn) = IE(Xk ∣Sn)?

Beweis. zu zeigen: ∫{Sn∈B}X1dP = ∫{Sn∈B}XkdP ∀B ∈ B
∫{Sn∈B}X1dP = ∫{x∈Rn∶∑ni=1 xi∈B} x1P(X1,...,Xn)(dx1, ..., dxn)
Da X1, ...,Xn stochastisch unabhängig sind, ist P(X1,...,Xn) = P(Xπ(1),...,Xπ(n))

= ∫{x∈Rn∶∑ni=1 xi∈B} x1P(Xπ(1),...,Xπ(n))(dx1, ..., dxn)
Betrachte die Permutation π mit π(1) = k

= ∫{Sn∈B}XkdP

3.8 Faktorisierter bedingter Erwartungswert

Sei X ∶ (Ω,F ,P) → (R,B) eine ZV und sein Y ∶ (Ω,F ,P) → (E,E) messbar. Sei G = σ(Y ). Dann gilt:
Eine ZV Z ∶ Ω → R ist G-messbar genau dann, wenn es eine E-messbare Abbildung h ∶ E → R gibt, mit
Z = h ○ Y .

Ω
Y //

IE(X ∣Y ) ''

(E,E)

h

��
(R,B)

Ð→ h(y) = IE(X ∣Y = y)

Falls Z eine Version der bedingten Erwartung von X, gegeben Y , ist, so gibt es also ein h ∶ E → R mit

Z = h ○ Y.

Schreibweise: h(y) = IE(X ∣Y = y).
h heißt Version der faktorisierten bedingten Erwartung von X, gegeben Y .
Sind h1 und h2 Versionen der bedingten Erwartungen von X, gegeben Y , so gilt:

h1(y) = h2(y) für PY -f.a. y ∈ E.
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y ↦ IE(X ∣Y = y) ist eindeutig festgelegt für PY -f.a. y durch
IEX1{Y ∈B} = ∫{Y ∈B} IE(X ∣Y )dP

= ∫{Y ∈B} h ○ Y dP
= ∫B h(y)PY (dy) ∀B ∈ B

Ausrechnen des bedingten Erwartungswerts erfolgt häufig durch Spezifikation der bedingten Verteilung:

3.9 Stochastischer Kern

Seien (Ω,F) und (E,E) messbare Räume.
Ein stochastischer Kern K ist eine Abbildung K ∶ E ×F → [0,1] für die gilt:

i) K(y, ⋅) ist ein WMaß für alle y ∈ E

ii) K(⋅,A) ist messbar für alle A ∈ F

3.10 bedingte Wahrscheinlichkeiten und bedingte Verteilungen

Sei (Ω,F ,P) ein WRaum und G eine Unter-σ-Algebra von F .
Für jedes Γ ∈ F heißt

IE(1Γ∣G)
bedingte Wahrscheinlichkeit von Γ gegeben G.
Schreibweise: P(Γ∣G) ∶= IE(1Γ∣G)

Seien X ∶ (Ω,F) → (E1,E1) und Y ∶ (Ω,F) → (E2,E2) messbare Abbildungen.

Die bedingte Verteilung von X, gegeben Y , ist ein stochastischer Kern K ∶ E2 × E1 → [0,1] derart,
dass y ↦K(y,A) eine Version der faktorisierten bedingten Erwartung von P(X ∈ A∣Y ) ist für alle A ∈ E1.
Schreibweise: K(y,A) ∶= P(X ∈ A∣Y = y).
Durch Erweiterungsschluss kann man zeigen:

IE(f(X)∣Y = y) = ∫ f(x)K(y, dx)

für jedes messbare f ∶ E1 → (R,B) für welches IE(f(X)) existiert.

3.11 Beispiel: Diskrete Zufallsvariablen

Sei (E1,E1) messbar und E2 abzählbar mit E2 = P(E2). Seien X ∶ (Ω,F) → (E1,E1) und
Y ∶ (Ω,F) → (E2,E2) messbar.
Die bedingte Verteilung von X, gegeben Y = y, ist bestimmt durch

P(X ∈ A∣Y = y) = P(X ∈ A,Y = y)
P(Y = y) ∀y ∈ E2 mit P(Y = y) > 0

Definiere den stochastischen Kern K ∶ E2 × E1 → [0,1] durch

K(y,A) ∶= {
P(X∈A,Y =y)

P(Y =y) ∀y ∈ E2 mit P(Y = y) > 0

irgendwie, d.h. wähle beliebiges WMaß µ auf (E1,E1) und setze K(y,A) = µ(A) f.a. A ∈ E1
Damit ist K die bedingte Verteilung von X, gegeben Y .

3.12 Lebesgue-Dichten

Sei (X,Y ) ein zweidimensionaler Zufallsvektor mit Lebesgue Dichte h ∶ R2 → R≥0, d.h.

P(X ∈ A,Y ∈ B) = ∫A×B h(x, y)λ2(dx, dy)
=

Fubini
∫A ∫B h(x, y)λ(dy)λ(dx) ∀A,B ∈ B

Setze f(y) = ∫R h(x, y)dx.
Dann ist f messbar wegen Fubini und die Lebesgue Dichte von Y , denn

P(Y ∈ B) = P(Y ∈ B,X ∈ R) = ∫
R×B

h(x, y)d(x, y) = ∫
B
∫
R
h(x, y)dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=f(y)

dy ∀B ∈ B
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Definiere einen stochastischen Kern K ∶ R × B → [0,1] durch

K(y,A) ∶= { ∫A
h(x,y)
f(y) λ(dx) falls f(y) > 0

irgendwie

Dann ist K eine bedingte Verteilung von X, gegeben Y , denn

P(X ∈ A,y ∈ B) = ∫A×B h(x, y)λ2(dx, dy)
= ∫B ∫A h(x, y)dxdy
= ∫B∩{f>0} ∫A

h(x,y)
f(y) dxf(y)dy

= ∫B∩{f>0}K(y,A)f(y)dy
= ∫BK(y,A)PY (dy)

Also gilt ω ↦K(Y (ω),A) ist eine Version von P(X ∈ A∣Y )
⇒ y ↦K(y,A) ist eine Version von y ↦ P(X ∈ A∣Y = y).

3.13 Eigenschaften der bedingten Erwartung

Sei (Ω,F ,P) ein WRaum, G ⊆ F eine Unter-σ-Algebra. Seien X,X1,X2 integrierbare ZV. Dann gilt:

i) IE(αX1 + βX2∣G) = αIE(X1∣G) + βIE(X2∣G) für alle α,β ∈ R

ii) X1 ≤X2 ⇒ IE(X1∣G) ≤ IE(X2∣G)

iii) Sei Z eine G-messbare ZV, derart dass IEZX existiert. Dann gilt:

IE(ZX ∣G) = ZIE(X ∣G)

iv) Sind G1 ⊆ G2 ⊆ F Unter-σ-Algebren, so folgt:

IE(X ∣G1) = IE(IE(X ∣G2)∣G1)

”Tower Property”

v) Sind G und X stochastisch unabhängig, so gilt:

IE(X ∣G) = IEX

vi) Sind Z1, Z2 stochastisch unabhängige ZV mit Werten in (E1,E1) bzw. (E2,E2) und ist
h ∶ E1 ×E2 → (R,B) messbar mit existierenden IEh(Z1, Z2), so gilt:

IE(h(Z1, Z2)∣Z2 = z2) = IEh(Z1, z2) fürPZ2-f.a. z2 ∈ E2

vii) IE(IE(X ∣G)) = IEX

Beweis. (i), (ii) einfach
(iii)

1. Fall: Z ≥ 0,X ≥ 0
Ist Z = 1G mit G ∈ G:

∫AZXdP = ∫A 1GXdP = ∫A∩G
²
∈G

XdP

= ∫A∩G IE(X ∣G)dP = ∫AZIE(X ∣G)dP
⇒ IE(ZX ∣G) = ZIE(X ∣G)

Ist Z = ∑ni=1 αi1Gi Gi ∈ G, αi ≥ 0, so gilt wegen (i)

IE(ZX ∣G) = IE(
n

∑
i=1

αi1GiX ∣G) =
n

∑
i=1

αiIE(1GiX ∣G) =
n

∑
i=1

αi1GiIE(X ∣G) = ZIE(X ∣G)
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Ist Z ≥ 0,so existiert eine Folge von Treppenfunktionen (Zn)n∈N mit 0 ≤ Z1 ≤ Z2 ≤ ... ↑ Z ⇒ ZnX ↑
ZX
Für jedes A ∈ G folgt mit der monotonen Konvergenz

∫AZXdP = IE(ZX1A) = lim
n→∞

IE(ZnX1A)
= lim
n→∞

IE(IE(ZnA∣G)1A)
= lim
n→∞

IE(ZnIE(X ∣G)1A)
= IE(ZIE(X ∣G)1A)

⇒ IE(ZX ∣G) = ZIE(X ∣G)

2. Fall X,Z beliebig
ZX = U − V mit U = Z+X+ +Z−X− ≥ 0

V = Z+X− +Z−X+ ≥ 0
Also

IE(ZX ∣G) = IE(U ∣G) − IE(V ∣G)
= IE(Z+X+∣G) + IE(Z−X−∣G) − (IE(Z+X−∣G) + IE(Z−X+∣G))
= Z+IE(X+∣G) −Z−IE(X+∣G) − (Z+IE(X−∣G) −Z−IE(X−∣G))
= Z(IE(X+∣G) − IE(X−∣G))
= ZIE(X ∣G)

(iv)

Sei A ∈ G1 ⊆ G2

∫
A

IE(X ∣G2)dP A∈G2= ∫
A
XdP A∈G1= ∫

A
IE(X ∣G1)dP

⇒ IE(IE(X ∣G2)∣G1) = IE(X ∣G1)

(vi)

zu zeigen: IE(h(Z1, Z2)∣Z2 = z2) = IEh(Z1, z2)
Für B ∈ E2 gilt:

∫{Z1∈B} h(Z1, Z2)dP = IEh(Z1, Z2)1{Z2∈B,Z1∈E1}
= ∫B ∫E1

h(z1, z2)PZ1(dz1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

IEh(Z1,z2) für PZ2 -f.a. z2∈E2

PZ2(dz2)

⇒ IE(h(Z1, Z2)∣Z2 = z2) = IEh(Z1, z2) für PZ2 -f.a. z2 ∈ E2

3.14 Bestapproximation

Sei (Ω,F ,P) ein WRaum, X eine ZV mit IEX2 < ∞, G ⊆ F Unter-σ-Algebra
L2(Ω,F ,P) ∶= {Y ∶ Ω→ R ∶ Y ist F-messbar und IEY 2 < ∞}
L2(Ω,G,P) ∶= {Y ∶ Ω→ R ∶ Y ist G-messbar und IEY 2 < ∞}
Also L2(Ω,G,P) ⊆ L2(Ω,F ,P)
Durch < Y,Z >∶= IEY Z wird ein Skalarprodukt auf L2(Ω,F ,P) definiert.
∣∣Y ∣∣22 ∶=< Y,Y > ist die durch das Skalarprodukt induzierte Norm.
L2(Ω,G,P) ist ein abgeschlossener Teilraum.

Für X ∈ L2(Ω,F ,P) ist X̂ ∶= IE(X ∣G) die Orthogonalprojektion auf L2(Ω,G,P), d.h. X̂ ∈  L2(Ω,G,P)
und es gilt

∣∣X − X̂ ∣∣22 = inf
Z∈L2(Ω,G,P)

∣∣X −Z ∣∣22.

Beweis. X = X̂ +X − X̂
zu zeigen: X − X̂ ⊥ Z ∀Z ∈ L2(Ω,G,P)
Die Eigenschaften des bedingten Erwartungswertes implizieren:

< 1A,X >= ∫
A
1AXdP = ∫ 1AX̂dP =< 1A, X̂ >

für jedes A ∈ G.
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⇒< ∑ni=1 αi1Ai ,X >=< ∑ni=1 αi1Ai , X̂ > ∀A1, ...,An ∈ G, α1, ..., αn ∈ R
⇒< Z,X >=< Z, X̂ > Z ∈ L2(Ω,G,P), da < ⋅,X > und < ⋅, X̂ > stetig sind
⇒X − X̂ ⊥ L2(Ω,G,P)
Mit Pythagoras folgt dann
∣∣X −Z ∣∣22 = ∣∣X − X̂ + X̂ −Z ∣∣22

= ∣∣X − X̂ ∣∣22 + ∣∣X̂ −Z ∣∣22
≥ ∣∣X − X̂ ∣∣22

3.15 Martingale

Sei T eine Zeitparametermenge, (Ft)t∈T eine Filtration und (Mt)t∈T ein adaptierter stochastischer Pro-
zess.
M heißt Martingal, falls gilt:

i) IE∣Mt∣ < ∞ ∀t ∈ T

ii) IE(Mt∣Fs) =Ms s, t ∈ T, s ≤ t

M heißt Submartingal, falls gilt:

i) IE∣Mt∣ < ∞ ∀t ∈ T

ii) IE(Mt∣Fs) ≥Ms s, t ∈ T, s ≤ t

M heißt Supermartingal, falls gilt:

i) IE∣Mt∣ < ∞ ∀t ∈ T

ii) IE(Mt∣Fs) ≤Ms s, t ∈ T, s ≤ t

3.16 Beispiele

3.17 Random Walk

Sn = S0+∑ni=1Xi, S0 unabhängig von (Xi)i∈N, IE∣Xi∣ < ∞, IE∣S0∣ < ∞, (Xi)i∈N iid und Fn = σ(S0, S1, ..., Sn) =
σ(S0,X1, ...,Xn)
Dann gilt:

IE(Sn+1∣Fn) = IE(Sn +Xn+1∣Sn)
= IE(Sn∣Sn) + IE(Xn+1∣Sn)

Sn ist Fn mb=
Xn+1 unab. von Fn

Sn + IEXn+1
>=
<
Sn⇔ IEXn+1

>=
<

0

Also ist ein Random Walk ein Martingal genau dann, wenn IEX1 = 0 gilt. Er ist ein Submartingal genau
dann, wenn IEX1 > 0 ist und ein Supermartingal genau dann, wenn IEX1 < 0 gilt.

3.18 geometrischer Random Walk

Sn = S0

n

∏
i=1
Xi, IE∣Xi∣ < ∞, IE∣S0∣ < ∞, (Xi)i∈N iid und Fn = σ(S0, S1, ..., Sn) = σ(S0,X1, ...,Xn)

Dann gilt:
IE(Sn+1∣Fn) = IE(SnXn+1∣S0, ..., Sn)

=
Sn ist Fn mb

SnIE(Xn+1∣S0, ..., Sn)
=

Xn+1 unab. von Fn
SnIEXn+1

Also Sn ist ein Martingal ⇔ IEXi = 1 für alle i ∈ N

3.19 Stoppzeit

Sei (Ft)t∈T eine Filtration.
τ ∶ Ω→ T ∪ {+∞}

heißt Stoppzeit, falls
{τ ≤ t} ∈ Ft ∀t ∈ T.

Stoppzeiten kann man als Verkaufsoption interpretieren:
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”Die Entscheidung, über t hinaus fortzusetzen”

{τ ≤ t} darf nur von den bis t verfügbaren Informationen abhängen.

3.20 Beispiel:

(Sn)n∈N0 reellwertiger stochastischer Prozess, Fn = σ(S0, S1, ..., Sn) ∀n ∈ N0.
τ ∶= inf{n ∈ N0 ∶ Sn > a} ist eine Stoppzeit, denn

{τ ≤ n} = {S0 ≤ a,S1 ≤ a, ..., Sn ≤ a} ∈ Fn

3.21 Gegenbeispiel:

Sei ein Aktienkurs gegeben:

N

a

τ

τ = inf{0 ≤ k ≤ N ∶ Sk = max{S0, ..., SN}} ist keine Stoppzeit, da zur Stoppentscheidung in die Zukunft
geschaut werden muss.

3.22 Martingal als Glücksspiel

Sei (Fn)n∈N0 eine Filtration und (Mn)n∈N0 ein adaptierter stochastischer Prozess mit IE∣Mn∣ < ∞,∀n ∈ N0.
Mn entspricht der Auszahlung, die ein Spieler enthält, wenn er das Spiel zum Zeitpunkt n beendet.
Die Stoppzeiten entsprechen den Strategien, die ein Spieler verwirklichen kann.

3.23 Definition (beschränkte Stoppzeit)

τ ist eine beschränkte Stoppzeit, falls es ein N ∈ N gibt mit τ ≤ N .
Beschränkte Stoppzeiten entsprechen real einsetzbaren Strategien.

3.24 Satz

Es gilt: (Mn)n∈N0 ist ein Martingal genau dann, wenn

IEMτ = IEM0 ∀beschränkte Stoppzeiten τ

d.h. durch Spielen des Glückspiels kann sich ein Spieler im Mittel weder verbessern, noch verschlechtern
(”faires Glücksspiel”).

Beweis. ”⇒”
Sei τ beschränkte Stoppzeit mit τ ≤ N .

IEMτ = IE∑Nn=0Mτ1{τ=n}
= IE∑Nn=0Mn1{τ=n}
= ∑Nn=0 IEMn1{τ=n}
Mn=

Martingal
∑Nn=0 IEIE(MN ∣Fn)1{τ=n}

{τ=n}∈Fn= ∑Nn=0 IEIE(MN1{τ=n}∣Fn)
= ∑Nn=0 IE(MN1{τ=n})
= IE∑Nn=0MN1{τ=n}

= IEMN
τ=0= IEM0

Also IEMτ = IEM0.
”⇐”: Sei m > n
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zu zeigen: IE(Mm∣Fn) =Mn, d.h.

∫
A
MmdP = ∫

A
MndP ∀A ∈ Fn

Zu A ∈ Fn definiere Stoppzeit

τA(ω) ∶=
⎧⎪⎪⎨⎪⎪⎩

m falls ω ∈ A
n falls ω ∈ Ac

Also τA =m1A + n1Ac .
τ ist eine beschränke Stoppzeit. Es gilt also

IEM0 = IEMτA = IEMm1A + IEMn1Ac

= IEMm1A + IEMn − IEMn1A

Weiter gilt mit τ = n:
IEM0 = IEMτ = IEMn

Einsetzen liefert:
IEMm1A = IEMn1A

⇔ ∫AMmdP = ∫AMndP

3.25 Optional Sampling

Frage: Wann gilt IEMτ = IEM0, wenn M ein Martingal ist?
↝ Für beschränkte Stoppzeiten klar.
↝ Für unbeschränkte Stoppzeiten braucht man Voraussetzungen.

3.26 Beispiel: Irrfahrt auf Z
Sn = ∑ni=1Xi, (Xi) iid,
P(Xi = 1) = 1

2
= P(Xi = −1), τ = inf{n ∈ N0 ∶ Sn = 1}, S0 = 0.

0

1

τ

Es gilt: P(τ < ∞) = 1 P-f.s. und Sτ = 1⇒ IESτ = 1 ≠ 0 = IES0

Antwort liefert das Optional-Sampling-Theorem:

3.27 Satz (Optional-Sampling-Theorem)

Sei (Mn)n∈N0 ein Martingal bezüglich eiuner Filtration (Fn)n∈N0 . Sei τ eine Stoppzeit mit den folgenden
Eigenschaften:

i) P(τ < ∞) = 1

ii) IE∣Mτ ∣ < ∞

iii) IE∣Mn∣1{τ>n}
n→∞Ð→ 0

Dann gilt:
IEMτ = IEM0
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Beweis. Approximiere τ durch beschränkte Stoppzeiten τ ∧ n. Es gilt: IEMτ∧n = IEM0.
Also:

∣IEMτ − IEM0∣ = ∣IEMτ − IEMτ∧n∣
= ∣IEMτ − IEMτ1{τ≤n} − IEMn1{τ>n}∣
= ∣IEMτ1{τ>n} − IEMn1{τ>n}∣
≤ IE∣Mτ ∣1{τ>n} + IE∣Mn∣1{τ>n}
n→∞Ð→

wegen (i),(ii)
und einer

Anwendung der
majorisierten Konvergenz

0

3.28 Anwendung

Berechnung von Ruinwahrscheinlichkeiten.
Sei (Xn)n∈N iid mit P(Xn = 1) = p = 1 − P(Xn = −1), Sn = ∑ni=1Xi ∀n ∈ N.
Anfangskapital von k Euro:

S(k)
n = k + Sn = k +

n

∑
i=1

Xi

Vermögen nach n Spielen bei Anfanskapital k. Wir spielen solange, bis wir ein Vermögen von l > k Euro
erreicht haben, oder ruiniert sind.

τ = inf{n ∈ N ∶ S(k)
n = 0 oder S

(k)
n = l} = inf{n ∈ N ∶ Sn = −k oder Sn = l − k} entspricht der Strategie.

{Sτ = −k} = {S(k)
τ = 0} entspricht dem Ruin und

{Sτ = l − k} = {S(k)
τ = l} entspricht dem Gewinn.

Man kann zeigen, dass
P(τ < ∞) = 1 und IEτ < ∞

(i) der faire Fall p = 1
2
:

Dann ist (Sn)n∈N ein Matringal
IE∣Sτ ∣ ≤ max(k, l − k) < ∞

IE∣Sn∣1{τ>n} ≤ max(k, l − k)P(τ > n) n→∞Ð→ 0

Optional Sampling liefert:

IESτ = −kP(Sτ = −k) + (l − k)P(Sτ = l − k)

Zusammen mit P(Sτ = −k) + P(Sτ = l − k) = 1
folgt:

P(Sτ = −k) =
l − k
l

Ruinwahrscheinlichkeit

P(Sτ = l − k) =
k

l
Gewinnwahrscheinlichkeit

(ii) der unfaire Fall p ≠ 1
2

Betrachte den geometrischen Random-Walk

Mn = aSn =
n

∏
i=1

aXi mit a > 0

(Mn)n∈N0 ist ein Martingal ⇔ IEaX−1 = 1
⇔ ap + 1

a
(1 − p) = 1

⇔ a = 1 oder a = 1−p
p

Für p ≠ 1
2

ist a ≠ 1

Weiter gilt: IE∣Mτ ∣ ≤ max(a−k, al−k) < ∞
IE∣Mn∣1{τ>n} ≤ max(a−k, al−k)P(τ > n) n→∞Ð→ 0

Optional Sampling liefert

1 = IEMτ = a−kP(Sτ = −k) + al−kP(Sτ = l − k)
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Zusammen mit P(Sτ = −k) + P(Sτ = l − k) = 1
folgt:

P(Sτ = −k) =
ak − al
1 − al

P(Sτ = l − k) =
1 − ak
1 − al

Es fehlt noch der Nachweis, dass
P(τ < ∞) = 1

Betrachte dazu für b ∈ Z ∶ τb = inf{n ∈ N0 ∶ Sn = b}
(i) Der Fall p ≥ 1

2

Dann gilt: P(τb < ∞) = P(τ1 < ∞)P(τb−1 < ∞)
= P(τ1 < ∞)b

P(τa < ∞) = P(τ−1 < ∞)a ∀a, b ∈ N
Weiter ist: P(τ1 < ∞) = P(τ1 < ∞,X1 = 1) + P(τ1 < ∞,X1 = −1)

= P(X1 = 1) + P(X1 = −1)P(τ1 < ∞)
= p + (1 − p)P(τ1 < ∞)

Also ist P(τ1 < ∞) Lösung von
(1 − p)x2 − (x + p) = 0

⇒ P(τ1 < +∞) = 1 oder P(τ1 < +∞) = p
1−p

Ist p ≥ 1
2
⇒ p

1−p ≥ 1⇒ P(τ1 < +∞) = 1

(ii) Der Fall p < 1
2

Dann ist p
1−p < 1

SLLN ⇒ Sn
n

n→∞Ð→ IEX1 = 2p − 1 < 0
⇒ Sn Ð→ −∞ P-f.s.
⇒ P(supn∈N Sn = +∞) = 0
Wäre P(τ1 < ∞) = 1, so wäre P(τb < ∞) = 1 ∀b ∈ N
und damit:

P(sup
n∈N

Sn = +∞) = lim
b→∞

P(sup
n∈N

Sn ≥ b) = lim
b→∞

P(τb < ∞) = 1 

Also gilt P(τ1 < ∞) = p
1−p für p < 1

2
.

Analog kann man schließen, dass

P(τ−1 < ∞) =
⎧⎪⎪⎨⎪⎪⎩

1 p ≤ 1
2

1−p
p

p > 1
2

Insgesamt folgt somit für a < 0 < b und

τab ∶= inf{n ∈ N0 ∶ Sn = a oder Sn = b}

P(τab < ∞) = P(τa < ∞ oder τb < ∞) = 1
Berechnung von IEτab:

(i) Der unfaire Fall p ≠ 1
2
:

Sn − nIEX1 = Sn − n(2p − 1) n ∈ N0

ist ein zentrierter Random-Walk und deshalb ein Martingal.
Optional Sampling liefert

IE(Sτ∧n − (τ ∧ n)(2p − 1)) = 0⇔ IE(τ ∧ n)(2p − 1) = IESτ∧n

IE(τ ∧ n) ↑ IEτ monotone Konvergenz

IESτ∧n
n→∞Ð→ IESτ majorisierte Konvergenz, da Sτ∧n ≤ max(∣a∣, b)

⇒ IESτ = (2p − 1)IEτ ⇔ aP(Stau = a) + bP(Sτ = b) = (2p − 1)IEτ
Also folgt:

IEτab =
1

2p − 1

⎡⎢⎢⎢⎢⎢⎢⎣

a
( 1−p
p

)
∣a∣
− ( 1−p

p
)
∣a∣+b

1 − ( 1−p
p

)
∣a∣+b + b

1 − ( 1−p
p

)
∣a∣

1 − ( 1−p
p

)
∣a∣+b

⎤⎥⎥⎥⎥⎥⎥⎦
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(ii) Der faire Fall p = 1
2
:

(S2
n − nIEX2

1)n∈N0 ist ein Martingal, denn

IE(S2
n+1∣Fn) = IE((Sn +Xn+1)2∣Fn)

= IE(S2
n∣Fn) + 2IE(Xn+1Sn∣Fn) + IE(X2

n+1∣Fn)
Xn+1 unab.=

von Fn
S2
n + 2SnIE(Xn+1∣Fn) + IEX2

n+1

Xn+1 unab.=
von Fn

S2
n + 2SnIEXn+1 + IEX2

n+1

= S2
n + IEX2

1

Hierraus folgt die Martingaleigenschaft.
Optional Sampling liefert τ = τab

IE(S2
τ∧n − (τ ∧ n)IEX2

1) = 0⇔ IE(S2
τ∧n) = IEX2

1
²

=1

IE(τ ∧ n)

IE(τ ∧ n) ↑ IEτ monotone Konvergenz

IES2
τ∧n

n→∞Ð→ IES2
τ majorisierte Konvergenz

⇒ IEτ = IES2
τ = a2P(Sτ = a) + b2P(Sτ = b)

= a2 b
∣a∣+b + b

2 ∣a∣
∣a∣+b

= ∣a∣b(∣a∣+b)
∣a∣+b = ∣a∣b

3.29 Vorhersehbare Prozesse

Sei (Fn)n∈N0 eine Filtration. Ein stochastischer Prozess (Xn)n∈N0 heißt vorhersehbar, wenn gilt:

Xn ist Fn−1 messbar für alle n ∈ N0.

3.30 Doob-Meyer Zerlegung

Sei (Xn)n∈N0 ein, zu einer Filtration (Fn)n∈N0 adaptierter Prozess, mit IE∣Xn∣ < ∞ für alle n ∈ N0.
Dann existiert genau eine Zerlegung der Form

Xn = Y +Mn +Λn P-f.s. für f.a. n ∈ N0,

wobei Y ist F0-messbar Startvariable
(Mn)n∈N0 Martingal mit M0 = 0
(Λn)n∈N0 ist vorhersehbar mit Λ0 = 0

Eindeutigkeit bedeutet:
Ist Xn = Y +Mn +Λ = Y ′ +M ′

n +Λ′, so folgt Y = Y ′,Mn =M ′
n,Λn = Λ′

n.

Beweis. Existenz:
Setze M0 = Λ0 = 0.
M1 =X1 − IE(X1∣F0), Λ1 = IE(X1∣F0) −X0

Mn+1 =Mn +Xn+1 − IE(Xn+1∣Fn)
Λn+1 = Λn + IE(Xn+1∣Fn) −Xn ∀n ∈ N0

Dann gilt: (Λn)n∈N0 ist vorhersehbar und Mn)n∈N0 ist ein Martingal, denn
IE(Mn+1∣Fn) = IE(Mn +Xn+1 − IE(Xn+1∣Fn)∣Fn)

=Mn + IE(Xn+1∣Fn) − IE(Xn+1∣Fn)
=Mn

Dann ist Xn =X0 +Mn +Λn P-f.s. für f.a. n ∈ N0: Beweis durch Induktion nach n:
n = 0: klar
n→ n + 1:
Xn+1 =Xn+1 −Xn +Xn

IV= Xn+1 −Xn +X0 +Mn +Λn
=X0 +Mn +Xn+1 − IE(Xn+1∣Fn) +Λn + IE(Xn+1∣Fn) −Xn

=X0 +Mn+1 +Λn+1

Eindeutigkeit:
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Folgt aus der Tatsache, dass ein vorhersehbares Martingal konstant sein muss, d.h. (Zn)n∈N0 Martingal
und vorhersehbar
⇒ Es existiert eine F0-mb ZV Y mit Zn = Y P-f.s. ∀n ∈ N0:

IE(Zn+1∣Fn)
Martin-

gal
=

=vorher-
sehbar

Zn = ... = Z1

=

Zn+1 Y
Es ist also:
Y0 +Mn +Λn = Y ′

0 +M ′
n +Λ′

n

⇒ Y0 = Y ′
0 , da M0 =M ′

0 = Λ0 = Λ′
0 = 0

⇒Mn +Λn =M ′
n +Λ′

n

⇒Mn −M ′
n = Λ′

n −Λn
⇒ (Mn −M ′

n)n∈N0 ist ein vorhersehbares Martingal.
⇒Mn −M ′

n = Y ∀n ∈ N0 für eine F0-messbare ZV Y

IE(M1 −M ′
1∣F0)

Martin-

gal
=

=

M0 −M ′
0

=

Y 0
⇒Mn =M ′

n

⇒ Λn = Λ′
n

4 Diskrete Finanzmarktmodelle

Ziel:

- Modellierung von Finanzmärkten in diskreter Zeit

- Formulierung des Arbitragebegriffes

- Arbitragefreies Bewerten von Derivaten

- Zusammenhang zur Wahrscheinlichkeitstheorie: Das No-Arbitrage Theorem

4.1 Beschreibung des Finanzmarktes

- periodische Sichtweise

- N Perioden

- N Handelszeitpunkte 0,1, ...,N − 1

- Der Informationsverlauf wird gegeben durch eine Filtration (Fn)n=0,...,N . Dabei ist F0 eine triviale
σ−Algebra, die also Ereignissen nur die Wahrscheinlichkeiten 0 oder 1 zuordnet. Diese Annahme
wird dadurch begründet, dass Anfangspreise sowohl der Basisgüter als auch von Derivaten fest
stehen und nicht zufällig sind.

- d risikobehaftete Finanzgüter (risky assets) mit zu (Fn)n=0,...,N adaptierten Preisprozessen S1(n), ..., Sd(n),
n = 0, ...,N .
S = (S1, ..., Sd) beschreibt die Entwicklung der risky assets.
S(n) ist der zufällige Vektor der Preise nach n Perioden für die risky assets.

- ein Numeraire Asset (Verrechnungsgut) mit Preisprozess S0(n), n = 0, ...,N , wobei vorausge-
setzt wird, dass S0(n) > 0 für alle n = 0, ...,N .
S0 ist adaptiert bzgl (Fn)n=0,...,N .
Das Numeraire Asset dient zur Verrechnung. Häufig wird ein Geldmarktkonto β hierzu benutzt,
d.h.

S0(n) = β(n) = (1 + %(1))(1 + %(2)) ⋅ ... ⋅ (1 + %(n)) n = 1, ...,N, β(0) = 1

wobei (%(n))n=1,...,N ein vorhersehbarer Prozess ist mit %(n) > −1 P-f.s. für alle n = 1, ...,N .
%(n) beschreibt die zufällige Zinsrate in der n-ten Periode.
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- gehandelt werden kann durch Erwerb bzw. Verkauf von Anteilen an den (d + 1) Basisfinanzgütern
in den Handelszeitpunkten.
Die Entwicklung der Anzahl an Anteilen an Basisfinanzgütern entspricht dabei vorhersehbaren
Prozessen (ϕ,H) (da am Anfang einer Periode das Portfolio zusammengestellt wird), mit

ϕ(n) entspricht der Anzahl an Anteilen des Numeraire Assets in der n-ten Periode

Hj(n) entspricht der Anzahl an Anteilen im j-ten Basisfinanzgut in der n-ten Periode

H = (H1, ...,Hd)
Ein solches Paar (ϕ,H) heißt Handelsstrategie.

Eine Handelsstrategie (ϕ,H) induziert eine Vermögensentwicklung.
Der Wert nach n Perioden, vor der Umschichtung des Portfolios ist

V (n) = ϕ(n)S0(n) +
d

∑
j=1

Hj(n)Sj(n) n = 1, ...,N

Das Anfangsvermögen, welches ein Investor einsetzen muss, um die Handelsstrategie (ϕ,H) durchführen
zu können, ist gerade

V (0) = ϕ(1)S0(0) +
d

∑
j=1

Hj(1)Sj(0)

Setze <H(n), S(n) >∶= ∑dj=1Hj(n)Sj(n), Dies ist das Skalarprodukt der Vektoren.

4.2 Selbstfinanzierung

Wird beim Handel in den Handelszeitpunkten 1, ...,N − 1 kein Kapital hinzugefügt oder entnommen, so
nennt man diese Handelsstrategie selbstfinanzierend.
Formal: (ϕ,H) heißt selbstfinanzierend, wenn

V (n) = ϕ(n)S0(n)+ <H(n), S(n) >
= ϕ(n + 1)S0(n)+ <H(n + 1), S(n) >

für alle n = 1, ...,N − 1.

4.2.1 Beispiele für selbstfinanzierende Strategien

Buy and hold Strategie Ein Anfangskapital x > 0 wird in das erste risky asset investiert und bis zum
Schluss gehalten:
H1(1) = x

S1(0) entspricht dem Kaufen am Anfang

H1(n) = x
S1(0) für n = 2, ...,N entspricht dem Halten über die Perioden.

Hj ≡ 0 für j ≠ 1.
Wertentwicklung:
V (n) =H1(n)S1(n) = x

S1(0)S1(n)

short selling and hold Strategie H1(1) = −1 entspricht dem short selling der Aktie, das dem Verkauf
am Anfang entspricht.
H1(n) = −1 enspricht dem Halten der Verkaufsposition von n = 2, ...,N
Anfangskapital:

−S1(0) < 0

Wertentwicklung:
−S1(n)

Kaufe Aktie 1, halte diese k Perioden und tausche danach in Aktie 2, falls S2(k) < S1(k) und halte
diese bis zum Ende

Zu Beginn:

H1(n) = 1 für n = 1, ..., k
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H2(n) = 0 für n = 1, ..., k

Am Anfang der (k + 1)-ten Periode:

H1(k + 1) = 1{S2(k)≥S1(k)}

H2(k+1) = V (k)
S2(k)1{S2(k)<S1(k)} =

S1(k)
S2(k)1{S2(k)<S1(k)} entspricht der zufälligen Umschichtung in Aktie

2.

Halten bis zum Ende:

H1(n) = 1{S2(k)≥S1(k)} für n = k + 2, ...,N

H2(n) = S1(k)
S2(k)1{S2(k)<S1(k)} für n = k + 2, ...,N

H ist vorhersehbar und selbstfinanzierend da

V (k) =H1(k)S1(k) = S1(k) = S1(k)
S2(k)1{S2(k)<S1(k)}S2(k) + 1{S2(k)≥S1(k)}S1(k)

=H2(k + 1)S2(k) +H2(k + 1)S1(k)

4.3 Beispiele

4.3.1 Das N-Perioden CRR Modell

- N Perioden, n = 0, ...,N

- S0 > 0 Anfangskurs

- Filtration (Fn)n=0,...,N

- (Zn)n=1,...,N mit Zn zählt die Anzahl der Aufwärtssprünge in den ersten n Perioden.
Annahme: Zn = ∑ni=1 Yi mit iid ZV Y1, ..., YN

P(Yi = 1) = p = 1 − P(Yi = 0).

- (Yi)i=1,...,N adaptiert bzgl der Filtration.

- Sprunghöhen 0 < d < u

- Preisprozess des risky assets der Form

Sn = S0u
Zndn−Zn f.a. n = 1, ...,N

S0

S0u

S0u
2

S0u
3

S0ud

S0u
2d

S0d
2uS0d

S0d
2

S0d
3

↝ Sn+1 = SnuYn+1d1−Yn+1

Bemerkung: (Sn)n=0,...,N ist ein geometrischer Random Walk, startend aus S0 > 0.

Andere Darstellung:

Sn = S0

n

∏
i=1

Xi mit Xi = uYid1−Yi

-Numeraire Asset ist ein Geldmarktkonto β mit konstanter, periodischer Zinsrate % > −1, dh:

β(n) = (1 + %)n f.a. n = 0, ...,N
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4.3.2 Mehrdimensionales CRR Modell

- l Aktien

- l Aktienpreisprozesse entsprechend dem einfachen CRR Modell

Sj(n) = Sj(0)uZj(n)j d
n−Zj(n)
j n = 1, ...,N, j = 1, ..., l

- Filtration (Fn)0,...,N

- (Zj(n))n=1,...,N l-dimensionaler Random Walk mit Z(n) = ∑ni=1 Y (i)
Y (i) = (Y1(i), ..., Yl(i)) mit P(Yj(i) = 1) = pj = 1 − P(Yj(i) = 0), Y (1), ..., Y (N) iid

- In einer Periode können die Y1(i), ..., Yl(i) abhängig (von einander) sein.

- Numeraire Asset wie beim CRR Modell

β(n) =
n

∏
i=1

(1 + %) = (1 + %)n

4.3.3 Das verallgemeinerte CRR Modell (Markov-Prozess)

Idee: Ersetze den Random Walk (Zn), der die Aufwärtssprünge zählt, durch eine zeitlich inhomogene
Markov-Kette.
Genauer:

- (Ω,F ,P) Wahrscheinlichkeitsraum

- Filtration (Fn)0,...,N

- Sei (Zn)n=0,...,N ein Markov-Prozess, adaptiert bzgl. (Fn) mit

(i) Z0 = 0

(ii) Übergangswahrscheinlichkeiten, d.h. Wahrscheinlichkeit, dass der Kurs in der (n + 1)-ten Pe-
riode springt oder nicht, gegeben, dass er bisher schon k mal gesprungen ist

P(Zn+1 = k + 1∣Zn = k) = pn(k) = 1 − P(Zn+1 = k∣Zn = k) ∀k = 0, ..., n

- Markov Eigenschaft:
P(Zn+1 = k∣Fn) = P(Zn+1 = k∣Zn)

insbesondere folgt daraus:

P(Zn+1 = k∣Zn = kn, Zn−1 = kn−1, ..., Z1 = k1, Z0 = 0) = P(Zn+1 = k∣Zn = kn)

- (Zn) zählt die Anzahl der Aufwärtssprünge während der ersten n Perioden. Setze als Preisprozess
für das risky asset

S(n) = S0 ⋅ uZ(n) ⋅ dn−Z(n) mit 0 < d < u

- Für die Entwicklung des Geldmarkkontos wird angenommen, dass die Zinsrate in einer Periode von
der bis dahin erfolgten Anzahl der Aufwärtssprünge abhängt, d.h.

%(n) = r(n,Zn−1) für alle n = 1, ...,N

mit r ∶ N × {0, ...,N} → (−1,∞)

- %(n) ist dann die zufällige Zinsrate in der n-ten Periode.
%(n) ist Fn−1 messbar, also vorhersehbar für alle n = 1, ...,N
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4.4 Das diskontierte Finanzmarktmodell

Gegeben sei ein Modell entsprechend 4.1 mit S = (S1, ..., Sd) als Preisprozess für die risky assets und S0

als Prozess für das Numeraire Asset.
Alle Preise sind hier im Geldmarktkonto (in Euro) notiert. Eine weitere Möglichkeit, Preise zu notieren,
besteht darin, diese in Anzahl an Anteilen des Numeraire Assets anzugeben:

x Geldeinheiten zum Zeitpunkt t entsprechen x
S0(t) Anteilen des Numeraire Assets

Für den Fall, dass S0 das Geldmarktkonto β ist, also S0(n) = β(n), ist dies der übliche Diskontierungs-
vorgang.
Dies drückt aus, wieviel Geld vom Zeitpunkt t heute wert ist:

x€ zum Zeitpunkt t entsprechen x
β(t)€ heute

Führt man diese ’Diskontierung’ für die Basisfinanzgüter durch, erhält man ein Finanzmarktmodell,
dessen Preise in Anteilen des Numeraire Assets notiert sind.
Definiere

S⋆j (t) ∶=
Sj(t)
S0(t)

t = 0, ...,N,1 ≤ j ≤ d

S⋆j ist dann der Preisprozess des j-ten risky assets, ausgedrückt in Anteilen am Numeraire Asset.
(S⋆1 , ..., S⋆d) ist dann das abdiskontierte Finanzmarktmodell.
Für eine Handelsstrategie (ϕ,H) ist der Wertprozess, in Anteilen des Numeraire Assets ausgedrückt,
gegeben durch

V ⋆(n) = ϕ(n) +
d

∑
j=1

Hj(n)S⋆j (n)

4.5 Charakterisierung der Selbstfinanzierung

Eine Handelsstrategie (ϕ,H) ist selbstfinanzierend, wenn sich ihre Vermögensentwicklung aus dem
Anfangskapital und den Periodengewinnen bzw -verlusten ergibt.
Genauer: Für eine Handelsstrategie (ϕ,H) sind äquivalent:

(i) (ϕ,H) ist selbstfinanzierend

(ii) V (n) = V (0) +∑nk=1 ϕ(k)∆S0(k) +∑nk=1∑dj=1Hj(k)∆Sj(k) für alle n = 1, ...,N

(iii) V ⋆(n) = V ⋆(0) +∑nk=1∑dj=1Hj(k)∆S⋆j (k) für alle n = 1, ...,N

Für einen stochastischen Prozess (X(n))n bezeichnet dabei

∆X(n) =X(n) −X(n − 1)

den Prozess der Periodenzuwächse.

Beweis. Für jede Handelsstrategie (ϕ,H) gilt:

V (1) − V (0) = ϕ(1)S0(1) − ϕ(1)S0(0)+ <H(1), S(1) > − <H(1), S(0) >
= ϕ(1)∆S0(1)+ <H(1),∆S(1) >

Deshalb gilt:

(ii) ist erfüllt ⇔∆V (k) = ϕ(k)∆S0(k)+ <H(k),∆S(k) > ∀k = 2, ...,N
⇔ ϕ(k)S0(k)+ <H(k), S(k) > −ϕ(k − 1)S0(k − 1)− <H(k − 1), S(k − 1) >
= ϕ(k)S0(k) − ϕ(k)S0(k − 1)+ <H(k), S(k) > − <H(k), S(k − 1) > ∀k = 2, ...,N
l=k−1⇔ <H(l + 1), S(l) > +ϕ(l + 1)S0(l) =<H(l), S(l) > +ϕ(l)S0(l) ∀l = 1, ...,N − 1
⇔ (ϕ,H) ist selbstfinanzierend

Weiter gilt:

(iii) ist erfüllt ⇔∆V ⋆(k) =<H(k),∆S⋆(k) > ∀k = 2, ...,N
⇔ ϕ(k)+ <H(k), S(k) > 1

S0(k)ϕ(k − 1)− <H(k − 1), S(k − 1) > 1
S0(k−1)

= 1
S0(k) <H(k), S(k) > − 1

S0(k−1) <H(k), S(k − 1) > ∀k = 2, ...,N

⇔ ϕ(k)S0(k − 1)+ <H(k), S(k − 1) >
= ϕ(k − 1)S0(k − 1)+ <H(k − 1), S(k − 1) > ∀k = 2, ...,N
⇔ (ϕ,H) ist selbstfinanzierend
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Wichtig ist, dass ein Handel in den risky assets durch Aufbau einer geeigneten Position im Numeraire
Asset zu einer selbstfinanzierenden Handelsstrategie gemacht werden kann.

4.6 Satz zur Selbstfinanzierung

Zu jedem Rd-wertigen vorhersehbaren Prozess H und jedem Anfangskapital V0 existiert genau ein vor-
hersehbarer Prozess ϕ, so dass (ϕ,H) selbstfinanzierend ist und

V ⋆(n) = V ⋆
0 +

n

∑
k=1

<H(k),∆S⋆(k) > ∀n = 1, ...,N

Beweis. Wegen V0 = ϕ(1)S0(0)+ <H(1), S(0) > folgt

ϕ(1) = <H(1), S(0) > −V0

S0(0)

Bestimmung von ϕ(n) für n ≥ 2:
Wegen

V ⋆(0) +
n

∑
k=1

<H(k), S⋆(k) >= V ⋆(n) = ϕ(n)+ <H(n), S⋆(n) >

erhält man

V ⋆
0 +

n

∑
k=1

<H(k),∆S⋆(k) > + <H(n), S⋆(n) > − <H(n), S⋆(n − 1) >= ϕ(n)+ <H(n), S⋆(n) >

Also setzt man

ϕ(n) = V ⋆
0 +

n

∑
k=1

<H(k),∆S⋆(k) > − <H(n), S⋆(n − 1) >

Bezeichne mit H die Menge aller Rd-wertigen vorhersehbaren stochastischen Prozessen.
Definiere den stochastischen Prozess H ⋅ S⋆ durch

(H ⋅ S⋆)(n) ∶=
n

∑
k=1

<H(k),∆S⋆(k) > ∀n = 0, ...,N und (H ⋅ S⋆)(0) ∶= 0

(H ⋅ S⋆)(n) ist die Summe der Periodengewinne bzgl S⋆ über die ersten n Perioden.
H ⋅ S⋆ wird als diskreter stochastischer Integralprozess bezeichnet.

4.7 Arbitrage

Eine selbstfinanzierende Handelsstrategie (ϕ,H) heißt Arbitrage, wenn für den zugehörigen Wertprozess
V gilt

V0 ≤ 0, VN ≥ 0 und P(VN − V0 > 0) > 0

Ausgedrückt in Anteilen des Numeraire Assets ist dies äquivalent zu

V0 ≤ 0, V ⋆(N) = V (N)
S0(N) ≥ 0 und P(V ⋆(N) − V ⋆

0 > 0) > 0.

Da V ⋆(N) − V ⋆
0 = (H ⋅ S⋆)(N) ist, gibt es eine Arbitragemöglichkeit genau dann, wenn es ein Anfangs-

kapital V0 ≤ 0 und ein H ∈ H gibt mit

V ⋆
0 + (H ⋅ S⋆)(N) ≥ 0 und P((H ⋅ S⋆)(N) > 0) > 0
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4.7.1 Bemerkung

Existiert ein Arbitrage, so existiert auch ein Arbitrage zum Anfangskapital 0.

Beweis. Sei (ϕ,H) ein Arbitrage mit

V (0) = ϕ(1)S0(0)+ <H(1), S0(0) >< 0

Dann ist
V ⋆(N) = V ⋆(0) + (H ⋅ S⋆)(N) ≥ 0 und P((H ⋅ S⋆)(N) > 0) > 0

Zum Anfangskapital 0 existiert eine selbstfinanzierende Handelsstrategie (ψ,H) mit

V ⋆
(ψ,H)(N) = 0 + (H ⋅ S⋆)(N) ≥ −V ⋆(0) > 0

4.7.2 Folgerung

Es gibt ein Arbitrage genau dann, wenn es ein H ∈ H gibt mit (H ⋅S⋆)(N) ≥ 0 und P((H ⋅S⋆)(N) > 0) > 0.
Gibt es eine selbstfinanzierende Handelsstrategie, die einen risikolosen Gewinn durch Handeln über N
Perioden erzielt, so muss ein risikoloser Gewinn auch in nur einer Periode erzielbar sein. Dies ist die
Aussage des folgenden Satzes.

4.7.3 Satz

Folgende Aussagen sind äquivalent

(i) Es existiert ein Arbitrage

(ii) Es gibt eine Periode n und einen Fn−1-messbaren Zufallsvektor K mit < K,∆S⋆(n) >≥ 0 sowie
P(<K,∆S⋆(n) > 0) > 0.

4.8 Beispiele

4.8.1 Satz

Das CRR Modell ist genau dann arbitragefrei, wenn d < 1 + % < u gilt.

Beweis. ’⇒’: per Kontraposition

1. Fall: 1 + % ≤ d < u: In diesem Fall ist die Aktie immer besser als das Bankkonto. Die buy and hold
Strategie für die Aktie liefert dann ein Arbitrage.
Setze H = 1. Dann existiert zum Anfangskapital 0 eine selbstfinanzierende Handelsstrategie (ϕ,H)
mit Wertprozess

V ⋆(n) = 0 + (H ⋅ S⋆)(n) ∀n = 0, ...,N

also

V ⋆(N) =
n

∑
k=1

H(k)∆S⋆(k) = S⋆(N) − S⋆(0) ≥ S(0) dN

(1 + %)N − S(0) ≥ 0

und
P(V ⋆(N) > 0) > 0

2. Fall: d < u ≤ 1 + %: Hier ist das Bankkonto immer besser als die Aktie und man kann durch eine
short selling Strategie der Aktie ein Arbitrage konstruieren.
Setze also H(n) = −1 für alle n = 1, ...,N .
Dann existiert zum Anfangskapital 0 eine selbstfinanzierende Handelsstrategie (ϕ,H) mit Wertpro-
zess

V ∗(n) = 0 + (H ⋅ S⋆)(n)
also V ⋆(N) = (H ⋅ S⋆)(N) = −(S⋆(N) − S(0))

= S(0) − S⋆(N)
≥ S(0) − S(0) uN

(1+%)N

≥ S(0) − S(0) = 0
und

P(V ⋆(N) − V (0) > 0) > 0
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’⇐’: per Kontraposition
Sei das Modell nicht arbitragefrei. Wegen Satz 4.7.3 gibt es eine Periode n und ein Fn−1-messbares
K mit K∆S⋆(n) ≥ 0 und P(K∆S⋆(n) > 0) > 0.

Also auch

0 ≤K ∆S⋆(n)
S⋆(n − 1) =K ( S⋆(n)

S⋆(n − 1) − 1) =K ( 1

1 + %u
Xnd1−Xn − 1)

S(n) = uZndn−ZnS(0) mit Zn = ∑ni=1Xi,P(Xi = 1) = p = 1 − P(Xi = 0)
S⋆(n) = S(n)

(1+%)n , β(n) = S0(n) = (1 + %)n.

Setze R(n) ∶= 1
1+%u

Xnd1−Xn − 1
Annahme: d < 1 + ρ < u Dann ist

1 = P(KR(n) ≥ 0) = P(K > 0,R(n) > 0) + P(K < 0,R(n) < 0) + P(K = 0)
= P(K > 0)P(R(n) > 0) + P(K < 0)P(R(n) < 0) + P(K = 0)

q ∶= P(K > 0), p ∶= P(R(n) > 0), r ∶= P(K < 0)
= q ⋅ p + r(1 − p) + 1 − (q + r)

Aus P(K = 0) < 1 folgt q > 0 oder r > 0
Wegen 1 = q ⋅ p + r(1 − p) + 1 − (q + r)

< q + r + 1 − (q + r)
= 1

 erhält man einen Widerspruch.

Ziel: No-Arbitrage Theorem
Charakterisierung von arbitragfreien Märkten im probabilistischen Sinne.

4.9 Äquivalente Maße

Sei (Ω,F ,P) ein Wahrscheinlichkeitsraum.
NP ∶= {N ∈ F ∶ P(N) = 0} ist das System der P-Nullmengen.
Ein Wahrscheinlichkeitsmaß Q ist absolut-stetig bzgl. P, wenn

Q << P ∶⇔ NP ⊆ NQ

Q heißt äquivalent zu P ∶⇔ NP = NQ.
Ist L ≥ 0 eine ZV mit IE(L) = ∫ LdP = 1, so wird durch

Q(A) ∶= ∫
A
LdP ∀A ∈ F

ein Wahrscheinlichkeitsmaß Q definiert mit Q << P.
Dann ist L die P-Dichte von Q.
Schreibweise: L = dQ

dP .

Gilt P(L > 0) = 1 und L = dQ
dP , so ist

P ∼ Q und
dP
dQ

= 1

L

Weiter: Sind L und L′ Dichten von Q bzgl P, so gilt

P(L = L′) = 1

Für jede ZV X gilt:

IEQ(X) = ∫ XdQ = ∫ XLdP = IEP(LX)

sofern obige Erwartungswerte existieren.
Zusammenhang zur Modellierung von Finanzmärkten:

- Ein Finanzmarktmodell wird im Wesentlichen bestimmt durch die zufällige Entwicklung der Basis-
finanzgüter.

- Dabei ist nicht entscheidend, welche Verteilung ein Akteur im Finanzmarkt postuliert.
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- Zwei Akteure sind im gleichen Finanzmarkt, wenn die beiden postulierten Verteilungen für die
Basisfinanzgüter die gleichen Ereignisse mit positiver Wahrscheinlichkeit eintreten lassen können.
Das bedeutet, dass die Verteilungen zueinander äquivalent sind.

- Ein Übergang zu einem äquivalenten Wahrscheinlichkeitsmaß ändert den Finanzmarkt nicht, wohl
aber die Verteilung der Basisfinanzgüter.

- Ein endliches Finanzmarktmodell, d.h. ∣Ω∣ < ∞, wird nicht verändert, wenn die Menge der Elemen-
tarereignisse, die eine positive Wahrscheinlichkeit besitzen, unverändert bleibt.

4.10 Äquivalentes Martingalmaß

Gegeben sei ein Finanzmarktmodell mit Preisprozessen S = (S1, ..., Sd) der risky assets und Informati-
onsverlauf (Fn)n=0,...,N über N Perioden. Sei S0 das Numeraire Asset und

S⋆j ∶=
Sj

S0

Ein Wahrscheinlichkeitsmaß P⋆ auf (Ω,F) heißt äquivalentes Martingal, wenn gilt:

(i) P⋆ ∼ P

(ii) (S⋆j (n))n=0,...,N ist ein P⋆-Martingal für alle j = 1, ..., d

Kurz: Bzgl P⋆ ist der Finanzmarkt fair.
Ziel: Arbitragefreier Markt ⇔ Existenz eines äquivalenten Martingalmaß
’⇐’: leicht
’⇒’: schwieriger, mathematisches Argument ist der

4.11 Separationssatz von Minkouski

Seien C1 und C2 nichtleere konvexe Mengen im Rn mit C1 ∩ C2 = ∅.
Seien C1 abgeschlossen und C2 kompakt.
Dann gibt es eine lineare Abbildung ϕ ∶ Rn → R und reelle Zahlen β1 < β2 mit

ϕ(x) ≤ β1 < β2 ≤ ϕ(y) ∀x ∈ C2, y ∈ C1.

Es gilt also supx∈C2 ϕ(x) < infy∈C1 ϕ(y).
Durch Übergang zu −ϕ findet man auch eine lineare Abbildung ψ mit

sup
y∈C1

ψ(y) < inf
x∈C2

ψ(x).

Graphische Veranschaulichung:

C2

C1

Wieso Kompaktheit?

C1

C2

ϕ

C1 und C2 lassen sich nicht strikt trennen.

Beweis. Sei für x ∈ C2
d(x) = inf{∣∣x − y∣∣2 ∶ y ∈ C1}.

Der minimale quadratische Abstand eines Punktes x ∈ C2 zur Menge C1 wird also durch d(x) gemessen.
Wegen der Abgeschlossenheit von C1 und der Disjunktheit von C1 und C2 ist d(x) > 0 für alle x ∈ C2.
Die Abbildung x↦ d(x) ist stetig und nimmt auf dem Kompaktum C2 ihr Minimum an. Es gibt also ein
x0 ∈ C2 mit

d(x) ≥ d(x0)
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für alle x ∈ C2.
Wähle einen Radius r so groß, dass

d(x0) = inf
y∈C1∩K(x0;r)

∣∣x0 − y∣∣2.

Da C1 ∩K(x0; r) kompakt ist, existiert ein y0 ∈ C1 mit

d(x0) = ∣∣x0 − y0∣∣2.

Also gilt für alle x ∈ C2, y ∈ C1
∣∣x − y∣∣2 ≥ ∣∣x0 − y0∣∣2 > 0

Setze
η = y0 − x0.

Wegen der Konvexität ist für x ∈ C2 auch x0 + α(x − x0) ∈ C2 für alle α ∈ [0,1]. Also gilt

∣∣x0 − y0∣∣2 + 2α < x − x0, x0 − y0 > +α2∣∣x − x0∣∣2 = ∣∣x0 + α(x − x0) − y0∣∣2 ≥ ∣∣x0 − y0∣∣2,

was
2α < x − x0, x0 − y0 > +α2∣∣x − x0∣∣2 ≥ 0

impliziert. Für α ↓ 0 erhält man
< x − x0, x0 − y0 >≥ 0

und damit
< x, η >≤< x0, η > .

Für y ∈ C1 ist wegen der Konvexität y0 + α(y − y0) ∈ C1 für alle α ∈ [0,1]. Also gilt

∣∣x0 − y0∣∣2 + 2α < y − y0, y0 − x0 > +α2∣∣y − y0∣∣2 = ∣∣y0 + α(y − y0) − x0∣∣2 ≥ ∣∣x0 − y0∣∣2.

Für α ↓ 0 erhält man analog
< y − y0, η >≥ 0

und damit
< y, η >≥< y0, η > .

Insgesamt folgt also
sup
x∈C2

< x, η >≤< x0, η >

und
inf
y∈C1

< y, η >≥< y0, η > .

Wegen
0 < ∣∣y0 − x0∣∣2 =< y0 − x0, y0 − x0 >=< y0, η > − < x0, η >

folgt die Behauptung, denn durch z ↦< z, η > wird die zum Vektor η gehörende lineare Abbildung ϕ
definiert.

Zur Bestimmung der zu trennenden konvexen Mengen wird die Arbitragefreiheit umformuliert:

4.12 Umformulierung der Arbitragefreiheit

- Finanzmarktmodell über N Perioden mit S = (S1, ..., Sd) als Preisprozess der risky asstes

- Mit L0(Ω,F ,P) sei die Menge der messbaren Abbildungen von Ω nach R bezeichnet.

- G⋆ ∶= {(H ⋅S⋆)(N) ∶H ∈ H} ist die Menge der möglichen Gewinne, notiert in Anteilen des Numeraire
Assets, die beim Handel entsprechend einer selbstfinanzierenden Handelsstrategie erzielt werden
können.
Dabei ist H die Menge der vorhersehbaren Rd-wertigen Prozesse.
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- Der Markt ist arbitragefrei, wenn

G⋆ ∩L0
+(Ω,F ,P) = {0}

wobei L0
+(Ω,F ,P) = {X ∈ L0(Ω,F ,P) ∶X ≥ 0} .

- G⋆ ist ein Vektorraum

- K⋆ ∶= {C⋆ ∈ L0(Ω,F ,P) ∶ ∃G⋆ ∈ G⋆ mit G⋆ ≥ C⋆}

- K⋆ ist der Kegel von Elementen aus L0(Ω,F ,P), die unterhalb von G⋆ liegen und kann interpre-
tiert werden als diejenigen abdiskontierten terminalen Auszahlungen, die durch das abdiskontierte
Vermögen einer selbstfinanzierenden Handelsstrategie zum Anfangskapital 0 übertreffbar sind.
Es gilt:

G⋆ ∩L0
+(Ω,F ,P) = {0} ⇔ K⋆ ∩L0

+(Ω,F ,P) = {0}
Weiter:

K⋆ ∩ (−K⋆) = G⋆

Mittels G⋆ und K⋆ können äquivalente Martingalmaße charakterisiert werden.

4.13 Äquivalenzen

Im folgenden werden wir die Endlichkeit des zugrundeliegenden Wahrscheinlichkeitsraumes Ω annehmen.
Es gibt also nur endlich viele Elemente in Ω und jedes dieser Elemente wird mit positiver Wahrschein-
lichkeit angenommen. Dies macht durchaus Sinn, da in Modellen mit diskreter Zeit in der Regel eine
Replikation von Derivaten nur in Modellen mit endlichem Ω durchführbar ist. Mathematisch bedeutet
dies, dass alle Funktionen messbar sind und die Integrierbarkeit von auftretenden Zufallsvariablen immer
gegeben ist. Weiter kann der Separationssatz von Minkowski für endlich dimensionale Räume angewendet
werden und man muss nicht auf den allgemeinen Trennungssatz von Hahn-Banach zurückgreifen.
Sei ∣Ω∣ < ∞. Für jedes Wahrscheinlichkeitsmaß P⋆ sind äquivalent

i) P⋆ ist ein Martingalmaß, d.h. S⋆j ist ein P⋆-Martingal für alle j = 1, ..., d.

ii) IE⋆C⋆ = 0 für alle C⋆ ∈ G⋆

iii) IE⋆K⋆ ≤ 0 für alle K⋆ ∈ K⋆

Beweis.

(i) ⇒ (ii)
Für H ∈ H ist V ⋆(n) = (H ⋅ S⋆)(n), n = 0, ...,N ein P⋆-Martingal, denn

IE⋆(∆V ⋆(k)∣Fk−1) = IE⋆(V ⋆(k) − V ⋆(k − 1)∣Fk−1)
= IE⋆(<H(k),∆S⋆(k) > ∣Fk−1)

= IE⋆(
d

∑
j=1

Hj(k)∆S⋆j (k)∣Fk−1)

=
d

∑
j=1

IE⋆(Hj(k)∆S⋆j (k)∣Fk−1)

Hj vorh.=
d

∑
j=1

Hj(k) IE⋆(∆S⋆j (k)∣Fk−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0, da Sj Martingal

= 0 ∀k = 1, ...,N

Für C⋆ = (H ⋅ S⋆)(N) folgt also

IE⋆C⋆ = IE⋆(H ⋅ S⋆)(N) = IE⋆V ⋆(N) Martingal= IE⋆V ⋆(0) = 0

Beachte, dass per Definitionem V ⋆(0) = 0 gilt.
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(ii) ⇒ (i)
Zeige die Martingaleigenschaft von S⋆j bzgl P⋆ für alle j = 1, ..., d.

z.z. IE⋆(S⋆j (k)∣Fk−1) = S⋆j (k − 1)
⇔ IE⋆(∆S⋆j (k)∣Fk−1) = 0

⇔ IE⋆1A∆S⋆j (k) = 0 ∀A ∈ Fk−1

1A∆S⋆j (k) ist der Gewinn der Handelstrategie, der in der k-ten Periode long in Sj geht, wenn A
eintritt, d.h.

Hj(k) = 1A,Hj(n) = 0 sonst,Hi ≡ 0 ∀i ≠ j
(H ⋅ S⋆)(N) =Hj(k)∆S⋆j (k) = 1A∆S⋆j (k).
Wegen (ii) folgt IE⋆1A∆S⋆j (k) = 0 für jedes A ∈ Fk−1.
Also ist S⋆j ein P⋆ Martingal.

(ii) ⇒ (iii)
klar wegen der Monotonie des Erwartungswertes

(iii) ⇒ (ii)
Einerseits ist C⋆ ∈ G⋆ ⇒ C⋆ ∈ K⋆ ⇒ IE⋆C⋆ ≤ 0

Andererseits ist G⋆ ein Vektorraum, also ⇒ −C⋆ ∈ G⋆ ⇒ −C⋆ ∈ K⋆

⇒ IE⋆(−C⋆) ≤ 0⇒ IE⋆C⋆ ≥ 0

Zusammen mit dem Separationssatz kann man das No-Arbitrage Theorem beweisen.

4.14 1. Fundamentalsatz der Preistheorie: Das No Arbitrage Theorem

Gegeben sei ein Finanzmarkt S über einem endlichen Ω mit Informationsverlauf (Fn)n=0,...,N bzgl. einem
Wahrscheinlichkeitsraum (Ω,F ,P). Dann sind äquivalent:

(i) Der Markt ist arbitragefrei, d.h. G⋆ ∩L+ = {0}

(ii) Es existiert ein äquivalentes Martingalmaß P⋆.

Beweis. (ii) ⇒ (i)
Sei C⋆ ∈ G⋆ ∩L+. Dann gilt nach Satz 4.13: C⋆ ≥ 0 und IE⋆C⋆ = 0.
⇒ C⋆ = 0 P⋆-f.s.

P⋆∼P⇒ C⋆ = 0 P-f.s.

(i) ⇒ (ii)
OBdA. P({ω}) > 0 ∀ω ∈ Ω
G⋆ ist als Teilraum von L0(Ω,F ,P) konvex und abgeschlossen. Die Menge der Wahrscheinlichkeits-
maße auf (Ω,F) kann mit der Menge

P = {Q ∶ Ω→ R ∶ Q(ω) ≥ 0 ∀ω ∈ Ω ∶ ∑
ω∈Ω

Q(ω) = 1}

identifiziert werden, die konvex und kompakt ist.
Wegen (i) ist G⋆ ∩ P = ∅.
Nach dem Separationssatz existiert eine lineare Abbildung

ϕ ∶ L∞(Ω,F ,P) → R

mit supC⋆∈G⋆ ϕ(C⋆) < infQ∈P ϕ(Q).
Da der Dualraum von L∞(Ω,F ,P) durch L1(Ω,F ,P) gegeben ist, kann ϕ als Element aus L1(Ω,F ,P)
aufgefasst werden mittels

ϕ(X) = ∑
ω∈Ω

X(ω)ϕ(ω).
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Da G⋆ ein Teilraum ist und ϕ(C⋆) ≤ α für alle C⋆ ∈ G⋆ folgt ϕ(C⋆) = 0 für alle C⋆ ∈ G⋆.
Für eω = 1{ω} gilt eω ∈ P und

0 ≤ ϕ(eω) = ϕ(ω)
Da dies für alle ω ∈ Ω gilt, kann man ein P⋆ durch

P⋆(ω) = ϕ(ω)
∑ω′∈Ω ϕ(ω′)

∀ω ∈ Ω

definieren.
P⋆(ω) > 0 für alle ω ∈ Ω⇒ P⋆ ∼ P
Wegen

IE⋆C⋆ = ∑
ω∈Ω

C⋆(ω)P⋆(ω) = ∑
ω∈Ω

C⋆(ω) ϕ(ω)
∑ω′∈Ω ϕ(ω′)

= 1

∑ω′∈Ω ϕ(ω′)
ϕ(C⋆)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶

=0

= 0

liefert Satz 4.13, dass P⋆ ein Martingalmaß ist.

4.15 Bestimmung von äquivalenten Martingalmaßen

4.15.1 CRR Modell

- N Perioden

- Zn ∶= ∑Ni=1Xi, für X1, ...,XN iid mit P(Xi = 1) = p = 1 − P(Xi = 0)

- S(n) ∶= S0u
Zndn−Zn

- Fn ∶= σ(X1, ...,XN) = σ(Z1, ..., Zn)

- β(n) = ∏n
i=1(1 + %), % > −1

- S⋆(n) = S(n)
β(n) = S0u

Zndn−Zn 1
(1+%)n = S0∏n

i=1
uXid1−Xi

1+% ist ein geometrischer Random Walk.

- S⋆ ist ein Martingal genau dann, wenn

IE⋆u
Xid1−Xi

1 + % = 1⇔ up⋆ + d(1 − p⋆) = 1 + %⇔ p⋆ = (1 + %) − d
u − d ∈ (0,1) ⇔ d < 1 + % < u

Durch p ∈ (0,1) werden alle äquivalenten CRR Modelle parametrisiert und genau für den Parameter

p⋆ = (1+%)−d
u−d ist das Modell arbitragefrei/risikoneutral. Dies bedeutet, dass S⋆ ein Martingal ist bzgl.

dem Parameter p⋆. Im folgenden wird gezeigt, wie ein Wechsel zu einem äquivalenten Martingalmaß P⋆
durchgeführt werden kann. Hierzu wird die P-Dichte bestimmt mit Hilfe der obigen Überlegungen.
Für alle x ∈ {0,1}N :

P(X1 = x1, ...,XN = xN) =
n

∏
i=1

P(Xi = xi)

= p∑
N
i=1 xi(1 − p)N−∑Ni=1 xi

= pzN (1 − p)N−zN mit zN =
N

∑
i=1

xi

Für das gesuchte P⋆ muss gelten:

P⋆(X1 = x1, ...,XN = xN) = (p⋆)zN (1 − p⋆)N−zN mit p⋆ = 1 + % − d
u − d

Wegen P⋆(X = x) = P⋆(X=x)
P(X=x) P(X = x) für alle x ∈ {0,1}N ist die Dichte von (P⋆)X bzgl PX gegeben durch

l(x) = (p⋆)zN (1 − p⋆)N−zN

pzN (1 − p)N−zN
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Hieraus erhält man durch

L ∶ Ω Ð→ (0,∞)

ω ↦ l(X1(ω), ...,XN(ω)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

X(ω)

) = (p⋆)ZN (ω)(1 − p⋆)N−ZN (ω)

pZN (ω)(1 − p)N−ZN (ω)

die Dichte von P⋆ bezüglich P.
Definiere also P⋆ mittels

P⋆(A) = ∫
A
LdP ∀A ∈ FN = F

Dann ist P⋆ äquivalent zu P, da L > 0 P-f.s. und es gilt

P⋆(X = x) = ∫
{X=x}

LdP = (p
⋆

p
)
∑Ni=1 xi

(1 − p⋆
1 − p )

N−∑Ni=1 xi
P(X = x) = (p⋆)∑

N
i=1 xi(1 − p⋆)N−∑Ni=1 xi

Bezüglich des so definierten Maßes P⋆ ist

S(n) = S0u
Zndn−Zn n = 0, ...,N

ein geometrischer Random Walk mit IE⋆S(1) = S0(1 + %).
Daher ist (S⋆(n)) ein P⋆-Martingal und P⋆ damit ein äquivalentes Martingalmaß.

5 Bewerten von Derivaten

Auch in diesem Kapitel setzen wir ein endliches Ω voraus und betrachten ein Finanzmarktmodell über
N Perioden mit Preisprozess (S1, ..., Sd) der risky assets und S0 des Numeraire Assets. Weiter nehmen
wir an, dass S0(0) = 1 ist. Ist dies nicht erfüllt, kann man dies entweder durch Normalisierung erreichen
oder beachten, dass in den betreffenden Aussagen das Anfangskapital in Einheiten des Numeraire Assets
notiert wird.
Grundannahme: Der Finanzmarkt ist arbitragefrei ⇔ Es existiert ein äquivalentes Martingalmaß
Bezeichne mit P die Menge aller äquivalenten Martingalmaße. Dann ist P eine konvexe Teilmenge aller
zu P äquivalenten Wahrscheinlichkeitsmaße.

5.1 Claim und Hedge

Ein Derivat ist ein Wertpapier, dass eine Auszahlung am Ende der Laufzeit (hier: N) verbrieft. Dies
bedeutet, dass dem Käufer des Derivats das Recht auf die im Derivat spezifizierte Auszahlung garantiert
wird. Mathematisch gesehen entspricht dies einer Fn messbaren Abbildung C. Diese wird auch als Claim
bezeichnet, z.B: C = (S(N) −K)+. Der diskontierte Claim C⋆ = C

S0(N) ist dann die Claimauszahlung,

notiert in Einheiten des Numeraire Assets.
Denkt man an das Replikationsprinzip, so ist eine Strategie gesucht, die durch Handel am Finanzmarkt
den Claim, also die Derivateauszahlung, repliziert. Im Finanzmarktmodell bedeutet dies:
Gesucht ist ein Anfangskapital V0 und ein H ∈ H (H ist die Menge aller vorhersehbaren Prozesse) mit

V0 +
N

∑
i=1

<H(n),∆S⋆(n) >= V0 + (H ⋅ S⋆)(N) = C⋆.

V0 und H definieren dann eindeutig eine selbstfinanzierende Handelsstrategie (ϕ,H) mit V0((ϕ,H)) = V0

und VN((ϕ,H)) = C.
Ist dies möglich, so heißt C hedgebar und (ϕ,H) bzw V0 und H definieren eine Hedgestrategie.
In Analogie zum Replikationsprinzip kann man sich nun fragen:

Ist V0 der eindeutige arbitragefreie Anfangspreis für C?

Ein Anfangspreis x > V0 liefert ein Arbitrage für den Verkäufer, denn:

- gehe short im Claim ⇒ erhalte x.

- investiere V0 in die selbstfinanzierende Handelsstrategie.

- x − V0 ist dann der Gewinn am Anfang.
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- Handel entsprechend der Strategie.

- Benutze den Gewinn der Handelsstrategie am Ende, um die short Position im Claim aufzulösen
⇒ VN(H) −C = 0.

- x − V0 ist der risikolose Gewinn.

Ein Anfangspreis x < V0 liefert ein Arbitrage für den Käufer, denn:

- gehe short im Hedge ⇒ erhalte V0.

- investiere x in den Claim.

- V0 − x ist dann der Gewinn am Anfang.

- Handel entsprechend der short Position im Hedge.

- Benutze den Claim am Ende, um die short Position im Hedge aufzulösen ⇒ C − VN(H) = 0.

- V0 − x ist der risikolose Gewinn.

Diese Argumentation legt nahe, dass x = V0 der eindeutige arbitragefreie Anfangspreis eines hedgebaren
Claims C ist. Im folgenden wird dies mathematisch präzisiert:

5.2 Satz

Seien C ein hedgebarer Claim und H,H ′ ∈ H Hedgestrategien zu den Anfangspreisen V0 und V ′
0 .

Dann gilt:
V0 = V ′

0 = IE⋆C⋆ für jedes P⋆ ∈ P
und

V0 + (H ⋅ S⋆)(n) = VH(n) = VH′(n) = V ′
0 + (H ′ ⋅ S⋆)(n) = IE⋆(C⋆∣Fn)

für alle n = 1, ...,N

Beweis. Dies folgt aus der Martingaleigenschaft von S⋆ bzw. (H ⋅ S⋆) bzgl. P⋆:

V0 + (H ⋅ S⋆)(N) = C⋆ = V ′
0 + (H ′ ⋅ S⋆)(N)

Also gilt für jedes P⋆ ∈ P

V0
IE⋆((H ⋅S⋆))=0= IE⋆(V0 + (H ⋅ S⋆)(N)) = IE⋆C⋆ = IE⋆(V ′

0 + (H ′ ⋅ S⋆)(N)) = V ′
0

Das gleiche Argument liefert:

V ⋆
H(n) = V0 + (H ⋅ S⋆)(n) = IE⋆(V0 + (H ⋅ S⋆)(N)∣Fn)

= IE⋆(C⋆∣Fn)
= IE⋆(V ′

0 + (H ′ ⋅ S⋆)(N)∣Fn)
= V ′

0 + (H ′ ⋅ S⋆)(n)
= V ⋆

H′(n)
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5.3 Superreplizierbare Claims

Ein Claim heißt upper hedgbebar zum Anfangspreis V0, falls es ein H ∈ H gibt mit

V0 + (H ⋅ S⋆)(N) ≥ C⋆

Dies ist der Fall, wenn
C⋆ − V0 ∈ K⋆

Erinnerung: G⋆ = {(H ⋅ S⋆)(N) ∶H ∈ H} und K⋆ = {C⋆ ∶ ∃G ∈ G⋆ mit G ≥ C⋆}

C heißt strikt upper hedgebar zum Anfangspreis V0, falls es ein H ∈ H gibt mit

V0 + (H ⋅ S⋆)(N) ≥ C⋆

und
P(V0 + (H ⋅ S⋆)(N) > C⋆) > 0

Ein Claim heißt lower hedgbebar zum Anfangspreis V0, falls es ein H ∈ H gibt mit

V0 + (H ⋅ S⋆)(N) ≤ C⋆

C heißt strikt lower hedgebar zum Anfangspreis V0, falls es ein H ∈ H gibt mit

V0 + (H ⋅ S⋆)(N) ≤ C⋆

und
P(V0 + (H ⋅ S⋆)(N) < C⋆) > 0

Der Kegel K⋆ der zum Anfangskapital 0 upper hedgebaren Claims lässt sich durch die erwarteten Aus-
zahlungen bzgl. der äquivalenten Martingalmaße charakterisieren.

5.4 Satz

Für einen Claim C sind äquivalent:

(a) C⋆ ∈ K⋆

(b) IE⋆C⋆ ≤ 0 für alle P⋆ ∈ P

Beweis. (i) ⇒ (ii) ∶

Ist C⋆ ∈ K⋆ ⇒ ∃H ∈ H mit (H ⋅ S⋆)(N) ≥ C⋆

⇒ 0 = IE⋆((H ⋅ S⋆)(N)) ≥ IE⋆C⋆ für alle P⋆ ∈ P

(ii) ⇒ (i) ∶

Dies ergibt sich aus dem Bipolartheorem
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5.5 Das Bipolartheorem

5.5.1 Definition ((konvexer) Kegel, Bipolar)

Betrachte Rn mit einem Skalarprodukt. Ein C ⊂ Rn heißt Kegel, wenn λx ∈ C für alle λ > 0, x ∈ C.

x

y

C heißt konvexer Kegel, wenn C konvex und ein Kegel ist, d.h. wenn gilt:

- x ∈ C, λ > 0⇒ λx ∈ C

- x, y ∈ C ⇒ x + y ∈ C

Zu einem Kegel C ist die Polarmenge C0 definiert durch

C0 ∶= {y ∈ Rn ∶< x, y >≤ 0 für alle x ∈ C}

C

C0

C0 ist ein abgeschlossener Kegel, denn

y ∈ C0, λ > 0⇒< x,λy >= λ < x, y >= 0⇒ λy ∈ C∀x ∈ C

Die Abgeschlossenheit folgt aus der Stetigkeit des Skalarprodukts.
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5.5.2 Das Bipolartheorem

Ist C ein konvexer Kegel, so stimmt das Bipolar von C mit dem Abschluss von C überein:

(C0)0

²
Bipolar

= C®
Abschluss

Anwendung in Satz 5.4 Für eine Menge IE ⊆ Rn sei cone(E) der von E erzeugte Kegel:

cone(E) ∶= ⋂
C Kegel
E⊆C

C = {λx ∶ λ > 0, x ∈ E}.

Die Menge der äquivalenten Martingalmaße entspricht einer konvexe Teilmenge des Rn, wenn n = ∣Ω∣ ist.
Für den davon erzeugten Kegel behaupten wir zunächst, dass er mit der Polarmenge vonK∗ übereinstimmt.

(K∗)0 = cone(P) = cone(P)

Beweis. Die Inklusion von rechts nach links folgt einfach aus der Tatsache, dass

IE⋆C∗ ≤ 0

für alle P⋆ ∈ P und C∗ ∈ K∗ gilt. Denn dies impliziert P ⊂ (K∗)0. Damit folgt dies auch für den von P
erzeugten Kegel. Wegen der Abgeschlossenheit der Polarmenge erhält man die behauptete Inklusion.
Für die Teilmengenbeziehung von links nach rechts, muss man sich zunächst überlegen, dass L+ ⊃ (K∗)0.
Dies folgt aus der Tatsache, dass L− ⊂ K∗ und (L−)0 = L+ gilt. Hierbei bezeichnet L− die Menge der
messbaren Abbildungen X, die keine positiven Werte annehmen können, für die also X(ω) ≤ 0 für alle
ω ∈ Ω gilt. Jedes C∗ ≤ 0 wird vom hedgebaren Claim 0 übertroffen. Daher gilt L− ⊂ K∗. Die zweite
Identität ist elementar nachweisbar. Da allgemein aus C1 ⊂ C2 folgt C0

1 ⊃ C0
2 , erhält man L+ ⊃ (K∗)0.

Ist p ∶ Ω → R ∈ (K∗)0, so hat also p nur nichtnegative Funktionswerte. Ist ∑ni=1 p(ωi) = 0, so ist p = 0

und damit in cone(P) enthalten. Ist ∑ni=1 p(ωi) > 0, so kann durch P∗(ω) = p(ω)
∑ni=1 p(ωi)

für alle ω ∈ Ω

ein Wahrscheinlichkeitsmaß definiert werden. Die Eigenschaft p ∈ (K∗)0 impliziert IE∗C∗ ≤ 0 für alle
C∗ ∈ K∗. Dies impliziert, dass P∗ ein Martingalmaß ist und somit P∗ ∈ P gilt. Daher folgt p ∈ cone(P) =
cone(P).

Auf die Identität (K∗)0 = cone(P) wird nun das Bipolartheorem angewandt. Es ergibt sich

K∗ = (K∗)00 = cone(P)
0
= (cone(P)0.

Ist IE∗C∗ ≤ 0 für alle P∗ ∈ P, so ist C∗ ∈ cone(P)0. Da cone(P)0 = K∗ gilt, folgt also C∗ ∈ K∗.

5.6 Beweis des Bipolartheorems

Beweis. Zeige die gegenseitigen Inklusionen. Ist x ∈ C, so gilt < x, y >≤ 0 für alle y ∈ C0. Dies bedeutet
aber, dass x ∈ (C0)0 ist. Somit folgt C ⊂ C00. Wegen der Abgeschlossenheit der Polarmenge folgt C ⊂ C00.
Zum Nachweis der umgekehrten Inklusion betrachten wir ein x ∈ C00 und nehmen an, dass x ∉ C gilt.
Dann können wir die kompakte Menge {x} von der abgeschlossenen Menge C trennen. Es gibt also einen
Vektor η mit

sup
y∈C

< y, η >= β << x, η > .

Wie beim Beweis des Satzes von Minkowski kann man sich leicht überlegen, dass β = 0 gelten muss. Dies

impliziert η ∈ C0
, was zu einem Widerspruch führt, da x ∈ C00 und < x, η >> 0 gelten müssten.

5.7 Upper und lower hedging Preise

Sei C ein Claim.

p+(C) ∶= inf{x ∈ R ∶ C⋆ ist upper hedgebar zum Anfangskapital x}

und
p−(C) ∶= sup{x ∈ R ∶ C⋆ ist lower hedgebar zum Anfangskapital x}

Aus Satz 5.4 folgt, dass das Infimum bzw. Supremum angenommen wird.
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5.7.1 Satz

(a) Die Menge der upper hedging Preise ist ein abgeschlossenes Intervall [p+(C),∞)

(b) Die Menge der lower hedging Preise ist ein abgeschlossenes Intervall (−∞, p−(C)]

(c) p−(C) ≤ p+(C)

Beweis. (i): Klar ist, dass die Menge der upper hedging Preise ein nach oben unbeschränktes Inter-
vall bildet. Für die Abgeschlossenheit betrachte upper hedging Preise an mit an ↓ a.
Zu zeigen ist, dass a ein upper hedging Preis ist.
Es gilt C⋆ − an ∈ K⋆ für alle n ∈ N und damit wegen Satz 4.12

IE⋆(C⋆ − an) ≤ 0 für alle n ∈ N und P⋆ ∈ P.

Wegen C⋆ − an Ð→ C⋆ − a folgt

0 ≥ IE⋆(C⋆ − an) Ð→ IE⋆(C⋆ − a) für alle P⋆ ∈ P

Satz 5.4 liefert somit C⋆ − a ∈ K⋆.
Also ist a ein upper hedging Preis.

(ii): (ii) geht wie (i): a ist ein lower hedging Preis genau dann, wenn es ein K ∈ G⋆ gibt mit

a +K ≤ C⋆⇔−(C⋆ − a) ≤K
⇔−(C⋆ − a) ∈ K⋆

Für eine Folge von lower hedging Preisen (an) mit an ↑ a folgt also

IE⋆ − (C⋆ − an) ≤ 0

für alle P⋆ ∈ P.

Wegen C⋆ − an Ð→ C⋆ − a folgt somit

E⋆(−(C⋆ − a)) ≤ 0

für alle P⋆ ∈ P. Dies impliziert aber −(C⋆ − a) ∈ K⋆. Also ist a ein lower hedging Preis.

(iii): Ist a ein lower hedging Preis und b ein upper hedging Preis, so gilt:

(C⋆ − b) ∈ K⋆⇔ IE⋆(C⋆ − b) ≤ 0 für alle P⋆ ∈ P
⇔ sup

P⋆∈P
IE⋆C⋆ ≤ b

und

−(C⋆ − a) ∈ K⋆⇔ E⋆(C⋆ − a) ≥ 0 für alle P⋆ ∈ P
⇔ inf

P⋆∈P
IE⋆C⋆ ≥ a

Prinzipiell ergeben sich also zwei Fälle:

a) p−(C) = p+(C)

Dies ergibt sich, wenn C hedgebar ist

b) p−(C) < p+(C)

Dies ergibt sich, wenn C nicht hedgebar ist

5.8 Charakterisierung der arbitragefreien Preise

Sei C ein Claim. Kann aus x ∈ R ein strikter upper
lower hedge finanziert werden, so ergibt sich ein Arbitrage

für den Verkäufer
Käufer .

Dies ist die Motivation für folgende Definition:
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5.8.1 Definition (arbitragefreier Preis)

x ∈ R heißt arbitragefreier Preis für C, falls durch x weder ein strikter upper, noch ein strikter lower
hedge finanziert werden kann.
Mit Π(C) bezeichne die Menge aller arbitragefreien Preise für C.

Π(C) kann mittels des besten upper und lower hedging Preises charakterisiert werden:

5.8.2 Theorem

Für einen Claim C gilt:

(a) C ist hedgebar zum Anfangskapital x genau dann, wenn

p−(C) = x = p+(C)

(b) Ist C hedgebar zum Anfangskapital x, so ist

IE⋆C⋆ = x für alle P⋆ ∈ P

und
Π(C) = {x}

(c) Ist C nicht hedgebar, so gilt
p−(C) < p+(C)

und
Π(C) = (p−(C), p+(C)) = {IE⋆C⋆ ∶ P⋆ ∈ P}

Beweis. a): ’⇒’: Sei C hedgebar zum Anfangskapital x.
⇒ ∃H ∈ H ∶ x + (H ⋅ S⋆)(N) = C⋆

⇒ C⋆ − x ∈ K⋆
⇒ x ist ein upper hedging Preis.
Auch gilt:
x − (−(H ⋅ S⋆)(N)) = C⋆

⇒ −(C⋆ − x) ∈ K⋆
⇒ x ist ein lower hedging Preis.
Also gilt:
x ≤ p−(C) ≤ p+(C) ≤ x
⇒ p−(C) = p+(C)

’⇐’: Sei p−(C) = x = p+(C)
Wegen Satz 5.7.1 ist x ein upper und lower hedging Preis. Also ist C⋆ −x ∈ K⋆ und −(C⋆ −x) ∈ K⋆.
⇒ C⋆ − x ∈ K⋆ ∩ (−K⋆) = G⋆
Das heißt, es existiert eine H ∈ H mit

C⋆ = x + (H ⋅ S⋆)(N)

Also ist C hedgebar zum Anfangskatpital x.

b): Sei C hedgebar zum Anfangskapital x. Damit ist C⋆ − x ∈ G⋆.
Somit ist 0 = IE⋆(C⋆ − x) ⇔ IE⋆C⋆ = x für alle P⋆ ∈ P
noch zu zeigen: Π(C) = {x}
”⊇”: Es ist weder ein strikter upper, noch ein strikter lower hedge aus x finanzierbar, denn
IE⋆C⋆ = x = IE⋆(x + (H ⋅ S⋆)(N)) für alle H ∈ H.
Also ist x ∈ Π(C).
”⊆”: C⋆ ist hedgebar zum Anfangskapital x, da

p−(C) = x = p+(C)

also existiert ein H ∈ H mit x + (H ⋅ S⋆)(N) = C⋆.
Jedes y > x kann man zur Finanzierung eines strikten upper hedge nutzen, denn

y + (H ⋅ S⋆)(N) > x + (H ⋅ S⋆)(N) = C⋆
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Also ist (x,∞) ∩Π(C) = ∅.
Jedes y < x kann man zur Finanzierung eines strikten lower hedge nutzen, denn

y + (H ⋅ S⋆)(N) < x + (H ⋅ S⋆)(N) = C⋆

Also ist (−∞, x) ∩Π(C) = ∅.
Da x ∈ Π(C) ist also Π(C) ⊆ {x}

c): Sei C nicht hedgebar. Wegen a) gilt p−(C) < p+(C)
”⊇”: Gilt p−(C) < x < p+(C), so kann weder ein strikter upper, noch ein strikter lower hedge aus x
finanziert werden.
Also ist x ∈ Π(C).
”⊆”: Ist x ∈ Π(C), so kann weder ein strikter upper, noch ein strikter lower hedge aus x finanziert
werden.
Hieraus folgt:

x ∈ [p−(C), p+(C)]
Im Falle p−(C) < p+(C) kann x kein Randpunkt sein, da für x = p+(C)

p−(C) ein strikter upper
lower hedge

finanziert werden kann.
Also ist Π(C) ⊆ (p−(C), p+(C).
Begründung für den strikten upper hedge:
Wegen der Abgeschlossenheit existiert ein H ∈ H mit

p+(C) + (H ⋅ S⋆)(N) ≥ C⋆

Es gilt: P⋆(p+(C)+(H ⋅S⋆)(N) > C⋆) > 0, da sonst H eine Hedgestrategie wäre, was p−(C) = p+(C)
implizieren würde.
Zeige weiter:

sup
P⋆∈P

IE⋆C⋆ = p+(C)

und
inf
P⋆∈P

IE⋆C⋆ = p−(C)

Ist x < p+(C), so existiert kein upper hedge für C mit Anfangskapital x⇒ C⋆ − x ∉ K⋆.
Wegen Satz 5.4 existiert ein P⋆ ∈ P mit

IE⋆C⋆ − x > 0⇔ IE⋆C⋆ > x

Ist x > p−(C), so existiert kein lower hedge für C mit Anfangskapital x. Also ist −(C⋆ − x) ∉ K⋆.
Wegen Satz 5.4 existiert somit ein P⋆ ∈ P mit

IE⋆C⋆ − x < 0.

Also ist x > infP⋆∈P IE⋆C⋆.

Bleibt noch zu zeigen: (p−(C), p+(C)) = {IE⋆C⋆ ∶ P⋆ ∈ P}
”⊆”: klar, da inf IE⋆C⋆ = p−(C) und sup IE⋆C⋆ = p+(C).
”⊇”: Für x = p+(C) existiert ein strikter upper hedge, also existiert ein H ∈ H mit

x + (H ⋅ S⋆)(N) ≥ C⋆

und
P⋆(x + (H ⋅ S⋆)(N) > C⋆) > 0

und damit folgt
x > IE⋆C⋆ für alle P⋆ ∈ P

Für x = p−(C) existiert ein strikter lower hedge, also existiert ein H ∈ H mit

x + (H ⋅ S⋆)(N) ≤ C⋆

und
P⋆(x + (H ⋅ S⋆)(N) < C⋆) > 0

und damit folgt
x < IE⋆C⋆ für alle P⋆ ∈ P

Also ist p−(C) < IE⋆C⋆ < p+(C) für alle P⋆ ∈ P.
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5.9 Erweitertes Finanzmarktmodell

Wir betrachten ein arbitragefreies Finanzmarktmodell mit S = (S1, ..., Sd) als Preisprozess der risky
assets auf einem endlichen Wahrscheinlichkeitsraum. Mit S0 bezeichne das Numeraire Asset und mit
(Fn)n=0,...,N den Informationsverlauf, wobei F0 trivial sei, d.h. P(A) ∈ {0,1} für alle A ∈ F0. Im Markt
sei C die Auszahlung eines Derivates zum Zeitpunkt N . Das Konzept der arbitragefreien Bewertung ist
bislang erklärt worden durch das Fehlen von strikten upper-hedge bzw. strikten lower-hedge Strategien,
da solche zu Arbitragemöglichkeiten für den Verkäufer bzw. Käufer führen würden.
Alternativ kann man auch das Derivat bzw. dessen Auszahlung C als neues Finanzgut interpretieren,
dass in den Markt emittiert wird. Die Frage ist dann, welchen Anfangspreis bzw. Preisprozess man für
dieses Derivat verlangen muss, damit der um den Handel mit C erweiterte Finanzmarkt arbitragefrei ist.
Wie wir im folgenden sehen werden, sind diese beiden Konzepte der arbitragfreien Bewertung konsistent
in dem Sinne, dass sie die gleiche Menge an arbitragfeien Preisen generieren.
Das arbitragefreie Anfangspreisintervall für C ist gegeben durch

Π(C) = (p−(C), p+(C)) bzw. Π(C) = {p(C)} falls p−(C) = p+(C)

Der Finanzmarkt soll um den Handel mit C erweitert werden, so dass der erweiterte Finanzmarkt arbi-
tragefrei bleibt.
Der Claim wird als (d+1)-tes risky asset angesehen. Bezeichne diesen Preisprozess mit (Sd+1(n))n=0,...,N .
Ist x ∈ Π(C), so existiert ein P⋆ ∈ P mit x = IE⋆C⋆.
Durch Sd+1(n) = S0(n)IE⋆(C⋆∣Fn) für alle n = 1, ...,N kann dann ein Preisprozess definiert werden, für
den gilt

Sd+1(N) = S0(N)C⋆ = C
und

Sd+1(0) = S0(0)
²

=1

IE⋆(C⋆∣F0) = IE⋆C⋆ = x

Weiter ist S⋆d+1(n) = IE⋆(C⋆∣Fn) für n = 0, ...,N ein P⋆- Martingal und damit definiert P⋆ ein äquivalentes
Martingalmaß für das erweiterte Modell (S1, ..., Sd, Sd+1).
Ist umgekehrt (Sd+1(n))n=0,...,N ein Preisprozess für C mit Sd+1(N) = C und ist das erweiterte Modell
arbitragefrei, so exisitiert ein äquivalentes Martingalmaß P⋆ für das erweiterte Modell.
Insbesondere gilt

Sd+1(n) = S0(n)IE⋆(C⋆∣Fn) für alle n = 0, ...,N

Da P⋆ auch ein äquivalentes Martingalmaß für das Ausgangsmodell ist und Sd+1(0) = IE⋆C⋆ ist, gilt

Sd+1(0) ∈ Π(C)

Insgesammt erhält man:

5.9.1 Theorem

Der Finanzmarkt ist um den Handel mit C arbitragefrei erweiterbar genau dann, wenn es ein P⋆ ∈ P gibt
mit

S⋆d+1(n) = IE⋆(C⋆∣Fn) für alle n = 0, ...,N

5.10 Vollständigkeit

Für hedgebare Claims ist der arbitragefreie Anfangspreis eindeutig bestimmt. Finanzmärkte, in denen
jeder Claim hedgebar ist, nennt man vollständig.

5.10.1 Definition (vollständig)

Ein Finanzmarkt heißt vollständig, falls p−(C) = p+(C) für alle Claims C gilt.
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5.11 2. Fundamentalsatz der Preistheorie

Für ein arbitragefreies Finanzmarktmodell mit äquivalentem Martingalmaß P⋆ sind äquivalent:

(i) Das Modell ist vollständig

(ii) Das äquivalente Martingalmaß ist eindeutig, d.h.

P = {P⋆}

(iii) Zu jedem P⋆-Martingal M existiert eine Darstellung der Form

Mn =M0 + (H ⋅ S⋆)(n) für alle n = 0, ...,N

mit vorhersehbaren H.

Beweis. (i) ⇒ (ii): Sei P⋆1 ein weiteres äquivalentes Martingalmaß. Für A ∈ FN ist C = 1AS0(N)
ein Claim mit C⋆ = 1A.
Also gilt:

P⋆1(A) = IE⋆
1C

⋆ C hedgebar= IE⋆C⋆ = P⋆(A)
⇒ P⋆1 = P⋆

(ii) ⇒ (i): P = {P⋆} ⇒ p+(C) = p−(C) für alle C und damit ist jedes C hedgebar

(i) ⇒ (iii): Sei M ein (Fn)-Martingal bzgl. P⋆. Dann ist C = MNS0(N) ein Claim mit C⋆ = MN .
Wegen der Vollständigkeit ist C hegebar. Also existiert ein V0 ∈ R und ein vorhersehbares H mit

V0 + (H ⋅ S⋆)(N) = C⋆ =MN

Also gilt
V0 = IE⋆(V0 + (H ⋅ S⋆)(N)) = IE⋆C⋆ = IE⋆MN = IE⋆M0 =M0

und

M0 + (H ⋅ S⋆)(n) = V0 + (H ⋅ S⋆)(n) = IE⋆(V0 + (H ⋅ S⋆)(N)∣Fn) = IE⋆(MN ∣Fn) =Mn

(iii) ⇒ (i): Ist C ein Claim, so ist

Mn = IE⋆(C⋆∣Fn) für alle n = 0, ...,N

ein P⋆-Martingal.
Wegen (iii) gibt es zu M0 = IE⋆(C⋆∣F0) = IE⋆C⋆ ein vorhersehbares H mit

M0 + (H ⋅ S⋆)(N) = C⋆

Also ist C hedgebar und der Finanzmarkt ist damit vollständig.

Man beachte, dass die Anfangsinformation durch eine triviale σ-Algebra F0 gegeben ist. Deshalb sind
nur die Konstanten F0 messbar.

5.12 Satz

Das arbitragefreie CRR und das verallgemeinerte arbitragefreie CRR Modell sind vollständig.

Beweis. Dies folgt aus der Eindeutigkeit des äquivalenten Martingalmaßes, kann aber auch direkt durch
allgemeines Ausrechnen von Hedgestrategien bewiesen werden.
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5.13 Hedgen im CRR Modell

Für den Aktienpreisprozess im CRR Modell gilt:

S(n) = S(0)uZndn−Zn , Zn =
n

∑
k=1

Xk

Die Anzahl der Aufwärtssprünge in den ersten n Perioden wird hierbei durch Zn gezählt. Gesucht ist ein
vorhersehbares H und Anfangskapital V0 mit

V0 + (H ⋅ S⋆)(N) = C⋆ = g(S(N))
(1 + %)N

Für den Wert der Hedgestrategie nach n Perioden gilt:

V ⋆
n = V0 + (H ⋅ S⋆)(n)
= IE⋆(C⋆∣Fn)
= IE⋆(IE⋆(C⋆∣Fn+1)∣Fn)
= IE⋆(V ⋆

n+1∣Fn)
Markov=

Eigenschaft
IE⋆(V ⋆

n+1∣S(n))

=
n

∑
k=0

IE⋆(V ⋆
n+1∣Z(n) = k)1{S(n)=S(0)ukdn−k}

Setze

v⋆(n, k) = IE⋆(V ⋆(n + 1)∣Z(n) = k) = IE⋆(C⋆∣Z(n) = k) für alle n = 0, ...,N, k = 0, ..., n

v⋆(n, k) beschreibt den diskontierten Preis des Claims zum Zeitpunkt n, wenn bis dahin k Aufwärtssprünge
erfolgt sind. Rekursiv kann v⋆ berechnet werden durch.
Initialisierung:

v⋆(N,k) = 1

(1 + %)N g(S(0)u
kdN−k) k = 0, ...,N

Für n = N − 1 bis n = 0 ist

v⋆(n, k) = p⋆v⋆(n + 1, k + 1) + (1 − p⋆)v⋆(n + 1, k) k = 0, ..., n

Es gilt:

V ⋆
n =

n

∑
k=0

v⋆(n, k)1{Z(n)=k}

Damit ist der diskontierte Wertprozess der Hedgestrategie algorithmisch berechnet.
Berechnung der Hedge-Strategie im CRR Modell:

C = g(S(N))

Gesucht ist (Hn)n=1,...,N mit

V0 +
N

∑
k=1

H(k)∆S⋆(k) = C⋆

H(n) =
n−1

∑
k=0

H(n)1{Z(n−1)=k} =
n−1

∑
k=0

h(n, k)1{Z(n−1)=k}

h(n, k) wird rekursiv berechnet:
v⋆(n−1, k) ist der Preis in Einheiten des Numeraire Assets nach n−1 Perioden und k Aufwärtssprüngen.
Für die n-te Periode ist dann v⋆(n, k +Xn) zu hedgen.
Der Hedge berechnet sich aus

v⋆(n − 1, k) + h(n, k)∆S⋆(n) = v⋆(n,Zn) auf {Zn−1 = k}

Dies führt auf die Gleichungen

v⋆(n − 1, k) + h(n, k)S⋆(n − 1)( u

1 + % − 1) = v⋆(n, k + 1)
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v⋆(n − 1, k) + h(n, k)S⋆(n − 1)( d

1 + % − 1) = v⋆(n, k)

Hieraus ergibt sich

h(n, k) = v
⋆(n, k + 1) − v⋆(n − 1, k)
S⋆(n − 1)( u

1+% − 1)

= v
⋆(n, k) − v⋆(n − 1, k)
S⋆(n − 1)( d

1+% − 1)
für alle k = 0, ..., n − 1

Beachte: Auf {Z(n − 1) = k} ist

S⋆(n − 1) = 1

1 + %S(0)u
kdn−1−k

Man erhält also den Wertprozess und Hedge für den Claim C = g(S(N)) durch folgenden Algorithmus:
Initialisierung:

v⋆(N,k) = g(S0u
kdN−k)( 1

1+ρ)
N für k = 0,⋯,N

Rekursionsschritt:
Für n = N − 1 downto 0 und für k = 0 to n do
v⋆(n, k) = p⋆v⋆(n + 1, k + 1) + (1 − p⋆)v⋆(n + 1, k)
h(n + 1, k) ∶= v

⋆(n + 1, k + 1) − v⋆(n, k)
S⋆(n)( u

1+% − 1)
S⋆(n) = S(0)ukdn−k 1

1+%
Der Wertprozess in Einheiten des Numeraire Assets für den Hedge erhält man durch

V ⋆
n =

n

∑
k=0

v⋆(n, k)1{Z(n)=k} n = 0, ...,N,

die Hedgingstrategie durch

H(n) =
n−1

∑
k=0

h(n, k)1{Z(n−1)=k}

5.14 Algorithmische Berechnung des upper und lower hedging Preises im
Trinomialmodell

Prinzipiell kann wie im CRR Modell durch rückwärtige Berechnung in den jeweiligen Einperiodenmodellen
die upper und lower hedge Strategie bestimmt werden.
1. Schritt: Einperiodenfall

N = 1, Anfangspreis S0, Endkurse
⎛
⎜
⎝

uS0

mS0

dS0

⎞
⎟
⎠

, Zinsrate % mit d < 1 + % < u.

∆S⋆(1) = S⋆(1) − S⋆(0) =
⎛
⎜⎜
⎝

uS0

1+% − S0
mS0

1+% − S0
dS0

1+% − S0

⎞
⎟⎟
⎠
= S0

⎛
⎜⎜
⎝

u
1+% − 1
m

1+% − 1
d

1+% − 1

⎞
⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶R

= S0R

Ein Claim C entspricht einem Vektor C = (c1, c2, c3)

C⋆ =
⎛
⎜
⎝

c⋆1
c⋆2
c⋆3

⎞
⎟
⎠

mit c⋆i =
ci

1 + %

Ein Anfangskapital V0 und H Anteile im risky asset liefern einen upper Hedge, wenn

V0 +H∆S⋆(1) ≥ C⋆⇔
⎛
⎜
⎝

V0 +HS0R1

V0 +HS0R2

V0 +HS0R3

⎞
⎟
⎠
≥
⎛
⎜
⎝

c⋆1
c⋆2
c⋆3

⎞
⎟
⎠

Der Durchschnitt der Halbräume {(V0,H) ∶ V0 +HS0Ri ≥ c⋆i mit i = 1,2,3} entspricht der Menge der
upper hedgbaren Claims.

Finanzmathematik WS 14/15
60

zum Inhaltsverzeichnis
Dozent: PD Dr. Volkert Paulsen



V0

H

1

S0R1

S0R2
S0R3

upper hedging Strategienlower hedging Strategien

p−(C) p+(C)

V0 +HS0R1 = c⋆1 ⇔< (V0

H
), ( 1

S0R1
) >= c⋆1

V0 +HS0R2 = c⋆2 ⇔< (V0

H
), ( 1

S0R2
) >= c⋆2

V0 +HS0R3 = c⋆3 ⇔< (V0

H
), ( 1

S0R3
) >= c⋆3

Numerische Berechnung:
Berechnung der Schnittpunkte:

V
(1)
0 +H(1)S0R2 = c⋆2
V

(1)
0 +H(1)S0R3 = c⋆3

⇔H(1) = c⋆3 − c⋆2
S0(R3 −R2)

⇒ V
(1)
0 = c⋆2 −

c − 3⋆ − c⋆2
R3 −R2

R2

Entsprechend:

V
(2)
0 +H(2)S0R1 = c⋆1
V

(2)
0 +H(2)S0R3 = c⋆3

und:
V

(3)
0 +H(3)S0R1 = c⋆1
V

(3)
0 +H(3)S0R2 = c⋆2

Ist V
(1)
0 = V (2)

0 = V (3)
0 , so ist p−(C) = p+(C) = V (1)

0 und H− = H+ = H = H(1) = H(2) = H(3) der Hedge
für C.
Andernfalls, bestimme l(inks), m(itte), r(echts), sodass V

(l)
0 ≤ V (m)

0 ≤ V (r)
0 .

Entscheide, ob (V (m)
0 ,H(m) ein upper Hedge ist, durch V

(m)
0 +H(m)S0Rm > c⋆m.

Ist dies der Fall, so ist p+(C) = V (m)
0 und H+ = H(m) der upper Hedge und p−(C) = V (l)

0 mit H− = H(l)

der lower Hedge.

Ist dies nicht der Fall, so ist p−(C) = V
(m)
0 und H− = H(m) der lower Hedge und p+(C) = V

(r)
0 mit

H+ =H(r) der upper Hedge.
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2. Schritt Mehr-Perioden-Fall
N -Perioden
S(n) = S0∏i=1 Yi, (Yi) iid (Yi hat nur Werte in {m,u, d})
S0u

Z1(n)dZ2(n)mn−(Z1(n)+Z2(n)

mit Z1(n) = ∑k=1 1{Yk=n}, Z2(n) = ∑k=1 1{Yk=d}
Der Claim hat die Form C = g(S(N)). Rekursiv wird die upper und lower hedging Strategie berechnet:
Initialisierung:

v+(N, (k, l)) = v−(N, (k, l)) = (1 + %)−Ng(S0u
kdlmN−(k+l)) für k = 0,⋯,N, l = 0,⋯,N − k

Rekursionsschritt
for n = N − 1donwto0:
for k = 0, ..., n and for l = 0, ..., n − k
Berechne den upper hedging Preis, sowie den upper Hedge im Tinomialmodell mit Anfangskurs S0u

kdlmn−(k+l)

und Claim C⋆ = (v+(n + 1, (k + 1, l)), v+(n + 1, (k, l)), v+(n + 1, (k, l + 1))).
Setze: v+(n, (k, l)) = p+(C) und h+(n + 1, (k, l)) =H+.
Berechne den lower hedging Preis, sowie den lower Hedge im Trinomialmodell mit Anfangskurs S0u

kdlmn−(k+l)

und Claim C⋆ = (v−(n + 1, (k + 1, l)), v−(n + 1, (k, l)), v−(n + 1, (k, l + 1))).
Setze: v−(n, (k, l)) = p−(C) und h−(n + 1, (k, l)) =H−.
Es gilt:
v+(0, (0,0)) = p+(C) ist das Anfangskapital des minimalen upper hedges und
H+
n ∶= ∑n−1

k=1 ∑n−1−k
l=0 h+(n, (k, l))1{Z1(n−1)=k}1{Z2(n−1)=l}

die minimale upper hedge Strategie.
Insbesondere gilt damit:

p+(C) +
N

∑
k=1

H(k)∆S⋆(k) ≥ C⋆

Entsprechend:
v−(0, (0,0)) = p−(C) ist das Anfangskapital des maximalen lower hedges und
H−
n ∶= ∑n−1

k=1 ∑n−1−k
l=0 h−(n, (k, l))1{Z1(n−1)=k}1{Z2(n−1)=l}

die maximale lower hedge Strategie.
Insbesondere gilt damit:

p−(C) +
N

∑
k=1

H(k)∆S⋆(k) ≤ C⋆

5.15 Allgemeine Call-Formel

Betrachte einen Finanzmarkt über N -Perioden mit (S(n))n=0,...,N als Preisprozess für das risky asset mit
S(n) > 0 für alle n. Sei (β(n))n=0,...,N ein Geldmarktkonto und (Fn)n=0,...,N die Filtration.
β(n) = ∏n

k=1 1 + %(k) mit vorhersehbaren Prozess % > −1.
Wir betrachten einen Call mit Basis K, d.h. C = (S(N)−K)+ ist die Claimauszahlung nach N Perioden.
Annahme: C ist hedgebar und das Modell ist arbitragefrei.
Dann gilt:
IE⋆C⋆ ist der eindeutige arbitragfreie Anfangspreis für C, wobei P⋆ ∈ P beliebig gewählt werden kann.

p(C) = E⋆C⋆ = IE⋆ ((S(N) −K)+
β(N) )

= IE⋆S(N)
β(N)1{S(N)>K} − IE⋆ K

β(N)1{S(N)>K}

= IE⋆S⋆(N)1{S(N)>K} −KIE⋆ 1

β(N)1{S(N)>K}

= S(0)IE⋆S
⋆(N)
S(0) 1{S(N)>K} −KB(0,N)IE⋆ 1

β(N)
1

B(0,N)1{S(N)>K}

mit B(0,N) = IE⋆ 1
β(N) .

Definiere äquivalente Maße P⋆1 und P⋆2 durch

dP⋆1
dP⋆

∣
FN

= S
⋆(N)
S(0)
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und
dP⋆2
dP⋆

∣
FN

= 1

β(N)
1

B(0,N)
Dann gilt: p(C) = S(0)P⋆1(S(N) >K) −KB(0,N)P⋆2(S(N) >K)
Im CRR Modell ist β(N) = (1 + %)N , also P⋆2 = P⋆.
Somit folgt: p(C) = S(0)P⋆1(S(N) >K) −K(1 + %)−NP⋆(S(N) >K)
S(N)
S(0) = uZ(N)dN−Z(N)

S(N) >K⇔ Z(N) >
ln( K

S(0)) −N lnd

lnu − lnd
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶bN

Bezüglich P⋆ ist Z(N) eine Bin(N,p⋆) verteilte Zufallsvariable mit p⋆ = (1+%)−d
u−d .

Im CRR Modell ist bzgl. P⋆1 der Zählprozess (Z(n))n=0,...,N ein Random Walk:

Z(n) =
n

∑
k=1

Xk, P⋆1(Xk = 1) = p⋆1 =
p⋆u

1 + %

Bezüglich P⋆1 ist Z(N) eine Bin(N,p⋆1) verteilte ZV.
Also gilt

p(C) = S(0)Bin(N,p⋆1)((bN ,∞)) −K 1

(1 + %)N Bin(N,p⋆)((bN ,∞))

Dies ist die diskrete Black-Scholes Formel.

6 Das Black-Scholes Modell

Ziel: Modellierung von Finanzmärkten in stetiger Zeit.

6.1 Beschreibung des Modells

Der Finanzmarkt besteht aus:

- einem Geldmarktkonto

- einem risky asset

- der Laufzeit T

Geldmarktkonto:

- Annahme: deterministische, stetige Verzinsung mit Rate r. Daher entwickelt sich das Geldmarkt-
konto gemäß

β(t) = ert 0 ≤ t ≤ T

risky asset:

- Anfangskurs S0 > 0

- Annahme:

a) Die relativen Kursänderungen sind unabhängig und zeitlich stationär.

b) Die Kursänderungen sind stetig.

Hieraus folgt, dass der Kursverlauf (S(t))0≤t≤T des risky assets durch einen stochastischen Prozess der
Form

S(t) = S(0) exp(σW (t) − 1

2
σ2t)eµt t ≤ T

mit µ ∈ R, σ > 0 beschrieben werden kann.
(W (t))t≥0 bezeichnet dabei den Wiener-Prozess. Dieser ist definiert durch die folgenden Bedingungen:

(i) W (0) = 0 P-f.s.
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(ii) Für beliebige 0 = t0 < t1 < ... < tn, n ∈ N sind

Wt1 −Wt0 ,Wt2 −Wt1 , ...,Wtn −Wtn−1

stochastisch unabhängig.

(iii) Für alle 0 ≤ s, t > 0 gilt:
Ws+t −Ws ∼Wt −W0 =Wt ∼ N(0, t)

(iv) (Wt)t≥0 hat stetige Pfade

Wiso erfüllt das Modell die Annahmen?
Die relativen Kursänderungen in t1 < t2 < ...tn−1 < tn sind gegeben durch

S(t1) − S(t0)
S(t0)

, ...,
S(tn) − S(tn−1)

S(tn−1)

da
S(ti) − S(ti−1)

S(ti−1)
= exp(σ(W (ti) −W (ti−1)) −

1

2
σ2(ti − ti−1))eµ(ti−ti−1) − 1

folgt die Unabhängigkeit und zeitliche Stationarität der relativen Kursänderungen aus (ii) und (iii).
Die Annahme b) ist erfüllt wegen (iv).
Dass das Modell aus den Annahmen folgt, ist nicht ganz so einfach zu beweisen.
Dies folgt aus der Tatsache, dass ein stochastischer ProzessX mit unabhängigen und stationären Zuwächsen,
der stetige Pfade hat, notwendigerweise ein Wiener-Prozess mit Drift sein muss, d.h.

X(t) = σW (t) + νt mit σ > 0 und ν ∈ R

Nur aus der Annahme a) ergeben sich sogenannte Levy-Prozess Modelle.

6.2 Approximation eines Black-Scholes Modells durch ein CRR Modell

Gegeben: Black-Scholes Modell mit den Parametern

σ > 0 für die Volatilität

T > 0 für die Laufzeit

µ > 0 für den Trend

r > 0 für die Zinsrate

S(t) = S(0)eµt exp(σWt −
1

2
σ2t)

Es soll in geeigneter Weise ein CRR Modell angepasst werden.
Teile hierzu den Zeitbereich in äquidistante Intervalle [ti−1, ti] ein mit Intervalllänge In = ∆n = T

n
.

Approximiere S(tj) = S(j∆) für j = 1, ..., n durch

Sn(tj) = S(0)uZn(j)n dj−Zn(j)n

mit Y1, ..., Yn iid, P(Yi = un) = pn = 1 − P(Yi = dn).

Zn(j) =
j

∑
k=1

1{Yk=un}

(Sn(tj))j=0,...,n definiert einen Aktienpreisprozess in einem CRR Modell.
Frage: Wie kann man un, dn, pn sinnvoll wählen?
Ansatz: Wähle un, dn, pn so, dass der Erwartungswert und die Varianz der log Rendite bis T übereinstimmen:
Es gilt:

IE log(S(T )
S(0) ) = IE(µT + σWT −

1

2
σ2T ) = (µ − 1

2
σ2)T

Finanzmathematik WS 14/15
64

zum Inhaltsverzeichnis
Dozent: PD Dr. Volkert Paulsen



und

Var log(S(T )
S(0) ) = σ2Var WT = σ2T.

Im CRR Modell:

IE log
Sn(T )
Sn(0)

= IE log
n

∏
k=1

Yk

= IE
n

∑
k=1

logYk

= nIE logY1

= n((logun)pn + (log dn)(1 − pn))

Var log
Sn(T )
Sn(0)

=
n

∑
k=1

Var (log(Y1)

= n (pn(logun)2 + (1 − pn)(log dn)2 − ((logun)pn + (log dn)(1 − pn))2)

Dies führt auf die Gleichungen

pn logun + (1 − pn) log dn = (µ − 1

2
σ2)T

n

pn log2 un + (1 − pn) log2 dn) =
σ2T

n
+ ((µ − 1

2
σ2)T

n
)

2

welche durch

logun =
(µ − 1

2
σ2)T
n

+ (1 − pn
pn

⋅ σ
2T

n
)

1
2

log dn =
(µ − 1

2
σ2)T
n

− ( pn
1 − pn

⋅ σ
2T

n
)

1
2

gelöst werden.
Strebt pn Ð→ p ∈ (0,1), so ist dn < er

T
n

±
=1+%n

< un, denn

logun ∼ (1 − pn
pn

⋅ σ
2T

n
)

1
2

> rT
n

log dn ∼ −( pn
1 − pn

⋅ σ
2)T
n

)
1
2

< rT
n

Im folgenden setze die Sprungwahrscheinlichkeit pn = p ∈ (0,1) für alle n ∈ N.
Definiere mit dem diskreten CRR Aktienprozess (Sn(tj))j=0,...,n einen stochastischen Prozess (Sn(t))0≤t≤T
durch Sn(t) = Sn(ti−1) für ti−1 ≤ t < ti für alle 1 ≤ i ≤ n.
Sei t ∈ [0, T ] fest. Für in = ⌊ t

T
⌋ gilt:

in
T

n
≤ t < in+1

T

n
in
n
Ð→ t

T
Mit Hilfe des zentralen Grenzwertsatzes für Dreieckschemata gilt

log
Sn(t)
Sn(0)

= log
Sn(in Tn )
Sn(0)

= log
Sn(in Tn )
Sn(0)

− in
1

n
(µ − 1

2
σ2)T

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ð→N(0,σ2t) nach dem CLT

+ in
1

n
(µ − 1

2
σ2)T

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ð→(µ− 1

2σ
2)t

da IE log (Sn(in
T
n )

Sn(0) ) = in 1
n
(µ − 1

2
σ2)T und Var log (Sn(in

T
n )

Sn(0) ) = in 1
n
σ2T .

Also gilt:

log( Sn(t)
Sn(0)

) n→∞Ð→ N((µ − 1

2
σ2)t, σ2t) in Verteilung
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Wegen log ( S(t)
S(0)) ∼ N((µ − 1

2
σ2)t, σ2t) folgt hieraus

Sn(t)
dÐ→

n→∞
S(t).

Für 0 < s1 < s2 < ... < sk ≤ T folgt wegen der Unabhängigkeit und Stationarität von (log (Sn(j)
Sn(0)))j=0,...,n

analog mit dem zentralen Grenzwertsatz

(log(Sn(s1)
Sn(0)

) , ..., log(Sn(sk)
Sn(0)

)) dÐ→ (log(S(s1)
S(0) ) , ..., log(S(sk)

S(0) ))

hieraus erhält man, dass die Familie der endlich dimensionalen Verteilungen von Sn gegen die Familie
der endlich dimensionalen Verteilungen von S konvergiert.
Genauer:
Für alle 0 < t1 < t2 < ... < tk ≤ T, k ∈ N gilt:

(Sn(t1), ..., Sn(tk))
dÐ→ (S(t1), ..., S(tk))

Zusammen mit einer Straffheitsbedingung folgt hieraus die schwache Konvergenz von (Sn)n∈N gegen S in
ID[0, T ], mit

ID[0, t] ∶= {x ∶ [0, T ] Ð→ R ∶ x ist rechsseitig stetig und hat linksseitige Limiten}.

6.3 Eigenschaften des Wiener Prozesses

6.3.1 Definition (Wienerprozess bzgl (Ft)t≥0)

Sei (Ω,F ,P) ein Wahrscheinlichkeitsraum und (Ft)t≥0 eine Filtration. Ein stochastischer Prozess (W (t))t≥0

heißt Wiener-Prozess bzgl (Ft)t≥0, wenn gilt:

(i) W ist adaptiert bzgl (Ft)t≥0

(ii) W (0) = 0P-f.s.

(iii) W (t) −W (s) ist stochastisch unabhängig von Fs für alle 0 ≤ s ≤ t

(iv) W (t) −W (s) ∼W (t − s) ∼ N(0, t − s) für alle 0 ≤ s ≤ t

(v) W hat P-f.s. stetige Pfade

Im folgenden sollen Martingale bestimmt werden:

6.3.2 Satz

Sei W ein Wiener-Prozess bzgl (Ft)t≥0. Dann gilt:

(i) W ist ein Martingal

(ii) (W (t)2 − t)t≥0 ist ein Martingal

(iii) (exp(ϑW (t) − 1
2
ϑ2t))t≥0 ist ein Martingal für jedes θ ∈ R.

Beweis. Die Aussagen erhält man durch Ausnutzen der unabhängigen Zuwächse beim Wiener-Prozess.

(i)

IE(W (t)∣Fs) = IE(W (s) +W (t) −W (s)∣Fs)
= IE(W (s)∣Fs) + IE(W (t) −W (s)∣Fs)
=W (s) + IE(W (t) −W (s))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∼N(0,t−s)=0

für alle s ≤ t
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(ii)

IE(W (t)2∣Fs) = IE((W (s) +W (t) −W (s))2∣Fs)
= IE(W (s)2 + 2W (s)(W (t) −W (s)) + (W (t) −W (s))2∣Fs)
=W (s)2 + IE(2W (s)W (t) −W (s))∣Fs) + IE((W (t) −W (s))2∣Fs)
=W (s)2 + 2W (s) IE(W (t) −W (s)∣Fs)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=IE(W (t)−W (s))=0

+IE((W (t) −W (s))2)

=W (s)2 + IE((W (t) −W (s))2)
=W (s)2 + IE(W (t − s)2)
=W (s)2 + (t − s)

⇔ IE(W (t)2 − t∣Fs) =W (s)2 − s für alle s ≤ t

(iii)

IE(exp(ϑW (t))∣Fs) = IE(exp(ϑ(W (s) +W (t) −W (s)))∣Fs)
= IE(exp(ϑW (s)) exp(ϑ(W (t) −W (s))∣Fs)
= exp(ϑW (s))IE(exp(ϑ(W (t) −W (s)))∣Fs)
= exp(ϑW (s))IE(exp(ϑ(W (t) −W (s))))
= exp(ϑW (s))IE(exp(ϑ(W (t − s))))

= exp(ϑW (s)) exp(1

2
ϑ2(t − s))

⇔ IE(exp(ϑW (t) − 1

2
ϑ2t)∣Fs) = exp(ϑW (s) − 1

2
ϑ2s) für alle s ≤ t

Ziel: Konstruktion des äquivalenten Martingalmaßes im Black-Scholes Modell

6.4 Maßwechsel

Sei (Ω,F ,P) ein Wahrscheinlichkeitsraum und (Ft)t≥0 eine Filtration. Sei (Lt)t≥0 ein positives Martingal
bzgl P und P ein weiteres Wahrscheinlichkeitsmaß aus (Ω,F) mit

dP
dP

∣
Ft

= Lt für alle t ≥ 0

Dann gilt:

(i) Ist Y Ft-messbar und existiert IEY , so gilt:

IE(Y ∣Fs) =
IE(Y Lt∣Fs)

Ls
für alle s ≤ t.

Dabei ist EY = ∫ Y dP. IE(Y ∣Fs) ist der bedingte Erwartungswert von Y bzgl P.

(ii) (Mt)t≥0 ist ein P-Martingal genau dann, wenn (MtLt)t≥0 ein P-Martingal ist.

(iii) Ist (Rt)t≥0 ein positives P-Martingal mit IERt = 1 für alle t ≥ 0, so kann auf jedem FT ein Wahr-
scheinlichkeitsmaß QT definiert werden, sodass

dQT
dP

∣
Ft

= Rt für alle t ≤ T

Beweis. zu (i): Sei Y Ft-messbar und A ∈ Fs.

∫
A
Y dP = ∫

A
Y LtdP = ∫

A
IE(Y Lt∣Fs)dP

= ∫
A

IE(Y Lt∣Fs)
Ls

dP, da
dP
dP

∣
Fs

= 1

Ls
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zu (ii):

(Mt) ist ein P-Martingal ⇔ E(Mt∣Fs) =Ms für alle s ≤ t

⇔ E(MtLt∣Fs)
1

Ls
=Ms für alle s ≤ t

⇔ E(MtLt∣Fs) =MsLs für alle s ≤ t
⇔ML ist ein P-Martingal

zu (iii): Wegen IERT = 1 definiert QT (A) = ∫ART dP für alle A ∈ FT ein zu P äquivalentes Wahr-

scheinlichkeitsmaß auf (Ω,FT ).
Für A ∈ Ft mit t ≤ T gilt:

QT (A) = ∫
A
RT dP = ∫

A
IE(RT ∣Ft)dP

= ∫
A
RtdP

Also ist Rt = dQT
dP ∣

Ft

6.5 Girsanov Transformation (einfachster Fall)

Sei (W (t))t≥0 ein Wiener-Prozess bzgl. einer Filtration (Ft)t≥0. Sei für ϑ ∈ R ein weiteres Maß Pϑ auf
(Ω,F∞) gegeben, mit dPϑ

dP ∣
Ft

= exp(ϑW (t) − 1
2
ϑ2t) für alle t ≥ 0.

F∞ ∶= σ(⋃t≥0 Ft)
Dann gilt: W (t) =W (t) − ϑt für alle t ≥ 0 ist ein Wiener-Prozess bzgl. Pϑ.

Beweis. Zeige die definierenden Eigenschaften des Wiener-Proesses:

(i) (W (t))t≥0 hat stetige Pfade mit W (0) = 0

(ii) W (t) −W (s) ist unabhängig von Fs und N(0, t − s) verteilt.

zu (i): klar

zu (ii): Sei g ∶ RÐ→ R beschränkt und messbar.

IEϑ(g(W (t) −W (s))∣Fs) = IE(g(W (t) −W (s))Lt∣Fs)
1

Ls

mit Lt = exp(ϑW (t) − 1

2
ϑ2t)

= IE(g(W (t) −W (s) − ϑ(t − s))Lt
Ls

∣Fs)

= IE(g(W (t) −W (s) − ϑ(t − s) exp(ϑ(W (t) −W (s)) − 1

2
ϑ2(t − s))∣Fs)

= IEg(W (t) −W (s) − ϑ(t − s) exp(ϑ(W (t) −W (s)) − 1

2
ϑ2(t − s))

= IEg(W (t − s) − ϑ(t − s)) exp(ϑW (t − s) − 1

2
ϑ2(t − s))

= IEϑg(W (t − s))

Hieraus folgt: W (t) −W (s) ist stochastisch unabhängig von Fs und genau so verteilt wie W (t− s).
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Dies ist eine N(0, t − s) Verteilung, denn

IEϑg(W (t)) = IEg(W (t) − ϑt) exp(ϑW8t) − 1

2
ϑ2t)

= IEg(W (t) − ϑt) exp(ϑ(W (t) − ϑt) + 1

2
ϑ2t)

= e 1
2ϑ

2t ∫ g(x)eϑxN(−ϑt, t)(dx)

= e 1
2ϑ

2t ∫ g(x)eϑx exp(− 1

2t
(x + ϑt)2)dx

= 1√
2πt

∫ g(x)e− 1
2tx

2

dx

= ∫ g(x)N(0, t)(dx)

Also ist W (t)N(0, t) verteilt bzgl Pϑ.

6.6 Äquivalentes Martingalmaß im Black-Scholes Modell

Sei (Ω,F ,P) ein Wahrscheinlichkeitsraum und (Ft)t≥0 eine Filtration. Sei W ein Wiener-Prozess bzgl.
(Ft)t≥0.
Sei [0, T ] der Handelszeitraum eines Finanzmarktes. S(t) = S(0)eµt exp(σW (t) − 1

2
σ2t),0 ≤ t ≤ T der

Preisprozess eines risky assets mit

- S(0) > 0 Anfangspreis

- µ ∈ R Trendparameter

- σ Volatilität

Sei β(t) = ert, t ≥ 0 der Preisprozess eines Geldmarktkontos mit Zinsrate r.

6.6.1 Definition (äquivalentes Martingalmaß)

Ein Wahrscheinlichkeitsmaß P⋆ auf (Ω,FT ) heißt äquivalentes Martingalmaß genau dann, wenn

(i) P⋆ ist äquivalent zu P auf FT

(ii) S⋆(t) ∶= S(t)
β(t) = e

−rtS(t),0 ≤ t ≤ T ist ein P⋆-Martingal.

Ansatz zur Bestimmung des äquivalenten Martingalmaßes

dP⋆

dP
∣
Ft

= exp(ϑW (t) − 1

2
ϑ2t)

Zu bestimmten ist ϑ:
Girsanov liefert

W ⋆(t) =W (t) − ϑt, t ≥ 0

ist ein Wiener-Prozess bzgl P⋆.
Bzgl. P⋆ gilt:

S(t) = S(0)eµt exp(σW (t) − 1

2
σ2t)

= S(0)eµt exp(σ(W ⋆(t) + ϑt) − 1

2
σ2t)

= S(0) exp(σW ⋆(t) − 1

2
σ2t)e(µ+σϑ)t

Also
S⋆(t) = e−rtS(t) = S(0) exp(σW ⋆(t) − 1

2
σ2t)e(µ+σϑ−r)t

und damit
(S⋆(t)) ist ein P⋆-Martingal genau dann, wenn

µ − r + σϑ = 0⇔ ϑ = −µ − r
σ

Ergebnis: Für ϑ = −µ−r
σ

ist P⋆ ein äquivalentes Martingalmaß.
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6.6.2 Bemerkung:

Bezüglich P⋆ gilt:

S(t) = S(0)ert exp(σW ⋆(t) − 1

2
σ2t), t ≥ 0

Also ist S(t) ein geometrischer Wiener-Prozess mit Trend r und Volatilität σ.

(S
⋆(t)
S(0) )

t≥0
ist ein P⋆-Martingal und damit ein positives Martingal mit

IE⋆S
⋆(t)
S(0) = S

⋆(0)
S(0) = 1

Deshalb kann ein Maßwechsel durchgeführt werden.

dP⋆σ
dP⋆

∣
Ft
∶= S

⋆(t)
S(0) = exp(σW ⋆(t) − 1

2
σ2t)

Da W ⋆ ein Wiener-Prozess bzgl. P⋆ ist, gilt nach Girsanov

W ⋆⋆(t) =W ⋆(t) − σt, t ≥ 0

ist ein Wiener-Prozess bzgl. P⋆σ.
Weiter ist

S(t) = S(0) exp(σW ⋆(t) − 1

2
σ2t))ert

= S(0) exp(σ(W ⋆⋆(t) + σt) − 1

2
σ2t)ert

= S(0)e(r+σ
2)t exp(σW ⋆⋆(t) − 1

2
σ2t)

Der Aktienpreisprozess (S(t))t≥0 ist ein geometrischer Wiener-Prozess
mit Trend/Drift µ Volatilität σ bzgl. P.
mit Trend/Drift r Volatilität σ bzgl. P⋆.
mit Trend/Drift r + σ2 Volatilität σ bzgl. P⋆σ.

6.7 Bewertung von Claims

Ein Derivat ist ein Wertpapier, das eine zufällige Auszahlung C zum Zeitpunkt T garantiert.
Im mathematischen Modell entspricht dies einer FT messbaren Zufallsvariable C.
Annahme: IE⋆∣C⋆∣ < ∞, wobei C⋆ ∶= e−rTC.
Klar ist: IE⋆∣C⋆∣ < ∞⇔ IE⋆∣C ∣ < ∞
Es gilt: C ist durch eine selbstfinanzierende Handelsstrategie replizierbar. Zum Nachweis hierfür benötigt
man die stochastische Analysis.
Deshalb gibt es einen eindeutigen arbitragefreien Preisprozess (pt(C))0≤t≤T . Analog zum diskreten Black-
Scholes Modell ist dieser gegeben durch

e−rtpt(C) = IE⋆(C⋆∣Ft) 0 ≤ t ≤ T

Insbesondere ist der Anfangspreis

p0(C) = IE⋆(C⋆) = IE⋆(e−rTC)

6.7.1 Black-Scholes Formel

Betrachtet wird eine Calloption
C = (ST −K)+

Zu bestimmen ist
IE⋆(e−rT (ST −K)+∣Ft) = pt(C)e−rt
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Sei zunächst t = 0:

IE⋆(e−rT (ST −K)+∣Ft) = IE⋆e−rTST1{ST >K} − IE⋆e−rTK1{St>K}

= S(0)IE⋆ S⋆T
S(0)1{ST >K} − e−rTKIE⋆1{ST >K}

= S(0)P⋆σ(ST >K)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(1)

−e−rTK P⋆(ST >K)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(2)

ST = S(0) exp(σW ⋆⋆
T − 1

2
σ2T )e(r+σ2)T

zu (1):

P⋆σ(ST >K) = P⋆σ (log( ST
S(0)) > log( K

S(0)))

= P⋆σ (σW ⋆⋆
T − 1

2
σ2T + (r + σ2)T > log( K

S(0)S))

= P⋆σ

⎛
⎜⎜⎜⎜⎜
⎝

W ⋆⋆
T√
T

²
∼N(0,1)

>
log ( K

S(0)) +
1
2
σ2T − (r + σ2)T

σ
√
T

⎞
⎟⎟⎟⎟⎟
⎠

= Φ
⎛
⎜
⎝

log (S(0)
K

) + (r + 1
2
σ2)T

σ
√
T

⎞
⎟
⎠

mit Φ(a) = 1√
2π

a

∫
−∞

e−
1
2x

2

dx

zu (2):

P⋆(ST >K) = P⋆ (log( ST
S(0)) > log( K

S(0)))

= P⋆ (σW ⋆
T −

1

2
σ2T + rT > log( K

S(0)))

= P⋆
⎛
⎜⎜⎜⎜⎜
⎝

W ⋆
T√
T

±
∼N(0,1)

>
log ( K

S(0)) +
1
2
σ2T − rT

σ
√
T

⎞
⎟⎟⎟⎟⎟
⎠

= Φ
⎛
⎜
⎝

log (S(0)
K

) + (r − 1
2
σ2)T

σ
√
T

⎞
⎟
⎠

Ergebnis: Bezeichnet c(S0, T,K) den Anfangspreis einer Calloption mit Laufzeit T , Basis K und An-
fangsaktienkurs S0, so gilt:

c(S0, T,K) = S0Φ(h1(S0, T )) −Ke−rTΦ(h2(S0, T ))

mit h1(S0, T ) =
log (S(0)

K
) + (r + 1

2
σ2)T

σ
√
T

und h2(S0, T ) =
log (S(0)

K
) + (r − 1

2
σ2)T

σ
√
T

Da der Aktienpreisprozess, gegeben Ft, sich verhält wie in einem Black-Scholes Modell mit Laufzeit T − t
und Anfangskurs St ergibt sich für den Callpreis zum Zeitpunkt t

pt(C) = c(St, T − t,K)
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genauer kann man mit Hilfe der Markoveigenschaft zeigen:

pt(C) = IE⋆(e−rT (ST −K)+∣Ft)ert = e−r(T−t)IE⋆((ST −K)+∣Ft)
= e−r(T−t)IE⋆((ST −K)+∣St)
= IE⋆(e−r(T−t)(ST −K)+∣St)
= c(St, T − t,K)

denn
IE⋆((ST −K)+∣St = x) = IE⋆((ST−t −K)+∣S0 = x)

6.7.2 Greeks

Eigenschaften des Callpreises: Sei c(x, t, σ,K) der Preis einer Calloption mit Laufzeit t, Volatilität σ,
Basis K und Anfangskurs der Aktie x.

0
K

Eigenschaften für c(x, t, σ,K) = xΦ(h1(x, t)) −Ke−rtΦ(h2(x, t)):

i) lim
t↘0

= c(x, t, σ,K) = (x −K)+

ii) ∂tc + 1
2
σ2x2∂2

xc + rx∂x = rc auf (0,∞) × (0,∞)
die Black-Scholes Differentialgleichung. Diese folgt aus der Identität

xϕ(h1(x, t)) −Ke−rtϕ(h2(x, t)) = 0

iii) Delta:
c ist strikt wachsend als Funktion des Aktienanfangskurses mit

∆ = ∂xc = Φ(h1) > 0

Das Delta gibt den Aktienanteil in der Replikationsstrategie an. Setze

H(t) = ∂xc(St, T − t),Ψ(t) = −Ke−rTΦ(h2(St, T − t))

. Dann wird durch (Ψ(t),H(t))0≤t≤T eine selbstfinanzierenden Handelsstrategie definiert, welche
die Calloption repliziert. Also

Vt((H,Ψ)) =H(t)S(t) +Ψ(t)β(t)
= S(t)∆ +Ψ(t)β(t)
= S(t)Φ(h1(S(t), T − t)) −Ke−r(T−t)Φ(h2(S(t), T − t))
= c(S(t),K,T − t)

Preis der Calloption mit Fälligkeit T in t bei S(t).

iv) Gamma:
Γ ∶= ∂2

xc = ϕ(h1(x, t))∂xh1(x, t) > 0
Γ ist ein Maß für die Änderung des ∆ und gibt in der Anwendung an, wie sensitiv der ∆-Hedge
gegenüber einer Änderung im Aktienanteil ist. Deshalb ist das Gamma im Risikomanagement eine
wichtige Kenngröße.

v) Theta:
Θ ∶= ∂tc = xσ

2
√
t
ϕ(h1(x, t)) +Kre−rtΦ(h2(x, t)) > 0

Der Preis der Option ist monoton wachsend in der Laufzeit.
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vi) Lambda/Vega:
Λ ∶= ∂c

∂σ
= xϕ(h1(x, t))

√
t > 0

Eine höhere Volatilität signalisiert eine erhöhte Unsicherheit im Markt, die zu höheren Options-
preisen führt.

vii) Rho:
% ∶= ∂c

∂r
=Kre−rtΦ(h2(x, t)) > 0

Der Optionspreis wächst mit der Zinsrate.

6.7.3 Smile-Effekt

Das Black-Scholes Modell ist ein sehr einfaches Modell zur Beschreibung von Aktienkursen.
Frage: Erklärt das Modell die empirischen Phänomene?
Antwort: Nein, da der beobachtbare Smile-Effekt im Black-Scholes Modell nicht vorkommt.
Fixiere hierzu eine Aktie mit Anfangskurs x, einer Laufzeit T und die zur Laufzeit gehörende Zinsrate r.
Betrachte den Callpreis als Funktion der Basis.
Zu verschiedenen Basispreisen K sind Marktpreise cMarkt(K) der dazugehörigen Option abrufbar.
Zu jedem K kann die Modellvolatilität σ(K) so bestimmt werden, dass Modellpreis und Marktpreis
übereinstimmen, d.h.

c(x,T, σ(K),K) = cMarkt(K)
σ(K) heißt implizite Volatilität.
Wäre das Black-Scholes Modell exakt richtig, so müsste σ(K) konstant sein. Man stellt jedoch fest, das
σ(K) folgenden Verlauf hat:

BasisxerT

at the money

( )
in the money out of the money

σ(K)
beobachtete Volatilität

Black-Scholes Volatilität

Verbesserung: Ersetze die globale Volatilität σ durch eine lokale Volatilitätsfunktion (t, x) ↦ σ(t, x).
Es ergibt sich dann bzgl. eines äquivalenten Martingalmaßes P⋆ der Aktienpreisprozess

dS(t) = S(t)(rdt + σ(t, S(t))dW ⋆(t))

Dieser wird gelöst durch

S(t) = S(0)ert exp(∫
t

0
σ(u,S(u))dW ⋆(u) − 1

2
∫

t

0
σ2(u,S(u))du)

6.7.4 Bewertung von Barriere Optionen

Eine Barriere Option ist ein Beispiel für ein Derivat, dessen Auszahlung am Ende auch durch dessen
Verhalten während der Laufzeit bestimmt wird. Deshalb ist eine Bewertung dieser pfadabhängigen Aus-
zahlungsverpflichtung schwieriger als die eines pfadunabhängigen Calls. Gegeben sei ein Black-Scholes
Modell mit Handelszeitraum [0, T ] der Form

S(t) = S0e
µt exp(σW (t) − 1

2
σ2t),

β(t) = ert

für alle 0 ≤ t ≤ T .
Ein down and out Call mit Basis K, Laufzeit T und Barriere B < S0 ist ein Claim mit Auszahlung

C = (S(T ) −K)+1{inft≤T S(t)>B}.
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Für die Bewertung kann eine analoge Vorgehensweise wie beim Call durchgeführt werden. Es ist die
abdiskontierte Claimauszahlung bezüglich des äquivalenten Martingalmaßes P∗ zu berechnen. Es gilt

p0(C) = IE∗e−rT (S(T ) −K)+1{inft≤T S(t)>B}
= IE∗e−rTS(T )1{S(T )>K,inft≤T S(t)>B} −Ke−rTP∗(S(T ) >K, inf

t≤T
S(t) > B)

= S0P∗σ(S(T ) >K, inf
t≤T

S(t) > B) −Ke−rTP∗(S(T ) >K, inf
t≤T

S(t) > B),

wobei das Maß P∗σ durch die P-Dichte 1
S0
e−rTS(T ) definiert ist. Weiter erhält man durch elementare

Umformungen

P∗(S(T ) >K, inf
t≤T

S(t) > B) = P∗(− log
S(T )
S0

< log
S0

K
,− inf

t≤T
log

S(T )
S0

< log
S0

B
)

= P∗(X(T ) < 1

σ
log

S0

K
, sup
t≤T

X(t) < 1

σ
log

S0

B
)

mit X(t) = − 1
σ

log S(t)
S0

= −W ∗(t) + ( 1
2
σ − r

σ
)t. Der Prozess X ist ein Wiener-Prozess mit Drift a = 1

2
σ − r

σ
und die gesuchte Wahrscheinlichkeit ergibt sich aus folgender

6.7.5 Bemerkung:

Ist X ein Wiener-Prozess mit Drift a ∈ R bezüglich einem Wahrscheinlichkeitsmaß P, so gilt für alle
x ∈ R, z ≥ x

P(X(T ) ≤ x, sup
t≤T

X(t) ≤ z) = Φ(x − aT√
T

) − e2azΦ(x − 2z − aT√
T

). (1)

Eine Anwendung dieser Bemerkung liefert also

P∗(S(T ) >K, inf
t≤T

S(t) > B) = Φ(
1
σ

log S0

K
− aT

√
T

) − exp(2a 1

σ
log

S0

B
)Φ(

1
σ

log S0

K
− 2
σ

log S0

B
− aT

√
T

)

= Φ(
log S0

K
+ (r − 1

2
σ2)T

σ
√
T

) − (S0

B
) 2a
σ Φ(

log B2

S0K
+ (r − 1

2
σ2)T

σ
√
T

)

Bezüglich P∗σ kann analog argumentiert werden, da der Aktienkurs ein geometrischer Wiener-Prozess mit
Trend r + σ2 und Volatilität σ ist. Es ergibt sich

P∗σ(S(T ) >K, inf
t≤T

S(t) > B) = Φ(
log S0

K
+ (r + 1

2
σ2)T

σ
√
T

) − (S0

B
) 2b
σ Φ(

log B2

S0K
+ (r + 1

2
σ2)T

σ
√
T

)

mit b = − r
σ
− 1

2
σ.

Fasst man alle Terme zusammen, erhält man für den Anfangspreis p(C) der Barriere Option

p(C) = c(S0, T,K) − (S0

B
)2bσc(S0, T,K

S2
0

B2
),

da 2a
σ
= 2b
σ
+ 2 ist.

Es verbleibt, die Bemerkung zu beweisen.

Beweis. Die Aussage folgt aus dem Spiegelungsprinzip und einer Anwendung des Satzes von Girsanov.
Zunächst betrachten wir den Fall einer Drift a = 0. Dann ist X ein Wiener-Prozess W . Wir bezeichnen
mit M(t) = sups≤tW (s) das sogenannte Running Maximum von W . Für x ∈ R und z ≥ x gilt unter
Ausnutzung des Spiegelungsprinzips

P(W (T ) ≤ x,M(T ) ≥ z) = P(Ŵ (T ) ≥ z + z − x,M(T ) ≥ z)
= P(Ŵ (T ) ≥ 2z − x, sup

t≤T
Ŵ (t) ≥ z) = P(Ŵ (T ) ≥ 2z − x)

= Φ(x − 2z√
T

)

Hierbei ist für
τ = inf{t ≥ 0 ∶W (t) = z}
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Ŵ (t) =
⎧⎪⎪⎨⎪⎪⎩

W (t) für t ≤ τ
W (τ) − (W (t) −W (τ) für t ≥ τ

(2)

der an τ gespiegelte Prozess. Das Spiegelungsprinzip besagt, dass Ŵ wieder ein Wiener-Prozess definiert.
Somit folgt

P(W (T ) ≤ x,M(T ) ≤ z) = P(W (T ) ≤ x) − P(W (T ) ≤ x,M(T ) ≥ Z)
Φ( x√

T
) −Φ(x − 2z√

T
).

Im zweiten Schritt wird Girsanov angewendet. Da W (t) =X(t)−at, t ≥ 0 einen Wiener-Prozess bezüglich
P definiert, kann mittels

dPa
dP

∣Ft = exp(aW (t) − 1

2
a2t)

für alle t ≥ 0 ein Wahrscheinlichkeitsmaß Pa auf Ω,FT ) definiert werden. Girsanov liefert, dass W (t) =
W (t) − at + at ein Wiener-Prozess mit Drift a bezüglich Pa ist. Somit gilt

P(X(T ) ≤ x, sup
t≤T

X(t) ≤ z) = Pa(W (T ) ≤ x,M(T ) ≤ z)

= ∫
{W (T )≤x,M(T )≤z}

exp(aW (T ) − 1

2
a2T )dP

= IEg(W (T ))1{M(T )≤z}

mit g(y) = exp(ay − 1
2
a2T )1(−∞,x](y). Zu bestimmen ist die bedingte Verteilung von W (T ) - gegeben

{M(T ) ≤ z}. Wegen des ersten Schrittes gilt für die bedingte Verteilungsfunktion

P(W (T ) ≤ x∣M(T ) ≤ z) =
⎧⎪⎪⎨⎪⎪⎩

1 falls x ≥ z
Φ( x

√

T
)−Φ( x−2z√

T
)

P(M(T )≤z) falls x ≤ z.
(3)

Durch Differentiation nach x erhält man die bedingte Dichte

h(y) = 1√
TP(M(T ) ≤ z)

(ϕ( y√
T
) − ϕ(y − 2z√

T
)

für alle y ≤ z. Somit folgt

IEg(W (T ))1{M(T )≤z} = P(M(T ) ≤ z)∫
∞

−∞
g(y)h(y)dy

= ∫
x

−∞

1√
T
(ϕ( y√

T
) − ϕ(y − 2z√

T
) exp(ay − 1

2
a2T )dy

= Φ(x − aT√
T

) − e2azΦ(x − 2z − aT√
T

),

denn

∫
−∞

1√
T
ϕ( y√

T
)dy

= IE1{W (T )≤x} exp(aW (T ) − 1

2
a2T )

= Pa(W (T ) ≤ x) = Pa(W (T ) − aT ≤ x − aT ) = Φ(x − aT√
T

)

und

∫
−∞

1√
T
ϕ(y − 2z√

T
)dy

= IE1{W (T )+2z≤x} exp(a(W (T ) + 2z) − 1

2
a2T )

= exp(2az)Pa(W (T ) + 2z ≤ x)
= exp(2az)Φ(x − 2z − aT√

T
)
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6.8 Das Black-Scholes Modell für 2 Aktien

- Handelszeitraum [0, T ]

- Informationsverlauf (Ft)0≤t≤T

- Geldmarktkonto β(t) = ert, 0 ≤ t ≤ T

- Unabhängige Wiener-Prozesse W1,W2, die die Aktien treiben

- S1(t) = S1(0)eµ1t exp(σ(%W2(t) +
√

1 + %2W1(t) − 1
2
σ2

1t)
S2(t) = S2(0)eµ2t exp(σW2(t) − 1

2
σ2

2t)
mit

0 ≤ t ≤ T
0 < S1(0), S2(0) Anfangskurse

µ1, µ2 ∈ R Trendparameter

σ1, σ2 Volatilitäten

∣%∣ ≤ 1 Korrelation zwischen den Wiener-Prozessen

6.8.1 Bemerkung:

B(t) = %W2(t) +
√

1 − %2W1(t),0 ≤ t ≤ T ist ein Wiener-Prozess bzgl. (Ft)0≤t≤T .
Cov(B(t),W2(t)) = Cov(%W2(t),W2(t)) = %t.

Bestimmung des äquivalenten Martingalmaßes:
Ansatz: Zweimalige Anwendung des Satzes von Girsanov:
1. Schritt: Girsanov auf Aktie 2 anwenden:

dPϑ2

dP
∣
Fn

= exp(ϑ2W2(t) −
1

2
ϑ2

2t)

Dann ist nach Girsanov
W ⋆

2 (t) =W2(t) − ϑ2t, t ≥ 0
ein Wiener-Prozess bzgl. Pϑ2 .

Weiter sind W ⋆
2 (t) und W1(t) unabhängige Wienerprozesse bzgl. Pϑ2

.

Beweis. Für h, g ∶ C[0, T ] Ð→ R messbar und beschränkt.

IEϑ2h((W ⋆
2 (t))0≤t≤T g((W1(t))0≤t≤T ) = ∫ h((W ⋆

2 (t))0≤t≤T )g((W1(t))0≤t≤T ) exp(ϑ2W2(T ) − 1

2
ϑ2

2T )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Dichte

dP

= ∫ h((W ⋆
2 (t))0≤t≤T ) exp(ϑ2W2(T ) − 1

2
ϑ2

2T )dP∫ g((W1(t))0≤t≤T )dP

= IEϑ2h((W ⋆
2 (t))0≤t≤T )IEϑ2g((W1(t))0≤t≤T )

da IEϑ2g((W1(t))0≤t≤T ) = ∫ g((W1())0≤t≤T ) exp(ϑ2W2(T ) − 1

2
ϑ2

2T )dP

= IEg((W1(t))0≤t≤T ) IE exp(ϑ2W2(T ) − 1

2
ϑ2

2T )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

= IEg((W1(t))0≤t≤T )

⇒W ⋆
2 und W1 sind stochastisch unabhängig

⇒W1 ist bzgl. Pϑ2 genauso verteilt wie bzgl P.
⇒ Behauptung
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Bezüglich Pϑ2 ist:

S2(t) = S2(0)eµ2t exp(σ2W2(t) −
1

2
σ2

2t)

= S2(0)eµ2t exp(σ2W
⋆
2 (t) − 1

2
σ2

2t)eϑ2σ2t

e−rtS(t) = S⋆(t) ist ein Martingal, genau dann wenn

µ2 + ϑ2σ2 = r⇔ ϑ2 = −
µ2 − r
σ2

2. Schritt Wende Girsanov auf Aktie 1 an (genauer: auf W1):
Für ϑ1 ∈ R definiere:
dP(ϑ1,ϑ2)
dPϑ2

∣
Ft

= exp(ϑ1W1(t) − 1
2
ϑ2

1t), 0 ≤ t ≤ T
Girsanov liefert:
W ⋆

1 (t) =W1(t) − ϑ1t, t ≥ 0
ist ein Wiener-Prozess bzgl. P(ϑ1,ϑ2).
Analog zum 1. Schritt gilt:
W ⋆

1 und W ⋆
2 sind stochastisch unabhängige Wiener-Prozesse bzgl. P(ϑ1,ϑ2).

Bezüglich P(ϑ1,ϑ2) gilt:

S2(t) = S2(0)ert exp(σ2W
⋆
2 (t) − 1

2
σ2

2t) da ϑ2 = −
µ2 − r
σ2

S1(t) = S1(0)eµ1t exp(σ1(%W ⋆
2 (t) +

√
1 − %2W1(t)) −

1

2
σ2

1t)

= S1(0)eµ1t exp(σ1((%W ⋆
2 (t) + ϑ2t) +

√
1 − %2(W ⋆

1 (t) + ϑ1t)) −
1

2
σ2

1t)

= S1(0)eµ1t exp(σ1%ϑ2t +
√

1 − %2ϑ1σ1t) exp(σ1(%W ⋆
2 (t) +

√
1 − %2W ⋆

1 (t) − 1

2
σ1t))

Also ist (e−rtS1(t))t≥0 = (S⋆(t))t≥0 ein Martingal genau dann wenn

µ1 + σ1ϑ2% +
√

1 + %2ϑ1σ1 = r

⇔ ϑ1 = −
1√

1 − %2
(µ1 − r

σ1
− µ2 − r

σ2
%)

Also ist P⋆ = P(ϑ1,ϑ2) ein äquivalentes Martingalmaß.

6.8.2 Bemerkung:

P⋆ ist eindeutig bestimmt.

6.8.3 Bewertung einer Exchange-Option

Claim C = (S2(T ) − S1(T ))+
Bezüglich P⋆ gilt:
S2(t) = S2(0)ert exp(σ2W

⋆
2 (t) − 1

2
σ2

2t)
S1(t) = S1(0)ert exp(σ1B1(t) − 1

2
σ2

1t)
mit B1(t) = %W ⋆

2 (t) +
√

1 − %2W ⋆
1 (t) Wiener-Prozess bzgl. P⋆.

Es gilt:
IE⋆e−rT (S2(T ) − S1(T ))+
= IE⋆e−rTS2(T )1{S2(T )>S1(T )} − IE⋆e−rTS1(T )1{S2(T )>S1(T )}
= S2(0)P⋆2(S2(T ) > S1(T )) − S1(0)P⋆1(S2(T ) > S1(T ))

Mit
dP⋆2
dP⋆ ∣Ft ∶=

S⋆2(t)
S2(0) = exp(σ2W

⋆
2 (t) − 1

2
σ2

2t)

und
dP⋆1
dP⋆ ∣Ft ∶=

S⋆1(t)
S1(0) = exp(σ1B1(t) − 1

2
σ2

1t)
Wegen

log
S2(T )
S1(T ) = log

S2(0)
S1(0)

+ σ2W
⋆
2 (T ) − 1

2
σ2

2T − σ1B1(T ) + 1

2
σ2

1T

= log
S2(0)
S1(0)

+ (σ2 − σ1%)W ⋆
2 (T ) − σ1

√
1 − %2W ⋆

1 (T ) + 1

2
(σ2

1 − σ2
2)T
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gilt:
P⋆2 (S2(T ) > S1(T ))
= P⋆2 (log S2(T )

S1(T ) > 0)
= P⋆2 ((σ2 − σ1%)W ⋆

2 (T ) − σ1

√
1 − %2W ⋆

1 (T ) > log S1(0)
S2(0) +

1
2
(σ2

1 − σ2
2)T)

= P⋆2 ((σ2 − σ1%)(W ⋆
2 (T ) − σ2T ) − σ1

√
1 − %2W ⋆

1 (T ) > log S1(0)
S2(0) −

1
2
(σ2

1 + σ2
2)T + σ1σ2%T)

= P⋆2

⎛
⎜⎜⎜⎜⎜⎜
⎝

(σ2 − σ1%)(W ⋆
2 (T ) − σ2T ) − σ1

√
1 − %2W ⋆

1 (T )√
T (σ2

2 − 2%σ1σ2 + σ2
1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∼N(0,1)

>
log S1(0)

S2(0) −
1
2
(σ2

1 + σ2
2)T + σ1σ2%T

√
T (σ2

2 − 2%σ1σ2 + σ2
1)

⎞
⎟⎟⎟⎟⎟⎟
⎠

= Φ
⎛
⎜
⎝

log S2(0)
S1(0) +

1
2
(σ2

1 + σ2
2)T − σ1σ2%T

√
T (σ2

2 − 2%σ1σ2 + σ2
1)

⎞
⎟
⎠

Bezüglich P⋆1 sind

W ⋆
2 (t) − σ1%t und W ⋆

1 (t) − σ1

√
1 − %2t mit t ≥ 0

unabhängige Wiener-Prozesse.
Dies ist an dieser Stelle nicht klar und kann (vermutlich) mit dem einfachen Girsanov nicht bewiesen
werden.
Somit gilt:
P⋆1 (S2(T ) > S1(T ))
= P⋆1 (log S2(T )

S1(T ) > 0)
= P⋆1 ((σ2 − σ1%)W ⋆

2 (T ) − σ1

√
1 − %2W ⋆

1 (T ) > log S1(0)
S2(0) +

1
2
(σ2

1 − σ2
2)T)

= P⋆1 ((σ2 − σ1%)(W ⋆
2 (T ) − σ1%T ) − σ1

√
1 − %2(W ⋆

1 (T ) − σ1

√
1 − %2T )

> log S1(0)
S2(0) +

1
2
(σ2

1 − σ2
2)T + σ2

1%
2T − σ1σ2%T + σ2

1(1 − %2)T)

= P⋆1

⎛
⎜⎜⎜⎜⎜⎜
⎝

(σ2 − σ1%)(W ⋆
2 (T ) − σ1%T ) − σ1

√
1 − %2(W ⋆

1 (T ) − σ1

√
1 − %2T )√

T (σ2
2 − 2%σ1σ2 + σ2

1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∼N(0,1)

>
log S1(0)

S2(0) −
1
2
(σ2

1 + σ2
2)T − σ1σ2%T

√
T (σ2

2 − 2%σ1σ2 + σ2
1)

⎞
⎟⎟⎟⎟⎟⎟
⎠

= Φ
⎛
⎜
⎝

log S2(0)
S1(0) −

1
2
(σ2

1 + σ2
2)T + σ1σ2%T

√
T (σ2

2 − 2%σ1σ2 + σ2
1)

⎞
⎟
⎠
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