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1 Informelle Einfiihrung

Zweiteilung von Finanzgiitern in
1. Basisfinanzgiiter
2. derivative Finanzgiiter

Zu 1. gehoren zB  -Aktien
-festverzinsliche Wertpapiere

Bonds
-Rohstoffe
01
Edelmetalle
Agrarprodukte
Diese werden gehandelt auf
Aktienmaérkte
Rentenmérkte Kassamirkte
Warenmérkte

Zu 2. gehoren zB  -Optionen auf Aktien
-Swaps (Zinsderivat)
-futures
-forwards

1.1 Option

Unterscheidung in Kauf- und Verkaufsoptionen:

Eine Kaufoption (Call) gibt das Recht, ein Basisfinanzgut (Underlying) zu einem im voraus bestimm-
ten fixen Preis, dem Ausiibungspreis (strike, Basis), wiithrend (amerikanische Option) oder am Ende
der Laufzeit (européische Option) der Option zu kaufen.

Eine Verkaufsoption (Put) gibt das Recht, ein Basisgut zu einem im voraus bestimmten Preis, wihrend
(USA) oder am Ende der Laufzeit (EU) der Option zu verkaufen.

Eine Option ist ein unbedingtes Termingeschift, da keine Verpflichtung zum Kauf bzw. Verkauf
besteht.

1.2 long, short Position

In der Regel geht der Laufer eines Finanzgutes eine long Position ein, ein Verkéufer eine short Position
ein, etwa

long call = Kéufer eines Calls, Callinhaber

short call = Verkédufer eines Calls, Stillhalter(/writer/Zeichner)

long put = Kéufer einer Verkaufsoption, Putinhaber

short put = Verkédufer einer Verkaufsoption, Put Stillhalter (/writer)
long Aktie = Kéufer einer Aktie, Aktienbesitzer
short Aktie = Verkéufer einer Aktie

Durch einen Leerverkauf (shortselling) kann ein Basisgut, etwa Aktien, verkauft werden, ohne, dass
man dieses vorher besitzen muss.
Hierzu leiht man sich das Basisgut von einer Bank und verkauft dieses.
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1.3 Payoff- und Profitdiagramme

Positionen in Finanzgiitern bergen Chancen und Risiken. Veranschaulichungen durch Payoff- und Profit-
diagrammen.

Payoff: Aufgetragen wird der Wert der Position gegen den Preis des Underlyings

Profit: analog zum Payoff unter Beriicksichtigung von Kosten (= Anfangswert der Position)

1.4 Beispiele:

Option mit Laufzeit T', Underlying mit Preis St in 7.
a) long call mit strike K
Payoff: (St - K)*, denn

St < K: Keine Ausiibung

St > K:
- leihe K Euro
- Nutze diese Option, um 1 Aktie zu erhalten
- Verkaufe diese fiir ST Euro
- Zahle K Euro zuriick

Insgesamt: S — K Euro als Auszahlung

Payoft

Kosten: Anfangspreis des Calls: ¢> 0
Profit: (St -K)"-¢
Profit

St

b) long put mit strike K
Payoff: (K - Sr)*, denn

St > K: Keine Ausiibung

St <K:
- leihe die Aktie
- Nutze diese Option und verkaufe die Aktie zum Kurs von K
- Kaufe die Aktie fiir Sp und gebe diese zuriick

Insgesamt: K — Sp Euro als Payoff
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Payofft

0 K St

Kosten: Anfangspreis des Puts: p > 0
Profit: (St -K)"-¢

Profit
K
0 }
ol St
¢) short call mit strike K
Payoff: —(St - K)*
Profit: ¢ — (Sp - K)*
Payoff
0
K St
Profit
c
0 f
K St
d) short put mit strike K
Payoff: —(K - St)*
Profit: p— (K - Sp)*
3 zum Inhaltsverzeichnis
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Payoft

O |
K St
Profit
p .
0 }
K St

1.5 Strategien

Durch Kombination von einfachen Positionen bildet man Strategien.

1.6 Beispiele:

a) Absicherung einer Aktie:
- Aktie heute zum Kurs Sy = K gekauft

- zur Absicherung gegen Kursverlust in 7" wird eine Putoption zur Basis K gekauft.

- Gesamtposition:
long Aktie long put Gesamt
Kosten K P K+p
Payoff ST (K - ST)+ ST + (K - ST)+ = maX(K, ST)
Profit ST—K (K—ST)+—p ST_K+(K_ST)+_p:_p]1{STgK}+(ST_(K+p))]l{ST>K}
Profit
K
0 f
S
_p T

b) long straddle

Idee: Spekulation auf eine starke Kursinderung (egal ob nach oben und unten):

long call long put Gesamt
Kosten c P c+p
Payoftf | (S -K)* | (K-S7)* | |Sr- K]
Profit |ST - K| - (c+p)
4 zum Inhaltsverzeichnis
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Profit

0 :
-(c+p) T

St

c¢) Bullish Vertical Spread
Idee: Risikoarme Spekulation auf ein Anziehen des Kurses:

long call (strike K1) | short call (strike Ky > K1) | Gesamt

Kosten c1 —Cy c1—co >0 (Call K ist mehr wert
als Call K»)

Payoff (St - Ky)* —-(St - Ky)* (St - Ki)l{k,<Sr<Ks) +
(K2 - K1)1issk01

Profit

Kl K2
0 f }
Co —C1 ST

d) Butterfly Spread

Idee: Risikoarme Spekulation auf eine Seitwértsbewegung des Kurses:
Basispreise K7 < Ko < K3

‘ long call (strike K7) ‘ long call (strike K3) ‘ 2x short call (strike K3) ‘ Gesamt

Kosten ‘ c1 ‘ c3 ‘ —2co ‘ c1+c3—2co
Payoff ‘ (St = KLk, csp<kay + (2K = Ky = S7) U gy csp<k5) + (2K2 = (K1 + K3))1is,5k,)
Profit
K, Ky K
0 } } }
2cy — 1 — Ca / \— St

1.7 Arbitrage

Ein Arbitrage ist eine Moglichkeit, durch Handel mit Finanzgiitern einen risikolosen Profit zu erzielen.
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1.8 Beispiel:

New York | Frankfurt

Aktie 130% 100€
Wechselkurs 1€ 1,278
Arbitragemoglichkeit:
- leihe 100€

- kaufe die Aktie in FF
- verkaufe sie in NY
- tausche 127$ in 100€
- gebe 100€ zuriick

= risikoloser Profit von 3$

1.9 Grundannahme

Im Handel mit Finanzgiitern gibt es kein Arbitrage. Dies ist das No-Arbitrage-Prinzip.

Aus dem No-Arbitrage-Prinzip kann man das Replikationsprinzip folgern:

1.10 Replikationsprinzip

Haben zwei verschiedene Kombinationen K, L von ausschiittungsfreien Finanzgiitern zu einem zukiinftigen
Zeitpunkt T immer den gleichen Wert, so haben sie auch zum gegenwértigen Zeitpunkt den gleichen Wert.
Die Kombination K repliziert den Payoff der Kombination L und umgekehrt.

Argumentation:

K habe den Anfangswert Vy € R und den zufilligen Wert Vp in T
L habe den Anfangswert Wy € R und den zufilligen Wert Wr in T.
Es gelte Vp = Wp.

Behauptung: Vy = W,

Angenommen: Vy > W

Dann kann man durch short selling von K ein Arbitrage erzielen:

- short selling in K

- gehe long in L
= Zu Beginn ein Gewinn von Vy - Wy >0

- handeln entsprechend L bis T

- verkaufe L in T

- erhalte W =V

- kaufe K fiir Vo und gebe die Position K zuriick

Am Ende: Glattstellen der Positionen: Wy -V =0

= Risikoloser Gewinn von Vy — Wy > 0.

Angenommen Vj < Wy
Analog zu oben mit K und L vertauscht.
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1.11 Nullkouponanleihen

festverzinsliches Wertpapier
- Filligkeit T (Maturity)
- Zahlung von 1€ in T'
- keine Kouponzahlung wihrend der Laufzeit

B(t,T) bezeichne den Preis dieser Anleihe zum Zeitpunkt ¢ < T'.

- 0< B(t,T) <1 ist der Regelfall

Durch die Nullkouponanleihen wird die Verdnderung des Geldwertes mit der Zeit wiedergegeben. Den
Preis B(¢,T kann man als Diskontfaktor auffassen, der Preise in T in Preise in ¢ umrechnet. Ein Euro in

T hat einen Wert vono B(¢,T) Euro in t.

1.12 Put-Call-Paritat

Seien ¢(Sp, K, T) und p(Sp, K,T) die Anfangspreise einer Call bzw Put-Option mit Laufzeit T' und strike

K.
Sei Sy und St der heutige Preis bzw der Preis zum Zeitpunkt T' des Underlyings.
Dann gilt:

SO +p(SO7K7T) = C(SO7K7T) + KB(O7T)
Argumentation:

Betrachte folgende zwei Kombinationen:

I long Aktie long Put

IT long call Kx long in Nullkouponanleihe mit Félligkeit in 7'
Wert in Zeitpunkt T

I Sr+ (K -S7)" =max(St, K)

II (St - K)* + K =max(St, K)
Replikationsprinzip liefert:

So +p(So, K,T) =c(So, K,c) + KB(0,T)

1.13 forward

- unbedingtes Termingeschaft

- Termin T ist Ausiibungszeitpunkt

- Underlying mit Preisen Sy heute und Sy in T

- zwei Parteien A, B

- Terminpreis Fr festgelegt zum Vertragsabschluss

- keine Kosten bei Vertragsabschluss

- A zahlt an B Terminpreis Frr
- B liefert das Underlying

A hat die long Position von forward

- B hat die short Position von forward
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Zusammenhang zwischen Termin- und Spotpreis des Underlyings:
So: gegenwirtiger Preis/ Spotpreis
Fp: Terminpreis zum Termin T'
Dann gilt:
FrB(0,T) =Sy

Argumentation

Betrachte folgende Kombinationen:
I long im Forward zum Termin T, Frx long in Nullkouponanleihe mit Falligkeit T'
IT long im Underlying

Wert zum Zeitpunkt T

I ST - FT + FT = ST
——
forward Nullkouponanleihe
T Sr

Replikationsprinzip liefert:
FrB(0,T) =S5y

1.14 Digitale Option

Recht auf Auszahlung eines festen Geldbetrags (etwa 1€) bei Eintreten eines auslésenden Ereignisses.
z.B.:

- digitaler Call: 1(g,>x}

- digitaler Put: 1;g5,.<x)

1.15 Eigenschaften des Callpreises

Sei ¢(Sp,T, K) der Preis eines Calls auf ein Underlying S mit Laufzeit T, strike K und Anfangspreis Sy
des Underlyings. Dann gilt:

i) (S, T, K) > max(0,Sy - KB(0,T))
[ S —

innerer Wert
des Calls

ii) ¢(So,T,K) < Sy obere Grenze des Calls

111) Kl < K2 = C(S(),T‘7 Kl) > C(S(),T‘7 KQ)

iV) Kl < KQ = B(O,T)(KQ - Kl) > C(S(),T‘7 Kl) —C(S(),T‘7 KQ)
)

v Kl < K2 < K3 = C(SO,T7 KQ) < %C(S@,T, Kl) + %C(S@,T, Kg) Konvexitéat in K

c¢(K)

B(0,T)
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Sei p(Sp, T, K) der Preis eines Puts auf ein Underlying S mit Laufzeit T', strike K und Anfangspreis Sy
des Underlyings. Dann gilt:

i) p(So, T, K) >max(0, KB(0,T) - Sp)
| —

innerer Wert
des Puts

ii) p(So,T,K)< KB(0,T) obere Grenze des Puts

)
111) K <Ko SP(So,T, Kl) SP(SO,T, KQ)
iv) K1 <Ky = B(0,T)(K2 - K1) 2p(So, T, K2) - p(So, T, K1)
)

v) K1 < Ka < K3 = p(So, T, Ka) < 58=52p(S0, T, K3) + 72=5p(S0, T, K1)

1.16 Zinsmethoden

Frage: Wie kann man Kapitalrenditen durch annualisierte Zinssétze beschreiben?

Antwort: Man vereinbart eine Zinsmethode und eine Zahlkonvention

Genauer: Ein Kapital N wird zum Zeitpunkt ¢ wie eine Nullkouponanleihe mit Félligkeit in T angelegt.
N

in t: erhalte fiir N insgesamt BOT) T-Bonds.

in T': die Position hat einen Wert von %.
L N _ 1
Gewmn. W—N—N(W—l)

——
Rendite der
Investition
R(t,T) := ﬁ —1 kann als Kapitalrendite interpretiert werden, die ein Investment zwischen ¢ und T’
hervorbringt.

Ziel: Beschreibung durch einen jéhrlichen Zinssatz:

1.16.1 lineare Zinsmethode

entspricht einer linearen Verteilung der jahrlichen Zinsen auf die Laufzeit.

R(ta T) = (T - t) Tlin
——
Laufzeit

Tlin st der jahrliche Zinssatz bei linearer Zinsmethode

Beispiel: Anlagezeitraum: Ein Monat
- Rendite von 0,5% = 500p (Basispunkte; 1bp = 0,01%)
- Also i, = 0,5% - 12 = 6%

1.16.2 periodische Zinsmethode

Ein erzielter Gewinn in einem Zeitraum (¢,77] soll durch einen annualisierten Zinssatz r beschrieben
werden. Dazu wird der Zeitraum (¢, 7] in m dquidistante Perioden eingeteilt und der jdhrliche Zins r auf
m Perioden linear verteilt. Setze t; :=t +i - % i=0,....,m

In jeder Periode von ¢;_; nach ¢; wird also ein Kapital mit einer periodischen Renditer - % verzinst.
Unter Beriicksichtigung von Zineszins ergibt sich so eine Kapitalentwicklung der Form

T
K, (rt,T):= (1 +r
m

m
) -1+ R(t,T)
Durch Auflésen nach r erhélt man also den zu einem Gewinn R(¢,T') entsprechenden Zinssatz.

1.16.3 stetige Zinsmethode

Die stetige Zinsmethode ergibt sich als Grenziibergang aus der periodischen Zinsmethode, wenn die
Intervalllange der Teilintervalle gegen 0 strebt.
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konstante Zinsrate r: Hier ergibt sich

lim K, (r,t,T) =" T =14+ R(t,T)

m— oo

Durch Auflgsen nach r erhélt man wieder den zu einem Gewinn R(t,T") entsprechenden Zinssatz r.

nicht konstante Zinsrate: FEine variierende Zinsratenfunktion 7 : [0, 00) — R liefert eine Kapitalent-
wicklung der Form

T
K(r,t,T) =exp ([ r(s)ds)
t
zwischen ¢ und T
1.17 Festzinsanleihe

- festverzinsliches Wertpapier

- Nominal N

Falligkeit T
- Zinstermine t; <tg <...<t, <T
- Koupons K1, Ko, ..., K,

In der Regel werden Koupons als Zins auf das Nominal gezahlt, d.h. K; = N - R(t; —t;_1), R Zinsrate bei
linearer Verzinsung.
Bewertung zum Zeitpunkt ¢ < ¢, mit Hilfe einer Modifikation des Replikationsprinzips:

I Halte Festzinsanleihe

IT Halte K; Nullkouponanleihen mit Félligkeit ¢;,72 = 1,...,m und halte N Nullkouponsanleihe mit
Falligkeit T

Beide Strategien erzeugen den gleichen Zahlungsstrom an Ausschiittungsmenge: K in tq, ..., K, in t, ,
Nin T.

Das Replikationsprinzip liefert, dass die Preise in ¢ < ¢; iibereinstimmen miissen.
Dies bedeutet, dass der Preis der Festzinsanleihe in ¢ < t; gegeben ist durch

i=1

1.18 Variabel verzinsliche Aktie (/Floater/ FRN (Floating Rate Note))
Nominal N

- Falligkeit T'

Startpunkt tq

Zinszahlungstermine t1 <ty < ... <t, =T mit tg < t;

- nachschiissige Kouponzahlungen K1, ..., K, entsprechend den fiir die Periode geltenden Marktzins

1 1
F(ti1,tio1,t;) = ( 1)

ti—tica \ B(ti—1,t;) -

also

1 .
Ki=NF(ti1,tio1,ti)(ti—tio1) = N(M - 1) i=1,..,n

Bewertung in tg durch folgende replizierende Handelsstrategie:

- Rollierende Anlage des Nominals bis zum jeweiligen néchsten Zinstermin.
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Genauer
- In tg: kaufe B(t )

- In tll

t1-Bonds fiir N€ (die ich ja habe) und halte bis ¢;

- Reinvestiere das N in die zweite Zinsperiode durch Kauf von Bliria) t ) to-Bonds

- Ausschiittung der Zinszahlung von

- In t,:

- N =NF(to,to,t1)(t1 —to)
- K,

B(t07t1)

- Riickzahlung des Nominals N

- Ausschiittung der letzten Zinszahlung

N

—— _-N-=K,
B(to,tn)

= Gleiche Zahlungsstrome an Zinszahlungen und gleicher Endwert
= Replikationsprinzip liefert gleiche Anfangsbewertung: N in ¢g.

In ¢ <ty ist der Preis NB(t,tp).

1.19 Swap

Ein Zinsswap liefert die Moglichkeit, das Zinsénderungsrisiko einer Festzinsanleihe zu vermeiden:

- Tauschgeschéft

- beim Zinsswap werden feste gegen variable Zinsen getauscht

- Tenorstruktur: tg <t <...<t,

jahrlicher Festzinssatz R

- Nominal N, das zur Berechnung der Zinsen dient

- Unterscheidung in Payer - und Reciever Swap, ausgehend von der Festzinsseite

Am Ende einer jeden Periode werden die festen Zinsen

gegen die variablen Zinsen

getauscht.
Das fithrt zum Zahlungsstrom

NR(tZ - tz’—l)

NF(tz 17 i— lat )(t _tz 1)

N(ti—ti_l)(F(ti_l,ti_l,ti)—R) ’L':L...,m

beim Payer Swap und

N(ti—ti_l)(R—F(ti_l,ti_hti)) i=1,...,m

beim Reciever Swap.

Ein Payer Swap kann repliziert werden durch folgende Handelsstrategie:

— long in FRN
— short in Festzinsanleihe

Finanzmathematik WS 14/15
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Deshalb ergibt sich fiir den Preis des Payer Swap(t) in ¢ < ¢o:

Payer SW&p(t) = NB(t,to) - Z?:l NRB(t,t,)(tz _ti—l) +NB(t,tn)
—_——
Preis der FRN in ¢ Preis Festzinsgeschiift

=N (B(t,to) - B(t,n) - Z?:l R(tl - ti_l)B(t,ti))
Der faire Festzins R liegt dann in ¢ vor, wenn Payer Swap(t) = 0 gilt, also wenn

R B(t,tg) - B(t,n)
YR (i —ti)B(t,t)

R ist dann die sogenannte Swaprate in ¢.

2 Aktuarielle Bewertung von Zahlungsstromen

Ziel: Bewertung von Zahlungsverpflichtungen, die durch biometrische Risiken verursacht werden.
Biometrische Risiken sind zum Beispiel:

- Todesfall

- Invaliditat

2.1 Zahlungsstrome und deren Bewertung

-Zeitdiskrete, periodische Sichtweise. Die Zeit wird in Jahren gemessen.

2.2 Definition (Zahlungsstrom)

Ein Zahlungsstrom (Z(n))ney ist eine Folge von nicht negativen reellen Zahlen.
Z(n) = Auszahlung zum Zeitpunkt n.

Frage: Was ist der heutige Kapitalwert der durch den Zahlungsstrom verursachten Zahlungsverpflichtun-
gen.

Antwort: Summe der abdiskontierten Zahlungen.

Genauer: Fiir jedes n € N gibt B(k,n), der Preis der Nullkouponanleihe mit Félligkeit n zum Zeitpunkt
k, den Wert einer in n filligen Zahlungsverpflichtung von 1€ an.

Deshalb definieren wir:

Vo(Z)=%0 0 Z(n)B(0,n) = Summe aller auf den Anfang abdiskontierten
Zahlungsverpflichtungen; Kapitalwert heute

und

Vi(Z) =Y 0 Z(m+k)B(m,m+k) = Summe aller nach m filligen auf den Zeitpunkt m
abdiskontierten Zahlungsverpflichtungen

Vin(Z) ist das Kapital, das zum Zeitpunkt m benétigt wird, um die zukiinftigen Zahlungsverpflichtungen
erfiillen zu kénnen.

In der Praxis, insbesondere bei der Kalkulation von Lebensversicherungen, wird von einer periodischen
Verzinsung bzw. Diskontierung ausgegangen. Es wird also eine periodische Rendite r bzw. ein periodischer

Diskontfaktor v = ﬁ angenommen. Damit ergibt sich dann

m

= B(m,n) =v"" Y0 <m < n.

2.3 Personenversicherung und deren Bewertung

Ziel: Mathematische Beschreibung und Analyse einer Personenversicherung.
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2.4 Definition (Personenversicherung)
Eine Personenversicherung ist eine Quadrupel
I'=(ts,b,T)

mit Zahlungsstromen (£(n))neng, (S(7))nengs (0(1) )nen, und (0, oo)-wertiger Zufallsvariablen 7.

2.5 Interpretation

- T ist eine zufillige Ausfallzeit, z.B. : Restlebensdauer

- Todesfallspektrum (¢(n))nen,: t(n) > 0 entspricht einer Auszahlung in n, bei Ausfall in der n-ten
Periode.

Erlebungsspektrum (s(n))nen,: $(n) > 0 entspricht einer Auszahlung in n, wenn n erreicht wird.

- Beitragsspektrum (b(n))nen,: b(n) > 0 entspricht einer Pramieneinzahlung in n, wenn n erreicht
wird.

Aus Sicht eines Versicherungsunternehmens erzeugt eine Personenversicherung die folgende Zahlungs-
strome:

Ausgabenstrom:
A(n) = s(n)Lipsny +t(n) L 1creny n €Ny
A(0) = s(0)

Einnahmestrom:

I(n) = b(n)]l{T>n} n € Ny
Bewertung aus heutiger Sicht durch
Vo(A) = 5(0) + X521 s(n) Lirsny B(0,n) + £52y t(n) L in-1<7<ny B(0,n)
Vo(I) = X520 0(n) Lirsny B(O, )

Vo(A) heutiger Kapitalwert des zufilligen Zahlungsstroms
E(Vy(A)) ist der mittlerer Kapitalwert der zukiinftigen Zahlungsverpflichtungen:

E(Vo(A)) = 5(0) + i s(n)B(0,n)P(T > n) + i Hn)B(0,n)P(n—1<T <n)

E(Vo(I)) ist der mittlerer Kapitalwert der zukiinftigen Einnahmen:

E(Vo(1)) = i b(n)B(0,n)B(T > n)

2.6 Definition (Barwert, fair)

E(V5(A)) heiBt Barwert der durch die Versicherung induzierten Zahlungsverpflichtungen.
E(Vo(I)) heit Barwert der durch die Versicherung induzierten Einnahmen.
Eine Personenversicherung heifit ausgewogen /fair, wenn

E(V(4)) = E(Vo(I)) < o0
Ist IE(V5(A)) < oo oder IE(V(I)) < oo, so ist
E((4)) - E(W())

der Barwert der Versicherung.
Dies ist als Ausgangspreis zu interpretieren, den ein Versicherungsunternehmen verlangt.
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2.7 Aquivalenzprinzip

Man wéhle (¢,s,b) so, dass die Versicherung fair ist. Dies kann man zur Beitragskalkulation benutzen,
indem zu vorgegebenem Todesfall-und Erlebensfallspektrum das Beitragsspektrum b so bestimmt wird,
dass die Versicherung fair ist.

2.8 Klassische Beispiele

- versichert wird eine Person
- biometrisches Risiko ist das Todesfallrisiko

- Ausfallzeit ist deshalb die Restlebenszeit der Person

2.8.1 Todesfallversicherung

- Todesfallsumme M
- Laufzeit n

- konstante periodische Préamienzahlung p

Induzierte Zahlungsstrome:
A(k) = M1y cpep) k=1,...,n
A(k) =0 sonst
I(k) = plirsky k=0,..,n-1
I(k) =0 sonst
VO(A) = 2221 MB(07 k)]l{k—kTgk}
Vo(I) = 20 pB(0, k) Lipsry
Also
E(Vo(A) =35 MB(0,k)P(k-1<T <k)
E(Vo(1)) = 72 pB(O, k)P(T > k)

2.8.2 In der Praxis:

- Restlebenszeit wird durch das Alter bestimmt: T, ist die Restlebenszeit eines z-Jahrigen.

Sationaritdtsannahme:

P(T, > t|T >8) =P(Tpys >t —5) VOo<s<t

- g =P(T, <1) 1-jéhrige Sterbewahrscheinlichkeit eines z-Jahrigen
- pei=1-q, =P(T, >1) 1-jahrige Uberlebenswahrscheinlichkeit eines 2-Jihrigen

kDe =P(Tp > k) =P(T,>1)P(T, > k|T, >1)
= pwP(Tw+l >k - 1) = ... =Pz Px+l - Prtk-1

- ke =l -y = P(Tx < k)
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Eintrittsalter x:
Bezeichnung fiir M = 1:

Az = Y U P(k-1<T, <k)
k=1

Bezeichnung fiir p = 1:

n-1
Gy = 3 O P(Ty > k)
k=0
Die Todesfallversicherung ist fair, wenn
MnAw = pdx:ﬂ
n = oco entspricht Todesfall ohne zeitliche Beschrankung
Bezeichnung:

Ay =Y v"P(k-1<T <k)
k=1

i = Y, V"P(T, > k)
k=0

2.8.3 aufgeschobene Rentenversicherung
- Eintrittalter x

Aufschubzeit m Jahre

- Bezugszeit n Jahre

- Rentenhohe R

- Beitragshohe p
Modellierung:

- T =T, Restlebenszeit eines z-Jahrigen

- t(k)=0 vk e Ny

- s(k)=0 k=0,...,m-1
s(m+k)=R k=0,..,n-1
-b(k)=p k=0,...m-1
- b(k)=0 sonst

Induzierte Zahlungsstrome:

Ausgaben:
A(m+k) = RI{p, smary k=0,...,n-1
A(k)=0 sonst
Einnahmen:
I(k) = plip, o) k=0,..m-1
Barwert der Ausgaben:
E(Vo(A)) = $3Zg Ro™H P(T, > m+k) = Ryyjnids
Barwert der Einnahmen:
E(Vo(I)) =p Ty v"P(T: > k) = pii, g
Die Versicherung ist fair, wenn R, = pdz:ﬂ gilt.
Fiir n = oo (also eine lebenslange Rente) setze:

mfla = Y V™ FP(T, > m o+ k)
k=0
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2.8.4 Erlebensfallversicherung
- Eintrittalter
- Laufzeit n Jahre
- Erlebensfallsumme M, Auszahlung bei Uberleben von n Jahren
- konstante Pramie p wihrend der Laufzeit
Modellierung;:
- T =T, Restlebenszeit eines z-Jahrigen
- t(k)=0 vk e Ny
-s(n)=M
- s(k)=0 Vk e No\{n}
-bk)=p k=0,...,n-1
- b(k)=0 sonst
Induzierte Zahlungsstrome:
Ausgaben:
A(n) = M17,5ny
A(k)=0 sonst
Einnahmen:
I(k) =plir,sky K

Barwert der Ausgaben:

Il
o

an—1

E(Vo(A)) = M o"B(T, > n) = My E,
—_—
=, Ey

Barwert der Einnahmen:

EWo (1)) = pd

o]

Die Versicherung ist fair, wenn M, E; = pi_— gilt.

n|

2.8.5 gemischte Versicherung (kapitalgebundene Lebensversicherung)

- Kombination aus Todesfall- und Erlebensfallversicherung

Eintrittalter x

Laufzeit n Jahre

- VS M, fillig bei Tod withrend der Laufzeit oder bei Uberleben der Laufzeit

konstante Pramie p wihrend der Laufzeit
Modellierung:

- T =T, Restlebenszeit eines z-Jahrigen

- t(k)=M k=1,..n

- t(k)=0 sonst

-s(n)=M

- s(k)=0 sonst
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-bk)=p k=0,...,n-1
- b(k)=0 sonst
Induzierte Zahlungsstréme:
Ausgaben:
A(k) = M1 g_yor, <iy k=1,..,n-1
A(n) =M (Lpo1er,<ny + Lz, on})
A(k)=0 sonst
Einnahmen:
I(k) = plir, >k k

Barwert der Ausgaben:

Il
=

on-1

Barwert der Einnahmen:

EWo(1)) = pé

IZ;‘

Die Versicherung ist fair, wenn M (‘nAw +n E$) = pdz:;‘ gilt.

Finanzmathematik WS 14/15
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2.9 Beispiele im Uberblick:

aufgeschobene Erlebensfall- gemischte
Rentenversicherung versicherung Versicherung
Voraussetzungen | -Eintrittalter x -Eintrittalter z -Kombination aus
-Aufschubzeit m Jahre -Laufzeit n Jahre Todesfall- und
-Bezugszeit n Jahre -Erlebensfallsumme M, Erlebensfallsversicherung
-Rentenhohe R Auszahlung bei Uberleben | -Eintrittalter
-Beitragshohe p von n Jahren -Laufzeit n Jahre
-konstante Pramie p -VS M, fallig bei Tod
wihrend der Laufzeit withrend der Laufzeit
oder bei Uberleben
der Laufzeit
-konstante Priamie p
wéhrend der Laufzeit
Modellierung -T =T, Restlebenszeit -T =T, Restlebenszeit -T =T, Restlebenszeit
eines z-Jahrigen eines z-Jahrigen eines z-Jéhrigen
-t(k)=0 VkeNy -t(k)=0 Vk e Ny -t(k)=M k=1,..n
-s(k)=0 k=0,...m-1 |-s(n)=M -t(k) =0 sonst
-s(m+k)=R -s(k)=0 Vk e No\{n} | -s(n)=M
k=0,...,n-1 -b(k)=p k=0,..,n-1 1| -s(k)=0 sonst
b(k)=p k=0,..,m-1 |-b(k)=0 sonst -b(k)=p k=0,..,n-1
-b(k) =0  sonst -b(k)=0 sonst
induzierte -A(m+k) = R]I{Tz>m+k:} -A(n) = M]I{Tw>n} -A(k) = M]l{k—1<TIsk}
Zahlungsstrome | k=0,....,n—1 -A(k) =0 sonst k=1,...mn-1
_A(k) =0 sonst _I(k) = p]l{Tz>k} -A(TL) =M (]1{7L—1<Tz§n} + ]]'{TI>TL})
-I(k) = plyg, spy k=0,..,n-1 -A(k) =0 sonst
k::O,...,m—l 'I(k):p]l{Tm>k}
k=0,...,n-1
Bewertung 'E(VO(A)) = ']E(‘/O(A)) = ']E(%(A)) =M (|77,A$ +n E:v)
YA RVRP(T, > m o+ | Mo"P(T, >n) = M, E, -E(Vo(1)) = pi,;
k) = Ry —
-E(Vo(D)) = - V) = pi —
P ZZZ)l ’Uk]P)(TI S ]{3) _ ]E(‘/O(I)) pa'z:n‘
Pa,
Versicherung Rty = pdx;ﬂ M, E, = pdx:;l M (‘nAw +p, E$) = pa'x:a

ist fair, wenn

Fir n =00

lebenslange Rente: | =
Yoo vV RP(T, > m o+ k)

2.10 Deckungskapital

Betrachtet wird der Fall einer deterministischen Zinsentwicklung, d.h. B(k,m) € (0,1) deterministisch

VneNk<n.

Man beobachtet, dass anfangs die Prdmieneinnahmen pro Jahr hoher sind als die zu erwartenden Aus-
gaben pro Jahr. Dies fiihrt zum Aufbau einer Pramienreserve.
Gegen Ende sind die zu erwartenden Leistungen pro Jahr hoher als die Pramien pro Jahr. Diese werden

durch die aufgebaute Pramienreserve finanziert.

Der Deckungskapitalverlauf spiegelt den Auf- und Abbau der Pramienreserve wieder.

2.11 Definition ((prospektives) Deckungskapital)

Gegeben sei eine allgemeine Personenversicherung I' = (¢, s,b,T). Sei (A(n))neny und (I(n))ney der Zah-
lungsstrom der Ausgaben bzw Einnahmen.
Das nach m Jahren gebildete Deckungskapital D(m) ist definiert als die Differenz der Barwerte der

Finanzmathematik WS 14/15
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dann zukiinftigen Ausgaben und Einnahmen, wobei die Diskontierung auf das Ende des m-ten Jahres
vorgenommen wird, d.h.:

D(m) = E(V,,,(A)|T >m) - E(V,,,(I)|T >m) Vm e Ny

Dies ist die Definition des s.g. prospektiven Deckungskapitals (vorausschauende Methode).
Fiir m =0 ist D(0) der Barwert der Versicherung.
Bei einer fairen Versicherung ist D(0) = 0.

2.12 Bemerkung:

“E(Vi (AT >m) =E|Xr A(m+k)B(m,m+k)|T>m
[ ——

=Y ot(k+m)B(m,m+k)P(m+k-1<T<m+k|T>m)
+Y g s(k+m)B(m,m+k)P(T>m+k|T >m)
-E(V (DT >m) =Y b(m+k)B(m,m+k)P(T >m+k|T >m)
2.13 Beispiele
2.13.1 Todesfallversicherung
- Eintrittalter x
- VS M=1

- Laufzeit n Jahre

A(k) = ]l{k—1<ngk} k=1,...,n

- I(k) = plig,smy k=0,...,n—1mitp= ‘a—Aj‘ konstante Pramie
D,(m) =X o*P(m+k-1<T, <m+k|T, >m)
— S R P(T, > mo+ k| Ty, > m)
= Thi 0 P(k = 1< Tyum < k) = p 320" 0FP(Torm > k)
= nemAz+m — P,

+min—m)|

2.13.2 Todesfall mit unbegrenzter Laufzeit

~- 352 o pFP(T, > m + k| Ty, > m)
=32 0Pk =1 < Toppm < k) = pXicg VP(Thsrm > k)
= Agim — Plgim m=0,1,2,...

Dy(m) =¥, v*P(m+k—-1<T, <m+ k[T, >m)

2.13.3 Erlebensfallversicherung

- Eintrittsalter =
- Laufzeit von n Jahren

- VS1

A(k) = 17,51 k=n

- A(k)=0 sonst

- I(k) = plir,shy k=0,..,n-1
-I(K)=0 sonst
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Fair, wenn pc’iw:;l = E,.
Deckungskapitalverlauf:

D,(m) =v""P(T, > n|Ty >m) —pYrey  v*P(T, > m + k|T, > m)
Station- 'Un_mP(Tan >n - m) —-D 22;31_1 UkP(TaHm > k)

aritat

= n—mE:c+m _paw+m:n—m\

Jahre

2.13.4 gemischte Versicherung

Das ist eine Todesfall- und Erlebensfallversicherung. Deshalb ergibt sich der Deckungskapitalverlauf aus

der Summe der Deckungskapitalien der einzelnen Versicherungen:

- Laufzeit n Jahre

- Eintrittsalter =

Dw(m) = A:L’+m:n—m| N pdx+m:n—m| mit pa’ma = Ax;\
1
0
Jahre
2.13.5 aufgeschobene Rentenversicherung
- Eintrittsalter x
- Aufschubzeit n Jahre
- Rentenbezugszeit bis zum Tod
- Rentenhohe 1
Ausgaben:
- A(n+k) :1{Tz>n+k} k:(),l,...
Einnahmen:
- I(k):p]l{Tz>k} k:O,...,n—l
20
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Fair, wenn pdm:ﬂ =ln G
Deckungskapitalverlauf:

- Firm=0,...n-1:

Dy(m) =¥ Un_m+kP(Tw+m >n-m+k)-p ZZ;(r)n_l UkP(Tz+m > k)

= [n-mQz+m ~ paz+m:n—m|

- Flir m=n:
Dz(m) = Adgim = dgin
- Fir m>n:

D, (m) = dgim

a'7;+n

n Jahre

Weitere Beispiele fiir Personenversicherungen, bei denen die Ausfallzeit nicht durch die Restlebenszeit

einer einzelnen Person gegeben ist:

2.14 Personengemeinschaften/ Verbundene Leben

Wir betrachten n Personen mit Restlebensdauern 77, ...,T},. Aus diesen wird eine Ausfallzeit der Gemein-

schaft definiert durch

T=f(T1,..,T,)
fiir eine geeignete Funktion f.
2.15 Beispiel:
Firn=2: T =min(Ty,Ts) = T) AT oder

T= HlaX(Tl,TQ) = Tl \/T2

2.16 Bemerkung:

Bei unabhingigen Ti,...,T;, kann die Verteilung von max(77,

werden:
P(max(Th,....T,) <t) =P(Ty <t,...,T,, <t)

- [1P(Ti <1)
i=1
P(min(T1,...,T,) >t) =P(Ty >t,....T, > t)

2.17 Beispiel:
Todesfallversicherung eines Ehepaars:
- Eintrittsalter Person 1: z
- Eintrittsalter Person 2: y

- Laufzeit n Jahre

ey Tp) und min(7y,...,T,) ausgerechnet

- VS M wird fillig, wenn einer der beiden stirbt (also beim ersten Tod)

- Pramie p wird solange bezahlt, wie beide leben

Modellierung:
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- Setze Ty =T AT
-t(k)=M k=1,..n

- t(k)=0 sonst

- s(k)=0 Yk e Ny
-b(k)=p k=0,..,n-1
-b(k)=0 sonst

Dann beschreibt I' = (¢, s,b,T,,) eine Versicherung fiir verbundene Leben auf den ersten Tod.
Zahlungsstrome:

- A(k) :M]l{k71<T7xy§k} k= 1a"'an
- I(k) = plyz, >ky

Die Versicherung ist fair, wenn
n-1 n
p Y VP(Thy > k) =M Y v"P(k-1<T,, <k)
k=0 k=1

Es gilt: P(Ty, > k) =P(Tyy > k|Tyy > k- 1)P(Tyy >k-1)
= IP)(TQL’Jrk—l,erlc—l > 1)]P)(Ta:y >k~ 1)
=P(Typsi-1 > 1)P(Tysi—1 > 1)P(Tpy > k- 1)

=P(Tyip1 > DP(Tyipo1 > 1) .- P(Ty > DP(T, > 1)

und P(k—1<Thy <k) =PB(Tuy < k|Tay > k — D)P(Thy > k - 1)
=P(Tpsn-1,y+k-1 S 1)P(Tyy > k- 1)
= (1 -P(Tpsn-1,yik-1>1))P(Toy > k- 1)
= (1=P(Tyrpr > D)P(Tyrpr > 1)) P(Thy > k= 1)

2.18 Konkurrierende Ausscheideursachen
- Ausfallzeit T'

- mehrere konkurrierende Ausscheideursachen. Welche Ursache zum Ausscheiden fithrt, ist zuféllig
und wird durch eine {1,...,m}-wertige ZV J beschrieben.

- Leistung bei Ausfall hingt von der Ausscheideursache ab.

Die Modellierung erfolgt dadurch, dass die Todesfallleistung ersetzt, bzw. modifiziert, wird durch eine
Familie von Ausfallleistungen.

2.19 Definition (Personenversicherung unter m konkurrierenden Risiken)

Sei T eine (0, oo)-wertige ZV und J eine {1, ..., m}-wertige ZV. Seien (¢;);-1,....m, s und b Zahlungsstrome.
Dann heifit I' = ((¢;) j=1,...m, S, b, T, J) Personenversicherung unter m konkurrierenden Risiken.

2.20 Interpretation

Anfangszustand:
- T = Verweilzeit im Anfangszustand
- J = zufilligen Wahl einer Ausscheideursache
- t;(n) = Leistung bei Ausfall in der n-ten Periode wegen Ursache j
- s(n) = Leistung bei einer Verweildauer grofier n

- b(n) = Beitrag bei Ausfall nach n.
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Zahlungsstrome:
- A(k) = 2Lt (R)Lp-1<rar, g5y + s(k) Loy
- (k) = b(k)Lizsiy
Bewertung:
- E(Vo(A)) = S5, X0 t5(k)0FP(k — 1< T <k, J = ) + Tie s(k)oFP(T > k)
- E(Vo(I)) = 520 b(k)V"P(T > k)

Fiir eine praktische Berechnung der Wahrscheinlichkeiten muss die Sationaritdtsannahme modifiziert
werden:

2.21 Definition (stationdr)

Eine Familie (T})zen, von Ausfallzeiten zusammen mit einer {1,---,m}-wertigen Zufallsvariablen J heifit
stationér, wenn
P(T,<n+k,J=34Ty>n)) =P(Tpin <k, J=7)

fiir alle ne No,keN,je{1,...,m}

2.22 Lemma
Ist ((T%)aeng, J) stationdr, so auch (%) zen,-

Beweis.
P(Ty <n+k|Ty >n) =YL P(T. <n+k,J=j|T,>n)
= Z;n=1 ]P)(Tern < k; J = j)
=P(Tpsn < k)

O
Setze ¢y ; = P(T, < 1,J = j) als Wahrscheinlichkeitkeit eines z-J&hrigen im folgenden Jahr wegen der
Ursache j auszuscheiden.
¢z =P(T, <1) = ¥}, ¢z ; einjihrige Ausscheidewahrscheinlichkeit eines x-jahrigen.
Pz = 1 — g, einjdhrige Verweilwahrscheinlichkeit eines z-J&hrigen.
Wegen der Stationaritit gilt dann:
P(T,>n) =P(T,>nT,>n-1)-...-P(T, >1)
=Pz+n-1"+ Pz
bzw:
Pin-1<Ty<n,J=j) =Pn-1<T,<n,J=4T,>n-1)P(T,>n-1)
=P(Tpsn-1<1,J=7)P(Tp, >n-1)
= qgv+n—1,jIP(T$ >n - 1)
Fiir eine Berechnung der Barwerte geniigt es also, die g, ; zu spezifizieren.

2.23 Beispiel: Invalidenrente
- Eintrittsalter =
- Grundzustand: aktiv a

- Mbogliche Ausscheideursachen:
o Invaliditét
e Tod
Bei Invaliditat wird eine lebenslange Rente der Hohe R gezahlt.

Modell:
- T, entspricht der Verweilzeit im Zustand a

- P(T, > k) bedeutet als Aktiver k Jahre zu iiberleben
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- J =1 entspricht Invaliditat

- J =2 entspricht Tod

Laufzeit n (Restlaufzeit bis zur gesetzlichen Rente)

t1(k) = Rayk entspricht der Leistung bei Invaliditéit im k-ten Jahr; Barwert des Rentenanspruchs
k=1,...n

- to(k)=0 k € Ng
- s(k)=0 k € Ng
-bk)=p k=0,...,n-1
Bewertung;:
- E(V(A)) =Y Rapuv"P(k - 1< Ty <k, J=35) = RY}) awsr0*qurn-11P(T > k- 1)
- E(V()) = p iy o P(T, > k)
Notation:
- i(y) := gy,1 einjahrige Invalidisierungswahrscheinlichkeit eines y-Jéhrigen Aktiven
- qy = qy,2 einjdhrige Sterbewahrscheinlichkeit eines y-Jéhrigen Aktiven

- gy = q, +i(y) Wahrscheinlichkeit eines aktiven y-Jéhrigen im néichsten Jahr auszuscheiden

3 Exkurs: stochastische Prozesse

3.1 Definitionen

3.2 Definition (Wahrscheinlichkeitsraum, Zeitparameter, Zustandstraum,
stochastischer Prozess, Filtration, Informationsverlauf, Information, adaptiert)

Sei (Q, F,P) ein Wahrscheinlichkeitsraum.

Sei T ¢ R eine Zeitparametermenge.

Sei (E, ) ein messbarer Raum als Zustandsraum.

Eine Familie (X} )er von E-wertigen ZV heifit stochastischer Prozess.

Eine Familie von Unter-o-Algebren F heifit Filtration, wenn F, ¢ F; fiir alle s <t und s,t € T
(Ft)ter gibt einen Informationsverlauf wieder.

F; entspricht einer Information, die bis zum Zeitpunkt ¢ verfiigbar ist.

(X1)ter heifit adaptiert bzgl. der Filtration (F)ier, falls gilt: X, ist messbar bzgl. F; Vi e T.
In der Regel: T ¢ Ny oder T ¢ [0,00), E = R%, £ = B(RY)

Beispiel: Die Preisentwicklung von d Finanzgiitern kann man durch einen stochastischen Prozess (X;)er
mit Werten in R? beschrieben werden:
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3.3 Das N-Perioden-CRR Modell (Cox-Ross-Rubinstein Modell)

Q={0,1}N, F=P(Q),0<d<u,Y,: — >R
ey E
S, =Y;-Y;-...-Y, der Preis nach n Perioden:

S(n)n=o,... .~ Verlauf einer Aktie itber N Perioden. Zusétzlich zur Aktie

n
betrachtet man ein Geldmarktkonto: ( gl(;)r) ) beschreibt im CRR

Modell den Verlauf der Preise dieser beiden Basisfinanzgiiter.

d3

3.4 (geometrischer) Random Walk

Sei (Y )nen, eine Folge von iid ZV. Sei Y, unabhéngig von (Y3, )nen. Durch Sy, := Yo + ¥7_; Vi n € Ny
wird ein sogenannter Random Walk definiert.

Durch S, =Yy - ﬁ Y; n € Ny wird ein geometrischer Random Walk definiert.
i=1

Die Aktie im CRR Modell ist ein geometrischer Random Walk.

3.5 Bedingter Erwartungswert

Sei (Q, F,P) ein Wahrscheinlichkeitsraum, G eine Unter-o-Algebra von F. Sei X : Q — R messbar bzgl F
und IEX existiere.
Dann heifit Z : Q2 - R eine Version des bedingten Erwartungswertes von X bzgl G, wenn gilt:

i) Z ist messbar bzgl G

i) [,ZdP=[,XdP  VAeG
Schreibweise: Z = E(X|G)
Ist G = o(Y") fiir eine ZV Y, so schreib man auch E(X|G) =E(X|o(Y)) = E(X|Y).
3.6 Existenz und Eindeutigkeit

Gegeben seien die Bezeichnungen wie in 3.5.
Dann existiert der bedingte Erwartungswert von X bzgl G und ist P-f.s. eindeutig bestimmt, d.h. erfiillen
71, Z5 die Bedingungen aus 3.5, so gilt:

Zl = ZQ P-f.s.

Beweis.
FExistenz:

1. Fall: X >0
pw(A) = [, XdP, A eG definiert ein o-endliches Maf$l auf (Q,G) mit p << P.
Satz von Radon-Nikodym liefert ein G-messbares Z mit p(A) = [, ZdP fiir alle A€ G.
Also Z = E(X|9)

2. Fall: X beliebig
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Zerlege X = X* - X~
E(X*G),E(X"|G) existierten nach Fall 1.

[1XdP = [, X*dP- [, X~dP
= [AB(X*G)dP - [, E(X"|G)dP
= [LE(X*|G) -E(X"|G)dP VYAeG
Also ist E(X™|G) -E(X™|G) = E(X|G)
Eindeutigkeit:

Seien Z1, Z> bedingte Erwartungswerte.

[{Z17Z2>%}Z1 _Z2d]P):[{Zlfzg>%}XdP_/{21722>%}XdP:0
=>P(Z1-Z2>2)=0 VneN

:>P(Z1—Z2>0):O
analog = Z1 = ZQP—f.S.
= ]P)(ZQ_Z1>O):O

3.7 Beispiel:

Seien X7, ..., X, iid, E|X;| < c0. Sei S, = ¥ivy X

= Frage: E(X1]S,)?

= Vermutung: E(X,|S,) = E(X2|S,) = ... = E(X,|S,)

Dann gilt: nE(X1|S,) = ¥ity E(XG[S,) = E(ZiL, [Sh) = E(Sk|Sn) = Sn
= E(X1/S,) =18,

Wieso ist E(X[S,,) = E(X|S,)?

Beweis. zu zeigen: f{sneB} X.dP = f{S"eB} X dP VBeB

f{SngB} )CldIED = /{féR":Z?:l z;eB} xl]P)(Xl’m’X") (dl’l, vy dxn)
Da X1, ..., X,, stochastisch unabhiingig sind, ist P(X1:%n) = P(Xr@)s Xxin)

= Jwern:sr, wieB) 2 PO Xe) (diy, . diy) O
Betrachte die Permutation 7 mit 7(1) = k

= f{SneB} XpdP

3.8 Faktorisierter bedingter Erwartungswert

Sei X : (Q,F,P) - (R, B) eine ZV und sein Y : (Q, F,P) - (E,E) messbar. Sei G = o(Y'). Dann gilt:
Eine ZV Z : Q) - R ist G-messbar genau dann, wenn es eine £-messbare Abbildung h : £ — R gibt, mit

Z=hoY.
[ JR——
h
E(x|y) J«
(R,B)

— h(y) = E(X[Y =y)

Falls Z eine Version der bedingten Erwartung von X, gegeben Y, ist, so gibt es also ein h: EF — R mit
Z =hoY.

Schreibweise: h(y) = E(X[|Y =y).

h heiflt Version der faktorisierten bedingten Erwartung von X, gegeben Y.

Sind hy und he Versionen der bedingten Erwartungen von X, gegeben Y, so gilt:

hi(y) = hao(y)  fiir PY-fa. ye E.
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y = E(X|Y =y) ist eindeutig festgelegt fiir PY -f.a. y durch
EXLiyeny = [yep E(X[Y)dP
= .[{YEB} hoYdP
= [ h(y)PY (dy) VYBeB
Ausrechnen des bedingten Erwartungswerts erfolgt hdufig durch Spezifikation der bedingten Verteilung:

3.9 Stochastischer Kern

Seien (2, F) und (F, &) messbare Rdume.
Ein stochastischer Kern K ist eine Abbildung K : E x F — [0,1] fiir die gilt:

i) K(y,-) ist ein WMaS fiir alle y € E
ii) K(-, A) ist messbar fiir alle A € F

3.10 bedingte Wahrscheinlichkeiten und bedingte Verteilungen

Sei (2, F,P) ein WRaum und G eine Unter-o-Algebra von F.
Fiir jedes I' € F heifit
E(1r|G)

bedingte Wahrscheinlichkeit von I' gegeben G.
Schreibweise: P(T|G) := E(1r|G)

Seien X : (U, F) - (E1,&1) und Y : (Q,F) — (E3, &) messbare Abbildungen.

Die bedingte Verteilung von X, gegeben Y, ist ein stochastischer Kern K : Fy x £ — [0,1] derart,
dass y » K(y, A) eine Version der faktorisierten bedingten Erwartung von P(X € A|Y") ist fiir alle A € &;.
Schreibweise: K(y, A) :=P(X € AlY =y).

Durch Erweiterungsschluss kann man zeigen:

E((OIY =9) = [ f(@)K (y,da)
fiir jedes messbare f: Ey — (R, B) fiir welches IE(f(X)) existiert.

3.11 Beispiel: Diskrete Zufallsvariablen

Sei (E1,&1) messbar und Fy abzihlbar mit & = P(FEs). Seien X : (Q, F) - (E1,&1) und

Y :(Q,F) > (E2,&) messbar.

Die bedingte Verteilung von X, gegeben Y =y, ist bestimmt durch

P(XeAY =y)
P(Y =y)

Definiere den stochastischen Kern K : Fy x & — [0,1] durch

P(XeAlY =y) = Vye Ey mit P(Y =y) >0

P(XeA,Y=y) ) )
K(y,A) ::{ oLy~ YweExmit P(Y =y)>0

irgendwie, d.h. wihle beliebiges WMaf} i auf (E1,&;) und setze K(y, A) = u(A) f.a. Ae &
Damit ist K die bedingte Verteilung von X, gegeben Y.

3.12 Lebesgue-Dichten
Sei (X,Y) ein zweidimensionaler Zufallsvektor mit Lebesgue Dichte h : R? - Ry, d.h.

P(XeAYeB) =[, gh(z,y)\(dz,dy)
- S 4 [ Mz, y) A (dy)A(dz) VA,BeB

Setze f(y) = [g h(z,y)dx.
Dann ist f messbar wegen Fubini und die Lebesgue Dichte von Y, denn

IP’(YEB):]P’(YEB,XGIR):[ h(x,y)d(z,y):ffh(x,y)d:cdy VB eB
RxB B JR
| ——
=f(y)

97 zum Inhaltsverzeichnis
Finanzmathematik WS 14/15 Dozent: PD Dr. Volkert Paulsen



Definiere einen stochastischen Kern K : R x B — [0, 1] durch

[ M8 (dx)  falls f(y) >0

irgendwie

K(y,A):= {

Dann ist K eine bedingte Verteilung von X, gegeben Y, denn

P(XeAyeB) = [, 5hx,y)\(dz,dy)
= [p Jal(z, y%t(ia:dg;
= [pnirs0y Ja iy daf (y)dy
= an{f>0} K(y,A)f(y)dy
= [ K (y, A)PY (dy)
Also gilt w— K(Y (w), A) ist eine Version von P(X € A[Y)
=y~ K(y, A) ist eine Version von y » P(X € A]Y =y).

3.13 Eigenschaften der bedingten Erwartung
Sei (2, F,P) ein WRaum, G ¢ F eine Unter-o-Algebra. Seien X, X, X, integrierbare ZV. Dann gilt:
i) E(aX; +8X5|9) = alE(X1|G) + BE(X>|G) fiir alle o, 3 € R
i) X < Xo = E(X1]9) < E(X2|G)
iii) Sei Z eine G-messbare ZV, derart dass IEZX existiert. Dann gilt:

E(ZX|G) = ZE(X|G)

iv) Sind G; € G» € F Unter-o-Algebren, so folgt:
E(X]G1) = B(E(XG2)|G1)
”Tower Property”
v) Sind G und X stochastisch unabhiingig, so gilt:
E(X|G) = EX
vi) Sind Z1, Z5 stochastisch unabhéngige ZV mit Werten in (E1, &) bzaw. (F2,&>) und ist
h:E; x By - (R, B) messbar mit existierenden IEh(Z7, Z5), so gilt:

E(h(Zy,Z)|Zs = 20) = Bh(Z1,25)  fiirP?*-f.a. 25 € Ey

vii) E(E(X|G)) = EX

Beweis. (i), (i1) einfach
(iid)
1. Fall: Z>0,X>0
Ist Z=15 mit GegG:
[JZXdP = [,1XdP= [, . XdP

= [ane E(XIG)dP = [, ZE(X|G)dP
=E(ZX|G) = ZE(X|G)

Ist Z=Y1,a;1¢, Gi€G,a; >0, so gilt wegen (7)

E(ZX|0) = E(Y aile, X|6) = Y i E(1g, X|G) = ¥ a1, E(X|G) = ZE(X|G)
i=1 i=1 i=1
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Ist Z > 0,s0 existiert eine Folge von Treppenfunktionen (Z,)pey mit 0< 773 < Zo <. 1 Z2 = Z,X 1
zZX
Fiir jedes A € G folgt mit der monotonen Konvergenz
fA ZXdP =E(ZX14)=lim E(Z,X1,4)
= lim E(E(Z,A|G)14)
n—oo
= lim E(Z,E(X|G)14)
n—oo
=E(ZE(X|G)14)
=E(ZX|G) = ZE(X|G)

2. Fall X, Z beliebig
ZX=U-Vmit U=Z*X*"+Z"X >0
V=Z*X"+Z"X">0
Also
E(ZX]9) =EUIG)-E(V|9)
=E(Z*X'G)+E(Z X|G)- (E(Z*X"|G) + E(Z~ X*|G))
=Z'E(X*G)-Z"E(X*|G) - (ZTE(X7|G) - ZTE(X7|G))
= Z(E(X"|G) - E(X7(G))
= ZE(X|G)

(iv)
Sei Ae Gy c Gy
AeGo AeGy
fAIE(X|G2)dIP’ < fAXd]P’ < /A]E(X|gl)le’

= E(E(X[G,)|G1) = E(X|G,)
(vi)

zu zeigen: IE(h(Z1, Z2)|Z2 = 29) = Eh(Z1, 22)
Fiir B ¢ & gilt:

Jiz1emy M1, Z2)dP - = BI(Z1, Z2) 1 2,e,2,ep,)
=/ fEl h(z1,22)P? (dzy) P?*(dzo)

En(Z1,22) fiir PZ2-f.a. zo¢Ey

= E(h(Zl,Z2)|ZQ = ZQ) = Eh(Zl722) fiir IPZ2—f.a. 29 € EQ

3.14 Bestapproximation

Sei (2, F,P) ein WRaum, X eine ZV mit IEX? < co, G ¢ F Unter-o-Algebra
Ly(Q,F,P):={Y :Q > R:Y ist F-messbar und EY? < oo}
Lo(9,G,P):={Y : Q> R:Y ist G-messbar und EY? < oo}

Also Ly(2,G,P) ¢ Ly(Q2, F,P)

Durch <Y, Z >:= EY Z wird ein Skalarprodukt auf Lo (2, F,P) definiert.
IV :=<Y,Y > ist die durch das Skalarprodukt induzierte Norm.
Ly(9Q,G,P) ist ein abgeschlossener Teilraum.

Fiir X € Ly(Q,F,P) ist X = E(X|G) die Orthogonalprojektion auf Ly(Q,G,P), d.h. X € Ly(Q,G,P)
und es gilt

X-X|P= inf X - 7|2
[ IE et op) I ll2

Beweis. X=X +X-X
zu zeigen: X - X 1 Z VZ e Ly (Q,G,P)
Die Eigenschaften des bedingten Erwartungswertes implizieren:

<]1A,X>:/A]lAXd]P:fﬂAXd]P:dA,X>

fiir jedes A€ g.
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=S><YT ol X >=< ¥, ai]lAi,)’f > VA, .., A, €G, aq,...,a, €R
=< Z,X >=< Z.X> Z€Ly(Q,G,P),da<-, X >und < ., X > stetig sind
=X-X1L:(Q,G,P)
Mit Pythagoras folgt dann
IX-Z3 -|X-X+X- 23
=1 X - X[ +IX - Z|I3 O
> ||1X - X3

3.15 Martingale

Sei T eine Zeitparametermenge, (F;)ier eine Filtration und (M;)er ein adaptierter stochastischer Pro-
zZess.
M heifit Martingal, falls gilt:

i) E|M;| < oo VteT

ii) E(M|Fs) = M; s,teT,s<t
M heifit Submartingal, falls gilt:

i) E|M| < oo VteT

i) E(M|Fs) > M, s,iteT,s<t
M heifit Supermartingal, falls gilt:

i) E|M| < VteT

ii) E(M|Fs) < M, s,teT,s<t

3.16 Beispiele

3.17 Random Walk

Sn = S0+Z?:1 Xi7 SO unabhéingig von (Xi)ieN7 E|X1| < 00, E|So| < 00, (X’L)iEN iid und fn = CT(S()7 Sl, T Sn) =
O'(;Svo,)(l7 ,Xn)
Dann gilt:
E(Sn+1|fn) = E(Sn + Xn+1|Sn)
=E(S,|Sn) + E(X,41]5n)
Sy ist F, mb > >
Xns1 una_b. von F, Sn * EXn+1 Z Sn A EXn+1 Z 0
Also ist ein Random Walk ein Martingal genau dann, wenn IEX; = 0 gilt. Er ist ein Submartingal genau
dann, wenn IEX; >0 ist und ein Supermartingal genau dann, wenn IEX; <0 gilt.

3.18 geometrischer Random Walk

S, = So T1 Xi, E|Xi| < 00, E|So| < 00, (X, )iers iid und Fy, = 0:(S0, 51, s Sn) = 0/(S0s X1 0rrs Xn)
=1

Dann gil{:
E(Sn+1|‘7:n) = E(San+1|SO; ceey Sn)

= nE Xn 5 eeey On
S, ist F, mb S ( l+1|SO S )

= SnIEXn+1

Xp+1 unab. von F,

Also S,, ist ein Martingal < IEX; =1 fiir alle i ¢ N

3.19 Stoppzeit

Sei (Ft)ier eine Filtration.
7:Q->Tu{+o0}

heifit Stoppzeit, falls
{r<tieF VteT.

Stoppzeiten kann man als Verkaufsoption interpretieren:
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”Die Entscheidung, iiber ¢ hinaus fortzusetzen”

{7 <t} darf nur von den bis ¢ verfiigbaren Informationen abhéngen.

3.20 Beispiel:

(Sn)nen, reellwertiger stochastischer Prozess, Fy, = 0(So, S1, .-+, Sn) Vn e Np.
7:=inf{n e Ny : S, > a} ist eine Stoppzeit, denn

{TSn}:{S’OSa,Slga,...,Snga}e}'n

3.21 Gegenbeispiel:

Sei ein Aktienkurs gegeben:

|

|

|

|

|

T N
7=1nf{0 < k < N : Sy = max{Sp, ..., Sy }} ist keine Stoppzeit, da zur Stoppentscheidung in die Zukunft
geschaut werden muss.

3.22 Martingal als Gliicksspiel

Sei (Fp)nen, eine Filtration und (M, )nen, ein adaptierter stochastischer Prozess mit IE|M,,| < oo, Vn € Ny.
M, entspricht der Auszahlung, die ein Spieler enthilt, wenn er das Spiel zum Zeitpunkt n beendet.
Die Stoppzeiten entsprechen den Strategien, die ein Spieler verwirklichen kann.

3.23 Definition (beschrankte Stoppzeit)

T ist eine beschrinkte Stoppzeit, falls es ein NV € N gibt mit 7 < N.
Beschriankte Stoppzeiten entsprechen real einsetzbaren Strategien.

3.24 Satz

Es gilt: (M,,)nen, ist ein Martingal genau dann, wenn
EM, =EM, Vbeschrinkte Stoppzeiten 7

d.h. durch Spielen des Gliickspiels kann sich ein Spieler im Mittel weder verbessern, noch verschlechtern
(7 faires Gliicksspiel”).

” ”

Beweis. "=
Sei 7 beschrankte Stoppzeit mit 7 < V.

N
]EMT = EZ%:O MTIL{T=’H,}
B Myl
= Zn:O ]EM”]I{‘f':"}
Aén N
Mart_ingal Zn:O EE(MN|fn)]l{T:n}
T=n}eF,
T N CEE(My - |F2)
= X E(Mn L))
=E zn:O MN]1{7'=n}

=EMy =" EM,

Also EM., = EMj.
7<":Seim>n
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zu zeigen: EE(M,,|F,,) = M, d.h.

medIP:/Mnd]P’ VAeF,
A A

Zu A € F,, definiere Stoppzeit

() m fallsweA
Ta(w) =
A n  falls we A€

Also 74 =ml 4 +nl 4e.
T ist eine beschrinke Stoppzeit. Es gilt also

EM, =EM,, =EM,1,+EM,14
= ]EMm]IA + EMW - EMH]IA

Weiter gilt mit 7 = n:
EMy=EM, =EM,

Einsetzen liefert:
EM, 14 =EM,14
@fAMmd]P’ :fAMndIP’

3.25 Optional Sampling

Frage: Wann gilt EM, = IEM,, wenn M ein Martingal ist?
~ Fiir beschrankte Stoppzeiten klar.
~ Fiir unbeschriankte Stoppzeiten braucht man Voraussetzungen.

3.26 Beispiel: Irrfahrt auf Z

Sp = Xy Xi, (X5) iid,
P(Xi=1) = % =P(X;=-1),7=inf{neNy: S, =1},5 =0.

Es gilt: P(1<o00)=1P-fs. und S; =1=ES, =1 0=ES,

Antwort liefert das Optional-Sampling-Theorem:

3.27 Satz (Optional-Sampling-Theorem)

Sei (M, )nen, ein Martingal beziiglich eiuner Filtration (F,)nen,- Sei 7 eine Stoppzeit mit den folgenden
Eigenschaften:

i) P(r<o0)=1
i) E[M,| < oo

iii) E|M[1grspy =3 0

Dann gilt:
EM, = EM,
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Beweis. Approximiere 7 durch beschrinkte Stoppzeiten 7 A n. Es gilt: IEM. ,, = EM,.

Also:

IEM, - EM,| =|EM, - EM, |
= |]EMT - ]EMT]I{TSTL} - ]EMn]l{'r>n}|
= |EMTﬂ{T>n} - EMn]l{T>n}|
< E|M.,-|]l{7>n} + E|Mn|]l{7.>n}

n—00
—
wegen (7),(it)
und einer
Anwendung der
majorisierten Konvergenz

3.28 Anwendung

Berechnung von Ruinwahrscheinlichkeiten.
Sei (Xp)nen iid mit P(X,, =1)=p=1-P(X,=-1),5, =Y, X; Vn eN.
Anfangskapital von k& Euro:

SM =k+S,=k+) X,

i=1

Vermogen nach n Spielen bei Anfanskapital k. Wir spielen solange, bis wir ein Vermogen von [ > k Euro
erreicht haben, oder ruiniert sind.

T=inf{neN: S¥) =0 oder S = I} =inf{n eN: S, =-k oder S,, =1 -k} entspricht der Strategie.
{S; =-k} = {Sﬁk) =0} entspricht dem Ruin und
{S;=1-k}= {Sﬁk) =1} entspricht dem Gewinn.
Man kann zeigen, dass

(i)

(i)

Finanzmathematik WS 14/15

P(7<o0)=1und E7 < 00

der faire Fall p = %:
Dann ist (S, )nen €in Matringal
E|S;| < max(k,l - k) < 00

E|Sy|1rsny < max(k,l - k)P(T >n) ity
Optional Sampling liefert:

ES; = -kP(S, = -k) + (1 - k)P(S, =1 - k)

Zusammen mit P(S; = -k) +P(S, =1-k) =1
folgt:

P(S; =-k) = # Ruinwahrscheinlichkeit

k
P(S,=1-k)= 7 Gewinnwahrscheinlichkeit
der unfaire Fall p # % Betrachte den geometrischen Random-Walk

n
M, = a® :Haxi mit a >0
i=1
(My)nen, ist ein Martingal < Ea* ! =1
Qap+%(1—p) =1
< a=1oder a= %
Fﬁrp;t% ista#1
Weiter gilt:  E[M,| < max(a™®,a'"%) < 0o
E|Mn|]l{7>n} < Hla«X(CI/_k)7 al_k)IP(T > n) nze 0
Optional Sampling liefert

1=EM, =a*P(S, = -k) + " *"P(S, =1 - k)

33
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Zusammen mit P(S, =-k)+P(S,=1-k) =1

folgt:
a* - a
P(S; =-k)= ——
( ) =T
1-a”
P(S;=1-k)=
( )= T
Es fehlt noch der Nachweis, dass
P(r<o0) =1
Betrachte dazu fiir be Z: 7, = inf{n e Ny : S,, = b}
(i) Der Fallp> 1
Dann gilt: P(7, < 00) =P(71 < 00)P(75_1 < 0)
= P(Tl < oo)b
P(r, < 0) =P(1_1 < 20)* Va,beN

Weiter ist:  P(73 <o0) =P(13 <00,X;=1)+P(711 <00,X; =-1)
=P(X; = 1)+ P(X; = ~1)P(r; < 00)
=p+(1-p)P(ry <o0)

Also ist P(11 < 00) Losung von

(1-p)a® = (z+p)=0
= P(11 < +00) =1 oder P(71 < +o0) = 1’%]0
Isth%:ﬁZl:IP(rl<+oo):l

(ii) Der Fall p< 1
Dann ist ;%<1
P
SLLN = 5= S EX; =2p-1<0
=5, — - P-f.s.
= P(sup,,en Sn = +00) =0
Wiére P(1; < 00) =1, so wire P(1, < 00) =1 VbeN
und damit:

P(sup Sy, = +00) = lim P(sup S,, 2 b) = lim P(7, < 00) = 14
neN b—oo neN b—oo

Also gilt P(11 < o0) = % fiir p < 3.

Analog kann man schlieflen, dass

1 p<
]P’(T_1<oo):{1p
p

N N~

Insgesamt folgt somit fiir a < 0 < b und

Tap = Inf{n €Ny : S, =a oder S, =b}
P(74p < 00) =P(7, < 00 oder 7, < 00) =1
Berechnung von Er,:

(i) Der unfaire Fall p # 3:
Sp—-nEX;=S5,-n(2p-1) n € Ny
ist ein zentrierter Random-Walk und deshalb ein Martingal.
Optional Sampling liefert
E(Sran—(tAn)(2p-1))=0<=E(rAn)(2p-1) =ES;\n

E(7 An) 1 IET monotone Konvergenz
n—>00

ES;r, — ES; majorisierte Konvergenz, da S, ., < max(|al,b)

=ES; = (2p-1)Er < aP(Siau =a) +bP(S, =b) = (2p-1)Er
Also folgt:

S O 0 B 0 I 0
D 1-p

DO
|
—_
—_
|
—
=
SN
~—
8
¥
o>
|
—
|
~—_
e
¥
o
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(i) Der faire Fall p = 3:
(52 ~nIEX?),en, ist ein Martingal, denn

E(Sr21+1|}—n) = ]E((Sn + Xn+1)2|}-n)
=E(S%|F,) + 2E(X 1190 Fn) + B(X2, | Fn)
Kna mab: 62 4 906 B( X 1| Fn) + EX2,,

von F,
n+1 Unab. o 2
LS+ 28, EXn + EX,

=S2 + EX?

X

Hierraus folgt die Martingaleigenschaft.
Optional Sampling liefert 7 = 74

E(S2, - (T An)EX?) =0« E(52,,) = EX? E(r An)
1

E(7 An) 1 IET monotone Konvergenz
ESQ n—oo

2, — IES? majorisierte Konvergenz
= E7r=ES? =d’P(S, =a) +b’P(S, =b)

—g2 b 4 p2 ldl

al+b la]+b
_ lalb(lal+b) _
= TTapb T |alb

3.29 Vorhersehbare Prozesse

Sei (Fpn)nen, eine Filtration. Ein stochastischer Prozess (X, )nen, heifit vorhersehbar, wenn gilt:

X, ist F,,_1 messbar fiir alle n € Nj.

3.30 Doob-Meyer Zerlegung

Sei (Xp)nen, €in, zu einer Filtration (F, )nen, adaptierter Prozess, mit IE|X,| < oo fiir alle n € Ny.
Dann existiert genau eine Zerlegung der Form

X,=Y+M,+A, P-f.s. fiir f.a. n € Ng,

wobei Y ist Fy-messbar Startvariable
(M) nen, Martingal mit My =0
(A )nen, ist vorhersehbar mit Ag =0

Eindeutigkeit bedeutet:
Ist X, =Y +M,+A=Y"+ M +A' sofolgt Y =Y' M, =M A, =Al.

Beweis. Existenz:
Setze MQ = AO =0.
My = X1 - E(X4|Fy), A =E(X1]F)-Xo
M1 =My + X1 — E(Xn+1|fn)
A1 = A + E(Xp 1| Fn) - Xn Vn e Ny
Dann gilt: (A )nen, ist vorhersehbar und M, )nen, ist ein Martingal, denn
E(MnJrllfn) = E(Mn + Xn+1 - E(Xn+1|fn)|fn)
=M, + ]E(Xn+1|}—n) - ]E(Xn+1|}-n)
= Mn
Dann ist X,, = Xo + M,, + A, P-f.s. fiir f.a. n € Ng: Beweis durch Induktion nach n:
n = 0: klar
n—-n+1:
Xn+1 =Xn+1 _Xn +Xn
Y X1 = X+ Xo+ M, + A,
=Xo+ M, +Xpn41 — E(Xn+1|‘7:n) + An + E(Xn+1|]:n) - X,
=Xo+Mpi1 +Apia
Eindeutigkeit:
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Folgt aus der Tatsache, dass ein vorhersehbares Martingal konstant sein muss, d.h. (Z,)nen, Martingal
und vorhersehbar

= Es existiert eine Fyp-mb ZV Y mit Z,, = YP-f.s. Vn € Ng:
Martin-

E(ZniilFa) " n) o = e = 7
vorher- | I
sehbar

Zn+1 Y
Es ist also:

Yo+ M, + A, =Yy + M) + A},

=>Y0:Y0,, daM0:M6:A0:A6:0

=M, +A, =M +A]

=M, -M] =A -A,

= (M,, — M) nen, ist ein vorhersehbares Martingal.
= M, - M, =Y VneNj fiir eine Fyp-messbare ZV Y

Martin-

B(M, - M{|Fo) 5" Mo - M

Y 0
= M, =M,
= A, =A/, O

4 Diskrete Finanzmarktmodelle

Ziel:
- Modellierung von Finanzmérkten in diskreter Zeit
- Formulierung des Arbitragebegriffes
- Arbitragefreies Bewerten von Derivaten

- Zusammenhang zur Wahrscheinlichkeitstheorie: Das No-Arbitrage Theorem

4.1 Beschreibung des Finanzmarktes
- periodische Sichtweise
- N Perioden
- N Handelszeitpunkte 0,1,..., N -1

- Der Informationsverlauf wird gegeben durch eine Filtration (F,)n-o,...,n. Dabei ist Fy eine triviale
o—Algebra, die also Ereignissen nur die Wahrscheinlichkeiten 0 oder 1 zuordnet. Diese Annahme
wird dadurch begriindet, dass Anfangspreise sowohl der Basisgiiter als auch von Derivaten fest
stehen und nicht zufillig sind.

- drisikobehaftete Finanzgiiter (risky assets) mit zu (F, )n-o,... v adaptierten Preisprozessen S1(n), ..., Sq¢(n),
n=0,..,N.
S =(S51,...,54) beschreibt die Entwicklung der risky assets.
S(n) ist der zufillige Vektor der Preise nach n Perioden fiir die risky assets.

- ein Numeraire Asset (Verrechnungsgut) mit Preisprozess So(n), n =0, ..., N, wobei vorausge-
setzt wird, dass Sp(n) >0 fiir alle n =0, ..., N.
So ist adaptiert bzgl (F,)n=0.....N-
Das Numeraire Asset dient zur Verrechnung. Héufig wird ein Geldmarktkonto § hierzu benutzt,
d.h.

So(n) = B(n) = (1+e(1))(1+0(2))-...-(1+e(n))  n=1,..,N,5(0) =1

wobei (9(n))n=1,... v ein vorhersehbarer Prozess ist mit go(n) > -1 P-f.s. fiir alle n =1,..., N.
o(n) beschreibt die zufillige Zinsrate in der n-ten Periode.
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- gehandelt werden kann durch Erwerb bzw. Verkauf von Anteilen an den (d + 1) Basisfinanzgiitern
in den Handelszeitpunkten.
Die Entwicklung der Anzahl an Anteilen an Basisfinanzgiitern entspricht dabei vorhersehbaren
Prozessen (p, H) (da am Anfang einer Periode das Portfolio zusammengestellt wird), mit

©(n) entspricht der Anzahl an Anteilen des Numeraire Assets in der n-ten Periode

H,;(n) entspricht der Anzahl an Anteilen im j-ten Basisfinanzgut in der n-ten Periode

H = (Hla "'7Hd)
Ein solches Paar (¢, H) heifit Handelsstrategie.

Eine Handelsstrategie (¢, H) induziert eine Vermégensentwicklung.
Der Wert nach n Perioden, vor der Umschichtung des Portfolios ist

d
V(n) = ¢(n)So(n) + Y, H;j(n)S;(n) n=1,.,N

J=1

Das Anfangsvermogen, welches ein Investor einsetzen muss, um die Handelsstrategie (, H) durchfithren
zu konnen, ist gerade

d
V(0) = ¢(1)So(0) + > H;(1)S;(0)
j=1
Setze < H(n),S(n) >= Z;l:l H,;(n)S;(n), Dies ist das Skalarprodukt der Vektoren.

4.2 Selbstfinanzierung

Wird beim Handel in den Handelszeitpunkten 1,..., N — 1 kein Kapital hinzugefiigt oder entnommen, so
nennt man diese Handelsstrategie selbstfinanzierend.
Formal: (o, H) heifit selbstfinanzierend, wenn

V(n) =¢(n)Se(n)+< H(n),S(n) >
=p(n+1)So(n)+< H(n+1),5(n) >

fir allen=1,...,N - 1.

4.2.1 Beispiele fiir selbstfinanzierende Strategien

Buy and hold Strategie FEin Anfangskapital z > 0 wird in das erste risky asset investiert und bis zum
Schluss gehalten:
Hq.(1) = ﬁ(o) entspricht dem Kaufen am Anfang

Hi(n) = ﬁw) fiir n =2, ..., N entspricht dem Halten iiber die Perioden.
H;=0firj+1.
Wertentwicklung:
V(n)=H;(n)Si(n) = #@Sl(n)
short selling and hold Strategie H;(1) = -1 entspricht dem short selling der Aktie, das dem Verkauf
am Anfang entspricht.
Hy(n) = -1 enspricht dem Halten der Verkaufsposition von n =2,..., N
Anfangskapital:
—S1 (0) <0

Wertentwicklung:

-51(n)
Kaufe Aktie 1, halte diese k Perioden und tausche danach in Aktie 2, falls Sy(k) < S1(k) und halte
diese bis zum Ende

Zu Beginn:
Hi(n)=1firn=1,..k
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Hy(n)=0firn=1,...,k
Am Anfang der (k + 1)-ten Periode:

Hi(k+1) = 1(s,(x)5: ()}
Hy(k+1) = %1{52(k)<51(k)} = %1{52(k)<51(k)} entspricht der zufilligen Umschichtung in Aktie
2.
Halten bis zum Ende:
Hi(n) = 15, (k)25 (k) firn=k+2,...,.N
Hg(’n) = %1{52(k)<51(k)} firn=Fk+ 2, ...,N

H ist vorhersehbar und selbstfinanzierend da
V(k) = Hy(k)S1(k) = Si(k) = %1{52(k)<51(k)}52(k) + 15, (k)25 (k) S1(K)
= Hy(k +1)S2(k) + Ha(k +1)S1(k)
4.3 Beispiele
4.3.1 Das N-Perioden CRR Modell
- N Perioden, n=0,...,N

Sp > 0 Anfangskurs
- Filtration (F,,)n-0,.. N

- (Zn)n=1,..,n mit Z, zdhlt die Anzahl der Aufwértsspriinge in den ersten n Perioden.
Annahme: Z,, =Y, Y; mit iid ZV Y1, ..., Yy

P(Y;=1)=p=1-P(Y; =0).
- (Y3)=1,..., v adaptiert bzgl der Filtration.
Sprunghthen 0 < d < u

- Preisprozess des risky assets der Form

S, = Sou?rd™ % fa.n=1,..,N

~ Sne1 = Snuﬂ/nJrl dl_Yn+1

Bemerkung: (S, )n-0,....n ist ein geometrischer Random Walk, startend aus Sy > 0.

Andere Darstellung:
Sn = SO H Xi mit Xi = uYidl_Yi

i=1
-Numeraire Asset ist ein Geldmarktkonto 8 mit konstanter, periodischer Zinsrate o > -1, dh:

B(n)=(1+o)" fa.n=0,..,N
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4.3.2 Mehrdimensionales CRR Modell

| Aktien

I Aktienpreisprozesse entsprechend dem einfachen CRR Modell
Si(n) = S; (0™ =1 L NG =1,0

Filtration (Fy)o,... N

(Z;j(n))n=1,...n l-dimensionaler Random Walk mit Z(n) = ¥.i; Y (%)
Y (i) = (Y1(4),....Y3(¢)) mit P(Y;(i) =1) =p; =1 -P(Y;(:) =0), Y(1),...,Y(N) iid

In einer Periode konnen die Y7 (i), ..., ¥;(i) abhingig (von einander) sein.

Numeraire Asset wie beim CRR Modell

B(n) = _ﬁlmg) —(1+0)"

4.3.3 Das verallgemeinerte CRR Modell (Markov-Prozess)

Idee:

Ersetze den Random Walk (Z,,), der die Aufwirtsspriinge ziihlt, durch eine zeitlich inhomogene

Markov-Kette.
Genauer:

(92, F,P) Wahrscheinlichkeitsraum

Filtration (Fy)o,... N

Sei (Zn)n=0
(i) Zp=0

(ii) Ubergangswahrscheinlichkeiten, d.h. Wahrscheinlichkeit, dass der Kurs in der (n + 1)-ten Pe-
riode springt oder nicht, gegeben, dass er bisher schon k£ mal gesprungen ist

.....

P(Zps1=k+1Zy=k) =pp(k) =1-P(Z,1 = k|Z, = k) Vk=0,..,n
Markov Eigenschaft:
IP)(Zn+1 = k|fn) = P(Zn+1 = k|Zn)

insbesondere folgt daraus:

P(Zn+1 = k|Zn = k'ruZn—l = knfh ceey Zl = kla ZO = 0) = P(ZnJrl = k‘Zn = kn)

(Z,) zdhlt die Anzahl der Aufwirtsspriinge wihrend der ersten n Perioden. Setze als Preisprozess
fiir das risky asset
S(n) = So - u?™ . gn=2 mit 0<d<u

Fiir die Entwicklung des Geldmarkkontos wird angenommen, dass die Zinsrate in einer Periode von
der bis dahin erfolgten Anzahl der Aufwirtsspriinge abhéingt, d.h.

o(n)=r(n,Z, 1) fir allen=1,....N
mit 7 : Nx{0,..., N} - (-1,00)

o(n) ist dann die zufillige Zinsrate in der n-ten Periode.
o(n) ist F,,—1 messbar, also vorhersehbar fiir alle n=1,..., N
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4.4 Das diskontierte Finanzmarktmodell

Gegeben sei ein Modell entsprechend 4.1 mit S = (S1,...,5¢) als Preisprozess fiir die risky assets und Sy
als Prozess fiir das Numeraire Asset.

Alle Preise sind hier im Geldmarktkonto (in Euro) notiert. Eine weitere Moglichkeit, Preise zu notieren,
besteht darin, diese in Anzahl an Anteilen des Numeraire Assets anzugeben:

x Geldeinheiten zum Zeitpunkt ¢ entsprechen #(t) Anteilen des Numeraire Assets

Fiir den Fall, dass Sy das Geldmarktkonto § ist, also So(n) = 8(n), ist dies der iibliche Diskontierungs-
vorgang.
Dies driickt aus, wieviel Geld vom Zeitpunkt ¢ heute wert ist:

+€ zum Zeitpunkt ¢ entsprechen /ft)€ heute

Fithrt man diese 'Diskontierung’ fiir die Basisfinanzgiiter durch, erhélt man ein Finanzmarktmodell,
dessen Preise in Anteilen des Numeraire Assets notiert sind.
Definiere

NN 10)
Sj (t) == So(0)

S5 ist dann der Preisprozess des j-ten risky assets, ausgedriickt in Anteilen am Numeraire Asset.
(S%,...,5;) ist dann das abdiskontierte Finanzmarktmodell.

Fiir eine Handelsstrategie (o, H) ist der Wertprozess, in Anteilen des Numeraire Assets ausgedriickt,
gegeben durch

t=0,..,N,1<j<d

d
V*(n)=p(n) + Z n)S;(n)

4.5 Charakterisierung der Selbstfinanzierung

Eine Handelsstrategie (¢, H) ist selbstfinanzierend, wenn sich ihre Vermégensentwicklung aus dem
Anfangskapital und den Periodengewinnen bzw -verlusten ergibt.
Genauer: Fiir eine Handelsstrategie (o, H) sind dquivalent:

(i) (p, H) ist selbstfinanzierend
(i) Vi(n) =V(0)+ Xpy @(k)ASo(k) + Xpey Xy Hj(k)AS; (k) fir alle n = 1,..., N
(ifi) V*(n) =V*(0) + Xpy X0y Hy(k)AS; (k) fir allen=1,... N

Fiir einen stochastischen Prozess (X (n)), bezeichnet dabei
AX(n)=X(n)-X(n-1)
den Prozess der Periodenzuwichse.
Beweis. Fiir jede Handelsstrategie (¢, H) gilt:
V(1) -V(0) =¢(1)So(1) - ¢(1)Se(0)+ < H(1),S5(1) > - < H(1),5(0) >
=p(1)ASp(1)+ < H(1),AS(1) >
Deshalb gilt:
(ii) ist erfillt < AV(k) = (k)ASo(k)+ < H(k),AS(k) > Vk=2,...N
< @o(k)So(k)+ < H(k),S(k)>-p(k-1)So(k-1)-<H(k-1),S(k-1) >
=(k)So(k) —p(k)So(k-1)+< H(k),S(k)>-< H(k),S(k-1) > Vk=2,...N
I=k-1

< <H(+1),SU)>+p(l+1)So(l) =< H(1),S(l) > +p(1)So (1) vi=1,..,N-1

< (p, H) ist selbstfinanzierend
Weiter gilt:
(iii) ist erfilllt < AV*(k) =< H(k),AS*(k) > Vk=2,...N

< p(k)+< H(k),S(k) > Slk p(k-1)- <H(k 1),5(k-1)> & (k 5
S(k)<H(l§) S(k) > S(k 1)<H(Ic) S(k-1)> Vk=2,..,N

< p(k)So(k-1)+ < H(k),S(k-1) >

=p(k-1)So(k-1)+<H(k-1),S(k-1) > Vk=2,...N

< (p, H) ist selbstfinanzierend
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O
Wichtig ist, dass ein Handel in den risky assets durch Aufbau einer geeigneten Position im Numeraire

Asset zu einer selbstfinanzierenden Handelsstrategie gemacht werden kann.

4.6 Satz zur Selbstfinanzierung
Zu jedem R%-wertigen vorhersehbaren Prozess H und jedem Anfangskapital V existiert genau ein vor-
hersehbarer Prozess ¢, so dass (i, H) selbstfinanzierend ist und
Vi(n)=Vy + > <H(k),AS*(k) > Vn=1,...N
k=1
Beweis. Wegen Vy = ¢(1)S0(0)+ < H(1),5(0) > folgt

< H(l),S(O) > -V
So(0)

e(1) =

Bestimmung von ¢(n) fiir n > 2:
Wegen
V*(0)+ > < H(k),S*(k) >=V*(n) = ¢(n)+ < H(n),5*(n) >
k=1

erhélt man
Vo + i <H(k),AS"(k)>+<H(n),S"(n)>-<H(n),S"(n-1)>=p(n)+ < H(n),S*(n) >
k=1

Also setzt man

o(n) = Vi + 5 < H(k),AS" (k) > - < H(n), 5" (n—1) >
k=1

Bezeichne mit H die Menge aller R%wertigen vorhersehbaren stochastischen Prozessen.
Definiere den stochastischen Prozess H - S* durch
(H-S")(n):=> <H(k),AS*(k)> VYn=0,..,N und (H-S5")(0):=0
k=1

(H-S*)(n) ist die Summe der Periodengewinne bzgl S* iiber die ersten n Perioden.
H - §* wird als diskreter stochastischer Integralprozess bezeichnet.

4.7 Arbitrage
Eine selbstfinanzierende Handelsstrategie (p, H) heift Arbitrage, wenn fiir den zugehorigen Wertprozess

V gilt
%SO,VNZOUDdP(VN—V0>O)>O

Ausgedriickt in Anteilen des Numeraire Assets ist dies dquivalent zu

VIN) 5§ und P(V*(N) - Vg >0)>0.

Vo <0,V*(N) = o)

Da V*(N) -V = (H-S*)(N) ist, gibt es eine Arbitragemoglichkeit genau dann, wenn es ein Anfangs-
kapital Vy <0 und ein H € H gibt mit

Vi + (H-S*)(N) >0 und P((H - S*)(N) > 0) > 0
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4.7.1 Bemerkung
Existiert ein Arbitrage, so existiert auch ein Arbitrage zum Anfangskapital 0.
Beweis. Sei (p, H) ein Arbitrage mit
V(0) = p(1)Sp(0)+ < H(1),S0(0) ><0
Dann ist
V(N)=V*(0)+(H-S*)(N)>0und P((H-S*)(N)>0)>0
Zum Anfangskapital 0 existiert eine selbstfinanzierende Handelsstrategie (¢, H) mit

Vi (N) =0+ (H-S")(N) > =V*(0) >0

4.7.2 Folgerung

Es gibt ein Arbitrage genau dann, wenn es ein H € H gibt mit (H-5*)(N) >0 und P((H-S*)(N) >0) > 0.
Gibt es eine selbstfinanzierende Handelsstrategie, die einen risikolosen Gewinn durch Handeln iiber N
Perioden erzielt, so muss ein risikoloser Gewinn auch in nur einer Periode erzielbar sein. Dies ist die
Aussage des folgenden Satzes.

4.7.3 Satz
Folgende Aussagen sind dquivalent
(i) Es existiert ein Arbitrage

(ii) Es gibt eine Periode n und einen F,_;-messbaren Zufallsvektor K mit < K,AS*(n) >> 0 sowie
P(< K,AS*(n) >0)>0.

4.8 Beispiele

4.8.1 Satz

Das CRR Modell ist genau dann arbitragefrei, wenn d < 1+ o < u gilt.
Beweis. '=": per Kontraposition

1. Fall: 1+ p < d<wu: In diesem Fall ist die Aktie immer besser als das Bankkonto. Die buy and hold
Strategie fiir die Aktie liefert dann ein Arbitrage.
Setze H = 1. Dann existiert zum Anfangskapital 0 eine selbstfinanzierende Handelsstrategie (o, H)
mit Wertprozess
V*(n)=0+(H-S")(n) Vn=0,..,N

also
N

V*(N) = kilﬂ(kms*(k) = S*(N) - §*(0) > S(0) ~-5(0)20

_a
(1+0)
und

P(V*(N)>0)>0

2. Fall: d <u <1+ p: Hier ist das Bankkonto immer besser als die Aktie und man kann durch eine
short selling Strategie der Aktie ein Arbitrage konstruieren.
Setze also H(n) =-1 fiir allen=1,...,N.
Dann existiert zum Anfangskapital 0 eine selbstfinanzierende Handelsstrategie (¢, H) mit Wertpro-
7€ess
V*(n)=0+(H-S5")(n)
also V(N)=(H-S*)(N) =-(S*(N)-5(0))
=S5(0) - S*(N)
N
2 S(O) - S(O) (129)1\1
>S5(0)-5(0)=0
und
P(V*(N)-V(0)>0)>0
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'«<’: per Kontraposition
Sei das Modell nicht arbitragefrei. Wegen Satz 4.7.3 gibt es eine Periode n und ein F,,_;-messbares
K mit KAS*(n) >0 und P(KAS*(n) >0) > 0.

Also auch

AS*(n) S*(n) ~ 1 L 1-X,
OSKS*(n_l)—K(S*(n_l)—l)—K(wuXd X —1)

S(n) =u?rd™4+S(0) mit Z, = ¥ X;,P(X;=1)=p=1-P(X; =0)
§*(n) = 24 B(n) = So(n) = (1+ )"
Setze R(n) := ﬁuX“dl_X" -1
Annahme: d <1+ p <u Dann ist
1=P(KR(n)>0) =P(K>0,R(n)>0)+P(K<0,R(n)<0)+P(K =0)
=P(K >0)P(R(n)>0)+P(K <0)P(R(n)<0)+P(K =0)
q:=P(K >0),p=P(R(n)>0),r:=P(K <0)
=q-p+r(l-p)+1-(q+7)
Aus P(K =0) <1 folgt ¢ >0 oder r>0
Wegen1 =¢q-p+r(l-p)+1-(qg+7)
<g+r+1-(q+r) 4 erhélt man einen Widerspruch.
=1

Ziel: No-Arbitrage Theorem
Charakterisierung von arbitragfreien Mérkten im probabilistischen Sinne.

4.9 Aquivalente MaBe

Sei (2, F,P) ein Wahrscheinlichkeitsraum.
Np:={N e F:P(N) =0} ist das System der P-Nullmengen.
Ein Wahrscheinlichkeitsmafl Q ist absolut-stetig bzgl. P, wenn

Q<<P:= Npc Ny

Q heiit dquivalent zu P :< Np = N.
Ist L >0 eine ZV mit E(L) = [ LdP =1, so wird durch

Q(A) ::/ALd]P VAeF

ein Wahrscheinlichkeitsmafl Q definiert mit Q << PP.
Dann ist L die P-Dichte von Q.

Schreibweise: L = %.

Gilt P(L>0) =1 und L = 92 5o ist

- P 1
P~ d —=—
Q un 0 I
Weiter: Sind L und L’ Dichten von Q bzgl P, so gilt
P(L=L")=1

Fiir jede ZV X gilt:
Eq(X) = / XdQ = [ XLdP = Ex(LX)

sofern obige Erwartungswerte existieren.
Zusammenhang zur Modellierung von Finanzmérkten:

- Ein Finanzmarktmodell wird im Wesentlichen bestimmt durch die zufillige Entwicklung der Basis-
finanzgiiter.

- Dabei ist nicht entscheidend, welche Verteilung ein Akteur im Finanzmarkt postuliert.
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- Zwei Akteure sind im gleichen Finanzmarkt, wenn die beiden postulierten Verteilungen fiir die
Basisfinanzgiiter die gleichen Ereignisse mit positiver Wahrscheinlichkeit eintreten lassen kénnen.
Das bedeutet, dass die Verteilungen zueinander dquivalent sind.

- Ein Ubergang zu einem dquivalenten Wahrscheinlichkeitsmafl éndert den Finanzmarkt nicht, wohl
aber die Verteilung der Basisfinanzgiiter.

- Ein endliches Finanzmarktmodell, d.h. || < oo, wird nicht veréndert, wenn die Menge der Elemen-
tarereignisse, die eine positive Wahrscheinlichkeit besitzen, unverdndert bleibt.

4.10 Aquivalentes MartingalmaB

Gegeben sei ein Finanzmarktmodell mit Preisprozessen S = (51, ..., S¢) der risky assets und Informati-
onsverlauf (Fy,)n=o,... n iber N Perioden. Sei Sy das Numeraire Asset und

Ein Wahrscheinlichkeitsmafl P* auf (2, F) heifit dquivalentes Martingal, wenn gilt:
(i) P*~P
(ii) (S} (n))n=0,...,n ist ein P*-Martingal fiir alle j = 1,...,d

Kurz: Bzgl P* ist der Finanzmarkt fair.

Ziel: Arbitragefreier Markt < Existenz eines dquivalenten Martingalmafl
'<=": leicht

'=’: schwieriger, mathematisches Argument ist der

4.11 Separationssatz von Minkouski

Seien C; und Cs nichtleere konvexe Mengen im R™ mit C; nCy = @.
Seien C; abgeschlossen und Cs kompakt.
Dann gibt es eine lineare Abbildung ¢ : R™ — R und reelle Zahlen $; < 2 mit

p(x)<pr<Pa<e(y) Varelyyely.

Es gilt also sup,.c, ¢(z) < infyec, o (y).
Durch Ubergang zu —¢ findet man auch eine lineare Abbildung 1 mit

supi(y) < inf ¥(a).
yeCy zeCo

Wieso Kompaktheit?
Ci

Graphische Veranschaulichung:

C1

& Ca

C1 und C5 lassen sich nicht strikt trennen.

Beweis. Sei fiir x € Cqy
d(z) = inf{|lz - y|]* : y € C1}.

Der minimale quadratische Abstand eines Punktes x € Co zur Menge C; wird also durch d(x) gemessen.
Wegen der Abgeschlossenheit von C; und der Disjunktheit von C; und Cy ist d(x) > 0 fiir alle x € Cs.
Die Abbildung x ~ d(x) ist stetig und nimmt auf dem Kompaktum Cy ihr Minimum an. Es gibt also ein
T € CQ mit

d(z) 2 d(zo)
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fir alle x € Cs.
Wihle einen Radius r so grof}, dass

d(zo) =  inf — I
(w0)= o izl

Da C; n K(xo;7) kompakt ist, existiert ein yo € C; mit
d(x0) = |lzo - yol[*.

Also gilt fiir alle x € Co,y € Cq
ll = ylI* > [l = yoll* > 0

Setze
= Yo — Zo-
Wegen der Konvexitit ist fiir z € Cy auch xg + a(x — ) € Co fiir alle a € [0,1]. Also gilt
llzo = yol* + 2 < & — o, o — yo > +?||x — x0||* = ||zo + a(x — z0) = yol[* > |lzo - yol?,
was
200 < T — T, 0 — Yo >+ ||z — 0|2 2 0

impliziert. Fiir a | 0 erh&lt man
<x—xo,x0—Yo >20

und damit
<xz,m><<x0,M>.

Fiir y € C; ist wegen der Konvexitit yo + a(y — yo) € C; fiir alle a € [0,1]. Also gilt
llzo = yol|* + 20 < y = yo, yo — o > +a®|ly = wolI* = llyo + (y = o) — zoll* 2 [lzo — ol[*.
Fiir a | 0 erhélt man analog
<y -yo,n>20

und damit
<Y, >2< Yo, >

Insgesamt folgt also
sup <x,n><<xp,n >

zeCso

und
inf <y,m>><yp,n>.
y€C1

Wegen

0< ||Z/o—330||2 =<Yo — %o, Yo — Lo >=<Yo,N > — < Xg,N >

folgt die Behauptung, denn durch z < z,7 > wird die zum Vektor n gehoérende lineare Abbildung ¢
definiert.
O

Zur Bestimmung der zu trennenden konvexen Mengen wird die Arbitragefreiheit umformuliert:

4.12 Umformulierung der Arbitragefreiheit
- Finanzmarktmodell iiber N Perioden mit S = (51, ..., S4) als Preisprozess der risky asstes
- Mit L°(Q, F,P) sei die Menge der messbaren Abbildungen von 2 nach R bezeichnet.

- G"={(H-S*)(N): H € H} ist die Menge der moglichen Gewinne, notiert in Anteilen des Numeraire
Assets, die beim Handel entsprechend einer selbstfinanzierenden Handelsstrategie erzielt werden
koénnen.

Dabei ist H die Menge der vorhersehbaren R?-wertigen Prozesse.
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- Der Markt ist arbitragefrei, wenn
g" nLY(Q,F.P) = {0}
wobei L2(Q, F,P) = {X e L°(Q, F,P): X >0} .
- G* ist ein Vektorraum
- K*={C* e L°(Q, F,P): 3G* € G* mit G* >C*}

- K* ist der Kegel von Elementen aus L°(Q, F,P), die unterhalb von G* liegen und kann interpre-
tiert werden als diejenigen abdiskontierten terminalen Auszahlungen, die durch das abdiskontierte
Vermogen einer selbstfinanzierenden Handelsstrategie zum Anfangskapital 0 iibertreffbar sind.

Es gilt:
G nLY(Q,F,P) = {0} & K" n LYU(Q, F,P) = {0}
Weiter:
K'n(-K*)=G"

Mittels G* und K£* kénnen dquivalente Martingalmafle charakterisiert werden.

4.13 Aquivalenzen

Im folgenden werden wir die Endlichkeit des zugrundeliegenden Wahrscheinlichkeitsraumes {2 annehmen.
Es gibt also nur endlich viele Elemente in €2 und jedes dieser Elemente wird mit positiver Wahrschein-
lichkeit angenommen. Dies macht durchaus Sinn, da in Modellen mit diskreter Zeit in der Regel eine
Replikation von Derivaten nur in Modellen mit endlichem 2 durchfithrbar ist. Mathematisch bedeutet
dies, dass alle Funktionen messbar sind und die Integrierbarkeit von auftretenden Zufallsvariablen immer
gegeben ist. Weiter kann der Separationssatz von Minkowski fiir endlich dimensionale Rdume angewendet
werden und man muss nicht auf den allgemeinen Trennungssatz von Hahn-Banach zuriickgreifen.

Sei Q] < oo. Fiir jedes Wahrscheinlichkeitsmafl P* sind dquivalent

i) P* ist ein MartingalmaB, d.h. S} ist ein P*-Martingal fiir alle j =1,...,d.
i) EXC* =0 fiir alle C* € G*
iii) EXK* <0 fiir alle K* e K*
Beweis.

(i) = (it)
Fiir HeH ist V*(n)=(H-5*)(n),n=0,...,N ein P*-Martingal, denn

E*(AV™ (k)| Fi1) = EX (V7 (k) = V7 (k = 1)|F-1)
=B (< H(k),AS™ (k) > | Fi-1)

- E*(i H;(k)AS; (k)| Fi-1)

=1

- SE(H,(R)AS; (0] Fi)

j vorn. d
Hj vorh Y H;j(k)E*(AS; (k)| Fi-1) =0  Vk=1,..,N
=1
! =0, da S; Martingal
Fiir C* = (H - §*)(N) folgt also

Mart_i ngal

E*C*=E*(H-S*)(N)=E"V*(N) E*V*(0)=0

Beachte, dass per Definitionem V*(0) = 0 gilt.
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(i) = (i)
Zeige die Martingaleigenschaft von S} bzgl P* fiir alle j =1,...,d.
z.2. B (S} (k)| Fr-1) = Sj (k- 1)
<= E"(AS} (k)| Fr-1) =0
< E"1,4A8;(k)=0 VAeFi_q

1 AAS;(k) ist der Gewinn der Handelstrategie, der in der k-ten Periode long in S; geht, wenn A
eintritt, d.h.

H;(k)=14,H;(n)=0sonst,H; =0 Viz#j
(H-S*)(N)=H;(k)AS; (k) = 1aAS} (k).
Wegen (ii) folgt E"14AS7 (k) = 0 fiir jedes A € Fy.
Also ist 57 ein P* Martingal.
klar wegen der Monotonie des Erwartungswertes
Einerseits ist C* e G* == C* e K* = E*C* <0
Andererseits ist G* ein Vektorraum, also = -C* ¢ G* = -C”* ¢ K*

=E(-C*)<0=EC*>0

Zusammen mit dem Separationssatz kann man das No-Arbitrage Theorem beweisen.

4.14 1. Fundamentalsatz der Preistheorie: Das No Arbitrage Theorem

Gegeben sei ein Finanzmarkt S iiber einem endlichen © mit Informationsverlauf (F,,)n-0,... n bzgl. einem
Wahrscheinlichkeitsraum (€2, F,P). Dann sind dquivalent:

(i) Der Markt ist arbitragefrei, d.h. G* n L, = {0}
(ii) Es existiert ein dquivalentes Martingalmafl P*.

Beweis. (i1) = (4)
Sei C* € G* n L*. Dann gilt nach Satz 4.13: C* >0 und E*C* = 0.
= c*=0 P*-f.s.
ZPor-0 Ps

(i) = (i)
OBdA. P({w}) >0 Yw e
G* ist als Teilraum von L°(§, F,P) konvex und abgeschlossen. Die Menge der Wahrscheinlichkeits-

mafe auf (Q, F) kann mit der Menge

P={Q:Q->R:Q(w)>0 VYweQ: > Qw)=1}

we

identifiziert werden, die konvex und kompakt ist.
Wegen (i) ist G* NP =g.
Nach dem Separationssatz existiert eine lineare Abbildung

p: L= (Q,F,P)->R

mit supceeg (C*) < infgep p(Q).
Da der Dualraum von L**(£2, F,P) durch L' (Q, F,P) gegeben ist, kann ¢ als Element aus L' (€2, F,P)
aufgefasst werden mittels

e(X) = X(w)p(w).

we
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Da G* ein Teilraum ist und ¢(C*) < « fiir alle C* € G* folgt ¢(C™*) =0 fiir alle C* € G*.
Fiir ey, = 1y, gilt e, € P und
0<p(ew) = p(w)

Da dies fiir alle w € €2 gilt, kann man ein P* durch

P (w) = — 2 — YweQ
Yweap(w')

definieren.

P*(w)>0firalleweQ=P"~P

Wegen

* * * * * (p(w) 1 *
EC*=) C"(w)P(w)=) C*"(w) = e(C*)=0
wzef:l wZGS:Z Zw’EQ @(w,) Zw’GQ W(w,) S——

0
liefert Satz 4.13, dass P* ein Martingalmaf ist.

4.15 Bestimmung von aquivalenten MartingalmaBen
4.15.1 CRR Modell
- N Perioden

- Zn = YN X, fiir Xy, ..., Xy did mit P(X; =1) =p=1-P(X; = 0)
- S(n) = Sou?nd"2n

- Fo=o(X, o XN) =0(Z1, .0, Z0)

- B(n) =1L (1+0),0> -1

* S(n n—
-5 (n) = ﬁgn; = S(Juznd Zn (1+19)n =S H?ﬂ

wXigl-Xi

o ist ein geometrischer Random Walk.

- §* ist ein Martingal genau dann, wenn

. uXidl—Xj

=leup +d(l-p)=1l+pep' =

we(071)©d<l+g<u
u—

1+p0 d

Durch p € (0,1) werden alle dquivalenten CRR Modelle parametrisiert und genau fiir den Parameter
p* = % ist das Modell arbitragefrei/risikoneutral. Dies bedeutet, dass S* ein Martingal ist bzgl.
dem Parameter p*. Im folgenden wird gezeigt, wie ein Wechsel zu einem &quivalenten Martingalmafl P~
durchgefiihrt werden kann. Hierzu wird die P-Dichte bestimmt mit Hilfe der obigen Uberlegungen.

Fiir alle = € {0, 1}:

P(Xl =21,..., XN = QZ‘N) = HP(Xz :;I;Z-)
=1
= T (1 - p)NEn e
N

:pzN(l—p)N_ZN mit ZN:in
=1

Fiir das gesuchte P* muss gelten:

1+o-d

P (X1 =1, X =) = () (L=p)V 5 i = =2

Wegen P*(X =x) = IF;:((;(i:;))IP’(X = x) fiir alle z € {0, 1} ist die Dichte von (P*)¥ bzgl PX gegeben durch

(p*)*~ (1 - pr)N==n
p*N (L—p)N-=w

I(x) =
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Hieraus erhélt man durch

L: Q@ — (0700)
()P -p )N AN
w = Z(Xl(w)7aXN(w)) - pZN(‘*’)(l—p)Nsz(W)

X(w)

die Dichte von P* beziiglich P.
Definiere also P* mittels
P*(A) = fALdIP VAeFy=F

Dann ist P* dquivalent zu P, da L > 0 P-f.s. und es gilt

* Zf\ilzl 1_ * N*Zij\ill’i
= (D) (T) T R e = onFRe R

P(X =x)=
( ) { D 1-p

X=x}
Beziiglich des so definierten Mafies P* ist
S(n) = Sou?rd"#» n=0,..,N

ein geometrischer Random Walk mit IE*S(1) = So(1 + o).
Daher ist (S*(n)) ein P*-Martingal und P* damit ein dquivalentes Martingalmafi.

5 Bewerten von Derivaten

Auch in diesem Kapitel setzen wir ein endliches 2 voraus und betrachten ein Finanzmarktmodell {iber
N Perioden mit Preisprozess (51, ...,54) der risky assets und Sy des Numeraire Assets. Weiter nehmen
wir an, dass Sp(0) =1 ist. Ist dies nicht erfiillt, kann man dies entweder durch Normalisierung erreichen
oder beachten, dass in den betreffenden Aussagen das Anfangskapital in Einheiten des Numeraire Assets
notiert wird.

Grundannahme: Der Finanzmarkt ist arbitragefrei < Es existiert ein dquivalentes Martingalmafl
Bezeichne mit P die Menge aller dquivalenten Martingalmafle. Dann ist P eine konvexe Teilmenge aller
zu P dquivalenten Wahrscheinlichkeitsmafle.

5.1 Claim und Hedge

Ein Derivat ist ein Wertpapier, dass eine Auszahlung am Ende der Laufzeit (hier: N) verbrieft. Dies
bedeutet, dass dem Kéufer des Derivats das Recht auf die im Derivat spezifizierte Auszahlung garantiert
wird. Mathematisch gesehen entspricht dies einer F,, messbaren Abbildung C. Diese wird auch als Claim
bezeichnet, z.B: C' = (S(N) — K)*. Der diskontierte Claim C* = ist dann die Claimauszahlung,
notiert in Einheiten des Numeraire Assets.

Denkt man an das Replikationsprinzip, so ist eine Strategie gesucht, die durch Handel am Finanzmarkt
den Claim, also die Derivateauszahlung, repliziert. Im Finanzmarktmodell bedeutet dies:

Gesucht ist ein Anfangskapital V5 und ein H € H (H ist die Menge aller vorhersehbaren Prozesse) mit

C
So(N)

Vo + % <H(n),AS*(n)>=Vy+(H-S*)(N)=C".

i=1

Vo und H definieren dann eindeutig eine selbstfinanzierende Handelsstrategie (¢, H) mit Vo((p, H)) = Vo
und Vi ((p,H)) =C.

Ist dies moglich, so heiit C' hedgebar und (¢, H) bzw Vj und H definieren eine Hedgestrategie.

In Analogie zum Replikationsprinzip kann man sich nun fragen:

Ist Vp der eindeutige arbitragefreie Anfangspreis fiir C7

Ein Anfangspreis x > Vj liefert ein Arbitrage fiir den Verkaufer, denn:

- gehe short im Claim = erhalte .
- investiere Vj in die selbstfinanzierende Handelsstrategie.

- - Vj ist dann der Gewinn am Anfang.
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- Handel entsprechend der Strategie.

- Benutze den Gewinn der Handelsstrategie am Ende, um die short Position im Claim aufzulésen
= VN(H) -C=0.

- x -V} ist der risikolose Gewinn.

Ein Anfangspreis x < Vj liefert ein Arbitrage fiir den Kaufer, denn:

- gehe short im Hedge = erhalte V.

investiere x in den Claim.

- Vo — x ist dann der Gewinn am Anfang.

Handel entsprechend der short Position im Hedge.

Benutze den Claim am Ende, um die short Position im Hedge aufzulésen = C' - Vy(H) = 0.

- Vo — x ist der risikolose Gewinn.

Diese Argumentation legt nahe, dass x = Vj der eindeutige arbitragefreie Anfangspreis eines hedgebaren
Claims C ist. Im folgenden wird dies mathematisch prézisiert:

5.2 Satz

Seien C' ein hedgebarer Claim und H, H' € H Hedgestrategien zu den Anfangspreisen Vj und V.
Dann gilt:
Vo=V, =E*C* fiir jedes P* ¢ P

und
Vo+ (H-S*)(n)=Vy(n)=Vy(n)=Vy+(H"-S5")(n) =E"(C*|F,)

fir allen=1,...,.N

Beweis. Dies folgt aus der Martingaleigenschaft von S* bzw. (H - S*) bzgl. P*:
Vo+(H-S*)(N)=C*"=Vy+(H -S*)(N)

Also gilt fiir jedes P* € P

E*((H-5))=0

Vo E*(Vo+ (H-5")(N)) =E"C" =" (Vg + (H'- §")(N)) =V

Das gleiche Argument liefert:

Vir(n) =Vo+ (H-57)(n) =" (Vo + (H - §7)(N)|Fn)
=E°(C"Fn)
=B (Vg + (H' - S")(N)|Fn)
=Vo +(H'-5)(n)
= Vi (n)
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5.3 Superreplizierbare Claims
Ein Claim heifit upper hedgbebar zum Anfangspreis Vj, falls es ein H € ‘H gibt mit
Vo+(H-S*)(N)>C*

Dies ist der Fall, wenn
C*"-VyeK”

Erinnerung: G* = {(H-S*)(N): HeH} und K* = {C* : 3G € G* mit G > C*}‘

C heifit strikt upper hedgebar zum Anfangspreis Vp, falls es ein H € H gibt mit
Vo+(H-S")(N)>C”
und

P(Vo+ (H-S*)(N)>C*)>0

Ein Claim heifit lower hedgbebar zum Anfangspreis Vj, falls es ein H € H gibt mit
Vo+(H-S*)(N)<C”

C heifit strikt lower hedgebar zum Anfangspreis Vj, falls es ein H € H gibt mit
Vo+ (H-S*)(N)<C*

und
P(Vo+(H-S*)(N)<C*)>0

Der Kegel £* der zum Anfangskapital 0 upper hedgebaren Claims ldsst sich durch die erwarteten Aus-
zahlungen bzgl. der dquivalenten Martingalmafle charakterisieren.

5.4 Satz

Fiir einen Claim C sind dquivalent:
(a) C*eKk™
(b) E*C* <0 fiir alle P* ¢ P

Beweis. (i) = (41) :

Ist C* e K* = 3H e H mit (H-S*)(N)=C*
=0=E"((H-S5*)(N)) > E*C* fiir alle P* ¢ P
(ii) = (i) :

Dies ergibt sich aus dem Bipolartheorem
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5.5 Das Bipolartheorem
5.5.1 Definition ((konvexer) Kegel, Bipolar)
Betrachte R™ mit einem Skalarprodukt. Ein C ¢ R™ heifit Kegel, wenn Az € C fiir alle A > 0,2 € C.

C heifit konvexer Kegel, wenn C konvex und ein Kegel ist, d.h. wenn gilt:
-2eCA>0=>MzreC
-x,yeC=>x+yeC

Zu einem Kegel C ist die Polarmenge C° definiert durch

C¥:={yeR" < z,y><0 fiir alle z € C}

CO

CY ist ein abgeschlossener Kegel, denn
yeClA>0=><az, \y>=A<z,y>=0=>\yeCVaeC

Die Abgeschlossenheit folgt aus der Stetigkeit des Skalarprodukts.
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5.5.2 Das Bipolartheorem

Ist C ein konvexer Kegel, so stimmt das Bipolar von C mit dem Abschluss von C iiberein:

(C() ) 0 — C

—
—
Bipolar Abschluss

Anwendung in Satz 5.4 Fiir eine Menge IE ¢ R™ sei cone(E) der von E erzeugte Kegel:

cone(E):= (] C={ z:A>0,z¢FE}.
C Kegel
EcC

Die Menge der dquivalenten MartingalmaBe entspricht einer konvexe Teilmenge des R™, wenn n = |Q)] ist.
Fiir den davon erzeugten Kegel behaupten wir zunéchst, dass er mit der Polarmenge von K* iibereinstimmt.

(K*)° = cone(P) = cone(P)
Beweis. Die Inklusion von rechts nach links folgt einfach aus der Tatsache, dass
E*C*<0

fiir alle P* € P und C* € K* gilt. Denn dies impliziert P c (K*)°. Damit folgt dies auch fiir den von P
erzeugten Kegel. Wegen der Abgeschlossenheit der Polarmenge erhdlt man die behauptete Inklusion.
Fiir die Teilmengenbeziehung von links nach rechts, muss man sich zunichst iiberlegen, dass L* > (K*)°.
Dies folgt aus der Tatsache, dass L~ c K* und (L~)° = L* gilt. Hierbei bezeichnet L~ die Menge der
messbaren Abbildungen X, die keine positiven Werte annehmen kénnen, fiir die also X (w) < 0 fiir alle
w €  gilt. Jedes C* < 0 wird vom hedgebaren Claim 0 iibertroffen. Daher gilt L™ c K*. Die zweite
Identitiit ist elementar nachweisbar. Da allgemein aus C; c Cy folgt CY 5 CY, erhiilt man L* 5 (K*)°.

Ist p: Q - R e (K*)° so hat also p nur nichtnegative Funktionswerte. Ist 37, p(w;) = 0, so ist p = 0
und damit in cone(P) enthalten. Ist ¥ p(w;) > 0, so kann durch P*(w) = % fiir alle w € Q
ein Wahrscheinlichkeitsmaf definiert werden. Die Eigenschaft p e (K*)° impliziert IE*C* < 0 fiir alle
C* € K*. Dies impliziert, dass P* ein Martingalmaf ist und somit P* € P gilt. Daher folgt p € cone(P) =
cone(P). O

Auf die Identitit (K*)° = cone(P) wird nun das Bipolartheorem angewandt. Es ergibt sich

K= (K% = cone(’P)O = (cone(P)°.
Ist E*C* <0 fiir alle P* € P, so ist C* € cone(P). Da cone(P)° = K* gilt, folgt also C* € K*.

5.6 Beweis des Bipolartheorems

Beweis. Zeige die gegenseitigen Inklusionen. Ist z € C, so gilt < z,y >< 0 fiir alle y € CV. Dies bedeutet
aber, dass x € (C°)? ist. Somit folgt C c C°°. Wegen der Abgeschlossenheit der Polarmenge folgt C' c C°°.
Zum Nachweis der umgekehrten Inklusion betrachten wir ein x C% und nehmen an, dass z ¢ C gilt.
Dann koénnen wir die kompakte Menge {2} von der abgeschlossenen Menge C trennen. Es gibt also einen
Vektor 7 mit

sup < y,n>=f<<z,n>.
yeC
Wie beim Beweis des Satzes von Minkowski kann man sich leicht {iberlegen, dass 8 = 0 gelten muss. Dies
-0
impliziert n € C , was zu einem Widerspruch fiihrt, da 2 € C°° und < 2,7 >> 0 gelten miissten. O

5.7 Upper und lower hedging Preise
Sei C' ein Claim.
p+(C) :==inf{x e R: C” ist upper hedgebar zum Anfangskapital x}

und
p—(C) :==sup{z e R: C”* ist lower hedgebar zum Anfangskapital =}

Aus Satz 5.4 folgt, dass das Infimum bzw. Supremum angenommen wird.
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5.7.1 Satz
(a) Die Menge der upper hedging Preise ist ein abgeschlossenes Intervall [p,(C'), o0)

(b) Die Menge der lower hedging Preise ist ein abgeschlossenes Intervall (—oco,p_(C')]
(¢) p-(C) <p+(C)

Beweis. (7): Klar ist, dass die Menge der upper hedging Preise ein nach oben unbeschréinktes Inter-
vall bildet. Fiir die Abgeschlossenheit betrachte upper hedging Preise a,, mit a,, | a.
Zu zeigen ist, dass a ein upper hedging Preis ist.
Es gilt C* - a,, € £* fiir alle n € N und damit wegen Satz 4.12

E*(C* -ay) <0 fiir alle n € N und P* € P.
Wegen C* - a,, — C* —a folgt
0>E"(C*" -a,) — E*(C* -a) fiir alle P* ¢ P

Satz 5.4 liefert somit C* —a € KC*.
Also ist a ein upper hedging Preis.

(i1): (i) geht wie (4): a ist ein lower hedging Preis genau dann, wenn es ein K € G* gibt mit
a+K<C" < -(C*"-a)< K
< —(C"-a)eK”
Fiir eine Folge von lower hedging Preisen (a,) mit a, 1 a folgt also
E - (C*-a,)<0

fir alle P* € P.
Wegen C* - a,, — C* - a folgt somit

E*(-(C*"-a))<0
fiir alle P* € P. Dies impliziert aber —(C* —a) € K*. Also ist a ein lower hedging Preis.
(i41): Ist a ein lower hedging Preis und b ein upper hedging Preis, so gilt:

(C*-b)eK* < E"(C* -b) <0 fiir alle P* ¢ P

< sup E*C* <b
P*eP

und

-(C*-a)eK* < E*(C* —a) 20 fir alle P* ¢ P

< inf E*C* >a
P*eP

Prinzipiell ergeben sich also zwei Fille:
a) p-(C) = p+(C)
Dies ergibt sich, wenn C hedgebar ist

b) p-(C) <p+(C)

Dies ergibt sich, wenn C nicht hedgebar ist

5.8 Charakterisierung der arbitragefreien Preise

upper

Sei C' ein Claim. Kann aus x € R ein strikter | .,

-s Verkéaufer
fir den V{ZSager,

Dies ist die Motivation fiir folgende Definition:

hedge finanziert werden, so ergibt sich ein Arbitrage
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5.8.1 Definition (arbitragefreier Preis)

x € R heifit arbitragefreier Preis fiir C, falls durch x weder ein strikter upper, noch ein strikter lower
hedge finanziert werden kann.
Mit II(C') bezeichne die Menge aller arbitragefreien Preise fiir C.

I1(C) kann mittels des besten upper und lower hedging Preises charakterisiert werden:

5.8.2 Theorem
Fiir einen Claim C' gilt:

(a) C ist hedgebar zum Anfangskapital  genau dann, wenn
p-(C) =z =p.(C)
(b) Ist C hedgebar zum Anfangskapital x, so ist
EC*=x fiir alle P* e P

und

I(C) = {x}

(¢) Ist C nicht hedgebar, so gilt
p-(C) <p:(C)

und
I(C) = (p-(C),p+(C)) = {E*C" : P* € P}
Beweis. a): ’=": Sei C hedgebar zum Anfangskapital x.
=>3JHeH:x2+(H-S*)(N)=C"
=C"-zek”
= 1z ist ein upper hedging Preis.
Auch gilt:

z—(=(H-S")(N))=C"
=>-(C*-z)eKk*
= z ist ein lower hedging Preis.
Also gilt:
r<p (C)<p(C)<z
= p-(C) =p:(C)
<" Sei p_(C) =z = p.(C)
Wegen Satz 5.7.1 ist  ein upper und lower hedging Preis. Also ist C* —x ¢ K* und —(C* —x) € K*.
=C"-2xeK"n(-K*)=G*
Das heif3t, es existiert eine H € ‘H mit

C*=xz+(H-S")(N)
Also ist C hedgebar zum Anfangskatpital x.

b): Sei C hedgebar zum Anfangskapital x. Damit ist C* -z € G*.
Somit ist 0 = E*(C* —x) < E*C* =z fiir alle P* ¢ P
noch zu zeigen: II(C) = {x}
727 Es ist weder ein strikter upper, noch ein strikter lower hedge aus x finanzierbar, denn
EC*=x=E"(zx+(H-S*)(N)) fiir alle H € H.
Also ist z € II(C).
7c”: C* ist hedgebar zum Anfangskapital x, da

p-(C) =z =p.(C)

also existiert ein H € H mit z + (H -S*)(N) =C*.
Jedes y > x kann man zur Finanzierung eines strikten upper hedge nutzen, denn

y+(H-S*)(N)>a+(H-S)(N)=C*
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Also ist (x,00) NnII(C) = @.
Jedes y < x kann man zur Finanzierung eines strikten lower hedge nutzen, denn

y+(H-S*)N)<az+(H-S*)(N)=C*

Also ist (—o0,2) NTI(C) = @.
Da z e TI(C) ist also TI(C) < {z}

¢): Sei C nicht hedgebar. Wegen a) gilt p_(C) < p,(C)
727 Gilt p_(C) <z < ps(C), so kann weder ein strikter upper, noch ein strikter lower hedge aus x
finanziert werden.
Also ist z € II(C).
7c”: Ist x € II(C), so kann weder ein strikter upper, noch ein strikter lower hedge aus z finanziert
werden.
Hieraus folgt:

z e [p-(C),p+(0)]
P+(C)

Im Falle p_(C) < p+(C) kann 2 kein Randpunkt sein, da fiir o = 7* ;] ein strikter 1500 hedge
finanziert werden kann.

Also ist II(C) < (p_(C), p+(O).

Begriindung fiir den strikten upper hedge:

Wegen der Abgeschlossenheit existiert ein H € H mit

po(C) + (H-S*)(N) > C*

Es gilt: P*(p+ (C)+(H-S*)(N) > C*) > 0, da sonst H eine Hedgestrategie wiire, was p_(C) = p4(C)
implizieren wiirde.
Zeige weiter:

sup E*C” = p.(C)
PreP

und
A= (O)
Ist = < p,(C), so existiert kein upper hedge fiir C' mit Anfangskapital x = C* -z ¢ K*.
Wegen Satz 5.4 existiert ein P* € P mit
EC'-2>0=EC >z

Ist = > p_(C), so existiert kein lower hedge fiir C' mit Anfangskapital x. Also ist —(C* —x) ¢ K*.
Wegen Satz 5.4 existiert somit ein P* € P mit

EC*-z<0.
Also ist z > infpsep E*C*.
Bleibt noch zu zeigen: (p-(C),p+(C)) ={E*C* : P* ¢ P}
7c”: klar, da inf E*C* = p_(C') und sup E*C* = p,(C).
72”: Fiir x = p,(C') existiert ein strikter upper hedge, also existiert ein H € H mit

z+(H-S*)(N)>C*
und
P*(z+(H-S*)(N)>C")>0

und damit folgt
z>E"C* fiir alle P* € P

Fiir z = p_(C) existiert ein strikter lower hedge, also existiert ein H € H mit
z+(H-S*)(N)<C”
und
P (z+(H-S*)(N)<C*)>0

und damit folgt
x<E*C* fiir alle P* € P

Also ist p_(C) < E*C* < p,(C) fiir alle P* € P.
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5.9 Erweitertes Finanzmarktmodell

Wir betrachten ein arbitragefreies Finanzmarktmodell mit S = (S1,...,S4) als Preisprozess der risky
assets auf einem endlichen Wahrscheinlichkeitsraum. Mit Sy bezeichne das Numeraire Asset und mit
(Fr)n=o,....n den Informationsverlauf, wobei Fy trivial sei, d.h. P(A) € {0,1} fiir alle A € Fy. Im Markt
sei C' die Auszahlung eines Derivates zum Zeitpunkt N. Das Konzept der arbitragefreien Bewertung ist
bislang erklart worden durch das Fehlen von strikten upper-hedge bzw. strikten lower-hedge Strategien,
da solche zu Arbitragemoglichkeiten fiir den Verkaufer bzw. Kéaufer fiihren wiirden.

Alternativ kann man auch das Derivat bzw. dessen Auszahlung C' als neues Finanzgut interpretieren,
dass in den Markt emittiert wird. Die Frage ist dann, welchen Anfangspreis bzw. Preisprozess man fiir
dieses Derivat verlangen muss, damit der um den Handel mit C' erweiterte Finanzmarkt arbitragefrei ist.
Wie wir im folgenden sehen werden, sind diese beiden Konzepte der arbitragfreien Bewertung konsistent
in dem Sinne, dass sie die gleiche Menge an arbitragfeien Preisen generieren.

Das arbitragefreie Anfangspreisintervall fiir C' ist gegeben durch

I(C) = (p-(C), p+(C)) bzw. II(C) = {p(C)} falls p_(C) = p.(C)

Der Finanzmarkt soll um den Handel mit C' erweitert werden, so dass der erweiterte Finanzmarkt arbi-
tragefrei bleibt.
Der Claim wird als (d+1)-tes risky asset angesehen. Bezeichne diesen Preisprozess mit (Sg+1(n))n=0,....N-
Ist x € II(C), so existiert ein P* € P mit z = E*C*.
Durch Sg.1(n) = So(n)E*(C*|F,) fiir alle n = 1,..., N kann dann ein Preisprozess definiert werden, fiir
den gilt

Sq1(N) = So(N)C* =C

und
Sa+1(0) = So(0) E*(C*|Fo) =E"C" =x

—
=1

Weiter ist S7,,(n) = E*(C*|F,) fir n =0,..., N ein P*- Martingal und damit definiert P* ein dquivalentes
Martingalma$ fiir das erweiterte Modell (S, ..., Sq, Sq+1)-
Ist umgekehrt (Sg+1(n))n=-o,...,n ein Preisprozess fiir C' mit Sg.1(N) = C und ist das erweiterte Modell
arbitragefrei, so exisitiert ein dquivalentes Martingalmafl P* fiir das erweiterte Modell.
Insbesondere gilt

Sar1(n) = So(n)E*(C*|F,) fir alle n=0,..., N

Da P* auch ein dquivalentes Martingalma8 fiir das Ausgangsmodell ist und Sg;1(0) = E*C* ist, gilt
Sa+1(0) e II(C)

Insgesammt erhélt man:

5.9.1 Theorem
Der Finanzmarkt ist um den Handel mit C' arbitragefrei erweiterbar genau dann, wenn es ein P* € P gibt
mit
Sy (n) =E*(C*|F,) fiir alle n=0,...,N
5.10 Vollstandigkeit
Fiir hedgebare Claims ist der arbitragefreie Anfangspreis eindeutig bestimmt. Finanzmirkte, in denen
jeder Claim hedgebar ist, nennt man vollsténdig.
5.10.1 Definition (vollsténdig)
Ein Finanzmarkt heift vollstéindig, falls p_(C) = p,(C) fiir alle Claims C gilt.
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5.11 2. Fundamentalsatz der Preistheorie
Fiir ein arbitragefreies Finanzmarktmodell mit dquivalentem Martingalmafl P* sind dquivalent:
(i) Das Modell ist vollstéindig
(ii) Das dquivalente Martingalmaf ist eindeutig, d.h.
P ={P*}
(iii) Zu jedem P*-Martingal M existiert eine Darstellung der Form
M, =My+ (H-5")(n) fir alle n=0,...,N

mit vorhersehbaren H.

Beweis. (i) = (4i): Sei P ein weiteres dquivalentes Martingalmafl. Fiir A € Fy ist C = 1 450(NV)
ein Claim mit C* =1 4.
Also gilt:
P} (A) = EjC" © EPTE 0" = P (4)
=P =P

(it) = (1): P={P*} = p,(C) = p_(C) fiir alle C und damit ist jedes C' hedgebar

(i) = (#i7): Sei M ein (F,)-Martingal bzgl. P*. Dann ist C' = My So(N) ein Claim mit C* = My.
Wegen der Vollstéindigkeit ist C' hegebar. Also existiert ein 1 € R und ein vorhersehbares H mit

V0+(H~S*)(N)=C*=MN

Also gilt
Vo=E"(Vo+(H-S*)(N))=EC*=E*My =E*My = My

und
Mo+ (H-5")(n) =Vo+(H-5")(n) =E" (Vo + (H-S")(N)|Fy) = B (My|Fp) = My,
(i73) = (4): Ist C ein Claim, so ist
M, =E*(C*|F,) fir alle n=0,...,N

ein P*-Martingal.
Wegen (ii1) gibt es zu My = E*(C*|Fy) = E*C* ein vorhersehbares H mit

Mo+ (H-S*)(N)=C*

Also ist C hedgebar und der Finanzmarkt ist damit vollstéindig.
O

Man beachte, dass die Anfangsinformation durch eine triviale o-Algebra Fy gegeben ist. Deshalb sind
nur die Konstanten JFy messbar.

5.12 Satz
Das arbitragefreie CRR und das verallgemeinerte arbitragefreie CRR Modell sind vollstandig.

Beweis. Dies folgt aus der Eindeutigkeit des dquivalenten Martingalmafles, kann aber auch direkt durch
allgemeines Ausrechnen von Hedgestrategien bewiesen werden. O
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5.13 Hedgen im CRR Modell
Fiir den Aktienpreisprozess im CRR Modell gilt:

S(n) = S(O)urd* " | Z,=> Xy
k=1

Die Anzahl der Aufwartsspriinge in den ersten n Perioden wird hierbei durch Z,, gezéhlt. Gesucht ist ein
vorhersehbares H und Anfangskapital V mit

Vo (H-S*)(N) = ¢+ = 95)

C(L+o)¥
Fiir den Wert der Hedgestrategie nach n Perioden gilt:
Vi=Vo+(H-5)(n)
=E"(C*|F,)
=E"(E"(C"|Fn)|Fn)
=E"(ValFn)

Ma{kov * *
Eigen_schaft E (Vn+1|5(n))

= Y B (Vi 1lZ(n) = k) L{g(n)=5(0)urdnr}
k=0

Setze
v (n,k)=E"(V*(n+1)|Z(n)=k) =E*(C*|Z(n) = k) firalle n=0,....,N,k=0,...,n

v*(n, k) beschreibt den diskontierten Preis des Claims zum Zeitpunkt n, wenn bis dahin & Aufwirtsspriinge
erfolgt sind. Rekursiv kann v* berechnet werden durch.

Initialisierung:
1
*(NE) = —— kN =+ =0,..,N
V) = e s (SOutaY ) k=0

Firn=N-1bisn=0 ist
v(n,k)=p v (n+Lk+1)+(1-p v (n+1,k) k=0,..,n
Es gilt:
ad kzo 0" (1. k)L 2yt

Damit ist der diskontierte Wertprozess der Hedgestrategie algorithmisch berechnet.
Berechnung der Hedge-Strategie im CRR Modell:

C=g(S(N))

Vo + % H(k)AS* (k) = C*
k=1

n-1 n-1

H(n)= 3 H)L(z(n-1)-t) = 2, h(n k)L (z(n-1)-1)
k=0 k=0

h(n,k) wird rekursiv berechnet:

v*(n—1,k) ist der Preis in Einheiten des Numeraire Assets nach n—1 Perioden und k& Aufwiirtsspriingen.
Fiir die n-te Periode ist dann v*(n,k + X,,) zu hedgen.

Der Hedge berechnet sich aus

v (n-1,k)+h(n,k)AS*(n) =v*(n, Z,) auf {Z,_1 =k}
Dies fiihrt auf die Gleichungen

v’ (n-1,k) +h(n,k)S*(n - 1)(?2 -1)=v"(n,k+1)
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d

v*(n-1,k) +h(n,k)S*(n - 1)(1+Q

-1)=v*"(n,k)
Hieraus ergibt sich
v (n,k+1)—v(n-1,k)
S -D(% - 1)
v (n, k) v (n-1,k)

= ] fir alle k=0,....,n-1
S n-DG5 D

Beachte: Auf {Z(n-1) =k} ist

h(n, k) =

1
S (n-1)= 1~ QS(O)u’“d"‘l"“

Man erhélt also den Wertprozess und Hedge fiir den Claim C = g(S(N)) durch folgenden Algorithmus:
Initialisierung:
v (N, k) = g(Soude’k)(ﬁ)N fir k=0, N
Rekursionsschritt:
Fiir n = N -1 downto 0 und fiir £ =0 to n do
v (n,k)=p v (n+1,k+1)+(1-p )v*(n+1,k)
h(n+1,k) = v'(n+1,k+1)-v"(n,k)
S (5 1)
S*(n) = S(O)ukd"_kli—g
Der Wertprozess in Einheiten des Numeraire Assets fiir den Hedge erhélt man durch

V, = Zv*(nvk)]l{Z(n):k} n=0,.., N,
k=0

die Hedgingstrategie durch

n-1

H(n) =Y h(n,k)Liz(n-1)-k)
k=0

5.14 Algorithmische Berechnung des upper und lower hedging Preises im
Trinomialmodell

Prinzipiell kann wie im CRR Modell durch riickwértige Berechnung in den jeweiligen Einperiodenmodellen
die upper und lower hedge Strategie bestimmt werden.
1. Schritt: Einperiodenfall

USO
N =1, Anfangspreis Sy, Endkurse | mSy |, Zinsrate o mit d <1+ o < u.
dSy
uS u
Top =00 Tep ™
AS*(1) =5*(1)-5*(0) = %@" -So| =50 1%) -1|=5R
4y _ g d _q
1+o 0 1+p
—_—
R

Ein Claim C entspricht einem Vektor C = (¢q, ;2, c3)

C*
1
* * . * (&
C"=|c; mit ¢ =
* 1+ %
C3

Ein Anfangskapital V; und H Anteile im risky asset liefern einen upper Hedge, wenn

Vb +HSOR1 CI
Vo+ HAS* (1) >C* < | Vo + HSoR2 | 2| &
‘/0+HSOR3 C§

Der Durchschnitt der Halbrdume {(Vo, H) : Vo + HSoR; > ¢ mit ¢ = 1,2,3} entspricht der Menge der
upper hedgbaren Claims.

60 zum Inhaltsverzeichnis
Finanzmathematik WS 14/15 Dozent: PD Dr. Volkert Paulsen



lower hedging Strategien ufpper hedging Strategien

SoRy ey

T q p-(C) p+(C) Vo

g

Vo+ HSoRy = ¢] ©< (‘ﬁ;),( 01 ) >=c]

Vo+ HSoRy = c5 << (), (g.)5,) >= ¢
Vo+ HSoRs = c; << (), (sr,) >= ¢

Numerische Berechnung:
Berechnung der Schnittpunkte:

V(l) +H(1)S Ro =t cE—c* . c 3% ok
e (1) . ‘e W= 2 Vo(l) =cy— 2R,
VO + H\WSyRs = c3 So(Rg, - Rz) R3s - Ry
Entsprechend:
V0(2) + H(Z)S()Rl = CI
%(2) + H(Z)SQR?, = C;)
und:

Vi + HOSR, = ¢
VO(S) + H(S)SORQ = C;

Ist VIV = v® = v® soist p_(C) = p(C) =V und H- = H* = H = H® = H® = H®) der Hedge
fir C.

Andernfalls, bestimme 1(inks), m(itte), r(echts), sodass V" < V™ < v,

Entscheide, ob (Vo(m)7 H) ein upper Hedge ist, durch Vo(m) + H™S)R,, > [

Ist dies der Fall, so ist p,(C) = Vb(m) und H* = H™) der upper Hedge und p_(C) = Vo(l) mit H~ = H®
der lower Hedge.

Ist dies nicht der Fall, so ist p_(C) = Vo(m) und H~ = H™ der lower Hedge und p,(C) = VO(T) mit
H* = H™ der upper Hedge.
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2. Schritt Mehr-Perioden-Fall

N-Perioden

S(n) =501, Y:, (Y3) iid (Y; hat nur Werte in {m, u,d})

SOuZl(n)de(n)mn—(Zl(n)+Z2(n)

mit Z1(n) = Xp-1 Livi=ny, Z2(n) = Tior Livi=ay

Der Claim hat die Form C = g(S(N)). Rekursiv wird die upper und lower hedging Strategie berechnet:
Initialisierung;:

vt (N, (k,1)) =v (N, (k,1)) = (1 + 0) "N g(Sou*d'm™N-*+D) fiir k=0, N,1=0,--,N -k
Rekursionsschritt

for n = N — ldonwto0:

for k=0,...,nand for [ =0,....,.n—k

Berechne den upper hedging Preis, sowie den upper Hedge im Tinomialmodell mit Anfangskurs Sou*d'm
und Claim C* = (v (n+1,(k+1,1)),v"(n+1,(k, 1)), v (n+1,(k,1+1))).

Setze: v*(n, (k,1)) =p+(C) und h*(n+1, (k1)) =H".

Berechne den lower hedging Preis, sowie den lower Hedge im Trinomialmodell mit Anfangskurs Sou*d'm
und Claim C* = (v (n+1,(k+1,1)),v"(n+1,(k, 1)), v (n+1,(k,1+1))).

Setze: v (n, (k,1)) =p-(C) und h™(n+1,(k,1)) = H".

Es gilt:

v*(0,(0,0)) = p,(C) ist das Anfangskapital des minimalen upper hedges und

Hy = Y30 S 0t (n, (D)2, (n-1)=iy L Za(n-1)-13

die minimale upper hedge Strategie.

Insbesondere gilt damit:

n—(k+1)

n—(k+l)

P (C) + % H(K)AS* (k) > C*

k=1
Entsprechend:
v~ (0, (0, ())) p-(C) ist das Anfangskapital des maximalen lower hedges und
Hy = Z?ol "B (s (kD)) Lz, (ne1) iy L 2 (ne1) -0}

die maxunale lower hedge Strategie.
Insbesondere gilt damit:

_(C) + % H(k)AS* (k) < C*
k=1

5.15 Allgemeine Call-Formel

Betrachte einen Finanzmarkt iiber N-Perioden mit (S(n))n-0,..., v als Preisprozess fiir das risky asset mit
S(n) >0 fiir alle n. Sei (8(n))n=o,... v ein Geldmarktkonto und (Fy,)n-o,... n die Filtration.

B(n) =T1p-; 1+ o(k) mit vorhersehbaren Prozess o > -1.

Wir betrachten einen Call mit Basis K, d.h. C' = (S(N) - K)* ist die Claimauszahlung nach N Perioden.
Annahme: C ist hedgebar und das Modell ist arbitragefrei.

Dann gilt:

E*C* ist der eindeutige arbitragfreie Anfangspreis fiir C', wobei P* € P beliebig gewiihlt werden kann.

e (SO -E)
p(c)‘EC‘E( BN )

CLS(Y)
=E" B(N)]I{S(N)>K} 6(N)]1{S(N)>K}
=E"S"(N)L{s(ny>k) ~ B(N) a2 Hs(v)s i)

L S*(N) 1 1

=S(0)E” 5(0) =~ Lis(nysxy — KB(0, N)E” B(V) BO.N) Lis(ny>K}

mit B(0,N) =E* ﬂ(N)

Definiere dquivalente Mafle P und P; durch
dP;y _S*(N)
dP* |z, S(0)
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und
w1

dP* |5, ~ B(N) B(0,N)

Dann gilt: p(C) = S(0)P;(S(N) > K) - KB(0, N)P5(S(N) > K)
Im CRR Modell ist B(N) = (1+0)V, also P} = P*.
Somit folgt: p(C) = S(0)P;(S(N) > K) - K(1+0) VP*(S(N) > K)

S(N) _ . Z(N) jN-Z(N
500} =uZN)gq (N)

In(<2<) - NInd
S(N)> K < Z(N)> —292 ~

Inu-1Ind
=:bn
e 7. * s . . * . 3 . . *_(1+ )—d
Beziiglich P* ist Z(NN) eine Bin(N,p*) verteilte Zufallsvariable mit p* = *—2-<.

Im CRR Modell ist bzgl. P] der Zahlprozess (Z(n))n-o,....n €in Random Walk:

*

P u
1+0p0

Z(n)= ) X, Pi(Xp=1)=p]=
k=1

Beziiglich P} ist Z(N) eine Bin(N, p7) verteilte ZV.
Also gilt

p(C) = S(0)Bin(N, p1)((bn, 00)) - K ~ Bin(N,p")((by, 0))

_
(1+0)

Dies ist die diskrete Black-Scholes Formel.

6 Das Black-Scholes Modell

Ziel: Modellierung von Finanzmérkten in stetiger Zeit.

6.1 Beschreibung des Modells

Der Finanzmarkt besteht aus:
- einem Geldmarktkonto
- einem risky asset
- der Laufzeit T
Geldmarktkonto:

- Annahme: deterministische, stetige Verzinsung mit Rate r. Daher entwickelt sich das Geldmarkt-
konto geméf
B(t)=€e" 0<t<T

risky asset:
- Anfangskurs Sy > 0

- Annahme:
a) Die relativen Kursinderungen sind unabhiingig und zeitlich stationér.
b) Die Kursiinderungen sind stetig.

Hieraus folgt, dass der Kursverlauf (S(t))o<t<r des risky assets durch einen stochastischen Prozess der
Form

S(1) = S(0) exp(oW (1) - %0275)6‘” (T

mit p € R, 0 > 0 beschrieben werden kann.
(W(t))es0 bezeichnet dabei den Wiener-Prozess. Dieser ist definiert durch die folgenden Bedingungen:

(i) W(0) =0 P-fs.
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(ii) Fir beliebige 0 =tg < t1 < ... <t,, n € N sind
Wi, = Wiy Wiy = Wey oo, Wy, =W,
stochastisch unabhéngig.

(iii) Fiir alle 0 < s,t> 0 gilt:
Wit = W ~ Wy = Wy =Wy ~ N(0,1)

(iv) (Wi)es0 hat stetige Pfade

Wiso erfiillt das Modell die Annahmen?
Die relativen Kursédnderungen in t; < ts < ...t,,—1 <, sind gegeben durch

S(t1) = S(to)  S(tn) = S(tn-1)
S(te) 7 S(twa)

S(ti) - S(ti-1)
S(ti-1)

folgt die Unabhéngigkeit und zeitliche Stationaritéit der relativen Kurséinderungen aus (i) und (#).

Die Annahme b) ist erfiillt wegen (iv).

Dass das Modell aus den Annahmen folgt, ist nicht ganz so einfach zu beweisen.

Dies folgt aus der Tatsache, dass ein stochastischer Prozess X mit unabhéngigen und stationdren Zuwéchsen,
der stetige Pfade hat, notwendigerweise ein Wiener-Prozess mit Drift sein muss, d.h.

1 4
= exp(a(W(t;) - W (ti_1)) - 502(ti —ti1))et it

X(t)=cW(t)+uvt mit o >0 und v e R

Nur aus der Annahme a) ergeben sich sogenannte Levy-Prozess Modelle.

6.2 Approximation eines Black-Scholes Modells durch ein CRR Modell
Gegeben: Black-Scholes Modell mit den Parametern

o > 0 fur die Volatilitét
T > 0 fiir die Laufzeit
>0 fiir den Trend
r >0 fiir die Zinsrate
S(t) = S(0)e! exp(a Wy — %O’Qi)

Es soll in geeigneter Weise ein CRR Modell angepasst werden.
Teile hierzu den Zeitbereich in dquidistante Intervalle [¢;_1,¢;] ein mit Intervalllinge I,, = A, = %
Approximiere S(¢;) = S(jA) fir j =1,...,n durch

Sn(tj) _ S(O)u,ZL”(j)dzL_Z”(j)

mit Y7, ..., Y, iid, P(Y; = un) = pn = 1 = P(Y; = d,,).

J
Z”(j) = Z 1{Yk=un}
k=1

(Sn(t;))j=o0,...n definiert einen Aktienpreisprozess in einem CRR Modell.

Frage: Wie kann man u,,, d,, p, sinnvoll wahlen?

Ansatz: Wihle u,,, d,,, p, S0, dass der Erwartungswert und die Varianz der log Rendite bis T iibereinstimmen:
Es gilt:

Elog (‘Z,((g))) =E(uT + oWy - %azT) =(u- %&)T
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und

Var log (m) = o*Var Wr = o°T.
Im CRR Modell:
Sn(T) &
Elog =Elog [ | Y&
Sn(0) zgl
=E Z log Yy
k=1
=nlElogY:;
=n((logun)pn + (log dn ) (1 = py))
Var log = » Var (log(Y1)
5.0) &

=n (pn(logun)2 +(1-pn)(logd,)? = ((logu,)pn + (logd, ) (1 —pn))Q)

Dies fiithrt auf die Gleichungen

1 T
prlogu, + (1 -py)logd, = (n— 502)—
n
2T 1, T\
pulog?u, + (1-p,)log?dy) = 7 +((M—*02)*)
n 2 n

welche durch

12 21\ 2
- so°)T 1-pn T
logun:(u 27) +( Pn 9 )
n DPn, n
1
(- 30°)T ( Pn 02T)2
logd, = - .
n 1-p, n

geltst werden. .
Strebt p, — p€ (0,1), so ist d,, < "7 < wu,, denn
——

=1l+on
1

1-p, o2T)\? T

logun~( P 0) >r—

Dn n n

1

HT\2 T
logan_(p”,U ) <r—
1-p, n n

Im folgenden setze die Sprungwahrscheinlichkeit p,, = p € (0,1) fiir alle n € N.
Definiere mit dem diskreten CRR Aktienprozess (S, (%;));-o,...,» einen stochastischen Prozess (S, (t))o<t<r
durch S, (t) = S, (ti—1) fiir ;-1 <t <t; fir alle 1 <i < n.
Sei t € [0,T] fest. Fiir i,, = [ +] gilt:
in* <t< in+1 -
n n
in [
— —

n T
Mit Hilfe des zentralen Grenzwertsatzes fiir Dreieckschemata gilt
Sn(t) Sn(in L) Sa(in Ly 1 1, 1 1,
1 =1 - =log ——25 —ip—(pp— =0 )T +i—(p— =0°)T
BG0) B T5.0) 50y pT g ) T mg0)
—————————
—N(0,02t) nach dem CLT —(u-502)t

;T i, L .
da Elog(sgfjg;);)) = int(u-L10?)T und Var 1og(sgig;);)) = i Lo2T.
Also gilt:

log ( g:(((t)))) = N((p - %GQ)ta (7275) in Verteilung

65 zum Inhaltsverzeichnis
Finanzmathematik WS 14/15 Dozent: PD Dr. Volkert Paulsen



Wegen log (%) ~ N((u-50)t,0%t) folgt hieraus

Sp(t) -5 S(b).

n—o00

Fiir 0 < s1 < 89 < ... < s < T folgt wegen der Unabhéngigkeit und Stationaritit von (log ( g"%g )) 0
n 3=0,...,m

analog mit dem zentralen Grenzwertsatz

Sn(s1) Sn(sk) d S(s1) S(sk)
1 ey | — |1 ey 1
( Og( $.(0) )%\ 78.00) S0y )% s 0)
hieraus erhélt man, dass die Familie der endlich dimensionalen Verteilungen von S, gegen die Familie
der endlich dimensionalen Verteilungen von S konvergiert.

Genauer:
Fiir alle 0 <ty <to <...<t <T,k e N gilt:

(S (1), ooy Su(tr)) == (S(t1), -y S(t4))

Zusammen mit einer Straftheitsbedingung folgt hieraus die schwache Konvergenz von (S, )nen gegen S in
D[0, 7], mit

D[0,¢]:={x:[0,T] — R: x ist rechsseitig stetig und hat linksseitige Limiten}.

6.3 Eigenschaften des Wiener Prozesses
6.3.1 Definition (Wienerprozess bzgl (F;):s0)

Sei (2, F,P) ein Wahrscheinlichkeitsraum und (F; )¢»0 eine Filtration. Ein stochastischer Prozess (W (t) )0
heifit Wiener-Prozess bzgl (F;):»0, wenn gilt:

(i) W ist adaptiert bzgl (F:)ts0

(ii) W(0) = 0P-f.s.

(iii) W (¢t) - W (s) ist stochastisch unabhingig von F; fiir alle 0 < s < ¢
(iv) W(t)-W(s)~W(t-s)~N(0,t—s) firalle0<s<t

(v) W hat P-f.s. stetige Pfade

Im folgenden sollen Martingale bestimmt werden:

6.3.2 Satz
Sei W ein Wiener-Prozess bzgl (F;)¢s0. Dann gilt:

(i) W ist ein Martingal

(i) (W ()% - t)ss0 ist ein Martingal
(iii) (exp(YW (t) = 39%t))ss0 ist ein Martingal fiir jedes 6 € R.
Beweis. Die Aussagen erhilt man durch Ausnutzen der unabhéngigen Zuwéchse beim Wiener-Prozess.

(i)
EW(0)|Fs) = E(W (s) + W(t) - W(s)|Fs)

=EW(s)|Fs) + E(W(t) - W(s)|Fs)
=W(s) +E(W(t) - W(s)) fiir alle s <t

| —
~N(0,t-5)=0
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E(W (8)*[Fs) = B((W(s) + W (t) - W(5))|Fy)
= E(W(s)” +2W (s)(W () - W(s)) + (W (1) - W(5))*|Fs)
=W (s)* + EQW ()W (t) - W(s))|Es) + BE((W (1) - W (s))*|Fy)
= W(s)? +2W (s) E(W () - W (s)|Fs) +E((W (1) - W(5))*)

=EW ()-w(s))=0

=W(s)” + E((W(t) - W(s))?)

=W(s)* + E(W(t-s)%)

=W(s)*+(t-s)

<> EW(t)?-tlF,)=W(s)?-s fiir alle s <t

(iii)
E(exp(dW (1))[Fs) = E(exp(J(W (s) + W(t) - W(s)))|Fs)
= E(exp(JW (s)) exp(H (W (t) = W (s))[F5)
= exp(IW () E(exp((W () - W (s)))|Fy)
= exp(JW (s))E(exp(J(W (1) - W (s))))
=eXp(ﬂW(S))lE(eXp(ﬁ(W(t—8))))
)

=exp(VW(s)) exp(= ﬁz(t -5))

1
< E(exp(WW (¢) - 5192t)|F5) =exp(IW(s) - 51928) fiir alle s <t

Ziel: Konstruktion des dquivalenten Martingalmafies im Black-Scholes Modell

6.4 MaBwechsel

Sei (2, F,P) ein Wahrscheinlichkeitsraum und (F;)ss0 eine Filtration. Sei (Ly)¢»0 ein positives Martingal
bzgl P und P ein weiteres Wahrscheinlichkeitsmafl aus (2, F) mit
dP
—| =1L fiir alle t >0
dP| .
Dann gilt:
(i) Ist Y F;-messbar und existiert EY, so gilt:
E(Y Ly|Fs)

E(V|F) =

fiir alle s < t.

Dabei ist EY = [ YdP. E(Y|F;) ist der bedingte Erwartungswert von Y bzgl P.
(ii) (M;)sso ist ein P-Martingal genau dann, wenn (M;L;)o ein P-Martingal ist.

(iii) Ist (R:)t»0 ein positives P-Martingal mit ER; = 1 fiir alle ¢ > 0, so kann auf jedem Fr ein Wahr-
scheinlichkeitsmafl Q7 definiert werden, sodass

dQr
dP | £

=R; fir allet < T

Beweis. zu (i): Sel Y Fi-messbar und A € Fs.

/AYd@:fAYLtdIP:/]E(YLAFS)dIP’
f E(Y L/|F,) dP| 1
A

dP, da =—
LS d]P) Ls
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zu (ii):

(M) ist ein P-Martingal < E(M,|F,) = M, fiir alle s <t
1
<= E(MtLt|FS)L— = M, fiir alle s <t
< E(MiL|Fs) = ML fiir alle s < ¢
< ML ist ein P-Martingal

zu (iii): Wegen ERy = 1 definiert Qr(A) = [, RpdP fiir alle A € Fr ein zu P dquivalentes Wahr-

scheinlichkeitsmafl auf (2, Fr).
Fir Ae Fy mit ¢t <T gilt:

QT(A)=fARTdP:fA1E(RT|Ft)dP

- / R,dP
A

Also ist Ry = dg—]}f -
t

6.5 Girsanov Transformation (einfachster Fall)

Sei (W (t))ts0 ein Wiener-Prozess bzgl. einer Filtration (F;)sso. Sei fiir ¢ € R ein weiteres Mafi Py auf
(92, Fso) gegeben, mit dp‘9| = exp(JW (t) — $92¢) fiir alle ¢ > 0.

foo = O'(Ut&Ft)
Dann gilt: W (t) = W(t) — 9t fiir alle ¢ > 0 ist ein Wiener-Prozess bzgl. Py.

Beweis. Zeige die definierenden Eigenschaften des Wiener-Proesses:
(i) (W (t))ss0 hat stetige Pfade mit W (0) =
(i) W (t) - W(s) ist unabhingig von F, und N(0,t - s) verteilt.

u (i): klar

zu (ii): Sei g : R — R beschriinkt und messbar.

By (9 (1) - W()IF.) = Blg(W (1) - T (s) Ll ) -

mit L; = exp(9W (t) - %ﬁzt) s

- E(g(W () ~W(s) ~9(t - 5) 1)

= EB(g(W (1) - W(s) = 0(t -~ 5) xp(0(W (1) ~ W (s)) - 5 (¢ - 5))|7)
= Eg(W (1) ~ W (s) = 0(1 - 5) exp(I(W (1) = W(s)) - 3%t - 5))

= Bg(W (1~ ) ~ 9t - ) exp(1V (1 - 5) = L0 (¢ - 5))
=Eyg(W(t-s))

Hieraus folgt: W (t) - W (s) ist stochastisch unabhiingig von F, und genau so verteilt wie W (¢ - s).
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Dies ist eine N(0,t - s) Verteilung, denn
Eog(W (1)) = Bg(W () - 9t) exp(9IW8t) - %19%)
— Bg(W(t) - 0t) exp(I(W (£) - 0¢) + %v%)
:e%ﬂ%fg(x)e“N(-m,t)(dx)
=2 [ gy eXp(—%(ﬂH—ﬁt)Q)da:

(:zr)e_i’ﬂdx

1
- V2rt fg
- [ 9@N (0,1 (da)
Also ist W (t)N(0,t) verteilt bzgl Py.

6.6 Aquivalentes MartingalmaB im Black-Scholes Modell

Sei (92, F,P) ein Wahrscheinlichkeitsraum und (F;):so eine Filtration. Sei W ein Wiener-Prozess bzgl.

(Ft)ez0-
Sei [0,T] der Handelszeitraum eines Finanzmarktes. S(t) = S(0)e* exp(oW (t) - 20%t),0 <t < T der
Preisprozess eines risky assets mit

- S(0) > 0 Anfangspreis
- p € R Trendparameter
- o Volatilitat

Sei B(t) = €™, t > 0 der Preisprozess eines Geldmarktkontos mit Zinsrate r.

6.6.1 Definition (dquivalentes MartingalmaB)

Ein Wahrscheinlichkeitsmafl P* auf (€2, Fr) heiit Aquivalentes Martingalmafl genau dann, wenn

(i) P* ist dquivalent zu P auf Frp

(il) S*(¢) := % =e"8(t),0 <t < T ist ein P*-Martingal.

Ansatz zur Bestimmung des dquivalenten MartingalmafBes

dpP*
dP |7,

— exp(IW (t) - %19%)

Zu bestimmten ist 9:

Girsanov liefert
W*(t) =W (&) -9t,t>0

ist ein Wiener-Prozess bzgl P*.
Bzgl. P* gilt:
1
S(t) = S(0)e' exp(aW (t) - 50225)
1
= S(0)e! exp(a(W*(t) +t) - iozt)

= 5(0) exp(aW*(t) - %azt)ewf’ﬁ)t

Also
S*(t) = e S(t) = S(0) exp(aW* () — Lo?t)elitod=rt
und damit

(S*(t)) ist ein P*-Martingal genau dann, wenn
w-r
o

p-r+o9=0<9=-

Ergebnis: Fiir 0 = -#-" ist P* ein dquivalentes Martingalmaf.
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6.6.2 Bemerkung:
Beziiglich P* gilt:
1
S(t) = S(0)e" exp(c W™ (t) - §azt),t >0

Also ist S(t) ein geometrischer Wiener-Prozess mit Trend r und Volatilitéit o.

(Sg(%t)) )f 0 ist ein P*-Martingal und damit ein positives Martingal mit
>

L5 (t) _57(0) _
S0)  S(0)

Deshalb kann ein Mafliwechsel durchgefiihrt werden.
dpy | _ S'(t)
dP* |z, =~ S(0)

Da W* ein Wiener-Prozess bzgl. P* ist, gilt nach Girsanov

1
=exp(cW*(t) - 50215)

W (£) = W*(t) - t,t > 0

ist ein Wiener-Prozess bzgl. P.
Weiter ist

S(t) = S(0) exp(aW* () - %a%))e”
— S(0) exp(a(W** (£) + ot) - %a%)e”
= S’(O)e(””z)75 exp(acW™**(t) - %0275)

Der Aktienpreisprozess (S(t))t»0 ist ein geometrischer Wiener-Prozess

mit Trend/Drift p Volatilitit o bzgl. P.
mit Trend/Drift r Volatilitét o bzgl. P*.
mit Trend/Drift r + o2 Volatilitdt o bzgl. P%.

6.7 Bewertung von Claims

Ein Derivat ist ein Wertpapier, das eine zufillige Auszahlung C' zum Zeitpunkt 7' garantiert.

Im mathematischen Modell entspricht dies einer Fr messbaren Zufallsvariable C.

Annahme: E*|C*| < oo, wobei C* := e TC.

Klar ist: E*|C*| < 00 < E*|C| < o0

Es gilt: C ist durch eine selbstfinanzierende Handelsstrategie replizierbar. Zum Nachweis hierfiir benttigt
man die stochastische Analysis.

Deshalb gibt es einen eindeutigen arbitragefreien Preisprozess (p:(C))o<t<r- Analog zum diskreten Black-
Scholes Modell ist dieser gegeben durch

e (C)=E"(C*|F)  0<t<T
Insbesondere ist der Anfangspreis
Po(C) = B*(C) = B* (e TC)

6.7.1 Black-Scholes Formel

Betrachtet wird eine Calloption
C=(Sr-K)"

Zu bestimmen ist

E* (e (57~ K)*|F) = p(C)e ™
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Sei zunéchst t = 0:

E*(e_rT(ST - K)+|.7:t) = E*B_TTST]I{ST>K} - ]E*e_TTK]l{SpK}

= S(0)E" e TKE 1(g5,5x)

?:(F))ﬂ{SpK} -
=S(0)P:(Sr > K)—e "' KP*(Sr > K)

———— ————
(1) (2)

St =5(0) exp(cW7* - %OQT)6(7'+”2)T

zu (1)
P (S1 > K) = P( (S(o))“‘)g(sﬁ)))
(0 Wwr' —fa T+(7"+ff2)T>1°g S(o )
£ log Lo))* 50°T = (r+0°)T

\/— oNT

~N(0,1)

log S(O) (r+io®)T -3

:<I> \/_ mit ®(a) = E_oo e 2% dx

zu (2):

P*(Sr > K) =P* (1og(SS(€)) > 1og(5ﬁ))))
1, K
=P* (O’WT—QU T+1"T>log(s(0)))

Wi 1og( ())+ o2 T

=P* >
VT oT
——
~N(0,1)
e 1og(s(0)) (r-ioh)T
B o T

Ergebnis: Bezeichnet ¢(Sy, T, K) den Anfangspreis einer Calloption mit Laufzeit T, Basis K und An-
fangsaktienkurs Sy, so gilt:
(S0, T, K) = So®(h1(So,T)) - Ke ™" ®(ha(So, T))
lo g(s(o)) +(r+ 20T
oVT
log ( S(O)) +(r-310H)T
oT

mit hl (S(), T) =

und hQ(SQ, T) =

Da der Aktienpreisprozess, gegeben F;, sich verhilt wie in einem Black-Scholes Modell mit Laufzeit T -
und Anfangskurs S; ergibt sich fiir den Callpreis zum Zeitpunkt ¢

pe(C) =c(S, T -t,K)
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genauer kann man mit Hilfe der Markoveigenschaft zeigen:
pi(C) =" (7" (S - K)*|F)e™ = e "TDE((Sp - K)|F)
= e "R ((Sy - K)*|S,)
=E" (""" (Sr - K)*|S})
= C(StaT_taK)
denn

B’ ((Sr - K)'IS, = 2) = B ((Sr— - K)*1S0 = )

6.7.2 Greeks

Eigenschaften des Callpreises: Sei ¢(x,t,0, K) der Preis einer Calloption mit Laufzeit ¢, Volatilitit o,
Basis K und Anfangskurs der Aktie x.

0 \
K

Eigenschaften fiir ¢(z,t,0,K) = 2®(hi(z,t)) - Ke "' ®(ha(z,t)):
o e
i) %gg—c(x,t,U,K)—(x K)

i) Qe+ %azx28§c+ rad; =re auf (0,00) x (0, 00)
die Black-Scholes Differentialgleichung. Diese folgt aus der Identitét

vp(h(@,t)) - Ke " p(ha(2,1)) =0

ili) Delta:
c ist strikt wachsend als Funktion des Aktienanfangskurses mit

A=0,c=®(h1)>0
Das Delta gibt den Aktienanteil in der Replikationsstrategie an. Setze
H(t) = 0,e($1, T ~1), W(t) = ~Ke T D (hy(S, T 1))

. Dann wird durch (U(¢), H(t))o<t<r €ine selbstfinanzierenden Handelsstrategie definiert, welche
die Calloption repliziert. Also

Vi((H,¥)) = H(t)S(t) + ¥(t)B(t)
= S()A + W (t)B(t)
= SO)P(h (S(t), T -t)) - Ke " T DD (hy(S(t), T - t))
= c(S(t), K, T -t)

Preis der Calloption mit Félligkeit 7" in ¢ bei S(t).

iv) Gamma:
[:=0%c=p(hi(x,t)0.hi(x,t) >0
I' ist ein Ma8B fiir die Anderung des A und gibt in der Anwendung an, wie sensitiv der A-Hedge
gegeniiber einer Anderung im Aktienanteil ist. Deshalb ist das Gamma im Risikomanagement eine
wichtige Kenngrofle.

v) Theta:
O :=0;c= ;—\;Zgo(hl(x,t)) + Kre "' ®(ho(x,t)) >0
Der Preis der Option ist monoton wachsend in der Laufzeit.

79 zum Inhaltsverzeichnis
Finanzmathematik WS 14/15 Dozent: PD Dr. Volkert Paulsen



vi) Lambda/Vega:
A= % = zp(hi(z,t))Vt>0
Eine hohere Volatilitdt signalisiert eine erhdhte Unsicherheit im Markt, die zu héheren Options-
preisen fiihrt.

vii) Rho:
0= % = Kre "' ®(hy(z,t)) >0
Der Optionspreis wéchst mit der Zinsrate.

6.7.3 Smile-Effekt

Das Black-Scholes Modell ist ein sehr einfaches Modell zur Beschreibung von Aktienkursen.
Frage: Erkliart das Modell die empirischen Phénomene?
Antwort: Nein, da der beobachtbare Smile-Effekt im Black-Scholes Modell nicht vorkommt.
Fixiere hierzu eine Aktie mit Anfangskurs z, einer Laufzeit T und die zur Laufzeit gehoérende Zinsrate 7.
Betrachte den Callpreis als Funktion der Basis.
Zu verschiedenen Basispreisen K sind Marktpreise cyparke (K) der dazugehorigen Option abrufbar.
Zu jedem K kann die Modellvolatilitiit o(K) so bestimmt werden, dass Modellpreis und Marktpreis
iibereinstimmen, d.h.
c(z, T,0(K),K) = cMarkt (K)
o(K) heifit implizite Volatilitéit.
Wiire das Black-Scholes Modell exakt richtig, so miisste o(K) konstant sein. Man stellt jedoch fest, das
o (K) folgenden Verlauf hat:

o(K)

beobachtete Volatilitit

........................................................................................... BlaCk-SChOleS Voldtlhtdt

]

A~
~—

T

T .
at tﬁce:noncy out of the money Basis

in the money

Verbesserung: Ersetze die globale Volatilitét o durch eine lokale Volatilitdtsfunktion (t,z) = o(t,x).
Es ergibt sich dann bzgl. eines dquivalenten Martingalmafies P* der Aktienpreisprozess

dS(t) = S(t)(rdt + o (t, S(1))dW™* (1))

Dieser wird gelost durch
t 1 rt
S(t) = S(0)e" exp (/ o(u, S(u))dW*(u) - 5 f Uz(u,S(u))du)
0 0

6.7.4 Bewertung von Barriere Optionen

Eine Barriere Option ist ein Beispiel fiir ein Derivat, dessen Auszahlung am Ende auch durch dessen
Verhalten wihrend der Laufzeit bestimmt wird. Deshalb ist eine Bewertung dieser pfadabhéngigen Aus-
zahlungsverpflichtung schwieriger als die eines pfadunabhéngigen Calls. Gegeben sei ein Black-Scholes
Modell mit Handelszeitraum [0,7] der Form

S(t) = Soe“texp(aW(t)—%azt),
CONEI

fir alle 0 <t < T.
Ein down and out Call mit Basis K, Laufzeit T und Barriere B < Sy ist ein Claim mit Auszahlung

C=(S(T) - K) 1{int,er S(t)>B} -
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Fiir die Bewertung kann eine analoge Vorgehensweise wie beim Call durchgefiihrt werden. Es ist die
abdiskontierte Claimauszahlung beziiglich des dquivalenten Martingalmafles P* zu berechnen. Es gilt

po(C) E*e"(S(T) = K) Liintrer 5(1)>B)
E*e” " S(T)1(s(rysK.infrer s(t)>5} — Ke TP (S(T) > K, }g;s(t) > B)
SoP;(S(T) > K, inf S(t) > B) - Ke™""P* (S(T) > K, inf S(t) > B),

< <

wobei das Maf§ P’ durch die P-Dichte Sioe_TTS (T) definiert ist. Weiter erhilt man durch elementare
Umformungen

T T
P*(S(T)>K’§2£5(t)>3) = P*(-log Séo) <lo g% -in flog Sé(]) <log%)

= P*(X(T)< —logs—,supX(t) < flog&)
o K er o B

mit X (t) = -1 log =5 LG

und die gesuchte Wahrscheinlichkeit ergibt sich aus folgender

-W*(t) + (50 — Z)t. Der Prozess X ist ein Wiener-Prozess mit Drift a = %0’ -z
6.7.5 Bemerkung:

Ist X ein Wiener-Prozess mit Drift a € R beziiglich einem Wahrscheinlichkeitsmafl P, so gilt fiir alle
rzeR,z>x

xz—-al
VT

Eine Anwendung dieser Bemerkung liefert also

z—-2z-aTl

_ €2az
) o( Vi

P(X(T) < x,iETEX(t) <z)=d( ). (1)

1o aT 1 S, 1lo ——210 So _qT
¢<%>—exp<2aglog—o>@< 8 B

B . \/T
log +(r- faz)T) So )Lu logS—K +(r-1oHT
oNT B

oVT

Beziiglich P’ kann analog argumentiert werden, da der Aktienkurs ein geometrischer Wiener-Prozess mit
Trend 7 + 0 und Volatilitéit o ist. Es ergibt sich

)

P*(S(T) > K, inf S(1) > B)

= 9( o

+(r+ 02)T

oT

og 2+ (r+30°)T So < 2b gS

v T R G ORL

o K

P;(S(T) > K, inf S(1) > B) - o8B E

mit b=-- - 1g.
o 2

Fasst man alle Terme zusammen, erhilt man fiir den Anfangspreis p(C') der Barriere Option
S S2
p(C) = C(SOa T7 K) - (EO)QbO-C(S(h T7 K?%)a

da %‘1 = % +2 ist.
Es verbleibt, die Bemerkung zu beweisen.

Beweis. Die Aussage folgt aus dem Spiegelungsprinzip und einer Anwendung des Satzes von Girsanov.
Zunichst betrachten wir den Fall einer Drift ¢ = 0. Dann ist X ein Wiener-Prozess W. Wir bezeichnen
mit M (¢t) = sup,., W(s) das sogenannte Running Maximum von W. Fiir z € R und z > z gilt unter
Ausnutzung des Spiegelungsprinzips

P(W(T) <z, M(T) > z) IP’(W(T) >z+z-x,M(T) > z)
= P(W(T)>2z-=x sup W(t) >2) =P(W(T) > 2z - )

)

T -2z

VT

o

Hierbei ist fiir
T=inf{t >0: W(t) = z}
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W (t) firt<r

W(r)-(W(t)-W(r) firt>r (2)

W(t) = {

der an 7 gespiegelte Prozess. Das Spiegelungsprinzip besagt, dass W wieder ein Wiener-Prozess definiert.
Somit folgt
PW(T)<z,M(T)<z) = PW(T)<z)-P(W(T)<z,M(T)>2)
T T -2z
O(—=) - P(——=).
)

Im zweiten Schritt wird Girsanov angewendet. Da W(t) = X (¢) —at,t > 0 einen Wiener-Prozess beziiglich
P definiert, kann mittels

dP,

a
fiir alle ¢ > 0 ein Wahrscheinlichkeitsmafl P, auf Q, Fr) definiert werden. Girsanov liefert, dass W(t) =
W (t) — at + at ein Wiener-Prozess mit Drift a beziiglich P, ist. Somit gilt

P(X(T)<x,supX(t)<z) = P,(W(T)<z,M(T)<z2)

=exp(aW(t) - %aQt)

1
W(T) - >a®T)dP
.[{W(T)s:p,M(T)SZ} exp(aW (T) 2a )

mit g(y) = exp(ay — %aQT)l(_w@](y). Zu bestimmen ist die bedingte Verteilung von W (T') - gegeben
{M(T) < z}. Wegen des ersten Schrittes gilt fiir die bedingte Verteilungsfunktion

P(W(T) |M(T) ) 1 falls © > 2 .
<z I <z)= PN
% falls < 2.

Durch Differentiation nach = erhélt man die bedingte Dichte

Y Yy -2z
(p(—=) — Nia

h(y) VT

1
T VTP(M(T) < 2) )

fiir alle y < z. Somit folgt
Eg(W (M) 1y = POIT) <2) [~ g@)h(y)dy
T o) o ey - b
= [ Rl e esplay - e Ty

(I)(QJ"\—/;T)_€2az(1)(x_2’2\/1_:QT)7

denn
[ 1 (L)d
o VTV 1
= Elgw(r)<sy exp(aW(T) - 502T)
r—al

= P (W(T)<z)=P,(W(T)-aT <z —-aT)=P( Ve

)

und
1 Yy -2z
— d
[ _ ﬁw( Nia )dy 1
= El{w(r)s2:c0) exp(a(W(T) +22) - §a2T)
= exp(2az)P,(W(T) +2z < x)

= exp(QaZ)Q(%)
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6.8 Das Black-Scholes Modell fiir 2 Aktien
- Handelszeitraum [0, 7]
- Informationsverlauf (F;)o<i<T
- Geldmarktkonto 3(t) =e™, 0<t<T

- Unabhéngige Wiener-Prozesse W1, W, die die Aktien treiben

- S1(t) = S1(0)er exp(o(eWa(t) + /1 + ? Wi (t) - 5oit)
Sa(t) = S2(0)e2t exp(cWa(t) - So3t)
mit
0<t<T
0< 51(0),52(0) Anfangskurse
W1, o € R Trendparameter
01,09 Volatilitdten

lo] < 1 Korrelation zwischen den Wiener-Prozessen

6.8.1 Bemerkung:

B(t) = oWa(t) + /1 - 0>W1(¢),0 <t < T ist ein Wiener-Prozess bzgl. (F;)o<i<r-
Cov(B(t), Wa(t)) = Cov(oWa(t), Wa(t)) = ot.

Bestimmung des dquivalenten Martingalmafles:
Ansatz: Zweimalige Anwendung des Satzes von Girsanov:
1. Schritt: Girsanov auf Aktie 2 anwenden:

Py,

1
P |7, = exp(U2 Wa(t) - 579§t)

Dann ist nach Girsanov

Wg*(t) = Wg(t) —ot, t>0

ein Wiener-Prozess bzgl. Py, .

Weiter sind W3 (¢) und Wi (¢) unabhéngige Wienerprozesse bzgl. Py,.
Beweis. Fiir h,g: C[0,T] — R messbar und beschrinkt.

B h (W (Dosesrg (Wi (D)ostsr) = [ (W5 (O)octsr )g (W) osvsr ) exp(02Wa(T) - S03T) dP

Dichte
= [ B3 (1))osesr) exp(B2Wa(T) = STV [ g((Wi(1))osecr)dP
= Eg, h((W5 () o<t ) Eo, g(W1(t))osesr)

da By, g(W1i(t))o<t<r) = / g((W1())ost<r) exp(P2Wa(T) ~ %19§T)d]P’

= By((W(1))oster) Bexp(d1W5(T) - L03T)

=1

=Eg((W1(t))ost<T)

= W3 und W; sind stochastisch unabhéingig
= W ist bzgl. Py, genauso verteilt wie bzgl P.
= Behauptung O
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Beziiglich Py, ist:
1
SQ(t) = 52(0)6”2’5 eXp(O'QWQ(t) - io—gt)
1
= S5(0)e!" exp(aa Wy (t) - iagt)eﬂzazt

e " S(t) = S*(t) ist ein Martingal, genau dann wenn

H2 —T
g2

M2+19202=T©192=—

2. Schritt Wende Girsanov auf Aktie 1 an (genauer: auf Wh):
Fiir 91 € R definiere:

dP
%’:2) . = exp(1 W1 (t) - 20%t), 0<t<T

Girsanov liefert:

Wl*(t) :W1(t)—191t, t>0

ist ein Wiener-Prozess bzgl. Py, 4,)-

Analog zum 1. Schritt gilt:

Wi und W3 sind stochastisch unabhéngige Wiener-Prozesse bzgl. P(y, 4,)-
Beziiglich P(y, »,) gilt:

Sa(t) = S2(0)e™ exp(a2 W (1) - th) dady = -2

02
S1(8) = 51(0)e" exp(a1 (W5 (1) + /1= @Wi (1)) - %a%t)
= 51(0)e" exp(o1((oWy (t) +at) +/1 - 02(W] (1) + V1t)) - %th)
= 81(0)e"  exp (o1 09at + /1 — 020101t) exp(a1 (oW5 (t) ++/1 - 02 W (1) - %O’lt))

Also ist (€7"S1(t))s0 = (S*(t))¢s0 ein Martingal genau dann wenn

1751 +01192Q+\/1+Q21910'1 =r
1 (,ul—r P —1T )
- 1%

V1-02\ 01 02

Also ist P* = P(y, g,) ein dquivalentes Martingalmaf.

<:>191=—

6.8.2 Bemerkung:

P* ist eindeutig bestimmt.

6.8.3 Bewertung einer Exchange-Option

Claim C = (S3(T) - S1(T))*
Beziiglich P* gilt:
Sa(t) = S2(0)e" exp(a2Ws (t) — 5051)
S1(t) = S1(0)e"t exp(o1 By (t) - falt)
mit Bi(t) = oW5 (t) +/1 — 0>W7 (t) Wiener-Prozess bzgl. P*.
Es gilt:
Ee™(S5(T) - S1(T))*
=E e So(T) s, ()51 (Tyy — E € S1(T) s, (1)>5, (1)}
= S2(0)P3(S2(T) > S1(T)) - S1(0)P7(S2(T) > S1(T))

., dP} S5 (t *
Mit dIPE . = Si((0; = exp(o‘QW2 (t) — 10275)
dP} ST
und 5 . si((é; =exp(o1Bi(t) - 2oit)
Wegen
So(T S5(0 1 1
tog 22T _ g 52 )+02W2*(T)_7U§T—olBl(T)+fafT

S(T) ~ 8 5,(0)

=1lo §QEO;+(02 010)Wi (T) = o1\/1 - 2>W(T) + = (al oHT
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gilt:
P3 (S2(T) > S1(T))

= P; (log 22 > 0)
=P; ((02 - 10) W5 (1) - 01/1= W (T) > log 5200 + L(o% - 03)T)

=P; (02 - 010) (W3 (T) = 05T) - 01\/T= W (T) > log 550 - 1 (03 + 03)T + 510207 )

S1(0
o | 20V (1) - 02T) 0 T W (1) | Yo i~ 3 (0 + oD)T + 100l
2 \/T(O’%—QQ(J'lO'Q +0%) \/T(O’% - 200102 +0%)

~N(0,1)
Sa
log Slggg + %(Uf +02)T - o1090T

VT (0% 200105 +0?)

Beziiglich P} sind
W5 (t) — 10t und Wi (t) — o11/1 — 0%t mit ¢ >0
unabhéngige Wiener-Prozesse.
Dies ist an dieser Stelle nicht klar und kann (vermutlich) mit dem einfachen Girsanov nicht bewiesen
werden.
Somit gilt:

PT (S2(T) > S1(T))

* So (T
= P; (log 223 > 0)
=P ((o2 - 010)W5(T) —01\/1 - 2W{(T) > log g;gg; + %(a% - U%)T)

=Pi ((02 ~010) (W3 (T) - 010T) = 01/ 1 = *(WT(T) - 01/1 - 0*T)

> log ‘2;58; +2(0% - 03)T + 010> T - 510207 + 05 (1 - Q2)T)
S1(0
_pe | (02- 010 (T) - 010T) - 01 T=2OW7 (1) 1 /T=°T) | 08 555 ~ 30 + o)T ~ qrra0l
' VT (02 200109 + 02) VT (02 200109 + 02)

~N(0,1)
) log gfgg; - %(0’% +03)T + 01090T
\/T(ag - 200102 +07)

73 zum Inhaltsverzeichnis
Finanzmathematik WS 14/15 Dozent: PD Dr. Volkert Paulsen



	Informelle Einführung
	Option
	long, short Position
	Payoff- und Profitdiagramme
	Beispiele
	Strategien
	Beispiele
	Arbitrage
	Beispiel
	Grundannahme
	Replikationsprinzip
	Nullkouponanleihen
	Put-Call-Parität
	forward
	Digitale Option
	Eigenschaften des Callpreises
	Eigenschaften des Putpreises
	Zinsmethoden
	lineare Zinsmethode
	Beispiel

	periodische Zinsmethode
	stetige Zinsmethode
	konstante Zinsrate r:
	nicht konstante Zinsrate:


	Festzinsanleihe
	Variabel verzinsliche Aktie (/Floater/ FRN (Floating Rate Note))
	Swap

	Aktuarielle Bewertung von Zahlungsströmen
	Zahlungsströme und deren Bewertung
	Definition (Zahlungsstrom)
	Personenversicherung und deren Bewertung
	Definition (Personenversicherung)
	Interpretation
	Definition (Barwert, fair)
	Äquivalenzprinzip
	Klassische Beispiele
	Todesfallversicherung
	In der Praxis
	aufgeschobene Rentenversicherung
	Erlebensfallversicherung
	gemischte Versicherung (kapitalgebundene Lebensversicherung)

	Beispiele im Überblick
	Deckungskapital
	Definition ((prospektives) Deckungskapital)
	Bemerkung
	Beispiele
	Todesfallversicherung
	Todesfall mit unbegrenzter Laufzeit
	Erlebensfallversicherung
	gemischte Versicherung
	aufgeschobene Rentenversicherung

	Personengemeinschaften/ Verbundene Leben
	Beispiel
	Bemerkung
	Beispiel
	Konkurrierende Ausscheideursachen
	Definition (Personenversicherung unter m konkurrierenden Risiken)
	Interpretation
	Definition (stationär)
	Lemma
	Beispiel: Invalidenrente

	Exkurs: stochastische Prozesse
	Definitionen
	Definition (Wahrscheinlichkeitsraum, Zeitparameter, Zustandstraum, stochastischer Prozess, Filtration, Informationsverlauf, Information, adaptiert)
	Das N-Perioden-CRR Modell (Cox-Ross-Rubinstein Modell)
	(geometrischer) Random Walk
	Bedingter Erwartungswert
	Existenz und Eindeutigkeit
	Beispiel
	Faktorisierter bedingter Erwartungswert
	Stochastischer Kern
	bedingte Wahrscheinlichkeiten und bedingte Verteilungen
	Beispiel: Diskrete Zufallsvariablen
	Lebesgue-Dichten
	Eigenschaften der bedingten Erwartung
	Bestapproximation
	Martingale
	Beispiele
	Random Walk
	geometrischer Random Walk
	Stoppzeit
	Beispiel
	Gegenbeispiel
	Martingal als Glücksspiel
	Definition (beschränkte Stoppzeit)
	Satz
	Optional Sampling
	Beispiel: Irrfahrt auf Z
	Satz (Optional-Sampling-Theorem)
	Anwendung
	Vorhersehbare Prozesse
	Doob-Meyer Zerlegung

	Diskrete Finanzmarktmodelle
	Beschreibung des Finanzmarktes
	Selbstfinanzierung
	Beispiele für selbstfinanzierende Strategien
	Buy and hold Strategie
	short selling and hold Strategie
	Kaufe Aktie 1, halte diese k Perioden und tausche danach in Aktie 2, falls S2(k)<S1(k) und halte diese bis zum Ende


	Beispiele
	Das N-Perioden CRR Modell
	Mehrdimensionales CRR Modell
	Das verallgemeinerte CRR Modell (Markov-Prozess)

	Das diskontierte Finanzmarktmodell
	Charakterisierung der Selbstfinanzierung
	Satz zur Selbstfinanzierung
	Arbitrage
	Bemerkung
	Folgerung
	Satz

	Beispiele
	Satz

	Äquivalente Maße
	Äquivalentes Martingalmaß
	Separationssatz von Minkouski
	Umformulierung der Arbitragefreiheit
	Äquivalenzen
	1. Fundamentalsatz der Preistheorie: Das No Arbitrage Theorem
	Bestimmung von äquivalenten Martingalmaßen
	CRR Modell


	Bewerten von Derivaten
	Claim und Hedge
	Satz
	Superreplizierbare Claims
	Satz
	Das Bipolartheorem
	Definition ((konvexer) Kegel, Bipolar)
	Das Bipolartheorem

	Beweis des Bipolartheorems
	Upper und lower hedging Preise
	Satz

	Charakterisierung der arbitragefreien Preise
	Definition (arbitragefreier Preis)
	Theorem

	Erweitertes Finanzmarktmodell
	Theorem

	Vollständigkeit
	Definition (vollständig)

	2. Fundamentalsatz der Preistheorie
	Satz
	Hedgen im CRR Modell
	Algorithmische Berechnung des upper und lower hedging Preises im Trinomialmodell
	Allgemeine Call-Formel

	Das Black-Scholes Modell
	Beschreibung des Modells
	Approximation eines Black-Scholes Modells durch ein CRR Modell
	Eigenschaften des Wiener Prozesses
	Definition (Wienerprozess bzgl (Ft)t0)
	Satz

	Maßwechsel
	Girsanov Transformation (einfachster Fall)
	Äquivalentes Martingalmaß im Black-Scholes Modell
	Definition (äquivalentes Martingalmaß)
	Bemerkung

	Bewertung von Claims
	Black-Scholes Formel
	Greeks
	Smile-Effekt
	Bewertung von Barriere Optionen
	Bemerkung

	Das Black-Scholes Modell für 2 Aktien
	Bemerkung
	Bemerkung
	Bewertung einer Exchange-Option



