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Abstract

Credit Risk+ ist neben Credit Metrics ein verbreitetes Kreditrisikomodell, dessen
Ursprung in der klassischen Risikotheorie liegt. Deshalb wird in dieser Einführung
diese Zusammenhänge aufgedeckt, die hoffentlich ein gutes Verständnis des Modells
erlauben.

Wir betrachten ein Kreditportfolio bestehend aus n Kreditverträgen. Durch Credit Risk+
wird nicht nach Bonitätsänderung differenziert, nur bei Ausfall eines Kreditnehmers wird
ein Verlust quantifiziert. Dafür wird konsequent eine Portfoliosichtweise durchgeführt und
eine exakte numerische Möglichkeit gegeben, die Portfolioverlustverteilung zu berechnen.
Wir gehen das Modell in mehreren Schritten an.

1 Unabhängige Kontrakte

Zunächst nehmen wir an, daß alle Kontrakte sich unabhängig verhalten. Dann können
wir den Portfolioverlust durch ein individuelles Modell der Risikotheorie beschreiben.

Der zufällige Verlust des i-ten Vertrages entspricht dabei einer Zufallsvariable

Xi = EADi · LGDi · Li , (1)

Wir nehmen dabei an, daß der exposure at default und loss given default nicht zufällig
sondern Konstanten für das Modell sind. Damit können wir dann den zufälligen Portfo-
lioverlust ausdrücken durch

LPf =
n∑

i=1

ciLi (2)

mit c1 = EAD1·LGD1, · · · , cn = EADn·LGDn und stochastisch unabhängigen L1, · · · , Ln.
Die Verlustwahrscheinlichkeit eines einzelnen Kredites ist für das Modell bekannt und wird
mit λ1, · · · , λn bezeichnet. Es gilt also

P (Li = 1) = λi = 1− P (Li = 0)

für alle 1 ≤ i ≤ n. Wegen der Unabhängigkeit ist prinzipiell die Portfolioverlustverteilung
als Faltung der Verteilung der Summanden berechenbar. Für große Portolios ist dies aber
numerisch zu aufwendig. Eine Verbesserung erhält man, wenn man das Portfolio nach
den möglichen Verlusten gruppiert.
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1.1 Gruppierungsschritt

In der Regel ist die Anzahl an möglichen Verlusten wesentlich geringer als die Anzahl an
Verträgen im Portfolio. Man wählt eine Maßeinheit E und erhält

{c1, · · · , cn} = {E, 2E, · · · , KE}

mit K sehr viel kleiner als n. Dann partitioniert man die Verträge nach deren möglichen
Verlusten durch Einführung von Gruppen G1, · · · , GK mittels

i ∈ Gj ⇐⇒ ci = jE .

Damit erhalten wir für den zufälligen Portfolioverlust

LPf =
K∑

j=1

jE
∑
i∈Gj

Li = E
K∑

j=1

jYj , (3)

wobei Yj =
∑

i∈Gj
Li die zufällige Anzahl an Ausfällen in der Gruppe Gj bezeichnet. Die

Verteilung von Yj kann als Faltung von Bernoulliverteilungen numerisch einfach berechnet
werden. Durch Faltung dieser K Verteilungen kann dann die Portfolioverlustverteilung
prinzipiell berechnet werden. Man hat dadurch einiges an Komplexität eingespart, wenn
K sehr viel kleiner ist als n. Trotz der Verbesserung ist die numerische Berechnung der
Verteilung immer noch aufwendig. Deshalb führt man eine in der Risikotheorie übliche
Approximation durch ein kollektives Modell vom Poissontyp durch.

1.2 Approximationsschritt

Approximiere Yj für jedes j durch eine Poissonverteiltes Nj mit gleichem Mittelwert.
Wähle also den Parameter µj von Nj durch

µj =
∑
i∈Gj

λi .

Dann kann der Portfolioverlust LPf approximiert werden durch

S = E
K∑

j=1

jNj (4)

und man erhält, daß S wie eine sogenannte Poissonsche Summenvariable verteilt ist. Setzt
man

Q(jE) =
µj

µ
(5)

für alle j = 1, · · · , K mit µ =
∑K

j=1 µj, so gilt

V ert(S) = PSV (µ, Q) =
∞∑

k=0

Q∗(k)e−µ µk

k!
. (6)

Die rechte Seite nennt man Poissonsche Summenvertelung mit den Parametern µ und Q.
Probabilistisch erhält man die Verteilung als zufällige Summe von unabhängigen, jeweils
Q-verteilten Zufallsvariablen H1, H2, · · · . Es ist also S verteilt wie

N∑
k=1

Hk (7)
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mit Poi(µ) veteiltem N unabhängig von H1, H2, · · ·.
Interpretation: Die zufällige Anzahl an Verlusten im Portfolio ist Poi(µ) verteilt. Die
zufällige Höhe des k-ten Verlustes ist Hk und nach Q verteilt. Über die Güte der Ap-
proximation kann man folgende obere Schranke bezüglich des Abstandes in der totalen
Variationsnorm machen

d(P (LPf ∈ ·), P (S ∈ ·)) ≤
n∑

i=1

λ2
i . (8)

Sind also alle Ausfallwahrscheinlichkeiten klein, was bei Kreditportfolios üblicherweise der
Fall ist, so ist die Approximation vernünftig. Die Approximation durch eine Poissonsche
Summenverteilung hat den großen Vorteil, daß die Portfolioverlustverteilung durch die
sogennate Panjeirrekursion schnell numerisch berechnet werden kann.

2 Das Einsektormodell

Kreditrisiken sind nicht unabhängig. Im Einsektormodell nimmt man an, daß es einen
zufälligen makroökonomischen Einfluß gibt, der die Ausfallwahrscheinlichkeit aller Kredite
im Portfolio simultan beeinflußt. Bedingt auf den makroökonomischen Faktor verhält sich
das Modell wie bei unabhängigen Verträgen. Dies führt zu folgenden Annahmen:

2.1 Modellannahmen

(i) der makroökonomische Faktor ist eine Γ(α, β) - verteilte Zufallsvariable Λ mit Dichte

fα,β(x) =
1

Γ(α)
β−αxα−1e−

1
β x , x > 0 (9)

und Parametern α > 0, β > 0 Es gilt somit

EΛ = αβ, V arΛ = αβ2, cΛ ≈ Γ(α, cβ). (10)

(ii) Der zufällige Portfolioverlust ist durch (2) gegeben und es gilt L1, · · · , Ln sind bed-
ingt stochastisch unabhängig - gegeben Λ = λ mit bedingter Verteilung

P (Li ∈ ·|Λ = λ) = Poi(λi
λ

EΛ
) (11)

für alle 1 ≤ i ≤ n, λ > 0.

Die Intensitätsparameter der Poissonschen Zufallsvariablen sind gewissermaßen zufällig
und werden durch den makroökonomischen Faktor bestimmt. Der Parameter λi gibt
den firmenspezifischen Effekt auf die default Intensität an während Λ

EΛ
den zusätzlichen

relativen Effekt verursacht durch den makroökonomischen Einflußwiederspiegelt.
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2.2 bedingte Verteilung

Wie im unabhängigen Fall wird das Portfolio nach den möglichen Verlusten gruppiert.
Wir erhalten für den Portfolioverlust

LPf = E
∑
j=1

KjNj (12)

mit Nj =
∑

i∈Gj
Li. Wegen der bedingten stochastischen Unabhängigkeit der Li folgt, daß

N1, · · · , NK bedingt stochastisch unabhängig sind mit

P (Nj ∈ ·|Λ = λ) = Poi(µj
λ

EΛ
) (13)

für alle j = 1, · · · , K , λ > 0. Hierbei ist µj =
∑

i∈Gj
λi als spezifischer Effekt der

Gruppe Gj zu interpretieren. Wie im unabhängigen Fall ergibt sich, daß nun die bedingten
Portfolioverlustverteilungen Poissonsche Summenverteilungen sind:

P (LPf ∈ ·|Λ = λ) = PSV (µ
λ

EΛ
, Q) (14)

mit µ =
∑K

j=1 µj und Q definiert in (5).

2.3 Mischung

Die bedingten Portfolioverlustvertlungen sind also berechnet und man erhält die unbed-
ingte durch Mischen bezüglich der Verteilung von Λ. Da diese Gammaverteilt ist, kann
man die unbedingte Verteilung explizit ausrechnen und wieder als eine zusammengesetzte
Summenverteilung eines kollektiven Modells der Risikotheorie identifizieren. Zu Verteilun-
gen R auf N0 und Q auf (0,∞) definiere

SV (R,Q) =
∞∑

k=0

Q∗(k)R(k) . (15)

Durch R wird die Verteilung der Anzahl der Verluste in einem Portfolio spezifiziert. Q
bestimmt die Verteilung der Höhe eines eingetretenen Verlustes. Hängt nun die Verteilung
R = Rλ von einem Parameter λ ab und ist π ein Wahrscheinlichkeitsmaß auf der Menge
der Parameter, so erhält man, daß die sich ergebende Mischungsverteilung wieder eine
zusammengestzte Summenverteilung ist.∫

SV (Rλ, Q)π(dλ) = SV (R,Q) (16)

mit

R =
∫

Rλπ(dλ). (17)

Dies können wir nun auf Credit Risk+ anwenden, um die unbedingte Portfolioverlustverteilung
zu bestimmen.

P (LPf ∈ ·) =
∫ ∞

0
P (LPf ∈ ·|Λ = λ)fα,β(λ)dλ

=
∫ ∞

0
PSV (µ

λ

αβ
, Q)fα,β(λ)dλ
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= NbSV ((α,
1

1 + u
α

), Q) (18)

NbSV ((α, p), Q) mit p = α
α+µ

bezeichnet hierbei eine negativ binomiale Summenverteilung.
Dies ist eine zusammengesetzte Summenverteilung bei der die Anzahl an Verlusten im
Portfolio eine Nb(α, p) Verteilung mit r > 0, p ∈ (0, 1) hat.

Nb(α, p)(n) =

(
n + α− 1

n

)
pα(1− p)n, n ∈ N0

Die Zähldichte dieser negativ binomialen Summenverteilung läßt sich wieder mit einer
Panjeir Rekursion numerisch berechnen.

Auch können wir die momenterzeugende Funktion angeben. Wir betrachten hierzu den
Fall E = 1 und erhalten mit f(t) =

∑K
j=1 tj µj

µ
für G(t) = EtLPf

G(t) = (
p

1− (1− p)f(t)
)α (19)

3 Mehrsektorenmodell

Beim Mehrsektorenmodell beeinflussen mehrere makrö’okonomische Faktoren simultan
die Ausfallintensität der Kreditverträge. Diese werden modelliert durch r unabhängige Zu-
fallsvariablen Λ(1), · · · , Λ(r), die jeweils Gammaverteilt sind mit Parametern (α1, β1), · · · , (αr, βr).
Weiter haben wir wie im Einsektormodell n Verträge mit Risikosummen c1, · · · , cn sowie
firmenspezifischen Effekten λ1, · · · , λn auf die Defaultintensitäten. Der Portfolioverlust
beträgt

LPf =
n∑

i=1

ciLi (20)

und nach Gruppierung nach möglichen Verlusthöhen

LPf = E
K∑

j=1

jNj. (21)

Um die Abhängigkeit der Defaultintensität des i-ten Vertrages im Portfolio von den Fak-
toren zu modellieren, werden nichtnegative Gewichte

(wis)1≤i≤n,1≤s≤r (22)

gesetzt, so daß

r∑
s=1

wis = 1 (23)

für alle 1 ≤ i ≤ n. Wie im Einsektormodell wird eine bedingt stochastische Un-
abhängigkeit von L1, · · · , Ln gegeben Λ(1) = λ(1), · · · , Λ(r) = λ(r) gefordert und angenom-
men, daß

P (Li ∈ ·|Λ(1) = λ(1), · · · , Λ(r) = λ(r)) = Poi(λi

r∑
s=1

wis
λ(s)

EΛ(s)
) (24)
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für alle Verträge 1 ≤ i ≤ n und Realisationen λ(1), · · · , λ(r) der makroökonomischen
Faktoren gilt. Hieraus folgt nun, daß die Anzahl an Ausfällen Nj in der j-ten Gruppe
bedingt eine Poissonverteilung ist mit

P (Nj ∈ ·|Λ(1) = λ(1), · · · , Λ(r) = λ(r)) = Poi(
∑
i∈Gj

λi

r∑
s=1

wis
λ(s)

EΛ(s)
)

= Poi(
r∑

s=1

mj,s
λ(s)

EΛ(s)
. (25)

Dabei bezeichnet

mj,s =
∑
i∈Gj

λiwis (26)

den Effekt des Sektors s auf die Gruppe j. Es wir nun eine Zerlegung der Gruppe nach
Sektoren durchgeführt

Nj =
r∑

s=1

Nj,s (27)

mit bedingt unabhängigen Nj,1, · · · , Nj,r , die

P (Nj,s ∈ ·|Λ(1) = λ(1), · · · , Λ(r) = λ(r) = Poi(mj,s
λ(s)

EΛ(s)
) (28)

erfüllen für alle s = 1, · · · , r. Dann gilt

LPf = E
K∑

j=1

jNj

= E
K∑

j=1

r∑
s=1

jNj,s

= E
r∑

s=1

K∑
j=1

jNj,s

=
r∑

s=1

L(s), (29)

wobei

L(s) =
K∑

j=1

Nj,s (30)

einem Portfolioverlust eines Einsektormodells entspricht. Da L(s) nur vom s-ten Faktor
Lambda(s) abhängt, sind L(1), · · · , L(r) stochastisch unabhängig und wir erkennen, daß
die Portfolioverlustverteilung im Mehrsektorenmodell die Faltung von r Einsektorport-
folioverlustverteilungen ist. Wendet man die Ergebnisse des Einsektormodells an, ergibt
sich für die Portfolioverlustverteilung von LPf =

∑r
s=1 L(s).

P (LPf ∈ ·) = NbSV ((α1,
α1

α1 + m1

), Q(1) ∗ · · · ∗NbSV ((αr,
αr

αr + mr

), Q(r) (31)

mit

ms =
K∑

j=1

mj,s, Q
(s)(jE) =

mj,s

ms

(32)
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Diese r-fache Faltung ist zwar keine Summenverteilung. Es ergibt sich aber die mo-
menterzeugende Funktion G(t) = EtLPf als Produkt der momenterzeugenden Funktionen
der Einsektormodelle Wir erhalten also im Falle E = 1

G(t) =
r∏

s=1

(
ps

1− (1− ps)fs(t)
)αs (33)

mit ps = αs

αs+ms
. Damit ist G in eine Potenzreihe um 0 mit positivem Konvergenzradius

entwickelbar und erfüllt

(ln ◦G)′(t) =
p(t)

q(t)

für Polynome p, q. Hieraus lassen sich die Koeffizienten von G, die gerade die Zähldichte
der Portfolioverlustverteilung bilden rekursiv ausrechnen durch Anwendung des folgenden
Lemmas.

3.1 Lemma Sei F (z) =
∑∞

n=0 anz
n eine Potenzreihe mit positivem Konvergenzradius, so

daß

(ln ◦ F )′(z) =
p(z)

q(z)

für Polynome p(z) =
∑m

i=0 diz
i, q(z) =

∑M
j=0 bjz

j gilt. Dann erfüllt (an) die folgende
Rekursionsbeziehung

a0 = F (0)

an+1 =
1

b0(n + 1)
(
m∧n∑
i=0

dian−i −
(M−1)∧(n−1)∑

j=0

bj+1(n− j)an−j) (34)
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