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Chapter 1

Introduction

Motivation

The interest rate derivatives market is the most liquid derivatives market in the world. Ac-
cording to the Bank of International Settlements, the total notional amount of outstanding
over-the-counter interest rate contracts exceeds 500 trillion USD (as of December 2014).

The academic literature has produced a wide array of models and techniques for the
valuation of interest rate derivatives and the management of interest rate risk, some of
which are used by financial institutions and other practitioners.

The continuous-time term structure models form a very important class among these
frameworks. By assigning risk-neutral dynamics to the yield curve (or a particular part
thereof), they imply prices for interest rate derivatives that can be computed numerically
or in closed form, depending on the model and the particular derivative.

The prices can be differentiated with regard to any of the model’s state variables, param-
eters or input quantities — numerically or, in certain cases, analytically — so that each
model makes an implicit prediction of how the prices of different contingent claims move
in relation to one another.

Naturally, the evaluation of such models with regard to their hedging performances is of
vital importance. Anyone who plans on conducting an empirical study of this kind faces
the major challenge of acquiring a sufficient amount of relevant market data. For one
thing, as of August 2015 only a very limited history of data is publicly available. This
holds for options data in particular. And even if available, the historical time series might
only cover weekly or even monthly observations. For another, due to the evident presence
of regime changes, there is little benefit in basing one’s choice of a hedging strategy on its
empirical performance in a bygone environment reflected by outdated market data.

In this thesis we will extend and apply a method for the simulation of synthetic evolutions
of the yield curve and the implied volatility surface under the physical measure. The
approach is based on a window sampling mechanism originally devised by Rebonato et al.
(2005), which has later been advanced by Deguillaume (2009) and adapted to the evolution
of implied volatilities by Andreichenko (2011). The intention of this model is the genera-
tion of ample time series of artificial market data sharing the statistical characteristics of
actual historical data used as input.
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We will test the hedging performance of three separate interest rate models, both within
the unmodified historical data set and within the synthetic world simulated by the evo-
lution model. In particular, we will construct delta neutral portfolios around one-period
swaptions according to the Black (1976) model, the Hull-White one-factor model put forth
by Hull and White (1990), and the SABR model devised by Hagan et al. (2002). For each
of these models we will construct single- as well as multi-factor hedges. The hedging
strategies will be evaluated according to three metrics, based on the one-day hedging
slippages, the maximum drawdown and the terminal portfolio values.

Literature Review

A small number of studies on the performance of hedging models has been conducted and
published. Among these are the following:

Gupta and Subrahmanyam (2005) explore the pricing and hedging performance of several
term structure models using market data on US dollar caps and floors. They find that
the inclusion of a second stochastic factor improves the hedging performance in compar-
ison to a one-factor model. Li and Zhao (2006) deal with the question of whether bonds
span interest rate derivatives. In the course of their study, they investigate the hedging
of interest rate caps using only zero-coupon bonds. The analysis is conducted in a frame-
work of actual market data. They conclude that stochastic volatility and correlation are
important for the successful pricing and hedging of caps, even more so than in the case of
swaptions. Fan et al. (2007) ascertain the significance of the number of stochastic drivers
and their associated volatility structures with regard to the pricing accuracy and hedging
performance in the swaptions market, using real market data for 1998–2000. They con-
clude that there are notable benefits in using a multi-factor hedging model. An and Suo
(2008) examine the dynamic performances of one-factor LIBOR and swap market models
in hedging out-of-sample floors and swaptions using real market data for the years 1998–
2004. They find that LIBOR market models outperform swap market models, and that
adding a humped volatility structure does not significantly improve the models’ hedging
performances. Rebonato et al. (2008) study the delta and vega hedging of the SABR
and SABR-LIBOR market models using real market data, and find that both models are
well-specified. Another hedging study that uses actual market prices has been performed
by Pietersz and Pelsser (2010) who find that Markov-functional and multi-factor mar-
ket models are equally capable of hedging Bermudan swaptions. Schröter et al. (2012)
study the robustness of the Black-Scholes, the Heston and the SABR model by hedging an
Asian option in simulated real-world markets incorporating stochastic volatility, stochas-
tic correlation and jumps in asset price and volatility. They find that the use of a more
sophisticated model does not necessarily lead to a better hedging performance or a higher
robustness to changes in the market.

Among these publications, only Schröter et al. (2012) make use of synthetic market data.
All of the remaining studies rely on market data relating to a more or less limited period of
time. Naturally, the generation of realistic synthetic data is a delicate undertaking. How-
ever, the yield curve evolution model developed by Rebonato et al. (2005) and extended
by Deguillaume (2009) as well as Andreichenko (2011) appears to be a very promising
approach. For this reason, we will — after making appropriate modifications to the pro-
cedure — employ it in the context of delta hedging interest rate swaptions, and draw
a comparison to the results of hedging within a historical framework. The results are
promising and encourage further research in this area. Furthermore, we complement the
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above-mentioned studies since we are considering the hedging performance of models that
include one- and two-factor as well as deterministic- and stochastic volatility models, using
historical data that covers “normal” market states as well as the excited market conditions
during the financial crisis of 2007–2008 and the European sovereign debt crisis.

Structure

This thesis is organized as follows: In chapter 2 we introduce the interest rates and deriva-
tives used in this study, as well as some fundamental hedging terminology. In chapter 3
we present the relevant interest rate models alongside their calibration mechanisms. In
particular, these are the Hull-White and SABR models which are part of the hedging
study, as well as the LMM-SABR which will be an elementary part of the generation of
synthetic implied volatilities. In chapter 4 the evolution model for the yield curve and
implied volatility surface is derived. In chapter 5 the precise methodology of the hedg-
ing study is developed. After conducting the experiment, the results are presented and
evaluated. Chapter 6 concludes this work and gives an outlook for future studies.

The implementation of all models and the eventual hedging experiment will be performed
by use of the functional programming language F# which is part of the Microsoft .NET
framework. The open-source library Math.NET Numerics has been used for cubic spline
interpolation, and the trial version of the commercial Extreme Optimization Numerical
Libraries for .NET has been used for the numerical evaluation of integrals, for the solution
of numerical optimization problems and for numerical differentiation. All figures in this
thesis have been drawn with the help of the MathWorks MATLAB software.
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Chapter 2

Preliminaries

2.1 Interest Rates and Bonds

In order to set the ground for the rest of the thesis, we first go over the essential interest
rates and derivatives. The definitions and explanations presented here can be found in
Brigo and Mercurio (2006) or Andersen and Piterbarg (2010), e.g.

Interest rates reflect the cost of borrowing and lending money and therefore determine
the present value of a future cash flow. For any particular currency there is a variety
of commonly quoted interest rates — such as mortgage rates, deposit rates or prime
borrowing rates. All interest rates reflect the credit risk associated with the borrowing
party. This thesis does not deal with default risk. Hence, none of the interest rate
derivatives is subject to counterparty or default risk.

One of the most important interest rates is the London Interbank Offered Rate — or
LIBOR — which is a reference interest rate calculated for 5 currencies and 7 borrowing
periods ranging from overnight to 12 months, administered by the Intercontinental Ex-
change. In order to determine the LIBOR rates, each business day at 11 a.m. a panel
of participating major banks is asked to submit the rate at which they could presumably
borrow funds on the interbank market. The quoted LIBOR rates then result from taking
a trimmed average of the polling submissions.

These LIBOR rates are often used to construct the short end of the yield curve in the USD
and GBP markets. In the eurozone, Euribor rates are usually used. These are reference
rates computed very similarly to the LIBOR by polling large eurozone banks.

In order to obtain the remainder of the yield curve, usually forward rate agreements or
quotes of interest rate swaps are used.

We will use the terms LIBOR rate or forward LIBOR rate when making a distinction
between a simply compounded one-period forward rate (“forward LIBOR rate”) and a
general forward swap rate.

As in most of the academic literature, we will make certain simplifying assumptions if
necessary or adequate. For one thing, we will always assume that there are no bid-ask
spreads.
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Definition 2.1.1 (Money-market account and short-rate). Let B(t) be the value of a
bank account at time t ≥ 0. Let B(0) = 1 and assume B evolves according to the
differential equation

dB(t) = r(t)B(t)dt, (2.1)

where r is a positive time-dependent function. Equation (2.1) implies

B(t) = exp

(∫ t

0

r(s)ds

)
.

We call B the money-market account and r the instantaneous spot rate or short rate.

The short rate is the basic state variable of the Hull-White model, which is one of the
three models we will examine in our hedging experiment in chapter 5. The model will be
introduced in section 3.2.

Note that the short-rate is a theoretical quantity which cannot be directly observed in the
market.

Definition 2.1.2 (Zero-coupon bond). A T -maturity zero-coupon bond (or discount bond)
is a contract that promises its holder to be paid the bond’s face value at the time of ma-
turity T , absent of any periodic interest payments. The price of a zero-coupon bond at
time t < T is denoted by P (t, T ). We will always assume that P (t, T ) refers to a bond
with a face value of one unit of currency.

Furthermore, in this thesis we will only consider riskless zero-coupon bonds. Therefore,
the value P (t, T ) refers to the time t value of one unit of currency to be received with
certainty at time T . Hence, P (t, T ) represents a discount factor.

By P (t, T1, T2) we will denote the forward price of the zero-coupon bond spanning [T1, T2],
i.e., the price fixed at time t for the purchase of a zero-coupon bond P (T1, T2) to be received
at a future time T1 ≥ t. In the assumed absence of arbitrage, it can be unambiguously
computed as

P (t, T1, T2) =
P (t, T2)

P (t, T1)
.

Absent of arbitrage, P (t, T ) satisfies the following conditions:

• The mapping t 7→ P (t, T ) is monotonically increasing,

• the mapping T 7→ P (t, T ) is monotonically decreasing and

• P (T, T ) = 1 for all T .

The graph of the function
T 7→ P (t, T ), T ≥ t

is called the zero-coupon bond curve at time t or the term structure of discount factors.

Definition 2.1.3 (Simply-compounded spot rate). For a time interval [t, T ], where t is
the present, the simply-compounded spot rate is defined as

L(t, T ) :=
1

T − t

(
1

P (t, T )
− 1

)
, (2.2)
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or equivalently via the relation

(1 + (T − t)L(t, T ))P (t, T ) = 1.

Thus, L(t, T ) is the interest rate corresponding to the zero-coupon bond P (t, T ) under
the assumption that no compounding takes place, so that the accrual of interest occurs
at a constant rate and is hence proportional to the duration of the investment.

In terms of the simply-compounded spot rate, the price of a zero-coupon bond can be
expressed as:

P (t, T ) =
1

1 + (T − t)L(t, T )
.

There is an obvious relation between the simply-compounded spot rate and the short
rate introduced in definition 2.1.1. For one unit of currency, one can obtain 1/P (t, T )
zero-coupon bonds, so that the money market account B(t) evolves according to:

1

P (t, T )
= 1 + (T − t)L(t, T ),

and thus earns an instantaneous interest rate of

r(t) = lim
T↘t

L(t, T ).

Definition 2.1.4. [Forward rate agreement] A forward rate agreement (FRA) is a deriva-
tive which allows to lock in at the present time t the interest rate over a future time period
[T1, T2]. The buyer of the FRA agrees to pay a fixed rate K on a deposit, the so-called
notional amount, in exchange for a floating-rate payment based on a reference rate, which
in this case will be the spot rate L(T1, T2) resetting at T1.

When the notional amount is equal to one unit of currency, the time T2 value of the
contract will be

(T2 − T1)(L(T1, T2)−K).

Using eq. (2.2), this can be rewritten as

1

P (T1, T2)
− 1− (T2 − T1)K.

Since one unit of currency to be received at time T2 is worth P (T1, T2) units of currency
at time T1, and in turn one unit of currency at time T1 is worth P (t, T1) units of currency
at time t, multiplying the above expression by P (t, T2) = P (t, T1)P (T1, T2) yields the
present value of the FRA:

VFRA(t, T1, T2,K) = P (t, T1)− P (t, T2)− P (t, T2)(T2 − T1)K

= (T2 − T1)P (t, T2)

(
1

T2 − T1

(
P (t, T1)

P (t, T2)
− 1

)
−K

)
.

Definition 2.1.5 (Simply-compounded forward rate). The (simply-compounded) forward
rate f(t, T1, T2) is defined as the value for K such that the value of the corresponding FRA
is rendered zero, i.e.,

f(t, T1, T2) =
1

T2 − T1

(
P (t, T1)

P (t, T2)
− 1

)
. (2.3)
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Thus, f(t, T1, T2) specifies the fixed interest rate for the time period [T1, T2] that can be
secured at time t ≤ T1 at no additional cost.

The length of the period [T1, T2], i.e.,

τ = T2 − T1,

is called the tenor of the forward rate f(t, T1, T2).

For an arbitrary set of dates
T0 < T1 < · · · < Tn,

note that the price P (t, Tn) of a zero-coupon bond maturing at Tn can be recovered from
the corresponding forward rates via the formula

P (t, Tn) = P (t, T0)

n−1∏
i=0

1

1 + (Ti+1 − Ti) fi(t)
,

where we write
fi(t) := f(t, Ti, Ti+1).

We call
f(t, T ) := lim

τ→0
f(t, T, T + τ)

the time t instantaneous forward rate to time T , which can be thought of as the forward
rate observed at time t that spans the interval [T, T + dT ].

There is an obvious relation between the price of a zero-coupon bond and the instantaneous
forward rate:

P (t, T ) = exp

(
−
∫ T

t

f(t, s)ds

)
,

so that

f(t, T ) = −∂ lnP (t, T )

∂T
. (2.4)

The short rate can also be expressed in terms of the instantaneous forward rate:

r(t) = f(t, t) := lim
T↘t

f(t, T ).

Definition 2.1.6 (Interest rate swap). An interest rate swap (or swap) can be considered
a multi-period FRA. It is a contract in which two parties agree to exchange one stream
of interest rate cash flows, based on a fixed rate, for another stream, based on a floating
rate — such as the LIBOR. The streams of cash flows are called the legs of the swap.

Payments are made on a pre-defined set of time intervals, called periods. The floating rate
is fixed at the beginning of each period, and both coupons (fixed and floating) are paid
out at the end of the period. The dates when the floating rates are observed are called
fixing dates or reset dates, and the dates when the cash flows are exchanged are called
payment dates.

Various market conventions exist with regard to the day count, maturities and fixing /
payment dates, depending on the currency and the underlying index. An overview of
common market conventions can be found in the OpenGamma Interest Rate Instruments
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and Market Conventions Guide [Henrard (2013)]. For simplicity we assume that there is
no lag between fixing and payment dates.

Formally, one defines a tenor structure

0 ≤ Tm < · · · < Tn, τi = Ti+1 − Ti, i = m,m+ 1 . . . , n− 1. (2.5)

At the end of each period [Ti, Ti+1], the fixed rate payer pays simple interest based on a
pre-defined fixed rate K, corresponding to the length of the agreed-upon time interval.
The floating rate payer pays simple interest based on the LIBOR rate for the given period,
as observed at time Ti. From the perspective of the fixed rate payer, at each payment
date Ti+1 the following net cash flow is exchanged:

τi(fi(Ti)−K), i = m, . . . , n− 1.

By viewing the swap as a portfolio of FRAs, its value at time t ≤ T0 can be calculated as

(2.6)VSwap(t) =

n−1∑
i=m

VFRA(t, Ti, Ti+1,K)

(2.7)=

n−1∑
i=m

τiP (t, Ti+1)(fi(t)−K).

In particular, this shows that the swap’s value depends only on the current level fi(t) of
each forward rate, and is independent of the interest rate dynamics.

We note that eq. (2.7) can alternatively be expressed as

VSwap(t) = P (t, Tm)− P (t, Tn)−KAm,n(t)

where Am,n(t) is the so-called annuity of the swap

Am,n(t) =

n−1∑
i=m

τiP (t, Ti+1).

Definition 2.1.7 (Forward swap rate). The forward swap rate Sm,n(t) is the value for
the fixed rate K such that the value of the corresponding interest rate swap is rendered
zero, i.e.,

Sm,n(t) =

∑n−1
i=m τiP (t, Ti+1)fi(t)∑n−1
i=m τiP (t, Ti+1)

=
P (t, Tm)− P (t, Tn)∑n−1

i=m τiP (t, Ti+1)
(2.8)

=
P (t, Tm)− P (t, Tn)

Am,n(t)
.
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2.2 Interest Rate Options

We will now introduce the two main interest rate options used in this thesis and describe
their valuation.

Definition 2.2.1 (Interest rate cap/floor). A caplet is a European call option on a simply
compounded forward rate for a given time period with the characteristic property that
the rate is fixed at the beginning of the period but the option payoff will be paid out at
the end of the period. The underlying interest rate could be the LIBOR rate fi(t), e.g.
Given the strike rate K, a unit notional caplet of this kind would pay

τi (fi(Ti)−K)
+

at time Ti+1, where again τi = Ti+1 − Ti. Since the LIBOR rate fi fixes at time Ti, the
caplet payoff is deterministic from this point in time onward. We will call Ti the expiry
time / date of the caplet.

Similarly, a floorlet is a European put option on an interest rate. In the above setting,
the holder would receive a payment of

τi (K − fi(Ti))+

at time Ti+1.

A cap is a collection of caplets on successive forward rates, all having the same strike rate
K. E.g., if we are still using the tenor structure given in eq. (2.5), the corresponding cap
would comprise (n−m− 1) individual caplets on LIBOR rates fi and pay

τi (fi(Ti)−K)
+

at times Ti+1, for all i ∈ {m, . . . , n− 1}.

Analogously, a floor is a collection of floorlets.

The holder of a cap is guaranteed an upper limit on the corresponding interest rate (hence
the terminology). E.g., assume that an institution is indebted and is obliged to pay the
LIBOR rates τifi(Ti) at the end of each period [Ti, Ti+1], where i = m, . . . , n − 1. If the
institution holds a cap with corresponding notional, at each payment date Ti+1 the overall
interest rate paid equals

τi
(
fi(Ti)− (fi(Ti)−K)+

)
= τi min{fi(Ti),K}.

The market price of a cap / caplet is usually quoted as a Black implied volatility σ̂. At
time 0 the implied volatility of the (unit notional) cap considered above is the value for σ̂
so that the cap’s market price equals the following sum of Black’s formulas:

VCap(0) =

n−1∑
i=m

P (0, Ti+1)τiBl+(K, fi(0), Ti, σ̂), (2.9)
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where

(2.10)Bl+(K,F, T, σ) = FΦ(d1(K,F, T, σ))−KΦ(d2(K,F, T, σ))

(2.11)d1(K,F, T, σ) =
ln( FK ) + σ2T

2

σ
√
T

(2.12)d2(K,F, T, σ) =
ln( FK )− σ2T

2

σ
√
T

,

and where Φ denotes the cumulative distribution function of the standard normal distri-
bution. Note that in eq. (2.9) it is assumed that all individual caplets contained in the
cap share the same Black volatility.

Similarly, a floor would be priced by replacing the term Bl+ in eq. (2.9) with

Bl− = −Bl+.

Definition 2.2.2. A cap (floor) with payment dates as given above is said to be at-the-
money (ATM) at time t < Tm if its strike rate satisfies

K = KATM = Sm,n(t).

The cap is said to be in-the-money (ITM) if K < KATM, and out-of-the-money (OTM) if
K > KATM. The opposite holds for a floor.

Note that for a single caplet on a LIBOR rate fm, the ATM strike KATM equals

Sm,m+1(t) =
P (t, Tm)− P (t, Tm+1)

τmP (t, Tm+1)
= fm(t).

Following Brigo and Mercurio (2006) we will now see that a cap (floor) can actually be
regarded as a portfolio of put (call) options on zero-coupon bonds. This representation
will come in useful in the context of calibrating the Hull-White model in section 3.2.

Consider once again the cap based on the tenor structure given in eq. (2.5), i.e., a cap
consisting of (n−m− 1) unit notional caplets on LIBOR rates fi paying

(2.13)τi(fi(Ti)−K)+

at times Ti+1 where i = m, . . . , n− 1. Denote by

VCpl(t, i,K)

the time t value of the caplet resetting at time Ti > t. The caplet payoff, eq. (2.13), to be
received at Ti+1 is already fixed at Ti and is thus equivalent to receiving

P (Ti, Ti+1)τi(fi(Ti)−K)+

11



at Ti. This can be rewritten as

(
1− 1 + τiK

1 + τifi(Ti)

)+

= (1− (1 + τiK)P (Ti, Ti+1))
+

= (1 + τiK)

(
1

1 + τiK
− P (Ti, Ti+1)

)+

,

which is clearly the payoff of 1 + τiK unit notional put options with strike 1/(1 + τiK) on
the forward price P (t, Ti, Ti+1) of the zero-coupon bond spanning [Ti, Ti+1]. Therefore,
the caplet is equivalent to a bond put option:

VCpl(t, i,K) = (1 + τiK)VPut (t,K ′, P (t, Ti, Ti+1), Ti) ,

where

K ′ =
1

1 + τiK
.

The cap price can be obtained by summation of the underlying caplet prices:

(2.14)VCap(t) =

n−1∑
i=m

(1 + τiK)VPut (t,K ′, P (t, Ti, Ti+1), Ti) .

Analogously, the price of the floorlet resetting at Ti corresponds to

VFll(t, i,K) = (1 + τiK)VCall (t,K ′, P (t, Ti, Ti+1), Ti)

so that the price of a floor with identical underlying tenor structure equals

(2.15)VFloor(t) =

n−1∑
i=m

(1 + τiK)VCall (t,K ′, P (t, Ti, Ti+1), Ti) .

Proposition 2.2.3 (Put-call parity for caps and floors). The following parity holds:

VCpl(t, i,K)− VFll(t, i,K) = VFRA(t, Ti, Ti+1,K).

Thus, the value of a cap minus the value of a floor is equal to the forward price of a swap:

VCap(t)− VFloor(t) = VSwap(t).

Proof. A simple no-arbitrage argument with regard to the payoff at time Ti gives the
regular put-call parity for bond options

VPut (t,K ′, P (t, Ti, Ti+1), Ti)

= VCall (t,K ′, P (t, Ti, Ti+1), Ti)− P (t, Ti+1) +K ′P (t, Ti),
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which in turn shows that

VCpl(t, i,K) = (1 + τiK)VPut (t,K ′, P (t, Ti, Ti+1), Ti)

= (1 + τiK) [VCall (t,K ′, P (t, Ti, Ti+1), Ti)− P (t, Ti+1) +K ′P (t, Ti)]

= VFll(t, i,K)− (1 + τiK)P (t, Ti+1) + P (t, Ti)

= VFll(t, i,K) + VFRA(t, Ti, Ti+1,K).

The second part follows from eq. (2.6).

We will now introduce the most important option in this thesis.

Definition 2.2.4 (Interest rate swaption). A swap option or swaption is an option that
gives the owner the right to enter into an interest rate swap at a given future date at a
pre-determined rate, called the strike rate or fixed rate of the swaption. A payer swaption
is the option to pay the fixed leg, and a receiver swaption is the option to receive the fixed
leg on the swap.

In most cases, a swaption expires at the first reset date of the underlying swap. The set
of reset and payment dates is called the tenor structure of the swaption.

Consider the payer swaption with strike K corresponding to the tenor structure given in
eq. (2.5), where Tm is both the option maturity and the first reset date. At time Tm the
swaption will pay

VPSwaption(Tm) = (VSwap(Tm))
+

(2.16)=

(
n−1∑
i=m

τiP (Tm, Ti+1)(fi(Tm)−K)

)+

.

In contrast to the case of an interest rate cap, this value cannot be decomposed into a sum
of terms where each addend depends only on a single LIBOR rate. Instead, a swaption’s
payoff — and consequently its value — depends on the joint evolution of the LIBOR rates
contained in the underlying swap.

The payoff of a swaption can also be written in terms of the swap rate and the swap
annuity. In particular, eq. (2.16) can be re-expressed as

VPSwaption(Tm) =

n−1∑
i=m

τiP (Tm, Ti+1) (Sm,n(Tm)−K)
+

(2.17)= Am,n(Tm) (Sm,n(Tm)−K)
+
.

Definition 2.2.5. A payer or receiver swaption with maturity Tm written on a swap
with reset dates Tm, . . . , Tn−1 and payment dates Tm+1, . . . , Tn is said to be at-the-money
(ATM) at time t < Tm if its strike price satisfies

K = KATM = Sm,n(t).

13



The payer swaption is said to be in-the-money (ITM) if K < KATM, and out-of-the-money
(OTM) if K > KATM. The reverse holds for a receiver swaption.

Similar to caps and floors, the price of a swaption is usually given in terms of a Black
implied volatility σ̂m,n. At time 0, the implied volatility of the (unit notional) payer
swaption considered above is the value for σ̂m,n so that the payer swaption’s market price
is equal to

VPSwaption(0) = Am,n(0)Bl+(K,Sm,n(0), Tm, σ̂m,n). (2.18)

For a receiver swaption, the corresponding pricing equation reads

VRSwaption(0) = Am,n(0)Bl−(K,Sm,n(0), Tm, σ̂m,n). (2.19)

We note that no immediate comparison between Black implied volatilities of caps and
swaptions can be made, since cap implied volatilities refer to forward rates while swaption
implied volatilities apply to (forward) swap rates. Instead, in this context Black implied
volatilities serve only as a practical way of communicating prices.

We will now consider a different interpretation of a swaption which will simplify its valua-
tion under the Hull-White model. Using the second part of eq. (2.8), the swaption payoff
given by eq. (2.17) can be re-written as

VPSwaption(Tm) =

n−1∑
i=m

τiP (Tm, Ti+1)

(
1− P (Tm, Tn)∑n−1
i=m τiP (Tm, Ti+1)

−K

)+

=

(
1− P (Tm, Tn)−

n−1∑
i=m

KτiP (Tm, Ti+1)

)+

(2.20)=

(
1−

n−1∑
i=m

ci+1P (Tm, Ti+1)

)+

,

where

ci =

{
Kτi for i = m+ 1, . . . , n− 1

1 +Kτi for i = n.

The term
∑n−1
i=m ciP (Tm, Ti+1) is simply the time Tm price of a coupon-bearing bond

paying ci at times Ti, i = m + 1, . . . , n. A payer swaption can thus be viewed as a put
option on the forward price of a coupon-bearing bond. In the same way, one can see that a
receiver swaption is equivalent to a call option on a coupon bearing bond. This relationship
will later be used to calibrate the Hull-White model to market prices of swaptions.

2.3 Hedging Fundamentals

A financial institution that engages in over-the-counter options trading encounters the
problem of managing risk. If the institution sells to their customer a complex derivative
that is not actively traded on an exchange, they cannot simply eliminate the associated
risk by taking the opposite position in the market.
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Instead, the exact factors of risk related to an option will have to be identified so they can
be neutralized by taking positions in more liquidly traded products, such as plain vanilla
derivatives. For this purpose, the so-called Greeks are introduced. Further details can be
found in Hull (2012).

Definition 2.3.1 (The Greeks). Let Π be a portfolio of derivatives depending on a single
asset whose price is S. The Greeks (or risk sensitivities or hedge parameters) are the
quantities representing the sensitivity of the portfolio value with regard to a change in the
parameters used to arrive at this value. Some of the most commonly quoted Greeks are
defined as follows:

The delta describes the rate by which the portfolio’s value changes as the value of the
underlying changes:

∆ =
∂Π

∂S
.

Similarly, the gamma of the portfolio,

Γ =
∂2Π

∂S2
,

represents the rate of change in the value with regard to the delta, the theta

Θ =
∂Π

∂t

defines the rate of change with regard to the passage of time, and the vega

V =
∂Π

∂σ

is the rate of change with regard to a change in the volatility σ of the portfolio.

Note that this is not a complete enumeration. One can also consider further second (or
even third) order sensitivities.

A portfolio is called delta-neutral [or gamma- / theta- / vega-neutral ] if its delta [or gamma
/ theta / vega] is zero. In this case the portfolio value will be locally immune to a change
in the respective underlying parameter.

Depending on the particular derivative under consideration, some of the Greeks might be
given in a model-independent way. Usually, especially in the context of options trading,
the above sensitivities need to be computed by use of a model ascribing dynamics to the
underlying.

Furthermore, the above are only local quantities. Even if one knew the exact process for the
underlying as well as the exact dependencies of the portfolio value on all parameters, one
could not construct a totally riskless portfolio without the ability to re-hedge continuously.
Since in reality trading is occurring in discrete time, a certain“slippage”cannot be avoided.

In this thesis we will focus on the delta, which is the most important first order dependency.
In particular, we will — according to several models — construct a delta neutral portfolio
around various one-period swaptions, and analyze the respective slippage under each of
the strategies.

15



In-model and out-of-model hedging

The practice of hedging against uncertainty captured by the model at consideration is
called in-model hedging. The practice of hedging against risks that are non-existent ac-
cording to the model is called out-of-model hedging.

A typical example of in-model hedging is a delta hedge within the Black-Scholes frame-
work. In this setting, the price of the underlying is a “moving part” in the model and the
Black-Scholes formula predicts by how much the value of a European call or put option
will change relative to a change in the value of the underlying. A delta hedge simply ad-
dresses and neutralizes this model-predicted source of uncertainty. A vega-hedge on the
other hand is an example of an out-of-model hedge, since the volatility of the underlying
is assumed to be a static parameter in the Black-Scholes framework.

The distinction between in-model and out-of-model hedging is essential when analyzing the
plausibility and predictive qualities of a particular model. As Gupta and Subrahmanyam
(2005) point out, an out-of-model-hedge is, naturally, inconsistent with the predictions
made by the model and is therefore not a useful indicator when assessing the accuracy of
said predictions.

In our study we will only hedge the delta exposure, and hence we will stay in the realm of
in-model hedging. However, the approach can easily be extended to the hedging against
risk in any of the other parameters or state variables of a model, and beyond1.

1Rebonato et al. (2009) describe the concept of functional-dependence hedging which aims at capturing
uncertainty with regard to sources of risk that a model does not immediately know about. In this case
hedge ratios are computed by numerically bumping input quantities to the model, such as prices of vanilla
options used in the process of calibrating the model, rather than model parameters / state variables.
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Chapter 3

The Term Structure Models

3.1 Motivation

Among practitioners, derivatives models are used for various purposes. Plain-vanilla-
options traders, e.g., can easily access market prices for the options they are working
with, but need to rely on the predictions made by a model when determining how option
prices move in relation to the underlying or to one another. Hence, they rely on the
prescriptive capabilities of the model. Complex-derivatives traders on the other hand
depend on a model’s descriptive abilities to arrive even at the prices of the products they
are considering [Rebonato (2004)].

The models capable of fulfilling these tasks come in various complexities. The Black (1976)
model is a very simple (but robust) representative of this class. The relevant formulas have
been introduced in section 2.2. In this chapter we introduce an additional three interest
rate models that are relevant to this thesis. Among them are the Hull-White model and
the SABR model, which will be part of our hedging experiment in chapter 5, as well as
the LMM-SABR model which will be part of the evolution model outlined in chapter 4.

The Hull-White model is a popular one-factor short rate model and has been chosen
as a classical representative for this type of model. The SABR model is a two-factor
stochastic-volatility forward rate model developed by Hagan et al. (2002), which has shown
very promising hedging results in empirical studies (see, e.g., Rebonato et al. (2008)). The
LMM-SABR model, which has been put forth by Rebonato (2007), is a stochastic-volatility
extension of the popular deterministic-volatility multi-factor LIBOR Market Model. Its
ability to model multiple forward rates within a single framework while being able to
recover the prices of plain-vanilla-options, including smile effects, to a very high degree
will be paramount to the simulation of artificial market scenarios in chapter 4.

3.2 The Hull-White Model

The one-factor Hull-White model, also known as the extended Vasicek model, was originally
proposed by Hull and White (1990), and was intended as an extension of the term structure
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model put forward by Vasicek (1977).

It is a short-rate model under which the short-rate r evolves according to the stochastic
differential equation

dr(t) = (ϑ(t)− a(t)r(t)) dt+ σ(t)dW (t) (3.1)

under the risk-neutral measure Q. Here, W is a standard Q-Brownian motion, and a, σ
and ϑ are time-dependent functions. We will focus on the case where a and σ are positive
constants, so that eq. (3.1) simplifies to

dr(t) = (ϑ(t)− ar(t)) dt+ σdW (t). (3.2)

Under these dynamics, the short rate r(t) reverts with speed a to the time-dependent level
ϑ(t)/a.

3.2.1 Calibration to the Yield Curve and Cap Prices

In order to specify the model, we need to set the parameters a and σ as well as the
time-dependent function ϑ(t) for all t ≥ 0.

This process is called the calibration of the model. In this section we follow the framework
laid out in Brigo and Mercurio (2006) and add a few of the omitted arguments and
derivations.

The general idea will be to calibrate a and σ to market prices of interest rate caps or
swaptions, and subsequently choose ϑ(t) so as to recover the current term structure of
interest rates.

Proposition 3.2.1. For any s < t, a solution to the stochastic differential equation (3.2)
is given by

r(t) = e−a(t−s)r(s) +

∫ t

s

e−a(t−u)ϑ(u)du+ σ

∫ t

s

e−a(t−u)dW (u).

In particular, conditional on Fs, r(t) is normally distributed with expectation

EQ [r(t)|Fs] = e−a(t−s)r(s) +

∫ t

s

e−a(t−u)ϑ(u)du

and variance

VQ [r(t)|Fs] =
σ2

2a

(
1− e−2a(t−s)

)
.

Proof. We will use variation of constants. Consider the homogeneous partial differential
equation

dy(t)

dt
= −ay(t), y(0) = 1,

which solves for

y(t) = e−at.
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Let r(t) be a solution of eq. (3.2). Then

d
r(t)

y(t)
= r(t)d

1

y(t)
+

1

y(t)
dr(t)

=
ar(t)

y(t)
dt+

1

y(t)
(ϑ(t)− ar(t)) dt+

σ

y(t)
dW (t)

=
ϑ(t)

y(t)
dt+

σ

y(t)
dW (t)

= eatϑ(t)dt+ eatσdW (t)

so that

(3.3)r(t) = e−a(t−s)r(s) +

∫ t

s

e−a(t−u)ϑ(u)du+ σ

∫ t

s

e−a(t−u)dW (u).

The time t price of a zero-coupon bond maturing at time T is given by

P (t, T ) = EQ
[
e−
∫ T
t
r(u)du

∣∣∣Ft] . (3.4)

In order to compute the right-hand side of eq. (3.4), we first determine the distribution

of e−
∫ T
t
r(u)du conditional on Ft.

Lemma 3.2.2. For any t < T and conditional on Ft, the random variable∫ T

t

r(u)du

is normally distributed with expectation

EQ

[∫ T

t

r(u)du

∣∣∣∣∣Ft
]

= r(t)B(t, T ) +

∫ T

t

ϑ(u)B(u, T )du

and variance

VQ

[∫ T

t

r(u)du

∣∣∣∣∣Ft
]

= σ2

∫ T

t

B(u, T )2du

where

B(t, T ) :=
1

a

(
1− e−a(T−t)

)
.
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Proof. We use eq. (3.3) for s = 0. This yields:

∫ T

t

r(u)du= r(0)

∫ T

t

e−audu+

∫ T

t

∫ u

0

e−a(u−t
′)ϑ(t′)dt′du+σ

∫ T

t

∫ u

0

e−a(u−t
′)dW (t′)du

= r(0)
e−at − e−aT

a
+

∫ T

t

∫ t

0

e−a(u−t
′)ϑ(t′)dt′du+

∫ T

t

∫ u

t

e−a(u−t
′)ϑ(t′)dt′du

+ σ

∫ T

t

∫ t

0

e−a(u−t
′)dW (t′)du+ σ

∫ T

t

∫ u

t

e−a(u−t
′)dW (t′)du

= r(0)
e−at − e−aT

a
+

∫ t

0

ϑ(t′)

∫ T

t

e−a(u−t
′)dudt′ +

∫ T

t

ϑ(t′)

∫ T

t′
e−a(u−t

′)dudt′

+ σ

∫ t

0

∫ T

t

e−a(u−t
′)dudW (t′) + σ

∫ T

t

∫ T

t′
e−a(u−t

′)dudW (t′)

= r(0)
e−at − e−aT

a
+

∫ t

0

ϑ(t′)
e−a(t−t

′) − e−a(T−t′)

a
dt′

+

∫ T

t

ϑ(t′)
1− e−a(T−t′)

a
dt′ + σ

∫ t

0

e−a(t−t
′) − e−a(T−t′)

a
dW (t′)

+ σ

∫ T

t

1− e−a(T−t′)

a
dW (t′)

= r(0)e−atB(t, T ) + e−atB(t, T )

∫ t

0

ϑ(t′)eat
′
dt′ +

∫ T

t

ϑ(t′)B(t′, T )dt′

+ σe−atB(t, T )

∫ t

0

eat
′
dW (t′) + σ

∫ T

t

B(t′, T )dW (t′)

= r(t)B(t, T ) +

∫ T

t

ϑ(t′)B(t′, T )dt′ + σ

∫ T

t

B(t′, T )dW (t′).

Lemma 3.2.2 implies that, conditional on Ft, the random variable e−
∫ T
t
r(u)du is lognor-

mally distributed with expectation

P (t, T ) = EQ
[
e−
∫ T
t
r(u)du

∣∣∣Ft]
= e

EQ
[
e−

∫T
t r(u)du

∣∣∣Ft]+ 1
2V

Q
[
e−

∫T
t r(u)du

∣∣∣Ft]

(3.5)= e−r(t)B(t,T )−
∫ T
t
ϑ(u)B(u,T )du+σ2

2

∫ T
t
B(u,T )2du.

Proposition 3.2.3. For

(3.6)ϑ(t) =
∂f(0, t)

∂T
+ af(0, t) +

σ2

2a

(
1− e−2at

)
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the current term structure of interest rates, given by the market instantaneous forward
rates

f(0, T ) = −∂ lnP (0, T )

∂T
,

is recovered under the Hull-White model defined by eq. (3.2).

Proof. Consider the instantaneous forward rate

f(0, T ) = −∂ lnP (0, T )

∂T

=
∂

∂T

(
r(0)B(0, T ) +

∫ T

0

ϑ(t′)B(t′, T )dt′ − σ2

2

∫ T

0

B(t′, T )2dt′

)

= r(0)e−aT + ϑ(T )B(T, T ) +

∫ T

0

ϑ(t′)e−a(T−t
′)dt′

− σ2

2
B(T, T )2 − σ2

∫ T

0

B(t′, T )e−a(T−t
′)dt′

= r(0)e−aT +

∫ T

0

ϑ(t′)e−a(T−t
′)dt′ − σ2

a

∫ T

0

(
1− e−a(T−t

′)
)
e−a(T−t

′)dt′

= r(0)e−aT +

∫ T

0

ϑ(t′)e−a(T−t
′)dt′−σ

2

a2
(
1− e−aT

)
+
σ2

2a2
(
1− e−2aT

)
.

Differentiating with regard to the second variable yields

∂f(0, T )

∂T
= −ar(0)e−aT + ϑ(T )− a

∫ T

0

ϑ(t′)e−a(T−t
′)dt′ − σ2

a
e−aT +

σ2

a
e−2aT

= ϑ(T )− af(0, T )−σ
2

a

(
1− e−aT

)
+
σ2

2a

(
1− e−2aT

)
− σ2

a
e−aT +

σ2

a
e−2aT

= ϑ(T )− af(0, T )− σ2

a
+
σ2

a
e−aT +

σ2

2a
− σ2

2a
e−2aT − σ2

a
e−aT +

σ2

a
e−2aT

= ϑ(T )− af(0, T )− σ2

2a

(
1− e−2aT

)
and thus

ϑ(T ) =
∂f(0, T )

∂T
+ af(0, T ) +

σ2

2a

(
1− e−2aT

)
.

Substituting this result into eq. (3.5) yields the following result:
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Proposition 3.2.4. At time t, the price of a zero-coupon bond maturing at T is given
by

P (t, T ) = A(t, T )e−B(t,T )r(t) (3.7)

where

A(t, T ) =
P (0, T )

P (0, t)
eB(t,T )f(0,t)−σ24a (1−e−2at)B(t,T )2 .

Note that the terms P (0, t) and P (0, T ) in proposition 3.2.4 are given by the yield curve
observed in the market at time 0.

Using the exact formula for ϑ(t), we can rewrite proposition 3.2.1 as:

Proposition 3.2.5. For any s < t, a solution to the stochastic differential equation (3.2)
is given by

r(t) = e−a(t−s)r(s) + α(t)− e−a(t−s)α(s) + σ

∫ t

s

e−a(t−u)dW (u) (3.8)

where

α(t) = f(0, t) +
σ2

2a2
(
1− e−at

)2
.

In particular, conditional on Fs, the short rate r(t) is normally distributed with expecta-
tion

EQ [r(t)|Fs] = e−a(t−s)r(s) + α(t)− e−a(t−s)α(s)

and variance

VQ [r(t)|Fs] =
σ2

2a

(
1− e−2a(t−s)

)
.

Proof. Let s < t. From proposition 3.2.1 we have

r(t) = e−a(t−s)r(s) +

∫ t

s

e−a(t−u)ϑ(u)du+ σ

∫ t

s

e−a(t−u)dW (u).

Using eq. (3.6) and integrating by parts, the second term can be expressed as∫ t

s

e−a(t−u)ϑ(u)du =

∫ t

s

e−a(t−u)
(
∂f(0, u)

∂u
+ af(0, u) +

σ2

2a

(
1− e−2au

))
du

= −a
∫ t

s

e−a(t−u)f(0, u)du+
[
e−a(t−u)f(0, u)

]t
u=s

+ a

∫ t

s

e−a(t−u)f(0, u)du+
σ2

2a

∫ t

s

e−a(t−u)
(
1− e−2au

)
du

= f(0, t)− e−a(t−s)f(0, s) +
σ2

2a

([
e−a(t−u)

a

]t
u=s

−
[
−e
−a(t+u)

a

]t
u=s

)

= f(0, t)− e−a(t−s)f(0, s) +
σ2

2a2

(
1− e−a(t−s) + e−2at − e−a(t+s)

)
= α(t)− e−a(t−s)α(s).
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Hence it follows, as claimed, that

r(t) = e−a(t−s)r(s) + α(t)− e−a(t−s)α(s) + σ

∫ t

s

e−a(t−u)dW (u).

This also demonstrates that the model short rate can become negative with nonzero
probability, which is usually seen as a shortcoming of the Hull-White model in most
applications.1

We still need to determine the parameters a and σ by recovering market-observed cap
prices. For this, we will make use of the fact that a cap can be interpreted as a portfolio
of put options written on zero-coupon bonds (see section 2.2) and use the pricing formula
eq. (3.7).

The time t price of a unit notional European call option with strike K and maturity T ,
written on the forward price of a zero-coupon bond spanning [T, S], is given by

(3.9)VCall (t,K, P (t, T, S), T ) = P (t, T )ET
[
(P (T, S)−K)

+
∣∣∣Ft] ,

where ET denotes the expectation under the T -forward measure QT , i.e., the measure
associated with the numéraire P (t, T ).

In order to compute VCall (t,K, P (t, T, S), T ), we will first determine the distribution of r
under the measure QT .

For this purpose, we will make use of a different and more convenient representation of
r(t) which follows immediately from eq. (3.8) using s = 0, namely

r(t) = α(t) + x(t), (3.10)

where

x(t) = σ

∫ t

0

e−a(t−u)dW (u). (3.11)

Note that α(t) is fully deterministic, and that the stochastic term x(t) is independent of
the term structure at time 0.

The process x(t) defined in eq. (3.11) is the solution of the stochastic differential equation

dx(t) = −ax(t)dt+ σdW (t), x(0) = 0, (3.12)

where W (t) is a standard Brownian motion under the risk-neutral measure Q. This can
easily be confirmed by variation of constants.

We would like to determine the dynamics of x(t) under the forward measure QT . To
accomplish this we make use of the change-of-numéraire technique.

1unless of course one uses the Hull-White model to deliberately model possibly negative rates
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Proposition 3.2.6. Let QM and QN be equivalent martingale measures with associated
numéraires M and N , respectively. Assume that under a common measure P equivalent
to both numéraire measures, the numéraires evolve according to

dM(t) = (. . . )dt+ σM (t)dWt

dN(t) = (. . . )dt+ σN (t)dWt.

Let WM and WN be standard Brownian motions corresponding to the measures QM and
QN , respectively. Then WM and WN are related by

(3.13)dWM (t) = dWN (t)−
(
σM (t)

M(t)
− σN (t)

N(t)

)
.

Proof. See Brigo and Mercurio (2006).

Lemma 3.2.7. Under the T -forward measure QT , the process x(t) defined by eq. (3.11)
evolves according to

dx(t) =
(
−B(t, T )σ2 − ax(t)

)
dt+ σdWT (t), x(0) = 0,

where WT is a QT -Brownian motion defined by

dWT (t) = dW (t) + σB(t, T )dt.

In particular, for s ≤ t ≤ T it holds that

x(t) = e−a(t−s)x(s)−MT (s, t) + σ

∫ t

s

e−a(t−u)dWT (u), (3.14)

where

MT (s, t) =
σ2

a2

(
1− e−a(t−s)

)
− σ2

2a2

(
e−a(T−t) − e−a(T+t−2s)

)
.

Proof. We apply proposition 3.2.6 using QN = Q and QM = QT .

Under the risk-neutral measure, we know that the bond price P (t, T ), which is the
numéraire corresponding to QT , follows a stochastic differential equation of the type

dP (t, T ) = µT (t)dt+ σT (t)dW (t),

where W (t) is a Wiener process under Q.

Applying Itô’s lemma to eq. (3.7), we see that

dP (t, T ) =
∂P (t, T )

∂t
dt+

∂P (t, T )

∂r
dr +

1

2

∂2P (t, T )

∂r2
d〈r〉(t)

=
∂P (t, T )

∂t
dt−B(t, T )P (t, T ) [(ϑ(t)−ar(t)) dt+σdW (t)]+

1

2
B(t, T )2P (t, T )σ2dt

=

[
∂P (t, T )

∂t
−B(t, T )P (t, T ) (ϑ(t)− ar(t)) +

1

2
B(t, T )2P (t, T )σ2

]
dt

− σB(t, T )P (t, T )dW (t).
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It follows that

σT (t) = −σB(t, T )P (t, T ).

Under the risk neutral measure, the numéraire is given by the money market account

B(t) = exp

(∫ t

0

r(s)ds

)
,

which is clearly driftless under Q.

Equation (3.13) states that a standard Brownian motion WT under the forward measure
QT follows the dynamics

dWT = dW (t) + σB(t, T )dt,

so that eq. (3.12) implies

dx(t) = −ax(t)dt+ σdW (t)

=
(
−σ2B(t, T )− ax(t)

)
dt+ σdWT (t).

Finally, eq. (3.14) follows from variation of constants.

An immediate result is:

Corollary 3.2.8. For any s < t, a solution to the stochastic differential equation (3.2) is
given by

r(t) = α(t) + e−a(t−s)x(s)−MT (s, t) + σ

∫ t

s

e−a(t−u)dWT (u) (3.15)

where WT is a standard Brownian motion under the T -forward measure QT .

In particular, conditional on Fs, under QT the random variable r(t) is normally distributed
with expectation

ET [r(t)|Fs] = α(t) + e−a(t−s)x(s)−MT (s, t)

and variance

VT [r(t)|Fs] =
σ2

2a

(
1− e−2a(t−s)

)
.

This result can now be used to determine the prices of European call and put options on
zero-coupon bonds.

Proposition 3.2.9. The time t price of a unit notional European call option with strike
K and maturity T , written on the forward price of a zero-coupon bond spanning [T, S],
is given by

VCall (t,K, P (t, T, S), T ) = P (t, S)Φ(h)−KP (t, T )Φ(h− σp)
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where Φ denotes the cumulative distribution function of the standard normal distribution
and

σp = σ

(
1− e−2a(T−t)

2a

)1/2

B(T, S)

h =
1

σp
ln

(
P (t, S)

KP (t, T )

)
+
σp
2
.

The price of a unit notional European put option with analogous characteristics is given
by

VPut (t,K, P (t, T, S), T ) = KP (t, T )Φ(−h+ σp)− P (t, S)Φ(−h).

Proof. See Brigo and Mercurio (2006).

Using the fact that a cap (floor) can be interpreted as a portfolio of put (call) options on
zero-coupon bonds (cf. eqs. (2.14) and (2.15)), this yields:

Corollary 3.2.10. Define the tenor structure

0 ≤ Tm < ... < Tn, τi = Ti+1 − Ti, i = m,m+ 1 . . . , n− 1, (3.16)

and consider the corresponding unit notional cap with strike K, which consists of (n −
m− 1) unit notional caplets on LIBOR rates fi paying

τi(fi(Ti)−K)+

at times Ti+1.

The time t value of this cap is given by

(3.17)VCap =

n−1∑
i=m

P (t, Ti)Φ(−hi + σip)− (1 + τiK)P (t, Ti+1)Φ(−hi),

where

σip = σ

(
1− e−2a(Ti−t)

2a

)1/2

B(Ti, Ti+1)

hi =
1

σip
ln

(
P (t, Ti+1)(1 + τiK)

P (t, Ti)

)
+
σip
2
.

The price of the corresponding floor with analogous characteristics is given by

(3.18)VFloor =

n−1∑
i=m

(1 + τiK)P (t, Ti+1)Φ(hi)− P (t, Ti)Φ(hi − σip).
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This result can be used to calibrate the parameters a and σ. Let

Capmarket(i), i = 1, . . . , N,

be a given set of market cap prices, and denote by V a,σCap(i) the model price of each cap
according to eq. (3.17) given a and σ.

Parameters a and σ can be obtained by numerically minimizing the squared absolute or
relative distances between market and model prices, i.e.,

arg min
a,σ

N∑
i=1

(
Capmarket(i)− V

a,σ
Cap(i)

)2
(3.19)

or

arg min
a,σ

N∑
i=1

(
Capmarket(i)− V

a,σ
Cap(i)

Capmarket(i)

)2

. (3.20)

3.2.2 Calibration to Swaption Prices

Besides caps, European swaptions can also be priced analytically in the Hull-White model.
As seen in section 2.2, a swaption is equivalent to a put or call option on a coupon bearing
bond. In several term structure models, including the Hull-White model, such an option
can be valued as a weighted sum of options written on zero-coupon bonds.

Consider a European option with strike K and maturity T , written on the forward price
of a bond paying n coupons after the option maturity. Denote by T1, . . . , Tn the payment
times and by c1, . . . , cn the payment values associated with the bond.

Let

Π(t, r(t)) =

n∑
i=1

ciP (t, T, Ti)

be the time t forward price of the coupon bearing bond and let r∗ be the value for the
spot rate at time T for which

Π(T, r∗) = K.

Further, let
Ki = P (T, Ti|r(T ) = r∗) , i = 1, . . . , n,

be the time T price of a zero-coupon bond maturing at Ti conditional on r(T ) = r∗.

Then the price of the European option is given by

(3.21)VCall (t,K,Π(t), T ) =

n∑
i=1

ciVCall (t,Ki, P (t, T, Ti), T )

or

(3.22)VPut (t,K,Π(t), T ) =

n∑
i=1

ciVPut (t,Ki, P (t, T, Ti), T ) ,
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depending on whether it is a call or a put option. This relationship is based on a technique
introduced by Jamshidian (1989). A formal derivation of eqs. (3.21) and (3.22) can also
be found in Brigo and Mercurio (2006).

Corollary 3.2.11. Consider the unit notional payer swaption with maturity Tm and
strike rate K which gives the owner the right to enter at time Tm into a swap with reset
dates Tm, . . . , Tn−1 and payment dates Tm+1, . . . , Tn, so that the holder pays the fixed leg
and receives the floating leg.

Let

ci =

{
Kτi for i = m+ 1, . . . , n− 1

1 +Kτi for i = n

and let r∗ be the value of the short rate at time Tm for which

n∑
i =m+1

ciA(Tm, Ti)e
−B(Tm,Ti)r

∗
= 1.

Further let

Ki = A(Tm, Ti)e
−B(Tm,Ti)r

∗
, i = m+ 1, . . . n.

Then the time t value of the payer swaption is given by

(3.23)VPSwaption =

n∑
i=m+1

ciVPut (t,Ki, P (t, Tm, Ti), Tm) .

The price of the analogous receiver swaption is given by

VRSwaption =

n∑
i=m+1

ciVCall (t,Ki, P (t, Tm, Ti), Tm) .

Proof. Using the identity

P (Tm, Ti|r(Tm) = r∗) = A(Tm, Ti)e
−B(Tm,Ti)r

∗
,

which has been shown in proposition 3.2.4, this follows immediately from Jamshidian’s
(1989) technique since the payer (receiver) swaption can be viewed as a put (call) option
with strike 1 on the forward price of a coupon-bearing bond (see section 2.2).

As in the caplet calibration mechanism (see eqs. (3.19) and (3.20)), we can use this result to
calibrate the parameters a and σ by minimizing the squared absolute or relative distances
between market and model prices of swaptions.
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3.3 The SABR Model

The SABR model has been put forth by Hagan et al. (2002). The acronym SABR stands
for Stochastic Alpha, Beta, Rho, where α, β and ρ represent variables of the model in the
original notation (the state variable α is the initial volatility, and the parameters β and
ρ denote a CEV-type exponent and a correlation term, respectively). To avoid confusion
and since we are dealing with a variety of models and their parameters simultaneously,
we will follow Rebonato et al. (2009) and use the symbol σ to denote volatilities.

Prior to the emergence of the SABR model, local volatility models developed by Dupire
(1994) as well as Derman and Kani (1994) were the most common method of managing
smile / skew risk. However, Hagan et al. (2002) point out that local volatility models
make wrong predictions about the dynamics of the volatility smile / skew. Empirical
evidence shows that a change in the forward price is usually accommodated by a shift of
the implied volatility curve in the same direction, which is the opposite of the predictions
made by the above-mentioned local volatility models.

As Hagan et al. show, this means that hedges calculated from these models are incorrect.
Consider for example a call option on the forward rate f struck at K and expiring at
time T . There exists a function σloc(f,K) such that the price of a European call (and
similarly a put) option under the local volatility model can be computed using Black’s
formula [eq. (2.10)]

Bl+(K, f, T, σloc(f,K)).

Differentiation with regard to f yields the option Delta

∆ =
∂Bl+

∂f
+
∂Bl+

∂σ

∂σloc(K, f)

∂f
.

The first term is the delta as predicted by the Black model, and the second term is a
correction term stating by how much the local volatility model’s delta deviates from the
one predicted by the Black model. Under the local volatility model, the correction term
has the wrong sign, and the resulting hedges are worse than those suggested by the Black
model.

To overcome this issue, Hagan et al. (2002) developed the SABR model, which is a stochas-
tic volatility model capable of evolving a single forward rate ft of maturity T in isolation.
Let τ denote the tenor of ft. Under its associated terminal measure QT+τ , i.e., the mea-
sure under which ft and its volatility are martingales, the rate ft is assumed to follow the
dynamics

(3.24)dft = σt(ft)
βdWt

(3.25)dσt = σtνdZt

(3.26)d〈W,Z〉t = ρdt

for t ≤ T , where W and Z are correlated Wiener processes. For a given set of expiry-
dependent parameters ν ∈ R, β ∈ [0, 1] and ρ ∈ [−1, 1], the SABR dynamics are thus fully
determined by the initial values f0 and σ0. We note that among these two state variables
only the initial forward rate f0 is directly observable from market values.

In the SABR model, ft could represent any forward rate, such as a forward LIBOR rate or
a forward swap rate. The former allows to model interest rate caplets / floorlets, and the
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latter allows to model swaptions. If ft is a forward LIBOR rate, the numéraire is given
by P (t, T + τ). In the case where a swap rate is modeled, the numéraire is given by the
swap annuity.

3.3.1 Valuation of European Options

While the initial value f0 is given by the market, the parameters σ0, ν and ρ will be
obtained by calibrating the model to the prices of European vanilla options (i.e., caplets
if ft denotes a forward LIBOR rate, or swaptions in case ft represents a forward swap
rate).

Hagan et al. (2002) derive an approximation formula for the Black implied volatility of
a call / put option on an underlying that obeys the SABR model. This allows for the
analytical pricing of options under the SABR model by use of the Black formula, and also
provides a tractable calibration algorithm. In particular, at time t = 0 the (approximate)
Black implied volatility of a European call option on the underlying f with strike K and
expiry tex is given by

σSABR(f0,K, tex, σ0, ρ, ν, β) = A ·
(

z

χ(z)

)
·B (3.27)

with

A =
σ0

(f0K)
1−β
2 [1 + (1−β)2

24 ln2 f0
K + (1−β)4

1920 ln4 f0
K + ...]

B =

[
1 +

(
(1− β)2

24

(σ0)2

(f0K)1−β
+

ρβνσ0

4(f0K)
1−β
2

+
2− 3ρ2

24
ν2

)
· tex + ...

]

z =
ν

σ0
(f0K)

1−β
2 ln

f0
K

χ(z) = ln

(√
1− 2ρz + z2 + z − ρ

1− ρ

)
.

In the case of an at-the-money option, eq. (3.27) reduces to:

σSABR(f0, f0, tex, σ0, ρ, ν, β) =
σ0
f1−β

[
1+

(
(1− β)2

24

(σ0)2

f2−2β
+

ρβνσ0

4(f0)
1−β
2

+
2− 3ρ2

24
ν2

)
·tex

]
.

The formula has later been improved by various authors, such as Ob lój (2008) and Paulot
(2009), but is still widely used in its original form.

If the SABR state variable f represents a forward swap rate, the above formula can be
used to value a payer swaption. At the time of maturity T , the swaption will pay

A(T ) (f(T )−K)
+
.
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The swap annuity A(t) is the associated numéraire under the swap measure so that the
time 0 value of the swaption is

ET+τ

[
A(0)

A(T )
A(T ) (f(T )−K)

+

]
= A(0)ET+τ

[
(f(T )−K)

+
]

where ET+τ denotes the expectation under the terminal measure.

All we need to compute this expression is the price of a European call option under the
SABR model which is easily obtained by evaluating the Black formula using the implied
volatility given by Hagan’s formula, i.e.,

(3.28)VPSwaption(0) = A(0)Bl+(K, f(0), T, σ̂SABR).

Note that a caplet is simply a (degenerate) one-period swaption (where A(t) = P (t, T+τ))
and can also be valued according to eq. (3.28).

3.3.2 Calibration

Consider a set of caplets or swaptions with expiry T , strikes K1, . . . ,KN and Black implied
volatilities σ̂(Ki). The SABR parameters can by calibrated via eq. (3.27) by solving

(3.29)(σ0, ρ, ν) = arg min
σ0,ν∈R+,
|ρ|≤1

N∑
i=1

[
σ̂(Ki)− σSABR (f0,Ki, T, σ0, ρ, ν, β)

]2
.

For any given single exercise date, the SABR model can be used to fit the implied volatility
curve. The predicted dynamics of the smile are consistent with empirical observations.
Assets with a single exercise date — including caplets and swaptions — can thus be hedged
using the SABR model.

Furthermore, its capability to parameterize the volatility smile as a tuple (σ0, ρ, ν) allows
for the SABR model to be used as a tool for the interpolation of the full smile from a
discrete set of market quotes.

The hedging performance of the SABR model is tested in Rebonato et al. (2009, chapter
IV) as well as Rebonato et al. (2008),where the authors find that the model is very well
specified with regard to delta and vega hedging.

3.4 The SABR-LIBOR Market Model

One major drawback of the SABR model is its inability to model rates of different expiries
simultaneously. In particular, complex derivatives depending on multiple forward rates
cannot be captured by the SABR model.

The classic log-normal LIBOR Market Model (LMM), primarily developed by Brace et al.
(1997), Jamshidian (1997) and Miltersen et al. (1997) provides this feature. However, the
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LMM is based on the assumption of deterministic volatilities, and due to the assumed
log-normality it is inconsistent with a volatility smile as can be observed in the interest
rate cap / floor market (see e.g., Jarrow et al. (2007)).

While certain stochastic-volatility extensions of the LMM existed and some were capable
of capturing the smile to a certain degree (see again Jarrow et al. (2007)), none of them
were compatible with the SABR model. Rebonato (2007) set out to provide a stochastic-
volatility extension of the LMM that was capable of recovering SABR caplet prices. The
resulting SABR-LIBOR Market Model (LMM-SABR) was extended further and studied
by Rebonato et al. (2009).

For i = 1, 2, . . . , N , consider the forward rates f it expiring at Ti and paying at Ti + τ .
Denote by sit the instantaneous volatility of the ith forward rate. Under its own terminal
measure QTi+τ , which is the measure corresponding to the numéraire P (t, Ti + τ), for
t ≤ Ti the LMM-SABR dynamics of the forward rate f it are given by

(3.30)df it = sit(f
i
t )
βidW i

t

(3.31)sit = gitk
i
t

(3.32)
dkit
kit

= µidt+ hitdZ
i
t ,

where git and hit are deterministic functions, βi ∈ [0, 1], and W i, Zi are correlated standard
Brownian motions.

We follow the second route described in Rebonato (2007) and only consider the case µi = 0.
Note that under QTi+τ the driftlessness in eqs. (3.30) and (3.32) only holds for the single
forward rate f it = f(t, Ti, Ti + τ). If all forward rates are modeled simultaneously under
the same measure, the resulting equations of motion contain no-arbitrage drift terms.

Denote the correlation structure by

(3.33)d〈W i,W j〉t = ρijdt

(3.34)d〈Zi, Zj〉t = rijdt

(3.35)d〈W i, Zj〉t = Rijdt.

We can write this in terms of a matrix as

P =

(
ρ R
RT r

)
. (3.36)

Note that ρ, r and P need to be valid correlation matrices (i.e., symmetric and positive
semi-definite matrices with unit diagonal). We call P the super-correlation matrix of the
LMM-SABR.

The instantaneous volatility sit has been decomposed into a purely deterministic compo-
nent git and a stochastic part kit. Note that eqs. (3.31) and (3.32) imply

dsit = sitµ
idt+ hits

i
tdZ

i
t ,
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so that hit represents the instantaneous volatility of volatility.

The model is fully specified once the functions git and hit as well as the super-correlation
matrix are defined and the initial values f i0, ki0 and si0 are set.

3.4.1 Parameterization of the Volatility Functions g and h

As for the functions git and hit, we will follow Rebonato et al. (2009) and use the abcd-
parameterization originally proposed by Rebonato (2004):

git = g(Ti − t)

hit = ξih(Ti − t),

where

(3.37)g(τ) = (a+ bτ) exp(−cτ) + d

(3.38)h(τ) = (α+ βτ) exp(−γτ) + δ,

and where ξi are correction factors. While a fully time-homogeneous volatility structure
might be a desirable feature, a perfect fit to a set of plain-vanilla derivatives is even
more important in many cases. In the presence of the correction factors ξi, the resulting
volatility of volatility will not be strictly time-homogeneous but will allow for a better fit
to market quotes. If the model is well-specified, the required correction terms will be close
to unity. Rebonato et al. (2009) show that this is indeed the case when calibrating the
volatility structure to market prices of caplets.

Both g and h should be well-behaved instantaneous volatility functions. Therefore, we
will impose certain constraints on the parameters of g and h. As explained by Rebonato
et al. (2009), the abcd-parameterization allows to give g and h monotonically decreasing
or humped shapes. In most cases, the function h will be monotonically decreasing and
g will either exhibit a humped shape (under “normal” market conditions) or decrease
monotonically (under “excited” market conditions).

Rebonato (2006) explains the humped shape typically observed in instantaneous volatil-
ities as follows. Forward rates close to expiry are primarily affected by the actions of
monetary authorities. In general these institutions tend to communicate their intentions
well before significant rate decisions are made. Therefore, forward rates usually show a
declining level of volatility as they reach expiry. Expectations about very long-dated rates
on the other hand are primarily influenced by expectations about long-term inflation.
Central banks often follow an inflation target which reduces the volatility of long-term
nominal rates (under the assumption that real interest rates are little volatile). Thus, the
largest uncertainty can be found in the medium term, usually between six and twenty-four
months.

In “excited” periods on the other hand, there is a lack of consensus about the imminent
decisions of the monetary institutions so that short-term rates become highly volatile and
the hump disappears.

A selection of parameter choices and the associated shapes of the abcd-function are shown
in fig. 3.1.
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Figure 3.1: Possibles shapes the abcd-parameterization defined in eqs. (3.37) and (3.38) can
recover. Source: (Rebonato et al., 2009, Fig. 2.1).

We would like g to have a limit as τ tends to infinity and thus we require c > 0. As τ goes to
infinity, g(τ) will converge to d which can be interpreted as the approximate instantaneous
volatility of a very long-dated rate, which of course shall be strictly positive as well. As
t tends toward Ti, g

i
t approaches the instantaneous volatility of a rate arbitrarily close to

expiry, which shall again be positive:

g(0) = a+ d > 0.

Consider the derivative of the abcd-function:

g′(τ) = (b− ac− bcτ) exp(−cτ).

The function g will be strictly decreasing if and only if g′(τ) < 0 for all τ > 0. This is the
case if and only if — in addition to the constraints described above — one of the following
two conditions holds true

• a > 0 and b = 0 or

• a, b > 0 and c ≥ b
a .

On the other hand, g will describe a humped shape if there exists some τ∗ > 0 where

∂

∂τ
g(τ∗; a, b, c, d) = 0,

i.e.,

τ∗ =
1

c
− a

b
(3.39)

34



for some τ∗ > 0. This requires b > 0. Note that in this case

g′′(τ∗) = −bc exp(−cτ∗) < 0

so that the extremum is indeed a maximum.

If necessary we could also use eq. (3.39) to impose conditions on the location of the
maximum.

Equivalent constraints can be defined for the parameters of the function h.

3.4.2 Calibration of the LMM-SABR to Caplets

We will now give a very concise overview of the calibration approach we will perform in
section 4.3. For a detailed description see Rebonato et al. (2009).

Obtaining SABR Parameters

We assume that we have market quotes f i0, i = 1, 2, . . . , N , for a set of forward rates
corresponding to a spanning tenor structure of

0 = T0 < T1 < · · · < TN+1.

Furthermore, we assume that for i = 1, 2, . . . , N , we know the Black implied volatilities of
a set of caplets expiring at Ti and paying at Ti+1. This allows us to perform a (separate)
SABR calibration for each of the Ti which yields parameters2(

σTi0 , ρ
Ti
SABR, ν

Ti , βTiSABR

)
, i = 1, 2, . . . , N.

Calibration of g and h

The calibration approach for the parameters of g and h will be based on the objective to
recover the input caplet prices as closely as possible.

If the stochastic component kit = ki0 were constant, so that the volatility term sit = gitk
i
t

were deterministic, and if β = 1, the LMM-SABR implied Black volatility would be exactly
equal to

σ̂i
2 =

1

Ti

∫ Ti

0

s2udu =
(ki0)2

Ti

∫ Ti

0

(giu)2du. (3.40)

In the deterministic-volatility lognormal setting, the initial values kTi0 would thus be fully
determined by eq. (3.40), namely

kT0 =
σ̂i
ĝi

where

ĝi =

√
1

Ti

∫ Ti

0

(giu)2du (3.41)

2Strictly speaking, σ0 is a state variable in the SABR model, not a parameter.
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denotes the root-mean-squared volatility. Of course, the above calculation is invalid in
the case of a stochastic ki, so that the initial value ki0 will have to be chosen in a different
way. First note that the SABR volatility process σTit satisfies

E
[
σTit

]
= σTi0 .

As for the calibration of g and ki0, Rebonato et al. (2009) propose the following heuristic
approach: First, the parameters of g will be chosen so that ĝi matches σTi0 as closely as
possible, i.e.,

(a, b, c, d) = arg min

N∑
i=1

(
σTi0 − ĝi

)2
. (3.42)

The minimization has to be performed numerically, under the necessary (or desired) con-
straints.

The initial loadings ki0 will subsequently be chosen so as to compensate for the remaining
discrepancies and bring about exact recovery of σTi0 :

ki0 =
σTi0
ĝi
, i = 1, 2, . . . , N. (3.43)

Note that the state variables ki0 will be close to 1 if the calibration of ĝi in eq. (3.42)
already provides a close fit to the initial SABR volatilities σTi0 .

The idea behind this procedure is to have the deterministic factor git represent the (aver-
age) physical behavior of the volatility function so that the stochasticity merely induces
deviation from this deterministic behavior.

Next we wish to calibrate h by attempting to make LMM-SABR caplet prices match
SABR caplet prices:

CallLMM ≈ CallSABR. (3.44)

Unfortunately, no immediate closed-form solution or sufficiently precise approximation
formula exists for the pricing of caplets (or floorlets) under the LMM-SABR model.

In his original publication of the LMM-SABR, Rebonato (2007) suggested choosing the
parameters of h by performing a fit of the root-mean-squared volatility

ĥi =

√
1

Ti

∫ Ti

0

h(Ti − s)2ds

to the SABR volatility of volatility parameters νTi , i = 1, . . . , N , i.e., by solving

(3.45)(α, β, γ, δ) = arg min

N∑
i=1

(
νTi − ĥi

)2
.

Subsequently, Rebonato and White (2009) presented an improvement of this method based
on the following reasoning: In a deterministic-volatility setting (e.g., the deterministic-
volatility Black (1976) framework or the classic LMM), the price of a caplet only depends
on the terminal distribution of the underlying forward rate. In this case all that is need to
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ensure that a caplet is priced correctly is to make sure that its average volatility over the
lifetime of the forward rate is correct. This is the rationale behind eq. (3.40). In eq. (3.45)
the same concept is simply applied to the volatility of volatility, i.e., h is calibrated by
ensuring that the average volatility of volatility comes close to a benchmark value — the
SABR ν in this case.

Rebonato and White (2009) note that this reasoning is not strictly valid in the stochastic
volatility case. Since the volatility of a forward rate and its volatility of volatility interact,
it is not only relevant that each one of them has the correct value on average but it is
also important when certain values occur. This can be seen intuitively: At a time when
the volatility sit of the forward rate is extremely low (because git is very low, e.g.), a high
volatility of volatility hit will only have a small effect on the evolution of the forward rate.
If instead such a high volatility of volatility occurred at a time when sit was at a high
level, the effect would be much stronger.

Rebonato and White (2009) devise a different calibration mechanism where this aspect is
considered. In order to perform a calibration based on eq. (3.44), Rebonato and White
note that for the minimization of the difference CallLMM−CallSABR, it is sufficient to have
a representation formula for this very difference; there is no need to derive an individual
formula for each of the two terms.

The basic idea is to set equal the exact (non-closed) formulas for CallLMM and CallSABR,
and then make similar approximations with regard to each of the expressions. Even though
neither of the two approximations is accurate in itself, eq. (3.44) still holds approximately
since the applied transformations produce roughly the same errors on both sides of the
equation. Without presenting the algebraic manipulations in full detail, the resulting
calibration mechanism is

(α, β, γ, δ) = arg min

N∑
i=1

νTi − ki0
σTi0 Ti

(
2

∫ Ti

0

(giu)2(ĥiu)2udu

)1/2
2

(3.46)

where

ĥiu =

√
1

u

∫ u

0

h(Ti − s)2ds

=

√
1

u

∫ u

0

[(α+ β(Ti − s)) exp (−γ(Ti − s)) + δ]
2
ds.

Similar to eq. (3.43), correction terms ξi are introduced to compensate for each of the
residuals in eq. (3.46):

ξi = νTi
/ ki0

σTi0 Ti

(
2

∫ Ti

0

(giu)2(ĥiu)2udu

)1/2
 . (3.47)

For our purposes we will use the improved calibration method. Nevertheless, we also
considered the simple method (eq. (3.45)) since it allows us to obtain a rough prior estimate
of what shape we can expect for the h function. We will make use of this in section 4.3
where we need to calibrate the LMM-SABR for a large number of consecutive dates.
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Calibration of the Correlation Structure

The only elements of the super correlation matrix P that influence the prices of caplets
are the diagonal elements of the submatrix R, i.e., the correlations between each forward
rate and its own volatility.

In order to recover the SABR caplet prices, one has to ensure that

Rii = ρTiSABR, i = 1, 2, . . . , N.

The full calibration matrix can be obtained by econometric estimation, cf. Rebonato
et al. (2009), or by performing a best fit using market prices of correlation-dependent
derivatives, such as swaptions.

In the context of our study we have no need for the estimation of the full correlation
matrix.

3.4.3 Calibration to Swaptions

As an alternative to the calibration to caplets, the LMM-SABR can also be calibrated
to market prices of swaptions. In our experiment, we are only considering (degenerate)
one-period swaptions. These are equivalent to caplets, and the pricing formulas coincide.
For the sake of completeness, we list the LMM-SABR swaption pricing formulas. In
conjunction with the full correlation matrix P , these formulas can be used to calibrate the
LMM-SABR to market prices of (multi-period) swaptions. All derivations as well as the
estimation process for the correlation matrix P can be found in Rebonato et al. (2009) or
Rebonato and White (2009).

To arrive at a tractable calibration method, Rebonato and White (2009) develop accu-
rate closed-form approximations for the price of a swaption given a set of LMM-SABR
parameters.

Rebonato and White (2009) proceed as follows: Assume that the evolution of a swap rate
under the forward-rate based LMM-SABR can be represented by a SABR system,

(3.48)dSm,nt = (Sm,nt )B
m,n

Σm,nt dZm,nt

(3.49)
dΣm,nt

Σm,nt

= V m,ndWm,n
t

(3.50)d〈Zm,nt ,Wm,n
t 〉 = Rm,nSABRdt,

under the swap measure.

The system is fully specified once the parameters V m,n, Bm,n, Rm,nSABR as well as the initial
conditions Sm,n0 and Σm,n0 have been set.

If one had knowledge of these values, one could use the Hagan formula (eq. (3.27)) to
price a payer or receiver swaption on the swap rate Sm,n.

Rebonato and White (2009) succeed in deriving approximation formulas for the above
parameters and initial values that are implied by a given set of parameters and initial
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values of the forward-rate based LMM-SABR. The accuracy of the predicted swaption
prices is shown by comparing them to the results of a full Monte-Carlo simulation of the
LMM-SABR system.

First we note that a forward swap rate Sm,nt (cf. eq. (2.8)) can be expressed as a weighted
sum of the associated forward rates:

Sm,nt =

n−1∑
i=m

ωm,ni (t)f it (3.51)

where

ωm,ni (t) =
τiP (t, Ti+1)∑n−1
j=m τjP (t, Tj+1)

.

To increase readability, we will omit the superscripts m, n in the following formulas. The
approximations derived by Rebonato and White (2009) for the unknown parameters in
eqs. (3.48) to (3.50) are as follows:

(3.52)Σ0 ≈

 1

Tm

n−1∑
i,j=m

(
ρijW

0
i W

0
j k

i
0k
j
0

∫ Tm

0

gitg
j
tdt

)1/2

(3.53)V ≈ 1

Σ0Tm

2

n−1∑
i,j=m

(
ρijrijW

0
i W

0
j k

i
0k
j
0

∫ Tm

0

gitg
j
t ĥij(t)

2tdt

)1/2

where

ĥij(t) =

(
1

t

∫ t

0

hi(s)hj(s)ds

)1/2

W 0
i = ωi(0)

(f i0)β

SB0
.

The correlation parameter RSABR is approximated as

RSABR ≈
n−1∑
i,j=m

ΩijRij

where

Ωij =
2ρijrijW

0
i W

0
j k

i
0k
j
0

∫ Tm
0

gitg
j
t ĥij(t)

2tdt

(V Σ0Tm)
2 .

The SABR exponent B is approximated as

(3.54)B ≈
n−1∑
i=m

ωi(0)βi,

39



where βi are the forward rate exponents in the LMM-SABR dynamics. Since we are using
a single β (= 1/2) for all forward rates, eq. (3.54) simplifies to

B ≈ β.

The initial swap rate S0 is given by eq. (3.51) in conjunction with the initial forward rates.

In the case of a one-period swaption, minimization of the mean-squared distance between
the approximate Σ0 (eq. (3.52)) and the forward-rate based SABR σ0 coincides with the
calibration procedure presented in eq. (3.42). Furthermore, a best fit of the approximate
V (eq. (3.53)) to the forward-rate based SABR ν is identical to the approach given in
eq. (3.46).

Hence, the two calibration procedures are perfectly consistent.
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Chapter 4

A Model for the Evolution of
the Yield Curve and Smile
Surface Under the Physical
Measure

4.1 The Need for a Real-World Evolution Framework

One might be inclined to evolve the term structure of interest rates by simply employing
a pricing model. Rebonato et al. (2005) distinguish between two subclasses of such mod-
els. “Fundamental” models describe the evolution of the yield curve under the real-world
measure and reach conclusions about the prices of derivative products by the explicit
specification of risk premiums. “Reduced-form” models describe the evolution of interest
rates directly under the risk-neutral measure. In principle, fundamental pricing models
could be used to simulate the real-world evolution of the yield curve. Even though they
were never intended to describe the dynamics of the term structure in the most realistic
way, they provide a parsimonious description of the most fundamental features of the
yield curve dynamics. However, as Rebonato et al. (2005) point out, their descriptions
lack too many statistical subtleties to be able to provide satisfactory results, especially
since realism has often been waived in favor of tractability. Reduced-form models are
even less suitable for this purpose. Since they work directly under the pricing measure,
most of their parameters implicitly contain components linked to risk aversion so that the
interest rate dynamics contain drift terms that are different from what can be observed
in real-world time series. Especially over a long horizon, these drift terms will completely
dominate the simulation and the results will look very different from reality. Moreover,
the choice of a pricing measure is often ambiguous.

Hence, it is clear that we require a model that captures the statistical properties of histor-
ical movements in the term structure of interest rates, and produces synthetic realizations
under the physical measure.
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We will use a variation of a particular sampling approach originally suggested by Re-
bonato et al. (2005), which has subsequently been adapted by Deguillaume (2009) and
Andreichenko (2011) to the modeling of interest rates and implied volatilities, respectively.
However, we will make a few changes to the method.

We note that an important ingredient in the original approach by Rebonato et al. (2005) is
the presence of pseudo-arbitrageurs modeled in the form of spring constants, intended to
straighten out “kinks” and avoid excessive slopes in the synthetic yield curves. We follow
Deguillaume (2009) as well as Andreichenko (2011) and instead make use of an Ornstein-
Uhlenbeck type mean reversion force for this purpose. This decision is motivated by the
desire to have a single approach that can be consistently applied to all involved parameters,
and includes no judgment on the viability of the original approach which was intended at
the evolution of yield curves alone.

4.2 Evolution of the Yield Curve

4.2.1 Motivation

In this section we wish to specify an approach designed by Deguillaume (2009) which will
allow us to generate stochastic realizations of the yield curve under the physical measure.
The evolution of the implied volatility surface will be treated in section 4.3.

As an introduction, the design of the approach will be illustrated in a simplified manner.

The general idea is to start with today’s yield curve and iteratively generate future rates
by re-applying randomly selected historical movements of the curve. In order to generate
economically sensible results, we will have to translate the historical rate movements to
today’s market situation in a way consistent with our view on the behavior of interest
rates.

Denote by y(0) the current level of the (synthetic) rate at consideration, and by

Y (ωj + 1)− Y (ωj)

the amount by which the rate changed between two randomly chosen consecutive days ωj
and ωj + 1 out of our historical data set. As a motivating example, assume for a moment
that changes in the level of rates took place in a simple additive way, such that a historical
1-day change could be characterized by

Y (ωj + 1) = Y (ωj) + εωj ,

where εωj is a random variate drawn from some distribution φ.

Under this assumption, in our simulation we could generate tomorrow’s (synthetic) rate
as

y(1) = y(0) + [Y (ωj + 1)− Y (ωj)] = y(0) + εωj . (4.1)

If instead we assumed that changes could be characterized by multiplicative movements,
e.g.,

Y (ωj + 1) = Y (ωj)εωj ,
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we could define y(1) by the relation

y(1) = y(0)εωj ,

which is equivalent to
y(1)− y(0)

y(0)
=
Y (ωj + 1)− Y (ωj)

Y (ωj)
, (4.2)

or

ln(y(1)) = ln(y(0)) + [ln(Y (ωj + 1)− ln(Y (ωj))] .

Using the bijective function ln(·), the proportional world has thus been translated into
an additive world similar to eq. (4.1). Since unfortunately changes in real world interest
rates appear to neither manifest in a strictly additive nor a proportional manner, we need
to find a different bijection if we wish to make a similar transformation in the context of
real world rates.

We can interpret eq. (4.2) in a different way. Assume the evolution of interest rates could
be characterized by

Y (ωj + 1)− Y (ωj)

Y (ωj)
= νεωj ,

where εωj is a random variate drawn from a distribution φ with unit variance. If we
evolved

y(1)− y(0) = y(0)νεωj ,

where εωj is drawn from φ, we could informally interpret y(0)ν as the volatility of y at
time 0. In this sense, we could re-write eq. (4.2) as

y(1)− y(0)

νy(0)
=
Y (ωj + 1)− Y (ωj)

νY (ωj)
(4.3)

or

y(1)− y(0) = (Y (ωj + 1)− Y (ωj))
νy(0)

νY (ωj)

which means we are evolving y by adding to today’s rate y(0) historical changes

Y (ωj + 1)− Y (ωj)

scaled by the “volatility” quotient
νy(0)

νY (ωj)
.

We will go with this interpretation and make two adaptations to the world of eq. (4.3).
We will model the “volatility” by a deterministic function

σ : R+ → R+

depending on the level of the rate, and carry over eq. (4.3) to a continuous setting. The
latter will be done by assuming that in the course of the movement between two levels, say
y(0) and y(1), the scaling factor σ(s) has been continuously applied to any s ∈ [y(0), y(1)].
Formally, the updated version of eq. (4.3) reads
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∫ y(1)

y(0)

ds

σ(s)
=

∫ Y (ωj+1)

Y (ωj)

ds

σ(s)
. (4.4)

In order to translate this equation into an additive setting, note that eq. (4.4) is equivalent
to

Σ(y(1))− Σ(y(0)) = Σ(Y (ωj + 1))− Σ(Y (ωj)), (4.5)

if we write

Σ(y) := c1 + c2

∫ y

c3

ds

σ(s)
(4.6)

for arbitrary c1, c2, c3 ∈ R, c2 > 0. Of course, we will have to make sure that all integrals
in eqs. (4.4) and (4.6) actually exist and are finite. Also note that since σ is strictly
positive, any Σ defined in this way will be strictly increasing and thus have an inverse
Σ−1 which will allow us to recover the rate y(1) once we have obtained Σ(y(1)).

Note that we have not yet given a full evolution model. At this point all we have done is
make the step from understanding historical changes in a simple additive manner to the
more sophisticated interpretation of eq. (4.4). Furthermore, by making use of the function
Σ we have found our way back to the additive interpretation of interest rate movements.

If the daily increments of interest rates were independent and identically distributed, one
could produce a statistically satisfactory synthetic evolution of the yield curve

yτ (0), . . . , yτ (jmax),

where τ denotes the tenor of each rate, by performing the following method:

1. Obtain a large set of interest rate data, Y τ (0), Y τ (1), . . . , Y τ (N), for various tenors
τ .

2. Select initial values yτ (0) for each tenor τ .

3. Generate a set of dates ω1, . . . , ωjmax , randomly drawn from a discrete uniform dis-
tribution on the set {0, 1, . . . , N − 1}.

4. For each tenor τ , iteratively evolve

Σ(yτ (j + 1)) = Σ(yτ (j)) + [Σ(Y τ (ωj + 1))− Σ(Y τ (ωj))] , j = 1, . . . , jmax,

yτ (j + 1) = Σ−1(Σ(yτ (j + 1))).

Note that the approach samples a full cross-section of the yield curve simultaneously. E.g.,
the historical increments for the 1 year rate and the 20 year rate will be sampled from the
same date ωj . Therefore, the evolution is capable of recovering the correlation structure
between one-day movements in different parts of the yield curve. Obviously, this is an
indispensable feature of a yield curve evolution model.

However, Nyholm and Rebonato (2007) point out that after a few “months” of evolution,
synthetic yield curves generated by a simple sampling mechanism as the one described
above will generally bear little resemblance with yield curves observed historically. In
particular, the simulated yield curves will often have excessive slopes and “kinks”, where
the term kink refers to the occurrence of the phenomenon

yτ1 < yτ2 and yτ2 > yτ3
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or
yτ1 > yτ2 and yτ2 < yτ3 ,

for three successive tenors τ1 < τ2 < τ3. In order to resolve these effects, Rebonato et al.
(2005) introduce a spring mechanism which exerts a deterministic force straightening out
the shape of the yield curve. Furthermore, a mean-reversion component is added to
the short and long ends of the curve. As we have noted, we will go with Deguillaume
(2009) and Andreichenko (2011) and replace the spring mechanism with a mean-reverting
stochastic process.

Another drawback of the one-day sampling mechanism described above is its inability
of reproducing the serial autocorrelation seen in historical yield changes. In addition
to the correlations of one-day changes in different parts of the yield curve, Rebonato
et al. (2005) show that historical time series of interest rates exhibit a strong positive
serial autocorrelation for n-day returns. In the above approach, the stochastic process
(ωj)j=1,2,... randomly jumps to individual historical days so that any serial correlation
present in the historical time series of rates is clearly lost.

Therefore, the process (ωj)j=1,2,... will be modified. Instead of drawing each ωj indepen-

dently from the set of available dates, like Rebonato et al. (2005) [as well as Deguillaume
(2009) and Andreichenko (2011)] we will consider a full historical window of length W . In
the case of W = 40, e.g., we would start by randomly drawing ω1 from the set of available
dates and subsequently define ωj+1 = ωj +1 for j = 2, . . . , 40. The subsequent value, ω41,
would again be drawn randomly.

The updated method can be described as follows:

1. Obtain a large set of interest rate data, Y τ (0), Y τ (1), . . . , Y τ (N), for various tenors
τ .

2. Define a fixed window length W .

3. Select initial values yτ (0) for each tenor τ .

4. The future yield curve is simulated by the following process:

(a) Start with the initial yield curve yτ (0) and repeat steps 4b to 4d until the
desired number of data points, jmax, have been obtained.

(b) Select from the historical data set a window of W days.

(c) Extract the movement the yield curve underwent within this window.

(d) Generate W days in the simulated future by re-applying the extracted move-
ment to the current yield curve.

We will now develop the exact mathematical concept of how steps 4b to 4d are to be
realized so as to ensure that the simulation will produce realistic outcomes.

Notation 4.2.1. For the remainder of the section, we will stay with the notation intro-
duced above, i.e.:

• W : window length in the sampling mechanism

• N + 1: number of data points (business days) contained in the available data

• τ : tenor of the rate under consideration, e.g., τ = 1Yr
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• Y τ (0), . . . , Y τ (N): historical time series for the rate corresponding to the tenor τ

• yτ (0), yτ (1), . . . : simulated time series for the rate corresponding to the tenor τ

Until now we have only considered the generic term “interest rate”. The approach can be
adapted to any particular kind of interest rates. In our experiment, yτ will denote forward
LIBOR rates (more specifically, nYr into 1Yr forward swap rates).

4.2.2 Window Selection

Since the number of days spanned by our historical data is of course finite, a decision has
to be made on how to proceed if the end of the time series is reached before the current
window has been concluded, or whether to avoid the issue altogether by ensuring that the
starting point of each window is always sufficiently far away from the end of the series.

We will once again go with Deguillaume (2009) and simply jump to the beginning of the
time series whenever the end is reached before the current window has been completed.
This method has the benefit that each of the N historical realizations of 1-day changes
will have an equal (unconditional) probability of being selected. This simplifies several
formulas. A downside to this choice is the fact that regime changes are not captured with
full consistency.

Additionally, one could introduce random jumps so that at each step a random variable
is drawn which might induce an immediate jump to a different window. This concept is
used by Andreichenko (2011), e.g., but will not be applied here.

Formally:

Definition 4.2.2. By λj we denote the starting point of the jth window. Let

(λj)j=1,2,...

be a stochastic process where each realization is independently drawn from the discrete
uniform distribution on {0, 1, . . . , N − 1}, i.e.,

P(λj = k) =

{
1/N if k ∈ {0, 1, . . . , N − 1}
0 otherwise.

Further, let

(ωj)j=1,2,...

be a stochastic process such that for each future day j in the simulation, ωj will be its
historical counterpart. It will depend on the starting point of the window attributed to the
jth simulated day and on the position of the jth day in its associated window. Formally,

ωj =


λj/W if j ≡ 0 mod W

ωj−1 + 1 if j 6≡ 0 mod W and ωj−1 6= N − 1

0 if j 6≡ 0 mod W and ωj−1 = N − 1.
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4.2.3 The σ-Style Sampling Model

We will now determine how exactly the changes found in a historical window are to be
applied to today’s yield curve.

Following the basic idea laid out in section 4.2.1, we will attempt to find suitable functions
σ and Σ.

First we wish to gain an intuition of how the variance scales with the level of rates. From
the website of the Federal Reserve Bank of St. Louis we obtain time series of US dollar
constant maturity treasury rates for a total of eight tenors between 1 and 30 years. We
note that the time series span periods of different lengths. E.g., the 1 year rate ranges
from 1962 until 2014, and the 30 year rate covers the period 2006–2014.

We proceed as follows: For each tenor τ we compute the time series of 1-day changes

∆τ (j) = yτ (j + 1)− yτ (j).

Now order the sequences
(∆τ (j))j=0,1,...

and
(yτ (j))j=0,1,...

so that the latter sequence is in ascending order. Split the (re-ordered) sequence

(∆τ (j))j=0,1,...

into sections of length 200,

Xτ
k :=

{
X200k, X200k+1, . . . , X200(k+1)−1

}
, k = 0, 1, . . . .

For each of these sections Xτ
k , compute its mean µτk and standard deviation στk . Moreover,

compute the standard deviation στ of the entire sequence (∆τ (i))i=0,1,.... Now draw the
scatter plot {(

µτk,
στk
στ

)∣∣∣∣τ ∈ {1Yr, . . . , 30Yr} , k = 0, 1, . . .

}
.

The resulting plot, fig. 4.1, shows the standard deviation of each bucket of one-day move-
ments scaled by the encompassing time series’ standard deviation plotted against the
average rate level within the bucket. The scaling by 1/στ is done to make multiple time
series comparable. The resulting plot indicates which proportion of a sequence’s inherent
standard deviation can be found at each respective rate level.

Figure 4.1 encourages us to go with Deguillaume (2009) and model σ as a piecewise linear
function.

Definition 4.2.3 (σ-function, Deguillaume (2009)). A function σ : R+ → R+ that can
be expressed in the form

σ(y) = σG


y/yL if 0 < y ≤ yL
1 if yL ≤ y ≤ yR
(1 +K(y − yR)) if yR ≤ y
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Figure 4.1: Illustration of how the standard deviation of one-day movements in USD constant
maturity treasury rates, ranging from 1964 until 2014, scales with the rate level.

where

yL, yR, σG > 0,

K ≥ 0, and

yL ≤ yR

will be called a σ-function.

As outlined in section 4.2.1, we wish to define

Σ(y) := c1 + c2

∫ y

c3

ds

σ(s)
, (4.7)

for some c1, c2, c3 ∈ R, c2 > 0. Once again going with Deguillaume (2009) we use

c1 = c3 = yL

and
c2 = σG.

Section 4.2.4 shows one example of a σ-function.

Definition 4.2.4 (Σ-function, Deguillaume (2009)). Given the above σ-function σ, define
the corresponding Σ-function as

Σ : R+ → R,Σ(y) := yL + σG

∫ y

yL

ds

σ(s)
.
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Since σ is strictly positive, Σ is a bijection. Both Σ and Σ−1 are strictly increasing twice
continuously differentiable bijections between R+ and R.

Note that the choice c2 = σG has the desirable consequence that Σ is independent of σG.

Proposition 4.2.5 (Deguillaume (2009)). Explicitly, Σ can be computed as

Σ(y) =


yL (1 + ln (y/yL)) if 0 < y ≤ yL
y if yL ≤ y ≤ yR
yR + ln (1 +K (y − yR)) /K if yR ≤ y,

and its inverse as

Σ−1(z) =


Σ(yL) exp (z/Σ(yL)− 1) if z ≤ Σ(yL)

z if Σ(yL) ≤ z ≤ Σ(yR)

Σ(yR) + [exp (K (z − Σ(yR)))− 1] /K if Σ(yR) ≤ z.

Proof. See (Deguillaume, 2009, chapter 6.2).

Conjecture 4.2.6 (Deguillaume et al. (2013)). There exists a unique Σ-function, Σ, such
that for any given interest rate time series (yj)j∈N, there exists a unique σG ∈ R, a unique
distribution φ with mean 0 and variance 1, and a unique function µ : R+ → R such that

Σ(yj+1)− Σ(yj) = σGεj + µ(Σ(yj)), (4.8)

where εj are random variates chosen from φ.

Note that it is not assumed that ε1, ε2, . . . are independent or that σG, φ and µ are
identical for each time series.

Conjecture 4.2.6 has a fundamental consequence: Knowledge of Σ and the respective
parameters σG and µ for each time series allows us to translate any assortment of interest
rate time series into a single additive Σ-world.

Note that since our model is based on a sampling mechanism, historical realizations will
serve as random variates so that we have no need to know or even approximate the
distribution φ.

In order to serve its purpose in the context of our simulation model, it is of course of little
relevance whether conjecture 4.2.6 actually holds true in the strict mathematical sense
(whatever this would mean in a real-world application). Deguillaume et al. (2013) and
Deguillaume (2009) show the validity of the implications of conjecture 4.2.6 numerically
using historical interest rate data. The results are very encouraging and support the
particular design of Deguillaume’s yield curve evolution model.

Further details on conjecture 4.2.6 can be found in Deguillaume et al. (2013).
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4.2.4 Calibration of the Functions σ and Σ

Since according to conjecture 4.2.6 the parameters yL, yR and K should be universal across
all interest rate time series, we will calibrate Σ to multiple time series simultaneously. The
following method has been developed by Deguillaume (2009).

Let

Y 1, . . . , Y n

denote historical time series of interest rates, and let Ni ∈ N be the length of the ith time
series.

In order to find optimal parameters yL, yR, K, we will employ a calibration metric.

For a given set of parameters

π = (yL, yR,Σ),

let Σπ be the corresponding Σ-function. Furthermore, for each time series Y i let

∆i
π(j) = Σπ(Y i(j + 1))− Σπ(Y i(j)), 1 ≤ j ≤ Ni − 1,

and define µiπ to be the mean, σπ,Gi to be the standard deviation and σ′π,Gi to be the
mean absolute deviation of each sequence

∆i
π(1),∆i

π(2), . . . ,∆i
π(Ni − 1), i = 1, . . . , n.

The calibration metric will be defined as

n∑
i=1

1

σ′π,Gi

Ni−1∑
j=1

||∆i
π(j)− µiπ|−σ′π,Gi|. (4.9)

Optimal parameters π∗ = (yL, yR,K) are found by minimizing this metric over the set

{0 < yL < yR,K > 0} .

Furthermore, we define

σGi := σπ∗,Gi.

The idea behind this approach is as follows: If Σ is working as intended, for any converted
series

Σ(Y i(1)),Σ(Y i(2)), . . . ,Σ(Y i(Ni − 1)), i = 1, ..., n,

the magnitude of 1-day movements ∆i
π(j) should be similar across all dates j. If the start

and end points Y i(1) and Y i(N) differ, the series has an inherent drift of

µiπ =
Y i(Ni)− Y i(1)

Ni − 1
,

which should be excluded from our consideration. It is corrected for by the subtraction

∆i
π(j)− µiπ,

which appears in the formula for σ′G and in eq. (4.9).

50



Figure 4.2: Illustration of a σ-function for yL = 1.07%, yR = 6.83%, K = 19.83. The function
has been calibrated to time series of nominal UK government liability curve data and USD swap
rates. The UK data spans the time period of 1979 through 2015. It has been obtained from
the website of the Bank of Englanda. The USD data has been obtained from the website of the
Federal Reserve Bank of St. Louisb. It pertains to the time period 2000 through 2014. Both sets
of data cover eight tenors ranging from 1 through 30 years.

ahttp://www.bankofengland.co.uk/statistics/Pages/yieldcurve/archive.aspx
bhttps://research.stlouisfed.org/fred2/

The terms ||∆i
π(j)−µiπ|−σ′π,Gi| in eq. (4.9) represent by how far the drift-corrected abso-

lute movements at each position j in each series Y i deviate from the average drift-corrected
movement σ′π,Gi, which is exactly what we wish to minimize. Note that in eq. (4.9) no
division by Ni − 1 takes place, which means that for each time series the deviations are
summed (not averaged), and thus each series is weighted proportionally to the number of
points it contains.

The division by σ′G ensures that a time series is not weighted more strongly the higher its
average level of (drift-corrected) deviations is.

Section 4.2.4 shows the result of applying the calibration mechanism described above to
USD and UK data of swap rates and government yields, respectively.

Notation 4.2.7. In the following we will write ȳ = Σ(y) as well as Ȳ = Σ(Y ).

4.2.5 Modeling the Long Rate

The Σ-function will be used to transfer all historical time series into a single additive
world, and most of the modeling will take place there.
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We will define separate — but similar — models for the (additive world) long rate and for
the remaining tenors. In both cases we will employ a discretized version of the Ornstein-
Uhlenbeck process using daily time-steps, and take as random variates historical obser-
vations. While the process for the long rate will be evolved independently, we will not
model the remaining rates directly but instead simulate their spreads with regard to the
long rate.

The long rate model described here has been presented in Deguillaume (2009).

Let τl denote the long rate tenor. Then the stochastic process of simulated one-day changes
will be evolved by a discrete variation of an Ornstein-Uhlenbeck model. In particular,

ȳτl(j + 1)− ȳτl(j) = aτl(b̄τl − ȳτl(j)) + vτl∆τl(j), j = 0, 1, . . . . (4.10)

We have used the following notation:

• ∆τl(j) = Ȳ τl(ωj+1)−Ȳ τl(ωj)−δτl is the drift-corrected, randomly selected historical
one-day increment assigned to day j, where δτl is defined by

δτl :=
1

N

[
Ȳ τl(N)− Ȳ τl(0)

]
(4.11)

and serves the purpose of ensuring that the sampled historical residuals have no
inherent drift.

• aτl ∈ (0, 1) is the mean-reversion speed in the additive world.

• b̄τl is the deterministic mean which the additive world rate ȳτl reverts to. This could
be a constant such as the spot rate ȳτl(0) or any other pre-defined value, or we could
even give b̄τl a more complex shape and for example let it depend on the current
level ȳτl(j). For the purpose of our hedging experiment, we will content ourselves
with a constant.

• vτl is a volatility adjustment parameter. It has the purpose of compensating for the
variance-dampening effect which is caused by the mean reversion force. Without
an adjustment, the simulated series would have a lower variance than the historical
increments.

Remark 4.2.8. One might be tempted to sample random variates with an approach such
as

∆τl(j) =
1

vτl

[
Ȳ τl(ωj + 1)− Ȳ τl(ωj)− aτl(b̄τl − Ȳ τl(ωj))

]
.

In this case, ∆τl(j) would be defined as the random variate that would be necessary to
explain the historical movement under the assumption that the original time series did
indeed follow the process given by eq. (4.10). Unfortunately, this would produce very
unrealistic simulations since actual interest time series can in general not be explained by
this (or any other similarly tractable) process with high enough accuracy (otherwise the
evolution model would also be somewhat redundant). In section 4.3.3, a similar argument
will be made with regard to the volatility surface, and the problem will be illustrated on
the basis of actual data and simulations.
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4.2.6 Modeling the Remaining Tenors

In order to obtain plausible synthetic yield curves, it is not only necessary that each
individual rate evolves in a realistic manner. We also need to take care that all rates
evolve reasonably in relation to one another.

Therefore, we will apply the above model to the (additive world) spreads between each of
the remaining rates and the long rate. In particular, we evolve

[ȳτ (j + 1)− ȳτl(j + 1)]− [ȳτ (j)− ȳτl(j)] = aτ
[
b̄τ − (ȳτ (j)− ȳτl(j))

]
+ vτ∆τ (j). (4.12)

The parameters in eq. (4.12) are defined as follows:

• ∆τ (j) =
[
Ȳ τ (ωj + 1)− Ȳ τl(ωj + 1)

]
−
[
Ȳ τ (ωj)− Ȳ τl(ωj)

]
−δτ is the drift-corrected,

randomly selected historical one-day increment assigned to day j, where δτ is defined
by

δτ =
1

N

[(
Ȳ τ (N)− Ȳ τl(N)

)
−
(
Ȳ τ (0)− Ȳ τl(0)

)]
.

• aτ ∈ (0, 1) is the mean-reversion speed in the additive world.

• b̄τ is the deterministic mean which the additive world spread ȳτ − ȳτl is reverting
to. Just as in eq. (4.10), we will model b̄τ using a constant.

• vτ is a volatility adjustment parameter which serves the same purpose as vτl does
in eq. (4.10).

We note that Deguillaume (2009) chooses a slightly different approach for the remaining
rates. In particular, he samples the historical residuals ∆τ (j) directly from the series Ȳ τ

while letting the mean reversion force apply to the spreads ȳτ − ȳτl (as in eq. (4.12)).

4.2.7 Estimating the Volatility Adjustment Parameters

The mean reversion forces in the models described above have a variance-dampening effect
so that the simulated series would have a lower variance than their historical counterparts.
In order to offset this, the historical samples ∆τl and ∆τ are multiplied with correction
factors vτl and vτ , respectively.

To estimate these terms, we follow Deguillaume (2009) and consider a regular continuous-
time Ornstein-Uhlenbeck process

dX(t) = a∗(b−X(t))dt+ νdW (t), (4.13)

where W is a standard Brownian motion. It is a standard result that eq. (4.13) has the
exact solution

X(t) = X(0)e−a
∗t + b(1− e−a

∗t) + ν

∫ t

0

ea
∗(s−t)dW (s). (4.14)

Hence, X(t) is normally distributed with expectation

(4.15)E [X(t)] = X(0)e−a
∗t + b(1− e−a

∗t)
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and variance

V [X(t)] = ν2
∫ t

0

e2a
∗(s−t)ds =

ν2

2a∗

(
1− e−2a

∗t
)
. (4.16)

We will use eq. (4.15) to determine the mean reversion levels for the spreads of the remain-
ing tenors when we apply the evolution model described in this section to the particular
case where the variables yτ represent forward LIBOR rates. The specific method for the
choice of b will be explained in section 5.3.

Equation (4.16) will be used to approximately give the model the desired variance.

In order to accomplish this, we write the solution eq. (4.14), conditional on X(t), in terms
of a unit (one-day, e.g.) increment (as we did in eqs. (4.10) and (4.12)):

X(t+ 1) = X(t)e−a
∗t + b(1− e−a

∗
) + ν

∫ t+1

t

ea
∗(s−(t+1))dW (s)

⇔ X(t+ 1)−X(t) = (1− e−a
∗
) (b−X(t)) + ν

∫ t+1

t

ea
∗(s−(t+1))dW (s).

This shows that the continuous-time mean reversion speed a∗ corresponds to the mean
reversion rate (1−e−a∗) in the discretized version of the process. Differently put, we need
to choose

a∗ = − log(1− a),

where a is the reversion rate of the discrete-time process, so that the continuous-time
model has roughly the same variance as its discretized counterpart.

Consider the evolution of the long rate process (the argument is identical for the remaining
rates). Define

σ2
Gτl

:= V[∆τl ]

as the empirical variance of the historical residuals

∆τl(j), j = 0, 1, . . . .

For a given window

{jW + k | k = 0, 1, . . . ,W − 1} ,

we wish to estimate the variance of the W consecutive increments given by our sampling
mechanism.

The one-day increments ∆τl(k) are not independent. Still, an application of the central
limit theorem shows that for large n the sum of increments

n−1∑
k=0

∆τl(k)

is approximately normally distributed with expectation zero. This encourages us to ap-
proximate

σ2
Gτl
≈ 1

W
V

(j+1)W−1∑
k=jW

∆τl(k)

 ,
54



so that the variance of W consecutive sampled historical increments is approximately
given by σ2

Gτl
W .

On the other hand, with the help of eq. (4.16) we estimate the variance of W consecutive
increments in our Ornstein-Uhlenbeck type process as

(vτl)2σ2
Gτl

1− e−2aτl∗W

2aτl∗
,

where we have assumed that the mean reversion will scale the variance of the historical
one-day increments in the same way as it scaled the variance of the Wiener increments in
a regular Ornstein-Uhlenbeck process.

Setting equal the variance of W consecutive sampled increments to the predicted model
variance yields

σ2
Gτl

W = (vτl)2σ2
Gτl

1− e−2aτl∗W

2aτl∗
.

Therefore, we will define

vτl =

√
2aτl∗W

1− e−2aτl∗W

for the long rate, and

vτ =

√
2aτ∗W

1− e−2aτ∗W
.

for the remaining rates.

Deguillaume (2009) uses this type of adjustment for the modeling of the long rate, and
demonstrates the quality of the approximations numerically.

4.3 Evolving the Volatility Surface

4.3.1 General Idea

In addition to the yield curve simulation presented in the previous section, we wish to
obtain synthetic realizations of the implied volatility surface. Similar to the yield curve
model, the basis will be a historical sampling mechanism.

Since we are basically using two evolution models to simulate a single“world”, it is of course
essential that our approach satisfies the no-arbitrage condition. For this reason we cannot
merely take the historical sampling model described above and simultaneously apply it to
both interest rates and implied volatilities without making any further adjustments.

Instead, we will develop an approach that extends the semi-parametric historical sim-
ulation approach put forward by Rebonato et al. (2005) to the joint evolution of yield
curves and implied volatilities. The method described here is based on the work of An-
dreichenko (2011). Unfortunately, a direct adoption of Andreichenko’s framework did not
produce synthetic implied volatilities whose statistical properties were sufficiently similar
to historical market data. For this reason, we will make certain changes to the approach.
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The LMM-SABR is at the center of the method. A fully calibrated LMM-SABR provides
an arbitrage-free parameterization of the implied volatility surface. Andreichenko (2011)
proceeds by calibrating the model to caplet implied volatilities for each date in his data
set. For each date this yields parameters a, b, c, d for the function g, parameters α, β, γ,
δ for the function h, SABR correlations ρτ as well as initial loadings and correction terms
kτ0 and ξτ for each caplet tenor τ . He goes ahead and evolves these parameters with the
help of a window sampling mechanism. The resulting set of synthetic parameters can be
translated back into implied volatilities via the approximations presented in section 3.4.2.

Note that the remaining entries of the LMM-SABR correlation matrix are not relevant
for the pricing of caps.

If one takes sufficient care that the synthetic parameters stay within plausible constraints,
Andreichenko’s method does indeed yield realistic implied volatility surfaces for any given
future date. However, the approach has a significant drawback in the context of our
experiment, in the sense that the artificial implied volatilities resulting from the synthetic
parameters are far more volatile than their historical counterparts. We illustrate the
reason for this by examining the LMM-SABR volatility function

g(τ) = (a+ bτ) exp(−cτ) + d.

Consider a caplet on the 2Yr → 1Yr forward rate. As we have seen in section 3.4.2,
the model implied volatility of this caplet depends primarily on the root-mean-squared
volatility

(4.17)ĝ(2) =

√
1

2

∫ 2

0

g(τ)2dτ.

If we assume that g takes a humped shape — which in fact it does over the majority of
our data set — the result will strongly depend on the location of the maximum, τ∗, and
its value, g(τ∗). As we have seen in section 3.4.1, the maximum is located at

τ∗ =
1

c
− a

b
,

and it holds that

g(τ∗) =
b

c
exp

(ac
b
− 1
)

+ d.

Due to the division by b and c in both expressions, even small movements in b and c
will have large impacts on g(τ∗) and hence on ĝ(2). Without exerting strict control over
the joint movements of b and c, the resulting implied volatility can show large jumps
between two dates. When holding a delta neutral portfolio, even a single unrealistic jump
in implied volatilities will cause unrealistically large hedging errors.

One possible remedy for this problem would be to re-parameterize g. Instead of evolving
the parameters a, b, c and d, one might try to evolve τ∗ or g(τ∗) directly. Unfortunately,
this is no option for us since g does not always attain a humped shape (see section 4.3.6),
so that τ∗ and g(τ∗) will not always exist.
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However, we will keep with the general idea of evolving parameters that control the actual
function values of g and h more directly, rather then simulating the two sets of abcd-
parameters as individual time series. In particular, we will simulate the set of SABR state
variables στ0 and SABR parameters ντ for each tenor τ . We will then apply the calibration
mechanism described in section 3.4.1 to obtain synthetic functions g and h. This has the
additional advantage that σ0 and ν have more accessible economic interpretations than b
and c had in the original approach.

In line with Andreichenko (2011), we will also evolve the SABR correlations ρτ , albeit in
a slightly different way. We will do without the evolution of kτ0 and ξτ and instead set
them to 1, since they are not necessary for the purpose of our experiment. The reasoning
behind this will be explained in section 4.3.4.

With the help of this approach we will parameterize the swaption volatility surface for
each date in our market history. The simulation of the entire “world” — consisting of
the yield curve and the volatility surface — is carried out by simultaneously evolving
the above parameters through a historical sampling mechanism and evolving the yield
curve using the approach described in section 4.2. The resulting synthetic yield curves
and (LMM-)SABR parameters are then combined to produce an arbitrage-free artificial
scenario of a future joint evolution of the yield curve and volatility surface.

Note that this approach is completely independent of any predictions the LMM-SABR
makes with regard to the forward rate dynamics or the prices of any other derivatives
except for the swaptions we use as input to the calibration. The only feature of the LMM-
SABR that we are using at this point is the fact that we are able to turn the swaption
implied volatility surface (or a subset thereof) into a set of LMM-SABR parameters which
can in turn be transformed back into the original volatility surface with sufficient accuracy.

4.3.2 Parameterization of Historical Data

We start by performing a SABR calibration (under β = 0.5) to the implied volatilities
of one-period swaptions for each date in our historical data set (or rather take the pre-
calibrated SABR parameters we are given as input data, cf. section 5.1.1). For each date
tj and each tenor τ this yields SABR parameters

στ0 (j), ντ (j), ρτ (j), τ ∈ {0.5, 1, 2, . . . , 10} .

Here we have also included the information on 6m → 1Yr swaptions which will help us
calibrate the short ends of the volatility functions g and h.

Ultimately we will require for each forward rate fτ the corresponding SABR correlation
ρτ (j), τ = 1, 2, . . . , 10. As for the remaining parameters, we will only work with the
volatility functions g and h, rather than with the SABR parameters στ0 (j) or ντ (j) directly.
For this reason and in order to reduce the computational burden, we will only evolve the
five original (non-interpolated) time series of στ0 (j) and ντ (j), where τ ∈ {0.5, 1, 2, 5, 10}.

Overall, we will simulate 20 time series of parameters, namely

στ0 (j), τ ∈ {0.5, 1, 2, 5, 10},

ντ (j), τ ∈ {0.5, 1, 2, 5, 10},
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ρτ (j), τ ∈ {1, 2, . . . , 10}.

We will mainly stay with the same notation as in section 4.2. Furthermore, the historical
time series of parameters / state variables will be denoted by στ0 , ντ and ρτ . Their
synthetic counterparts will be denoted by σ̃τ0 , ν̃τ and ρ̃τ , respectively.

4.3.3 Evolution of στ0 and ντ

Through statistical analysis, Andreichenko (2011) showed that forward rates, caplet Black
implied volatilities, the caplet SABR initial volatilities σ0 and each of the LMM-SABR
abcd-parameters exhibit mean reversion.

Similar to the yield curve evolution model presented in section 4.2, we wish to interpret
the historical time series of parameters in a way that allows us to generate synthetic paths
by re-applying past realizations of a stochastic process. To achieve this, we need a time
series model that allows to extract these stochastic realizations.

First, we consider the set of SABR state variables στ0 (j) and parameters ντ (j).

Andreichenko (2011) uses an AR(1) filter for the modeling of the LMM-SABR abcd-
parameters corresponding to the volatility functions g and h, i.e., he uses a process of the
type

Xt = c+ ϕXt−1 + εt, (4.18)

where c and ϕ are constants. In a regular AR(1) process the random variates εt are white
noise, i.e., a sequence of independent random variables with zero mean and finite variance.
In the evolution model, however, they are replaced by historical residuals.

A short review of the mathematical foundations of AR(1) processes can be found in the
appendix (section A.1).

He notes that the above AR(1) process is equivalent to the discretized version of a con-
tinuous Ornstein-Uhlenbeck process given that ϕ ∈ (0, 1) and under the assumption that
εt is normally distributed (cf. section A.1).

We will go a slightly different route but we will first understand why Andreichenko’s
method is not adequate for the hedging experiment we are conducting. More importantly,
the following analysis shows why we cannot sample historical residuals under the assump-
tion that the historical time series did indeed follow the stochastic process we use in our
model — neither when evolving the yield curve nor when evolving the volatility surface
(cf. remark 4.2.8).

After calibrating the above process to each of the historical time series of abcd-parameters,
Andreichenko (2011) samples historical residuals and re-applies them via a window sam-
pling approach. For each parameter π (e.g., π = a) this means historical residuals are
obtained via the formula

(4.19)εj = πωj+1 − c− ϕπωj ,

where ωj is a historical date obtained through the sampling mechanism (cf. defini-
tion 4.2.2) and where c and ϕ are the estimated AR(1) parameters pertaining to the
time series πj .
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Figure 4.3: Historical evolution of SABR σ0 obtained by calibrating the SABR model to market
prices of 1Yr → 1Yr swaptions.

An artificial time series π̃j is then created by iteratively evolving

π̃j+1 = c+ ϕπ̃j + εj ,

starting with some initial value π̃0.

While the approach is indeed capable of producing a realistic term structure of volatility
for a given future date, its dynamics would look very different from actual historical data.
The reason for this lies in the fact that the historical parameter evolution cannot actually
be described by an Ornstein-Uhlenbeck process with sufficient enough accuracy.

Consider the time series of SABR σ0 pertaining to the 1Yr→ 1Yr swaption. The historical
evolution is shown in fig. 4.3.

Fitting an AR(1) filter, i.e., a discretized Ornstein-Uhlenbeck process, to this time series
would imply a certain mean reversion speed and mean reversion level. The historical
residuals, which are sampled according to eq. (4.19), represent the random variates nec-
essary to explain the actual movements under the assumption that the process did indeed
follow a process of this type. As can be seen in fig. 4.3, for roughly the first two years
the state variable σ0 stayed on a relatively low level after which it increased sharply and
subsequently seems to fluctuate around a much higher level.

To illustrate the problem, we fit an AR(1) model to the above time series via a conditional
maximum likelihood approach (cf. section A.1). The resulting parameters are

c = 2.634 · 10−4

ϕ = 0.996151.
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Figure 4.4: 80-day moving average of AR(1) residuals εj = σ0(j + 1)− c− ϕσ0(j).

This corresponds to Ornstein-Uhlenbeck parameters (cf. eq. (A.3))

a = − log(ϕ) = 0.3857%

b =
c

1− ϕ
= 6.8421%.

We can intuitively understand the issue through an optical examination of fig. 4.3. Even
though the process should revert to the long term mean of about 6.8%, none of the
reversion force is visible during the first two years. This would imply that the AR(1)
residuals were consistently below average during this time, and consistently above average
later on.

Figure 4.4 shows the 80-day moving average of historical AR(1) residuals. One can see
that in many potential 80-day windows the residuals are strongly biased in a particular
direction. Using these residuals in our window sampling approach would produce zigzag-
shaped synthetic time series.

The effect has been illustrated in fig. 4.5 which shows a particular 1000-day sample path
which has been created by applying the described AR(1) method within our window
sampling framework for a window length of 80 days.

Since the SABR σ0 primarily controls the level of the implied volatility smile, the resulting
time series of implied volatilities of the 1Yr into 1Yr ATM swaption would have roughly the
same shape. This would have an enormous effect on the hedging performance, especially
when only hedging delta risk.

After having understood the need to deviate from Andreichenko’s (2011) methodology,
we will instead proceed by evolving the parameters στ0 and ντ . The approach will be in
line with the model we use to simulate the yield curve.

In particular, we evolve the parameters of the longest tenor, σ̃10Yr
0 and ν̃10Yr, separately
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Figure 4.5: A simulation path obtained by applying the AR(1) method via a window sampling
mechanism. This particular path illustrates the zigzag-behavior which can occur if the histor-
ical time series does not consistently follow the dynamics postulated by the estimated AR(1)
parameters. Compare this with the historical time series depicted in fig. 4.3.

via a discrete variation of an Ornstein-Uhlenbeck process:

(4.20)σ̃10Yr
0 (j + 1)− σ̃10Yr

0 (j) = a10Yr
σ0

(b10Yr
σ0
− σ̃10Yr

0 (j)) + v10Yr
σ0

∆10Yr
σ0

(j),

(4.21)ν̃10Yr(j + 1)− ν̃10Yr(j) = a10Yr
ν (b10Yr

ν − ν̃10Yr(j)) + v10Yr
ν ∆10Yr

ν (j).

As for the remaining parameters, we will evolve the spreads with regard to the longest
tenor. For τ ∈ {0.5Yr, 1Yr, 2Yr, 5Yr, 10Yr} we have

(4.22)
[
σ̃τ0 (j + 1)− σ̃10Yr

0 (j + 1)
]
−
[
σ̃τ0 (j)− σ̃10Yr

0 (j)
]

= aτσ0

[
bτσ0
−
(
σ̃τ0 (j)− σ̃10Yr

0 (j)
)]

+ vτσ0
∆τ
σ0

(j),

and

(4.23)
[
ν̃τ (j + 1)− ν̃10Yr(j + 1)

]
−
[
ν̃τ (j)− ν̃10Yr(j)

]
= aτν

[
bτν −

(
ν̃τ (j)− ν̃10Yr(j)

)]
+ vτν∆τ

ν(j).

The parameters in eqs. (4.20) to (4.23) are defined as in the yield curve evolution model.
In particular, both sets of volatility adjustment parameters vτσ0

and vτν are defined via

vτ =

√
2a∗W

1− e−2a∗W
, τ ∈ {0.5Yr, 1Yr, 2Yr, 5Yr, 10Yr},

where
a∗ = − log(1− a)
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is the adjusted mean reversion rate pertaining to each particular tenor.

Historical samples are obtained as before, e.g.,

∆10Yr
σ0

(j) = σ10Yr
0 (ωj + 1)− σ10Yr

0 (ωj)− δ10Yr
σ0

,

where δ10Yr
σ0

is the average one-day movement in the historical time series (cf. eq. (4.11)).

4.3.4 Treatment of kτ0 and ξτ

As described in section 3.4.2, the LMM-SABR parameters kτ0 and ξτ are close to unity if
the calibration provides a good fit to the empirical volatility surface. For the particular
case of our hedging experiment, we will set them to 1 but we note that this approach is
not viable in every context.

Assume we are starting the simulation under initial recovery of today’s observed market
prices. E.g., we might wish to simulate the future evolution of a number of specific
swaptions we have acquired today. In this context we might require the initial LMM-SABR
parameterization to provide near-perfect recovery of our particular swaptions’ implied
volatility. In general, this can only be achieved by incorporating non-unity factors kτ0 (0)
and ξτ (0). If we decided to simply set them to 1 when creating subsequent synthetic
realizations, as Andreichenko (2011) points out, this would cause a deterministic jump in
the first step of the evolution.

Andreichenko (2011) found a strong mean reversion to 1 for both variables and decided
to decay log(kτ0 (j)) and log(ξτ (j)) asymptotically to zero.

Since we are creating our own synthetic market data, we will set them to 1 prior to the
start of the evolution and for all future dates. In our experiment no deterministic jump
will take place since the initial portfolios will already be valued according to model prices
computed under log(kτ0 (0)) = log(ξτ (0)) = 1.

4.3.5 Evolution of SABR ρ

When modeling the SABR ρ we need to keep in mind that it represents a correlation, and
any approach we follow will have to make sure ρ stays within the interval [−1, 1].

Andreichenko proposes to evolve Fisher z-transformed values of ρ:

z(ρ) =
1

2
ln

(
1 + ρ

1− ρ

)
.

The function z is a bijection from the interval (−1, 1) to the real numbers R (see fig. 4.6).
The inverse is

z−1(u) =
exp(2u)− 1

exp(2u) + 1
.

The idea behind this transformation is explained in Fisher (1934). If pairs

(xi, yi), i = 1, 2, . . . , N,
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Figure 4.6: Fisher z-function.

have been drawn from a bivariate normal distribution, then the empirical correlation
coefficient r is not normally distributed (neither exactly, nor approximately, nor in the
limit as N →∞). Furthermore, its standard deviation depends on the true value of ρ:

σr =
1− ρ2√
N − 1

.

As Fisher (1934) shows, for an increasing sample size N , the z-transformed value z(r)
rapidly tends to a normal distribution, and its standard deviation is independent of ρ:

σz(r) =
1√
n− 3

.

This allows for straightforward hypothesis testing and the computation of confidence in-
tervals.

These properties are also beneficial for the purpose of our evolution model. Especially
the fact that empirical correlations are level-independent motivates (and allows) to use a
level-independent sampling mechanism.

Andreichenko (2011) evolves the SABR ρ by z-transforming the time series of past values,
extracting the daily changes, re-applying them in the context of the sampling model and
transforming the results back via z−1.

This rather simple approach has two drawbacks: Without applying a correction term,
the historical residuals have an inherent drift so that the z-transformed values will tend
towards +∞ or −∞, and hence the SABR ρ will tend towards +1 or −1. This effect can
of course be remedied by applying a drift correction term. But the more fundamental
problem is that despite a drift correction of this kind, in the long run the simulated ρ will
happen to be in the vicinity of 1 in absolute value for the majority of the time.
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To understand why this is the case, consider the sum S of W consecutive increments, i.e.,
a full window of length W resulting from applying the drift-corrected sampling mechanism
described above. S is drawn from the discrete uniform distribution on the set

{z(ρ(k +W mod N))− z(ρ(k)) | k ∈ 0, 1, . . . , N − 1}

where

k +W mod N :=

{
k +W if k +W ≤ N − 1

k +W −N otherwise.

Due to the central limit theorem, the sum of a large number of independent draws from
this set,

S1, S2, . . . , Sm,

will be approximately normally distributed

S1 + S2 + · · ·+ Sm
approx.∼ mN (0,V [S]).

Even though the process of z-transformed values will almost surely return to its point of
origin at some point in time, the variance of a particular realization will rapidly grow as the
process evolves, which means the likelihood of finding a future simulated z-transformed ρ
within any given interval around zero, say (−0.99, 0.99), will tend towards zero.

This is a very undesirable feature if one plans on performing a long-term evolution (which
we do). Therefore, we cannot do without including mean reversion in the approach. Once
again, we make use of the discrete variation of an Ornstein-Uhlenbeck process to evolve
each of the z-transformed SABR ρ̃τ as

z(ρ̃τ (j + 1))− z(ρ̃τ (j)) = aτρ(bτρ − z(ρ̃τ (j))) + vτρ∆τ
ρ(j), τ ∈ {1, 2, . . . , 10}, (4.24)

where the volatility adjustment parameters vτρ are defined in the same way as before and
aτρ as well as bτρ are constants yet to be determined.

The historical samples ∆τ
ρ are obtained as described in section 4.2.5.

4.3.6 Obtaining Synthetic Implied Volatilities

To translate the simulated set of parameters and state variables into implied volatilities,
we will make use of the LMM-SABR. For any given date j we have a set of synthetic
values

σ̃τ0 (j), τ ∈ {0.5, 1, 2, 5, 10},

ν̃τ (j), τ ∈ {0.5, 1, 2, 5, 10},

ρ̃τ (j), τ ∈ {1, 2, . . . , 10}.

We will use these to calibrate the LMM-SABR functions g and h according to the approach
described in section 3.4.2.

We will impose certain restrictions on the admissible sets of abcd-parameters for both g
and h in order to obtain plausible term structures of volatility.

To gain an intuition with regard to the shapes of these functions, we examine the historical
time series of στ0 and ντ . For this, we perform a SABR calibration to the implied volatilities
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Figure 4.7: Evolution of SABR ν obtained by calibrating the SABR model to market prices of
nYr → 1Yr swaptions (β = 0.5).

of one-period swaptions over the course of our entire history of data. The resulting ντ

are shown in fig. 4.7. As we can see, the SABR ν decreases monotonically with increasing
expiry, except for very few dates at the end of our history.

As explained in Rebonato et al. (2009), this is a common observation in most market
states. Therefore, we will impose the condition

β = 0,

and thus force the synthetic volatility of volatility function h into a monotonically de-
creasing shape.

In addition to letting β = 0, Andreichenko (2011) sets γ to a constant value. While the
remaining parameters α and δ determine the values h(0) and limt→∞ h(t), one has no
control over the speed of decay without the ability to adjust γ. Since our market data
covers “normal” as well as very “excited” states during the financial crisis of 2007–2008
and the European sovereign debt crisis, this is not sufficient for our purposes.

Similarly, an examination of the SABR σ0 parameters provides us with information about
which shape we can expect for the deterministic part of the volatility, g(t). Figure 4.8
shows that we can expect both humped shapes (under “normal” market conditions) as
well as monotonically decreasing shapes (under “excited” market conditions) for g.
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Figure 4.8: Evolution of SABR σ0 obtained by calibrating the SABR model to market prices
of nYr → 1Yr swaptions (β = 0.5).

Therefore, we will work with the full parameter set for g. Hence, the LMM-SABR cali-
bration provides us with the set

{a, b, c, d, α, γ, δ}

for each particular day.

As described in section 4.3.4, the resulting initial loadings and correction terms kτ0 and
ξτ will be set to 1. Hence, the calibration method applied here will yield relatively stable
and plausible term structures of volatility, even if the individual sets of στ0 and ντ show
certain kinks and fluctuations in the expiry dimension.

In combination with the yield curve and the evolved SABR ρτ , these parameters allow
us to recover the implied volatility smile for each maturity τ ∈ {1, 2, . . . , 10} via Hagan’s
formula eq. (3.27). By interpolating the parameters with regard to the time of maturity
we will obtain the full implied volatility surface. The interpolation will be performed
according to the method described in section 5.1.1.
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Chapter 5

Hedging

5.1 Methodology

We will measure the delta hedging performance of our term structure models in two
separate experiments. As a preliminary study we hedge within the framework of the
historical data set. In particular, we examine how well each model would have performed
had the hedging strategies it implies actually be used in the historical time span covered
by our data set. To keep the setup realistic, it is of course essential that on any given date
only information that was available before and up to this date is used. In our experiment
this requirement will be fulfilled, since on each day we will calibrate the models to that
day’s market data only.

In our second and more important experiment, we produce synthetic evolutions of the yield
curve and volatility surface via the approach developed in chapter 4. We will then apply
the hedging strategies in these synthetic scenarios and again compare their performances.

In the synthetic evolution case, the hedging performance will be measured with the help
of three metrics, relating to the daily hedging slippages, the maximum drawdown and
the terminal portfolio values. Due to the limited amount of data, the historical hedging
performance will only be analyzed according to the daily slippages.

For each of the models we consider two hedging strategies. In the first variant a delta
hedge will be constructed by shifting the entire forward rate curve in parallel, and a single
hedging instrument will be used to obtain a delta neutral portfolio. In the second variant,
each relevant forward rate will be shifted individually, so that the hedged portfolio will
contain multiple hedging instruments.

These two methods relate to the idea of factor hedging and bucket hedging. From a
mathematical point of view, in a single-factor model with a single source of uncertainty,
one requires only a single hedging instrument to obtain a perfect delta hedge. This method
is called factor hedging. Practitioners on the other hand usually perform so-called bucket
hedging (cf. Pietersz and Pelsser (2010)). In this case one uses more hedging instruments
than there are factors in the model. When hedging a cap, e.g., this could mean that one
uses an assortment of bonds whose maturities correspond to all cash flow dates of the
option (see Driessen et al. (2003)).
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Driessen et al. (2003) as well as Fan et al. (2007) find that bucket hedging outperforms
factor-hedging in the context of their studies which deal with the pricing and hedging
performance of term structure models in the cap and swaption markets, respectively.

We note that the one-factor hedge we perform is not exactly a“factor-hedge” for the SABR
model since the model contains two stochastic drivers.

5.1.1 Data Selection and Processing

We have at our disposal time series of daily SABR parameters ranging from July 2005
through June 2011, calibrated to the USD swaption smile on each date and for a number
of tenors. The available data encompasses swaptions with expiry after 6 months, 1, 2, 5
and 10 years, written on swaps of tenors 1, 2, 3, 5, 7 and 10 years, so that in total we
have 30 sets of swaption data.

For the hedging experiment we will only work with a selection of nYr → 1Yr swaptions
but we will use some of the remaining data to bootstrap the full set of spanning nYr into
1Yr forward swap rates. These can also be interpreted as nYr into 1Yr forward LIBOR
rates if we assume that the underlying swap has a one year tenor structure. This is of
course a simplified interpretation of the data since in reality most interest rate swaps
have an underlying tenor structure of 3 months or 6 months. The reason for making
this simplification is two-fold. First, it will help lower the computational burden since it
allows us to significantly reduce the number of parameters to be simulated compared to,
say, working with a 3 months tenor structure. Second, it is a matter of availability of
data. The above interpretation allows us to process the available swap rates more easily
into forward LIBOR rates without having to rely too much on a potentially unstable
interpolation scheme, and it allows us to interpret the nYr→ 1Yr swaptions as one-period
swaptions and hence as caplets. Since we are using pre-calibrated SABR systems as inputs
rather than raw option prices, we can be confident that the simplification will not affect
the results on a qualitative level.

Bootstrapping of Forward LIBOR Rates

Our model will be based on a tenor structure of

T0 = 0 < · · · < T11 = 11.

Hence, we need to obtain time series of forward rates fi spanning the intervals [Ti, Ti+1],
i = 0, 1, . . . , 10. Furthermore, we compute the 19 year rate f19 to be used as the long rate
in the yield curve evolution model.

Since the swaption data contains no information on rates spanning the interval [0, 0.5], we
use the 6 months US dollar treasury constant maturity rate obtained from the website of
the Federal Reserve Bank of St. Louis. For each date this provides us with the price of
the zero-coupon bond P (0, 0.5).

Furthermore, we interpolate

P (0, 1) =
P (0, 0.5)

1 + 0.5S0.5,1.5(0)
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where S0.5,1.5(0) can be interpreted as the 1 year forward LIBOR rate spanning the interval
[0.5, 1.5]. To obtain the remaining rates we make use of the formula

Sm,n(t) =
P (t, Tm)− P (t, Tn)∑n−1

i=m τiP (t, Ti+1)
,

cf. eq. (2.8), which allows us to solve iteratively for all remaining bond prices

P (0, 2), . . . , P (0, 10).

E.g., we can compute

P (0, 2) =
P (0, 1)

1 + S1,2(0)
.

After obtaining P (0, 3) in the same way, we make use of the 2Yr→ 2Yr forward swap rate
to compute

P (0, 4) =
P (0, 2)− P (0, 3)S2,4(0)

1 + S2,4(0)
,

and so forth.

The resulting bond prices can then be translated into the desired forward LIBOR rates
via eq. (2.3).

To obtain the 19 year rate f19, we continue the above process up to the discount bond
P (0, 20). This requires knowledge of further forward swap rates. In particular, we linearly
interpolate the rates

S10,n, n ∈ {14, 16, 18, 19} ,

from the available 10 year forward swap rates.

Interpolation and Processing of Data

We wish to work with market data for each non-weekend day, so that each week contains
exactly five business days and hence each set of five contiguous one-day increments in our
data set will always span a full week and include a weekend effect.

We will therefore linearly interpolate all values we are lacking (due to bank holidays, e.g.)
for each of the time series of SABR parameters and forward swap rates.

Furthermore, we wish to consistently work with a SABR β of 0.5. The original data
contains different betas for certain dates. We will make the transition by transforming
the SABR parameters into Black implied volatilities via Hagan’s formula (eq. (3.27)) for
a number of strikes ranging from 2

3fatm to 3
2fatm and obtaining new SABR parameters by

re-calibrating to these implied volatilities a SABR system under β = 0.5.

Later on, we will require LMM-SABR correlations between each forward rate and its own
volatility. As we have seen in section 3.4.2, they are retrieved by calibrating a SABR
system to caplets and using the resulting SABR correlations. In order to recover a full set
of them, i.e., one SABR ρ for each of the nine stochastic forward rates, it will be helpful
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to have SABR data for all nYr into 1Yr swaptions, n = 1, 2, . . . , 10. To obtain the missing
parameters — for n ∈ {3, 4, 6, 7, 8, 9} — we will apply a particular interpolation scheme
in the maturity dimension.

Rather than interpolate the SABR parameters directly, we wish to interpolate implied
volatilities since they have a more straightforward economic interpretation. And rather
than work with absolute strikes, we will group implied volatilities of the same moneyness
since they are more closely related. Assume we were instead to take the available implied
volatilities for all swaptions with a fixed strike of 2%. On many dates the corresponding
swaptions would range from deep in the money to deep out of the money depending on
their maturity, and the implied volatilities would have very different positions on their
respective smiles.

Instead, we will use a number of factors x ∈ [2/3, 3/2], take the available implied volatilities
corresponding to the strikes

K = xf,

where f is the ATM strike for each of the respective swaptions, and linearly interpolate the
missing values. Afterwards, we will calibrate a SABR system to the interpolated values
which will provide us with the desired SABR parameters.

Interpolation of Prices and Implied Volatilities

When hedging a certain swaption, we need to observe how its price evolves over time.
Unfortunately, a time series of market quotes over the lifetime of a specific option is, in
general, unavailable.

Consider the following example: In today’s market data we find the implied volatility and
price of an ATM cap expiring in 1 year. Say we construct a hedging strategy designed
to delta hedge this cap, and assume that tomorrow we will try to evaluate the hedging
slippage of our strategy. In order to determine tomorrow’s value of our portfolio, we will
need the price of the very cap we added today, which tomorrow will be a cap expiring
in 1 year less 1 day. But in tomorrow’s market data we will only find the price of a cap
expiring in 1 year. Moreover, due to a change in the underlying forward rate, it is likely
that the new quotes will not even contain a 1 year cap of the same strike.

Therefore, we will once again apply an interpolation scheme. Note that in our experiment
we are only considering swaptions written on the particular swaps with tenors as given
in our market data. This means we will use swaps with a tail of 1, 2, 3, 5, 7 or 10
years. Interpolation is necessary to value these swaptions at different points in time. Let
m ∈ {1, 2, 3, 5, 7, 10}, and assume that at time t0 < T we wish to value a T → m swaption,
i.e., a swaption expiring at time T where the underlying swap stretches over m one-year
periods starting at T . Let K denote the fixed rate of this swaption.

Our historical market data contains SABR parameters for the cases

T ∈ {0.5, 1, 2, 5, 10}.

We translate these into implied volatilities σ̂0.5, σ̂1, σ̂2, σ̂5 and σ̂10 via Hagan’s formula
eq. (3.27). We use these values to linearly interpolate the desired implied volatility σ̂T .

The interpolated price of the swaption is obtained by inserting σ̂T into Black’s formula
eq. (2.18). Note that this requires knowledge of the associated swap rate ST,T+m(t0)
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which cannot be computed directly from the discrete set of forward rates

fi(t0) = f(t0, t0 + i, t0 + i+ 1), i = 0, . . . , 10.

Hence, we construct an interpolated discount curve

t 7→ P (t0, t)

by linearly interpolating between all known values for P (t0, t). The discount curve can
then be translated into forward rates f(t0, t, t+ 1) for general expiries t > t0 via eq. (2.3).
These forward rates can in turn be used to compute ST,T+m(t0).

We will employ the same approach to interpolate implied volatilities and prices in the
evolution framework. For a given tail m, we compute the available synthetic implied
volatilities for the available swaptions expiring at

t0 + i, i = 1, 2, . . . ,

via the method described in section 3.4.3. Then we linearly interpolate the required value
and insert it into Black’s formula alongside the (interpolated) forward swap rate.

5.1.2 Construction of a Delta Hedged Portfolio

Both in the historical as well as the evolution framework, we proceed as follows: On each
given date we construct a portfolio comprising a $10, 000 notional one-period swaption,
an adequate position in hedging instruments to make the entire portfolio delta neutral
and an amount of cash so that the overall portfolio has zero value. We perform one-factor
and multi-factor hedges.

Consider a particular nYr → 1Yr swaption coming into life at t0 which is set to expire on
the fixed date T . The underlying one-period swap will thus pay at T + 1.

For the one-factor hedge we always use as hedging instrument the very same zero-coupon
bond

P (tj , T + 1),

since it pays at the same date as the underlying swap. For the multi-factor hedge we use
the discount bonds

P (tj , tj + i), i = 1, . . . , n+ 1.

In all cases we compute the deltas by a numerical finite difference method implemented
in the commercial Extreme Optimization Numerical Libraries for .NET. Let

CnYr→1Yr(tj)

denote the time tj price of the nYr → 1Yr swaption under the respective model.

For a one-factor hedge, we obtain the model delta

∆Swptn(tj) =
∂CnYr→1Yr(tj)

∂f(tj)
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by parallel shifting the entire yield curve upwards / downwards and re-computing the
swaption price under the given model (two-point finite difference method).

For the multi-factor hedge, we compute the model deltas by shifting each forward rate as
well as the spot rate individually and re-valuing the swaption under the respective model.
Since the price of an nYr → 1Yr swaption depends only on the first n forward rates and
the spot rate, we obtain n+ 1 non-zero deltas,

(∆Swptn
0 (tj), . . . ,∆

Swptn
n (tj)),

where

∆Swptn
i (tj) =

∂CnYr→1Yr(tj)

∂fi(tj)
, i = 0, . . . , n.

A more detailed description of the exact computations required for each model will be
given further down this section.

In the single-factor case we compute the relevant bond delta

∆Bond(tj) =
∂P (tj , T + 1)

∂f(tj)

by performing a parallel shift of the entire yield curve. The hedged portfolio will include

p(tj) = −∆Swptn(tj)

∆Bond(tj)

zero-coupon bonds P (tj , T + 1) so that the overall portfolio delta is zero.

In the multi-factor case we compute a full matrix comprising the deltas for each individual
bond with regard to each of the forward rates(

∆Bond
ik

)
i,k=0,...,9

(tj) =

(
∂P (tj , tj + k + 1)

∂fi(tj)

)
i,k=0,...,9

.

Note that only the upper right triangle i ≥ k will contain non-zero entries and that these
bond deltas are model-independent.

To construct a delta neutral portfolio, we solve the system

(
∆Bond
ik

)
i,k=0,...,9

(tj)

p0(tj)
...

pn(tj)

 = −

∆Swptn
0 (tj)

...
∆Swptn
n (tj)


and take a position of pi(tj) discount bonds P (tj , tj + i+ 1) for each i = 0, . . . , n.

Furthermore, a cash position of

B(t0) =

{
−CnYr→1Yr(t0)− pP (t0, T + 1) in the one-factor case or

−CnYr→1Yr(t0)−
∑n
i=0 piP (t0, t0 + i+ 1) in the multi-factor case

will be entered into. It will be invested into a zero-coupon bond expiring on the next
(business) day. Thus, it will earn interest — or cost interest if the position is negative —
and will not be exposed to delta risk.

Overall, the hedged portfolio contains:
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• A $10, 000 notional one-period swaption worth CnYr→1Yr(t0),

•

{
p(t0) discount bonds P (t0, T + 1) in the one-factor case or

pi(t0) bonds P (t0, t0 + i+ 1), i = 0, . . . , n, in the multi-factor case,

• B(t0) invested into the discount bond expiring on the next (business) day.

We will re-hedge the portfolio daily. On each day tj we will re-compute the hedge ratios p
or p0, . . . , pn for each of the models and update the positions with regard to the respective
hedging instruments.

We will now see how the particular deltas are computed for each of the models. On each
day tj the discount curve

P (tj , T ), T > tj ,

is constructed by applying the interpolation method described in section 5.1.1. All relevant
forward rates and forward swap rates are computed via this interpolated curve.

Delta Hedging under the Black Model

Under the Black model, the time t price of a swaption with fixed rate K and underlying
tenor

Tm < Tm + 1 < ... < Tn

is given by

(5.1)VPSwaption(t) = A(t)Bl+(K,Sm,n(t), (Tm − t), σ),

where σ denotes the Black volatility.

The only free parameter in the Black model, i.e., the only variable that is not given by a
swaption’s observable characteristics, is the volatility σ.

We might wonder which exact volatility we are to use in order to compute the hedge ratio.
In the absence of smiles and under the assumption of constant volatility, where a single σ
would produce correct swaption prices for all strikes, the answer would be unambiguous.

In the presence of smiles, on the other hand, we might ask ourselves whether we should
compensate for the obvious inadequacies of the Black formula in pricing ITM / OTM
options. Rebonato (2004) makes the following consideration. Assume an at-the-money
option has an implied volatility of 20%, and a 30-delta option1 has an implied volatility
of 24%. We wish to hedge the 30-delta option. Should we use the Black formula with
an input volatility of 20% or would the implied volatility of our particular option, 24%,
provide for a better hedge? Rebonato (2004) points out that the implied volatility supplies
no additional information about the process of the underlying forward rate. The presence
of smiles simply shows that the assumptions of the Black framework are strongly violated
in reality, and the strike-dependent implied volatility merely becomes “the wrong number

1The term“30-delta option”has the following meaning [Rebonato (2004)]: Consider the implied volatil-
ity of an option with a particular strike. Inputting this number into the Black delta formula, N(d1) [cf.
eq. (2.10)], and multiplying the result by 100 yields the market quote for the delta of this option. In the
presence of smiles, the Black formula does not apply, and this procedure merely provides a way to quote
the strike of an option after performing a certain normalization with regard to the option’s moneyness.
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to put in the wrong formula to get the right price of plain-vanilla options” [Rebonato
(2004)].

Therefore, we will “calibrate” the Black model to the corresponding same-expiry ATM
swaption, i.e., we will compute our hedge ratios by using the Black formula, eq. (5.1), in
conjunction with the ATM swaption’s implied volatility.

In particular, the Black delta will be given by

dA

df
Bl+ +A

dBl+

dS

dS

df
,

where d
df refers to the differential with regard to a shift in the forward rates f0, . . . , f10.

In the multi-factor case we compute all deltas by shifting the forward LIBOR rates one
at a time while leaving the remaining rates fixed, i.e., the terms d

df in the above equations
relate to a change with regard to a single forward rate. This will provide us with a number
of deltas, one for each forward rate we are shifting. In the single-factor case, a single delta
is computed by shifting all forward rates in unison.

Remark : Even when computing Sm,n(t) from interpolated forward rates [cf. section 5.1.1],
we will not shift these interpolated values to compute the above derivatives but rather the
original input forward rates fi = (t, t + i, t + i + 1). This goes for all of the subsequent
models as well.

Delta Hedging under the Hull-White Model

Prior to computing any hedge ratios, we need to calibrate the Hull-White model. This
will be done by the method described in section 3.2.2. For the calibration we use the
prices of one-period ATM swaptions (historical or synthetic).

In all cases the Hull-White model will be calibrated to prices of one-period ATM swaptions
expiring in one, three and five years’ time. Since we are working with option dollar prices
instead of implied volatilities, we choose to perform the calibration by minimizing the
mean-squared relative distances between market and model prices [cf. eq. (3.20)].

When computing market instantaneous forward rates, we interpolate the discount curve
by a cubic spline (using the open-source library Math.NET Numerics).

Similar to the Black model, we obtain the Hull-White delta by numerically differentiating
the swaption pricing equation derived in corollary 3.2.11 with regard to a shift of each
individual forward rate (multi-factor) or a simultaneous parallel shift of all forward rates
(single-factor).

Delta Hedging under the SABR Model

Consider again the payer swaption described above. For its treatment we consider a SABR
system modeling the forward swap rate Sm,n(t) under the swap measure, i.e., under the
numéraire Am,n(t).
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We calibrate the SABR model to the implied volatility smile of swaptions expiring at
Tm. The required implied volatilities for a set of strikes are interpolated via the approach
described in section 5.1.1. The SABR system is calibrated according to the method
described in section 3.3.2.

The Hagan formula eq. (3.27) gives the (approximate) Black implied volatility of a Euro-
pean call or put option under the SABR model.

Consider a SABR system modeling the forward swap rate Sm,n(t) under the swap measure.

As we have seen in section 3.3.1, a payer swaption with fixed rate K and expiry date Tm
can be approximately valued under the SABR model as

(5.2)VPSwaption(t) = A(t)Bl+(K,Sm,n(t), (Tm − t), σ̂),

where σ̂ denotes the Black implied volatility computed via Hagan’s formula. Note that
A(t) as well as Sm,n(t) and σ̂ depend on the forward rates f0, . . . , fm−1.

The SABR model has two driving Brownian motions. They cannot both be neutralized
by taking a ∆ position in the forward swap rate alone.

In their original paper, Hagan et al. (2002) compute the SABR delta for a European call
option as follows. Consider a call option on the forward rate f . Let C(f, σ) denote the
value of this option under the Black formula using the volatility σ. By setting σ = σ̂(ft, σt),
where σ̂ is computed via Hagan’s formula and where σt is the SABR volatility, one obtains
the (approximate) SABR price of the call option as

VCall(t) = C(ft, σ̂(ft, σt)).

Hagan et al. (2002) arrive at a SABR delta of

∆Hagan =
∂VCall

∂f

(5.3)=
∂C

∂f
+
∂C

∂σ̂

∂σ̂

∂f
.

Note that ∂C
∂f and ∂C

σ̂ are, respectively, merely the Black delta and Black vega.

Bartlett (2006) argued that the delta risk can be hedged more precisely by computing

(5.4)∆Bartlett =
∂C

∂f
+
∂C

∂σ̂

(
∂σ̂

∂f
+
∂σ̂

∂σ

ρν

fβ

)
.

The intuition behind eq. (5.4) is that since the forward rate f and the SABR volatility σ
are correlated, a change in the forward rate f by ∆f will, on average, be accompanied by
a change in the volatility σ by ρν

fβ
∆f . Accounting for this effect reduces the variance of

the hedged portfolio compared to eq. (5.3).

Rebonato et al. (2009) (citing Pogudin (2008)) prove that eq. (5.4) in fact produces the
minimum-variance delta hedge.
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In our experiment, we will compute all hedge ratios numerically. We wish to hedge the
entire risk relating to a change in the yield curve, including the resulting change in A(t).
Furthermore, we wish to bump each forward rate individually when performing a multi-
factor hedge.

For the single-factor hedge, we compute the Hagan delta as

∆Hagan =
dA

df
Bl+ +A

dBl+

df

=
dA

df
Bl+ +A

(
∂Bl+

∂S

dS

df
+
∂Bl+

∂σ̂

dσ̂

df

)
.

where d
df denotes the differential with regard to a parallel shift of all forward rates and

will be computed by a numerical two-point finite difference method.

We will compute the Bartlett delta as

∆Bartlett =
dA

df
Bl+ +A

[
∂Bl+

∂S

dS

df
+
∂Bl+

∂σ̂

(
dσ̂

df
+
∂σ̂

∂σ

ρν

Sβ
dS

df

)]
.

In both cases the formulas have been adapted to account for the change in S through a
parallel shift in each single forward rate. Consider, e.g., the term

∂σ̂

∂σ

ρν

Sβ
dS

df
.

It reflects the idea behind Bartlett’s approach that a bump of

fi → fi + ε, i = 0, . . . ,m− 1,

will locally have the effect

S → S +
dS

df
ε

which will, on average, result in

σ → σ +
ρν

Sβ
dS

df
ε.

Again, in the multi-factor case each forward LIBOR rate is shifted individually, and in
the single-factor case all forward rates are shifted in parallel. We compute both types of
delta, with and without the Bartlett correction term.

5.1.3 Measurement of the Hedging Performance

We require that our hedging strategy is self-financing, i.e., no cash injections or with-
drawals are allowed. For every change we make in the position of the hedging instruments,
we will make an according adjustment to the cash account.
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Let H(tj) denote the time tj value of the hedged portfolio.

According to the model used to construct the above portfolio, the overall position will be
locally riskless with regard to a change in the term structure of interest rates. In reality,
a certain slippage will of course occur. Consider the one-factor case. On the second day,
t1, of the experiment the value of the above portfolio will be

H(t1) = CnYr→1Yr(t1) + p(t0)P (t1, T + 1) +
B(t0)

P (t0, t1)
.

Let

Sj = H(tj+1)−H(tj)

denote the one-day hedging slippage between the dates tj and tj+1. We will compare these
one-day movements of the hedging portfolio to the one-day movements of the unhedged
position (the naked swaption).

If
t0 < t1 < · · · < tN = T

are all business dates during the life of the swaption, we compute the empirical variance
of the sequence

(CnYr→1Yr(tj+1)− CnYr→1Yr(tj))j=0,...,n−1

by using the unbiased estimator, i.e., by applying the formula

σ̂2
Y =

1

m− 1

m∑
i=1

(yi − ȳ)
2
,

where y1, . . . , ym is a sample drawn from a general distribution Y , and where ȳ denotes
the sample mean.

Let V [∆Swtpn] denote the empirical variance of the one-day movements in the unhedged
position and let V [∆X ] denote the empirical variance of the sequence (Sj)j=0,...,n−1 where
the hedging portfolio has been constructed under the model “X”.

The first metric we consider will be the hedge variance ratio

(5.5)HVRX = 1− V [∆X ]

V [∆Swtpn]
,

which describes the percentage variance reduction achieved by the hedging strategy com-
pared to the unhedged position. The higher that HVRX is, the better the hedging per-
formance of the model X will be rated in the experiment.

Note: In our experiment the respective variances will be computed with regard to the
one-day movements of all individual swaptions and simulated paths combined.

The same metric has, e.g., be used by Driessen et al. (2003), Attaoui (2011) and Li and
Zhao (2006) to evaluate a hedging strategy in their respective studies. As Li and Zhao
(2006) point out, this measure is similar in spirit to R2 in linear regression.

The second metric we consider will be the average maximum drawdown.
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Definition 5.1.1 (Maximum drawdown). If (Xt)t≥0 is a stochastic process, the drawdown
at time T is defined as

D(T ) =

(
max
t∈(0,T )

X(t)−X(T )

)+

.

The maximum drawdown at time T is defined as

MDD(T ) = max
s∈(0,T )

D(s)

= max
s∈(0,T )

(
max
t∈(0,s)

X(t)−X(s)

)
.

Applied to our context, the drawdown of a portfolio measures the loss (if positive) an
investor would have incurred until time T who bought the portfolio when it was most
expensive. The maximum drawdown MDD(T ) describes the loss an investor would have
taken who bought the portfolio at its highest and sold it at its lowest price.

The maximum drawdown is an informative statistic to consider when examining the per-
formance of a hedging strategy. It is particularly important since we hedge each swaption
all the way from inception to expiry. In practice, an investor might carry an option for
only part of its life. The maximum drawdown gives an indication of the worst case one
can expect in over a single path.

In particular, we will analyze the average maximum drawdown of each hedging strategy,
i.e., we compute the maximum drawdown over the lifetime of each individual swaption in
each simulated path and average over the results.

As with the hedge variance ratio, we will also present the result in terms of the percentage
reduction achieved in comparison to the unhedged position, i.e., we consider

(5.6)AMDRX = 1− AMDX

AMDSwptn
,

where AMDX denotes the average maximum drawdown of the hedging strategy “X”.

The third metric we compute will be the variance of the terminal portfolio values. Hence,
we compute the variance V [POSwtpn] of the set of terminal payoffs of all unhedged swap-
tions as well as the variance V [POX ] of the set of terminal values of all hedged portfolios
for each model X. As in eq. (5.5) and eq. (5.6), we consider the variance reduction achieved
by each model:

(5.7)VPORX = 1− V [POX ]

V [POSwtpn]
.

Note that the terminal payoff can also be interpreted in a different way. If, instead of
setting up a delta neutral zero-value portfolio, we constructed a “replicating” portfolio2 as

2For simplicity, we use the term replicating portfolio. Of course the portfolio will only be imperfectly
replicating due to model misspecification, market frictions and discrete-time trading. As Rebonato (2004)
points out, even if markets were frictionless and trading were continuous, perfect replication would only be
possible under strong conditions. The process for the underlying must be a diffusion and have a volatility
either stochastic or functionally dependent on the underlying itself. For the SABR model, e.g., this is not
the case.
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a portfolio comprising only zero-coupon bonds and a cash position so that this portfolio
has the same delta and initial value as the original swaption, then the value POX would
constitute the terminal slippage of our replicating strategy, i.e., the difference between the
option payoff and the terminal value of the “replicating” portfolio.

Schröter et al. (2012) point out that if one knows the true (market) price of an option at the
time of inception, the terminal hedging error is a measure for the pure hedging performance
of the model. If instead one only knows the option price under the hedging model, the
terminal hedging error reflects the model’s joint pricing and hedging performance. The
latter would, e.g., occur if a bank sold an exotic option for which there is no market price
available so that the bank would have to rely on the model for both the pricing and the
hedging of the option. In our case, however, all market prices are exogenously given as
historical or synthetic inputs. Therefore, the terminal payoffs are indicative of the models’
pure hedging performances.

5.2 Hedging Performance in the Historical Framework

In a first test, we study the hedging performances of the models in the regular real-world
historical data, i.e., we make use of historical prices to analyze how well the respective
models would have hedged had they been used to construct hedging portfolios at the time.

We wish to only consider options with start and end dates within our available set of
market data so that we can follow each swaption from the day of its inception until its
expiry date. Therefore, we will consider the swaptions

• 1Yr → 1Yr,

• 2Yr → 1Yr and

• 3Yr → 1Yr.

We illustrate the method by means of a 2Yr → 1Yr swaption. For each date tj in our
history we look ahead by one year. If the resulting date is not a business day, the swaption
is assumed to expire on the next business day. We compute the set of inception dates
t0, . . . , tK for which the respective end dates lie within the data set. For the 2Yr → 1Yr
swaption, e.g., this set encompasses 1033 dates.

For each of these dates, we consider the associated ATM swaption and construct a hedged
portfolio which will be re-hedged daily according to the method described in section 5.1.2.
In the case of the 2Yr → 1Yr swaption, each of the swaptions will be alive for about
500 business days, so that we will obtain a total of roughly 500, 000 data points for each
hedging approach / model and for the unhedged swaption.

We note that the movements of the individual swaptions are of course highly correlated so
that the results will convey significantly less information than the sheer number of data
points suggests. Furthermore, in the time span we consider, the term structure saw a
decrease in almost any two-year interval, so that basically all swaptions end up out of the
money.

Therefore, it makes little sense to rate the hedging performance in terms of the terminal
payoffs of each strategy. The unhedged portfolio would produce a zero-variance payoff of
0 and seemingly dominate all hedging strategies.
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1Yr 2Yr 3Yr
Approach V [∆] HVR V [∆] HVR V [∆] HVR
Unhedged swaption 7.6897 - 6.2012 - 4.5720 -
Black 1-fac 1.2076 84.30% 1.3236 78.66% 1.5712 65.63%
HW 1-fac 1.4582 81.04% 1.2095 80.50% 1.1806 74.18%
SABR Hagan 1-fac 1.3323 82.67% 1.1855 80.88% 1.2811 71.98%
SABR Bartlett 1-fac 1.2617 83.59% 1.1550 81.37% 1.1952 73.86%
Black n-fac 0.8907 88.42% 1.4375 76.82% 1.5633 65.81%
HW n-fac 0.9126 88.13% 0.8265 86.67% 0.8732 80.90%
SABR Hagan n-fac 0.8687 88.70% 1.0249 83.47% 1.1021 75.89%
SABR Bartlett n-fac 0.8602 88.81% 0.9772 84.24% 0.9987 78.16%

Table 5.1: Variance of historical one-day-movements in the unhedged swaptions and the hedged
portfolios for each of the hedging models, as well as the hedge variance ratios, i.e., the percentage
reductions in this particular variance statistic achieved by each of the hedging strategies compared
to the unhedged positions, cf. eq. (5.5). The results have been generated in the historical
framework.

Similarly, due to the high correlation between individual swaptions, the maximum draw-
down contains too little information to be considered here.

Instead, we focus on the hedge variance ratios.

The results are shown in table 5.1. For the Hull-White and SABR model, the n-factor
hedge is clearly superior to the one-factor hedge. For the Black model, the two strategies
come slightly closer in their performances. In fact, for the 2-year swaption a one-factor
Black hedge shows lower variance than an n-factor Black hedge. In all cases, the SABR
model performs better when the Bartlett correction is applied (as it should).

Overall, the SABR and Hull-White models produce better hedges than the Black model.
The SABR n-factor hedge is the most successful strategy for the 1-year swaption, and the
Hull-White n-factor hedge comes in first in the other two cases.

5.3 Hedging Performance in the Synthetic Evolution
Model

We will simulate three individual swaptions:

• 1Yr → 1Yr,

• 3Yr → 1Yr and

• 5Yr → 1Yr.

Note that two of these swaptions have the same structure as those examined in the histor-
ical experiment in section 5.2. This allows us to make a comparison between the hedging
performances in the evolution framework and in the historical data set.

However, we note that the mere presence of a certain disparity between the results under
both frameworks would not be evidence of a deficient evolution framework. The reason
for this is two-fold. First, as explained in section 5.2, the historical data set covers only
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Figure 5.1: Market forward rate curve, T 7→ f(0, T, T + 1), as observed on July 1, 2005. These
rates are assumed to be representative of “normal” market conditions and are used as initial
inputs to the yield curve evolution in the first part of the experiment.

a very small number of non-overlapping “lifetimes” for the swaptions we consider, so that
the statistical content of the historical experiment is very limited. Second, while in the
historical time span virtually all swaptions were out-of-the-money for most of their lives
up until their expiry dates, the synthetic framework will produce options both in and out
of the money. This might have a significant impact on the hedging performance of the
various models.

The evolution approach will be applied as follows:

We assume that each year consists of 250 evenly spaced business days. We choose a window
length of W = 80 for the sampling mechanism. This has been chosen as a multiple of
5 which will help recover all weekend effects possibly present in the historical data. All
mean reversion speeds have been set to 0.5% per day.

We will generate two sets of data. For the first set, we take as initial values the parameters
observed on July 1, 2005. At this time, “normal”market conditions prevailed, with interest
rates ranging from 3.5% to 5.5% (see fig. 5.1). The second simulation will be initialized
using data from July 1, 2010. At this time the market was “excited”. Short term rates
were as low as 0.5% (see fig. 5.2).

Figure 5.3 shows the root-mean-squared volatility function

ĝ(T ) =

√
1

T

∫ T

0

g(T − u)2du

resulting from calibrating the g-function to implied volatilities of one-period swaptions on
each of the given dates. As a result of the “excitedness” present in the market at the time,
on July 1, 2010, the volatility was significantly higher than it was five years prior.
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Figure 5.2: Market forward rate curve, T 7→ f(0, T, T + 1), as observed on July 1, 2010. These
rates are assumed to be representative of low-rate “excited” market conditions and are used as
initial inputs to the yield curve evolution in the second part of the experiment.

Figure 5.3: Root-mean-squared volatility functions ĝ calibrated to one-period swaptions on each
of the two dates. Note that the calibration has been performed using a CEV-type exponent β
of 0.5 so that the resulting volatilities are of a different magnitude than lognormal Black implied
volatilities
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For each of these dates, we generate 5000 evolution paths. To be precise, for each index
j ∈ 1, 2, . . . , 5000, we take as initial values

yτ (0) = fτ , τ ∈ {0, 1, . . . , 10} ∪ {τ l}

σ̃τ0 (0) = στ0 , τ ∈ {0.5, 1, 2, 5, 10},

ν̃τ (0) = ντ , τ ∈ {0.5, 1, 2, 5, 10},

ρ̃τ (0) = ρτ , τ ∈ {1, 2, . . . , 10}

where fτ , στ0 , ντ and ρτ are the parameters observed on either July 1, 2005 (for the first
simulation), or July 1, 2010 (for the second simulation).

Note that the interest rate processes yτ in the evolution model have been chosen to
constitute forward rates fτ .

To keep the process tractable, we perform the simulation with a horizon of five years.

As for the mean reversion levels of each process, we proceed as follows:

For the time series of σ̃τ0 , ν̃τ and ρ̃τ , we assume that each process reverts to its initial
value. The mean reversion levels of the rates yτ are of particular importance and will be
chosen slightly differently. In particular, we mildly follow the assumption that today’s n
year forward rate is a prediction of which spot rate we expect n years into the future. For
the additive world long rate ȳτl we take as mean reversion level its initial value Σ(fτ (j)).

For the spreads of the remaining rates

ȳτ − ȳτl

we assume that the initial spreads

Σ(fτ+5)− Σ(f19)

are our expectation of the simulated spreads

ȳτ − ȳτl

at time t = 5 years.

In eq. (4.15) we have estimated this expectation as

(ȳτ (0)− ȳτl(0)) e−5a
τ∗

+ b̄τ (1− e−5a
∗
).

Hence, we choose b̄τ as

b̄τ =
(Σ(fτ+5)− Σ(f19))− (Σ(fτ )− Σ(fτl)) e

−5aτ∗

1− e−5a∗
,

since Σ(fτ ) = ȳτ (0). With this, the setup is complete and the simulation can be performed.
The results of all simulations are shown in tables 5.2 to 5.7.

Interestingly, the SABR model performs significantly worse when the Bartlett correction
is not applied, for all of the three statistics, more so than in the historical framework.
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1Yr 3Yr 5Yr
Approach V [∆] HVR V [∆] HVR V [∆] HVR
Unhedged swaption 11.5620 - 14.8051 - 13.4355 -
Black 1-fac 0.8970 92.24% 1.9151 87.06% 2.6346 80.39%
HW 1-fac 0.7664 93.37% 1.0491 92.91% 1.1133 91.71%
SABR Hagan 1-fac 0.9077 92.15% 1.9955 86.52% 2.4779 81.56%
SABR Bartlett 1-fac 0.7721 93.32% 1.0560 92.87% 1.1121 91.72%
Black n-fac 0.9214 92.03% 1.8546 87.47% 2.5387 81.10%
HW n-fac 0.8461 92.68% 1.0929 92.62% 1.3108 90.24%
SABR Hagan n-fac 1.0085 91.28% 1.8989 87.17% 2.5464 81.05%
SABR Bartlett n-fac 0.7797 93.26% 1.2773 91.37% 1.0500 92.19%

Table 5.2: Variance of historical one-day-movements in the unhedged swaptions and the hedged
portfolios for each of the hedging models, as well as the hedge variance ratios, i.e., the percentage
reductions in this particular variance statistic achieved by each of the hedging strategies compared
to the unhedged positions, cf. eq. (5.5). The results have been generated in the synthetic evolution
framework initialized with market data prevailing on July 1, 2005.

1Yr 3Yr 5Yr
Approach AMD AMDR AMD AMDR AMD AMDR
Unhedged swaption 58.3205 - 121.6088 - 145.7820 -
Black 1-fac 15.9683 72.62% 41.4255 65.94% 54.0140 62.95%
HW 1-fac 13.2280 77.32% 25.3147 79.18% 28.7211 80.30%
SABR Hagan 1-fac 16.1843 72.25% 41.0922 66.21% 52.5908 63.93%
SABR Bartlett 1-fac 13.3885 77.04% 24.7360 79.66% 27.8835 80.87%
Black n-fac 16.5321 71.65% 39.9829 67.12% 55.5942 61.86%
HW n-fac 13.9776 76.03% 24.8559 79.56% 32.2612 77.87%
SABR Hagan n-fac 17.0727 70.73% 41.7871 65.64% 55.1432 62.17%
SABR Bartlett n-fac 13.6583 76.58% 27.8382 77.11% 29.4203 79.82%

Table 5.3: Average maximum drawdown of the unhedged swaptions and the hedged portfolios
for each of the hedging models, as well as the percentage reductions in the AMD achieved by
each of the hedging strategies compared to the unhedged positions, cf. eq. (5.6). The results
have been generated in the synthetic evolution framework initialized with market data prevailing
on July 1, 2005.
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1Yr 3Yr 5Yr
Approach V [PO] VPOR V [PO] VPOR V [PO] VPOR
Unhedged swaption 1209.7995 - 1346.8037 - 983.6205 -
Black 1-fac 62.3006 94.85% 213.5472 84.14% 499.6651 49.20%
HW 1-fac 88.4830 92.69% 175.9876 86.93% 493.8816 49.79%
SABR Hagan 1-fac 61.1255 94.95% 265.2230 80.31% 309.5936 68.53%
SABR Bartlett 1-fac 86.1619 92.88% 257.4722 80.88% 296.7795 69.83%
Black n-fac 63.7531 94.73% 198.6942 85.25% 333.0726 66.14%
HW n-fac 90.6991 92.50% 211.1684 84.32% 237.4563 75.86%
SABR Hagan n-fac 55.0669 95.45% 206.5495 84.66% 329.0616 66.55%
SABR Bartlett n-fac 69.9802 94.22% 185.9767 86.19% 234.8335 76.13%

Table 5.4: Variance of terminal payoffs of the unhedged swaptions and of the hedged portfolios
for each of the hedging models, as well as the percentage reductions in this particular variance
statistic achieved by each of the hedging strategies compared to the unhedged positions, cf.
eq. (5.7). The results have been generated in the synthetic evolution framework initialized with
market data prevailing on July 1, 2005.

1Yr 3Yr 5Yr
Approach V [∆] HVR V [∆] HVR V [∆] HVR
Unhedged swaption 23.3909 - 20.2739 - 12.6971 -
Black 1-fac 1.0036 95.71% 2.0892 89.69% 2.4745 80.51%
HW 1-fac 0.2489 98.94% 0.5981 97.05% 0.8909 92.98%
SABR Hagan 1-fac 0.6215 97.34% 1.9041 90.61% 2.6103 79.44%
SABR Bartlett 1-fac 0.4419 98.11% 1.2220 93.97% 1.6997 86.61%
Black n-fac 0.6376 97.27% 1.8595 90.83% 2.5023 80.29%
HW n-fac 0.4854 97.92% 1.0749 94.70% 1.4485 88.59%
SABR Hagan n-fac 0.7228 96.91% 1.8521 90.86% 2.3753 81.29%
SABR Bartlett n-fac 0.2037 99.13% 0.6610 96.74% 0.9870 92.23%

Table 5.5: Variance of historical one-day-movements in the unhedged swaptions and the hedged
portfolios for each of the hedging models, as well as the hedge variance ratios, i.e., the percentage
reductions in this particular variance statistic achieved by each of the hedging strategies compared
to the unhedged positions, cf. eq. (5.5). The results have been generated in the synthetic evolution
framework initialized with market data prevailing on July 1, 2010.
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1Yr 3Yr 5Yr
Approach AMD AMDR AMD AMDR AMD AMDR
Unhedged swaption 53.6589 - 131.7806 - 156.1591 -
Black 1-fac 17.7668 66.89% 65.0915 50.61% 80.9125 48.19%
HW 1-fac 7.2561 86.48% 26.5690 79.84% 44.0949 71.76%
SABR Hagan 1-fac 26.1029 51.35% 80.5888 38.85% 95.6315 38.76%
SABR Bartlett 1-fac 17.2386 67.87% 37.9717 71.19% 54.5557 65.06%
Black n-fac 26.1039 51.35% 76.2900 42.11% 89.6476 42.59%
HW n-fac 17.4868 67.41% 35.8659 72.78% 51.7319 66.87%
SABR Hagan n-fac 20.5050 61.79% 67.3065 48.93% 80.4639 48.47%
SABR Bartlett n-fac 9.9985 81.37% 26.8681 79.61% 42.6382 72.70%

Table 5.6: Average maximum drawdown of the unhedged swaptions and the hedged portfolios
for each of the hedging models, as well as the percentage reductions in the AMD achieved by
each of the hedging strategies compared to the unhedged positions, cf. eq. (5.6). The results
have been generated in the synthetic evolution framework initialized with market data prevailing
on July 1, 2010.

1Yr 3Yr 5Yr
Approach V [PO] VPOR V [PO] VPOR V [PO] VPOR
Unhedged swaption 2940.1467 - 2740.0505 - 996.5144 -
Black 1-fac 31.7521 98.92% 221.7938 91.91% 281.8349 71.72%
HW 1-fac 48.8013 98.34% 98.7338 96.40% 162.3643 83.71%
SABR Hagan 1-fac 38.5353 98.69% 174.3219 93.64% 326.2759 67.26%
SABR Bartlett 1-fac 83.6857 97.15% 71.1734 97.40% 184.1804 81.52%
Black n-fac 25.4622 99.13% 173.5436 93.67% 351.2582 64.75%
HW n-fac 60.3565 97.95% 91.9346 96.64% 219.9288 77.93%
SABR Hagan n-fac 34.6657 98.82% 220.8070 91.94% 332.9613 66.59%
SABR Bartlett n-fac 75.7951 97.42% 119.4377 95.64% 188.7116 81.06%

Table 5.7: Variance of terminal payoffs of the unhedged swaptions and of the hedged portfolios
for each of the hedging models, as well as the percentage reductions in this particular variance
statistic achieved by each of the hedging strategies compared to the unhedged positions, cf.
eq. (5.7). The results have been generated in the synthetic evolution framework initialized with
market data prevailing on July 1, 2010.

86



Variance of One-Day-Movements

Contrary to the historical framework, the n-factor and one-factor strategies yield very sim-
ilar results in the synthetic evolution framework. In several cases the one-factor hedge per-
forms even (slightly) better than the n-factor hedge. Over all swaptions and approaches,
the multi-factor delta hedges produce an average hedge variance ratio of 90.80%, compared
to 90.70% for the one-factor hedges.

For all approaches the average reduction in variance is lower when the simulation is longer.

As in the historical framework, the Black model underperforms compared to the other
models with regard to the variance of one-day-movements in both simulations. Overall, the
SABR and Hull-White models yield similar results with the Hull-White model emerging
as the close winner.

Average Maximum Drawdown

As with the hedge variance ratios, the reduction in maximum drawdown seems to depend
little on whether a single- or a multi-factor hedge was used. The single-factor hedges lead
to an average reduction in AMD by 67.30% while the n-factor hedges yielded a slightly
lower reduction of 66.76%.

Using the Bartlett correction, the SABR approach performs slightly better than the Hull-
White approach when the simulation was initialized with the normal rate environment of
July 2005, and slightly worse when the simulation started with the 2010 data.

Overall, a large portion of unhedged drawdown risk appears to remain under any of the
three approaches, at least in the case of a mere delta hedge.

Variance of Terminal Payoffs

As for the variance of terminal payoffs, when it comes to the 1Yr swaption, the Black
model can keep up with the remaining approaches. However, for longer maturities the
Black model’s performance shows a steep decline compared to the Hull-White and SABR
models. The latter two models seem to reduce the variance of terminal payoffs to a similar
degree.

The multi-factor hedges achieve an average variance reduction of 85.98%, compared to a
reduction of 84.24% for the single-factor hedges.

It appears that the hedge variance ratio and the variance of terminal payoffs can be
reduced significantly with a delta hedge, especially when the evolution runs only for a
single year.
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Chapter 6

Conclusion and Outlook

We have introduced and refined a model for the evolution of the yield curve and the
implied volatility surface. The model allows to generate artificial time series of market
data using a window sampling mechanism that aims at recovering the characteristics of
an original set of market data used as input to the approach. The method is particularly
useful when only limited relevant market data is available.

Subsequently, we have presented a methodology for the evaluation of hedging strategies
based on three statistics, namely the percentage reductions in the variance of one-day-
movements, in the maximum drawdown and in the variance of terminal payoffs.

We have analyzed the hedging performance of the Black model, the Hull-White model
and the SABR model. The models were used to generate single- and multi-factor hedges,
both within the framework of actual historical data and within our synthetically generated
market.

Due to the limited amount of historical data, we only considered the variance of one-
day-movements for the historical study. Overall, in this study the SABR and Hull-White
models were superior to the Black model, and the n-factor hedges were considerably better
than the one-factor hedges.

Within the synthetic evolution framework on the other hand, there was only a small
difference between single- and multi-factor hedges. Overall, the multi-factor hedges were
slightly superior for the two variance-related statistics we analyzed, and slightly inferior
with regard to the maximum drawdown.

Once again, the SABR and Hull-White models outperformed the Black model in most
experimental setups.

Of course we cannot eliminate the possibility that any of the observations made in the
synthetic market relate to specific traits of the evolution approach.

In this work, we did not engage in the hedging of any risk factor except for changes in
the forward rate curve. Gupta and Subrahmanyam (2005) point out that with continuous
trading and continuous state variable sample paths, the delta risk would be all that mat-
tered. Of course, neither of these conditions is satisfied in practice. Furthermore, we only
considered three interest rate models and only one-period plain-vanilla swaptions. Future
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studies could employ the joint evolution model presented here to study the hedging per-
formance of a variety of models. With sufficient computational resources (or time) and
given one has sufficient market data at one’s disposal, even complex derivatives could be
dealt with by means of Monte Carlo simulation.
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Appendix A

A.1 AR(1) Filters

Definition A.1.1 (AR(1) process). A first order autoregressive process, or AR(1) process,
is a stochastic process Xt satisfying

Xt = c+ ϕXt−1 + εt, (A.1)

where ϕ and c are constants and εt is white noise, i.e., a sequence of independent random
variables with zero mean and finite variance σ2

ε .

We will only consider the case ϕ ∈ (0, 1) so that the process produces an Ornstein-
Uhlenbeck-type mean reversion. In fact, if the white noise terms εt are normally dis-
tributed with zero mean and if ϕ ∈ (0, 1), the AR(1) process defined by eq. (A.1) can be
interpreted as the discretized version of an Ornstein-Uhlenbeck process. This can be seen
by considering the exact solution of the continuous-time Ornstein-Uhlenbeck process

dXt = a(b−Xt)dt+ σdWt,

namely
Xt = X0e

−at + b(1− e−at) + Zt, (A.2)

where

Zt ∼ N
(

0,
σ2

2a

(
1− e−2at

))
.

For time steps δt = 1, the discretized version of eq. (A.2) reads

Xt = b(1− e−a) + e−aXt−1 + εt,

where

εt ∼ N
(

0,
σ2

2a

(
1− e−2a

))
.

This corresponds to the AR(1) process defined in eq. (A.1), with parameters

c = b
(
1− e−a

)
(A.3)ϕ = e−a

εt ∼ N
(

0,
σ2

2a

(
1− e−2a

))
.
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A.1.1 Fitting the AR(1) Parameters

We will now derive a calibration mechanism for the AR(1) process. We assume that we
have knowledge of a set of realizations

Xj = xj , j = 0, 1, . . . , N.

1First write Xt as

Xt = µ+X∗t (A.4)

where X∗t is a latent AR(1) series of the type

X∗t = ϕX∗t−1 + εt. (A.5)

Then Xt can be expressed as

Xt = c+ ϕXt−1 + εt, c = µ(1− ϕ). (A.6)

Rewriting the recursion in eq. (A.5) yields

X∗t = ϕ(ϕX∗t−2 + εt−1) + εt

= ϕ2X∗t−2 + εt + ϕεt−1

= . . .

=

∞∑
i=0

ϕiεt−i.

Here we have made use of the fact that |ϕ|< 1 since we assumed ϕ ∈ (0, 1). The above
computation provides several insights. First, it shows that the influence of a past real-
ization or shock tends towards zero as time passes. Assuming the process has an infinite
history, we see that

E [X∗t ] = 0

and thus

E [Xt] = µ.

This shows that c/(1− ϕ) is an estimate for E[Xt]. Furthermore, the variance of Xt can
be computed as

V [Xt] = V [X∗t ]

=

∞∑
i=0

ϕ2iV [εt−i]

=
σ2
ε

1− ϕ2
.

1cf. (Martin et al., 2012, Example 7.2)
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In order to estimate the parameters, we consider the case of independent and normally
distributed white noise:

εt ∼ N (0, σ2
ε).

Knowing the distribution of εt allows us to construct a maximum likelihood estimator for
the three unknown parameters (c, ϕ, σ2

ε). Since εt is normally distributed, X0 is normally
distributed as well. In particular,

X0 ∼ N
(

c

1− ϕ
,

σ2
ε

1− ϕ2

)
.

Thus, the probability density function of X0, conditional on the parameters (c, ϕ, σ2
ε), is

fX0

(
x0; c, ϕ, σ2

ε

)
=

1√
2πσ2

ε/(1− ϕ2)
exp

(
− (x0 − c/(1− ϕ))2

2σ2
ε/(1− ϕ2)

)
.

Next consider j ≥ 1. The distribution of Xj depends on the value Xj−1 observed at tj−1.
From eq. (A.6) it follows that

(Xj |Xj−1 = xj−1) ∼ N
(
c+ ϕxj−1, σ

2
ε

)
.

The conditional probability density of the observation Xj = xj is thus

fXj
(
xj
∣∣Xj−1 = xj−1; c, ϕ, σ2

ε

)
=

1√
2πσ2

ε

exp

(
− (xj − c− ϕxj−1)2

2σ2
ε

)
.

In particular, for any j ≥ 1 the distribution of Xj depends on past realizations of the
process only through Xj−1. For a set of observations x0, x1, . . . , xN , the joint probability
density function — i.e., the likelihood function — is

L(c, ϕ, σ2
ε) = fX0

(
x0; c, ϕ, σ2

ε

)
·
N∏
j=1

fXj
(
xj
∣∣Xj−1 = xj−1; c, ϕ, σ2

ε

)
.

The log-likelihood function can be computed as

(A.7)
lnL(c, ϕ, σ2

ε) = −1

2
ln
(
2πσ2

ε/(1− ϕ2)
)
− (x0 − c/(1− ϕ))2

2σ2
ε/(1− ϕ2)

− N

2
ln
(
2πσ2

ε

)
− 1

2σ2
ε

N∑
j=1

(xj − c− ϕxj−1)2.

The maximum-likelihood estimator (MLE) is obtained by maximizing this expression.
From eq. (A.7) we also see that the if we ignored the expression resulting from the first
observation X0 = x0, i.e., calculated the MLE conditional on the initial observation, the
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MLE for c and ϕ is merely the result of minimizing the sum of squared errors εt. This
estimator is called the conditional maximum-likelihood estimator. When maximizing the
full log-likelihood function, the resulting estimator is called the exact maximum-likelihood
estimator (cf. Martin et al. (2012)).

In the sampling approach, one cannot expect the residuals εt to be normally distributed,
but the above derivation motivates the estimation of c and ϕ via a least squares approach.
Since we have a long history of data, the conditional MLE is clearly sufficient. It has
the additional advantage that the result is independent of the variance σε of the residuals
which we do not need to estimate since new data is produced by sampling historical
residuals rather than by drawing from a random distribution.
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