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Einleitung

Seit der Vorstellung des Black-Scholes-Modells in den 70er Jahren des vergangenen
Jahrhunderts hat es im Bereich der finanzmathematischen Modellierung zahlreiche
Weiterentwicklungen und Neuerungen gegeben. Eine davon, welche das Thema die-
ser Arbeit sein wird, ist die Einbindung von Lévy-Prozessen in den Modellierungs-
prozess. Die Klasse der Lévy-Prozesse umfasst bekannte stochastische Prozesse wie
etwa den Wiener-Prozess und den Poisson-Prozess, welche beide häufig zur Model-
lierung verschiedener Sachverhalte verwendet werden. Im Black-Scholes-Modell ist
es der schon erwähnte Wiener Prozess, der die zufälligen Schwankungen eines Fi-
nanzgutes modelliert. In den in dieser Arbeit betrachteten Finanzmarktmodellen
übernimmt dies ein Lévy-Prozess, das ist auch ein Prozess mit stationären und un-
abhängigen Zuwächsen, bei dem allerdings die Forderung normalverteilter Zuwächse
und stetiger Pfade wegfällt. Lévy-Prozesse bieten durch die Möglichkeit, nichtgauß-
sche Verteilungen für die Zuwächse anzunehmen zusätzliche Flexibilität in der Mo-
dellierung. Gleichzeitig teilen die Lévy-Prozesse viele angenehme Eigenschaften mit
dem Spezialfall des Wiener-Prozesses, etwa zeitliche Homogenität, die das Arbeiten
mit diesen erleichtert.

Im einführenden Kapitel 1 werde ich einige Kritikpunkte am klassischen Black-
Scholes-Ansatz wiedergeben (s. auch [15]). In den letzten vier Jahrzehnten haben
empirische Beobachtungen nämlich aufgezeigt, dass es systematische Abweichungen
zwischen tatsächlich beobachtbarem Marktgeschehen und den Ergebnissen im Black-
Scholes-Modell gibt. Bekanntes Beispiel hierfür ist der sogenannte

”
smile“-Effekt,

welcher der Annahme konstanter Volatilität im BS-Modell widerspricht.
In Kapitel 2 führe ich Lévy-Prozesse ein, gebe wichtige Eigenschaften und Bei-

spiele für diese an und führe die Verbindung zur Klasse der unendlich teilbaren
Verteilungen auf. Besonderen Stellenwert in dieser ersten Hälfte der Arbeit hat die
Lévy-Ito-Zerlegung und deren Beweis in Kapitel 3, da sie das Verständnis für die
Struktur von Lévy-Prozessen sehr erleichtert. Einfach ausgedrückt ermöglicht die
Lévy-Ito-Formel es, einen Lévy-Prozess in einfachere Grundbestandteile zu zerle-
gen, genauer eine Wiener-Prozess-Komponente, einen Poisson-Prozess-Sprunganteil
und einen weiteren Sprunganteil, welcher die kleinen Sprünge darstellt.

Der zweite Teil der Arbeit besteht im Vorstellen verschiedener Lévy-Prozess-
Modelle. Ich beginne dabei in Kapitel 2 bei dem sich einfach aus dem BS-Modell
ergebendem Merton-Modell (welches dem BS-Modell einen Poisson-Sprunganteil
hinzufügt, vgl. [18]) und dem interessanten Ansatz des Variance-Gamma-Modells
(welches komplett ohne einen stetigen Anteil auskommt, vgl. [8]). Diese werde ich in
Form von Anwendungsbeispielen zusammen mit den entsprechenden Lévy-Prozessen
vorstellen, mit vergleichsweise elementaren Mitteln.

Bevor ich zu den etwas aufwändigeren Modellen mit stochastischer Volatilität
komme, werde ich noch in Kapitel 4 die weit verbreitete Klasse der exp-Lévy-Modelle
betrachten, zu denen die oben genannten Modelle gehören. Zudem gehe ich in Kapi-
tel 5 auf eine (vergleichsweise einfache) Berechnungsmethode in exp-Lévy-Modellen
mittels Fouriertransformierten (nach Carr und Madan) ein, die sich natürlicherwei-
se anbietet wenn mit Lévy-Prozessen gearbeitet wird. Anschließend ziehe ich ein
Zwischenfazit, inwieweit diese Modelle die Kritikpunkte am BS-Modell beantwor-
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ten, und führe stochastische Volatilitätsmodelle ein. Dies geschieht zunächst in Form
des Modells von Bates (vgl. [2] und [10]) und schließlich folgt eine ausführliche Be-
trachtung des Modells von Barndorff-Nielsen und Shephard (welches sehr viele der
Kritikpunkte am BS-Modell beantwortet, vgl. hierzu [3], [4], [5], [6] und besonders
[20]).

Bei jedem der Modelle wird versucht, eine Bewertung eines einfachen Finanzguts,
genauer eines europäischen Calls oder Puts, innerhalb des Modells durchzuführen,
um ein Gefühl für das Modell und die mathematische Handhabbarkeit desselben
herzustellen. Solche Bewertungen sind schon deshalb wichtig, um ein Modell an eine
gegebene Menge Daten kalibrieren zu können. Voraussetzung für das Verständnis
des Textes ist, neben elementarer Wahrscheinlichkeitstheorie, die Kenntniss einiger
Begriffe aus der stochastischen Analysis, insbesondere der Begriff des stochastischen
Integrals (in [19] findet man alles hierzu relevante). Finanzmathematisches Vor-
wissen ist nicht unbedingt erforderlich, erleichtert es allerdings einige Sachverhalte
nachzuvollziehen (für einen Überblick über die Finanzmathematik vgl. etwa [9]).
Das Gebiet der finanzmathematischen Modellierung mithilfe von Lévy-Prozessen ist
in den vergangenen Jahren enorm angewachsen. Die hier vorgestellten Methoden
und Modelle können daher nur einen ausgewählten Teil der Theorie abbilden. Ich
hoffe dennoch, einen Einblick in dieses interessante Gebiet geben zu können.
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2 Lévy-Prozesse 3
2.1 Unendlich teilbare Verteilungen und Lévy-Khintchine Formel . . . . . 4
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1 Das Black-Scholes Modell und empirische Fak-

ten über Aktienmärkte

Im Jahre 1973 stellten die Ökonomen Fischer Black und Myron Scholes in ihrem Pa-
per

”
The Pricing of Options and Corporate Liabilities“ das heute als Black-Scholes-

Modell bekannte Modell zur Bewertung von Finanzgütern wie beispielsweise Aktien-
optionen vor. Dieses sieht einen endlichen Zeithorizont T sowie zwei Finanzgüter auf
einem filtrierten Wahrscheinlichkeitsraum (Ω, (Ft)0≤t≤T , P ) vor, einen festverzinsli-
chen Bond sowie ein zweites asset(eine Aktie), welches zufälligen Schwankungen
unterliegt. Dazu sei der Aktienkurs St Lösung der SDE

dSt = St(µdt+ σdWt)

mit Konstanten σ, µ ∈ R, σ > 0 und einem Wienerprozess W bzgl. des am Markt
vorliegenden Wahrscheinlichkeitsmaß P . Dabei wird σ als Maß für die zufälligen
Schwankungen des Aktienkurses (die sogenannte Volatilität der Aktie) und µ als
Trendparameter gesehen. Die Bewertung von Optionen erfolgt durch Übergang zu
einem risikoneutralen Wahrscheinlichkeitsmaß P ∗1 (im Folgenden nennen wir ein
solches Maß äquivalentes Martingalmaß oder auch äMM ). Insbesondere: Ist h Aus-
zahlungsfunktion, so gilt für den Werteprozess (Vt)t≥0 des Derivats mit Auszahlung
h(ST ) in T : Vt = E∗

(
h(ST ) e−r(T−t)

∣∣Ft). Für den Spezialfall, dass es sich um eine eu-
ropäische Call- bzw. Putoption handelt, d.h. h(x) = (x−K)+ bzw. h(x) = (K−x)+

ergibt sich für den Preis zum Zeitpunkt t die berühmte Black-Scholes-Formel:

pCt (St, T,K, σ) = StΦ(d1)−K e−r(T−t) Φ(d2)

pPt (St, T,K, σ) = K e−r(T−t) Φ(−d2)− StΦ(−d1)

mit

Φ(u) = N (0, 1)(−∞, u)

d1,2 :=
log
(

St
K e−r(T−t)

)
± (T − t)σ2

2

σ
√

(T − t)

Dieses Modell ist zwar einfach zu handhaben, hat aber gegenüber realer Daten einige
Schwächen:

1. Die Volatilität σ ist im Modell konstant; die impliziten Volatilitäten, die man
anhand tatsächlicher Kurse ermitteln kann(dafür wird zu gegebenen Markt-
preisen von europäischen Put oder Call-Optionen die eindeutige Volatilität σ
errechnet, die sich aus obiger Black-Scholes-Formel ergibt), deuten aber auf
nichtkonstante Volatilitäten (vgl. smile-effect) und Clusterbildung hin. Letz-
teres ist die Beobachtung am Finanzmarkt, dass große Preissprünge zeitlich
gehäuft auftreten, und selbiges für kleine Sprünge. An vielen Märkten lässt
sich zudem eine negative Korrelation zwischen returns und ihrer Volatilität
beobachten; dieser

”
leverage“-Effekt tritt im BS-Modell nicht auf.

1d.h. der abdiskontierte Preisprozess e−rt St ist P ∗-Martingal
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Der "smile"-Effekt

2. Der treibende stochastische ProzessWt ist im Modell normalverteilt; da logSt =
logS0 +µt+ σWt− 1

2
σ2t ergibt sich für die log-returns eine Normalverteilung.

Die Empirie legt allerdings für kleine bis mittlere Zeiträume eine Linksschiefe
sowie eine Kurtosis größer als 3 nahe; dies spricht eher gegen die Annahme
einer Normalverteilung. Vergrößert man die Zeiträume bei der Betrachtung
der returns beobachtet man aggregierte Gaussheit, d.h. aufsummierte returns
sind annähernd normalverteilt-dies jedoch nur über längere Zeitspannen.

Histogram of HSIReturns

HSIReturns

D
en

si
ty

−20 −15 −10 −5 0 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Abbildung 1: Histogramm von standardisierten HSI-Returns (von 31.12.1986 bis
27.4.2013, Tagesdaten) und Standardnormalverteilungsdichte

Das obige Histogramm verdeutlicht diese Differenz zwischen Normalvertei-
lungsannahme und Empirie; die empirische Kurtosis beträgt K = 48.81 in
obigem Beispiel, die Kurtosis der Standardnormalverteilung ist K = 3. Es
liegt eine Linksschiefe vor (empirische Schiefe= −2.2)welche bei der symme-
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trischen Normalverteilung nicht auftritt. 2

3. Insbesondere in Zeiten hoher Unsicherheit am Finanzmarkt und während Kri-
sen kann es zu beträchtlichen Kursänderungen in kürzester Zeit kommen (z.B.
innerhalb weniger Minuten). Oftmals sind die Gründe für solche Kurssprünge
nicht sofort ersichtlich. Es ist nicht selten eine psychologische Komponente
der Marktteilnehmer, verbunden mit der Möglichkeit, dass schon geringfügige
Abweichungen der Erwartungshaltung der Händler zu drastischen Kursein-
brüchen führen kann, die Ursache solcher Sprünge. Diese Unstetigkeiten sind
in einem stetigen Semimartingalmodell nicht zu finden.

4. Das Black-Scholes Modell ist vollständig, also ist jede Endauszahlung repli-
zierbar. Damit sind Optionen im Prinzip redundant; dennoch beobachtet man
eine große Zahl unterschiedlichster Derivate, die am Markt gehandelt werden.

Um diese Probleme anzugehen werden wir auf die Normalverteilungsannahme und
stetige Pfade beim treibenden Prozess verzichten. Insbesondere werden wir allgemei-
nere Prozesse betrachten als Brownsche Bewegungen. Wir werden uns dafür Lévy-
Prozess-Modellen zuwenden; diese sind eine natürliche Verallgemeinerung des BS-
Ansatzes und bilden einen adäquaten Kompromiss zwischen mathematischer Hand-
habbarkeit und Realitäsnähe.

2 Lévy-Prozesse

Nach den Feststellungen in Kapitel 1 ist es naheliegend, die Forderung der Nor-
malverteilung bei den Zuwächsen des treibenden stochastischen Prozesses (im BS-
Modell ist dies gerade der Wiener-Prozess) und die Stetigkeit der Pfade aufzugeben.
Die nachfolgende Definition eines Lévy-Prozesses unterscheidet sich gerade in diesen
Punkten von dem bekannten Wiener-Prozess.

Definition 2.1 (Lévy-Prozess). Gegeben sei ein filtrierter Wahrscheinlichkeitsraum
(Ω,F , (Ft)t≥0, P ); im Folgenden fordern wir immer, dass dieser die usual conditions
erfüllt, d.h. F0 enthalte alle P -Nullmengen und es sei Ft = Ft+ :=

⋂
s>tFs. Dann

nennen wir einen adaptierten càdlàg Prozess Z Lévy-Prozess, falls die folgenden
Bedingungen erfüllt sind:

i) Z0 = 0 P -f.s.

ii) Z hat unabhängige und stationäre Zuwächse, d.h Zt − Zs ist stochastisch un-

abhängig von Fs und Zt − Zs
d
= Zt−s gilt für alle s < t.

iii) Z ist stetig in Wahrscheinlichkeit, also lim
s→t

P (|Zt − Zs| > ε) = 0 für alle t ≥ 0

and ε > 0.

2Obige Grafik entspricht im Wesentlichen derjenigen aus [15]; dort wurde der S&P 500 Index
untersucht
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Gelegentlich kann man eine etwas andere Definition finden; da iii) aus den an-
deren Voraussetzungen folgt, wird oft darauf verzichtet. Einige Autoren behalten
Bedingung iii), verzichten aber auf die càdlàg- Eigenschaft, da unter den übrigen
Voraussezungen immer eine càdlàg-Modifikation existiert. Die Eigenschaft ii) sowie
Prozesse mit dieser Eigenschaft bezeichnen wir im Folgenden als PIID. Wir be-
trachten nun zunächst Eigenschaften und Charakterisierungen von Lévy-Prozessen.
Eine anhand der Definition bereits offensichtliche Eigenschaft ist die, dass die Sum-
me unabhängiger Lévy-Prozesse auf dem selben Wahrscheinlichkeitsraum wieder ein
Lévy-Prozess ist.

Proposition 2.2 (Markoveigenschaft). Ist Z Lévy-Prozess, so hat Z die Markov-
Eigenschaft, d.h. für t ≥ 0 ist der prä-t-Prozess (Zs)s≤t stochastisch unabhängig vom

post-t-Prozess (Zt+s − Zt)s≥0 und (Zt+s − Zt)s≥0
d
= (Zs)s≤t

Beweis. Dies folgt unmittelbar daraus, dass Lévy-Prozesse stationäre und unabhängi-
ge Zuwächse haben.

Es gilt sogar die starke Markoveigenschaft für Lévy-Prozesse (d.h. für eine Stopp-
zeit T mit P (T <∞) = 1 gilt ((XT+t −XT )t≥0 ist unabhängig von FT und verteilt
wie (Xt)t≥0), siehe [7], Seite 20.

2.1 Unendlich teilbare Verteilungen und Lévy-Khintchine
Formel

Eine der wichtigsten Eigenschaften in Verbindung mit Lévy-Prozessen ist die der
unendlichen Teilbarkeit. In diesem Unterkapitel werden wir den Begriff einführen
und die Lévy-Khintchine-Formel vorstellen. Der Beweis derselbigen ist leider recht
lang und wird in dieser Arbeit nicht wiedergegeben. Stattdessen werden wir in Ka-
pitel 3 die sogenannte Lévy-Ito-Formel beweisen, welche einen recht guten Einblick
in die Struktur von Lévy-Prozessen liefert.

Definition 2.3 (Unendlich teilbare Verteilungen). Ein Wahrscheinlichkeitsmaß Q
auf Rd wird unendlich teilbar (engl. infinitely divisible) genannt, wenn für jedes

n ≥ 1 ein W-Maß Qn existiert so dass Q = Q
∗(n)
n . Q ist also die n-fache Faltung

eines bestimmten Maßes Qn für alle natürlichen Zahlen n.

Genauso sprechen wir von einer unendlich teilbaren Zufallsgröße X, falls X
d
=

X1,n + ...+Xn,n für alle n wobei (Xi,n)1≤i≤n iid Zufallsvariablen sein sollen.
Ausgedrückt über die Fourier-Transformierte φQ einer Verteilung Q heisst dies

φQ(u) = (φQn(u))n für gewisse Qn für alle n ∈ N.
Ist Z = (Zt)t≥0 ein Lévy Prozess, so ist die Verteilung von Zt unendlich teilbar

für jedes t . Tatsächlich gilt für ein festes t

Zt =
n∑
k=1

(
Z kt

n
− Z (k−1)t

n

)
(2.1)

und wegen der unabhängigen und stationären Zuwächse ist damit die unendliche
Teilbarkeit gezeigt.
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Um die im Folgenden sehr wichtige Lévy-Khintchine Formel einzuführen benöti-
gen wir den Begriff eines Lévy Maß, das ist ein Maß ν auf Rd\{0} mit∫

Rd\{0}
x2 ∧ 1 ν(dx) <∞

Theorem 2.4 (Lévy-Khintchine Formel). Eine Verteilung Q auf Rd ist unendlich
teilbar genau dann wenn die Fourier-Transformierte φ die Form φQ = exp(ψ) hat
mit einer Funktion

ψ(u) = ψb,C,ν(u) = iuT b− 1

2
uTCu+

∫
Rd\{0}

(eiuT x−1− iuTh(x)) ν(dx) (2.2)

wobei ν Lévy-Maß ist, b ∈ Rd, C positiv semidefinite Matrix ist und h(x) =
x1[0,1](|x|). Die momenterzeugende Funktion mgf (wo diese existiert) hat dann die
Form

mgf(u) = exp(κ(u)) = exp

(
uT b+

1

2
uTCu+

∫
Rd\{0}

(
eu

T x−1− uTh(x)
)
ν(dx)

)
(2.3)

Wir nennen ψ den charakteristischen Exponenten von Q und κ die Kumulante
von Q. Überdies nennen wir C Gauss-Komponente und b die Drift des Prozesses;
diese Namensgebung wird spätestens im Beweis der Lévy-Ito-Formel in Kapitel 3
klar werden.

Anmerkung 2.5. Die Funktion h ist etwas willkürlich gewählt; auch andere Ab-
schneidefunktionen wären möglich. Dadurch ändert sich auch der Driftterm. Ist z.B.∫

Rd\{0}
1 ∧ |x| ν(dx) <∞ (2.4)

so kann h = 0 gewählt werden mit neuer Drift

b′ := b−
∫
Rd\{0}

x1[−1,1](x)ν(dx)

Wir werden in Zukunft wann immer möglich mit diesem Driftterm b′ arbeiten. Wir
werden die Integralbedingung 2.4 in Kapitel 3 ausführlicher diskutieren.

Für einen Beweis von Theorem 2.4 verweisen wir auf [1]. Die Funktionen ψ, κ
sowie b, C und ν sind eindeutig bestimmt. Die Umkehrung ist ebenfalls wahr, d.h.
für jedes Tripel (b, C, ν) existiert genau eine unendlich teilbare Verteilung Q mit
obiger Lévy-Khintchine Zerlegung. Gegeben ein Lévy Prozess Zt bezeichnen wir den
charakteristischen Exponenten von Zt mit ψt und seine Fourier-Transformierte mit
φt. Aufgrund der stationären und unabhängigen Zuwächse gilt für alle s, t ∈ [0,∞).

φs+t(u) = E eiuZt+s = E
(
eiu(Zt+s−Zs) eiuZs

)
= φs(u) · φt(u) (2.5)

⇒ ψs(u) + ψt(u) = ψs+t(u) (2.6)
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Überdies ist φt(u) stetig in t für alle u. Um dies zu sehen betrachten wir für h > 0
die Ungleichung

|φt(u)− φt+h(u)| = |φt(u)|
∣∣∣∣1− φt+h(u)

φt(u)

∣∣∣∣ ≤
φ ist F.T.

|1− φh(u)|

Da Z càdlàg ist, gilt mit majorisierter Konvergenz

lim
h↘0

φh(u) = lim
h↘0

E eiuZh = φ0(u) = 1

und damit die rechtsseitige Stetigkeit von φt(u) in t. Die linksseitige Stetigkeit folgt
analog mit

|φt(u)− φt−h(u)| = |φt−h(u)|
∣∣∣∣1− φt(u)

φt−h(u)

∣∣∣∣ ≤ |1− φh(u)|

Gleichung (2.5) liefert weiter φn(u) = φ1(u)n; dies lässt sich sofort auf die rationalen
Zahlen erweitern (denn mit (2.5) ist φ 1

n
(u)n = φ1(u)) und schließlich mithilfe der

oben gezeigten Stetigkeit auf alle reellen Zahlen erweitern, somit also φ1(u)t = φt(u)
für alle t ∈ R(und analog ψt(u) = tψ1(u)). Das bedeutet insbesondere, dass ein
Lévy-Prozess Zt schon durch die Angabe des charakteristischen Tripels (b, C, ν) von
Z1 vollständig charakterisiert wird. Ausserdem kann die Stetigkeit von φt auch ver-
wendet werden, um die Stetigkeit in Wahrscheinlichkeit eines Lévy-Prozesses zu
erhalten, denn es ist

E eiu∆Zt = lim
h↘0

E eiu(Zt−Zt−h) = lim
h↘0

φt(u)

φt−h(u)
= 1 ∀u (2.7)

⇒ ∆Zt = 0 f.s. (2.8)

Das Lévy-Maß in obigem Satz kann als Maß für Anzahl bzw. Intensität von
Sprüngen interpretiert werden. Betrachte dazu den Sprungzählmaßprozeß N, defi-
niert durch

Nt(A) :=
∑

0<s≤t

1A(∆Xs) (2.9)

für einen càdlàg stochastischen Prozeß Xt und Borelsche Mengen A mit 0 /∈ cl(A)
und ∆Xs := X(s)− limu↗sX(u). Nt zählt also die Sprünge, die der Prozess bis zum
Zeitpunkt t in der Menge A macht. Dann gilt im Fall, dass X Lévy-Prozess mit Lévy-
Maß ν ist, ν(A) = E(N1(A)). Insbesondere ist ein Lévy-Prozes Z stetig genau dann,
wenn νZ = 0, wenn also Z ein Wiener-Prozess mit Drift ist (vgl. Lévy-Khintchine
Zerlegung).Gegeben durch

µX(ω, dt, dx) :=
∑
s

1{∆Xs(ω) 6=0}δ(s,∆Xs(ω)(dt, dx) (2.10)

ist ein sogenanntes Zufallsmaß (siehe dazu Kapitel 3). Wir nennen µX Sprungmaß
des Prozesses X; wir werden uns ausführlicher mit der Bedeutung des Sprungmaßes
in Kapitel 3 beschäftigen. Zunächst wollen wir aber in diesem Kapitel Beispiele für
Lévy-Prozesse geben.
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2.2 Beispiele für Lévy-Prozesse

2.2.1 Wiener Prozess

Ein in 0 startender stetiger PIID-Prozess W = (Wt)t≥0 mit Wt −Ws
d
= N (0, t− s)

heißt Wiener-Prozess oder Brownsche Bewegung. Schon im ersten Kapitel haben wir
das Black-Scholes-Modell vorgestellt, bei dem die Dynamik eines Finanzgutes durch
einen Wiener Prozess gegeben ist. Jeder Wiener-Prozess ist insbesondere auch Lévy-
Prozess (klar nach Definition), mit charakteristischem Tripel (0,1,0). Die Pfade des
Wiener Prozesses sind von unbeschränkter Variation. Für eine explizite Konstrukti-
on des Wiener-Prozesses verweisen wir z.B. auf [19]. s. 567ff.

Time
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 1
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00
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Abbildung 2: Pfad einer Brownschen Bewegung

Natürlich haben wir nicht Lévy-Prozesse eingeführt, um (wieder) nur Wiener
Prozesse zu betrachten. Man beachte aber: Jeder stetige Lévy-Prozess ist bereits
ein Wiener-Prozess mit Drift (vgl. dafür Kapitel 3), sodass wir für neue Beispiele
Prozesse mit Sprüngen betrachten werden. Der bekannteste in dieser Kategorie ist
der Poisson-Prozess.

2.2.2 Poisson-Prozess

Gegeben sei λ ≥ 0. Dann nennen wir einen in 0 startenden càdlàg PIID-Prozess N

mitNt−Ns
d
= Nt−s

d
= Poi(λ(t−s)) Poissonprozess der Intensität λ. Wir können einen
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solchen Prozess folgendermaßen konstruieren: Sei (ξi)i∈N iid Familie von exp(λ)-
verteilten Zufallsgrößen. Definere den Erneuerungsprozess Tn :=

∑n
i=1 ξi. Dann ist

der zugehörige Erneuereungszählprozess Nt :=
∑

n≥1 1{t≥Tn} Poisson-Prozess der
Intensität λ. Der so definierte Prozess ist Lévy-Prozess mit zugehörigem charakte-
ristischem Tripel (0, 0, λδ1) (man beachte dabei, dass wir h = 0 wählen konnten).
Für unsere Zwecke ist ein solcher Poisson-Prozess unzureichend, da er determini-
stische Sprunghöhe hat. In der finanzmathematischen Modellierung brauchen wir
einen flexibleren Prozess. Eine einfache Verallgemeinerung bietet der zusammenge-
setzte Poisson-Prozess, definiert durch Xt :=

∑Nt
i=1 Yi, Yi iid Zufallsgrößen, s.u. von

N mit Verteilung F , Nt Poisson-Prozess der Intensität λ. Die Yi geben dann die Ver-
teilung der Sprunghöhe vor; die Fourier-Transformierte lässt sich einfach berechnen
und lautet

φ(u) = E
(

eiu
∑Nt
i=1 Yi

)
= e−λ

∫
R(1−eiux)F (dx) (2.11)

Der Prozess ist von endlicher Variation, wir können daher in der Lévy-Khintchine-
Formel h = 0 wählen und erhalten als charakteristisches Tripel (0, 0, λF ).

0 2 4 6 8 10
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4
6

8
10

Poisson−Prozess

time
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Abbildung 3: Simulation eines Poisson-Prozesses mit Intensität 1

Wir wollen kurz ein Kriterium vorstellen, wann ein Zählprozess schon ein Poisson-
Prozess ist. Ein Zählprozess ist ein in 0 startender, fast sicher endlicher monoton
wachsender stochastischer Prozess mit Werten in N0 und Zuwächsen in {0, 1}. Wir
können auch Nt =

∑
n≥1 1{Tn≤t} schreiben, wobei Tn die Sprungzeitpunkte von N

sind. Der so definierte Prozess N ist rechtsseitig stetig.

Lemma 2.6. Sei N Zählprozess und Mt := Nt−λt Martingal. Dann ist Nt Poisson-
Prozess mit Intensität λ.
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Beweis. M ist offensichtlich càdlàg. Für s < t und θ > 0 ist

eθNt − eθNs =
∑
s<u≤t

eθNu − eθNu− =
∑
s<u≤t

eθNu−
(
eθ∆Nu −1

)
=

∆Nu∈{0,1}

∑
s<u≤t

eθNu−(eθ−1)∆Nu = (eθ−1)

∫
(s,t]

eθNu− dNu

= (eθ−1)

(∫
(s,t]

eθNu− dMu +

∫
(s,t]

λ eθNu du

)
Da der Prozess

∫
(s,t]

eθNu− dMu in t ein in 0 startendes Martingal ist ergibt sich

E
(
eθNt − eθNs |Fs

)
= (eθ−1)E

(∫
(s,t]

λ eθNu du
∣∣∣Fs)

= (eθ−1)

∫
(s,t]

E(λ eθNu |Fs)du

Setzen wir g(t) := E(eθNt |Fs), so erfüllt g somit die Integralgleichung

g(t) = g(s) + (eθ−1)

∫
(s,t]

g(u)λdu

Diese wird gelöst von g(t) = eθNs exp((eθ−1)(t− s)λ). Damit ist

E(eθ(Nt−Ns) |Fs) = exp((eθ−1)(t− s)λ)

Dies zeigt, dass N PIID ist mit Poi(λ(t− s))-verteilten Zuwächsen

Gelegentlich ist es hilfreich, bei zwei gegebenen Lévy-Prozessen ein einfaches
Kriterium zu haben um Unabhängigkeit feststellen zu können. Zumindest für den
Fall, dass einer der Prozesse Poisson-Prozess ist existiert so ein Kriterium.

Lemma 2.7. Sei Y Poisson-Prozess und (X, Y ) 2-dimensionaler Lévy-Prozess.
Falls X und Y keine gemeinsamen Sprünge aufweisen, falls also ∆Xt∆Yt = 0 f.a. t
fast sicher ist, so sind X und Y stochastisch unabhängig.

Beweis. Da es sich um PIID-Prozesse handelt reicht zu zeigen, dass X1 und Y1 s.u.
sind. Wir betrachten die Martingale

Mt :=
eiuXt

E eiuXt
(2.12)

M ′
t :=

eiuYt

E eiuYt
(2.13)

M ist beschränkt und M ′ ist von integrierbarer Variation (da Y ein Poisson-Prozess
ist). Wir können daher in der folgenden Rechnung majorisierte Konvergenz anwen-
den:

E(M1M
′
1)− 1 = E

(
n∑
i=1

(
Mi/n −M(i−1)/n

)
(M ′

i/n −M ′
(i−1)/n)

)
maj.Konv.−→ E

(∑
0≤t≤1

∆Mt∆M
′
t

)
V or.
= 0
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Es folgt

E eiuX1+i vY1 = E eiuX1 E ei vY1 ∀u, v

und damit die Unabhängigkeit von X1 und Y1.

Anwendungsbeispiel 2.8 (Das Merton Modell). Eine einfache Verallgemeinerung
des Black-Scholes-Modells wurde 1976 von Merton vorgestellt. Es sei r der Zinssatz
der risikolosen Anlage und der Aktienpreis S sei gegeben durch die SDE

dSt = St− (γdt+ σdWt + (yt − 1)dNt) (2.14)

Dabei sei W Standard-Wienerprozess, yt seien iid Log-N (µ, δ2) verteilt und Nt sei
Poissonprozess mit Intensität λ. W , N und (yt) werden als unabhängig angenommen
und die zugrundeliegende Filtration sei die von S erzeugte, Ft = σ(Ss, s ≤ t). Die
Vorstellung ist dabei, dass die Aktienkursentwicklung dS eine stetige Komponente
in Form eines Wienerprozesses mit Drift hat, welche die alltäglichen Marktpreis-
fluktuationen wiedergibt sowie eine Sprungkomponente, welche plötzliche Markt-
reaktionen modelliert, etwa aufgrund unerwarteter politischer oder ökonomischer
Neuigkeiten. Wir lösen diese SDE mithilfe der Ito-Formel unter Benutzung von
∆St = St−(yt − 1)∆Nt:

d logSt = S−1
t− dSt −

1

2
S−2
t− d[Sct ] + d

∑
0<s≤t

(
log(Ss)− log(Ss−)− ∆Ss

Ss−

)
= γdt− σ2

2
dt+ σdWt + (yt − 1)dNt + d

∑
0<s≤t

(
log

(
Ss
Ss−

)
− ∆Ss
Ss−

)
=

(
γ − σ2

2

)
dt+ σdWt + (yt − 1)dNt

+ d
∑

0<s≤t

(log(1 + (ys − 1)∆Ns)− ((ys − 1)∆Ns))

=

(
γ − σ2

2

)
dt+ σdWt + d

∑
0<s≤t

log(1 + (ys − 1)∆Ns)

=

(
γ − σ2

2

)
dt+ σdWt + d

∑
0<s≤t

log(ys)1{∆Ns=1}

=

(
γ − σ2

2

)
dt+ σdWt + d

Nt∑
i=1

Yi

wobei Yi
iid∼ N (µ, δ2) von W und N unabhängie Zufallsgrößen sind. Damit lässt sich

das Mertonmodell auch folgendermaßen formulieren:

St = S0 eXt

Xt =

(
γ − σ2

2

)
t+ σWt +

Nt∑
i=1

Yi,

10



Im Unterschied zum BS-Modell ist hier also eine Sprungkomponente in Form ei-
nes zusammengesetzten Poisson-Prozesses zusätzlich zu dem unterliegenden steti-
gen Prozess W hinzugekommen. Die Logreturns sind im Mertonmodell nicht länger
normalverteilt; es gilt aber

P

(
log

(
St
S0

)
∈ ·
)

=
∞∑
i=0

P (Nt = i)P

(
log

(
St
S0

)
∈ ·
∣∣∣∣Nt = i

)
=
∞∑
i=0

e−λt(λt)i

i!
N
((

γ − σ2

2

)
t+ iµ, σ2t+ iδ2

)
Die Momente von st := log

(
St
S0

)
t−1 = Xt

t
lauten

Est = (γ − σ2

2
+ λµ)

var(st) = σ2 + λδ2 + λµ2

skew(st) =
λ(3δ2µ+ µ3)

(σ2 + λδ2 + λµ2)3/2

kurt(st) = 3 +
λ(3δ4 + 6µ2δ2 + µ4)

(σ2 + λδ2 + λµ2)2

Insbesondere ergibt sich eine negative Schiefe für µ < 0 und eine Kurtosis > 3
für λ > 0; dies stellt eine klare Näherung an empirische Daten im Vergleich zum
BS-Modell ohne Sprünge dar, vgl. Kapitel 1. Für die Fourier-Transformierte des
Prozesses Xt ergibt sich

φXt(u) = E eiuXt = eiu(γ−σ
2

2
)t− 1

2
u2σ2t E

∞∑
n=0

1{Nt=n} eiu
∑n
i=1 Yi

= eiu(γ−σ
2

2
)t− 1

2
u2σ2t

∞∑
n=0

P (Nt = n) e
n
(

iµu− δ
2u2

2

)

= eiu(γ−σ
2

2
)t− 1

2
u2σ2t

∞∑
n=0

e−λt

(
λt eiµu− δ

2u2

2

)
n!

n

= exp

(
t

(
iu

(
γ − σ2

2

)
− u2σ2

2
− λ+ λ eiµu− δ

2u2

2

))
Damit lautet das charakteristische Tripel von X

b = γ − σ2

2
+ λ

∫
xh(x)dN (µ, δ2)

C = σ2

ν = λN (µ, δ2))

Mertons Ansatz zur Optionsbewertung

Das Merton-Modell ist unvollständig (das Risiko von Sprüngen kann nicht vollständig
gehedgt werden). Merton argumentiert dafür, das Sprungrisiko als systematisches
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Risiko zu betrachten und deshalb beim Maßwechsel nur die Drift des Wienerpro-
zesses zu verändern, nicht aber Intensität des Poissonprozesses oder die Verteilung
der Sprunghöhen. Damit ergibt sich ein äMM analog wie im Black-Scholes-Modell.
Dafür definieren wir η := E(eYi −1) = eµ+δ2/2−1 und betrachten die SDE (2.14) in
der Form

dSt = St−

(
γdt+ σdWt + d

Nt∑
i=1

(eYi −1)

)

= St−

(
(γ + ηλ)dt+ σdWt + d

(
Nt∑
i=1

(eYi −1)− ηλt

))

wobei Mt :=
∑Nt

i=1(eYi −1) − ληt Martingal ist, da zusammengesetzte Poisson Pro-
zesse PIID mit endlichem Erwartungswert sind und damit obige Kompensation ein
Martingal ergibt. Ändern wir also mittels Girsanov-Transformation die Drift des
Wienerprozesses W auf r − γ − λη bzgl. eines neuen Maßes P ∗M , d.h. sei

dP ∗M
dP

∣∣
Ft

:= exp

(
aWt −

1

2
a2t

)
, a :=

r − γ − λη
σ

so dass W t := Wt − at Standardwienerprozess bzgl. P ∗M ist, dann ist

d
(
e−rt St

)
= St−

(
σdW t + dMt

)
(2.15)

und damit ist P ∗M tatsächlich äMM.
Liegt nun eine europäische Option mit Auszahlung h(ST ) vor, so lässt sich der Preis
bzgl. des Merton-äMM folgendermaßen errechnen. Ist pMt der Preisprozess bzgl. P ∗M
und τ := T − t, so ist

pMt (x) = e−r(T−t) EP ∗M (h(ST )|St = x)

= e−rτ EP ∗M

(
h

(
St exp

((
r − λη − σ2

2

)
τ + σ(WT −Wt) +

NT∑
i=Nt+1

Yi

))∣∣∣∣∣St = x

)

= e−rτ EP ∗M

(
h

(
x exp

((
r − λη − σ2

2

)
τ + σ(WT −Wt) +

NT∑
i=Nt+1

Yi

)))

= e−rτ EP ∗M

(
h

(
x exp

((
r − λη − σ2

2

)
τ + σWT−t +

NT−t∑
i=1

Yi

)))

Wir können den Preis der Option im Merton-Modell ausdrücken als gewichtete Sum-
me von Black-Scholes Preisen. Dazu bedingen wir unter der Anzahl der Sprünge,
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die der Aktienkurs macht, und erhalten

pMt (x) = e−rτ
∑
k≥0

P ∗M(Nτ = k)EP ∗M

(
h

(
x exp

((
r − λη − σ2

2

)
τ + σWτ +

Nτ∑
i=1

Yi

))∣∣∣∣∣Nτ = k

)

=
∑
k≥0

e−τλ e−rτ
(τλ)k

k!
EP ∗M

(
h

(
x exp

((
r − λη − σ2

2

)
τ + kµ+

√
σ2τ + kδ2N (0, 1)

)))
=
∑
k≥0

e−τλ e−rτ
(τλ)k

k!
EP ∗M

(
h

(
xk exp

((
r − 1

2
σ2
k

)
τ + σk

√
τN (0, 1)

)))
=
∑
k≥0

e−τλ
(τλ)k

k!
pBSt (σk, xk)

Dabei sei σk :=
√
σ2 + kδ2

τ
, xk := x ekµ−λητ+ kδ2

2

Für die grafische Visualisierung der obigen Ergebnisse gehen wir zunächst von
folgenden Parametern aus: Zinsrate sei r = 0.05, der Aktienkurs zum Startzeitpunkt
t sei St = 100, wir betrachten einen Call mit strike K und verbleibender Zeit τ = 0.5.
Die Sprungparameter im Merton Modell seien λ = 4, µ = −0.3, τ = 0.5, δ = 0.1. Wir
können nun den Parameter σ, der in beiden Modellen vorkommt, gleichsetzen, d.h.
σMerton = σBS. Man mache sich aber bewusst, dass im BS-Modell σBS

√
t tatsächlich

die Standardabweichung der Logreturns log St
S0

angibt, während diese im Merton-
Modell

√
σMerton2+λδ2+λµ2 beträgt. Setzt man also beide σ gleich an, ergeben sich im

Merton-Modell höhere Preise aufgrund der zusätzlichen Quelle von Volatilität, den
Sprüngen. Daher werden wir in einer zweiten Grafik σBS =

√
σ2
Merton + λδ2 + λµ2

betrachten.
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Abbildung 4: Mertonpreise (rot) und Black-Scholes-Preise (grün) einer Calloption
mit obigen Parametern und σBS = σMerton = 0.3. Die Merton-Preise liegen überall
über den BS-Preisen.
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Abbildung 5: Mertonpreise (rot) und Black-Scholes-Preise (grün) einer Calloption
mit obigen Parametern und σBS =

√
σ2
Merton + λδ2 + λµ2 mit σMerton = 0.3

2.2.3 Inverse-Gaussian-Prozess

Sei Bt := Wt + δt Wienerprozess mit Drift δ > 0 und τγ := inf{t > 0 : Bt > γ} der
erste Zeitpunkt an dem B den Wert γ überschreitet. τγ ist dann Stoppzeit bzgl. der
von W erzeugten Filtration und es ist Bτγ = γ f.s. aufgrund der stetigen Pfade von
W . Weiter gilt aufgrund der starken Markoveigenschaft des Wiener Prozesses

(Bτγ+t − γ)t≥0
d
=(Bt)t≥0

⇒ τt = τγ + τ̃t−γ ∀ 0 ≤ γ ≤ t

wobei τ̃t−γ unabhängige Kopie von τt−γ ist. Damit ist τ PIID und überdies rechtssei-
tig stetig (da B stetig) mit linksseitigen Limiten (da τ monoton wachsend ist) und
τ0 = 0. τγ ist also unendlich teilbar. Um den charakteristischem Exponenten (und da-
mit das char. Tripel) zu bestimmen, werden wir die Laplace-Transformierte berech-
nen. Dazu betrachten wir für u > 0 beliebig den Prozess Zt := eαBt−ut = eαWt−t(u−αδ).
Wir wählen dabei α so, dass der Prozess eine geometrische Brownsche Bewegung

ist und damit ein Martingal, d.h. sei α =
√
δ2 + 2u − δ (dann ist Zt = eαWt−α

2

2
t).

Anwendung von Optional Sampling auf die beschränkte Stoppzeit τγ ∧ t ergibt

1 = EZ0 = EZτγ∧t = E eαBτγ∧t−u(τγ∧t)

Da B stetig ist, ergibt sich

lim
t→∞

(
αBτγ∧t − u(τγ ∧ t)

)
= αγ − uτγ f.s.
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Wir können beide Gleichungen kombinieren, indem wir mittels majorisierter Kon-
vergenz Erwartungswert und Grenzwert vertauschen und erhalten

1 = E
(

lim
t→∞

Zτγ∧t

)
= eαγ E e−uτγ

⇒ E e−uτγ = e−γ(
√
δ2+2u−δ)

und damit lautet das char. Tripel

b = 2
γ

δ
Φ(b)

C = 0

ν(dx) = γ
1√
2π
x−3/2 e−

−δ2x
2 dx

Aus der Laplace-Transformierten können wir auch eine Dichte von τγ errechnen;

diese lautet fτγ (x) = γ√
2πx3

e−
(γ−δx)2

2x . Wir bezeichnen den Lévy-Prozess X mit X1
d
=

τγ als Inverse-Gaussian Prozess mit Parametern γ und δ. Der Name ergibt sich aus
der Definition von τγ als Inverses des Pfades eines Gausschen Prozesses.
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Abbildung 6: Pfad eines IG(5, 0.2)-Prozesses

2.2.4 Gamma-Prozess

Wir betrachten die Gamma-Verteilung mit Parametern α und β, gegeben durch die
Lebesgue-Dichte

g(x) =
βα

Γ(α)
xα−1 e−βx 1(0,∞)

Die Gamma-Verteilung ist unendlich teilbar, denn es ist

φΓ(α,β)(u) =

(
1− iu

β

)−α
=

((
1− iu

β

)−α
n

)n

= (φΓ(α/n,β)(u))n
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Für den zugehörigen Lévy-Prozess Xt ist Xt ∼ Γ(αt, β) mit char. Tripel

b =
α

β
(1− exp(−β))

C = 0

ν = α exp(−βx)x−1
1(0,∞)dx

Dieser Prozess ist ein sogenannter Subordinator. Das ist ein nichtnegativer Lévy-
Prozess, bzw. äquivalent dazu: ein monoton wachsender Lévy-Prozess. Er hat Pfade
von beschränkter Variation, aber von unendlicher Aktivität. So nennen wir einen
Lévy-Prozess, der in jedem Intervall von positiver Länge unendlich viele Sprünge
aufweist.

0 2 4 6 8 10

0
5

10
15

20

Gamma−Prozess

time

y

Abbildung 7: Gammaprozess mit α = 2, β = 1

Anwendungsbeispiel 2.9 (Das variance-gamma Modell). Im Folgenden betrach-
ten wir ein Finanzmarktmodell mit Zeithorizont [0, T ] und konstanter Zinsrate r;
es sei überdies eine Brownsche Bewegung mit Drift θ gegeben, d.h. sei Bt := Bθ

t :=

θt+σWt mit Standardwienerprozess W . Ausserdem sei Xt := Xµ,δ
t Gamma

(
µ2

δ
, µ
δ

)
-

Prozess (die Parameter wurden so gewählt, dass EX1 = γ, varXt = δ). Wir model-
lieren die Dynamik eines assets Z durch

Zt = BXt = θXt + σWXt (2.16)

Dies ist ein charakteristisches Beispiel für eine Klasse von Modellen für Fi-
nanzgüter, bei denen ein Lévy-Prozess durch einen nichtnegativen zweiten Lévy-
Prozess zeitlich skaliert wird. Die Vorstellung ist dabei, dass es am Markt ruhige
Zeiten mit wenig Kursänderungen gibt sowie hektische Zeiten mit raschen Kursände-
rungen. Der Prozess X modelliert dabei das (zufällige) Maß an

”
Hektik“, das am

Markt vorliegt.
Es ist überdies exemplarisch für eine etwas andere Modellierungsphilosophie als
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etwa beim Merton-Modell: Dort wurde die stetige Aktienpreisentwicklung des BS-
Modells lediglich mit gelegentlich auftretenden Sprüngen ergänzt (man spricht von
einem jump diffusion model mit endlicher Aktivität). Im Variance-Gamma-Modell
verschwindet die Gauss-Komponente; ein reiner Sprungprozess modelliert die Kurs-
entwicklung. Dieser hat unendliche Aktivität- es sind also viele kleine Sprünge, die
den Aktienkurs ausmachen (wie oben bereits vermerkt spricht man von einem infi-
nite activity model). In diesem Fall ist eine Diffusionskomponente nicht mehr nötig,
da die zahlreichen Sprünge von marginaler Größe bereits das

”
Alltagsgeschäft“ am

Aktienmarkt abbilden können.
Die Dichte von Zt bzgl. des Lebesgue-Maßes ergibt sich durch Bedingen unter

Xt und anschließendem Ausintegrieren zu

fZt(x) =

∫ ∞
0

1

σ
√

2πu
exp

(
−(x− θu)2

2σ2u

)
u
t
δ
−1 exp

(
−u
δ

)
δt/δΓ( t

δ
)

du

Dann ist Zt wieder Lévy-Prozess mit charakteristischer Funktion

E eiuZt =
(
1− i θδu+ (σ2δ/2)u2

)−t/δ
Die Momente von Z ergeben sich zu

EZt = θt

E(Zt − EZt)2 = (θ2δ + σ2)t

E(Zt − EZt)3 = (2θ3δ2 + 3σ2θδ)t

E(Zt − EZt)4 = (3σ4δ + 12σ2θ2δ2 + 6θ4δ3)t+ (3σ4 + 6σ2θ2δ + 3θ4δ2)t2

Wir betrachten nun das exp-Lévy-Modell, gegeben durch das Finanzgut S,

St = S0 exp(mt+ Zt − κt)

κ = κZ1(1) = logE eZ1 = −1

δ
log
(
1− θδ − σ2δ/2

)
bzgl. des subjektiven Wahrscheinlichkeitsmaßes P . Setzen wir die Existens eines
äMM P ∗ voraus, so muss bzgl. diesem S die Dynamik

St = S0 exp(rt+ Zt − κ∗t)

κ∗ = κZ1(1) = logE∗ eZ1 = − 1

δ∗
log
(
1− θ∗δ∗ − σ2,∗δ∗/2

)
haben, vgl. dazu auch die spätere Proposition 4.3.

Theorem 2.10. Der Preis eines europäischen Calls im VG-Modell mit obigen Pa-
rametern und Restlaufzeit t bzgl. eines äMM P ∗ lässt sich ausdrücken durch

p0(S0, K, t) = S0Ψ

(
d

√
1− c1

δ
, (α + s)

√
δ

1− c1

,
t

δ

)

−K exp (−rt) Ψ

(
d

√
1− c2

δ
, (α + s)

√
δ

1− c2

,
t

δ

)
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mit Konstanten

d :=
1

s

(
log

(
S0

K

)
+ rt+

t

δ
log

(
1− c1

1− c2

))
ζ := − θ

σ2

s :=
σ√

1 + θ2

σ2
δ
2

α := ζs

c1 :=
δ(α + s)2

2
c2 :=

δα2

2

Dabei ist Ψ(a, b, γ) :=
∫∞

0
Φ
(

a√
u

+ b
√
u
)
uγ−1 e−u

Γ(γ)
du. Die Funktion Ψ ist in geschlos-

sener Form3 bekannt, vgl. [8]

Beweis. Es ist p0(S0, K, t) = e−rt E∗ (St − k)+. Bedingen wir zunächst unter Xt = g,

so ergibt sich ein Aktienpreis der Form S
(Xt=g)
t = S0 ert eWg+θg−κt. Für den Callpreis

ist dann

p0(S0, K, t)
(Xt=g) = S0

(
1− δ(α + s)2

2

)t/δ
exp

(
(α + s)2g

2

)
Φ

(
d
√
g

+ (α + s)
√
g

)
−K e−rt

(
1− δα2

2

)t/δ
exp

(
α2g

2

)
Φ

(
d
√
g

+ α
√
g

)
wie eine Rechnung analog zum BS-Modell zeigt. Durch Ausintegrieren ergibt sich
also der unbedingte Callpreis zu

p0(S0, K, t) =

∫ ∞
0

p0(S0, K, t)
(Xt=g)

gt/δ−1 e−g/δ

δt/δΓ(t/δ)
dg

Nach einer Variablentransformation (y = g/δ) und Einsetzen des bedingten Preises
erhalten wir

p0(S0;K, t) =

∫ ∞
0

(
S0(1− c1)γ ec1γ Φ

(
d√
δy

+ (α + s)
√
δy

)
(2.17)

−K e−rt(1− c2)γ ec2y Φ

(
d√
δy

+ α
√
δy

))
yγ−1 e−y

Γ(γ)
dy (2.18)

mit γ = t/δ.

Setzen wir

Ψ(a, b, γ) :=

∫ ∞
0

Φ

(
a√
u

+ b
√
u

)
uγ−1 e−u

Γ(γ)
du

3Wie in [8] erweitern wir dabei die üblichen elementaren Funktionen um die Verteilungsfunktion
Φ der Standardnormalverteilung, da diese innerhalb der Finanzmathematik numerisch sehr gut
erfasst ist und in den Bewertungsformeln omnipräsent
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so ergibt sich (mit der Variablentransformation u = (1− c)γ für c = c1 bzw. c = c2)

p0(S0;K, t) = S0Ψ

(
d

√
1− c1

δ
, (α + s)

√
δ

1− c1

, γ

)

−K e−rtΨ

(
d

√
1− c2

δ
, α

√
δ

1− c2

, γ

)
Die Herleitung eines im obigen Sinne geschlossenen Ausdrucks für Ψ ist mit einigem
Aufwand verbunden; wir verweisen auf [8].

3 Einbettung in die Theorie der Semimartingale

und stochastische Analysis mit Lévy-Prozessen

In diesem Kapitel werden wir zeigen, dass Lévy-Prozesse Semimartingale sind (was
stochastische Analysis ermöglicht) und ausserdem Lévy-Prozesse in einfachere Be-
standteile zerlegen. Dies geschieht mithilfe der Lévy-Ito Zerlegung. Dazu führen wir
zunächst einige Begriffe ein, welche bekannte Konzepte verallgemeinern und für den
Beweis der Lévy-Ito-Zerlegung benötigt werden.

Definition 3.1 (Zufallsmaß). Seien (X, C) und (Y,D) messbare Räume. Dann nen-
nen wir eine Abbildung µ : X ×D → [0,∞] Zufallsmaß, falls

i) Für alle D ∈ D ist x 7→ µ(x,D) C-messbar

ii) Für alle x ∈ X ist D 7→ µ(x,D) ein Maß auf (Y,D)

Wir werden nur Zufallsmaße auf (R+ × E,B+ × E) betrachten, wobei (E, E) =
(Rn,Bn+). Wir haben bereits das für uns wichtigste Beispiel eines Zufallsmaßes gese-
hen: das Sprungmaß aus Gleichung (2.10). Wir führen die Bezeichnungen

Ω̃ := Ω× R+ × Rd (3.1)

Õ := O ⊗ Bd (3.2)

P̃ := P ⊗ Bd (3.3)

ein und nennen messbare Funktionen bzgl. dieser σ-Algebren ebenfalls optional bzw.
previsibel. Weiter definieren wir für eine optionale Funktion H : (Ω×R+×Rd)→ R
und ein Zufallsmaß µ den Integralprozess

H ∗ µt(ω) =

{∫
[0,t]×Rd H(ω, s, x)µ(ω, ds, dx) falls

∫
[0,t]×Rd |H(ω, s, x)|µ(ω, ds, dx) <∞

∞, sonst

(3.4)

Wir nennen einen adaptierten càdlàg Prozess X Semimartingal, wenn er eine
Zerlegung der Form Xt = X0 + Vt + Mt zulässt mit Vt ∈ FV adaptiert und càdlàg,
M lokales Martingal, M0 = V0 = 0, X0 F0-messbar. Ein spezielles Semimartingal ist
ein solches, bei dem obige Zerlegung mit einem previsiblen V möglich ist. In diesem
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Fall ist die Zerlegung eindeutig. Ein Semimartingal mit beschränkten Sprüngen ist
speziell, siehe z.B. [19] (Seite 258, Example 4.47). Sind die aufsummierten großen
Sprünge des Prozesses beschränkt, d.h. ist

∑
s≤t ∆Xs1{|∆Xs|>1} für alle t eine kon-

vergente Reihe, so erhalten wir die eindeutige Zerlegung eines Semimartingales

Xt = X0 +M c
t +Md

t + Vt +
∑
s≤t

∆Xs1{|∆Xs|>1}

= X0 +M c
t +Md

t + Vt +

∫ t

0

∫
R
x1{|x|>1}µ

X(ds, dx)

wobei M c bzw. Md der stetige bzw. rein unstetige Anteil eines Martingals M sind.
Für einen Lévy-Prozess mit charakteristischem Tripel (b, C, ν) ist

Vt = bt

M c
t = c

1
2Wt

und es stellt sich heraus, dass obige Zerlegung immer eindeutig möglich ist. Um
dies zu sehen, muss man sich zunächst klarmachen dass Lévy-Prozesse tatsächlich
Semimartingale sind. Ist Z Lévy-Prozess mit E |Zt| < ∞, so ist dies aufgrund der
PIID sofort gegeben, denn es ist

E (Zt − E(Zt)|Fs) = E ((Zt − Zs) + Zs|Fs)− E(Zt) = Zs − E(Zs)

Im Allgemeinen haben Lévy-Prozesse jedoch keinen endlichen Erwartungswert. Be-
trachte etwa einen zusammengesetzten Poisson-Prozess mit Sprüngen mit unendli-
chem Erwartungswert. Um zu zeigen, dass auch solche Lévy-Prozesse Semimartin-
gale sind und um einen tieferen Einblick in den Aufbau solcher Prozesse zu erhalten
werden wir im Folgenden die Lévy-Ito-Zerlegung beweisen. Für deren Beweis werden
wir zuerst einige Begriffe einführen müssen. Wir verallgemeinern dazu zunächst den
Begriff eines Poisson-Prozesses.

Definition 3.2 (Poisson-Zufallsmaß). Sei (S,S, λ) σ−endl. Maßraum, (Ω,F , P ) W-
Raum. Wir nennen ein Zufallsmaß µ : Ω × S → [0,∞] Poisson-Zufallsmaß (kurz:
PZM ) mit Intensität λ, wenn µ die folgenden Bedingungen erfüllt:

i) Sind A1, ..., An, Ai ∈ S für alle i, paarweise disjunkt, so sind µ(·, A1), ..., µ(·, An)
stochastisch unabhängig

ii) Für alle A ∈ S ist µ(·, A) ∼ Poi(λ(A)).

Dabei sei Poi(0) := δ0, Poi(∞) := δ∞. Wenn der Zusammenhang klar ist, schreiben
wir auch kurz µ(A) für die Zufallvariable µ(·, A).

Wir können ein PZM konstruieren, indem wir zunächst λ als endliches Maß
mit Gesamtmasse c annehmen. Dann seien ξ1, ξ2, ...iid Zufallsgrößen mit Verteilung
c−1λ und L von (ξi) unabhängige Poi(c)-verteilte Zufallsgröße. Setzen wir µ(ω,A) :=∑L

j=1 δξj(ω)(A) so ist µ Poisson-Maß mit Intensität λ. Für ein σ-endliches Maß λ sei
(Ai)i=1,...,n Partition von X mit λ(Ai) < ∞ f.a. i. Seien µi, i = 1, ..., n unabhängige
Poisson-Maße mit Intensität 1Anλ und µ :=

∑
i µi. Dann ist µ Poisson-Maß mit

Intensität λ.
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Lemma 3.3. Sei µ Poisson-Zufallsmaß auf (S,S, λ) und f : S → R messbare
Funktion. Dann gilt:

i) X :=
∫
f(x)dµ(x) ist fast sicher absolut konvergent genau dann, wenn

(∗)
∫
S

(1 ∧ |f(x)|)λ(dx) <∞

gilt.

ii) Wenn (*) erfüllt ist, dann gilt E eiβX = exp
(
−
∫
S
(1− eiβf(x))dλ(x)

)
für alle

β ∈ R

iii) Falls
∫
S
|f(x)| dλ(x) <∞, so ist E(X) =

∫
S
f(x)dλ(x). Ist sogar

∫
S
f(x)2dλ(x) <

∞, so gilt ausserdem EX2 =
∫
S
f(x)2dλ(x) +

(∫
S
f(x)dλ(x)

)2
.

Beweis. Wir beweisen die obigen Aussagen mittels eines Funktionserweiterungs-
arguments. Sei also f zunächst elementare Funktion, d.h. f(x) :=

∑n
i=1 αi1Ai(x)

mit αi ∈ R, (Ai) paarweise disjunkte Mengen in S mit λ(Ai) < ∞. Dann ist
X =

∑n
i=1 αiµ(Ai) f.s. endlich (da µ(Ai) ∼ Poi(λ(Ai)). Sei θ > 0 beliebig; dann

ist

E e−θX =
n∏
i=1

E
(
e−θαiµ(Ai)

)
=

n∏
i=1

exp
(
−(1− e−θαi λ(Ai))

)
= exp

(
−

n∑
i=1

(1− e−θαi)λ(Ai)

)

= exp

(
−
∫
S

(1− e−θf(x))dλ(x)

)
Sei jetzt f ≥ 0 messbar, dann existiert eine monoton wachsende Folge (fn) elemen-
tarer Funktionen, die punktweise gegen f konvergiert. Dann ist

lim
n→∞

∫
fn(x)dµ(x) =

mon.Konv.

∫
f(x)dµ(x) = X

und damit

E e−θX = E
(

exp

(
−θ
∫
f(x)dµ(x)

))
=

maj.Konv
lim
n

E
(

exp

(
−θ
∫
fn(x)dµ(x)

))
= lim

n
exp

(
−
∫
S

(1− e−θfn(x))dλ(x)

)
= exp

(
−
∫
S

(1− e−θf(x))dλ(x)

)
Ist X = ∞ f.s., so ergibt sich aus obiger Rechnung

∫
S
(1 − e−θf(x))dλ(x) = ∞

für alle θ > 0. Ist andernfalls X < ∞ mit positiver Wahrscheinlichkeit, so muss∫
S
(1− e−θf(x))dλ(x) <∞ für alle θ > 0 gelten. Genauer gilt in dem Fall, dass obiges

Integral für alle θ > 0 endlich ist, schon die fast sichere Endlichkeit von X. Um dies
zu sehen stellen wir zunächst mittels majorisierter Konvergenz

lim
θ↘0

∫
S

(1− e−θf(x))dλ(x) = 0 (3.5)

⇒ lim
θ↘0

exp

(∫
S

(1− e−θf(x))dλ(x)

)
= 1 (3.6)
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fest. Daraus folgt aufgrund der obigen Rechnung P (X <∞) = 1. Insgesamt haben
wir also X < ∞ gdw.

∫
S
(1 − e−θf(x))dλ(x) < ∞ f.a. θ > 0. Dies gilt genau dann,

wenn
∫
S
(1 ∧ f(x))dλ(x) < ∞ . Ersetzen wir in den vorangegangenen Rechnungen

θ durch θ − i β ergibt sich mit θ ↘ 0 die Aussage ii) für nichtnegative f . Sei jetzt
f beliebige messbare Funktion mit Positiv- und Negativanteil f+ bzw. f−. Wir
schreiben X = X+ −X− mit

X+ :=

∫
S

f(x)dµ+(x), µ+ := µ(· ∩ {x ∈ S : f(x) ≥ 0}) (3.7)

X− :=

∫
S

f(x)dµ−(x), µ− := µ(· ∩ {x ∈ S : f(x) < 0}) (3.8)

Dann sind µ+, µ− PZM mit Intensität λ(· ∩ {f ≥ 0}) bzw. λ(· ∩ {f < 0}); da sie
stochastisch unabhängig sind gilt dies auch für X+, X−. Damit konvergiert X f.s.
absolut gdw. X+, X− f.s. absolut konvergieren. Beachten wir das zuvor Gezeigte
ergibt sich dies gdw.

∫
S
(1 ∧ |f(x)|)dλ(x) < ∞. Zu ii): X+, X− sind stochastisch

unabhängig; in Verbindung mit Aussage i) ergibt sich für alle θ ∈ R

E ei θX = E ei θX+ E ei θX−

= exp

(
−
∫
{f>0}

(1− ei θf+(x))dλ(x)

)
· exp

(
−
∫
{f<0}

(1− ei θf−(x))dλ(x)

)
= exp

(
−
∫
S

(1− ei θf(x))dλ(x)

)
Der Beweis zu iii) lässt sich genauso durchführen mittels eines Funktionserweite-
rungsargumentes. Alternativ könnten wir-unter etwas stärkeren Voraussetzungen-
[1], Satz 41.3 s.208 benutzen, der uns φ(k)(t) = ik EXk ei tX liefert für φ(t) = E ei tX ,
k = 1 bzw. k = 2. Damit folgt Aussage iii) dann sofort aus ii).

Definition 3.4 (Poisson Punktprozess). Sei g lokal integrierbar auf D ⊂ Rd−1\{0}
(oder ν lokal endliches Maß). Wir nennen einen Prozess (∆t)t≥0 in D ∪ {0} Poisson
Punktprozess mit Intensität g (bzw. Intensitätsmaß ν), wenn

µ(ω, (a, b]× A) := #{t ∈ (a, b] : ∆t(ω) ∈ A}, 0 ≤ a < b, A ⊂ D (3.9)

PZM mit Intensität Λ((a, b]×A) = (b−a)
∫
A
g(x)dx (bzw. Λ((a, b]×A) = (b−a)ν(A))

ist.

Einen Poisson-Punkt-Prozess können wir folgendermaßen erhalten: Seien ξ1, ξ2, ...
iid Zufallsgrößen mit Verteilung ν auf Rd − {0}, Sn :=

∑n
i=1 ξi sowie Nt von (ξi)

unabhängiger Poisson-Prozess mit Parameter c > 0. Dann ist

∆t :=

{
ξi, falls Nt = n > Nt−

0, sonst
(3.10)

Poisson-Punktprozess mit charakteristischem Maß cν. Damit sieht man

SNt =
Nt∑
i=1

ξi =
∑

0≤s≤t

∆s (3.11)

was dem oben eingeführten zusammengesetzten Poisson-Prozess entspricht. Wir be-
trachten im folgenden Lemma ein ähnliches, etwas anders formuliertes Resultat.
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Lemma 3.5. Sei λ Maß auf R − {0}, B ∈ B(R) mit 0 < λ(B) < ∞ und µ PZM
auf dem Raum

(S,S, η) :=
(
[0,∞)× R,B|[0,∞) × B(R), dt× λ(dx))

)
Dann ist Xt :=

∫ t
0

∫
B
xµ(ds, dx), t ≥ 0 zusammengesetzter Poisson Prozess mit

Sprungintensität λ(B) und Sprungverteilung λ(B)−1λ(· ∩B).

Beweis. Aus der Konstruktion des PZM ergibt sich, dass Xt endliche Summe ist für
alle t > 0 da λ(B) < ∞, und damit càdlàg. Weiter sind die Zuwächse von X s.u.;
denn es ist Xt −Xs =

∫
(s,t]

∫
B
xµ(ds, dx) und dieser Ausdruck ist s.u. von (Xu)u≤s

da µ PZM ist. Nach Lemma 3.3 ii) ist

E ei θXt = e−t
∫
B(1−ei θx)λ(dx) (3.12)

Dies in Verbindung mit den unabhängigen Zuwächsen von X ergibt

E(ei θ(Xt−Xs)) =
E ei θXt

E ei θXs
(3.13)

= e−(t−s)
∫
B(1−ei θx)λ(dx) = E ei θXt−s (3.14)

und damit die Stationarität des Prozesses, mit charakteristischem Exponenten eines
zusammengesetzten Poisson Prozesses mit der geforderten Sprungrate und Vertei-
lung, vgl. 3.12 .

Lemma 3.6. Seien µ und B wie oben und zusätzlich
∫
B
|x|λ(dx) <∞. Dann gilt:

i) Der zusammengesetzte Poisson Prozess mit Drift Mt :=
∫

[0,t]

∫
B
xµ(ds, dx) −

t
∫
B
xλ(dx) ist Martingal bzgl. der Filtration Ft := σ (µ(A) : A ∈ B[0, t]× B(R)).

ii) Ist ausserdem
∫
B
x2λ(dx) <∞ so ist M sogar L2-Martingal.

Beweis. i) M ist adaptiert bzgl. F und integrierbar, denn es ist

E |Mt| ≤ E
(∫ t

0

∫
B

|x|µ(ds, dx) + t

∫
B

|x|λ(dx)

)
<

vgl.3.3 , iii)
∞ (3.15)

Da EMt = 0 und M stationäre und unabhängige Zuwächse hat, ist M somit
Martingal.

ii) Aus Lemma 3.3, iii) (mit f(x) = x1B) und der Voraussetzung
∫
B
x2λ(dx) <∞

folgt

E
(
Mt + t

∫
xλ(dx)

)2

= E
(∫

[0,t]

∫
B

xµ(ds, dx)

)2

= t

∫
B

x2dλ(x) + t2
(∫

B

xdλ(x)

)2
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Weiter ist M ein in 0 startendes Martingal, damit lässt sich auch schreiben

E
(
Mt + t

∫
xλ(dx)

)2

= EM2
t + t2

(∫
B

xdλ(x)

)2

+ E
(

2tMt

∫
B

xdλ(x)

)
︸ ︷︷ ︸

=0

Ein Vergleich der beiden Ausdrücke ergibt EM2
t = t

∫
B
x2dλ(x) < ∞, also die

Behauptung.

Das obige Resultat ist Beispiel für ein allgemeineres Prinzip. In dem Zusam-
menhang spricht man auch von Kompensation eines Zufallsmaßes und von λ als
Kompensator. Genauer hat man folgendes Theorem, welches wir in dieser Master-
arbeit nicht beweisen können.

Definition+Theorem 3.7 (Kompensator). Sei µ optionales, σ-endliches Zufalls-
maß. Dann existiert ein P -f.s. eindeutiges previsibles Zufallsmaß ν (Kompensator
genannt) mit einer der folgenden äquivalenten Eigenschaften:

1. Für alle P̃ messbaren Funktionen H mit |H| ∗ µ ∈ A+
loc ist |H| ∗ ν ∈ A+

loc und
H ∗ µ−H ∗ ν ist lokales Martingal.

2. E(H ∗ ν∞) = E(H ∗ µ∞) für alle nichtnegativen P̃-messbaren Funktionen H

auf Ω̃

Beweis. Vgl. [12]

Wir kommen nun zu einem wichtigen Theorem, mit dessen Hilfe wir Lévy-
Prozesse besser verstehen werden.

Theorem 3.8 (Lévy-Ito). Sei b ∈ Rd, C positiv semidefinite Matrix in Rd × Rd, ν
sei d-dimensionales Lévy-Maß. Definiere

ψ(u) := i bTu− 1

2
uTCu+

∫
Rd

(eiuT x− iuTh(x)− 1)ν(dx) (3.16)

mit h(x) = x1{|x|≤1} Dann existiert ein eindeutiges W-Maß P auf Ω und ein sto-
chastischer Prozess X, so dass X Lévy-Prozess mit charakteristischem Exponenten
ψ bzgl. P ist. Überdies ist ∆X=(∆Xt)t≥0 Poisson Punkt Prozess mit charakteristi-
schem Maß ν

Beweis. Es seien

1. W Wiener Prozess in Rd

2. ∆ von W stochastisch unabhängiger Poisson Punkt Prozess mit charakteristi-
schem Maß ν

3. C
1
2 Lösung von (C

1
2 )TC

1
2 = C (existiert, da C positiv semidefinit ist)
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Wir definieren weiter

X
(1)
t := C

1
2Wt + bt (3.17)

∆
(2)
t := ∆t1{|∆t|≥1} (3.18)

X
(2)
t :=

∑
s≤t

∆(2)
s (3.19)

Dann ist X
(1)
t Lévy-Prozess mit charakteristischem Exponenten ψ(1)(u) = i b.u −

1
2
uTCu, ∆

(2)
t ist Poisson Punkt Prozess mit charakteristischem Maß ν(2)(dx) :=

1{|x|≥1}ν(dx) und X
(2)
t ist càdlàg PIID, damit Lévy-Prozess. Genauer ist-wie oben

festegestellt- X(2) zusammengesetzter Poisson Prozess und hat als solcher den cha-
rakteristischen Exponent

ψ(2)(u) :=

∫
Rd

(
eiu.x−1

)
1{|x|≥1}ν(dx) (3.20)

Weiter sei
∆

(3)
t := ∆t1{|x|<1} (3.21)

Dann ist ∆(3) Poisson Punkt Prozess mit char. Maß ν(3)(dx) := 1{|x|<1}ν(dx) und
ist-da ∆(2) und ∆(3) konstruktionsgemäß keine gemeinsamen Sprünge aufweisen-
stochastisch unabhängig von ∆(2) (siehe Lemma 2.7). Wir definieren weiter eine

Familie von Prozessen X
(ε,3)
t durch

X
(ε,3)
t :=

∑
s≤t

1{ε<|∆s|<1}∆s − t
∫
Rd
x1{ε<|x|<1}ν(dx) (3.22)

Wie oben sieht man, das (X
(ε,3)
t )t≥0 Lévy-Prozess ist mit char. Exponenten

ψ(ε,3)(u) :=

∫
Rd

(eiu.x− iu.x− 1)1{ε<|x|<1}ν(dx) (3.23)

In integraler Schreibweise ist für 0 < η < ε

X
(η,3)
t −X(ε,3)

t =

∫ t

0

∫
η<|x|<ε

xµX(ds, dx)− t
∫
η<|x|<ε

xν(dx)

wobei µX das zu ∆ gehörende PZM sei. Es gilt mit Doobs Maximalungleichung und
dem Argument aus dem Beweis von Lemma 3.6, ii)

∀t∀η ∈ (0, ε) : E sup
s≤t

∣∣X(η,3)
s −X(ε,3)

s

∣∣2 ≤ 4E
∣∣∣X(η,3)

t −X(ε,3)
t

∣∣∣2
= 4t

∫
Rd
|x|2 1{η<|x|<ε}ν(dx) −−→

ε↘0
0

wobei für die Konvergenz benutzt wurde, dass ν Lévy-Maß ist. Es ist (Xε,3), ε > 0)

somit Cauchy-Familie bzgl. der Norm ‖Y ‖ := E(sups≤t |Ys|
2)

1
2 auf dem Hilbertraum

der zweifach integrierbaren Martingale mit Zeithorizont [0, t], mit einem Grenzwert
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X(3) (man beachte, dass der Wert von t in dieser Argumentation unerheblich ist).
Dieser ist càdlàg PIID. Um die PIID-Eigenschaft zu sehen, beachte man dass aus
L2-Konvergenz f.s. Konvergenz einer Teilfolge (εn) folgt und entlang dieser Folge
Konvergenz in Verteilung. Mittels majorisierter Konvergenz ist dann

E
(

ei θ1(X
(3)
v −X

(3)
u ) ei θ2(X

(3)
t −X

(3)
s )
)

= lim
n

E
(

ei θ1(X
(εn,3)
v −X(εn,3)

u ) ei θ2(X
(εn,3)
t −X(εn,3)

s )
)

= lim
n

E ei θ1X
(εn,3)
v−u E ei θ2X

(εn,3)
t−s

= E ei θ1X
(3)
v−u E ei θ2X

(3)
t−s

woraus die PIID-Eigenschaft folgt. Als charakteristischer Exponent von X(3) ergibt
sich durch Grenzwertbildung:

ψ(3)(u) :=

∫
Rd

(eiu.x− iu.x− 1)1{|x|<1}ν(dx) (3.24)

Da X(3) messbar bzgl. σ(∆(3)) ist, ist X(3) unabhängig von X(2). Insgesamt ist also
X := X(1) +X(2) +X(3) Lévy-Prozess mit char. Exponenten

ψ = ψ(1) + ψ(2) + ψ(3)(aufgrund der Unabhängigkeit der Prozesse X(i))

Nach Konstruktion ist ∆ der Sprungprozess des Prozesses X; damit ergibt sich die
letzte Behauptung, nach der ∆X Poisson Punkt Prozess mit char. Maß ν ist.

Die im obigen Beweis konstruierte Zerlegung X = X(1) +X(2) +X(3) bezeichnet
man als Lévy-Ito-Zerlegung. Danach kann jeder Lévy-Prozess zerlegt werden in
einen stetigen Brownschen Bewegungsteil und zwei Sprungkomponenten. Letztere
sind ein zusammengesetzter Poisson-Prozess X(2) sowie ein reines Sprungmartingal
X(3) mit Sprüngen der Grösse ≤ 1.
In dem Fall, dass die Kompensation in der Definition von X

(ε,3)
t nicht nötig ist (dazu

später mehr), können wir den Grenzwert direkt betrachten und erhalten die gängige
Form

Xt =
(
C1/2Wt + bt

)
+

∫ t

0

∫
|x|≥1

xµX(ds, dx)

+

(∫ t

0

∫
0<|x|<1

xµX(ds, dx)− t
∫

0<|x|<1

xν(dx)

)
Insbesondere erhalten wir also, dass Lévy-Prozesse Semimartingale sind und somit
stochastische Analysis angewendet werden kann. Die oben beschriebene Semimar-
tingalzerlegung erkennen wir hier wieder; der rein unstetige Martingalanteil ergibt
sich als Integral über das Sprungmaß des Lévy-Prozesses.

Korollar 3.9. Sei ein (b, C, ν)-Lévy-Prozess Z gegeben mit Sprungzählmaßprozess
Nt(A) :=

∑
0<s≤t

1A(∆Zs). Dann ist Nt(A) Poisson-Prozess mit Intensität ν(A) wobei

ν das zu Z gehörende Lévy-Maß ist.
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Beweis. Mittels Lévy-Ito-Zerlegung erhalten wir einen (b, C, ν)-Lévy-Prozess X, so
dass ∆Xs = ∆s Poisson Punkt Prozess ist; damit ist Nt(A) :=

∑
0<s≤t

1A(∆Xs)

Poissonprozess der Intensität ν(A).

Damit erhalten wir auch die oben bereits erwähnte Beziehung

ν(A) = E

(∑
0<s≤t

1A(∆Xs)

)

zwischen Lévymaß und Sprungprozess.

Korollar 3.10. Ein Lévy-Prozess mit Charakteristik (b, C, ν) ist von beschränkter
Variation genau dann, wenn

C = 0 und

∫
(1 ∧ |x|)ν(dx) <∞

Beweis. Wir betrachten die Lévy-Ito Zerlegung X(1) + X(2) + X(3). Da Brownsche
Bewegungen von unbeschränkter Variation sind, muss der Gauss-Anteil 0 sein, d.h.
es muss C = 0 gelten. X(2) ist als zusammengesetzter Poisson-Prozess von be-
schränkter Variation und daher unerheblich. Nun ist

∫ t
0

∫
0<|x|<1

xµX(ds, dx) < ∞
genau dann, wenn

∫
0<|x|<1

|x| dν(x) <∞, vgl. Lemma 3.3. In der Lévy-Ito-Zerlegung

fällt damit für den Prozess X
(ε,3)
t =

∑
s≤t 1{ε<|∆s|<1}∆s − t

∫
Rd x1{ε<|x|<1}ν(dx) die

Notwendigkeit der Kompensation durch t
∫
Rd x1{ε<|x|<1}ν(dx) weg, um den Grenz-

wert für ε ↘ 0 bilden zu können. X
(3)
t hat dann die Form

∑
s≤t 1{0<|∆s|<1}∆s −

t
∫
Rd x1{0<|x|<1}ν(dx). Dieser Prozess ist aber von beschränkter Variation genau

dann, wenn
∫

0<|x|<1
|x| dν(x) < ∞. Da überdies ν Lévy-Maß ist, ergibt sich die

äquivalente Bedingung ∫
(1 ∧ |x|)ν(dx) <∞

wie gefordert.

Anmerkung 3.11. In der Situation von Korollar 3.10 wird häufig eine andere
Abschneidefunktion h gewählt (genauer wird h = 0 gesetzt, vgl. die Anmerkung
zur Lévy-Khintchine-Zerlegung). Damit ergibt sich auch eine veränderte Drift; es
ist dann b′ := b −

∫
Rd\{0} x1[−1,1](x)ν(dx). Man erhält dann die sehr anschauliche

Lévy-Ito-Darstellung

Zt = b′t+

∫ t

0

∫
R
xµX(ds, dx) = b′t+

∑
s≤t

∆Zs

Der Prozess ergibt sich also aus dem stetigen, deterministischen Drift-Anteil b′t und
dem rein unstetigen Sprunganteil. Man beachte, dass wir sowohl b als auch b′ als
Driftterm bezeichnen, obwohl dieser Ausdruck eher auf b′ zutrifft.
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Wir kommen nun zu einer hilfreichen Charakterisierung von Subordinatoren,
also nichtnegativen Lévy-Prozessen. Es ist schon angesprochen worden, dass die
Nichtnegativität des Prozesses gleichbedeutend ist mit monoton wachsenden Pfaden.
Dies wird unter anderem in der folgenden Proposition gezeigt.

Proposition 3.12 (Charakterisierung von Subordinatoren). Sei Z Lévy-Prozess
auf R mit Charakteristik (b, C, ν). Dann sind äquivalent:

i) Zt ≥ 0 f.s. für ein t > 0

ii) Zt ≥ 0 f.s. für alle t > 0

iii) t 7→ Zt ist fast sicher monoton wachsende Funktion

iv) Die Charakteristik von Z erfüllt

C = 0

ν((−∞, 0]) = 0∫ ∞
0

(x ∧ 1)ν(dx) <∞

b′ ≥ 0

Beweis. ii)⇒ i) Trivial.
iii)⇒ ii) Ebenfalls einfach, da aus iii) Zt ≥ Z0 = 0 für alle t fast sicher folgt.
i)⇒ ii): Zunächst ist Znt ≥ 0 f.s. für alle n ∈ N, denn es ist Znt =

∑n
i=1 Zit−Z(i−1)t.

In dieser Summe sind alle Summanden iid aufgrund der Lévy-Eigenschaft und der
erste Summand ist Zt, welcher nach Voraussetzung nichtnegativ f.s. ist, also trifft
dies auch für die Summe zu. Sei nun q = n

m
∈ Q+ beliebig. Dann ist

∑m
i=1 Zqit −

Zq(i−1)t = Znt. Da wir wissen, dass diese Summe von iid Zufallsgrößen nichtnegativ
ist, gilt dies auch für jeden Summanden, insbesondere für Zqt. Ist schließlich r ∈ R+

beliebig, so existiert eine fallende Folge rationaler Zahlen qn, die gegen r konvergiert.
Aufgrund der obigen Rechnungen ist Zqnt ≥ 0 f.s. für alle n, also ist dies aufgrund
der rechtsseitigen Stetigkeit von Z auch für Zrt richtig. Da aber r beliebig war, ergibt
sich ii).
ii) ⇒ iii) Da Zt − Zs wegen der Lévy-Eigenschaft von Z die gleiche Verteilung
besitzt wie Zt−s und dieses nach ii) fast sicher nichtnegativ ist, ergibt sich sofort die
Aussage iii)
iii)⇒ iv) Da die Pfade nach Voraussetzung nichtnegativ sind, sind sie insbesondere
von beschränkter Variation. Daher ergibt sich C = 0 und

∫
(x ∧ 1)ν(dx) < ∞ aus

Korollar 3.10. Da die Pfade wachsen, kann es keine negativen Sprünge geben, d.h.
es muss ν((−∞, 0]) = 0 sein. Da der Prozess auch wächst, wenn keine Sprünge
vorkommen, ergibt sich für die Drift die Bedingung b′ ≥ 0 wie gefordert.
iv) ⇒ iii) Wenn iv) gilt sind unter anderem die Voraussetzungen dafür erfüllt,
dass Z Pfade von beschränkter Variation hat. Damit hat Z die Darstellung Zt =
b′t+

∑
s≤t ∆Zs. Da b′ ≥ 0 und die Sprünge fast sicher nichtnegativ sind, sind somit

die Pfade von Z fast sicher monoton wachsend.
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Ein bekanntes und grundlegendes Resultat in der Theorie der Semimartingale ist
die Ito-Formel. Wir formulieren diese im folgenden für Lévy-Prozesse. Dazu geben
wir zunächst zur Erinnerung die Ito-Formel für Semimartingale an.

Theorem 3.13 (Ito-Formel für Semimartingale). SeiX = (X1, ..., Xd) d-dimensionaler
Vektor von Semimartingalen und sei f ∈ C2(Rd). Dann gilt

f(Xt)− f(X0) =
d∑

k=1

∫ t

0

∂f

∂xk
(Xs−)dXk

s +
1

2

∑
i,j

∫ t

0

∂2f

∂xi∂xj
(Xs−)d[X i,c, Xj,c]s

(3.25)

+
∑

0<s≤t

(
f(Xs)− f(Xs−)−

d∑
k=1

∂f

∂xk
(Xs−)∆Xk

s

)
(3.26)

Für einen Beweis vgl. [19]. Wir wenden uns kurz den sogenannten Lévy-Ito Pro-
zessen zu; diese haben die Form

Xt =

∫ t

0

bsds+

∫ t

0

C1/2
s dWs +

∫ t

0

∫
|x|>1

ηs(x)µX(ds, dx) (3.27)

+

∫ t

0

∫
|x|≤1

ηs(x)d(µX(ds, dx)− tν(x)) (3.28)

Dabei seien b und C previsible lokal beschränkte Prozesse und ηs(x) linksseitig
stetige Zufallsfunktion, für die der Prozess(∫

|x|≤1

ηt(x)2ν(dx)

)
t≥0

lokal beschränkt ist. Der Name dieser Prozesse lässt sich durch die angenehme Ei-
genschaft erkären, dass Lévy-Ito-Prozesse abgeschlossen unter C2-Transformationen
sind. Genauer ergibt eine Anwendung der Ito-Formel für eine C2-Funktion f , ange-
wendet auf einen Lévy-Ito-Prozess der obigen Bauart

f(Xt)− f(X0)

=

∫ t

0

(
bsf
′(Xs) +

1

2
Csf

′′(Xs) +

∫
|x|≤1

(f(Xs + ηs(x))− f(Xs)− ηs(x)f ′(Xs))ν(dx)

)
dt

+

∫ t

0

f ′(Xs)C
1/2
s dWs +

∫ t

0

∫
|x|≤1

(f(Xs− + ηs(x))− f(Xs−) d(µX(ds, dx)− tν(x))

+

∫ t

0

∫
|x|>1

(f(Xs− + ηs(x))− f(Xs−)µX(ds, dx)

so dass sich wieder ein Lévy-Ito-Prozess ergibt.
Betrachten wir die zuvor bewiesene Lévy-Ito-Zerlegung wird sofort klar, dass

es sich um eine Verallgemeinerung handelt, bei der die Koeffizienten b, C nicht
mehr konstant sein müssen und ein Prozess η die Abschneidefunktion h ersetzt.
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Tatsächlich kann man zeigen, dass jedes Semimartingal eine Zerlegung wie in 3.27
zulässt. Dies geschieht,verbunden mit einigem technischen Aufwand, in [12]. Man
spricht dann von der Semimartingalcharakteristik (b, C, ν) (bzgl. η).

Ein bekanntes und wichtiges Resultat aus der stochastischen Analysis ist der
Martingaldarstellungssatz bzgl. eines Wiener-Prozesses, welcher z.B. zur Options-
bewertung in manchen Modellen eingesetzt wird. Ein nützliches Resultat aus der
Theorie der Lévy-Prozesse ist die folgende Verallgemeinerung, bei der die Darstel-
lung bzl. eines allgemeinen Lévy-Prozesses erfolgt.

Theorem 3.14 (Martingaldarstellung eines Lévy-Prozesses). Sei Z Rd-wertiger
Lévy-Prozess bzgl. der natürlichen Filtration von Z Ft = σ(Zs, s ≤ t). Sei M ein
Martingal bzgl. F . Dann existieren ein Rd-wertiger previsibler Prozess H und eine
previsible Funktion G : R× Ω× Rd → R mit∫ t

0

(H i
s)

2ds <∞f.s.∫ t

0

∫
|x|≤1

|G(s, x)| dsdν(x) <∞∫ t

0

∫
|x|>1

G2(s, x)dsdν(x) <∞

so dass

Mt = M0 +
d∑
i=1

∫ t

0

H i
sdW

i
s +

∫ t

0

∫
Rd
G(s, x)(µX − νX)(ds, dx) (3.29)

Ein Beweis findet sich in dem Paper [16].

4 Lévy-Prozess-Modelle in der Finanzmathema-

tik: Exponentielle Lévy-Modelle

Schon im Black-Scholes-Samuelson Modell generierte ein Lévy-Prozess die zufällige
Dynamik eines assets. Dort ist

dSt = St(µdt+ σdWt) (4.1)

⇒ St = S0 eµt−
σ2

2
t+σWt (4.2)

Wir wollen zunächst Modelle betrachten der Form St = S0 ert eXt mit Lévy-Prozess
Xt und deterministischer Zinsrate r(in diese Kategorie fallen z.B. das Black-Scholes
sowie das Merton-Modell). Alternativ könnte man statt des gewöhnlichen Exponen-
tials eXt zur Modellierung das stochastische Exponential E(X), i.e. die Lösung der
SDE dZt = Zt−dXt, Z0 = 1 benutzen. Die folgende Proposition (vgl. hierfür [26])
zeigt, dass beide Ansätze äquivalent sind. Zunächst wollen wir aber die genannte
SDE lösen.

30



Lemma 4.1. Sei X (b, C, ν)-Lévy-Prozess. Dann existiert genau ein càdlàg Prozess
Z, so dass Z Lösung der SDE

dZt = Zt−dXt, Z0 = 1

ist. Z ist gegeben durch

Zt = eXt−
1
2
Ct
∏

0≤s≤t

(1 + ∆Xs) e−∆Xs (4.3)

und wird mit E(X) bezeichnet.

Beweis. Wir definieren

Yt :=
∏

0≤s≤t

(1 + ∆Xs) e−∆Xs

und zeigen zunächst, dass dieser Ausdruck existiert und Pfade von beschränkter
Variation hat. Dazu zerlegen wir das Produkt in zwei Teilprodukte, definiert durch

Yt,1 :=
∏

0≤s≤t,|∆Xs|≤ 1
2

(1 + ∆Xs) e−∆Xs (4.4)

Yt,2 :=
∏

0≤s≤t,|∆Xs|> 1
2

(1 + ∆Xs) e−∆Xs (4.5)

Das es nur eine endliche Zahl von Sprüngen der Größenordnung > 1
2

in einem endli-
chen Zeitraum geben kann, ist Yt,2 für jedes t ein endliches Produkt, damit existiert
der Ausdruck und hat beschränkte Pfade. Wegen der Voraussetzung an die Sprung-
grössen ist Yt,1 positiv, also können wir

log Yt,1 =
∑

0≤s≤t,|∆Xs|≤ 1
2

(log(1 + ∆Xs)−∆Xs) (4.6)

bilden. Für alle nichttrivialen Summanden in der obigen Summe gilt nun die Abschätzung

0 > log(1 + ∆Xs)−∆Xs > −∆X2
s (4.7)

Diese ergibt sich aus der Reihenentwicklung log(1 + x) = x − x2

2
+ R(x), |x| ≤ 1

2

mit einem Restglied R, dass sich aus der Taylorentwicklung ergibt und für das
|R(x)| < x2

2
für x ∈ (−0.5, 0.5)\{0} gilt. Die Reihe in 4.6 ist also monoton fallend

und durch −
∑

0≤s≤t ∆X2
s nach unten beschränkt. Da X Lévy-Prozess ist, ist dieser

Ausdruck endlich, denn es ist∑
0≤s≤t

∆X2
s =

∫ t

0

∫
x2µX(ds, dx)

und mittels Lemma 3.3 für f(x) = x2 ergibt sich, dass diese Summe konvergiert falls∫ t

0

(1 ∧ x2)ν(dx) <∞
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was wiederum daraus folgt, dass ν Lévy-Maß ist. Somit ex. Y und hat Pfade von
beschränkter Variation. Jetzt können wir die Ito-Formel auf Zt = f(t,Xt, Yt) mit

f(t, x, y) := ex−
1
2
Ct y anwenden und erhalten

dZt =
−C
2

eXt−
1
2
Ct Ytdt+ eXt−

1
2
Ct Yt−dXt + eXt−

1
2
Ct Yt−dYt

+
1

2
C eXt−

1
2
Ct Ytdt+ eXt−

1
2
Ct Yt − eXt−

1
2
Ct Yt−

− eXt−
1
2
Ct Yt−∆Xt − eXt−

1
2
Ct ∆Yt

wobei wir [Xc]t = C
2

, [Y c]t = [Y c, Xc]t = 0 verwendet haben. Man beachte dabei,
dass Y reiner Sprungprozess ist und somit dYt = ∆Yt = Yt−

(
e∆Xt(1 + ∆Xt)− 1

)
.

Setzen wir dies oben ein, erhalten wir dass Z die geforderte SDE erfüllt. Um die
Eindeutigkeit zu zeigen nehmen wir an, es gebe 2 Lösungen, Z(1) und Z(2). Dann ist
auch die Differenz Z ′ := Z(1)−Z(2) Lösung der SDE mit Z ′0 = 0. Da Z ′t =

∫ t
0
Z ′s−dXs

wird Z ′ konstant 0 ab jedem t sein, für welches Z ′t = 0 ist, also erhalten wir Z
(1)
t =

Z
(2)
t für alle t ≥ 0 und damit die Eindeutigkeit.

Proposition 4.2. i) Sei X (b, C, ν)-Lévy-Prozess und Z = E(X). Ist Z > 0 f.s.

so existiert ein (̃b, C̃, ν̃)-Lévy-Prozess X̃ wobei

X̃t = log(Zt) = Xt −
Ct

2
+
∑

0≤s≤t

(log(1 + ∆Xs)−∆Xs)

C̃ = C

ν̃(A) = ν({x| log(1 + x) ∈ A}) =

∫
1A(log(1 + x))ν(dx)

b̃ = b− C

2
+

∫ (
log(1 + x)1[−1,1](log(1 + x))− x1[−1,1](x)

)
ν(dx)

ii) Sei X̃ (̃b, C̃, ν̃)-Lévy-Prozess und St = eX̃t. Dann existiert ein (b, C, ν)-Lévy-
Prozess X so dass S = E(X) wobei

Xt = X̃t +
Ct

2
+
∑

0≤s≤t

(
e∆X̃s −1−∆X̃s

)
C = C̃

ν(A) = ν̃({x| ex−1 ∈ A}) =

∫
1A(ex−1)ν̃(dx)

b = b̃+
C̃

2
+

∫
(ex−1)1[−1,1](e

x−1)− x1[[−1,1](x)ν(dx)

Beweis. i) Es ist Z > 0 f.s. äquivalent zu ∆Xs > −1 für alle s f.s. siehe Lemma 4.1,
also existiert der Term log(1+∆Xs). Nun wissen wir:

∑
0≤s≤t log(1+∆Xs)−∆Xs

konvergiert und ist von endlicher Variation, vgl. dazu den Beweis von Lemma
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4.1. Da X̃ sich aus X durch Änderung der Drift und der Sprünge ergibt, ist X̃
Lévy-Prozess mit Gauss-Anteil C̃ = C. Da ∆X̃s = log(1 + ∆Xs) folgern wir

µX̃([0, t]× A) =
∑

0≤s≤t

1A(∆X̃) =
∑

0≤s≤t

1A(log(1 + ∆Xs))

=

∫
[0,t]×R

1A(log(1 + x))µX(ds, dx)

und

ν̃(A) =

∫
1A(log(1 + x))ν(dx)

Wir setzen in X̃t = log(Zt) für X̃t und Zt die jeweilige Lévy-Ito Zerlegung ein
und erhalten so die Identität

b̃t− bt+
Ct

2
+

∫
[0,t]×[−1,1]

xµX̃(ds, dx) +

∫
[0,t]×{|x|>1}

xµX(ds, dx) (4.8)

−
∫

[0,t]×[−1,1]

xµ(X)(ds, dx)−
∫

[0,t]×{|x|>1}
xµX(ds, dx) (4.9)

−
∑

0≤s≤t

(log(1 + ∆Xs)−∆Xs) = 0 (4.10)

Weil ∫
[0,t]×[−1,1]

x(µX̃(ds, dx)− µX(ds, dx))

=
∑

0≤s≤t

(∆Xs1[−1,1](∆Xs)− log(1 + ∆Xs)1[−1,1](log(1 + ∆Xs)))

konvergiert können wir in Gleichung (4.8) Sprung- und Driftterme separieren.
Für den Driftteil ergibt sich

b̃− b+
C

2
−
∫

[−1,1]

x(ν̃ − ν)(dx) = 0

Mittels einer Anwendung des Transformationssatzes (siehe etwa [1], Kor. 13.3)

folgt b̃, denn

b̃ = b− C

2
+

∫
[−1,1]

x(ν̃ − ν)(dx)

= b− C

2
+

∫
[−1,1]

log(1 + x)1[−1,1](log(1 + x))− x1[−1,1]dν(x)

ii) Es ist ∆St = St−(exp(∆X̃t) − 1). Da für einen Lévy-Prozess X mit S = E(X)

dSt = St−dXt gilt, ist ∆St = St−∆Xt und somit ∆Xt = exp(∆X̃t) − 1. Damit
stimmt obige Form für ν. Insbesondere ist ∆Xt > −1 fast sicher. Man rechnet
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einfach nach, dass das charakteristische Tripel von log E(X) dem von X̃ nur
dann entspricht, wenn X obige Charakteristik hat. Anders ausgedrückt heisst
dies, zu zeigen dass die Charakteristik von X̃ = logS der von log E(X)t =
Xt − 1

2
Ct
∏

0≤s≤t(1 + ∆Xs) e−∆Xs entspricht, was sich sofort aus der Definition
von X ergibt. Mit dem vorangegangenen Lemma folgt dann die Behauptung.

Wir beenden dieses Unterkapitel mit einem Lemma und einer Proposition, die
im Zusammenhang mit exp-Lévy-Modellen nützlich sind.

Proposition 4.3. Sei Z Lévy-Prozess und η so, dass κ(η) = logE eηZ1 <∞. Dann
ist eηZt−tκ(η) ein Martingal.

Beweis.

E
(
eηZt−tκ(η) |Fs

)
= E

(
eη(Zt−Zs) eηZs e−tκ(η) |Fs

)
= eηZs E

(
eη(Zt−Zs)

)
e−tκ(η)

= eηZs e(t−s)κ(η) e−tκ(η) = eηZs−sκ(η)

Lemma 4.4. Es ist e−rt St = eXt Martingal genau dann, wenn∫
|x|≥1

ex ν(dx) <∞ und

C

2
+ b+

∫
(ex−1− x1(−1,1))ν(dx) = 0

Beweis. Aus Proposition 4.3 folgern wir, dass κ(1) = 0 zu zeigen ist. Dies ist aber
gerade die oben angegebene Bedingung.

In den folgenden beiden Unterapiteln beschäftigen wir uns mit der Frage der
Existens eines äquivalenten Martingalmaßes. Diese ist schon deshalb von entschei-
dender Bedeutung, weil wir damit die Arbitragefreiheit in einem Modell nachweisen
können.

4.1 Esscher-Transformation in exp. Lévy-Modellen

Wir wollen uns in diesem Unterkapitel einer populären Methode zum Maßwechsel
zu einem äquivalenten Martingalwechsel in exp-Lévy-Modellen widmen. Zunächst
geben wir eine Proposition von Sato ([23]) an, die wir in dieser Allgemeinheit nicht
beweisen werden.

Proposition 4.5 (Sato). Sei Z (b, C, ν)-Lévy-Prozess auf Rd bzgl. P . Seien weiter
η ∈ Rd, g : Rd → R mit ∫

Rd
(e(g(x)/2−1)2ν(dx) <∞

und sei Ut := η.Zc +
∫ t

0

∫
Rd(e

g(x)−1)d(µZ − νZ)(dx, dx). Dann ist E(U)t positives

Martingal so, dass für das durch dP̃
dP
|Ft := E(U)t definierte Maß P̃ folgendes gilt:
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1. Es ist P ∼ P̃

2. Bezüglich P̃ ist X (̃b, C̃, ν̃)-Lévy-Prozess mit

ν̃ = eg ν

C̃ = C

b̃ = b+

∫
|x|≤1

xd(ν̃ − ν)(dx) + Cη

Der folgende Spezialfall lässt sich vergleichsweise einfach beweisen und ist in vie-
len Fällen vollkommen ausreichend, um zu einem risikoneutralen W-Maß zu kom-
men.

Definition+Theorem 4.6. Sei X d-dimensionaler Lévy-Prozess mit Charakteri-
stik (b, C, ν) und E eθ.Xt < ∞ für alle t für ein θ ∈ Rd. Dann ist bezüglich des
Esscher-Maßes Pθ, definiert durch

dPθ
dP
|Ft =

eθ.Xt

E eθ.Xt
=: Lt (4.11)

X weiterhin Lévy-Prozess mit Charakteristik

bθ = b+
1

2
(C + CT )θ +

∫
x(eθ.x−1)1[−1,1](x)ν(dx)

Cθ = C

νθ = eθ.x ν(dx)

Beweis. Es sei ζu die analytische Transformierte von Xu, wo diese existiert, d.h.
ζu(z) = E ezXu für zulässige z ∈ C. Lt ist tatsächlich Martingal bzgl. P , denn nach
Wahl von θ ist Lt L1-Prozess und es gilt vermöge der PIID:

E
(

eθ.Xt

E eθ.Xt

∣∣Fs) = E
(
eθ.(Xt−Xs) eθ.Xs

∣∣Fs) (E eθ.Xt)−1

= eθ.Xs E(eθ.(Xt−Xs))ζt(θ)
−1

= eθ.Xs ζt−s(θ)ζt(θ)
−1

= eθ.Xs ζt(θ)ζs(θ)
−1ζt(θ)

−1 = Ls

Dass die Zuwächse unabhängig und identisch verteilt bzgl. Pθ sind, ergibt sich
aus der Bayes-Formel:

EPθ(e
iu.(Xt−Xs)

∣∣Fs)
= EP (LtL

−1
s eiu.(Xt−Xs)

∣∣Fs)
= EP (eθ.(Xt−Xs) eiu.(Xt−Xs)

∣∣Fs) (E eθ.Xt
)−1 E eθ.Xs

= ζt−s(θ + iu)
(
E eθ.Xt

)−1 E eθ.Xs

Die Charakteristik bzgl. Pθ ergibt sich aus der letzten Gleichung mit s = 0.
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Theorem 4.7. Sei St = ert+Xt Preisprozess eines assets in einem Modell mit Zins-
satz r und sei Xt Lévy-Prozess. Dann ist die Esscher-Transformation Lt = Lt(θ)
Dichteprozess eines äquivalenten Martingalmaßes P ∗ = Pθ genau dann, wenn θ
Lösung von ζ(θ)− ζ(θ + 1) = 0 ist.

Beweis. Es ist eXt Martingal bzgl. eines äMM genau dann wenn eXt Lt P -Martingal
ist.

Da nach Theorem 4.6 Xt auch bzgl. Pθ Lévy-Prozess ist, ergibt eine Rechnung
analog zu oben (mit ζt,θ als a.T. von Xt bzgl. Pθ)

EPθ(e
Xt
∣∣Fs) = eXs ζt−s,θ(1) (4.12)

Also ist eXt Martingal genau dann, wenn ζt−s,θ(1) = ζ1,θ(1)t−s = 1 für alle s ≤ t; das
ist erfüllt gdw. ζ1,θ(1) = 1. Nun ist dies wegen

ζ1,θ(1) = EPθ eX1 = EP (eX1 eθX1 ζ1(θ)−1) (4.13)

= EP (e(θ+1)X1)ζ1(θ)−1 =
ζ1(θ + 1)

ζ1(θ)
(4.14)

äquivalent zur zu zeigenden Aussage.

4.2 Arbitragefreiheit der Exponentiellen Lévy-Modelle

Für Finanazmarktmodelle ist der Begriff der Arbitragefreiheit entscheidend; diese
ist gegeben, wenn ein äMM existiert. Im obigen Unterkapitel haben wir bereits ein
etwas unhandliches Kriterium für die Existenz eines solchen äMM kennengelernt
(vgl. Theorem 4.7). Wir können jedoch schon unter sehr schwachen Voraussetzun-
gen zeigen, dass exponentielle Lévy-Modelle arbitragefrei sind. Offenbar ist dafür
erforderlich, dass der Prozess X nicht monoton wachsend oder fallend ist (es sei
denn, X ist schon konstant 0), denn andernfalls bestünden durch long bzw. short
Positionen im Finanzgut S Arbitragemöglichkeiten. In diesem Unterkapitel werden
wir zeigen, dass diese Bedingung bereits ausreichend ist für die Arbitragefreiheit
eines Modells.
Dazu werden wir ein entsprechendes Theorem zunächst für Modelle beweisen, in
denen S stochastisches Exponential,d.h. dSt = St−(rdt + dXt)), ist und dieses Er-
gebnis dann auf das gewöhnliche exponentielle Modell übertragen. Wir beschränken
uns im Folgenden auf 1-dimensionale Modelle; im mehrdimensionalen ist der Beweis
erheblich aufwendiger (vgl. [26]).

Theorem 4.8 (Arbitragefreiheit in stochastischen Exponential Modellen). Sei S
Lösung von dSt = St−(rdt + dXt), wobei X (b, C, ν)-Lévy-Prozess im Zeitintervall
[0, T ] sei bzgl. eines filtrierten W-Raums (Ω, (Ft)t≥0, P ). Dann sind äquivalent:

1. Es existiert P ∗ ∼ P so dass X bzgl. P ∗ Lévy-Prozess und Martingal ist (damit
ist insbesondere e−rt St Martingal bzgl. P ∗)

2. Es ist X ≡ 0 oder X ist weder monoton wachsend noch monoton fallend P -f.s.
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3. Es gilt eine der folgenden Bedingungen

i) C > 0

ii) C = 0 und
∫
|x|≤1
|x| dν(x) =∞

iii) C = 0,
∫
|x|≤1
|x| dν(x) < ∞ und es kann positive und negtive Sprünge

mit positiver Wahrscheinlichkeit geben oder Drift und Sprünge haben
unterschiedliche Vorzeichen, d.h.

ν((−∞, 0)) > 0, ν((0,∞)) > 0

oder

ν((−∞, 0)) > 0, b′ > 0

oder

ν((0,∞)) > 0, b′ < 0

oder

ν = 0, b′ = 0

mit b′ := b−
∫
x≤1
|x| dν(x)

Beweis. Ohne Einschränkung sei X 6≡ 0.
2. ⇔ 3. Dies folgt aus Proposition 3.12 und einer entsprechenden Aussage für mo-
noton fallende Lévy-Prozesse.
1. ⇒ 2. Diese Folgerung haben wir oben bereits mit einem Arbitrageargument
erläutert. Ist X f.s. monoton bzgl. P , so auch bzgl. dem äquivalenten Maß P ∗; da X
Martingal bzgl. P ∗ ist, ist X somit f.s. konstant, als Lévy-Prozess also konstant 0.
3.⇒ 1. Wir gehen so vor, dass wir 2 Maßwechsel durchführen; der zweite wird eine
Esscher-Transformation sein. Zunächst sei P das äquivalente Maß, welches durch

dP

dP
|FT = E

(∫ ·
0

∫ (
e−x

2 −1
)

(µ− ν)(ds, dx)

)
T

gegeben ist. Bezüglich P ist X (b, C, ν)Lévy-Prozess mit ν := e−x
2
ν, b := b +∫

|x|≤1
x(e−x

2 −1)ν(dx) (vgl. die Prop. von Sato). Betrachte die konvexe reellwertige

Funktion g(λ) := EP
(
eλX1

)
. Finden wir ein λ∗, welches g minimiert, so ist (mit-

tels majorisierter Konvergenz) EP
(
X1 eλ

∗X1
)

= 0 notwendiges Kriterium für die
Minimalstelle. Betrachten wir dann die Esscher-Transformation

dP ∗

dP
|Ft :=

eλ
∗Xt

E eλ∗Xt

so ist bzgl. P ∗ X ein Lévy-Prozess mit E∗X1 = 0 und damit ein P ∗-Martingal. Wir
müssen allerdings noch zeigen, dass so ein λ∗ existiert. Aufgrund der Konvexität von
g reicht zu zeigen, dass g(λ) −→

λ→∞
∞ oder f(λ) := log(g(λ)) = C

2
λ2+bλ+

∫
R(eλx−1−

λx1|x|≤1) e−x
2
dν(x) −→

λ→∞
∞. Gilt i), so ist f ′′(λ) ≥ C > 0 und f(λ) −→

λ→∞
∞ folgt.

Ist ii) gegeben, so ist f ′(λ) = b +
∫
|x|>1

x e−x
2
ν(dx) +

∫
x(eλx−1) e−x

2
dν(x) damit

limλ→±∞ f
′(λ) = ±∞ also f(λ) −→

λ→∞
∞. Ist schließlich iii) erfüllt, so ist f ′(λ) =

b+
∫
R x eλx e−x

2
dν(x). Jede der obigen oder -Bedingungen reicht aus, damit f ′ nach

unten hin beschränkt ist und damit die Behauptung folgt.
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Korollar 4.9. Sei X (b, C, ν)-Lévy-Prozess auf [0, T ]. Dann sind äquivalent:

1. Es existiert ein W-Maß P ∗ ∼ P so dass X bzgl. P ∗ Lévy-Prozess ist und eX

Martingal.

2. Es ist X ≡ 0 oder X ist bzgl. P ∗ nicht f.s. monoton

3. Es gilt eine der folgenden drei Bedingungen

(a) σ > 0

(b) σ = 0 und
∫
|x|≤1
|x| ν(dx) =∞ und

(c) σ = 0 ,
∫
|x|≤1
|x| ν(dx) <∞ und

ν((−∞, 0)) > 0, ν((0,∞)) > 0

oder

ν((−∞, 0)) > 0, b′ > 0

oder

ν((0,∞)) > 0, b′ < 0

oder

ν = 0, b′ = 0

Beweis. Wir zeigen: log(E(X)) ist monoton gdw. X monoton ist. Die Behauptung
folgt dann sofort aus obigem Theorem. Der Prozess E(X) ist von endlicher Variation
gdw. dies für X zutrifft; in diesem Fall hat E(X) die Form

E(X) = eb
′t
∏
s≤t

(1 + ∆Xs) (4.15)

und damit log(E(X)) = b′t +
∑

s≤t log(1 + ∆Xs); dieser Prozess ist monoton gdw.
X monoton ist.

Sei nun eine europäische Option gegeben, d.h. ein asset mit Auszahlung h(ST )
zu einem fest vorgegebenem Zeitpunkt T ; h ist hierbei die (messbare) Auszahlungs-
funktion. Wir gehen von der Existenz eines äMM P ∗ = Pθ aus wie in 4.7 und fordern
ausserdem die P ∗-Integrierbarkeit von h(ST ). Für den Werteprozess Vt dieser Anlage
gilt bekanntermaßen Vt = ert EP ∗(e−rT h(ST )

∣∣Ft). Wir erhalten

Vt = Eθ
(
e−r(T−t) h(ST )

∣∣Ft)
=

Bayes
e−r(T−t) E

(
h(ST )

LT
Lt

∣∣Ft)
= e−r(T−t) E

(
h(
ST
St
St)

LT
Lt

∣∣Ft)
= e−r(T−t) E

((
h(St er(T−t) e(ZT−Zt)

) eθ(ZT−Zt)

(E eθZ1)T−t
∣∣Ft)

=
ZPIID

e−r(T−t) E
(
h
(
u er(T−t)+ZT−t

) eθZT−t

E eθZT−t

) ∣∣∣
St=u
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Wir betrachten im folgenden Unterkapitel noch die Möglichkeit, mittels eines
Differentialgleichungsansatzes Optionen in exp-Lévy-Modellen zu bewerten.

4.3 Integro-Differential Equation Ansatz zur Bestimmung
des Wertes einer europäischen Option

Sei nun Yt := log
(
er(T−t) St

)
und p(y, t) := e−r(T−t) Eθ(h(ey+XT−t); ausserdem sei die

Esscher-Transformation Pθ äquivalentes Martingal-Maß. Dann ist Vt = p(Yt, t) und
wir können- unter Regularitätsannahmen-hoffen, mittels Ito-Formel eine IPDE für
die Derivatbestimmung zu erhalten. Sei also p ∈ C(2,1) und sei R Träger von Xt. Es
ist Yt = log(S0) + rT + Xt. Nach Annahme ist der abdiskontierte Prozess (e−rt Vt)
Pθ-Martingal. Ito-Formel liefert:

d(e−rt Vt) = −r e−rt Vtdt+ e−rt dVt

= −r e−rt Vtdt+ e−rt
(
∂tp(Yt−, t)dt+ ∂yp(Yt−, t)dYt +

1

2
∂2
yp(Yt−, t)d 〈Y c, Y c〉t

+

∫
R

(p(Yt− + u, t)− p(Yt−, t)u− ∂yp(Yt−, t)u))µY (du, dt)

)
wobei µY Zufallssprungmaß von Y ist. Nun gilt offenbar

∆X = ∆Y

µX = µY

dX = dY

d〈Y c, Y c〉 = d〈Xc, Xc〉

Damit erhalten wir

d(e−rt Vt) = −r e−rt Vtdt

+ e−rt
(
∂tp(Yt−, t)dt+ ∂yp(Yt−, t)dZt +

1

2
∂2
yp(Yt−, t)cdt

+

∫
R

(
p(Yt−+ u, t)− p(Yt−, t)− ∂xp(Yt−, t)u

)
µY (du, dt)

)
Wir können den obigen Term in Martingal- und FV-Anteil aufteilen. In differentieller
Schreibweise ist der previsible FV-Anteil gegeben durch

− r e−rt p(Yt−, t)dt+ e−rt
(
∂tp(Yt−, t)dt+ ∂yp(Yt−, t)bdt+

1

2
∂2
yp(Yt−, t)cdt

+

∫
R

(
p(Yt− + u, t)− p(Yt−, t)− ∂yp(Yt−, t)u

)
νX(du, dt)

)
wobei νX(du, dt) = ν(du)dtKompensator von µX ist. Da der abdiskontierte Preispro-
zess V ∗t = e−rt Vt Martingal ist, muss dieser Anteil verschwinden. Damit folgt die
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Integro-Partielle Gleichung

rp(y, t) = ∂tp(y, t) + ∂yp(y, t)b+
1

2
∂2
yp(y, t)c

+

∫
R

(
p(y + u, t)− p(y, t)− ∂yp(y, t)u

)
ν(du)

h(ey) = p(y, T ) f.a. x ∈ R, t ∈ (0, T )

5 Berechnungsmethode mittels Fouriertransforma-

tion (nach Carr/Madan)

Bevor wir uns etwas komplexeren Modellen widmen, wollen wir noch kurz auf eine
populäre Methode zur Bewertung (und numerischen Berechnung) von europäischen
Call/Put-Optionen in exp-Lévy-Modellen eingehen. Die Relevanz solcher Bewertun-
gen ergibt sich sofort aus der Notwendigkeit der Kalibrierung von Modellen, und
dies geschieht am einfachsten durch Anpassung der Modellparameter an am Markt
ablesbare Preise wie etwa für europ. Optionen. Ein hilfreicher Ansatzpunkt ist es,
mit Fouriertransformierten zu arbeiten, da diese durch die Lévy-Khintchine-Formel
bereits gegeben sind. Sei S0 = 1. Wir wollen eine europäische Call-Option mit ma-
turity T bewerten, also haben wir die Auszahlung (erT+XT −K)+ risikoneutral zu
bewerten. Wir benötigen im Folgenden eine Zusatzannahme an die Momente von
XT ; ist gT die risikoneutrale Dichte von XT so gelte

(∗) ∃α > 0 :

∫ ∞
−∞

gT (s) e(1+α)s ds <∞ (5.1)

Wir würden nun für die Callpreise C(k) := e−rT E∗
((

erT+XT − ek
)+
)

4zunächst

die Fouriertransformierte in k bestimmen und dann mit Fourierinversion arbeiten;
da aber C(k) −→

k→−∞
E∗ erT+XT = 1 ist C(k) nicht integrierbar, daher betrachten

wir die kompensierte Funktion Z(k) := C(k) − (1 − ek−rT )+ und deren Fourier-
transformierte Z(u) :=

∫∞
−∞ eiuk Z(k)dk. Da e−rT erT+XT bzgl. P ∗ Martingal ist, gilt

E∗
(
e−rT

(
erT+XT − ek

)
1k≤rT

)
= (1 − ek−rT )+ daher können wir den Kompensati-

onsterm in das Integral hineinziehen und haben

Z(k) = e−rT
∫ ∞
−∞

gT (x)
(
erT+x− ek

)
1{rT<k≤rT+x}dx (5.2)

Wir verwenden diesen Ausdruck und vertauschen die Reihenfolge der Integration
(hierfür benötigen wir (∗)), um

Z(u) = e−rT
∫ ∞
−∞

∫ ∞
−∞

eiuk gT (x)
(
erT+x− ek

)
1{rT<k≤rT+x}dxdk

= e−rT
∫ ∞
−∞

gT (x)

∫ x+rT

rT

eiuk
(
erT+x− ek

)
dkdx

=

∫ ∞
−∞

gT (x)

(
eiurT (1− ex)

iu+ 1
− ex+iurT

iu(iu+ 1)
+

e(iu+1)x+iurT

iu(iu+ 1)

)
dx

4Wir arbeiten mit k := log(K), weil das in den Rechnungen Platz spart
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zu erhalten. Die ersten beiden Terme in der obigen Klammer ergeben sich sofort
wegen

∫∞
−∞ gT (x) ex dx = 1 (da eXT Martingal) zu 0 bzw. − eiurT

iu(iu+1)
. Für den dritten

Term ist

∫ ∞
−∞

gT (x)
e(iu+1)x+iurT

iu(iu+ 1)
dx =

eiurT

(iu(iu+ 1))

∫ ∞
−∞

gT (x) e(iu+1)x dx

=
eiurT

(iu(iu+ 1))
ζXT (iu+ 1)

=
eiurT

(iu(iu+ 1))
φXT (u− i)

also haben wir insgesamt

Z(u) = eiurT φXT (u− i)− 1

iu(iu+ 1)

Mittels Fourierinversion (möglich wegen (∗)) ergibt sich

Z(k) =
1

2π

∫ ∞
−∞

e− iuk Z(u)du

Dieser Wert lässt sich mittels numerischer Verfahren näherungsweise ermitteln.

6 Zwischenfazit und Stochastic Volatility Modelle

Bisher haben wir uns vor allem mit exponentiellen Lévy-Modellen der Form St =
ert eZt beschäftigt. Diese sind zwar mathematisch sehr gut handhabbar, allerdings
können sie nicht am Markt beobachtbare Effekte wie Volatility Clustering abbilden.
Dies ergibt sich sofort aus der zeitlichen Homogenität von Prozessen mit unabhängi-
gen und identisch verteilten Zuwächsen. Wir wollen daher im Folgenden Modelle
betrachten, die diese empirisch beobachtbare Inhomogenität einbeziehen können.
Diese sind die sogenannten Stochastic Volatility Modelle, bei denen die Volatilität
des Aktienkurses selbst surch eine SDE gegeben ist. Ein sehr bekanntes Modell in
dieser Kategorie, das Heston-Modell, ist gegeben durch die SDE

dSt = St(µdt+ σtdW
S
t )

dσ2
t = ξ(η − σ2

t )dt+ θσdW σ
t〈

W S
t ,W

σ
t

〉
= ρdt

wobei W S,W σ Wiener Prozesse seien. Im Vergleich zum klassischen BS-Modell ist
hier also eine nichtdeterministische Volatilität σt in Form eines Cox-Ingersoll-Ross
Prozesses aufgetaucht. Wir wenden uns aber stattdessen gleich dem Modell von
Bates zu; dieses vereint Hestons und Mertons Ansätze in einem einzigen SV-Modell,
gegeben durch

dSt = St−
(
µdt+ σtdW

S
t + dZt

)
dσ2

t = ξ(η − σ2
t )dt+ θσdW σ

t

〈W σ,W S〉t = ρdt
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wobei Z von W σ,WX unabhäniger zusammengesetzter Poisson-Prozess mit Inten-
sität λ ist und lognormalverteilten Sprünggrößen, genauer sei für die Sprunggrößen-
variable K

log(1 +K) ∼ N
(

log(1 + k)− 1

2
δ2, δ2

)
für Parameter δ und k. Im risikoneutralen Fall ist der Parameter µ festgelegt durch
µ = r − λk. Wir können natürlich auch hier wieder das Modell in der Form St =
S0 eXt aufstellen; die Dynamik von Xt ist dann gegeben durch

dXt =

(
r − λk − 1

2
σ2
t

)
dt+ σtdW

S
t + dZ̃t

wobei Z̃ zusammengesetzter Poisson-Prozess mit Intensität λ und Gausschen Sprung-
größen ist (das geht so, wie wir es oben schon beim Merton-Modell getan haben).
Wir können die charakteristische Funktion von X berechnen (um z.B. Optionen zu
bewerten), indem wir getrennt die char. Funktionen des stetigen und des Sprungan-
teils berechnen; da diese unabhängig sind, lässt sich die Gesamtfunktion anschließend
multiplikativ aus diesen beiden zusammensetzen. Die c.F. der Sprungkomponente
ergibt sich einfach als

φJt (u) = exp
(
tλ
(

e−δ
2u2/2+i(log(1+k)− 1

2
δ2)u−1

))
(6.1)

Für die c.F. von Xc müssen wir mehr arbeiten. Wir werden φc als Lösung ei-
ner bestimmten DGL erhalte. Sei dafür f(x, u, t) := E

(
eiuXc

T |Xc
t = x, σ2

t = u
)

und
Mt := f(Xc

t , σ
2, t). Eine Anwendung von Itos Formel liefert

dMt =

(
1

2
σ2
t

∂2f

∂x2
+ ρθσ2

t

∂2f

∂x∂u
+

1

2
θ2σ2

t

∂2f

∂u2
+

(
r − λk − σ2

t

2

)
∂f

∂x
+ ξ(η − σ2

t )
∂f

∂u
+
∂f

∂t

)
dt

+
√
u
∂f

∂x
dW S

t + θ
√
u
∂f

∂u
dW σ

Da nun M Martingal ist, muss der Driftteil verschwinden. Wir erhalten eine DGL

1

2
u
∂2f

∂x2
+ ρθu

∂2f

∂x∂u
+

1

2
θ2u

∂2f

∂u2
+
(
r − λk − u

2

) ∂f
∂x

+ ξ(η − σ2
t )
∂f

∂u
+
∂f

∂t
= 0

mit Endbedingung f(x, u, T ) = eiux. Wir vermuten eine Lösung der Gestalt

f(x, u, t) = exp (A(T − t) + rB(T − t) + iux)

mit Funktionen A,B im Zeitparameter t. Setzen wir diese Gestalt in die obige DGL
ein, erhalten wir das Differentialgleichungssystem

B′(s) =
1

2
θ2B2(s) + (i ρθuξ)B(s)− u2 + iu

2
(6.2)

A′(s) = ξηB(s) + iu(r − λk) (6.3)
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mit A(0) = B(0) = 0. Dieses lässt sich lösen durch

B(s) = − u2 + iu

γ coth(γs
2

) + ξ − i ρθu

A(s) = ius(r − λk) +
ξηs(ξ − i ρθu)

θ2
− 2

ξη

θ2
log

(
cosh

(γs
2

)
+
ξ − i ρθu

γ
sinh

(γs
2

))
γ : =

√
θ2(u2 + iu) + (ξ − i ρθu)2

Also erhalten wir die c.F. von X durch φ = φJ · φc.
Die Bewertung von Optionen in diesem Modell ist aufwendiger als etwa im BS- oder
Merton-Modell. Am einfachsten Durchzuführen ist ein Ansatz wie im vorangegan-
genen Kapitel mittels der Fouriertransformiertenmethode.

7 Das Modell von Barndorff-Nielsen/Shephard

Wir wollen uns in diesen abschließenden Kapiteln noch einem weiteren Modell wid-
men, welches uns zur finanzmathematischen Modellierung besonders geeignet er-
scheint. Es verbindet mehrere wünschenswerte Eigenschaften und ist hervorragend
dazu geeignet, den im ersten Kapitel gemachten Krititpunkten am BS-Modell zu
begegnen.
Im klassischen Black-Scholes Modell liegt die stoch. DGL

dSt = St(µdt+ σdWt)

vor mit konstanter Volatilität σ. Im BNS-Modell hingegen ist die Volatilität stocha-
stisch (wie in den Modellen von Bates und Heston), gegeben durch eine SDE

dσ2
t = −λσ2

t dt+ dZλt (7.1)

wobei Z der sogenannte background driving Lévy process (BDLP, wir sprechen auch
vom treibenden Lévy-Prozess) ist und im folgendem als Subordinator (d.h. ein Lévy-
Prozess mit nichtnegativen Zuwächsen) angenommen wird. Dabei seien der Wiener-
Prozess W und der BDLP Z stochastisch unabhängig und die zugrundeliegende
Filtration die von (Wt, Zλt)t≥0 erzeugte. Mithilfe der Ito-Formel ergibt sich für Xt =
log(St) nach Hinzufügen des Terms ρdZλt

dXt = (µ− 1

2
σ2
t )dt+ σtdWt + ρdZλt

ρ sei nichtpositiv und steht für den sogenannten leverage-effect ; dieser trägt der
Beobachtung Rechnung, dass fallende Kurse oft mit steigender Volatilität am Markt
verbunden sind. BNS betrachten schließlich etwas allgemeiner

dXt = (µ+ βσ2
t )dt+ σtdWt + ρdZλt

mit β ∈ R. Mittels Ito-Formel ergibt sich auch sofort die Dynamik von St = eXt

durch

dSt = St−

(
btdt+ σtdWt + d

(∑
0<s≤t

(eρ∆Zλs −1)− λκ(ρ)t

))

bt := µ+ λκ(ρ) +

(
β +

1

2

)
σ2
t
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Der Prozess σt ist ein nicht-gaußscher Ornstein-Uhlenbeck Prozess mit σ2
0 > 0.

Wir geben im folgenden Unterkapitel einen Existenzssatz für diese Art von Prozess
an und zeigen die Verbindung zwischen diesen Prozessen und der Eigenschaft der
Selbstteilbarkeit. Wir werden im Folgenden 3 zusätzliche Annahmen an den BDLP
Z stellen; diese werden uns erlauben, mit der Kumulante von Z zu arbeiten.

Zusatzannahmen an den Subordinator Z

1) Z hat keinen deterministischen Drift und νZ hat Lebesgue-Dichte w, so dass

κ(θ) =

∫
R+

(eθx−1)w(x)dx (7.2)

2) 0 < θ̂ := sup{θ ∈ R : κ(θ) <∞}

3) limθ→θ̂ κ(θ) =∞

7.1 Selbstteilbare Verteilungen und OU-Prozesse

Definition 7.1. Eine Verteilung Q heißt selbstteilbar (engl. selfdecomposable), wenn
für die Fourier-Transformierte φ dieser Verteilung gilt: Für alle d ∈ (0, 1) existiert
eine Fouriertransformierte φd einer Verteilung Qd, so dass φ(u) = φd(u) ·φ(du). Eine
Zufallsgröße X mit Verteilung Q nennen wir entsprechend selbstteilbar, wenn Q dies
ist.

Selbstteilbare Verteilungen sind unendlich teilbar. Genauer ist eine unendlich
teilbare Verteilung P mit Lévy-Maß ν genau dann selbstteilbar, wenn ν(dx) =
u(x)dx für eine Funktion u so, dass |x|u(x) monoton wachsend auf (−∞, 0) ist
und monoton fallend auf (0,∞) ist ( vgl.[23], Corollary 15.11).

Theorem 7.2 (Darstellungssatz für selbstteilbare Zufallsvariablen). Eine Zufalls-
variable X ist selbstteilbar genau dann, wenn eine Darstellung

X =

∫ ∞
0

e−t dZt (7.3)

mit einem Lévy-Prozess Z existiert. Für die Lévy-Maße µ und ν von X bzw. Z gilt
dann die Identität

µ(dx) =

∫ ∞
0

ν(et dx)dt (7.4)

Beweis. Vergleiche etwa [13] oder [23], Kapitel 17.

Lemma 7.3. Für die Kumulanten von X bzw. Z in Theorem 7.2 gelten die Bezie-
hungen

κX(u) =

∫ ∞
0

κZ(e−s u)ds =

∫ u

0

κZ(y)y−1dy (7.5)

κZ(u) = u
∂κX(u)

∂u
(7.6)
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Beweis. Die Aussage lässt sich mithilfe der in Unterkapitel 9.1 aufgestellten Berech-
nungsformel sowie dem obigen Darstellungssatz leicht beweisen.

κX(u) = logE euX
Thm. 7.2

= logE eu
∫∞
0 e−t dZt

= log e
∫∞
0 κZ(e−t u)dt

Lemma 9.1
=

+mon.Konv.

∫ ∞
0

κZ(e−t u)dt

V ariablenwechsel
=

∫ u

0

κZ(y)y−1dt

Die zweite Aussage ergibt sich aus der ersten sofort durch Anwenden des Hauptsatzes
der Differential- und Integralrechnung auf den Term ∂

∂u

∫ u
0
κZ(y)y−1dt.

Theorem 7.4. Sei φ die charakteristische Funktion einer Zufallsvariablen Y . Ist Y
selbstteilbar, so existiert für alle λ > 0 ein stationärer stochastischer Prozess (Yt)t≥0

und ein Lévy-Prozess (Zt)t≥0 der stochastisch unabhängig von Y0 ist, so dass

Yt
d
= Y

Yt = e−λt Y0 +

∫ t

0

e−λ(t−s) dZλs

Umgekehrt gilt: Ist Yt stationärer Prozess und Z Lévy-Prozess, s.u. von Y0, so dass
Y, Z obige Gleichung für alle λ > 0 erfüllt, so ist Yt selbstteilbar.

Beweis. Siehe etwa [23], Kapitel 17.

In unserem Fall ist σ2
t = Yt; es sei D die Verteilung der Zufallsgröße Y in obigem

Theorem. σ2 wird dann als D-OU Prozess bezeichnet; nimmt man stattdessen Z1 ∼
D spricht man von einem OU-D Prozess. Beachte: Die Verteilung von σ2 hängt nicht
von λ ab. Die Lösung der SDE (7.1), gegeben durch

σ2
t = exp(−λt)

(
X0 +

∫ t

0

exp(λs)dZλs

)
(7.7)

hat nach Integration die Form

σ2,int
t :=

∫ t

0

σ2
sds = λ−1(1− e−λt)σ2

0 +

∫ t

0

λ−1(1− e−λ(t−s))dZλs (7.8)

Beispiele für selbstteilbare Verteilungen sind obige IG und Gamma Verteilung, die
beide zur Klasse der GIG (Generalized Inverse Gaussian) gehören.

7.2 2 Spezialfälle: Gamma-OU und IG-OU Prozesse

Wie oben angekündigt spielen diese Prozesse für uns eine besondere Rolle. Für
D = IG(a, b) sei κD(θ) = logE(eθD) und κ(θ) := θ dκ

D

dθ
(θ) ist die Kumulante von

Z1. Wegen κIG(θ) = ab − b(a2 − 2θ)1/2 ergibt sich κ(θ) = θb(a2 − 2θ)−1/2 und

w(x) = a
2
√

2π
x−3/2(1 + a2x) e−

1
2
a2x.

Ist D = Γ(a, b) so ergibt sich κ(θ) = aθ
b−θ und w(x) = ab e−bx. In beiden Fällen sind

die obigen Zusatzannahmen erfüllt.
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8 Strukturerhaltende äMMs im BNS-Modell

Das BNS-Modell ist arbitragefrei, aber wie die SV-Modelle, die wir zuvor kennenge-
lernt haben, unvollständig. Es existieren nämlich (im Allgemeinen) sehr viele äquiva-
lente Martingalmaße im BNS-Modell. Um Derivate (risikoneutral) zu bewerten, wird
wie gewohnt ein Maßwechsel zu einem äquivalenten Martingalmaß durchgeführt. Al-
lerdings werden nicht alle äMM’e als geeignete Maßwechsel betrachtet; die Struktur
des Prozesses soll erhalten bleiben, insbesondere soll Zλt unter einem äMM P ∗ Lévy-
Prozess bleiben. Dies wird in diesem Kapitel aufgeführt. Wir geben dabei das Paper
von Nicolato/Vernados ([20]) in weiten Teilen wieder. An einigen Stellen werden
Resultate aus [12] verwendet, insbesondere eine allgemeine Version des Satzes von
Girsanov für Semimartingale.

Sei im Folgenden M die Menge der äMM im BNS-Modell.

Theorem 8.1. Sei P ∗ ∈M. Dann gilt

Lt :=
dP ∗

dP
|Ft = E(H ·W + (Y − 1) ∗ (µZ − νZ))t

Wobei H previsibler Prozess sei, Y = Y (ω, t, x) strikt positive previsible Funktion
mit ∫ t

0

∫
R+

(
√
Y (s, x)− 1)2w(x)dsdx <∞ P -f.s.

und µZ bzw. νZ das Zufallsmaß der Sprünge von Z bzw. dessen Kompensator seien.
Überdies gilt

µ+

(
β +

1

2

)
σ2
t + σtHt + λ

∫
R+

Y (t, x)(eρx−1)w(x)dx = r (8.1)

P ⊗ dt-f.s.

Beweisskizze. Mittels Standardresultaten aus der stochastischen Analysis wissen
wir, dass Lt = E(M)t gilt für ein Martingal M . Für dieses existiert wegen des
Martingaldarstellungssatzes 3.14 eine Darstellung

H ·W + (Y − 1) ∗ (µZ − νZ)

wie gefordert. In [12], §§3, 5a wird (mittels einer Version des Satzes von Girsanov
für Semimartingale) gezeigt, dass W ∗

t := Wt −
∫ t

0
Hsds bzgl. P ∗ Wiener Prozess ist

und
νZ∗ := νZP ∗(ω, dt, dx) = (Y ∗ ν)(ω, dt, x) = λY (ω, t, x)w(x)dxdt (8.2)

Kompensator des Sprungmaßes µZ bzgl. P ∗. Mit der Ito-Formel ergibt sich bezüglich
P ∗

dSt = St−(bP
∗

t dt+ σtdW
P ∗

t + d((eρx−1) ∗ (µZ − νZ)) (8.3)

wobei

bP
∗

t = µ+ (β +
1

2
)σ2

t + σtψt + λ

∫
Y (t, x)(eρx−1)w(x)dx (8.4)

Da P ∗ äMM ist e−rt St P
∗-Martingal und damit b∗t = r.
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Beim Maßwechsel kann der unerwünschte Nebeneffekt auftreten, dass unter dem
neuen äMM Z kein Lévy-Prozess mehr ist. Daher betrachten wir die Menge Ms

der äMM, unter denen weiterhin ein BNS-Modell vorliegt. Wir charakterisieren
die Menge Ms im Folgendem durch Funktionen y : R+ → R+, die

∫
R+

(
√
y(x) −

1)2w(x)dx < ∞ erfüllen und nennen deren Gesamtheit S. Wir definieren weiter
wy(x) = y(x)w(x) für y ∈ S und κy(θ) :=

∫
R+

(eθx−1)wy(x)dx für Re(θ) < 0 (be-

achte
∫
R+

(1∧x)wy(x)dx <∞). Ausserdem halten wir fest, dass E((y−1)∗(µZ−νZ))
ein Martingal für alle y in S bildet.

Theorem 8.2. Sei y ∈ S. Dann erfüllt Ht := σ−1
t (r − µ− (β + 1

2
)σ2

t − λκy(ρ))

P

(∫ T

0

H2
sds <∞

)
= 1 (8.5)

und
Lyt = E(H ·W + (y − 1) ∗ (µZ − νZ))t , 0 ≤ t ≤ T (8.6)

ist ein Dichteprozess. Dann ist dP ∗y = LyTdP ein äMM mit Dynamik

dXt =

(
r − λκy(ρ)− 1

2
σ2
t

)
dt+ σtdW

y
t + ρdZλt (8.7)

dσ2
t = −λσ2

t dt+ dZλt (8.8)

mit Wiener Prozess W y
t := Wt −

∫ t
0
Hsds bzgl. P ∗y und Zλt ist Lévy-Prozess bzgl P ∗y .

Dabei hat Z1 Lévy-Dichte wy(x) und Kumulante κy(θ) wie oben und W y, Z sind
stochastisch unabhängig unter P ∗y . Insgesamt ist also P ∗y ∈Ms. Umgekehrt existiert
auch für alle strukturerhaltenden äMM P ∗ eine Funktion y in S so dass P ∗ und P ∗y
übereinstimmen.

Beweis. Die Integrierbarkeit von H2
s folgt aus

σ2
t ≥ σ2

0 exp(−λt) > 0 vgl. (7.7)⇒ σ−2
t ≤

1

σ2
0 exp(−λT )

∀t (8.9)

Also definiert Lyt tatsächlich ein Supermartingal. Da W,Z unabhängig sind ist ins-
besondere [H ·W, (y − 1) ∗ (µZ − νZ)] = 0. Mit Yors Formel folgt also

E(H ·W + (y − 1) ∗ (µZ − νZ))t = E(H ·W )tE((y − 1) ∗ (µZ − νZ))t = 1∀t (8.10)

somit ist Lyt sogar Martingal und damit Dichtequotientenprozess des oben definierten
P ∗y . Sei nun (by, Cy, νy) Charakteristik von Wt −

∫ t
0
Hsds + Zλt = W y

t + Zλt unter
P ∗y . Dabei nehmen wir als Abschneidefunktion h = 0, da Z als wachsender Prozess
von beschränkter Variation ist. Mit Girsanov (oder mit der Proposition 4.5, die wir
hier aufgrund der Gestalt von y verwenden dürfen) folgt

byt = 0

Cy
t = t

νy(dx, dt) = λwy(x)dxdt
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Also ist W y
t +Zλt Lévy-Prozess, W y ist Wiener Prozess, Z Lévy-Prozess mit Dichte

wy(x) ohne Drift und W y, Z sind stochastisch unabhängig unter P ∗y . Die Dyna-

mik von X unter P ∗y ist damit wie behauptet. Überdies ist der diskontierte Prozess
e−rt eXt ein Martingal. Um dies zu sehen halten wir fest, dass (H, y) die Bedingung
(8.1) nach Konstruktion erfüllt, was den diskontierten Prozess zu einem Supermar-
tingal macht. Wegen der Unabhängigkeit von W y und Z handelt es sich sogar um
ein Martingal, was diese Richtung des Beweises abschließt. Für die Rückrichtung sei
P ∈ Ms strukturerhaltendes äMM. Sei (H,Y ) das zugehörige Paar aus Theorem
8.1. Dann muss Y von der Gestalt Y (ω, t, x) = y(x) für ein y ∈ S sein, da Z unter
P Lévy-Prozess ist und somit eine entsprechende Charakteristik aufweist, also ist
P = Py.

Für IG(γ, δ) bzw. Γ(γ, δ) OU-Prozesse können äMMs so gewählt werden, dass
die IG bzw. Gamma Gestalt erhalten bleibt. Unter diesen Maßen P ∗y ist σ2 IG(γ, η)-
OU Prozess bzw. Γ(η, θ)-OU-Prozess. Die möglichen y aus dem obigen Theorem sind
dann:

MIG = {P ∗y ∈Ms|y(x) =
1 + η2x

1 + δ2x
e−

1
2

(η2−δ2)x, η ∈ R+}

MΓ = {P ∗y ∈Ms|y(x) =
ηθ

γδ
e−(η−γ)x, η, θ ∈ R+}

9 Das BNS Modell in Aktion: Preisberechnung

von Derivaten

Beispielhaft wollen wir uns mit der Anwendung des Modells von BNS zur Bewertung
(europäischer) Derivate beschäftigen. Wir nehmen dabei obige Modellparameter als
gegeben an und fordern überdies eine deterministische Zinsrate r > 0 (d.h. es exi-
stiert ein deterministisches riskless asset B mit Dynamik dBt = rBtdt). Weiter habe
der BDLP Z keine Drift und das Lévy-Maß ν habe Lebesgue-Dichte w. Dann gilt
für die Kumulante κ(u) = κν(u) := logE euZ1

κ(u) =

∫ ∞
0

(eux−1)w(x)dx (9.1)

Das zu bewertende Derivat habe maturity T mit Auszahlungsfunktion h(XT ), pt
sei ein arbitragefreier Preis in t ≤ T , also pt = E∗(e−r(T−t) h(XT )|Ft). Zu einem
strukturerhaltenden äMM P ∗ = P ∗y sei ν∗ das Levy-Maß von Z unter P ∗; dann

ν∗(dx) = y(x)w(x)dx wobei y > 0 mit
∫
R+

(
√
y(x)− 1)2w(x)dx <∞. Unter P ∗ hat

X die Dynamik

dXt = (r − λκ∗(ρ)− 1

2
σ2
t )dt+ σtdW

∗
t + ρdZλt (9.2)

wobei (W ∗
t ) Wiener Prozess bzgl. P ∗ ist und s.u. vom BDLP (Zλt) (vgl. dazu Kapitel

8).
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9.1 Transformationsansatz zur Derivatberechnung

Wir wollen nun, ähnlich wie zuvor in Kapitel 5 für exp-Lévy-Modelle, für das BNS-
Modell eine Berechnungsmethode für Derivate mittels analytischer Transformier-
ten vorstellen. Betrachte dazu die Laplace-Transformierte der Funktion h, definiert
durch

ĥ(z) :=

∫ +∞

−∞
e−zx h(x)dx (9.3)

und sei ϕ(z) := E∗(ezXT |Ft) die bedingte Laplace-Transformierte von XT .
Wir wollen diese berechnen und benutzen dafür eine hilfreiche Berechnungsformel

mit ähnlicher Aussage wie Lemma 3.3.

Lemma 9.1 (Key formula). Sei Z Subordinator mit Kumulante κ und f : R+ → C
linksseitig stetig mit Re(f) ≤ 0 bzw. Re(f) ≤ θ̂/(1 + u) für ein u > 0 wenn Z A2
erfüllt. Dann gilt

E exp

(∫ t

0

f(s)dZλs

)
= exp

(
λ

∫ t

0

κ(f(s))ds

)
(9.4)

Beweisskizze. Sei (tk)k=1,...,n Zerlegung von [0, t] mit Feinheit π. Wir verwenden die
PIID Eigenschaft von Z und die daraus resultierende Identität κt(u) = logE exp(uZt) =
κ1(U) und erhalten:

E exp

(∑
k

f(tk−1)(Zλtk − Zλtk−1
)

)
(9.5)

=
∏
k

E exp(f(tk−1)(Zλtk − Zλtk−1
)) (9.6)

=
∏
k

exp(κ(f(tk−1))λ(tk − tk−1) (9.7)

= exp

(∑
k

κ(f(tk−1)λ(tk − tk−1)

)
(9.8)

Die Bedingungen an f erlauben uns beidseitig Grenzwerte zu bilden und wir erhalten
die Behauptung.

Wir gehen in 2 Schritten vor um ϕ zu berechnen:

1. Mit ε(s, t) := λ−1(1− e−λ(t−s)) folgt

E(exp(zσ2,int
t,T |Ft) = E(exp(zε(t, T )σ2

t + z

∫ T

t

ε(s, T )dZλs)|Ft) (9.9)

Key-Formula
= exp

(
zσ2

t ε(t, T ) +

∫ T

t

λκ(zε(s, T ))ds

)
(9.10)

für alle z mit Re(z) < ε(t, T )−1θ̂, wobei die unabhängigen Zuwächse des Lévy-
Prozess Z ausgenutzt wurde sowie die Identität

σ2,int
t,T = ε(t, T )σ2

t +

∫ T

t

ε(s, T )dZλs (9.11)
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2. Um ϕ zu bestimmen definiere G = σ(σ(Zt, t ≤ T ) ∪ Ft), ξ := Xt + µ(T − t)
und f(s, z) := ρz + 1

2
(z2 + 2βz)λ−1(1− e−λ(T−s))

Dann folgt

ϕ(z) = E∗
(

exp

(
z

(
ξ + βσ2,int

t,T + ρ

∫ T

t

dZλs

))
E∗
(

exp

(
z

∫ T

t

σsdWs

) ∣∣∣∣G) ∣∣∣∣Ft)
= E∗

(
exp

(
z

(
ξ + ρ

∫ T

t

dZλs

)
+

1

2
(z2 + 2zβ)σ2,int

t,T

) ∣∣∣∣Ft)
= exp

(
zξ +

1

2
(z2 + 2βz)ε(t, T )σ2

t

)
E∗
(

exp

(∫ T

t

f(s, z)dZλs

))
= exp

(
z(Xt + µ(T − t)) + (z2 + 2βz)

1

2
λ−1(1− e−λ(T−t))σ2

t

+

∫ T

t

λκ(f(s, z))ds

)

wobei in der zweiten Gleichung das Einsetzungslemma für bedingte Erwartung sowie
die Laplace-Transformierte der Normalverteilung und in der letzten die Key Formel
benutzt wurde (für zulässiges z aus (a, b)× iR für bestimmte a, b).

Man beachte, dass nach dem Maßwechsel β = −1
2
, µ = r − λκ∗(ρ) ist. Im IG

bzw. Gamma Fall kann das Integral in ϕ explizit berechnet werden. Weiter kann
eine bedingte Dichte durch Inversion erhalten werden:

Lemma 9.2. Die Verteilung von XT - gegeben Ft- ist Lebesgue-stetig mit einer
Dichte g, gegeben durch

g(x) =
1

2π

∫ θ+i∞

θ−i∞
e−zx ϕ(z)dz =

1

2π

∫ ∞
−∞

e−(θ+i s)x ϕ(θ + i s)ds (9.12)

mit θ ∈ (a, b) beliebig.

Beweis. Sei z = θ + ix ein zulässiger Punkt; dann gilt (vgl. obige Rechnung) mit

c := ξ + ρ
∫ T
t
dZλs

|ϕ(z)| ≤ E
(∣∣∣eθc eixc e

1
2

(z2+2zβ)σ2,int
t,T

∣∣∣ ∣∣∣∣Ft)
= E

(∣∣∣eθc e
1
2

(θ2+2θβ)σ2,int
t,T eixc e

1
2

(−x2+2 ixθ+2 i θβ)σ2,int
t,T

∣∣∣ ∣∣∣∣Ft)
≤ E

(∣∣∣eθc e
1
2

(θ2+2θβ)σ2,int
t,T e

1
2

(−x2)σ2
t ε(t,T )

∣∣∣ ∣∣∣∣Ft)
= e

1
2

(−x2)σ2
t ε(t,T ) E

(
eθc e

1
2

(θ2+2θβ)σ2,int
t,T

∣∣∣∣Ft)
= e−

1
2
x2σ2

t ε(t,T ) ϕ(θ)
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wobei in der vorletzten Ungleichung σ2,int
t,T ≥ σ2

t ε(t, T ) benutzt wurde. Insbesondere

ist |ϕ(θ + ix)| ≤ ϕ(θ) e−
1
2
x2σ2

t ε(t,T ) Damit ist∫ θ+i∞

θ−i∞
|ϕ(z)| dz ≤ ϕ(θ)

∫ ∞
−∞

e−
1
2
x2σ2

t ε(t,T ) dx = ϕ(θ)

√
2π

σ2
t ε(t, T )

<∞ (9.13)

(für die letzte Gleichung einnere man sich an die Dichte der Normalverteilung).
Definieren wir nun den Maßwechsel

dPE = eθXT |t ϕ(θ)−1dP

so gilt

ϕE(ix) = EPE
(

eixXT

∣∣∣∣Ft) = EP
(

eixXT eθXT |t ϕ(θ)−1

∣∣∣∣Ft) = ϕ(θ + ix)ϕ(θ)−1

Nach dem oben gezeigten ist diese Fourier-Transformierte integrierbar, also erhalten
wir mit dem Inversionssatz von Lévy

dP
XT |t
E

dλ
=

1

2π

∫
R

e− ixt ϕE(i t)dt =
1

2π

∫
R

e− ixt ϕ(θ + i t)ϕ(θ)−1dt

und anschließender Rücktransformation mit

dPXT |t

dλ
=
dP

XT |t
E

dλ

dPXT |t

dP
XT |t
E

die Behauptung.

Mithilfe von ϕ und ĥ können wir den Derivatpreis ausdrücken durch

pt =
e−r(T−t)

2π

∫ θ+i∞

θ−i∞
ϕ(z)ĥ(z)dz (9.14)

denn es ist

E(h(XT )|Ft) =

∫
h(x)dPXT |t(x)

=
1

2π

∫
h(x)

∫
R

e−(θ+i t)x ϕ(θ + i t)dtdx

=
1

2π

∫ ∫
h(x) e−(θ+i t)x dxϕ(θ + i t)dt

=
1

2π

∫ θ+i∞

θ−i∞
ϕ(z)ĥ(z)dz

Dieser Wert kann (in vielen Fällen) numerisch berechnet werden, falls ĥ, ϕ in
geschlossener Form vorliegen (für letzteres ist die Gestalt der Kumulante entschei-
dend). Dies ist z.B. der Fall, wenn h Auszahlungsfunktion einer europäischen Put-
bzw. Calloption ist und σ2 D −OU -Prozess ist mit D ∈ {IG,Gamma}.
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9.2 Beispiel: Europäischer Call bzw. Put im IG- bzw. Gamma-
OU-Modell

Im Falle eines europäischen Calls ist h(x) = (ex−K)+ und es gilt für Re(z) > 1

ĥ(z) =

∫
e−zx(ex−K)1(logK,∞)dx (9.15)

=
1

z(z − 1)
K1−z (9.16)

Liegt ein europäischer Put vor, d.h. ist h(x) = (K−ex)+, so ist analog für Re(z) > 0

ĥ(z) = 1
z(z−1)

K1−z. Nach Gleichung 9.14 müssen wir noch den Wert
∫ T
t
κ(f(s, z)ds

berechnen. Die entsprechenden Werte im IG- bzw. Gamma-Prozessfall lassen sich in
[20] finden und lauten:

IG(γ, δ) :∫ T

t

κ(f(s, z)ds =
δ

γ

(√
γ2 − 2g1 −

√
γ2 − 2zρ

)
+

2δg2

λ
√

2g2 − γ2

(
arctan

(√
γ2 − 2zρ

2g2 − γ2

)
− arctan

(√
γ2 − 2g1

2g2 − γ2

))
Gamma(γ, δ) :∫ T

t

κ(f(s, z))ds =

(
γ log

(
γ − g1

γ − zρ

)
+ g2λ(T − t)

)
δ

λ(γ − g2)

mit

g1 := zρ+
1

2
(z2 + 2βz)(1− e−λ(T−t))

g2 := zρ+
1

2
(z2 + 2βz)

Mit diesen Informationen kann der Call- bzw. Putpreis durch numerische Approxi-
mation des Integrals in 9.14 ermittelt werden . Methoden wie die der Fast Fourier
Transform und ähnliches sind hierbei nützlich, da die numerische Integration von
stark oszillierenden Funktionen wie die oben betrachteten heikel sein kann. Bei dem
Beispiel unten waren solche Methoden allerdings nicht erforderlich.

In der Abbildung unten sind Werte für ein Gamma(10,1)-Modell mit Parametern
T = 1, t = 0, Xt = 0, σt = 0.1, θ = 1.1, ρ = −1, λ = 2, β = −0.5, µ = r − λ δρ

γ−ρ zu
finden. Der verwendete R-Code befindet sich im Anhang.
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Abbildung 8: Beispielhafte Callpreiswerte im Gamma(10,1)-BNS-Modell in
Abhängigkeit vom Strikepreis K

10 Ober- und Untergrenzen für den arbitragefrei-

en Preisprozess

Da das BNS-Modell nicht vollständig ist ergibt sich für jedes äMM Q ∈ M ein
arbitragefreier Preis zum Zeitpunkt t für das Derivat mit Auszahlung h(XT ). Be-
zeichnen wir mit pt(Q) := e−r(T−t) EQ(h(XT )|Ft) diesen Preis in Abhängigkeit von
Q, so ist It := {pt(Q)|Q ∈ M} ein Intervall (ein Standardresultat aus der Finanz-

mathematik). Im folgenden benutzen wir die Transformation h̃(x) = h(log x), also
die Auszahlung bzgl. des Preisprozesses ST . Wir fordern:

h̃ ist konvex

h̃(0) = 0

0 ≤ h̃(x) < x

g(x) := x− h̃(x) ist beschränkt

Wir interessieren uns für obere und untere Preisschranken, also für inf It und sup It.
Offensichtlich ist It ⊂ [e−r(T−t) h̃(e−r(T−t) St, St)), denn andernfalls bestünden Arbi-
tragemöglichkeiten. Wir arbeiten mit Black-Scholes-Preisen, definiert durch:

pBSt (x, σ) := E
(

e−r(T−t) h̃(YT )
∣∣Yt = x

)
Dabei sei Y Lösung der Black-Scholes-Gleichung mit deterministischer Volatilitäts-
funktion σ , d.h.

dYt = Yt(rdt+ σtdWt)
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bzgl. des eindeutigen äMM P ∗. Die Black-Scholes Differentialgleichung besagt

pBSt (x, σ) = e−r(T−t) E

(
h̃

(
x er(T−t) exp

((∫ T

t

σ2
sds

) 1
2

N − 1

2

∫ T

t

σ2
sds

)))
(10.1)

∂pBSt (x, σ)

∂t
+ rx

∂pBSt (x, σ)

∂x
+

1

2
x2σ2

t

∂2pBSt (x, σ)

∂x2
− rpBSt (t, σ) = 0 (10.2)

wobei N standardnormalverteilte Zufallsgröße sei.

Theorem 10.1. Es ist

sup It = St

inf It = pBSt (St,m)

mit ms := σt e−
λ
2

(s−t). Ausserdem ist für I ′t := {pt(Q) : Q ∈Ms}

sup It = sup I ′t
inf It = inf I ′t

Wir beweisen dieses Theorem in mehreren Lemmata.

Lemma 10.2. Es gilt inf It ≥ pBSt (St,m)

Beweis. Sei Q ∈M. Es gilt

dSt = St−(bQt dt+ σtdW
Q
t + dMQ

t )

mit MQ
t := (eρx−1) ∗ (µZ − νZ) (siehe (8.3)). Wir benutzen dies und die Ito-Formel

auf den Prozess
(
pBST (ST ,m)

)
T≥t und erhalten

e−rT pBST (ST ,m) = e−rt pBSt (St,m) +

∫ T

t

∂pBSt
∂x

d(e−rs Ss)

+

∫ T

t

e−rs
(
∂pBSt
∂t

+ rSs−
∂pBSt
∂x

+
1

2
σ2
sS

2
s−
∂2pBSt
∂x2

− rpBSs
)
ds

+
∑
t<s≤T

e−rs
(
pBSs (Ss,m)− pBSs (Ss−,m)− ∂pBSt

∂x
∆Ss

)
Wir benutzen die BS-Differentialgleichung (10.1) und erhalten∫ T

t

e−rs
(
∂pBSt
∂t

+ rSs−
∂pBSt
∂x

+
1

2
σ2
sS

2
s−
∂2pBSt
∂x2

− rpBSs
)
ds

=

∫ T

t

e−rs
(
∂pBSt
∂t

+ rSs−
∂pBSt
∂x

+
1

2
m2
sS

2
s−
∂2pBSt
∂x2

− rpBSs
)
ds

+

∫ T

t

e−rs
1

2
(σ2

s −m2
s)S

2
s−
∂2pBSs
∂x2

ds ≥ 0
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Für die letzte Ungleichung wurde σ2
s ≥ m2

s f.a. s ≥ t sowie Ss− ≥ pBSs und die
Konvexität von ps(x,m) benutzt. Weiter gilt

∑
t<s≤T

e−rs
(
pBSs (Ss,m)− pBSs (Ss−,m)− ∂pBSt

∂x
∆Ss

)
≥ 0

da f(x) − f(y) − f ′(x)(x − y) ≥ 0 für konvexe und differenzierbare Funktionen f
gilt und damit∫ T

t

∂pBSt
∂x

d(e−rs Ss) ≤ e−rT pBST (ST ,m)− e−rt pt(St,m)

≤
pBSt (x,m)≤x

e−rT ST − e−rt pBSt (St,m)

Der Prozess
(∫ T

t

∂pBSt
∂x

d(e−rs Ss)
)
T≥0

ist Submartingal bzgl. Q, da er lokales Martin-

gal bzgl. Q ist und aufgrund der obigen Ungleichung nach oben durch ein Martingal
beschränkt ist. Somit ergibt sich

EQ(e−rT h̃(ST )
∣∣Ft) = EQ(e−rT pBST (ST ,m)

∣∣Ft) ≥ e−rt pt(St,m)

Wir wollen nun zeigen sup I ′t = St, inf I ′t = pBSt (St,m); wegen der Markov-
Eigenschaft von (St, σ

2
t ) reicht dies für t = 0 zu zeigen.

Lemma 10.3. Sei Q1, Q2, ... ∈ M Folge von äMMs. Dann gilt p0(Qn)→ S0 genau
dann, wenn Qn(ST ∈ ·) schwach gegen δ0 konvergiert.

Beweis. Vgl. [22], Chap. 2.7

Lemma 10.4. Sei (yn)n∈N ⊂ S mit

lim
n→∞

∫ ∞
1

yn(x)w(x)dx =∞ (10.3)

und seien Qn die zugehörigen äMMs in Ms. Dann gilt limn p0(Qn) = S0.

Beweis. Bezüglich Qn gilt

ST = exp

(
rT + ρZλT − λTκn(ρ)− 1

2
σ2∗

0,T +

∫ T

0

σsdW
n
s

)
vgl. Gleichung (8.7) mit W n, Z stochastisch unabhängig. Weiter gilt für ε > 0,
0 < a < 1

Qn

(
e−rT St > ε

)
≤ Qn

(
eρZλT−λTκ

n(ρ) >
√
ε
)

+Qn

(
e−

1
2
σ2∗
T +

∫ T
0 σsdWn

s >
√
ε
)

(10.4)

≤
Markov−6=

ε−
a
2

(
EQn

(
ea(ρLλT−λTκn(ρ))

)
+ EQn

(
e

1
2

(a2−a)σ2,int
0,T

))
(10.5)

= ε−
a
2

(
eλT (κn(aρ)−aκn(ρ)) +EQn

(
e

1
2

(a2−a)σ2,int
0,T

))
(10.6)
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Da f(x) := eaρx−1 − a eρx +a nichtpositive monoton fallende Funktion ist für a ∈
(0, 1) (beachte dabei ρ ≤ 0) und κn(θ) =

∫
R+

(eθx−1)w(x)yn(x) (vgl. Kapitel 8) gilt

κn(aρ)− aκn(ρ) =

∫
w(x)yn(x)f(x)dx

≤ f(1)

∫ ∞
1

yn(x)w(x)dx −→
n→∞

−∞ nach Vor. (10.3)

Damit folgt

eλT (κn(aρ)−aκn(ρ)) −→
n→∞

0

logEQn

(
e

1
2

(a2−a)σ2,int
0,T

)
=

(9.9)
log e

1
2

(a2−a)σ2
0ε(0,T )+

∫ T
0 λκn( 1

2
(a2−a)ε(s,T ))ds

≤
∫ T

0

κn

(
1

2
(a2 − a)ε(s, T )

)
ds

=

∫
R+

∫ T

0

(
e
a2−a

2
ε(s,T )x−1

)
yn(x)w(x)dsdx

≤
∫ T

0

(
e
a2−a

2
ε(s,T )−1

)
ds

∫ ∞
1

yn(x)w(x)dx −→
n→∞

−∞

Für die letzte Ungleichung wurde benutzt, dass g(x) :=
∫ T

0

(
e
a2−a

2
ε(s,T )x−1

)
ds

nichtpositiv und monoton fallend ist (da für a ∈ (0, 1): a2−a
2

< 0 ). Mit Lemma
10.3 und der Abschätzung (10.6) ergibt sich damit die Behauptung.

Wir haben somit die obere Grenze des Preisintervalls bestimmt. Man beachte,
dass es eine wie in Lemma 10.4 geforderte Folge (yn) gibt; yn(x) := ecnx mit limn cn =
θ̂ erfüllt die Bedingung.

Lemma 10.5. Sei f : R+ → R+ so, dass
∫
R+

(1 ∧ x)f(x)w(x)dx < ∞ und sei (yn)
Folge in S mit

lim
n→∞

yn(x) = 0

yn(x) ≤ f(x)

Dann gilt für die zu (yn) äMMs Qn ∈Ms:

p0(Qn) −→
n→∞

pBS0 (S0,m) mit mt = σ0 e−
λ
2
t

Beweis. Wegen (8.7) und den Berechnungen in Kapitel 9.1 ergibt sich

EQn
(
ei θXT

)
= exp

(
i θ(X0 + Tr)− 1

2
(θ2 + i θ)

∫ T

0

m2
sds

)
(10.7)

× exp

(
λ

(∫ T

0

κn(f(s, i θ)

)
ds− i θTκn(ρ)

)
(10.8)
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mit

f(s, i θ) = ρ i θ − 1

2
(θ2 + i θ)ε(s, T )∫ T

0

m2
sds = ε(o, T )σ2

0

Unter erneuter Verwendung von κn(θ) =
∫
R+

(eθx−1)w(x)yn(x) erhalten wir∫ T

0

κn(f(s, i θ))ds =

∫
R+

∫ T

0

(
ef(s,i θ)x−1

)
yn(x)w(x)dsdx

Es gilt wegen der Beschränktheit und Lipschitz-Stetigkeit von f für jedes θ

f.a. θ ∈ R ex. Konstante c > 0, so dass∣∣ef(s,i θ)x−1
∣∣ ≤ c(1 ∧ x) ∀x ∈ R+, 0 ≤ s ≤ T

Damit ergibt sich ∫ T

0

κn(f(s, i θ))ds− i θTκn(ρ)
Dom.Konv.−→

n→∞
0

Wir folgern aus (10.7)

Qn(XT ∈ ·)
w−→

n→∞
N (γT , δT )

mit

γT := X0 + rT − 1

2

∫ T

0

m2
sds

δT :=

∫ T

0

m2
sds

Nach Voraussetzung ist g(x) = x−h̃(x) beschränkt und konkav, ist also insbesondere
N (γT , δT )-f.ü. stetig. Damit können wir [14] Satz 13.16 (Portmanteau-Theorem)
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benutzen und erhalten

p0(Qn) = e−rT EQn
(
h̃
(
eXT
))

= − e−rT
∫ (

eXT −h̃
(
eXT
))
dQn +

∫
e−rT eXT dQn

= − e−rT
∫ (

ex−h̃ (ex)
)
dQXT

n (x) +

∫
e−rT ex dQX0

n (x)

= − e−rT
∫ (

ex−h̃ (ex)
)
dQXT

n (x) + S0

w−→
n→∞

− e−rT
∫ (

ex−h̃(ex)
)
dN (γT , δT )(x) + S0

= e−rT
∫
h̃(ex)dN (γT , δT )(x)− e−rT

(
eX0+rT− 1

2

∫ T
0 m2

sds e
1
2

∫ T
0 m2

sds
)

+ S0

= e−rT
∫
h̃(ex)dN (γT , δT )(x)

= e−rT E

(
h̃

(
x erT exp

((∫ T

0

σ2
sds

) 1
2

N − 1

2

∫ T

0

σ2
sds

)))
= pBS0 (S0,m)

wobei wir die momenterzeugende Funktion der Normalverteilung verwendet haben
sowie die Martingaleigenschaft von e−rt St bzgl. Qn.

Eine Folge (yn) wie in Lemma 10.5 existiert, betrachte yn(x) := ecnx mit limn cn =
−∞ (die zugehörigen Transformationen sind also Esscher-Transformationen). Wir
haben gezeigt

inf
Q∈M

p0(Q) = inf
Q∈Ms

p0(Q) = inf
Q∈ME

p0(Q) = pBS0 (0, S0)

sup
Q∈M

p0(Q) = sup
Q∈Ms

p0(Q) = sup
Q∈ME

p0(Q) = S0

wobei ME = {Qy : y(x) = eηx, η ∈ (−∞, θ̂) die Menge der Esscher-Transformierten
in diesem Modell bezeichnet. Analog zum Beweis von Lemma zeigt man dass die
Abbildung J : η 7→ p0(Qη), wobei Qη das zu η ∈ (−∞, θ̂) in ME zugehörige äMM
ist, stetig ist. Damit ist {p0(Q) : Q ∈ ME} = J((−∞, θ̂)) ein Intervall und der
Beweis von Theorem 10.1 vollständig.

Abschließend geben wir noch ein Resultat aus [20] an, dass den Spezailfall von
IG/Gamma-Modellen abdeckt.

Korollar 10.6.

(i) Sei σ2
t IG(δ, γ)-OU Prozess bzgl. P . Dann ist IIGt := {pt(Q) : Q ∈ MIG}

Intervall mit inf IIGt = pt(St,m).

(ii) Ist σ2
t Γ(δ, γ)-OU Prozess bzgl. P so ist IΓ

t := {pt(Q) : Q ∈MΓ} Intervall mit
inf IΓ

t = inf It und sup IΓ
t = sup It

Beweis. Siehe [20]
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11 Kurzfazit

Wir haben in den vorangegangenen Kapiteln gesehen, wie mithilfe von Lévy-Prozessen
und der dahinterstehenden Theorie interessante neue finanzmathematische Modelle
aufgestellt und untersucht werden können. Die vorgestellten Modelle sind geeigne-
ter als das Black-Scholes-Modell, um reale Daten abzubilden, da ihnen eine größere
Flexibilität zu eigen ist. Gleichzeitig zeigen die Rechnungen innerhalb der Model-
le, dass diese mathematisch handhabbar sind und somit nicht bloß theoretischen
Zugewinn bedeuten. Natürlich bieten Modelle mit allgemeineren treibenden Prozes-
sen eine noch größere Flexibilität in der Modellierung, erfordern aber im Gegenzug
häufig aufwändigere Rechnungen zur Bestimmung von etwa Optionspreisen. Insge-
samt stellen Lévy-Prozesse also ein adequates Mittel dar, um mit relativ geringem
Aufwand eine gute Näherung an das tatsächliche Marktgeschehen zu erhalten.
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A Anhang

Theorem A.1 (Doobs Martingalungleichung). Sei M càdlàg Submartingal mit
Werten in R+. Dann gilt für alle C > 0 und p ≥ 1

P

(
sup
t≤T

Mt ≥ C

)
≤ E(Mp

T )

Cp
(A.1)

Für p > 1 gilt überdies

|| sup
t≤T

Mt||p ≤
p

p− 1
||Mt||p (A.2)

Theorem A.2 (Girsanov). X sei d-dimensionales Semimartingal auf einem filtrier-
ten Raum (Ω, (Ft)t≥0), P ) mit Charakteristik (B,C, ν) bzgl. h ∈ C mit einem wach-

senden previsiblen Prozess A, so dass Cij = cij · A. Weiter sei dP ′

dP

∣∣∣
Ft

= Zt lokal

äquivalentes W-Maß. Dann existiert eine P meßbare nichtnegative Funktion Y und
ein d-dimensionaler Prozeß β mit

|h(x)(Y − 1)| ∗ νt <∞ (A.3)∣∣∣∣∣∑
j≤d

cijβj

∣∣∣∣∣ · At <∞ (A.4)∑
j,k≤d

βjcjkβk · At <∞ (A.5)

P ′ − f.s. für alle t so dass X bzgl. P ′ die Charakteristik (B′, C ′, ν ′) hat mit

B′i = Bi +
∑
j≤d

cijβj · A+ hi(x)(Y − 1) ∗ ν (A.6)

C ′ = C (A.7)

ν ′ = Y · ν (A.8)

Y, β erfüllen obige Bedingungen genau dann, wenn

Y Z− = MP
µX (Z|P̃)〈

Zc, X i.c
〉

=

(∑
j≤d

cijβjZ−

)
· A

wobei Z der Dichteprozess ist und MP
µX (Z|P̃) die in [12], §3 definierte bedingte

Erwartung bzl. P̃ ist. Für Details zu obigem Satz und dessen Anwendung müssen
wir auf [12] verweisen.
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B Verwendete R-codes

#Simulation von Brownschen Bewegungen

Paket:sde

plot( BM(x=0, t0=0, T=100, N=10000))

#Poisson-Prozess-Simulation (mittels Simulation der Zuwächse)

range<-10

lambda<-1

epsilon<-0.1

points<-range/epsilon

eps<-1/epsilon

n<-range/epsilon

x<-seq(0,range,by=epsilon)

u<-rpois(n+1,lambda*epsilon)

y<-seq(0,range,by=epsilon)

for (i in 1:(points+1)){

y[i]<-sum(u[1:i])}

plot(x,y,type="s",main="Poisson-Prozess",xlab="time",ylab="y",cex=1,

col="red",pch=1)

#Gamma-Prozess Simulation (mittels Simulation der Zuwächse)

range<-10

gamma<-2

delta<-1

epsilon<-0.1

points<-range/epsilon

eps<-1/epsilon

n<-range/epsilon

x<-seq(0,range,by=epsilon)

u<-rgamma(n+1,gamma*epsilon,delta)

y<-seq(0,range,by=epsilon)

for (i in 1:(points+1)){

y[i]<-sum(u[1:i])}

plot(x,y,type="s",main="Gamma-Prozess",xlab="time",ylab="y",cex=1,

col="red",pch=1)
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#IG Simulation (mittels Simulation der Zuwächse)

range<-10

gamma<-5

delta<-0.2

epsilon<-0.1

points<-range/epsilon

eps<-1/epsilon

n<-range/epsilon

x<-seq(0,range,by=epsilon)

u<-rinvgauss(n+1,gamma*epsilon,delta)

y<-seq(0,range,by=epsilon)

for (i in 1:(points+1)){

y[i]<-sum(u[1:i])}

plot(x,y,type="s",main="Inverse-Gaussian Prozess",xlab="time",ylab="y",cex=1,

col="red",pch=1)

#Bewertung im Merton-Modell

#BS-Preise

Callpreis<-function(K,sigma=0.7,St=100,tau=0.5,r=0.05){

d1<-(log(St/(K*exp(-r*(tau))))+(tau)*(sigma^2)/2)/(sigma*sqrt(tau))

d2<-(log(St/(K*exp(-r*(tau))))-(tau)*(sigma^2)/2)/(sigma*sqrt(tau))

z<-St*pnorm(d1)-K*exp(-r*(tau))*pnorm(d2)

return(z)}

#Merton-Preise

n<-100

Mertoncall<-

function(K,r=0.05,sigma=0.3,St=100,lambda=4,mu=-0.3,tau=0.5,delta=0.1){

a<-seq(0,n,1)

eta<-exp(mu+delta^2/2)-1

sigmai<-sqrt(sigma^2+(a*delta^2)/tau)

xi<-St*exp((a*delta^2)/2-lambda*eta*tau+a*mu)

z<-exp(-tau*lambda)*(((tau*lambda)^a)/factorial(a))*Callpreis(K,sigmai,xi,tau,r)

return(sum(z))}

x<-seq(30,120,0.1)

y<-sapply(x,Mertoncall)

plot(x,y,type="l",col="red",xlab="strike Preis K",ylab="Callpreis")

z<-sapply(x,Callpreis)

lines(x,z,type="l",col="green",xlab="strike Preis K",ylab="Callpreis")
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#Histogramm der HSI-Returns

daxi<-read.csv("C:/levy/hsi.csv", header=T)

z<-daxi[,1]

z2<-z[2:length(z)]

x<-as.Date(z)

y1<-daxi[,2]

y<-log(y1)

u<-diff(-y)

v<-u-mean(u)

HSIReturns<-v/sd(v)

hist(HSIReturns,breaks=200,freq=FALSE)

s = 1

m = 0

curve(dnorm(x, mean=m, sd=s), add=TRUE)

k<-mean(HSIReturns^4)

s<-mean(HSIReturns^3)

#Preise im Gamma-BNS-Modell (analog im IG-Fall)

#Paket:elliptic

X_t<-0

sigma_t<-0.1

T<-1

t<-0

r<-0.05

theta<-1.1

gamma<-10

delta<-1

rho<--1

lambda<-2

K<-0.05

beta<--0.5

mu<-r-lambda*((delta*rho)/(gamma-rho))

kappaint<-function(x){g_1<-complex(1,theta,x)*rho+(1/2)*(complex(1,theta,x)^2+

2*beta*complex(1,theta,x))*(1-exp(-lambda*(T-t)))

g_2<-complex(1,theta,x)*rho+(1/2)*(complex(1,theta,x)^2+2*beta*complex(1,theta,x))

u<-(gamma*log((gamma-g_1)/(gamma-complex(1,theta,x)*rho))+g_2*lambda*(T-t))*

(delta/(lambda*(gamma-g_2)))

return(u)}

hath<-function(x){u<-1/(complex(1,theta,x)*complex(1,theta-1,x))

*K^(1-complex(1,theta,x))
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return(u)}

phi<-function(x){u<-exp(complex(1,theta,x)*(X_t+mu*(T-t))+

(complex(1,theta,x)^2+2*beta*complex(1,theta,x))*(1/2)

*lambda^(-1)*(1-exp(-lambda*(T-t)))*sigma_t^2+lambda*kappaint(x))

return(u)}

f<-function(x){return(phi(x)*hath(x))}

intz<-myintegrate(f,-Inf,Inf)

p_t<-(exp(-r*(T-t)))*(intz/(2*pi))

p_t

WertefürK<-seq(0.05,1,0.05)

PreisefürCall<-c(0.952,0.905,0.8574,0.81,0.763,0.71622,0.6699,0.6241,0.579,0.5347

,0.4913,0.449,0.4078,0.368,0.3297,0.293,0.2578,0.2246,0.1933,0.164)

plot(WertefürK,PreisefürCall,type="l",xlab="K", ylab="Callpreis")

64



C Symbol- und Abkürzungsverzeichnis

SDE: Stochastische Differentialgleichung (stochastic differential equation)

PIID: Prozess mit stationären und unabhängigen Zuwächsen (
”
Process with Inde-

pendent and identically distributed increments“)

∆Xt: Der Sprungprozess von X im Punkt t, d.h. ∆Xt := Xt− lims↗tXs. Wir setzen

∆X0 := 0

Z: Ein Lévy-Prozess

ν: Lévy Maß eines Lévy-Prozesses Z. Soll die Abhängigkeit von Z betont werden,

so schreiben wir νZ

uT : Das Transponierte eines Vektors u ∈ Rn

O: Die optionale σ-Algebra, erzeugt durch die adaptierten càdlàg-Prozesse.

P : Die previsible σ-Algebra, erzeugt durch die adaptierten linksseitig stetigen Pro-

zesse (P ⊂ O)

PZM: Poissonzufallsmaß

Φ: Die Verteilungsfunktion der Standardnormalverteilung, d.h. Φ(u) := N (0, 1)((−∞, u))

δx: Einpunktmaß/Dirac-Maß im Punkt x

µX , νX : Sprungmaß und Kompensator des Lévy-Prozesses X. Der Kompensator ist

dabei definiert durch νX(ds, dx) = ν(dx)ds wobei ν das zu X gehörende Lévy-Maß

ist.

A: Prozesse von integrierbarer Variation

A+: Wachsende Prozesse von integrierbarer Variation

FV : Prozesse mit beschränkter Variation

x.y für x, y ∈ Rd: Standardskalarprodukt der Vektoren x, y

ζ(u) Analytische Transformierte einer Verteilung Q, d.h. ζ(u) =
∫

eux dQ(x) wo die-

se existiert

κ: Kumulante eines PIID-Prozesses, d.h. für einen PIID Prozess X

κ(u) := logE euX1
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