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Einleitung

Seit der Vorstellung des Black-Scholes-Modells in den 70er Jahren des vergangenen
Jahrhunderts hat es im Bereich der finanzmathematischen Modellierung zahlreiche
Weiterentwicklungen und Neuerungen gegeben. Fine davon, welche das Thema die-
ser Arbeit sein wird, ist die Einbindung von Lévy-Prozessen in den Modellierungs-
prozess. Die Klasse der Lévy-Prozesse umfasst bekannte stochastische Prozesse wie
etwa den Wiener-Prozess und den Poisson-Prozess, welche beide héufig zur Model-
lierung verschiedener Sachverhalte verwendet werden. Im Black-Scholes-Modell ist
es der schon erwdhnte Wiener Prozess, der die zufilligen Schwankungen eines Fi-
nanzgutes modelliert. In den in dieser Arbeit betrachteten Finanzmarktmodellen
iibernimmt dies ein Lévy-Prozess, das ist auch ein Prozess mit stationédren und un-
abhingigen Zuwichsen, bei dem allerdings die Forderung normalverteilter Zuwéchse
und stetiger Pfade wegfallt. Lévy-Prozesse bieten durch die Méglichkeit, nichtgauf3-
sche Verteilungen fiir die Zuwéchse anzunehmen zusétzliche Flexibilitédt in der Mo-
dellierung. Gleichzeitig teilen die Lévy-Prozesse viele angenehme Eigenschaften mit
dem Spezialfall des Wiener-Prozesses, etwa zeitliche Homogenitét, die das Arbeiten
mit diesen erleichtert.

Im einfithrenden Kapitel [1| werde ich einige Kritikpunkte am klassischen Black-
Scholes-Ansatz wiedergeben (s. auch [I5]). In den letzten vier Jahrzehnten haben
empirische Beobachtungen néamlich aufgezeigt, dass es systematische Abweichungen
zwischen tatséchlich beobachtbarem Marktgeschehen und den Ergebnissen im Black-
Scholes-Modell gibt. Bekanntes Beispiel hierfiir ist der sogenannte ,smile“-Effekt,
welcher der Annahme konstanter Volatilitdt im BS-Modell widerspricht.

In Kapitel |2| fithre ich Lévy-Prozesse ein, gebe wichtige Eigenschaften und Bei-
spiele fiir diese an und fithre die Verbindung zur Klasse der unendlich teilbaren
Verteilungen auf. Besonderen Stellenwert in dieser ersten Hélfte der Arbeit hat die
Lévy-Ito-Zerlegung und deren Beweis in Kapitel [3 da sie das Verstdndnis fiir die
Struktur von Lévy-Prozessen sehr erleichtert. Einfach ausgedriickt ermoglicht die
Lévy-Ito-Formel es, einen Lévy-Prozess in einfachere Grundbestandteile zu zerle-
gen, genauer eine Wiener-Prozess-Komponente, einen Poisson-Prozess-Sprunganteil
und einen weiteren Sprunganteil, welcher die kleinen Spriinge darstellt.

Der zweite Teil der Arbeit besteht im Vorstellen verschiedener Lévy-Prozess-
Modelle. Ich beginne dabei in Kapitel [2| bei dem sich einfach aus dem BS-Modell
ergebendem Merton-Modell (welches dem BS-Modell einen Poisson-Sprunganteil
hinzufiigt, vgl. [18]) und dem interessanten Ansatz des Variance-Gamma-Modells
(welches komplett ohne einen stetigen Anteil auskommt, vgl. [§]). Diese werde ich in
Form von Anwendungsbeispielen zusammen mit den entsprechenden Lévy-Prozessen
vorstellen, mit vergleichsweise elementaren Mitteln.

Bevor ich zu den etwas aufwéndigeren Modellen mit stochastischer Volatilitit
komme, werde ich noch in Kapitel [d die weit verbreitete Klasse der exp-Lévy-Modelle
betrachten, zu denen die oben genannten Modelle gehéren. Zudem gehe ich in Kapi-
tel |5 auf eine (vergleichsweise einfache) Berechnungsmethode in exp-Lévy-Modellen
mittels Fouriertransformierten (nach Carr und Madan) ein, die sich natiirlicherwei-
se anbietet wenn mit Lévy-Prozessen gearbeitet wird. Anschliefend ziehe ich ein
Zwischenfazit, inwieweit diese Modelle die Kritikpunkte am BS-Modell beantwor-
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ten, und fiihre stochastische Volatilitatsmodelle ein. Dies geschieht zunéchst in Form
des Modells von Bates (vgl. [2] und [I0]) und schlieBlich folgt eine ausfiihrliche Be-
trachtung des Modells von Barndorff-Nielsen und Shephard (welches sehr viele der
Kritikpunkte am BS-Modell beantwortet, vgl. hierzu [3], [4], [5], [6] und besonders
[200).

Bei jedem der Modelle wird versucht, eine Bewertung eines einfachen Finanzguts,
genauer eines europdischen Calls oder Puts, innerhalb des Modells durchzufiihren,
um ein Gefiihl fiir das Modell und die mathematische Handhabbarkeit desselben
herzustellen. Solche Bewertungen sind schon deshalb wichtig, um ein Modell an eine
gegebene Menge Daten kalibrieren zu konnen. Voraussetzung fiir das Verstdndnis
des Textes ist, neben elementarer Wahrscheinlichkeitstheorie, die Kenntniss einiger
Begriffe aus der stochastischen Analysis, insbesondere der Begriff des stochastischen
Integrals (in [19] findet man alles hierzu relevante). Finanzmathematisches Vor-
wissen ist nicht unbedingt erforderlich, erleichtert es allerdings einige Sachverhalte
nachzuvollziehen (fiir einen Uberblick iiber die Finanzmathematik vgl. etwa [9]).
Das Gebiet der finanzmathematischen Modellierung mithilfe von Lévy-Prozessen ist
in den vergangenen Jahren enorm angewachsen. Die hier vorgestellten Methoden
und Modelle kénnen daher nur einen ausgewéhlten Teil der Theorie abbilden. Ich
hoffe dennoch, einen Einblick in dieses interessante Gebiet geben zu kénnen.
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1 Das Black-Scholes Modell und empirische Fak-
ten iiber Aktienmirkte

Im Jahre 1973 stellten die Okonomen Fischer Black und Myron Scholes in ihrem Pa-
per ., The Pricing of Options and Corporate Liabilities“ das heute als Black-Scholes-
Modell bekannte Modell zur Bewertung von Finanzgiitern wie beispielsweise Aktien-
optionen vor. Dieses sieht einen endlichen Zeithorizont T' sowie zwei Finanzgiiter auf
einem filtrierten Wahrscheinlichkeitsraum (€2, (F;)o<t<7, P) vor, einen festverzinsli-
chen Bond sowie ein zweites asset(eine Aktie), welches zufélligen Schwankungen
unterliegt. Dazu sei der Aktienkurs S; Losung der SDE

dSt = St(,udt + O'th)

mit Konstanten o, € R, 0 > 0 und einem Wienerprozess W bzgl. des am Markt
vorliegenden Wahrscheinlichkeitsmafl P. Dabei wird o als Maf fiir die zufélligen
Schwankungen des Aktienkurses (die sogenannte Volatilitat der Aktie) und p als
Trendparameter gesehen. Die Bewertung von Optionen erfolgt durch Ubergang zu
einem risikoneutralen Wahrscheinlichkeitsmafl P*E] (im Folgenden nennen wir ein
solches Ma8 dquivalentes Martingalmaf$ oder auch @MM). Insbesondere: Ist h Aus-
zahlungsfunktion, so gilt fiir den Werteprozess (V;);>o des Derivats mit Auszahlung
h(Sr)inT:V, = E* (h(Sr) e r(T=1) ‘]—"t) Fiir den Spezialfall, dass es sich um eine eu-
ropéische Call- bzw. Putoption handelt, d.h. h(z) = (x — K)" bzw. h(z) = (K —z)7"
ergibt sich fiir den Preis zum Zeitpunkt ¢ die beriihmte Black-Scholes-Formel:

pC(S, T, K,0) = S;®(dy) — Ke " T &(dy)
pP (S, T,K,0) = Ke """ &(—dy) — S,®(—d,)

mit

Dieses Modell ist zwar einfach zu handhaben, hat aber gegeniiber realer Daten einige
Schwéchen:

1. Die Volatilitdt o ist im Modell konstant; die impliziten Volatilitédten, die man
anhand tatséchlicher Kurse ermitteln kann(dafiir wird zu gegebenen Markt-
preisen von européischen Put oder Call-Optionen die eindeutige Volatilitat o
errechnet, die sich aus obiger Black-Scholes-Formel ergibt), deuten aber auf
nichtkonstante Volatilitdten (vgl. smile-effect) und Clusterbildung hin. Letz-
teres ist die Beobachtung am Finanzmarkt, dass grofle Preisspriinge zeitlich
gehiuft auftreten, und selbiges fiir kleine Spriinge. An vielen Méarkten ldsst
sich zudem eine negative Korrelation zwischen returns und ihrer Volatilitét
beobachten; dieser ,leverage“-Effekt tritt im BS-Modell nicht auf.

1d.h. der abdiskontierte Preisprozess e~ S, ist P*-Martingal
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Der "smile"-Effekt

implizite Volatilitt

strike Preis K

2. Der treibende stochastische Prozess W, ist im Modell normalverteilt; da log S; =
log Sy + ut + oW, — %0225 ergibt sich fiir die log-returns eine Normalverteilung.
Die Empirie legt allerdings fiir kleine bis mittlere Zeitrdume eine Linksschiefe
sowie eine Kurtosis gréfler als 3 nahe; dies spricht eher gegen die Annahme
einer Normalverteilung. Vergréflert man die Zeitrdume bei der Betrachtung
der returns beobachtet man aggregierte Gaussheit, d.h. aufsummierte returns
sind anndhernd normalverteilt-dies jedoch nur iiber léngere Zeitspannen.

Histogram of HSIReturns
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Abbildung 1: Histogramm von standardisierten HSI-Returns (von 31.12.1986 bis
27.4.2013, Tagesdaten) und Standardnormalverteilungsdichte

Das obige Histogramm verdeutlicht diese Differenz zwischen Normalvertei-
lungsannahme und Empirie; die empirische Kurtosis betragt K = 48.81 in
obigem Beispiel, die Kurtosis der Standardnormalverteilung ist K = 3. Es
liegt eine Linksschiefe vor (empirische Schiefe= —2.2)welche bei der symme-



trischen Normalverteilung nicht auftritt. E]

3. Insbesondere in Zeiten hoher Unsicherheit am Finanzmarkt und wahrend Kri-
sen kann es zu betréchtlichen Kursdnderungen in kiirzester Zeit kommen (z.B.
innerhalb weniger Minuten). Oftmals sind die Griinde fiir solche Kursspriinge
nicht sofort ersichtlich. Es ist nicht selten eine psychologische Komponente
der Marktteilnehmer, verbunden mit der Moglichkeit, dass schon geringfiigige
Abweichungen der Erwartungshaltung der Héandler zu drastischen Kursein-
briichen fithren kann, die Ursache solcher Spriinge. Diese Unstetigkeiten sind
in einem stetigen Semimartingalmodell nicht zu finden.

4. Das Black-Scholes Modell ist vollstindig, also ist jede Endauszahlung repli-
zierbar. Damit sind Optionen im Prinzip redundant; dennoch beobachtet man
eine grofe Zahl unterschiedlichster Derivate, die am Markt gehandelt werden.

Um diese Probleme anzugehen werden wir auf die Normalverteilungsannahme und
stetige Pfade beim treibenden Prozess verzichten. Insbesondere werden wir allgemei-
nere Prozesse betrachten als Brownsche Bewegungen. Wir werden uns dafiir Lévy-
Prozess-Modellen zuwenden; diese sind eine natiirliche Verallgemeinerung des BS-
Ansatzes und bilden einen adaquaten Kompromiss zwischen mathematischer Hand-
habbarkeit und Realitdsnéhe.

2 Lévy-Prozesse

Nach den Feststellungen in Kapitel [1] ist es naheliegend, die Forderung der Nor-
malverteilung bei den Zuwéchsen des treibenden stochastischen Prozesses (im BS-
Modell ist dies gerade der Wiener-Prozess) und die Stetigkeit der Pfade aufzugeben.
Die nachfolgende Definition eines Lévy-Prozesses unterscheidet sich gerade in diesen
Punkten von dem bekannten Wiener-Prozess.

Definition 2.1 (Lévy-Prozess). Gegeben sei ein filtrierter Wahrscheinlichkeitsraum
(Q, F, (Ft)t>0, P); im Folgenden fordern wir immer, dass dieser die usual conditions
erfiillt, d.h. Fy enthalte alle P-Nullmengen und es sei F; = F; . = ﬂs>t Fs. Dann
nennen wir einen adaptierten cadlag Prozess Z Lévy-Prozess, falls die folgenden
Bedingungen erfiillt sind:

1) ZO =0 P-fs.

ii) Z hat unabhéngige und stationdre Zuwéchse, d.h Z; — Z; ist stochastisch un-
abhéngig von F, und 7, — Z, 4 Zi_ gilt fiir alle s < t.

iii) Z ist stetig in Wahrscheinlichkeit, also liIT% P(|Z,— Zs| >¢) =0fiirallet >0
S—r
and € > 0.

20Obige Grafik entspricht im Wesentlichen derjenigen aus [15]; dort wurde der S&P 500 Index
untersucht



Gelegentlich kann man eine etwas andere Definition finden; da iii) aus den an-
deren Voraussetzungen folgt, wird oft darauf verzichtet. Einige Autoren behalten
Bedingung iii), verzichten aber auf die cadlag- Eigenschaft, da unter den iibrigen
Voraussezungen immer eine cadlag-Modifikation existiert. Die Eigenschaft ii) sowie
Prozesse mit dieser Eigenschaft bezeichnen wir im Folgenden als PIID. Wir be-
trachten nun zunéchst Eigenschaften und Charakterisierungen von Lévy-Prozessen.
Eine anhand der Definition bereits offensichtliche Eigenschaft ist die, dass die Sum-
me unabhéngiger Lévy-Prozesse auf dem selben Wahrscheinlichkeitsraum wieder ein
Lévy-Prozess ist.

Proposition 2.2 (Markoveigenschaft). Ist Z Lévy-Prozess, so hat Z die Markov-

FEigenschaft, d.h. firt > 0 ist der pri-t-Prozess (Zs)s<: stochastisch unabhingig vom

post-t-Prozess (Zyys — Zi)s>o0 und (Zirs — Zt)s>0 4 (Zs)s<t

Beweis. Dies folgt unmittelbar daraus, dass Lévy-Prozesse stationdre und unabhéngi
ge Zuwichse haben. O]

Es gilt sogar die starke Markoveigenschaft fiir Lévy-Prozesse (d.h. fiir eine Stopp-
zeit T mit P(T < o0) = 1 gilt ((X74+ — X7)e>0 ist unabhéngig von Fr und verteilt
wie (X})i>0), siehe [7], Seite 20.

2.1 Unendlich teilbare Verteilungen und Lévy-Khintchine
Formel

Eine der wichtigsten Eigenschaften in Verbindung mit Lévy-Prozessen ist die der
unendlichen Teilbarkeit. In diesem Unterkapitel werden wir den Begriff einfithren
und die Lévy-Khintchine-Formel vorstellen. Der Beweis derselbigen ist leider recht
lang und wird in dieser Arbeit nicht wiedergegeben. Stattdessen werden wir in Ka-
pitel |3| die sogenannte Lévy-Ito-Formel beweisen, welche einen recht guten Einblick
in die Struktur von Lévy-Prozessen liefert.

Definition 2.3 (Unendlich teilbare Verteilungen). Ein Wahrscheinlichkeitsmafl @
auf R? wird unendlich teilbar (engl. infinitely divisible) genannt, wenn fiir jedes
n > 1 ein W-Mafl (), existiert so dass ) = QZ("). Q ist also die n-fache Faltung
eines bestimmten Mafles (), fiir alle natiirlichen Zahlen n.

Genauso sprechen wir von einer unendlich teilbaren Zufallsgrofle X, falls X 4

Xipn+ ... + Xy fir alle n wobei (X, ,,)1<i<, iid Zufallsvariablen sein sollen.
Ausgedriickt iiber die Fourier-Transformierte ¢¢ einer Verteilung () heisst dies
do(u) = (g, (u))™ fur gewisse @, fiir alle n € N.
Ist Z = (Z)1>0 ein Lévy Prozess, so ist die Verteilung von Z; unendlich teilbar
fiir jedes t . Tatsdchlich gilt fiir ein festes ¢

Z=%" <Z% - Z<,H>t) (2.1)

n
k=1

und wegen der unabhéngigen und stationdren Zuwéchse ist damit die unendliche
Teilbarkeit gezeigt.



Um die im Folgenden sehr wichtige Lévy-Khintchine Formel einzufithren benoti-
gen wir den Begriff eines Lévy Maf, das ist ein Mafl v auf R\ {0} mit

/ 2 A1 v(dr) < oo
RA\{0}

Theorem 2.4 (Lévy-Khintchine Formel). Eine Verteilung @ auf R ist unendlich
teilbar genau dann wenn die Fourier-Transformierte ¢ die Form ¢g = exp(¢) hat
mit einer Funktion

P(u) = Ypo(u) = iulb — 1uTC'u + / (ei“Tx —1 —iu’h(z)) v(dz) (2.2)
2 R4\ {0}

wobei v Lévy-MaB ist, b € R? C positiv semidefinite Matrix ist und h(z) =
x1j0,1)(|2]). Die momenterzeugende Funktion mgf (wo diese existiert) hat dann die
Form

1
mgf(u) = exp(k(u)) = exp (uTb + —ulCu + / <e“T”C -1- uTh(:B)> V(dx))
2 R4\ {0}
(2.3)
Wir nennen ¥ den charakteristischen Exponenten von () und s die Kumulante
von (). Uberdies nennen wir C' Gauss-Komponente und b die Drift des Prozesses;

diese Namensgebung wird spétestens im Beweis der Lévy-Ito-Formel in Kapitel
klar werden.

Anmerkung 2.5. Die Funktion h ist etwas willkiirlich gewdhlt; auch andere Ab-
schneidefunktionen wdren maéglich. Dadurch dndert sich auch der Driftterm. Ist z.B.

/ 1A |zl v(de) < oo (2.4)
RAM\{0}
so kann h = 0 gewdhlt werden mit neuer Drift
b i=0b— / xl_y ) (x)v(de)
R4\ {0}

Wir werden in Zukunft wann immer maoglich mit diesem Driftterm b arbeiten. Wir
werden die Integralbedingung in Kapitel [3 ausfihrlicher diskutieren.

Fiir einen Beweis von Theorem verweisen wir auf [I]. Die Funktionen v, s
sowie b, C' und v sind eindeutig bestimmt. Die Umkehrung ist ebenfalls wahr, d.h.
fiir jedes Tripel (b, C,v) existiert genau eine unendlich teilbare Verteilung @) mit
obiger Lévy-Khintchine Zerlegung. Gegeben ein Lévy Prozess Z; bezeichnen wir den
charakteristischen Exponenten von Z; mit ¢, und seine Fourier-Transformierte mit
¢¢. Aufgrund der stationdren und unabhéngigen Zuwichse gilt fiir alle s, ¢ € [0, 00).

Goii(u) = EcivZits = (eiu(ZH.s*Zs) olUZe) = @ (u) - ¢y (u) (2.5)
= Ps(u) +P(u) = Ysri(u) (2.6)



Uberdies ist ¢(u) stetig in t fur alle u. Um dies zu sehen betrachten wir fiir o > 0
die Ungleichung

_ Gryn(u) ‘
dr(u) | ¢ st P.T.

Da Z cadlag ist, gilt mit majorisierter Konvergenz

61(0) = dran(w)] = |u(w) \1 11— gu(w)

I — lim Ee'"Z = gy(u) = 1
lin 61 (1) = limy B = 6 (u)
und damit die rechtsseitige Stetigkeit von ¢;(u) in t. Die linksseitige Stetigkeit folgt
analog mit

dr(u)
¢t7h<u)

Gleichung ([2.5)) liefert weiter ¢, (u) = ¢1(u)"; dies ldsst sich sofort auf die rationalen
Zahlen erweitern (denn mit (2-5) ist ¢1(u)” = ¢1(u)) und schlieBlich mithilfe der

oben gezeigten Stetigkeit auf alle reellen Zahlen erweitern, somit also ¢1(u)' = ¢4 (u)
fir alle ¢ € R(und analog ¥:(u) = ti;(u)). Das bedeutet insbesondere, dass ein
Lévy-Prozess Z; schon durch die Angabe des charakteristischen Tripels (b, C, ) von
7 vollstéandig charakterisiert wird. Ausserdem kann die Stetigkeit von ¢, auch ver-
wendet werden, um die Stetigkeit in Wahrscheinlichkeit eines Lévy-Prozesses zu
erhalten, denn es ist

60() = dun(u)] = |61 (1) ]1 - <1 éulu)

E e “A% = lim E !4 —Zi-1) = lim 210 =1 Vu (2.7)
AN WO Gy (u)
—~ AZ, =0 fs. (2.8)

Das Lévy-Mafl in obigem Satz kann als Maf§ fiir Anzahl bzw. Intensitdt von
Spriingen interpretiert werden. Betrachte dazu den Sprungzéhlmafiproze N, defi-
niert durch

N(4) = 3 14(AX,) (2.9

0<s<t

fiir einen cadlag stochastischen Prozefi X; und Borelsche Mengen A mit 0 ¢ cl(A)
und AX, := X (s) —lim, », X (u). N; zéhlt also die Spriinge, die der Prozess bis zum
Zeitpunkt ¢ in der Menge A macht. Dann gilt im Fall, dass X Lévy-Prozess mit Lévy-
MaB v ist, v(A) = E(N;(A)). Insbesondere ist ein Lévy-Prozes Z stetig genau dann,
wenn vZ = 0, wenn also Z ein Wiener-Prozess mit Drift ist (vgl. Lévy-Khintchine
Zerlegung).Gegeben durch

¥ (w,dt, do) =) 1A, (@40} 5(5.8X. (o) (L, d2) (2.10)

ist ein sogenanntes Zufallsmaf (siehe dazu Kapitel . Wir nennen pX Sprungmaf
des Prozesses X; wir werden uns ausfiihrlicher mit der Bedeutung des Sprungmafes
in Kapitel [3| beschéftigen. Zunéchst wollen wir aber in diesem Kapitel Beispiele fiir
Lévy-Prozesse geben.



2.2 Beispiele fiir Lévy-Prozesse
2.2.1 Wiener Prozess

Ein in 0 startender stetiger PIID-Prozess W = (W;);>o mit Wy — W 2 N(0,t — s)

heifit Wiener-Prozess oder Brownsche Bewegung. Schon im ersten Kapitel haben wir
das Black-Scholes-Modell vorgestellt, bei dem die Dynamik eines Finanzgutes durch
einen Wiener Prozess gegeben ist. Jeder Wiener-Prozess ist insbesondere auch Lévy-
Prozess (klar nach Definition), mit charakteristischem Tripel (0,1,0). Die Pfade des
Wiener Prozesses sind von unbeschriankter Variation. Fiir eine explizite Konstrukti-
on des Wiener-Prozesses verweisen wir z.B. auf [19]. s. 5671f.

o -
—
8 <
3 1
—
I
=z
o
—
I N
'_
o
I
o
=]
S o |
1l |
X
=
=
m
<5
)

Time

Abbildung 2: Pfad einer Brownschen Bewegung

Natiirlich haben wir nicht Lévy-Prozesse eingefiihrt, um (wieder) nur Wiener
Prozesse zu betrachten. Man beachte aber: Jeder stetige Lévy-Prozess ist bereits
ein Wiener-Prozess mit Drift (vgl. dafiir Kapitel , sodass wir fiir neue Beispiele
Prozesse mit Spriingen betrachten werden. Der bekannteste in dieser Kategorie ist
der Poisson-Prozess.

2.2.2 Poisson-Prozess

Gegeben sei A > 0. Dann nennen wir einen in 0 startenden cadlag PIID-Prozess N
mit N,—N, < N,_, < Poi(A(t—s)) Poissonprozess der Intensitiat A. Wir kénnen einen
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solchen Prozess folgendermaflen konstruieren: Sei (&;);eny iid Familie von exp(\)-
verteilten Zufallsgréfien. Definere den Erneuerungsprozess 1), := ", &. Dann ist
der zugehorige Erneuereungszéhlprozess N; := ) ., lgy>7,1 Poisson-Prozess der
Intensitit A. Der so definierte Prozess ist Lévy-Prozess mit zugehorigem charakte-
ristischem Tripel (0,0, \d;) (man beachte dabei, dass wir h = 0 wéhlen konnten).
Fiir unsere Zwecke ist ein solcher Poisson-Prozess unzureichend, da er determini-
stische Sprunghohe hat. In der finanzmathematischen Modellierung brauchen wir
einen flexibleren Prozess. Eine einfache Verallgemeinerung bietet der zusammenge-
setzte Poisson-Prozess, definiert durch X; := Zf\ﬁl Y;, Y; iid Zufallsgrofen, s.u. von
N mit Verteilung F', N; Poisson-Prozess der Intensitéit A. Die Y; geben dann die Ver-
teilung der Sprunghohe vor; die Fourier-Transformierte lésst sich einfach berechnen
und lautet

Ou) = B (o 55) = o MR (2.11)

Der Prozess ist von endlicher Variation, wir kénnen daher in der Lévy-Khintchine-
Formel h = 0 wihlen und erhalten als charakteristisches Tripel (0,0, AF').

Poisson-Prozess

Abbildung 3: Simulation eines Poisson-Prozesses mit Intensitét 1

Wir wollen kurz ein Kriterium vorstellen, wann ein Zahlprozess schon ein Poisson-
Prozess ist. Ein Zdhlprozess ist ein in 0 startender, fast sicher endlicher monoton
wachsender stochastischer Prozess mit Werten in Ny und Zuwéchsen in {0,1}. Wir
konnen auch N; = > -, 17, <4 schreiben, wobei T, die Sprungzeitpunkte von N
sind. Der so definierte Prozess NN ist rechtsseitig stetig.

Lemma 2.6. Sei N Zdhlprozess und M; := Ny — At Martingal. Dann ist N; Poisson-
Prozess mit Intensitdt \.



Beweis. M ist offensichtlich cadlag. Fiir s < ¢t und 6 > 0 ist
Nt _ oONs _ Z efNu _ o ONu— Z o/ Nu- (eeANu _1)

s<u<t s<u<t

Z N (ef —1)AN, = (¢’ —1)/ eNu- dN,

<u§t (S7t]

= (e 1) (/ Nu-dM, +/ AN du)
(s,t] (st]

Da der Prozess f(s 1 e®Nu=dM, in t ein in 0 startendes Martingal ist ergibt sich

Fs) = (e’ —1E (/ A e/Nu du‘}"s)
(st]

— (69—1)/( }E()\eeN“ | Fy)du
s,t

AN,€{0,1}
S

E (eeNt o eGNS

Setzen wir g(t) := E(e™ | F,), so erfiillt g somit die Integralgleichung
o0) = 9(5) + & =1) [ glw)ra
s,t

Diese wird gelost von g(t) = s exp((e? —1)(t — s)\). Damit ist
E(PWNe=N) | F.) = exp((e? —1)(t — 5)\)
Dies zeigt, dass N PIID ist mit Poi(A(t — s))-verteilten Zuwéchsen O

Gelegentlich ist es hilfreich, bei zwei gegebenen Lévy-Prozessen ein einfaches
Kriterium zu haben um Unabhéngigkeit feststellen zu konnen. Zumindest fiir den
Fall, dass einer der Prozesse Poisson-Prozess ist existiert so ein Kriterium.

Lemma 2.7. Sei Y Poisson-Prozess und (X,Y) 2-dimensionaler Lévy-Prozess.
Falls X undY keine gemeinsamen Springe aufweisen, falls also AX;AY; =0 fa. t
fast sicher ist, so sind X und Y stochastisch unabhdngig.

Beweis. Da es sich um PIID-Prozesse handelt reicht zu zeigen, dass X; und Y; s.u.
sind. Wir betrachten die Martingale

eiuXt
M, = ——— 2.12
t ]EeluX,g ( )
o 2.13
M = = .
t Eeluy't ( )

M ist beschrinkt und M’ ist von integrierbarer Variation (da Y ein Poisson-Prozess
ist). Wir konnen daher in der folgenden Rechnung majorisierte Konvergenz anwen-
den:

E(M;M;)—1=E (Z (Mijn — Mi1ym) (M), — M{il)/n))

=1

oLl ( > AMtAMt’> 2

0<t<1



Es folgt

]E elqu—Hle _ Eelqu Eelel \V/U, v

und damit die Unabhéngigkeit von X; und Y;. O]

Anwendungsbeispiel 2.8 (Das Merton Modell). Eine einfache Verallgemeinerung
des Black-Scholes-Modells wurde 1976 von Merton vorgestellt. Es sei r der Zinssatz
der risikolosen Anlage und der Aktienpreis S sei gegeben durch die SDE

Dabei sei W Standard-Wienerprozess, y; seien iid Log-N (i, %) verteilt und N; sei
Poissonprozess mit Intensitdt A. W, N und (y;) werden als unabhéngig angenommen
und die zugrundeliegende Filtration sei die von S erzeugte, F; = o(Ss, s < t). Die
Vorstellung ist dabei, dass die Aktienkursentwicklung dS eine stetige Komponente
in Form eines Wienerprozesses mit Drift hat, welche die alltdglichen Marktpreis-
fluktuationen wiedergibt sowie eine Sprungkomponente, welche plotzliche Markt-
reaktionen modelliert, etwa aufgrund unerwarteter politischer oder 6konomischer
Neuigkeiten. Wir 16sen diese SDE mithilfe der Ito-Formel unter Benutzung von

ASt = St—(yt — 1)ANt

dlog S, = S;1dS, — %StZd[Sf] +d Z <log(Ss) —log(Ss-) — ASS)

Se_
0<s<t s

2 A
= ydt — %dt+ath+(yt— 1)dN; +d Z (log ( 5 > — SS)

0<s<t SS_ SS_
0.2

=+ d Z (log(l + (ys - 1)AN3) - ((ys - 1>ANS))

0<s<t

2
- (7 — %) dt + odWy+d Z log(1 + (ys — 1)ANj)

0<s<t

0_2

0<s<t

2 Nt
- (7—%) dt +odW, +d )Y

=1

wobei Y; SN (1t,0?%) von W und N unabhéngie ZufallsgroBen sind. Damit ldsst sich
das Mertonmodell auch folgendermafien formulieren:

St = SO eXt

2 Ny
X, = (v—%)HaWﬁZYi,

1=1

10



Im Unterschied zum BS-Modell ist hier also eine Sprungkomponente in Form ei-
nes zusammengesetzten Poisson-Prozesses zusétzlich zu dem unterliegenden steti-
gen Prozess W hinzugekommen. Die Logreturns sind im Mertonmodell nicht ldnger
normalverteilt; es gilt aber

p (s () <) = S5 o - (s (2)

0 M(\p)i 2
= Z&N ((7 - %) t+i,u,02t—i—i52)
i

1=0

Die Momente von s; := log <S—t) 1= % lauten

2
g
Es = (v — - + A

2
var(s;) = 0% + A6 + A\u®
A(30% 1 + p*)
skew(s;) = (02 4+ AO% + Mpu2)3/2
A(30% + 64202 + pt)

kurt(s;) = 3 +

(0% 202 + Aa2)?

Insbesondere ergibt sich eine negative Schiefe fiir p < 0 und eine Kurtosis > 3
fiir A > 0; dies stellt eine klare Ndherung an empirische Daten im Vergleich zum
BS-Modell ohne Spriinge dar, vgl. Kapitel [ Fiir die Fourier-Transformierte des
Prozesses X; ergibt sich

CbXt(U) — EeluXe — 1u(’7—— Jt—iu oQtEZ H{Nt ) ol Y
_ % 2tz PN, = ) e"(im0=37)
2 2 2 . 2,2
:exp(t<iu(fy—%)—u2a — A4 Aol ))

Damit lautet das charakteristische Tripel von X

n=0
. o2y, 13 2, (/\te
— elu(777)t7§u ot 2 =\t

2
b=y — % + A / wh(z)dN (1, 6)
C =0
v =N (p,6%)

Mertons Ansatz zur Optionsbewertung

Das Merton-Modell ist unvollsténdig (das Risiko von Spriingen kann nicht vollstandig
gehedgt werden). Merton argumentiert dafiir, das Sprungrisiko als systematisches
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Risiko zu betrachten und deshalb beim Mafiwechsel nur die Drift des Wienerpro-
zesses zu verdndern, nicht aber Intensitdt des Poissonprozesses oder die Verteilung
der Sprunghohen. Damit ergibt sich ein &MM analog wie im Black-Scholes-Modell.
Dafiir definieren wir 1 := E(e¥ —1) = ¢#*9*/2 _1 und betrachten die SDE (2.14) in
der Form

Ny
dS; = S;_ (ydt + odW; + dZ(eY" —1))

=1

= S ((7 +nA\)dt + odW; +d (i(eyi —1) — nAt))

=1

wobei M, := S° (e¥i —1) — At Martingal ist, da zusammengesetzte Poisson Pro-
zesse PIID mit endlichem Erwartungswert sind und damit obige Kompensation ein
Martingal ergibt. Andern wir also mittels Girsanov-Transformation die Drift des
Wienerprozesses W auf r — v — An bzgl. eines neuen Mafles Py, d.h. sei

dPy 1, ==
IP }]'-t .—exp(aWt 2a t), a = .

so dass W, := W, — at Standardwienerprozess bzgl. P, ist, dann ist

d(e7S;) = Si_ (0dW, + dM,) (2.15)

und damit ist Py, tatsdchlich AMM.
Liegt nun eine européische Option mit Auszahlung h(Sy) vor, so lasst sich der Preis
bzgl. des Merton-AMM folgendermaflen errechnen. Ist pM der Preisprozess bzgl. Pj;
und 7 :=T —t, so ist

St = I)

p () = e " T Ep. (h(S7)|S; = )

2 Nt
=e "Epy | h Stexp((r—/\n—%)T—FU(WT—Wt)—i— Z Y;))

i=N¢+1

2 Nt
=e " Epy [ R xexp((r—)\n—%)T+J(WT—Wt)+ Z YZ>>>

i=N¢+1

2 NT—t
:efTTEPK/I h | zexp ((r—)\n— %) T+oWp_s + Z Y;)))

i=1

Wir kénnen den Preis der Option im Merton-Modell ausdriicken als gewichtete Sum-
me von Black-Scholes Preisen. Dazu bedingen wir unter der Anzahl der Spriinge,
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die der Aktienkurs macht, und erhalten

2 N-
_ rrZPM r = k)Ep:, (h(xexp((r—/\n—%)T—l—aWT—kZY;))

NT:;{)

e (o {(r- )i

k>0 =1

k>0 k'
k
_ Zeq)\ 0T %]Ep& (h (xk exp ((r — %O’i) 7+ o /TN (0, 1))>>
k>0 )
—y e A ” BS (50 )
k>0

.. 2 _ k52
Dabei sei 0, := /02 + %, Ty = xefH AT+

Fiir die grafische Visualisierung der obigen Ergebnisse gehen wir zunéchst von
folgenden Parametern aus: Zinsrate sei r = 0.05, der Aktienkurs zum Startzeitpunkt
t sei S; = 100, wir betrachten einen Call mit strike K und verbleibender Zeit 7 = 0.5.
Die Sprungparameter im Merton Modell seien A =4, y = —0.3, 7 = 0.5, = 0.1. Wir
kénnen nun den Parameter o, der in beiden Modellen vorkommt, gleichsetzen, d.h.
OMerton = 0Bs. Man mache sich aber bewusst, dass im BS-Modell opsV/t tatsichlich
die Standardabweichung der Logreturns log St angibt, wahrend diese im Merton-
Modell /O Merton? 4+ 282+ Mi? betragt. Setzt man also beide o gleich an, ergeben sich im
Merton-Modell hohere Preise aufgrund der zusétzlichen Quelle von Volatilitdt, den
Spriingen. Daher werden wir in einer zweiten Grafik opg = \/ 02 rerton + NOZ + A2
betrachten.

70
|

60
|

Callpreis
40

30
|

20
|

T T T T T
40 60 80 100 120

strike Preis K

Abbildung 4: Mertonpreise (rot) und Black-Scholes-Preise ( ) einer Calloption
mit obigen Parametern und oggs = 0prerton = 0.3. Die Merton-Preise liegen iiberall
iiber den BS-Preisen.
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Callpreis
40 50 60 70
| | | |

30
|

20
|

T T T T T
40 60 80 100 120

strike Preis K

Abbildung 5: Mertonpreise (rot) und Black-Scholes-Preise ( ) einer Calloption
mit obigen Parametern und opg = \/ T rerton + A%+ A2 mit oprerton = 0.3

2.2.3 Inverse-Gaussian-Prozess

Sei By := W, + 6t Wienerprozess mit Drift § > 0 und 7, ;== inf{t > 0: B, > v} der
erste Zeitpunkt an dem B den Wert v {iberschreitet. 7, ist dann Stoppzeit bzgl. der
von W erzeugten Filtration und es ist B, = v f.s. aufgrund der stetigen Pfade von
W. Weiter gilt aufgrund der starken Markoveigenschaft des Wiener Prozesses

(Brw+t - V)tzo i(Bt)tzo

:>Tt:7-’y+7~—tf’y ‘V’Og’yﬁt

wobei T;_, unabhéngige Kopie von 7;,_, ist. Damit ist 7 PIID und {iberdies rechtssei-
tig stetig (da B stetig) mit linksseitigen Limiten (da 7 monoton wachsend ist) und
7o = 0. 7, ist also unendlich teilbar. Um den charakteristischem Exponenten (und da-
mit das char. Tripel) zu bestimmen, werden wir die Laplace-Transformierte berech-
nen. Dazu betrachten wir fiir u > 0 beliebig den Prozess Z; 1= e®Bi—ut = gaWi—t(u—ad)
Wir wihlen dabei a so, dass der Prozess eine geometrische Brownsche Beweggng
ist und damit ein Martingal, d.h. sei & = /62 + 2u — § (dann ist Z;, = e®Wt=5t).
Anwendung von Optional Sampling auf die beschrénkte Stoppzeit 7., A ¢ ergibt

1 =EZy =EZ, = Ee*Prnumn)
Da B stetig ist, ergibt sich
lim (ozBTWAt —u(Ty A t)) = oy — uty fs.

t—o0
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Wir koénnen beide Gleichungen kombinieren, indem wir mittels majorisierter Kon-
vergenz Erwartungswert und Grenzwert vertauschen und erhalten

1= (Jim Z, ) = e Ee ™™
= Ee™ = o 1(VF7H2u-0)
und damit lautet das char. Tripel

_9J
b= 210(b)

C=0

1 —62
v(de) = y——=a"3% e T dy

V2r

Aus der Laplace-Transformierten kénnen wir auch eine Dichte von 7, errechnen;
_(y=d2)?

diese lautet f. (v) = \/er? e~ 2. Wir bezeichnen den Lévy-Prozess X mit X, <
7, als Inverse-Gaussian Prozess mit Parametern v und 6. Der Name ergibt sich aus
der Definition von 7, als Inverses des Pfades eines Gausschen Prozesses.

Inverse-Gaussian Prozess

Abbildung 6: Pfad eines IG(5,0.2)-Prozesses

2.2.4 Gamma-Prozess

Wir betrachten die Gamma-Verteilung mit Parametern o und 3, gegeben durch die
Lebesgue-Dichte

/80&

_ a—1 —px 1
g(ﬂj) F(O{) T € (0,00)

Die Gamma-Verteilung ist unendlich teilbar, denn es ist

o= (1-7) = ((1 = ) — (Gr(amn(@)"

15



Fiir den zugehorigen Lévy-Prozess X ist X; ~ I'(at, ) mit char. Tripel

«

B
C=0
v =aexp(—Bz)r" 1o )dx

b= —(1—exp(-p))

Dieser Prozess ist ein sogenannter Subordinator. Das ist ein nichtnegativer Lévy-
Prozess, bzw. dquivalent dazu: ein monoton wachsender Lévy-Prozess. Er hat Pfade
von beschrinkter Variation, aber von unendlicher Aktivitdt. So nennen wir einen
Lévy-Prozess, der in jedem Intervall von positiver Lange unendlich viele Spriinge
aufweist.

Gamma-Prozess

20

15

Abbildung 7: Gammaprozess mit « =2, =1

Anwendungsbeispiel 2.9 (Das variance-gamma Modell). Im Folgenden betrach-
ten wir ein Finanzmarktmodell mit Zeithorizont [0, 7] und konstanter Zinsrate r;
es sei iiberdies eine Brownsche Bewegung mit Drift 6 gegeben, d.h. sei B, :== BY :=

0t +oW; mit Standardwienerprozess W. Ausserdem sei X; := X}" ® Gamma (%2, %)—
Prozess (die Parameter wurden so gewéhlt, dass EX; = v, var X; = ¢). Wir model-

lieren die Dynamik eines assets Z durch
Zt = BXt = QXt + O'WXt (216)

Dies ist ein charakteristisches Beispiel fiir eine Klasse von Modellen fiir Fi-
nanzgiiter, bei denen ein Lévy-Prozess durch einen nichtnegativen zweiten Lévy-
Prozess zeitlich skaliert wird. Die Vorstellung ist dabei, dass es am Markt ruhige
Zeiten mit wenig Kursénderungen gibt sowie hektische Zeiten mit raschen Kursédnde-
rungen. Der Prozess X modelliert dabei das (zuféllige) Mafl an ,,Hektik“, das am
Markt vorliegt.

Es ist iiberdies exemplarisch fiir eine etwas andere Modellierungsphilosophie als
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etwa beim Merton-Modell: Dort wurde die stetige Aktienpreisentwicklung des BS-
Modells lediglich mit gelegentlich auftretenden Spriingen ergénzt (man spricht von
einem jump diffusion model mit endlicher Aktivitat). Im Variance-Gamma-Modell
verschwindet die Gauss-Komponente; ein reiner Sprungprozess modelliert die Kurs-
entwicklung. Dieser hat unendliche Aktivitit- es sind also viele kleine Spriinge, die
den Aktienkurs ausmachen (wie oben bereits vermerkt spricht man von einem infi-
nite activity model). In diesem Fall ist eine Diffusionskomponente nicht mehr notig,
da die zahlreichen Spriinge von marginaler Grole bereits das ,, Alltagsgeschaft” am
Aktienmarkt abbilden kénnen.

Die Dichte von Z; bzgl. des Lebesgue-Mafles ergibt sich durch Bedingen unter
X; und anschliefendem Ausintegrieren zu

ao) = [ e (-E ) W ()

oV/2ru 20%u 09T (3)

Dann ist Z; wieder Lévy-Prozess mit charakteristischer Funktion
Ec* = (1 —i66u+ (026/2)u?) "
Die Momente von Z ergeben sich zu

EZ, = 0t
E(Z, — EZ,)* = (0*5 + o)t
E(Z, — EZ,)? = (20°5* + 30%00)t
E(Z, — EZ)* = (30%0 + 120°0%6% + 60*6*)t + (30 + 602076 + 305?)t*

Wir betrachten nun das exp-Lévy-Modell, gegeben durch das Finanzgut S,
Sy = Spexp(mt + Z; — kt)
K=tz (1) =logEe? = —%log (1—686—0%5/2)
bzgl. des subjektiven Wahrscheinlichkeitsmafles P. Setzen wir die Existens eines
aMM P* voraus, so muss bzgl. diesem S die Dynamik
Sy = Soexp(rt + Z, — k*t)
K* = kz (1) =logE, e = —5% log (1 — 6*6* — 0**6%/2)
haben, vgl. dazu auch die spétere Proposition 4.3|

Theorem 2.10. Der Preis eines européischen Calls im VG-Modell mit obigen Pa-
rametern und Restlaufzeit ¢ bzgl. eines AMM P* lasst sich ausdriicken durch

1— C1 ) t
K, t) = 5¥ + )y —, =
p0<SU7 7t) SO (d 5 ,(Ck S) 1 Cla 5)

_Kexp(—rt)\lf<d 1_502,(04—1—5) 0 E)

1—02’5
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mit Konstanten

0

Ciz—g
o

s =

T
a:=(s

d(a+ s) da?

C — C = —
! 2 2T

Dabei ist U(a,b,7) fo (\/La + b\/ﬂ> u”r(lve)’“ du. Die Funktion W ist in geschlos-

sener Fornf7] bekannt, vgl. [§]

Beweis. Es ist po(So, K,t) = e ™ E, (S, — k). Bedingen wir zunichst unter X, = g,
so ergibt sich ein Aktienpreis der Form S = Sy e eWot09=+t Fiir den Callpreis
ist dann

s k0 =5, (1 B0 EY o (0 4 () )

o) o ()e (0

wie eine Rechnung analog zum BS-Modell zeigt. Durch Ausintegrieren ergibt sich
also der unbedingte Callpreis zu

00 t/6— Lo~ g/é
K. t) = K. 1) (Xe= =99 dg
pO(S()a ) ) /0 p0(507 ) ) 5t/5r(t/6)

Nach einer Variablentransformation (y = ¢g/d) und Einsetzen des bedingten Preises
erhalten wir

po(So: K, 1) = /OOO <50(1 ) e B <% +(a+ s)\/é_y) (2.17)
CKe (1 —cy)? 62y®<—+a\/_)> yre ) dy (2.18)

mit y = t/9. O
Setzen wir
' lte

o= oG o)

3Wie in [8] erweitern wir dabei die iiblichen elementaren Funktionen um die Verteilungsfunktion
® der Standardnormalverteilung, da diese innerhalb der Finanzmathematik numerisch sehr gut
erfasst ist und in den Bewertungsformeln omnipréisent
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so ergibt sich (mit der Variablentransformation u = (1 — ¢)y fiir ¢ = ¢; bzw. ¢ = ¢3)

1—

1—c )
—Ke W d\/ 2 \/
€ ( 6 y 1_0277

Die Herleitung eines im obigen Sinne geschlossenen Ausdrucks fiir ¥ ist mit einigem
Aufwand verbunden; wir verweisen auf [g].

1-— )
pg(So;K,t) = SO\I’ (d 601,(Oé+8) p ,’7)
1

3 Einbettung in die Theorie der Semimartingale
und stochastische Analysis mit Lévy-Prozessen

In diesem Kapitel werden wir zeigen, dass Lévy-Prozesse Semimartingale sind (was
stochastische Analysis ermoglicht) und ausserdem Lévy-Prozesse in einfachere Be-
standteile zerlegen. Dies geschieht mithilfe der Lévy-Ito Zerlegung. Dazu fithren wir
zunéchst einige Begriffe ein, welche bekannte Konzepte verallgemeinern und fiir den
Beweis der Lévy-Ito-Zerlegung benotigt werden.

Definition 3.1 (Zufallsmaf). Seien (X,C) und (Y, D) messbare Réume. Dann nen-
nen wir eine Abbildung p: X x D — [0, o] Zufallsma$, falls

i) Fir alle D € D ist  — pu(x, D) C-messbar
ii) Fiir alle x € X ist D — p(x, D) ein Mafl auf (Y, D)

Wir werden nur Zufallsmafle auf (R, x E, B, x &) betrachten, wobei (E, ) =
(R™, BY). Wir haben bereits das fiir uns wichtigste Beispiel eines Zufallsmafles gese-
hen: das Sprungmaf aus Gleichung (2.10). Wir fithren die Bezeichnungen

Q:=QxR, xR? (3.1)
O:=0x8 (3.2)
P=PcB (3.3)

ein und nennen messbare Funktionen bzgl. dieser o-Algebren ebenfalls optional bzw.
previsibel. Weiter definieren wir fiir eine optionale Funktion H : (Q x R, x R?) — R
und ein Zufallsmafl ;1 den Integralprozess

H * piy(w) = {f[O,t]de H(w,s,x)u(w,ds,dr) falls f[(]’t]de |H(w, s, 2)| p(w, ds, dz) <
o0, sonst
(3.4)

Wir nennen einen adaptierten cadlag Prozess X Semimartingal, wenn er eine
Zerlegung der Form X; = Xy 4+ V; + M, zuldsst mit V, € FV adaptiert und cadlag,
M lokales Martingal, My = Vi = 0, Xy Fo-messbar. Ein spezielles Semimartingal ist
ein solches, bei dem obige Zerlegung mit einem previsiblen V' méglich ist. In diesem
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Fall ist die Zerlegung eindeutig. Ein Semimartingal mit beschrinkten Spriingen ist
speziell, siehe z.B. [19] (Seite 258, Example 4.47). Sind die aufsummierten grofien
Spriinge des Prozesses beschriankt, d.h. ist ) _, AX 1{ax,>1) fiir alle ¢ eine kon-
vergente Reihe, so erhalten wir die eindeutige Zerlegung eines Semimartingales

X, = Xo+ Mf+ M+ V, + Z AX T ax,>1)

s<t
t
= Xo+ M{+ M+ V; + / / 21 {zs1y i (ds, dz)
0 JR

wobei M€ bzw. M? der stetige bzw. rein unstetige Anteil eines Martingals M sind.
Fiir einen Lévy-Prozess mit charakteristischem Tripel (b, C,v) ist

Vi =bt
Mtc = C%Wt

und es stellt sich heraus, dass obige Zerlegung immer eindeutig mdoglich ist. Um
dies zu sehen, muss man sich zunéchst klarmachen dass Lévy-Prozesse tatséchlich
Semimartingale sind. Ist Z Lévy-Prozess mit E |Z;| < oo, so ist dies aufgrund der
PIID sofort gegeben, denn es ist

E (Zt - E(Zt)lfs) =E ((Zt - Zs) + ZS“FS) - E(Zt) = Zs - ]E(Zs)

Im Allgemeinen haben Lévy-Prozesse jedoch keinen endlichen Erwartungswert. Be-
trachte etwa einen zusammengesetzten Poisson-Prozess mit Spriingen mit unendli-
chem Erwartungswert. Um zu zeigen, dass auch solche Lévy-Prozesse Semimartin-
gale sind und um einen tieferen Einblick in den Aufbau solcher Prozesse zu erhalten
werden wir im Folgenden die Lévy-Ito-Zerlegung beweisen. Fiir deren Beweis werden
wir zuerst einige Begriffe einfithren miissen. Wir verallgemeinern dazu zunéchst den
Begriff eines Poisson-Prozesses.

Definition 3.2 (Poisson-Zufallsmaf). Sei (S, S, A\) c—endl. Mafiraum, (2, F, P) W-
Raum. Wir nennen ein Zufallsma$i p : 2 x S — [0, oo] Poisson-Zufallsma$ (kurz:
PZM) mit Intensitdt A, wenn u die folgenden Bedingungen erfiillt:

i) Sind Ay, ..., A,, A; € S fiir alle 4, paarweise disjunkt, so sind u(-, A1), ..., (-, Ap)
stochastisch unabhingig

ii) Fiir alle A € S ist pu(-, A) ~ Poi(A(A)).

Dabei sei Poi(0) := dy, Poi(c0) := ds. Wenn der Zusammenhang klar ist, schreiben
wir auch kurz p(A) fir die Zufallvariable pu(-, A).

Wir kénnen ein PZM konstruieren, indem wir zunéchst A als endliches Maf
mit Gesamtmasse ¢ annehmen. Dann seien &1, &, ...iid Zufallsgroflen mit Verteilung
¢ 'XAund L von (&;) unabhéingige Poi(c)-verteilte Zufallsgrofie. Setzen wir p(w, A) :=
Z§:1 O¢;(w)(A) so ist p Poisson-Mafl mit Intensitédt A. Fiir ein o-endliches Mafl A sei
(A;)iz1.. . Partition von X mit A\(A4;) < oo f.a. i. Seien p;,7 = 1,...,n unabhéngige
Poisson-Mafle mit Intensitdt 14,A und g := ). p;. Dann ist g Poisson-Mafl mit
Intensitat A.
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Lemma 3.3. Sei pu Poisson-Zufallsmafl auf (S,S,\) und f : S — R messbare
Funktion. Dann gilt'

i) X = [f(x ) ist fast sicher absolut konvergent genau dann, wenn

(+) / (LA 1F(@))Mdz) < oo
qgilt.

it) Wenn (*) erfillt ist, dann gilt Ee'PX = exp (— [¢(1 — '7@))dX(x)) fiir alle
peR

i) Falls [ |f(z)]d\(z) < o0, soist E(X fs Ist sogar J fz)?dA(x) <
00, so gilt ausserdem EX?* = [, f( 2d)\ (fs ) .

Beweis. Wir beweisen die obigen Aussagen mittels eines Funktlonserweiterungs—

arguments. Sei also f zunéchst elementare Funktion, d.h. f(z) := > 7, a;14,(x)

mit «; € R, (A;) paarweise disjunkte Mengen in & mit A\(4;) < oo. Dann ist

X =37 o;u(A;) fs. endlich (da p(A;) ~ Poi(A(A;)). Sei > 0 beliebig; dann

ist

e 0X HE —ealu(A) Hexp (_(1 P )\(AJ))
1=1

— exp (- > (- e‘eo‘i))\(Ai)>

=1

~ exp (- /3(1 _ e(’f(’”))d/\(x)>

Sei jetzt f > 0 messbar, dann existiert eine monoton wachsende Folge (f,,) elemen-
tarer Funktionen, die punktweise gegen f konvergiert. Dann ist

im [ fu@dute) | = [ fladnt) = X

n—o0

und damit

2o & (e (<0 [ f0)n))) | = 1 (e (<0 [ f@duto)))
= limexp <—/S(1—e_9f"($))d)\(x)) — exp (—/5(1 e 0@ AN (z ))

Ist X = oo fs., so ergibt sich aus obiger Rechnung [ (1 — e @) d\(z) = oo
fiir alle 8 > 0. Ist andernfalls X < oo mit positiver Wahrscheinlichkeit, so muss
Jo(1—e @) dX(x) < oo fiir alle 6 > 0 gelten. Genauer gilt in dem Fall, dass obiges
Integral fiir alle 6 > 0 endlich ist, schon die fast sichere Endlichkeit von X. Um dies
zu sehen stellen wir zundchst mittels majorisierter Konvergenz

éi{r(l) (1 —e Y@)ax(z) =0 (3.5)
= éi\rréexp (/S(l - eef(”‘”))d)\(x)> =1 (3.6)

21



fest. Daraus folgt aufgrund der obigen Rechnung P(X < oo) = 1. Insgesamt haben
wir also X < oo gdw. [((1 — e ®)d\(z) < oo f.a. § > 0. Dies gilt genau dann,
wenn [o(1 A f(z))dA(z) < oo . Ersetzen wir in den vorangegangenen Rechnungen
0 durch 6 — i ergibt sich mit 6 ~\, 0 die Aussage i¢) fiir nichtnegative f. Sei jetzt
f beliebige messbare Funktion mit Positiv- und Negativanteil f* bzw. f~. Wir
schreiben X = X, — X_ mit

X = [ f@dpe(e), psi= (0 {r €S2 (@) 2 0) (3.7)

X = Sf(w)duf(l’)y p = p(-N{res: flz) <0} (3.8)

Dann sind piy, p— PZM mit Intensitat A(- N {f > 0}) bzw. A(- N {f < 0}); da sie
stochastisch unabhéngig sind gilt dies auch fiir X,, X . Damit konvergiert X f.s.
absolut gdw. X, X_ fs. absolut konvergieren. Beachten wir das zuvor Gezeigte
ergibt sich dies gdw. [((1 A |f(z)])dA(z) < oco. Zu ii): X;, X_ sind stochastisch
unabhéngig; in Verbindung mit Aussage i) ergibt sich fiir alle # € R

]E’eiGX — Eei9X+ ]EeiOX_
= exp <—/ (1-— eieﬁ(m))d)\(:v)) - exp (—/ (1-— eief(x))d)\(x))
{f>0} {f<0}

= exp (— /5(1 — eief(x))d)\(x)>

Der Beweis zu i#ii) ldsst sich genauso durchfithren mittels eines Funktionserweite-
rungsargumentes. Alternativ konnten wir-unter etwas stéarkeren Voraussetzungen-
[1], Satz 41.3 5.208 benutzen, der uns ¢ (t) = i* EX* e!*X liefert fiir ¢(t) = Ee'*¥,
k =1 bzw. k = 2. Damit folgt Aussage iii) dann sofort aus i1). ]

Definition 3.4 (Poisson Punktprozess). Sei g lokal integrierbar auf D c R**\{0}
(oder v lokal endliches Maf). Wir nennen einen Prozess (A;);>o in D U {0} Poisson
Punktprozess mit Intensitit g (bzw. Intensitdtsmaf v), wenn

p(w, (a,b] x A) = #{t € (a,b] : Ap(w) € A}, 0<a<b, ACD (3.9)
PZM mit Intensitét A((a,b]x A) = (b—a) [, g(x)dx (bzaw. A((a,b]x A) = (b—a)v(A))
ist.

Einen Poisson-Punkt-Prozess konnen wir folgendermafien erhalten: Seien &1, &, ...
iid Zufallsgrofen mit Verteilung v auf RY — {0}, S, := Y7, & sowie N; von (&)
unabhéngiger Poisson-Prozess mit Parameter ¢ > 0. Dann ist

A {g falls N; = n > N,_

3.10
0, sonst ( )

Poisson-Punktprozess mit charakteristischem Mafl cv. Damit sieht man

Ny
1=1

0<s<t

was dem oben eingefiihrten zusammengesetzten Poisson-Prozess entspricht. Wir be-
trachten im folgenden Lemma ein dhnliches, etwas anders formuliertes Resultat.
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Lemma 3.5. Sei A\ Maf$ auf R — {0}, B € B(R) mit 0 < A\(B) < oo und pn PZM
auf dem Raum

(S,8,n) = ([O,oo) X R, Bjjo,c0) X B(R), dt x A(dx)))

Dann ist Xy = f(f [z xp(ds,dx), t > 0 zusammengesetzter Poisson Prozess mit
Sprungintensitit \(B) und Sprungverteilung A\(B)~'*A(- N B).

Beweis. Aus der Konstruktion des PZM ergibt sich, dass X; endliche Summe ist fiir
alle t > 0 da A\(B) < oo, und damit cadlag. Weiter sind die Zuwéchse von X s.u.;
denn es ist X; — X, = f(s q fB zp(ds,dr) und dieser Ausdruck ist s.u. von (X, )u<s

da p PZM ist. Nach Lemma [3.3]47) ist

EelfXt — o=t [p(1—e'%)A(dz) (3.12)

Dies in Verbindung mit den unabhéngigen Zuwéachsen von X ergibt

. E 10Xy
E(ele(Xt—Xs)) - ]Eew (313)
e'vats
— o~ (t=9) (=€ *")A(dr) _ g oi0Xi—s (3.14)

und damit die Stationaritédt des Prozesses, mit charakteristischem Exponenten eines
zusammengesetzten Poisson Prozesses mit der geforderten Sprungrate und Vertei-

lung, vgl. . O

Lemma 3.6. Seien i und B wie oben und zusdtzlich [, |x| A(dz) < oo. Dann gilt:

i) Der zusammengesetzte Poisson Prozess mit Drift M, := f[o q [ xp(ds, dx) —
t [ xA(dx) ist Martingal bzgl. der Filtration F, := o (u(A) : A € B[0,t] x B(R)).

i) Ist ausserdem [, x*X(dx) < 0o so ist M sogar Lo-Martingal.

Beweis. 1) M ist adaptiert bzgl. F und integrierbar, denn es ist

t
E M| <E //a: ds, dx +t/x>\dm) < 00 3.15
124 (0 B| [ ) B| | A(de) vgl[3:3], ii) ( )

Da EM; = 0 und M stationidre und unabhéngige Zuwéchse hat, ist M somit
Martingal.

ii) Aus Lemma , #ii) (mit f(x) = xlp) und der Voraussetzung [, 2*A(dz) < oo

folgt
E| M+t | zA(dx) 2:IE xu(ds, dx) 2
04 JB ,
:t/B:c2d)\(a:)+t2 (/Bxd)\(:zr)>
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Weiter ist M ein in 0 startendes Martingal, damit ldsst sich auch schreiben

E (Mt +t/x)\(d:v)>2 =EM? +1? (/B wd)\(x))2 +E (2tMt/Ba:d)\(x))

~~
=0

Ein Vergleich der beiden Ausdriicke ergibt EM? = t [, 2?d\(z) < oo, also die
Behauptung.
[

Das obige Resultat ist Beispiel fiir ein allgemeineres Prinzip. In dem Zusam-
menhang spricht man auch von Kompensation eines Zufallsmafles und von A als
Kompensator. Genauer hat man folgendes Theorem, welches wir in dieser Master-
arbeit nicht beweisen kénnen.

Definition+Theorem 3.7 (Kompensator). Sei u optionales, o-endliches Zufalls-
maf. Dann ezistiert ein P-f.s. eindeutiges previsibles Zufallsmafl v (Kompensator
genannt) mit einer der folgenden dquivalenten Eigenschaften:

1. Fiir alle P messbaren Funktionen H mit |H| ju € Al st |[H| xv € Al und
H %y — H x v st lokales Martingal.

2. E(H * vs) = E(H % ps) fiir alle nichtnegativen P-messbaren Funktionen H
auf ()

Beweis. Vgl. [12] O

Wir kommen nun zu einem wichtigen Theorem, mit dessen Hilfe wir Lévy-
Prozesse besser verstehen werden.

Theorem 3.8 (Lévy-Ito). Sei b € R, C positiv semidefinite Matrix in R? x R4, v
sei d-dimensionales Lévy-Mafl. Definiere

1T 1 T iulz T
(u) :=1ib" u — U Cu + /Rd(e —iu h(x) — 1)v(dx) (3.16)

mit h(z) = xlfz<1y Dann existiert ein eindeutiges W-Mafi P auf {2 und ein sto-
chastischer Prozess X, so dass X Lévy-Prozess mit charakteristischem Exponenten
¢ bzgl. P ist. Uberdies ist AX=(AX,);>o Poisson Punkt Prozess mit charakteristi-
schem Maf3 v

Beweis. Es seien
1. W Wiener Prozess in R

2. A von W stochastisch unabhéngiger Poisson Punkt Prozess mit charakteristi-
schem Maf} v

3. C2 Losung von (C2)7Cz = C (existiert, da C' positiv semidefinit ist)
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Wir definieren weiter

XV = 2w, + bt (3.17)

AP = Alga,>1} (3.18)

X2 =3 AP (3.19)
s<t

Dann ist Xt(l) Lévy-Prozess mit charakteristischem Exponenten o™ (u) = ib.u —
%UTCU, A,EQ) ist Poisson Punkt Prozess mit charakteristischem Maf v (dz) :=

Ljz/>137(dx) und Xt(z) ist cadlag PIID, damit Lévy-Prozess. Genauer ist-wie oben
festegestellt- X ® zusammengesetzter Poisson Prozess und hat als solcher den cha-
rakteristischen Exponent

Y3 (u) = /d (""" —1) 1{jz>13v(d) (3.20)
R
Weiter sei
AP = Al gyeny (3.21)

Dann ist A®) Poisson Punkt Prozess mit char. Ma v®(dz) := 1y,<13v(dz) und
ist-da A® und A® konstruktionsgemiB keine gemeinsamen Spriinge aufweisen-
stochastisch unabhingig von A®) (siche Lemma . Wir definieren weiter eine

Familie von Prozessen X*® durch

Xt(a,3) = Z ]1{5<|As|<1}As — t/d $]l{€<|x‘<1}l/(d$) (3.22)

s<t R

Wie oben sieht man, das (Xt(s’?’))tzo Lévy-Prozess ist mit char. Exponenten

P (u) = / (€ —iwz — 1)Lgcpp<yv(de) (3.23)
R4

In integraler Schreibweise ist fiir 0 < n < ¢

t
Xt(n,3) _ Xt(573) — / / xluX(dS,dI) — t/ ﬂ/(daj)
0 Jn<lal<e n<lal<e

wobei uX das zu A gehoérende PZM sei. Es gilt mit Doobs Maximalungleichung und
dem Argument aus dem Beweis von Lemma [3.6] ii)

2
Vivn € (0,) : Esup |[X®9) — XE|* < 4E ‘X}"@ — x5

s<t

= 475/ [* Lgy<pal<cyp(dz) — 0
Rd 5\0

wobei fiir die Konvergenz benutzt wurde, dass v Lévy-MaB ist. Es ist (X% & > 0)
somit Cauchy-Familie bzgl. der Norm ||Y|| := E(sup,«, |Y,|*)2 auf dem Hilbertraum
der zweifach integrierbaren Martingale mit Zeithorizont [0,¢], mit einem Grenzwert
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X®) (man beachte, dass der Wert von ¢ in dieser Argumentation unerheblich ist).
Dieser ist cadlag PIID. Um die PIID-Eigenschaft zu sehen, beachte man dass aus
Lo-Konvergenz f.s. Konvergenz einer Teilfolge (e,) folgt und entlang dieser Folge
Konvergenz in Verteilung. Mittels majorisierter Konvergenz ist dann

E (eiel(xf’)—xf’)) 6102(X§3)—X§3>)>
_ hm E (ei 91 (X’L()5ny3) _qufnﬁ)) ei 92 (Xt(En ,3) _X§5n13))>

3) (en,3)
— limE e 070" E olX%
n

—FEe 191X 3 « e 16X()

woraus die PIID-Eigenschaft folgt. Als charakteristischer Exponent von X©) ergibt
sich durch Grenzwertbildung;:

V& (u) = /Rd (" —iua — 1)1 <yv(dr) (3.24)

Da X ®) messbar bzgl. 0(A®) ist, ist X©®) unabhingig von X ?. Insgesamt ist also
X = XM 4 X® 4 X6 Lévy-Prozess mit char. Exponenten

Y =W + @ 4 O (aufgrund der Unabhingigkeit der Prozesse X ®)

Nach Konstruktion ist A der Sprungprozess des Prozesses X; damit ergibt sich die
letzte Behauptung, nach der AX Poisson Punkt Prozess mit char. Maf} v ist. O

Die im obigen Beweis konstruierte Zerlegung X = XM + X® 4+ X©) bezeichnet
man als Lévy-Ito-Zerlegung. Danach kann jeder Lévy-Prozess zerlegt werden in
einen stetigen Brownschen Bewegungsteil und zwei Sprungkomponenten. Letztere
sind ein zusammengesetzter Poisson-Prozess X ?) sowie ein reines Sprungmartingal
X©) mit Spriingen der Grésse < 1.

In dem Fall, dass die Kompensation in der Definition von Xt(e’?’) nicht notig ist (dazu
spéter mehr), kénnen wir den Grenzwert direkt betrachten und erhalten die géngige

Form
= (C'?W, + bt) + / / X (ds, dx)
|x\>1

(/ /0<|x<1 ds dx) N t/0<|x|<1 x’/(dﬂf))

Insbesondere erhalten wir also, dass Lévy-Prozesse Semimartingale sind und somit
stochastische Analysis angewendet werden kann. Die oben beschriebene Semimar-
tingalzerlegung erkennen wir hier wieder; der rein unstetige Martingalanteil ergibt
sich als Integral iiber das Sprungmafl des Lévy-Prozesses.

Korollar 3.9. Sei ein (b,C,v)-Lévy-Prozess Z gegeben mit Sprungzihlmafprozess
N, (A) := > 1a(AZy). Dann ist N,(A) Poisson-Prozess mit Intensitit v(A) wobei

0<s<t

v das zu Z gehiorende Lévy-Mafs ist.
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Beweis. Mittels Lévy-Ito-Zerlegung erhalten wir einen (b, C, v)-Lévy-Prozess X, so
dass AX; = A, Poisson Punkt Prozess ist; damit ist N, (A) = >  14(AXj,)

0<s<t
Poissonprozess der Intensitit v(A). O

Damit erhalten wir auch die oben bereits erwidhnte Beziehung

v(A)=E ( Z ]]-A(AXS)>

0<s<t
zwischen Lévymafl und Sprungprozess.

Korollar 3.10. Ein Lévy-Prozess mit Charakteristik (b, C,v) ist von beschrinkter
Variation genau dann, wenn

C=0 und /(1 Alz])v(de) < oo

Beweis. Wir betrachten die Lévy-Ito Zerlegung X + X® + X©) Da Brownsche
Bewegungen von unbeschrankter Variation sind, muss der Gauss-Anteil 0 sein, d.h.
es muss C = 0 gelten. X® ist als zusammengesetzter Poisson-Prozess von be-
schrinkter Variation und daher unerheblich. Nun ist [; [ clajer T (ds, dx) < 00

genau dann, wenn f0<‘x|<1 |z| dv(x) < o0, vgl. Lemma In der Lévy-Ito-Zerlegung
fallt damit fiir den Prozess X% = D ect Leciag<yDs — t fpa tlieciai<yv(da) die
Notwendigkeit der Kompensation durch ¢ fRd Tl iccig|<1yv(dz) weg, um den Grenz-
wert fiir ¢ N\, 0 bilden zu konnen. Xt(g) hat dann die Form ngt Lio<|a,<13As —

t f]Rd 21 {o<|z|<13(dx). Dieser Prozess ist aber von beschriankter Variation genau

dann, wenn f0<|z|<1 |z| dv(z) < oo. Da iiberdies v Lévy-MaB ist, ergibt sich die

aquivalente Bedingung

/(1 Alz|)v(de) < oo
wie gefordert. O]

Anmerkung 3.11. In der Situation von Korollar wird héufig eine andere
Abschneidefunktion h gewdhlt (genauer wird h = 0 gesetzt, vgl. die Anmerkung
zur Lévy-Khintchine-Zerlegung). Damit ergibt sich auch eine verdnderte Drift; es
ist dann b’ == b — fRd\{o} x1i_yq(x)v(dr). Man erhdlt dann die sehr anschauliche
Lévy-Ito-Darstellung

t
Z; = b’t+/ /x,uX(ds,dx) =b't+ ZAZS
0o JR =

Der Prozess ergibt sich also aus dem stetigen, deterministischen Drift-Anteil b't und
dem rein unstetigen Sprunganteil. Man beachte, dass wir sowohl b als auch V' als
Driftterm bezeichnen, obwohl dieser Ausdruck eher auf b’ zutrifft.
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Wir kommen nun zu einer hilfreichen Charakterisierung von Subordinatoren,
also nichtnegativen Lévy-Prozessen. Es ist schon angesprochen worden, dass die
Nichtnegativitdat des Prozesses gleichbedeutend ist mit monoton wachsenden Pfaden.
Dies wird unter anderem in der folgenden Proposition gezeigt.

Proposition 3.12 (Charakterisierung von Subordinatoren). Sei Z Lévy-Prozess
auf R mit Charakteristik (b, C,v). Dann sind dquivalent:

i) Zy >0 f.s. fir eint >0
ii) Zy >0 f.s. fir allet >0
ii1) t v~ Z, ist fast sicher monoton wachsende Funktion

iv) Die Charakteristik von Z erfillt

C=0

v((=00,0]) =0

/0 (x A1)v(de) < oo
v >0

Beweis. i) = 1) Trivial.

i11) = ii) Ebenfalls einfach, da aus iii) Z; > Z, = 0 fir alle ¢ fast sicher folgt.

i) = 11): Zunéchst ist Z,, > 0 f.s. fir allen € N, denn esist Z,,; = > 1y Ziv— Zi—1yt.
In dieser Summe sind alle Summanden iid aufgrund der Lévy-Eigenschaft und der
erste Summand ist Z;, welcher nach Voraussetzung nichtnegativ f.s. ist, also trifft
dies auch fiir die Summe zu. Sei nun ¢ = 2 € Q" beliebig. Dann ist > 1", Zg i —
Zg(i-1yt = Znt- Da wir wissen, dass diese Summe von iid Zufallsgroflen nichtnegativ
ist, gilt dies auch fiir jeden Summanden, insbesondere fiir Z,. Ist schlielich r € R*
beliebig, so existiert eine fallende Folge rationaler Zahlen ¢, die gegen r konvergiert.
Aufgrund der obigen Rechnungen ist Z,,, > 0 f.s. fiir alle n, also ist dies aufgrund
der rechtsseitigen Stetigkeit von Z auch fiir Z,, richtig. Da aber r beliebig war, ergibt
sich i1).

i1) = iii) Da Z; — Z5 wegen der Lévy-Eigenschaft von Z die gleiche Verteilung
besitzt wie Z;_ und dieses nach i7) fast sicher nichtnegativ ist, ergibt sich sofort die
Aussage iii)

i1i) = 1v) Da die Pfade nach Voraussetzung nichtnegativ sind, sind sie insbesondere
von beschrinkter Variation. Daher ergibt sich C' = 0 und [(z A 1)v(dz) < oo aus
Korollar [3.10] Da die Pfade wachsen, kann es keine negativen Spriinge geben, d.h.
es muss v((—o00,0]) = 0 sein. Da der Prozess auch wichst, wenn keine Spriinge
vorkommen, ergibt sich fiir die Drift die Bedingung & > 0 wie gefordert.

iv) = 1) Wenn 4v) gilt sind unter anderem die Voraussetzungen dafiir erfiillt,
dass Z Pfade von beschriankter Variation hat. Damit hat Z die Darstellung Z; =
Vt+ ) .«; AZs. Dal/ > 0 und die Spriinge fast sicher nichtnegativ sind, sind somit
die Pfade von Z fast sicher monoton wachsend. O
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Ein bekanntes und grundlegendes Resultat in der Theorie der Semimartingale ist
die Ito-Formel. Wir formulieren diese im folgenden fiir Lévy-Prozesse. Dazu geben
wir zunéchst zur Erinnerung die Ito-Formel fiir Semimartingale an.

Theorem 3.13 (Ito-Formel fiir Semimartingale). Sei X = (X!, ..., X¢) d-dimensionaler
Vektor von Semimartingalen und sei f € C?(R¢). Dann gilt

CORVEOED S (P S MIIR Z [ o e,
) (3.25)

+ Z (f(X a_f AX’“) (3.26)

Fiir einen Beweis vgl. [19]. Wir wenden uns kurz den sogenannten Lévy-Ito Pro-
zessen zu; diese haben die Form

X, = / beds + / C2aw, + / /| ‘>1 1~ (ds, dx) (3.27)

/ /m " (ds, de) ~ tu(z) (3.28)

Dabei seien b und C' previsible lokal beschrénkte Prozesse und ns(z) linksseitig
stetige Zufallsfunktion, fiir die der Prozess

( / l<lm<x>2u<dx>)t20

lokal beschrénkt ist. Der Name dieser Prozesse lésst sich durch die angenehme Ei-
genschaft erkiren, dass Lévy-Ito-Prozesse abgeschlossen unter C2-Transformationen
sind. Genauer ergibt eine Anwendung der Ito-Formel fiir eine C?-Funktion f, ange-
wendet auf einen Lévy-Ito-Prozess der obigen Bauart

FX) - £(X0)
= [ (b gereo s [ (00 nn) = 105 - (@) (K wlan) )

! /XS Csl/ZdWs t Xo_ Jx)) — f(X._)d X ds,dzr) —tv(x
+ [ +/O/M<f< () = F(Xoo) d(u* (ds, d) — to(x))
-/ /| e (a) = ) (s,

so dass sich wieder ein Lévy-Ito-Prozess ergibt.

Betrachten wir die zuvor bewiesene Lévy-Ito-Zerlegung wird sofort klar, dass
es sich um eine Verallgemeinerung handelt, bei der die Koeffizienten b, C' nicht
mehr konstant sein miissen und ein Prozess 1 die Abschneidefunktion h ersetzt.
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Tatsichlich kann man zeigen, dass jedes Semimartingal eine Zerlegung wie in [3.27]
zulésst. Dies geschieht,verbunden mit einigem technischen Aufwand, in [12]. Man
spricht dann von der Semimartingalcharakteristik (b, C,v) (bzgl. n).

Ein bekanntes und wichtiges Resultat aus der stochastischen Analysis ist der
Martingaldarstellungssatz bzgl. eines Wiener-Prozesses, welcher z.B. zur Options-
bewertung in manchen Modellen eingesetzt wird. Ein niitzliches Resultat aus der
Theorie der Lévy-Prozesse ist die folgende Verallgemeinerung, bei der die Darstel-
lung bzl. eines allgemeinen Lévy-Prozesses erfolgt.

Theorem 3.14 (Martingaldarstellung eines Lévy-Prozesses). Sei Z Ré-wertiger
Lévy-Prozess bzgl. der natiirlichen Filtration von Z F;, = o(Zs,s < t). Sei M ein
Martingal bzgl. F. Dann existieren ein R?-wertiger previsibler Prozess H und eine
previsible Funktion G : R x 0 x R — R mit

/t(Hz)st < oof.s.
0

[ [ 166 <o
/Ot /ﬂc|>1 G2(s, x)dsdv(r) < oo

so dass
M, = My + Z/ HidW! + / G(s,z)(u™* — v¥)(ds, dx) (3.29)

Ein Beweis findet sich in dem Paper [16].

4 Lévy-Prozess-Modelle in der Finanzmathema-
tik: Exponentielle Lévy-Modelle

Schon im Black-Scholes-Samuelson Modell generierte ein Lévy-Prozess die zufillige
Dynamik eines assets. Dort ist

= G, = Syt T W (4.2)

Wir wollen zuniichst Modelle betrachten der Form S; = Sy e eX* mit Lévy-Prozess
X und deterministischer Zinsrate r(in diese Kategorie fallen z.B. das Black-Scholes
sowie das Merton-Modell). Alternativ konnte man statt des gewohnlichen Exponen-
tials Xt zur Modellierung das stochastische Exponential £(X), i.e. die Lésung der
SDE dZ; = Z;_dX;, Zy = 1 benutzen. Die folgende Proposition (vgl. hierfiir [26])
zeigt, dass beide Ansétze dquivalent sind. Zunédchst wollen wir aber die genannte
SDE l6sen.
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Lemma 4.1. Sei X (b, C, v)-Lévy-Prozess. Dann existiert genau ein cadlag Prozess
Z, so dass Z Losung der SDE

dZt — Zt,dXt, ZO - 1
1st. Z st gegeben durch

Zy =20 I (1 + AX,) e (4.3)

und wird mit £(X) bezeichnet.

Beweis. Wir definieren

}/;5 = H (1 + AXS> eiAXS

0<s<t

und zeigen zunéchst, dass dieser Ausdruck existiert und Pfade von beschrankter
Variation hat. Dazu zerlegen wir das Produkt in zwei Teilprodukte, definiert durch

Y= [T @+ax,)ess (4.4)
0<s<t,|AX|<5
Yior= [ (Q+AX)e" (4.5)

0<s<t,|AX s[> 5

Das es nur eine endliche Zahl von Spriingen der Groflenordnung > % in einem endli-
chen Zeitraum geben kann, ist Y o fiir jedes ¢ ein endliches Produkt, damit existiert
der Ausdruck und hat beschrankte Pfade. Wegen der Voraussetzung an die Sprung-
grossen ist Y; ; positiv, also konnen wir

logVii= Y (log(1+AX,) - AX,) (4.6)
0<s<t,|AX <2
bilden. Fiir alle nichttrivialen Summanden in der obigen Summe gilt nun die Abschitzung
0> log(l+ AX,) — AX, > —AX? (4.7)

Diese ergibt sich aus der Reihenentwicklung log(l + z) = x — %2 + R(z),|z| < %
mit einem Restglied R, dass sich aus der Taylorentwicklung ergibt und fiir das
|R(x)| < %2 fir € (—0.5,0.5)\{0} gilt. Die Reihe in ist also monoton fallend
und durch — >~ .., AX? nach unten beschréinkt. Da X Lévy-Prozess ist, ist dieser
Ausdruck endlich, denn es ist

t
Z AX? :/ /xQMX(ds,dx)
0

0<s<t

und mittels Lemma [3.3)fiir f(z) = 22 ergibt sich, dass diese Summe konvergiert falls
t
/ (1A z*)v(dz) < oo
0
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was wiederum daraus folgt, dass v Lévy-Maf ist. Somit ex. Y und hat Pfade von
beschrankter Variation. Jetzt konnen wir die Ito-Formel auf 7, = f(¢, X;,Y;) mit
flt,x,y) = "= 30t y anwenden und erhalten

—C
dZt — T eXz—%Ct Y;gdt + eXt—%Ct Y;g_dXt + eXt—%Ct }/t—dY;f

+ %CeXt%Ct Y;dt + eXt*%Ct Y; o eth%Ct Y;g,
o eth%Ct Y;,AXt o eth%Ct AY;?

wobei wir [X¢], = £, [Y¢], = [V, X°]; = 0 verwendet haben. Man beachte dabei,
dass Y reiner Sprungprozess ist und somit dY; = AY; = Y;_ (eAXt(l +AXy) — 1).
Setzen wir dies oben ein, erhalten wir dass Z die geforderte SDE erfiillt. Um die
Eindeutigkeit zu zeigen nehmen wir an, es gebe 2 Losungen, Z(M) und Z®). Dann ist
auch die Differenz 2’ := Z(V) — Z® Losung der SDE mit Z, = 0. Da Z, = [, Z!_dX,
wird Z’ konstant 0 ab jedem ¢ sein, fiir welches Z] = 0 ist, also erhalten wir Zt(l) =
Zt(2) fiir alle £ > 0 und damit die Eindeutigkeit. ]

Proposition 4.2. i) Sei X (b,C,v)-Lévy-Prozess und Z = E(X). Ist Z > 0 f.s.
so eaistiert ein (b, C,v)-Lévy-Prozess X wobei

- Ct
X =log(Z) = X — 5 + > (log(1+ AX,) — AX,)

0<s<t

G—c
P(A) = v({z|log(1 + 7) € A}) = /ILA(log(l + ) (dz)

b=1b— g + / (log(1 4 2)Lj—11(log(1 + z)) — 21— 1y(x)) v(dz)

ii) Sei X (E, 5,5)—Lévy-P7"0zess und S; = eXt. Dann ezistiert ein (b, C,v)-Lévy-
Prozess X so dass S = E(X) wobei

~ Ct AX. ~
Xt:Xt+7+Z<e —l—AXs)
0<s<t

C—C
V(A) = F({z]e" -1 € A}) = /JLA(ez _1)3(d)

~ C
b=T+ S [ DI -1 — ol a(dn)

Beweis. 1) Esist Z > 0f.s. dquivalent zu AX, > —1 fiir alle s f.s. siehe Lemma,
also existiert der Term log(1+AX). Nun wissen wir: ., log(1+AX,)—AX|
konvergiert und ist von endlicher Variation, vgl. dazu den Beweis von Lemma
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i)

. Da X sich aus X durch Angiverung der Drift und der Spriinge ergibt, ist X
Lévy-Prozess mit Gauss-Anteil C' = C. Da AX, = log(1 + AXj) folgern wir

ne((04] x A) = Y 1a(AX) = Y La(log(1 + AX,))

0<s<t 0<s<t

:/[Ot] RILA(IOg(l—i-ZL’))NX(dS?dx)
und
D(A) = / La(log(1 + z))v(dx)

Wir setzen in )Z't = log(Z;) fiir )?t und Z; die jeweilige Lévy-Ito Zerlegung ein
und erhalten so die Identitét

~ t
bt — bt + o + / Tz (ds, dr) + / zpx(ds, dz) (4.8)
04 x[~1,1] [0, % {Ja|>1}

—/ a:u(X)(ds,dx)—/ zpx(ds,dx)  (4.9)
(0,t]x[-1,1] [0,4]x{|z|>1}

— Z (log(14+ AX,) — AX,) =0 (4.10)

0<s<t

Weil
| alglds,d) ~ ux(ds.da)
[0, % [1,1]

= Y (AXL1y(AX,) —log(1+ AX,) 1y y(log(1 + AX,)))

0<s<t

konvergiert konnen wir in Gleichung (4.8) Sprung- und Driftterme separieren.
Fiir den Driftteil ergibt sich

~ C -

b—b+——/ z(v—v)(dz) =0
2 Jiwy

Mittels einer Anwendung des Transformationssatzes (siehe etwa [I], Kor. 13.3)

folgt b, denn

(v — v)(dx)

=b—

l\DlQ NIQ

/ log(1+ )11 (log(1 + ) — a1y ydv(a)
[—1,1]

Es ist AS, = S;_(exp(AX,) — 1). Da fiir einen Lévy-Prozess X mit S = £(X)
dS; = S;_dX; gilt, ist AS; = S;_ AX; und somit AX; = exp(AX;) — 1. Damit
stimmt obige Form fiir v. Insbesondere ist AX; > —1 fast sicher. Man rechnet
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einfach nach, dass das charakteristische Tripel von log £(X) dem von X nur
dann entspricht, wenn X obige Charakteristik hat. Anders ausgedriickt heisst
dies, zu zeigen dass die Charakteristik von X = log.S der von log&(X), =
Xy — 3Ct [Tpeser (1 + AX,) 2% entspricht, was sich sofort aus der Definition
von X ergibt. Mit dem vorangegangenen Lemma folgt dann die Behauptung.

]

Wir beenden dieses Unterkapitel mit einem Lemma und einer Proposition, die
im Zusammenhang mit exp-Lévy-Modellen niitzlich sind.

Proposition 4.3. Sei Z Lévy-Prozess und n so, dass k(n) = logEe"?! < co. Dann
ist e%e=t) ein Martingal.

Beweis.

E (enZt—tn(n) ‘fs) —F (en(zt—ZS) eZs o—tr(n) |]_~s) — | (en(zt—zs)) )
— @NZs ot=9)r(n) o—tr(n) _ nZs—sk(n)

Lemma 4.4. Es ist e ™ S, = Xt Martingal genau dann, wenn

/ e"v(dx) < oo und

|z|>1

C
bl +b+ /(ex —1 =211 q))v(dz) =0

Beweis. Aus Proposition folgern wir, dass (1) = 0 zu zeigen ist. Dies ist aber
gerade die oben angegebene Bedingung. O]

In den folgenden beiden Unterapiteln beschéftigen wir uns mit der Frage der
Existens eines dquivalenten Martingalmafies. Diese ist schon deshalb von entschei-
dender Bedeutung, weil wir damit die Arbitragefreiheit in einem Modell nachweisen
konnen.

4.1 Esscher-Transformation in exp. Lévy-Modellen

Wir wollen uns in diesem Unterkapitel einer populdren Methode zum Mafiwechsel
zu einem dquivalenten Martingalwechsel in exp-Lévy-Modellen widmen. Zunéchst
geben wir eine Proposition von Sato ([23]) an, die wir in dieser Allgemeinheit nicht
beweisen werden.

Proposition 4.5 (Sato). Sei Z (b, C,v)-Lévy-Prozess auf R? bzgl. P. Seien weiter
neRY g:RY— R mit

/ (9)/2 _1Y2p(dz) < 00
Rd

und sei Uy == 1.2° + [ [pa(e9®) —1)d(p? — v7)(dz,dzx). Dann ist E(U), positives
Martingal so, dass fiir das durch 5|F, .= E(U), definierte Maf P folgendes gilt:
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1. Esist P~ P

2. Beziiglich P ist X @7 C,)-Lévy-Prozess mit
v
C
b=b+ /| led(ﬁ— v)(dz) + Cn

eIy
C

Der folgende Spezialfall ldsst sich vergleichsweise einfach beweisen und ist in vie-
len Féllen vollkommen ausreichend, um zu einem risikoneutralen W-Mafl zu kom-
men.

Definition+Theorem 4.6. Sei X d-dimensionaler Lévy-Prozess mit Charakteri-
stik (b,C,v) und Ee?Xt < oo fiir alle t fir ein @ € R Dann ist beziiglich des
Esscher-Mafles Py, defintert durch

dFy el Xt

X weiterhin Lévy-Prozess mit Charakteristik

1
bg =b+ 5(0 + CT)G + /x<e9.m —].)]].[_171] (ZE)V(d.T)
Cyp=0C
vy = e’ v(dx)
Beweis. Es sei (, die analytische Transformierte von X,, wo diese existiert, d.h.

Cu(2) = Ee**« fiir zuliissige z € C. L, ist tatsichlich Martingal bzgl. P, denn nach
Wahl von 0 ist L; £1-Prozess und es gilt vermoge der PIID:

0.X:
E ( e |]__S> = B (X0 X | £, (B 0X) !

E ef-Xt

eQ.XS E<69.(Xt7XS))<t(9>fl
=" G (0)G(0) 7

=" G(0)¢(0) 716 (0) 7 = L

Dass die Zuwéchse unabhéngig und identisch verteilt bzgl. Py sind, ergibt sich
aus der Bayes-Formel:

EPG (eiu.(Xt—Xs)

Fs)
— Ep(LL; R |

= (0 + i) (EP¥1) T E X

Die Charakteristik bzgl. Py ergibt sich aus der letzten Gleichung mit s = 0. O]
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Theorem 4.7. Sei S, = e"+X¢ Preisprozess eines assets in einem Modell mit Zins-
satz r und sei X; Lévy-Prozess. Dann ist die Esscher-Transformation L, = L;(0)
Dichteprozess eines #dquivalenten Martingalmafles P* = P, genau dann, wenn ¢
Losung von ((0) — (0 + 1) = 0 ist.

Beweis. Esist eXt Martingal bzgl. eines iAMM genau dann wenn eXt L, P-Martingal
ist.

Da nach Theorem X; auch bzgl. Py Lévy-Prozess ist, ergibt eine Rechnung
analog zu oben (mit ;¢ als a.T. von X, bzgl. Py)

EP9<eXt |fs> - eXS Ct—s»@(l) (412)

Also ist e** Martingal genau dann, wenn (;_59(1) = (14(1)"° = 1 fiir alle s < ¢; das
ist erfiillt gdw. (14(1) = 1. Nun ist dies wegen

Co(1) = Ep, e = Ep(e® ™1 ¢ (0)™) (4.13)

B X, 1 G@+1)

=Ep(e®M)(0)7" = a0 (4.14)
Il

aquivalent zur zu zeigenden Aussage.

4.2 Arbitragefreiheit der Exponentiellen Lévy-Modelle

Fiir Finanazmarktmodelle ist der Begriff der Arbitragefreiheit entscheidend; diese
ist gegeben, wenn ein AMM existiert. Im obigen Unterkapitel haben wir bereits ein
etwas unhandliches Kriterium fiir die Existenz eines solchen &MM kennengelernt
(vgl. Theorem [4.7). Wir kénnen jedoch schon unter sehr schwachen Voraussetzun-
gen zeigen, dass exponentielle Lévy-Modelle arbitragefrei sind. Offenbar ist dafiir
erforderlich, dass der Prozess X nicht monoton wachsend oder fallend ist (es sei
denn, X ist schon konstant 0), denn andernfalls bestiinden durch long bzw. short
Positionen im Finanzgut S Arbitragemoglichkeiten. In diesem Unterkapitel werden
wir zeigen, dass diese Bedingung bereits ausreichend ist fiir die Arbitragefreiheit
eines Modells.

Dazu werden wir ein entsprechendes Theorem zunéchst fiir Modelle beweisen, in
denen S stochastisches Exponential,d.h. dS; = S;_(rdt + dX;)), ist und dieses Er-
gebnis dann auf das gewohnliche exponentielle Modell {ibertragen. Wir beschrinken
uns im Folgenden auf 1-dimensionale Modelle; im mehrdimensionalen ist der Beweis
erheblich aufwendiger (vgl. [20]).

Theorem 4.8 (Arbitragefreiheit in stochastischen Exponential Modellen). Sei S
Losung von dS; = S;_(rdt + dX;), wobei X (b, C,v)-Lévy-Prozess im Zeitintervall
[0, 7] sei bzgl. eines filtrierten W-Raums (€2, (F;)¢>0, P). Dann sind dquivalent:

1. Es existiert P* ~ P so dass X bzgl. P* Lévy-Prozess und Martingal ist (damit
ist insbesondere e~ S; Martingal bzgl. P*)

2. Esist X = 0 oder X ist weder monoton wachsend noch monoton fallend P-f.s.
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3. Es gilt eine der folgenden Bedingungen

i) C>0
ii) C'=0 und f|m|§1 |z| dv(z) = 00
iii) ¢ = 0, f|m|§1 |z| dv(z) < oo und es kann positive und negtive Spriinge

mit positiver Wahrscheinlichkeit geben oder Drift und Spriinge haben
unterschiedliche Vorzeichen, d.h.

v((—00,0)) > 0,v((0,00)) > 0
oder

v((—=00,0)) > 0,0 >0

oder

v((0,00)) > 0,0 <0

oder

v=0,0=0

mit ' :=b— fxgl || dv(x)

Beweis. Ohne Einschréinkung sei X # 0.

2. & 3. Dies folgt aus Proposition [3.12] und einer entsprechenden Aussage fiir mo-
noton fallende Lévy-Prozesse.

1. = 2. Diese Folgerung haben wir oben bereits mit einem Arbitrageargument
erlautert. Ist X f.s. monoton bzgl. P, so auch bzgl. dem dquivalenten Mafl P*; da X
Martingal bzgl. P* ist, ist X somit f.s. konstant, als Lévy-Prozess also konstant 0.

3. = 1. Wir gehen so vor, dass wir 2 Mafiwechsel durchfiihren; der zweite wird eine
Esscher-Transformation sein. Zunéchst sei P das dquivalente Maf}, welches durch

e ([ o)

gegeben ist. Beziiglich P ist X (b, C,7)Lévy-Prozess mit 7 := ¢ * v, b 1= b +
flx\ < z(e™** —1)v(dz) (vgl. die Prop. von Sato). Betrachte die konvexe reellwertige
Funktion g(A) := Ep (e**). Finden wir ein A*, welches g minimiert, so ist (mit-
tels majorisierter Konvergenz) Ep (X;eY*1) = 0 notwendiges Kriterium fiir die
Minimalstelle. Betrachten wir dann die Esscher-Transformation

dP* et Xt

P T B
so ist bzgl. P* X ein Lévy-Prozess mit E*X; = 0 und damit ein P*-Martingal. Wir
miissen allerdings noch zeigen, dass so ein A* existiert. Aufgrund der Konvexitét von
g reicht zu zeigen, dass g(\) 7 oder f(A) :=1log(g(\)) = SA?+bA+ [ (X —1—

—00
)\xlmgl)e_wz dv(x) 2 oo Gilt i), so ist f”(A) > C > 0 und f(\) 00 folgt.
—00 —00
Ist ii) gegeben, so ist f'(A\) = b+ flx|>1 ze v(dr) + [ x(e? 1) e dy(z) damit
limy .1 f'(A) = oo also f(A) ! Ist schlielich iii) erfiillt, so ist f'(\) =
—00

b+ [px M o dv(z). Jede der obigen oder-Bedingungen reicht aus, damit f’ nach
unten hin beschrénkt ist und damit die Behauptung folgt. O]
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Korollar 4.9. Sei X (b, C,v)-Lévy-Prozess auf [0,T|. Dann sind dquivalent:

1. Es existiert ein W-Maf P* ~ P so dass X bzgl. P* Lévy-Prozess ist und eX
Martingal.

2. Fsist X =0 oder X st bzgl. P* nicht f.s. monoton
3. Es qgilt eine der folgenden drei Bedingungen
(a) o >0

(b) o =0 und fmgl
(c) o =0, f|£E|S1 |z| v(dz) < oo und

|z| v(dz) = 0o und

v((—00,0)) > 0,v((0,00)) >0
oder

v((—00,0)) > 0,0/ >0

oder

v((0,00)) > 0,0' <0

oder

v=0,b=0

Beweis. Wir zeigen: log(€(X)) ist monoton gdw. X monoton ist. Die Behauptung
folgt dann sofort aus obigem Theorem. Der Prozess £(X) ist von endlicher Variation
gdw. dies fiir X zutrifft; in diesem Fall hat £(X) die Form

EX)=e"TJ(1 +AX,) (4.15)

und damit log(£(X)) = V't + >, ., log(l + AX;); dieser Prozess ist monoton gdw.
X monoton ist. - [

Sei nun eine européische Option gegeben, d.h. ein asset mit Auszahlung h(S7)
zu einem fest vorgegebenem Zeitpunkt T'; h ist hierbei die (messbare) Auszahlungs-
funktion. Wir gehen von der Existenz eines iAMM P* = Py aus wie in[4.7]und fordern
ausserdem die P*-Integrierbarkeit von h(Sr). Fiir den Werteprozess V; dieser Anlage
gilt bekanntermafien V; = e Ep«(e™"T h(ST)‘}}). Wir erhalten

Vi = Eg (e7 "0 h(Sr) | F)
_ TR (h(ST)%\]-})
t

Bayes
(T St o\ Lr
= t)E(h(ESt)E‘]:t>

i (T—t) HT—t) (Zr—74) 71 =2)
=e E ((h(St [§] e\wT— 4t ) _(E 692—1)T_t }ft)

(T—1) (T—t)+Z o
_ ar(T— r(T—t)+Z1 ¢
ZPID © E <h (ue ) EQGZTt>

St=u
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Wir betrachten im folgenden Unterkapitel noch die Mo6glichkeit, mittels eines
Differentialgleichungsansatzes Optionen in exp-Lévy-Modellen zu bewerten.

4.3 Integro-Differential Equation Ansatz zur Bestimmung
des Wertes einer europiischen Option

Sei nun Y; := log (e""= S,) und p(y, t) := e "T=H Ey(h(e¥**7-1); ausserdem sei die
Esscher-Transformation Py dquivalentes Martingal-Maf. Dann ist V; = p(Y;,t) und
wir konnen- unter Regularitdtsannahmen-hoffen, mittels Ito-Formel eine IPDE fiir
die Derivatbestimmung zu erhalten. Sei also p € C®!) und sei R Tréiger von X,. Es
ist Y; = log(Soy) + rT + X;. Nach Annahme ist der abdiskontierte Prozess (e™" V)
Py-Martingal. Ito-Formel liefert:

de™V,) = —re " Vidt + e " dV,

1
=—re " Vdt +e" (atp(Yt_, t)dt + 0,p(Y;_, t)dY; + 5ajp(m_, t)d (Y, Y,
+/ (p(Yie +u,t) — p(Yi_, t)u — 9,p(Yi_, t)u)) ¥ (du, dt))
R

wobei p¥ Zufallssprungma$ von Y ist. Nun gilt offenbar

AX =AY
1K=
dX =dY

d(Y° Y =d(X° X
Damit erhalten wir
dle ™ V;) = —re " Vidt
+e " (&p(Yt_, t)dt + 0,p(Y;-, t)dZ; + %éﬁp(Yt_, t)edt

+/R (p(Yt— + u,t) = p(Yi—, t) — 0up(Yie, t)U) p (du, dt))

Wir konnen den obigen Term in Martingal- und FV-Anteil aufteilen. In differentieller
Schreibweise ist der previsible FV-Anteil gegeben durch

1
e (Yo, t)dt + e <atp(Y;_, t)dt + 0,p(Y;—, t)bdt + 565])(3/}_, t)cdt
+/ (p(Y;tf + u, t) - p(th,, t) - ayp(Kfa t)”) VX(du7 dt))
R

wobei vX (du, dt) = v(du)dt Kompensator von p~ ist. Da der abdiskontierte Preispro-
zess V¥ = e "V, Martingal ist, muss dieser Anteil verschwinden. Damit folgt die
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Integro-Partielle Gleichung
1
rp(y.t) = Oip(y. t) + dyp(y, )b+ 59;p(y, t)e

+ /R (p(y +u,t) = ply,t) — Oyp(y, t)u> v(du)
h(e) =p(y,T) fa. z € R,t € (0,7T)

5 Berechnungsmethode mittels Fouriertransforma-
tion (nach Carr/Madan)

Bevor wir uns etwas komplexeren Modellen widmen, wollen wir noch kurz auf eine
populdre Methode zur Bewertung (und numerischen Berechnung) von européischen
Call/Put-Optionen in exp-Lévy-Modellen eingehen. Die Relevanz solcher Bewertun-
gen ergibt sich sofort aus der Notwendigkeit der Kalibrierung von Modellen, und
dies geschieht am einfachsten durch Anpassung der Modellparameter an am Markt
ablesbare Preise wie etwa fiir europ. Optionen. Ein hilfreicher Ansatzpunkt ist es,
mit Fouriertransformierten zu arbeiten, da diese durch die Lévy-Khintchine-Formel
bereits gegeben sind. Sei Sy = 1. Wir wollen eine européische Call-Option mit ma-
turity 7 bewerten, also haben wir die Auszahlung (e"? 7 — K)* risikoneutral zu
bewerten. Wir benotigen im Folgenden eine Zusatzannahme an die Momente von
Xr; ist gr die risikoneutrale Dichte von X so gelte

() Ja>0: / gr(s) e % ds < 0o (5.1)
Wir wiirden nun fiir die Callpreise C'(k) := e "7 E* ((eTT+XT —ek)+> una'chst
die Fouriertransformierte in k£ bestimmen und dann mit Fourierinversion arbeiten;
da aber C(k) T e"TTXr = 1 ist C(k) nicht integrierbar, daher betrachten
——00

wir die kompensierte Funktion Z(k) := C(k) — (1 — e* )™ und deren Fourier-
transformierte 3(u) := [~ e'** Z(k)dk. Da e™"T ¢"TTXT bzgl. P* Martingal ist, gilt
E* (e7T ("7t —e¥) 1y,r) = (1 — e7T)" daher konnen wir den Kompensati-
onsterm in das Integral hineinziehen und haben

Z(k) = e”T/ gr(x) (erT” — ek) 1 r<k<rTrayde (5.2)

[e.9]

Wir verwenden diesen Ausdruck und vertauschen die Reihenfolge der Integration
(hierfiir benotigen wir (

— —TT/ / TT-HL‘ — ek) ﬂ_{rT<kng+x}dl’ﬂdk
z+rT
=e / gr(z )/ ol uk (erT-i-x o ek) dkdr

T

/oo ( ) eiurT<1 _ em) ertiurT N e(iu+1)z+iurT p
—= €T _— xr
LT fu+ 1 fu(u+1) | du(iustl)

4Wir arbeiten mit k := log(K), weil das in den Rechnungen Platz spart
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zu erhalten. Die ersten beiden Terme in der obigen Klammer ergeben sich sofort

wegen [* gr(z)e”dr =1 (da ¢** Martingal) zu 0 bzw. —% Fiir den dritten
Term ist
0 e(iu-l—l)a:—i—iurT elwrT 0 (ut1)
d — 1u x d
[ o Sy = iy
eiurT
- eiu+1
Gutia syt
eiurT '
= e Oxp (0 — )

(uliu+1))

also haben wir insgesamt

_ JdurT ¢XT(U B 7’) -1
3u) =e fu(iut 1)

Mittels Fourierinversion (moglich wegen (x)) ergibt sich

Z(k) = = /OO e~ 1 3 () du

:% N

Dieser Wert lédsst sich mittels numerischer Verfahren ndherungsweise ermitteln.

6 Zwischenfazit und Stochastic Volatility Modelle

Bisher haben wir uns vor allem mit exponentiellen Lévy-Modellen der Form S; =
e e”t beschiftigt. Diese sind zwar mathematisch sehr gut handhabbar, allerdings
konnen sie nicht am Markt beobachtbare Effekte wie Volatility Clustering abbilden.
Dies ergibt sich sofort aus der zeitlichen Homogenitét von Prozessen mit unabhéngi-
gen und identisch verteilten Zuwichsen. Wir wollen daher im Folgenden Modelle
betrachten, die diese empirisch beobachtbare Inhomogenitéit einbeziehen koénnen.
Diese sind die sogenannten Stochastic Volatility Modelle, bei denen die Volatilitét
des Aktienkurses selbst surch eine SDE gegeben ist. Ein sehr bekanntes Modell in
dieser Kategorie, das Heston-Modell, ist gegeben durch die SDE

dSt = St(ﬂdt + Utths)

do? = &(n — o?)dt + 0odW;

<Wts7 th> = pdt
wobei W*, W7 Wiener Prozesse seien. Im Vergleich zum klassischen BS-Modell ist
hier also eine nichtdeterministische Volatilitdt o; in Form eines Cox-Ingersoll-Ross
Prozesses aufgetaucht. Wir wenden uns aber stattdessen gleich dem Modell von

Bates zu; dieses vereint Hestons und Mertons Ansétze in einem einzigen SV-Modell,
gegeben durch

dSy = Si_ (pdt + o dW; + dZ;)
do? = &(n — o?)dt + 0odW,?
(W7, W*), = pdt
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wobei Z von W?, WX unabhéniger zusammengesetzter Poisson-Prozess mit Inten-
sitdt A ist und lognormalverteilten Spriinggréflen, genauer sei fiir die Sprunggrofien-
variable K

log(l+K)~N (log(l +k)— %52, 52>

fiir Parameter 0 und k. Im risikoneutralen Fall ist der Parameter u festgelegt durch
i = r — Ak. Wir kénnen natiirlich auch hier wieder das Modell in der Form S; =
So eXt aufstellen; die Dynamik von X ist dann gegeben durch

1
dXt = (7" — Ak — §O-t) dt + O'tdW ‘I— dZt

wobei Z zusammengesetzter Poisson-Prozess mit Intensitéit A und Gausschen Sprung-
grofen ist (das geht so, wie wir es oben schon beim Merton-Modell getan haben).
Wir kénnen die charakteristische Funktion von X berechnen (um z.B. Optionen zu
bewerten), indem wir getrennt die char. Funktionen des stetigen und des Sprungan-
teils berechnen; da diese unabhéngig sind, lésst sich die Gesamtfunktion anschlieBend
multiplikativ aus diesen beiden zusammensetzen. Die c.F. der Sprungkomponente
ergibt sich einfach als

¢} (u) = exp (U\ <6_52“2/2+i(1°g(1+k)_%5% _1>> (6.1)

Fiir die c.F. von X¢ miissen wir mehr arbeiten. Wir werden ¢¢ als Ldsung ei-

ner bestimmten DGL erhalte. Sei dafiiv f(z,u,t) := E (e'*7 | X; = 2,0} = u) und
M, := f(Xf, 0% t). Eine Anwendung von Itos Formel liefert

(1 a2f an 2262f of af of

+ \/ﬂ—de + W&—dWU
ox ou

Da nun M Martingal ist, muss der Driftteil verschwinden. Wir erhalten eine DGL

2f 1., 9%f of 2 Of Of
Uamgn + 2P0 (1 M= g) g e =l g+ Gy =0

O

3Gz T PO

mit Endbedingung f(z,u,T) = e'“*. Wir vermuten eine Losung der Gestalt
f(z,u,t) =exp (AT —t)+rB(T —t) +iux)

mit Funktionen A, B im Zeitparameter t. Setzen wir diese Gestalt in die obige DGL
ein, erhalten wir das Differentialgleichungssystem

B(s) = %9232(3) (i phul) B(s) — - . Lu

Al(s) =&nB(s) +iu(r — k) (6.3)
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mit A(0) = B(0) = 0. Dieses lésst sich l6sen durch
u? +iu

_vcoth(§) + ¢ —ipbu

A(s) =ius(r — k) + M — 22—727 log (COSh (?) + @ sinh <§>)

B(s) =

v o= /02(u2 +iu) + (€ —iphu)?
Also erhalten wir die c.F. von X durch ¢ = ¢’ - ¢°.
Die Bewertung von Optionen in diesem Modell ist aufwendiger als etwa im BS- oder
Merton-Modell. Am einfachsten Durchzufiihren ist ein Ansatz wie im vorangegan-
genen Kapitel mittels der Fouriertransformiertenmethode.

7 Das Modell von Barndorff-Nielsen/Shephard

Wir wollen uns in diesen abschlieSfenden Kapiteln noch einem weiteren Modell wid-
men, welches uns zur finanzmathematischen Modellierung besonders geeignet er-
scheint. Es verbindet mehrere wiinschenswerte Eigenschaften und ist hervorragend
dazu geeignet, den im ersten Kapitel gemachten Krititpunkten am BS-Modell zu
begegnen.

Im klassischen Black-Scholes Modell liegt die stoch. DGL

dSt = St(,udt + O'th)

vor mit konstanter Volatilitdt . Im BNS-Modell hingegen ist die Volatilitat stocha-
stisch (wie in den Modellen von Bates und Heston), gegeben durch eine SDE
do} = —\oidt + dZy (7.1)

wobei Z der sogenannte background driving Lévy process (BDLP, wir sprechen auch
vom treibenden Lévy-Prozess) ist und im folgendem als Subordinator (d.h. ein Lévy-
Prozess mit nichtnegativen Zuwéchsen) angenommen wird. Dabei seien der Wiener-
Prozess W und der BDLP Z stochastisch unabhéngig und die zugrundeliegende
Filtration die von (W, Zxt)i>0 erzeugte. Mithilfe der Ito-Formel ergibt sich fiir X; =
log(.S¢) nach Hinzufiigen des Terms pdZy,

1
dXt = ('LL — Eaf)dt ‘I— Utth + deAt

p sei nichtpositiv und steht fiir den sogenannten leverage-effect; dieser tragt der
Beobachtung Rechnung, dass fallende Kurse oft mit steigender Volatilitdat am Markt
verbunden sind. BNS betrachten schlielich etwas allgemeiner

dX, = (u+ Bo?)dt + o, dW, + pdZ,

mit 3 € R. Mittels Ito-Formel ergibt sich auch sofort die Dynamik von S, = e*
durch

dSt = St— (btdt + Utth + d ( Z (epAZAs _1) _ )\/{(p)t)>

0<s<t

be = 1+ M(p) + (/3+ %) o
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Der Prozess o, ist ein nicht-gau8scher Ornstein-Uhlenbeck Prozess mit o2 > 0.
Wir geben im folgenden Unterkapitel einen Existenzssatz fiir diese Art von Prozess
an und zeigen die Verbindung zwischen diesen Prozessen und der Eigenschaft der
Selbstteilbarkeit. Wir werden im Folgenden 3 zusétzliche Annahmen an den BDLP
Z stellen; diese werden uns erlauben, mit der Kumulante von Z zu arbeiten.

Zusatzannahmen an den Subordinator 7

1) Z hat keinen deterministischen Drift und v# hat Lebesgue-Dichte w, so dass

k(0) :/R (e —1)w(x)dz (7.2)

2) 0 <6 :=sup{f € R: k(h) < oo}

3) lim, 4 K(0) = o0

7.1 Selbstteilbare Verteilungen und OU-Prozesse

Definition 7.1. Eine Verteilung @ heifit selbstteilbar (engl. selfdecomposable), wenn
fiir die Fourier-Transformierte ¢ dieser Verteilung gilt: Fiir alle d € (0,1) existiert
eine Fouriertransformierte ¢4 einer Verteilung Qg, so dass ¢(u) = ¢q(u) - ¢(du). Eine
Zufallsgrofle X mit Verteilung () nennen wir entsprechend selbstteilbar, wenn () dies
ist.

Selbstteilbare Verteilungen sind unendlich teilbar. Genauer ist eine unendlich
teilbare Verteilung P mit Lévy-Mafl v genau dann selbstteilbar, wenn v(dx) =
u(z)dz fir eine Funktion u so, dass |z|u(z) monoton wachsend auf (—oo,0) ist
und monoton fallend auf (0, 00) ist ( vgl.[23], Corollary 15.11).

Theorem 7.2 (Darstellungssatz fiir selbstteilbare Zufallsvariablen). Eine Zufalls-
variable X ist selbstteilbar genau dann, wenn eine Darstellung

X = / et dZ, (7.3)
0

mit einem Lévy-Prozess Z existiert. Fiir die Lévy-Mafle 4 und v von X bzw. Z gilt
dann die Identitét

p(dx) = /000 v(e dx)dt (7.4)

Beweis. Vergleiche etwa [13] oder [23], Kapitel 17. O

Lemma 7.3. Fir die Kumulanten von X bzw. Z in Theorem (7.9 gelten die Bezie-
hungen

ex(w) = [ " (e w)ds = / sy (75)

Okx(u)
ou

kz(u) =u (7.6)

44



Beweis. Die Aussage lasst sich mithilfe der in Unterkapitel [9.1] aufgestellten Berech-
nungsformel sowie dem obigen Darstellungssatz leicht beweisen.

rkx(u) = log Ee"X Thnélﬁ]lo,g_gl[:iieufooo e™" dZ;
_ lOg efooo kz(e tu)dt

o0

Lemma 0.1 kz(e " u)dt

+mon.Konv. 0

u
Variablenwechsel -1
= / kz(y)y di
0

Die zweite Aussage ergibt sich aus der ersten sofort durch Anwenden des Hauptsatzes
der Differential- und Integralrechnung auf den Term a% fou kz(y)y tdt.
[

Theorem 7.4. Sei ¢ die charakteristische Funktion einer Zufallsvariablen Y. Ist YV
selbstteilbar, so existiert fiir alle A > 0 ein stationérer stochastischer Prozess (Y;):>o
und ein Lévy-Prozess (Z;):>o der stochastisch unabhéngig von Y ist, so dass

v, LY
t
Y; — e—)\th +/ e—)x(t—s) dZ)\s
0

Umgekehrt gilt: Ist Y; stationérer Prozess und Z Lévy-Prozess, s.u. von Yj, so dass
Y, Z obige Gleichung fiir alle A > 0 erfiillt, so ist Y; selbstteilbar.

Beweis. Siehe etwa [23], Kapitel 17. O

In unserem Fall ist 02 = Y;; es sei D die Verteilung der Zufallsgrofe Y in obigem
Theorem. 02 wird dann als D-OU Prozess bezeichnet; nimmt man stattdessen Z; ~
D spricht man von einem OU-D Prozess. Beachte: Die Verteilung von o2 héingt nicht
von A ab. Die Lésung der SDE (7.1)), gegeben durch

o2 = exp(—\t) (XO + /0 t exp()\s)dZ)\s) (7.7)

hat nach Integration die Form

. t
O_tQ,znt — / U?ds _ )\71(1 _ ef/\t)ag _'_/ )\*1(1 — e*A(th))dZAs (7.8)
0 0

Beispiele fiir selbstteilbare Verteilungen sind obige IG und Gamma Verteilung, die
beide zur Klasse der GIG (Generalized Inverse Gaussian) gehoren.

7.2 2 Spezialfille: Gamma-OU und IG-OU Prozesse

Wie oben angekiindigt spielen diese Prozesse fiir uns eine besondere Rolle. Fiir
D = IG(a,b) sei k2(0) = logE(e?) und #(6) := 0% () ist die Kumulante von
Z1. Wegen r'%(0) = ab — b(a® — 20)Y/? ergibt sich x() = 6b(a®> — 20)~'/? und
w(z) = #ﬂx_gn(l + a2z) e 27T,

Ist D = T'(a,b) so ergibt sich x(#) = ;%% und w(z) = abe **. In beiden Féllen sind
die obigen Zusatzannahmen erfiillt.
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8 Strukturerhaltende AMMs im BNS-Modell

Das BNS-Modell ist arbitragefrei, aber wie die SV-Modelle, die wir zuvor kennenge-
lernt haben, unvollstandig. Es existieren ndmlich (im Allgemeinen) sehr viele dquiva-
lente Martingalmafle im BNS-Modell. Um Derivate (risikoneutral) zu bewerten, wird
wie gewohnt ein Maflwechsel zu einem dquivalenten Martingalmafl durchgefiihrt. Al-
lerdings werden nicht alle iMM’e als geeignete Maflwechsel betrachtet; die Struktur
des Prozesses soll erhalten bleiben, insbesondere soll Z; unter einem aMM P* Lévy-
Prozess bleiben. Dies wird in diesem Kapitel aufgefiihrt. Wir geben dabei das Paper
von Nicolato/Vernados ([20]) in weiten Teilen wieder. An einigen Stellen werden
Resultate aus [I2] verwendet, insbesondere eine allgemeine Version des Satzes von
Girsanov fiir Semimartingale.

Sei im Folgenden M die Menge der AMM im BNS-Modell.

Theorem 8.1. Sei P* € M. Dann gilt

dP*

Ly :=——
LT 4P

7= EH W+ (Y = 1)+ (7 = v7)),

Wobei H previsibler Prozess sei, Y = Y (w,t,z) strikt positive previsible Funktion

" /Ot /]R+<\/m —1)?w(z)dsdr < 0o P-fs.

und p” bzw. v7 das ZufallsmaB der Spriinge von Z bzw. dessen Kompensator seien.
Uberdies gilt

A+ (5 + %) of + o H; + A/R Y(t,z)(e” —w(x)de =7 (8.1)

+

P ® dt-fs.

Beweisskizze. Mittels Standardresultaten aus der stochastischen Analysis wissen
wir, dass Ly = E(M), gilt fir ein Martingal M. Fiir dieses existiert wegen des
Martingaldarstellungssatzes |3.14] eine Darstellung

H-W4+ (Y —1)* (p? —v%)

wie gefordert. In [12], §§3,5a wird (mittels einer Version des Satzes von Girsanov
fiir Semimartingale) gezeigt, dass W} := W, — fot H.ds bzgl. P* Wiener Prozess ist
und

vZ = vl (w,dt,dr) = (Y *v)(w,dt,z) = \Y (w, t, 2)w(z)dzdt (8.2)

*

Kompensator des Sprungmafles uz bzgl. P*. Mit der Ito-Formel ergibt sich beziiglich
P*

dSy = S, (b dt + o, dW +d((e”” —1) x (u? — v¥)) (8.3)

wobei .
B =t (64 300+ o4 [ Vit a) @ (o (8.4)
Da P* aMM ist e~ .S, P*-Martingal und damit b} = r. O
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Beim Maf3wechsel kann der unerwiinschte Nebeneffekt auftreten, dass unter dem
neuen AMM Z kein Lévy-Prozess mehr ist. Daher betrachten wir die Menge M?
der &MM, unter denen weiterhin ein BNS-Modell vorliegt. Wir charakterisieren
die Menge M?® im Folgendem durch Funktionen y : R, — R, die fﬂh(\/y(x) —

1)?w(x)dr < oo erfiillen und nennen deren Gesamtheit S. Wir definieren weiter
wY(z) = y(zr)w(z) fir y € S und £Y(0) := fR+ (e —1)w¥(x)dx fiir Re(d) < 0 (be-
achte fR+(1 Az)wY(z)dr < o). Ausserdem halten wir fest, dass E((y—1)* (u? —v%))
ein Martingal fiir alle y in S bildet.

Theorem 8.2. Sei y € S. Dann erfiillt H, :=o0; ' (r — p— (B + 3)o? — Ax¥(p))

P(/OTdes<oo) =1 (8.5)

LV=&8H W+ (y—1)x*@p?—-v%)), ,0<t<T (8.6)
ist ein Dichteprozess. Dann ist dP; = LY.dP ein &MM mit Dynamik

und

1
dX; = (T — Aw?(p) = 5‘7?) dt + o dW{ + pdZ (8.7)
do} = —\opdt + dZy (8.8)

mit Wiener Prozess W/ := W, — fot Hgds bzgl. Pyund Zy; ist Lévy-Prozess bzgl P;.
Dabei hat Z; Lévy-Dichte wY(x) und Kumulante x¥(f) wie oben und WY Z sind
stochastisch unabhéngig unter ;. Insgesamt ist also P; € M®. Umgekehrt existiert
auch fiir alle strukturerhaltenden &MM P* eine Funktion y in § so dass P* und P
iibereinstimmen.

Beweis. Die Integrierbarkeit von H? folgt aus

_ 1
O't2 > 0'(2] exp(—)\t) >0 vgl " = 0y 2 < mvt (89)

Also definiert LY tatsichlich ein Supermartingal. Da W, Z unabhingig sind ist ins-
besondere [H - W, (y — 1) * (u? — v%)] = 0. Mit Yors Formel folgt also

EH-W+(y— 1) (u? =v7))e = E(H - W)E((y — 1) * (u” — v7)), = 19t (8.10)

somit ist LY sogar Martingal und damit Dichtequotientenprozess des oben definierten
Py. Sei nun (b, C¥, 1) Charakteristik von W; — f(f Hyds + Zyy = WY + Z,; unter
P;. Dabei nehmen wir als Abschneidefunktion h = 0, da Z als wachsender Prozess
von beschrinkter Variation ist. Mit Girsanov (oder mit der Proposition die wir
hier aufgrund der Gestalt von y verwenden diirfen) folgt

by =0
cy =t
V(dx,dt) = w¥(x)dxdt
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Also ist WY + Zy; Lévy-Prozess, WY ist Wiener Prozess, Z Lévy-Prozess mit Dichte
w¥(r) ohne Drift und W¥, Z sind stochastisch unabhéngig unter P;. Die Dyna-
mik von X unter P; ist damit wie behauptet. Uberdies ist der diskontierte Prozess
e " eXt ein Martingal. Um dies zu sehen halten wir fest, dass (H,y) die Bedingung
(8.1) nach Konstruktion erfiillt, was den diskontierten Prozess zu einem Supermar-
tingal macht. Wegen der Unabhéngigkeit von W¥ und Z handelt es sich sogar um
ein Martingal, was diese Richtung des Beweises abschliefit. Fiir die Riickrichtung sei
P € M? strukturerhaltendes &MM. Sei (H,Y') das zugehorige Paar aus Theorem
8.1l Dann muss Y von der Gestalt Y (w,t,z) = y(x) fiir ein y € S sein, da Z unter
P Lévy-Prozess ist und somit eine entsprechende Charakteristik aufweist, also ist

P=P, 0

Fiir IG(v,6) bzw. I'(v,§) OU-Prozesse konnen &MMs so gewihlt werden, dass
die IG bzw. Gamma Gestalt erhalten bleibt. Unter diesen Mafien P ist o? IG(~,n)-
OU Prozess bzw. I'(n, )-OU-Prozess. Die moglichen y aus dem obigen Theorem sind
dann:

_ 1 + 77255 e_%(n2_52)$
1+ 6%x

0
M= {P; e MPly(z) = % e g € Ry}

M = [P} € M?ly(x) mER,)

9 Das BNS Modell in Aktion: Preisberechnung

von Derivaten

Beispielhaft wollen wir uns mit der Anwendung des Modells von BNS zur Bewertung
(européischer) Derivate beschéftigen. Wir nehmen dabei obige Modellparameter als
gegeben an und fordern iiberdies eine deterministische Zinsrate r > 0 (d.h. es exi-
stiert ein deterministisches riskless asset B mit Dynamik dB, = r B;dt). Weiter habe
der BDLP Z keine Drift und das Lévy-Mafl v habe Lebesgue-Dichte w. Dann gilt
fiir die Kumulante x(u) = &, (u) := log Ee*#

k(u) = /Ooo(e““; —w(z)dx (9.1)

Das zu bewertende Derivat habe maturity 7" mit Auszahlungsfunktion h(Xr), p;
sei ein arbitragefreier Preis in ¢t < T, also p; = E*(e" "9 h(X7)|F;). Zu einem

strukturerhaltenden &MM P* = P7 sei v* das Levy-Mafl von Z unter P*; dann

v*(dx) = y(z)w(z)dz wobei y > 0 mit [, (y/y(z) — 1)*w(z)dz < co. Unter P* hat
X die Dynamik

1
dX; = (r—Ae"(p) — 50152)(# + o dW) + pdZy (9.2)

wobei (W) Wiener Prozess bzgl. P* ist und s.u. vom BDLP (Z);) (vgl. dazu Kapitel
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9.1 Transformationsansatz zur Derivatberechnung

Wir wollen nun, dhnlich wie zuvor in Kapitel [5 fiir exp-Lévy-Modelle, fiir das BNS-
Modell eine Berechnungsmethode fiir Derivate mittels analytischer Transformier-
ten vorstellen. Betrachte dazu die Laplace-Transformierte der Funktion A, definiert

durch .
h(z) == / e ** h(zx)dx (9.3)

und sei p(z) := E*(e*X7 | F;) die bedingte Laplace-Transformierte von Xrp.
Wir wollen diese berechnen und benutzen dafiir eine hilfreiche Berechnungsformel
mit dhnlicher Aussage wie Lemma [3.3]

Lemma 9.1 (Key formula). Sei Z Subordinator mit Kumulante x und f : R, — C
linksseitig stetig mit Re(f) < 0 bzw. Re(f) < 0/(1 + u) fir ein u > 0 wenn Z A2
erfullt. Dann gilt

sew ([ 1) =ew (3 [ stronas) (9.4)

Beweisskizze. Sei (tg)g=1,. n Zerlegung von [0,t] mit Feinheit 7. Wir verwenden die
PIID Eigenschaft von Z und die daraus resultierende Identitét x;(u) = log E exp(uZ;)
k1(U) und erhalten:

Eexp (Z f(tk_1)<Z)\tk - Z)\tk1>> (95>
= HEeXp(f(tkq)(ZAtk — Zt_y)) (9.6)

= Hexp(/{(f(tk_l)))\(tk —tp_1) (9.7)

= exp (Z k(f (te_1) Aty — tk1)> (9.8)

Die Bedingungen an f erlauben uns beidseitig Grenzwerte zu bilden und wir erhalten
die Behauptung.
0

Wir gehen in 2 Schritten vor um ¢ zu berechnen:

1. Mit e(s,t) := A7H(1 — e %)) folgt
T
E(exp(zai’}”ﬂ]—}) = E(exp(ze(t, T)o} + z/ e(s,T)dZxs)|Ft) (9.9)
Key-Formul v
YT exp <z0t26(t,T) +/ )\/i(za(s,T))ds) (9.10)
t

fiir alle z mit Re(z) < e(t, T)~'0, wobei die unabhiingigen Zuwiichse des Lévy-
Prozess Z ausgenutzt wurde sowie die Identitét

T
Uf,’%"t—ff(t,T)Uer/ e(s,T)dZxs (9.11)
t
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2. Um ¢ zu bestimmen definiere G = o(0(Zy,t < T)UF), £ == Xy + pu(T —t)
und f(s,z) := pz + 3(22 +2B2)A (1 — e MT79)

Dann folgt

. T T
o(z) =E* <eXp (Z ({ + ﬁai’%m + ,0/ dZ,\s)) E* (exp <z/ O'deS) 'g)
T ' 1 ‘ !
= [E* (exp (Z (§ + p/ dZAS> + 5(22 + 226)02’}”0 ]—"t)

e (zg F1E 2t mg) B (exp ( / s Z)dZ/\s)>

1
= exp (z(Xt + (T — 1)) + (2> + 262)5)\’1(1 — e M=) 2

+ /t ' Ari( f(s,z))ds)

)

wobei in der zweiten Gleichung das Einsetzungslemma fiir bedingte Erwartung sowie
die Laplace-Transformierte der Normalverteilung und in der letzten die Key Formel
benutzt wurde (fiir zuldssiges z aus (a,b) X iR fiir bestimmte a, b).

Man beachte, dass nach dem MaBwechsel 5 = —%,u = r — A&*(p) ist. Im IG
bzw. Gamma Fall kann das Integral in ¢ explizit berechnet werden. Weiter kann
eine bedingte Dichte durch Inversion erhalten werden:

Lemma 9.2. Die Verteilung von Xr - gegeben JFi- ist Lebesque-stetig mit einer
Dichte g, gegeben durch

1 04100 1 [e'e) ]
g(x) / e p(2)dz = — e~ OHIT o0 4 is)ds (9.12)
0

N % —ioco 2m —o0
mit 6 € (a,b) beliebig.

Beweis. Sei z = 0 + ix ein zuldssiger Punkt; dann gilt (vgl. obige Rechnung) mit
T
Ci= é- + P ft dZ/\s
E)

=" ( o0e o3 (PPH2B)T " e o5 (~o+2ia042108)07 1"

. 2,i
e@c eloe e%(z2+2zﬁ)ot,‘}"t

[p(z)| <E

)

1 2,int
eec 65(02+296)0—t,T e%(_xZ)Uga(th)‘ ‘E)

1 1,02 2 int
= eﬁ(fo)Ugs(t,T) E (eec e§(€ +208)0,

)
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wobei in der vorletzten Ungleichung Ut2, ’%"t > 02¢(t, T) benutzt wurde. Insbesondere

ist (0 +iz)| < () e~ 2*°77T) Damit ist

f+ico e° 1,2 2 2T
dz < (0 —27 D) oy = () e 1
| e < [ o PO < (013)

—ioo —00

(fiir die letzte Gleichung einnere man sich an die Dichte der Normalverteilung).
Definieren wir nun den Mafiwechsel

dPE = efXrit p(9)'dP

so gilt

QDE(I x) = EPE (eixXT

ft> — EP (eixXT eHXT\t ()0(9)71

ft) — (0 +iz)p(8)"!

Nach dem oben gezeigten ist diese Fourier-Transformierte integrierbar, also erhalten
wir mit dem Inversionssatz von Lévy

X
dPE'T‘t 1 —ixt E: 1 —ixt : -1
N = o Re e (it)dt = %/Re w0 +1it)p(0) " dt

und anschliefender Riicktransformation mit

dpXrie  qpyTt gpXry
d\ ax g P," |
die Behauptung. O]

Mithilfe von ¢ und h kénnen wir den Derivatpreis ausdriicken durch

e~ r(T—t) 0+ioo .
P = / o(2)h(z)dz (9.14)
0

27 —ioo

denn es ist

E(h(X7)| Fy) = / () AP (z)

1 .
=— [ h(x) / e~ OH0T (9 - it)dtda
R

2m
1 .
= —//h(x) e~ drp(0 + 1t)dt
2m
1

0+ioo .
p(2)h(z)dz

27 0—ioco

Dieser Wert kann (in vielen Fillen) numerisch berechnet werden, falls h, ¢ in
geschlossener Form vorliegen (fiir letzteres ist die Gestalt der Kumulante entschei-
dend). Dies ist z.B. der Fall, wenn h Auszahlungsfunktion einer européischen Put-
bzw. Calloption ist und 0® D — OU-Prozess ist mit D € {IG, Gamma}.
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9.2 Beispiel: Européischer Call bzw. Put im IG- bzw. Gamma-
OU-Modell

Im Falle eines européischen Calls ist h(x) = (e* —K)" und es gilt fiir Re(z) > 1

h(Z) = /ezx(ex _K)]l(logK,oo)diU (915)

— Z(Zl_ 1>K1‘Z (9.16)

Liegt ein europalscher Put vor, d.h. ist h(z) = (K —e*)™, so ist analog fiir Re( ) >0

h(z) = o 1)Kl “. Nach Gleichung [9.14| miissen wir noch den Wert j; (f(s,2)ds
berechnen. Die entsprechenden Werte im 1G- bzw. Gamma-Prozessfall lassen sich in
[20] finden und lauten:

IG(v,96) :

/tT (f(s,2)ds = — <\/7 —2g — \/72—2zp>

2592 arctan 7_—22'0 — arctan w
)\\/2g2 292 — 72 292 — 72

Gammal(~y, 6) :

/tT k(f(s,2))ds = (W log (z: j;) + g (T — t)> ﬁ

mit

1
g1 = zp+ E(ZQ +2B2)(1 — e M)

1(22 +282)

92 1=Z,0+2

Mit diesen Informationen kann der Call- bzw. Putpreis durch numerische Approxi-
mation des Integrals in ermittelt werden . Methoden wie die der Fast Fourier
Transform und &hnliches sind hierbei niitzlich, da die numerische Integration von
stark oszillierenden Funktionen wie die oben betrachteten heikel sein kann. Bei dem
Beispiel unten waren solche Methoden allerdings nicht erforderlich.

In der Abbildung unten sind Werte fiir ein Gamma(10,1)-Modell mit Parametern
T=1t=0,X,=0,0,=01,0=11,p=—-1,A=2,08=—05pu= r—)\% zu
finden. Der verwendete R-Code befindet sich im Anhang.
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Callpreis
06 0.8
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0.2

0.2 04 0.6 0.8 1.0

Abbildung 8: Beispielhafte Callpreiswerte im Gamma(10,1)-BNS-Modell in
Abhéngigkeit vom Strikepreis K

10 Ober- und Untergrenzen fiir den arbitragefrei-
en Preisprozess

Da das BNS-Modell nicht vollsténdig ist ergibt sich fiir jedes AMM () € M ein
arbitragefreier Preis zum Zeitpunkt ¢ fiir das Derivat mit Auszahlung h(Xr). Be-
zeichnen wir mit p,(Q) := e "= Eq(h(Xr)|F;) diesen Preis in Abhiingigkeit von
Q, so ist I, := {p(Q)|Q € M} ein Intervall (ein Standardresultat aus der Finanz-
mathematik). Im folgenden benutzen wir die Transformation h(z) = h(log z), also
die Auszahlung bzgl. des Preisprozesses Sp. Wir fordern:

I ist konvex

1(0) =0

0<h(z) <z

g(x) := z — h(x) ist beschrinkt

Wir interessieren uns fiir obere und untere Preisschranken, also fiir inf I, und sup I;.

Offensichtlich ist I; C [e™" 7= h(e="(T=% G, S,)), denn andernfalls bestiinden Arbi-
tragemoglichkeiten. Wir arbeiten mit Black-Scholes-Preisen, definiert durch:

pP¥(x,0) =F (e_r(T_t)ﬁ(YTﬂYt = ZL‘>

Dabei sei Y Losung der Black-Scholes-Gleichung mit deterministischer Volatilitéts-
funktion o , d.h.

d}/;j = Y;(Tdt + Utth)
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bzgl. des eindeutigen AMM P*. Die Black-Scholes Differentialgleichung besagt

B T 3 1 (T
pP(z,0) =TT VE [ A zer TV exp (/ afds) N — 3 o2ds
¢ ¢

(10.1)
apfs(l‘, U) aptBS(x7 U) 1 2 282}9?5(1‘7 U)
ot e ox + §x ot 0x?

—rpPS(t,0) =0 (10.2)
wobei N standardnormalverteilte ZufallsgroBe sei.
Theorem 10.1. Es ist
sup I; = 5,
inf I, = pP5(S,, m)
mit m, = oy e~ 27D Ausserdem ist fiir I} := {p(Q) : Q € M*}

sup [; = sup I,
inf [; = inf I

Wir beweisen dieses Theorem in mehreren Lemmata.
Lemma 10.2. Es gilt inf I; > p25(S;,m)

Beweis. Sei Q € M. Es gilt
dS, = S, (b2dt + o, dW 2 + dMP)

mit M2 := (e’ —1) % (u? — v%) (siche (8.3)). Wir benutzen dies und die Ito-Formel

auf den Prozess (p7°(Sr,m)) .., und erhalten

BS

_rT BS(ST, )_ —rt BS(S,:, ) / ag_td(e—rs Ss)
t x

+ /T TS aptBS r aptB 252 82ptBS . 7“pBS ds
. ot ° Ox 275~ " g2 B

+ Y e ( (Ss,m) — pBS(Ss_,m) — ag$ AS>

t<s<T

Wir benutzen die BS-Differentialgleichung ((10.1)) und erhalten
T BS BS 2, BS
s ( Op; Ip; L 50 070 BS
re Ss_ o:S - d
/te (at” gr 277 Tgpr TP )

T (onr® opi m2S2 0*pp* BS
—/t e ( 5 + 7S, Ee 2 SSS_W—rpS )ds

T 2, BS
B 2\ @2 0°p
. S * _ds >0
+/t e 2(05 m3)Ss 92 >
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Fiir die letzte Ungleichung wurde o2 > m? fa. s > t sowie S,_ > pB% und die
Konvexitit von ps(xz, m) benutzt. Weiter gilt

opP
5 e (b5 — (s m) - s, ) 20

t<s<T

da f(z) — f(y) — f'(z)(x —y) > 0 fiir konvexe und differenzierbare Funktionen f
gilt und damit

" oppPs
, Oz
< e—'r’T ST —rt BS(St7 )

pPS(z,m)<z

d(e—rsSS) S —rT BS(ST, ) Ttpt(Stam)

T apBS —rs . . .
Der Prozess (ft “g—d(e SS)> ist Submartingal bzgl. @), da er lokales Martin-
T>0

gal bzgl. @ ist und aufgrund der obigen Ungleichung nach oben durch ein Martingal
beschrénkt ist. Somit ergibt sich

Eq(e™ " h(Sr)|Fi) = Eq(e™ pB%(Sr,m)|F) > e pi(Si,m)
]

Wir wollen nun zeigen sup I} = S;, inf I = pP°(S;,m); wegen der Markov-
Eigenschaft von (S;, 0?) reicht dies fiir ¢ = 0 zu zeigen.

Lemma 10.3. Sei Q1,Qs, ... € M Folge von éMMs. Dann gilt po(Q,) — So genau
dann, wenn Q,(St € -) schwach gegen 0y konvergiert.

Beweis. Vgl. [22], Chap. 2.7 O
Lemma 10.4. Sei (yn)nen C S mit

lim Yn(z)w(z)dz = oo (10.3)
n—oo 1

und seien Q, die zugehorigen aMMs in M?*. Dann gilt lim,, po(Q,) = S
Beweis. Beziiglich @Q,, gilt

1 T
St = exp (TT + pZyr — NTK"(p) — 508:} + / adeS”)
0

vgl. Gleichung (8.7) mit W™ Z stochastisch unabhéngig. Weiter gilt fiir ¢ > 0,
0<ax<xl

Qn (e_rT St = 5) < Qn (epZ,\T—)\Tn"(p) > \/g) + Qn (e—%g%*-i-foT Jdesn \/_>

Markov— ;é

10.4)

10.
10. )

(
(
_ 5—% (e)\T(n"(ap)—an"(P)) +EQn (e%(aQ_a)Ugéyt)> (
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Da f(z) == e —1 —ae’ +a nichtpositive monoton fallende Funktion ist fiir a €
(0,1) (beachte dabei p < 0) und x"(6) = [, (e (2)yn(x) (vel. Kapitel gilt

< ap) = k(o) = [ wia)n(a) f(o)ds
< f(l)/loo yn(x)w(x)de — —oo nach Vor.

n—o0

Damit folgt

AT (ap)—as™ () __y

n—oo

log e%(a —a)oge(0,T) +f0 Ak ( %(a —a)e(s,T))ds
)

/T” (;(GQ —a)e(s, T)) ds
/R+/ 1) Yn(2)w(z)dsdz
S/O <e” Se(sT) _ >d5 /loo yn(ac)w(gz;)dg,;7;>o o

Fiir die letzte Ungleichung wurde benutzt, dass g(x fo ( el ”—1) ds

log EQ,, < (a2 ~a)og ”}m>

IN

nichtpositiv und monoton fallend ist (da fir a € (0, 1) 2 2_“ < 0 ). Mit Lemma

und der Abschétzung (10.6|) ergibt sich damit die Behauptung. O]

Wir haben somit die obere Grenze des Preisintervalls bestimmt. Man beachte,
dass es eine wie in Lemmal[10.4] geforderte Folge (y,,) gibt; y,,(x) := e mit lim,, ¢, =
6 erfiillt die Bedingung.

Lemma 10.5. Sei f: R, — R, so, dass fR+(1 Az)f(z)w(z)dr < oo und sei (yn)
Folge in & mit

lim y,(x) =0

n—o0

yn(z) < f(2)
Dann gilt fir die zu (y,) éMMs Q, € M?:
—2¢

Po(Qn) — pfs(So,m) mit my = oge 2
n—0o0

Beweis. Wegen ([8.7) und den Berechnungen in Kapitel [0.1] ergibt sich

Eq, (e'*7) =exp ( 0(Xo+Tr) — —(92 +16) /0 ' mgds) (10.7)

X exp ()\ (/OT m”(f(s,i@)) ds i@Tﬁ;”(p)) (10.8)
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mit
(s,10) = pif — —(92+19) (s,T)
/ m2ds = e(o, T)op

Unter erneuter Verwendung von () = [, (e ()yn(x) erhalten wir

/OT K"(f(s,10))ds = /]R+ /OT (S50 1) g, (2 )w(a)dsda

Es gilt wegen der Beschrinktheit und Lipschitz-Stetigkeit von f fiir jedes

f.a. 0 € R ex. Konstante ¢ > 0, so dass
|e f(si0)z 1|<cl/\x)Vz€R+,O<s<T

Damit ergibt sich
n—oo

T
/ /in(f<3’19>>d3_19T/€n(p) DOWﬂfnv. 0
0

Wir folgern aus ((10.7))
Qn(X7 € ) TﬁzNWT;(;T)
mit

1 /7
Yo ::XO—H“T——/ m?ds
2 Jo

T
or ::/ mZds
0

Nach Voraussetzung ist g(x) = z—h(z) beschréinkt und konkav, ist also insbesondere
N (yr, 6r)-f.ii. stetig. Damit kénnen wir [I4] Satz 13.16 (Portmanteau-Theorem)
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benutzen und erhalten

(eXT —h (eXT)> dQ., + /erT X7 dQ,,
(em —h (e’f)) dQ:xT (x) + /e_TT e dQXo(z)
— T (ex ~h (eﬂc)) dQXT (z) + S,

=t [ (e =Re)) NG br) (@) + S0

n—oo

=e T /ﬁ(e””)d/\/(%p? or)(x) —e" (eXOJ”"T’% Jo mids o3 Jy mgds) + So

T / h(e")dN (v, br) ()

_ T 3 1 (T
=e™E(h|zeTexp (/ agds) N — 5 o2ds
0 0

= p(J)BS(S()’ m)

wobei wir die momenterzeugende Funktion der Normalverteilung verwendet haben
sowie die Martingaleigenschaft von e™" S; bzgl. Q,,. O]

Eine Folge (y,,) wie in Lemma existiert, betrachte y, (x) := e* mit lim,, ¢, =
—oo (die zugehorigen Transformationen sind also Esscher-Transformationen). Wir
haben gezeigt

inf po(Q) = nf, po(Q) = inf po(Q) = p” (0, S0)

QeEM
sup po(Q) = sup po(Q) = sup po(Q) = So
QeM QeMs QEME

wobei ME = {QV : y(z) = e", 5 € (—o0, §) die Menge der Esscher-Transformierten
in diesem Modell bezeichnet. Analog zum Beweis von Lemma zeigt man dass die
Abbildung J : n +— po(Q"), wobei Q" das zu n € (—oo, é) in M¥ zugehorige AMM
ist, stetig ist. Damit ist {po(Q) : Q € MEF} = J((—00,0)) ein Intervall und der
Beweis von Theorem [10.1] vollsténdig.

Abschliefend geben wir noch ein Resultat aus [20] an, dass den Spezailfall von
IG/Gamma-Modellen abdeckt.

Korollar 10.6.

(i) Sei o2 1G(8,7)-OU Prozess bzgl. P. Dann ist II¢ = {p,(Q) : Q € MI%}
Intervall mit inf I'¢ = p,(S;, m).

(ii) Ist o2 T(8,7)-OU Prozess bzgl. P so ist I := {p;(Q) : Q € M} Intervall mit
inf I = inf I; und sup I} = sup I,

Beweis. Siehe [20] O
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11 Kurzfazit

Wir haben in den vorangegangenen Kapiteln gesehen, wie mithilfe von Lévy-Prozessen
und der dahinterstehenden Theorie interessante neue finanzmathematische Modelle
aufgestellt und untersucht werden kénnen. Die vorgestellten Modelle sind geeigne-
ter als das Black-Scholes-Modell, um reale Daten abzubilden, da ihnen eine grofiere
Flexibilitédt zu eigen ist. Gleichzeitig zeigen die Rechnungen innerhalb der Model-
le, dass diese mathematisch handhabbar sind und somit nicht blof3 theoretischen
Zugewinn bedeuten. Natiirlich bieten Modelle mit allgemeineren treibenden Prozes-
sen eine noch gréfere Flexibilitédt in der Modellierung, erfordern aber im Gegenzug
hiufig aufwindigere Rechnungen zur Bestimmung von etwa Optionspreisen. Insge-
samt stellen Lévy-Prozesse also ein adequates Mittel dar, um mit relativ geringem
Aufwand eine gute Ndherung an das tatsdchliche Marktgeschehen zu erhalten.
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A Anhang

Theorem A.1 (Doobs Martingalungleichung). Sei M cadlag Submartingal mit
Werten in R,. Dann gilt fiir alle C' > 0 und p > 1

E(M?E
P (suth > C) < (M7) (A.1)
t<T Ccr
Fiir p > 1 gilt iiberdies
p
[[sup M|, < ——[|Mil], (A.2)
t<T p—1

Theorem A.2 (Girsanov). X sei d-dimensionales Semimartingal auf einem filtrier-
ten Raum (€2, (F;)i>0), P) mit Charakteristik (B, C,v) bzgl. h € C mit einem wach-

senden previsiblen Prozess A, so dass C7 = ¢V - A. Weiter sei ‘% = Z; lokal
_F

t
dquivalentes W-Maf. Dann existiert eine P mefibare nichtnegative Funktion Y und
ein d-dimensionaler Proze § mit

|h(x)(Y — 1) * 1y < o0 (A.3)
Zc’jﬁj - Ay < o0 (A.4)
j<d

> pIkpR A < o0 (A.5)
jk<d

P’ — f.s. fiir alle t so dass X bzgl. P’ die Charakteristik (B’, C’, ') hat mit

B'=B'+) - A+ (z)(Y — 1) xv (A.6)
Jj<d

C'=C (A7)

V=Y v (A.8)

Y, B erfiillen obige Bedingungen genau dann, wenn

YZ_ =M (ZIP)

- (Sow)

Jj<d

wobei Z der Dichteprozess ist und M 5 ((Z|P) die in [12], §3 definierte bedingte

Erwartung bzl. P ist. Fiir Details zu obigem Satz und dessen Anwendung miissen
wir auf [12] verweisen.
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B Verwendete R-codes

#Simulation von Brownschen Bewegungen

Paket:sde
plot( BM(x=0, t0=0, T=100, N=10000))

#Poisson-Prozess-Simulation (mittels Simulation der Zuwachse)

range<-10

lambda<-1

epsilon<-0.1
points<-range/epsilon
eps<-1/epsilon
n<-range/epsilon
x<-seq(0,range,by=epsilon)
u<-rpois(n+1,lambda*epsilon)
y<-seq(0,range,by=epsilon)
for (i in 1:(points+1)){
ylil<-sum(u[1:i1)}
plot(x,y,type="s",main="Poisson-Prozess",xlab="time",ylab="y", cex=1,
col="red",pch=1)

#Gamma-Prozess Simulation (mittels Simulation der Zuwichse)

range<-10

gamma<-2

delta<-1

epsilon<-0.1
points<-range/epsilon
eps<-1/epsilon

n<-range/epsilon
x<-seq(0,range,by=epsilon)
u<-rgamma(n+1,gamma*epsilon,delta)
y<-seq(0,range,by=epsilon)

for (i in 1:(points+1)){
y[il<-sum(u[1:i])}
plot(x,y,type="s",main="Gamma-Prozess",xlab="time",ylab="y",cex=1,
col="red",pch=1)
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#IG Simulation (mittels Simulation der Zuwachse)

range<-10

gamma<-5

delta<-0.2

epsilon<-0.1

points<-range/epsilon

eps<-1/epsilon

n<-range/epsilon
x<-seq(0,range,by=epsilon)
u<-rinvgauss(n+1l,gamma*epsilon,delta)
y<-seq(0,range,by=epsilon)

for (i in 1:(points+1)){
ylil<-sum(u[1:i1)}
plot(x,y,type="s",main="Inverse-Gaussian Prozess",xlab="time",ylab="y", cex=1,
col="red",pch=1)

#Bewertung im Merton-Modell
#BS-Preise

Callpreis<-function(K,sigma=0.7,St=100,tau=0.5,r=0.05){
d1<-(log(St/ (Kxexp (-r*(tau))))+(tau) *(sigma~2)/2)/(sigma*sqrt (tau))
d2<-(log(St/ (Kxexp(-r*(tau))))-(tau) *(sigma~2)/2) /(sigmax*sqrt(tau))
z<-St*pnorm(dl)-Kxexp (-r*(tau) ) *pnorm(d2)

return(z)}

#Merton-Preise

n<-100

Mertoncall<-
function(K,r=0.05,sigma=0.3,St=100,lambda=4,mu=-0.3,tau=0.5,delta=0.1){
a<-seq(0,n,1)

eta<-exp(mut+delta~2/2)-1

sigmai<-sqrt(sigma~2+(a*delta”2)/tau)
xi<-St*xexp((axdelta”2)/2-lambda*eta*tauta*mu)

z<-exp (-tau*lambda)* (((tauxlambda) "a)/factorial(a))*Callpreis(K,sigmai,xi,tau,r)
return(sum(z))}

x<-seq(30,120,0.1)

y<-sapply(x,Mertoncall)

plot(x,y,type="1",col="red",xlab="strike Preis K",ylab="Callpreis")
z<-sapply(x,Callpreis)

lines(x,z,type="1",col="green",xlab="strike Preis K",ylab="Callpreis")
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#Histogramm der HSI-Returns

daxi<-read.csv("C:/levy/hsi.csv", header=T)
z<-daxil[,1]

z2<-z[2:1ength(z)]

x<-as.Date(z)

yl<-daxil[,2]

y<-log(y1l)

u<-diff (-y)

v<-u-mean (u)

HSIReturns<-v/sd(v)

hist (HSIReturns,breaks=200,freq=FALSE)
s =1

m =0

curve(dnorm(x, mean=m, sd=s), add=TRUE)
k<-mean (HSIReturns~4)

s<-mean (HSIReturns~3)

#Preise im Gamma-BNS-Modell (analog im IG-Fall)
#Paket:elliptic

X_t<-0
sigma_t<-0.1
T<-1

t<-0

r<-0.05
theta<-1.1
gamma<-10
delta<-1
rho<--1
lambda<-2
K<-0.05
beta<--0.5
mu<-r-lambdax((delta*rho)/(gamma-rho))

kappaint<-function(x){g_1<-complex(1l,theta,x)*rho+(1/2)*(complex(1l,theta,x) 2+
2*xbeta*xcomplex(1,theta,x))*(1-exp(-lambda*(T-t)))
g_2<-complex(1l,theta,x)*rho+(1/2)*(complex(l,theta,x) "2+2xbeta*complex(1l,theta,x))
u<-(gamma*log((gamma-g_1)/(gamma-complex(1,theta,x)*rho))+g_2*lambda*(T-t))*
(delta/(lambda* (gamma-g_2)))

return(u)}

hath<-function(x){u<-1/(complex(1,theta,x)*complex(l,theta-1,x))
*K~ (1-complex (1,theta,x))
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return(u)}

phi<-function(x){u<-exp(complex(1,theta,x)* (X_t+mu*(T-t))+
(complex(1,theta,x) "2+2*xbeta*complex(1l,theta,x))*(1/2)

*lambda” (1) * (1-exp(-lambda*(T-t)))*sigma_t~2+lambdaxkappaint (x))
return(u)}

f<-function(x){return(phi(x)*hath(x))}

intz<-myintegrate(f,-Inf,Inf)
p_t<-(exp(-r*(T-t)))*(intz/(2*pi))
p_t

WertefiirkK<-seq(0.05,1,0.05)
PreisefiirCall<-c(0.952,0.905,0.8574,0.81,0.763,0.71622,0.6699,0.6241,0.579,0.5347
,0.4913,0.449,0.4078,0.368,0.3297,0.293,0.2578,0.2246,0.1933,0.164)

plot (WertefiirK,PreisefiirCall,type="1",x1lab="K", ylab="Callpreis")
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C Symbol- und Abkiirzungsverzeichnis

SDE: Stochastische Differentialgleichung (stochastic differential equation)

PIID: Prozess mit stationidren und unabhéngigen Zuwéchsen (,,Process with Inde-
pendent and identically distributed increments®)

AX,: Der Sprungprozess von X im Punkt ¢, d.h. AX; := X, —lim, ~ X,. Wir setzen
AXy:=0

Z: Ein Lévy-Prozess

v: Lévy MaB eines Lévy-Prozesses Z. Soll die Abhéngigkeit von Z betont werden,

so schreiben wir vy

u”: Das Transponierte eines Vektors u € R"

O: Die optionale o-Algebra, erzeugt durch die adaptierten cadlag-Prozesse.

P: Die previsible o-Algebra, erzeugt durch die adaptierten linksseitig stetigen Pro-
zesse (P C O)

PZM: Poissonzufallsmaf

®: Die Verteilungsfunktion der Standardnormalverteilung, d.h. ®(u) := N (0,1)((—o0, u))
0,: Einpunktmafl/Dirac-Ma8 im Punkt x

pX, vX: SprungmaB und Kompensator des Lévy-Prozesses X. Der Kompensator ist
dabei definiert durch v* (ds,dx) = v(dz)ds wobei v das zu X gehérende Lévy-MaB
ist.

A: Prozesse von integrierbarer Variation

A Wachsende Prozesse von integrierbarer Variation

FV : Prozesse mit beschrankter Variation

r.y fiir r,y € R% Standardskalarprodukt der Vektoren z,y

¢(u) Analytische Transformierte einer Verteilung @, d.h. ((u) = [ " dQ(x) wo die-
se existiert

k: Kumulante eines PIID-Prozesses, d.h. fiir einen PIID Prozess X

k(u) := log Ee"*1
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