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Abstract

In many models of financial mathematics, such as the mean-variance

model for portfolio selection and asset pricing models, the independence and

identical normal distribution of the asset returns is the cornerstone assump-

tion on which these are built. Empirical studies have shown that the returns

of an asset don’t actually follow a normal distribution but in fact they have

fatter tails than the normal can capture. There is evidence that the asset

returns not only display this so-called heavy tailed behaviour but are also

possibly skewed in their distributions. Empirical research has also found that

returns display alternating periods of high and low volatility contradicting

the idea of independent and identical distribution.
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Chapter 1

Introduction

1.1 Objectives

During the course of this paper we will investigate the log return data of a

number of financial assets. It is the aim of this project to discover whether

the log return data displays certain properties of well known parameterised

distributions. This will be achieved by comparing the statistical properties

and characteristics of the empirical data under study to the theoretical distri-

butions we suspect it might come from. These properties and characteristics

will be assessed both through graphical and numerical methods to give a

well-formed insight into the data.Using this knowledge obtained from these

procedures I will then investigate whether the data can be fitted to a known

distribution using fitting methods including maximum likelihood estimation.

This paper will address two main questions:

3



CHAPTER 1. INTRODUCTION 4

1. Are the log returns of the financial data normally distributed?

2. Are these same log returns independent and identically distributed?

1.2 Outline of Paper

For the purposes of this study we will examine the Dow Jones Industrial Av-

erage Index (NYSE:DJI) and five publically quoted companies stocks for my

study. These companies are Boeing (NYSE:BA), Citigroup (NYSE:C), Gen-

eral Motors (NYSE:GM), Intel (NasdaqGS:INTC) and Wal-Mart (NYSE:WMT).

The data was downloaded from the historical prices page on the Yahoo fi-

nance website taking the closing prices of these stocks at three different

regular time intervals, specifically monthly, weekly and daily. The data was

downloaded in spreadsheet form and imported to the statistical software

package R on which most of the analysis was carried out. This software is

open source and is a free download at http://www.r-project.org with sup-

plementary packages available from http://cran.r-project.org. The adjusted

closing prices allowing for stock splits and dividend payments were taken as

the base stock value.

In chapter 2 an overview will be given into the properties of financial

data. The common assumptions regarding empirical assets price trends and

the nature of returns on financial assets will be discussed.

In chapter3 we will first carry out some exploratory data analysis on the

monthly stock data of the chosen companies. This will involve examining

the plots of the raw data, the log returns and using tools such as the Q-Q
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plots to compare the sample data to simulated data that follows the nor-

mal distribution. As further checks for normality in the data we will use

statistical tests such as the Jarque-Bera test, the Shapiro-Wilk test and the

Kolmogorov-Smirnov tests.

In chapter 4 we will look at the tails of the distribution, in particular

the tail of losses and through the under the practice of extreme value we

will apply the Peak Over Threshold method. Through the introduction of

the Pickands, Balkema and de Haan theorem it will be suggested that if the

returns are heavy tailed that a generalised Pareto distribution will be suitable

to model the data. Once these concepts are introduced we will try to apply

them to the empirical data.

Next we will investigate the affect that the independence assumption

failing will have on the models. We will look at the time dependency of

the returns and introduce time series analysis and the various ideas that

it incorporates. The concepts of a stationary time series, autocorrelation,

white noise and linear time series will be discussed. Then using methods

such as the autocorrelation function plot we will examine in greater detail

the dependence of asset returns.

Finally, in chapter 6 findings of the project will be discussed and conclu-

sions drawn.



Chapter 2

Overview of Returns of

Financial Assets

When examining financial assets it is most common to study the returns

rather than the actual raw asset prices. The reasons for analysing the returns

rather than the asset price are that they give us a scale-free assessment of the

performance of the asset and that returns also have more attractive statistical

properties for analysis. However, it is important to note that there are many

different definitions of financial assets returns.

2.1 Properties of Stock Prices

For a brief insight into the data underlying returns we will first look at some

of the plots of the raw and the log of the raw data. As an example the plots

for Boeing over time are shown in Figures 2.1 and 2.2. As can be seen from
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Figure 2.1: Plot of Boeing Monthly Stock Prices

Figure 2.1 the plot the stock prices display a roughly exponential growth over

the full time period. This is supported by the almost linear pattern of the log

of the stock prices. There are a number of key issues that should be raised.

The very low price of the stock in the sixties and seventies has led to negative

or only slightly positive values of the log prices. This was shortly after the

company’s Initial Public Offering on the stock exchange. Another obvious

characteristic in the plot of the Boeing is the severe plummet in value of

the stock price after the year 2000. This drop is due to a frightened market

associated with the 9-11 terrorist attacks in the U.S of 2001 and because of

the nature of Boeings’ airline business its value was hit particularly hard by

this uncertainty in the marketplace and the airline industry.
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Figure 2.2: Plot of Boeing Monthly Log Prices

We can definitely come to the conclusion that the asset prices and the

logs of the asset prices observed at a monthly frequency are not normally

distributed. We will now concentrate solely on the returns of the assets. As

these are relational to the prices immediately previous to them they are less

affected by the length of the time scale involved and therefore give a better

scaled reference to a stocks’ performance over time.

As previously stated the log returns are often assumed i.i.d. normal. In

the following sections we will rest this assumption. First we will examine the

basic plots of the monthly returns to see if it can be reasonably possible to

test for normality. In Figures 3.3 and 3.4 are the log returns of Citigroup

and the Dow Jones index respectively. The patterns of these plots tend to
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Figure 2.3: Plot of Citigroup Monthly Log Prices

fluctuate about a mean close to 0. The returns seem to be more suitable to

be modelled using the random walk approach. Initially it seems it will be

hard to reject the hypothesis of the returns being non-normal.

2.2 Defining a Financial Asset Return

To define the most common types of returns let St be the price of an asset

at a time index t and assume that there are no dividends paid unless told

otherwise.

A one-period simple return is the relative change in net asset price over

one period from time t− 1 to time t. The gross one-period simple return is
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Figure 2.4: Plot of Dow Jones Monthly Log Returns

defined by

1 +Rt =
St
St−1

where Rt is said to be the net one-period simple return.

A multi-period return is the return on an asset that is held for more than

one period. A gross multi-period simple return over k time periods is defined

as

1 +Rt[k] =
St
St−k

This is also known as a compound return. Rt[k] is called the k-period simple

net return and is given by

Rt[k] =
St − St−k
St−k
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A continuously compounded return is defined as the natural logarithm of

the gross simple return of the asset and is given by

rt = ln(1 +Rt)

= ln

(
St
St−1

)
= lnSt − lnSt−1

This is the difference between the natural log of the assets price at time t

and the natural log of its price at the previous step in time. Due to this

definition rt is also commonly called the log return of an asset.

Log returns have some more favourable properties for statistical analysis

than the simple net returns Rt. The continuously compounded multi-period

return is simply the sum of the continuously compounded one-period returns

as shown below

rt[k] = ln(1 +Rt[k])

= ln[(Rt)(1 +Rt−1)(1 +Rt−2) . . . (1 +Rt−k+1)]

= ln(1 +Rt) + ln(1 +Rt−1) + . . .+ ln(1 +Rt−k+1)

= rt + rt−1 + . . .+ rt−k+1

Also the statistical properties of log returns are better behaved than sim-

ple returns.
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Another variation on a return is what is termed an excess return. The

excess return at time t is the difference between the assets return and that

of another reference asset. Excess returns can be calculated for both simple

returns and log returns as shown below:

Simple Excess Return at time t : Zt = Rt −R0t

Log Excess Return at time t : zt = rt − r0t

where R0t and r0t are the simple and log returns of the reference asset. The

reference assets may be anything but it is often a riskless asset such as a

short-term Treasury Bill.

Also worth noting is the effect a dividend payment will have on the return.

If a dividend Dt is paid between times t − 1 and t then the return for time

t needs to be adjusted to allow for the value drop after payment date. To

accomplish this, the value of the dividend payment is added to the price of

the asset at time t and this value is used as the real value of the asset for

time t. The normal formula for working out the various returns can then be

applied. For instance the log return at time t when a dividend Dt was paid

between time t and t− 1 is given by

rt = ln(St +Dt)− ln(St−1)

Although there are a wide variety of returns we will restrict our studies to

log returns. They are the most popular form of returns to be studied when

investigating financial assets. For the duration of this project log returns

shall simply be referred to as returns while all other forms shall retain their

full titles.
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2.3 Statistical Properties of Returns

It is commonly assumed that the simple returns are log-normally distributed.

A log-normal distribution has a short lower tail and a fatter upper tail. If

simple returns are independent and identically distributed (i.i.d.) as log-

normal then it follows that the log-returns are i.i.d. normally distributed

which allows great statistical freedom. As with life everything is not so clean

cut. Unfortunately there are a number of points that initially discourage

acceptance of the idea of returns being independent and identically normally

distributed. Firstly the lower bound of a simple return, defined as

Rt =
St − St−1

St−1

=
St
St−1

− 1

is -1. Therefore from its definition:

rt = ln(1 +Rt)

the log return also has a lower bound whereas a normally distributed ran-

dom variable has no lower bound as it can take any real value on the line.

Secondly, empirical assets studied have shown kurtosis higher than the nor-

mal distribution giving the distribution of the returns heavy tails, also called

extra- or excess-kurtosis.

Other important statistical properties that empirical studies have raised

questions about are the skewness and kurtosis of the returns’ distribution.

Skewness is the normalised third central moment and it describes the sym-

metry of the random variable with respect to its mean. Kurtosis is the

normalised fourth central moment and it describes the behaviour of the tail
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of the distribution. It is independent of scale and location parameters and so

can be used as a comparison coefficient between the empirical data and the

normal distribution. Together skewness and kurtosis summarise the extent

of asymmetry and tail thickness of the distribution.

The kurtosis of a normal distribution is 3 and a kurtosis figure of higher

than this indicates that the data is fat tailed or leptokurtic. Excess kurtosis

is defined as being the difference between the kurtosis of the distribution of

interest and that of the normal distribution. Mathematically it can be written

K(x) − 3 where K(x) is the kurtosis of the empirical data. From empirical

studies of financial data one of the properties there is strong evidence to

support is this heavy tailed behaviour. Heavy tailed behaviour indicates a

greater probability of extreme values being realised. As there is a larger

area in these fat tails of the probability distribution curve they have the

effect of reducing the cumulative probability around the centre of the curve.

This affects the variance of the distribution or, as it is commonly called in

financial data analysis, the volatility. Observations that follow a heavy tail

distribution also destroy other classical statistical procedures such as the

sample mean.

Volatility is the conditional variance of the asset return. It is the main

measure used to quantify the riskiness of an asset. From empirical research

it has been observed that volatility tends to increase with the square root of

time as time increases and it increases in a continuous manner with it being

rare to observe volatility jumps. Volatility is usually stationary meaning it

varies within a fixed range and is therefore finite. There are a number of
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different types of volatility such as historical volatility, which is calculated

from the past returns of the asset or implied volatility, which is inversely

obtained from a model that has been accepted. It is worth noting that

volatility does not actually imply a direction of dispersion.

Volatility clustering is the phenomenon of spells of high amplitude that

alternate with spells of low amplitude. That is to say that if at a time t the

volatility is high then at the next consecutive time t+ 1 the return will also

tend to have high volatility. This characteristic contradicts the independent

and identically distributed assumption that is traditionally assumed to be

a stylized fact of log returns. Empirical studies of returns have shown that

extreme values do not normally appear unpredictably but rather they happen

after the occurrence of larger than normal movements in the return value.

Periods of high volatility in returns will commonly follow a ’crash versus

bubble’ pattern swinging from higher than average positive values to lower

than average negative values and back again. During periods of low volatility,

also known as the doldrums, the returns stay much closer to the mean value

with little deviation.



Chapter 3

Random Walk Approach and

Normality of Returns

3.1 Random Walk Hypothesis

A random walk is defined as a process where the value of the variable of

interest at a certain time depends only on its value at some previous time

and a random variable which determines the step size and direction. The

random walk hypothesis is a popular way to describe the evolution of stock

prices, in particular the log prices. It assumes the stock price follows a

stochastic process in which it moves up or down from the previous value at

random. Although values in a stochastic process may be independent random

variables, in most commonly considered applications such as the evolution of

asset prices they demonstrate complex correlations. We shall assume under

the random walk hypothesis that the variables are random and independent.

16
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Log price series’ of assets have been traditionally thought to be well sat-

isfied by the random walk hypothesis for a number of reasons. Firstly, as a

price series has no fixed level it can be thought of as being non-stationary.

A stationary series is a series that is invariant under time shift. Secondly,

a price series if differenced once (as done to get returns), will become sta-

tionary, the definition of a unit-root series. A non-stationary unit-root series

such as this can be best described by a random walk which is neither mean

reverting nor predictable.

An important theory accompanying the random walk hypothesis for stock

price is the concept of market efficiency.

3.1.1 Market Efficiency

The random walk hypothesis is based on the assumption of market efficiency.

This assumes that the present stock price contains all current information

available to forecast the future price and it is the only factor that has an

effect in the future stock price. As new information enters the market any

unbalanced states are instantaneously discovered and quickly amended by a

correct change in the market place. Therefore under the market efficiency

hypothesis prices reflect rapidly all available information in a completely

unbiased way. This essentially means that the present stock value is all you

need to determine the future stock price. According to this perspective a

look back at historical prices, known as chart analysis, is worthless.

As this original definition of market efficiency was demanding and unre-
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alistic in its totality it was suggested by Fama (1970) that market efficiency

could in fact be subdivided into three categories. These three forms of market

efficiency were differentiated by the level of strictness to which they followed

the base definition of market efficiency. The three forms are:

1. Weak Market Efficiency

2. Semi-Strong Market Efficiency

3. Strong Market Efficiency

Weak Form Market Efficiency assumes that only past price data is considered

when valuing a stock. This form of market efficiency rules out any manner

of future price prediction based on anything other than past stock price

data. It is assumed that the stock follows a completely random walk in

which successive changes have zero correlation. This rules out any possible

methods of prediction being consistently meaningful.

Semi-Strong Form Market Efficiency assumes that as well as stock price

data information also all other publically available information is assimilated

in the present stock price. This publically available information can include

trading data such as volume data and fundamental data such as sales fore-

casts.

Strong Form Market Efficiency is the most stringent of the three forms.

It is based on the assumption that all information available at present, both

publically and privately, is considered and reflected in the present market.

This is hard to verify in reality. Studies into strong form market efficiency
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have revealed that insiders can and regularly do make exceptional returns

thus creating an inefficient market at strong form level.

3.1.2 Definition of a Random Walk

Mathematically speaking, a time series st is a random-walk if

st = st−1 + at

where st is the logarithm of the stock price at time t and {at} is a white noise

series.

A white noise series is a series of real numbers {wi} that are independent

and identically distributed random variables that are symmetrical around a

finite mean with a finite variance. If each wi is normally distributed, then

a white noise process is a Gaussian white noise process. It is a stationary

series and it has the following properties:

Mean = E[Wi] = 0 (by definition of the series)

Cov(Wi,Wj) = 0 (by independence assumption)

3.1.3 Applying the Hypothesis to Financial Series Data

It is assumed that stock returns are independent random variables and if

the time intervals are equal in length then the returns can be taken to be

identically distributed also. That is to say if S(ti) denotes the stock price at
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time tt then the simple returns

S(t1)

S(t0)
,
S(t2)

S(t1)
, . . . ,

S(tn)

S(tn−1)

are independent and identically distributed random variables. It can be then

shown that stock prices follow a geometric random walk as follows

S(tn)

S(t0)
=

S(tn)

S(tn−1)
.
S(tn−1)

S(tn−2)
. . .

S(t2)

S(t1)
.
S(t1)

S(t0)

= Y (tn).Y (tn−1) . . . Y (t2).Y (t1)

Where Y (ti) = S(ti)
S(ti−1)

(ie. the simple return at time ti)

Therefore,

S(tn) = S(t0)
n∏
i=1

Y (ti)

which is a geometric random walk. Taking the natural logarithm of both

sides we get;

lnS(tn) = ln

[
S(t0)

n∏
i=1

Y (ti)

]

= lnS(t0) + ln

[
n∏
i=1

Y (ti)

]

= lnS(t0) +
n∑
i=1

lnY (ti)

It can be seen from this that the natural logarithm of the stock price is a

random walk of the form

st = st−1 + at

As stated earlier it is often assumed that these log returns follow a normal

distribution.
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3.2 Testing for Normality

3.2.1 Overview of Normality in Returns

The first stylized fact about financial asset returns that will be tested is the

assumption that returns are normally distributed. Essentially we wish to

accept or reject the ideology that returns are independent and identically

distributed (i.i.d) random variables, symmetric about a centre value, the

mean with a finite variance. Under this normality assumption only two

fixed parameters, the mean and the variance are needed to fully describe its

distribution.

If the log values of a random variable are i.i.d as normal then it follows

that the raw values of the random variable are independent and identically

log-normally distributed. The mean and variance of the simple returns can

then be found using the formulae (Tsay, 2002):

E(rt) = eµ+σ2

2 − 1

V ar(rt) = e(2µ+σ2)(eσ
2 − 1)

where µ and σ2 are the mean and variance of the normally distributed log

returns respectively. Alternatively if the simple returns are known to be

log normally distributed with mean m1 variance m2 then the mean and the

variance of the log returns are given by:

E(rt) = ln

 m1 + 1√
1 + m2

(1+m1)2


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V ar(rt) = ln

[
1 +

m2

(1 +m1)2

]

Due to huge amount of past research into the normal, or Gaussian, dis-

tribution there are a vast number of important procedures such as t-tests,

analysis of variance and tests for regression coefficients that are based on the

underlying assumption that the sampled data came from a normal distribu-

tion. Therefore before applying such procedures it is imperative to test the

robustness of the normality assumption on the sampled data.

As the normal distribution is, as its name suggests, the most common

and desirable distribution for statisticians to use it is often assumed that a

data set is normally distribution until proven otherwise. Due to its advan-

tageous statistical properties it takes strong evidence to dismiss a normality

assumption completely. Even if a set of data is not normally distributed it

is often attempted to bend the rules or apply transformations so that useful

procedures that have been defined for the normal distribution can be applied.

The reason for trying to accept or reject the assumption of the data

following a normal distribution, or any other distribution for that matter,

is simple and logical. If we wish to make conjectures particular to a given

distribution we need to first verify that the data actually follows the given

distribution otherwise the resulting conclusions may, and probably will, be

untrue. If decisions are to be made based on these untrue conclusions then

in turn these decisions will be unsound. It can be seen that a false base

assumption can have a negative impact on future conclusions and decisions.

Conversely a well grounded initial assumption can allow other conclusions to
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be drawn on a good basis. Also when dealing with figures confidence levels

are often required and a seemly acceptable confidence level can be completely

wrong if the underlying assumption is even slightly incorrect.

Due to the simple yet specific characteristics of the normal distribution,

such as symmetry, it is not an overly strenuous task to discount data that fol-

lows a completely different distribution. A more arduous task is proving that

the data is actually normal or close enough to normal that Gaussian assump-

tions can be well grounded. Types of data sets that the normal distribution

may not be acceptable to model might include:

• A bounded data set: The Gaussian distribution is unbounded on the

entire real axis meaning it can take any real value along the x-axis.

Therefore it is almost certainly acceptable not a good fit for bounded

data.

• Asymmetric data: One of the most obvious properties of the Gaussian

is that it is symmetric therefore it is not suitable to model left- or

right-skewed data.

As explained earlier many financial concepts have been built on the tradi-

tional concept that return values of assets are normally distributed with fixed

mean and variance. This assumption makes returns look very appeasing for

statisticians but unfortunately a number of characteristics of log returns dis-

agree with the above points and that indicate the data may not be normal

(Tsay 2002):
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• The lower bound of a log return 0 as it cannot take on any values less

than or equal to this whereas a normally distributed random variable

can assume any value on the real line giving it no lower bound.

• Empirical asset returns tend to display positive excess kurtosis which

is not a characteristic of the normal distribution.

Nevertheless for fear of losing the very useful assumption of normality, we

shall examine the distributional properties of the data with more rigorous

tests of normality.

3.2.2 Exploratory Data Analysis

First to get a feel for the data’s distributional properties we shall complete

some exploratory data analysis. As stated by Henry C. Thode in his book

’Testing for Normality’ (Thode, 2002) the methods of testing for normality,

both graphical and numerical are almost infinite. To carry out the graphical

exploratory analysis on the data we will use histograms, Quantile-Quantile

(Q-Q) plots, mean excess plots and kernel density estimation plots. As part

of this a table of summary statistics of the data will be useful to compare

the individual return distributions.

Histograms

Histograms are a graphical representation of the frequency distribution of a

data set. They provide an insight into skewness, tail behaviour, outliers and

multimodality. The basic procedure of constructing a histogram consists of
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dividing the interval covered by the data set into equal length sub-intervals

known as bins. The frequency of data values falling into each bin determines

the height of the bin such that the more values falling within the bin interval

the higher the bin will be. Therefore it can be seen that histograms give a

rough estimate to the actual distribution.

Histograms are a good starting point for analysing the shape and location

of the data distribution but some of its properties such as being non-smooth,

depending on the end points of the bins and depending on the choice of bin

width can be unsatisfactory. The shape of the histogram will be particularly

influenced by the choice of end points. This can lead to the appearance of

multimodality even if it is not actually a property of the data distribution.

Looking at all the histograms of the monthly log returns (Figures 3.1 -

3.4) it is immediately obvious that they are not too dissimilar to the normal

distribution. They are all unimodal distributions that decay in frequency

either side of this mode. It is evident in all of the graphs of returns that

there are extreme values present at the far left of the histograms. The graphs

are reasonably symmetric were it not for the presence of these outliers. The

affect outliers have on the distribution is to cause it to become skewed in the

direction in which they lie. Therefore we suspect some negative skewness in

the returns.

With the log returns if they display normality we expect to see a sym-

metrical graph. We observe that the log returns look close to normal and

centred about zero in general. The log returns of Boeing appear almost per-

fectly symmetrical and give a strong indication of being normal. The log
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Figure 3.1: Histogram of Boeing Monthly Log Returns

Figure 3.2: Histogram of Citigroup Monthly Log Returns
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Figure 3.3: Histogram of General Motors Monthly Log Returns

Figure 3.4: Histogram of Wal-Mart Monthly Log Returns
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returns of Wal-Mart also show symmetry about the mean but the histogram

exhibits a much quicker decay either side of the high peak at the mode. It

also displays elongated tails strongly hinting at excess kurtosis. The Citi-

group, General Motors and Intel histograms are less symmetrical than those

of Boeing and Wal-Mart demonstrating extreme values on their lower sides.

This characteristic, along with the fact that most of the mass of these dis-

tributions is located in the vicinity of their modes gives an indication of

negatively skewed distributions for the monthly returns for these stocks.

The presence of symmetrical stock returns for the other companies means

we can’t conclusively accept skewness as a characteristic of monthly returns

in general. The histogram of monthly returns of the Boeing stock price is

unimodal with a peak close to zero. The evidence viewed in the histogram of

the Boeing returns gives the impression that a normality assumption might

be correct at a monthly interval of return.

As regards the other companies’ returns, the presence of outliers and

positive skewness is evident. The outliers are located at -0.55, -0.425, -0.85

respectively for Citigroup, General Motors and Intel. These are located to

the extreme left relative to the mode at approximately 0 in each case. It is

also important to notice that the mode is slightly positive in four out of five

stocks with General Motors being the only one displaying a negative mode.

As seen from the table of summary statistics in Figures 3.5 and 3.6 all

the means of the stocks returns are positive adhering to the expectation

that stocks increase on average. This is logical as otherwise there would

be no reason to invest in them. Also again in relation to the properties
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Figure 3.5: Table of Statistics for Monthly Data(1)

Figure 3.6: Table of Statistics for Monthly Data(2)
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of skewness it can be seen from the table that all the minima are further

from their respective means than the corresponding maxima. That is the

absolute difference of the minimum of the return is greater than that of the

maximum. This gives an indication of skewness across all monthly returns.

We deduce that large negative returns are much more probable than high

positive returns. A stock value can decrease substantially in a very short

time interval whereas it needs much more time to recover its value.

Further evidence from the table of statistics of the log returns comes

to support the claim of skewness and kurtosis in the last 2 columns where

there is negative skewness and excess kurtosis resulting from all the empirical

returns distributions.

Kernel Density Estimation

As remarked earlier some properties of histograms can be unsatisfactory.

These include being non-smooth, depending on the end points of the bins

and depending on the choice of bin width. The first two aspects can be

alleviated with use of kernel density estimation. Kernel density estimation is

a non-parametric technique for estimating the density of data. This method

centres a function called a kernel at each data point instead of fixing the end

points. This negates the dependence on the end points that is present in

histograms.

The density function acquired from this method is defined as

fb(x) =
1

nb

n∑
i=1

K
(
x− xi
b

)
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where K is the selected kernel density, b is the bandwidth chosen for the

kernel function. Due to the division of the sum by nb the function integrates

to 1, that is ∫ ∞
−∞

fb(x)dx = 1

K is a non-negative function chosen such that it is the density of a centred

random variable such that

∫ ∞
−∞

Kdx = 1 and
∫ ∞
−∞

xKdx = 1

Choice of b is important as a smaller b gives a lower bias but a higher b gives

a lower variance. The weakness of the method is the arbitrary choice of K

and b.

An example of a kernel that can be taken is the box kernel. Using this

method centres a block at each data point creating a graph similar to a

histogram but less blocky. The problem with this method is that due to the

kernel being discontinuous the density function built from it is also. To get

a smooth density estimate a smooth kernel is required.

A smooth, continuous kernel will smoothen out the appearance of the

graph and eliminate the dependence on the choice of bin endpoints. However

it is not possible to eradicate the reliance on bandwidth. If a kernel with a

bandwidth that is too small is chosen there is a risk that the estimated

density will be under-smoothened resulting in more local modes than there

should be. Alternatively if the bandwidth of the chosen kernel is too large an

over-smoothened density estimate which will hide many of the feature of the

actual underlying density. There are a number of methods that can be used
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to choose the optimal bandwidth. One such method takes the bandwidth as

the argument that minimises the Asymptotic Mean Integrated Squared Error

(AMISE). This method recovers all the important features of the density and

maintains smoothness (Duong, 2001).

As it was the log returns that showed the greatest potential to be normally

distributed at a monthly frequency the kernel density estimation method will

be concentrated on assessing these. R was used to superimpose the density

estimates onto the relevant histogram and a ’rug’ of the data points was

created beneath the X-axis showing the position of each data point. The

underlying kernel we have chosen for all the estimation procedures is the

Gaussian. It can be seen that the densities follow approximately the same

pattern as the histograms predicted although some have higher and sharper

peaks than the histograms exhibit.

The Wal-Mart Gaussian kernel density estimate shown below in Figure

3.7 gives an example of how the histogram can miss out on some features

of the density. The density estimate shows at very steep peak at 0 and a

sharp declining slope either side. The bulk of its density is located in the

centre with two thin elongated tails either side. This is a feature that leads

to excess kurtosis.

The Boeing estimate in Figure 3.8 has a more normal bell-shape to it.

It has gentler gradients either side of the peak. The Citigroup (Figure 3.9),

General Motors and Intel density estimates show a much more skewed density

than those of the other two stocks’ log returns. All three are negatively

skewed, with large pointed peaks and a long tail extending to the left.
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Figure 3.7: Kernel Estimate of Monthly Returns of Density for Wal-Mart

Figure 3.8: Kernel Estimate of Monthly Returns of Density for Boeing
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Quantile-Quantile Plots

Histograms and kernel density estimators are only the first step in trying to

get an overall idea about how the data looks and to investigate if it behaves

like any other known distribution. Another informal graphic diagnostic that

is popularly used in this process is the Quantile-Quantile or Q-Q plot. The

Q-Q plot is a probability plot which is a graphic in which the empirical order

statistics on the Y-axis are compared to expected values of some theoretical

order statistics located on the X-axis.

As we are testing for normality the Q-Q plots will plot the standardized

empirical quantiles of the observed data against the quantile of a standard

normal random variable. The standardized returns are used under the as-

Figure 3.9: Kernel Estimate of Monthly Returns of Density for Citigroup
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sumption that the data is reasonably normal and they are utilized to have

the X-axis and Y-axis scaled the same. The data can be standardized using

z =
x− µ
σ

A quantile is a figure that a certain percentage, or fraction, of the data

lies below in the distribution. More specifically, the q-quantile of a random

variable X is any value x such that

Pr(X ≤ x) = q

or

F (x) = q

where F is the cumulative density function. Taking the inverse of the equa-

tion gives you the quantile function defined as follows

x = F−1(q)

If a random variable is not continuous quantiles may not be unique or may

not exist at all. The 0.25-, 0.50-, and 0.75-quantiles are commonly known

as the first, second and third quartiles. The 0.01-, 0.02-, 0.03,...-quantiles

are called the first, second, third, ... percentiles. The Q-Q plot is then the

plot of these percentiles of the empirical distribution against the theoretical

distribution that you wish to compare it to.

Assuming that the data is normally distributed we will expect to observe

a linear plot except for some random fluctuations in the data. To aid with

determining this, a line with a slope of 1 is superimposed on the Q-Q plot.
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Any systematic deviation from this line will indicate that the data is non-

normal. Due to its nature, that is requiring opinion to determine the severity

of a deviation, it is more a judgemental method of assessing normality than

a formal one.

For a heavy-tailed distribution one would expect to see the upper tails

of the Q-Q plot turning upwards and the lower tails bending downwards.

Alternatively for a short-tailed distribution it would be expected to observe

an S-shape with the lower tails bending upwards and the upper tail curving

downwards. Another property of a distribution noticeable in its Q-Q normal

plot is symmetry. A symmetric distribution will typically produce a sym-

metric Q-Q plot that is linear in the centre of the data. When the data is

standardized and Q-Q plotted normal parameters can be estimated from the

plot using regression.

Looking at the Q-Q plot of the Boeing log returns we observe that it is

linear near the middle between -2 and 2 and it looks almost symmetrical

about 0 also. There seem to be systematic deviations from the 45 ◦ line at

either end of the plot in comparison with the simulated data Q-Q plot in

which the end points are much closer to the line. For the Citigroup data

shown below there is also a very strong departure from the line at the neg-

ative end of the plot suggesting it is definitely not behaving like the normal

distribution up in the lower tail. It takes a value of -4 in the standardized

empirical log returns to cover the same fraction of data that a quantile of -3

covers in a normal distribution. This is a strong indication of a heavy left

tail. It is worth noting also that the upper end of the Citigroup Q-Q plot
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Figure 3.10: Q-Q plot of Standardized Monthly Log Returns for Boeing

lies almost completely on the superimposed line therefore it follows a much

more normal behaviour than the lower tail.

As a comparison a sample set of randomly generated data from an i.i.d

normal distribution was also plotted against the normal in a Q-Q plot and

this is shown just below the Citigroup Q-Q plot. It demonstrates the linear

plot that should be observed for a sample of the same size as the Citigroup

log returns data if the data were normal.

The General Motors and Intel Q-Q plots (Figures 3.13 and 3.14) are sim-

ilar to the Citigroup plot in that they show linearity about the centre with

serious deviation from the line at the negative end of the plot. A difference

between the General Motors and Intel plot is observed in the upper tails
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Figure 3.11: Q-Q plot of Standardized Monthly Log Returns for Citigroup

Figure 3.12: Q-Q plot of Simulated Normal Data
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where the General Motors values are almost perfectly situated on the line

while the Intel points actually move away from the line in an downward di-

rection before returning to it again. This former characteristic might suggest

short tailed tendencies in the upper tail of Intel.

The Q-Q plot of the Wal-Mart log returns in Figure 3.14 is almost per-

fectly symmetrical and in fact it is the most symmetrical of all five stocks.

Even though it is almost certain that the underlying log returns distribution

is symmetrical the huge deviations of the ends of the plot from the 45 ◦ line

suggest large kurtosis which will result in much longer than normal tails of

the density. This feature has already been observed from the corresponding

histogram.

The Q-Q plot shown below is for the monthly Dow Jones standardized

log returns. Again it displays symmetry but there are more points deviating

from the line in the lower side of the graph than in the upper side giving an

indication of a heavier negative tail than upper one.

Mean Excess Plots

This repeating feature of deviation of the tails away from the 45 ◦ line induces

interest in the activity of the returns at the tails. A first step into investi-

gating the tails might be to use a mean excess function to describe them. A

mean excess function describes the expected surpassing of a threshold pro-

vided that exceedance of this threshold has taken place. As the mean excess

plot is only advantageous for looking at the upper tail of a distribution we

will define the loss distribution as the negative of the return distribution to
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Figure 3.13: Q-Q plot of Standardized Monthly Log Returns for Intel

Figure 3.14: Q-Q plot of General Motors Standardized Monthly Log Returns
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Figure 3.15: Q-Q plot of Wal-Mart Standardized Monthly Log Returns

Figure 3.16: Q-Q plot of Dow Jones Standardized Monthly Log Returns
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allow use to use it on the lower tail. Fundamentally the mean excess function

is:

e(u) = E[X − u|X > u]

where e(u) is the mean excess function and u is the variable threshold of the

function.

For a sample of size n the mean excess function is more explicitly defined

by

en(u) =

∑n
i=1(X(i)− u)∑n
i=1 1X(i)>u

where X(i)− u is only valid when it is positive, i.e. when X(i) is an obser-

vation that exceeds the threshold. This essentially defines the sample mean

excess function as the sum of excesses over the threshold u divided by the

number of data points which exceed the same threshold (McNeil 1999). The

sample mean excess function is the empirical estimator of the mean excess

function corresponding to that distribution the sample is taken from. Thus

for a large sample size the sample mean excess function almost coincides with

the mean excess function corresponding to the underlying distribution. An

important property of the mean excess function is that any continuous dis-

tribution function is uniquely determined by its own mean excess function.

A plot of the function is then simply the paired values of the threshold u

and the mean excess function value en(u) between the first and nth order

statistics of the sample, i.e.

{(u, en(u)), X1:nandXn:n}

where X1:n and Xn:n are the first and nth order statistics.
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The conclusions drawn from the plot should be based on the gradient of

the line. The trend of a positive gradient indicates heavy tailed behaviour.

In particular if the empirical mean excess plot follows a reasonably straight

line with an upward trend above a particular threshold this is an indication

that the excess over this threshold follow a generalised Pareto distribution

defined with a positive shape parameter. A downward trend in the plotted

line indicates thin tailed behaviour while a line with a gradient of 0 implies

an exponential tail.

It is important to realise when reading the graph that the upper points

plotted are calculated as the average of only a handful of extreme excesses

so they may be erratic. This is a problem when examining linearity in the

graph. For a nicer looking plot some of these upper points are excluded. In

the mean excess plot function included in the evir package for R, meplot(),

the default number of data points omitted is 3. It can be set to the required

number of omissions with use of the parameter specification ’omit=’, e.g.

meplot(x, omit=1) where x is the data vector to be plotted. As most of the

data hint at heavy-tails we will use the mean excess function to plot both

the lower tails i.e. losses and the upper tail which contains the profits.

After examining the mean excess plots generated by R there is a common

appearance to the plots. All the plots have strong negative slope until at least

a threshold of -0.1. The line up to this point is very smooth with no sudden

jumps or drops. This is mainly due to the large number of data points that

exceed the lower thresholds. Across all the assets the plot has downward

trend until close to 0 and then as points above the threshold become fewer
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Figure 3.17: Mean Excess Plot of the Monthly Wal-Mart Losses

the plot becomes more jagged and erratic especially for the last number of

points on each plot.

The Wal-Mart mean excess plots for its tails show the most positive linear

trend at the upper end of the graphs. The plot is less erratic than the other

stocks but this was partially due to the scale of the Y-axis which has a much

greater mean of excess than the other stocks. The positive gradient on the

positive side of the plot indicates that in the upper tail the distribution may

follow a generalised Pareto distribution with a positive slope parameter. It

can be seen that the upper part of the mean excess of the loss function is

more boldly linear than the plot for the regular return.

Although the other stocks do not show as clear a linear positive slope in
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Figure 3.18: Mean Excess Plot of the Monthly Wal-Mart Log Returns

the upper part of their mean excess plots the upward trend is still evident.

The mean excess plot of the Citigroup log returns below shows some very

erratic movement in its upper end. It has a sharp rise between the thresh-

olds of 0.1 and 0.16 and then the line fluctuates greatly after this. This

characteristic will need to be queried when studying a greater frequency of

observation.

Looking at the mean excess plot for the Dow Jones monthly losses we

see that it is less erratic than the single stock log returns, in general. Again

it shows a substantial negative slope until the threshold of 0 followed by

a positive gradient. This leads to the speculation that again a generalised

Pareto distribution may suit modelling the tail of the losses. As the number
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of extremes becomes more influential the plot becomes more erratic and loses

its linearity. Due to the sample size the effects can be ignored.

Figure 3.19: Mean Excess Plot of Citigroup Monthly Log Returns

So far although we have seen some characteristics of the normal distribu-

tion shine through the graphs and some symmetry in the Boeing and Dow

Jones monthly log returns over all the assumption of normality is hard to

accept or reject with mixed results coming from the graphs overall. Putting

the returns through some statistical tests will give a more subjective opinion

of the normality of the stocks. If these fail to draw conclusive deductions we

may need to look at the returns at a greater frequency of observation.
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3.2.3 Statistical Tests of Normality

Probability plots can be sensitive to random observations in the data and

exclusive reliance on them can lead to erroneous conclusions as demonstrated

by D’Agostino, 1986. Therefore it is crucial to have more objective methods

to validate assumptions made about distributions. Statistical tests can be

used as more deterministic methods of assessing normality.

The skewness and kurtosis are important characteristics in determining

whether data follows a normal distribution or not. Many commonly used

statistical tests are based on the expected values for the kurtosis and skewness

of a distribution therefore it is important to define these concepts before

looking at the tests that use them.

Skewness and Kurtosis

As defined earlier skewness is the third standardized moment and it mea-

sures the lack of symmetry in a distribution. The skewness of the Gaussian

distribution is zero and any other symmetrical distribution should have a

skewness of close to zero also. Negative values of skewness indicate that the

data is skewed left, or negatively skewed while positive values tell the data

being skewed right, or positively skewed.

The skewness of a distribution is given by:

γ2 =
µ3

µ
3
2
2

where µi the ith central moment. For a sample of a distribution an estimate
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of the skewness is given by

b1 =
k3

k
3
2
2

where the ki are the unbiased estimator of the ith cumulant. There are a

number of definitions of this estimate for sample skewness but the one that

is used in the R is

b1 =

∑N
i=1(y(i)− ȳ)

(N − 1)s2

If the data is skewed from the normal we would expect to find that the skew-

ness is not close to 0. The kurtosis is the fourth standardized moment of

the distribution and for the normal distribution it is exactly three. There

are mixed ideas about the exact characteristics that the kurtosis describes

(Thode, 2002). Thode says that the kurtosis describes the density and dis-

persion at and around µ± σ, areas he calls the shoulders of the distribution

and that with high kurtosis figures there is less mass at these shoulders and

so it is concentrated at the centre and/or the tails of the distribution.

Therefore for reasonably well behaved distributions a kurtosis figure higher

than 3 it indicates that the distribution has heavy tails and peaks close to its

mean. If less than 3 the kurtosis tells us that the sample data has a flatter

distribution than the normal. Although not getting a kurtosis of 3 indicates

that data is not normal getting a kurtosis of 3 does not mean that the data is

normal. As shown by D’Agostino and Lee (1977) symmetrical distributions

with the same kurtosis can have very different estimation efficiencies.

Kurtosis of a distribution is defined as

γ2 =
µ4

µ2
2
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where µi are as described above for skewness. The sample kurtosis is then

given by

b2 =
k4

k2
2

where ki is defined as above for the sample skewness. On the next page

are bar charts used to compare the skewness and excess kurtosis values of

the monthly log returns for all the companies and the Dow Jones Industrial

Average. It is observable that the kurtosis values are all positive, a clear

indication of heavy tails. Due to the nature of kurtosis it does not give

information as to whether the distribution has one or two heavy tails and if

it only has one which end is it at. Using the bar charts of skewness we can

get a clearer view as to the dispersion of the mass in the distribution. All the

data have a sizeable negative skewness value, except for Boeing for whom

we had earlier noted to be reasonably symmetrical at a monthly frequency.

This supports the concept of heavy lower tails.

The most striking feature of the bar charts for the log returns is the huge

difference between the Wal-Mart kurtosis and the kurtosis of the other stocks

log returns. Only the kurtosis of the Dow Jones log returns is anywhere near

that of Wal-Mart. From the bar charts it can be estimated that the Boeing

is closest to normal having the lowest absolute scores for skewness and kur-

tosis overall. The distributions of the monthly log returns for Citigroup and

Intel are quite similar suggesting noticeably heavier negative tails indicating

the presence of a number of extreme losses. While General Motors is both

less skewed and has less kurtosis that the two previously mentioned it still
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Figure 3.20: Bar chart of Monthly Skewness

Figure 3.21: Bar chart of Monthly kurtosis
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displays the same characteristics just with a less severe deviation from the

normal. The Dow Jones log returns show considerable skewness and kurtosis

which means it is heavily skewed and heavy-tailed, or leptokurtic. The ex-

pectation follows that at this frequency its returns will be completely rejected

as being normal by the normality tests.

The tests we will use to examine the log returns (and inclusively the

losses) against a null hypothesis of normality will be the Jarque-Bera test,

the Shapiro-Wilk test and the Kolmogorov-Smirnov test.

The Jarque-Bera test

The Jarque-Bera test examines the skewness and kurtosis of the data sample

to see if it matches that of the normal distribution. It is one of the simplest

and very likely the most commonly used procedure for testing normality of

financial time series returns. It offers a joint test of the null hypothesis of

normality in that the sample skewness equals zero and the sample kurtosis

equals three.

The Jarque-Bera test statistic is calculated from

JB =
n

6

(
b21 +

(b2 − 3)2

4

)

where n is the same size, b1 is the sample skewness and b2 is the sample

kurtosis as previously defined.

The null hypothesis is rejected if the test statistic exceeds some predefined

critical value, which is taken in the asymptotic limit from the χ2
2 distribution.
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The Shapiro-Wilk test

The Shapiro-Wilk test is a test for the rank correlation between the empirical

data and that of a sample from a normal distribution. It is a regression test

that compares an estimate of the empirical standard deviation using a linear

combination of the order statistics to the theoretical normal estimate. It

concentrates on the slope of a plot of the order statistics versus the expected

normal order statistics.

The Shapiro-Wilk test statistic is defined as

W =
(
∑n
i=1 aixi)

2

(xi − x̄)2

where xi are the order statistics from the empirical sample, x̄ is the mean

and ai are appropriate constant values attained from the means and covari-

ance matrix of the order statistics. These values for ai can obtained from a

statistical table but we shall let R do the hard work here.

Again if the statistical value is higher than a preordained critical value

we fail to reject the null hypothesis and the normality assumption will stand.

The Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test investigates the null hypothesis that a sample

belongs to a certain solution by looking at the maximum difference between

the empirical and theoretical distribution functions. To be particular it con-

centrates on the difference between the empirical cumulative density function

(ECDF) and the theoretical cumulative distribution. The ECDF is a step
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function defined as

ECDF =
ni
N

where ni is the number of points less than Yi where Yi the set of ordered data

points and N is the total number of data points.

The Kolmogorov-Smirnov test is in fact not particular to testing for nor-

mality as it is a general goodness of fit test. It is important to be aware that it

is not as powerful as more normal specific tests like the dependable Shapiro-

Wilk test previous described. Problems with the Kolmogorov-Smirnov test

are that it only applies to continuous distributions which have been fully

defined in terms of their parameters and it is more sensitive to data located

at the centre than at the tails.

Results of Statistical Normality Testing

Examining the results of performing these three tests should allow us to

test the assumptions we have already suggested giving a much clearer and

more solid concept of the normality of the returns. For each of the tests we

will have a null hypothesis H0 that says that the data comes from an i.i.d

Gaussian distribution and an alternative hypothesis saying that it does not.

For the significance levels we will use 0.01, 0.05 and 0.10. The null hypothesis

will be rejected if the p-value is less than the significance level and we will

fail to reject the null hypothesis otherwise. The table below summarizes the

test results from applying the three tests described above on monthly data.

The left hand column under the test name is the test statistic represented
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by a solitary letter, e.g. T for the Jarque-Bera test. The column next to this

contains the corresponding p-value for each test statistic. It is this figure

that is measured against the significance level. As the tests were carried

out on a 32-bit platform due to memory restrictions any values less than

0.00000000000000022 are simply denoted as < 2.2e−16. As the significance

levels we are dealing with are nowhere near as minute as 2.2e−16 the implicit

nature of these inequalities will not affect the conclusions.

The table in figure shows that under the Jarque-Bera test of the assets

log returns we should reject the null hypothesis that they are normally dis-

tributed. The highest of these p-values is still very much smaller than even

the lowest significance level. Looking at the Shapiro-Wilk and Kolmogorov-

Smirnov test also the evidence seems to be against the assets log returns

being similar to the normal distribution. According to the Kolmogorov-

Smirnov test the normality assumption for each of the assets log returns

should be emphatically discarded. Saying this it should be remembered that

the Kolmogorov-Smirnov test is a goodness of fit test and therefore more

general and not as powerful as the other two tests.

As a comparison to show the validity of the three tests simulated I.I.D

normally distributed samples of the same size as each of the empirical data

sets were also tested. As expected all the p-values are above the highest

significance level of 10%.

After examining monthly log returns over the entire lifetimes of the as-

sets we have come to the conclusion that the asset returns do display some

normal characteristics for the most part. The histograms and kernel density
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Figure 3.22: Results of Normality Tests on the Monthly Returns

Figure 3.23: Results of Normality Tests on the Simulated Data
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estimations for a monthly frequency displayed some symmetry in most of the

stocks but from the tables there was negative skewness evident so we suspect

they don’t follow normal distributions.

An investigation of all the returns for a greater frequency will give more

support to compound or refute these assumptions. The monthly and weekly

returns were investigated for normality using all the preceding procedures of

exploratory data analysis and statistical tests used on the monthly data.Following

are some of the graphs produces for Citigroup so as to give an example of

the results found across all the assets returns. A number of tables are also

supplied:

Looking at the kurtosis values for the log return data at weekly and daily

intervals the Wal-Mart kurtosis figures really stand out. At a monthly in-

terval it was the largest of all the assets but as the frequency increases it

completely dwarfs the other kurtosis figures. This together with the weekly

and daily skewness both being near zero tells us that the Wal-Mart log re-

turns distribution shows a symmetrical, peaked and very kurtotic distribution

making it almost certainly non-Normal.

At a more frequent interval it can been seen that the returns are differently

distributed to the normal. In particular from the graphs and tests the returns

show definite excess kurtosis proving the idea that they are heavy tailed.

There is also noticable negative skewness which indicates that losses are

more extreme than gains.

So far we have seen strong evidence towards the weekly and in particular

the daily returns being skewed to the left and having considerable excess
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Figure 3.24: Plot of Citigroup Weekly Std Normal Log Returns v Simulated

Normal Data: Note the difference in the scales of the Y-axes



CHAPTER 3. RANDOM WALK APPROACH AND NORMALITY OF RETURNS58

Figure 3.25: Histogram of Citigroup Weekly Log Returns

Figure 3.26: Mean Excess plot of citigroup Weekly Losses
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Figure 3.27: Mean Excess Plot of Citigroup Weekly Log Returns

Figure 3.28: QQ plot of Citigroup Weekly Std Log Returns
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Figure 3.29: Table of Statistics for Weekly Data(1)

Figure 3.30: Table of Statistics for Weekly Data(2)
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Figure 3.31: Plot of Citigroup Daily Std Normal Log Returns v Simulated

Normal Data: Note the difference in the scales of the Y-axes
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Figure 3.32: Histogram of Citigroup Daily Log Returns

Figure 3.33: Mean Excess plot of citigroup Daily Losses
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Figure 3.34: Mean Excess Plot of Citigroup Daily Log Returns

Figure 3.35: QQ plot of Citigroup Daily Std Log Returns
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Figure 3.36: Table of Statistics for Daily Data(1)

Figure 3.37: Table of Statistics for Daily Data(2)
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kurtosis. The indication is that returns have a greater chance of realising

extremes, especially negative extremes, i.e. losses, than the normal distri-

bution can predict. We are drawn to the conjecture that the returns are

not sampled from a Gaussian distribution. So then if they are not Gaussian

what distribution do they follow or is it possible that they are distributed as

a combination of distributions?

As seen from the normal Q-Q plots the centre of the data displayed nor-

mality while it was in the tails that we viewed deviation from the norm. It

is therefore the extreme values in the tails that we will be most interested

in. We shall examine this in greater detail in the next section on extreme

value theory which is concerned only with data outside the centre. We shall

use this to gain an insight into the behaviour of the tails in particular the

negative tails containing the losses.



Chapter 4

Extreme Value Theory

Approach

The previous section has shown the log returns demonstrate heavy tails. A

method of capturing the behaviour in the tails is applied through the extreme

value theory approach.

4.1 Extreme Value Theory

Extreme Value Theory is concerned with the study of the asymptotic be-

haviour of extreme observations of a random variable. In more conventional

techniques due to the contribution of the tails being relatively smaller than

that of the observations in the centre of the distribution the tails were ne-

glected. Extreme Value Theory (EVT) takes a contradictory approach em-

phasising the importance of the tails distributions. Consequentially measure-

66
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ments concerning extremes, such as the quantiles required in Value-at-Risk

(VaR), can be estimated more accurately using EVT based techniques than

more conventional approaches.

One of the benefits of EVT is that it does not require that a priori as-

sumptions be made about the underlying distribution from which the empir-

ical data was sampled. Due to the Fisher-Tippett Theorem (1928), or the

extremal types theorem as it is also known, possible suitable classes of dis-

tribution can be identified under EVT to model the actual underlying return

distribution. This permits figure estimation processes, such as the previously

mentioned VaR, to be carried out without first making a priori assumption

concerning the return distribution.

The classical Extreme Value theory (EVT) is used in the study of the

asymptotic behaviour of extreme observations (maxima or minima of n ran-

dom realisations).

Let X be a random variable with the density f and the cumulative dis-

tribution function (cdf) F . If X1, X2, . . . , Xn are a set of n independent

realisations of this random variable then the extreme observations are de-

fined as follows:

Yn = max{X1, X2, ...Xn}

Zn = min{X1, X2, ...Xn}

eqnarray* EVT looks at the distributional traits of Yn and Zn as n grows.

The exact distribution of the extreme values is degenerate as n tends to

infinity. To get a distribution from Yn and Zn that is non-degenerate they
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are standardized with the use of a location parameter a an and a positive

scale parameter b. The distribution of these standardized extrema

Yn − an
bn

Zn − an
bn

is non-degenerate in the limit. It is worth noting that the maximum and

minimum are related by the following equality

min{X1, X2, ...Xn} = −max{−X1,−X2, ...−Xn}.

This means that we can focus on the properties of the maxima as any con-

clusions will be analogous to the minima.

4.1.1 Fisher-Tippett Theorem

Also known as the Extremal Type Theorem. If there exist the normalizing

constants an > 0 and bn ∈ R such that

Yn − an
bn

−→ H asn− >∞

for some non-degenerate distribution H, then H must be of one of 3

possible extreme value distributions. The 3 types of distribution are

1. The Gumbel or Type I Distribution

2. The Fréchet or Type II Distribution

3. The Weibull or Type III Distribution
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For a more particular analysis of these three types consult Embrechts et al

(1997).

The first proof of this was by Gnedenko (1943) and so Fisher and Tippett

sometimes share the theorem title with him. A simpler proof was given by

De Haan (1970), although an even more simplified version was later proposed

by Weissman (1977).

The Gumbel set of distributions are used to describe thin tailed distribu-

tions and include those such as the Gaussian and the log normal distributions.

The Fréchet distributions include the stable Pareto and the students-t dis-

tributions and are used to describe heavy tails. The Weibull is used when a

distribution has a finite endpoint and no tail. Weibull distributions include

the uniform and beta distributions.

A random variable X, and its underlying distribution F are said to be-

long to the maximum domain of attraction of extreme value distributions

denoted by X ∈ DA(H) where H represents extreme value distributions.

This terminology can also be used to summarize the types of distributions

as shown

Normal, lognormal, exponential ∈ DA(Gumbel)

Pareto, students− t, Cauchy ∈ DA(Fréchet)

Uniform,Beta ∈ DA(Weibull)
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4.1.2 Generalisalized Extreme Value Distribution

The 3 forms of extreme value distribution can be encompassed into a sin-

gle parametric representation shown as shown by Jenkinson and Von Mires

(1955). This representation is named the Generalized Extreme Value (GEV)

distribution defined as follows

Hξ(x) = exp
(
−(1 + ξx)−

1
ξ

)
where 1 + ξx > 0.

Therefore

for ξ > 0, x > −1

ξ
i.e.Fréchet

for ξ < 0, x <
1

ξ
i.e.Weibull

and for ξ = 0, x ∈ R i.e.Gumbell

ξ is called the tail index and controls the distributions tails.

It can be seen that all the common, continuous distributions important in

statistics belong to the domain of attraction of the GEV distribution. This

demonstrates the generality that the Fisher-Tippett theorem allows.

4.1.3 General Pareto Distribution

The generalised Pareto distribution is defined as:

Gξ,β(u)(x) =


1− (1 + ξx

β
)−

1
ξ if ξ 6= 0

1− exp
(
−x
β

)
if ξ = 0

.

and the support of x is x ≥ −β
ξ

if ξ ≥ 0, and 0 ≤ x ≤ −β
ξ

when ξ < 0.
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4.2 Peak Over Threshold Method

4.2.1 Introduction to Peak Over Threshold

In the study of heavy negative tailed distributions which are encountered dur-

ing empirical examination of asset log returns EVT is a basis for the so-called

Peak Over Threshold Method (POT). The POT method is commonly used

when asymmetry is observed in the distribution of the data as observed with

financial assets log returns. When using POT it is expected that the centre

of the data follows a Gaussian distribution while the tails are significantly

different from the Gaussian. One uses POT to get an accurate estimate of

the right tail of the distribution of potential losses which correspond to the

left tail of the log returns. The upper tail of the losses is expected to exhibit

significant tail thickness which can be speculated at from the asymmetry of

the underlying distribution.

It is reasonable here to introduce losses as negative log returns. Simply:

losses = −(logreturns)

The only affect this has on the return basic statistics is to simply change

the sign of the mean, the sum and the skewness, while taking the opposite

signs and reversing the maxima and minima and the first and third quantiles.

Importantly with regards the assumption of no normality all other features

such as the standard deviation and the kurtosis remain unchanged.

The POT method is then applied to get an accurate estimate of the right

tail of the losses. Note that the right tail of log returns is also heavy tailed
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but not of interest for risk managers since this corresponds to profits. It is

also less skewed and therefore less extreme than the tail of the losses.

The POT method attempts to estimate the tails of the underlying distri-

bution. A particular threshold is identified that is used to define the starting

point of the tail of the distribution. An estimate of the distribution of the ex-

cesses over the particular threshold is obtained. There are 2 common methods

for estimating the distribution. The first is a semi-parametric model based

on the Hill estimator as described by Danielsson and de Vries (1997). The

trouble with this method is that it requires the assumption of a fat tailed

underlying distribution. The second approach is the fully parametric model

based on the general Pareto distribution (McNeil and Frey, 1999). As this

method does not require any assumption about the underlying tails it can

be applied to any distribution. It makes use of the Pickand, Balkema and de

Haan theorem (which is discussed below) to fit a GPD to the tail which has

been defined to be the excesses over a particular threshold. It is this second

and more easily applicable method that will be used to estimate the tail of

the return losses.

4.2.2 Pickands-Balkema-De Hann Theorem

Letting X be a random variable with distribution F , if X1, X2, . . . Xn are a

set of n independent realisations of this random variable then the distribution

function of excess over a certain threshold u is defined by

Fu(x) = P{X − u ≤ x|X ≥ u} =
F (x+ u)− F (u)

1− F (u)
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The Pickand, Balkema and de Haan theorem says that if the distribution F

which is a domain of attraction of Hξ(x) then there exists a positive measur-

able function of the threshold β(u) such that

lim
u→k

sup0≤x≤k−u

∣∣∣Fu(x)−Gξ,β(u)(x)
∣∣∣ = 0

where Gξ,β(u)(x) denotes the generalised Pareto distribution (GPD).The the-

orem says that the distribution of the excesses over the threshold tend to

the GPD as the threshold u becomes large. This statement is based on the

assumption that the underlying F belongs to the domain of attraction of the

GEV distribution.

4.2.3 POT Using GPD Approach

Peak Over Threshold provides a structure for estimating the tails, in our case

the losses, of a distribution without making a priori assumptions about the

tail thickness. A threshold is chosen as defining the start point of the tail

and the POT method then estimates the distribution of the excesses beyond

the threshold. The distribution of excesses over a sufficiently high threshold

u on the underlying return distribution F is defined by

Fu(y) = Pr{X − u = y|X > u}

A sufficiently high threshold provides an optimal balance between the bias of

the model which is increased as the threshold becomes lower and the variance

of it which grows as the threshold does due to the lack of data points (McNeil,
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1997). The above equation can be rewritten in terms of the underlying F as

Fu(y) =
F (y + u)− F (u)

1− F (u)

According to Pickands, Balkema and de Haan the excess distribution can be

approximated well by a general Pareto distribution as the threshold becomes

large:

Fu(y)→ Gξ,β(u)(y) as u→ k

Setting x = u+ y and using the above two statements the distribution of the

excess function can then be restated as below providing u is sufficiently high:

Gξ,β(u)(y) =
F (x)− F (u)

1− F (u)

F (x) = (1− F (u))Gξ,β(u)(y) + F (u) for x > u

Historical simulation is used to get the empirical estimate of F (u)

F̂ (u) =
n−Nu

n

where Nu is the number of log returns exceeding the threshold u.(McNeil,

1999). Using this estimate for F (u) and maximum likelihood estimates to

obtain the GPD parameters ξ and β allows the following tail estimate formula

to be achieved:

ˆF (x) = 1− Nu

n

1 + ξ̂

(
x− u
β̂

)−1

ξ̂


The tail estimate formula can be seen as an augmented form of historical

simulation using EVT. It must also be recognised that this formula is build

on the belief that the data is identically distributed. Although it works best
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on independent data the tail estimate formula can also be applied to weakly

dependent data with satisfactory effect (McNeil, 1999).

A useful result of this formula to estimate the tail is that it can be inverted

to give a tail quantile function:

q̂p = u− β̂

ξ̂

(
n

Nu

(1− p)−ξ̂ − 1
)

The tail quantile function can be used to get that pth quantile where p is a

given probability.

4.2.4 Application of POT to the Tails

The Pickand, Balkema and de Haan theorem suggests GPD as a natural

choice when trying to model the distribution of excess over a sufficiently

high threshold. As previously mentioned the choice of this threshold is a

trade off between bias and variance. A threshold that is too low will include

data values from the centre of the return distribution which will influence

and cause bias in the model making it invalid for the tail. Too high of a

threshold will result in not enough data points to estimate the parameters

properly using GPD. Due to insufficient data the influence of a few outliers

will cause too much variance to make the model meaningful.

There is no definite correct technique for choosing a sufficient threshold

(Sarma, 2002). Analysts take many varied approaches to this task and it is

most of the time a question of personal choice. Gavin (2000) used an arbitrary

90% confidence interval taking the largest 10% of returns to be extreme

observations. Neftci (2000) chose a threshold of 1.65 times the unconditional
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variance of the residuals to mark the start of the tail. McNeil and Frey

(1999) used the same mean excess plot described earlier as their method to

select their threshold. Although all three methods have held up well in their

respective empirical studies the techniques we will use are the Threshold

Choice plot and the Mean Residual Life plot, invoked by tcplot(data) and

mrlplot(data) respectively to aid picking the optimal threshold.

The Threshold Choice (TC) plot uses maximum likelihood estimation to

get estimates for the shape and modified scale parameters which are then

plotted against their corresponding thresholds. The scale is modified as it is

obtained by subtracting the shape multiplied by the threshold. If a threshold

is appropriate to be used in the POT method then the parameter estimates

are approximately constant above it. In our graphs there is also displayed a

95% confidence interval indicated by the whiskers either side of the plotted

point. The Mean Residual Life (MRL) plot graphs the set of points

{u, 1

nu

nu∑
i=1

(x(i)− u)}

where x(i) is an observation that exceeds the threshold. It looks at the aver-

age residual between x(i) and the threshold and it should be approximately

linear for u > u0 if the x(i) that exceed u0 are from a generalized Pareto dis-

tribution. Again a 95% confidence interval is shown based on the assumed

approximate normality of the sample means.

Looking at the plots shown for the monthly log returns of Boeing the

TC plots of the parameter estimates becomes approximately linear between

0 and 0.1. It should also be notes that the confidence intervals begin to get
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wide after this point due to a lack of data points. This seems like a reasonable

region to pick a threshold to start the tail. For Citigroup, General Motors,

Intel and Wal-Mart we take the same approach looking for linearity in the

MRL plot and constant threshold values in the TC plot above a certain

threshold. It should be noted that while theoretically to follow a GPD the

plots should display the above characteristics, in reality these traits are much

less distinct with the graphs showing erratic behavior at times.

After obtaining various estimates for the starting points of the tail it is

sensible to plot the fitted GPDs for a threshold range around this region.

As an example for Boeing starting with the threshold 0.01 and incrementing

this by 0.01 each time we fit the data above the threshold to a GPD and plot

this. The result is four graphs that indicate the fit of the data to a GPD

where the parameters have been fitted by the MLE procedure. The three

graphs we will have most interest in are the Probability-Probability (P-P)

plot, the Quantile-Quantile (Q-Q) plot and the Density plot. All the graphs

are fitted with a 95% confidence interval also and they allow us to see data

above which threshold adheres best to a GPD. The P-P and Q-Q plots also

have a positive sloped diagonal line running through them to which the data

should reside close to if it is a good fit to the GPD under the maximum

likelihood estimates.

The optimal threshold choice, as well as satisfying the TC and MRL plots,

should have P-P and Q-Q plots that are reasonably linear and a density plot

that is smooth and follows the data to an acceptable extent. When the

optimal threshold is chosen a final GPD fitting occurs and the estimated
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Figure 4.1: Threshold plot of Boeing Daily Returns

scale and shape parameters are defined. The table of chosen thresholds and

related scale and shape parameters is shown below.

The table and graphs show that the tails can be appropriately fitted to

a GPD with estimated scale and shape parameters as given. The threshold
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Figure 4.2: Mean Residual Loss plot of Boeing Daily Returns

that were chosen have are above the 95th percentile of the data. This means

that only 5% or less of the data is considered to be an extreme loss residing

in a tail of the data that can be modelled as GPD. As discussed by McNeil

(1999) this should be an acceptable threshold level. As can be seen the P-P

and Q-Q plots can be seen to be linear for the most part while a few show

specific deviations from the line at the upper end of the Q-Q plots.

Of concern are the GPD plots of the Wal-Mart losses positive tail. They

show very strange patternsof groups of horizontal lines across the diagonal

Q-Q plot. At a monthly level this was less evident but at a daily frequency

the patterns are very strong. From the plot of the daily log returns we can

see some very unusual activity for a number of years after the stock was first
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Figure 4.3: Threshold plot of Boeing Daily Returns

offered on the stock exchange.

A look back at the raw data shows that the Wal-Mart stock was split quite

substantial giving the adjusted close price a value of only a few cents. Due

to this any small change in this value of even a cent makes the log returns
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Figure 4.4: Mean Residual Loss plot of Boeing Daily Returns

look very large. From the plot of the log returns it is seen that not until

the early part of the 1980’s that the adjusted stock price becomes reasonable

enough to deal with. A Q-Q plot of the data over 1st Jan 1990 to 31st Dec

2007 shows behaviour similar to that of the other stocks therefore the odd

behaviour in the GPD over the full time period can be accounted for as a

peculiarity in the stock due to a 100% stock split.

We will then expect that a the set of data outside the period up until the

early 1980’s will display the same characteristics as the other stocks over their

whole time period. If for instance we take the negative tail of the Wal-Mart

returns over the 1990 to 2007 period already used we expect that a GPD will

model this well. The following graph in figure!!! demonstrates this.
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Figure 4.5: Threshold plot of Boeing Daily Returns
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Figure 4.6: Mean Residual Loss plot of Boeing Daily Returns

Figure 4.7: Table of Parameters Estimates for Selected Threshold
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Figure 4.8: Plots of Dow Jones Fitted Excesses
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Figure 4.9: Plots of General Motors Fitted Excesses
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Figure 4.10: Plots of Wal-Mart Fitted Excesses
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Figure 4.11: Graph of Wal-Mart Log Returns

Figure 4.12: Q-Q Plot of Wal-Mart Log Returns 1990-2007
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Figure 4.13: Plots of Wal-Mart Fitted Excesses 1990-2007



Chapter 5

Time Series Approach

It has been seen that the POT method of fitting a GPD to the tail works

considerably well. We stated earlier that this tail estimate is best applied

under the assumption of independence but is also suitable under weak de-

pendence. We have noticed though that the log returns show fluctuating

periods of high and low volatility termed volatility clustering. This volatility

clustering indicates that in fact there is dependence present in the return

series which leads to the opinion that the previously described random walk

approach may not be fully applicable to it.

Another approach is that of time series analysis. A time series is an

ordered sequence of values of a variable at equally spaced time intervals. It

can take into account the possible internal structure of the series in particular

auto- or serial-correlation and periodic variation in the data. Therefore it

seems a suitable approach when investigating a dependent series. In our case

we will be dealing with univariate time series’. In our approach to use time

89
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series analysis we will discuss the following aspects:

• stationarity

• correlation in particular autocorrelation

• white noise in a linear time series

5.1 Stationarity

A time series is strictly stationary if the joint distribution of (rt1 , rt2 , ..., rtk) is

identical to (rt1+t, rt2+t, ..., rtk+t) for all values of t where the joint distribution

is defined by: F(X,Y,...)(x, y, ...; θ) = Pr(X ≤ x, Y ≤ y, ...)

This means that the joint distribution is invariant with respect to time

changes. This is basically impossible to verify through empirical study so

the more commonly used assumption of weak stationarity is accepted.

Under weak stationarity a time series has time invariant first and second

moments. That is to say that the mean and lag-` covariance are invariant

under time shift. In particular the mean is constant with the lag-` covariance

only depending on ` where ` is an integer. This statement can be given by:

E[rt] = µ ∀t

Cov(rt, rt−`) = E[(rt − µ)(rt−` − µ)] = γ` ∀t and `
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Essentially this means that a stationary series fluctuates about a constant

level with a constant variation.

γ` is called the lag-` serial or autocovariance of the time series rt. An

autocovariance plot can be obtained simply by plotting γ` against `. The

autocovariance has two properties that it is important to be aware of:

γ0 = V ar(rt)

γ−` = γ`

both of which can be easily proven (Tsay, 2002).

From the definitions it is evident that if a series is strictly stationary and

its first and second moments are finite then the series is also weakly station-

ary. The converse of this is not generally true but under the assumption of

normality weak stationarity is analogous to strict stationarity.

To summarize a series is stationary if all its moments are invariant under

time shifts while if only the first and second moments are it is only weakly

stationary. It is commonly accepted in finance literature that the return

series of an asset is weakly stationary.

5.2 Correlation and Autocorrelation.

The correlation is a measure if the linear dependence between random vari-

ables. It is measured with the use of a correlation coefficient ρx,y where X

and Y are the random variables in question. The correlation coefficient is
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defined as

ρx,y =
cov(X, Y )√
var(X)var(Y )

where it is assumed that the variance of both X and Y exist. X and Y

are uncorrelated if and only if ρx,y = 0 and they are perfectly correlated if

|ρx,y| = 0. Two other properties of the correlation coefficient are:

ρx,y = ρy,xfor − 1 ≤ ρx,y ≤ 1

When dealing with a sample {xt, yt}Tt=1, where T is the sample size, the

sample correlation coefficient is given by

ρ̂x,y =

∑T
t=1(xt − x̄)(yt − ȳ)√∑T

t=1(xt − x̄)2
∑T
t=1(yt − ȳ)2

where x̄ =
∑T

t=1
xt

T
and x̄ =

∑T

t=1
xt

T

Under a similar definition to autocovariance the lag-` autocorrelation

function of rt can be given. If the series rt is weakly stationary the lag-`

autocorrelation function (ACF) is given by:

ρ` =
cov(rt, rt−`)√
var(yt)var(yy−`)

=
γ`
γ0

Under weak stationarity it is a function of only ` and it describes the

linear dependence between rt and rt−` for ` an integer. Properties of the

autocorrelation function are an extension of the properties defined for simple

correlation:

ρ0 = 1

ρ` = ρ−`

−1 ≤ ρ` ≤ 1
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and a weakly stationary series is only not serially correlated if ρ` for all `.

For a sample of size T the autocorrelation is given as

ρ̂` =

∑T
t=1(rt − r̄)(rt−` − r̄)∑T

t=1(rt − r̄)2
where 0 ≤ ` ≤ T − 1.

This sample autocorrelation is asymptotically normal with mean 0 and vari-

ance 1
T

for any fixed ` ∈ N+ if rt is an i.i.d. sequence with E[r2
t ] finite.

For finite samples ρ̂` is a biased estimator of ρ` with a bias of the order 1
T

.

Obviously then small samples will have a very large bias as expected.

The sample autocorrelation function (ACF) is formed from all the sample

autocorrelation coefficients ρ1, ρ2, ... . The sample ACF plays an important

role in linear time series analysis as a linear series can be modelled by its

sample ACF. The linear characteristics of the time series can be acquired by

time series analysis through its sample ACF. The autocorrelation plot is the

plot of the γ` against `.

A very important property of the ACF is that a weakly stationary series

is defined through its mean, variance and ACF.

The ACF of the loss distributions of a number of stocks are shown be-

low.Most of the correlations are very small,this is especially true at monthly

and weekly frequncies but at daily they become larger. It can be seen from

the Wal-Mart ACF for daily returns that at this frequency we cannot ig-

nore the serial correlations of the returns. There are a number of negative

correlations that are quiet substantial and suggest further study might be

applicable into methods such as ARMA and ARCH models which allow for

this skedasticity.
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Figure 5.1: Auto-correlation Plot of Boeing Daily Returns

Figure 5.2: Auto-correlation Plot of Wal-Mart Daily Returns
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Figure 5.3: Auto-correlation Plot of Intel Daily Returns



Chapter 6

Conclusions

6.1 Results

We have seen that the log returns of stock are not fully describes by a models

which strictly allow only for independent and identically distributed normal

random variables. At a monthly frequency it was shown that the returns

while exhibiting some signs of non normality did for the most part show the

characteristics of normal distribution. As we investigated higher frequencies

we discovered considerable difference to a normal distribution.

At a high frequency the returns show alot of negative skewness. They

were also heavily kurtotic with pointed peaks and long tails. The indication

was that they displayed more extreme values particularly as losses that the

normal distribution could capture.

Taking the empirical distribution to be a mixture of GPDs in the tails

and a normal distribution at its centre we applied the Peak Over Threshold
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method to investigate the extremes. We found that the tails of losses could

find a close fit in a GPD with a threshold chosen sufficiently high enough

the satisfy the Pickands, Balkema and de Haan theorem. The corresponding

MLEs of the parameters calculated and the fitted distributions were plotted

successfully.

From the basic time plots of the returns there was noticable periods of

high and low volatility which seem to alternate. Also when the serial correla-

tions of the returns were calculated and plotted there was substantial values

for correlation at the higher frequencies particularly for daily returns.

6.2 Conclusions

We are satisfied to say that for high frequencies the returns of the data

studied was not normal enough to accept the Gaussian distribution to model

it. The returns have heavy tails and so the generalised Pareto distribution

is more acceptable to capture the greater and more frequent extremes that

returns show. It is also true to say that the tail of return losses is heavier

than the tail of return profits.

There is also evidence of correlation between daily returns at regular

interval. The autocorrelations give evidence towards patterns in the data

over time. These periods of heteroskedasticity merit further investigation.



Bibliography

Bensalah, Y.(November 2000), Steps in Applying Extreme Value Theory to

Finance: A Review., Bank of Canada Working Paper 2000-20.

Bera A., Jarque C. (1981). Efficient tests for normality, heteroskedastic-

ity and serial independence of regression residuals: Monte Carlo evidence.

Economics Letter 7, 313 - 318.

Carmona, R. (2004), Statistical Analysis of Financial Data in S-Plus, Springer.

Coles, S (2001), An Introduction to Statistical Modelling of Extreme Values.,

Springer Series in Statistics.

D’Agostino, R. and Stephens, M. (1986). Goodness-of-Fit Techniques, Mar-

cel Dekker, Inc.

Duong, T. (2001), An introduction to kernel density estimation, www.maths.uwa.

edu.au/ duongt/seminars/intro2kde/

98



BIBLIOGRAPHY 99

Embrechts, P., Kluppelberg C., and Mikosch T. (1997), Modelling Extremal

Events for Insurance and Finance., Springer.

Hellström, T. (1998), A Random Walk Through the Stock Market, Umea

University,Sweden.

McNeil, A. (1996), Estimating the Tails of Loss Severity Distributions using

Extreme Value Theory., www.math.ethz.ch/m̃cneil/pub list.html.

McNeil, A. (1999), Extreme Value Theory for Risk Managers., www.math.ethz.

ch/ mcneil/pub list.html.

McNeil, A. and Saladin, T. (1997), The Peak Over Thresholds Method for

Estimating High Quantiles of Loss Distributions., www.math.ethz.ch/ mc-

neil/pub list.htm

Sarma, M. (2002), Extreme Value Theory and Financial risk management,

http://www.stat.tamu.edu/ jianhua/stat689-08sp/reference/Sarma02.pdf

Shapiro, S. and Wilk, M. (1965). An analysis of variance test for normality

(complete samples), Biometrika, 52, 3 and 4, 591-611.

Thode, H. (2002), Testing for Normality, Marcel Dekker Inc.

Tsay, R. (2002), Analysis of Financial Time Series, John Wiley and Sons.

Weisstein, Eric W. Skewness. From MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/Skewness.html



BIBLIOGRAPHY 100

Zivot, E. and Wang, J. (2003), Modelling Financial Time Series with S-Plus,

Springer.

Websites:

http://finance.yahoo.com/q?

http://www.itl.nist.gov/div898/handbook/eda/eda.htm

http://www.walmartstores.com/AboutUs/7603.aspx


