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Kapitel 1

Einleitung

Als eine der bekanntesten Wahrscheinlichkeitsverteilungen ist die Normalverteilung nicht

nur in vielen mathematischen Disziplinen zu einem vieldiskutierten Objekt in statisti-

schen wie auch wahrscheinlichkeitstheoretischen Anwendungsbereichen herangewachsen.

Nach ihrer Definition durch Carl Friedrich Gauß zu Beginn des 19. Jahrhunderts war es

Pierre-Simon Laplace, der den engen Zusammenhang der Normalverteilung mit anderen

Wahrscheinlichkeitsverteilungen aufdeckte und somit die zentrale Stellung der Normal-

verteilung innerhalb der Wahrscheinlichkeitstheorie festigte. Der angesprochene Zusam-

menhang spiegelt sich im zentralen Grenzwertsatz wider, der in seiner gebräuchlichsten

Form besagt, dass sich die Summe einer großen Zahl unabhängiger und identisch ver-

teilter Zufallsgrößen annähernd wie eine normalverteilte Zufallsvariable verhält. Dieser

Tatsache und ihren besonderen Eigenschaften, insbesondere auch ihrer einfachen Form

verdankt sie es, dass sie in vielen Bereichen der Natur-, Wirtschafts- und Ingenieurwis-

senschaften immer wieder Verwendung findet. So reicht ihr Anwendungsspektrum von der

Beschreibung zufälliger Abweichungen bei der Produktion von Industriegütern über die

Beschreibung von Messfehlern physikalischer Versuchsdurchführungen bis hin zur Model-

lierung des Wiener-Prozesses und damit der geometrischen Brownschen Bewegung, die in

heutigen Zeiten zur Nachbildung finanzmathematischer Preisprozesse benutzt wird. Eben-

falls in der Versicherungsmathematik hat die Normalverteilung Einzug erhalten und legt

somit in vielen Bereichen den Grundbaustein der modernen Risikoabschätzung.

Der hohe Stellenwert der Normalverteilung führte dazu, dass in vielen mathemati-

schen Modellen eine Normalverteilung unterstellt wird, was eine nicht immer einhaltbare

Anforderung an die im Modell betrachteten Größen nach sich zieht. Als Beispiel sei die An-

nahme normalverteilter Regressionsfehler in linearen Regressionsmodellen genannt. Ohne

das Wissen über die tatsächliche Verteilung der in diesen Modellen betrachteten Größen

ist eine Anwendung somit eher spekulativer Natur, sodass an dieser Stelle die Frage nach

einer Rechtfertigung für die aufgestellte Annahme aufkommt und infolgedessen geklärt
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2 Einleitung

werden muss, ob das Modell so überhaupt verwendet werden darf. An diesem Punkt greift

die angewandte Statistik ein und bietet eine Vielzahl an Möglichkeiten, die getroffenen An-

nahmen anhand statistischer Tests zu verifizieren. Dabei beschränkt sich die Vielfalt der

angebotenen Tests nicht auf solche, die ausschließlich dazu geeignet sind, Aussagen über

eine mögliche Normalverteilung der getesteten Größen zu treffen. Besonders die Kernideen

der einzelnen Tests, die eine Abweichung von oder eine Übereinstimmung mit der Nor-

malverteilung als glaubwürdig erscheinen lassen, sind dabei so grundlegend verschieden,

dass die Frage aufkommt, ob es denn Tests gibt, die als Favoriten aus diesem Vergleich

hervorgehen.

Mit dieser Frage befasst sich die vorliegende Arbeit, wobei der Schwerpunkt nicht auf

einem direkten Vergleich aller Tests liegt (was bei der großen Vielfalt an Tests eine auch

nur schwer lösbare Aufgabe wäre), sondern auf einem speziellen Test auf Normalvertei-

lung, nämlich dem, der durch Carlos M. Jarque und Anil K. Bera bekannt wurde und

heute sogar ihre Namen trägt: der Jarque-Bera-Test. Dazu wird zu Beginn dieser Arbeit

in das Themengebiet der Schätz- sowie der Testtheorie eingeführt um die mathematische

Grundlage zu schaffen, die notwendig ist, um die Teststatistik und ihre besonderen Ei-

genschaften herzuleiten. Im anschließenden Kapitel drei wird explizit auf die Herleitung

der Teststatistik eingegangen und die Unterschiede aufgezeigt, die in verschiedenen Test-

situationen resultieren. Nachdem der Jarque-Bera-Test sodann als Mittel zum Testen auf

Normalverteilung zur Verfügung steht, wird dieser in Kapitel vier in Konkurrenz zu ande-

ren Teststatistiken gesetzt und seine Vor- und Nachteile herausgearbeitet, die im direkten

Vergleich anhand von empirischen Analysen bestätigt werden. Nachdem der Jarque-Bera-

Test in seiner Form als Test auf univariate Normalverteilung analysiert wurde, wird in

Kapitel fünf eine Erweiterung und zugleich Verallgemeinerung der Teststatistik angege-

ben, die es ermöglicht, sogar auf multivariate Normalverteilung zu testen. In Kapitel sechs

schließlich wird eine Anwendung der gewonnenen Resultate auf eine finanzmathematische

Fragestellung gegeben, bevor die vorliegende Arbeit in Kapitel sieben mit einer Auswer-

tung in Form einer Zusammenfassung und einem Ausblick beendet wird.



Kapitel 2

Der Score-Test

In der mathematischen Statistik ist man daran interessiert, anhand von Stichproben, dar-

gestellt durch Realisierungen zumeist unabhängiger und identisch verteilter (i.i.d.) Zufalls-

variablen, Aussagen über die Parameter der Verteilung einer Grundgesamtheit zu treffen.

Dazu werden statistische Modelle aufgestellt, auf deren Grundlage Schätz- oder Testpro-

bleme behandelt werden können. Ziel des ersten Kapitels ist es, eine Teststatistik herzu-

leiten, mit deren Hilfe Fragen in Bezug auf Hypothesen über bestimmte Verteilungspara-

meter beantwortet werden können. Unabdingbare Voraussetzung dafür bildet die Theorie

der Likelihood-Schätzer, die im Bereich der Schätzprobleme als eine der gängigsten zum

Auffinden von Schätzern für Parameterfunktionen angesehen werden kann. Aus diesem

Grund wird im ersten Abschnitt eine kurze Einführung in die Schätztheorie gegeben und

darauf aufbauend in Abschnitt zwei die Theorie der Likelihood-Funktionen entwickelt,

in der Maximum-Likelihood-Schätzer definiert und im Anschluß einige wichtige Eigen-

schaften von Maximum-Likelihood-Schätzern bewiesen werden. Abschnitt drei beginnt mit

einer Erläuterung der Problematik in Testproblemen und motiviert, ausgehend von ein-

fachen Hypothesen, in Abschnitt vier mit Hilfe von Likelihood-Quotienten den Übergang

zu komplexeren Hypothesen. Die Vorgehensweise orientiert sich dabei an der in [CH74].

Definitionen und Notationen sind zum Teil aus [Als09], sowie aus [Hel08] übernommen.

2.1 Grundlagen der Schätztheorie

Wie der Name bereits vermuten lässt, besteht das Ziel der Schätztheorie darin, anhand von

Stichproben Schätzungen über interessierende Parameter anzustellen. Dabei ist eine Stich-

probe x = (x1, . . . , xn) ein n-Tupel von Beobachtungen, die im wahrscheinlichkeitstheo-

retischen Zusammenhang als Realisierungen von Zufallsvariablen X1, . . . , Xn aufgefasst

werden. Das zugrunde liegende Modell lässt sich dabei wie folgt beschreiben: Ausgangs-

punkt bildet ein statistisches Experiment E = (X ,A, (Pθ)θ∈Θ), welches sich aus einem

3



4 Der Score-Test

Stichprobenraum X , einer σ-Algebra A über X und einer Familie (Pθ)θ∈Θ von Wahr-

scheinlichkeitsmaßen mit Θ ⊆ Rd als Parameterraum der Wahrscheinlichkeitsfamilie zu-

sammensetzt. Die Stichprobe stellt ein Element des Stichprobenraums dar und kann dann

als Realisierung einer Zufallsvariablen X : (Ω,F) → (X ,A) und einer zugehörigen Fami-

lie von Wahrscheinlichkeitsmaßen (Qθ)θ∈Θ identifiziert werden, wobei QXθ = Pθ für alle

θ ∈ Θ gilt. Auf die Struktur von (Ω,F) kommt es bei der Untersuchung der vorliegenden

Stichprobe nicht an. Auf diese Weise können Beobachtungen mit Zufallsvariablen in Ver-

bindung gebracht werden, sodass eine Stichprobe dem Zufall unterliegt, welcher über die

Zufallsvariablen – genauer über die Verteilungen der Zufallsvariablen – in das eingangs

beschriebene Modell einfließt. Dazu sei (Pθ)θ∈Θ dominiert durch ein Maß µ, sodass nach

dem Satz von Radon-Nikodým f(x; θ) = dPθ/dµ gilt. Im stetigen Fall ist f(x; θ) die Wahr-

scheinlichkeitsdichte und im diskreten Fall die Wahrscheinlichkeitsfunktion zu Pθ, was im

Laufe der vorliegenden Arbeit nicht mehr explizit erwähnt wird. Die Verteilung der Zu-

fallsvariablen wird nun bis auf den Parameter(-vektor) als bekannt angenommen, sodass

die Schätzungen eben jenen unbekannten Paramter(-vektor) betreffen. Ein Schätzer oder

eine Schätzfunktion für θ ist dabei eine messbare Abbildung T : X → Θ, die anhand einer

vorliegenden Stichprobe dem zu schätzenden Parameter einen Wert zuweist. Sinnvollerwei-

se versucht man dabei T so zu wählen, dass ein möglichst guter Schätzer resultiert, wobei

hier auf Details über die Spezifizierung der Eigenschaft
”
gut“ in diesem Zusammenhang

verzichtet werden soll.

Drei der wohl bekanntesten Schätzmethoden bilden die Momentenmethode, die Bayes-

Methode und die Theorie der Likelihood-Schätzer. Auf letztere wird im Folgenden ausführ-

lich eingegangen. Obwohl es sich bei den betreffenden Parametern fast ausschließlich um

Vektoren handelt, werden diese, sowie auftretende Matrizen, durch Fettdruck von skalaren

Parametern unterschieden.

2.2 Maximum-Likelihood-Theorie

Im Folgenden wird nun davon ausgegangen, dass es sich bei der Stichprobe x = (x1, . . . , xn)

um Realisierungen von i.i.d. Zufallsvariablen X1, . . . , Xn handelt, die gemäß einer Vertei-

lung Pθ gezogen werden. Die Bezeichnungsweise
”
eine Stichprobe ziehen“ folgt dabei dem

allgemeinen Sprachgebrauch und ist somit nicht wörtlich zu verstehen. Zudem sei darauf

hingewiesen, dass eine Stichprobe nicht ausschließlich aus wirklichen Beobachtungen be-

stehen muss. In einigen Situationen wird stattdessen von Zufallsvariablen als Bestandteil

der Stichproben ausgegangen, um gewisse Größen wie Erwartungswerte und Varianzen

sinnvoll herleiten zu können. Eine Rechtfertigung für dieses Vorgehen liefert das Wissen

über die den Beobachtungen zugrunde liegende Verteilung. Ob es sich um Zufallsvariablen
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oder Beobachtungen handelt, wird dabei in Form von Klein-, beziehungsweise Großschrei-

bung kenntlich gemacht. Begonnen wird mit einigen Definitionen, die unter den getroffenen

Annahmen gelten.

Definition 2.2.1. Es seien x1, . . . , xn Realisierungen von i.i.d. ZufallsvariablenX1, . . . , Xn,

die gemäß einer Verteilung Pθ gezogen werden. Dann heißt die Funktion

L(·;x) : Θ→ [0,∞)

mit Abbildungsvorschrift

L(θ;x) =

n∏
i=1

f(xi;θ) = f(x;θ)

Likelihood-Funktion zur Stichprobe x = (x1, . . . , xn).

Likelihood-Funktionen lassen sich wie folgt motivieren: Betrachtet man eine diskret ver-

teilte Zufallsvariable X, so gibt die Verteilung Pθ von X bei gegebenem Parametervektor

θ = (θ1, . . . , θd) die relativen Häufigkeiten der einzelnen Werte aus der Grundgesamt-

heit an. Somit liegt es nahe, dass bei einer zufälligen Stichprobe jener Parametervektor

θ̂ = (θ̂1, . . . , θ̂d) am ehesten dem wahren Parametervektor θ entspricht, bei dem die Wahr-

scheinlichkeit einer Realisierung der gezogenen Stichprobe am größten ist. Die Intuition

lässt sich durch Grenzübergang auf den stetigen Fall übertragen. Mathematisch bestimmt

man θ̂ also durch Maximieren der Likelihood-Funktion in θ.

Definition 2.2.2. Gegeben sei die Situation aus Definition 2.2.1. Dann bezeichnet θ̂ den

Maximum-Likelihood-Schätzer (MLS) für θ, falls

L(θ̂;x) ≥ L(θ′;x)

für alle θ′ ∈ Θ gilt. Die Maximierung erfolgt dabei komponentenweise in θ1 bis θd.

Für praktische Zwecke ist es oft vorteilhaft den Logarithmus der Likelihood-Funktion

zu verwenden. Aufgrund der Monotonie des Logarithmus ändert sich bei Extremwert-

untersuchungen nichts. Da von dieser Eigenschaft häufig Gebrauch gemacht wird, erhält

der Logarithmus der Likelihood-Funktion eine eigene Bezeichnung. Dazu wird die Log-

Likelihood-Funktion definiert durch

l(θ;x) = log
(
L(θ;x)

)
.

Einige Merkmale des MLS sind für die Entwicklung der weiteren Theorie wesentlich. Unter

anderem besitzt θ̂ eine asymptotische Normalverteilung um den wahren Parametervektor
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θ ∈ Θ. Diese Eigenschaft gilt uneingeschränkt, vorausgesetzt es werden sogenannte Re-

gularitätsbedingungen an die Likelihood-Funktion gestellt. Zuerst jedoch werden einige

Begriffe eingeführt, die im Folgenden eine zentrale Rolle spielen. Im Zusammenhang mit

der Theorie der Likelihood-Funktionen erhält die Ableitung der Log-Likelihood-Funktion

nach θ eine eigene Bezeichnung.

Definition 2.2.3. Es gelten die Voraussetzungen aus Definition 2.2.1, dann heißt

S(θ;x) =
∂

∂θ
log
(
L(θ;x)

)
=

(
∂

∂θ1
l(θ;x), . . . ,

∂

∂θd
l(θ;x)

)T
Score-Funktion oder einfach Score für x = (x1, . . . xn).

Um die Score-Funktion von der Abhängigkeit des gesamten Beobachtungsvektors zu lösen,

wird zusätzlich der Score der i-ten Beobachtung beschrieben durch

S(θ;xi) =
∂

∂θ
l(θ;xi),

sodass im Fall unabhängiger Zufallsvariablen

S(θ;x) =
∂

∂θ
log

( n∏
i=1

f(xi;θ)

)
=

∂

∂θ

n∑
i=1

log f(xi;θ) =

n∑
i=1

S(θ;xi)

gilt. Die so eingeführte Score-Funktion bei festen Stichproben hängt somit nur vom un-

bekannten Paramtervektor θ ab. Betrachtet man jedoch Zufallsvariablen anstelle fester

Beobachtungen, so besteht S(θ;X) selbst aus Zufallsvariablen und dem Score kann ein

Erwartungswertvektor zugeordnet werden.

Definition 2.2.4. Es gelten die Annahmen aus Definition 2.2.3, dann heißt

I(θ;X) = Eθ
[
S(θ;X)S(θ;X)T

]
die Fisher-Information von θ zur Stichprobe X = (X1, . . . , Xn). Für einzelne Beobach-

tungen ist somit

I(θ;Xi) = Eθ
[
S(θ;Xi)S(θ;Xi)

T
]

die Fisher-Information von θ zur Beobachtung Xi.

Die Fisher-Information kann angesehen werden als Maß für die Güte des zu schätzenden

Parameters. Je größer I(θ;X) ist, desto genauer lässt sich θ schätzen. Es kann gezeigt

werden, dass unter gewissen Voraussetzungen1 für die Kovarianz eines erwartungstreuen

1Vgl. [WN70], S.70.
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Schätzers θ̂ für θ gilt: Covθ
[
θ̂(X)

]
≥ I(θ;X)−1. Ein Schätzer, der diese untere soge-

nannte (mehrdimensionale) Cramer-Rao-Schranke annimmt wird als effizient bezeichnet.

Man beachte, dass es sich bei Score-Funktionen und Fisher-Informationen in der Situation

vektorwertiger Parameter θ selbst um Vektoren beziehungsweise Matrizen handelt.

Die angekündigten Regularitätsbedingungen (RB) lauten wie folgt:

1. Θ ist offen mit dim(Θ) < ∞.

2. Für alle θ,θ′ ∈ Θ mit θ 6= θ′ gilt: f(x;θ) 6= f(x;θ′).

3. In einer Umgebung Uθ des wahren Parametervektors θ ∈ Θ gilt:

(a) S(θ′;X), ∂∂θS(θ′;X), ∂
2

∂θ2
S(θ′;X) existieren fast sicher für alle θ′ ∈ Uθ.

(b) Es existiert eine Funktion g(X) mit E[g(X)] < ∞ und n−1| ∂2
∂θ2

S(θ′;X)| <
g(X) für alle θ′ ∈ Uθ.

4. Integration bezüglich x und Differentiation bezüglich θi dürfen vertauscht werden.

Verteilungsfamilien, die den Regularitätsbedingungen genügen werden im Folgenden auch

einfach als regulär bezeichnet.

Lemma 2.2.5. Es sei X = (X1, . . . , Xn) eine Stichprobe bestehend aus i.i.d. Zufallsva-

riablen X1, . . . , Xn mit regulärer Verteilung Pθ. Dann gilt:

Eθ
[
Sj(θ;Xi)

]
= 0 (2.1)

für (i, j) ∈ {1, . . . , n} × {1, . . . , d} mit Sj(θ;Xi) = ∂
∂θj
l(θ;Xi) als j-te Komponente des

Score-Vektors.

Beweis. Es gilt

Eθ
[
Sj(θ;Xi)

]
=

∫
∂

∂θj
l(θ;xi)f(xi;θ)µ(dxi)

=

∫ ∂
∂θj
f(xi;θ)

f(xi;θ)
f(xi;θ)µ(dxi)

=

∫
∂

∂θj
f(xi;θ)µ(dxi)

RB 4
=

∂

∂θj

∫
f(xi;θ)µ(dxi)︸ ︷︷ ︸

= 1

= 0.

Weiterhin wichtig ist folgendes

Lemma 2.2.6. Es sei X = (X1, . . . , Xn) eine Stichprobe bestehend aus i.i.d. Zufallsva-

riablen X1, . . . , Xn mit regulärer Verteilung Pθ. Dann gilt:

I(θ;X) = −Eθ
[ ∂
∂θ

S(θ;X)T
]
. (2.2)
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Beweis. Es gilt

∂

∂θ
S(θ;x)T =

∂

∂θ

(
∂

∂θ
l(θ;x)

)T
=

∂

∂θ

( ∂
∂θf(x;θ)

f(x;θ)

)T
=

(
∂2

∂θ2
f(x;θ)

)
f(x;θ)− ∂

∂θf(x;θ)
(
∂
∂θf(x;θ)

)T
f(x;θ)2

=
∂2

∂θ2
f(x;θ)

f(x;θ)
−

∂
∂θf(x;θ)

f(x;θ)︸ ︷︷ ︸
= S(θ;x)

(
∂
∂θf(x;θ)

)T
f(x;θ)︸ ︷︷ ︸

= S(θ;x)T

.

Integriert man die Gleichung bezüglich Pθ, so folgt wegen dPθ = f(x;θ)dµ

Eθ

[ ∂
∂θ

S(θ;X)T
]

=

∫
∂2

∂θ2 f(x;θ)µ(dx)− Eθ
[
S(θ;X)S(θ;X)T

]
und mit

∫
∂2

∂θ2
f(x;θ)µ(dx) = ∂2

∂θ2

∫
f(x;θ)µ(dx)︸ ︷︷ ︸

= 1

= 0 die Behauptung.

Betrachtet man reguläre Verteilungsfamilien, so lässt sich mit Lemma 2.2.5 für i.i.d. Zu-

fallsvariablen X1, . . . , Xn eine weitere Darstellungsmöglichkeit der Fisher-Information an-

geben. Es gilt

I(θ;Xi) = Cov
[
S(θ;Xi)

]
.

Dabei bezeichnet Cov
[
S(θ;Xi)

]
=
(
Cov

[
Sj(θ;Xi),Sk(θ;Xi)

])
1≤j,k≤d die Kovarianzma-

trix von S(θ;Xi). Unter Beachtung der Unabhängigkeit der Xi für i = 1, . . . , n lässt sich

weiter zeigen, dass I(θ;X) =
∑n

i=1 I(θ;Xi) und somit speziell für identisch verteilte

Zufallsvariablen

I(θ;X) = nI(θ;Xi) (2.3)

gilt. Die eingangs erwähnte Eigenschaft der asymptotischen Normalverteilung des MLS

soll in einem Satz festgehalten und unter Annahme der Regularitätsbedingungen bewiesen

werden. Dazu wird das Konzept der multivariaten Normalverteilung benötigt, welches im

Folgenden in ausreichender Kürze mit einigen dazugehörigen Resultaten vorgestellt wird.

Ab jetzt wird angenommen, dass die Likelihood-Funktion der zugrunde liegenden Vertei-

lung den Regularitätsbedingungen genüge. Als Erweiterung des Prinzips normalverteil-

ter Zufallsvariablen (univariate Normalverteilung) werden nun Zufallsvektoren betrachtet,

denen ebenfalls eine Normalverteilung (multivariate Normalverteilung) zugeordnet wird.

Dabei wird auf den Fall nichtsingulärer Kovarianzmatrizen eingegangen. Die Definition

der multivariaten Normalverteilung sowie wichtige Eigenschaften stammen aus [SHF85].



2.2. Maximum-Likelihood-Theorie 9

Definition 2.2.7. Es sei X = (X1, . . . , Xp)
T ein p-dimensionaler Zufallsvektor mit Wer-

ten im Rp. Dann besitztX eine p-variate nichtsinguläre Normalverteilung mit Erwartungs-

wertvektor µ = (µ1, . . . µp)
T und positiv definiter Kovarianzmatrix Σ, falls die Dichte von

X gegeben ist durch

f(x) =
∣∣(2π)Σ

∣∣− 1
2 exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
mit µj ∈ R für j = 1, . . . , p und Σ > 0.

∣∣Σ∣∣ bezeichnet dabei die Determinante der Matrix

Σ. Man schreibt X ∼ Np(µ,Σ).

Einige für den späteren Kontext wichtige Eigenschaften lauten wie folgt:

Lemma 2.2.8. Es sei X ∼ Np(µ,Σ) mit Σ > 0. Dann gilt:

(X − µ)TΣ−1(X − µ) ∼ χ2
p.

Beweis. Dies folgt direkt aus einer Zerlegung Σ = CCT mit C als (p×p)-Matrix und der

Definition der χ2-Verteilung. Eine Darstellung von C in vorliegender Form ist mit Hilfe

der Cholesky-Zerlegung2 möglich.

Lemma 2.2.9. Es sei X ∼ Np(µ,Σ) mit Σ > 0. Weiter sei A eine (k × p)-Matrix mit

vollem Rang, k ≤ p und b ein k-Vektor. Dann gilt:

AX + b ∼ Nk
(
Aµ+ b,AΣAT

)
.

Beweis. Der Beweis ergibt sich aus einer Darstellung der charakteristischen Funktion von

Y = AX+b. Dazu sei t ein k-Vektor mit t 6= 0. Dann gilt für die charakteristische Funk-

tion von Y : φY (t) = φAX(t)φb(t) = E[exp(itTAX)] exp(itTb) = φX(AT t) exp(itTb).

Nun gilt für X ∼ Np(µ,Σ) mit Σ > 0: φX(t) = exp(itTµ − 1
2t
TΣt) und somit φY (t) =

exp(itTb) exp(itTAµ − 1
2t
TAΣAT t) = exp(itT (Aµ + b) − 1

2t
T (AΣAT )t). Dies ist wie-

derum die charakteristische Funktion eines Nk(Aµ+ b,AΣAT )-verteilten Zufallsvektors

mit AΣAT > 0.

Lemma 2.2.10. Es sei X = (XT
1 ,X

T
2 )T ∼ Np(µ,Σ) mit Σ > 0, X1 sei r-Vektor und

X2 sei (p− r)-Vektor. Weiter sei µ = (µT1 ,µ
T
2 )T und Σ =

(
Σ11 Σ12

Σ21 Σ22

)
. Dann gilt:

X2|X1 ∼ Np−r
(
µ2 + Σ21Σ

−1
11 (X1 − µ1),Σ22 −Σ21Σ

−1
11 Σ12

)
.

2Vgl. Anhang A.2.
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Beweis. Es sei X2.1 = X2 −Σ21Σ
−1
11 X1. Dann gilt X2.1 ∼ Np−r(µ2 −Σ21Σ

−1
11 µ1,Σ22 −

Σ21Σ
−1
11 Σ12) was leicht mit der Darstellung X2.1 =

(
−Σ21Σ

−1
11 Ip−r

)(X1

X2

)
und Lem-

ma 2.2.9 eingesehen werden kann. Es sei nun X2 = X2.1 + Σ21Σ
−1
11 X1. Unter Be-

dingen von X1 ist Σ21Σ
−1
11 X1 konstant, sodass E[X2|X1] = E[X2.1] + Σ21Σ

−1
11 X1 =

µ2 + Σ21Σ
−1
11 (X1 − µ1) und Var[X2|X1] = Var[X2.1] = Σ22 −Σ21Σ

−1
11 Σ12.

Um nun die angesprochenen Eigenschaften des MLS herleiten zu können, wird mit einem

Prinzip begonnen, das unabhängig von der gewählten Schätzmethode Bedeutung findet.

Definition 2.2.11. Es seien X1, . . . , Xn i.i.d. Zufallsvariablen mit Verteilung Pθ und θ̂n

sei ein Schätzer für θ auf der Basis X1, . . . , Xn. Dann heißt θ̂n (schwach) konsistent, wenn

θ̂n in Wahrscheinlichkeit gegen θ konvergiert, das heißt limn→∞ P
(
‖θ̂n − θ‖ > ε

)
= 0 für

alle ε > 0. ‖ · ‖ bezeichnet dabei die euklidische Norm.

Anschaulich bedeutet die Konsistenz eines Schätzers also, dass sich der Schätzer dem zu

schätzenden Parameter bei zunehmender Beobachtungsanzahl immer weiter nähert.

Lemma 2.2.12. Es seien X1, . . . , Xn i.i.d. Zufallsvariablen mit Verteilung Pθ. Sind die

Regularitätsbedingungen erfüllt, dann ist der MLS θ̂ auf der Basis X1, . . . , Xn konsistent.

Der Beweis des Lemmas ist überwiegend konstruktiver Natur und im folgenden Zusam-

menhang nicht weiter von Relevanz. Aus diesem Grund wird von genauen Ausführungen

abgesehen und der interessierte Leser auf [Wal49], S. 595-601 verwiesen.

Betrachtet man den MLS θ̂ nicht als Funktion bezüglich einer festen Stichprobe x =

(x1, . . . , xn), sondern als Funktion in den Zufallsvariablen X1, . . . , Xn, so kann der Schätzer

selbst als Zufallsvariable interpretiert werden. Dies ermöglicht es, dem Schätzer eine Vertei-

lung zuzuweisen, die mit Hilfe wahrscheinlichkeitstheoretischer Mittel hergeleitet werden

kann.

Satz 2.2.13. Es seien X1, . . . , Xn i.i.d. Zufallsvariablen mit regulärer Verteilung Pθ, θ =

(θ1, . . . , θd)
T und θ̂ sei MLS für θ auf der Basis X1, . . . , Xn. Dann gilt:

√
n
(
θ̂ − θ

) D−→ Nd
(
0,I(θ;X1)−1

)
.

D−→ bezeichnet dabei die Konvergenz in Verteilung.

Beweis. Mittels der Taylorformel, die aufgrund von RB 3(a) angewendet werden darf,

werden die Komponenten des Score-Vektors
(
S1(θ̂;X), . . . ,Sd(θ̂;X)

)T
= S(θ̂;X) mit
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Sj(θ̂;X) = ∂
∂θj
l(θ̂;X) für j = 1, . . . , d um den wahren Parameter θ = (θ1, . . . , θd)

T

entwickelt. Es gilt

Sj(θ̂;X) = Sj(θ;X) +
d∑

k=1

∂

∂θk
Sj(θ;X)(θ̂k−θk) +

1

2

d∑
k,l=1

∂2

∂θk∂θl
Sj(θ̃;X)(θ̂k−θk)(θ̂l−θl)

mit θ̃ geeignet, wobei |θ̃ − θ| < |θ̂ − θ|. Da Sj(θ̂;X) = 0 folgt nach Division durch
√
n

Sj(θ;X)√
n

= −
∑d

k=1
∂
∂θk
Sj(θ;X)(θ̂k − θk)√

n
− 1

2

∑d
k,l=1

∂2

∂θk∂θl
Sj(θ̃;X)(θ̂k − θk)(θ̂l − θl)√

n

=
√
n

(
− 1

n

d∑
k=1

∂

∂θk
Sj(θ;X)(θ̂k − θk)−

1

2n

d∑
k,l=1

∂2

∂θk∂θl
Sj(θ̃;X)(θ̂k − θk)(θ̂l − θl)︸ ︷︷ ︸

=:Zn

)
.

Nach RB 3(b) existiert eine Funktion g(X), sodass n−1
∣∣ ∂2

∂θk∂θl
Sj(θ̃;X)

∣∣ < g(X) <∞. Da

θ̂ aufgrund von Lemma 2.2.12 konsistent ist, folgt |Zn| < |θ̂k− θk||θ̂l− θl|g(X)
n→∞−→ 0 und

somit Zn = op(1). Dabei gilt Zn = op(f(n))⇔ limn→∞ P
(∣∣ Zn

f(n)

∣∣ ≤ ε
)

= 1 für alle ε > 0

mit einer Folge (Zn)n∈N>0 von Zufallsvariablen und einer Funktion f : N>0 → R. Also ist

Sj(θ;X)√
n

=
√
n

(
− 1

n

d∑
k=1

∂

∂θk

( n∑
i=1

Sj(θ;Xi)
)

(θ̂k − θk)− op(1)

)
,

wobei mit dem schwachen Gesetz der großen Zahlen gilt:

− 1

n

d∑
k=1

∂

∂θk

( n∑
i=1

Sj(θ;Xi)
)

(θ̂k − θk)
n→∞−→ −

d∑
k=1

∂

∂θk
Eθ
[
Sj(θ;X1)

]
(θ̂k − θk)

RB 4
= −Eθ

[ ∂

∂θ1
Sj(θ;X1)

]
(θ̂1 − θ1)− . . .

−Eθ
[ ∂

∂θd
Sj(θ;X1)

]
(θ̂d − θd)

(2.2)
= Ij1(θ;X1)(θ̂1 − θ1) + · · ·+ Ijd(θ;X1)(θ̂d − θd)

=
(
Ij1(θ;X1), . . . , Ijd(θ;X1)

)
(θ̂ − θ)

in Wahrscheinlichkeit. Es folgt

1√
n
Sj(θ;X)

a
=
√
n
(
Ij1(θ;X1), . . . , Ijd(θ;X1)

)
(θ̂ − θ)

und folglich mit I(θ;X1) =


I11(θ;X1) · · · I1d(θ;X1)

...
. . .

...

Id1(θ;X1) · · · Idd(θ;X1)


1√
n
S(θ;X)

a
=
√
nI(θ;X1)(θ̂ − θ)

⇔
√
n(θ̂ − θ)

a
=

1√
n
I(θ;X1)−1S(θ;X). (2.4)
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a
= steht dabei für asymptotisch äquivalent, sodass für große Stichproben der linke und der

rechte Term annähernd identisch sind. Da Eθ
[
Sj(θ;Xi)

]
= 0 für i = 1, . . . , n, j = 1, . . . , d

wegen Lemma 2.2.5 und Eθ
[
Sj(θ;X1)Sk(θ;X1)

]
= Ijk(θ;X1) für j, k = 1, . . . , d wegen

Definition 2.2.4, folgt mit dem mehrdimensionalen zentralen Grenzwertsatz3 und Lemma

2.2.9

1√
n
I(θ;X1)−1S(θ;X) =

√
nI(θ;X1)−1

( 1

n

n∑
i=1

S(θ;Xi)
)

D−→ Nd
(
0,I(θ;X1)−1

)
und somit die Behauptung.

Es lässt sich zeigen, dass die Aussage der asymptotischen Normalverteilung der Likelihood-

Funktion auch unter schwächeren Annahmen gültig bleibt.4 (Diese implizieren beispiels-

weise dass die Forderung RB 3(a) zu restriktiv ist.) Dies soll hier jedoch nicht näher

beleuchtet werden.

2.3 Grundlagen der Testtheorie

Im Folgenden wird das Ziel sein, einen Test zu entwickeln, mit dessen Hilfe Entschei-

dungen über die Richtigkeit einer Hypothese getroffen werden können. Grundlegend lässt

sich die Schätz- von der Testtheorie dahingehend unterscheiden, dass beim Schätzen von

Parametern bestimmte Werte für die unbekannten Parameter anhand von Plausibilitäten

festgelegt werden, wohingegen beim Testen von Hypothesen Plausibilitäten für bereits

festgelegte Werte überprüft werden. Man unterscheidet dabei zwischen einer Nullhypothe-

se H0 : θ ∈ Θ0 ⊆ Θ und einer Alternativhypothese H1 : θ ∈ Θ\Θ0, wobei Θ ⊆ Rd den

Parameterraum einer bekannten Verteilungsfamilie (Pθ)θ∈Θ darstellt. Auf der Grundla-

ge von Beobachtungen, simuliert durch Realisierungen von i.i.d. Zufallsvariablen, werden

Indizien für das Annehmen oder Verwerfen der Nullhypothese gesammelt. Die Entschei-

dungen für oder gegen die Nullhypothese werden dabei modelliert durch eine messbare

Abbildung δ : (X ,A) → (D, E) vom Raum (X ,A) der möglichen Realisierungen in den

Raum (D, E) der möglichen Entscheidungen. In den folgenden Testproblemen entspricht

D dem abgeschlossenen Einheitsintervall, das heißt D = [0, 1]. Eine Entscheidungsfunk-

tion φ : X → [0, 1] wird als Test bezeichnet, sodass auf der Grundlage einer Stichprobe

x ∈ X der Test φ(x) = γ mit γ ∈ [0, 1], eine Entscheidung mit Wahrscheinlichkeit γ für

die Alternativhypothese liefert. Im Fall γ ∈ (0, 1) bedeutet dies, dass die Entscheidung

keineswegs eindeutig zugunsten einer der Hypothesen getroffen wird. Dies modelliert eine

3Vgl. Anhang A.1.
4Vgl. [LeC70], S.802-828.
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Art Unentschlossenheit zwischen den Entscheidungsmöglichkeiten und wird als Randomi-

sieren bezeichnet. In nicht randomisierten Testproblemen, das heißt γ ∈ {0, 1}, hingegen

wird eine eindeutige Entscheidung getroffen, die mit φ(x) = 1 für die Alternativhypothese,

beziehungsweise gegen die Nullhypothese und mit φ(x) = 0 für die Nullhypothese ausfällt.

Dabei ist zu beachten, dass eine Entscheidung gegen die Alternativhypothese, das heißt

also eine Annahme der Nullhypothese aufgrund einer Stichprobe nicht gleichzusetzen ist

mit einem Beweis für die Richtigkeit der Nullhypothese, sondern lediglich, dass die Nullhy-

pothese aufgrund mangelnder Beweislage nicht verworfen werden kann (vergleichbar dem

juristischen Grundsatz
”
in dubio pro reo“). In den vorliegenden Testproblemen können

somit zwei mögliche Fehler auftreten:

Fehler 1. Art , Verwerfen der Nullhypothese, obwohl diese richtig ist.

Fehler 2. Art , Annahme der Nullhypothese, obwohl diese falsch ist.

Die Auswirkungen beider Fehler differieren in aller Regel sehr stark. Da es im Allgemei-

nen keinen Test gibt, der die Wahrscheinlichkeiten beider Fehler simultan minimiert, die

irrtümliche Entscheidung für die Alternativhypothese jedoch schwerwiegendere Auswir-

kungen hat als die irrtümliche Annahme der zumeist konservativen Nullhypothese, ist es

von Interesse, das Risiko eines Fehlers 1. Art unter einem vorgegebenen Signifikanzniveau

α ∈ [0, 1] zu halten und unter diesen Tests denjenigen zu wählen, der die Fehlerwahrschein-

lichkeit 2. Art minimiert. α gibt dabei die maximale Wahrscheinlichkeit an, mit der eine

irrtümliche Annahme der Alternativhypothese toleriert wird, was unter Verwendung der

Gütefunktion βφ : θ 7→ Eθ[φ(X)] bedeutet, einen Test φ mit Eθ[φ(X)] ≤ α für alle θ ∈ Θ0

zu finden. Ein Test, der diese Eigenschaft erfüllt, wird als Test zum Niveau α bezeichnet

und die Menge all solcher Tests zum Niveau α wird als Φα definiert. Da es weiter von In-

teresse ist unter den Tests φ ∈ Φα denjenigen zu wählen, der die Fehlerwahrscheinlichkeit

2. Art minimiert – dies entspricht einer Maximierung der Gütefunktion in θ ∈ Θ1 – gilt

für den gleichmäßig besten Test φ0 zum Niveau α:

Eθ[φ0(X)] = max
φ∈Φα

Eθ[φ(X)]

für alle θ ∈ Θ1. Betrachtet wird im Folgenden die auf Neyman und Pearson zurückgehende

Entdeckung zur Beschreibung gleichmäßig bester Tests in Testproblemen mit einfachen

Hypothesen.

Satz 2.3.1. Es seien Pθ0 und Pθ1 Wahrscheinlichkeitsmaße auf (X ,A) mit Dichten

f(x;θ0) und f(x;θ1) bezüglich eines dominierenden Maßes µ. Weiter sei α ∈ (0, 1) und

c ∈ [0,∞). Dann gilt:

Ist ψ ∈ Φα mit ψ(x) = 1{f(x;θ1)>cf(x;θ0)} und c so gewählt, dass Eθ0 [ψ(X)] = α, dann ist
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Eθ1 [ψ(X)] = maxφ∈Φα Eθ1 [φ(X)], das heißt ψ ist gleichmäßig bester Test zum Niveau α

für H0 : θ = θ0 gegen H1 : θ = θ1.

Beweis. Sei φ ∈ Φα beliebig. Dann gilt:

f(x;θ1)− cf(x;θ0) > 0 ⇒ ψ(x) = 1 ⇒ ψ(x)− φ(x) ≥ 0 und

f(x;θ1)− cf(x;θ0) < 0 ⇒ ψ(x) = 0 ⇒ ψ(x)− φ(x) ≤ 0.

Somit ist (ψ(x)− φ(x))(f(x;θ1)− cf(x;θ0)) ≥ 0. Integration bezüglich µ liefert

0 ≤
∫
ψ(x)f(x;θ1)dµ−

∫
φ(x)f(x;θ1)dµ

− c
(∫

ψ(x)f(x;θ0)dµ−
∫
φ(x)f(x;θ0)dµ

)
⇔ 0 ≤ Eθ1 [ψ(X)]− Eθ1 [φ(X)]− c

(
Eθ0 [ψ(X)]︸ ︷︷ ︸

=α

−Eθ0 [φ(X)]︸ ︷︷ ︸
≤α

)
.

Also folgt 0 ≤ Eθ1 [ψ(X)]− Eθ1 [φ(X)] und damit die Behauptung.

Der Ablehnungsbereich Kα des Neyman-Pearson-Tests wird also im Falle einfacher Hypo-

thesen über den Quotienten f(x;θ1)/f(x;θ0) bestimmt. Es gilt Kα = {x : f(x;θ1)
f(x;θ0) > c},

wobei c so zu wählen ist, dass das Signifikanzniveau α voll ausgeschöpft wird. Es sei darauf

hingewiesen, dass das Neyman-Pearson-Lemma für Wahrscheinlichkeitsdichten vorgestellt

wurde. Für diskrete Wahrscheinlichkeitsverteilungen muß die Testgestalt leicht verändert

werden, da eine Randomisierung nötig ist, um eine Ausschöpfung des Signifikanzniveaus

α zu gewährleisten.

Dehnt man die Situation einfacher Hypothesen auf den in der Realität wesentlich

interessanteren Fall zweiseitiger Alternativhypothesen aus, das heißt H0 : θ ∈ [θ1, θ2] gegen

H1 : θ /∈ [θ1, θ2] mit θ1, θ2 ∈ Θ ⊆ R und θ1 ≤ θ2, so muss man feststellen, dass gleichmäßig

beste Tests in der Regel nicht existieren. Um weiterhin optimale Tests zu erhalten muss

das Prinzip der Unverfälschtheit eingeführt werden. Dieses besagt, dass neben den vorigen

Annahmen die zusätzliche Bedingung Eθ[φ(X)] ≥ α für alle θ ∈ Θ1 erfüllt sein muss.

Bezeichnet man mit Φα,u die Menge aller unverfälschten Tests zum Niveau α, so erfüllt der

gleichmäßig beste unverfälschte Test φ0 zum Niveau α folglich die Bedingungen φ0 ∈ Φα,u

und

Eθ[φ0(X)] = max
φ∈Φα,u

Eθ[φ(X)]

für alle θ ∈ Θ1. Bei Vorliegen einer einparametrigen Exponentialfamilie lässt sich auch

in dieser Situation eine Testgestalt ähnlich zu der in der Situation einfacher Hypothesen

angeben.5 Dies impliziert, dass die Verteilung der Statistik, anhand welcher eine Entschei-

dung für oder gegen die Alternativhypothese getroffen wird, bekannt sein muss, um die

5Für eine detaillierte Einführung in die Testtheorie sei auf [Als09] verwiesen.
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für das Einhalten der Irrtumswahrscheinlichkeit notwendigen kritischen Werte zu bestim-

men. Für einige Verteilungen stehen dabei Tafelwerke zur Verfügung, die das Festlegen der

kritischen Werte bei gegebenem α erleichtern.6 Oft ist es auch möglich, eine nicht vertafel-

te Verteilung mit Hilfe einer Transformation in eine vertafelte Verteilung zu überführen.

Gelingt dies nicht oder ist die Verteilung der Teststatistik nicht bekannt, so ist die Be-

stimmung der kritischen Werte wesentlich schwieriger. Ein Ausweg aus dieser Problematik

wird im Folgenden gegeben.

2.4 Herleitung des Score-Tests

Damit der Score-Test hergeleitet werden kann, muss man sich ausführlich mit der Theorie

der Likelihood-Quotienten-Tests beschäftigen. Dazu ist der vorliegende Abschnitt so auf-

gebaut, dass zu Beginn Likelihood-Quotienten-Tests ohne nuisance-Parameter eingeführt

werden, bevor im Anschluß Likelihood-Quotienten-Tests mit nuisance-Parametern unter-

sucht werden.

Likelihood-Quotienten-Tests ohne nuisance-Parameter

Es wird mit einem Spezialfall der Situation des vorigen Abschnitts fortgefahren, nämlich

einfachen Nullhypothesen bei zweiseitigen Alternativen. Dazu sei erneut x = (x1, . . . , xn)

eine Stichprobe bestehend aus i.i.d. Zufallsvariablen X1, . . . , Xn und

supθ′∈Θ1
L(θ′;x)

L(θ0;x)
= exp

(1

2
λ
)

der Likelihood-Quotient mit Θ1 ⊆ Θ. Dann gilt im Fall Θ1 = Θ\θ0

λ = 2
(

sup
θ′∈Θ\θ0

l(θ′;x)− l(θ0;x)
)

und mit Λ = max(0, λ) folgt

Λ = 2
(
l(θ̂;x)− l(θ0;x)

)
.

Λ wird dabei als Likelihood-Quotienten-Test bezeichnet. Obwohl für n < ∞ die Vertei-

lung von Λ sowohl von n als auch von der Wahrscheinlichkeitsdichte der Xi abhängt,

kann gezeigt werden, dass in regulären Problemen die asymptotische Verteilung von Λ für

n→∞ ein einheitliches Ergebnis liefert. Dies ermöglicht es, approximativ für große Stich-

proben unabhängig von der Verteilung von Λ die kritischen Werte anhand der α-Fraktile

der asymptotischen Verteilung festzumachen. Umso erfreulicher ist die Tatsache, dass es

6Hierzu zählen unter anderem die Standardnormalverteilung und die Chi-Quadrat-Verteilung. Einige

Fraktilstabellen sind beispielsweise in [Rin08], Kapitel E1 angegeben.
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sich bei der asymptotischen Verteilung um die gut vertafelte Chi-Quadrat-Verteilung mit

Anzahl der Freiheitsgrade entsprechend der Dimension von θ handelt.

Satz 2.4.1. Es seien x1, . . . , xn Realisierungen von i.i.d. Zufallsvariablen X1, . . . , Xn, die

gemäß einer regulären Verteilung Pθ gezogen werden. Dann gilt für die Verteilung von Λ

bei einer Nullhypothese der Form H0 : θ = θ0 = (θ10, . . . , θd0)T gegen H1 : θ 6= θ0:

Λ
D−→ χ2

dim(θ).

Beweis. Unter Annahme der Nullhypothese H0 : θ = θ0 ∈ Θ wird Λ um θ0 in eine

Taylorreihe entwickelt. Dazu sei erneut Sk(θ;X) = ∂
∂θk

l(θ;X) für k = 1, . . . , d. Es gilt:

l(θ̂;X) = l(θ0;X) +
d∑

k=1

Sk(θ0;X)(θ̂k − θk0) +
1

2

d∑
k,m=1

∂

∂θm
Sk(θ̃;X)(θ̂k − θk0)(θ̂m − θm0)

= l(θ0;X) + S(θ0;X)T (θ̂ − θ0) +
1

2

d∑
m=1

(θ̂m − θm0)
∂

∂θm
S(θ̃;X)T (θ̂ − θ0)

(2.5)

mit θ̃ geeignet, wobei |θ̃ − θ0| < |θ̂ − θ0| und

Sj(θ̂;X) = Sj(θ0;X) +
d∑

k=1

∂

∂θk
Sj(˜̃θ;X)(θ̂k − θk0)

= Sj(θ0;X) +
( ∂
∂θ
Sj(˜̃θ;X)

)T
(θ̂ − θ0)

mit
˜̃
θ geeignet, wobei |˜̃θ − θ0| < |θ̂ − θ0|. Es folgt

S(θ̂;X) = S(θ0;X) +
( ∂
∂θ

S(
˜̃
θ;X)T

)T
(θ̂ − θ0)

⇔ S(θ0;X) = S(θ̂;X)−
( ∂
∂θ

S(
˜̃
θ;X)T

)T
(θ̂ − θ0). (2.6)

Somit ist

Λ = 2
(
l(θ̂;X)− l(θ0;X)

)
(2.5)
= 2

(
S(θ0;X)T (θ̂ − θ0) +

1

2

d∑
m=1

(θ̂m − θm0)
∂

∂θm
S(θ̃;X)T (θ̂ − θ0)

)
(2.6)
= 2

(
S(θ̂;X)T︸ ︷︷ ︸

= 0

(θ̂ − θ0)− (θ̂ − θ0)T
∂

∂θ
S(

˜̃
θ;X)T (θ̂ − θ0)

+
1

2
(θ̂ − θ0)T

∂

∂θ
S(θ̃;X)T (θ̂ − θ0)

)
= −(θ̂ − θ0)T

∂

∂θ
S(θ̆;X)T (θ̂ − θ0) mit |θ̆ − θ0| < |θ̂ − θ0|
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= n(θ̂ − θ0)T
(
− 1

n

∂

∂θ
S(θ0;X)T

)
(θ̂ − θ0) + op(1)︸ ︷︷ ︸

n→∞−→ 0

. (2.7)

In der letzten Gleichung wurde benutzt, dass θ̂ und infolgedessen auch θ̆ konsistent sind.

Somit lässt sich (θ̂−θ0)T ∂
∂θS(θ̆;X)T (θ̂−θ0) in (θ̂−θ0)T ∂

∂θS(θ0;X)T (θ̂−θ0) und einen

op(1)-Term zerlegen. Mit dem schwachen Gesetz der großen Zahlen folgt

− 1

n

∂

∂θ
S(θ0;X)T

n→∞−→ −Eθ0
[ ∂
∂θ

S(θ0;X1)T
]

(2.2)
= I(θ0;X1).

Es gilt also Λ
a
= n(θ̂ − θ0)TI(θ0;X1)(θ̂ − θ0) und mit der Cholesky-Zerlegung ist eine

Darstellung der Form I(θ0;X1) = A(θ0;X1)TA(θ0;X1) möglich, sodass

Λ
a
= n(θ̂ − θ0)TA(θ0;X1)TA(θ0;X1)(θ̂ − θ0)

=
(√
nA(θ0;X1)(θ̂ − θ0)

)T (√
nA(θ0;X1)(θ̂ − θ0)

)
.

Mit Satz 2.2.13 folgt
√
nA(θ0;X1)(θ̂−θ0)

D−→ Nd
(
0, Id

)
und mit Lemma 2.2.8 schließlich

die Behauptung.

Likelihood-Quotienten-Tests mit nuisance-Parametern

Die gewonnenen Resultate werden nun dazu genutzt, einen Test zu entwickeln, der die

Situation einfacher Nullhypothesen auf komplexere Nullhypothesen erweitert. Genauer

bedeutet dies, dass ein Signifikanztest hergeleitet wird, der im Falle eines mehrdimensio-

nalen Parametervektors θ die Nullhypothese H0 : θ ∈ Θ0 ⊆ Θ gegen die Alternativhypo-

these H1 : θ ∈ Θ\Θ0 testet. Darauf aufbauend lassen sich asymptotisch äquivalente Tests

herleiten, die häufig für die Praxis vorteilhafte Eigenschaften, wie zum Beispiel leichtere

Berechenbarkeit, aufweisen.

Anders als im Fall einfacher Nullhypothesen wird es im Folgenden nicht das Ziel sein,

Annahmen über den gesamten Parametervektor θ = (θ1, . . . , θd)
T zu verifizieren, sondern

es werden nur Annahmen über r < d Vektorkomponenten geprüft. Dabei ist es von Vorteil,

den Parametervektor in einen zu testenden und einen nicht zu testenden Teil aufzuspalten.

Es sei θ =
(
θT1 ,θ

T
2

)T ∈ Rd mit θT1 = (θ11 , . . . , θ1r) und θT2 = (θ21 , . . . , θ2d−r), sodass die

Nullhypothese H0 :
(
θT1 ,θ

T
2

)T
=
(
θT10,θ

T
2

)T
gegen H1 :

(
θT1 ,θ

T
2

)T 6= (θT10,θ
T
2

)T
lautet und

wieder als Testproblem der Situation einfacher Nullhypothesen betrachtet werden kann. Es

besteht jedoch der Unterschied, dass θ2 nicht getestet wird, sondern nur als unbekannter

Parameter bei der Analyse des Problems mitgeführt wird. Man bezeichnet θ2 deswegen

auch als nuisance- oder Störparameter. Da θ2 nicht bekannt ist, bedient man sich bei

der Untersuchung von H0 eines Schätzers für θ2, wobei man zwischen unrestringiertem

und restringiertem Schätzer unterscheidet. Der restringierte Schätzer θ̂20 schätzt θ2 unter
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Annahme der Nullhypothese, also θ1 = θ10, wohingegen der unrestringierte Schätzer θ̂2

den Störparameter ohne Annahmen an θ1 schätzt. Die Schätzmethode ist dabei die der

Maximum-Likelihood-Schätzer. Zusammenfassend gelten folgende Bezeichnungen für die

Parametervektoren θi mit i ∈ {1, 2}:

θi , wahrer Parametervektor,

θi0 , Parametervektor unter der Nullhypothese,

θ̂i , unrestringierter MLS,

θ̂i0 , restringierter MLS.

Den Fall einfacher Hypothesen erweiternd wird der Likelihood-Quotient nun definiert

durch
supθ′∈Θ1

L(θ′;x)

supθ′∈Θ0
L(θ′;x)

= exp
(1

2
λ
)
,

sodass man im Fall Θ1 = Θ\Θ0 mit Λ = max(0, λ) einen neuen Quotienten der Form

supθ′∈Θ L(θ′;x)

supθ′∈Θ0
L(θ′;x)

= exp
(1

2
Λ
)

und folglich

Λ = 2
(
l(θ̂;x)− l(θ̂0;x)

)
erhält.

Satz 2.4.2. Es seien x1, . . . , xn Realisierungen von i.i.d. Zufallsvariablen X1, . . . , Xn,

die gemäß einer regulären Verteilung P(θT1 ,θ
T
2 )T gezogen werden. Dann gilt für die Ver-

teilung von Λ bei einer Nullhypothese der Form H0 :
(
θT1 ,θ

T
2

)T
=
(
θT10,θ

T
2

)T
gegen

H1 :
(
θT1 ,θ

T
2

)T 6= (θT10,θ
T
2

)T
:

Λ
D−→ χ2

dim(θ1).

Beweis. Unter Annahme der Nullhypothese gelten folgende Abkürzungen: θ0 =

(
θ10

θ2

)
,

θ̂ =

(
θ̂1

θ̂2

)
und θ̂0 =

(
θ10

θ̂20

)
. Es ist

Λ = 2
(
l(θ̂;X)− l(θ̂0;X)

)
= 2
(
l(θ̂;X)− l(θ0;X)

)
− 2
(
l(θ̂0;X)− l(θ0;X)

)
.

Mit Gleichung (2.7) folgt

2
(
l(θ̂;X)− l(θ0;X)

)
= n

(
θ̂1 − θ10

θ̂2 − θ2

)T (
− 1

n

∂

∂θ
S(θ0;X)T

)(
θ̂1 − θ10

θ̂2 − θ2

)
+ op(1) (2.8)



2.4. Herleitung des Score-Tests 19

und

2
(
l(θ̂0;X)− l(θ0;X)

)
= n

(
0

θ̂20 − θ2

)T (
− 1

n

∂

∂θ
S(θ0;X)T

)(
0

θ̂20 − θ2

)
+ op(1).

(2.9)

Das schwache Gesetz der großen Zahlen liefert

− 1

n

∂

∂θ
S(θ0;X)T

n→∞−→ − 1

n
Eθ0

[ ∂
∂θ

S(θ0;X)T
]
,

sodass mit Gleichung (2.2)

Λ
a
=

(
θ̂1 − θ10

θ̂2 − θ2

)T
I(θ0;X)

(
θ̂1 − θ10

θ̂2 − θ2

)
−

(
0

θ̂20 − θ2

)T
I(θ0;X)

(
0

θ̂20 − θ2

)

gilt. Eine Partitionierung der Fisher-Information in I(θ0;X) =

(
I11(θ0;X) I12(θ0;X)

I21(θ0;X) I22(θ0;X)

)

mit I11(θ0;X) ∈ Rr×r, I12(θ0;X) = I21(θ0;X)T ∈ Rr×(d−r), I22(θ0;X) ∈ R(d−r)×(d−r)

bringt mit der abkürzenden Schreibweise I ij = I ij(θ0;X) für i, j = 1, 2 die Darstellung

Λ
a
=

(
θ̂1 − θ10

θ̂2 − θ2

)T (
I11(θ̂1 − θ10) + I12(θ̂2 − θ2)

I21(θ̂1 − θ10) + I22(θ̂2 − θ2)

)
−

(
0

θ̂20 − θ2

)T (
I12(θ̂20 − θ2)

I22(θ̂20 − θ2)

)

= (θ̂1 − θ10)TI11(θ̂1 − θ10) + (θ̂1 − θ10)TI12(θ̂2 − θ2)︸ ︷︷ ︸
=:[1]

+ (θ̂2 − θ2)TI21(θ̂1 − θ10)︸ ︷︷ ︸
=:[2]

+ (θ̂2 − θ2)TI22(θ̂2 − θ2)︸ ︷︷ ︸
=:[3]

− (θ̂20 − θ2)TI22(θ̂20 − θ2)︸ ︷︷ ︸
=:[4]

.

Um den Term auf der rechten Seite der Gleichung in eine geschlossenere Form zu bringen,

wird der restringierte MLS θ̂20 in Abhängigkeit der beiden unrestringierten MLS θ̂1 und

θ̂2, sowie dem unter der Nullhypothese wahren Parameter θ10 dargestellt und damit [4]

berechnet. Dazu sei

I(θ0;X)−1 =

(
I11(θ0;X) I12(θ0;X)

I21(θ0;X) I22(θ0;X)

)

eine Partitionierung der Inversen der Fisher-Information an der Stelle θ0. Abkürzend be-

zeichne auch hier I ij = I ij(θ0;X) für i, j = 1, 2. Die Beweisidee folgt [Paw01].

Nach Satz 2.2.13 gilt

(
θ̂1

θ̂2

)
D−→ Nd

((
θ1

θ2

)
,I(θ;X)−1

)
, sodass bei Unkenntnis von θ1

und θ2 der MLS für E[θ̂2] = θ̂2 ist. Ist θ1 allerdings nicht unbekannt – im vorliegenden

Fall ist unter Annahme der Nullhypothese θ1 = θ10 bekannt – so hat dies Auswirkungen
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auf E[θ̂2], sofern die Verteilung von θ̂2 von θ10 abhängt. Nun gilt mit Lemma 2.2.10 für

die bedingte multivariate Normalverteilung von θ̂2 gegeben θ̂1

θ̂2|θ̂1
a∼ Nd−r

(
θ2 + I21(I11)−1(θ̂1 − θ10),I22 − I21(I11)−1I12

)
,

also speziell E[θ̂2|θ̂1] = θ2 + I21(I11)−1(θ̂1 − θ10). Es folgt wegen θ1 = θ10, dass θ̂2 im

Mittel der bedingten Erwartung entspricht. Dies bedeutet

θ̂2 = E[θ̂2|θ̂1] = θ2 + I21(I11)−1(θ̂1 − θ10)

⇔ θ2 = θ̂2 − I21(I11)−1(θ̂1 − θ10)

was unter Maximum-Likelihood-Schätzung zu θ̂20 = θ̂2−I21(I11)−1(θ̂1− θ10) und unter

Berücksichtigung von7

I−1 =

(
J−1 −J−1I12(I22)−1

−(I22)−1I21J
−1 I22 + (I22)−1I21J

−1I12(I22)−1

)
(2.10)

mit J = I11 − I12(I22)−1I21 zu

θ̂20 = θ̂2 + (I22)−1I21(θ̂1 − θ10) (2.11)

führt. Subtrahiert man θ2 auf beiden Seiten der Gleichung (2.11), so folgt

[4] =
(

(θ̂2 − θ2)T + (θ̂1 − θ10)T (I21)T
(
(I22)−1

)T)I22

(
(θ̂2 − θ2) + (I22)−1I21(θ̂1 − θ10)

)
= (θ̂2 − θ2)TI22(θ̂2 − θ2)︸ ︷︷ ︸

=[3]

+ (θ̂2 − θ2)TI21(θ̂1 − θ10)︸ ︷︷ ︸
=[2]

+ (θ̂1 − θ10)T (I21)T︸ ︷︷ ︸
= I12

(
(I22)−1

)TI22︸ ︷︷ ︸
=I

(θ̂2 − θ2)

︸ ︷︷ ︸
=[1]

+ (θ̂1 − θ10)T (I21)T
(
(I22)−1

)TI21(θ̂1 − θ10).

Es ergibt sich Λ
a
=
(
θ̂1 − θ10

)T (I11 − (I21)T
(
(I22)−1

)TI21

)(
θ̂1 − θ10

)
und mit (2.10)

schließlich

Λ
a
= (θ̂1 − θ10)T (I11)−1(θ̂1 − θ10). (2.12)

Mit derselben Schlußfolgerung wie im Beweis zu Satz 2.4.1 ist der Beweis vollständig.

Bisher wurde ausschließlich auf Likelihood-Quotienten-Tests eingegangen und deren asym-

ptotische Verteilung abgeleitet. Da das eigentliche Ziel jedoch darin besteht den Score-Test

herzuleiten, werden nun die gewonnenen Erkenntnisse genau für diesen Zweck genutzt. Da

7Vgl. dazu Anhang A.3.
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für unabhängige und identisch verteilte Zufallsvariablen X1, . . . , Xn wegen Gleichung (2.3)

I(θ0;X) = nI(θ0;X1) gilt, folgt mit Gleichung (2.4)

I(θ0;X)(θ̂ − θ0)
a
= S(θ0;X).

Kürzt man wieder ab und schreibt I ij = I ij(θ0;X) für i, j = 1, 2, dann gilt also(
I11(θ̂1 − θ10) + I12(θ̂2 − θ20)

a
= S1(θ0;X)

I21(θ̂1 − θ10) + I22(θ̂2 − θ20)
a
= S2(θ0;X)

)
, sodass

(θ̂1 − θ10)
a
=
(
I11 − I12(I22)−1I21

)−1(S1(θ0;X)− I12(I22)−1S2(θ0;X)
)

folgt. Einsetzen in (2.12) ergibt als asymptotisch äquivalente Statistik zu Λ mit der

abkürzenden Schreibweise Si = Si(θ0;X) für i = 1, 2:

ΛS
a
=
(
S1 − I12(I22)−1S2

)T (I11 − I12(I22)−1I21

)−1(S1 − I12(I22)−1S2

)
.

Setzt man θ2 = θ̂20, so addiert sich aufgrund der Konsistenz des MLS ein op(1)-Term, der

für n → ∞ verschwindet und es ist S2 = 0. Aufgrund ihrer Wichtigkeit für die folgende

Theorie wird die gewonnene Teststatistik in einer Definition festgehalten.

Definition 2.4.3. Es gelten die Annahmen aus Satz 2.4.2. Dann heißt die durch

ΛS(θ̂20) = S1(θ̂0;X)TI11(θ̂0;X)−1S1(θ̂0;X) (2.13)

definierte Statistik Score-Test.

Bemerkung 2.4.4. Da ΛS asymptotisch äquivalent zu Λ ist, besitzt auch ΛS eine asym-

ptotische Chi-Quadrat-Verteilung mit Anzahl an Freiheitsgraden identisch der Dimension

von θ1. Welcher der vorliegenden Tests also letztlich angewendet wird, hängt in der Regel

von der Berechenbarkeit der Schätzer ab. Für den Likelihood-Quotienten-Test muss der

unrestringierte MLS berechnet werden, für den Score-Test hingegen ist der MLS unter der

Nullhypothese ausreichend. Dies stellt in vielen Situationen einen klaren Vorteil dar.



Kapitel 3

Testen auf univariate

Normalverteilung

Nachdem nun die Grundlage für die Herleitung des eigentlichen Ziels dieser Arbeit ge-

schaffen wurde, werden in diesem Kapitel die Verteilungen von i.i.d. Beobachtungen sowie

von unbeobachtbaren i.i.d. Regressionsresiduen analysiert. Das Ziel wird es sein, einen

Test zu entwickeln, mit dessen Hilfe die Hypothese der Normalverteilung der zu testen-

den Größen bestätigt oder verworfen werden kann. Dazu wird der Score-Test genutzt. Es

resultiert ein Test, dessen Vorzüge nicht nur in seiner leichten Anwendbarkeit, sondern

auch in der asymptotischen Effizienz liegen. Im ersten Abschnitt wird dazu das Pearson-

Verteilungssystem eingeführt und die für die folgende Theorie notwendige Verbindung mit

der Normalverteilung herausgearbeitet. Die Abschnitte zwei und drei wenden die gewonne-

nen Resultate auf Beobachtungen beziehungsweise Regressionsresiduen an, um die speziell

auf Normalverteilung testende Jarque-Bera-Teststatistik herzuleiten. Die Vorgehensweise

orientiert sich an [BJ81]. Es wird das Pearson-Verteilungssystem betrachtet und anschlie-

ßend der Score-Test darauf angewendet. Da die Normalverteilung ein spezielles Mitglied

dieses Systems darstellt, kann so die gewünschte Hypothese innerhalb dieses Verteilungs-

systems getestet werden.

3.1 Das Pearson-Verteilungssystem

Ziel des vorliegenden Abschnitts ist die Darstellung der Dichte einer Normalverteilung als

homogene lineare Differentialgleichung (DGL) und die daraus resultierende Verdeutlichung

des Zusammenhangs mit dem Pearson-Verteilungssystem. Dazu sei

∂

∂x
p(x) = a(x)p(x) (3.1)

22
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eine DGL mit stetigen Funktionen a(x) und p(x), die hier vorerst nicht weiter spezifiziert

werden sollen. Dann bildet

p(x) = c exp
(
A(x)

)
mit A(x) als Stammfunktion von a(x) und c ∈ R konstant eine Lösung der gegebe-

nen DGL. Es sei nun X eine Zufallsvariable mit X ∼ N (0, σ2) und Dichte f(x) =

(2πσ2)−1/2 exp
(
− x2/(2σ2)

)
. Dann ist eine Darstellung der Dichte f(x) in Form obiger

DGL mit Lösung f(x) = c exp
(
A(x)

)
mit c = (2πσ2)−1/2 und A(x) = −x2/(2σ2) durch

∂
∂xf(x) = A′(x)f(x) = (−x/σ2)f(x) gegeben. Der Ausdruck a(x) in obiger DGL (3.1)

wird konkretisiert, indem ein System von Gleichungen für a(x) angegeben wird, welches

durch Variation der darin enthaltenen Variablen spezifiziert werden kann. Dieses auf Karl

Pearson zurückgehende System aus dem Jahre 1895 beruht auf der DGL

∂

∂x
p(x) = − c1 + x

c0 + c1x+ c2x2
p(x) (3.2)

für x ∈ R und wird als Pearson-Verteilungssystem bezeichnet. Es enthält alle Funktionen

p(x), die eine Lösung dieser DGL darstellen, wobei c0, c1 und c2 formgebende Parame-

ter sind, die maßgeblich für die Gestalt der Funktionen verantwortlich sind. Für eine

ausführlichere Auseinandersetzung mit dieser DGL sei auf [KS69], Kapitel 6, sowie [JK94]

verwiesen. Damit Wahrscheinlichkeitsverteilungen als Lösungen von (3.2) resultieren, ist

auf Normiertheit und Positivität, d.h.
∫∞
−∞ p(x)dx = 1 und p(x) ≥ 0 für alle x ∈ R zu

achten. In der Situation c0 = σ2 und c1 = c2 = 0 erhält man den Spezialfall der Normal-

verteilung mit Erwartungswert 0 und Varianz σ2, wenn die Stammfunktion von a(x) wie

im obigen Fall als A(x) =
∫ x

0 a(t)dt = −x2/(2σ2) gewählt ist und der konstante Faktor

c = (2πσ2)−1/2 entspricht. Dieser Spezialfall wird im Folgenden dazu genutzt, beobacht-

bare Ereignisse innerhalb dieses Systems auf Normalverteilung zu testen.

Dass das Testen auf Normalverteilung nur innerhalb dieses Systems, also nur gegen Ver-

teilungen aus diesem System vorgenommen wird, stellt insofern eine Einschränkung dar,

als dass gegen gewisse Verteilungen, wie beispielsweise die Lognormal-Verteilung nicht

getestet werden kann. Empirische Studien belegen allerdings, dass trotz dieser misslichen

Situation die Jarque-Bera-Teststatistik im Vergleich mit anderen Tests auf Normalver-

teilung, die auch gegen Nicht-Pearson-Verteilungen testen, eine höhere Güte aufweist.1

Desweiteren ist festzuhalten, dass ein breites Spektrum an Verteilungen (unter anderem

Beta-, Gamma-, t- und F -Verteilung) durch das Pearson-System abgedeckt wird, was die

Attraktivität des Jarque-Bera-Tests nicht nur anhand seiner einfachen Form begründet.

1Vgl. [JB87].
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3.2 Testen von Beobachtungen

Bevor damit begonnen wird, Beobachtungen auf Normalverteilung zu testen, wird eine

Lösung der DGL (3.2) speziell für Wahrscheinlichkeitsdichten g(y) = g(y; c1, c2, c0) mit

y ∈ R hergeleitet. Da die Gestalt von a(y) = a(y; c1, c2, c0) im Wesentlichen durch die Pa-

rameter c0, c1 und c2 bestimmt wird, wird für die folgende Argumentation eine neue No-

tation eingeführt, die sich im späteren Zusammenhang als sehr nützlich erweisen wird. Es

bezeichne
∫
a(y; c1, c2, c0)dy die Stammfunktion von a(y; c1, c2, c0) mit konstantem Sum-

manden null. Mit dieser Schreibweise können unabhängig von den gewählten Parametern

c0, c1 und c2 diese speziellen Stammfunktionen aus der Menge aller Stammfunktionen∫ y
y0
a(t; c1, c2, c0)dt von a(y; c1, c2, c0) gewählt werden, ohne dass die entsprechenden Wer-

te für y0 angegeben werden müssen. Dann gilt für Wahrscheinlichkeitsdichten aus dem

Pearson-Verteilungssystem die folgende Darstellung:

∂

∂y
g(y; c1, c2, c0) = a(y; c1, c2, c0)g(y; c1, c2, c0)

⇐⇒ log
(
g(y; c1, c2, c0)

)
=

∫
a(y; c1, c2, c0)dy

⇐⇒ g(y; c1, c2, c0) = exp
(∫

a(y; c1, c2, c0)dy
)

g Dichte⇐⇒ g(y; c1, c2, c0) =
exp

( ∫
a(y; c1, c2, c0)dy

)
∫∞
−∞ exp

( ∫
a(y; c1, c2, c0)dy

)
dy
. (3.3)

Es seien nun x1, . . . , xn Beobachtungen, die man sich als Realisierungen von i.i.d. Zu-

fallsvariablen vorstelle. Um zu prüfen, ob es sich um normalverteilte Beobachtungen mit

unbekanntem Erwartungswert µ und unbekannter Varianz σ2 handelt, werden die Beob-

achtungen durch yi = xi − µ für i = 1, . . . , n zentriert und geprüft, ob für die zugehörigen

Zufallsvariablen E[Yi] = 0 und Var[Yi] = σ2 gilt. Es bezeichne g(y) die Dichte der Zufalls-

variable Yi für i = 1, . . . , n und außerdem sei g(y) aus dem Pearson-Verteilungssystem.

Betrachtet man nun die zentrierten Beobachtungen y1, . . . , yn, so ist die Log-Likelihood-

Funktion der Stichprobe y = (y1, . . . , yn) unter Berücksichtigung von (3.3) gegeben durch

l(c1, c2, c0;y) = −n log

(∫ ∞
−∞

v1(y; c1, c2, c0)dy

)
+

n∑
i=1

∫
a(yi; c1, c2, c0)dyi (3.4)

mit v1(y; c1, c2, c0) = exp
( ∫

a(y; c1, c2, c0)dy
)

.

Um nun die Nullhypothese der Normalverteilung der Yi zu testen sei θ = (θT1 , θ2)T

mit θT1 = (c1, c2) und θ2 = c0, sodass nach Abschnitt 3.1 die Nullhypothese H0 : θT =

(0, 0, σ2) lautet. Auf diese wird der Score-Test ΛS aus (2.13) angewendet, für den der

Score S1(c1, c2, c0;Y ) und die Teilmatrix I11(c1, c2, c0;Y ) der Fisher-Informationsmatrix
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I(c1, c2, c0;Y ) an der Stelle des restringierten MLS θ̂0 benötigt wird. Als erstes wer-

den die Ableitungen der Log-Likelihood-Funktion nach den einzelnen Komponenten des

Parametervektors θ bestimmt und dann die Parameter entsprechend der gewünschten Hy-

pothese festgesetzt. Da in den folgenden Darstellungen innerhalb der Ableitungen der Log-

Likelihood-Funktion nach den Parameterkomponenten v1(y; c1, c2, c0) nicht mehr von den

Differentiationsvariablen abhängt, wird abkürzend v1 geschrieben. Zusätzlich sei v2(cj) =
∂
∂cj
a(y; c1, c2, c0), wobei hier eine Abhängigkeit von den Differentiationsvariablen inner-

halb der Ableitungen der Log-Likelihood-Funktion besteht. Mit dieser Notation gilt für

j ∈ {0, 1, 2}:

∂

∂cj
l(θ;y) = −nV −1

1

∫ ∞
−∞

v1V2(cj)dy + Z(cj) (3.5)

mit V1 =
∫∞
−∞ v1dy, V2(cj) =

∫
v2(cj)dy und Z(cj) =

∑n
i=1

∫
v2(cj)dyi. Eine weitere

Vereinfachung der Form

∂

∂cj
l(θ;y) = −nUV (cj) + Z(cj) (3.6)

ergibt sich mit U = V −1
1 und V (cj) =

∫∞
−∞ v1V2(cj)dy.

Lemma 3.2.1. Unter der Nullhypothese ist θT = (0, 0, σ2) und somit v1 = exp
(
−

y2/(2σ2)
)
, V1 = (2πσ2)1/2, U = (2πσ2)−1/2, v2(c1) = −(σ2 + y2)/σ4, v2(c2) = y3/σ4,

v2(c0) = y/σ4, V2(c1) = y/σ2 − y3/(3σ4), V2(c2) = y4/(4σ4), V2(c0) = y2/(2σ4), V (c1) =∫∞
−∞ v1

(
y/σ2 − y3/(3σ4)

)
dy, V (c2) =

∫∞
−∞ v1y

4/(4σ4)dy, V (c0) =
∫∞
−∞ v1y

2/(2σ4)dy,

Z(c1) =
∑n

i=1 yi/σ
2 − y3

i /(3σ
4), Z(c2) =

∑n
i=1 y

4
i /(4σ

4) und Z(c0) =
∑n

i=1 y
2
i /(2σ

4).

Weiter sei µj = n−1
∑n

i=1 y
j
i = n−1

∑n
i=1(xi−µ)j das j-te empirische Moment von Yi. Da

der Erwartungswert µ der Xi unbekannt ist, wird als Schätzer für µ der Stichprobenmit-

telwert x̄ = n−1
∑n

i=1 xi verwendet, sodass µ̂j = n−1
∑n

i=1(xi − x̄)j das j-te empirische

Moment von Yi unter Schätzung von µ bezeichnet.

Proposition 3.2.2. Es sei S1(θ;y)T =
(

∂
∂c1
l(θ;y), ∂

∂c2
l(θ;y)

)
der Score im vorliegenden

Testproblem. Dann gilt:

S1(θ̂0;y)T = n

(
− µ̂3

3µ̂2
2

,
µ̂4

4µ̂2
2

− 3

4

)
.

Beweis. Zuerst werden die partiellen Ableitungen von l(θ;y) nach c1 und c2 an der Stelle

θ0 = (0, 0, σ2)T berechnet. Man beachte dabei, dass unter der Nullhypothese Yi normal-

verteilt ist und somit Eθ0 [Yi] = 0, Eθ0 [Y 2
i ] = σ2, Eθ0 [Y 3

i ] = 0 und Eθ0 [Y 4
i ] = 3σ4 gilt. Es
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folgt mit Gleichung (3.6) und Lemma 3.2.1

∂

∂c1
l(θ0;y) = −n

(
1

σ2

∞∫
−∞

yiUv1dyi

︸ ︷︷ ︸
=Eθ0

[Yi]

− 1

3σ4

∞∫
−∞

y3
i Uv1dyi

︸ ︷︷ ︸
=Eθ0

[Y 3
i ]

− 1

σ2

1

n

n∑
i=1

yi︸ ︷︷ ︸
=µ1

+
1

3σ4

1

n

n∑
i=1

y3
i︸ ︷︷ ︸

=µ3

)

= n

(
µ1

σ2
− µ3

3σ4

)
und

∂

∂c2
l(θ0;y) = −n

(
1

4σ4

∞∫
−∞

y4
i Uv1dyi

︸ ︷︷ ︸
=Eθ0

[Y 4
i ]

− 1

4σ4

1

n

n∑
i=1

y4
i︸ ︷︷ ︸

=µ4

)

= n

(
µ4

4σ4
− 3

4

)
.

Setzt man θ0 = θ̂0, so folgt wegen σ̂2 = µ̂2 und µ̂1 = 0 die Behauptung.

Um die Fisher-Informationsmatrix herzuleiten, werden die zweiten partiellen Ableitun-

gen in den einzelnen Kombinationen der Parameterkomponenten bestimmt. Mit Hilfe von

Gleichung (3.6) gilt für j, k ∈ {0, 1, 2}:

∂2

∂ck∂cj
l(θ;y) = −n

(
V (cj)

∂

∂ck
U + U

∂

∂ck
V (cj)

)
+

∂

∂ck
Z(cj) (3.7)

mit ∂
∂ck

U = −U2V (ck),
∂
∂ck

V (cj) =
∫∞
−∞ v1

(
V2(ck)V2(cj) + ∂

∂ck
V2(cj)

)
dy und ∂

∂ck
Z(cj) =∑n

i=1
∂
∂ck

V2(cj).

Proposition 3.2.3. Es sei I(θ;Y ) = −Eθ0
[

∂2

∂θi∂θj
l(θ;Y )

]
mit i, j = 1, 2 die Fisher-

Information im vorliegenden Testproblem. Dann gilt:

I(θ̂0;Y ) =

(
I11(θ̂0;Y ) I12(θ̂0;Y )

I21(θ̂0;Y ) I22(θ̂0;Y )

)
= n


2

3µ̂2
0 0

0 6 3
2µ̂2

0 3
2µ̂2

1
2µ̂22

 .

Beweis. Es werden die zweiten Ableitungen von l(θ;y) nach c1, c2 und c0 erneut zuerst

an der Stelle θ0 berechnet. Mit Gleichung (3.7) und Lemma 3.2.1 gilt:

∂2

∂c21
l(θ0; y) = −n

(
−
( 1

σ2
Eθ0 [Yi]−

1

3σ4
Eθ0 [Y 3

i ]
)2

+
1

σ4
Eθ0 [Y 2

i ]− 2

3σ6
Eθ0 [Y 4

i ]

+
1

9σ8
Eθ0 [Y 6

i ] +
1

σ4
Eθ0 [Y 2

i ]− 1

2σ6
Eθ0 [Y 4

i ]− 1

σ4
µ2 +

1

2σ6
µ4

)
= −n

(
1

6σ2
− µ2

σ4
+

µ4

2σ6

)
,
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∂2

∂c22
l(θ0; y) = −n

(
−
( 1

4σ4
Eθ0 [Y 4

i ]
)2

+
1

16σ8
Eθ0 [Y 8

i ]− 1

3σ6
Eθ0 [Y 6

i ] +
1

3σ6
µ6

)
= −n

(
1 +

µ6

3σ6

)
,

∂2

∂c20
l(θ0; y) = −n

(
−
(

1

2σ4
Eθ0 [Y 2

i ]

)2

+
1

4σ8
Eθ0 [Y 4

i ]− 1

σ6
Eθ0 [Y 2

i ] +
1

σ6
µ2

)
= −n

(
1

2σ4

)
,

∂2

∂c1∂c2
l(θ0; y) = −n

(
− 1

4σ4
Eθ0 [Y 4

i ]

(
1

σ2
Eθ0 [Yi]−

1

3σ4
Eθ0 [Y 3

i ]

)
+

1

4σ6
Eθ0 [Y 5

i ]

− 1

12σ8
Eθ0 [Y 7

i ]− 1

3σ4
Eθ0 [Y 3

i ] +
2

15σ6
Eθ0 [Y 5

i ] +
1

3σ4
µ3 −

2

15σ6
µ5

)
= −n

(
µ3

3σ4
− 2µ5

15σ6

)
,

∂2

∂c1∂c0
l(θ0; y) = −n

(
− 1

2σ4
Eθ0 [Y 2

i ]

(
1

σ2
Eθ0 [Yi]−

1

3σ4
Eθ0 [Y 3

i ]

)
− 1

6σ8
Eθ0 [Y 5

i ]

+
7

6σ6
Eθ0 [Y 3

i ]− 1

σ4
Eθ0 [Yi] +

1

σ4
µ1 −

2

3σ6
µ3

)
= −n

(
µ1

σ4
− 2µ3

3σ6

)
und

∂2

∂c2∂c0
l(θ0; y) = −n

(
− 1

2σ4
Eθ0 [Y 2

i ]
1

4σ4
Eθ0 [Y 4

i ] +
1

8σ8
Eθ0 [Y 6

i ]− 1

2σ6
Eθ0 [Y 4

i ] +
1

2σ6
µ4

)
= −n

(
µ4

2σ6

)
.

Mit I(θ;Y ) = −Eθ0
[

∂2

∂θi∂θj
l(θ;Y )

]
und Eθ0 [µj ] = 1

n

∑n
i=1Eθ0 [Y j

i ] = Eθ0 [Y j
i ] und Eθ0 [Y 2

i ] =

σ2, Eθ0 [Y 4
i ] = 3σ4, Eθ0 [Y 6

i ] = 15σ6, Eθ0 [Y 8
i ] = 105σ8 und Eθ0 [Y k

i ] = 0 falls k ungerade,

sowie σ̂2 = µ̂2 folgt die Behauptung.

Wendet man die Propositionen 3.2.2 und 3.2.3 auf die Score-Teststatistik in (2.13) an,

führt dies zu

ΛS = n

(
1

6

µ̂2
3

µ̂3
2

+
1

24

(
µ̂4

µ̂2
2

− 3

)2)
.

Um die Bedeutung dieses Ausdrucks besser zu verstehen, werden zwei Momentenverhältnis-

se eingeführt, mit denen eine Abweichung von der Normalverteilung gemessen werden

kann.
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Definition 3.2.4. Es sei X eine Zufallsvariable mit E[X] = µ und Var[X] = σ2. Weiter

sei µj = E[(X − µ)j ] das j-te zentrierte Moment von X. Dann bezeichnet

β1 = E

[(
X − µ
σ

)3]
=

µ3

µ
3/2
2

die Schiefe von X und

β2 = E

[(
X − µ
σ

)4]
=
µ4

µ2
2

die Wölbung von X. Für eine StichprobeX bestehend aus i.i.d Zufallsvariablen X1, . . . , Xn

sei entsprechend µ̂j = n−1
∑n

i=1(Xi − X̄)j mit X̄ = n−1
∑n

i=1Xi das j-te empirische

zentrierte Moment und µ̂2 die Stichprobenvarianz von X. Dann bildet

√
b1 =

µ̂3

µ̂
3/2
2

die empirische Schiefe und

b2 =
µ̂4

µ̂2
2

die empirische Wölbung.

Anschaulich misst die Schiefe einer Verteilung die Neigung nach links oder rechts, die

Wölbung die Krümmung, bzw. die Steilheit einer Verteilung. Symmetrische Verteilungen

besitzen demnach eine Schiefe von null, die Umkehrung dieser Aussage gilt jedoch nicht.

Die Wölbung einer Normalverteilung beträgt drei. Die Ergebnisse im vorliegenden Test-

problem werden nun zusammengefasst und in einer Definition wiedergegeben.

Definition 3.2.5. Es gelte die Situation des vorliegenden Testproblems. Dann definiert

JB =
n

6

((√
b1
)2

+

(
b2 − 3

)2
4

)
(3.8)

die auf [JB87] zurückgehende Teststatistik. Man bezeichnet sie auch einfach als Jarque-

Bera-Test.

Bemerkung 3.2.6. Der Jarque-Bera-Test auf Normalverteilung von Beobachtungen nutzt

somit sowohl die empirische Schiefe als auch die empirische Wölbung, um ein Abweichen

von der Normalverteilung festzustellen. Mit Bemerkung 2.4.4 folgt, dass JB eine asym-

ptotische χ2
2-Verteilung besitzt und die Nullhypothese der Normalverteilung zum Niveau

α ablehnt, falls der Wert von JB größer als das (1-α)-Quantil der χ2
2-Verteilung ist.
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3.3 Testen von Regressionsresiduen

In diesem Abschnitt wird ein Schritt weitergegangen und ein Test hergeleitet, mit dem die

Möglichkeit besteht, unbekannte und zudem auch unbeobachtbare Regressionsresiduen auf

Normalverteilung zu testen. Dazu wird das lineare Regressionsmodell

x = Y β + ε

mit Beobachtungsvektor x = (x1, . . . , xn)T , bekannter (n×d)-Designmatrix Y = (yij), un-

bekannten Regressionskoeffizienten β1, . . . , βd, zusammengefasst im Vektor (β1, . . . , βd)
T =

β und i.i.d. Zufallsvariablen (Regressionsresiduen) ε1, . . . , εn mit E[εi] = 0 für alle i =

1, . . . , n und Var[εi] = Var[εj ] für alle i 6= j betrachtet. Es sei g(ε) die Dichte der Residu-

en εi für i = 1, . . . , n und zudem sei g(ε) aus dem Pearson-Verteilungssystem, sodass

∂

∂ε
g(ε; c1, c2, c0) = − c1 + ε

c0 + c1ε+ c2ε2
g(ε; c1, c2, c0)

gilt. Wie im vorherigen Modell werden die j-ten empirischen Momente der Residuen

εi durch µj = n−1
∑n

i=1 ε
j
i definiert, wobei ein entscheidender Unterschied auftritt. Da

die Parameter βi für i = 1, . . . , d im vorliegenden Modell nicht bekannt sind, müssen

diese geschätzt werden. Dazu sei Y i = (Yi1, . . . , Yid). Dann gilt µ̂j = n−1
∑n

i=1 ε̂
j
i =

n−1
∑n

i=1(xi − Y iβ̂)j , wobei als Schätzer für β der Kleinste-Quadrate-Schätzer (KQS)

β̂(x) = (Y TY )−1Y Tx verwendet wird.

Erneut stellt die Funktion g(ε; c1, c2, c0) mit c1 = c2 = 0 die Dichte einer Normalver-

teilung dar, sodass mit θ = (θT1 , θ2), θT1 = (c1, c2), θ2 = c0 die zu testende Hypothese

H0 : θ1 = (0, 0)T lautet. Die Log-Likelihood-Funktion l(c1, c2, c0; ε) ist folglich identisch

zu (3.4) mit ε anstelle von y, sodass an der Stelle θ0 mit dem Beweis zu Proposition 3.2.2

S1(θ0; ε)T = n

(
µ1

σ2
− µ3

3σ4
,
µ4

4σ4
− 3

4

)
und mit dem Beweis zu Proposition 3.2.3

I(θ0; ε) = n


2

3σ2 0 0

0 6 3
2σ2

0 3
2σ2

1
2σ4


folgt. Somit gilt wegen σ̂2 = µ̂2 und mit etwas Rechenarbeit

ΛS = n

(
1

6

µ̂2
3

µ̂3
2

+
1

24

(
µ̂4

µ̂2
2

− 3

)2)
+ n

(
3

2

µ̂2
1

µ̂2
− µ̂1µ̂3

µ̂2
2

)
.

Beachtet man, dass für die KQS-Residuen ε̂i das erste empirische Moment unter Schätzung

des Erwartungswerts, namentlich µ̂1 = n−1
∑n

i=1 ε̂i = n−1
(∑n

i=1 xi −
∑n

i=1 Y iβ̂(xi)
)
,
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wegen β̂(xi) =
(
Y T
i Y i

)−1
Y T
i xi = Y −1

i xi identisch null ist, so erhält man wie in der

Situation des Testens auf Normalverteilung von i.i.d. Beobachtungen

ΛS = n

(
1

6

µ̂2
3

µ̂3
2

+
1

24

(
µ̂4

µ̂2
2

− 3

)2)
.

Schreibt man in dieser Situation für die empirischen Momente unter KQ-Schätzung
√
b̂1 =

µ̂3/µ̂
3/2
2 und b̂2 = µ̂4/µ̂

2
2, so folgt

JB =
n

6

((√
b̂1

)2
+

(
b̂2 − 3

)2
4

)
.

Bemerkung 3.3.1. Es besteht also auch die Möglichkeit, Regressionsresiduen mit der

von Jarque und Bera vorgeschlagenen Teststatistik auf Normalverteilung zu testen. Hierzu

werden ausschließlich die ersten vier empirischen Momente der KQS-Residuen ε̂i benötigt,

für die allerdings die Regressionskoeffizienten βi für i = 1, . . . , d geschätzt werden müssen.



Kapitel 4

Der Jarque-Bera-Test im Vergleich

Obwohl der Jarque-Bera-Test (JB-Test) aufgrund seiner einfachen Struktur ein prakti-

sches Werkzeug im Testen auf Normalverteilung darstellt, stellen sich bei genauerer Un-

tersuchung einige mangelhafte Eigenschaften heraus. Auf diese soll im vorliegenden Kapitel

näher eingegangen werden und zugleich werden einige Modifizierungen der Teststatistik

hergeleitet. Zusätzlich wird zur Einordnung der Effizienz des JB-Tests ein Vergleich mit

anderen – sowohl parametrischen als auch nicht-parametrischen – Tests auf Normalver-

teilung vorgenommen und die Ergebnisse anhand von empirischen Analysen untermauert.

Begonnen wird im ersten Abschnitt mit der Herleitung empirischer kritischer Werte, die

für die nachfolgenden Untersuchungen unerlässlich sind. Die Abschnitte zwei und drei

gehen dann auf einen Vergleich der Power in verschiedenen Verteilungsmodellen ein.

4.1 Kritische Werte und Testalternativen

Da in vielen Gebieten der Wissenschaft der JB-Test ein gängiges Mittel zum Testen auf

Normalverteilung sowohl von Beobachtungen, als auch von Regressionsresiduen geworden

ist, gewinnt die Frage nach seiner Effizienz immer mehr an Bedeutung. Zudem werden

in den meisten Anwendungen nicht seine exakten Quantile bei den Untersuchungen zur

Entscheidung herangezogen, sondern wesentlich häufiger die seiner asymptotischen Vertei-

lung. Da jedoch die Verteilung des JB-Tests nur sehr langsam gegen seine Grenzverteilung

konvergiert, resultieren erhebliche Abweichungen der Verteilung der Teststatistik bei endli-

chen Stichproben von der asymptotischen Verteilung. Dies hat zur Folge, dass ungenügende

Ergebnisse resultieren können, wenn die Signifikanzwerte der χ2
2-Verteilung dazu genutzt

werden, eine Entscheidung über die Hypothese der Normalverteilung bei Vorliegen kleiner

Stichproben zu treffen.

Um dennoch in sinnvoller Weise mit dem JB-Test arbeiten zu können, müssen für

endliche und insbesondere kleine Stichproben der Größenordnung n die kritischen Werte

31
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(kW) empirisch bestimmt werden, da die exakte Verteilung der Teststatistik für endliches

n nicht angegeben werden kann. Im Laufe der Forschung rund um den JB-Test wurden

so bereits in immer umfangreicheren Untersuchungen von einigen Autoren wie [Urz96],

[DS96] und aktuell von [WK09] emprische kritische Werte (ekW) publiziert. Dazu wur-

den Monte-Carlo-Simulationen auf der Basis normalverteilter Stichproben unterschiedli-

cher Größenordnung durchgeführt. Um möglichst präzise Ergebnisse zu erhalten wird eine

große Anzahl solcher Simulationen, sogenannte Replikationen, durchgeführt und die Werte

der JB-Statistik dieser Simulationen berechnet. Die kritischen Werte zu gegebenem Signi-

fikanzniveau α lassen sich dann anhand der JB-Werte bestimmen, das heißt zum Niveau

α bildet der (1− α) · (#Replikationen)-größte JB-Wert den empirischen kritischen Wert.

Aufgrund des Umfangs und der daraus resultierenden Genauigkeit genannter Analysen,

die in eigenen Untersuchungen so nicht möglich wäre, wird an dieser Stelle auf erneute

Berechnung von empirischen kritischen Werten verzichtet und auf vorhandene Datensätze

zurückgegriffen.

Zum Vergleich mit den asymptotischen kritischen Werte werden die empirischen kri-

tischen Werte für verschiedene Stichprobengrößen n und Signifikanzniveaus α angege-

ben, die auf der Basis von je 107 Replikationen von Wurtz und Katzgraber berech-

net wurden und in [WK09] zu finden sind. Diese waren nach eigenem Wissensstand die

genauesten zur Zeit der Veröffentlichung ihres Papers verfügbaren. Eine Übersicht der

empirischen kritischen Werte gibt die Tabelle 4.1. Zur besseren Veranschaulichung der

Differenzwerte ∆(n, α) = ekW (n, α) − kW (α) für n ∈ {10, 20, 35, 50, 75, 100, 150, 200,

300, 400, 800, 1000} und α ∈ {0.005, 0.01, 0.05, 0.1, 0.2} dient die Abbildung 4.1. Dabei

wurde eine lineare Interpolation durchgeführt.

n = 10 n = 20 n = 35 n = 50 n = 75 n = 100 n = 150 n = 200

α = 0.005 7.300 13.471 16.414 17.281 17.305 16.959 16.257 15.638

α = 0.01 5.703 9.718 11.736 12.392 12.586 12.491 12.185 11.882

α = 0.05 2.525 3.795 4.593 4.976 5.278 5.430 5.598 5.676

α = 0.05 2.525 3.795 4.593 4.976 5.278 5.430 5.598 5.676

α = 0.1 1.623 2.347 2.881 3.183 3.486 3.673 3.904 4.033

α = 0.2 1.124 1.562 1.916 2.128 2.346 2.487 2.656 2.756

n = 300 n = 400 n = 800 n = 1000 n = 1600 n = 2400 n = 10000 n→∞

α = 0.005 14.669 13.583 12.726 12.366 11.762 11.384 10.792 10.597

α = 0.01 11.358 10.778 10.299 10.117 9.810 9.608 9.313 9.210

α = 0.05 5.773 5.855 5.910 5.924 5.957 5.967 5.986 5.991

α = 0.1 4.189 4.332 4.427 4.457 4.513 4.542 4.589 4.605

α = 0.2 2.876 2.988 3.065 3.091 3.136 3.161 3.207 3.219

Tabelle 4.1: Empirische kritische Werte der JB-Statistik zu einigen Stichprobengrößen

n und Signifikanzniveaus α bei 107 Replikationen. Vgl. [WK09], Tabelle 1.
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Man sieht in Abbildung 4.1, dass für α ∈ {0.05, 0.1, 0.2} die ∆-Werte negativ, das heißt

also die empirischen kritischen Werte des JB-Tests kleiner sind als die kritischen Werte

der asymptotischen Verteilung und als Folge der JB-Test bei Benutzung der kritischen

Werte der asymptotischen Verteilung vor allem bei kleinen Stichproben sehr konservativ

ist. Die fehlende Struktur der empirischen kritischen Werte für α ∈ {0.005, 0.01}, nämlich

für n < 20 negative und ab n ≥ 20 positive ∆-Werte, lässt sich nicht so leicht erklären.

Dies bedeutet jedoch, dass der JB-Test bei Stichproben der Größe n < 20 bei Verwen-

dung der kritischen Werte der χ2
2-Verteilung seltener die Nullhypothese ablehnt, als dies

bei Verwendung der empirischen kritischen Werte der Fall ist und bei Stichproben der

Größenordung n ≥ 20 bei Verwendung der asymptotischen kritischen Werte die Nullhy-

pothese häufiger ablehnt. Dass die ∆-Werte großer Stichproben jedoch größer sind als die

∆-Werte kleiner Stichproben der Größenordnung n ≈ 20, die nahe null liegen, zeigt deut-

lich, dass die Verwendung der Quantlile der χ2
2-Verteilung zwangsläufig zu fehlerhaften

Schlussfolgerungen führt.

Abbildung 4.1: Abweichungen der empirischen kritischen Werte der JB-Statistik von

den kritischen Werten der χ2
2-Verteilung in Abhängigkeit der Stichpro-

bengröße n.

Obwohl der heute als Jarque-Bera-Test bekannte Test auf Normalverteilung erst durch

Jarque und Bera, die ihn bei Ihren Untersuchungen als einen Spezialfall des Score-Tests

innerhalb des Pearson-Verteilungssystems entdeckten1, seine große Popularität erlangte,

tauchte die Teststatistik im Vorfeld bereits an anderer Stelle in der Literatur auf. Bowman

1Vgl. [JB87].
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und Shenton waren es, die ihn erstmals nannten2, nachdem sie herausgefunden hatten, dass

sich die asymptotischen Erwartungswerte sowie die asymptotischen Varianzen der empiri-

schen Schiefe
√
b1 und der empirischen Wölbung b2 unter Annahme der Normalverteilung

als 0 und 3, bzw. 6/n und 24/n ergeben. Weiterhin zeigten sie, dass die asymptotische

Kovarianz beider Größen null ist und beide Größen asymptotisch normalverteilt sind. Dies

begründet in einfacher Weise die Grenzverteilung der Teststatistik, stellt vor diesem Hin-

tergrund der JB-Test nichts weiter als die Summe zweier asymptotisch unabhängiger und

quadrierter N (0, 1)-verteilter Zufallsvariablen dar.

n = 10 n = 20 n = 35 n = 50 n = 75 n = 100 n = 150 n = 200

α = 0.005 23.831 25.963 24.569 23.229 21.334 19.986 18.285 17.156

α = 0.01 18.374 18.643 17.540 16.659 15.506 14.719 13.707 13.042

α = 0.05 7.416 6.932 6.679 6.553 6.414 6.319 6.218 6.149

α = 0.1 4.177 3.966 3.961 3.998 4.066 4.126 4.218 4.272

α = 0.2 2.183 2.216 2.355 2.462 2.588 2.677 2.790 2.858

n = 300 n = 400 n = 800 n = 1000 n = 1600 n = 2400 n = 10000 n→∞

α = 0.005 15.689 14.211 13.129 12.694 11.971 11.525 10.827 10.597

α = 0.01 12.149 11.271 10.616 10.372 9.967 9.716 9.339 9.210

α = 0.05 6.093 6.050 6.031 6.022 6.018 6.008 5.996 5.991

α = 0.1 4.355 4.434 4.492 4.510 4.546 4.565 4.594 4.605

α = 0.2 2.946 3.032 3.092 3.113 3.150 3.171 3.206 3.219

Tabelle 4.2: Empirische kritische Werte der JBU -Statistik zu einigen Stichprobengrößen

n und Signifikanzniveaus α bei 107 Replikationen. Vgl. [WK09], Tabelle 1.

Diese Erkenntnis gibt Anlass zu einer Modifizierung der Teststatistik dahingehend, anstel-

le der asymptotischen Erwartungswerte und der asymptotischen Varianzen die exakten

Erwartunsgwerte und Varianzen der Größen
√
b1 und b2 zu betrachten. Unter Verwen-

dung der Eigenschaften der k-Statistiken in [Fis30] berechnete Urzua die Erwartungswer-

te und Varianzen in [Urz96] als E[
√
b1] = 0, E[b2] = 3(n − 1)(n + 1)−1, Var[

√
b1] =

6(n − 2)
(
(n + 1)(n + 3)

)−1
und Var[b2] = 24n(n − 2)(n − 3)

(
(n + 1)2(n + 3)(n + 5)

)−1
,

sodass eine neue, modifizierte Jarque-Bera-Teststatistik der Gestalt

JBU = n

(
(
√
b1)2

Var[
√
b1]

+
(b2 − E[b2])2

Var[b2]

)
=

(n+ 1)(n+ 3)

6(n− 2)(n− 3)

(
(n− 3)(

√
b1)2 +

(n+ 1)(n+ 5)

4n

(
b2 −

3(n− 1)

n+ 1

)2
)

2Vgl. [BS75], sowie [Urz96], S.248.
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resultierte. Da sich JB und JBU asymptotisch entsprechen, besitzt auch JBU eine χ2
2-

Grenzverteilung und ein Vergleich der empirischen kritischen Werte der neuen Teststatistik

mit denen der asymptotischen Verteilung erscheint wünschenswert. Dazu wird erneut auf

die Ergebnisse in [WK09] für ausgewählte Signifikanzniveaus α zurückgegriffen. Diese sind

in Tabelle 4.2 zusammengefasst. Ebenso wie im vorangehenden Fall werden die Differenz-

werte ∆(n, α) in Abbildung 4.2 dargestellt.

Abbildung 4.2: Abweichungen der empirischen kritischen Werte der JBU -Statistik von

den kritischen Werten der χ2
2-Verteilung in Abhängigkeit der Stichpro-

bengröße n.

In Abbildung 4.2 kann man erkennen, dass für α ∈ {0.005, 0.01, 0.05} die ∆-Werte für

Stichproben aller Größenordnungen positiv sind, wobei die Differenzwerte speziell für

α = 0.05 sehr klein sind. Daraus kann geschlossen werden, dass bei Verwendung der

kritischen Werte der χ2
2-Verteilung besonders im Fall α ∈ {0.005, 0.01} die Nullhypothose

bereits viel zu schnell abgelehnt wird. Die Entwicklung der Differenzwerte ist mit steigender

Stichprobengröße im Bereich kleiner Stichproben wesentlich weniger von Schwankungen

geprägt, als dies bei den ∆-Werten der JB-Statisik der Fall ist. Für α ∈ {0.1, 0.2} sind

die ∆-Werte negativ, liegen jedoch etwas näher an den kritischen Werte der asympto-

tischen Verteilung, sodass in dieser Situation die Verwendung der kritischen Werte der

χ2
2-Verteilung konservative Entscheidungen nach sich zieht, d.h. also die Nullhyopthese

erst später abgelehnt wird.

Im direkten Vergleich mit der ursprünglichen JB-Statistik zeigt sich in der Anwen-

dung auf Regressionsresiduen, dass bei bestimmten Alternativen der neue Test eine we-
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sentlich höhere Güte aufweist. Betrachtet man als Alternativhypothesen zur Hypothese

der Normalverteilung beispielsweise die Studentsche t-Verteilung mit 5 Freiheitsgraden,

die χ2
2-Verteilung, die Laplace-Verteilung oder die Lognormal-Verteilung (alle zum Er-

wartungswert 0 und Varianz 25), so zeigen die Ergebnisse in [Urz96], Tabelle 2, dass bei

Verwendung der Signifikanzwerte der χ2
2-Verteilung zum Niveau α = 0.1 die neue Statistik

JBU für Stichprobengrößen n ∈ {20, 35, 50, 100} die ursprüngliche Statistik JB hinsicht-

lich des Fehlers 2. Art deutlich unterbietet. Bei Betrachtung der empirischen kritischen

Werte anstelle der asymptotischen kritischen Werte zeigt sich ein ähnliches Bild, obwohl

die Dominanz in dieser Situation nicht so eindeutig ist und bezüglich der χ2
2- sowie der

Lognormal-Verteilung die JB-Statistik sogar teilweise dominiert. Zusammenfassend je-

doch geben die Resultate Anlass dazu, die neue Statistik speziell in der Situation kleiner

Stichproben der alten Statistik vorzuziehen.

Eine weitere Variante der Jarque-Bera-Statistik basiert auf Versionen der empirischen

Schiefe und Wölbung. Da die Stichprobenwölbung b2 aus Definition 3.2.4 nur einen ver-

zerrten Schätzer für die theoretische Wölbung einer Normalverteilung darstellt (E[b2−3] =

−6(n + 1)−1 6= 0), wird diese angepasst und die auf [JG98] zurückgehenden Schiefe- und

Wölbungsmaße k1 =
√
n(n− 1)

√
b1(n− 2)−1 und k2 = (n− 1)

(
(n+ 1)(b2 − 3) + 6

)(
(n−

2)(n − 3)
)−1

betrachtet, die zudem konsistent sind. Auf dieselbe Art und Weise wie im

Falle des JB-Tests erhält man so eine weitere Teststatistik der Form

JBJG =
n

6

(
k2

1 +
k2

2

4

)
.

Da für diese Teststatisik keine empirischen kritischen Werte vorliegen, wurden diese in eige-

ner Arbeit bestimmt. Die Vorgehensweise war dabei so, dass eine Routine in der Program-

miersprache R entwickelt wurde, mit der eine Modellierung der gewünschten kritischen

Werte möglich ist. Dazu wurden die JBJG-Statistik, sowie die zur Beschreibung dieser

Statistik notwendigen Größen implementiert und Replikationen standardnormalverteilter

Stichproben verschiedener Größenordnung erzeugt. Unter Anwendung dieser Replikatio-

nen auf die JBJG-Statistik konnten unter Beachtung des gewünschten Signifikanzniveaus

α nach der eingangs beschriebenen Vorgehensweise, das heißt also durch Betrachtung der

(1 − α) · (#Replikationen)-größten JBJG-Werte die gewünschten empirischen kritischen

Werte ermittelt werden. Diese sind in der Tabelle 4.3 angegeben. Die Berechnungen be-

schränken sich dabei auf die Parameterwerte α = 0.05 und n ∈ {10, 20, 50, 100, 200, 400}
um in dieser speziellen Situation die JBJG-Statistik in die Vergleichsanalysen einbeziehen

zu können. Aufgrund der geringen Computerleistung, mit der die Berechnungen durch-

geführt wurden, war dies nur auf der Basis von 104 Replikationen möglich. Die Ergebnisse
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n = 10 n = 20 n = 50 n = 100 n = 200 n = 400

α = 0.05 5.879 5.700 6.094 6.294 6.223 5.990

Tabelle 4.3: Empirische kritische Werte der JBJG-Statistik zu einigen Stichproben-

größen n und Signifikanzniveau α = 5% bei 104 Replikationen.

sind demzufolge wesentlich ungenauer als die in [WK09] für JB und JBU , sollen den-

noch in den Untersuchungen benutzt werden. Die Programmcodes zur Ermittlung der

gewonnenen Werte sind auf der beigefügten Daten-CD im Einband am Ende der Arbeit

enthalten.

4.2 Powervergleich innerhalb des Pearson-Verteilungssystems

Um zu verstehen, wie die Power der Jarque-Bera-Statistiken im Vergleich zu anderen Tests

auf Normalverteilung einzuordnen ist, wird diese im vorliegenden Abschnitt innerhalb

des Pearson-Verteilungssystems mit der Power anderer Tests vergleichen. Power (auch

Teststärke oder Sensitivität genannt) bezeichnet dabei die Wahrscheinlichkeit, bei Vor-

liegen der Alternativhypothese richtigerweise die Nullhypothese der Normalverteilung zu

verwerfen. Umso höher die Power eines Tests ist, desto geringer ist also die Wahrscheinlich-

keit einen Fehler 2. Art zu begehen. Dabei hängt die Power maßgeblich vom vorgegebenen

Signifikanzniveau α ab, zumal dieses ja der Wahrscheinlichkeit entspricht, mit der ein Feh-

ler 1. Art gerade noch toleriert wird. Dies motiviert also nach denjenigen Tests zu suchen,

deren Power im Vergleich zu anderen Tests möglichst groß ist. Dazu wird das Testmodell

in [JB87], Kapitel 5, überarbeitet und auf der Basis aktueller empirischer kritischer Werte

für JB, JBU und JBJG, sowie unter Austausch und Hinzunahme einiger Tests auf Nor-

malverteilung erweitert und präzisiert. Die Alternativen zur Normalverteilung in diesem

Modell bestehen aus den folgenden Pearson-Verteilungen: Beta(3, 2)-Verteilung, Student’s

t-Verteilung mit fünf Freiheitsgraden (5 df) und Gamma(2, 1)-Verteilung. Zusätzlich wird

als Nicht-Pearson-Verteilung die Lognormal-Verteilung untersucht. Speziell wird in der

vorliegenden Situation für die Stichprobengrößen n ∈ {10, 20, 50, 100, 200,

400} zum Signifikanzniveau α ∈ {0.01, 0.05, 0.1} die Power der Jarque-Bera-Tests mit

der Power der folgenden Tests, die in der Praxis häufig angewendet werden, verglichen:

• Anderson-Darling-(Anpassungs-)Test: Der Anderson-Darling-Test ist ein Test der

empirischen Verteilungsfunktion. Er basiert auf der Tatsache, dass unter Annahme

der Normalverteilung eine Transformation in eine Gleichverteilung möglich ist. Dazu

wird die geordnete Stichprobe X(1), . . . , X(n) nach der Transformation mit einem
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Abstandstest auf Gleichverteilung getestet. Mit Y(i) = σ̂−1(X(i) − X̄) wobei σ̂2 =

(n− 1)−1
∑n

i=1(Xi − X̄)2 lautet die Teststatistik

AD = −n− 1

n

n∑
i=1

(2i− 1)
(

log
(
Φ
(
Y(i)

))
+ log

(
1− Φ

(
Y(n−i+1)

)))
.

Φ ist die Verteilungsfunktion der N (0, 1)-Verteilung. Die Berechnung der p-Werte

basiert dabei auf den Werten des Produkts c · AD, wobei c ein Faktor ist, der von

der Stichprobengröße sowie der zu testenden hypothetischen Verteilung abhängt.

• Lilliefors-Test: Als eine Modifizierung des Kolmogorov-Smirnov-Tests ist der Lillie-

fors-Test ebenso wie der Anderson-Darling-Test ein Test, der auf der empirischen

Verteilungsfunktion basiert. Seine Teststatistik misst den maximalen Abstand zwi-

schen der empirischen Verteilungsfunktion der Daten X1, . . . Xn und einerN (X̄, σ̂2)-

Verteilung, σ̂2 = (n− 1)−1
∑n

i=1(Xi − X̄)2. Mit Yi = σ̂−1(Xi − X̄) lautet die Test-

statistik

LIL = max{LIL+, LIL−},

wobei LIL+ = maxi=1,...,n{ in − Φ
(
Yi
)
} und LIL− = maxi=1,...,n{Φ

(
Yi
)
− i−1

n }.

• Cramér-von-Mises-Test: Der Cramér-von-Mises-Test ist ein weiterer Anpassungs-

test. Seine Teststatistik berechnet sich aus der aufsteigend angeordneten Stich-

probe X(1), . . . , X(n) und besitzt mit den Bezeichnungen Y(i) = σ̂−1(X(i) − X̄),

σ̂2 = (n− 1)−1
∑n

i=1(X(i) − X̄)2 schließlich die Gestalt

CVM =
1

12n
+

n∑
i=1

(
Φ
(
Y(i)

)
− 2i− 1

2n

)2

.

• Pearson-Chi-Quadrat-Test: Der Chi-Quadrat-Test von Pearson beruht auf einem

Vergleich der Anzahl nj an Elementen einer Stichprobe, die in k vorgegebene Klassen

fallen mit der erwarteten Anzahl n0j unter Annahme der Normalverteilung. Die

Teststatistik lautet

PEA =

k∑
j=1

(nj − n0j)
2

n0j
.

Aufgrund der asymptotischen χ2-Verteilung werden die p-Werte dabei über die χ2
k−3-

Verteilung berechnet.

• Shapiro-Francia-Test: Anders als die bisherigen Tests basiert der Shapiro-Francia-

Test nicht auf der empirischen Verteilungsfunktion, sondern auf der quadrierten

Korrelation der geordneten Stichprobe X = (X(1), . . . , X(n)) und den geordneten
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Quantilen q(i), i = 1, . . . , n, einer N (0, 1)-Verteilung. Dabei hängen die Quantile

von der Stichprobengröße n ab. Es werden die Quantile der Werte ci = i−3/8
n+1−3/4 für

i = 1, . . . , n betrachtet. Mit q = (q(1), . . . , q(n)) hat die Teststatistik somit die Form

SF =
(
Cor[X, q]

)2
.

Die Hypothese der Normalverteilung wird abgelehnt, falls der Wert der Statistik

unterhalb des entsprechenden kritischen Wertes liegt.

JB JBU JBJG AD LIL CVM PEA SF

Beta(3,2)
n = 10 0.034 0.032 0.03 0.05 0.042 0.048 0.074 0.048

n = 20 0.022 0.016 0.018 0.076 0.064 0.072 0.052 0.044

n = 50 0.02 0.016 0.016 0.168 0.118 0.14 0.108 0.116

n = 100 0.092 0.038 0.03 0.406 0.22 0.316 0.174 0.336

n = 200 0.732 0.648 0.6 0.812 0.534 0.704 0.386 0.872

n = 400 0.996 0.998 0.996 0.986 0.864 0.974 0.794 1

Student’s t (5 df)
n = 10 0.158 0.156 0.144 0.134 0.104 0.126 0.112 0.146

n = 20 0.222 0.232 0.24 0.196 0.114 0.166 0.09 0.23

n = 50 0.416 0.426 0.424 0.274 0.204 0.242 0.13 0.394

n = 100 0.642 0.66 0.646 0.51 0.326 0.45 0.184 0.648

n = 200 0.89 0.894 0.894 0.732 0.534 0.7 0.288 0.876

n = 400 0.986 0.984 0.986 0.96 0.812 0.92 0.474 0.982

Gamma(2,1)
n = 10 0.192 0.176 0.174 0.202 0.152 0.178 0.182 0.206

n = 20 0.382 0.352 0.358 0.44 0.282 0.394 0.286 0.482

n = 50 0.848 0.792 0.798 0.906 0.726 0.862 0.664 0.932

n = 100 0.992 0.988 0.988 0.998 0.954 0.992 0.926 1

n = 200 1 1 1 1 1 1 1 1

n = 400 1 1 1 1 1 0.996 1 1

Log-Normal
n = 10 0.5 0.432 0.43 0.584 0.464 0.558 0.53 0.594

n = 20 0.832 0.81 0.818 0.892 0.798 0.874 0.82 0.904

n = 50 1 1 1 1 0.996 1 0.998 1

n = 100 1 1 1 1 1 0.884 1 1

n = 200 1 1 1 1 1 0.158 1 1

n = 400 1 1 1 1 1 0 1 1

Tabelle 4.4: Powerwerte verschiedener Tests auf Normalverteilung zum Signifikanzniveau

α = 5% bei einigen Stichprobengrößen n und 500 Replikationen. Die effi-

zientesten Tests in den einzelnen Kategorien sind durch Fettdruck hervor-

gehoben. Die Grafiken zeigen die Dichte der entsprechenden Verteilungen

(durchgezogene Linien) im Vergleich zur normierten und zentrierten Nor-

malverteilung (gestrichelte Linien).

In der Tabelle 4.4 sind die Powerwerte der einzelnen Teststatistiken zu verschiedenen

Stichprobengrößen n und dem Signifikanzniveau α = 5% angegeben, die bei den durch-
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geführten Simulationen im Rahmen von 500 Replikationen resultierten. Um für beliebige

Stichprobengrößen zu unterschiedlichen Signifikanzniveaus die Power der einzelnen Tests

ermitteln zu können, wurde erneut in der Programmiersprache R eine Routine erstellt.

Dazu wurden die Jarque-Bera-Statistiken JB, JBU und JBJG implementiert und für je-

de der vier Verteilungen (Beta(3, 2), Student’s t (5 df), Gamma(2, 1) und LogNormal)

Replikationen von Stichproben der Größenordnung n ∈ {10, 20, 50, 100, 200, 400} erzeugt.

Mit dem Paket
”
nortest“ hat man Zugriff auf die bereits in R implementierten Teststatis-

tiken AD, LIL, CVM , PEA und SF , sodass eine Implementierung dieser Teststatistiken

nicht notwendig war. Die betrachteten Tests wurden dann auf die Replikationen ange-

wendet und innerhalb der im Paket
”
nortest“ vorhandenen Normalverteilungstests für

jede Stichprobe die Nullhypothese der Normalverteilung abgelehnt, falls der p-Wert der

entsprechenden Statistik unterhalb des vorgegebenen Niveaus α lag. Die Power der einzel-

nen Tests innerhalb der verschiedenen Verteilungen konnte daraufhin anhand der Anzahl

der abgelehnten Nullhypothesen im Verhältnis zur Gesamtzahl der durchgeführten Re-

plikationen bestimmt werden. Die Berechnung der Power im Fall der JB-, JBU - und

JBJG-Statistiken wurde über die empirischen kritischen Werte vorgenommen, die in den

Tabellen 4.1 bis 4.3 angegeben sind. Hierbei wurde für jede Stichprobe die Nullhypothese

der Normalverteilung abgelehnt, falls der Wert der entsprechenden Jarque-Bera-Statistik

oberhalb des zugehörigen empirischen kritischen Wertes lag. Die Berechnung der Power

geschah analog zur Vorgehensweise bei den vorher beschriebenen Normalitätstests, also

anhand der Anzahl der abgelehnten Nullhypothesen im Verhältnis zur Gesamtzahl der

durchgeführten Replikationen. Die Programmcodes der verwendeten Routine sind auf der

beigefügten Daten-CD im Einband am Ende der Arbeit enthalten.

Da für den p-Wert im Falle eines rechtsseitigen Tests (also eines solchen Tests, bei dem

die Nullhypothese abgelehnt wird, sobald der Wert der Teststatistik einen bestimmten

kritischen Wert c überschreitet) bei Vorliegen einer Stichprobe x und einer Teststatistik

S mit dem Ergebnis S(x) = s die Beziehung p = P (S ≥ s|H0) erfüllt ist und für den kriti-

schen Wert c zum Signifikanzniveau α die Beziehung α = P (S ≥ c|H0) gilt, lässt sich auch

eine Beziehung zwischen dem (erst nach Erhalt der Stichprobe bekannten) p-Wert und

dem (vor Auswertung der Teststatistik festzulegenden) Signifikanzniveau α ausmachen.

Es gilt also: p < α ⇔ s > c. Dies liefert die Rechtfertigung dafür, dass die auf verschie-

dene Weise berechnete Power in den betrachteten Testsituationen miteinander verglichen

werden darf.

Sicherlich können aufgrund der geringen Anzahl an Replikationen keine exakten Schlüs-

se über die absolute Power der einzelnen Tests gezogen werden, jedoch zeichnen sich Ten-

denzen ab, die eine Vermutung über die relativen Verhältnisse zulassen. Da die Untersu-

chungen auch in den Fällen α = 0.01 und α = 0.1 durchgeführt wurden, die Ergebnisse
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Abbildung 4.3: Power der Teststatistiken JB, JBU , JBJG, AD, LIL, CVM , PEA und

SF zum Signifikanzniveau α = 5% in Abhängigkeit der Stichproben-

größe n. Die exakten Ergebnisse der Analysen können der Tabelle 4.4

entnommen werden.

denen aus Tabelle 4.4 jedoch recht ähnlich sind, werden diese im Anhang B.2 nachgereicht.

Zur besseren Übersicht wurden die Testergebnisse aus Tabelle 4.4 mit R grafisch aufberei-

tet und werden in Abbildung 4.3 wiedergegeben. In den Grafiken wurde dabei eine lineare

Interpolation durchgeführt. Die Ergebnisse der Stichprobengrößen n ∈ {10, 20, 50, 100, 200,

400} sind auf den Powerkurven der JB-Statistik durch Sternchen gekennzeichnet, wo-

bei für die Gamma(2, 1)-Verteilung nur n ∈ {10, 20, 50, 100} und für die Lognormal-

Verteilung nur n ∈ {10, 20, 50} betrachtet wird.
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Fazit: Zu erkennen ist in Abbildung 4.3, dass sowohl für die Gamma(2, 1)-Verteilung

(Grafik unten links) als auch für die Lognormal-Verteilung (Grafik unten rechts) die Po-

werkurve des Shapiro-Francia-Tests (violette Kurve) bezüglich aller Stichprobengrößen n

oberhalb der übrigen Powerkurven liegt und somit die anderen Teststatistiken überbietet.

Hinsichtlich derGamma(2, 1)-Verteilung liegen die Jarque-Bera-Statistiken (schwarze Kur-

ven) für alle Stichprobengrößen etwa gleichauf im Mittelfeld. Bezüglich der Lognormal-

Verteilung jedoch zeigt sich, dass vor allem die modifizierten Jarque-Bera-Statistiken

bezüglich der Power für kleine Stichproben schlecht abschneiden. Die JB-Statistik schnei-

det etwas besser ab, liegt dennoch nur im unteren Mittelfeld. Im Testen gegen dieBeta(3, 2)-

Verteilung (Grafik oben links) übertrifft speziell in der Situation kleiner bis mittelgroßer

Stichproben, d.h. n ∈ {20, 50, 100}, die Powerkurve des Anderson-Darling-Tests (blaue

Kurve) die Powerkurven der restlichen Teststatistiken. Bei großen Stichproben wiederum

dominert der Shapiro-Francia-Test. Die Jarque-Bera-Statistiken liegen hier bei Stichpro-

ben der Größenordnung n ≤ 100 deutlich abgeschlagen am unteren Ende der Powerskala,

steigen jedoch bereits bei n ≈ 200 ins Mittelfeld auf und bieten für n = 400 zusammen mit

dem Anderson-Darling- und Shapiro-Francia-Test sogar die höchste Power. Im Falle von

Student’s t-Verteilung mit fünf Freiheitsgraden (Grafik oben rechts) bieten die Jarque-

Bera-Statistiken bei allen Stichprobengrößen die höchste Power. Die restlichen Teststatis-

tiken LIL, CVM und PEA konnten bis auf den Chi-Quadrat-Test von Pearson im Falle

der Beta(3, 2)-Verteilung für n = 10 in keiner der getesteten Situationen für kleine und

auch große Stichprobengrößen mit den anderen Tests mithalten.

Obwohl gegen die t-Verteilung mit fünf Freiheitsgraden die Statistiken JBU und JBJG

bei fast allen Stichprobengrößen die JB-Statistik dominiert3, sind die Unterschiede doch

sehr gering. Hinsichtlich der restlichen Verteilungen ist die Power der JB-Statistik bei

jeder Stichprobengröße mindestens genauso groß, in den meisten Fällen sogar größer als

die der Statistiken JBU und JBJG. Somit kann davon ausgegangen werden, dass weder

der JBU -Test, noch der JBJG-Test in der Situation des Testens auf Normalverteilung von

Beobachtungen eine überzeugende Verbesserung gegenüber dem JB-Test darstellt.

4.3 Powervergleich in speziellen Situationen

Der vorige Abschnitt hat gezeigt, dass abgesehen von der Stichprobengröße vor allem die

Form der zugrunde liegenden Verteilung die Grundlage für eine Bewertung verschiedener

Teststatistiken in unterschiedlichen Testsituationen darstellt. So ist es doch verwunder-

lich, dass sich speziell im Fall der t-Verteilung als einzige symmetrische Verteilung die

Jarque-Bera-Statistiken als stärkste Tests herausgestellt haben, basieren die Jarque-Bera-

3Vgl. dazu Tabelle 4.4.
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Statistiken doch auf der Schiefe und der Wölbung der zugrunde liegenden Verteilung. Die

Schiefe im Falle einer symmetrischen Verteilung, also insbesondere der t-Verteilung, ist al-

lerdings null und nur noch die Wölbung trägt ihren Teil zur Teststatistk bei. Dies motiviert

die Frage nach der Gestalt, welche dazu führt, dass einige Tests in gewissen Situationen

andere Tests dominieren. Um auf diese Frage näher eingehen zu können, wird im Folgenden

von den Verteilungen des vorigen Abschnitts Abstand genommen und ein Modell betrach-

tet, mit dem nach individuellen Wünschen Verteilungsformen realisiert werden können.

Dieses Modell bietet die Möglichkeit Verteilungen zu generieren, die bestimmte Eigen-

schaften aufweisen und zudem
”
nah“ an der Normalverteilung liegen. So können die Aus-

wirkungen unterschiedlicher Abweichungen von der Normalverteilung untersucht werden.

Dazu werden verschiedene Formen symmetrischer wie auch nicht symmetrischer Verteilun-

gen mit und ohne Abweichung der für die Normalverteilung typischen Wölbung erzeugt.

Zudem werden nicht nur unimodale, sondern auch bimodale Verteilungen betrachtet. In

Anlehung an das Modell von Thadewald und Büning in [TB04] zur empirischen Untersu-

chung des Jarque-Bera-Tests wird wie folgt vorgegangen. Es seien X1 und X2 unabhängige

Zufallsvariablen mit X1 ∼ N (µ1, σ
2
1) und X2 ∼ N (µ2, σ

2
2). Weiter sei p ∈ [0, 1]. Dann wird

die Zufallsvariable Z = (1 − p)X1 + pX2 betrachtet, deren Verteilung als Kontaminierte

Normalverteilung (KN -Verteilung) bezeichnet wird. Es sei o.B.d.A. µ1 = 0 und σ2
1 = 1 so-

wie µ2 ∈ {0, 1, 2, 3}, σ2
2 ∈ {0.5, 1, 3} und p ∈ {0.1, 0.25, 0.3, 0.5, 0.75}. Durch Kombination

dieser Parameter läßt sich bereits eine Vielzahl unterschiedlicher KN -Verteilungen erzeu-

gen. Diese werden im Folgenden benutzt um die Power einiger Teststatistiken miteinander

zu vergleichen.

Aufgrund der schlechten Resultate der Statistiken LIL, CVM und PEA in den Testsi-

tuationen des vorigen Abschnitts beschränken sich die folgenden Analysen auf die Teststa-

tistiken JB, AD und SF . Die Vorgehensweise in der Erstellung einer geeigneten Routine

zur Ermittlung der Power in den einzelnen Testsituationen entspricht dabei einer Modifi-

zierung des Modells aus dem vorigen Abschnitt. Dazu wurde in der Programmiersprache

R eine Funktion programmiert, mit der die Erzeugung kontaminiert normalverteilter Zu-

fallsgrößen möglich ist. Diese wurde dann dazu genutzt, Replikationen von Stichproben

unterschiedlicher Größenordnung zu generieren, auf welche die Teststatistiken JB, AD

und SF angewendet wurden. (Die Implementierung der JB-Teststatistik wurde dabei aus

dem vorigen Modell übernommen. Die Statistiken AD und SF wurden erneut aus dem

Paket
”
nortest“ entnommen.) Im Falle des Anderson-Darling- und des Shapiro-Francia-

Tests wurde für jede Replikation die Nullhypothese der Normalverteilung abgelehnt, falls

der berechnete p-Wert das Signifikanzniveau unterschritten hat. Im Falle des Jarque-Bera-

Tests wurde die Nullhypothese abgelehnt, falls der resultierende Wert den entsprechenden

empirischen kritischen Wert aus Tabelle 4.1 überstieg. Die Anzahl der abgelehnten Nullhy-
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pothesen im Verhältnis zur Gesamtzahl der durchgeführten Replikationen ergab dann die

in den Tabellen B.1 bis B.3 im Anhang B.1 angegebenen Powerwerte. Dass ein Vergleich

der Power, die auf unterschiedliche Weise berechnet wurde, gezogen werden darf, wurde

bereits im letzten Abschnitt begründet. Die Programmcodes der verwendeten Routine sind

auf der beigefügten Daten-CD im Einband am Ende der Arbeit enthalten.

Die Grafiken (A) bis (F) in den Abbildungen 4.4 bis 4.6 veranschaulichen die Ergeb-

nisse der Simulationen, die auf der Basis von je 1000 Replikationen für die Stichproben-

größen n ∈ {20, 50, 100, 200, 400} zum Signifikanzniveau α = 5% durchgeführt wurden.

Innerhalb der Grafiken (A) bis (F) sind in den oberen Schaubildern die Powerkurven

des Jarque-Bera-, des Anderson-Darling-, und des Shapiro-Francia-Tests zu verschiede-

nen KN -Verteilungen dargestellt, wobei erneut eine lineare Interpolation durchgeführt

wurde. Die Kombination der Parameterwerte µ2, σ2
2 und p der KN -Verteilung ist ober-

halb des jeweiligen Schaubilds angegeben. Zur besseren Übersicht wird mit den Stern-

chen auf den JB-Kurven die Lage der berechneten JB-Werte für die Stichprobengrößen

n ∈ {20, 50, 100, 200, 400} angedeutet. Unterhalb dieser Schaubilder sind die Dichten

der zugehörigen KN -Verteilungen (durchgezogene Linien) im Vergleich zur zentrierten

und standardisierten Normalverteilung (gestrichelte Linien) visualisiert. Diese bieten die

Möglichkeit zu erkennen, wie stark sich eine spezielle Abweichung von der Normalvertei-

lung auf die Power der einzelnen Teststatistiken auswirkt. Alle Grafiken wurden dabei mit

R erstellt.

Fazit: Betrachtet man die Abbildungen 4.4 bis 4.6, so kann man erkennen, dass

sich die absolute Power des JB-Tests hinsichtlich der verschiedenen Verteilungsformen in

Abhängigkeit der Stichprobengröße deutlich unterscheidet. In den Grafiken 4.4(C), 4.4(F)

und 4.6(A) ist gut zu erkennen, wie groß der Einfluss ist, den die Wölbung auf die Power

des Jarque-Bera-Tests hat. Innerhalb der univariaten Verteilungen wird im Falle der (im

Vergleich zur Normalverteilung) deutlich spitzigeren Verteilung (also bei einer sehr großen

Wölbung) die Nullhypothese bereits bei einer Stichprobengröße von n = 100 fast zu 100%

abgelehnt, wohingegen bei der flachen Verteilung (also einer kleinen Wölbung) selbst bei

n = 400 die Chance nicht einmal bei 50% liegt, dass die tatsächliche Verteilung als Nicht-

Normalverteilung aufgedeckt wird. Im Vergleich mit der spitzigen Verteilung schneidet

die Power des JB-Tests sogar bei der bimodalen Verteilungensform deutlich schlechter ab.

Hier wird bei einer Stichprobengröße von n = 100 nur mit etwa 20% Wahrscheinlichkeit die

richtige Entscheidung gegen die Normalverteilung getroffen. Bei n = 200 liegt die Power

jedoch schon etwa bei 0.9. Den großen Einfluss der Wölbung kann man auch erkennen,

wenn man die Powerkurven in den Grafiken der Abbildung 4.5 von links nach rechts (also

(A)-(C) und (D)-(F)) und die Powerkurven in den Grafiken der Abbildung 4.6 von rechts
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(A) (B) (C)

(D) (E) (F)

Abbildung 4.4: Power der Teststatistiken JB, AD und SF zum Signifikanzniveau

α = 5% in Abhängigkeit der Stichprobengröße n für verschiedene KN -

Verteilungen mit Parametern µ1 = 0, µ2 ∈ {2, 3}, σ2
1 = σ2

2 = 1 und

p ∈ {0.1, 0.3, 0.5}. Die exakten Ergebnisse der Analysen können der Ta-

belle B.1 im Anhang entnommen werden.
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(A) (B) (C)

(D) (E) (F)

Abbildung 4.5: Power der Teststatistiken JB, AD und SF zum Signifikanzniveau

α = 5% in Abhängigkeit der Stichprobengröße n für verschiedene KN -

Verteilungen mit Parametern µ1 = 0, µ2 ∈ {1, 2}, σ2
1 = 1, σ2

2 = 0.5 und

p ∈ {0.25, 0.5, 0.75}. Die exakten Ergebnisse der Analysen können der

Tabelle B.2 im Anhang entnommen werden.
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(A) (B) (C)

(D) (E) (F)

Abbildung 4.6: Power der Teststatistiken JB, AD und SF zum Signifikanzniveau

α = 5% in Abhängigkeit der Stichprobengröße n für verschiedene KN -

Verteilungen mit Parametern µ1 = 0, µ2 ∈ {0, 2}, σ2
1 = 1, σ2

2 = 3 und

p ∈ {0.25, 0.5, 0.75}. Die exakten Ergebnisse der Analysen können der

Tabelle B.3 im Anhang entnommen werden.
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nach links (also (C)-(A) und (F)-(D)) durchläuft. Mit steigender Wölbung der zugrunde lie-

genden Verteilung steigt auch die Power des Jarque-Bera-Tests erheblich. Der Einfluss der

Schiefe einer Verteilung auf die Power der JB-Statistik ohne entsprechende Abweichung

der Wölbung hingegen ist eher gering, wie man gut in den Grafiken 4.4(B), 4.5(A)und

4.5(D) erkennen kann. Es verwundert nicht, dass in diesen Situationen im direkten Ver-

gleich mit dem Anderson-Darling- und dem Shapiro-Francia-Test der Jarque-Bera-Test

bei allen Strichprobengrößen eine deutlich niedrigere Power aufweist. Liegt in der Grund-

verteilung eine Kombination von abweichender Schiefe und Wölbung vor, so spielt also

die Wölbung eine weitaus wichtigere Rolle für die Power der JB-Statistik. Eine weitere

Schwäche des Jarque-Bera-Tests wird bei Betrachtung der bimodalen Verteilungen in den

Grafiken 4.4(E), 4.4(F) und 4.5(E) ersichtlich. Erst ab einer Stichprobengröße von n = 200

kann der Jarque-Bera-Test mit den anderen Teststatistiken bezüglich seiner Power kon-

kurrieren, in 4.5(D) sogar erst ab n = 400.

Diese Resultate lassen erahnen, wie fehlerhaft eine Entscheidung auf Basis des Jarque-

Bera-Tests sein kann, falls eine bimodale Verteilung oder eine Verteilung ohne ausreichende

Wölbung zugrunde liegt und die vorliegende Stichprobe zudem keine ausreichende Größe

besitzt. Ist hingegen eine starke Abweichung der Wölbung von der einer Normalverteilung

zu erkennen, so stellt der Jarque-Bera-Test auch für kleine Stichproben ein hilfreiches und

zudem gleichwertiges Mittel zum Testen auf Normalverteilung dar.



Kapitel 5

Testen auf multivariate

Normalverteilung

Die Theorie des Testens auf univariate Normalverteilung basierte auf der Annahme einer

Stichprobe x = (x1, . . . , xn), welche als Realisierung von sowohl unabhängigen, als auch

identisch verteilten Zufallsvariablen X1, . . . , Xn angenommen wurde. Um im Folgenden

nicht nur auf Zusammenhänge zwischen einzelnen Beobachtungen eingehen zu können, son-

dern auch auf verschiedene Merkmale dieser Beobachtungen, wird der Ansatz erweitert und

in diesem Kapitel Stichproben X = (X1, . . . ,Xn) betrachten, die aus p-Zufallsvektoren

Xi = (X1i, . . . , Xpi)
T für i = 1, . . . , n bestehen. Xji für j = 1, . . . , p stellen dabei eindi-

mensionale Zufallsvariablen dar. Xi wird dadurch zu einer Beobachtung, die p Merkmale

beinhaltet, deren Abhängigkeitsstruktur untereinander durch die (p× p)-Kovarianzmatrix

Cov[Xi] =
(
σjk
)

1≤j,k≤p mit σjk = Cov[Xji, Xki] für i = 1, . . . , n ausgedrückt werden

kann. Dazu wird im Folgenden angenommen, dass sowohl die Erwartungswertvektoren

E[Xi], als auch die Kovarianzmatrizen Cov[Xi] der betrachteten Zufallsvektoren Xi für

i = 1, . . . , n existieren. Die einzelnen Zufallsvektoren werden dabei wie im univariaten Fall

als unabhängig und identisch verteilt angenommen. Eine Stichprobe X bestehend aus n

Beobachtungsvektoren der Länge p kann somit als (p×n)-Matrix X =


X11 · · · X1n

...
. . .

...

Xpi · · · Xpn


dargestellt werden. Man bezeichnet X als Daten- oder Beobachtungsmatrix. Geometrisch

lassen sich die Spalten der Matrix als Punkte im p-dimensionalen Raum deuten, welche

der Untersuchung eines Zusammenhangs der verschiedenen Objekte (im eindimensionalen

also gerade der einzelnen Beobachtungen) untereinander dienen können. Die Zeilen hin-

gegen sind Punkte im n-dimensionalen Raum und werden benutzt um Beziehungen zwi-

schen den verschiedenen Merkmalen aufzudecken. Statistische Fragestellungen, die dem

angegebenen Modell zugrunde liegen, werden in den Bereich der multivariaten Statistik

49
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eingeordnet. Ebenso wie im univariaten Fall besteht nun Interesse daran, anhand einer

vorliegenden Stichprobe Aussagen über die Verteilung der den Beobachtungen zugrunde

liegenden Grundgesamtheit zu treffen.

Im Folgenden liegt das Augenmerk speziell auf der Erweiterung des in den vorigen

Kapiteln entwickelten Modells. Zwangsläufig stellt sich die Frage, ob sich das von Jarque

und Bera hergeleitete Ergebnis einer Teststatistik zum Testen auf univariate Normalver-

teilung in ähnlicher Weise auf den multivariaten Fall übertragen lässt. Dazu sind die im

eindimensionalen Fall recht anschaulichen Maße für die Schiefe und die Wölbung einer

Verteilung auf die multivariaten Situationen zu übertragen. Da es sich jedoch nicht um

eindeutige Fortsetzungen handelt, wie man bereits an der Vielfalt der sich mit diesem

Thema auseinandersetzenden Literatur erkennen kann, bietet sich die Möglichkeit mehre-

rer Testerweiterungen. Die vorliegende Analyse beschränkt sich dabei auf die zwei wohl

bekanntesten Fortsetzungen von Kantilal Vardichand Mardia, es wird jedoch darauf hin-

gewiesen, dass weitere Vorschläge für multivariate Maße wie die in [Sri84] und [MA73],

sowie in [Sma80] und [Son01] zur Verfügung stehen. In Abschnitt eins werden dazu die in

[Mar74] angegebenen Maße für die multivariate Schiefe sowie die multivariate Wölbung

eingeführt und einige wichtige Eigenschaften dieser Maße gegeben. Abschnitt zwei befasst

sich mit der asymptotischen Verteilung der betrachteten Größen, bevor anschließend in

Abschnitt drei einige daraus resultierende Teststatistiken untersucht werden.

5.1 Multivariate Schiefe- und Wölbungsmaße

Wie einleitend erwähnt, wird auf die Ergebnisse von Mardia zurückgegriffen und die

Schiefe- und Wölbungsmaße angegeben, die in [Mar74] wie folgt definiert werden.

Definition 5.1.1. Es seien X = (X1, . . . , Xp)
T und Y = (Y1, . . . , Yp)

T unabhängige

und identisch verteilte p-Zufallsvektoren mit existierendem Erwartungswertvektor µ =

(µ1, . . . , µp)
T und existierender Kovarianzmatrix Σ. Dann bezeichne in Übereinstimmung

der Notation des univariaten Falls

β1,p = E
[((

X − µ
)T

Σ−1
(
Y − µ

))3]
(5.1)

das multivariate Schiefemaß nach Mardia und

β2,p = E
[((

X − µ
)T

Σ−1
(
X − µ

))2]
(5.2)

das multivariate Wölbungsmaß nach Mardia.

Die Motivation für die Darstellung des Schiefemaßes in vorliegender Form lässt sich an-

hand von [Mar70] wie folgt begründen. Ausgehend von dem in [KS67], S.466 hergeleiteten
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Ergebnis der asymptotischen Äquivalenz von Cor[X̄, S2] und (β1/2)1/2 mit X̄ als Stich-

probenmittel der univariaten Zufallsvariablen X1, . . . , Xn, S2 als Stichprobenvarianz und

β1 als univariatem Schiefemaß (der zugrunde liegenden Grundgesamtheit) unter gewissen

Konvergenzvoraussetzungen an die zweiten Momente (Var[X̄], Var[S2], Cov[X̄, S2] zur

Ordnung n−1), versuchte Mardia die asymptotische Beziehung zwischen der Korrelation

oben angegebener Größen und der Schiefe auf den mehrdimensionalen Fall zu übertragen.

Resultat war das Maß

β1,p =

p∑
r,s,t=1

p∑
r′,s′,t′=1

σrr
′
σss
′
σtt
′
µ

(rst)
111 µr

′s′t′
111

mit (σij)1≤i,j≤p = Σ−1 und µ
(s1,...,sk)
r1,...,rk = E

[∏k
i=1(Xsi − µsi)ri

]
.

Der multivariaten Wölbung liegt eine Beziehung zum Einstichproben-Pitman-Permuta-

tionstest zugrunde, sodass

β2,p =

p∑
r,s=1

p∑
r′,s′=1

σrsσr
′s′µ

(rsr′s′)
1111

folgt. Daraus leitete Mardia über Bilinearformen die obigen Ergebnisse (5.1) und (5.2) ab.

Es sei nun X = (X1, . . . ,Xn) eine Stichprobe aus i.i.d. p-Zufallsvektoren mit unbekann-

ter Verteilung. Da der Erwartungswertvektor µ = E[Xi] =
(
E[X1i], . . . ,E[Xpi]

)T
der

Zufallsvektoren Xi für i = 1, . . . , n unbekannt ist, wird dieser im Folgenden geschätzt. Es

sei µ̂ = X̄ = (X̄1, . . . , X̄p)
T der Stichprobenmittelwertvektor mit X̄j = n−1

∑n
i=1Xji für

j = 1, . . . , p als Stichprobenmittel des j-ten Merkmals. Ebenso wird Σ durch die Stichpro-

benkovarianzmatrix S = (sjk)1≤j,k≤p mit sjk = n−1
∑n

i=1(Xji− X̄j)(Xki− X̄k) geschätzt.

Dann lässt sich das Stichprobenanalogon zu (5.1) und (5.2) wie folgt definieren.

Definition 5.1.2. Es gelten die getroffenen Annahmen. Dann bezeichnet

b1,p =
1

n2

n∑
i=1

n∑
j=1

((
Xi − X̄

)T
S−1

(
Xj − X̄

))3
(5.3)

die multivariate Stichprobenschiefe nach Mardia und

b2,p =
1

n

n∑
i=1

((
Xi − X̄

)T
S−1

(
Xi − X̄

))2
(5.4)

die multivariate Stichprobenwölbung nach Mardia.
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Bemerkung 5.1.3. Es seien X und Y unabhängige und identisch Np(µ,Σ)-verteilte

Zufallsvektoren. Dann gilt:

β1,p = 0 und β2,p = p(p+ 2).

Beweis. Es seien X und Y unabhängig und identisch Np(µ,Σ)-verteilt. Da die Verteilung

von
(
X−µ

)T
Σ−1

(
Y −µ

)
symmetrisch um

(
X−µ

)T
Σ−1

(
Y −µ

)
= 0 ist, folgt E

[((
X−

µ
)T

Σ−1
(
Y −µ

))3]
= 0 und mit (5.1) die Behauptung der ersten Aussage. Für die zweite

Aussage wird Lemma 2.2.8 benutzt. Es gilt
(
X −µ

)T
Σ−1

(
X −µ

)
∼ χ2

p, sodass mit (5.2)

β2,p = E
[
(χ2
p)

2
]

= p(p+ 2) folgt.

Weiter zu bemerken ist, dass die neuen Maße auch in der univariaten Situation p = 1

angewendet werden können. Es gilt dann b1,1 = b1 und b2,1 = b2.

5.2 Asymptotische Verteilung

Dieser Abschnitt befasst sich mit der asymptotischen Verteilung der von Mardia ange-

gebenen multivariaten Maße. Diese kann dazu genutzt werden, Tests auf multivariate

Normalverteilung herzuleiten, wie dies auch von Mardia getan wurde. Die asymptotische

Verteilung dient dazu, die kritischen Werte der Tests zu vorgegebenem Signifikanzniveau α

anhand der kritischen Werte der asymptotischen Verteilung zu bestimmen. Diese stimmen

aufgrund der Asymptotik der Verteilung für wachsende Stichprobenumfänge mit steigen-

der Genauigkeit überein. Damit ist das fehlende Wissen über die exakte Verteilung der

Teststatistik nicht weiter von Relevanz, vorausgesetzt die Stichprobe ist groß genug. Dies

ist allerdings in den meisten Anwendungen nicht der Fall. Für kleine Stichproben werden

deshalb wie im univariaten Fall empirische Analysen durchführen und somit wenn auch

nicht exakte, jedoch hinreichend genaue kritische Werte ermittelt. Auf diese auf Monte-

Carlo-Simulationen basierenden Untersuchungen wird an späterer Stelle näher eingehen.

Das Ergebnis der asymptotischen Verteilung liefert der folgende

Satz 5.2.1. Es seien b1,p und b2,p wie in (5.3) und (5.4) und X = (X1, . . . ,Xn) eine

Stichprobe aus i.i.d. p-Zufallsvektoren mit Xi ∼ Np(µ,Σ) für i = 1, . . . , n. Weiter sei

B1,p = n
6 b1,p und B2,p =

(
(n+3)(n+5)

8p(p+2)(n−3)(n−p−1)(n−p+1)

)1/2(
(n + 1)b2,p − p(p + 2)(n − 1)

)
.

Dann gilt:

B1,p
D−→ χ2

p(p+1)(p+2)/6 und

B2,p
D−→ N (0, 1).
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Bevor der Beweis des Satzes begonnen wird, ist die Einführung einer Verteilung notwendig,

die als multivariate Verallgemeinerung der χ2-Verteilung angesehen werden kann.

Definition 5.2.2. Es sei X = (X1, . . . ,Xn) mit Xi ∼ Np(0,Σ) für i = 1, . . . , n und

M = XXT =
∑n

i=1XiX
T
i . Dann besitzt M eine Wishart-Verteilung mit Skalenmatrix

Σ und n Freiheitsgraden. Man schreibt M ∼ Wp(n,Σ).

Beweis des Satzes. Begonnen wird der Beweis des Satzes mit einem Lemma. Dieses lie-

fert zusammen mit dem zentralen Grenzwertsatz die asymptotische Konvergenz von B2,p.

Danach wird die asymptotische Verteilung der multivariaten Schiefe b1,p bestimmt.

Lemma 5.2.3. Es sei b2,p wie in (5.4). Dann gilt mit X = (X1, . . . ,Xn) und Xi ∼
Np(µ,Σ) für i = 1, . . . , n:

E
[
b2,p
]

=
1

n+ 1
p(p+ 2)(n− 1) und

Var
[
b2,p
]

=
8p(p+ 2)(n− 3)

(n+ 1)2(n+ 3)(n+ 5)
(n− p+ 1)(n− p− 1).

Beweis des Lemmas. Der Beweis basiert auf [Mar74], Kapitel 4. Es sei (X1i, . . . , Xpi)
T =

Xi für i = 1, . . . , n mit Xi ∼ Np(µ,Σ). Aufgrund der Invarianz von b2,p unter nichtsin-

gulären Transformationen X 7→ AX + b, die sich durch Einsetzen in (5.4) zeigen lässt,

wird o.B.d.A. µ = 0 und Σ = Ip angenommen. Weiter sei

Rij =
(
Xi − X̄

)T
M−1

(
Xj − X̄

)
(5.5)

mit

M = nS =
n∑
i=1

(
Xi − X̄

)(
Xi − X̄

)T
=

n∑
i=1

XiX
T
i − nX̄X̄

T
, (5.6)

sodass

b2,p = n
n∑
i=1

R2
ii (5.7)

gilt. Die Berechnung der Momente von b2,p geschieht nun über die Momente von Rij . Dazu

wird X(r) = (Xr1, . . . , Xrn)T als n-Vektor im Merkmal r betrachtet und X(r) mittels einer

orthogonalen Transformation zu ζ(r) = (ζr1, . . . , ζrn)T transformiert. Die zur Beschreibung

dieser orthogonalen Abbildung benutzte (n× n)-Matrix hat die Gestalt

H =



d2 e2 0 · · · · · · 0

d3 d3 e3
. . .

...

d4 d4 d4 e4
. . .

...
...

...
...

. . .
. . . 0

dn · · · · · · · · · dn en

n−1/2 · · · · · · · · · · · · n−1/2


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mit dj =
(
j(j − 1)

)−1/2
, ej = −(j − 1)dj und wird als verallgemeinerte Helmert-Matrix

bezeichnet. Es sei ζ = (ζri)1≤r≤p,1≤i≤n definiert durch ζ(r) = HX(r) für r = 1, . . . , p.

Dann ist

ζT = HXT (5.8)

und somit ζζT = XHTHXT H orthogonal
= XXT . Es folgt

n∑
i=1

XiX
T
i = XXT = ζζT =

n∑
i=1

ζiζ
T
i . (5.9)

Weiter folgt mit (5.8) und der Darstellung von H, dass ζrn = n−1/2
∑n

i=1Xri, sodass

ζn = n1/2X̄ und folglich

ζnζ
T
n = nX̄X̄

T
(5.10)

gilt. Mit (5.6), (5.9) und (5.10) folgt

M =
n∑
i=1

ζiζ
T
i − ζnζTn =

n−1∑
i=1

ζiζ
T
i . (5.11)

Aus (5.8) kann auch eine Darstellung von X in Abhängigkeit von ζ bestimmt werden. Es

ist XT = H−1ζT und wegen der Orthogonalität von H ist XT = HT ζT ⇔ X = ζH.

Mit der Darstellung von H folgt somit

Xi = eiζi−1 +
n−1∑
k=i

dk+1ζk + n−
1
2 ζn für i = 1, . . . , n− 1

und Xn = enζn−1 + n−
1
2 ζn

mit ζ0 = 0. Es ist n−1/2ζn = X̄. Der Kürze halber wird Xi für i = 1, . . . , n− 1 und Xn

als eine Gleichung der Form

Xi − X̄ = eiζi−1 +
n−1∑
k=i

dk+1ζk für i = 1, . . . , n (5.12)

geschrieben, wobei für i = n gelte:
∑n−1

k=n dk+1ζk = 0.

Zerlegt man M derart, dass M = TT T mit einer (p× p)-Matrix T , dann folgt mit (5.5)

und (5.12)

Rij =
(
eiζi−1 +

n−1∑
k=i

dk+1ζk

)T(
TT T

)−1(
ejζj−1 +

n−1∑
k=j

dk+1ζk

)
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=
(
eiζi−1 +

n−1∑
k=i

dk+1ζk

)T(
T−1

)T
T−1

(
ejζj−1 +

n−1∑
k=j

dk+1ζk

)

=
(
eiT

−1ζi−1 +
n−1∑
k=i

dk+1T
−1ζk

)T(
ejT

−1ζj−1 +
n−1∑
k=j

dk+1T
−1ζk

)
.

Definiert man Zi = T−1ζi für i = 1, . . . , n, so ist

Rij =
(
eiZi−1 +

n−1∑
k=i

dk+1Zk

)T(
ejZj−1 +

n−1∑
k=j

dk+1Zk

)
(5.13)

und die Momente von Rij lassen sich anhand der Momente von Zi herleiten. Diese wer-

den im Folgenden bestimmt. Grundlage dafür ist die Dichte der (p × k)-Matrix
(k)

Z=

(Z1, . . . ,Zk), für deren Bestimmung auf ein Resultat von Khatri zurückgegriffen wird,

auf dessen Beweis hier verzichtet werden soll. Der interessierte Leser sei auf [Kha59],

S.1259, verwiesen. Das Resultat lautet wie folgt:

Hilfslemma 5.2.4. Es seien Q eine (p× p)-Matrix und V eine (p× k)-Matrix. Q und V

seien unabhängig verteilt mit Q ∼ Wp(n,Σ) und V = (V 1, . . . ,V k) mit V i ∼ Np(0,Σ)

für i = 1, . . . , k. Weiter sei U = Q+V V T und R eine (p× p)-Matrix, sodass RRT = U .

Dann gilt:

U und Z = R−1V sind unabhängig mit U ∼ Wp(n + k,Σ) und Z hat eine Dich-

te der Form f(Z;n + k, k, p) = c(n + k, k, p)
∣∣Ip − ZZT

∣∣ 12 (n−p−1)
mit c(n + k, k, p) =

π−
1
2
pk∏p

j=1 Γ
(
n+k−j+1

2

)(
Γ
(n−j+1

2

))−1
. Γ steht in diesem Zusammenhang für die Gam-

mafunktion.

Es sei nun Q = (ζk+1, . . . , ζn−1)(ζk+1, . . . , ζn−1)T , dann ist Q ∼ Wp(n−k−1,Σ). Weiter

sei V = (ζ1, . . . ζk), dann gilt mit (5.11) M = Q+V V T . Nach Hilfslemma 5.2.4 sind M

und
(k)

Z= (Z1, . . . ,Zk) = T−1V unabhängig und ferner besitzt
(k)

Z die Dichte

f(
(k)

Z ;n− 1, k, p) = c(n− 1, k, p)
∣∣Ip− (k)

Z
(k)

Z

T ∣∣ 12 (n−k−p−2)

= π−
1
2
pk

p∏
j=1

Γ
(n− j

2

)(
Γ
(n− k − j

2

))−1∣∣∣Ip− (k)

Z
(k)

Z

T ∣∣∣ 12 (n−k−p−2)
.

Diese wird im Folgenden benutzt, um die Momente von b2,p zu bestimmen. Zuvor jedoch

werden einige nützliche Hilfslemmata aufgestellt. Dazu seien xi und yi für i = 1, . . . , n reelle

Zahlen. Die Beweise der Hilfslemmata benutzen das Prinzip der augmented symmetric

functions, deren Herleitung an dieser Stelle im Interesse einer verständlichen Darstellung
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überflüssig erscheint und infolgedessen vernachlässigt wird. Abkürzend steht p.v. für die

Eigenschaft paarweise verschieden. Die notwendigen Definitionen zum Verständnis lauten

(r) =

n∑
i=1

xri

spq =

n∑
i=1

xpi y
q
i und

[(p1q1)π1 , . . . , (pλqλ)πλ ] =

n∑
i1,...,iν=1
i1,...,iν p.v.

xp1i1 y
q1
i1
· · ·xpλiν y

qλ
iν

mit ν =
∑λ

i=1 πi. Mit Hilfe der Tabellen 1·1·2, 1·6·4 und 1·6·8 in [DKB66] können die

folgenden Resultate gewonnen werden.

Hilfslemma 5.2.5. In der vorliegenden Situation gilt:( n−1∑
k=i−1

ckZj,k

)2
=

n−1∑
k=i−1

c2
kZ

2
j,k +

n−1∑
k1,k2=i−1
k1 6=k2

ck1Zj,k1ck2Zj,k2 . (5.14)

Beweis des Hilfslemmas. Dies resultiert aus einer Darstellung der Form s2
11 = [22] +

[11, 11].

Hilfslemma 5.2.6. In der vorliegenden Situation gilt:

E
[( p∑

j=1

n−1∑
k=i−1

c2
kZ

2
j,k

)2]
=

p∑
j=1

( n−1∑
k=i−1

c4
kE[Z4

j,k] +
n−1∑

k1,k2=i−1
k1 6=k2

c2
k1c

2
k2E[Z2

j,k1Z
2
j,k2 ]

)

+

p∑
j1,j2=1
j1 6=j2

( n−1∑
k=i−1

c4
kE[Z2

j1,kZ
2
j2,k] +

n−1∑
k1,k2=i−1
k1 6=k2

c2
k1c

2
k2E[Z2

j1,k1Z
2
j2,k2 ]

)
.

(5.15)

Beweis des Hilfslemmas. (5.15) ist das Ergebnis einer Zerlegung der Form (1)2 = [2]+[12]

und Einsetzen der Gleichungen( n−1∑
k=i−1

c2
kZ

2
j,k

)2
=

n−1∑
k=i−1

c4
kZ

4
j,k +

n−1∑
k1,k2=i−1
k1 6=k2

c2
k1Z

2
j,k1c

2
k2Z

2
j,k2 (5.16)

und( n−1∑
k=i−1

c2
kZ

2
j1,k

)( n−1∑
k=i−1

c2
kZ

2
j2,k

)
=

n−1∑
k=i−1

c4
kZ

2
j1,kZ

2
j2,k +

n−1∑
k1,k2=i−1
k1 6=k2

c2
k1Z

2
j1,k1c

2
k2Z

2
j2,k2 . (5.17)

(5.16) und (5.17) resultieren aus der Darstellung s2
22 = [44] + [22, 22], wobei in (5.17)

darauf zu achten ist, dass Zj1,k und Zj2,k wegen j1 6= j2 in verschiedenen Merkmalen

vorliegen.
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Hilfslemma 5.2.7. In der vorliegenden Situation gilt:

E
[( p∑

j=1

n−1∑
k1,k2=i−1
k1 6=k2

ck1Zj,k1ck2Zj,k2

)2]

=

p∑
j=1

(
2

n−1∑
k1,k2=i−1
k1 6=k2

c2
k1c

2
k2E[Z2

j,k1Z
2
j,k2 ] + 4

n−1∑
k1,k2,k3=i−1
k1,k2,k3 p.v.

c2
k1ck2ck3E[Z2

j,k1Zj,k2Zj,k3 ]

+
n−1∑

k1,k2,k3,k4=i−1
k1,k2,k3,k4 p.v.

ck1ck2ck3ck4E[Zj,k1Zj,k2Zj,k3Zj,k4 ]

)

+

p∑
j1,j2=1
j1 6=j2

(
2

n−1∑
k1,k2=i−1
k1 6=k2

c2
k1c

2
k2E[Zj1,k1Zj2,k1Zj1,k2Zj2,k2 ]

+ 4
n−1∑

k1,k2,k3=i−1
k1,k2,k3 p.v.

c2
k1ck2ck3E[Zj1,k1Zj2,k1Zj1,k2Zj2,k3 ]

+
n−1∑

k1,k2,k3,k4=i−1
k1,k2,k3,k4 p.v.

ck1ck2ck3ck4E[Zj1,k1Zj1,k2Zj2,k3Zj2,k4 ]

)
. (5.18)

Beweis des Hilfslemmas. (5.18) ist das Ergebnis einer Zerlegung der Form (1)2 = [2]+[12]

und Einsetzen der Gleichungen( n−1∑
k1,k2=i−1
k1 6=k2

ck1Zj,k1ck2Zj,k2

)2

= 2

n−1∑
k1,k2=i−1
k1 6=k2

c2
k1Z

2
j,k1c

2
k2Z

2
j,k2 + 4

n−1∑
k1,k2,k3=i−1
k1,k2,k3 p.v.

c2
k1Z

2
j,k1ck2Zj,k2ck3Zj,k3

+
n−1∑

k1,k2,k3,k4=i−1
k1,k2,k3,k4 p.v.

ck1Zj,k1ck2Zj,k2ck3Zj,k3ck4Zj,k4 (5.19)

und( n−1∑
k1,k2=i−1
k1 6=k2

ck1Zj1,k1ck2Zj1,k2

)( n−1∑
k1,k2=i−1
k1 6=k2

ck1Zj2,k1ck2Zj2,k2

)

= 2

n−1∑
k1,k2=i−1
k1 6=k2

c2
k1Zj1,k1Zj2,k1c

2
k2Zj1,k2Zj2,k2 + 4

n−1∑
k1,k2,k3=i−1
k1,k2,k3 p.v.

c2
k1Zj1,k1Zj2,k1ck2Zj1,k2ck3Zj2,k3

+
n−1∑

k1,k2,k3,k4=i−1
k1,k2,k3,k4 p.v.

ck1Zj1,k1ck2Zj1,k2ck3Zj2,k3ck4Zj2,k4 . (5.20)
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(5.19) und (5.20) ergeben sich mit Hilfe der Gleichungen [(11)2]2
1·6·4
= (−s22 + s2

11)2 =

s2
22 − 2s22s

2
11 + s4

11
1·6·8
= 2[(22)2] + 4[22, (11)2] + [(11)4]. Hierbei ist darauf zu achten, dass

Z in Gleichung (5.20) in zwei Merkmalen auftritt, sodass c, Zj1 und Zj2 drei Variablen

darstellen.

Hilfslemma 5.2.8. In der vorliegenden Situation gilt:

2E
[( p∑

j=1

n−1∑
k=i−1

c2
kZ

2
j,k

)( p∑
j=1

n−1∑
k1,k2=i−1
k1 6=k2

ck1Zj,k1ck2Zj,k2

)]

= 2

p∑
j=1

(
2

n−1∑
k1,k2=i−1
k1 6=k2

c3
k1ck2E[Z3

j,k1Zj,k2 ] +
n−1∑

k1,k2,k3=i−1
k1,k2,k3 p.v.

c2
k1ck2ck3E[Z2

j,k1Zj,k2Zj,k3 ]

)

+ 2

p∑
j1,j2=1
j1 6=j2

(
2

n−1∑
k1,k2=i−1
k1 6=k2

c3
k1ck2E[Z2

j1,k1Zj2,k1Zj2,k2 ] +
n−1∑

k1,k2,k3=i−1
k1,k2,k3 p.v.

c2
k1ck2ck3E[Z2

j1,k1Zj2,k2Zj2,k3 ]

)
.

(5.21)

Beweis des Hilfslemmas. (5.21) ergibt sich durch Zerlegung der Form (1)(1) = [2] + [12]

und den Gleichungen

( n−1∑
k=i−1

c2
kZ

2
j,k

)( n−1∑
k1,k2=i−1
k1 6=k2

ck1Zj,k1ck2Zj,k2

)

= 2
n−1∑

k1,k2=i−1
k1 6=k2

c3
k1Z

3
j,k1ck2Zj,k2 +

n−1∑
k1,k2,k3=i−1
k1,k2,k3 p.v.

c2
k1Z

2
j,k1ck2Zj,k2ck3Zj,k3 (5.22)

und( n−1∑
k=i−1

c2
kZ

2
j1,k

)( n−1∑
k1,k2=i−1
k1 6=k2

ck1Zj2,k1ck2Zj2,k2

)

= 2

n−1∑
k1,k2=i−1
k1 6=k2

c3
k1Z

2
j1,k1Zj2,k1ck2Zj2,k2 +

n−1∑
k1,k2,k3=i−1
k1,k2,k3 p.v.

c2
k1Z

2
j1,k1ck2Zj2,k2ck3Zj2,k3 . (5.23)

(5.22) und (5.23) wiederum folgen als Lösungen der Gleichung [22][(11)2]
1·6·4
= −s2

22 +

s22s
2
11 = 2[33, 11] + [22, (11)2] und wiederholter Beachtung, dass c, Zj1 und Zj2 unter-

schiedliche Variablen sind.

Es wird mit den Momenten von b2,p fortgefahren. Dazu sei ck = ei1{k=i−1}+dk+11{k=i,...,n−1}.

Mit E
[
Zvj,k

]
= 0 für v ungerade und der Unabhängigkeit der Zk für k = 1, . . . , n folgt
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E
[
b2,p
] (5.7)

= E

[
n

n∑
i=1

R2
ii

]
(5.13)

= n
n∑
i=1

E

[( p∑
j=1

( n−1∑
k=i−1

ckZj,k

)2
)2]

(5.14)
= n

n∑
i=1

E

[( p∑
j=1

n−1∑
k=i−1

c2
kZ

2
j,k +

p∑
j=1

n−1∑
k1,k2=i−1
k1 6=k2

ck1Zj,k1ck2Zj,k2

)2]

= n

n∑
i=1

(
E

[( p∑
j=1

n−1∑
k=i−1

c2
kZ

2
j,k

)2]
+ E

[( p∑
j=1

n−1∑
k1,k2=i−1
k1 6=k2

ck1Zj,k1ck2Zj,k2

)2]

+ 2E

[( p∑
j=1

n−1∑
k=i−1

c2
kZ

2
j,k

)( p∑
j=1

n−1∑
k1,k2=i−1
k1 6=k2

ck1Zj,k1ck2Zj,k2

)])

(5.15),(5.18),

(5.21)
= n

n∑
i=1

(
p∑
j=1

( n−1∑
k=i−1

c4
kE[Z4

j,k] +
n−1∑

k1,k2=i−1
k1 6=k2

c2
k1c

2
k2E[Z2

j,k1Z
2
j,k2 ]

)

+

p∑
j1,j2=1
j1 6=j2

( n−1∑
k=i−1

c4
kE[Z2

j1,kZ
2
j2,k] +

n−1∑
k1,k2=i−1
k1 6=k2

c2
k1c

2
k2E[Z2

j1,k1Z
2
j2,k2 ]

)

+

p∑
j=1

(
2

n−1∑
k1,k2=i−1
k1 6=k2

c2
k1c

2
k2E[Z2

j,k1Z
2
j,k2 ] + 4

n−1∑
k1,k2,k3=i−1
k1,k2,k3 p.v.

c2
k1ck2ck3E[Z2

j,k1Zj,k2Zj,k3 ]

+
n−1∑

k1,k2,k3,k4=i−1
k1,k2,k3,k4 p.v.

ck1ck2ck3ck4E[Zj,k1Zj,k2Zj,k3Zj,k4 ]

)

+

p∑
j1,j2=1
j1 6=j2

(
2

n−1∑
k1,k2=i−1
k1 6=k2

c2
k1c

2
k2E[Zj1,k1Zj2,k1Zj1,k2Zj2,k2 ]

+ 4
n−1∑

k1,k2,k3=i−1
k1,k2,k3 p.v.

c2
k1ck2ck3E[Zj1,k1Zj2,k1Zj1,k2Zj2,k3 ]

+
n−1∑

k1,k2,k3,k4=i−1
k1,k2,k3,k4 p.v.

ck1ck2ck3ck4E[Zj1,k1Zj1,k2Zj2,k3Zj2,k4 ]

)

+ 2

p∑
j=1

(
2

n−1∑
k1,k2=i−1
k1 6=k2

c3
k1ck2E[Z3

j,k1Zj,k2 ] +
n−1∑

k1,k2,k3=i−1
k1,k2,k3 p.v.

c2
k1ck2ck3E[Z2

j,k1Zj,k2Zj,k3 ]

)

+ 2

p∑
j1,j2=1
j1 6=j2

(
2

n−1∑
k1,k2=i−1
k1 6=k2

c3
k1ck2E[Z2

j1,k1Zj2,k1Zj2,k2 ]



60 Testen auf multivariate Normalverteilung

+

n−1∑
k1,k2,k3=i−1
k1,k2,k3 p.v.

c2
k1ck2ck3E[Z2

j1,k1Zj2,k2Zj2,k3 ]

))
.

Ein weiteres Ergebnis von Khatri und Pillai ist hilfreich, um die Gleichung zu vereinfachen.

Hilfslemma 5.2.9. Es sei M eine (p× k)-Matrix bestehend aus Zufallsvariablen Mji für

j = 1, . . . , p, i = 1, . . . , k. M besitze die Dichte g(M ; f, k, p) = c(f, k, p)
∣∣Ip−MMT

∣∣ 12 (f−p−k−1)

mit c(f, k, p) = π−
1
2
pk∏p

j=1 Γ
(
f−j+1

2

)(
Γ
(
f−k−j+1

2

))−1
. Dann gilt:

E
[
M2
ji

]
=

1

f
für j = 1, . . . , p, i = 1, . . . , k,

E
[
M2
j1i1M

2
j2i2

]
=

3

f(f + 2)
für j1 = j2, i1 = i2,

=
1

f(f + 2)
für j1 = j2, i1 6= i2 oder j1 6= j2, i1 = i2,

=
f + 1

(f − 1)f(f + 2)
für j1 6= j2, i1 6= i2.

Der Beweis des Hilfslemmas basiert auf einer Zerlegung der multivariaten Dichte vonM in

ein Produkt univariater Beta-Verteilungen, soll hier aber nicht näher ausgeführt werden.

Für Details wird auf [KP66], S.149ff. verwiesen.

Hilfslemma 5.2.10. Es sei ck = ei1{k=i−1} + dk+11{k=i,...,n−1}, dj = (j(j − 1))−1/2,

ej = −(j − 1)dj. Dann gilt:
n−1∑
k=i−1

c2
k =

n− 1

n
.

Beweis des Hilfslemmas.

n−1∑
k=i−1

c2
k = c2

i−1 + c2
i + · · ·+ c2

n−1 = e2
i + d2

i+1 + · · ·+ d2
n
H orth.

= 1− (n−1/2)2 =
n− 1

n
.

Es folgt nun mit
n−1∑
k=i−1

c4
k =

( n−1∑
k=i−1

c2
k

)2
−

n−1∑
k1,k2=i−1
k1 6=k2

c2
k1c

2
k2

und Hilfslemma 5.2.9 sowie mit Hilfslemma 5.2.10 unter weiterem Rechenaufwand schließ-

lich die erste Behauptung des Lemmas 5.2.3. Die Varianz der Größe b2,p kann auf dieselbe

Weise berechnet werden, wobei die Beziehung Var[b2,p] = E[b22,p] − E[b2,p]
2 ausgenutzt

werden kann.
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Die Vorgehensweise im zweiten Teil des Beweises von Satz 5.2.1, also die Bestimmung der

asymptotischen Verteilung von B1,p orientiert sich an [Mar70], Abschnitt 2.5. Dazu sei

X = (X1, . . . ,Xn) eine Stichprobe aus i.i.d. p-Zufallsvektoren mit Xi ∼ Np(µ,Σ) für

i = 1, . . . , n. Aufgrund der Invarianz von b1,p gegenüber linearen Transformationen kann

o.B.d.A. µ = 0 und Σ = Ip angenommen werden. Es lässt sich b1,p aus (5.3) ebenfalls

darstellen in der Form

b1,p =

p∑
r,s,t=1

p∑
r′,s′,t′=1

Srr
′
Sss

′
Stt
′
M

(rst)
111 M

(r′s′t′)
111

mit S−1 = (Sij)1≤i,j≤p und M
(s1,...,sk)
r1,...,rk = n−1

∑n
i=1

(∏k
j=1(Xsji − X̄sj )

rj
)
. Aufgrund der

Konvergenz in Wahrscheinlichkeit von S gegen Σ = Ip und infolgedessen Sij
n→∞−→ 0 für

i 6= j folgt

b1,p
n→∞−→

p∑
r,s,t=1

(
M

(rst)
111

)2

in Wahrscheinlichkeit. Weiter ist

p∑
r,s,t=1

(
M

(rst)
111

)2
=

p∑
r,s,t=1
r=s=t

(
M

(rst)
111

)2
+

p∑
r,s,t=1
r=s 6=t

(
M

(rst)
111

)2
+

p∑
r,s,t=1
r=t6=s

(
M

(rst)
111

)2

+

p∑
r,s,t=1
r 6=s=t

(
M

(rst)
111

)2
+

p∑
r,s,t=1
r,s,t p.v.

(
M

(rst)
111

)2

=
(
M

(1)
3

)2
+ · · ·+

(
M

(p)
3

)2
+ 3
(
M

(12)
21

)2
+ · · ·+ 3

(
M

((p−1)p)
21

)2

+ 6
(
M

(123)
111

)2
+ · · ·+ 6

(
M

((p−2)(p−1)p)
111

)2
.

Nun wird der Vektor

m =
(
M

(1)
3 , . . . ,M

(p)
3 ,M

(12)
21 , . . . ,M

((p−1)p)
21 ,M

(123)
111 , . . . ,M

((p−2)(p−1)p)
111

)
betrachtet, der aus p+ p(p− 1) + p(p− 1)(p− 2)/6 = p(p+ 1)(p+ 2)/6 Einträgen besteht.

Da zur Ordnung n−1 gilt1

E[M
(rst)
111 ] = 0, Var[M

(1)
3 ] =

6

n
, Var[M

(12)
21 ] =

2

n
, Var[M

(123)
111 ] =

1

n

und Cov[M
(rst)
111 ,M

(r′s′t′)
111 ] = 0 für (r, s, t) 6= (r′, s′, t′),

folgt mit der Normalverteilung des Vektors m und Lemma 2.2.8 schließlich nb1,p/6 =

B1,p ∼ χ2
p(p+1)(p+2). Dies beendet den Beweis des Satzes 5.2.1.

1Vgl. [Mar70].
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Bemerkung 5.2.11. Die hier vorliegende Varianz der multivariaten Wölbung b2,p ist

exakt. Mardia gab in [Mar70] eine weitere Darstellung für die Varianz an, die zwar eine

einfacherere Struktur besitzt, allerdings nur zur Ordnung n−1 gültig ist. Diese lautet

Var
[
b2,p
]

=
8p(p+ 2)

n
.

Mit dem zentralen Grenzwertsatz folgt weiter die asymptotische Standardnormalverteilung

des Ausdrucks

B̃2,p =

(
8p(p+ 2)

n

)− 1
2 (
b2,p − β2,p

)
.

Obwohl die asymptotischen Verteilungen von B2,p und B̃2,p übereinstimmen, sind die

beiden Größen für endliches n nicht identisch. Um zu überprüfen welche der beiden Sta-

tistiken zum Testen auf Normalverteilung besser geeignet ist, müssen die kritischen Werte

empirisch berechnet und die Power der beiden Statistiken miteinander verglichen werden.

5.3 Multivariate Teststatistiken

Aus den im vorigen Abschnitt gewonnenen Resultaten lassen sich mehrere Teststatis-

tiken ableiten. Je nachdem ob die exakte oder asymptotische Varianz des multivariaten

Wölbungsmaßes b2,p eingesetzt wird, sind dies B1,p, B2,p und B̃2,p. Mardias Test sieht dabei

vor, dass die Nullhypothese der Normalverteilung der der Stichprobe zugrunde liegenden

Grundgesamtheit abgelehnt wird, falls die Werte der Statistik B1,p oder der Statistik B2,p

an der Stelle der Stichprobe größer als die zugehörigen kritischen Werte sind. Alternativ

wähle man B̃2,p anstelle von B2,p. Zu vorgegebenem Signifikanzniveau lassen sich die kri-

tischen Werte dabei anhand der asymptotischen Verteilungen bestimmen. Diese Art des

Testens auf Normalverteilung impliziert also, dass keine Normalverteilung vorliegt, falls

die empirische Schiefe oder die empirische Wölbung zu stark von der theoretischen Schiefe

oder der Wölbung einer Normalverteilung abweicht. Der Test beruht also genau genom-

men auf zwei Teststatistiken. Ein Test, welcher die beiden multivariaten Maße b1,p und

b2,p in einer Teststatistk zusammenfasst, lässt sich ebenfalls ableiten.

Satz 5.3.1. Es gelten die Bezeichnungen und Voraussetzungen des vorigen Abschnittes.

Dann können

MJB = B1,p +
(
B2,p

)2
und M̃JB = B1,p +

(
B̃2,p

)2
als multivariate Jarque-Bera-Statistiken angesehen werden. Da B2,p nach Satz 5.2.1 eine

asymptotische Standardnormalverteilung besitzt, haben sowohl MJB als auch M̃JB eine

asymptotische χ2-Verteilung mit p(p+1)(p+2)
6 + 1 Freiheitsgraden.2

2Vgl. [KOS09].
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Es besteht somit auch im Testen auf multivariate Normalverteilung die Möglichkeit, zu

gegebenem Signifikanzniveau die kritischen Werte anhand der asymptotischen Verteilun-

gen der Statistiken b1,p und b2,p zu bestimmen. Für kleine Stichproben jedoch resultieren

wie auch im univariaten Fall nur sehr mangelhafte Ergebnisse. Deshalb hat Mardia in

[Mar74] kritische Werte für seinen Test speziell im Fall p = 2 und für einige ausgewählte

Stichprobengrößen n für jeweils b1,2 und b2,2 angegeben.

Da diese Berechnungen bereits für wenige Merkmale und kleine Stichprobengrößen sehr

aufwendig sind, wird auf erneute Berechnungen verzichtet und nur die empirischen kriti-

schen Werte der simultan testenden Teststatistiken MJB und M̃JB für p = 4 Merkmale

und ausgewählte Stichprobengrößen n sowie Signifikanzniveaus α ermittelt. Die Vorge-

hensweise entspricht dabei der im univariaten Fall, jedoch müssen diesmal 4-variat nor-

malverteilte Stichproben generiert werden. Dazu wurde erneut die Programmiersprache R

benutzt und unter Einbeziehung des Paketes
”
MASS“ Replikationen multivariat normal-

verteilter Stichproben unterschiedlicher Größenordnung erzeugt. Um die Statistiken MJB

und M̃JB implementieren zu können, mussten vorab der Stichprobenmittelwertvektor und

die empirische Kovarianzmatrix implementiert werden. Danach konnten die multivariaten

Schiefe- und Wölbungsmaße b1,p und b2,p, sowie die darauf basierenden Größen B1,p, B2,p

und B̃2,p als Funktionen programmiert werden. Die kritischen Werte zu vorgegebenem Si-

gnifikanzniveau α wurden dann nach Anwendung der multivariaten Teststatistiken auf die

erzeugten Stichproben anhand der (1-α)·(#Replikationen)-größten Werte bestimmt. Die

Tabelle 5.1 gibt die ermittelten Werte an. Die Programmcodes der einzelnen Funktionen

finden sich auf der beiligenden Daten-CD im Einband am Ende der Arbeit.

p = 4

n = 10 n = 50 n = 150 n→ ∞

MJB M̃JB MJB M̃JB MJB M̃JB MJB, M̃JB

α = 0.01 29.51 23.08 43.75 39.91 42.76 40.86 38.93

α = 0.05 23.15 20.30 32.86 31.18 34.16 33.40 32.67

α = 0.1 20.22 18.91 28.62 27.51 29.93 29.60 29.62

Tabelle 5.1: Empirische kritische Werte der multivariaten Jarque-Bera-Statistiken zu ei-

nigen Stichprobengrößen n und Signifikanzniveaus α bei p = 4 Merkmalen

basierend auf 104 Replikationen.

Bemerkung 5.3.2. Speziell im Fall p = 1 stimmt M̃JB mit dem JB-Test aus (3.8)

überein.



Kapitel 6

Anwendung

6.1 Testen der Rendite des DAX auf Normalverteilung

Im vorliegenden Abschnitt wird die Rendite des deutschen Aktienindex (DAX) betrachtet

und diese, sowie die Rendite einiger ausgewählter DAX-Aktien auf (multivariate) Normal-

verteilung getestet. Dazu muß im Vorfeld geklärt werden, was genau unter dem Begriff

Rendite verstanden wird. Als Wertzuwachs bei positiver, bzw. Wertverlust bei negativer

Rendite wird die diskrete Rendite einer Aktie A über eine Zeitspanne der Länge eins, d.h.

im Zeitraum (n− 1, n] mit n ∈ N zum Zeitpunkt n definiert durch

R(n) =
A(n)−A(n− 1)

A(n− 1)
. (6.1)

Obwohl die betrachteten Aktien im Laufe eines Handelstages fortlaufenden Preisanpas-

sungen unterliegen, werden nur die Schlußwerte der Handelstage betrachtet, sodass die

Gleichung (6.1) in der folgenden Verwendung als Tagesrendite (RTag) interpretiert werden

kann. Es gilt somit für die Tagesrendite des Handelstages t innerhalb des betrachteten

Handelszeitraums (0, T ] mit T als letztem Handelstag

RTag(t) =
A(t)

A(t− 1)
− 1, (6.2)

sodass RTag(t) ∈ [−1,∞), da der Preis einer Aktie weder negativ werden kann, noch eine

(zumindest theoretische) Beschränkung des Aktienpreises nach oben gegeben ist. Weiter

werden auch die Wochen- (RWoche), Monats- (RMonat), Quartals- (RQuartal) und Jahres-

renditen (RJahr) betrachtet. Dabei können die Tagesrenditen jedoch nicht einfach aufsum-

miert werden, denn es gilt für einen Zeitraum der Länge s Tage (also s ∈ N):

R((t, t+ s]) =
A(t+ s)−A(t)

A(t)
=

t+s∏
j=t+1

( A(j)

A(j − 1)

)
− 1 =

t+s∏
j=t+1

(
RTag(j) + 1

)
− 1.

64
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Weiter zu beachten ist, dass an Wochenenden und Feiertagen nicht gehandelt wird. So-

mit entspricht T nicht der Anzahl an tatsächlichen Handelstagen innerhalb des Han-

delszeitraums (0, T ]. Die Anzahl an Handelstagen ist vielmehr wesentlich kleiner. Al-

so müssen unter Beachtung der Diskretheit des Modells gewisse Anpassungen getroffen

und die Anzahl an Handelstagen möglichst gleichmäßig auf den betrachteten Handels-

zeitraum aufgeteilt werden. Betrachtet man einen Handelszeitraum der Größenordnung

x Jahre, so entspricht dies T = 365 ·x Tagen und in anderen Zeiteinheiten ausgedrückt

T = 52·x Wochen = 12·x Monate = 4·x Quartale = x Jahre. Es sei nun n die Anzahl an

Handelstagen innerhalb dieser x Jahre und k = 52·x. Dann wird die Wochenrendite der

i-ten Woche innerhalb des betrachteten Handelszeitraums (0, T ] als

RWoche(i) =

bni
k
c∏

j=bn(i−1)
k
c+1

(RTag(j) + 1)− 1 (6.3)

mit i ∈ {1, . . . , k} definiert. Analog werden die Größen RMonat(i), RQuartal(i) und RJahr(i)

mit k = 12·x, k = 4·x bzw. k = x anstelle von k = 52·x definiert.

Dieses Modell wird im Folgenden dazu benutzt, die Rendite verschiedener Laufzeiten auf

Normalverteilung zu testen. Dazu wurde in der Programmiersprache R ein Programm er-

stellt, in dem die einzelnen Renditearten implementiert und auf historische DAX-Werte

angewendet wurden. Die Analysen beschränken sich auf die DAX-Aktien der Unterneh-

men Allianz, Bayer, Deutsche Bank, SAP und Siemens, sowie den DAX-Index. Betrachtet

wurde im Rahmen dieser Analysen der Zehnjahreszeitraum vom 2.1.2002 - 30.12.2011. Die

Größe der vorliegenden Stichproben der einzelnen Renditearten ist n ∈ [2552, 2580] für die

Tagesrenditen, n = 520 für die Wochenrenditen, n = 120 für die Monatsrenditen, n = 40

für die Quartalsrenditen und n = 10 für die Jahresrenditen. Die historischen Daten stam-

men dabei von der Internetseite http://finance.yahoo.com/. Um mit den Daten arbeiten

zu können wurden diese in R eingelesen und auf die (um die Dividende bereinigten) Ak-

tienwerte zugegriffen. Unter Anwendung der in Kapitel 3 hergeleiteten JB-Statistik (die

bereits in R implementiert wurde) auf die Aktienwerte konnten die in der Tabelle 6.1

aufgelisteten Werte ermittelt werden.

Zu erkennen ist in Tabelle 6.1, dass für den DAX und auch alle DAX-Aktien die

Hypothese der Normalverteilung der Tages-, Wochen-, Monats- und Quartalsrenditen zu

den üblichen Signifikanzniveaus α ∈ {0.05, 0.1} und sogar zum Niveau α = 0.005 abgelehnt

wird.1 Ausschließlich für die Jahresrenditen des DAX, sowie die Jahresrenditen von SAP

und Siemens kann die Nullhypothese der Normalverteilung zum Signifikanzniveau α =

0.05, für die Jahresrendite von Bayer sogar nur zum Signifikanzniveau α = 0.01 gehalten

1Vgl. dazu Tabelle 4.1.
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werden.

JB(RTag) JB(RWoche) JB(RMonat) JB(RQuartal) JB(RJahr)

DAX 1877.25 376.23 34.42 25.27 2.29

Allianz 5116.19 2837.58 113.30 119.78 7.52

Bayer 53572.54 19066.24 73.92 64.76 2.64

Deutsche Bank 7054.97 901.04 5828.01 69.38 7.32

SAP 14322.55 1354.54 1246.65 92.80 2.42

Siemens 20712.39 1011.75 2010.90 25.20 2.13

Tabelle 6.1: Werte der JB-Statistik einiger ausgewählter DAX-Aktien und des DAX-

Index für die Tages-, Wochen-, Monats-, Quartals- und Jahresrenditen vom

2.1.2002 - 30.12.2011.

Weiter wird überprüft ob die Jahresrenditen des DAX und die Jahresrenditen von Bayer,

SAP und Siemens sogar als multivariat normalverteilt angenommen werden können. Da-

zu wurden die Jahresrenditen mit R in einer (4 × 10)-Datenmatrix X zusammengefasst

und auf diese die Statistiken MJB und M̃JB aus Satz 5.3.1 angewendet, die bereits

im Rahmen des vorigen Kapitels in R implementiert wurden. Zur Entscheidungfindung

werden die empirischen kritischen Werte herangezogen, die der Tabelle 5.1 entnommen

werden können. Es ist MJB(X) = 29.41 und M̃JB(X) = 22.65, sodass also auch hier

die Annahme der multivariaten Normalverteilung der vorliegenden Jahresrenditen zum

Niveau α = 0.01 nicht verworfen werden kann. Zum Niveau α = 0.05 jedoch kann die

Nullhypothese bereits nicht mehr gehalten werden.

Fazit: Nach den Renditedefinitionen (6.2) und (6.3) muss davon ausgegangen werden,

dass die Tages-, Wochen-, Monats-, und Quartalsrenditen des DAX und aller betrachteten

DAX-Aktien weder multivariat, noch univariat normalverteilt sind. Für die Jahresrenditen

des DAX, sowie für die Jahresrenditen von Bayer, SAP und Siemens ändert sich das Bild.

Hier kann sogar eine multivariate Normalverteilung unterstellt werden. Dabei kann die

Nullhypothese jedoch nur knapp zum Signifikanzniveau 1% gehalten werden. Bezüglich der

Nullhypothese univariat normalverteilter Jahresrenditen kann für diese Aktienwerte keine

einheitliche Entscheidung getroffen werden. Die Nullhypothesen wurden zwar nicht ver-

worfen, allerdings mussten dazu die Signifikanzniveaus im Vorfeld unterschiedlich gewählt

werden. Bei den Aktienwerten der Unternehmen Allianz und Deutsche Bank konnte die

Nullhypothese zu keinem der gängigen Signifikanzniveaus α ∈ {0.01, 0.05, 0.1} gehalten

werden. Insgesamt jedoch sollten aufgrund der geringen Stichprobengröße von lediglich
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zehn Beobachtungen im Falle der Jahresrenditen, sowie aufgrund der geringen Anzahl an

Replikationen, anhand derer die empirischen kritischen Werte der multivariaten Teststatis-

tiken ermittelt wurden, die gewonnenen Erkenntnisse unter Vorbehalt betrachtet werden.

Wie sich allerdings mit Sicherheit herausgestellt hat, müssen vor allem die Tagesrendi-

ten als nicht normalverteilt angenommen werden. Um dennoch Aussagen über die den

Tagesrenditen zugrunde liegende Verteilungsform treffen zu können sei beispielsweise auf

[ST06] aufmerksam gemacht. In ihrem Buch geben die Autoren verschiedene Modelle zur

Anpassung an die empirische Verteilung unterschiedlicher DAX-Aktien.



Kapitel 7

Zusammenfassung und Ausblick

In der vorliegenden Arbeit wurde eine Herleitung des Jarque-Bera-Tests gegeben und

dabei insbesondere auf seine asymptotische Verteilung eingegangen. Es konnte gezeigt

werden, dass sich der Jarque-Bera-Test als ein Spezialfall des Score-Tests innerhalb des

Pearson-Verteilungssystems darstellen lässt, sodass der Jarque-Bera-Test innerhalb dieses

Verteilungssystems ein Test auf Normalverteilung bildet. Anhand dieser Darstellung kann

man erkennen, dass der Jarque-Bera-Test auf der Schiefe und der Wölbung der zugrunde

liegenden Verteilung basiert und somit eine gewisse Abweichung dieser Größen von denen

einer Normalverteilung notwendig ist, um eine Ablehnung der Hypothese der Normalver-

teilung herbeizuführen. Ob und in welchem Maße dies ein Vorteil des Jarque-Bera-Tests

gegenüber anderen Tests auf Normalverteilung ist, wurde daraufhin in empirischen Un-

tersuchungen analysiert. Dazu wurden, anders als es in praktischen Anwendungen häufig

der Fall ist, nicht die kritischen Werte der asymptotischen Verteilung, sondern die empiri-

schen kritischen Werte, die zum Teil selbst ermittelt wurden, benutzt. Denn obwohl sich

die Grenzverteilung des Jarque-Bera-Tests als eine χ2-Verteilung mit zwei Freiheitsgra-

den herausstellte und die Verwendung der Fraktile dieser Verteilung aufgrund der guten

Vertafelung wesentlich einfacher gewesen wäre, konnte gezeigt werden, dass aufgrund der

langsamen Konvergenz in Verteilung die Verwendung der Grenzverteilung zur Beurteilung

in Testsituationen besonders beim Vorliegen kleiner Stichproben oftmals zu falschen Er-

gebnissen führen wird. Nichtsdestotrotz werden die Fraktile der χ2-Verteilung heutzutage

in vielen Anwendungen dazu benutzt, über das Verwerfen oder Einhalten der aufgestellten

Nullhypothese der Normalverteilung zu entscheiden.

Um Aussagen über die Power des Jarque-Bera-Tests in Bezug zur Power anderer Tests

treffen zu können, wurden mit dem Programm R Monte-Carlo-Simulationen durchgeführt.

Zudem wurden zwei Modifizierungen des Jarque-Bera-Tests betrachtet, von denen die eine

auf den exakten Momenten der Schiefe und der Wölbung und die andere auf unverzerrten

Schätzern für die theoretische Schiefe und die Wölbung beruhte. Es stellte sich heraus,
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dass in der Situation des Testens auf Normalverteilung von Beobachtungen gegen Vertei-

lungen aus dem Pearson-Verteilungssystem die Jarque-Bera-Statistiken speziell gegen die

t-Verteilung den anderen Tests überlegen waren. In den anderen Testsituationen lagen der

Jarque-Bera-Test und seine Modifizierungen etwa im Mittelfeld, wobei für kleine Stichpro-

ben die Ergebnisse schlechter ausfielen als die der anderen Teststatistiken. Zusätzlich wur-

de auch gegen die Lognormal-Verteilung als Nicht-Pearson-Verteilung getestet, obwohl

eine Rechtfertigung für dieses Vorgehen erst an späterer Stelle gegeben wird. In dieser

Testsituation jedoch unterlag der Jarque-Bera-Test seiner Konkurrenz am deutlichsten.

Im Verhältnis zu seinen Modifizierungen schnitt die ursprüngliche Jarque-Bera-Statistik

abgesehen vom Testen gegen die t-Verteilung deutlich besser ab, sodass die modifizier-

ten Jarque-Bera-Tests nicht als wirkliche Verbesserungen eingestuft werden können und

infolgedessen in den anschließenden Untersuchungen nicht weiter berücksichtigt wurden.

Um nun auch gegen Nicht-Pearson-Verteilungen testen zu dürfen, wurden die Ergeb-

nisse von Bowman und Shenton genutzt, die eine Charakteriserung des Jarque-Bera-Tests

als Summe zweier standardnormalverteilter Zufallsvariablen gegeben haben. Dieses Re-

sultat liefert gleichzeitig eine einfache Begründung für die angegebene Grenzverteilung.

In ähnlicher Weise wie im vorigen Modell wurden neue Untersuchungen über die Power

der Teststatistiken durchgeführt, wobei in der neuen Situation die Alternativhypothe-

sen aus kontaminierten Normalverteilungen bestanden. Das Ergebnis war, dass sich bei

einer Abweichung der Schiefe von null weniger Auswirkungen auf die Power der Jarque-

Bera-Statistik zeigten, als bei einer Abweichung der für die Normalverteilung typischen

Wölbung. Dies führte dazu, dass der Jarque-Bera-Test sowohl dem Anderson-Darling-, als

auch dem Shapiro-Francia-Test fast immer unterlag, wobei in den Situationen, in denen

nur eine starke Abweichung von der Wölbung zu beobachten war, diese Unterlegenheit

teilweise ausgeglichen erschien. Besonders bimodale Verteilungsmodelle stellen eine große

Herausforderung für den Jarque-Bera-Test dar, denn in diesen Situationen war die Unter-

legenheit der Teststatistik für kleine Stichproben am offensichtlichsten.

Als Test auf multivariate Normalverteilung konnte der Jarque-Bera-Test auf multi-

variate Testsituationen erweitert werden, indem die von Kantilal Vardichand Mardia de-

finierten multivariaten Schiefe- und Wölbungsmaße benutzt wurden. Auch hier konnte

für die multivariaten Teststatistiken eine asymptotische Verteilung hergeleitet werden. In

Analogie zur univariaten Situation wurden anhand von Monte-Carlo-Simulationen für den

speziellen Fall von vier Merkmalen empirische kritische Werte ermittelt, mit dem Ergeb-

nis, dass sich auch im mehrdimensionalen Fall speziell beim Vorliegen kleiner Stichproben

die empirischen kritischen Werte von denen der Grenzverteilung deutlich unterscheiden.

Benutzt man diese beispielsweise zur Beurteilung über eine multivariate Normalverteilung

von Renditen verschiedener Laufzeiten an Aktienmärkten, so muß bei den betrachteten
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DAX-Aktien davon ausgegangen werden, dass für die Jahresrenditen die Nullhypothese

der multivariaten Normalverteilung zu einem deutlich niedrigeren Signifikanzniveau (5%)

nicht gehalten werden kann, als dies bei Betrachtung der Fraktile der asymptotischen

Verteilung der Fall ist. Hier kann selbst zu einem Signifikanzniveau von 10% die Nullhy-

pothese nicht verworfen werden. Jedoch sollte an dieser Stelle darauf hingewiesen werden,

dass die Größe der Stichprobe, anhand derer diese Ergebnisse resultieren, lediglich zehn

Beobachtungen beträgt. Alle Renditen kürzerer Laufzeiten müssen generell auch bereits

in der univariaten Situation zu jedem üblichen Signifikanzniveau als nicht normalverteilt

angenommen werden.

Obwohl die empirischen Untersuchungen deutlich zeigen, dass die Verwendung der χ2-

Fraktile andere Ergebnisse liefert als die Verwendung der empirischen kritischen Werte

und ein Überblick darüber gewonnen werden konnte, wie die einzelnen Tests im Verhältnis

zueinander einzuordnen sind, muß bedacht werden, dass diese Ergebnisse die relativen

Verhältnisse lediglich andeuten. Um präzisere Aussagen treffen zu können, müssen in

größerem Rahmen Simulationen durchgeführt werden.

Um eine Vorstellung darüber zu bekommen, wie die multivariaten Jarque-Bera-Statisti-

ken im Verhältnis zu anderen Tests auf multivariate Normalverteilung einzuordnen sind,

bietet es sich an, einen Powervergleich mit anderen Tests auf multivariate Normalvertei-

lung durchzuführen. Problematisch ist jedoch die große Zahl an Rechenschritten innerhalb

der Simulationen, die mit steigender Anzahl an Merkmalen bedeutend zunimmt. In der

univariaten Situation könnte man versuchen den univariaten Jarque-Bera-Test dadurch zu

verbessern, dass weitere Größen für die Schiefe und Wölbung als Basis einer Teststatistik

betrachtet werden. Insgesamt jedoch lässt sich festhalten, dass der Jarque-Bera-Test als

Test auf univariate Normalverteilung aufgrund seiner sehr einfachen Struktur durchaus ein

leicht zu handhabendes und empfehlenswertes Hilfsmittel darstellt, sofern die empirischen

kritischen Werte benutzt werden und die Stichprobe eine gewisse Mindestgröße besitzt.



Anhang A

Hilfsresultate

In diesem Kapitel werden einige Resultate angegeben, die im Laufe der Arbeit verwendet

wurden.

A.1 Zentraler Grenzwertsatz (mehrdimensional)

Es seien X1, . . . ,Xn i.i.d. p-Zufallsvektoren mit E[Xi] = µ und Cov[Xi] = Σ für i =

1, . . . , n. Weiter sei X̄ = 1
n

∑n
i=1Xi. Dann gilt:

√
n
(
X̄ − µ

) D−→ Np(0,Σ).

A.2 Cholesky-Zerlegung

Eine symmetrische Matrix A ist genau dann positiv definit, wenn es eine obere Dreiecks-

matrix G =


g11 · · · · · · g1d

0
. . .

...
...

. . .
. . .

...

0 · · · 0 gdd

 gibt, sodass GTG = A. Man nennt G auch die

Matrix-Wurzel aus der Matrix A. Die Cholesky-Zerlegung ist ein numerisches Verfahren,

das eine solche Matrix G berechnet.

A.3 Invertierung von Blockmatrizen

Gegeben sei die (d×d)-Matrix M =

(
M11 M12

M21 M22

)
mit M11 ∈ Rr×r, M12 ∈ Rr×(d−r),

M21 ∈ R(d−r)×r und M11 ∈ R(d−r)×(d−r). Sind die Matrizen M , M11 und M22 invertier-
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bar, dann gilt mit N = M11 −M12M
−1
22 M21:

M−1 =

(
N−1 −N−1M12M

−1
22

−M−1
22 M21N

−1 M−1
22 +M−1

22 M21N
−1M12M

−1
22

)
.



Anhang B

Ergebnisse der empirischen

Analysen

B.1 Numerische Ergebnisse der Analysen im Powervergleich

der Teststatistiken JB, AD und SF innerhalb verschie-

dener KN-Verteilungen

σ2
1 = σ2

2 = 1

p = 0.1 p = 0.3 p = 0.5

JB AD SF JB AD SF JB AD SF

µ2 = 2

n = 20 0.119 0.088 0.122 0.045 0.075 0.065 0.013 0.044 0.023

n = 50 0.188 0.149 0.191 0.051 0.13 0.088 0.003 0.079 0.029

n = 100 0.262 0.218 0.271 0.073 0.231 0.16 0.007 0.135 0.043

n = 200 0.466 0.396 0.448 0.248 0.492 0.361 0.064 0.244 0.109

n = 400 0.76 0.683 0.772 0.642 0.821 0.725 0.37 0.563 0.375

µ2 = 3

n = 20 0.27 0.243 0.283 0.074 0.24 0.17 0.011 0.135 0.057

n = 50 0.54 0.506 0.574 0.104 0.589 0.425 0.002 0.446 0.226

n = 100 0.838 0.824 0.86 0.509 0.913 0.811 0.209 0.82 0.582

n = 200 0.991 0.982 0.992 0.959 0.998 0.989 0.892 0.998 0.967

n = 400 1 1 1 1 1 1 1 1 1

Tabelle B.1: Powerwerte der Teststatistiken JB, AD und SF zum Signifikanzniveau

α = 5% bei einigen Stichprobengrößen n und 1000 Replikationen für ver-

schiedene KN -Verteilungen mit den Parametern µ1 = 0, µ2 ∈ {2, 3},
σ2

1 = σ2
2 = 1, und p ∈ {0.1, 0.3, 0.5}.
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σ2
2 = 0.5

p = 0.25 p = 0.5 p = 0.75

JB AD SF JB AD SF JB AD SF

µ2 = 1

n = 20 0.059 0.084 0.07 0.198 0.224 0.235 0.348 0.335 0.378

n = 50 0.072 0.16 0.126 0.382 0.529 0.495 0.729 0.683 0.741

n = 100 0.148 0.308 0.263 0.714 0.862 0.837 0.952 0.946 0.96

n = 200 0.355 0.596 0.495 0.954 0.99 0.985 0.999 0.998 0.999

n = 400 0.725 0.908 0.856 1 1 1 1 1 1

µ2 = 2

n = 20 0.017 0.085 0.038 0.079 0.337 0.247 0.521 0.684 0.672

n = 50 0.008 0.194 0.074 0.198 0.801 0.648 0.926 0.98 0.982

n = 100 0.043 0.451 0.252 0.818 0.994 0.974 1 1 1

n = 200 0.376 0.791 0.662 0.999 1 1 1 1 1

n = 400 0.902 0.99 0.986 1 1 1 1 1 1

Tabelle B.2: Powerwerte der Teststatistiken JB, AD und SF zum Signifikanzniveau

α = 5% bei einigen Stichprobengrößen n und 1000 Replikationen für ver-

schiedene KN -Verteilungen mit den Parametern µ1 = 0, µ2 ∈ {1, 2},
σ2

1 = 1, σ2
2 = 0.5 und p ∈ {0.25, 0.5, 0.75}.

σ2
2 = 3

p = 0.25 p = 0.5 p = 0.75

JB AD SF JB AD SF JB AD SF

µ2 = 0

n = 20 0.445 0.365 0.453 0.276 0.261 0.307 0.149 0.128 0.155

n = 50 0.775 0.701 0.788 0.522 0.583 0.61 0.167 0.201 0.208

n = 100 0.966 0.926 0.97 0.758 0.875 0.854 0.28 0.395 0.349

n = 200 1 0.998 1 0.95 0.997 0.985 0.45 0.671 0.572

n = 400 1 1 1 1 1 1 0.679 0.932 0.855

µ2 = 2

n = 20 0.538 0.528 0.581 0.313 0.402 0.425 0.112 0.154 0.146

n = 50 0.914 0.897 0.937 0.628 0.813 0.773 0.189 0.316 0.272

n = 100 0.997 0.99 0.998 0.886 0.983 0.976 0.29 0.579 0.465

n = 200 1 1 1 0.992 1 1 0.529 0.906 0.796

n = 400 1 1 1 0.999 1 1 0.811 0.995 0.977

Tabelle B.3: Powerwerte der Teststatistiken JB, AD und SF zum Signifikanzniveau

α = 5% bei einigen Stichprobengrößen n und 1000 Replikationen für ver-

schiedene KN -Verteilungen mit den Parametern µ1 = 0, µ2 ∈ {0, 2},
σ2

1 = 1, σ2
2 = 3 und p ∈ {0.25, 0.5, 0.75}.
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B.2 Numerische Ergebnisse der Analysen im Powervergleich

der Teststatistiken JB, JBU , AD, LIL, CVM , PEA und

SF innerhalb des Pearson-Verteilungssystems

JB JBU AD LIL CVM PEA SF

Beta(3,2)
n = 10 0.014 0.014 0.008 0.006 0.006 0.012 0.008

n = 20 0.002 0.002 0.014 0.01 0.01 0.026 0.01

n = 50 0 0 0.04 0.03 0.034 0.038 0.01

n = 100 0 0 0.148 0.062 0.104 0.052 0.07

n = 200 0.006 0.004 0.554 0.252 0.422 0.176 0.548

n = 400 0.804 0.752 0.964 0.586 0.844 0.57 0.988

Students t (5df)
n = 10 0.054 0.056 0.05 0.048 0.048 0.034 0.058

n = 20 0.12 0.124 0.088 0.048 0.078 0.036 0.124

n = 50 0.26 0.268 0.154 0.078 0.124 0.04 0.25

n = 100 0.472 0.478 0.322 0.144 0.27 0.072 0.484

n = 200 0.784 0.786 0.568 0.302 0.498 0.11 0.772

n = 400 0.958 0.958 0.864 0.596 0.802 0.27 0.958

Gamma(2,1)
n = 10 0.082 0.082 0.086 0.06 0.076 0.048 0.1

n = 20 0.168 0.154 0.226 0.144 0.21 0.142 0.256

n = 50 0.512 0.48 0.77 0.44 0.688 0.382 0.798

n = 100 0.912 0.892 0.98 0.808 0.94 0.834 0.992

n = 200 1 1 1 0.994 1 1 1

n = 400 1 1 1 1 0.994 1 1

Log-Normal
n = 10 0.284 0.272 0.378 0.276 0.362 0.236 0.384

n = 20 0.622 0.59 0.812 0.624 0.78 0.604 0.826

n = 50 0.962 0.956 1 0.976 0.998 0.978 1

n = 100 0.998 0.998 1 1 0.88 0.998 1

n = 200 1 1 1 1 0.146 1 1

n = 400 1 1 1 1 0 1 1

Tabelle B.4: Powerwerte verschiedener Tests auf Normalverteilung zum Signifikanzni-

veau α = 1% bei einigen Stichprobengrößen n und 500 Replikationen. Die

effizientesten Tests in den einzelnen Kategorien sind durch Fettdruck her-

vorgehoben. Die Grafiken zeigen die Dichte der entsprechenden Verteilun-

gen (durchgezogene Linien) im Vergleich zur normierten und zentrierten

Normalverteilung (gestrichelte Linien).
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JB JBU AD LIL CVM PEA SF

Beta(3,2)
n = 10 0.074 0.052 0.116 0.092 0.116 0.12 0.1

n = 20 0.062 0.05 0.152 0.11 0.13 0.134 0.104

n = 50 0.138 0.082 0.266 0.214 0.236 0.202 0.202

n = 100 0.47 0.366 0.554 0.374 0.472 0.28 0.512

n = 200 0.934 0.912 0.902 0.69 0.806 0.522 0.948

n = 400 1 1 0.994 0.942 0.988 0.874 1

Students t (5df)
n = 10 0.218 0.222 0.19 0.152 0.182 0.146 0.206

n = 20 0.332 0.346 0.256 0.196 0.234 0.174 0.312

n = 50 0.514 0.532 0.37 0.282 0.338 0.204 0.48

n = 100 0.728 0.742 0.594 0.466 0.556 0.276 0.728

n = 200 0.93 0.936 0.836 0.686 0.794 0.428 0.926

n = 400 0.992 0.992 0.97 0.912 0.962 0.63 0.99

Gamma(2,1)
n = 10 0.286 0.252 0.296 0.226 0.282 0.252 0.318

n = 20 0.566 0.494 0.552 0.39 0.51 0.434 0.594

n = 50 0.956 0.926 0.944 0.834 0.918 0.77 0.972

n = 100 1 1 0.998 0.978 0.998 0.964 1

n = 200 1 1 1 1 1 1 1

n = 400 1 1 1 1 0.998 1 1

Log-Normal
n = 10 0.628 0.566 0.664 0.562 0.644 0.596 0.686

n = 20 0.912 0.894 0.94 0.87 0.918 0.888 0.96

n = 50 1 1 1 0.998 1 1 1

n = 100 1 1 1 1 0.89 1 1

n = 200 1 1 1 1 0.158 1 1

n = 400 1 1 1 1 0 1 1

Tabelle B.5: Powerwerte verschiedener Tests auf Normalverteilung zum Signifikanzni-

veau α = 10% bei einigen Stichprobengrößen n und 500 Replikationen.

Die effizientesten Tests in den einzelnen Kategorien sind durch Fettdruck

hervorgehoben. Die Grafiken zeigen die Dichte der entsprechenden Vertei-

lungen (durchgezogene Linien) im Vergleich zur normierten und zentrierten

Normalverteilung (gestrichelte Linien).



Anhang C

Daten-CD

In den Kapiteln vier, fünf und sechs dieser Arbeit sind empirische Analysen durchgeführt

worden. Die in diesen Analysen verwendeten Größen wurden dabei in der Programmier-

sprache R im Rahmen von Monte-Carlo-Simulationen generiert. Die Programmcodes zur

Erzeugung dieser Größen sowie weitere für die Analysen entwickelte Programme sind auf

der beigefügten Daten-CD im Einband am Ende der Arbeit enthalten. Ebenso die Aktien-

werte aus Kapitel sechs, die von der Internetseite http://finance.yahoo.com/ entnommen

wurden.

Die Dateien mit den Programmcodes sind dabei den einzelnen Kapiteln und Abschnit-

ten zugeordnet und geben namentlich an, um welche Programme es sich handelt. Auf die

in R verwendeten Pakete wird in den entsprechenden Dateien zu Beginn innerhalb einer

kurzen Erläuterung hingewiesen. Die genaue Vorgehensweise innerhalb der Analysen wird

in den entsprechenden Kapiteln dieser Arbeit detailliert geschildert.
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Gemäß §21 (6) der Diplomprüfungsordnung für den Studiengang Mathematik der Westfäli-
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