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Kapitel 1
Einleitung

Als eine der bekanntesten Wahrscheinlichkeitsverteilungen ist die Normalverteilung nicht
nur in vielen mathematischen Disziplinen zu einem vieldiskutierten Objekt in statisti-
schen wie auch wahrscheinlichkeitstheoretischen Anwendungsbereichen herangewachsen.
Nach ihrer Definition durch Carl Friedrich Gaul zu Beginn des 19. Jahrhunderts war es
Pierre-Simon Laplace, der den engen Zusammenhang der Normalverteilung mit anderen
Wahrscheinlichkeitsverteilungen aufdeckte und somit die zentrale Stellung der Normal-
verteilung innerhalb der Wahrscheinlichkeitstheorie festigte. Der angesprochene Zusam-
menhang spiegelt sich im zentralen Grenzwertsatz wider, der in seiner gebriduchlichsten
Form besagt, dass sich die Summe einer groflen Zahl unabhéngiger und identisch ver-
teilter Zufallsgroflen anndhernd wie eine normalverteilte Zufallsvariable verhélt. Dieser
Tatsache und ihren besonderen Eigenschaften, insbesondere auch ihrer einfachen Form
verdankt sie es, dass sie in vielen Bereichen der Natur-, Wirtschafts- und Ingenieurwis-
senschaften immer wieder Verwendung findet. So reicht ihr Anwendungsspektrum von der
Beschreibung zufilliger Abweichungen bei der Produktion von Industriegiitern iiber die
Beschreibung von Messfehlern physikalischer Versuchsdurchfithrungen bis hin zur Model-
lierung des Wiener-Prozesses und damit der geometrischen Brownschen Bewegung, die in
heutigen Zeiten zur Nachbildung finanzmathematischer Preisprozesse benutzt wird. Eben-
falls in der Versicherungsmathematik hat die Normalverteilung Einzug erhalten und legt
somit in vielen Bereichen den Grundbaustein der modernen Risikoabschétzung.

Der hohe Stellenwert der Normalverteilung fithrte dazu, dass in vielen mathemati-
schen Modellen eine Normalverteilung unterstellt wird, was eine nicht immer einhaltbare
Anforderung an die im Modell betrachteten Gréflen nach sich zieht. Als Beispiel sei die An-
nahme normalverteilter Regressionsfehler in linearen Regressionsmodellen genannt. Ohne
das Wissen iiber die tatséchliche Verteilung der in diesen Modellen betrachteten Gréflen
ist eine Anwendung somit eher spekulativer Natur, sodass an dieser Stelle die Frage nach

einer Rechtfertigung fiir die aufgestellte Annahme aufkommt und infolgedessen gekléart
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werden muss, ob das Modell so iiberhaupt verwendet werden darf. An diesem Punkt greift
die angewandte Statistik ein und bietet eine Vielzahl an Moglichkeiten, die getroffenen An-
nahmen anhand statistischer Tests zu verifizieren. Dabei beschrénkt sich die Vielfalt der
angebotenen Tests nicht auf solche, die ausschlieflich dazu geeignet sind, Aussagen {iber
eine mogliche Normalverteilung der getesteten Grofien zu treffen. Besonders die Kernideen
der einzelnen Tests, die eine Abweichung von oder eine Ubereinstimmung mit der Nor-
malverteilung als glaubwiirdig erscheinen lassen, sind dabei so grundlegend verschieden,
dass die Frage aufkommt, ob es denn Tests gibt, die als Favoriten aus diesem Vergleich
hervorgehen.

Mit dieser Frage befasst sich die vorliegende Arbeit, wobei der Schwerpunkt nicht auf
einem direkten Vergleich aller Tests liegt (was bei der grofien Vielfalt an Tests eine auch
nur schwer losbare Aufgabe wire), sondern auf einem speziellen Test auf Normalvertei-
lung, ndmlich dem, der durch Carlos M. Jarque und Anil K. Bera bekannt wurde und
heute sogar ihre Namen trégt: der Jarque-Bera-Test. Dazu wird zu Beginn dieser Arbeit
in das Themengebiet der Schétz- sowie der Testtheorie eingefithrt um die mathematische
Grundlage zu schaffen, die notwendig ist, um die Teststatistik und ihre besonderen Ei-
genschaften herzuleiten. Im anschlieflenden Kapitel drei wird explizit auf die Herleitung
der Teststatistik eingegangen und die Unterschiede aufgezeigt, die in verschiedenen Test-
situationen resultieren. Nachdem der Jarque-Bera-Test sodann als Mittel zum Testen auf
Normalverteilung zur Verfiigung steht, wird dieser in Kapitel vier in Konkurrenz zu ande-
ren Teststatistiken gesetzt und seine Vor- und Nachteile herausgearbeitet, die im direkten
Vergleich anhand von empirischen Analysen bestétigt werden. Nachdem der Jarque-Bera-
Test in seiner Form als Test auf univariate Normalverteilung analysiert wurde, wird in
Kapitel fiinf eine Erweiterung und zugleich Verallgemeinerung der Teststatistik angege-
ben, die es ermdoglicht, sogar auf multivariate Normalverteilung zu testen. In Kapitel sechs
schlieBlich wird eine Anwendung der gewonnenen Resultate auf eine finanzmathematische
Fragestellung gegeben, bevor die vorliegende Arbeit in Kapitel sieben mit einer Auswer-

tung in Form einer Zusammenfassung und einem Ausblick beendet wird.



Kapitel 2

Der Score-Test

In der mathematischen Statistik ist man daran interessiert, anhand von Stichproben, dar-
gestellt durch Realisierungen zumeist unabhéngiger und identisch verteilter (i.i.d.) Zufalls-
variablen, Aussagen iiber die Parameter der Verteilung einer Grundgesamtheit zu treffen.
Dazu werden statistische Modelle aufgestellt, auf deren Grundlage Schétz- oder Testpro-
bleme behandelt werden konnen. Ziel des ersten Kapitels ist es, eine Teststatistik herzu-
leiten, mit deren Hilfe Fragen in Bezug auf Hypothesen iiber bestimmte Verteilungspara-
meter beantwortet werden kénnen. Unabdingbare Voraussetzung dafiir bildet die Theorie
der Likelihood-Schitzer, die im Bereich der Schétzprobleme als eine der géngigsten zum
Auffinden von Schitzern fiir Parameterfunktionen angesehen werden kann. Aus diesem
Grund wird im ersten Abschnitt eine kurze Einfiithrung in die Schéitztheorie gegeben und
darauf aufbauend in Abschnitt zwei die Theorie der Likelihood-Funktionen entwickelt,
in der Maximum-Likelihood-Schétzer definiert und im Anschlufl einige wichtige Eigen-
schaften von Maximum-Likelihood-Schétzern bewiesen werden. Abschnitt drei beginnt mit
einer Erlduterung der Problematik in Testproblemen und motiviert, ausgehend von ein-
fachen Hypothesen, in Abschnitt vier mit Hilfe von Likelihood-Quotienten den Ubergang
zu komplexeren Hypothesen. Die Vorgehensweise orientiert sich dabei an der in [CH74].

Definitionen und Notationen sind zum Teil aus [Als09], sowie aus [Hel08] iibernommen.

2.1 Grundlagen der Schitztheorie

Wie der Name bereits vermuten lésst, besteht das Ziel der Schétztheorie darin, anhand von
Stichproben Schitzungen tiber interessierende Parameter anzustellen. Dabei ist eine Stich-
probe = (z1,...,2,) ein n-Tupel von Beobachtungen, die im wahrscheinlichkeitstheo-
retischen Zusammenhang als Realisierungen von Zufallsvariablen Xj,..., X, aufgefasst
werden. Das zugrunde liegende Modell ldasst sich dabei wie folgt beschreiben: Ausgangs-

punkt bildet ein statistisches Experiment & = (X, A, (FPy)oco), welches sich aus einem



4 Der Score-Test

Stichprobenraum X', einer o-Algebra A iiber X und einer Familie (FPy)gce von Wahr-
scheinlichkeitsmaBen mit © C R als Parameterraum der Wahrscheinlichkeitsfamilie zu-
sammensetzt. Die Stichprobe stellt ein Element des Stichprobenraums dar und kann dann
als Realisierung einer Zufallsvariablen X : (Q, F) — (X, A) und einer zugehorigen Fami-
lie von Wahrscheinlichkeitsmafien (Qg)oco identifiziert werden, wobei Qg( = Py fiir alle
0 € © gilt. Auf die Struktur von (2, F) kommt es bei der Untersuchung der vorliegenden
Stichprobe nicht an. Auf diese Weise kénnen Beobachtungen mit Zufallsvariablen in Ver-
bindung gebracht werden, sodass eine Stichprobe dem Zufall unterliegt, welcher iiber die
Zufallsvariablen — genauer iiber die Verteilungen der Zufallsvariablen — in das eingangs
beschriebene Modell einflieBt. Dazu sei (FPy)gco dominiert durch ein Maf i, sodass nach
dem Satz von Radon-Nikodym f(x;60) = dPy/du gilt. Im stetigen Fall ist f(x;6) die Wahr-
scheinlichkeitsdichte und im diskreten Fall die Wahrscheinlichkeitsfunktion zu Py, was im
Laufe der vorliegenden Arbeit nicht mehr explizit erwdhnt wird. Die Verteilung der Zu-
fallsvariablen wird nun bis auf den Parameter(-vektor) als bekannt angenommen, sodass
die Schétzungen eben jenen unbekannten Paramter(-vektor) betreffen. Ein Schdtzer oder
eine Schitzfunktion fiir 6 ist dabei eine messbare Abbildung 7' : X — O, die anhand einer
vorliegenden Stichprobe dem zu schéitzenden Parameter einen Wert zuweist. Sinnvollerwei-
se versucht man dabei T so zu wéihlen, dass ein moglichst guter Schétzer resultiert, wobei
hier auf Details iiber die Spezifizierung der Eigenschaft ,gut® in diesem Zusammenhang
verzichtet werden soll.

Drei der wohl bekanntesten Schitzmethoden bilden die Momentenmethode, die Bayes-
Methode und die Theorie der Likelihood-Schétzer. Auf letztere wird im Folgenden ausfiihr-
lich eingegangen. Obwohl es sich bei den betreffenden Parametern fast ausschliefSlich um
Vektoren handelt, werden diese, sowie auftretende Matrizen, durch Fettdruck von skalaren

Parametern unterschieden.

2.2 Maximum-Likelihood-Theorie

Im Folgenden wird nun davon ausgegangen, dass es sich bei der Stichprobe © = (z1, ..., xy,)
um Realisierungen von i.i.d. Zufallsvariablen X, ..., X, handelt, die gem#&f einer Vertei-
lung Py gezogen werden. Die Bezeichnungsweise ,,eine Stichprobe ziehen® folgt dabei dem
allgemeinen Sprachgebrauch und ist somit nicht wortlich zu verstehen. Zudem sei darauf
hingewiesen, dass eine Stichprobe nicht ausschliellich aus wirklichen Beobachtungen be-
stehen muss. In einigen Situationen wird stattdessen von Zufallsvariablen als Bestandteil
der Stichproben ausgegangen, um gewisse Groéflen wie Erwartungswerte und Varianzen
sinnvoll herleiten zu kénnen. Eine Rechtfertigung fiir dieses Vorgehen liefert das Wissen

iiber die den Beobachtungen zugrunde liegende Verteilung. Ob es sich um Zufallsvariablen



2.2. Maximum-Likelihood-Theorie 5

oder Beobachtungen handelt, wird dabei in Form von Klein-, beziehungsweise Grofschrei-
bung kenntlich gemacht. Begonnen wird mit einigen Definitionen, die unter den getroffenen

Annahmen gelten.

Definition 2.2.1. Esseien z1, . .., z,, Realisierungen von i.i.d. Zufallsvariablen X1, ..., X,

die gemif einer Verteilung Py gezogen werden. Dann heifit die Funktion
L(;x):0 — [0,00)

mit Abbildungsvorschrift

n

L(0;z) = [ [ f(xi;0) = f(:6)

=1

Likelihood-Funktion zur Stichprobe © = (z1,...,xy,).

Likelihood-Funktionen lassen sich wie folgt motivieren: Betrachtet man eine diskret ver-
teilte Zufallsvariable X, so gibt die Verteilung Py von X bei gegebenem Parametervektor
0 = (01,...,04) die relativen Hdufigkeiten der einzelnen Werte aus der Grundgesamt-
heit an. Somit liegt es nahe, dass bei einer zufilligen Stichprobe jener Parametervektor
0 = (91, el éd) am ehesten dem wahren Parametervektor @ entspricht, bei dem die Wahr-
scheinlichkeit einer Realisierung der gezogenen Stichprobe am gréfiten ist. Die Intuition
ldsst sich durch Grenziibergang auf den stetigen Fall iibertragen. Mathematisch bestimmt

man @ also durch Maximieren der Likelihood-Funktion in 6.

Definition 2.2.2. Gegeben sei die Situation aus Definition 2.2.1. Dann bezeichnet 6 den
Mazimum-Likelihood-Schitzer (MLS) fur 6, falls

A

L(6;x) > L(6; x)

fiir alle @' € © gilt. Die Maximierung erfolgt dabei komponentenweise in 61 bis 6.

Fiir praktische Zwecke ist es oft vorteilhaft den Logarithmus der Likelihood-Funktion
zu verwenden. Aufgrund der Monotonie des Logarithmus #dndert sich bei Extremwert-
untersuchungen nichts. Da von dieser Eigenschaft hidufig Gebrauch gemacht wird, erhélt
der Logarithmus der Likelihood-Funktion eine eigene Bezeichnung. Dazu wird die Log-
Likelihood-Funktion definiert durch

1(0;x) = log (L(6;x)).

Einige Merkmale des MLS sind fiir die Entwicklung der weiteren Theorie wesentlich. Unter

anderem besitzt 0 eine asymptotische Normalverteilung um den wahren Parametervektor
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0 € 0. Diese Eigenschaft gilt uneingeschréinkt, vorausgesetzt es werden sogenannte Re-
gularititsbedingungen an die Likelihood-Funktion gestellt. Zuerst jedoch werden einige
Begriffe eingefiihrt, die im Folgenden eine zentrale Rolle spielen. Im Zusammenhang mit
der Theorie der Likelihood-Funktionen erhilt die Ableitung der Log-Likelihood-Funktion

nach 0 eine eigene Bezeichnung.

Definition 2.2.3. Es gelten die Voraussetzungen aus Definition 2.2.1, dann heifit

T
S0;x) = %log (L(6;z)) = ((;;l(@;m), cey %l(@;m))

Score-Funktion oder einfach Score fir x = (z1,...x,).

Um die Score-Funktion von der Abhéngigkeit des gesamten Beobachtungsvektors zu 16sen,

wird zusétzlich der Score der i-ten Beobachtung beschrieben durch

S(0;x;) = %Z(G;zi),

sodass im Fall unabhéngiger Zufallsvariablen

5(0:2) = 2 o (Hfm;e)) = 05 log f(wi0) = ) 801,
=1 =1 =1

gilt. Die so eingefiihrte Score-Funktion bei festen Stichproben hé&ngt somit nur vom un-
bekannten Paramtervektor € ab. Betrachtet man jedoch Zufallsvariablen anstelle fester
Beobachtungen, so besteht S(8; X)) selbst aus Zufallsvariablen und dem Score kann ein

Erwartungswertvektor zugeordnet werden.

Definition 2.2.4. Es gelten die Annahmen aus Definition 2.2.3, dann heifit
Z(6; X) = E¢[S(0; X)S(0; X)7]

die Fisher-Information von @ zur Stichprobe X = (Xi,...,X,). Fiir einzelne Beobach-
tungen ist somit
I(0; X;) = Eo[S(6; X:)S(0: X,)"]

die Fisher-Information von 8 zur Beobachtung X;.
Die Fisher-Information kann angesehen werden als Maf fiir die Giite des zu schitzenden

Parameters. Je grofier Z(0; X) ist, desto genauer lisst sich @ schitzen. Es kann gezeigt

werden, dass unter gewissen Voraussetzungen' fiir die Kovarianz eines erwartungstreuen

Vgl [WN70], S.70.
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Schiitzers 6 fiir @ gilt: Covg [é(X)] > Z(0; X)~!. Ein Schiitzer, der diese untere soge-
nannte (mehrdimensionale) Cramer-Rao-Schranke annimmt wird als effizient bezeichnet.
Man beachte, dass es sich bei Score-Funktionen und Fisher-Informationen in der Situation

vektorwertiger Parameter 6 selbst um Vektoren beziehungsweise Matrizen handelt.

Die angekiindigten Regularititsbedingungen (RB) lauten wie folgt:
1. O ist offen mit dim(©) < oo.
2. Fiir alle 0,0’ € © mit 0 # @' gilt: f(z;0) # f(x;0").
3. In einer Umgebung Ug des wahren Parametervektors 8 € © gilt:
(a) S(0';X), %S0 X), 68—;8(0’; X)) existieren fast sicher fiir alle 8’ € Up.
(b) Es existiert eine Funktion ¢(X) mit E[g(X)] < co und n_1]802 0; X)| <
g(X) fiir alle ' € Up.

4. Integration beziiglich & und Differentiation beziiglich 6; diirfen vertauscht werden.

Verteilungsfamilien, die den Regularititsbedingungen geniigen werden im Folgenden auch

einfach als reguldr bezeichnet.

Lemma 2.2.5. Es sei X = (X1,...,X,) eine Stichprobe bestehend aus i.i.d. Zufallsva-
riablen X1, ..., Xy, mit requldrer Verteilung Py. Dann gilt:

Eq[S;(0; X;)] =0 (2.1)

fur (i,5) € {1,...,n} x {1,...,d} mit S;(0; X;) = 8%jl(@;Xi) als j-te Komponente des
Score- Vektors.

Beweis. Es gilt

Eo[S,(0:X)] = [ 511650 (il
- f(2:;0)
= %JC(%; 0)u(dx;)

f(xz, 0)u(day) "2 2 /fxz, (ds) =

Weiterhin wichtig ist folgendes

Lemma 2.2.6. Es sei X = (Xi,...,X,) eine Stichprobe bestehend aus i.i.d. Zufallsva-
riablen X1, ..., X, mit reguldrer Verteilung Pg. Dann gilt:

0

I(0:X) = ~Eo| 5

—8(0; X)T|. (2.2)
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Beweis. Es gilt

@) 2f(x;0) (5f(x:0)"
f(z;0) f(z;0) f(z;0)

= 8(6;x) = S8(6;x)T

Integriert man die Gleichung beziiglich Py, so folgt wegen dPy = f(x; 0)du

B,
o[ 5(0: )] = [ 2 (@ 0putaa) - 6 [5(6: X)5(0: %)
und mit [ 2 f(z; 0)u(de) = 25 / f(;0)u(dx) = 0 die Behauptung. O
—_— —

=1

Betrachtet man regulére Verteilungsfamilien, so lédsst sich mit Lemma 2.2.5 fiir i.i.d. Zu-
fallsvariablen X7, ..., X,, eine weitere Darstellungsmoglichkeit der Fisher-Information an-
geben. Es gilt

Z(0; X;) = Cov[S5(0; X;)].

Dabei bezeichnet (DOV[S(H;Xi)] = (Cov[Sj(O;Xi),Sk(O;Xi)])lgjvkgd die Kovarianzma-
triz von 8(0; X;). Unter Beachtung der Unabhingigkeit der X; fiir i = 1,...,n ldsst sich
weiter zeigen, dass Z(0;X) = > " | Z(0;X;) und somit speziell fiir identisch verteilte

Zufallsvariablen
Z(0;X)=nZ(0;X;) (2.3)

gilt. Die eingangs erwahnte Eigenschaft der asymptotischen Normalverteilung des MLS
soll in einem Satz festgehalten und unter Annahme der Regularitdtsbedingungen bewiesen
werden. Dazu wird das Konzept der multivariaten Normalverteilung bendtigt, welches im
Folgenden in ausreichender Kiirze mit einigen dazugehétrigen Resultaten vorgestellt wird.
Ab jetzt wird angenommen, dass die Likelihood-Funktion der zugrunde liegenden Vertei-
lung den Regularitdtsbedingungen geniige. Als Erweiterung des Prinzips normalverteil-
ter Zufallsvariablen (univariate Normalverteilung) werden nun Zufallsvektoren betrachtet,
denen ebenfalls eine Normalverteilung (multivariate Normalverteilung) zugeordnet wird.
Dabei wird auf den Fall nichtsinguldrer Kovarianzmatrizen eingegangen. Die Definition

der multivariaten Normalverteilung sowie wichtige Eigenschaften stammen aus [SHF85].
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Definition 2.2.7. Es sei X = (X1,...,X,)? ein p-dimensionaler Zufallsvektor mit Wer-
ten im RP. Dann besitzt X eine p-variate nichtsinguldre Normalverteilung mit Erwartungs-
wertvektor g = (u1, ... up)T und positiv definiter Kovarianzmatrix 3, falls die Dichte von

X gegeben ist durch

fl@) = |@n)2| e (~ y@ - w'S @ )

mit p; € Rfiir j=1,...,pund X > 0. ‘E‘ bezeichnet dabei die Determinante der Matrix
3. Man schreibt X ~ N, (u, X).

Einige fiir den spéteren Kontext wichtige Eigenschaften lauten wie folgt:

Lemma 2.2.8. Es sei X ~ N,(p,X) mit X > 0. Dann gilt:

(X - (X —p)~ X}

P

Beweis. Dies folgt direkt aus einer Zerlegung ¥ = CCT mit C als (p x p)-Matrix und der
Definition der y2-Verteilung. Eine Darstellung von C in vorliegender Form ist mit Hilfe

der Cholesky-Zerlegung? moglich. O

Lemma 2.2.9. Es sei X ~ Ny(u,X) mit £ > 0. Weiter sei A eine (k x p)-Matriz mit
vollem Rang, k < p und b ein k-Vektor. Dann gilt:

AX +b~ N, (Ap+b, ASAT).

Beweis. Der Beweis ergibt sich aus einer Darstellung der charakteristischen Funktion von
Y = AX +b. Dazu sei t ein k-Vektor mit t # 0. Dann gilt fiir die charakteristische Funk-
tion von Y: ¢y (t) = dpax(t)pp(t) = Elexp(it’ AX)]exp(it’b) = ¢x(ATt) exp(it’d).
Nun gilt fiir X ~ Np(p, 2) mit > 0: ¢x(t) = exp(it’ p — 1¢73t) und somit ¢y (t) =
exp(itTh) exp(itT Ap — 2T A ATt) = exp(itT (Ap + b) — $tT(AZAT)t). Dies ist wie-
derum die charakteristische Funktion eines Ny (Ap + b, AL AT)-verteilten Zufallsvektors
mit AXAT > 0. O

Lemma 2.2.10. Es sei X = (XT, XD)T ~ N,(pt, 2) mit > 0, X sei r-Vektor und

1 X
1 12) . Dann gilt:

Xy sei (p — r)-Vektor. Weiter sei p = (ud, u)T und = =
o1 X

Xo| X1~ Nper (o + Zn 7 (X1 — 1), Too — T T Epa).

2Vgl. Anhang A.2.
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Beweis. Bs sei X271 = X2 — 913! X 1. Dann gilt X271 ~ Ny (g — Zo1Z17 11y, Tog —

X1

Ezlﬁilillg) was leicht mit der Darstellung X o1 = (—22121_11 Ip_T) < ) und Lem-

2
ma 2.2.9 eingesehen werden kann. Es sei nun Xo = X971 + 22121_11X1. Unter Be-

dingen von X ist X913 7' X konstant, sodass E[X2|X1] = E[X21] + X[ X1 =
po + B X1 — py) und Var[Xo| X 1] = Var[X s 1] = Zop — B9 2 Z1o. O

Um nun die angesprochenen Eigenschaften des MLS herleiten zu kénnen, wird mit einem

Prinzip begonnen, das unabhéngig von der gewéhlten Schéitzmethode Bedeutung findet.

Definition 2.2.11. Es seien X1, ..., X, i.i.d. Zufallsvariablen mit Verteilung Py und 0.,
sei ein Schitzer fiir @ auf der Basis X1,. .., X,,. Dann heift 6, (schwach) konsistent, wenn
6,, in Wahrscheinlichkeit gegen O konvergiert, das heifit lim,, oo P(||én -0 > e) =0 fiir
alle € > 0. || - || bezeichnet dabei die euklidische Norm.

Anschaulich bedeutet die Konsistenz eines Schitzers also, dass sich der Schitzer dem zu

schéitzenden Parameter bei zunehmender Beobachtungsanzahl immer weiter néhert.

Lemma 2.2.12. Es seien X1,..., X, i.i.d. Zufallsvariablen mit Verteilung Pg. Sind die
Regularititsbedingungen erfillt, dann ist der MLS 6 auf der Basis X1, ..., X, konsistent.

Der Beweis des Lemmas ist iiberwiegend konstruktiver Natur und im folgenden Zusam-
menhang nicht weiter von Relevanz. Aus diesem Grund wird von genauen Ausfithrungen

abgesehen und der interessierte Leser auf [Wal49], S. 595-601 verwiesen.

Betrachtet man den MLS 6 nicht als Funktion beziiglich einer festen Stichprobe x =
(x1,...,xy), sondern als Funktion in den Zufallsvariablen X1, ..., X,,, so kann der Schéitzer
selbst als Zufallsvariable interpretiert werden. Dies erméglicht es, dem Schétzer eine Vertei-
lung zuzuweisen, die mit Hilfe wahrscheinlichkeitstheoretischer Mittel hergeleitet werden

kann.

Satz 2.2.13. Es seien X1, ..., X, t.i.d. Zufallsvariablen mit requldrer Verteilung Py, 6 =
(01,...,00)" und 0 sei MLS fiir 6 auf der Basis X1, ..., Xn. Dann gilt:

V(60— 0) 2 N (0,1(9; Xl)*).
Ly bezeichnet dabei die K. onvergenz in Verteilung.

Beweis. Mittels der Taylorformel, die aufgrund von RB 3(a) angewendet werden darf,
werden die Komponenten des Score-Vektors (81(9;X), e ,Sd(é;X))T = 8(0; X) mit
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Sj(é;X) = %l(é;X) fir j = 1,...,d um den wahren Parameter 8 = (61,...,04)7
J
entwickelt. Es gilt

Sj(0; X) = S;(0; X) +267k$ (0; X) (0, — 1) + Z aekael Si(0; X) (0 — 0x) (6, — 0))

mit @ geeignet, wobei |§ — 6| < |§ — 6]. Da S;j(0; X)) = 0 folgt nach Division durch /n

Si(6;:X) i 1 50,5 (6; X)(0r — Or) 1Zkz189@913(G;X)(ék—igk)(él—@)
N 2

§
§

1 0 1 & o2
( Ezai O =00) = 5= > S8 X) 6~ 60 (0~ 91)>.

k=1

=:Zn
L . . _ 2 -
Nach RB 3(b) existiert eine Funktion g(X'), sodass n 1‘%6}(0; X)| < g(X) < 0c. Da
6 aufgrund von Lemma 2.2.12 konsistent ist, folgt |Z,| < |0 — 01|60 — 61]g(X) ™= 0 und
somit Z, = 0p(1). Dabei gilt Z, = 0p(f(n)) < lim,—00 P <‘f n | < e) =1 fiirallee>0
mit einer Folge (Z,)nen., von Zufallsvariablen und einer Funktlon f:Nsg — R. Also ist

(- d n .
53<9f’nX> _ \/5< - i;agk(;sj(a;xg)(ek — ) — op(1)),

wobei mit dem schwachen Gesetz der groflen Zahlen gilt:

1 - 6 - 2 n—oo d 8 N
- ; %(;;Sj(é’; Xi))(ek S 8—eklE(,, [(S;(6; X1)] (6r, — 0)
" *Ee[gz (6:X1)] (61— 01) -
—EO [az 8(0, Xl)} (éd — 9(1)
(2.2)

= Ijl(O;Xl)(él —91)+"'+de(9;X1)(éd—9d)
= (Zj1(0; X1),.-..Zja(6; X1))(6 — 6)
in Wahrscheinlichkeit. Es folgt
1 a o

—=38;(0; X) = /n(Z;1(6; X1), ..., Zju(0; X1)) (6 — 6)
\/ﬁ

T11(0; X1) -+ T14(0; X1)

und folglich mit Z(0; X;) = : :

Iin(0;X1) -+ Zga(0; X1)

S(0; X) £ /nZ(6; X1)(6 - 6)

Z(6;X,)'S(0; X). (2.4)
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= steht dabei fiir asymptotisch fquivalent, sodass fiir grofe Stichproben der linke und der
rechte Term anndhernd identisch sind. Da IEg [Sj(H; XZ)] =0firi=1,...,n, j=1,...,d
wegen Lemma 2.2.5 und Eq [S;(0; X1)S,(0; X1)] = Z;x(0; X4) fiir j,k = 1,...,d wegen
Definition 2.2.4, folgt mit dem mehrdimensionalen zentralen Grenzwertsatz® und Lemma,
2.29

7T 18(0:) = Vize:x) ! (1 30 5(0:30) £ i(0.2(0:x1) )

und somit die Behauptung. d

Es lasst sich zeigen, dass die Aussage der asymptotischen Normalverteilung der Likelihood-
Funktion auch unter schwicheren Annahmen giiltig bleibt.* (Diese implizieren beispiels-
weise dass die Forderung RB 3(a) zu restriktiv ist.) Dies soll hier jedoch nicht ndher

beleuchtet werden.

2.3 Grundlagen der Testtheorie

Im Folgenden wird das Ziel sein, einen Test zu entwickeln, mit dessen Hilfe Entschei-
dungen iiber die Richtigkeit einer Hypothese getroffen werden kénnen. Grundlegend lésst
sich die Schétz- von der Testtheorie dahingehend unterscheiden, dass beim Schétzen von
Parametern bestimmte Werte fiir die unbekannten Parameter anhand von Plausibilitdten
festgelegt werden, wohingegen beim Testen von Hypothesen Plausibilitéiten fiir bereits
festgelegte Werte iiberpriift werden. Man unterscheidet dabei zwischen einer Nullhypothe-
se Hy : @ € ©g C O und einer Alternativhypothese Hy : 8 € ©\O, wobei © C R? den
Parameterraum einer bekannten Verteilungsfamilie (Pp)gce darstellt. Auf der Grundla-
ge von Beobachtungen, simuliert durch Realisierungen von i.i.d. Zufallsvariablen, werden
Indizien fiir das Annehmen oder Verwerfen der Nullhypothese gesammelt. Die Entschei-
dungen fiir oder gegen die Nullhypothese werden dabei modelliert durch eine messbare
Abbildung ¢ : (X, A) = (D,€) vom Raum (X, A) der moglichen Realisierungen in den
Raum (D, &) der moglichen Entscheidungen. In den folgenden Testproblemen entspricht
D dem abgeschlossenen Einheitsintervall, das heifit D = [0, 1]. Eine Entscheidungsfunk-
tion ¢ : X — [0,1] wird als Test bezeichnet, sodass auf der Grundlage einer Stichprobe
x € X der Test ¢(x) = v mit v € [0, 1], eine Entscheidung mit Wahrscheinlichkeit ~ fiir
die Alternativhypothese liefert. Im Fall v € (0,1) bedeutet dies, dass die Entscheidung

keineswegs eindeutig zugunsten einer der Hypothesen getroffen wird. Dies modelliert eine

3Vgl. Anhang A.1.
“Vgl. [LeC70], S.802-828.
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Art Unentschlossenheit zwischen den Entscheidungsméglichkeiten und wird als Randomi-
sieren bezeichnet. In nicht randomisierten Testproblemen, das heifit v € {0, 1}, hingegen
wird eine eindeutige Entscheidung getroffen, die mit ¢(x) = 1 fiir die Alternativhypothese,
beziehungsweise gegen die Nullhypothese und mit ¢(x) = 0 fiir die Nullhypothese ausfillt.
Dabei ist zu beachten, dass eine Entscheidung gegen die Alternativhypothese, das heifit
also eine Annahme der Nullhypothese aufgrund einer Stichprobe nicht gleichzusetzen ist
mit einem Beweis fiir die Richtigkeit der Nullhypothese, sondern lediglich, dass die Nullhy-
pothese aufgrund mangelnder Beweislage nicht verworfen werden kann (vergleichbar dem
juristischen Grundsatz ,in dubio pro reo®). In den vorliegenden Testproblemen kénnen

somit zwei mogliche Fehler auftreten:

Fehler 1. Art £ Verwerfen der Nullhypothese, obwohl diese richtig ist.
Fehler 2. Art £ Annahme der Nullhypothese, obwohl diese falsch ist.

Die Auswirkungen beider Fehler differieren in aller Regel sehr stark. Da es im Allgemei-
nen keinen Test gibt, der die Wahrscheinlichkeiten beider Fehler simultan minimiert, die
irrtiimliche Entscheidung fiir die Alternativhypothese jedoch schwerwiegendere Auswir-
kungen hat als die irrtiimliche Annahme der zumeist konservativen Nullhypothese, ist es
von Interesse, das Risiko eines Fehlers 1. Art unter einem vorgegebenen Signifikanzniveau
a € [0,1] zu halten und unter diesen Tests denjenigen zu wihlen, der die Fehlerwahrschein-
lichkeit 2. Art minimiert. « gibt dabei die maximale Wahrscheinlichkeit an, mit der eine
irrtiimliche Annahme der Alternativhypothese toleriert wird, was unter Verwendung der
Giitefunktion By : 0 — Eg[¢(X)] bedeutet, einen Test ¢ mit Eg[¢(X)] < a fiir alle 8 € O
zu finden. Ein Test, der diese Eigenschaft erfiillt, wird als Test zum Niveau o bezeichnet
und die Menge all solcher Tests zum Niveau a wird als @, definiert. Da es weiter von In-
teresse ist unter den Tests ¢ € &, denjenigen zu wihlen, der die Fehlerwahrscheinlichkeit
2. Art minimiert — dies entspricht einer Maximierung der Giitefunktion in 8 € ©1 — gilt
flir den gleichmdf$ig besten Test ¢g zum Niveau o

Eg[po(X)] = max Eg[p(X)]

fiir alle @ € ©1. Betrachtet wird im Folgenden die auf Neyman und Pearson zuriickgehende

Entdeckung zur Beschreibung gleichméflig bester Tests in Testproblemen mit einfachen

Hypothesen.

Satz 2.3.1. Es seien Py, und Py, Wahrscheinlichkeitsmafe auf (X, A) mit Dichten
f(x;00) und f(x;01) beziiglich eines dominierenden Mafles . Weiter sei o € (0,1) und
¢ € 0,00). Dann gilt:

Ist i € o mit Y(7) = Ui f(2:0,)>cf(2:00)} und ¢ so gewdhlt, dass Ee,[t)(X)] = a, dann ist



14 Der Score-Test

Eg, [¥(X)] = maxgeca, Eq, [¢0(X)], das heif$t ¢ ist gleichmdfSig bester Test zum Niveau o
fiir Hy: 0 =0y gegen Hy : 0 = 0.

Beweis. Sei ¢ € &, beliebig. Dann gilt:
f(@;601) —cf(x;00) >0 = () =1 = ¢(x) —¢(x) 20 und
J(:01) — cf(2:00) <0 = Y(x) =0 = B(x) - o(x) < 0.

Somit ist (¢Y(z) — ¢(x))(f(x;01) — cf(z;600)) > 0. Integration beziiglich p liefert

0< / wla) (o 01)dn — [ (o) f(:01)d
—c/w £ 80)dys — /¢ F(:00)dp

& 0 < Eg, [(X)] — Eg, [¢(X)] — e Eg,[t(X)] — Eg, [$(X)] )

~
=a <a

Also folgt 0 < g, [t)(X)] — Eg, [¢(X)] und damit die Behauptung. O

Der Ablehnungsbereich K, des Neyman-Pearson-Tests wird also im Falle einfacher Hypo-

thesen iiber den Quotienten f(z;01)/f(x;0p) bestimmt. Es gilt K, = {z : ;Eig;; > c},

wobei ¢ so zu wihlen ist, dass das Signifikanzniveau « voll ausgeschopft wird. Es sei darauf

hingewiesen, dass das Neyman-Pearson-Lemma fiir Wahrscheinlichkeitsdichten vorgestellt
wurde. Fiir diskrete Wahrscheinlichkeitsverteilungen mufl die Testgestalt leicht verdndert
werden, da eine Randomisierung nétig ist, um eine Ausschopfung des Signifikanzniveaus
a zu gewahrleisten.

Dehnt man die Situation einfacher Hypothesen auf den in der Realitét wesentlich
interessanteren Fall zweiseitiger Alternativhypothesen aus, das heifit Hy : 6 € [01, 62] gegen
Hy:0 ¢ [01,05) mit 61,6, € © C R und 6; < 3, so muss man feststellen, dass gleichmifig
beste Tests in der Regel nicht existieren. Um weiterhin optimale Tests zu erhalten muss
das Prinzip der Unverfilschtheit eingefiihrt werden. Dieses besagt, dass neben den vorigen
Annahmen die zusétzliche Bedingung Eg[¢p(X)] > « fiir alle § € ©; erfiillt sein muss.
Bezeichnet man mit ® ,, die Menge aller unverfilschten Tests zum Niveau c, so erfiillt der
gleichmdfig beste unverfilschte Test ¢pg zum Niveau « folglich die Bedingungen ¢g € ®

und

Eg[¢o(X)] = max Eg[¢(X)]

#€Pa,u
fiir alle # € ©1. Bei Vorliegen einer einparametrigen Exponentialfamilie ldsst sich auch
in dieser Situation eine Testgestalt dhnlich zu der in der Situation einfacher Hypothesen
angeben.® Dies impliziert, dass die Verteilung der Statistik, anhand welcher eine Entschei-

dung fiir oder gegen die Alternativhypothese getroffen wird, bekannt sein muss, um die

°Fiir eine detaillierte Einfiihrung in die Testtheorie sei auf [Als09] verwiesen.
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fiir das Einhalten der Irrtumswahrscheinlichkeit notwendigen kritischen Werte zu bestim-
men. Fiir einige Verteilungen stehen dabei Tafelwerke zur Verfiigung, die das Festlegen der
kritischen Werte bei gegebenem « erleichtern.® Oft ist es auch moglich, eine nicht vertafel-
te Verteilung mit Hilfe einer Transformation in eine vertafelte Verteilung zu iiberfiihren.
Gelingt dies nicht oder ist die Verteilung der Teststatistik nicht bekannt, so ist die Be-
stimmung der kritischen Werte wesentlich schwieriger. Ein Ausweg aus dieser Problematik

wird im Folgenden gegeben.

2.4 Herleitung des Score-Tests

Damit der Score-Test hergeleitet werden kann, muss man sich ausfiihrlich mit der Theorie
der Likelihood-Quotienten-Tests beschéftigen. Dazu ist der vorliegende Abschnitt so auf-
gebaut, dass zu Beginn Likelihood-Quotienten-Tests ohne nuisance-Parameter eingefiihrt
werden, bevor im Anschlufl Likelihood-Quotienten-Tests mit nuisance-Parametern unter-

sucht werden.

Likelihood-Quotienten-Tests ohne nuisance-Parameter

Es wird mit einem Spezialfall der Situation des vorigen Abschnitts fortgefahren, ndmlich
einfachen Nullhypothesen bei zweiseitigen Alternativen. Dazu sei erneut © = (z1,...,x,)

eine Stichprobe bestehend aus i.i.d. Zufallsvariablen X1,..., X, und

der Likelihood-Quotient mit ©1 C ©. Dann gilt im Fall ©; = ©\0

A=2( sup U(0";z)—1(0p;x))
6'c6\0)

und mit A = max(0, \) folgt
A=2(1(6;x) — 1(8p; x)).

A wird dabei als Likelihood-Quotienten-Test bezeichnet. Obwohl fiir n < oo die Vertei-
lung von A sowohl von n als auch von der Wahrscheinlichkeitsdichte der X; abhéngt,
kann gezeigt werden, dass in reguldren Problemen die asymptotische Verteilung von A fiir
n — oo ein einheitliches Ergebnis liefert. Dies ermoglicht es, approximativ fiir grofle Stich-
proben unabhéngig von der Verteilung von A die kritischen Werte anhand der a-Fraktile

der asymptotischen Verteilung festzumachen. Umso erfreulicher ist die Tatsache, dass es

SHierzu zihlen unter anderem die Standardnormalverteilung und die Chi-Quadrat-Verteilung. Einige

Fraktilstabellen sind beispielsweise in [Rin08], Kapitel E1 angegeben.
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sich bei der asymptotischen Verteilung um die gut vertafelte Chi-Quadrat-Verteilung mit

Anzahl der Freiheitsgrade entsprechend der Dimension von € handelt.

Satz 2.4.1. Es seien x1,...,x, Realisierungen von i.i.d. Zufallsvariablen X1, ..., X,, die

gemdf einer requliren Verteilung Py gezogen werden. Dann gilt fir die Verteilung von A

bei einer Nullhypothese der Form Hy : 0 = 0y = (610, . ..,0q0)" gegen Hy : 0 # 0y:
D
A — X(Qiim(e)’

Beweis. Unter Annahme der Nullhypothese Hy : @ = 09 € © wird A um 6q in eine
Taylorreihe entwickelt. Dazu sei erneut Si(6; X) = %l(@; X) fir k=1,...,d. Es gilt:

. . 1 o N . .
1(6; X) = 1(60; X) + Y _ Sk(60; X)(0x — bro) + 5 aTSk(Gs X) (0 — Oko)(On — Omo)
k=1 km=1 "
1 0
_ . . T _ - y Y <(p- Tip_
= 1(60; X)) + S(80; X)"(0 — 00) + mZ:lwm 6m0) 55 (8: X)" (8 - 60)
(2.5)
mit @ geeignet, wobei |8 — 8| < |6 — 6| und
A d o z A
Si(0; X) = S;(00; X) + ; aT)kSJ(G’ X)(6), — O10)
o = T .
= 5,(60: X) + (555:(8: X)) (8- 00)
mit @ geeignet, wobei |é — 60| < |6 — 0¢). Es folgt
~ ol z T T .
5(6:X) = 5(00: X) + (555(6: X)) (6 00)
X« 0 z T T .
& 800, X) = S(0; X) — (8705(9; X) ) (6 — 0y). (2.6)

Somit ist

d
% 5((00: X)7 (0~ 00) + 5 D (b~ o) 5050 X)"(0 — 60)
(507 =007 3 g 50716 -0)
29 9(S(6:X)7(0— 00) — (0 00) 2.5(8: X)7(6 - 0,)
00
=0
1 9 ¢ip 7
Lo-o07 s x0-0)
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A~

= n(0—60)" (-~ 71(,)?05(90; X)7)(6 - 6y) + 32(,12 (2.7)

n—o0
—

0

In der letzten Gleichung wurde benutzt, dass 6 und infolgedessen auch 6 konsistent sind.
Somit lisst sich (6 —0)" 2 S(0; X)"(8—0o) in (60— 0)" % S(80; X)T (6 —6) und einen

0p(1)-Term zerlegen. Mit dem schwachen Gesetz der groien Zahlen folgt

(2.2)

0
—8(00; X1)"| =" Z(00; X1).

0 T noo
S(@o,X) — Ego 90

Es gilt also A < n(0 — 60)TZ(0y; X1)(8 — 6y) und mit der Cholesky-Zerlegung ist eine
Darstellung der Form Z(0¢; X1) = A(0¢; X1)T A(8o; X1) méglich, sodass

AZn(0—00)"A0; X1)TA(00; X1)(6 — 6))
(VnA(8o; X1)(6 — 90)) (VnA(80; X1)(6 — 60)).

Mit Satz 2.2.13 folgt /nA(6y; Xl)(é—eo) =N Ny (O, Id) und mit Lemma, 2.2.8 schliefllich
die Behauptung. O

Likelihood-Quotienten-Tests mit nuisance-Parametern

Die gewonnenen Resultate werden nun dazu genutzt, einen Test zu entwickeln, der die
Situation einfacher Nullhypothesen auf komplexere Nullhypothesen erweitert. Genauer
bedeutet dies, dass ein Signifikanztest hergeleitet wird, der im Falle eines mehrdimensio-
nalen Parametervektors @ die Nullhypothese Hy : 8 € ©g C © gegen die Alternativhypo-
these Hj : 6 € ©\Oy testet. Darauf aufbauend lassen sich asymptotisch dquivalente Tests
herleiten, die haufig fiir die Praxis vorteilhafte Eigenschaften, wie zum Beispiel leichtere
Berechenbarkeit, aufweisen.

Anders als im Fall einfacher Nullhypothesen wird es im Folgenden nicht das Ziel sein,
Annahmen iiber den gesamten Parametervektor 8 = (61, ...,04)" zu verifizieren, sondern
es werden nur Annahmen iiber r < d Vektorkomponenten gepriift. Dabei ist es von Vorteil,
den Parametervektor in einen zu testenden und einen nicht zu testenden Teil aufzuspalten.
Es sei 8 = (0{,95)T € RY mit 7 = (61,,...,61,) und 03 = (6,,...,02, ), sodass die
Nullhypothese Hy : (0{, 0%) (010, Og)T gegen Hi : (BlT, Og)T =+ (010, HT)T lautet und
wieder als Testproblem der Situation einfacher Nullhypothesen betrachtet werden kann. Es
besteht jedoch der Unterschied, dass @5 nicht getestet wird, sondern nur als unbekannter
Parameter bei der Analyse des Problems mitgefiihrt wird. Man bezeichnet 85 deswegen
auch als nuisance- oder Storparameter. Da 69 nicht bekannt ist, bedient man sich bei
der Untersuchung von Hj eines Schitzers fiir 82, wobei man zwischen unrestringiertem

und restringiertem Schéatzer unterscheidet. Der restringierte Schétzer 920 schatzt @, unter
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Annahme der Nullhypothese, also 81 = 61y, wohingegen der unrestringierte Schétzer 0
den Storparameter ohne Annahmen an 6, schiitzt. Die Schétzmethode ist dabei die der
Maximum-Likelihood-Schétzer. Zusammenfassend gelten folgende Bezeichnungen fiir die

Parametervektoren 8; mit i € {1,2}:

0; £ wahrer Parametervektor,
00 £ Parametervektor unter der Nullhypothese,
0; 2 unrestringierter M LS,

i = restringierter MLS.

Den Fall einfacher Hypothesen erweiternd wird der Likelihood-Quotient nun definiert

durch
supgce, L(6;2) ~ oxp (A)
Supgco, L(0'; x) 2°)’

sodass man im Fall ©; = ©\©¢ mit A = max(0, \) einen neuen Quotienten der Form
)

supgeo L(O2) _ (1 A)
SUDg/co, L(6;x) 2

und folglich

A =2(1(6;x) — 1(80;z))
erhalt.

Satz 2.4.2. Es seien x1,...,x, Realisierungen von i.i.d. Zufallsvariablen Xq,...,X,,
die gemdf einer reguldren Verteilung P(elT’OQT)T gezogen werden. Dann gilt fir die Ver-
teilung von A bei einer Nullhypothese der Form Hy : (0?,9§)T = (010,0T)T gegen
Hy:(67,65)" + (67,,67)":

D 2
A — Xdim(o,)-

0
Beweis. Unter Annahme der Nullhypothese gelten folgende Abkiirzungen: 6y = (01()),
2
. (6 . 6
6=, )und@y=|.") Esist
02 020

) = 1(60; X)) — 2(1(B0; X) — 1(60; X)).

Mit Gleichung (2.7) folgt

~ T ~
2(1(0; X) — 1(89; X)) = 1 ("f - "m) (- 255500 x)") (”3 - 91“) +op1) (28)
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und

T
2([(90;X) —1(00; X)) =n <9200_ 02) ( - 711508(00;X)T> (ézoo_ 02) + 0p(1).
(2.9)

Das schwache Gesetz der groflen Zahlen liefert

10 . T n—oo

sodass mit Gleichung (2.2)

) T . T
o [01—0 0, -0 0 0
Aa (O 10 Z(64; X) N ) [ (00 X) [ .
0, — 0, 0, — 0, 020 — 02 020 — 02

mit Z11(00; X) € R™", T15(00; X) = L1(00; X)T € R Thy(0p; X ) € RUE—7)x(d=7)
bringt mit der abkiirzenden Schreibweise Z;; = Z;;(0; X) fiir ¢, j = 1,2 die Darstellung

. T ) . T .
AL 0, — 01 Z11(61 — 6010) +Z12(62 — 02) B 0 T12(020 — 02)
65 — 6, 1'21(91 —01) + 122(92 —0) 00 — 0, IQQ(éQO —0)

= (01 — 010)TZ11(01 — 010) + (81 — 010) T Z12(82 — 83) + (82 — 02)TZ21 (6, — 610)

) 2
+ (03 — 02) T3 (05 — 03) — (B30 — 02) T Top (02 — 65) .
3] 4]

Um den Term auf der rechten Seite der Gleichung in eine geschlossenere Form zu bringen,
wird der restringierte MLS 00 in Abhéngigkeit der beiden unrestringierten MLS 61 und
65, sowie dem unter der Nullhypothese wahren Parameter 619 dargestellt und damit [4]

berechnet. Dazu sei

T(0y: X)' = (IH(BO;X) 112(00;X)>

I?'(00; X)  T*(00;X)
eine Partitionierung der Inversen der Fisher-Information an der Stelle 8y. Abkiirzend be-
zeichne auch hier Z = I (0y; X) fiir 4,7 = 1,2. Die Beweisidee folgt [Paw01].

6 0
Nach Satz 2.2.13 gilt (;) N /\fd( (;) ,I(O;X)_1>, sodass bei Unkenntnis von 64
2 2

und 05 der MLS fiir E[ég] = 0, ist. Ist 6, allerdings nicht unbekannt — im vorliegenden
Fall ist unter Annahme der Nullhypothese 81 = 019 bekannt — so hat dies Auswirkungen
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auf E[ég}, sofern die Verteilung von 65 von 61 abhingt. Nun gilt mit Lemma 2.2.10 fiir

die bedingte multivariate Normalverteilung von 05 gegeben 6.
92’91 ,E'_, Nd—r (02 +IQI (Ill)fl(él o 010)7122 o I21 (111)1112>7

also speziell E[ég\él] = 05 —i—IQl(IH)*l(él — 619). Es folgt wegen 61 = 01, dass 0, im
Mittel der bedingten Erwartung entspricht. Dies bedeutet

92 = E[92|é1] =0 _’_1-21(1-11)71(é1 — 910)
& 09 = 92 —1—21(111)7%91 — 910)

was unter Maximum-Likelihood-Schiitzung zu 89 = 03 — Z?1(Z")~1(6; — 010) und unter

Beriicksichtigung von”

— J! ~J 1 T19(Tan) 7t (2.10)
—(To2) " Ton I Too + (Tao) ' TonJ 1 T19(Tao) ™!

mit J = Z11 — Z12(Z22) T zu
020 = 03 + (Ta2) ' T21(61 — 010) (2.11)
fithrt. Subtrahiert man 69 auf beiden Seiten der Gleichung (2.11), so folgt
[4] = ((92 —05)T + (6, - 910)T(IQ1)T((122)_1)T)1'22 ((92 —02) + (Ta2) ' Ton (61 — 910))
= (02 — 02)"T22(02 — 02) + (02 — 02) T2 (6, — 610)
=[3] =[2]

+ (01— 010)" (To1)” ((1'22)_1)T122(92 —02)
T —

=T =I

e
+ (6 — 910)T(121)T((122)_1)TI21(91 — 619).

Es ergibt sich A g (él — 910)T(IH — (IQl)T((IQQ)il)T:ZQl) (91 — 010) und mit (210)
schliellich

AZ (0, —010)T (@) 10, — 010). (2.12)
Mit derselben Schluffolgerung wie im Beweis zu Satz 2.4.1 ist der Beweis vollstandig. [
Bisher wurde ausschliellich auf Likelihood-Quotienten-Tests eingegangen und deren asym-

ptotische Verteilung abgeleitet. Da das eigentliche Ziel jedoch darin besteht den Score-Test

herzuleiten, werden nun die gewonnenen Erkenntnisse genau fiir diesen Zweck genutzt. Da

"Vgl. dazu Anhang A.3.
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fiir unabhéngige und identisch verteilte Zufallsvariablen Xy, ..., X, wegen Gleichung (2.3)
Z(00; X) =nZ(0p; X1) gilt, folgt mit Gleichung (2.4)

Z(00; X)(0 — 6o) = S(60; X).

Kiirzt man wieder ab und schreibt Z;; = Z;;(60; X) fiir 4, j = 1,2, dann gilt also
Z11(61 — 019) + Z12(02 — 020) = 81(60; X)
R R a , sodass
Z21(01 — 010) + Z22(02 — O20) = S2(0¢; X)

(01— 010) = (T11 —1'12(1'22)_11'21)71(51(90;X) — T19(Z22) ' S2(00; X))

folgt. Einsetzen in (2.12) ergibt als asymptotisch #quivalente Statistik zu A mit der
abkiirzenden Schreibweise §; = 8;(0¢; X) fir i = 1,2:

As = (81— 112(122)_182)T(Ill - 112(122)_1121)_1(51 —T15(Z22) 'S2).

Setzt man Oy = B4, so addiert sich aufgrund der Konsistenz des MLS ein op(1)-Term, der
fiir n — oo verschwindet und es ist 83 = 0. Aufgrund ihrer Wichtigkeit fiir die folgende

Theorie wird die gewonnene Teststatistik in einer Definition festgehalten.

Definition 2.4.3. Es gelten die Annahmen aus Satz 2.4.2. Dann heifit die durch
As(020) = 81(00; X)TZ11(60; X)7181(60; X) (2.13)

definierte Statistik Score-Test.

Bemerkung 2.4.4. Da Ag asymptotisch dquivalent zu A ist, besitzt auch Ag eine asym-
ptotische Chi-Quadrat-Verteilung mit Anzahl an Freiheitsgraden identisch der Dimension
von 01. Welcher der vorliegenden Tests also letztlich angewendet wird, hdngt in der Regel
von der Berechenbarkeit der Schétzer ab. Fiir den Likelihood-Quotienten-Test muss der
unrestringierte MLS berechnet werden, fiir den Score-Test hingegen ist der MLS unter der

Nullhypothese ausreichend. Dies stellt in vielen Situationen einen klaren Vorteil dar.



Kapitel 3

Testen auf univariate

Normalverteilung

Nachdem nun die Grundlage fiir die Herleitung des eigentlichen Ziels dieser Arbeit ge-
schaffen wurde, werden in diesem Kapitel die Verteilungen von i.i.d. Beobachtungen sowie
von unbeobachtbaren i.i.d. Regressionsresiduen analysiert. Das Ziel wird es sein, einen
Test zu entwickeln, mit dessen Hilfe die Hypothese der Normalverteilung der zu testen-
den Groflen bestétigt oder verworfen werden kann. Dazu wird der Score-Test genutzt. Es
resultiert ein Test, dessen Vorziige nicht nur in seiner leichten Anwendbarkeit, sondern
auch in der asymptotischen Effizienz liegen. Im ersten Abschnitt wird dazu das Pearson-
Verteilungssystem eingefiihrt und die fiir die folgende Theorie notwendige Verbindung mit
der Normalverteilung herausgearbeitet. Die Abschnitte zwei und drei wenden die gewonne-
nen Resultate auf Beobachtungen beziehungsweise Regressionsresiduen an, um die speziell
auf Normalverteilung testende Jarque-Bera-Teststatistik herzuleiten. Die Vorgehensweise
orientiert sich an [BJ81]. Es wird das Pearson-Verteilungssystem betrachtet und anschlie-
Bend der Score-Test darauf angewendet. Da die Normalverteilung ein spezielles Mitglied
dieses Systems darstellt, kann so die gewiinschte Hypothese innerhalb dieses Verteilungs-

systems getestet werden.

3.1 Das Pearson-Verteilungssystem

Ziel des vorliegenden Abschnitts ist die Darstellung der Dichte einer Normalverteilung als
homogene lineare Differentialgleichung (DGL) und die daraus resultierende Verdeutlichung

des Zusammenhangs mit dem Pearson-Verteilungssystem. Dazu sei

L p(a) = ala)p(a) (31)

22
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eine DGL mit stetigen Funktionen a(x) und p(x), die hier vorerst nicht weiter spezifiziert

werden sollen. Dann bildet

ple) = coxp (A(x))

mit A(z) als Stammfunktion von a(z) und ¢ € R konstant eine Losung der gegebe-
nen DGL. Es sei nun X eine Zufallsvariable mit X ~ A(0,02) und Dichte f(z) =
(2m02)~1/2 exp (— 2*/(20?)). Dann ist eine Darstellung der Dichte f(z) in Form obiger
DGL mit Lésung f(z) = cexp (A(z)) mit ¢ = (2m0?)~1/2 und A(z) = —22/(20?) durch
a%f(w) = Al(x)f(x) = (—x/0?)f(z) gegeben. Der Ausdruck a(z) in obiger DGL (3.1)
wird konkretisiert, indem ein System von Gleichungen fiir a(z) angegeben wird, welches
durch Variation der darin enthaltenen Variablen spezifiziert werden kann. Dieses auf Karl

Pearson zuriickgehende System aus dem Jahre 1895 beruht auf der DGL

Loy = 2T ) (3.2

co+ c1z + caz?

fir z € R und wird als Pearson- Verteilungssystem bezeichnet. Es enthélt alle Funktionen
p(z), die eine Losung dieser DGL darstellen, wobei ¢y, ¢; und ¢y formgebende Parame-
ter sind, die mafigeblich fiir die Gestalt der Funktionen verantwortlich sind. Fiir eine
ausfiithrlichere Auseinandersetzung mit dieser DGL sei auf [KS69], Kapitel 6, sowie [JK94]
verwiesen. Damit Wahrscheinlichkeitsverteilungen als Losungen von (3.2) resultieren, ist
auf Normiertheit und Positivitit, d.h. f_oooo p(z)dx = 1 und p(x) > 0 fiir alle z € R zu
achten. In der Situation ¢p = 02 und ¢; = ¢ = 0 erhiilt man den Spezialfall der Normal-

2 wenn die Stammfunktion von a(z) wie

verteilung mit Erwartungswert 0 und Varianz o
im obigen Fall als A(z) = [ a(t)dt = —z*/(20*) gewiihlt ist und der konstante Faktor
¢ = (2m0?)~1/2 entspricht. Dieser Spezialfall wird im Folgenden dazu genutzt, beobacht-

bare Ereignisse innerhalb dieses Systems auf Normalverteilung zu testen.

Dass das Testen auf Normalverteilung nur innerhalb dieses Systems, also nur gegen Ver-
teilungen aus diesem System vorgenommen wird, stellt insofern eine Einschriankung dar,
als dass gegen gewisse Verteilungen, wie beispielsweise die Lognormal-Verteilung nicht
getestet werden kann. Empirische Studien belegen allerdings, dass trotz dieser misslichen
Situation die Jarque-Bera-Teststatistik im Vergleich mit anderen Tests auf Normalver-
teilung, die auch gegen Nicht-Pearson-Verteilungen testen, eine héhere Giite aufweist.!
Desweiteren ist festzuhalten, dass ein breites Spektrum an Verteilungen (unter anderem
Beta-, Gamma-, t- und F-Verteilung) durch das Pearson-System abgedeckt wird, was die

Attraktivitdt des Jarque-Bera-Tests nicht nur anhand seiner einfachen Form begriindet.

Vegl. [IB87].
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3.2 Testen von Beobachtungen

Bevor damit begonnen wird, Beobachtungen auf Normalverteilung zu testen, wird eine
Losung der DGL (3.2) speziell fiir Wahrscheinlichkeitsdichten g(y) = g¢(y;c1, c2, ¢o) mit
y € R hergeleitet. Da die Gestalt von a(y) = a(y;c1, ¢2, co) im Wesentlichen durch die Pa-
rameter cg, ¢; und co bestimmt wird, wird fiir die folgende Argumentation eine neue No-
tation eingefiihrt, die sich im spédteren Zusammenhang als sehr niitzlich erweisen wird. Es
bezeichne [ a(y;c1, c2,¢o)dy die Stammfunktion von a(y;c1, ¢z, co) mit konstantem Sum-
manden null. Mit dieser Schreibweise kénnen unabhéngig von den gewéhlten Parametern
co, ¢1 und co diese speziellen Stammfunktionen aus der Menge aller Stammfunktionen
f;ﬁ) a(t; ¢y, co, co)dt von a(y; ey, 2, ¢o) gewéhlt werden, ohne dass die entsprechenden Wer-
te fiir yo angegeben werden miissen. Dann gilt fiir Wahrscheinlichkeitsdichten aus dem

Pearson-Verteilungssystem die folgende Darstellung:

0
@g(y; c1,¢2,¢0) = a(y; c1, ¢, c0)g(y; €1, 2, o)

—  log(g9(y;c1,c2,c0)) =/a(y;cl,62,00)dy

— g(y7 01702760) = exXp (/a(y;61,62,60)dy>

g Dichte exXp (f a(y7 C1,C2, CO)dy)
= glyserez,00) = — : (3.3)
J7 exp (fa(y; 61762760)dy)dy
Es seien nun zi,...,x, Beobachtungen, die man sich als Realisierungen von i.i.d. Zu-

fallsvariablen vorstelle. Um zu priifen, ob es sich um normalverteilte Beobachtungen mit
unbekanntem Erwartungswert p und unbekannter Varianz o2 handelt, werden die Beob-
achtungen durch y; = x; — p fiir i = 1, ..., n zentriert und gepriift, ob fiir die zugehorigen
Zufallsvariablen E[Y;] = 0 und Var[Y;] = o2 gilt. Es bezeichne g(y) die Dichte der Zufalls-
variable Y; fiir ¢ = 1,...,n und auBlerdem sei g(y) aus dem Pearson-Verteilungssystem.
Betrachtet man nun die zentrierten Beobachtungen 1, ..., y,, so ist die Log-Likelihood-
Funktion der Stichprobe y = (y1, ..., y,) unter Beriicksichtigung von (3.3) gegeben durch

— 00

l(c1, 2, co5y) = —nlog </ v1(y; 01762,Co)dy> +Z/a(yi;cl7c2760)d% (3.4)
=1

mit v1(y; c1, 2, o) = exp (fa(y; c1, 62,00)dy)'

Um nun die Nullhypothese der Normalverteilung der Y; zu testen sei 8 = (67, 6,)7
mit 0'{ = (c1,c2) und 0y = ¢y, sodass nach Abschnitt 3.1 die Nullhypothese Hy : 0T =
(0,0,0?) lautet. Auf diese wird der Score-Test As aus (2.13) angewendet, fiir den der

Score S8i(c1,c2,c0;Y) und die Teilmatrix Z;;(cy, ¢2,c0;Y) der Fisher-Informationsmatrix



3.2. Testen von Beobachtungen 25

Z(c1,c2,¢0;Y) an der Stelle des restringierten MLS 0, benotigt wird. Als erstes wer-
den die Ableitungen der Log-Likelihood-Funktion nach den einzelnen Komponenten des
Parametervektors @ bestimmt und dann die Parameter entsprechend der gewiinschten Hy-
pothese festgesetzt. Da in den folgenden Darstellungen innerhalb der Ableitungen der Log-
Likelihood-Funktion nach den Parameterkomponenten v; (y; c1, ¢, ¢p) nicht mehr von den
Differentiationsvariablen abhéngt, wird abkiirzend vy geschrieben. Zusétzlich sei va(c;) =
a%ja(y; ¢1,C2,¢p), wobei hier eine Abhéngigkeit von den Differentiationsvariablen inner-
halb der Ableitungen der Log-Likelihood-Funktion besteht. Mit dieser Notation gilt fiir
je€{0,1,2}:
0 [

B—le(e;y) = —nV] /OO v1Va(ej)dy + Z(c;) (3.5)

mit Vi = [%_uidy, Va(e;) = [va(cj)dy und Z(c;) = Y7, [va(c;)dy;. Eine weitere

Vereinfachung der Form

0

8le(@; y) = —nUV(c;) + Z(cj) (3.6)

ergibt sich mit U = V,™! und V(e;) = [ v Va(c;)dy.

Lemma 3.2.1. Unter der Nullhypothese ist 81 = (0,0,0%) und somit v; = exp( —
y*/(20%), Vi = (2m0*)!2, U = (210°) 712, wa(cr) = — (0% + y?)[o?, va(e2) = y?/0",
va(co) = y/o*, Valer) = y/o® — y*/(30%), Va(ez2) = y*/(40%), Va(eo) = y?/(20%), V(e1) =
JZoun(v/0® = 42 /Ba"))dy, Vies) = [ v/ (4ot)dy, Vi) = [ 02/ (20%)dy,
Z(er) = 31 yil 0% =y} [ (30%), Z(ea) = Yoy yi /(40) und Z(co) = 327 y7 /(207).

Weiter sei pj =n~ 1Y ", yf =n"t3° " (z; — p)’ das j-te empirische Moment von Y;. Da
der Erwartungswert p der X; unbekannt ist, wird als Schétzer fiir y der Stichprobenmit-
telwert Z = n~' Y | x; verwendet, sodass fi; = n~' Y7 | (v; — Z)’ das j-te empirische

Moment von Y; unter Schitzung von u bezeichnet.

Proposition 3.2.2. Es sei S1(0;y)" = (%1(0; Y), %Z(G; y)> der Score im vorliegenden
Testproblem. Dann gilt:

Beweis. Zuerst werden die partiellen Ableitungen von [(0;y) nach ¢; und ¢y an der Stelle
0o = (0,0, 02)T berechnet. Man beachte dabei, dass unter der Nullhypothese Y; normal-
verteilt ist und somit Eg,[V;] = 0, Eg,[Y;?] = 02, Eg,[Y;?] = 0 und Eg,[V;}] = 30* gilt. Es
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folgt mit Gleichung (3.6) und Lemma 3.2.1

9 r 1T, 1 1 1,
8Tl(907y) _n< 2 /yzU'Uldyz OA/yiledyz_ 3 Zyz 3 477,2 z)
D DN BN

_Eeo [Yi] :Eeo [Yi3] =M1 =H3

oo

8 n

P [(B0;y) = —71(44 / ?J?U’U1dyz—4 1 Zy;l>
e i=1
— —_—

:EGO [3/14] e

I
40 4 )
Setzt man 6y = Oy, so folgt wegen o2 = fi2 und fi; = 0 die Behauptung. O

Um die Fisher-Informationsmatrix herzuleiten, werden die zweiten partiellen Ableitun-
gen in den einzelnen Kombinationen der Parameterkomponenten bestimmt. Mit Hilfe von

Gleichung (3.6) gilt fiir j, k € {0,1,2}:

e 1(6;y) =—n|V( <)iU+UiV( i) +iZ( ) (3.7)
8CkaCj y)=-n < 8ck 8ck < 8Ck < .

mit 32U = —U2V (cr), 32V (ej) = [Zo o <V2(Ck)V2(Cj) + Jisz(Cj)>dy und 527 (c;) =
>t ge Va(c))-

Proposition 3.2.3. Es sei Z(0;Y) = —Ig, [%Z(O;Y)] mit i,j = 1,2 die Fisher-

Information im vorliegenden Testproblem. Dann gilt:

2

R . = 0 0

) T11(00;Y) Ti2(00;Y Sz
I(eo,Y) _ ll(AO ) 12(A0 ) =n 0 6 ﬁ
T21(00;Y) I92(00;Y) 0 3 1
2fiz 243

Beweis. Es werden die zweiten Ableitungen von [(0;y) nach ¢, ¢a und ¢y erneut zuerst

an der Stelle 8y berechnet. Mit Gleichung (3.7) und Lemma 3.2.1 gilt:

0* . 1 1 a2 1 0 2 A
5l Ooi) = —n( = (%0ulYil = 53l ¥7]) + 5o [¥2] = 5 5o, V]
1 1 1 1 1
+ @Eeo Y] + ﬁEeo 7] - ﬁEGO ;'] - pi i 206%)

_ 1 M2 4
B n<602 (74—|—20(5>7
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5.21(00; - Eg, [V;* Eg. [V3] — — g, [V5] + —
80% ( an) n< (40.4 00[ ]) + 1608 00[ z] 356 90[ 7’]+30-6M6>
He
— 1+ 55
n< + 306>,
0? 1 ) 2 )
87%[(907y) = _n< — <20’4E00[YZ ]) 1o 8E00[Y } 7E90[Y ] 6/1,2>
_ (Y
=M\ 901 )
0? A ; .
801802 (Han) —’I’l< — 1 4E00[}/Z ]< QEOO[E] 30 4]E90[Y ]) —+ TEOO[Y ]
1 7 3 2 5 1 2
~ Y]~ B[]+ g a7 5w — o)

i
P 2u3
= <U4‘306> und
82 1 2 4 4
Dende [(60;y) = —n —T‘ﬂEoo[Y] ]Eeo[Y]+87Eoo[Y] e, Y] 5,6 H4
22
=-n|l-—=).
(4)

Mit Z(8;Y) = —Eg, [ 5055185 Y)] und Egy ;] = £ 31, By [Y7] = Eg, [Y] und Eg, [V?] =
02, Eg,[Y}] = 304, Eg, [Yf] = 1509, g, [V;®] = 1050® und Eg,[Y}¥] = 0 falls k ungerade,
sowie o2 = 1o folgt die Behauptung. O

Wendet man die Propositionen 3.2.2 und 3.2.3 auf die Score-Teststatistik in (2.13) an

fiithrt dies zu

Um die Bedeutung dieses Ausdrucks besser zu verstehen, werden zwei Momentenverhéltnis-
se eingefithrt, mit denen eine Abweichung von der Normalverteilung gemessen werden

kann.
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Definition 3.2.4. Es sei X eine Zufallsvariable mit E[X] = p und Var[X] = o2. Weiter

sei pj = E[(X — p)’] das j-te zentrierte Moment von X. Dann bezeichnet

X —p\° M3
e (55 -
1 g y'?

4
a-e{(55)]-
o 15

die Wélbung von X. Fiir eine Stichprobe X bestehend aus i.i.d Zufallsvariablen X1, ..., X,
sei entsprechend f; = n™ 1Y 7 (X; — X)) mit X = n~t> " | X; das j-te empirische

die Schiefe von X und

zentrierte Moment und fio die Stichprobenvarianz von X. Dann bildet

die empirische Schiefe und

die empirische Wolbung.

Anschaulich misst die Schiefe einer Verteilung die Neigung nach links oder rechts, die
Wolbung die Kriimmung, bzw. die Steilheit einer Verteilung. Symmetrische Verteilungen
besitzen demnach eine Schiefe von null, die Umkehrung dieser Aussage gilt jedoch nicht.
Die Wolbung einer Normalverteilung betridgt drei. Die Ergebnisse im vorliegenden Test-

problem werden nun zusammengefasst und in einer Definition wiedergegeben.

Definition 3.2.5. Es gelte die Situation des vorliegenden Testproblems. Dann definiert

JB = ”((ﬂ)2+<b2_3)2) (3.8)

6 4

die auf [JB87] zuriickgehende Teststatistik. Man bezeichnet sie auch einfach als Jarque-

Bera-Test.

Bemerkung 3.2.6. Der Jarque-Bera-Test auf Normalverteilung von Beobachtungen nutzt
somit sowohl die empirische Schiefe als auch die empirische Woélbung, um ein Abweichen
von der Normalverteilung festzustellen. Mit Bemerkung 2.4.4 folgt, dass JB eine asym-
ptotische X%—Verteilung besitzt und die Nullhypothese der Normalverteilung zum Niveau

« ablehnt, falls der Wert von JB groler als das (1-a)-Quantil der x3-Verteilung ist.
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3.3 Testen von Regressionsresiduen

In diesem Abschnitt wird ein Schritt weitergegangen und ein Test hergeleitet, mit dem die
Moglichkeit besteht, unbekannte und zudem auch unbeobachtbare Regressionsresiduen auf

Normalverteilung zu testen. Dazu wird das lineare Regressionsmodell

r=YB+e
mit Beobachtungsvektor = (z1, ..., 7,)T, bekannter (n x d)-Designmatrix Y = (y;;), un
bekannten Regressionskoeffizienten f31, . . ., 34, zusammengefasst im Vektor (B, ..., 84)7 =
B und i.i.d. Zufallsvariablen (Regressionsresiduen) ey, ..., €, mit Ele] = 0 fir alle i =

1,...,n und Var[e;] = Var[e;] fiir alle i # j betrachtet. Es sei g(e) die Dichte der Residu-
en ¢ fir i =1,...,n und zudem sei g(e) aus dem Pearson-Verteilungssystem, sodass

c1+e€ ( )
. 59\&C1,C2,C
co+ cre+ coe2” T T

ag(E;Clycmco) = -
gilt. Wie im vorherigen Modell werden die j-ten empirischen Momente der Residuen
€; durch pu; = n~t Yoy eg definiert, wobei ein entscheidender Unterschied auftritt. Da
die Parameter §; fiir ¢ = 1,...,d im vorliegenden Modell nicht bekannt sind, mﬁssen
diese geschétzt werden. Dazu sei Y; = (Yi1,...,Yiq). Dann gilt g; = n= 130 &
n~ES (@ — Y;3)7, wobei als Schiitzer fir B der Kleinste-Quadrate-Schiitzer (KQS)
B(x) = (YTY) 'Y Tz verwendet wird.
Erneut stellt die Funktion g(€;c1, ¢2, ¢g) mit ¢; = ¢ = 0 die Dichte einer Normalver-
teilung dar, sodass mit 8 = (67,6y), 67 = (¢c1,¢), 62 = ¢y die zu testende Hypothese
Hp : 6, = (0,0)T lautet. Die Log-Likelihood-Funktion I(cy, ¢z, co; €) ist folglich identisch

zu (3.4) mit € anstelle von y, sodass an der Stelle 8y mit dem Beweis zu Proposition 3.2.2

3
sinie” =43 - 20, 24 =)

und mit dem Beweis zu Proposition 3.2.3

3z 0 0

Z(6p;e)=n]| 0 6 %
3 1

0 557 557

folgt. Somit gilt wegen o2 = ft2 und mit etwas Rechenarbeit

1 1 /[ 302 fuj
el ) -)
643 24\ /3 2 fi H3

Beachtet man, dass fiir die KQS-Residuen €; das erste empirische Moment unter Schitzung

des Erwartungswerts, namentlich gy = n™ >0 & = n (X0, 2z — D0y Y,B(xl)),
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wegen B(:z:l) = (YZTYi)_lY,Z-T:L‘Z' = Y;lxi identisch null ist, so erhélt man wie in der

Situation des Testens auf Normalverteilung von i.i.d. Beobachtungen

12 1 (fu 2
Aszn(;m(A 23)).
65 24\ i3

Schreibt man in dieser Situation fiir die empirischen Momente unter KQ-Schéatzung \/a =

[Lg/ﬂgﬂ und by = fig /i3, so folgt

o 5(()+ 50

Bemerkung 3.3.1. Es besteht also auch die Moglichkeit, Regressionsresiduen mit der
von Jarque und Bera vorgeschlagenen Teststatistik auf Normalverteilung zu testen. Hierzu
werden ausschliellich die ersten vier empirischen Momente der KQS-Residuen ¢é; benétigt,

fiir die allerdings die Regressionskoeffizienten g; fiir ¢ = 1, ..., d geschétzt werden miissen.



Kapitel 4
Der Jarque-Bera-Test im Vergleich

Obwohl der Jarque-Bera-Test (JB-Test) aufgrund seiner einfachen Struktur ein prakti-
sches Werkzeug im Testen auf Normalverteilung darstellt, stellen sich bei genauerer Un-
tersuchung einige mangelhafte Eigenschaften heraus. Auf diese soll im vorliegenden Kapitel
ndher eingegangen werden und zugleich werden einige Modifizierungen der Teststatistik
hergeleitet. Zusétzlich wird zur Einordnung der Effizienz des JB-Tests ein Vergleich mit
anderen — sowohl parametrischen als auch nicht-parametrischen — Tests auf Normalver-
teilung vorgenommen und die Ergebnisse anhand von empirischen Analysen untermauert.
Begonnen wird im ersten Abschnitt mit der Herleitung empirischer kritischer Werte, die
fiir die nachfolgenden Untersuchungen unerlésslich sind. Die Abschnitte zwei und drei

gehen dann auf einen Vergleich der Power in verschiedenen Verteilungsmodellen ein.

4.1 Kritische Werte und Testalternativen

Da in vielen Gebieten der Wissenschaft der JB-Test ein gingiges Mittel zum Testen auf
Normalverteilung sowohl von Beobachtungen, als auch von Regressionsresiduen geworden
ist, gewinnt die Frage nach seiner Effizienz immer mehr an Bedeutung. Zudem werden
in den meisten Anwendungen nicht seine exakten Quantile bei den Untersuchungen zur
Entscheidung herangezogen, sondern wesentlich héufiger die seiner asymptotischen Vertei-
lung. Da jedoch die Verteilung des JB-Tests nur sehr langsam gegen seine Grenzverteilung
konvergiert, resultieren erhebliche Abweichungen der Verteilung der Teststatistik bei endli-
chen Stichproben von der asymptotischen Verteilung. Dies hat zur Folge, dass ungeniigende
Ergebnisse resultieren kénnen, wenn die Signifikanzwerte der x3-Verteilung dazu genutzt
werden, eine Entscheidung iiber die Hypothese der Normalverteilung bei Vorliegen kleiner
Stichproben zu treffen.

Um dennoch in sinnvoller Weise mit dem JB-Test arbeiten zu konnen, miissen fiir

endliche und insbesondere kleine Stichproben der Gréflenordnung n die kritischen Werte

31
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(kW) empirisch bestimmt werden, da die exakte Verteilung der Teststatistik fiir endliches
n nicht angegeben werden kann. Im Laufe der Forschung rund um den JB-Test wurden
so bereits in immer umfangreicheren Untersuchungen von einigen Autoren wie [Urz96],
[DS96] und aktuell von [WKO09] emprische kritische Werte (ekW) publiziert. Dazu wur-
den Monte-Carlo-Simulationen auf der Basis normalverteilter Stichproben unterschiedli-
cher Gréflenordnung durchgefithrt. Um moglichst prézise Ergebnisse zu erhalten wird eine
grofle Anzahl solcher Simulationen, sogenannte Replikationen, durchgefiihrt und die Werte
der J B-Statistik dieser Simulationen berechnet. Die kritischen Werte zu gegebenem Signi-
fikanzniveau « lassen sich dann anhand der JB-Werte bestimmen, das heiffit zum Niveau
a bildet der (1 — «) - (#Replikationen)-groite JB-Wert den empirischen kritischen Wert.
Aufgrund des Umfangs und der daraus resultierenden Genauigkeit genannter Analysen,
die in eigenen Untersuchungen so nicht moglich wire, wird an dieser Stelle auf erneute
Berechnung von empirischen kritischen Werten verzichtet und auf vorhandene Datenséitze
zuriickgegriffen.

Zum Vergleich mit den asymptotischen kritischen Werte werden die empirischen kri-
tischen Werte fiir verschiedene Stichprobengréfien n und Signifikanzniveaus a angege-
ben, die auf der Basis von je 107 Replikationen von Wurtz und Katzgraber berech-
net wurden und in [WKO09] zu finden sind. Diese waren nach eigenem Wissensstand die
genauesten zur Zeit der Veroffentlichung ihres Papers verfiigbaren. Eine Ubersicht der
empirischen kritischen Werte gibt die Tabelle 4.1. Zur besseren Veranschaulichung der
= ekW(n,a) — kW(a) fir n € {10, 20, 35, 50, 75,100, 150, 200,
300, 400,800, 1000} und « € {0.005,0.01,0.05,0.1,0.2} dient die Abbildung 4.1. Dabei

wurde eine lineare Interpolation durchgefiihrt.

Differenzwerte A(n, a)

| | n=10| n=20| n=35| n=5| n=75] n=100 n=150 | n =200
a = 0.005 7.300 | 13.471 | 16.414 17.281 17.305 16.959 16.257 | 15.638
a =0.01 5.703 9.718 | 11.736 12.392 12.586 12.491 12.185 | 11.882
o =0.05 2.525 3.795 4.593 4.976 5.278 5.430 5.598 5.676
o =0.05 2.525 3.795 4.593 4.976 5.278 5.430 5.598 5.676
a=01 1.623 2.347 2.881 3.183 3.486 3.673 3.904 4.033
a=02 1.124 1.562 1.916 2.128 2.346 2.487 2.656 2.756
n=300 | n=400 | n=800 | n=1000 | n=1600 | n=2400 | n=10000 | n— oo

a=0.005 | 14669 | 13.583 | 12.726 12.366 11.762 11.384 10.792 | 10597
o =0.01 11358 | 10778 | 10.299 10.117 9.810 9.608 9.313 9.210
o =0.05 5.773 5.855 5.910 5.924 5.957 5.967 5.986 5.991
a=01 4.189 4.332 4.427 4.457 4513 4.542 4.589 4.605
=02 2.876 2.988 3.065 3.091 3.136 3.161 3.207 3.219

Tabelle 4.1: Empirische kritische Werte der JB-Statistik zu einigen Stichprobengréfien
n und Signifikanzniveaus a bei 107 Replikationen. Vgl. [WK09], Tabelle 1.
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Man sieht in Abbildung 4.1, dass fiir a € {0.05,0.1,0.2} die A-Werte negativ, das heifit
also die empirischen kritischen Werte des JB-Tests kleiner sind als die kritischen Werte
der asymptotischen Verteilung und als Folge der JB-Test bei Benutzung der kritischen
Werte der asymptotischen Verteilung vor allem bei kleinen Stichproben sehr konservativ
ist. Die fehlende Struktur der empirischen kritischen Werte fiir a € {0.005,0.01}, nédmlich
fiir n < 20 negative und ab n > 20 positive A-Werte, ldsst sich nicht so leicht erkléren.
Dies bedeutet jedoch, dass der JB-Test bei Stichproben der Grofie n < 20 bei Verwen-
dung der kritischen Werte der y3-Verteilung seltener die Nullhypothese ablehnt, als dies
bei Verwendung der empirischen kritischen Werte der Fall ist und bei Stichproben der
Grofenordung n > 20 bei Verwendung der asymptotischen kritischen Werte die Nullhy-
pothese hiufiger ablehnt. Dass die A-Werte grofler Stichproben jedoch gréfler sind als die
A-Werte kleiner Stichproben der Groflienordnung n = 20, die nahe null liegen, zeigt deut-
lich, dass die Verwendung der Quantlile der x3-Verteilung zwangsliufig zu fehlerhaften

Schlussfolgerungen fiihrt.

0 200 400 600 800 1000

Abbildung 4.1: Abweichungen der empirischen kritischen Werte der JB-Statistik von
den kritischen Werten der y3-Verteilung in Abhiingigkeit der Stichpro-

bengrofe n.

Obwohl der heute als Jarque-Bera-Test bekannte Test auf Normalverteilung erst durch
Jarque und Bera, die ihn bei Thren Untersuchungen als einen Spezialfall des Score-Tests
innerhalb des Pearson-Verteilungssystems entdeckten!, seine groe Popularitit erlangte,

tauchte die Teststatistik im Vorfeld bereits an anderer Stelle in der Literatur auf. Bowman

Vegl. [IB87].
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und Shenton waren es, die ihn erstmals nannten?, nachdem sie herausgefunden hatten, dass
sich die asymptotischen Erwartungswerte sowie die asymptotischen Varianzen der empiri-
schen Schiefe v/b; und der empirischen Woélbung by unter Annahme der Normalverteilung
als 0 und 3, bzw. 6/n und 24/n ergeben. Weiterhin zeigten sie, dass die asymptotische
Kovarianz beider Grofien null ist und beide Groflen asymptotisch normalverteilt sind. Dies
begriindet in einfacher Weise die Grenzverteilung der Teststatistik, stellt vor diesem Hin-
tergrund der J B-Test nichts weiter als die Summe zweier asymptotisch unabhéngiger und

quadrierter N(0, 1)-verteilter Zufallsvariablen dar.

| | n=10] n=20] n=35

n=50 | n=75| n=100 n=150 | n =200

a = 0.005 23.831 25.963 24.569 23.229 21.334 19.986 18.285 17.156
a=0.01 18.374 18.643 17.540 16.659 15.506 14.719 13.707 13.042
a = 0.05 7.416 6.932 6.679 6.553 6.414 6.319 6.218 6.149
a=0.1 4.177 3.966 3.961 3.998 4.066 4.126 4.218 4.272
a=0.2 2.183 2.216 2.355 2.462 2.588 2.677 2.790 2.858

n=300 | n=400 | n =800 | n=1000 | n=1600 | n=2400 | n = 10000 n — 00

a = 0.005 15.689 14.211 13.129 12.694 11.971 11.525 10.827 10.597
a = 0.01 12.149 11.271 10.616 10.372 9.967 9.716 9.339 9.210
a = 0.05 6.093 6.050 6.031 6.022 6.018 6.008 5.996 5.991
a=0.1 4.355 4.434 4.492 4.510 4.546 4.565 4.594 4.605
a=0.2 2.946 3.032 3.092 3.113 3.150 3.171 3.206 3.219

Tabelle 4.2: Empirische kritische Werte der J By-Statistik zu einigen Stichprobengréfien
n und Signifikanzniveaus o bei 107 Replikationen. Vgl. [WK09], Tabelle 1.

Diese Erkenntnis gibt Anlass zu einer Modifizierung der Teststatistik dahingehend, anstel-
le der asymptotischen Erwartungswerte und der asymptotischen Varianzen die exakten
Erwartunsgwerte und Varianzen der Groflen v/b; und by zu betrachten. Unter Verwen-
dung der Eigenschaften der k-Statistiken in [Fis30] berechnete Urzua die Erwartungswer-
te und Varianzen in [Urz96] als E[v/b1] = 0, E[bs] = 3(n — 1)(n + 1)7%, Var[yb] =
6(n —2)((n+ 1)(n+3))"" und Varbs] = 24n(n — 2)(n — 3)((n + )2(n + 3)(n +5)) ",

sodass eine neue, modifizierte Jarque-Bera-Teststatistik der Gestalt

15— (VB2 (ba— E[bz})2>

Var[v/b1] Var|[bs]

_ (n+1)(n+3) (n+1)(n+5) 3(n —1)\2
~ 6(n—2)(n—3) <(n—3)(\/a)2+ 4n <b2_ n+1 )>

#Vgl. [BS75], sowie [Urz96], S.248.
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resultierte. Da sich JB und JBy asymptotisch entsprechen, besitzt auch JBy eine x3-
Grenzverteilung und ein Vergleich der empirischen kritischen Werte der neuen Teststatistik
mit denen der asymptotischen Verteilung erscheint wiinschenswert. Dazu wird erneut auf
die Ergebnisse in [WKO09] fiir ausgewéhlte Signifikanzniveaus « zuriickgegriffen. Diese sind
in Tabelle 4.2 zusammengefasst. Ebenso wie im vorangehenden Fall werden die Differenz-

werte A(n,«) in Abbildung 4.2 dargestellt.

15

10

Abbildung 4.2: Abweichungen der empirischen kritischen Werte der J By-Statistik von
den kritischen Werten der y3-Verteilung in Abhiingigkeit der Stichpro-

bengrofe n.

In Abbildung 4.2 kann man erkennen, dass fiir a € {0.005,0.01,0.05} die A-Werte fiir
Stichproben aller Groflienordnungen positiv sind, wobei die Differenzwerte speziell fiir
a = 0.05 sehr klein sind. Daraus kann geschlossen werden, dass bei Verwendung der
kritischen Werte der y3-Verteilung besonders im Fall a € {0.005,0.01} die Nullhypothose
bereits viel zu schnell abgelehnt wird. Die Entwicklung der Differenzwerte ist mit steigender
Stichprobengréfie im Bereich kleiner Stichproben wesentlich weniger von Schwankungen
geprigt, als dies bei den A-Werten der JB-Statisik der Fall ist. Fiir o € {0.1,0.2} sind
die A-Werte negativ, liegen jedoch etwas niher an den kritischen Werte der asympto-
tischen Verteilung, sodass in dieser Situation die Verwendung der kritischen Werte der
X3-Verteilung konservative Entscheidungen nach sich zieht, d.h. also die Nullhyopthese

erst spater abgelehnt wird.

Im direkten Vergleich mit der urspriinglichen JB-Statistik zeigt sich in der Anwen-

dung auf Regressionsresiduen, dass bei bestimmten Alternativen der neue Test eine we-
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sentlich hohere Giite aufweist. Betrachtet man als Alternativhypothesen zur Hypothese
der Normalverteilung beispielsweise die Studentsche t-Verteilung mit 5 Freiheitsgraden,
die x3-Verteilung, die Laplace-Verteilung oder die Lognormal-Verteilung (alle zum Er-
wartungswert 0 und Varianz 25), so zeigen die Ergebnisse in [Urz96], Tabelle 2, dass bei
Verwendung der Signifikanzwerte der y3-Verteilung zum Niveau a = 0.1 die neue Statistik
J By fiir Stichprobengrofien n € {20, 35,50,100} die urspriingliche Statistik JB hinsicht-
lich des Fehlers 2. Art deutlich unterbietet. Bei Betrachtung der empirischen kritischen
Werte anstelle der asymptotischen kritischen Werte zeigt sich ein #hnliches Bild, obwohl
die Dominanz in dieser Situation nicht so eindeutig ist und beziiglich der x3- sowie der
Lognormal-Verteilung die JB-Statistik sogar teilweise dominiert. Zusammenfassend je-
doch geben die Resultate Anlass dazu, die neue Statistik speziell in der Situation kleiner

Stichproben der alten Statistik vorzuziehen.

Eine weitere Variante der Jarque-Bera-Statistik basiert auf Versionen der empirischen
Schiefe und Wolbung. Da die Stichprobenwdélbung by aus Definition 3.2.4 nur einen ver-
zerrten Schétzer fiir die theoretische Wolbung einer Normalverteilung darstellt (E[bs —3] =
—6(n + 1)1 # 0), wird diese angepasst und die auf [JG98] zuriickgehenden Schiefe- und
Weélbungsmafe k1 = v/n(n — 1)v/bi(n —2)~! und ks = (n — 1)((n + 1) (b2 — 3) +6) ((n —
2)(n — 3))_1 betrachtet, die zudem konsistent sind. Auf dieselbe Art und Weise wie im

Falle des JB-Tests erhilt man so eine weitere Teststatistik der Form

n k2
JBJG:6<I€%—|—42>.

Da fiir diese Teststatisik keine empirischen kritischen Werte vorliegen, wurden diese in eige-
ner Arbeit bestimmt. Die Vorgehensweise war dabei so, dass eine Routine in der Program-
miersprache R entwickelt wurde, mit der eine Modellierung der gewiinschten kritischen
Werte moglich ist. Dazu wurden die JB jg-Statistik, sowie die zur Beschreibung dieser
Statistik notwendigen Groflen implementiert und Replikationen standardnormalverteilter
Stichproben verschiedener Gréflenordnung erzeugt. Unter Anwendung dieser Replikatio-
nen auf die J B jg-Statistik konnten unter Beachtung des gewiinschten Signifikanzniveaus
a nach der eingangs beschriebenen Vorgehensweise, das heifit also durch Betrachtung der
(1 — «) - (#Replikationen)-grofiten JBjg-Werte die gewiinschten empirischen kritischen
Werte ermittelt werden. Diese sind in der Tabelle 4.3 angegeben. Die Berechnungen be-
schrinken sich dabei auf die Parameterwerte o = 0.05 und n € {10, 20, 50, 100, 200, 400}
um in dieser speziellen Situation die J B jg-Statistik in die Vergleichsanalysen einbeziehen
zu konnen. Aufgrund der geringen Computerleistung, mit der die Berechnungen durch-

gefiithrt wurden, war dies nur auf der Basis von 10* Replikationen moglich. Die Ergebnisse
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=10 | n=20 | n=50 | n=100 | n=200 | n=400 |

| | n
| @=005| 5879 | 5700 | 6.004 | 6204 | 6223 | 5.990 |

Tabelle 4.3: Empirische kritische Werte der JBjg-Statistik zu einigen Stichproben-

groBen n und Signifikanzniveau o = 5% bei 10* Replikationen.

sind demzufolge wesentlich ungenauer als die in [WKO09] fiir JB und JBy, sollen den-
noch in den Untersuchungen benutzt werden. Die Programmcodes zur Ermittlung der
gewonnenen Werte sind auf der beigefiigten Daten-CD im Einband am Ende der Arbeit

enthalten.

4.2 Powervergleich innerhalb des Pearson-Verteilungssystems

Um zu verstehen, wie die Power der Jarque-Bera-Statistiken im Vergleich zu anderen Tests
auf Normalverteilung einzuordnen ist, wird diese im vorliegenden Abschnitt innerhalb
des Pearson-Verteilungssystems mit der Power anderer Tests vergleichen. Power (auch
Teststirke oder Sensitivitdt genannt) bezeichnet dabei die Wahrscheinlichkeit, bei Vor-
liegen der Alternativhypothese richtigerweise die Nullhypothese der Normalverteilung zu
verwerfen. Umso hoher die Power eines Tests ist, desto geringer ist also die Wahrscheinlich-
keit einen Fehler 2. Art zu begehen. Dabei hingt die Power mafigeblich vom vorgegebenen
Signifikanzniveau « ab, zumal dieses ja der Wahrscheinlichkeit entspricht, mit der ein Feh-
ler 1. Art gerade noch toleriert wird. Dies motiviert also nach denjenigen Tests zu suchen,
deren Power im Vergleich zu anderen Tests moglichst grof} ist. Dazu wird das Testmodell
in [JB87], Kapitel 5, iberarbeitet und auf der Basis aktueller empirischer kritischer Werte
fir JB, JBy und JBjq, sowie unter Austausch und Hinzunahme einiger Tests auf Nor-
malverteilung erweitert und prézisiert. Die Alternativen zur Normalverteilung in diesem
Modell bestehen aus den folgenden Pearson-Verteilungen: Beta(3,2)-Verteilung, Student’s
t-Verteilung mit fiinf Freiheitsgraden (5 df) und Gamma(2, 1)-Verteilung. Zusétzlich wird
als Nicht-Pearson-Verteilung die Lognormal-Verteilung untersucht. Speziell wird in der
vorliegenden ~ Situation fiir die Stichprobengréfen n €  {10,20, 50,100, 200,
400} zum Signifikanzniveau « € {0.01,0.05,0.1} die Power der Jarque-Bera-Tests mit

der Power der folgenden Tests, die in der Praxis hdufig angewendet werden, verglichen:

e Anderson-Darling-(Anpassungs-)Test: Der Anderson-Darling-Test ist ein Test der
empirischen Verteilungsfunktion. Er basiert auf der Tatsache, dass unter Annahme
der Normalverteilung eine Transformation in eine Gleichverteilung moglich ist. Dazu

wird die geordnete Stichprobe X(y),..., X(,) nach der Transformation mit einem
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Abstandstest auf Gleichverteilung getestet. Mit Y(;) = &_I(X(i) — X) wobei 62 =
(n—1)"13" (X; — X)? lautet die Teststatistik

n

AD = = 3 2(21 1) (log (#(¥()) +1og (1~ @ (¥u-ic0)-

® ist die Verteilungsfunktion der A(0, 1)-Verteilung. Die Berechnung der p-Werte

basiert dabei auf den Werten des Produkts ¢ - AD, wobei ¢ ein Faktor ist, der von

der Stichprobengrofie sowie der zu testenden hypothetischen Verteilung abhéngt.

Lilliefors-Test: Als eine Modifizierung des Kolmogorov-Smirnov-Tests ist der Lillie-
fors-Test ebenso wie der Anderson-Darling-Test ein Test, der auf der empirischen
Verteilungsfunktion basiert. Seine Teststatistik misst den maximalen Abstand zwi-
schen der empirischen Verteilungsfunktion der Daten X7, ... X, und einer N'(X, 5?)-
Verteilung, 6% = (n — 1)71 Y0 | (X; — X)2 Mit V; = 67 1(X; — X) lautet die Test-
statistik

LIL =max{LIL", LIL"},

wobei LILT = maxizl,_._vn{% — <I>(Yz)} und LIL™ = maxi:L_.m{(I)(Yi) — %}
Cramér-von-Mises-Test: Der Cramér-von-Mises-Test ist ein weiterer Anpassungs-
test. Seine Teststatistik berechnet sich aus der aufsteigend angeordneten Stich-
probe X(y,..., X(,) und besitzt mit den Bezeichnungen Y(;) = 6’1(X(i) - X),
6% =(n—1)"1 37, (X(;) — X)? schlieBlich die Gestalt

CVM—iJrzn: cI>(Y.)—2i*1 :
~12n — @ 2n )

Pearson-Chi-Quadrat-Test: Der Chi-Quadrat-Test von Pearson beruht auf einem
Vergleich der Anzahl n; an Elementen einer Stichprobe, die in k vorgegebene Klassen
fallen mit der erwarteten Anzahl ng; unter Annahme der Normalverteilung. Die

Teststatistik lautet i
PEA=Y" (g = noy)*
j=1

noj
Aufgrund der asymptotischen x2-Verteilung werden die p-Werte dabei iiber die Xi—?)‘

Verteilung berechnet.

Shapiro-Francia-Test: Anders als die bisherigen Tests basiert der Shapiro-Francia-
Test nicht auf der empirischen Verteilungsfunktion, sondern auf der quadrierten

Korrelation der geordneten Stichprobe X = (X(y),..., X(,)) und den geordneten
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Quantilen g, ¢ = 1,...,n, einer N(0,1)-Verteilung. Dabei hingen die Quantile

i—3/8
n+1-3/4

i =1,...,n betrachtet. Mit ¢ = (q(1), - - -, q(n)) hat die Teststatistik somit die Form

von der Stichprobengréfie n ab. Es werden die Quantile der Werte ¢; = fiir

SF = (Cor[X, q])Q.

Die Hypothese der Normalverteilung wird abgelehnt, falls der Wert der Statistik

unterhalb des entsprechenden kritischen Wertes liegt.

| | JB | JBy | JBje | AD | LIL | cvM | PEA | SF |

n =10 0.034 0.032 0.03 0.05 0.042 | 0.048 0.074 | 0.048
n =20 0.022 0.016 0.018 0.076 | 0.064 | 0.072 0.052 0.044
n =50 0.02 0.016 0.016 0.168 | 0.118 | 0.14 0.108 0.116
n =100 | 0.092 0.038 0.03 0.406 | 0.22 0.316 0.174 0.336
n =200 | 0.732 0.648 0.6 0.812 0.534 | 0.704 0.386 0.872
n =400 | 0.996 0.998 0.996 0.986 0.864 | 0.974 0.794 1

Beta(3,2)

n =10 0.158 | 0.156 0.144 0.134 0.104 | 0.126 0.112 0.146
n =20 0.222 0.232 0.24 0.196 0.114 | 0.166 0.09 0.23

n =50 0.416 0.426 | 0.424 0.274 0.204 | 0.242 0.13 0.394
n =100 | 0.642 0.66 0.646 0.51 0.326 | 0.45 0.184 0.648
n =200 | 0.89 0.894 | 0.894 | 0.732 0.534 | 0.7 0.288 0.876
n =400 | 0.986 | 0.984 0.986 | 0.96 0.812 | 0.92 0.474 0.982

n =10 0.192 0.176 0.174 0.202 0.152 | 0.178 0.182 0.206
n =20 0.382 0.352 0.358 0.44 0.282 | 0.394 0.286 0.482
n =50 0.848 0.792 0.798 0.906 0.726 | 0.862 0.664 0.932
n =100 | 0.992 0.988 0.988 0.998 0.954 | 0.992 0.926 1

n=200 | 1 1 1 1 1 1 1 1
n=400 | 1 1 1 1 1 0.996 | 1 1
n=10 | 0.5 0.432 | 0.43 0.584 | 0.464 | 0.558 | 0.53 0.594
n=20 | 0.832 | 0.81 0.818 | 0.892 | 0.798 | 0.874 | 0.82 0.904
n=50 |1 1 1 1 0.996 | 1 0.998 | 1
n=100 | 1 1 1 1 1 0.884 | 1 1
n=200 | 1 1 1 1 1 0.158 | 1 1

— T | n =400 | 1 1 1 1 1 0 1 1

Tabelle 4.4: Powerwerte verschiedener Tests auf Normalverteilung zum Signifikanzniveau
a = 5% bei einigen Stichprobengréfien n und 500 Replikationen. Die effi-
zientesten Tests in den einzelnen Kategorien sind durch Fettdruck hervor-
gehoben. Die Grafiken zeigen die Dichte der entsprechenden Verteilungen
(durchgezogene Linien) im Vergleich zur normierten und zentrierten Nor-

malverteilung (gestrichelte Linien).

In der Tabelle 4.4 sind die Powerwerte der einzelnen Teststatistiken zu verschiedenen

Stichprobengrofien n und dem Signifikanzniveau o = 5% angegeben, die bei den durch-
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gefithrten Simulationen im Rahmen von 500 Replikationen resultierten. Um fiir beliebige
Stichprobengrofien zu unterschiedlichen Signifikanzniveaus die Power der einzelnen Tests
ermitteln zu konnen, wurde erneut in der Programmiersprache R eine Routine erstellt.
Dazu wurden die Jarque-Bera-Statistiken JB, JBy und JBj g implementiert und fiir je-
de der vier Verteilungen (Beta(3,2), Student’s ¢ (5 df), Gamma(2,1) und LogNormal)
Replikationen von Stichproben der Gréfienordnung n € {10, 20, 50, 100, 200,400} erzeugt.
Mit dem Paket ,nortest® hat man Zugriff auf die bereits in R implementierten Teststatis-
tiken AD, LIL, CVM, PEA und SF, sodass eine Implementierung dieser Teststatistiken
nicht notwendig war. Die betrachteten Tests wurden dann auf die Replikationen ange-
wendet und innerhalb der im Paket ,nortest® vorhandenen Normalverteilungstests fiir
jede Stichprobe die Nullhypothese der Normalverteilung abgelehnt, falls der p-Wert der
entsprechenden Statistik unterhalb des vorgegebenen Niveaus « lag. Die Power der einzel-
nen Tests innerhalb der verschiedenen Verteilungen konnte daraufhin anhand der Anzahl
der abgelehnten Nullhypothesen im Verhéltnis zur Gesamtzahl der durchgefiihrten Re-
plikationen bestimmt werden. Die Berechnung der Power im Fall der JB-, JBy- und
J B jg-Statistiken wurde iiber die empirischen kritischen Werte vorgenommen, die in den
Tabellen 4.1 bis 4.3 angegeben sind. Hierbei wurde fiir jede Stichprobe die Nullhypothese
der Normalverteilung abgelehnt, falls der Wert der entsprechenden Jarque-Bera-Statistik
oberhalb des zugehorigen empirischen kritischen Wertes lag. Die Berechnung der Power
geschah analog zur Vorgehensweise bei den vorher beschriebenen Normalitétstests, also
anhand der Anzahl der abgelehnten Nullhypothesen im Verhéltnis zur Gesamtzahl der
durchgefiihrten Replikationen. Die Programmcodes der verwendeten Routine sind auf der

beigefiigten Daten-CD im Einband am Ende der Arbeit enthalten.

Da fiir den p-Wert im Falle eines rechtsseitigen Tests (also eines solchen Tests, bei dem
die Nullhypothese abgelehnt wird, sobald der Wert der Teststatistik einen bestimmten
kritischen Wert ¢ iiberschreitet) bei Vorliegen einer Stichprobe x und einer Teststatistik
S mit dem Ergebnis S(x) = s die Beziehung p = P(S > s|Hp) erfiillt ist und fiir den kriti-
schen Wert ¢ zum Signifikanzniveau a die Beziehung aw = P(S > ¢|Hj) gilt, ldsst sich auch
eine Beziehung zwischen dem (erst nach Erhalt der Stichprobe bekannten) p-Wert und
dem (vor Auswertung der Teststatistik festzulegenden) Signifikanzniveau « ausmachen.
Es gilt also: p < a@ < s > c¢. Dies liefert die Rechtfertigung dafiir, dass die auf verschie-
dene Weise berechnete Power in den betrachteten Testsituationen miteinander verglichen

werden darf.

Sicherlich kénnen aufgrund der geringen Anzahl an Replikationen keine exakten Schliis-
se iiber die absolute Power der einzelnen Tests gezogen werden, jedoch zeichnen sich Ten-
denzen ab, die eine Vermutung {iber die relativen Verhéltnisse zulassen. Da die Untersu-

chungen auch in den Fillen @ = 0.01 und o = 0.1 durchgefiihrt wurden, die Ergebnisse
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Beta(3,2)-Verteilung Students t-Verteilung (5 df)
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Abbildung 4.3: Power der Teststatistiken JB, JBy, JBjq, AD, LIL, CVM, PEA und
SF zum Signifikanzniveau o« = 5% in Abhéngigkeit der Stichproben-
grofe n. Die exakten Ergebnisse der Analysen kénnen der Tabelle 4.4

entnommen werden.

denen aus Tabelle 4.4 jedoch recht dhnlich sind, werden diese im Anhang B.2 nachgereicht.
Zur besseren Ubersicht wurden die Testergebnisse aus Tabelle 4.4 mit R grafisch aufberei-
tet und werden in Abbildung 4.3 wiedergegeben. In den Grafiken wurde dabei eine lineare
Interpolation durchgefiihrt. Die Ergebnisse der Stichprobengréen n € {10, 20, 50, 100, 200,
400} sind auf den Powerkurven der JB-Statistik durch Sternchen gekennzeichnet, wo-
bei fiir die Gamma(2,1)-Verteilung nur n € {10,20,50,100} und fir die Lognormal-
Verteilung nur n € {10, 20,50} betrachtet wird.
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Fazit: Zu erkennen ist in Abbildung 4.3, dass sowohl fiir die Gamma(2, 1)-Verteilung
(Grafik unten links) als auch fiir die Lognormal-Verteilung (Grafik unten rechts) die Po-
werkurve des Shapiro-Francia-Tests (violette Kurve) beziiglich aller Stichprobengréfien n
oberhalb der {ibrigen Powerkurven liegt und somit die anderen Teststatistiken {iberbietet.
Hinsichtlich der Gamma(2, 1)-Verteilung liegen die Jarque-Bera-Statistiken (schwarze Kur-
ven) fiir alle Stichprobengroéfien etwa gleichauf im Mittelfeld. Beziiglich der Lognormal-
Verteilung jedoch zeigt sich, dass vor allem die modifizierten Jarque-Bera-Statistiken
beziiglich der Power fiir kleine Stichproben schlecht abschneiden. Die J B-Statistik schnei-
det etwas besser ab, liegt dennoch nur im unteren Mittelfeld. Im Testen gegen die Beta(3, 2)-
Verteilung (Grafik oben links) iibertrifft speziell in der Situation kleiner bis mittelgrofer
Stichproben, d.h. n € {20,50,100}, die Powerkurve des Anderson-Darling-Tests (blaue
Kurve) die Powerkurven der restlichen Teststatistiken. Bei grofien Stichproben wiederum
dominert der Shapiro-Francia-Test. Die Jarque-Bera-Statistiken liegen hier bei Stichpro-
ben der Groflenordnung n < 100 deutlich abgeschlagen am unteren Ende der Powerskala,
steigen jedoch bereits bei n ~ 200 ins Mittelfeld auf und bieten fiir n = 400 zusammen mit
dem Anderson-Darling- und Shapiro-Francia-Test sogar die hochste Power. Im Falle von
Student’s t-Verteilung mit fiinf Freiheitsgraden (Grafik oben rechts) bieten die Jarque-
Bera-Statistiken bei allen Stichprobengroéfien die hochste Power. Die restlichen Teststatis-
tiken LIL, CV M und PEA konnten bis auf den Chi-Quadrat-Test von Pearson im Falle
der Beta(3,2)-Verteilung fiir n = 10 in keiner der getesteten Situationen fiir kleine und
auch grofle Stichprobengréfien mit den anderen Tests mithalten.

Obwohl gegen die t-Verteilung mit fiinf Freiheitsgraden die Statistiken J By und JBja
bei fast allen StichprobengréBen die .JB-Statistik dominiert?, sind die Unterschiede doch
sehr gering. Hinsichtlich der restlichen Verteilungen ist die Power der JB-Statistik bei
jeder Stichprobengrofie mindestens genauso grof3, in den meisten Féllen sogar groflier als
die der Statistiken JBy und JBjg. Somit kann davon ausgegangen werden, dass weder
der JBy-Test, noch der JB jg-Test in der Situation des Testens auf Normalverteilung von

Beobachtungen eine iiberzeugende Verbesserung gegeniiber dem JB-Test darstellt.

4.3 Powervergleich in speziellen Situationen

Der vorige Abschnitt hat gezeigt, dass abgesehen von der Stichprobengrofie vor allem die
Form der zugrunde liegenden Verteilung die Grundlage fiir eine Bewertung verschiedener
Teststatistiken in unterschiedlichen Testsituationen darstellt. So ist es doch verwunder-
lich, dass sich speziell im Fall der t-Verteilung als einzige symmetrische Verteilung die

Jarque-Bera-Statistiken als stirkste Tests herausgestellt haben, basieren die Jarque-Bera-

3Vgl. dazu Tabelle 4.4.
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Statistiken doch auf der Schiefe und der Woélbung der zugrunde liegenden Verteilung. Die
Schiefe im Falle einer symmetrischen Verteilung, also insbesondere der t-Verteilung, ist al-
lerdings null und nur noch die Wolbung tragt ihren Teil zur Teststatistk bei. Dies motiviert
die Frage nach der Gestalt, welche dazu fithrt, dass einige Tests in gewissen Situationen
andere Tests dominieren. Um auf diese Frage nidher eingehen zu kénnen, wird im Folgenden
von den Verteilungen des vorigen Abschnitts Abstand genommen und ein Modell betrach-
tet, mit dem nach individuellen Wiinschen Verteilungsformen realisiert werden koénnen.
Dieses Modell bietet die Moglichkeit Verteilungen zu generieren, die bestimmte Eigen-
schaften aufweisen und zudem ,nah“ an der Normalverteilung liegen. So kénnen die Aus-
wirkungen unterschiedlicher Abweichungen von der Normalverteilung untersucht werden.
Dazu werden verschiedene Formen symmetrischer wie auch nicht symmetrischer Verteilun-
gen mit und ohne Abweichung der fiir die Normalverteilung typischen Wélbung erzeugt.
Zudem werden nicht nur unimodale, sondern auch bimodale Verteilungen betrachtet. In
Anlehung an das Modell von Thadewald und Biining in [TB04] zur empirischen Untersu-
chung des Jarque-Bera-Tests wird wie folgt vorgegangen. Es seien X7 und X» unabhéingige
Zufallsvariablen mit X7 ~ N (1, 0%) und Xo ~ N (p2, 03). Weiter sei p € [0, 1]. Dann wird
die Zufallsvariable Z = (1 — p) X1 + pXs betrachtet, deren Verteilung als Kontaminierte
Normalverteilung (K N-Verteilung) bezeichnet wird. Es sei 0.B.d.A. 1 = 0 und o = 1 so-
wie u2 € {0,1,2,3}, 0% € {0.5,1,3} und p € {0.1,0.25,0.3,0.5,0.75}. Durch Kombination
dieser Parameter 1éf3t sich bereits eine Vielzahl unterschiedlicher K N-Verteilungen erzeu-
gen. Diese werden im Folgenden benutzt um die Power einiger Teststatistiken miteinander

zu vergleichen.

Aufgrund der schlechten Resultate der Statistiken LIL, CV M und PE A in den Testsi-
tuationen des vorigen Abschnitts beschrinken sich die folgenden Analysen auf die Teststa-
tistiken JB, AD und SF'. Die Vorgehensweise in der Erstellung einer geeigneten Routine
zur Ermittlung der Power in den einzelnen Testsituationen entspricht dabei einer Modifi-
zierung des Modells aus dem vorigen Abschnitt. Dazu wurde in der Programmiersprache
R eine Funktion programmiert, mit der die Erzeugung kontaminiert normalverteilter Zu-
fallsgrofilen moglich ist. Diese wurde dann dazu genutzt, Replikationen von Stichproben
unterschiedlicher Gréflenordnung zu generieren, auf welche die Teststatistiken JB, AD
und SF angewendet wurden. (Die Implementierung der JB-Teststatistik wurde dabei aus
dem vorigen Modell iibernommen. Die Statistiken AD und SF wurden erneut aus dem
Paket ,nortest“ entnommen.) Im Falle des Anderson-Darling- und des Shapiro-Francia-
Tests wurde fiir jede Replikation die Nullhypothese der Normalverteilung abgelehnt, falls
der berechnete p-Wert das Signifikanzniveau unterschritten hat. Im Falle des Jarque-Bera-
Tests wurde die Nullhypothese abgelehnt, falls der resultierende Wert den entsprechenden
empirischen kritischen Wert aus Tabelle 4.1 {iberstieg. Die Anzahl der abgelehnten Nullhy-



44 Der Jarque-Bera-Test im Vergleich

pothesen im Verhéltnis zur Gesamtzahl der durchgefiihrten Replikationen ergab dann die
in den Tabellen B.1 bis B.3 im Anhang B.1 angegebenen Powerwerte. Dass ein Vergleich
der Power, die auf unterschiedliche Weise berechnet wurde, gezogen werden darf, wurde
bereits im letzten Abschnitt begriindet. Die Programmecodes der verwendeten Routine sind
auf der beigefiigten Daten-CD im Einband am Ende der Arbeit enthalten.

Die Grafiken (A) bis (F) in den Abbildungen 4.4 bis 4.6 veranschaulichen die Ergeb-
nisse der Simulationen, die auf der Basis von je 1000 Replikationen fiir die Stichproben-
grofen n € {20, 50, 100,200,400} zum Signifikanzniveau o = 5% durchgefiihrt wurden.
Innerhalb der Grafiken (A) bis (F) sind in den oberen Schaubildern die Powerkurven
des Jarque-Bera-, des Anderson-Darling-, und des Shapiro-Francia-Tests zu verschiede-
nen K N-Verteilungen dargestellt, wobei erneut eine lineare Interpolation durchgefiihrt
wurde. Die Kombination der Parameterwerte ji2, 05 und p der K N-Verteilung ist ober-
halb des jeweiligen Schaubilds angegeben. Zur besseren Ubersicht wird mit den Stern-
chen auf den JB-Kurven die Lage der berechneten JB-Werte fiir die Stichprobengrofien
n € {20,50,100,200,400} angedeutet. Unterhalb dieser Schaubilder sind die Dichten
der zugehorigen K N-Verteilungen (durchgezogene Linien) im Vergleich zur zentrierten
und standardisierten Normalverteilung (gestrichelte Linien) visualisiert. Diese bieten die
Moglichkeit zu erkennen, wie stark sich eine spezielle Abweichung von der Normalvertei-
lung auf die Power der einzelnen Teststatistiken auswirkt. Alle Grafiken wurden dabei mit

R erstellt.

Fazit: Betrachtet man die Abbildungen 4.4 bis 4.6, so kann man erkennen, dass
sich die absolute Power des JB-Tests hinsichtlich der verschiedenen Verteilungsformen in
Abhéngigkeit der Stichprobengrée deutlich unterscheidet. In den Grafiken 4.4(C), 4.4(F)
und 4.6(A) ist gut zu erkennen, wie grofl der Einfluss ist, den die Wélbung auf die Power
des Jarque-Bera-Tests hat. Innerhalb der univariaten Verteilungen wird im Falle der (im
Vergleich zur Normalverteilung) deutlich spitzigeren Verteilung (also bei einer sehr grofien
Wolbung) die Nullhypothese bereits bei einer Stichprobengrofie von n = 100 fast zu 100%
abgelehnt, wohingegen bei der flachen Verteilung (also einer kleinen Wolbung) selbst bei
n = 400 die Chance nicht einmal bei 50% liegt, dass die tatsichliche Verteilung als Nicht-
Normalverteilung aufgedeckt wird. Im Vergleich mit der spitzigen Verteilung schneidet
die Power des J B-Tests sogar bei der bimodalen Verteilungensform deutlich schlechter ab.
Hier wird bei einer Stichprobengrofie von n = 100 nur mit etwa 20% Wahrscheinlichkeit die
richtige Entscheidung gegen die Normalverteilung getroffen. Bei n = 200 liegt die Power
jedoch schon etwa bei 0.9. Den groflen Einfluss der Wolbung kann man auch erkennen,
wenn man die Powerkurven in den Grafiken der Abbildung 4.5 von links nach rechts (also
(A)-(C) und (D)-(F)) und die Powerkurven in den Grafiken der Abbildung 4.6 von rechts
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Abbildung 4.4: Power der Teststatistiken JB, AD und SF zum Signifikanzniveau
a = 5% in Abhingigkeit der Stichprobengrofie n fiir verschiedene K N-
Verteilungen mit Parametern py = 0, u2 € {2,3}, 07 = 03 = 1 und
p € {0.1,0.3,0.5}. Die exakten Ergebnisse der Analysen kénnen der Ta-

belle B.1 im Anhang entnommen werden.
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Abbildung 4.5: Power der Teststatistiken JB, AD und SF zum Signifikanzniveau
a = 5% in Abhingigkeit der Stichprobengrofie n fiir verschiedene K N-

Verteilungen mit Parametern p; = 0, pg € {1,2}, 07 =1, 03 = 0.5 und
p € {0.25,0.5,0.75}. Die exakten Ergebnisse der Analysen kénnen der

Tabelle B.2 im Anhang entnommen werden.
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Abbildung 4.6: Power der Teststatistiken JB, AD und SF zum Signifikanzniveau

a = 5% in Abhingigkeit der Stichprobengrofie n fiir verschiedene K N-

Verteilungen mit Parametern p; = 0, pu2 € {0,2}, 07 = 1, 05 = 3 und
p € {0.25,0.5,0.75}. Die exakten Ergebnisse der Analysen konnen der

Tabelle B.3 im Anhang entnommen werden.
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nach links (also (C)-(A) und (F)-(D)) durchlduft. Mit steigender Wélbung der zugrunde lie-
genden Verteilung steigt auch die Power des Jarque-Bera-Tests erheblich. Der Einfluss der
Schiefe einer Verteilung auf die Power der JB-Statistik ohne entsprechende Abweichung
der Woélbung hingegen ist eher gering, wie man gut in den Grafiken 4.4(B), 4.5(A)und
4.5(D) erkennen kann. Es verwundert nicht, dass in diesen Situationen im direkten Ver-
gleich mit dem Anderson-Darling- und dem Shapiro-Francia-Test der Jarque-Bera-Test
bei allen Strichprobengréfien eine deutlich niedrigere Power aufweist. Liegt in der Grund-
verteilung eine Kombination von abweichender Schiefe und Wélbung vor, so spielt also
die Wolbung eine weitaus wichtigere Rolle fiir die Power der JB-Statistik. Eine weitere
Schwiche des Jarque-Bera-Tests wird bei Betrachtung der bimodalen Verteilungen in den
Grafiken 4.4(E), 4.4(F) und 4.5(E) ersichtlich. Erst ab einer Stichprobengréfie von n = 200
kann der Jarque-Bera-Test mit den anderen Teststatistiken beziiglich seiner Power kon-
kurrieren, in 4.5(D) sogar erst ab n = 400.

Diese Resultate lassen erahnen, wie fehlerhaft eine Entscheidung auf Basis des Jarque-
Bera-Tests sein kann, falls eine bimodale Verteilung oder eine Verteilung ohne ausreichende
Woélbung zugrunde liegt und die vorliegende Stichprobe zudem keine ausreichende Grofie
besitzt. Ist hingegen eine starke Abweichung der Wolbung von der einer Normalverteilung
zu erkennen, so stellt der Jarque-Bera-Test auch fiir kleine Stichproben ein hilfreiches und

zudem gleichwertiges Mittel zum Testen auf Normalverteilung dar.



Kapitel 5

Testen auf multivariate

Normalverteilung

Die Theorie des Testens auf univariate Normalverteilung basierte auf der Annahme einer
Stichprobe & = (x1,...,x,), welche als Realisierung von sowohl unabhingigen, als auch
identisch verteilten Zufallsvariablen Xi,..., X, angenommen wurde. Um im Folgenden
nicht nur auf Zusammenhénge zwischen einzelnen Beobachtungen eingehen zu kénnen, son-
dern auch auf verschiedene Merkmale dieser Beobachtungen, wird der Ansatz erweitert und
in diesem Kapitel Stichproben X = (X1,...,X,) betrachten, die aus p-Zufallsvektoren
X; = (Xuiy..., Xpi)T fiir i = 1,...,n bestehen. Xj; fiir j = 1,...,p stellen dabei eindi-
mensionale Zufallsvariablen dar. X; wird dadurch zu einer Beobachtung, die p Merkmale
beinhaltet, deren Abhéngigkeitsstruktur untereinander durch die (p x p)-Kovarianzmatrix
Cov[Xi] = (O-jk)lgj,kgp

kann. Dazu wird im Folgenden angenommen, dass sowohl die Erwartungswertvektoren

mit o, = Cov|[Xj;, Xy;] fir ¢ = 1,...,n ausgedriickt werden

E[X;], als auch die Kovarianzmatrizen Cov|[X;] der betrachteten Zufallsvektoren X; fiir
i =1,...,n existieren. Die einzelnen Zufallsvektoren werden dabei wie im univariaten Fall
als unabhéngig und identisch verteilt angenommen. Eine Stichprobe X bestehend aus n

X1 o X
Beobachtungsvektoren der Lénge p kann somit als (p x n)-Matrix X =

Xpi - Xpn
dargestellt werden. Man bezeichnet X als Daten- oder Beobachtungsmatriz. Geometrisch
lassen sich die Spalten der Matrix als Punkte im p-dimensionalen Raum deuten, welche
der Untersuchung eines Zusammenhangs der verschiedenen Objekte (im eindimensionalen
also gerade der einzelnen Beobachtungen) untereinander dienen kénnen. Die Zeilen hin-
gegen sind Punkte im n-dimensionalen Raum und werden benutzt um Beziehungen zwi-
schen den verschiedenen Merkmalen aufzudecken. Statistische Fragestellungen, die dem

angegebenen Modell zugrunde liegen, werden in den Bereich der multivariaten Statistik

49
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eingeordnet. Ebenso wie im univariaten Fall besteht nun Interesse daran, anhand einer
vorliegenden Stichprobe Aussagen iiber die Verteilung der den Beobachtungen zugrunde
liegenden Grundgesamtheit zu treffen.

Im Folgenden liegt das Augenmerk speziell auf der Erweiterung des in den vorigen
Kapiteln entwickelten Modells. Zwangslaufig stellt sich die Frage, ob sich das von Jarque
und Bera hergeleitete Ergebnis einer Teststatistik zum Testen auf univariate Normalver-
teilung in &hnlicher Weise auf den multivariaten Fall ibertragen lésst. Dazu sind die im
eindimensionalen Fall recht anschaulichen Mafle fiir die Schiefe und die Wolbung einer
Verteilung auf die multivariaten Situationen zu iibertragen. Da es sich jedoch nicht um
eindeutige Fortsetzungen handelt, wie man bereits an der Vielfalt der sich mit diesem
Thema auseinandersetzenden Literatur erkennen kann, bietet sich die Moglichkeit mehre-
rer Testerweiterungen. Die vorliegende Analyse beschrinkt sich dabei auf die zwei wohl
bekanntesten Fortsetzungen von Kantilal Vardichand Mardia, es wird jedoch darauf hin-
gewiesen, dass weitere Vorschlidge fiir multivariate Mafle wie die in [Sri84] und [MAT73],
sowie in [Sma80] und [Son01] zur Verfiigung stehen. In Abschnitt eins werden dazu die in
[Mar74] angegebenen Mafle fiir die multivariate Schiefe sowie die multivariate Wolbung
eingefiihrt und einige wichtige Eigenschaften dieser Mafle gegeben. Abschnitt zwei befasst
sich mit der asymptotischen Verteilung der betrachteten Grofien, bevor anschlieffend in

Abschnitt drei einige daraus resultierende Teststatistiken untersucht werden.

5.1 Multivariate Schiefe- und Waélbungsmafle

Wie einleitend erwahnt, wird auf die Ergebnisse von Mardia zuriickgegriffen und die

Schiefe- und Wolbungsmafle angegeben, die in [Mar74] wie folgt definiert werden.

Definition 5.1.1. Es seien X = (X1,...,X,)T und Y = (¥3,...,Y,)? unabhingige

und identisch verteilte p-Zufallsvektoren mit existierendem Erwartungswertvektor pu =

(1, ,up)T und existierender Kovarianzmatrix . Dann bezeichne in Ubereinstimmung
der Notation des univariaten Falls
Tea—1 3
bip=B|((X )= (Y —p)) ] (5.1)
das multivariate Schiefemaf§ nach Mardia und
Teaw—1 2
Bop =B| (X =)= (X —n)) | (5.2)

das multivariate Wolbungsmajfl nach Mardia.

Die Motivation fiir die Darstellung des Schiefemafles in vorliegender Form lésst sich an-

hand von [Mar70] wie folgt begriinden. Ausgehend von dem in [KS67], S.466 hergeleiteten
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Ergebnis der asymptotischen Aquivalenz von Cor[X,S?] und (8;/2)"/? mit X als Stich-
probenmittel der univariaten Zufallsvariablen X7, ..., X, S? als Stichprobenvarianz und
B1 als univariatem Schiefemafl (der zugrunde liegenden Grundgesamtheit) unter gewissen
Konvergenzvoraussetzungen an die zweiten Momente (Var[X], Var[S?], Cov[X, S?] zur
Ordnung n~1), versuchte Mardia die asymptotische Beziehung zwischen der Korrelation
oben angegebener Gréflen und der Schiefe auf den mehrdimensionalen Fall zu {ibertragen.
Resultat war das Maf}
P P
D M S U

r,s,t=1r" s t'=1
mit (0V)1<ij<p = £1 und 5 = E[ [T (X, — ps,)"].

Der multivariaten Wolbung liegt eine Beziehung zum Einstichproben-Pitman-Permuta-

tionstest zugrunde, sodass

P

p
_ rs _r's’ (rsr’s’)
Bap = § § oo

r,s=1r/ s'=1

folgt. Daraus leitete Mardia tiber Bilinearformen die obigen Ergebnisse (5.1) und (5.2) ab.

Es sei nun X = (X4,...,X,,) eine Stichprobe aus i.i.d. p-Zufallsvektoren mit unbekann-
ter Verteilung. Da der Erwartungswertvektor p = E[X;] = (E[Xu],...,E[XpZ-])T der
Zufallsvektoren X; fiir ¢ = 1,...,n unbekannt ist, wird dieser im Folgenden geschitzt. Es
sei p = X = (X1,...,X,)T der Stichprobenmittelwertvektor mit X; = n=1 > " | Xj; fiir
7 =1,...,p als Stichprobenmittel des j-ten Merkmals. Ebenso wird 3 durch die Stichpro-
benkovarianzmatriz S = (sji)1<jk<p mit s =n" >0 (Xji — X;j)(Xgi — Xi) geschitzt.

Dann lésst sich das Stichprobenanalogon zu (5.1) und (5.2) wie folgt definieren.

Definition 5.1.2. Es gelten die getroffenen Annahmen. Dann bezeichnet

1 n o n B B 3
bo= 3.3 (X~ X)'s7 (X, - X)) (53)
i=1 j=1
die multivariate Stichprobenschiefe nach Mardia und
1 « T =\ 2
bop =~ ; ((xi=X)"s7!(X: - X)) (5.4)

die multivariate Stichprobenwdélbung nach Mardia.
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Bemerkung 5.1.3. Es seien X und Y unabhéngige und identisch N,(u, X)-verteilte

Zufallsvektoren. Dann gilt:

Bip=0 und By =p(p+2).

Beweis. Es seien X und Y unabhiingig und identisch N, (p, X)-verteilt. Da die Verteilung
von (X —u)TE_l (Y — u) symmetrisch um (X —,u)TE_l (Y —u) = 0 ist, folgt E[((X —
p)T§J*1 (Y — u))3] = 0 und mit (5.1) die Behauptung der ersten Aussage. Fiir die zweite
Aussage wird Lemma 2.2.8 benutzt. Es gilt (X — u)TE_l (X —p) ~ X;, sodass mit (5.2)

Bap = E[(x2)?] = p(p + 2) folgt. -

Weiter zu bemerken ist, dass die neuen Mafle auch in der univariaten Situation p = 1

angewendet werden konnen. Es gilt dann b1 = by und by 1 = ba.

5.2 Asymptotische Verteilung

Dieser Abschnitt befasst sich mit der asymptotischen Verteilung der von Mardia ange-
gebenen multivariaten Mafle. Diese kann dazu genutzt werden, Tests auf multivariate
Normalverteilung herzuleiten, wie dies auch von Mardia getan wurde. Die asymptotische
Verteilung dient dazu, die kritischen Werte der Tests zu vorgegebenem Signifikanzniveau «
anhand der kritischen Werte der asymptotischen Verteilung zu bestimmen. Diese stimmen
aufgrund der Asymptotik der Verteilung fiir wachsende Stichprobenumfinge mit steigen-
der Genauigkeit iiberein. Damit ist das fehlende Wissen {iber die exakte Verteilung der
Teststatistik nicht weiter von Relevanz, vorausgesetzt die Stichprobe ist grol genug. Dies
ist allerdings in den meisten Anwendungen nicht der Fall. Fiir kleine Stichproben werden
deshalb wie im univariaten Fall empirische Analysen durchfithren und somit wenn auch
nicht exakte, jedoch hinreichend genaue kritische Werte ermittelt. Auf diese auf Monte-
Carlo-Simulationen basierenden Untersuchungen wird an spéterer Stelle néher eingehen.

Das Ergebnis der asymptotischen Verteilung liefert der folgende

Satz 5.2.1. Es seien by und by wie in (5.3) und (5.4) und X = (X1,...,X,) eine
Stichprobe aus i.i.d. p-Zufallsvektoren mit X; ~ Np(pu,X) fir i = 1,...,n. Weiter sei

1/2
Bip = §bip und By p = (8p(p+2)(?’L(*3)(7)’L(fpfi)(nfp+1)) <(” + Dbayp — p(p +2)(n — 1))-
Dann gilt:

D 2
Bip = Xpp+1)pr2y6 U0

Bayp 25 N(0,1).
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Bevor der Beweis des Satzes begonnen wird, ist die Einfiihrung einer Verteilung notwendig,

die als multivariate Verallgemeinerung der x2-Verteilung angesehen werden kann.

Definition 5.2.2. Es sei X = (X1,...,X,) mit X; ~ N,(0,X) fir ¢ = 1,...,n und
M =XxXxT = Yo XX T Dann besitzt M eine Wishart-Verteilung mit Skalenmatrix
3 und n Freiheitsgraden. Man schreibt M ~ W, (n, X).

Beweis des Satzes. Begonnen wird der Beweis des Satzes mit einem Lemma. Dieses lie-
fert zusammen mit dem zentralen Grenzwertsatz die asymptotische Konvergenz von Ba j,.

Danach wird die asymptotische Verteilung der multivariaten Schiefe by , bestimmt.

Lemma 5.2.3. Es sei by, wie in (5.4). Dann gilt mit X = (X1,...,X,) und X; ~
Np(p,X) firi=1,....n:

1
E[bQ,p] = mp(p +2)(n—1) wund

8p(p +2)(n —3)
(n+1)2(n+3)(n+5)

Beweis des Lemmas. Der Beweis basiert auf [Mar74], Kapitel 4. Es sei (X1, ..., Xp)! =

Var[bsp| = m—p+1)(n—p-1).

X firi=1,...,n mit X; ~ Np(p,X). Aufgrund der Invarianz von by, unter nichtsin-
guldren Transformationen X — AX + b, die sich durch Einsetzen in (5.4) zeigen lisst,

wird 0.B.d.A. p = 0 und ¥ = I, angenommen. Weiter sei

Ry=(X;—X)"M'(X; - X) (5.5)
mit
M =nS = zn: (X - X)(X;, - X)" = zn: X, X7 -nXX", (5.6)
sodass a .
bop=n Zn: RZ (5.7)
=1

gilt. Die Berechnung der Momente von bs ;, geschieht nun iiber die Momente von R;;. Dazu
wird X ) = (X1, .. ,Xm)T als n-Vektor im Merkmal r betrachtet und X (r) mittels einer
orthogonalen Transformation zu ¢,y = (G1s - -+ Grn)T transformiert. Die zur Beschreibung

dieser orthogonalen Abbildung benutzte (n x n)-Matrix hat die Gestalt

dy e 0 - o 0
d3 dg €3
o dy dy dy ey
0
dy e e e dy ey

n_1/2 n_1/2
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mit d; = (j(j — 1))_1/2, ej = —(j — 1)d; und wird als verallgemeinerte Helmert-Matrix
bezeichnet. Es sei ¢ = (Gri)1<r<p1<i<n definiert durch ¢,y = HX ) fir r = 1,...,p.

Dann ist

¢ =HXT (5.8)

7 H orthogonal

und somit ¢¢T' = XHTHX XXT. Es folgt

doxixT=xXT=¢T=> ¢l (5.9)
i=1 =1

Weiter folgt mit (5.8) und der Darstellung von H, dass (., = n=1/2 Yo X, sodass
¢,, = n'/?X und folglich

¢Cl =nX X" (5.10)

gilt. Mit (5.6), (5.9) und (5.10) folgt

n n—1
M = Zlcic? — Gl = Zl ¢iti- (5.11)

Aus (5.8) kann auch eine Darstellung von X in Abhé#ngigkeit von ¢ bestimmt werden. Es
ist X7 = H~'¢T und wegen der Orthogonalitit von H ist X7 = HT¢T < X = ¢H.
Mit der Darstellung von H folgt somit

n—1

X;= ey +de+1Ck+n_%Cn firi=1,...,n—-1
pa

und X, =e,(,_1 + n_%Cn

mit ¢, = 0. Es ist n=1/2¢,, = X. Der Kiirze halber wird X; fiir i = 1,...,n — 1 und X,
als eine Gleichung der Form

n—1

X;—X=e 1+ Y dppaly, firi=1,...,n (5.12)
k=i
geschrieben, wobei fiir i = n gelte: ZZ;:L dip+1€, = 0.
Zerlegt man M derart, dass M = TT? mit einer (p x p)-Matrix T, dann folgt mit (5.5)
und (5.12)

n—1 n—1

Rij = <61C¢71 +> dk+1Ck)T(TTT)71 (ejCj—l +> dk+1Ck)

k=i k=j
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n—1 n—1

T T
= (¢ + D deriCe) (T7) T7 (€m0 + Y diaaCi)
k=i k=j
n—1 T n—1
= <€iT_1Ci71 + Z dk+1T_1Ck> <€jT_1ij1 + Z dk+1T_1Ck>-
k=i k=3
Definiert man Z; = Tflcl- firi=1,...,n, so ist
n—1 T n—1
Rij = (eiZZ»_l + Z dk+1zk> <€ij_1 + Z dk+1zk) (513)
k=i k=3

und die Momente von R;; lassen sich anhand der Momente von Z; herleiten. Diese wer-

(k)
den im Folgenden bestimmt. Grundlage dafiir ist die Dichte der (p x k)-Matrix Z=
(Z4,...,2Zy), fiir deren Bestimmung auf ein Resultat von Khatri zuriickgegriffen wird,
auf dessen Beweis hier verzichtet werden soll. Der interessierte Leser sei auf [Kha59],

S.1259, verwiesen. Das Resultat lautet wie folgt:

Hilfslemma 5.2.4. Es seien Q eine (p X p)-Matriz und V eine (p X k)-Matriz. Q und V
seien unabhdngig verteilt mit Q ~ Wy(n,X) und V.= (V,..., V) mit V; ~ Np(0,X)
firi=1,...,k. Weiter seiU = Q+VV?T und R eine (p x p)-Matriz, sodass RR" =U.
Dann gilt:

U und Z = R™'V sind unabhingig mit U ~ Wy(n + k, %) und Z hat eine Dich-
te der Form f(Z;n + k,k,p) = c(n + k,k,p)‘Ip — ZZT‘%(n_p_l) mit c¢(n + k, k,p) =
L H?:l F(%) (F(%ﬂ))il. I' steht in diesem Zusammenhang fir die Gam-

mafunktion.

Esseinun Q@ = (Cpp1s-- s Cp1)(Chots - - Cnq) T, dann ist Q@ ~ Wy(n—k —1, ). Weiter
sei V = ((q,...¢,), dann gilt mit (5.11) M = Q + VVT. Nach Hilfslemma 5.2.4 sind M

(k) (k)
und Z= (Z1,...,Z}) = T~V unabhingig und ferner besitzt Z die Dichte

(k) (k)k)"
f(Zin—1,k,p)=c(n— 1,k,p)}Ip— ZZ ’

P — k- k)(k)"
- () () e 9

% (n—k—p—2)

Lnk-p-2)

Diese wird im Folgenden benutzt, um die Momente von b, zu bestimmen. Zuvor jedoch
werden einige niitzliche Hilfslemmata aufgestellt. Dazu seien x; und y; fir7 = 1,...,n reelle
Zahlen. Die Beweise der Hilfslemmata benutzen das Prinzip der augmented symmetric

functions, deren Herleitung an dieser Stelle im Interesse einer versténdlichen Darstellung
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iiberfliissig erscheint und infolgedessen vernachlassigt wird. Abkiirzend steht p.v. fiir die

Eigenschaft paarweise verschieden. Die notwendigen Definitionen zum Versténdnis lauten
n
_ r
i=1
n
_ p,4q
Spq = E :l'z Yi
i=1

n

((pra)™,....(oag)™ = D allyfl a2yl
i1yeeyin=1
D] 5uens iy p.v

mit v = 25\:1 m;. Mit Hilfe der Tabellen 1-1-2, 1-6-4 und 1-6-8 in [DKB66] konnen die

folgenden Resultate gewonnen werden.

Hilfslemma 5.2.5. In der vorliegenden Situation gilt:

n—1 9 n—1 n—1
( > Cij,k) = > AZh+ Y. hZik ok ik, (5.14)
k=i—1 ke=i—1 k1 ky=i—1
oy #hg
Beweis des Hilfslemmas. Dies resultiert aus einer Darstellung der Form s?, = [22] +
[11,11]. O

Hilfslemma 5.2.6. In der vorliegenden Situation gilt:

E[(i "Z_:l Cizik)z} ZZP:( ”Z_:l GEZj] + Z Chy %, B ]kIng;QO

j:1 k=i—1 j:1 k=i—1 kl,kz 1—1
k1 #ko
p n—1
2 2
2 : ( z : CICE 32 k] § : Cklck2E[Z31 k1ZJ2 k2]>
J1,52=1 k=i—1 k1,ko=i—1
J1#32 k1#ko

(5.15)
Beweis des Hilfslemmas. (5.15) ist das Ergebnis einer Zerlegung der Form (1)% = [2] +[1?]

und Einsetzen der Gleichungen

n—1 9 n—1 n—1
2 r72 _ 4 r74 2 2
( Z Ck‘Zj,k> = Z Cij,k:—'_ Z Ck;le,lekQZ] ko (516)
k=i—1 k=i—1 k1,ko=i—1
k1#kg
und
n—1 n—1 n—1
2 r72 2 r72 _ 4
( Z Cijhk)( Z Cij27k) - Z Ck Z]2k+ Z C/fl Ji, klckQZJQ ka- (5'17)
k=i—1 k=i—1 k=i—1 k1,ko=i—1
k1 #k2

(5.16) und (5.17) resultieren aus der Darstellung s3, = [44] + [22,22], wobei in (5.17)
darauf zu achten ist, dass Z; , und Zj,  wegen ji # ja in verschiedenen Merkmalen

vorliegen. O
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Hilfslemma 5.2.7. In der vorliegenden Situation gilt:

P n—1

E[(Z > Cklzj,klckzzj,bﬂ

j=1k1,ka=i—1

k1 #ka
n—1 n—1
_ 2 2 2 2 2 2 . .
- Z <2 Z Cklck2E[Zj7k1 Zj,k2] +4 Z Ck1Ck2ck3E[Zj,k1ZJ,kzzj,k3]
7j=1 k1,ko=i—1 k1,ko,k3=i—1
k1#ko k1,ko,k3 p.v.
n—1
+ > kO Chs B Z g Zi s Zj,k;st,m])

k1,k2,k3,ka=i—1
k1,ko,k3,kq4 p.v.

p n—1
2 2
+ E 2 E Cly Csz[Zjhkl ij,k1 Zj1,k2 ZjQ:kQ]
J1,J2=1 k1,ko=i—1

J1#32 k1#ko
n—1
2
+4 > Gk BlZy bk Zjo i iy Do k)
k1,k2,k3=i—1
k1,k9,k3 p.v.
n—1
+ > ki ChaChsChi B Zjy iy Dy ks D ks ij,iu]) : (5.18)

k1,k2,k3,ka=i—1
k1,ko,k3,kq4 p.v.

Beweis des Hilfslemmas. (5.18) ist das Ergebnis einer Zerlegung der Form (1)% = [2] +[1?]
und Einsetzen der Gleichungen

n—1

2
( E Cky Zj,k‘1ck2 Zj»k2>
k1,ko=i—1
k1 #ko
n—1 n—1
_ E 2 2 2 2 § 2 2
- 2 Ckl Zj,k’lckz Zj,kg + 4 Ckl Zj,klckQ Zj7k26k3 Z]yk/'d
ki ko—i—1 ki ko kz=i—1
k1#ko k1,kg,k3 p.v.
n—1
+ > Chy Zj,k1 Chey L,k Ches L,k Chea Zj (5.19)
k1,k2,ks,kg=i—1
kq.ko,ks,kq pov.
und
n—1 n—1
>k Zjy ki Chs ij) ( >k Zjy ki Cho ij,kg)
k1,ko=i—1 k1,ko=i—1
kq#ko k1#kg
n—1 n—1
— 2 . . 2 . . 2 . . . .
=2 E Clr Zjr k1 Lo ks Chip L1 ko Lija oy + 4 E Cier Zi1 Jor Lo k1 Chia Ly oo Chig Zja e
k1 ko—i—1 ki ko kz=i—1
k1 #ko k1,kg,k3 p.v.
n—1
+ E Ck1Zj1,k1CkQZjl,k20k32j2,k3ck4zj2,k4' (5'20)

k1,k2,k3,kq=i—1
kq,ko,k3,ky pov.
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(5.19) und (5.20) ergeben sich mit Hilfe der Gleichungen [(11)2]? e (—s22 + 831)? =
83, — 289982, + st 148 2[(22)%] + 4[22, (11)?] + [(11)*]. Hierbei ist darauf zu achten, dass
Z in Gleichung (5.20) in zwei Merkmalen auftritt, sodass ¢, Z;, und Z;, drei Variablen

darstellen. n

Hilfslemma 5.2.8. In der vorliegenden Situation gilt:

p n—l1 D n—1
BN d22) (X X mZimonZic))|

j=1k=i—1 7=1k1,ko=i—1
k17#k2
p n—1 n—1
3 3 2 2
=2 <2 Z Cklcsz[Zj,klzj,kz] + Z CklCkzck:aE[Zj,klZj7k2Zj7k3]>
G=1 N kyko=i—1 ki,ko,kz=i—1
k1 #ko k1,kg,k3 p.v.
P n—1 n—1
3 2 2 2
+2 Z <2 Z Cklck2E[Zj1,k1Zj2,k12j2,k2] + Z Cklckzcks]E[Zjl,klij,k2Zj2J€3]>'
J1,J2=1 k1,ko=i—1 k1,ko,ks=i—1
J1#752 ky#kg k1.k2,k3 p.v.
(5.21)
Beweis des Hilfslemmas. (5.21) ergibt sich durch Zerlegung der Form (1)(1) = [2] + [1?]
und den Gleichungen
n—1 n—1
2 72
( Z Cchj,k>( Z C]ﬂZjJClezZJ}/Q)
k=i—1 ki, ko=i—1
k1 7#k2
n—1 n—1
3 73 2 2
=2 Z Cry Zj,k1 Cky Zj,kz + Z Cly Zj,kl Cko Zj»k26k3ZjJ€3 (5'22)
k1, ka=i—1 ki,ko,kz=i—1
k1#ko k1,kg,k3 p.v.
und
n—1 n—1
2 72
< Z CijLk:)( Z Ck1Zj2,k1Ck2Zj2,k2)
k=i—1 k1 ko—i—1
Ky #ho
n—1 n—1
3 2 2 2
=92 Z Cklzjl,klzjz,hckzzjz,kz + Z ck‘lZjl,klckQZijQckBZj?ka' (523)
ki,ko=i—1 ki,ko,kz=i—1
k1#ko k1,kg,k3 p.v.
(5.22) und (5.23) wiederum folgen als Losungen der Gleichung [22][(11)2] 15 82y +
s9251 = 2[33,11] + [22,(11)?] und wiederholter Beachtung, dass ¢, Z;, und Z;, unter-
schiedliche Variablen sind. O

Es wird mit den Momenten von by, fortgefahren. Dazu sei ¢y, = ;1 —; 1} tdp+1 L i . n—1}-
Mit E[Z]” k} = 0 fiir v ungerade und der Unabhéngigkeit der Zy, fiir k = 1,...,n folgt
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(5.7) .
E[b,] = E [n > R?i]
(5 13) - p n—1 2 2
=n$W2Qyﬂw}
j=1 k=i—1
(5 14) n P n—1 P n—1 2
2 E|(L Y @2y, Y enimenin) |
i=1 j=1k=i—1 =1 ki ,ko=i—
key #kg
n P n—1 2 2
- (L E az) e (X X wsmens) ]
i=1 j=1k=i—1 =1 ky,ko=i—

ky#ka

p n—1 D n—1
-+ 2E[<Z Z CzZik> (Z Z Cklzj,klckQZj,k2>:|

j=1 k1,ko=i—1
k1 #ko

: D n—1 n—1
5.21
= k

=i—1 k1,ko=i—1
k1#ka

Z.727k2]>

p n—1 n—1
4 2 2 2
b3 (X dEZZ Y GBI
1 Nk=i—

J1,j2= =i—1 k1,ko=i—1
J1#32 k17#kg
P n—1 n—1
2 2 2 2
+> <2 Y. EZ T4 Y
=1 Nk ko=i—1 k1 ko, kg=i—1
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n—1
+ 2 E[Z2 . Ziy 1y Ziy ]
Cl; Cky Cks g1,k1 Zd2,k2 “j2,k3 .
k1,k2,kg=i—1
k1,ko,k3 p.v.

Ein weiteres Ergebnis von Khatri und Pillai ist hilfreich, um die Gleichung zu vereinfachen.

Hilfslemma 5.2.9. Es sei M eine (p x k)-Matriz bestehend aus Zufallsvariablen Mj; fiir
1
G=1,...,p,i=1,....k. M besitze die Dichte g(M; f,k,p) = c(f, k, p)| T[,—MMT |2/ 77+=1

. . -1
mit C(f, k’p) = Wf%pk H?:l F(#) <F(#)) . Dann gllt

1 3 . .
E[M]%]:? furjzla"'ap7Z:17""k7
3
2 2 . . . . .
E[Mjlilezlé] = f(f+2) fiir j1 = jo, i1 = 12,
1
= Z7r 1 o f’U/f’ jl :j27 le 7& Z'Q oder jl 7& j2> il - ,L'27
f(f+2)
f+1

= fir j1 # ja2, i1 # ia.
(f=Dr(f+2)
Der Beweis des Hilfslemmas basiert auf einer Zerlegung der multivariaten Dichte von M in
ein Produkt univariater Beta-Verteilungen, soll hier aber nicht n&her ausgefiihrt werden.
Fiir Details wird auf [KP66], S.149ff. verwiesen.

Hilfslemma 5.2.10. Es sei ¢, = e;lgp—i_1y + dpr1lpmi, o1y dj = (3G — 1))7V2,
ej = —(j — 1)d;. Dann gilt:

-1
3 o n—1
E CL = .
n
k=i—1

Beweis des Hilfslemmas.

n—1

H h. _
Z Ci:C?_1+C?+"'+C%—1:€@2+d12+1+"'+d% ort 1—(n 1/2)
k=i—1

s n—1
—

Es folgt nun mit

n—1 n—1 9 n—1
4 2 2 2
Z ck_( Z Ck) a Z k1 Cks
k=i—1 k=i—1 k1,ko=i—1
k1#kg

und Hilfslemma 5.2.9 sowie mit Hilfslemma 5.2.10 unter weiterem Rechenaufwand schlief3-
lich die erste Behauptung des Lemmas 5.2.3. Die Varianz der Gréfle by, kann auf dieselbe
Weise berechnet werden, wobei die Beziehung Var[by,] = E[b3 ] — E[bg,]* ausgenutzt

werden kann. O
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Die Vorgehensweise im zweiten Teil des Beweises von Satz 5.2.1, also die Bestimmung der
asymptotischen Verteilung von Bj, orientiert sich an [Mar70], Abschnitt 2.5. Dazu sei
X = (X1,...,Xy) eine Stichprobe aus i.i.d. p-Zufallsvektoren mit X; ~ N,(p,X) fiir
i =1,...,n. Aufgrund der Invarianz von by, gegeniiber linearen Transformationen kann
0.B.d.A. p = 0 und ¥ = I, angenommen werden. Es lésst sich by, aus (5.3) ebenfalls
darstellen in der Form
P P / / / Il
o= DS S
r,s,t=1r" s t'=1
oo—1 _ (qij (51,0008K) _ —1 5D k T\
mit S = (8Y)1<ij<p und My 0 =n" Y0 (szl(iji — X,,)"7). Aufgrund der
Konvergenz in Wahrscheinlichkeit von S gegen ¥ = I, und infolgedessen Sid ") fiir

1 # j folgt
p 2
n—oo rst
bl,p — E <M1(11)>

r,s,t=1

in Wahrscheinlichkeit. Weiter ist

Ld 2 p 9 p 9 P )
> (i) = 3 (i) + 30 (i) X (an)

r,s,t=1 r,s,t=1 r,s,t=1 r,s,t=1

r=s=t r=s#t r=t#£s
S ()L NS (0
rst rst
+ > () Y (M)
r,s,t=1 r,s,t=1
r#s=t ,5,t p.v.

123) 2 V(1)) 2
Fo(al) 4o (a2,
Nun wird der Vektor
! 12 ~1 123 ) (p—1
mo= (MY, M MO MR a0 2y

betrachtet, der aus p+p(p—1)+p(p—1)(p—2)/6 = p(p+1)(p+2)/6 Eintrégen besteht.
Da zur Ordnung n~! gilt!

s 6 12 2 123
E[Ml(nt)] =0, Var[Mél)] = o Var[Mél )] = o VaT[Ml(u )] =

(r's't")

1
n
und  Cov[M{ MET ) =0 g (rs,t) # (7,58,

folgt mit der Normalverteilung des Vektors m und Lemma 2.2.8 schlieBlich nb; /6 =
By~ X?)(p«‘,»l)(p«‘rQ)' Dies beendet den Beweis des Satzes 5.2.1. O

Vgl. [Mar70].
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Bemerkung 5.2.11. Die hier vorliegende Varianz der multivariaten Wélbung bs,, ist
exakt. Mardia gab in [Mar70] eine weitere Darstellung fiir die Varianz an, die zwar eine

einfacherere Struktur besitzt, allerdings nur zur Ordnung n~! giiltig ist. Diese lautet

Var [52,1)] = w

n

Mit dem zentralen Grenzwertsatz folgt weiter die asymptotische Standardnormalverteilung

des Ausdrucks
~ Sp(p+2)\
Byp = <()> (blp - 52,10)'

o=

n

Obwohl die asymptotischen Verteilungen von B, und Bzm iibereinstimmen, sind die
beiden Groéflen fiir endliches n nicht identisch. Um zu tiberpriifen welche der beiden Sta-
tistiken zum Testen auf Normalverteilung besser geeignet ist, miissen die kritischen Werte

empirisch berechnet und die Power der beiden Statistiken miteinander verglichen werden.

5.3 Multivariate Teststatistiken

Aus den im vorigen Abschnitt gewonnenen Resultaten lassen sich mehrere Teststatis-
tiken ableiten. Je nachdem ob die exakte oder asymptotische Varianz des multivariaten
WolbungsmafBes by ;, eingesetzt wird, sind dies By p,, B, und Bgvp. Mardias Test sieht dabei
vor, dass die Nullhypothese der Normalverteilung der der Stichprobe zugrunde liegenden
Grundgesamtheit abgelehnt wird, falls die Werte der Statistik By, oder der Statistik Bs
an der Stelle der Stichprobe grofler als die zugehorigen kritischen Werte sind. Alternativ
wéahle man 327}7 anstelle von Bs ,,. Zu vorgegebenem Signifikanzniveau lassen sich die kri-
tischen Werte dabei anhand der asymptotischen Verteilungen bestimmen. Diese Art des
Testens auf Normalverteilung impliziert also, dass keine Normalverteilung vorliegt, falls
die empirische Schiefe oder die empirische Wélbung zu stark von der theoretischen Schiefe
oder der Wolbung einer Normalverteilung abweicht. Der Test beruht also genau genom-
men auf zwei Teststatistiken. Ein Test, welcher die beiden multivariaten Mafle b1, und

ba p in einer Teststatistk zusammenfasst, ldsst sich ebenfalls ableiten.

Satz 5.3.1. Fs gelten die Bezeichnungen und Voraussetzungen des vorigen Abschnittes.

Dann konnen
MJB =B+ (Bsp)? und MJB =By, + (Bayp)?

als multivariate Jarque-Bera-Statistiken angesehen werden. Da B, nach Satz 5.2.1 eine
asymptotische Standardnormalverteilung besitzt, haben sowohl M JB als auch MJB eine

asymptotische x?- Verteilung mit % + 1 Freiheitsgraden.?

2Vgl. [KOS09].



5.3. Multivariate Teststatistiken 63

Es besteht somit auch im Testen auf multivariate Normalverteilung die Moglichkeit, zu
gegebenem Signifikanzniveau die kritischen Werte anhand der asymptotischen Verteilun-
gen der Statistiken by, und ba ), zu bestimmen. Fiir kleine Stichproben jedoch resultieren
wie auch im univariaten Fall nur sehr mangelhafte Ergebnisse. Deshalb hat Mardia in
[Mar74] kritische Werte fiir seinen Test speziell im Fall p = 2 und fiir einige ausgewihlte
Stichprobengréfien n fiir jeweils by 2 und b2 2 angegeben.

Da diese Berechnungen bereits fiir wenige Merkmale und kleine Stichprobengréfien sehr
aufwendig sind, wird auf erneute Berechnungen verzichtet und nur die empirischen kriti-
schen Werte der simultan testenden Teststatistiken M JB und m fir p = 4 Merkmale
und ausgewéhlte Stichprobengréfien n sowie Signifikanzniveaus « ermittelt. Die Vorge-
hensweise entspricht dabei der im univariaten Fall, jedoch miissen diesmal 4-variat nor-
malverteilte Stichproben generiert werden. Dazu wurde erneut die Programmiersprache R
benutzt und unter Einbeziehung des Paketes , MASS“ Replikationen multivariat normal-
verteilter Stichproben unterschiedlicher Groflenordnung erzeugt. Um die Statistiken M JB
und ]\m implementieren zu kénnen, mussten vorab der Stichprobenmittelwertvektor und
die empirische Kovarianzmatrix implementiert werden. Danach konnten die multivariaten
Schiefe- und Wolbungsmafe by, und b ,, sowie die darauf basierenden Gréien By ,, Ba )y
und 32719 als Funktionen programmiert werden. Die kritischen Werte zu vorgegebenem Si-
gnifikanzniveau o wurden dann nach Anwendung der multivariaten Teststatistiken auf die
erzeugten Stichproben anhand der (1-«)-(#Replikationen)-grofiten Werte bestimmt. Die
Tabelle 5.1 gibt die ermittelten Werte an. Die Programmcodes der einzelnen Funktionen

finden sich auf der beiligenden Daten-CD im Einband am Ende der Arbeit.

|

| n=10 | w=50 | a=150 | n-c

| |
| |
| | MJB | MJB | MJB | MJB | MJB | MJB | MJB, MJB |
| |
| |
| |

a=001 | 2051 | 23.08 | 43.75 | 30.91 | 42.76 | 4086 |  38.93
a=005 | 23.15 | 20.30 | 32.86 | 3118 | 34.16 | 33.40 |  32.67
a=01 |2022 | 1891 | 2862 |27.51 | 2003 | 2060 |  20.62

Tabelle 5.1: Empirische kritische Werte der multivariaten Jarque-Bera-Statistiken zu ei-
nigen Stichprobengrofien n und Signifikanzniveaus « bei p = 4 Merkmalen

basierend auf 10* Replikationen.

Bemerkung 5.3.2. Speziell im Fall p = 1 stimmt MJB mit dem JB-Test aus (3.8)

iiberein.



Kapitel 6

Anwendung

6.1 Testen der Rendite des DAX auf Normalverteilung

Im vorliegenden Abschnitt wird die Rendite des deutschen Aktienindex (DAX) betrachtet
und diese, sowie die Rendite einiger ausgewéhlter DAX-Aktien auf (multivariate) Normal-
verteilung getestet. Dazu mufl im Vorfeld gekliart werden, was genau unter dem Begriff
Rendite verstanden wird. Als Wertzuwachs bei positiver, bzw. Wertverlust bei negativer
Rendite wird die diskrete Rendite einer Aktie A iiber eine Zeitspanne der Lénge eins, d.h.

im Zeitraum (n — 1, n] mit n € N zum Zeitpunkt n definiert durch

A(n) — A(n — 1).

B = =41

(6.1)

Obwohl die betrachteten Aktien im Laufe eines Handelstages fortlaufenden Preisanpas-
sungen unterliegen, werden nur die SchluBwerte der Handelstage betrachtet, sodass die
Gleichung (6.1) in der folgenden Verwendung als Tagesrendite (Rrq4) interpretiert werden
kann. Es gilt somit fiir die Tagesrendite des Handelstages t innerhalb des betrachteten

Handelszeitraums (0, 7] mit 7" als letztem Handelstag

A(t)

-1 1, (6.2)

RTag( )

sodass Rra4(t) € [—1,00), da der Preis einer Aktie weder negativ werden kann, noch eine
(zumindest theoretische) Beschrinkung des Aktienpreises nach oben gegeben ist. Weiter
werden auch die Wochen- (Rwoche), Monats- (Rpyronat), Quartals- (RQuartqr) und Jahres-
renditen (R jqn.) betrachtet. Dabei konnen die Tagesrenditen jedoch nicht einfach aufsum-

miert werden, denn es gilt fiir einen Zeitraum der Linge s Tage (also s € N):

t+s t+s

i) = A0 (A0 T (it +)

Jj=t+1 j=t+1

64
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Weiter zu beachten ist, dass an Wochenenden und Feiertagen nicht gehandelt wird. So-
mit entspricht T nicht der Anzahl an tatséchlichen Handelstagen innerhalb des Han-
delszeitraums (0,7]. Die Anzahl an Handelstagen ist vielmehr wesentlich kleiner. Al-
so miissen unter Beachtung der Diskretheit des Modells gewisse Anpassungen getroffen
und die Anzahl an Handelstagen moglichst gleichméfig auf den betrachteten Handels-
zeitraum aufgeteilt werden. Betrachtet man einen Handelszeitraum der Gréflenordnung
x Jahre, so entspricht dies T' = 365-x Tagen und in anderen Zeiteinheiten ausgedriickt
T = 52-2 Wochen = 12-z Monate = 4-x Quartale = x Jahre. Es sei nun n die Anzahl an
Handelstagen innerhalb dieser  Jahre und k& = 52-z. Dann wird die Wochenrendite der

i-ten Woche innerhalb des betrachteten Handelszeitraums (0, 7] als

L5
RWoche(i) = H (RTag(j) + 1) -1 (63)
="

mit ¢ € {1,...,k} definiert. Analog werden die Grofen Rasonat (1), RQuartal(?) und R jop,(7)
mit k = 12-x, k = 4-x bzw. k = x anstelle von k = 52-z definiert.

Dieses Modell wird im Folgenden dazu benutzt, die Rendite verschiedener Laufzeiten auf
Normalverteilung zu testen. Dazu wurde in der Programmiersprache R ein Programm er-
stellt, in dem die einzelnen Renditearten implementiert und auf historische DAX-Werte
angewendet wurden. Die Analysen beschrinken sich auf die DAX-Aktien der Unterneh-
men Allianz, Bayer, Deutsche Bank, SAP und Siemens, sowie den DAX-Index. Betrachtet
wurde im Rahmen dieser Analysen der Zehnjahreszeitraum vom 2.1.2002 - 30.12.2011. Die
Grofle der vorliegenden Stichproben der einzelnen Renditearten ist n € [2552, 2580] fiir die
Tagesrenditen, n = 520 fiir die Wochenrenditen, n = 120 fiir die Monatsrenditen, n = 40
fiir die Quartalsrenditen und n = 10 fiir die Jahresrenditen. Die historischen Daten stam-
men dabei von der Internetseite http://finance.yahoo.com/. Um mit den Daten arbeiten
zu konnen wurden diese in R eingelesen und auf die (um die Dividende bereinigten) Ak-
tienwerte zugegriffen. Unter Anwendung der in Kapitel 3 hergeleiteten JB-Statistik (die
bereits in R implementiert wurde) auf die Aktienwerte konnten die in der Tabelle 6.1
aufgelisteten Werte ermittelt werden.

Zu erkennen ist in Tabelle 6.1, dass fiir den DAX und auch alle DAX-Aktien die
Hypothese der Normalverteilung der Tages-, Wochen-, Monats- und Quartalsrenditen zu
den iiblichen Signifikanzniveaus o € {0.05, 0.1} und sogar zum Niveau o = 0.005 abgelehnt
wird.! AusschlieBlich fiir die Jahresrenditen des DAX, sowie die Jahresrenditen von SAP
und Siemens kann die Nullhypothese der Normalverteilung zum Signifikanzniveau o =

0.05, fiir die Jahresrendite von Bayer sogar nur zum Signifikanzniveau o = 0.01 gehalten

vgl. dazu Tabelle 4.1.
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werden
| | TB(Rrag) | TB(Rwoene) | IB(Ratonar) | JB(Rauartat) | TB(Ryanr) |
| DAX |  1877.25 | 376.23 | 34.42 | 25.27 | 2.29 |
| Allianz | 5116.19 | 2837.58 | 113.30 | 119.78 | 752 |
| Bayer | 53572.54 | 1006624 | 73.92 | 64.76 | 2.64 |
| Deutsche Bank | 7054.97 | 901.04 | 5828.01 | 69.38 | 7.32 |
| SAP | 1432255 | 1354.54 | 1246.65 | 92.80 | 2.42 |
| Siemens | 20712.39 | 1011.75 | 2010.90 | 25.20 | 2.13 |

Tabelle 6.1: Werte der JB-Statistik einiger ausgew#hlter DAX-Aktien und des DAX-
Index fiir die Tages-, Wochen-, Monats-, Quartals- und Jahresrenditen vom
2.1.2002 - 30.12.2011.

Weiter wird iiberpriift ob die Jahresrenditen des DAX und die Jahresrenditen von Bayer,
SAP und Siemens sogar als multivariat normalverteilt angenommen werden kénnen. Da-
zu wurden die Jahresrenditen mit R in einer (4 x 10)-Datenmatrix X zusammengefasst
und auf diese die Statistiken MJB und ]\/4?]/3 aus Satz 5.3.1 angewendet, die bereits
im Rahmen des vorigen Kapitels in R implementiert wurden. Zur Entscheidungfindung
werden die empirischen kritischen Werte herangezogen, die der Tabelle 5.1 entnommen
werden konnen. Es ist MJB(X) = 29.41 und ]\/4:7/B(X) = 22.65, sodass also auch hier
die Annahme der multivariaten Normalverteilung der vorliegenden Jahresrenditen zum
Niveau a = 0.01 nicht verworfen werden kann. Zum Niveau o = 0.05 jedoch kann die

Nullhypothese bereits nicht mehr gehalten werden.

Fazit: Nach den Renditedefinitionen (6.2) und (6.3) muss davon ausgegangen werden,
dass die Tages-, Wochen-, Monats-, und Quartalsrenditen des DAX und aller betrachteten
DAX-Aktien weder multivariat, noch univariat normalverteilt sind. Fiir die Jahresrenditen
des DAX, sowie fiir die Jahresrenditen von Bayer, SAP und Siemens &dndert sich das Bild.
Hier kann sogar eine multivariate Normalverteilung unterstellt werden. Dabei kann die
Nullhypothese jedoch nur knapp zum Signifikanzniveau 1% gehalten werden. Beziiglich der
Nullhypothese univariat normalverteilter Jahresrenditen kann fiir diese Aktienwerte keine
einheitliche Entscheidung getroffen werden. Die Nullhypothesen wurden zwar nicht ver-
worfen, allerdings mussten dazu die Signifikanzniveaus im Vorfeld unterschiedlich gewahlt
werden. Bei den Aktienwerten der Unternehmen Allianz und Deutsche Bank konnte die
Nullhypothese zu keinem der géingigen Signifikanzniveaus o € {0.01,0.05,0.1} gehalten

werden. Insgesamt jedoch sollten aufgrund der geringen Stichprobengréflie von lediglich
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zehn Beobachtungen im Falle der Jahresrenditen, sowie aufgrund der geringen Anzahl an
Replikationen, anhand derer die empirischen kritischen Werte der multivariaten Teststatis-
tiken ermittelt wurden, die gewonnenen Erkenntnisse unter Vorbehalt betrachtet werden.
Wie sich allerdings mit Sicherheit herausgestellt hat, miissen vor allem die Tagesrendi-
ten als nicht normalverteilt angenommen werden. Um dennoch Aussagen iiber die den
Tagesrenditen zugrunde liegende Verteilungsform treffen zu kénnen sei beispielsweise auf
[ST06] aufmerksam gemacht. In ihrem Buch geben die Autoren verschiedene Modelle zur

Anpassung an die empirische Verteilung unterschiedlicher DAX-Aktien.



Kapitel 7
Zusammenfassung und Ausblick

In der vorliegenden Arbeit wurde eine Herleitung des Jarque-Bera-Tests gegeben und
dabei insbesondere auf seine asymptotische Verteilung eingegangen. Es konnte gezeigt
werden, dass sich der Jarque-Bera-Test als ein Spezialfall des Score-Tests innerhalb des
Pearson-Verteilungssystems darstellen lasst, sodass der Jarque-Bera-Test innerhalb dieses
Verteilungssystems ein Test auf Normalverteilung bildet. Anhand dieser Darstellung kann
man erkennen, dass der Jarque-Bera-Test auf der Schiefe und der Woélbung der zugrunde
liegenden Verteilung basiert und somit eine gewisse Abweichung dieser Gréfien von denen
einer Normalverteilung notwendig ist, um eine Ablehnung der Hypothese der Normalver-
teilung herbeizufithren. Ob und in welchem Mafle dies ein Vorteil des Jarque-Bera-Tests
gegeniiber anderen Tests auf Normalverteilung ist, wurde daraufhin in empirischen Un-
tersuchungen analysiert. Dazu wurden, anders als es in praktischen Anwendungen héufig
der Fall ist, nicht die kritischen Werte der asymptotischen Verteilung, sondern die empiri-
schen kritischen Werte, die zum Teil selbst ermittelt wurden, benutzt. Denn obwohl sich
die Grenzverteilung des Jarque-Bera-Tests als eine y2-Verteilung mit zwei Freiheitsgra-
den herausstellte und die Verwendung der Fraktile dieser Verteilung aufgrund der guten
Vertafelung wesentlich einfacher gewesen wére, konnte gezeigt werden, dass aufgrund der
langsamen Konvergenz in Verteilung die Verwendung der Grenzverteilung zur Beurteilung
in Testsituationen besonders beim Vorliegen kleiner Stichproben oftmals zu falschen Er-
gebnissen fithren wird. Nichtsdestotrotz werden die Fraktile der y2-Verteilung heutzutage
in vielen Anwendungen dazu benutzt, iiber das Verwerfen oder Einhalten der aufgestellten
Nullhypothese der Normalverteilung zu entscheiden.

Um Aussagen iiber die Power des Jarque-Bera-Tests in Bezug zur Power anderer Tests
treffen zu kénnen, wurden mit dem Programm R Monte-Carlo-Simulationen durchgefiihrt.
Zudem wurden zwei Modifizierungen des Jarque-Bera-Tests betrachtet, von denen die eine
auf den exakten Momenten der Schiefe und der Wolbung und die andere auf unverzerrten

Schétzern fiir die theoretische Schiefe und die Woélbung beruhte. Es stellte sich heraus,
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dass in der Situation des Testens auf Normalverteilung von Beobachtungen gegen Vertei-
lungen aus dem Pearson-Verteilungssystem die Jarque-Bera-Statistiken speziell gegen die
t-Verteilung den anderen Tests {iberlegen waren. In den anderen Testsituationen lagen der
Jarque-Bera-Test und seine Modifizierungen etwa im Mittelfeld, wobei fiir kleine Stichpro-
ben die Ergebnisse schlechter ausfielen als die der anderen Teststatistiken. Zusétzlich wur-
de auch gegen die Lognormal-Verteilung als Nicht-Pearson-Verteilung getestet, obwohl
eine Rechtfertigung fiir dieses Vorgehen erst an spéterer Stelle gegeben wird. In dieser
Testsituation jedoch unterlag der Jarque-Bera-Test seiner Konkurrenz am deutlichsten.
Im Verhéltnis zu seinen Modifizierungen schnitt die urspriingliche Jarque-Bera-Statistik
abgesehen vom Testen gegen die t-Verteilung deutlich besser ab, sodass die modifizier-
ten Jarque-Bera-Tests nicht als wirkliche Verbesserungen eingestuft werden kénnen und

infolgedessen in den anschlieBenden Untersuchungen nicht weiter beriicksichtigt wurden.

Um nun auch gegen Nicht-Pearson-Verteilungen testen zu diirfen, wurden die Ergeb-
nisse von Bowman und Shenton genutzt, die eine Charakteriserung des Jarque-Bera-Tests
als Summe zweier standardnormalverteilter Zufallsvariablen gegeben haben. Dieses Re-
sultat liefert gleichzeitig eine einfache Begriindung fiir die angegebene Grenzverteilung.
In dhnlicher Weise wie im vorigen Modell wurden neue Untersuchungen iiber die Power
der Teststatistiken durchgefiihrt, wobei in der neuen Situation die Alternativhypothe-
sen aus kontaminierten Normalverteilungen bestanden. Das Ergebnis war, dass sich bei
einer Abweichung der Schiefe von null weniger Auswirkungen auf die Power der Jarque-
Bera-Statistik zeigten, als bei einer Abweichung der fiir die Normalverteilung typischen
Wolbung. Dies fiihrte dazu, dass der Jarque-Bera-Test sowohl dem Anderson-Darling-, als
auch dem Shapiro-Francia-Test fast immer unterlag, wobei in den Situationen, in denen
nur eine starke Abweichung von der Wolbung zu beobachten war, diese Unterlegenheit
teilweise ausgeglichen erschien. Besonders bimodale Verteilungsmodelle stellen eine grofie
Herausforderung fiir den Jarque-Bera-Test dar, denn in diesen Situationen war die Unter-

legenheit der Teststatistik fiir kleine Stichproben am offensichtlichsten.

Als Test auf multivariate Normalverteilung konnte der Jarque-Bera-Test auf multi-
variate Testsituationen erweitert werden, indem die von Kantilal Vardichand Mardia de-
finierten multivariaten Schiefe- und Wolbungsmafle benutzt wurden. Auch hier konnte
fiir die multivariaten Teststatistiken eine asymptotische Verteilung hergeleitet werden. In
Analogie zur univariaten Situation wurden anhand von Monte-Carlo-Simulationen fiir den
speziellen Fall von vier Merkmalen empirische kritische Werte ermittelt, mit dem Ergeb-
nis, dass sich auch im mehrdimensionalen Fall speziell beim Vorliegen kleiner Stichproben
die empirischen kritischen Werte von denen der Grenzverteilung deutlich unterscheiden.
Benutzt man diese beispielsweise zur Beurteilung iiber eine multivariate Normalverteilung

von Renditen verschiedener Laufzeiten an Aktienmérkten, so mufl bei den betrachteten
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DAX-Aktien davon ausgegangen werden, dass fiir die Jahresrenditen die Nullhypothese
der multivariaten Normalverteilung zu einem deutlich niedrigeren Signifikanzniveau (5%)
nicht gehalten werden kann, als dies bei Betrachtung der Fraktile der asymptotischen
Verteilung der Fall ist. Hier kann selbst zu einem Signifikanzniveau von 10% die Nullhy-
pothese nicht verworfen werden. Jedoch sollte an dieser Stelle darauf hingewiesen werden,
dass die Grofle der Stichprobe, anhand derer diese Ergebnisse resultieren, lediglich zehn
Beobachtungen betriagt. Alle Renditen kiirzerer Laufzeiten miissen generell auch bereits
in der univariaten Situation zu jedem iiblichen Signifikanzniveau als nicht normalverteilt

angenomimen werden.

Obwohl die empirischen Untersuchungen deutlich zeigen, dass die Verwendung der -
Fraktile andere Ergebnisse liefert als die Verwendung der empirischen kritischen Werte
und ein Uberblick dariiber gewonnen werden konnte, wie die einzelnen Tests im Verhiiltnis
zueinander einzuordnen sind, mufl bedacht werden, dass diese Ergebnisse die relativen
Verhéltnisse lediglich andeuten. Um prézisere Aussagen treffen zu koénnen, miissen in
grofferem Rahmen Simulationen durchgefiithrt werden.

Um eine Vorstellung dariiber zu bekommen, wie die multivariaten Jarque-Bera-Statisti-
ken im Verhéltnis zu anderen Tests auf multivariate Normalverteilung einzuordnen sind,
bietet es sich an, einen Powervergleich mit anderen Tests auf multivariate Normalvertei-
lung durchzufithren. Problematisch ist jedoch die groie Zahl an Rechenschritten innerhalb
der Simulationen, die mit steigender Anzahl an Merkmalen bedeutend zunimmt. In der
univariaten Situation kénnte man versuchen den univariaten Jarque-Bera-Test dadurch zu
verbessern, dass weitere Grofien fiir die Schiefe und Woélbung als Basis einer Teststatistik
betrachtet werden. Insgesamt jedoch lésst sich festhalten, dass der Jarque-Bera-Test als
Test auf univariate Normalverteilung aufgrund seiner sehr einfachen Struktur durchaus ein
leicht zu handhabendes und empfehlenswertes Hilfsmittel darstellt, sofern die empirischen

kritischen Werte benutzt werden und die Stichprobe eine gewisse Mindestgrofie besitzt.



Anhang A

Hilfsresultate

In diesem Kapitel werden einige Resultate angegeben, die im Laufe der Arbeit verwendet

wurden.

A.1 Zentraler Grenzwertsatz (mehrdimensional)

Es seien X1,..., X, iid. p-Zufallsvektoren mit E[X;] = p und Cov[X;] = X fiir ¢ =
1,...,n. Weiter sei X = 13" | X;. Dann gilt:

V(X —p) 2 N (0,3).

A.2 Cholesky-Zerlegung

Eine symmetrische Matrix A ist genau dann positiv definit, wenn es eine obere Dreiecks-

911 s T 91d
. 0 : . T .
matrix G = | ‘ gibt, sodass G* G = A. Man nennt G auch die
0 0 gu

Matriz- Wurzel aus der Matrix A. Die Cholesky-Zerlegung ist ein numerisches Verfahren,

das eine solche Matrix G berechnet.

A.3 Invertierung von Blockmatrizen

My Mo
My Mo
Moy € RUXT ynd My; € RE-)%(d=7) Sind die Matrizen M, M1, und M, invertier-

Gegeben sei die (d x d)-Matrix M = < > mit My, € R™", M5 € R’”X(d—ﬂ,
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bar, dann gilt mit N = My, — M5 M 5, Mo;:

. N1 ~N MMy}
M= .
~My My N1 My + My My N MsMy)



Anhang B

Ergebnisse der empirischen

Analysen

B.1 Numerische Ergebnisse der Analysen im Powervergleich
der Teststatistiken JB, AD und SF innerhalb verschie-
dener KN-Verteilungen

|
\ \ \ p=0.1 \ p=0.3 \ p=05 \
|

JB \AD \SF \JB \AD \SF \JB \AD \SF \

n = 20 0.119 0.088 | 0.122 | 0.045 | 0.075 | 0.065 | 0.013 | 0.044 | 0.023
n = 50 0.188 0.149 | 0.191 | 0.051 | 0.13 0.088 | 0.003 | 0.079 | 0.029
p2 =2 | n=100 | 0.262 0.218 | 0.271 | 0.073 | 0.231 | 0.16 0.007 | 0.135 | 0.043
n =200 | 0.466 | 0.396 | 0.448 0.248 | 0.492 | 0.361 | 0.064 | 0.244 | 0.109
n =400 | 0.76 0.683 | 0.772 | 0.642 | 0.821 | 0.725 | 0.37 0.563 | 0.375

n = 20 0.27 0.243 | 0.283 | 0.074 | 0.24 0.17 0.011 | 0.135 | 0.057
n =50 0.54 0.506 | 0.574 | 0.104 | 0.589 | 0.425 | 0.002 | 0.446 | 0.226
p2 =3 | n=100 | 0.838 0.824 | 0.86 0.509 | 0.913 | 0.811 | 0.209 | 0.82 0.582
n =200 | 0.991 0.982 | 0.992 | 0.959 | 0.998 | 0.989 | 0.892 | 0.998 | 0.967
n=400 | 1 1 1 1 1 1 1 1 1

Tabelle B.1: Powerwerte der Teststatistiken JB, AD und SF zum Signifikanzniveau
a = 5% bei einigen Stichprobengrofien n und 1000 Replikationen fiir ver-
schiedene K N-Verteilungen mit den Parametern u; = 0, us € {2,3},
0? =03 =1,und p € {0.1,0.3,0.5}.
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| | | 0} =05 |
| | | p=0.25 | p=05 | p=0.75 |
| | |yB | AD | sF | JB | AD |sF | JB | AD | sF |

n =20 0.059 | 0.084 | 0.07 0.198 | 0.224 0.235 | 0.348 0.335 0.378
n =50 0.072 | 0.16 0.126 | 0.382 | 0.529 | 0.495 0.729 0.683 0.741
p2=1 1] n=100 | 0.148 | 0.308 | 0.263 | 0.714 | 0.862 | 0.837 0.952 0.946 0.96
n =200 | 0.355 | 0.596 | 0.495 | 0.954 | 0.99 0.985 0.999 | 0.998 0.999
n =400 | 0.725 | 0.908 | 0.856 | 1 1 1 1 1 1

n =20 0.017 | 0.085 | 0.038 | 0.079 | 0.337 | 0.247 0.521 0.684 | 0.672
n = 50 0.008 | 0.194 | 0.074 | 0.198 | 0.801 | 0.648 0.926 0.98 0.982

p2 =2 | n=100 | 0.043 | 0.451 | 0.252 | 0.818 | 0.994 | 0.974 1 1 1
n =200 | 0.376 | 0.791 | 0.662 | 0.999 | 1 1 1 1 1
n =400 | 0.902 | 0.99 0986 | 1 1 1 1 1 1

Tabelle B.2: Powerwerte der Teststatistiken JB, AD und SF zum Signifikanzniveau
a = 5% bei einigen Stichprobengrofien n und 1000 Replikationen fiir ver-
schiedene K N-Verteilungen mit den Parametern p; = 0, pe € {1,2},
0? =1, 0% =0.5und p € {0.25,0.5,0.75}.

n = 20 0.445 | 0.365 | 0.453 | 0.276 | 0.261 0.307 | 0.149 | 0.128 0.155
n = 50 0.775 | 0.701 | 0.788 | 0.522 | 0.583 0.61 0.167 0.201 0.208
p2 =0 | n=100 | 0.966 | 0.926 | 0.97 0.758 | 0.875 | 0.854 0.28 0.395 | 0.349
n=200 | 1 0.998 | 1 0.95 0.997 | 0.985 0.45 0.671 | 0.572
n =400 | 1 1 1 1 1 1 0.679 0.932 | 0.855

n = 20 0.538 | 0.528 | 0.581 | 0.313 | 0.402 0.425 | 0.112 0.154 | 0.146
n = 50 0.914 | 0.897 | 0.937 | 0.628 | 0.813 | 0.773 0.189 0.316 | 0.272
p2 =2 | n=100 | 0.997 | 0.99 0.998 | 0.886 | 0.983 | 0.976 0.29 0.579 | 0.465
n =200 | 1 1 1 0.992 | 1 1 0.529 0.906 | 0.796
n =400 | 1 1 1 0.999 | 1 1 0.811 0.995 | 0.977

Tabelle B.3: Powerwerte der Teststatistiken JB, AD und SF zum Signifikanzniveau
a = 5% bei einigen Stichprobengréfien n und 1000 Replikationen fiir ver-
schiedene K N-Verteilungen mit den Parametern p; = 0, p2 € {0,2},
0?2 =1,03 =3 und p € {0.25,0.5,0.75}.
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B.2 Numerische Ergebnisse der Analysen im Powervergleich
der Teststatistiken JB, JBy, AD, LIL, CVM, PEA und

SF innerhalb des Pearson-Verteilungssystems

| | yB | JBy | AD | LIL | cvM | PEA | SF |
Beta(3.2) n=10 | 0.014 | 0.014 | 0.008 | 0.006 | 0.006 | 0.012 | 0.008
eta(3,
n=20 | 0002 | 0002 | 0014 | 001 | o001 | 0.026 | 0.01
* n=50 | 0 0 0.04 | 003 | 0034 | 0038 | 0.01
n=100 | 0 0 0.148 | 0.062 | 0.104 | 0.052 | 0.07

n =200 | 0.006 0.004 0.554 | 0.252 | 0.422 0.176 0.548
n =400 | 0.804 0.752 0.964 0.586 | 0.844 0.57 0.988

n =10 0.054 0.056 0.05 0.048 | 0.048 0.034 0.058
n = 20 0.12 0.124 | 0.088 0.048 | 0.078 0.036 0.124
n =50 0.26 0.268 | 0.154 0.078 | 0.124 0.04 0.25

n =100 | 0.472 0.478 0.322 0.144 | 0.27 0.072 0.484
n =200 | 0.784 0.786 | 0.568 0.302 | 0.498 0.11 0.772
n =400 | 0.958 | 0.958 | 0.864 0.596 | 0.802 0.27 0.958

n =10 0.082 0.082 0.086 0.06 0.076 0.048 0.1

n =20 0.168 0.154 0.226 0.144 | 0.21 0.142 0.256
n = 50 0.512 0.48 0.77 0.44 0.688 0.382 0.798
n =100 | 0.912 0.892 0.98 0.808 | 0.94 0.834 0.992
n=200 | 1 1 1 0.994 | 1 1 1
n=400 | 1 1 1 1 0.994 1 1

Gamma(2,1)

n =10 0.284 0.272 0.378 0.276 | 0.362 0.236 0.384
n =20 0.622 0.59 0.812 0.624 | 0.78 0.604 0.826

p n=50 | 0962 | 0.956 |1 0.976 | 0998 | 0978 | 1
n=100 | 0.998 | 0.998 | 1 1 0.88 | 0.998 | 1
- n=200 | 1 1 1 1 0.146 | 1 1
. n=400 | 1 1 1 1 0 1 1

Tabelle B.4: Powerwerte verschiedener Tests auf Normalverteilung zum Signifikanzni-
veau a = 1% bei einigen Stichprobengréfien n und 500 Replikationen. Die
effizientesten Tests in den einzelnen Kategorien sind durch Fettdruck her-
vorgehoben. Die Grafiken zeigen die Dichte der entsprechenden Verteilun-
gen (durchgezogene Linien) im Vergleich zur normierten und zentrierten

Normalverteilung (gestrichelte Linien).
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| | | yB | yBy | AD | LIiL | cvM | PEA | SF |

n =10 0.074 0.052 0.116 0.092 | 0.116 0.12 0.1

n = 20 0.062 0.05 0.152 | 0.11 0.13 0.134 | 0.104
n =50 0.138 0.082 0.266 | 0.214 | 0.236 0.202 | 0.202
n =100 | 0.47 0.366 0.554 | 0.374 | 0.472 0.28 0.512
n =200 | 0.934 0.912 0.902 0.69 0.806 0.522 | 0.948
n=400 | 1 1 0.994 0.942 | 0.988 0.874 | 1

Beta(3,2)

20 -~

n =10 0.218 0.222 | 0.19 0.152 | 0.182 0.146 | 0.206
n =20 0.332 0.346 | 0.256 0.196 | 0.234 0.174 | 0.312
n = 50 0.514 0.532 | 0.37 0.282 | 0.338 0.204 | 0.48
n =100 | 0.728 0.742 | 0.594 0.466 | 0.556 0.276 | 0.728
n =200 | 0.93 0.936 | 0.836 0.686 | 0.794 0.428 | 0.926
n =400 | 0.992 | 0.992 | 0.97 0.912 | 0.962 0.63 0.99

n =10 0.286 0.252 0.296 0.226 | 0.282 0.252 | 0.318
n =20 0.566 0.494 0.552 0.39 0.51 0.434 | 0.594
n =50 0.956 0.926 0.944 0.834 | 0.918 0.77 0.972

n=100 | 1 1 0.998 0.978 | 0.998 0964 | 1
n =200 | 1 1 1 1 1 1 1
n =400 | 1 1 1 1 0.998 1 1

n =10 0.628 0.566 0.664 0.562 | 0.644 0.596 | 0.686
n =20 0.912 0.894 0.94 0.87 0.918 0.888 | 0.96

n=50 |1 1 1 0.998 | 1 1 1
n=100 | 1 1 1 1 0.89 1 1
n=200 | 1 1 1 1 0.158 | 1 1
.. . | m=400 |1 1 1 1 0 1 1

Tabelle B.5: Powerwerte verschiedener Tests auf Normalverteilung zum Signifikanzni-
veau o = 10% bei einigen Stichprobengréfien n und 500 Replikationen.
Die effizientesten Tests in den einzelnen Kategorien sind durch Fettdruck
hervorgehoben. Die Grafiken zeigen die Dichte der entsprechenden Vertei-
lungen (durchgezogene Linien) im Vergleich zur normierten und zentrierten

Normalverteilung (gestrichelte Linien).



Anhang C

Daten-CD

In den Kapiteln vier, fiinf und sechs dieser Arbeit sind empirische Analysen durchgefiihrt
worden. Die in diesen Analysen verwendeten Groflen wurden dabei in der Programmier-
sprache R im Rahmen von Monte-Carlo-Simulationen generiert. Die Programmcodes zur
Erzeugung dieser Grofien sowie weitere fiir die Analysen entwickelte Programme sind auf
der beigefiigten Daten-CD im Einband am Ende der Arbeit enthalten. Ebenso die Aktien-
werte aus Kapitel sechs, die von der Internetseite http://finance.yahoo.com/ entnommen
wurden.

Die Dateien mit den Programmcodes sind dabei den einzelnen Kapiteln und Abschnit-
ten zugeordnet und geben namentlich an, um welche Programme es sich handelt. Auf die
in R verwendeten Pakete wird in den entsprechenden Dateien zu Beginn innerhalb einer
kurzen Erlduterung hingewiesen. Die genaue Vorgehensweise innerhalb der Analysen wird

in den entsprechenden Kapiteln dieser Arbeit detailliert geschildert.
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