Die Integraldarstellung amerikanischer Optionspreise

Tobias Nigbur
Danksagung

Münster, 25. April 2009
Tobias Nigbur
Inhaltsverzeichnis

1 Einleitung 6

2 Modellwelt und Requisiten 8
 2.1 Die Finanzwelt ... 8
 2.2 Optionen .. 10
 2.3 Mathematisches Modell ... 12
 2.3.1 Der Kursverlauf ... 12
 2.3.2 Mehrdimensionale Erweiterung 15
 2.4 Dividenden ... 18
 2.5 Europäische Optionen ... 19
 2.5.1 Preis bei einem Basisfinanzgut 19
 2.5.2 Preis bei mehreren Basisfinanzgütern 22
 2.6 Die Black-Scholes Differentialgleichung 23

3 Die Grenzfunktion 25
 3.1 Die Preisfunktion und optimales Stoppen 25
 3.2 Amerikanische Basketoptionen und deren Grenzregionen 29
 3.3 Steigung, Stetigkeit und Konvexität 32
 3.4 Das Verhalten am Ende der Laufzeit 35

4 Darstellung des amerikanischen Callpreises für endliche Laufzeiten 53
 4.1 Die Formel nach McKean .. 53
 4.1.1 Transformationen .. 54
 4.1.2 Die Fouriertransformation 56
 4.1.3 Lösung der gewöhnlichen Differentialgleichung 58
 4.1.4 Die Rücktransformation 60
 4.1.5 Die Formel nach McKean für den Call 65
 4.2 Die Darstellung nach Kim 69
 4.3 Der amerikanische Callpreis ohne Dividendenzahlungen 74

5 Der Preis für die amerikanische Putoption bei endlicher und unendlicher Laufzeit 76
 5.1 Endliche Laufzeit ... 76
 5.2 Unendliche Laufzeit ... 80

6 Der Putpreis für die endliche Basket Option 83

7 Fazit 89
8 Literaturverzeichnis
Kapitel 1

Einleitung

Optionen müssen nicht nur auf einem, sondern können auf mehreren, korrelierten Finanzgütern basieren und werden dann Basket- oder auch Rainbowoptionen genannt. Ein Vorteil ist, dass man sich gegen Schwankungen am Finanzmarkt absichern kann, wenn die Option auf negativ korrelierten Finanzgütern beruht. Allerdings erschwert sich dadurch das optimale Stoppen, da die Wertentwicklung aller Finanzgüter beachtet werden muss.

Eine Integraldarstellung für Basketoptionen wird in Kapitel 6 gegeben und Eigenschaften der Stopregion werden in Kapitel 3 verifiziert.
Kapitel 2

Modellwelt und Requisiten

2.1 Die Finanzwelt

Es wird versucht, den realen Finanzmarkt möglichst sinnvoll abzubilden. Komplett realitätstreu ist dies allerdings kaum möglich, da der Finanzmarkt starken Schwankungen unterliegt und einige Annahmen dieses Modell unnötig verkomplizieren würden.

Folgende Voraussetzungen werden an den Markt gestellt:

- Dividenden Wenn Aktiengesellschaften einen Teil ihres Gewinns an die Aktienbesitzer auszahlen, nennt man dies Dividenden. Dividenden werden in einem eigenen Kapitel behandelt.

- Finanztitel sind beliebig teilbar. Man kann Finanztitel beliebig stückeln und verkaufen, was natürlich bei Wertpapieren nicht möglich ist.

- Es gibt keine Beschränkungen von Aufnahmen oder Anlagen von Finanzen.
Theoretisch kann man extrem große Mengen an Geld leihen, ohne dass man Sicherheiten vorweisen muss. In der Realwelt ist die Aufnahme oder Anlage von steigenden Beträgen meist an eine steigende Zinskurve gebunden.

- Der Aufnahme- und der Anlagezins sind gleich.
 Diese Annahme ist nicht sehr realitätsnah. Wie jeder aus eigener Erfahrung weiß, sind in der realen Welt der Aufnahme und der Anlagezins nicht gleich, denn Finanzinstitute sind gewinnorientiert und wollen sich gegen Kreditausfälle absichern. Zusätzlich wird in der Realität die Dauer der Anlage oder Aufnahme, bei gleichem Betrag, unterschiedlich bezinst (Zinsstrukturkurve).

- Der Markt ist arbitragefrei.

- Keine Transaktionskosten oder Steuern

- Rationale Marktteilnehmer mit gleichen Informationen.
 Jeder Marktteilnehmer will seinen Gewinn maximieren, bei Risikoaversität.
 Es herrscht Informationssymmetrie: Jeder Händler weiß gleich viel über den zukünftigen Verlauf eines Finanztitels. Insiderhandel ist also nicht möglich.

2.2 Optionen

Optionen sind Verträge zwischen 2 Parteien, bei denen der Käufer (long-position) das Recht erwerbt, zu einem oder mehreren Zeitpunkten eine bestimmte Anzahl von Finanzgutern zu einem Ausübungspreis K an den Verkäufer (short-position) zu kaufen oder verkaufen. Das Recht ist keine Pflicht, der Käufer kann die Option also auch verfallen lassen.

Optionen werden gehandelt, weil man auf steigende oder fallende Kurse wetten, oder sich absichern möchte. Optionen lassen sich in 2 Klassen unterteilen.

- **Put-Optionen: Verkaufsoptionen**

 Die Auszahlungsfunktion für den Käufer einer Putoption auf ein Finanzgut S ist

 \[
 \max(K - S, 0) = (K - S)_+
 \]

 Als Käufer wettet man auf fallende, als Verkäufer auf steigende Kurse.

- **Call-Optionen: Kaufoptionen**

 Die Auszahlungsfunktion für den Käufer einer Calloption auf ein Finanzgut S ist

 \[
 \max(S - K, 0) = (S - K)_+
 \]

 Als Käufer wettet man auf steigende, als Verkäufer auf fallende Kurse.

Wenn man von einem Einperiodenmodell ausgeht und den Diskontierungsfaktor vernachlässigt, kann der Profit in Abhängigkeit des Aktienwerts gut visualisiert werden. Wenn die Option in $t = 0$ 10 Geldeinheiten gekostet hat und der Ausübungspreis $K=100$ ist, dann zeigen folgende zwei Grafiken den Profit in $t = 1$ in Abhängigkeit vom Aktienwert.

Natürlich muss davon ausgegangen werden, dass sich die 10 Geldeinheiten über die eine Periode verzinst hätten und sich somit die Funktionen leicht verschieben. Wie man erkennt, lässt sich mit einer Call-Option, im Gegensatz zur Put-Option, theoretisch unendlich viel Profit erzielen. Der Profit bei der Put-Option ist begrenzt, da das Basisfinanzgut nur positive Werte annehmen kann.

Wenn die Wahrscheinlichkeit für alle möglichen zukünftigen Zustände des Finanzguts bekannt und der Verzinsungsfaktor deterministisch ist, welchen fairen Preis hat dann die Option in $t = 0$?

Ein fairer Preis ist ein Preis, der Arbitrage ausschließt und somit weder den Käufer noch den Verkäufer der Option benachteiligt. Die Berechnung dieser Optionspreise für verschiedene Arten von Optionen ist Inhalt dieser Diplomarbeit.
Optionen lassen sich auch nach möglichen Ausübungszeitpunkten separieren.

Europäische Option
Eine europäische Option ist ein Vertrag zu einem Preis $P_E(S_t, t)$ (Put) oder $C_E(S_t, t)$ (Call) zum Zeitpunkt t und Kurswert des Basisfinanzguts S zum Zeitpunkt t, S_t mit Restlaufzeit $T - t$. Dem Käufer wird erlaubt, eine bestimmte Aktie zum Ende der Laufzeit für einen festgelegten Betrag K zu kaufen bzw. verkaufen, oder die Option verfallen zu lassen.

Amerikanische Option
Eine amerikanische Option wird zum Preis $P(S_t, t)$ (Put) oder $C(S_t, t)$ (Call) in Abhängigkeit von der Restlaufzeit $T - t$ und des aktuellen Kurswertes des Basisfinanzguts S_t, verkauft. Die amerikanische Option ist eine europäische Option mit dem zusätzlichen Recht, zu jedem Zeitpunkt während der Vertragslaufzeit von seinem Kauf- bzw Verkaufsrecht Gebrauch zu machen. Deswegen muss eine amerikanische Option, bei gleichem Basisfinanzgut, gleicher Laufzeit und gleichem Ausübungsbetrag mehr Wert als eine europäische Option sein, weil es die Möglichkeit zur frühen, optimalen Ausübung gibt. Das ist auch der Grund, warum eine amerikanische Option mit Vertragslaufzeit T_1 einen höheren Preis hat als eine mit T_2 für $T_1 > T_2$.

Als innerer Wert einer amerikanischen Option wird der Gewinn bei sofortigem Ausüben der Option bezeichnet.

Basket Option

Kombiniert man zum Beispiel die Aktie eines ölfördernden Unternehmens und eines ölverbrauchenden Unternehmens, hat man sich gegen Ölpreisschwankungen abgesichert, denn von einem Preisanstieg des Ols profitiert das ölfördernden Unternehmen und von einem Preisverfall das ölverbrauchende Unternehmen.

Die Auszahlungsfunktion für einen Basketput auf zwei Finanzgüter ist $(K - (S^1 + S^2))^+$.

Tobias Nigbur

Die Integraldarstellung amerikanischer Optionspreise

Seite 11
2.3 Mathematisches Modell

2.3.1 Der Kursverlauf

Grundlage für die Berechnungen ist ein Wahrscheinlichkeitsraum

\((\Omega, \mathcal{A}, Q)\)

\(\Omega\) ist die Menge aller zukünftigen Zustände und \(\mathcal{A}\) eine Sigma-Algebra auf \(\Omega\). \(Q\) ist ein Maß für die Wahrscheinlichkeit des Eintritts von \(A \in \mathcal{A}\). Außerdem gibt es einen Zeithorizont mit natürlicher Filtration,

\(([0, T], \mathcal{F}_t)\)

die von einer stochastischen Prozess \(W_t\) erzeugt wird.

\[\mathcal{F}_t := S(W_s, s \leq t)\]

Sichere Anlage

Es wird von einer stetigen Verzinsung von angelegtem oder geliehenen Kapitals ausgegangen. Wenn \(R_t\) den Betrag zum Zeitpunkt \(t\) angibt, der aus \(R_0\) entstanden ist, dann gilt mit dem konstanten Zinssatz \(r\):

\[dR_t = rR_t dt\]

\[d(\ln(R_t)) = r dt\]

\[\ln(R_t) = \int_0^t r \, dt + c\]

Somit ist das Kapital in \(t\) \(R_t = R_0e^{rt}\) und \(e^{r(t-s)}\) der Verzinsungsfaktor von \(s\) nach \(t\) und \(e^{-r(t-s)}\) der Diskontierungsfaktor von \(t\) nach \(s\), \(s \leq t\).

Der Aktienkurs

Der zukünftige, unsichere Kurs einer Aktie muss modelliert werden: Es wird ein stetiger, stochastischer Prozess gesucht, der den realen Schwankungen einer Aktie ähnlich ist.

Brownsche Bewegung

\(W : \Omega \times [0, T] \rightarrow \mathbb{R}\)

Wenn \(W_t(\omega)\) folgende 3 Bedingungen erfüllt, liegt eine Brownsche Bewegung (manchmal auch Wiener Prozess genannt) vor:

\[W_0(\omega) = 0 \quad Q - f - s\omega\] \hfill (2.1)
\[W(\omega) : t \mapsto W_t(\omega) \text{ stetig für alle } t \in [0,T] \quad Q - f - s \quad (2.2) \]

\[W_t(\omega) \text{ hat unabhängige Zuwächse und } (W_t(\omega) - W_s(\omega)) \sim \mathcal{N}(0,t-s) \quad t \geq s \quad (2.3) \]

Negative Aktienkurse sind natürlich nicht sinnvoll und die Aktie sollte über die Zeit einen Wertzuwachs verbuchen, da auch der risikolose Zinssatz \(r \) echt größer als Null ist.

Geometrische Brownsche Bewegung

\[S_t(\omega) = S_0 e^{\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t(\omega)} \quad (2.4) \]

\(\mu \) ist die Drift der Aktie, denn es gilt

\[E[S_t] = S_0 e^{\left(\mu - \frac{\sigma^2}{2}\right)t} \quad E\left[e^{\sigma W_t(\omega)}\right] = S_0 e^{\mu t} \]

da \(e^{\sigma W_t} \) log-normal verteilt ist und dies ist wie eine stetige Verzinsung des Startpreises \(S_0 \) zum Zinssatz \(\mu \).

Die Volatilität \(\sigma \) gibt den Einfluss des Risikos in Form einer Brownschen Bewegung auf den Aktienwert an.

Beide Faktoren werden als konstant angenommen. \(\mu \) ist größer als \(r \), da die Aktie sonst nicht attraktiv wäre und \(\sigma \) echt größer als Null, damit der Wert der Aktie nicht gegen Null tendiört.

Mögliche Verläufe einer Geometrischen Brownschen Bewegung stellt folgende Grafik dar.[20]
Der Verlauf einer Geometrischen Brownschen Bewegung kann durch eine stochastische Differentialgleichung dargestellt werden. Hierzu wird die Itô-Formel benutzt.

\[dS_t = \mu S_t dt + \sigma S_t dW_t \]

Es ist auch möglich, sich den Aktienverlauf über diese stochastische Differentialgleichung zu definieren und auf die geometrische Brownsche Bewegung zu kommen. Dafür muss, wie bei der sicheren Anlage, der Logarithmus benutzt werden.

Um den Zusammenhang zum Marktverlauf zu erkennen, stelle die Formel um.

\[dS_t = r S_t dt + \left(\mu - r \right) \sigma S_t dt + \sigma S_t dW_t \]

Der Risiko-Zuschlag ist die zusätzliche Drift, die die geometrische Brownsche Bewegung erfährt, damit die Aktie für Anleger überhaupt interessant ist.

Durch das No-Arbitrage-Theorem ist die Arbitragefreiheit sichergestellt, wenn der diskontierte Aktienwertverlauf ein Martingal ist, also keine Drift besitzt. Ziel ist es, mit der Girsanov-Transformation einen Maßwechsel vorzunehmen, unter dem die Drift der geometrischen Brownschen Bewegung \(r \) beträgt.

\[dS_t = r S_t dt + \sigma S_t \left(\frac{\mu - r}{\sigma} dt + dW_t \right) \]

Nach Girsanov ist \(\tilde{W}_t = W_t - vt \), \(v \in \mathbb{R} \), eine Brownsche Bewegung unter dem Maß \(\tilde{Q} \).

Umgestellt zu \(dW_t = d\tilde{W}_t + vdt \) erkennt man, dass

\[v = -\frac{\mu - r}{\sigma} \]

gelten muss, damit \(\tilde{Q} \) das Martingalmaß bezeichnet.

\[\Rightarrow \tilde{W}_t = W_t - \left(\frac{\mu - r}{\sigma} \right) t \]

Eingesetzt in die stochastische Differentialgleichung entsteht

\[dS_t = r S_t dt + \sigma S_t d\tilde{W}_t. \] \hspace{1cm} (2.5)

Diese Differentialgleichung wird, unter dem neuen Maß, erfüllt von

\[S_t = S_0 e^{\left(r - \frac{\sigma^2}{2}\right) t + \sigma \tilde{W}_t} \] \hspace{1cm} (2.6)

Bemerkung

Das Martingal-Representation-Theorem stellt fest, dass der Markt, der aus diesem Aktienpreisprozess und einer sicheren Anlage besteht, vollständig ist. Aus der Vollständigkeit schließt das second fundamental theorem of asset pricing, dass \(\tilde{Q} \) eindeutig bestimmt ist. Siehe [1]
2.3.2 Mehrdimensionale Erweiterung

In der Realität unterliegt eigentlich jedes Paar Wertpapiere einer mehr oder weniger starken Korrelation. Diese Korrelationen herauszufinden, ist ein eigenes wissenschaftliches Thema.

Gehe davon aus, dass es einen Vektor \vec{W}_t aus zwei stochastisch unabhängigen Brownschen Bewegungen W_1^t und W_2^t gibt. Wenn nun daraus zwei korrelierte geometrische Brownsche Bewegungen konstruiert werden sollen, dann muß W_1^t und W_2^t in jeder der beiden Differentialgleichungen vorkommen.

\[
\begin{align*}
 dS_1^t &= \mu_1 S_1^t dt + S_1^t (\sigma_{12} dW_2^t + \sigma_1 dW_1^t) \\
 dS_2^t &= \mu_2 S_2^t dt + S_2^t (\sigma_{21} dW_1^t + \sigma_2 dW_2^t)
\end{align*}
\]

Die konstanten Werte σ_{12} und σ_{21} aus \mathbb{R} bezeichnen den Einfluss der jeweils anderen Brownschen Bewegung.

Nun soll, in Anlehnung an [1], für den 2 dimensionalen Fall ein Maßwechsel zum Martingalmaß vorgenommen werden.

Definiere $\beta(t)$ als Verzinsungsprozess.

\[\beta(t) = e^{rt}\]

Nach dem Maßwechsel nach Girsanov sollte der diskontierte Werteprozess des Finanzguts keine Drift mehr besitzen.

Durch Anwenden der Quotientenregel im dt Fall entsteht mit der Itô-Formel:

\[
d\left(\frac{S_i^t}{\beta}\right) = \frac{S_i^t}{\beta} \left[(\mu_i - r) dt + \left(\sigma_{ij} dW_j^t + \sigma_i dW_i^t \right) \right] \quad i = 1, 2 \quad j \neq i
\]

Wenn der Maßwechsel durch eine mehrdimensionale Girsanov-Transformation erfolgen soll, dann sind $W_1^t = W_1^t - \theta_1 t$ und $W_2^t = W_2^t - \theta_2 t$ Brownsche Bewegungen unter dem neuen Maß \hat{Q}. Nun müssen diese beiden Konstanten bestimmt werden. Setze dazu die beiden Gleichungen ein.

\[
d\left(\frac{S_i^t}{\beta}\right) = \frac{S_i^t}{\beta} \left(\sigma_{ij} (\theta_j dt + d\hat{W}_j^t) + \sigma_i (\theta_i dt + d\hat{W}_i^t) \right) \quad i = 1, 2 \quad j \neq i
\]

Also muss für θ_1 und θ_2 folgendes gelten:

\[\mu_i - r = \sigma_{ij} \theta_j + \sigma_i \theta_i \quad i = 1, 2 \quad j \neq i\]

Dementsprechend entsteht im Falle von n Basisfinanzgütern ein lineares Gleichungssystem mit n Unbekannten und n Gleichungen, welches eindeutig lösbar ist, wenn die Brownschen Bewegungen paarweise stochastisch unabhängig sind. In diesem Fall liegt ein vollständiger Markt vor und das Martingalmaß ist eindeutig bestimmt.
Die Lösung des Gleichungssystems für θ_1 und θ_2 ist im vorliegenden, zweidimensionalen Fall:

$$
\theta_1 = \frac{\sigma_{12}(\mu_2 - r) - \sigma_2(\mu_1 - r)}{\sigma_{21}\sigma_{12} - \sigma_1\sigma_2}
$$

$$
\theta_2 = \frac{(\mu_2 - r)}{\sigma_2} - \frac{\sigma_{21}}{\sigma_2}\theta_1
$$

Über die mehrdimensionale Girsanov-Transformation kann nun explizit das neue Maß \tilde{Q} bestimmt werden. Unter diesem Maß gilt für die stochastischen Differentialgleichungen von S_1^t und S_2^t:

$$
dS_1^t = S_1^t(r dt + \sigma_{12}d\tilde{W}_2^t + \sigma_1d\tilde{W}_1^t)
$$

$$
dS_2^t = S_2^t(r dt + \sigma_{21}d\tilde{W}_1^t + \sigma_2d\tilde{W}_2^t)
$$

Diese lassen sich wieder in ein Black-Scholes-Modell verwandeln.

$$
dS_1^t = rS_1^t dt + S_1^t\sqrt{\sigma_{12}^2 + \sigma_1^2}d\tilde{W}_1^t \quad (2.9)
$$

$$
dS_2^t = rS_2^t dt + S_2^t\sqrt{\sigma_{21}^2 + \sigma_2^2}d\tilde{W}_2^t \quad (2.10)
$$

mit

$$
\tilde{W}_i^t = \frac{1}{\sqrt{\sigma_{ij}^2 + \sigma_i^2}}\left(\sigma_{ij}\tilde{W}_j^t + \sigma_i\tilde{W}_i^t\right) \quad i = 1, 2 \quad j \neq i
$$

In dieser Darstellung ist $\tilde{W}_i^t, i = 1, 2$, wieder eine Brownsche Bewegung unter \tilde{Q}: \tilde{W}_i^t ist adaptiert an \mathcal{F}_t, hat stetige Pfade und ist ein Martingal, da die Differentialdarstellung $d\tilde{W}_i^t$ keinen Driftterm besitzt.

$$
d\tilde{W}_i^t = \frac{1}{\sqrt{\sigma_{ij}^2 + \sigma_i^2}}\left(\sigma_{ij}d\tilde{W}_j^t + \sigma_i d\tilde{W}_i^t\right) \quad i = 1, 2 \quad j \neq i
$$

$$
dW_i^t dW_i^t = \left(\frac{1}{\sqrt{\sigma_{ij}^2 + \sigma_i^2}}\left(\sigma_{ij}d\tilde{W}_j^t + \sigma_i d\tilde{W}_i^t\right)\right) \left(\frac{1}{\sqrt{\sigma_{ij}^2 + \sigma_i^2}}\left(\sigma_{ij}d\tilde{W}_j^t + \sigma_i d\tilde{W}_i^t\right)\right)
$$

$$
= \frac{1}{\sigma_{ij}^2 + \sigma_i^2}\left(\sigma_{ij}^2d\tilde{W}_j^td\tilde{W}_j^t + \sigma_i^2d\tilde{W}_i^td\tilde{W}_i^t\right)
$$

$$
= dt \quad \forall t \quad i = 1, 2
$$

Nach dem Lévy Theorem, siehe [1], reichen diese Eigenschaften, damit eine Brownsche Bewegung vorliegt.
Die geometrischen Brownschen Bewegungen sind nun korreliert, da die Brownschen Bewegungen korreliert sind. Setze \(\hat{\sigma}_i = \sqrt{\sigma_{ij}^2 + \sigma_i^2} \) und definiere den konstanten Korrelationskoeffizienten \(\rho \) durch:

\[
dW_i dW_j = \left(\frac{1}{\sqrt{\sigma_{ij}^2 + \sigma_i^2}} (\sigma_{ij} d\tilde{W}_j + \sigma_i d\tilde{W}_i) \right) \left(\frac{1}{\sqrt{\sigma_{ji}^2 + \sigma_j^2}} (\sigma_{ji} d\tilde{W}_i + \sigma_j d\tilde{W}_j) \right)
\]

\[
= \left(\frac{\sigma_{ji} \sigma_i + \sigma_{ij} \sigma_j}{\sqrt{\sigma_{ij}^2 + \sigma_i^2} \sqrt{\sigma_{ji}^2 + \sigma_j^2}} \right) dt
\]

\[
= \left(\frac{\sigma_{ji} \sigma_i + \sigma_{ij} \sigma_j}{\sigma_i \sigma_j} \right) dt
\]

\[
= \rho \ dt \quad \forall t \quad i \neq j
\]

Lösungen für die stochastischen Differentialgleichungen (2.10) und (2.11) sind:

\[
S^1_t = S^1_0 \exp \left[\left(r - \frac{\hat{\sigma}_1^2}{2} \right) t + \hat{\sigma}_1 \hat{W}^1_t \right]
\]

(2.11)

\[
S^2_t = S^2_0 \exp \left[\left(r - \frac{\hat{\sigma}_2^2}{2} \right) t + \hat{\sigma}_2 \hat{W}^2_t \right]
\]

(2.12)

mit

\[
\hat{W}^i_t = \frac{1}{\sqrt{\sigma_{ij}^2 + \sigma_i^2}} (\sigma_{ij} \hat{W}_j + \sigma_i \hat{W}_i) \quad i = 1, 2 \quad j \neq i
\]

und

\[
\hat{\sigma}_i = \sqrt{\sigma_{ij}^2 + \sigma_i^2} \quad i = 1, 2 \quad j \neq i
\]

Notation

Von nun an gelte dass:

\(\tilde{Q} \) anstatt \(\tilde{Q} \) das transformierte Maß bezeichnet und \(W_t \) die dazugehörige Brownsche Bewegung ist, es sei denn, es wird explizit im Text erwähnt.

Desweiteren wird \(\sigma \) für \(\hat{\sigma} \) stehen.

Da auch Preise für innerhalb der Laufzeit angegeben werden sollen, definiere \(S^x_v \) als eine geometrische Brownsche Bewegung mit Startwert \(x = S_t \) zum Zeitpunkt \(v \), wobei \(t < v \).

\[
S^x_v = S_t \exp \left((r - \frac{\sigma^2}{2})(v - t) + \sigma (W_v - W_t) \right)
\]

Für \(t = 0 \):

\[
S_v = S_0 \exp \left((r - \frac{\sigma^2}{2})v + \sigma W_v \right)
\]

2.4 Dividenden

Da diese Art der Dividendenzahlung nicht optimal ist, werden stetige Dividendenzahlungen behandelt. Bei dieser Art von Dividendenzahlungen wird angenommen, dass die Dividende stetig ausgezahlt wird und proportional mit konstantem Faktor \(q \), \(q < r \), vom Aktienkurs abhängt.

Da Arbitrage ausgeschlossen ist muss die Dividende vom Verlauf des Basisfinanzguts abgezogen werden.

\[
dS_t = rS_t dt + \sigma S_t W_t - qS_t dt = (r - q)S_t dt + S_t \sigma W_t \tag{2.13}
\]

Diese Differentialgleichung wird erfüllt von:

\[
S_t(\omega) = S_0 e^{(r - \frac{\sigma^2}{2}) t + \sigma W_t(\omega)} \tag{2.14}
\]

Bei dieser Darstellung existiert kein Stetigkeitsproblem.

Bemerkung

Der diskontierte Aktienwert mit Dividendenauszahlungen unter dem Martingalmaß \(Q \) ist kein Martingal. Erst wenn die Dividende wieder angelegt wird, entsteht die Martingaleigenschaft und stellt die Arbitragefreiheit sicher.
2.5 Europäische Optionen

Im Folgenden wird eine Preisfunktion für europäische Optionen nach Black-Scholes angegeben.

2.5.1 Preis bei einem Basisfinanzgut

Putpreis

Definiere den Putpreis als Funktion vom Wert des Basisfinanzguts $S_t = x$ und der Restlaufzeit $(T - t)$.

$$P_E(x, T - t) := E\left[e^{-r(T - t)}(K - S_T)^+ \mid \mathcal{F}_t \right]$$

Analog hierzu defiere den Callpreis als $C_E(x, (T - t))$.

Der stochastische Prozess S_t erfüllt die Markoveigenschaft, wodurch die Informationen \mathcal{F}_s, $s < t$, für die Preisberechnung in t irrelevant sind.

$$S_T = S_0 \exp \left((r - q - \frac{\sigma^2}{2})T + \sigma W_T \right)$$

$$= S_0 \exp \left((r - q - \frac{\sigma^2}{2})t + \sigma W_t \right) \exp \left((r - q - \frac{\sigma^2}{2})(T - t) + \sigma (W_T - W_t) \right)$$

$$= \mathbb{E}_{\mathcal{F}_t \ \text{messbar}} \left[\exp \left((r - q - \frac{\sigma^2}{2})(T - t) + \sigma (W_T - W_t) \right) \right]$$

Für die Preisberechnung wird als Erstes der Positivteil der Auszahlungsfunktion als Indikatorfunktion ausgedrückt und die Linearität des Erwartungswertes genutzt.

$$E\left[e^{-r(T - t)}(K - S_T^p)^+ \right]$$

$$= E\left[e^{-r(T - t)}K \mathbb{1}(S_T^p < K) - e^{-r(T - t)}S_T^p \mathbb{1}(S_T^p < K) \right]$$

$$= e^{-r(T - t)}K \cdot E\left[\mathbb{1}(S_T^p < K) \right] - E\left[e^{-r(T - t)}S_T^p \mathbb{1}(S_T^p < K) \right]$$

$$= e^{-r(T - t)}K \cdot Q(S_T^p < K) - xE\left[\exp \left(\left(-q - \frac{\sigma^2}{2} \right)(T - t) + \sigma (W_T - W_t) \right) \mathbb{1}(S_T^p < K) \right]$$

$$= e^{-r(T - t)}K \cdot Q(S_T^p < K) - xe^{-q(T - t)}E\left[\exp \left(\left(-\frac{\sigma^2}{2} \right)(T - t) + \sigma (W_T - W_t) \right) \mathbb{1}(S_T^p < K) \right]$$

Auf den Erwartungswert kann die Girsanov-Transformation angewendet werden, denn $\exp \left(\left(-\frac{\sigma^2}{2} \right)(T - t) + \sigma (W_T - W_t) \right)$ ist ein Martingal mit Start in t und

$$E\left[\exp \left(\left(-\frac{\sigma^2}{2} \right)(T - t) + \sigma (W_T - W_t) \right) \mid \mathcal{F}_t \right] = e^{\frac{\sigma^2}{2}t - \sigma W_t} E\left[\exp \left(\left(-\frac{\sigma^2}{2} \right)T + \sigma W_T \right) \mid \mathcal{F}_t \right] = 1.$$
Unter dem neuen Maß \(\tilde{Q} \) ist \((W_T - W_t) = (W_T - W_t) - \sigma(T - t)\) eine Brownsche Bewegung.

\[
E\left[e^{-r(T-t)}(K - S_T^Q)_+ \right] = e^{-r(T-t)}K \cdot Q [S_T^Q < K] - xe^{-q(T-t)} \cdot \tilde{Q} [S_T^Q < K] \\
= e^{-r(T-t)}K \cdot Q \left[\exp \left(\left(r - q - \frac{\sigma^2}{2} \right) (T-t) + \sigma(W_T - W_t) \right) < \frac{K}{x} \right] - xe^{-q(T-t)} \cdot \tilde{Q} [S_T^Q < K] \\
= e^{-r(T-t)}K \cdot Q \left[W_T - W_t < \frac{\ln \left(\frac{K}{x} \right) - \left(r - q - \frac{\sigma^2}{2} \right) (T-t)}{\sigma} \right] - xe^{-q(T-t)} \cdot \tilde{Q} [S_T^Q < K]
\]

\((W_T - W_t) \sim \mathcal{N}(0, T - t)\) unter \(Q \). Setze \(N \),

\[
N[d] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{d} e^{\frac{x^2}{2}} dx,
\]
as Verteilungsfunktion der Standardnormalverteilung fest.

\[
E\left[e^{-r(T-t)}(K - S_T^Q)_+ \right] = e^{-r(T-t)}K \cdot N \left[\frac{\ln \left(\frac{K}{x} \right) - \left(r - q - \frac{\sigma^2}{2} \right) (T-t)}{\sigma\sqrt{T-t}} \right] - xe^{-q(T-t)} \cdot \tilde{Q} [S_T^Q < K]
\]

Betrachte das transformierte Maß \(\tilde{Q} \).

\[
\tilde{Q} [S_T^Q < K] = \tilde{Q} \left[W_T - W_t < \frac{\ln \left(\frac{K}{x} \right) - \left(r - q - \frac{\sigma^2}{2} \right) (T-t)}{\sigma} \right] \\
= Q \left[W_T - W_t - \sigma(T-t) < \frac{\ln \left(\frac{K}{x} \right) - \left(r - q - \frac{\sigma^2}{2} \right) (T-t)}{\sigma} - \sigma(T-t) \right] \\
= Q \left[W_T - W_t < \frac{\ln \left(\frac{K}{x} \right) - \left(r + q + \frac{\sigma^2}{2} \right) (T-t)}{\sigma} \right] \\
= N \left[\frac{\ln \left(\frac{K}{x} \right) - \left(r + q + \frac{\sigma^2}{2} \right) (T-t)}{\sigma\sqrt{T-t}} \right]
\]

Beide Ergebnisse zusammen liefern den Putpreis einer europäischen Option.

\[
P_E(x, T-t) = e^{-r(T-t)}K \cdot N \left[\frac{\ln \left(\frac{K}{x} \right) - \left(r - q - \frac{\sigma^2}{2} \right) (T-t)}{\sigma\sqrt{T-t}} \right] - xe^{-q(T-t)} \cdot N \left[\frac{\ln \left(\frac{K}{x} \right) - \left(r - q + \frac{\sigma^2}{2} \right) (T-t)}{\sigma\sqrt{T-t}} \right]
\]
Callpreis

Aus dem Putpreis lässt sich direkt der Callpreis ableiten.

Die Auszahlungsfunktion verändert sich von \((K - S_T)1_{(K \geq S_T)}\) zu \((S_T - K)1_{(K \leq S_T)}\). Es muss also der Putpreis mit \(-1\) multipliziert werden. Ebenso die Integralgrenze der Normalverteilung für die Eintrittswahrscheinlichkeit des Basisfinanzguts in den Positivteil der Auszahlungsfunktion. Falls \(X \sim N(0, 1)\) unter \(Q\), dann folgt mit der Symmetrieeigenschaft der Standardnormalverteilung \(Q(X \geq a) = Q(X \leq -a)\) für \(a \in \mathbb{R}\).

Zusammen erhält man:

\[
C_E(x, T - t) = xe^{-q(T-t)} \cdot N \left[\ln \left(\frac{x}{K} \right) + \left(r - q + \frac{\sigma^2}{2} \right) (T - t) \frac{\sigma \sqrt{T - t}}{\sigma \sqrt{T - t}} \right] - e^{-r(T-t)} K \cdot N \left[\ln \left(\frac{x}{K} \right) + \left(r - q - \frac{\sigma^2}{2} \right) (T - t) \frac{\sigma \sqrt{T - t}}{\sigma \sqrt{T - t}} \right]
\]
2.5.2 Preis bei mehreren Basisfinanzgütern

In dieser Sektion wird der Preis einer europäischen Putoption berechnet, die auf zwei Finanzgütern basiert. Genauso wie bei einem Basisfinanzgut wird auf eine Girsanov-Transformation zurückgegriffen. Die Bearbeitung erfolgt nach Lamberton, Lapeyre [9].

Für $S_1^t = x_1$ und $S_2^t = x_2$ ist die Preisfunktion:

$$P_E(x_1, x_2, t) = E\left[e^{-r(T-t)}(K - (S_T^1 + S_T^2))_+ | \mathcal{F}_t \right] = E\left[e^{-r(T-t)}(K - (S_T^{x_1} + S_T^{x_2}))_+ \right]$$

Aufgrund der Konstruktion der zwei korrelierten Finanzgüter wird daraus, analog zum Fall mit einem Basisfinanzgut:

$$P_E(x_1, x_2, t) = e^{-r(T-t)} K \cdot E\left[\mathbf{1}_{(S_T^{x_1} + S_T^{x_2} \leq K)} \right]$$

$$+ x_1 e^{-r(T-t)} E\left[\exp\left(-\frac{\sigma_1^2}{2} (T-t) + \sigma_1 (W_T^1 - W_t^1) \right) \mathbf{1}_{(S_T^{x_1} + S_T^{x_2} \leq K)} \right]$$

$$+ x_2 e^{-r(T-t)} E\left[\exp\left(-\frac{\sigma_2^2}{2} (T-t) + \sigma_2 (W_T^2 - W_t^2) \right) \mathbf{1}_{(S_T^{x_1} + S_T^{x_2} \leq K)} \right]$$

Benutze die Girsanov-Transformation.

$$P_E(x_1, x_2, t) = e^{-r(T-t)} K \cdot Q \left[S_T^{x_1} + S_T^{x_2} \leq K \right]$$

$$+ x_1 e^{-r(T-t)} \tilde{Q}^1 \left[S_T^{x_1} + S_T^{x_2} \leq K \right]$$

$$+ x_2 e^{-r(T-t)} \tilde{Q}^2 \left[S_T^{x_1} + S_T^{x_2} \leq K \right]$$

Über die Brownschen-Bewegungen unter den Maßen \tilde{Q}^1 und \tilde{Q}^2, die die Girsanov-Transformation liefert, können die Wahrscheinlichkeiten genauer berechnet werden. Dies ist aber nicht relevant für den Rest der Diplomarbeit.
2.6 Die Black-Scholes Differentialgleichung

Sei weiterhin \(S_t \) das Finanzgut, auf dem die Option basiert.

\[
dS_t = rS_t dt + \sigma S_t dW_t
\]

\(f(S_t, t) \) sei der Preis einer Option mit Laufzeit \(T \) und Basisfinanzgut \(S \), die nur vom aktuellen Wert des Finanzguts \(S_t \) und dem aktuellen Zeitpunkt \(t \) beziehungsweise der Restlaufzeit abhängt. Die Optionen, die diese Eigenschaft erfüllen sind sowohl europäische als auch amerikanische Put- und Calloptionen. Ein Beispiel für eine Option die diese Eigenschaft nicht besitzt, ist die Lookback-Option.

\[
f : [0, \infty] \times [0, T] \rightarrow \mathbb{R}^+
\]

Wenn die Preisfunktion zweimal stetig in der ersten und einmal stetig in der zweiten Variable differenzierbar ist, dann kann die Itô-Formel angewendet werden.

\[
df(S_t, t) = \frac{\partial f(S_t, t)}{\partial t} dt + \frac{\partial^2 f(S_t, t)}{\partial S^2} dS_t + \frac{1}{2} \frac{\partial^2 f(S_t, t)}{\partial S^2} d\langle S, S \rangle_t
\]

Die zweite Gleichung entsteht durch Auflösen der quadratischen Variation \(d\langle S, S \rangle_t = \sigma^2 S_t^2 dt \), wegen \(d\langle W, W \rangle_t = dt \).

Da von einem Modell mit einer sicheren Anlage und einem stochastischem Prozess ausgegangen wird, liefert das Martingale Representation Theorem, [1], die Vollständigkeit des Modells. Deswegen kann die Auszahlungsstruktur der Option, durch ein geeignetes, risikoloses Portfolio dubliziert werden.

Kaufe die Option \(f \) und verkaufe einen konstanten Teil \(\Delta \) von \(S \). Der Wert des Portfolios ist

\[
A(S_t, t) = f(S_t, t) - \Delta S_t
\]

und als stochastische Differentialgleichung:

\[
dA(S_t, t) = df(S_t, t) - \Delta dS_t.
\]

Setze nun die Formeln für \(df(S_t, t) \) und \(dS_t \) ein.

\[
dA(S_t, t) = \left(\frac{\partial f(S_t, t)}{\partial t} + \sigma^2 S_t^2 \frac{\partial^2 f(S_t, t)}{2 \partial S^2} + rS_t \frac{\partial f(S_t, t)}{\partial S} - rS_t \Delta \right) dt + \sigma S_t \left(\frac{\partial f(S_t, t)}{\partial S} - \Delta \right) dW_t
\]

Da risikolos dubliziert werden soll, muss die Unsicherheit wegfallen.

\[
\sigma S_t \left(\frac{\partial f(S_t, t)}{\partial S} - \Delta \right) = 0
\]
\[\Rightarrow \Delta = \frac{\partial f(S_t, t)}{\partial S} \]

\[\Rightarrow dA(S_t, t) = \left(\frac{\partial f(S_t, t)}{\partial t} + \sigma^2 S_t^2 \frac{1}{2} \frac{\partial^2 f(S_t, t)}{\partial S^2} \right) dt \]

Das Portfolio verändert sich aber über die Zeit wie eine sichere Anlage:

\[dA(S_t, t) = r \left(f(S_t, t) - \frac{\partial f(S_t, t)}{\partial S} S_t \right) dt \]

Da bei beiden Strategien durch die gleiche Auszahlungsstruktur den gleichen Preis haben müssen, folgt:

\[dA(S_t, t) = \left(\frac{\partial f(S_t, t)}{\partial t} + \sigma^2 S_t^2 \frac{1}{2} \frac{\partial^2 f(S_t, t)}{\partial S^2} \right) dt \]

⇔ \(r f(S_t, t) - r S_t \frac{\partial f(S_t, t)}{\partial S} \) dt \(= \left(\frac{\partial f(S_t, t)}{\partial t} + \sigma^2 S_t^2 \frac{1}{2} \frac{\partial^2 f(S_t, t)}{\partial S^2} \right) dt \)

⇒ \(r f(S_t, t) - r S_t \frac{\partial f(S_t, t)}{\partial S} = \frac{\partial f(S_t, t)}{\partial t} + \sigma^2 S_t^2 \frac{1}{2} \frac{\partial^2 f(S_t, t)}{\partial S^2} \)

Ungestellt ergibt sich eine partielle Differentialgleichung, die auch Black-Scholes-Differentialgleichung genannt wird.

\[\frac{\partial f(S_t, t)}{\partial t} + \sigma^2 S_t^2 \frac{1}{2} \frac{\partial^2 f(S_t, t)}{\partial S^2} - r f(S_t, t) + r S_t \frac{\partial f(S_t, t)}{\partial S} = 0 \quad (2.15) \]

Bei Dividendenzahlung verändert sich die partielle Differentialgleichung zu:

\[\frac{\partial f(S_t, t)}{\partial t} + \sigma^2 S_t^2 \frac{1}{2} \frac{\partial^2 f(S_t, t)}{\partial S^2} - r f(S_t, t) + (r - q) S_t \frac{\partial f(S_t, t)}{\partial S} = 0 \quad (2.16) \]

Randwerte für Put und Call

Am Ende der Laufzeit muss der Wert der Option \(f(S_T, T) = (S_T - K)_+ \) bzw. \(f(S_T, T) = (K - S_T)_+ \) entsprechen, da sonst Arbitragemöglichkeiten entstehen.

Eine Limesbetrachtung für \(S_t \), in Abhängigkeit der Auszahlungsfunktion, kann durchgeführt werden.

Für die Calloption gilt \(f(S, t) \sim S \) für \(S \to \infty \) und \(\lim_{S \to 0} f(S, t) = 0 \), da eine Kaufoption vorliegt.

Ebenso kann für die Putoption \(\lim_{S \to -\infty} f(S, t) = 0 \) und \(\lim_{S \to 0} f(S, t) = e^{-r(T-t)} K \) festgestellt werden.

Bemerkung

Es ist auch möglich, über die Differentialgleichung und Randwerte die Lösung für das Black-Scholes-Modell der europäischen Option anzugeben.
Kapitel 3

Die Grenzfunktion

3.1 Die Preisfunktion und optimales Stoppen

Dieses Kapitel beschränkt sich auf die Betrachtung des Putpreises. Um die Arbitragefreiheit im Modell zu bewahren, definiere den Preis einer amerikanischen Putoption \(P(x,t) \) in \(t \) und mit aktuellem Basisgutwert \(S = x \) und Laufzeit \(T \) durch:

\[
P(x,t) = \sup_{\tau \in \Psi^T} \mathbb{E}[e^{-r(\tau-t)} (K - S_\tau)^+] = \sup_{\tau \in \Psi^T} \mathbb{E}[e^{-r(\tau-t)} (K - S_x)^+]
\]

\(\Psi \) ist die Menge aller Stoppzeiten bezüglich der Filtration \(\mathcal{F} \) und \(\Psi^T \subset \Psi \), die Menge aller Stoppzeiten aus \(\Psi \) aus dem Intervall \([t,T]\).

Für diesen Preisprozess gilt:

\[
P(S_t,t) \geq (K - S_t)^+, \quad S_t \in [0,\infty[, \quad t \in [0,T]
\]

Insbesondere

\[
P(S_t,t) = \begin{cases} (K - S_t)^+ & \text{vor optimaler Ausübung} \\ > (K - S_t)^+ & \text{nach optimaler Ausübung} \end{cases}
\]

Stetigkeit

Die mathematische Argumentation für die Stetigkeit der Preisfunktion in den Variablen \(t \) und \(x \) geht zurück auf Krylov, [11].

Übergangsbedingung

McKean zeigt in [15], dass die Ableitung in \(S \) der Preisfunktion stetig am Auslösepunkt ist. Sei \(S_* \) der optimale Wert zum Auslösen.

\[
\left. \frac{\partial P(S_t,\tau)}{\partial S} \right|_{S=S_*} = \left. \frac{\partial(K - S_t)}{\partial S} \right|_{S=S_*} = -1
\]

Häufig wird diese Gleichung Smooth-Fit-Eigenschaft genannt. Damit ist es möglich die erweiterte Itô-Formel auf die Funktion \(P(S_t,t) \) über die komplette Laufzeit der Option anzuwenden, siehe Karatzas und Shreve [16]. Dies war vorher nicht möglich, da \(P(S_t,t) \) keine \(C^2 \)-Funktion ist. Es existiert eine Unstetigkeitsstelle der zweiten Ableitung im Auslösezeitpunkt. \(\frac{\partial^2(K-S)}{\partial S^2} \equiv 0 \) und \(\frac{\partial^2}{\partial S^2} > 0 \). Im Folgenden ist die erweiterte Itô-Formel gemeint, wenn von der Itô-Formel gesprochen wird.
Satz
Der diskontierte Putpreis \(e^{-rt}P(S, t) \) ist ein Supermatingal.

Beweis
Bestimme die Drift des diskontierten Putpreises \(e^{-rt}P(S, t) \) über die Itô-Formel.

\[
d(e^{-rt}P(S, t)) = e^{-rt} \left(\frac{\partial P(S, t)}{\partial t} + \sigma^2 S_t^2 \frac{1}{2} \frac{\partial^2 P(S, t)}{\partial S^2} - rP(S, t) + rS_t \frac{\partial P(S, t)}{\partial S} \right) dt + rS_t \frac{\partial P(S, t)}{\partial S} dW_t
\]

Vor der Ausübung erfüllt der Preis die Black-Scholes-Differentialgleichung, da er nur vom aktuellen Wert von \(S \) und \(t \) abhängt. Durch Einsetzen der Auszahlungsfunktion erkennt man, dass der Preis die partielle Differentialgleichung nach Ausübung nicht erfüllt. Somit gilt die Black-Scholes-Differentialgleichung bis zum Ausüben, weswegen auch häufig von einem freien Randwertproblem gesprochen wird. Die Drift fällt hier somit weg.

Nach Ausübung der Option gilt \(P(S, t) = (K - S_t) \), da nur bei positiven Werten ausgeübt wird.

\[
e^{-rt} \left(\frac{\partial(K - S_t)}{\partial t} + \sigma^2 S_t^2 \frac{1}{2} \frac{\partial^2 (K - S_t)}{\partial S^2} - r(K - S_t) + rS_t \frac{\partial(K - S_t)}{\partial S} \right) dt
= e^{-rt} (-rK + rS_t - rS_t) dt
= -e^{-rt}rK dt.
\]

Der Preisprozess hat also die Tendenz zu fallen, nachdem die Option ausgeübt wurde. \(\square \)

Damit ist die diskontierte Preisfunktion ein Martingal bis zur Ausübung und danach ein Supermartingal. Sei \(\tau^* \) die optimale Stoppzeit. Mit dem Optimal-Sampling-Theorem und \(Q(\tau^* < T) = 1 \), für \(T < \infty \), folgt, dass das gestoppte Supermartingal ein Martingal ist.

Korollar
Dami ist die optimale Stopzeit gegeben durch

\[
\tau^* = \inf \{ t \mid P(S_t, t) = (K - S_t)_+ \}.
\]

Bemerkung

Bezeichne durch

\[
\Gamma = \{(x, t) \in \mathbb{R}^+ \times \mathbb{R}^+ \mid P(x, t) > (K - x)_+ \}
\]

(3.1)
die Fortführungsregion, in der die Putption optimalerweise nicht ausgeübt wird.
Satz
Die Fortführungsregion ist offen und wird von \(\Gamma^c \) durch eine Funktion \(a(t) \) getrennt.

\[
\Gamma_t = \{ x \mid (x, t) \in \Gamma, t \in [0, T] \text{ fest} \} =]a(t), +\infty[
\]

Beweis
Fixiere \(t \).
Es ist zu zeigen, dass für ein beliebiges, suboptimales \(x \), jedes \(y \), \(x < y \), auch suboptimal ist. \(\tau \) sei die optimale Stoppzeit bei Startwert \(x \) in \(t \). Damit ist \(\tau \) auch eine Stoppzeit bei Startwert \(y \), aber suboptimal, da \(x < y \).

\[
P(y, t) = P(y, t) - E[e^{-r(\tau-t)}(K - S^y_\tau)_+]
\geq E[e^{-r(\tau-t)}(K - S^y_\tau)_+] - E[e^{-r(\tau-t)}(K - S^x_\tau)_+]
= E[e^{-r(\tau-t)}((K - S^y_\tau)_+ - (K - S^x_\tau)_+)]
\]

Eine Funktion lässt sich in Positivteil und Negativteil zerlegen.

\[
f(x) = f(x)^+ - f(x)^-
\]

Außerdem ist \(S^y_\tau > S^x_\tau \), da beide auf der selben Brownschen Bewegung basieren. Zusammen liefern die beiden Aussagen eine weitere Abschätzung.

\[
P(y, t) - P(x, t) \geq E[e^{-r(\tau-t)}((K - S^y_\tau)_+ - (K - S^x_\tau)_+)]
= E[e^{-r(\tau-t)}((K - S^y_\tau)_+ - (K - S^x_\tau)_+)]
\geq E[e^{-r(\tau-t)}((K - S^y_\tau)_- - (K - S^x_\tau)_-)]
= E[e^{-r(\tau-t)}(S^y_\tau - S^x_\tau)]
= E[e^{-r(\tau-t)} S^y_\tau] - E[e^{-r(\tau-t)} S^x_\tau]
= (y - x)
\]

Da \(\tau \) endlich ist, gilt nach dem Optimal Sampling Theorem, dass das gestoppte Martingal wieder ein Martingal ist und somit gleich seinem Startwert. Für den Preisprozess mit Startpunkt \(y \) gilt also:

\[
P(y, t) \geq (y - x) + P(x, t) > (y - x) + (K - x)_+ \geq (K - y)
\]

Die Behauptung \(P(y, t) > (K - y)_+ \) folgt mit der Tatsache, dass der Preis einer amerikanischen Putoption immer echt größer als Null ist.

\[\square \]

Das heißt \(a(t) \) nimmt nur einen Wert für jedes \(t \) an und kann also als Funktion bezeichnet werden.

\[
a : [0, T] \rightarrow \mathbb{R}^+
\]
Bemerkung
Da ein arbitragefreies Modell vorliegt, muss
\[a(T) = K \] \hspace{1cm} (3.2)
gelten. Am Ende der Vertragslaufzeit zum Zeitpunkt \(T \) übt man nur aus, wenn die Auszahlung positiv ist.

\(\mathbb{R}^0 \times [0, T] \) ist darstellbar als disjunkte Vereinigung folgender Mengen:

Fortführungsregion \(\Gamma = (a(t), +\infty) \times [0, T] \)

Stoppregion \(\Gamma^c = (0, a(t)] \times [0, T], \forall t \in [0, T], \forall T \in \mathbb{R}^+ \)

Die Menge \(\Gamma \) ist nicht leer, da \(S_0 > a(0) \) angenommen wird.
3.2 Amerikanische Basketoptionen und deren Grenzregionen

Wie bei der mehrdimensionalen europäischen Basketoption wird nur der Putfall betrachtet. Definiere die Preisfunktion einer amerikanischen Basketoption mit Ausübungspreis K und Laufzeit T analog zum eindimensionalen Fall. Sei $x_1 = S_1^t$ und $x_2 = S_2^t$.

$$
P(x_1, x_2, t) = \sup_{\tau \in \Psi_T} E \left[e^{-r(t-\tau)} (K - S_1^\tau - S_2^\tau)^+ \right] = \sup_{\tau \in \Psi_T} E \left[e^{-r(t-\tau)} (K - S_1^{\tau_1} - S_2^{\tau_2})^+ \right]
$$

Auch hier gilt aus Arbitragegründen

$$
P(S_1^1, S_2^2, T) = (K - S_1^T - S_2^T)^+ \quad \text{und} \quad P(S_1^1, S_2^2, t) \geq (K - S_1^t - S_2^t)^+.
$$

Die Option wird ausgelöst, wenn das Tripel (S_1^t, S_2^t, t) die Stoppregion trifft. Betrachtet man nur ein Finanzgut, so hängt der Auslösezeitpunkt nicht nur von t, sondern auch vom aktuellen Wert des anderen Finanzguts ab. Betrachtet man simultan beide Grenzfunktionen $a_1^t(S_2^t)$ und $a_2^t(S_1^t)$, so müssen diese zu einer gleichen führen: Der optimal Zeitpunkt zu stoppen ist bei beiden gleich.

Für die Stoppregion $\{(x_1, x_2, t) \mid P(x_1, x_2, t) = (K - x_1 - x_2)^+, \ x_1, x_2 \in \R^+, \ t \in [0, T]\}$ können einige Eigenschaften verifiziert werden, deren Ausarbeitung auf [21] beruht.

Abgeschlossenheit

Mit der mehrdimensionalen Itô-Formel und der mehrdimensionalen Black-Scholes-Differentialgleichung kann gezeigt werden, dass der abgezinste Preisprozess ein Martingal bis zur Ausübung und danach ein Supermartingal ist. Dies gilt analog zum eindimensionalen Fall. Damit ist die Stopzeit die erste Eintrittszeit in die Stoppregion und da der Preisprozess auf einer Stopzeit beruht, muss die Stoppregion abgeschlossen sein.

Konvexität

Die Konvexität folgt über die Konvexität der Preisfunktion. Das Supremum einer Menge konvexer Funktionen ist wieder konvex. Daraus folgt für $0 \leq \lambda \leq 1$:

$$
P(\lambda x + (1 - \lambda)w, \lambda y + (1 - \lambda)z, t) \leq \lambda P(x, y, t) + (1 - \lambda)P(w, z, t)
$$

$$
= \lambda (K - x - y) + (1 - \lambda)(K - w - z)
$$

$$
= K - (\lambda x + (1 - \lambda)w) - (\lambda y + (1 - \lambda)z),
$$

wenn $P(x, y, t) = (K - x - y)$ und $P(w, z, t) = (K - w - z)$ gilt.

Die gewünschte Eigenschaft folgt wegen $P(S_1^1, S_2^2, t) \geq (K - S_1^T - S_2^T)^+$.
Southwest Connectedness

Die SC sagt aus, dass wenn ein Triple (x, y, t) in der Stoppregion ist, dies auch für alle Tripel (a, b, t), $a \leq x$ und $b \leq y$ gilt. Mathematisch zu zeigen ist also

$$P(\lambda_1 x, \lambda_2 y, t) = (K - \lambda_1 x - \lambda_2 y)_+, \quad 0 \leq \lambda_1 \leq 1, \ 0 \leq \lambda_2 \leq 1,$$

wenn

$$P(x, y, t) = (K - x - y)_+$$

gilt.

Sei τ eine Stoppzeit und $x S_t$ stellt die geometrischen Brownschen Bewegungen mit Startwert x dar.

\[
E \left[e^{-r(\tau-t)}(K - \lambda_1 x S^1_\tau - \lambda_2 y S^2_\tau)^+ \right] \\
= E \left[e^{-r(\tau-t)}(K - \lambda_1 x S^1_\tau - \lambda_2 y S^2_\tau)^+ \right] \pm E \left[e^{-r(\tau-t)}(K - x S^1_\tau - y S^2_\tau)^+ \right] \\
\leq E \left[e^{-r(\tau-t)}(- (\lambda_1 x - x)) S^1_\tau - (\lambda_2 y - y)) S^2_\tau)^+ \right] + E \left[e^{-r(\tau-t)}(K - x S^1_\tau - y S^2_\tau)^+ \right] \\
= E \left[e^{-r(\tau-t)} \left(\frac{1}{x - \lambda_1 x) S^1_\tau + (y - \lambda_2 y) S^2_\tau}{\geq 0} \right)^+ \right] + E \left[e^{-r(\tau-t)}(K - x S^1_\tau - y S^2_\tau)^+ \right] \\
= E \left[e^{-r(\tau-t)}((x - \lambda_1 x) S^1_\tau + (y - \lambda_2 y) S^2_\tau) \right] + E \left[e^{-r(\tau-t)}(K - x S^1_\tau - y S^2_\tau)^+ \right] \\
= E \left[e^{-r(\tau-t)}(x - \lambda_1 x) S^1_\tau \right] + E \left[e^{-r(\tau-t)}(y - \lambda_2 y) S^2_\tau \right] + E \left[e^{-r(\tau-t)}(K - x S^1_\tau - y S^2_\tau)^+ \right]
\]

Die Ungleichung entsteht durch $c^1_+ - c^2_+ \leq (c^1 - c^2)_+$ für Funktionen c^1 und c^2.

Benutzte das Lemma von Fatou, um das Supremum in den Erwartungswert zu ziehen. Das Ergebnis liefert dann die Martingaleigenschaft des diskontierten Basisfinanzguts und die Arbitragefreiheit.

\[
P(\lambda_1 x, \lambda_2 y, t) \leq \sup_{\tau \in \Psi^t_i} E \left[e^{-r(\tau-t)}(x - \lambda_1 x) S^1_\tau \right] + \sup_{\tau \in \Psi^t_i} E \left[e^{-r(\tau-t)}(y - \lambda_2 y) S^2_\tau \right] + P(x, y, t) \\
\leq E \left[\sup_{\tau \in \Psi^t_i} e^{-r(\tau-t)}(x - \lambda_1 x) S^1_\tau \right] + E \left[\sup_{\tau \in \Psi^t_i} e^{-r(\tau-t)}(y - \lambda_2 y) S^2_\tau \right] + (K - x - y) \\
= (x - \lambda_1 x) + (y - \lambda_2 y) + (K - x - y) \\
= K - (\lambda_1 x + 1 - \lambda_2 y)
\]
Durch diese Eigenschaften kann eine Skizze für festes t erstellt werden.

Die Schnittpunkte mit den Achsen lassen sich berechnen. Es gilt $\lim_{S^1 \to 0} a^2(S^1, t) = a(t)$, wobei $a(t)$ die Grenzfunktion zu einer Putoption mit Ausübungspreis K und Basisfinanzgut S^2 zum Zeitpunkt t ist.
Steigung, Stetigkeit und Konvexität

Es können einige Aussagen über die Eigenschaften der Grenzfunktion gemacht werden. Dies ist wichtig für das Verständnis der Funktion und es sagt einiges über die Praxistauglichkeit und Möglichkeit der numerischen Annäherung aus.

Der folgende Monotenie- und Stetigkeitsbeweis stützt sich auf das Paper von Jacka [2].

Steigung
Bei festem Wert des Basisfinanzguts \(S_t \) ist die Putoption wertvoller je kleiner \(t \) ist, denn \(\Psi_{t-\epsilon}^{T} \subseteq \Psi_{t}^{T}, \epsilon > 0 \). Es folgt:

\[
\frac{\partial P(S_t, t)}{\partial t} \leq 0
\]

Für festes \(t \) muss der Preis für die Putoption bei steigendem \(S_t \) fallen, denn die Wahrscheinlichkeit nimmt ab, dass die Grenzregion getroffen wird. Also:

\[
\frac{\partial P(S_t, t)}{\partial S} \leq 0
\]

Hieraus folgt die Steigungseigenschaft der Grenzfunktion:
Da \(P(S_t, \cdot) \) fallend ist und \(a(t) + \epsilon \) in der Fortführungsregion zum Zeitpunkt \(t \) liegt, gilt:

\[
P(a(t) + \epsilon, t - \delta) \geq P(a(t) + \epsilon, t) > (K - (a(t) + \epsilon))_+
\]

Das heißt im Zeitpunkt \((t - \delta) \) ist \(a(t) + \epsilon \) noch nicht in die Stoppregion.

\[
\Rightarrow a(t - \delta) \leq a(t)
\]

Die Grenzfunktion für den Put ist monoton steigend.
Analog lässt sich zeigen, dass die Grenzfunktion für den Call monoton fallend ist.

Stetigkeit
Der Beweis der Stetigkeit der Grenzfunktion beruht auf dem Paper [2] von Jacka und besteht aus zwei Teilen. Als erstes wird die Stetigkeit von links über die Eigenschaften der Preisfunktion und der Grenzfunktion gezeigt. Die Stetigkeit von rechts erfordert mehr Arbeit. \(P(S_t, t) \) sei weiterhin die Preisfunktion, \(a(t) \) die Grenzfunktion und \(g(y) \) die Auszahlungsfunktion. Für diesen Beweis werden die Funktionen rückwärts durch die Zeit betrachtet. Nehme also die Bijektion

\[
t = T - \chi
\]

für \(\chi \in [0, T] \).

Also ist die Grenzfunktion monoton fallend in \(t \) und \(\frac{\partial P(S_t, t)}{\partial t} \) ist positiv.

Linksstetigkeit
\(P(S_t, t) \) ist stetig in beiden Variablen und \(g(y) \) als Kombination stetiger Funktionen wieder stetig. Die Fortführungsregion \(\Gamma \), definiert als

\[
\Gamma = \{(S_t, t) \mid P(S_t, t) - g(S_t) > 0, \ S_t \in]0, \infty[, \ t \in [0, T]\},
\]

ist also offen. Definiere die Stoppregion \(\Gamma^c \),

\[
\Gamma^c = \{(S_t, t) \mid P(S_t, t) - g(S_t) = 0, \ S_t \in]0, \infty[, \ t \in [0, T]\}.
\]
Wenn nun eine Folge \((t_n)_n\) von unten gegen ein \(t\) konvergiert, folgt aus der Abgeschlossenheit von \(\Gamma^c\), dass \((a(t_n), t_n)\) für alle \(n\) und der Grenzwert der Folge in \(\Gamma^c\) liegt. Es bleibt also zu zeigen, dass \(a(t_n)\) gegen \(a(t)\) konvergiert.

Da \(\frac{\partial P(S,t)}{\partial t} \geq 0\) gilt, wird für steigende \(t\) und festes \(S_t\) der Preis größer. Da die Folge in der Stopregion bleibt und \(g(y)\) nicht von \(t\) abhängt, muss \(S_t\) steigen, da \(\frac{\partial P(S,t)}{\partial S} \leq 0\) gilt.

Also gilt \(a(t^-) \leq a(t)\). Da aber \(a(t)\) monoton fallend ist, gilt \(a(t^-) \geq a(t)\), woraus \(a(t_n) \to a(t)\) folgt.

Damit ist die Linksstetigkeit bewiesen.

Rechtsstetigkeit

Der Beweis beruht auf Abschätzungen der Black-Scholes-Differentialgleichung,

\[-\frac{\partial P(S_t, t)}{\partial t} - rP(S_t, t) + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial^2 P(S_t, t)}{\partial S^2} + rS_t \frac{\partial P(S_t, t)}{\partial S} = 0,\]

der Preisfunktion in der Fortführungsregion \(\Gamma\). Beachte \(t = T - \chi\).

Da \(\frac{\partial P}{\partial t} \geq 0\) und \(\frac{\partial P}{\partial S} \leq 0\) gilt, gelangt man zu

\[\frac{1}{2}\sigma^2 S_t^2 \frac{\partial^2 P(S_t, t)}{\partial S^2} \geq rP(S_t, t).\]

Definiere nun die Menge \(\Gamma_n\) durch

\[\Gamma_n = \Gamma \cap [0, K] \times \left[\frac{1}{n}, n\right],\]

für \(n\) und \(\frac{1}{n}\) aus \([0, T]\).

Die Menge ist kompakt, da sie abgeschlossen und beschränkt ist. Deswegen nimmt \(P(S_t, t)\), als stetige Funktion, auf der Menge ein Minimum an. Zusätzlich muss der Preis der Option in der Menge größer Null sein, woraus die Abschätzung

\[\inf_{(S_t,t) \in \Gamma_n} \frac{1}{2}\sigma^2 S_t^2 \frac{\partial^2 P(S_t, t)}{\partial S^2} \geq \epsilon_n > 0\]

entsteht.

Wähle nun ein festes \(t \in [0, T]\) und \(n\) so, dass \(\frac{1}{n} \leq t < n\) gilt. Nehme außerdem ein \(u\) aus dem Intervall \([N, t]\) und ein \(S\) aus \([a(t^+) + \eta, K]\). Das Ziel ist es, zu zeigen, dass der Wert des Basisfinanzguts für alle \(\eta > 0\) zum Zeitpunkt \(u\), in der Fortführungsregion liegt. Dies ist äquivalent zu \(P(S, u) - g(S, u) > 0\). Da \(P(a(t), t)\) und \(g(a(t))\) übereinstimmen, \(P(S_t, t)\) eine \(C^2\) Funktion in \(S\) in der Fortführungsregion ist und die zweite Ableitung von \(g(y)\) verschwindet, kann folgende Gleichungkette aufgestellt werden.

\[
P(S, u) - g(S, u) = P(S, u) - g(S, u) + P(a(u), u) - P(a(u), u)
= P(S, u) - P(a(u), u) - [g(S, u) - g(a(u), u)]
= \int_{a(u)}^{S} \frac{\partial P(\xi, u)}{\partial S} - \frac{\partial g(\xi, u)}{\partial S} \, d\xi
= \int_{a(u)}^{S} \frac{\partial P(\xi, u)}{\partial S} - \frac{\partial g(\xi, u)}{\partial S} - \frac{\partial P(a(u), u)}{\partial S} + \frac{\partial g(a(u), u)}{\partial S} \, d\xi
= \int_{a(u)}^{S} \int_{a(u)}^{\xi} \frac{\partial^2 P(\xi, u)}{\partial S^2} - \frac{\partial^2 g(\xi, u)}{\partial S^2} \, d\xi \, d\xi
\]
Durch Multiplizieren mit Eins kann das Doppelintegral mit ϵ_n abgeschätzt werden.

\[
P(S, u) - g(S, u) = \int_{a(u)}^{S} \int_{a(u)}^{\xi} 1 \cdot \frac{\partial^2 P(\varsigma, u)}{\partial \varsigma^2} \, d\varsigma \, d\xi
\]

\[
= \int_{a(u)}^{S} \int_{a(u)}^{\xi} \left(\frac{1}{2} \sigma^2 S^2 \right) \left(\frac{1}{2} \sigma^2 S^2 \right)^{-1} \frac{\partial^2 P(\varsigma, u)}{\partial \varsigma^2} \, d\varsigma \, d\xi
\]

\[
\geq \epsilon_n \int_{a(u)}^{S} \int_{a(u)}^{\xi} \left(\frac{1}{2} \sigma^2 S^2 \right)^{-1} \, d\varsigma \, d\xi
\]

\[
= \epsilon_n \int_{a(u)}^{S} \left(\frac{1}{2} \sigma^2 S^2 \right)^{-1} (\xi - a(u)) \, d\xi
\]

\[
= \epsilon_n \frac{2}{\sigma^2} \frac{(S - a(u))^2}{K^2} > 0
\]

Wenn nun eine Folge $(u_n)_n$ von oben gegen t fällt, gilt mit der Stetigkeit von $P(S_t, t)$ und $g(y)$

\[
P(a(t^+) + \eta, t) - g(a(t^+) + \eta, t) \geq \epsilon_n \frac{2}{\sigma^2} \frac{(S - a(t^+))^2}{K^2} > 0
\]

für alle $\eta > 0$ und damit $a(t^+) \geq a(t)$.
Da aber $a(t)$ auch fallend in t ist folgt die Rechtsstetigkeit.

Konvexität

3.4 Das Verhalten am Ende der Laufzeit

Die Preisfunktion eines amerikanischen Puts erfüllt folgende benötigte Voraussetzungen:

\[P(S_t, t) \geq (K - S_t) + (K - S_T) \]

und

\[\frac{\partial P(S_t, t)}{\partial t} + \sigma^2 S_t^2 \frac{\partial^2 P(S_t, t)}{\partial S^2} - r P(S_t, t) + r S_t \frac{\partial P(S_t, t)}{\partial S} = 0 \]

vorm Ausübung.

Dies lässt sich auch schreiben als:

\[
\min \left[\frac{\partial P(S_t, t)}{\partial t} + \sigma^2 S_t^2 \frac{\partial^2 P(S_t, t)}{\partial S^2} - r P(S_t, t) + r S_t \frac{\partial P(S_t, t)}{\partial S}, P(S_t, t) - (K - S_t) \right] = 0
\]

(3.3)

\[P(S_T, T) = (K - S_T) \]

(3.4)

Die Preisfunktion eines amerikanischen Puts erfüllt folgende benötigte Voraussetzungen:

\[P(S_t, t) \geq (K - S_t) + (K - S_T) \]

und

\[\frac{\partial P(S_t, t)}{\partial t} + \sigma^2 S_t^2 \frac{\partial^2 P(S_t, t)}{\partial S^2} - r P(S_t, t) + r S_t \frac{\partial P(S_t, t)}{\partial S} = 0 \]

vorm Ausübung.

Dies lässt sich auch schreiben als:

\[\min \left[\frac{\partial P(S_t, t)}{\partial t} + \sigma^2 S_t^2 \frac{\partial^2 P(S_t, t)}{\partial S^2} - r P(S_t, t) + r S_t \frac{\partial P(S_t, t)}{\partial S}, P(S_t, t) - (K - S_t) \right] = 0 \]

(3.3)

\[P(S_T, T) = (K - S_T) \]

(3.4)

a(t) sei weiterhin die Grenzfunktion für die amerikanische Putoption. Die zentrale Aussage des Papers ist:

Satz

\[\frac{a(t) - K}{K} \sim -\sigma \sqrt{(T - t) |\ln(T - t)|} \quad \text{für } t < T, t \text{ nahe } T \]

Das ist eine andere Schreibweise für:

\[\lim_{t \to T} \frac{a(t) - K}{K} = 1 \quad \text{oder} \quad \lim_{\tau \to 0} \frac{a(\tau) - K}{K} = 1 \quad \text{für } \tau = T - t \]

Bemerkung

Die Steigung folgt mir dem Differenzenquotienten.

\[\lim_{t \to T} \frac{a(t) - K}{K} = 1 \]

\[\iff \lim_{t \to T} \frac{a(t) - a(T)}{\sqrt{(T - t)}} = \lim_{t \to T} -K \sigma \sqrt{|\ln(T - t)|} \]

\[\iff \lim_{t \to T} \frac{a(T) - a(t)}{T - t} = K \sigma \lim_{t \to T} \sqrt{|\ln(T - t)|} \]

\[\sqrt{(T - t)} \]
Beweis

Nehme an, dass es Lösungen $U^+(S_t, t)$ und $U^-(S_t, t)$, in $\mathbb{R}^+ \times [0, T]$, für die beiden folgenden Terme gibt.

\[
\min \left[\frac{\partial U^+(S_t, t)}{\partial t} + \sigma^2 S_t^2 \frac{1}{2} \frac{\partial^2 U^+(S_t, t)}{\partial S^2} - rU^+(S_t, t) + rS_t \frac{\partial U^+(S_t, t)}{\partial S} , \quad U^+(S_t, t) - (K - S_t)_+ \right] \geq 0 \tag{3.5}
\]

\[
\min \left[\frac{\partial U^-(S_t, t)}{\partial t} + \sigma^2 S_t^2 \frac{1}{2} \frac{\partial^2 U^-(S_t, t)}{\partial S^2} - rU^-(S_t, t) + rS_t \frac{\partial U^-(S_t, t)}{\partial S} , \quad U^-(S_t, t) - (K - S_t)_+ \right] \leq 0 \tag{3.6}
\]

$U^+(S_t, t)$ heißt Supersolution und $U^-(S_t, t)$ Subsolution von $P(S_t, t)$.

Nehme weiter an, zu $U^+(S_t, t)$ gibt es eine eindeutige Funktion $a^+(t) > 0$, die $\forall \ t \in [t^+, T]$, ab einem $t^+ \in (0, T)$ folgende Gleichung erfüllt

\[U^+(a^+(t), t) = (K - a^+(t))_+. \]

Ebenso soll es zu $U^-(S_t, t)$ eine eindeutige Funktion $a^-(t) > 0$ geben, für die $\forall \ t \in [t^-, T]$, ab einem $t^- \in (0, T)$

\[S_t \leq a^-(t) \implies U^-(S_t, t) = (K - S_t)_+ \tag{3.7} \]
\[S_t > a^-(t) \implies U^-(S_t, t) > (K - S_t)_+ \tag{3.8} \]

gilt.

Wenn $a^+(t)$ und $a^-(t)$ das zu zeigende Verhalten von $a(t)$ am Ende der Laufzeit

\[\lim_{t \to T} \frac{a^+(t) - K}{-\sigma \sqrt{(T-t) \ln(T-t)}} = 1 \]

erfüllen, ist der Beweis beendet.

Aufgrund der Konstruktion von $U^+(S_t, t)$ und $U^-(S_t, t)$ folgt mit dem Maximumsprinzip:

\[U^-(S_t, t) \leq P(S_t, t) \leq U^+(S_t, t) \tag{3.9} \]

Mit diesen Annahmen ist der Satz gezeigt, wenn folgende Ungleichungen Gültigkeit haben.

\[a^+(t) \leq a(t) \leq a^-(t) \quad \forall \ t \in [0, T] \tag{3.10} \]

Für $S_t > a^-(t)$ folgt:

\[(K - S_t)_+ < U^-(S_t, t) \leq P(S_t, t) \]

\[\implies a(t) \leq a^-(t) \]

und

\[(K - a^+(t)) \leq P(a^+(t), t) \leq U^+(a^+(t), t) = (K - a^+(t)) \]

also gilt, dass

\[U(a^+(t), t) = (K - a^+(t)) \]

und damit die erste Ungleichung.

Somit gilt der Satz für $a(t)$.

\[\Box \]

Wenn also die Existenz einer Supersolution und einer Subsolution mit zugehörigen, eindeutigen Funktionen $a^+(t) \text{ und } a^-(t)$ nachgewiesen wird, ist der Satz gezeigt.
Konstruktion der Supersolution

Definiere die stetige Funktion $U^+(S_t, t)$ als Lösung ab einem bestimmten t_0^+ für die 3 Konditionen.

\[
\frac{\partial U^+(S_t, t)}{\partial t} + \sigma^2 S_t^2 \frac{\partial^2 U^+(S_t, t)}{\partial S^2} - rU^+(S_t, t) + rS_t \frac{\partial U^+(S_t, t)}{\partial S} \geq 0 \quad (3.11)
\]

\[
U^+(S_t, t) \geq (K - S_t)_+ \quad (3.12)
\]

\[
U^+(S_T, T) = (K - S_T)_+ \quad (3.13)
\]

Wenn nun $P_E(S_t, t)$ der Black-Scholes-Preis der europäischen Option ist, kann $U^+(S_t, t)$ dargestellt werden als Kombination von $P_E(S_t, t)$ und einer Funktion $f(t)$, mit $f \geq 0$, $f \in C^1$ auf $[0, T]$.

\[
U^+(S_t, t) = f(t)P_E(S_t, t) \quad \forall \ (t, S) \in [t_0^+, T] \times (0, \infty) \quad (3.14)
\]

\[
f(T) = 1 \quad \frac{\partial f(t)}{\partial t} \leq 0 \ \forall t \in [t_0^+, T] \quad (3.15)
\]

Mit diesen beiden Annahmen an $f(t)$ folgt (3.11) und (3.13).

Lemma

Es existiert eine abnehmende C^1 Funktion f auf $[t_0^+, T]$ mit $f(T)=1$ und für alle t aus diesem Intervall existiert ein nichtnegatives $a^+(t)$ mit:

\[
a^+(t) \leq K \quad (3.16)
\]

\[
f(t)P_E(a^+(t), t) = (K - a^+(t))_+ \quad (3.17)
\]

\[
f(t) \frac{\partial P_E(S_t, t)}{\partial S} \bigg|_{a^+(t)} = -1 \quad (3.18)
\]

Vor dem Beweis des Lemmas ist zu klären warum dieses Lemma zeigt, dass (3.12) gilt.

$P_E(S_t, t)$ ist konvex in S_t, da die Preisszinsfunktion für die europäische Option konvex ist und die Differentialgleichung (3.5) größer als Null ist. $U^+(S_t, t)$ ist dadurch ebenfalls konvex, als Kombination einer konvexen und einer positiven Funktion.

Wenn nun $S_t \leq a^+(t)$ ist, folgt aus der Konvexität

\[
\frac{\partial U^+(S_t, t)}{\partial S} \bigg|_{S_t} \leq \frac{\partial U^+(S_t, t)}{\partial S} \bigg|_{a^+(t)} = -1.
\]

Da aber $a^+(t) \leq K$ gilt, folgt:

\[
(K - S_t)_+ \leq U^+(S_t, t) \iff (K - S_t)_+ - U^+(S_t, t) \leq 0
\]

\[
(K - S_t)_+ - U^+(S_t, t) = (K - S_t) - U^+(S_t, t)
\]

\[
= (K - a^+(t)) - (K - a^+(t)) + (K - S_t) - U^+(a^+(t), t) + U^+(a^+(t), t) - U^+(a^+(t), t)
\]

\[
= (K - a^+(t)) - U^+(a^+(t), t) + \int_{a^+(t)}^{S} \left(1 - \frac{\partial U^+(S, t)}{\partial S} \bigg|_{v} \right) dv
\]

Die Ungleichheit folgt mit

\[
U^+(a^+(t), t) = (K - a^+(t)) , \quad S_t \leq a^+(t)
\]
und mit der Konvexität
\[-1 - \frac{\partial U^+(S_t, t)}{\partial S} \geq 0 \]
Nun muss noch der Fall \(a^+(t) \leq S(t) \) betrachtet werden. Über die Konvexität folgt diesmal
\[-1 = \frac{\partial U^+(S_t, t)}{\partial S} \bigg|_{a^+(t)} \leq \frac{\partial U^+(S_t, t)}{\partial S} \bigg|_{S_t} \]
und die Ungleichheit wird zu:
\[(K - a^+(t)) - U^+(a^+(t), t) + \int_{a^+(t)}^{S_t} \left(-1 - \frac{\partial U^+(S_t, t)}{\partial S} \right) dv \leq 0 \]
Mit
\[-1 - \frac{\partial U^+(S_t, t)}{\partial S} \leq 0 \]
Dies zeigt (3.12). Nun wird das Lemma bewiesen.

Beweis des Lemmas

Mit
\[
\begin{align*}
\xi &= T - t \\
c(\xi) &= f(t) \\
y(\xi) &= \frac{1}{\sigma \sqrt{\xi}} \ln \frac{S_{T-\xi}}{Ke^{-r \xi}} \\
y^+(\xi) &= \frac{1}{\sigma \sqrt{\xi}} \ln \frac{a^+(T - \xi)}{Ke^{-r \xi}} \\
v(\xi, y) &= PE(t, S_t) \\
u(\xi, y) &= P(t, S_t) \\
\phi(x) &= 1 - N(x) = \int_x^\infty \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt
\end{align*}
\]

cann der europäische Putpreis folgendermaßen dargestellt werden:
\[v(\xi, y(\xi)) = Ke^{-r \xi} \left[\phi \left(y(\xi) - \frac{\sigma \sqrt{\xi}}{2} \right) - e^{y(\xi)\sigma \sqrt{\xi}} \phi \left(y(\xi) + \frac{\sigma \sqrt{\xi}}{2} \right) \right] \]
v(\xi, y(\xi)) ist also der transformierte Putpreis. Diese Transformationen vereinfachen den Beweis, denn nun kann das Verhalten von \(y^+(\xi) \) untersucht werden, um danach Rückschlüsse auf \(a^+(t) \) zu ziehen.
Wenn nun auch die Aussage des Lemmas mit Hilfe der Kettenregel transformiert wird,

\[c(\xi)v(\xi, y^+) = K \left(1 - e^{-r\xi + \sigma \sqrt{\xi}y^+ (\xi)} \right) \]
(3.19)

\[c(\xi) \frac{\partial v(\xi, y(\xi))}{\partial y} \bigg|_{y^+(\xi)} = -K\sigma \sqrt{\xi}e^{-r\xi + \sigma \sqrt{\xi}y^+ (\xi)}, \]
(3.20)

ist dies äquivalent mit

\[\frac{\partial v(\xi, y(\xi))}{\partial y} \bigg|_{y^+(\xi)} = -\frac{\sigma \sqrt{\xi}e^{-r\xi + \sigma \sqrt{\xi}y^+ (\xi)}}{K \left(1 - e^{-r\xi + \sigma \sqrt{\xi}y^+ (\xi)} \right)}. \]

Es reicht also, diese Gleichung zu bestätigen und \(c(\xi) \in C^1 \) steigend für \(\xi \) nahe 0\(^+\) zu zeigen, um das Lemma zu beweisen.

Durch Einsetzen von \(v(\xi, y(\xi)) \) entsteht

\[\frac{\partial}{\partial y} \left(Ke^{-r\xi} \left[\phi \left(y - \frac{\sigma \sqrt{\xi}}{2} \right) - e^{y\sigma \sqrt{\xi} + \sigma \sqrt{\xi}y^+ (\xi)} \right] \right) \bigg|_{y^+(\xi)} = -\frac{\sigma \sqrt{\xi}e^{-r\xi + \sigma \sqrt{\xi}y^+ (\xi)}}{1 - e^{-r\xi + \sigma \sqrt{\xi}y^+ (\xi)}}. \]

Dies lässt sich weiter vereinfachen indem die Parameterintegrale mit der Leibnizregel, [10], aufgelöst werden

\[\frac{1}{\sqrt{2\pi}} e^{-\left(\frac{y^+(\xi) - \sigma \sqrt{\xi}}{2} \right)^2} - \frac{1}{\sqrt{2\pi}} e^{y^+(\xi)\sigma \sqrt{\xi} + \frac{\sigma \sqrt{\xi}}{2}y^+ (\xi)} - \sigma \sqrt{\xi}e^{y^+(\xi)\sigma \sqrt{\xi} + \frac{\sigma \sqrt{\xi}}{2}} \phi \left(y^+ (\xi) + \frac{\sigma \sqrt{\xi}}{2} \right) = -\frac{\sigma \sqrt{\xi}e^{-r\xi + \sigma \sqrt{\xi}y^+ (\xi)}}{1 - e^{-r\xi + \sigma \sqrt{\xi}y^+ (\xi)}}. \]

Da die Gleichheit

\[e^{y\sigma \sqrt{\xi}}e^{-\left(\frac{y - \sigma \sqrt{\xi}}{2} \right)^2} = e^{-\left(\frac{y - \sigma \sqrt{\xi}}{2} \right)^2} \]

gilt, bekommt man

\[e^{-r\xi} \phi \left(y^+ - \frac{\sigma \sqrt{\xi}}{2} \right) \phi \left(y^+ + \frac{\sigma \sqrt{\xi}}{2} \right). \]

Definiere die Funktion \(h(\xi, y) \) durch

\[h(\xi, y) = e^{-r\xi} \phi \left(y - \frac{\sigma \sqrt{\xi}}{2} \right) - \phi \left(y + \frac{\sigma \sqrt{\xi}}{2} \right). \]

Nun muss gezeigt werden, dass genau ein \(a^+(T - \xi) \) existiert. Da der Logarithmus stetig ist, genügt es zu zeigen, dass nur genau ein \(y^+ (\xi) \) existiert, also \(h(\xi, y) \) nur genau eine Nullstelle in \(y \) für festes \(\xi \) hat.

Betrachte als erstes das Verhalten für \(y \) gegen \(+/ - \infty\).

\[\lim_{y \to -\infty} h(\xi, y) = e^{-r\xi} - 1 < 0 \quad \lim_{y \to +\infty} h(\xi, y) = 0 \]

Damit die Steigungen die \(h \) in \(y \) durchläuft.
\[
\frac{\partial h(\xi, y)}{\partial y} = \frac{\partial}{\partial y} e^{-r\xi} \phi \left(y - \frac{\sigma \sqrt{\xi}}{2} \right) - \phi \left(y + \frac{\sigma \sqrt{\xi}}{2} \right) \\
= -\frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} \sigma^2 \xi e^{-r\xi + \frac{\mu \xi}{\sigma}} - e^{-\frac{\mu \xi}{\sigma} - r\xi}
\]

Also steigt \(h \) für
\[
\left\{ y \mid e^{-r\xi + \frac{\mu \xi}{\sigma}} < e^{-\frac{\mu \xi}{\sigma}} \right\} = \left\{ y \mid y \in (-\infty, \frac{\sqrt{\xi} r}{\sigma}) \right\}
\]
und fällt dementsprechend für
\[
\left\{ y \mid e^{-r\xi + \frac{\mu \xi}{\sigma}} > e^{-\frac{\mu \xi}{\sigma}} \right\} = \left\{ y \mid y \in (\frac{\sqrt{\xi} r}{\sigma}, \infty) \right\}.
\]

Dadurch ist \(y^+(\xi) \) die einzige Nullstelle und somit eindeutig.

Bemerkung
Da die Nullstelle in dem Intervall ist, für das \(h(\xi, y) \) monoton wachsend in \(y \) ist, gilt
\[
\left. \frac{\partial h(\xi, y)}{\partial y} \right|_{y^+(\xi)} > 0
\]

und
\[
y^+(\xi) \leq \frac{\sqrt{\xi} r}{\sigma} \Rightarrow a^+(T - \xi) \leq K.
\]

Bevor der noch ausstehende Beweis über das Verhalten von \(c(\xi) \) geführt wird, betrachte folgendes

Lemma
\[
y^+(\xi) \xrightarrow{\xi \to 0} -\infty
\]

Insbesondere
\[
y^+(\xi)^2 \sim |\ln(\xi)| \quad \text{für } \xi \text{ nahe } 0^+
\]

Beweis
Um den ersten Teil zu beweisen, fixiere \(A < 0 \) und betrachte
\[
h(\xi, A) = -e^{-r\xi} \phi \left(A - \frac{\sigma \sqrt{\xi}}{2} \right) - \phi \left(A + \frac{\sigma \sqrt{\xi}}{2} \right) \quad \text{für } \xi \text{ nahe } 0^+.
\]
Für diesen Wert ist \(e^{-r\xi} \approx 1 \).

Die Funktionswerte \(\phi \left(A \pm \frac{\sigma \sqrt{\xi}}{2} \right) \) werden mit der Taylorentwicklung angenähert. Entwickle \(\phi(x) \) um \(A \) bis n=1 und setze \(A \pm \frac{\sigma \sqrt{\xi}}{2} \) ein. Das Restglied \(R_2 \) ist \(o(\sqrt{\xi}) \), da die e-Funktion schneller fällt als jedes Polynom.

\[
\phi(A \pm \frac{\sigma \sqrt{\xi}}{2}) = \phi(A) + \phi'(A) \left(A \pm \frac{\sigma \sqrt{\xi}}{2} - A \right) + R_2
\]

\[
\phi'(A) = \left. \frac{\partial \phi(x)}{\partial x} \right|_{x=A} = \left. \frac{\partial}{\partial x} \int_{x=A}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt \right|_{x=A} = -\frac{1}{\sqrt{2\pi}} e^{-\frac{A^2}{2}}
\]

\[
R_2 = \phi''(A) \frac{\sigma^2 \xi}{4} = A - \frac{1}{\sqrt{2\pi}} e^{-\frac{A^2}{2}} \frac{\sigma^2 \xi}{4} = o(\sqrt{\xi})
\]
Also

\[h(\xi, A) = \phi(A) - \phi'(A) \frac{\sigma \sqrt{\xi}}{2} - \phi(A) - \phi'(A) \frac{\sigma \sqrt{\xi}}{2} + o(\sqrt{\xi}) \]

\[= + \frac{\sigma \sqrt{\xi}}{\sqrt{2\pi}} e^{-\frac{A^2}{2}} + o(\sqrt{\xi}) \]

Aus der letzten Gleichung kann man schließen, dass für jedes \(A < 0 \) ein \(\xi_0 > 0 \) existiert, so dass \(\forall \xi \leq \xi_0 \ h(\xi, A) > 0 \) gilt. Also muss für \(\xi < \xi_0 \ y^+(\xi) < A \) sein, denn \(h(\xi, y^+(\xi)) = 0 \).

Damit ist der erste Teil des Lemmas bewiesen.

Fixiere nun \(\xi > 0 \). Dann existiert nach dem Mittelwertsatz der Integralrechnung ein \(y_0 \in \left[y^+(\xi) - \frac{\sqrt{2\pi}}{2}, y^+(\xi) + \frac{\sqrt{2\pi}}{2} \right] \), so daß

\[\phi \left(y^+(\xi) - \frac{\sigma \sqrt{\xi}}{2} \right) - \phi \left(y^+(\xi) + \frac{\sigma \sqrt{\xi}}{2} \right) = \frac{\sigma \sqrt{\xi}}{\sqrt{2\pi}} e^{-\frac{y_0^2}{2}}. \]

Für ein \(\xi \) klein genug, ist \(y^+ + \frac{\sigma \sqrt{\xi}}{2} \leq 0 \) und \(e^{-x^2} \) ist monoton wachsend für \(x \in \left[\kappa, \kappa \right] \), \(\kappa, \kappa \leq 0 \) und \(\kappa \leq \kappa \). Zusammen mit der vorherigen Gleichung entstehen zwei Ungleichungen

\[\frac{\sigma \sqrt{\xi}}{\sqrt{2\pi}} e^{-\left(y^+(\xi) + \frac{\sigma \sqrt{\xi}}{2} \right)^2} \leq \phi \left(y^+(\xi) - \frac{\sigma \sqrt{\xi}}{2} \right) - \phi \left(y^+(\xi) + \frac{\sigma \sqrt{\xi}}{2} \right) \leq \frac{\sigma \sqrt{\xi}}{\sqrt{2\pi}} e^{-\left(y^+(\xi) + \frac{\sigma \sqrt{\xi}}{2} \right)^2}. \]

(3.21)

Auf der anderen Seite kann

\[e^{-r\xi} \phi \left(y^+(\xi) - \frac{\sigma \sqrt{\xi}}{2} \right) = \phi \left(y^+(\xi) + \frac{\sigma \sqrt{\xi}}{2} \right) \]

umgestellt werden zu

\[\phi \left(y^+(\xi) - \frac{\sigma \sqrt{\xi}}{2} \right) - \phi \left(y^+(\xi) + \frac{\sigma \sqrt{\xi}}{2} \right) = \left(1 - e^{-r\xi} \right) \phi \left(y^+(\xi) + \frac{\sigma \sqrt{\xi}}{2} \right) \]

was sich bei kleinen \(\xi \) verhält wie

\[\phi \left(y^+(\xi) - \frac{\sigma \sqrt{\xi}}{2} \right) - \phi \left(y^+(\xi) + \frac{\sigma \sqrt{\xi}}{2} \right) \sim 1 - e^{-r\xi} \]

da \(y^+(\xi) \rightarrow -\infty \) für \(\xi \rightarrow 0 \) strebt.
Für \(\xi \) nahe Null ist die Funktion \(1 - e^{-r \xi} \) annähernd linear und kann durch \(r \xi \) angenähert werden.

Ein Beispiel für \(r = 0.5 \).

Dies kann mit der Regel von l’Hospital gezeigt werden.

\[
\lim_{x \to 0} \frac{1 - e^{-rx}}{rx} = \lim_{x \to 0} \frac{re^{-rx}}{r} = 1
\]

Daraus folgt

\[
\phi \left(y^+(\xi) - \frac{\sigma \sqrt{\xi}}{2} \right) - \phi \left(y^+(\xi) + \frac{\sigma \sqrt{\xi}}{2} \right) \sim r \xi .
\] (3.22)

Annahme

\[
y^+(\xi) = o \left(\frac{1}{\sqrt{\xi}} \right), \text{ dh. } \lim_{\xi \to 0} \left| y^+(\xi) \sqrt{\xi} \right| = 0
\]

Sollte dies nicht gelten, würde ein \(a \in \mathbb{R}^{>0} \) und eine gegen Null fallende Folge \(\xi_n \) existieren mit

\[
y^+(\xi_n) \sqrt{\xi_n} \leq -a \text{ bzw. } y^+(\xi_n) \leq -\frac{a}{\sqrt{\xi_n}}, \text{ so daß}
\]

\[
\frac{\sigma \sqrt{\xi_n}}{\sqrt{2\pi}} e^{-\frac{\left(y^+(\xi_n) + \frac{\sigma \sqrt{\xi_n}}{2}\right)^2}{2}} = O \left(\sqrt{\xi_n} e^{-\frac{a^2}{2\xi_n}} \right) \text{ dh. } 0 \leq \limsup_{n \to \infty} \left| \frac{\sigma \sqrt{\xi_n}}{\sqrt{2\pi}} e^{-\frac{\left(y^+(\xi_n) + \frac{\sigma \sqrt{\xi_n}}{2}\right)^2}{2}} \sqrt{\xi_n} e^{-\frac{a^2}{2\xi_n}} \right| < \infty
\]

gilt.
\[
0 \leq \frac{\sigma \sqrt{\xi_n}}{\sqrt{2\pi}} e^{-\frac{(y^+(\xi_n)+\frac{2\sqrt{\xi_n}}{\sqrt{2\pi}})^2}{2}} = \frac{\sigma \sqrt{\xi_n}}{\sqrt{2\pi}} e^{-\frac{y^+(\xi_n)^2}{2}} - \frac{y^+(\xi_n)\sigma \sqrt{\xi_n}}{2} - \frac{\sigma^2 \xi_n + \frac{\sigma^2}{2}}{2}
\leq \frac{\sigma \sqrt{\xi_n}}{\sqrt{2\pi}} e^{-\frac{y^+(\xi_n)^2}{2}} - \frac{y^+(\xi_n)\sigma \sqrt{\xi_n}}{2} - \frac{\sigma^2 \xi_n + \frac{\sigma^2}{2}}{2} \rightarrow_{n \rightarrow \infty} \frac{\sigma \sqrt{\xi_n}}{\sqrt{2\pi}} e^{-\frac{y^+(\xi_n)^2}{2}} < \infty
\]

Aber \(O\left(\sqrt{\xi_n}e^{-\frac{\sigma^2}{\sqrt{2\pi}}}
ight) = o(\xi_n)\) und dies angewand auf (3.21) in Kombination mit (3.22) ergibt den Widerspruch \(r\xi_n = o(\xi_n)\), was die Annahme bestätigt.

Wegen \(y^+(\xi) = o\left(\frac{1}{\sqrt{\xi}}\right)\) können die Grenzen von (3.21) abgeschätzt werden,

\[
e^{-\frac{(y^+(\xi) - \frac{2\sqrt{\xi}}{\sqrt{2\pi}})^2}{2}} e^{-\frac{y^+(\xi)\sigma \sqrt{\xi_n}}{2}} = \frac{e^{-\frac{y^+(\xi)\sigma \sqrt{\xi_n}}{2}}}{\sigma \sqrt{\xi_n}} \rightarrow_{\xi \rightarrow 0} 1 ,
\]

woraus ein weiteres Verhalten von \(\phi\left(y^+(\xi) - \frac{\sigma \sqrt{\xi}}{2}\right) - \phi\left(y^+(\xi) + \frac{\sigma \sqrt{\xi}}{2}\right)\) für kleine \(\xi\) angegeben werden kann:

\[
\phi\left(y^+(\xi) - \frac{\sigma \sqrt{\xi}}{2}\right) - \phi\left(y^+(\xi) + \frac{\sigma \sqrt{\xi}}{2}\right) \sim \frac{\sigma \sqrt{\xi}}{\sqrt{2\pi}} e^{-\frac{y^+(\xi)^2}{2}}
\]

In Kombination mit (3.22) folgt

\[
\frac{\sigma \sqrt{\xi}}{\sqrt{2\pi}} e^{-\frac{y^+(\xi)^2}{2}} \sim r\xi.
\]

Wenn

\[
\lim_{x \rightarrow 0} \frac{f(x)}{g(x)} = 1 = \lim_{x \rightarrow 0} \frac{f'(x)}{g'(x)}
\]

und \(f(x) \rightarrow 0\) gilt, hat man für die logarithmierten Funktionen dank der L'Hospital-Regel

\[
\lim_{x \rightarrow 0} \ln\left(\frac{f(x)}{g(x)}\right) = \lim_{x \rightarrow 0} \frac{g(x) f'(x)}{f(x) g'(x)} = 1
\]

Nun folgt

\[
\lim_{\xi \rightarrow 0} \ln\left(\frac{\sigma \sqrt{\xi}}{\sqrt{2\pi}} e^{-\frac{y^+(\xi)^2}{2}}\right) = \lim_{\xi \rightarrow 0} \frac{\ln\left(\frac{\sigma \sqrt{\xi}}{\sqrt{2\pi}}\right)}{\ln\left(\sqrt{\xi}\right)} + \lim_{\xi \rightarrow 0} \frac{\ln\left(e^{-\frac{y^+(\xi)^2}{2}}\right)}{\ln\left(\sqrt{\xi}\right)} = 1
\]

Also

\[
-\frac{y^+(\xi)^2}{2} \sim \ln \sqrt{\xi}, \quad (3.23)
\]

umgestellt zu

\[
y^+(\xi)^2 \sim 2 \cdot \frac{1}{2} \ln(\xi)
\]
folgt die Behauptung des Lemmas.

Da $y^+(\xi)$ definiert war als

$$y^+(\xi) = \frac{1}{\sigma \sqrt{\xi}} \ln \left(\frac{a^+(T-\xi)}{Ke^{-r\xi}} \right),$$

folgt aus dem Lemma

$$\frac{1}{\sigma \sqrt{\xi}} \ln \left(\frac{a^+(T-\xi)}{Ke^{-r\xi}} \right) \sim \sqrt{|\ln(\xi)|}.$$

Umstellen liefert

$$\ln \left(\frac{a^+(T-\xi)}{K} \right) - \ln(e^{-r\xi}) \sim -\sigma \sqrt{\xi} |\ln(\xi)|$$

und

$$\lim_{\xi \to 0} \frac{\ln \left(\frac{a^+(T-\xi)}{K} \right) - \ln(e^{-r\xi})}{-\sigma \sqrt{\xi} |\ln(\xi)|} = 1.$$

Dadurch gilt

$$\ln \left(\frac{a^+(T-\xi)}{K} \right) \sim -\sigma \sqrt{\xi} |\ln(\xi)|.$$

Wie im Logarithmusfall, gilt für die e-Funktion

$$\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{f'(x)}{1} = 1 \Rightarrow \lim_{x \to 0} \frac{f(x)}{e^x} = \lim_{x \to 0} f'(x)e^{f(x)-x} = 1,$$

insbesondere, weil die e-Funktion stetig in 0 ist.

$$\exp \left(\ln \left(\frac{a^+(T-\xi)}{K} \right) \right) \sim \exp \left(-\sigma \sqrt{\xi} |\ln(\xi)| \right)$$

Mit $rx \sim 1 - e^{-rx}$ für $x \to 0$ und nach Rücktransformation erhält man das gesuchte Ergebnis.

$$\frac{a^+(t) - K}{K} \sim -\sigma \sqrt{(T-t) |\ln(T-t)|}.$$

Nun bleibt zu zeigen, dass $c(\xi)$ steigend ist für kleine ξ.

Wenn $c(\xi)$ definiert ist als

$$c(\xi) \left. \frac{\partial v(\xi, y)}{\partial y} \right|_{y^+(\xi)} = -K\sigma \sqrt{\xi} e^{-r\xi + \sigma \sqrt{\xi} y^+(\xi)} ,$$

folgt nach Einsetzen der Funktion $v(\xi, y)$, wie bei der Umstellung zu (3.20),

$$c(\xi) = \frac{1}{\phi \left(y^+(\xi) + \frac{\sigma \sqrt{\xi}}{2} \right)} .$$
c(ξ) steigt also, wenn \(y^+(ξ) + \frac{σ\sqrt{ξ}}{2} \) steigt, denn \(φ \) ist nach Definition fallend. Da die Wurzelfunktion steigend ist, genügt es die positive Steigung von \(y^+(ξ) \) zu zeigen.

\[
\frac{∂h(ξ,y)}{∂y} \bigg|_{y^+(ξ)} > 0
\]
aufgrund der Bemerkung. Außerdem ist \(h(ξ,y) = 0 \) eine implizite Funktion. Nach dem Implizite-Funktionen-Theorem, [13], folgt

\[
\frac{∂y^+(ξ)}{∂ξ} = -\frac{∂h(ξ,y^+(ξ))}{∂ξ} \bigg|_{y^+(ξ)}
\]

Wenn nun also \(\frac{∂h}{∂ξ} \) für kleine \(ξ \) kleiner Null ist, ist \(c(ξ) \) monoton steigend.

\[
\frac{∂h(ξ,y(ξ))}{∂ξ} = \frac{∂}{∂ξ} \left(e^{-rξ} φ \left(y(ξ) - \frac{σ\sqrt{ξ}}{2} \right) - φ \left(y(ξ) + \frac{σ\sqrt{ξ}}{2} \right) \right)
\]

Mit der Parameterintegralformel folgt

\[
\frac{∂h(ξ,y^+(ξ))}{∂ξ} = -re^{-rξ} φ \left(y^+(ξ) - \frac{σ\sqrt{ξ}}{2} \right) + \frac{σ}{4\sqrt{2πξ}} \left(e^{-rξ} e^{-\frac{(y^+(ξ) - \frac{σ\sqrt{ξ}}{2})^2}{2}} + e^{-\frac{(y^+(ξ) + \frac{σ\sqrt{ξ}}{2})^2}{2}} \right)
\]

\[
= -re^{-rξ} φ \left(y^+(ξ) - \frac{σ\sqrt{ξ}}{2} \right) + \frac{σ}{4\sqrt{2πξ}} \left(e^{-rξ} e^{-\frac{(y^+(ξ) - \frac{σ\sqrt{ξ}}{2})^2}{2}} e^{\frac{σ^2ξ}{8}} + e^{-\frac{(y^+(ξ) + \frac{σ\sqrt{ξ}}{2})^2}{2}} e^{-\frac{σ^2ξ}{8}} \right),
\]

was mit (3.23) für \(\lim_{ξ→0^+} \) zu \(-\frac{r}{2} \) wird. Also \(\frac{∂h}{∂ξ} < 0 \), woraus die Behauptung folgt.
Konstruktion der Subsolution

Wie schon gezeigt wurde, ist eine europäische Option bei gleichen Parametern immer weniger Wert als eine amerikanische Option. Also ist \(P_E(S_t, t) \) eine Subsolution zu \(P(S_t, t) \), genauso wie \((K - S_t)_+\), da \(P(S_t, t) \geq (K - S_t)_+ \). Wenn \(U^-(S_t, t) \) definiert wird als

\[
U^-(S_t, t) = \sup \{ P_E(S_t, t), (K - S_t)_+ \} ,
\]

bleibt es, als Supremum zweier Subsolutions, eine Subsolution.

Suche nun die Grenzfunktion \(a^-(t) \) für \(U^-(S_t, t) \). Für diese Funktion muss

\[
P_E(a^-(t), t) = (K - a^-(t))_+ \]

(3.24)

Definiere wieder sechs Hilfsfunktionen.

\[
\begin{align*}
\xi &= T - t \\
y(\xi) &= \frac{1}{\sigma \sqrt{\xi}} \ln \frac{S_{T-\xi}}{K e^{-r \xi}} \\
y^-(\xi) &= \frac{1}{\sigma \sqrt{\xi}} \ln \frac{a^-(T - \xi)}{K e^{-r \xi}} \\
v(\xi, y) &= P_E(t, S_t) \\
u(\xi, y) &= P(t, S_t) \\
\phi(x) &= 1 - N(x) = \int_x^\infty \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt
\end{align*}
\]

Diese Notationen verändern den europäischen Optionspreis, genau wie bei der Supersolution und aus (3.24) wird:

\[
Ke^{-r \xi} \left[\phi \left(y^-(\xi) - \frac{\sigma \sqrt{\xi}}{2} \right) - e^{y^-(\xi)\sigma \sqrt{\xi}} \phi \left(y^-(\xi) + \frac{\sigma \sqrt{\xi}}{2} \right) \right] = K - Ke^{-r \xi} e^{\sigma \sqrt{\xi} y^-(\xi)}
\]

\[
\Leftrightarrow \phi \left(y^-(\xi) - \frac{\sigma \sqrt{\xi}}{2} \right) - e^{y^-(\xi)\sigma \sqrt{\xi}} \phi \left(y^-(\xi) + \frac{\sigma \sqrt{\xi}}{2} \right) = e^{r \xi} - e^{\sigma \sqrt{\xi} y^-(\xi)}
\]

Lemma

Für alle \(\xi > 0 \) existiert \(y^-(\xi) \) und ist eindeutig.

Beweis

Setze

\[
k(\xi, y(\xi)) = \phi \left(y(\xi) - \frac{\sigma \sqrt{\xi}}{2} \right) - e^{y(\xi)\sigma \sqrt{\xi}} \phi \left(y(\xi) + \frac{\sigma \sqrt{\xi}}{2} \right) - e^{r \xi} + e^{\sigma \sqrt{\xi} y(\xi)}
\]

dann hat diese Funktion zwei Eigenschaften aufgrund von \(\phi \)

\[
\lim_{y \to -\infty} k(\xi, y) = 1 - e^{r \xi} < 0
\]
\[
\lim_{y \to +\infty} k(\xi, y) = \infty
\]
Wenn nun \(k \) streng monoton steigend ist, dann gibt es genau eine Nullstelle und \(y^-(\xi) \) existiert und ist eindeutig.

\[
\frac{\partial k(\xi, y)}{\partial y} = \sigma \sqrt{\xi} e^{\sigma \sqrt{\xi} y(\xi)} \left(1 - \phi \left(y(\xi) + \frac{\sigma \sqrt{\xi}}{2} \right) \right) > 0
\]

\[\square\]

Lemma

\(y^-(\xi) \xrightarrow{\xi \to 0^+} -\infty \) \hspace{1cm} (3.25)

Beweis

Genau wie im Beweis für \(a_+ \) fixiere \(A < 0 \), betrachte \(k(\xi, A) \) für \(\xi \) nahe 0+ und approximiere die Normalverteilungen durch Taylorentwicklung. Ebenfalls kann der dort geführte Beweis, dass \((1 - e^{r\xi}) \sim r\xi \) für kleine \(\xi \) verändert werden zu \((1 - e^{\sigma A\sqrt{\xi}}) \sim -\sigma A\sqrt{\xi} \) bzw. \((1 + \sigma A\sqrt{\xi}) \sim e^{\sigma A\sqrt{\xi}} \) für kleine \(\xi \).

\[
k(\xi, A) = \phi \left(A - \frac{\sigma \sqrt{\xi}}{2} \right) - e^{A\sigma \sqrt{\xi}} \phi \left(A + \frac{\sigma \sqrt{\xi}}{2} \right) - e^{r\xi} + e^{\sigma \sqrt{\xi} A}
\]

\[
= \phi(A) - \frac{\sigma \sqrt{\xi}}{2} \phi'(A) - (1 + \sigma A\sqrt{\xi})\phi(A) + \frac{\sigma \sqrt{\xi}}{2} \phi'(A)) - 1 + (1 + \sigma A\sqrt{\xi}) + o(\sqrt{\xi})
\]

\[
= -\sigma \sqrt{\xi} \phi'(A) - \sigma A\sqrt{\xi} \phi(A) - \frac{\sigma^2 \xi}{2} \phi'(A) A + \sigma A\sqrt{\xi} + o(\sqrt{\xi})
\]

\[
= -\sigma \sqrt{\xi} \phi'(A) + (1 - \phi(A))\sigma A\sqrt{\xi} - \frac{\sigma^2 \xi}{2} \phi'(A) A + o(\sqrt{\xi})
\]

\[
\xi \xrightarrow{\xi \to 0^+} -\sigma \sqrt{\xi} \phi'(A) + (1 - \phi(A))\sigma A\sqrt{\xi} + o(\sqrt{\xi})
\]

\[
k(\xi, A) = \frac{\sigma \sqrt{\xi}}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} + \frac{\sigma A \sqrt{\xi}}{\sqrt{2\pi}} \int_{-\infty}^{A} e^{-\frac{u^2}{2}} du + o(\sqrt{\xi})
\]

Das Integral kann durch partielle Integration verändert werden

\[
\int_{-\infty}^{A} u^{-2} e^{-\frac{u^2}{2}} du = -u^{-1} e^{-\frac{u^2}{2}} \bigg|_{-\infty}^{A} - \int_{-\infty}^{A} e^{-\frac{u^2}{2}} du = -A^{-1} e^{-\frac{A^2}{2}} - \int_{-\infty}^{A} e^{-\frac{u^2}{2}} du
\]

und vereinfacht \(k(\xi, A) \) zu

\[
k(\xi, A) = -A \frac{\sigma \sqrt{\xi}}{\sqrt{2\pi}} \int_{-\infty}^{A} e^{-\frac{u^2}{2}} du + o(\sqrt{\xi}).
\]

Da \(k(\xi, y) \) in y fällt, resultiert die Behauptung mit

\[
\forall A < 0 \quad \exists \xi_0 > 0 \quad \text{so, dass} \quad \forall \xi < \xi_0 \quad k(\xi, A) > 0.
\]

\[\square\]

Lemma

\[
(y^-(\xi))^n \sqrt{\xi} \xrightarrow{\xi \to 0^+} 0 \quad \forall n \in \mathbb{N}
\]
Fur n gerade gilt
Dies kann mit L'Hospital gezeigt werden.

Entwickle \(N(x) \) mit der Taylorentwicklung um Punkt \(y \) und benutze das Lagrange Restglied.

Eine weitere Abschatzung wird benotigt.

Um die Ausfuehrungen so ubersichtlich wie moglich zu gestalten setze \(y^-(\xi) = y \) und \(N(x) = 1 - \phi(x) \).

\[
\phi \left(y^-(\xi) - \frac{\sigma \sqrt{\xi}}{2}\right) - e^{y^-(\xi)\sigma \sqrt{\xi}} \phi \left(y^-\left(\xi\right) + \frac{\sigma \sqrt{\xi}}{2} \right) = e^{\xi} - e^{\sigma \sqrt{\xi} y^-}(\xi)
\]

\[
\leftrightarrow 1 - N \left(y - \frac{\sigma \sqrt{\xi}}{2} \right) - e^{y\sigma \sqrt{\xi}} (1 - N \left(y + \frac{\sigma \sqrt{\xi}}{2} \right)) = e^{\xi} - e^{\sigma \sqrt{\xi} y}
\]

\[
\leftrightarrow N \left(y - \frac{\sigma \sqrt{\xi}}{2} \right) - e^{y\sigma \sqrt{\xi}} N \left(y + \frac{\sigma \sqrt{\xi}}{2} \right) = 1 - e^{\xi}
\]

(3.27)

Eine weitere Abschatzung wird benotigt.

Entwickle \(N(x) \) mit der Taylorentwicklung um Punkt \(y \) und benutze das Lagrange Restglied.

\[
N(x) = N(y) + N'(y)(x - y) - \frac{1}{2} (x - y)^2 \frac{1}{\sqrt{2\pi}} u e^{-u^2/2} \quad u \in [y - \frac{\sigma \sqrt{\xi}}{2}, y]
\]

\[
N \left(y - \frac{\sigma \sqrt{\xi}}{2} \right) = N(y) + N'(y) \frac{\sigma \sqrt{\xi}}{2} - \frac{1}{2} \left(\frac{\sigma \sqrt{\xi}}{2} \right)^2 \frac{1}{\sqrt{2\pi}} u e^{-u^2/2}
\]

\[
\leq N(y) - N'(y) \frac{\sigma \sqrt{\xi}}{2} + \frac{1}{2} \left(\frac{\sigma \sqrt{\xi}}{2} \right)^2 \frac{1}{\sqrt{2\pi}} \sup_{u \in [y - \frac{\sigma \sqrt{\xi}}{2}, y]} - u e^{-u^2/2}
\]

Stelle dies um zu

\[
\left| N \left(y - \frac{\sigma \sqrt{\xi}}{2} \right) - N(y) + N'(y) \frac{\sigma \sqrt{\xi}}{2} \right| \leq \frac{1}{2} \left(\frac{\sigma \sqrt{\xi}}{2} \right)^2 \frac{1}{\sqrt{2\pi}} \sup_{u \in [y - \frac{\sigma \sqrt{\xi}}{2}, y]} u e^{-u^2/2}.
\]
Aber da \(y \to -\infty \) für \(\xi \to 0 \), erhält man
\[
\left| N\left(y - \frac{\sigma \sqrt{\xi}}{2} \right) - N(y) + N'(y) \frac{\sigma \sqrt{\xi}}{2} \right| \leq \frac{1}{2} \left(\frac{\sigma \sqrt{\xi}}{2} \right)^2 \frac{1}{\sqrt{2\pi}} o(1) = o(\xi) \tag{3.28}
\]

Setzt man genauso \(y + \frac{\sigma \sqrt{\xi}}{2} \) in die Taylorentwicklung ein so entsteht
\[
\left| N\left(y + \frac{\sigma \sqrt{\xi}}{2} \right) - N(y) - N'(y) \frac{\sigma \sqrt{\xi}}{2} \right| = o(\xi). \tag{3.29}
\]

Wenn (3.28) und (3.29) umgestellt werden, um in den ersten Teil der Gleichung von (3.27) eingesetzt zu werden, gelangt man zu
\[
N\left(y - \frac{\sigma \sqrt{\xi}}{2} \right) - e^{y\sigma \sqrt{\xi}} N\left(y + \frac{\sigma \sqrt{\xi}}{2} \right) = N(y) \left(1 - e^{y\sigma \sqrt{\xi}} \right) - N'(y) \frac{\sigma \sqrt{\xi}}{2} \left(1 + e^{y\sigma \sqrt{\xi}} \right) + o(\xi), \tag{3.30}
\]
weil unter Mithilfe des letzten Lemmas
\[
o(\xi) \left(1 - e^{y\sigma \sqrt{\xi}} \right) = o(\xi) o(1) = o(\xi)
\]
gilt.

Wieder mit dem letzten Lemma folgt:
\[
f \in O(\sqrt{\xi} y) \Rightarrow 0 \leq \lim \sup_{\xi \to 0} \left| f \sqrt{\xi} y \right| \leq \lim \sup_{\xi \to 0} \left| \frac{f}{\sqrt{\xi} y} \right| < \infty \Rightarrow f \in O \left(\frac{1}{y^2} \right) \tag{3.31}
\]

Lemma
\[
N(y) = e^{-\frac{x^2}{2\pi}} \left(\frac{1}{y} + \frac{1}{y^3} + O \left(\frac{1}{y^5} \right) \right) \tag{3.32}
\]
\[
1 - e^{y\sqrt{\xi}} = -\sigma \sqrt{\xi} y (1 + O(\sqrt{\xi} y)) \tag{3.33}
\]
\[
1 + e^{y\sqrt{\xi}} = 2 + \sigma \sqrt{\xi} y (1 + O(\sqrt{\xi} y)) \tag{3.34}
\]

Beweis
Der Beweis benutzt die Errorfunktion, siehe [19],
\[
erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt.
\]

Damit lässt sich \(n(x) = N(x) - N(0) \) für \(x \geq 0 \) darstellen als
\[
n(x) = \frac{1}{2} erf(x).
\]

Für große \(x \) kann die Errorfunktion aufgespalten werden
\[
erf(x) = \frac{2}{\sqrt{\pi}} \left(\int_0^\infty e^{-t^2} dt - \int_x^\infty e^{-t^2} dt \right) = 1 - \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} dt
\]
und daraus eine Reihendarstellung mit partieller Integration gewonnen werden.

\[\text{erf}(x) = 1 - 2 \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} \left(\frac{1}{x} - \frac{1}{x^3} + \frac{3}{x^5} - \ldots \right) \].

Wenn dies für \(N(x) \) und für \(-x\) ausgeführt wird, folgt

\[N(y) = \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}} \left(-\frac{1}{y} + \frac{1}{y^3} + O\left(\frac{1}{y^5}\right) \right) \].

Für \(0 \leq s < 1 \) gilt

\[e^s - 1 - s = \sum_{k=0}^{\infty} \frac{s^k}{k!} - 1 - s = \sum_{k=2}^{\infty} \frac{s^k}{k!} \leq s^2 \sum_{k=2}^{\infty} \frac{s^{k-2}}{k!} < s^2(e - 2) < s^2 \]

und durch Umstellen von

\[e^s - 1 - s = O(s^2) \],

mit \(O(s)O(s) = O(s^2) \), folgt die Behauptung.

Die dritte Gleichung geht aus der zweiten durch Multiplikation mit \(-1\) und Addition von 2 hervor.

\[\square \]

Es entsteht

\[1 - e^{y\sigma\sqrt{\xi}} = -\sigma\sqrt{\xi}y \left(1 + O\left(\frac{1}{y^5}\right) \right) \] \hspace{1cm} (3.35)

durch Kombination von (3.31) mit (3.33).

Dann werden die linken und die rechten Seiten der Gleichungen (3.32) und (3.35) miteinander multipliziert.

\[N(y)(1 - e^{y\sigma\sqrt{\xi}}) = -\sigma\sqrt{\xi}y \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}} \left(-\frac{1}{y} + \frac{1}{y^3} + O\left(\frac{1}{y^5}\right) \right) \]
\[= \sigma\sqrt{\xi} \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}} \left(1 - \frac{1}{y^2} + O\left(\frac{1}{y^4}\right) \right) \] \hspace{1cm} (3.36)

Da \(y \in O(y) \) und \(f \in O(y^{-10}) \) folgt \(f \in O(y^{-5}) \).

Setze nun die gewonnenen Darstellungen für \(N(y)(1 - e^{y\sigma\sqrt{\xi}}) \) und \((1 + e^{y\sigma\sqrt{\xi}}) \) in (3.30) ein und fasse zusammen.
N \left(y - \frac{\sigma \sqrt{\xi}}{2} \right) = e^{y \sigma \sqrt{\xi}} N \left(y + \frac{\sigma \sqrt{\xi}}{2} \right) = \sigma \sqrt{\xi} \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}} \left(1 - \frac{1}{y^2} + O\left(\frac{1}{y^4} \right) \right)
- \frac{\sigma \sqrt{\xi} e^{-\frac{y^2}{2}}}{\sqrt{2\pi}} \left(2 + \sigma \sqrt{\xi} y \left[1 + O\left(\frac{1}{y^4} \right) \right] \right)
+ o(\xi)

= - \frac{e^{-\frac{y^2}{2}} \sigma \sqrt{\xi}}{\sqrt{2\pi}} \left[\frac{\sigma \sqrt{\xi}}{y^2} + \sigma \sqrt{\xi} O\left(\frac{1}{y^4} \right) - \frac{\sigma^2 \xi y}{2} - \frac{\sigma^2 \xi}{2} O\left(\frac{1}{y^4} \right) \right]
+ o(\xi)

(3.37)

Für die ausmultiplizierten letzten drei Summanden gilt o(\xi). Sie können also in dem schon vorhandenen o(\xi) Term zusammengefasst werden.

N \left(y - \frac{\sigma \sqrt{\xi}}{2} \right) = e^{y \sigma \sqrt{\xi}} N \left(y + \frac{\sigma \sqrt{\xi}}{2} \right) = - \frac{e^{-\frac{y^2}{2}} \sigma \sqrt{\xi}}{\sqrt{2\pi}} y^2 + o(\xi)

Dank (3.27) weiß man, dass der linke Teil der Gleichung gleich 1 - e^{r \xi} ist und sich damit für kleine \xi wie r \xi verhält.

\frac{e^{-\frac{y^2}{2}} \sigma \sqrt{\xi}}{\sqrt{2\pi}} y^2 + o(\xi) \sim r \xi

\frac{o(\xi)}{\xi} fällt aufgrund der Definition von o(\xi) weg. Durch Logarithmieren erhält man

-\frac{y^2}{2} + \ln \left(\frac{\sigma}{\sqrt{2\pi} ry^2} \right) \sim \ln(\sqrt{\xi}).

Mit

\lim_{\xi \to 0} \frac{\ln \left(\frac{\sigma}{\sqrt{2\pi} ry^2} \right)}{\ln(\sqrt{\xi})} = \lim_{\xi \to 0} \frac{-\ln \left(\frac{\sigma}{\sqrt{2\pi} ry^2} \right)}{\ln(\sqrt{\xi})} = 0

folgt

y^{-}(\xi) \sim \sqrt{\ln(\xi)}

und über die Definition von y^{-}(\xi) und die bekannten Umformungen aus dem Supersolutionfall die Subsolution.

Bemerkung
Das asymptotische Verhalten am Ende der Laufzeit kann auch über die Konvexität nachgewiesen werden. Siehe [12].
Bemerkung
Dank der gewonnen Informationen, ist es möglich eine Skizze der Grenzfunktionen anzugeben.
Kapitel 4

Darstellung des amerikanischen Callpreises für endliche Laufzeiten

4.1 Die Formel nach McKean

4.1.1 Transformationen

Ausgangsformel ist die Black-Scholes Differentialgleichung
\[
\frac{\partial C(S_t, t)}{\partial t} + \sigma^2 S_t^2 \frac{1}{2} \frac{\partial^2 C(S_t, t)}{\partial S^2} - rC(S_t, t) + (r - q)S_t \frac{\partial C(S_t, t)}{\partial S} = 0
\] (4.1)

und die Grenzfunktion \(b(t)\) der Calloption, die hier mit \(C_b(S_t, t)\) benannt ist, um die Zugehörigkeit von Grenzfunktion zu Preisfunktion zu kennzeichnen.

Transformiere die Zeit durch eine Bijektion \(t = T - \tau\).

Dies verdeutlicht die Abhängigkeit des Preises von der Restlaufzeit der Option.

Die geometrische Brownsche Bewegung \(S_t\) vereinfache zu \(e^x\).

Definiere nun \(V_j\), als
\[
C_b(S_t, t) \equiv V_j(x, \tau)
\]
mit \(j(\tau) = b(T - \tau)\) als Grenzfunktion für \(V(x, \tau)\).

Nun berechne die Transformationen auch die partielle Differentialgleichung (4.1). Zur Berechnung setze \(g(\tau) = T - \tau\) und \(h(x) = e^x\), dann folgt für die Differentialterme

\[
\frac{\partial V(x, \tau)}{\partial \tau} = C(e^x, g(\tau)) = \frac{\partial g(\tau)}{\partial \tau} \frac{\partial C(e^x, t)}{\partial t} = \frac{\partial C(S_t, t)}{\partial t}
\]
\[
\frac{\partial V(x, \tau)}{\partial x} = \frac{\partial C(h(x), t)}{\partial x} = \frac{\partial h(x)}{\partial x} \frac{\partial C(e^x, t)}{\partial e^x} = e^x \frac{\partial C(S_t, t)}{\partial S}
\]
\[
\frac{\partial^2 V(x, \tau)}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial h(x)}{\partial x} \frac{\partial C(e^x, t)}{\partial e^x} \right) = \frac{\partial^2 h(x)}{\partial x^2} \frac{\partial C(e^x, t)}{\partial e^x} + \left(\frac{\partial h(x)}{\partial x} \right)^2 \frac{\partial^2 C(e^x, t)}{\partial (e^x)^2}
\]
\[
= e^x \cdot \frac{\partial C(S_t, t)}{\partial S} + (e^x)^2 \cdot \frac{\partial^2 C(S_t, t)}{\partial S^2}
\]

Eingesetzt in die partielle Differentialgleichung (4.1) ergibt sich:

\[
- \frac{\partial V_j(x, \tau)}{\partial \tau} + \frac{1}{2} \sigma^2 \frac{\partial^2 V_j(x, \tau)}{\partial x^2} + \left(r - q - \frac{1}{2} \sigma^2 \right) \frac{\partial V_j(x, \tau)}{\partial x} - rV_j(x, \tau) = 0
\] (4.2)

Die Black-Scholes Differentialgleichung gilt nur bis zum Ausübungszeitpunkt, deswegen muss der Geltungsbereich für die Transformation angepasst werden.

\[
0 \leq e^x \leq b(t) \quad \Leftrightarrow \quad -\infty \leq x \leq \ln(b(t)) = \ln(j(\tau))
\]

Definiere \(v(x)\) als Transformierte der Auszahlungsfunktion \(c(S)\). Die Auszahlungsfunktion wird also noch nicht genau spezifiziert, allerdings muss \(c(S)\) streng monoton sein, damit eine Bijektion zu \(v(x)\) entstehen kann.
Durch die Transformation verändern sich die Randwerte und Übergangsbedingung aus Kapitel 3.

\[
C_b(S_T, T) = c(S_T) \quad \rightarrow \quad V_j(x, 0) = v(x) \quad \text{für} \quad S_T \in [0, \infty[\tag{4.3}
\]

\[
\lim_{S_T \to 0} C_b(S_t, t) = 0 \quad t \geq 0 \quad \rightarrow \quad \lim_{x \to -\infty} V_j(x, \tau) = 0 \quad \tau \geq 0 \tag{4.4}
\]

\[
\frac{\partial C_b(S_t, t)}{\partial S} \bigg|_{b(t)} = \frac{\partial c(S_t)}{\partial S} \bigg|_{b(t)} = c'(b(t)) \quad \rightarrow \quad \frac{\partial V_j(x, \tau)}{\partial x} \bigg|_{\ln(j(\tau))} = \frac{\partial v(x)}{\partial x} \bigg|_{\ln(j(\tau))} = v'(\ln(j(\tau))) \tag{4.6}
\]

Da eine Fouriertransformation in der Variablen \(x\) angewendet werden soll, muss (4.2) für alle \(x \in \mathbb{R}\) definiert sein, deswegen setze (4.2) für \(x > \ln(j(\tau))\) gleich Null durch Kombination mit der Heaviside-Step-Funktion \(H\),

\[
H(x) = \begin{cases}
1 & x > 0 \\
\frac{1}{2} & x = 0 \\
0 & x < 0
\end{cases}
\]

Es entsteht

\[
H(\ln(j(\tau)) - x) \cdot \left(-\frac{\partial V_j(x, \tau)}{\partial \tau} + \frac{1}{2} \sigma^2 \frac{\partial^2 V_j(x, \tau)}{\partial x^2} + k \frac{\partial V_j(x, \tau)}{\partial x} - rV_j(x, \tau) \right) = 0
\]

und durch Umformung erhält man die zu transformierende Funktion

\[
H(\ln(j(\tau)) - x) \cdot \frac{\partial V_j(x, \tau)}{\partial \tau} = H(\ln(j(\tau)) - x) \cdot \left(\frac{1}{2} \sigma^2 \frac{\partial^2 V_j(x, \tau)}{\partial x^2} + k \frac{\partial V_j(x, \tau)}{\partial x} - rV_j(x, \tau) \right) \tag{4.7}
\]

Bemerkung

Für die Unstetigkeitsstelle \(x = \ln(j(\tau))\) der zu transformierende Funktion gilt also

\[
V_j(\ln(j(\tau)), \tau) = \frac{\nu(\ln(j(\tau)))}{2}. \]

Der Grund hierfür ist, dass eine Fouriertransformation einer in einem Punkt unstetigen Funktion gegen den Mittelwert an der Sprungstelle konvergiert. Siehe Dettmann, [17].
4.1.2 Die Fouriertransformation

Definition

Definiere die Fouriertransformation in einer Variablen einer fast-sicher stetigen Funktion \(f(x,y) \), \(f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \), als
\[
F \{ f(\cdot, y) \}(\eta) = \int_{-\infty}^{\infty} e^{i\eta x} f(x,y)dx.
\]

Die Stetigkeit der Differentialtermen der Black-Scholes Differentialgleichung wurde durch die Transformationen nicht beeinträchtigt. Durch die Linearität des Integrals kann jeder Term der in \(x \) Fouriertransformierten Differentialgleichung einzeln betrachtet werden.

\[
F \left\{ H (\ln (j(\tau)) - x) \cdot \frac{\partial V_j(\cdot, \tau)}{\partial \tau} \right\}(\eta) = \frac{1}{2} \sigma^2 F \left\{ H (\ln (j(\tau)) - x) \cdot \frac{\partial^2 V_j(\cdot, \tau)}{\partial x^2} \right\}(\eta)
\]
\[
+ k F \left\{ H (\ln (j(\tau)) - x) \cdot \frac{\partial V_j(\cdot, \tau)}{\partial x} \right\}(\eta)
\]
\[
- r F \left\{ H (\ln (j(\tau)) - x) \cdot V_j(\cdot, \tau) \right\}(\eta)
\]

(4.8)

Da die Fouriertransformation immer in der Variablen \(x \) stattfindet, wird dieses nicht mehr explizit erwähnt.

Definiere \(F^j \) als Fouriertransformation bis zum Wert \(\ln(j(\tau)) \) und \(\tilde{V}_j(\eta, \tau) \) als Kurzversion von \(F^j \{ V_j(x, \tau) \}(\eta) \). Die gewöhnliche Differentialgleichung, die \(\tilde{V} \) erfüllt, wird in der Variablen \(\tau \) sein, da sich alle Differentiationen nach \(x \) ausintegrieren lassen.

\[
F \{ H (\ln (j(\tau)) - x) \cdot V_j(x, \tau) \}(\eta) = \int_{-\infty}^{\infty} e^{i\eta x} H (\ln (j(\tau)) - x) V_j(x, \tau)dx
\]
\[
= \int_{-\infty}^{\ln(j(\tau))} e^{i\eta x} V_j(x, \tau)dx = F^j \{ V_j(x, \tau) \}(\eta) \equiv \tilde{V}_j(\eta, \tau)
\]

Unter Mithilfe der transformierten Randwerte und Übergangsbedingung können die einzelnen Fouriertransformationen vereinfacht werden.

\[
F^j \left\{ \frac{\partial V_j(x, \tau)}{\partial x} \right\}(\eta) = \int_{-\infty}^{\ln(j(\tau))} e^{i\eta x} \frac{\partial V_j(x, \tau)}{\partial x}dx
\]
\[
\text{part.I.} = e^{i\eta \ln(j(\tau))} \cdot V_j(x, \tau) \bigg|_{-\infty}^{\ln(j(\tau))} - i\eta \int_{-\infty}^{\ln(j(\tau))} e^{i\eta x} V_j(x, \tau)dx
\]
\[
\text{(4.5)} = e^{i\eta \ln(j(\tau))} v(ln(j(\tau))) - i\eta \tilde{V}_j(\eta, \tau)
\]

\[
F^j \left\{ \frac{\partial^2 V_j(x, \tau)}{\partial x^2} \right\}(\eta) = \int_{-\infty}^{\ln(j(\tau))} e^{i\eta x} \frac{\partial^2 V_j(x, \tau)}{\partial x^2}dx
\]
\[
\text{part.I.} = e^{i\eta \ln(j(\tau))} \cdot \frac{\partial V_j(x, \tau)}{\partial x} \bigg|_{-\infty}^{\ln(j(\tau))} - i\eta \int_{-\infty}^{\ln(j(\tau))} e^{i\eta x} \frac{\partial V_j(x, \tau)}{\partial x}dx
\]
\[
\text{(4.9)} = e^{i\eta \ln(j(\tau))} \cdot \frac{\partial V_j(x, \tau)}{\partial x} \bigg|_{\ln(j(\tau))} - i\eta \left[e^{i\eta \ln(j(\tau))} v(ln(j(\tau))) - i\eta \tilde{V}_j(\eta, \tau) \right]
\]
\[
\text{(4.0)} = e^{i\eta \ln(j(\tau))} \cdot v'(ln(j(\tau))) - i\eta \left[e^{i\eta \ln(j(\tau))} v(ln(j(\tau))) - i\eta \tilde{V}_j(\eta, \tau) \right]
\]
\[
\text{= } e^{i\eta \ln(j(\tau))} \left[v'(ln(j(\tau))) - i\eta v(ln(j(\tau))) \right] - \eta^2 \tilde{V}_j(\eta, \tau)
\]

(4.10)
Um Differentiation und Integration im folgenden Fall zu vertauschen, wird die Leibnizregel für Parameterintegrale benötigt.

\[
\frac{\partial}{\partial t} \int_{\chi(t)}^{\varphi(t)} f(x, t) \, dx = \int_{\chi(t)}^{\varphi(t)} \frac{\partial f(x, t)}{\partial t} \, dx + f(\varphi(t), t) \frac{\partial \varphi}{\partial t} - f(\chi(t), t) \frac{\partial \chi}{\partial t}
\]

(4.11)

Für stetig differenzierbare Funktionen \(f(x, \cdot), \chi(t)\) und \(\varphi(t)\). Der Beweis ist in [10] nachlesbar.

Also

\[
F^j \left\{ \frac{\partial V_j(x, \tau)}{\partial \tau} \right\} (\eta) = \int_{-\infty}^{\ln(j(\tau))} e^{i\eta x} \frac{\partial V_j(x, \tau)}{\partial \tau} \, dx
\]

(4.11)

\[
\frac{\partial}{\partial \tau} \left[\int_{-\infty}^{\ln(j(\tau))} e^{i\eta x} V_j(x, \tau) \, dx \right] - \frac{\partial j(\tau)}{\partial \tau} \frac{1}{j(\tau)} e^{i\eta \ln(j(\tau))} V_j(j(\tau), \tau)
\]

\[
\frac{\partial}{\partial \tau} \left[F^j \{ V_j(x, \tau) \} - \frac{\partial j(\tau)}{\partial \tau} \frac{1}{j(\tau)} e^{i\eta \ln(j(\tau))} V_j(j(\tau), \tau) \right]
\]

(4.5)

Aus der Ausgangsgleichung (4.8) entsteht mit der Definition von \(F^j\)

\[
F^j \left\{ \frac{\partial V_j(x, \tau)}{\partial \tau} \right\} (\eta) = \frac{1}{2} \sigma^2 F^j \left\{ \frac{\partial^2 V_j(x, \tau)}{\partial x^2} \right\} (\eta) + k F^j \left\{ \frac{\partial V_j(x, \tau)}{\partial x} \right\} (\eta) - r F^j \{ V_j(x, \tau) \} (\eta)
\]

und daraus wird mit den gewonnen Gleichungen:

\[
\frac{\partial \tilde{V}_j(\eta, \tau)}{\partial \tau} - \frac{\partial j(\tau)}{\partial \tau} \frac{1}{j(\tau)} e^{i\eta \ln(j(\tau))} V(\ln(j(\tau))) = \frac{1}{2} \sigma^2 e^{i\eta \ln(j(\tau))} \left[v'(\ln(j(\tau))) - i\eta v(\ln(j(\tau))) \right] - \eta^2 \tilde{V}_j(\eta, \tau)
\]

\[
\quad + k \left[e^{i\eta \ln(j(\tau))} V(\ln(j(\tau))) - i\eta \tilde{V}_j(\eta, \tau) \right] - r \tilde{V}_j(\eta, \tau)
\]

Oder

\[
\frac{\partial \tilde{V}_j(\eta, \tau)}{\partial \tau} + \left(\frac{1}{2} \sigma^2 \eta^2 + i\eta k + r \right) \tilde{V}_j(\eta, \tau)
\]

= \[2 \sigma^2 \left[v'(\ln(j(\tau))) - i\eta v(\ln(j(\tau))) \right] + v(\ln(j(\tau))) \left(k + \frac{\partial j(\tau)}{\partial \tau} \frac{1}{j(\tau)} \right).
\]

(4.12)

Das Ziel, durch Transformationen des Preisprozesses eine gewöhnliche Differentialgleichung zu erhalten, wurde erreicht.

Bemerkung

4.1.3 Lösen der gewöhnlichen Differentialgleichung

Die inhomogene, lineare Differentialgleichung erster Ordnung kann mit dem System *Variation der Konstanten* gelöst werden. Die Gleichung sieht folgendermaßen aus:

\[
\tilde{V}_j'(\eta, \tau) = -\varphi(\eta)\tilde{V}_j(\eta, \tau) + \phi(\eta, \tau)
\]

mit

\[
\frac{\partial \tilde{V}_j(\eta, \tau)}{\partial \tau} = \tilde{V}_j'(\eta, \tau)
\]

und

\[
\varphi(\eta) = \left(\frac{1}{2}\sigma^2\eta^2 + i\eta k + r\right)
\]

und

\[
\phi(\eta, \tau) = e^{i\eta \ln(j(\tau))}\left[\frac{1}{2}\sigma^2 \left(v'(\ln(j(\tau))) - i\eta v(\ln(j(\tau)))\right) + v(\ln(j(\tau))) \left(k + \frac{\partial j(\tau)}{\partial \tau} \frac{1}{j(\tau)}\right)\right].
\]

Fange mit

\[
\tilde{V}_j'(\eta, \tau) = -\varphi(\eta)\tilde{V}_j(\eta, \tau)
\]

an.

\[
y(\tau) = e^{-\int_0^\tau \varphi(\eta) ds} = e^{-\varphi(\eta)\tau}
\]

lößt die Differentialgleichung. Nun muss noch der φ Term berücksichtigt werden. Setze dafür

\[
\tilde{y}(\tau) = c(\tau) e^{-\varphi(\eta)\tau}.
\]

Die Konstante c variiert.

\[
\tilde{y}'(\tau) = c'(\tau)e^{-\varphi(\eta)\tau} - c(\tau)\varphi(\eta)e^{-\varphi(\eta)\tau} = -\varphi(\eta)\tilde{y}(\tau) + c'(\tau)e^{-\varphi(\eta)\tau}
\]

Um die Differentialgleichung zu lösen, muss also

\[
c'(\tau) = \phi(\eta, \tau)e^{\varphi(\eta)\tau}
\]

gelten. Integriere:

\[
c(\tau) = \int_0^\tau \phi(\eta, s)e^{\varphi(\eta)s} ds + \tilde{V}_j(\eta, 0)
\]

Die in τ konstante Funktion \(\tilde{V}_j(\eta, 0)\) wird zur Erfüllung der gegebenen Anfangsbedingung gebraucht.
Damit ist die Funktion gefunden, die die Differentialgleichung erfüllt.

\[\tilde{V}_j(\eta, \tau) = e^{-\varphi(\eta) \tau} \tilde{V}_j(\eta, 0) + e^{-\varphi(\eta) \tau} \int_0^\tau \phi(\eta, s) e^{\varphi(\eta)s} ds \]

\[= e^{-\varphi(\eta) \tau} \tilde{V}_j(\eta, 0) + \int_0^\tau \phi(\eta, s) e^{-\varphi(\eta)(\tau - s)} ds \tag{4.13} \]

mit

\[\varphi(\eta) = \left(\frac{1}{2} \sigma^2 \eta^2 + i \eta k + r \right) \]

und

\[\phi(\eta, \tau) = e^{i \eta \ln(j(\tau))} \left[\frac{1}{2} \sigma^2 v'(\ln(j(\tau))) + v(\ln(j(\tau))) \right] \left(r - \frac{1}{2} \sigma^2 - i \eta \frac{1}{2} \sigma^2 + \frac{\partial j(\tau)}{\partial \tau} \frac{1}{j(\tau)} \right) \]

Folglich ist das nächste Ziel die Rücktransformierung.
4.1.4 Die Rücktransformation

In diesem Abschnitt wird $V_j(x, \tau)$ aus $\tilde{V}(\eta, \tau)$ zurück gewonnen.

Definition
Für eine fast-sicher stetige Funktion $f(x, \tau), f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, definiere:

$$F^{-1}\{f(\cdot, \tau)\}(x) := \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\eta x} f(\eta, \tau) d\eta$$

Dies ist das Inverse der Fouriertransformation.

Satz
Setze $f(x, \tau) = H(\ln(j(\tau)) - x)g(x, \tau)$, also $f : \mathbb{R} \times [0, T] \to \mathbb{R}$, dann gilt

$$g(x, \tau) = F^{-1}\{F\{f(\cdot, \tau)\}(\cdot)\}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\ln(j(\tau))} g(x, \tau) e^{i\eta x} \, dx \right] e^{-i\eta x} \, d\eta .$$

Beweis
Der Beweis zeigt, dass das Standard-Fourier-Transformationstheorem, siehe [11],

$$f(x, \tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\ln(j(\tau))} f(x, \tau) e^{i\eta x} \, dx \right] e^{-i\eta x} \, d\eta$$

die unvollständige Variante

$$g(x, \tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\ln(j(\tau))} g(x, \tau) e^{i\eta x} \, dx \right] e^{-i\eta x} \, d\eta$$

mit einschließt.

$f(x, \tau) = H(\ln(j(\tau)) - x)g(x, \tau)$ eingesetzt gibt

$$H(\ln(j(\tau)) - x)g(x, \tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\ln(j(\tau))} \left(H(\ln(j(\tau)) - x)g(x, \tau) e^{i\eta x} \right) \, dx \right] e^{-i\eta x} \, d\eta$$

mit der Heaviside-Step-Function folgt

$$g(x, \tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\ln(j(\tau))} g(x, \tau) e^{i\eta x} \, dx \right] e^{-i\eta x} \, d\eta \quad -\infty < x < \ln(j(\tau))$$

$$\frac{g(x, \tau)}{2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\ln(j(\tau))} g(x, \tau) e^{i\eta x} \, dx \right] e^{-i\eta x} \, d\eta \quad x = \ln(j(\tau))$$

und damit die Behauptung.
Einige Hilfsmittel für die Rücktransformation werden benötigt.

Lemma
Für \(\rho_1 > 0 \) gilt:

\[
\int_{-\infty}^{\infty} e^{-\rho_1 \eta^2 - \rho_2 \eta} d\eta = \sqrt{\frac{\pi}{\rho_1}} e^{\frac{\rho_2^2}{4\rho_1}} \quad (4.14)
\]

\[
\int_{-\infty}^{\infty} \eta e^{-\rho_1 \eta^2 - \rho_2 \eta} d\eta = -\sqrt{\frac{\pi}{\rho_1}} \frac{\rho_2}{2\rho_1} e^{\frac{\rho_2^2}{4\rho_1}} \quad (4.15)
\]

Beweis

\[
\int_{-\infty}^{\infty} \eta e^{-\rho_1 \eta^2 - \rho_2 \eta} d\eta = \left\{ \begin{array}{ll}
\int_{-\infty}^{\infty} \eta e^{-(\rho_1 \eta^2 + \rho_2 \eta + \frac{\rho_2^2}{4\rho_1})} d\eta & \rho_1 \geq 0 \\
\int_{-\infty}^{\infty} \eta e^{-\left(\sqrt{\rho_1} \eta - \frac{\rho_2}{\sqrt{\rho_1}}\right)^2} e^{\frac{\rho_2^2}{4\rho_1}} d\eta & \rho_1 < 0
\end{array} \right.
\]

\[
= e^{\frac{\rho_2^2}{4\rho_1}} \int_{-\infty}^{\infty} \eta \left(\frac{\sqrt{\rho_1} \eta - \frac{\rho_2}{\sqrt{\rho_1}}}{\sqrt{2}}\right)^2 d\eta
\]

\[
= e^{\frac{\rho_2^2}{4\rho_1}} \sqrt{\pi} \frac{1}{\sqrt{2} \sqrt{2\pi}} \int_{-\infty}^{\infty} \eta \left(\frac{y - \frac{\rho_2}{\sqrt{\rho_1}}}{\sqrt{2}}\right)^2 e^{\frac{\rho_2^2}{4\rho_1}} d\eta
\]

Substituiere \(\sqrt{\rho_1} \eta = y \Rightarrow \sqrt{\rho_1} d\eta = dy \). Die Grenzen bleiben bestehen.

\[
\int_{-\infty}^{\infty} \eta e^{-\rho_1 \eta^2 - \rho_2 \eta} d\eta = e^{\frac{\rho_2^2}{4\rho_1}} \sqrt{\pi} \frac{1}{\sqrt{2} \sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{y}{\sqrt{\rho_1}} e^{\frac{\rho_2^2}{4\rho_1}} \frac{1}{\sqrt{\rho_1}} dy
\]

In der Situation (4.14) würde der Term \(\frac{y}{\sqrt{\rho_1}} \) wegfallen.

Der Integrationsterm ist der Erwartungswert einer \(N\left(\frac{-\rho_2^2}{4\rho_1}, \frac{1}{2}\right) \) verteilten Zufallsvariable \(Y \).

Im Falle (4.14) steht im Integral eine Normalverteilungsdichte, womit (4.14) folgt.

\[
\int_{-\infty}^{\infty} \eta e^{-\rho_1 \eta^2 - \rho_2 \eta} d\eta = e^{\frac{\rho_2^2}{4\rho_1}} \sqrt{\pi} \frac{1}{\sqrt{2} \sqrt{2\pi}} \int_{-\infty}^{\infty} y e^{\frac{\rho_2^2}{4\rho_1}} \frac{1}{\sqrt{\rho_1}} dy
\]

\[
= e^{\frac{\rho_2^2}{4\rho_1}} \frac{\sqrt{\pi}}{\sqrt{2} \sqrt{2\pi}} E[Y] = e^{\frac{\rho_2^2}{4\rho_1}} \frac{\sqrt{\pi} - \rho_2^2}{4\rho_1}
\]

\[\square\]

Definition
Der Faltungsoperator zweier fast-sicher stetiger Funktionen \(f, g : \mathbb{R} \to \mathbb{R} \) ist definiert als

\[f * g \ (x) = \int_{\mathbb{R}} f(x - u) g(u) du. \]
Faltungstheorem

f und g seien fast-sicher stetige Funktionen mit Faltung $f \ast g$ und Fouriertransformierten $F \{f\}$, $F \{g\}$, dann gilt

\begin{align*}
(1) F \{f \ast g\} &= F \{f\} \cdot F \{g\} \\
(2) F \{f \cdot g\} &= F \{f\} \ast F \{g\} \\
(3) f \ast g &= F^{-1} \{F \{f\} \cdot F \{g\}\}
\end{align*}

Auf den Beweis wird an dieser Stelle verzichtet, er kann aber in [18] nachgelesen werden.

Teil 3 des Theorems soll angewendet werden, da $F^{-1} \{e^{-\varphi(\eta)\tau} \tilde{V}_j(\eta, 0)\} (x)$ benötigt wird.

$F^{-1} \{e^{-\varphi(\eta)\tau}\} (x)$ und $F^{-1} \{\tilde{V}_j(\eta, 0)\} (x)$ werden berechnet und danach gefaltet.

\begin{align*}
F^{-1} \{e^{-\varphi(\eta)\tau}\} (x) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\left(\frac{1}{2}\sigma^2\eta^2 + i\eta(x+k)\right)\tau} e^{-i\eta x} d\eta \\
&= \frac{1}{2\pi} e^{-\tau \sigma^2} \int_{-\infty}^{\infty} e^{-\left(\frac{1}{2}\sigma^2\eta^2 + i\eta(x+k)\right)\tau} d\eta \\
&= \frac{1}{\sigma\sqrt{2\pi}\tau} e^{-\frac{(x+k)^2}{2\sigma^2\tau}} \frac{1}{2}\sigma^2 \tau > 0 \text{ da } \tau > 0
\end{align*}

\begin{align*}
F^{-1} \{\tilde{V}_j(\eta, 0)\} (x) &= F^{-1} \{F^j \{V_j(x, 0)\}\} (x) = F^{-1} \{F \{H(\ln(j(0^+)) - x)V_j(x, 0)\}\} (x) \\
&= H(\ln(j(0^+)) - x)V_j(x, 0) = H(\ln(j(0^+)) - x)v(x)
\end{align*}

Bemerkung

0^+ wird verwendet, da, wie in Kapitel 3 gezeigt, die Funktion $b(t)$ sich asymptotisch zur Senkrechten durch T verhält.

Teile nun für die Funktion $V_j(x, \tau)$ in zwei Teile auf.

\begin{align*}
V_j(x, \tau) &= V_j^1(x, \tau) + V_j^2(x, \tau) \\
&= F^{-1} \left\{ e^{-\varphi(\eta)\tau} \tilde{V}_j(\eta, 0) \right\} (x) + F^{-1} \left\{ \int_0^\tau \phi(\eta, s)e^{-\varphi(\eta)(\tau-s)} ds \right\} (x)
\end{align*}

Dank des Faltungstheorems und den oben bestimmten Gleichungen ergibt sich V_j^1.

\begin{align*}
V_j^1(x, \tau) &= F^{-1} \left\{ e^{-\varphi(\eta)\tau} \tilde{V}_j(\eta, 0) \right\} (x) \\
&= \int_{-\infty}^{\infty} F^{-1} \left\{ e^{-\varphi(\eta)\tau} \right\} (x - u) \cdot F^{-1} \left\{ \tilde{V}_j(\eta, 0) \right\} (u) du \\
&= \int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}\tau} e^{-\frac{(x-u+k)^2}{2\sigma^2\tau}} \cdot H(\ln(j(0^+)) - u)v(u) du \\
&= \frac{\ln(j(0^+))}{\sigma\sqrt{2\pi}\tau} e^{-\frac{(x-u+k)^2}{2\sigma^2}\tau} v(u) du
\end{align*}
Es bleibt V_j^2 zu bestimmen.

\[
V_j^2(x, \tau) = F^{-1}\left\{ \int_0^{\tau} \phi(\eta, s)e^{-\varphi(\eta)(\tau-s)}ds \right\}(x)
= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iny} \int_0^{\tau} \phi(\eta, s)e^{-\varphi(\eta)(\tau-s)}ds \ d\eta
\]

Schreibe nun

\[
\phi(\eta, \tau) = e^{in\ln(j(\tau))} \left[\frac{1}{2} \sigma^2 v'(\ln(j(\tau))) + v(\ln(j(\tau))) \left(k - i\eta\frac{1}{\tau} \frac{\partial j(\tau)}{\partial \tau} \frac{1}{j(\tau)} \right) \right]
\]

als

\[
\phi(\eta, \tau) = e^{in\ln(j(\tau))} [\phi_1(\tau) - \eta\phi_2(\tau)]
\]

mit

\[
\phi_1(\tau) = \frac{1}{2} \sigma^2 v'(\ln(j(\tau))) + \left(\frac{\partial j(\tau)}{\partial \tau} \frac{1}{j(\tau)} + k \right) v(\ln(j(\tau)))
\]

und

\[
\phi_2(\tau) = \frac{\sigma^2 i}{2} v(\ln(j(\tau))).
\]

Nun sind $\phi_1 \phi_2$ unabhängig von η und die Integrationsreihenfolge kann vertauscht werden.

\[
V_j^2(x, \tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iny} \int_0^{\tau} \phi(\eta, s)e^{-\varphi(\eta)(\tau-s)}ds \ d\eta
= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iny} \int_0^{\tau} e^{in\ln(j(s))} [\phi_1(s) - \eta\phi_2(s)] e^{-\varphi(\eta)(\tau-s)}ds \ d\eta
= \frac{1}{2\pi} \int_0^{\tau} \int_{-\infty}^{\infty} e^{-iny} e^{in\ln(j(s))} e^{-\varphi(\eta)(\tau-s)} [\phi_1(s) - \eta\phi_2(s)] d\eta \ ds
= \frac{1}{2\pi} \int_0^{\tau} e^{-\tau(\tau-s)} \int_{-\infty}^{\infty} e^{-2\eta^2 s} e^{-\eta\ln(j(s))} [\phi_1(s) - \eta\phi_2(s)] d\eta \ ds
\]

Mit $\rho_1 > 0$, da $0 < s < \tau$, ist man in der Situation des Lemmas.
Mit

\[h(x, s) \equiv \frac{[x - \ln(j(s)) + k(\tau - s)]^2}{2\sigma^2(\tau - s)} \]

kann \(V_j \) explizit aufgeschrieben werden.

\[
V_j(x, \tau) = \int_{-\infty}^{\ln(j(0^+))} \frac{1}{\sigma\sqrt{2\pi\tau}} e^{-\frac{(u-\bar{u})^2}{2\sigma^2}} \nu(u) du \\
+ \int_{0}^{\tau} \frac{e^{-r(\tau-s)-h(x,s)}}{\sigma\sqrt{2\pi(\tau-s)}} \left[\frac{\sigma^2}{2} \nu'(\ln(j(s))) + \left(\frac{\partial j(s)}{\partial s} \frac{1}{j(s)} + \frac{1}{2} \left[k - \frac{x - \ln(j(s))}{\tau - s} \right] \right) \nu(\ln(j(s))) \right] ds
\]

für \(0 < \tau \leq T \) und \(-\infty < x < \ln(j(\tau)) \)

Bemerkung

Es war möglich eine Integraldarstellung zu erlangen, ohne explizite Angabe der Auszahlungsfunktion. Die einzige Annahme an die an die Auszahlungsfunktion ist die Monotonie. Die Auszahlungsfunktion der Calloption wird im nächsten Schritt eingesetzt.
4.1.5 Die Formel nach McKean für den Call

Die Auszahlungsfunktion einer Calloption ist streng monoton steigend für \(S \geq K \), deswegen gilt:

\[
c(S_t) = (S_t - K)_+ \implies v(x) = (e^x - K)_+ \implies v(x) = 0 \iff -\infty < x \leq \ln(K)
\]

Setze dies in \(V_j(x, \tau) \) beziehungsweise in \(V_j^1(x, \tau) \) und \(V_j^2(x, \tau) \) ein.

\[
V_j^1(x, \tau) = \int_{-\infty}^{\ln(j(0^+))} \frac{1}{\sigma \sqrt{2\pi \tau}} e^{-\frac{((x-u)+k\tau)^2}{2\sigma^2}} v(u) du
\]

\[
v(x) \equiv \int_{\ln(K)}^{\ln(j(0^+))} \frac{1}{\sigma \sqrt{2\pi \tau}} e^{-\frac{(x-u)^2}{2\sigma^2}} du - K \int_{\ln(K)}^{\ln(j(0^+))} \frac{1}{\sigma \sqrt{2\pi \tau}} e^{-\frac{(x-u+k\tau)^2}{2\sigma^2}} du
\]

\[
= I_1(x, \tau) - K I_2(x, \tau)
\]

Betrachte \(I_1 \) als Erstes.

\[
I_1(x, \tau) = \int_{\ln(K)}^{\ln(j(0^+))} \frac{1}{\sigma \sqrt{2\pi \tau}} e^{-\frac{u(2\sigma^2 \tau - 2x^2 \tau^2 + (x-u)^2)}{2\sigma^2}} \left(e^{-\frac{2u^2 - 2u(x+\sigma^2 \tau \kappa)}{2\sigma^2}} \int_{\ln(K)}^{\ln(j(0^+))} e^{-\frac{(x-u+k\tau)^2}{2\sigma^2}} du \right) du
\]

\[
= e^x \cdot \int_{\ln(K)}^{\ln(j(0^+))} \frac{1}{\sigma \sqrt{2\pi \tau}} e^{-\frac{(u-x+k\tau)^2}{2\sigma^2}} du
\]

Verteilungsfkt einer \((x+k\tau, \sigma^2 \tau) \)-Zufallsvariable

Seien \(X \) und \(Z \) Zufallsvariablen, mit

\[
X \sim N(x+k\tau, \sigma^2 \tau) \quad \text{und} \quad Z \sim N(0, 1).
\]

\[
\Rightarrow X \overset{d}{=} \frac{Z}{\sigma \sqrt{\tau}} + (x+k\tau)
\]

Das Integral kann, dank der Symmetrie um Null einer \(N(0, \sigma^2) \) verteilten Zufallsvariable, vereinfacht werden:

\[
\frac{1}{\sigma \sqrt{2\pi \tau}} \int_{\ln(K)}^{\ln(j(0^+))} e^{-\frac{(u-x+k\tau)^2}{2\sigma^2}} du
\]

\[
= P\left(Z \leq \frac{-\ln(K) + E[X]}{\sigma \sqrt{\tau}} \right) - P\left(Z \leq \frac{-\ln(j(0^+)) + E[X]}{\sigma \sqrt{\tau}} \right)
\]

Sym.

\[
P\left(X - E[X] \leq -\ln(K) + E[X] \right) - P\left(X - E[X] \leq -\ln(j(0^+)) + E[X] \right)
\]

\[
= P\left(Z \leq \frac{-\ln(K) + E[X]}{\sigma \sqrt{\tau}} \right) - P\left(Z \leq \frac{-\ln(j(0^+)) + E[X]}{\sigma \sqrt{\tau}} \right)
\]

\[
= N\left(\frac{-\ln(K) + E[X]}{\sigma \sqrt{\tau}} \right) - N\left(\frac{-\ln(j(0^+)) + E[X]}{\sigma \sqrt{\tau}} \right)
\]

Daraus folgt \(I_1 \).

\[
I_1(x, \tau) = e^x \left[N\left(\frac{-\ln(K) + (x+k\tau)}{\sigma \sqrt{\tau}} \right) - N\left(\frac{-\ln(j(0^+)) + (x+k\tau)}{\sigma \sqrt{\tau}} \right) \right]
\]
Es fehlt I_2. Durch die Gleichung $(x - u + k\tau)^2 = (u - (x + k\tau))^2$ und der linearen Transformation einer normalverteilten zu einer standardnormalverteilten Zufallsvariable erhält man

$I_2(x, \tau) = \int_{\ln(K)}^{\ln(j(0^+))} \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-u+k\tau)^2}{2\sigma^2}} du$

$= e^{-r\tau} \cdot \frac{1}{\sigma\sqrt{2\pi}} \int_{\ln(K)}^{\ln(j(0^+))} e^{\frac{-(u-(x+k\tau))^2}{2\sigma^2}} du$

Verteilungsfkt einer $N(x+k\tau, \sigma\sqrt{\tau})$ Zufallsvariable X.

$= e^{-r\tau} \left[P \left(X \leq \ln(j(0^+)) \right) - P \left(X \leq \ln(K) \right) \right]$

$= e^{-r\tau} \left[P \left(X - E[X] \leq \ln(j(0^+)) - E[X] \right) - P \left(X - E[X] \leq \ln(K) - E[X] \right) \right]$

$\stackrel{\text{Sym.}}{=} e^{-r\tau} \left[P \left(X - E[X] \leq -\ln(K) + E[X] \right) - P \left(X - E[X] \leq -\ln(j(0^+)) + E[X] \right) \right]$

$\stackrel{1.\text{Transf.}}{=} e^{-r\tau} \left[P \left(Z \leq -\frac{\ln(K) + E[X]}{\sigma\sqrt{\tau}} \right) - P \left(Z \leq -\frac{\ln(j(0^+)) + E[X]}{\sigma\sqrt{\tau}} \right) \right]$

Zusammengefasst hat man nun eine Darstellung für V_j^3.

$V_j^3(x, \tau) = e^x \left[N \left(\frac{-\ln(K) + (x + k\tau)}{\sigma\sqrt{\tau}} \right) - N \left(\frac{-\ln(j(0)) + (x + k\tau)}{\sigma\sqrt{\tau}} \right) \right]$

$- Ke^{-r\tau} \left[N \left(\frac{-\ln(K) + (x + k\tau)}{\sigma\sqrt{\tau}} \right) - N \left(\frac{-\ln(j(0)) + (x + k\tau)}{\sigma\sqrt{\tau}} \right) \right]$

$= e^x N \left(\frac{-\ln(K) + (x + k\tau)}{\sigma\sqrt{\tau}} \right) - Ke^{-r\tau} N \left(\frac{-\ln(K) + (x + k\tau)}{\sigma\sqrt{\tau}} \right)$

$- e^x N \left(\frac{-\ln(j(0)) + (x + k\tau)}{\sigma\sqrt{\tau}} \right) - Ke^{-r\tau} N \left(\frac{-\ln(j(0)) + (x + k\tau)}{\sigma\sqrt{\tau}} \right)$

Weiter gehts mit $V_j^2(x, \tau)$.

$V_j^2(x, \tau) = \int_0^\tau \frac{e^{-r(\tau-s)}}{\sigma\sqrt{2\pi(\tau-s)}} e^{-h(x,s)} Q(x, s) ds$

mit

$h(x, s) = \frac{[x - \ln(j(s)) + k(\tau - s)]^2}{2\sigma^2(\tau - s)}$

und

$Q(x, s) = \frac{\sigma^2}{2} v'(\ln(j(s))) + \left(\frac{\partial j(s)}{\partial s} \frac{1}{j(s)} + \frac{1}{2} \left[k - \frac{x - \ln(j(s))}{\tau - s} \right] v(\ln(j(s))) \right)$

Die Auszahlungsfunktion ist nur Bestandteil von $Q(x, s)$.
Für die Auszahlungsfunktion mit (4.6) gilt:

\[v(x) = (e^x - K)_+ \quad \Rightarrow \quad v(\ln(j(s))) = c(j(s)) = (j(s) - K)_+ \]

\[v'(\ln(j(s))) = \frac{\partial v(x)}{\partial x} \bigg|_{\ln(j(s))} = \frac{\partial c(e^x)}{\partial x} \bigg|_{\ln(j(s))} = \frac{\partial (e^x - K)}{\partial x} \bigg|_{\ln(j(s))} = j(s) \]

Eingesetzt in \(Q(x, s) \) entsteht:

\[Q(x, s) = \frac{\sigma^2}{2} j(s) + \left(\frac{\partial j(s)}{\partial s} \frac{1}{j(s)} + \frac{1}{2} \left[k - \frac{x - \ln(j(s))}{\tau - s} \right] \right) (j(s) - K) \]

Damit folgt die gesuchte Funktion \(V_j \)

\[V_j(x, \tau) = e^x N \left(\frac{-\ln(K) + (x + k\tau)}{\sigma \sqrt{\tau}} \right) - Ke^{-\tau \sigma} N \left(\frac{-\ln(K) + (x + k\tau)}{\sigma \sqrt{\tau}} \right) \]

\[- \left[e^x N \left(\frac{-\ln(j(0)) + (x + k\tau)}{\sigma \sqrt{\tau}} \right) - Ke^{-\tau \sigma} N \left(\frac{-\ln(j(0^+)) + (x + k\tau)}{\sigma \sqrt{\tau}} \right) \right] \]

\[+ \int_0^\tau \frac{e^{-r(\tau-s)-h(x,s)}}{\sigma \sqrt{2\pi(\tau - s)}} Q(x, s) ds \]

und die Fouriertransformation ist aufgehoben. Nun muss noch die Transformationen in \(S \) rückgängig gemacht werden, um ein Ergebnis zu erzielen.

Ersetze nun wieder \(S_t = e^x \leftrightarrow ln(S_{T-\tau}) = x \).

\[C_j(S_{T-\tau}, \tau) = S_{T-\tau} \cdot N \left(\frac{\ln(S_{T-\tau}/K) + k\tau}{\sigma \sqrt{\tau}} \right) - Ke^{-\tau \sigma} N \left(\frac{\ln(S_{T-\tau}/K) + k\tau}{\sigma \sqrt{\tau}} \right) \]

\[- \left[S_{T-\tau} \cdot N \left(\frac{\ln(S_{T-\tau}/j(0^+)) + k\tau}{\sigma \sqrt{\tau}} \right) - Ke^{-\tau \sigma} N \left(\frac{\ln(S_{T-\tau}/j(0^+)) + k\tau}{\sigma \sqrt{\tau}} \right) \right] \]

\[+ \int_0^\tau \frac{e^{-r(\tau-s)-h(S_{T-\tau}, s)}}{\sigma \sqrt{2\pi(\tau - s)}} Q(S_{T-\tau}, s) ds \]

\[= C_E(S_{T-\tau}, \tau) + \text{Early Exercise Premium} \]

mit

\[h(S_{T-\tau}, s) = \frac{(\ln(S_{T-\tau}/j(s)) + k(\tau - s))^2}{2\sigma^2(\tau - s)} \]

und

\[k = (r - q - \frac{\sigma^2}{2}) \quad \tau = T - t \]

und

\[Q(S_{T-\tau}, s) = \frac{\sigma^2}{2} j(s) + \left(\frac{\partial j(s)}{\partial s} \frac{1}{j(s)} + \frac{1}{2} \left[k - \frac{\ln(S_{T-\tau}) - \ln(j(s))}{\tau - s} \right] \right) (j(s) - K) \]

Diese Funktion wird McKean Darstellung der amerikanischen Calloption genannt.
Bemerkung
Die Preisfunktion zerfällt also in den Black-Scholes Preis einer europäischen Calloption bezüglich τ und S und ein Early Exercise Premium. Leider kann in dieser Darstellung keine ersichtliche ökonomische Interpretation des Premiums vorgenommen werden.
4.2 Die Darstellung nach Kim

Die Preisfunktion von Kim (1990) baut auf der Preisfunktion von McKean aus der letzten Sektion auf und entfernt die Ableitung der Grenzfunktion durch partielle Integration. Diese Ausarbeitung beruht ebenfalls auf [7].

Es werden einige Funktionen definiert, die das Arbeiten erleichtern.

Drücke die McKean-Darstellung aus der letzten Sektion folgendermaßen aus:

\[
C_j(S_{T-\tau}, \tau) = CE(S_{T-\tau}, \tau) - S_{T-\tau} \cdot N\left(\frac{\ln(S_{T-\tau}/j(0^+)) + k\tau}{\sigma \sqrt{\tau}}\right) - Ke^{-r\tau}N\left(\frac{\ln(S_{T-\tau}/j(0^+)) + k\tau}{\sigma \sqrt{\tau}}\right)
+ R(S_{T-\tau}, \tau)
\]

mit

\[
R(S_{T-\tau}, \tau) = \int_0^\tau e^{-r(\tau-s) - h(S_{T-\tau}, s)} \left[\frac{\sigma^2}{2} j(s) + \frac{\partial j(s)}{\partial s} \frac{1}{j(s)} + \frac{1}{2} \left(k - \ln(S_{T-\tau}) - \ln(j(s)) \right) \right] (j(s) - K) \, ds
\]

\[
h(S_{T-\tau}, s) = \ln\left(\frac{S_{T-\tau}}{j(s)}\right) + \left(r - q - \frac{\sigma^2}{2} \right) \left(\tau - s \right)
\]

mit

\[
y = \frac{\ln(S_{T-\tau} + \left(r - q - \frac{\sigma^2}{2} \right) \tau)}{\sigma}
\]

und

\[
G(s) \equiv \frac{\ln(j(s)) + \left(r - q - \frac{\sigma^2}{2} \right) s}{\sigma}
\]

Für die Ableitung von \(G(s)\) in \(s\) gilt:

\[
\frac{\partial G(s)}{\partial s} = \frac{j'(s)}{j(s)} + \frac{\left(r - q - \frac{\sigma^2}{2} \right)}{\sigma}
\]
Da die folgenden Umformungen, aufgrund der Länge der Gleichungen, sehr unübersichtlich sind, wird ein Kommentar für jede Gleichung unter der Formel angegeben.

\[R(S, \tau) \] kann mit diesen Definitionen geschrieben werden als

\[
R(S_{T-\tau}, \tau) \equiv \int_0^\tau e^{-r(\tau-s)} \frac{e^{-(y-G(s))^2}}{2\pi(\tau-s)} \left[\sigma j(s) + 1 \left(\frac{j'(s)}{j(s)} + k - k + 1 \right) \ln \left(\frac{S_{T-\tau}}{\tau-s} \right) \right] (j(s) - K) ds
\]

\[
\equiv \int_0^\tau e^{-r(\tau-s)} \frac{e^{-(y-G(s))^2}}{2\pi(\tau-s)} \left[\sigma j(s) + \left(G'(s) - \frac{y - G(s)}{2(\tau-s)} \right) (j(s) - K) \right] ds
\]

\[
\equiv R_1(S_{T-\tau}, \tau) - R_2(S_{T-\tau}, \tau).
\]

1) Umformungen von \(h(S_{T-\tau}, t) \) einsetzen, hinzufügen von \(\frac{1}{\sigma} \) und quadratisch Ergänzen.
2) \(\frac{1}{\sigma} \) in die runde Klammer ziehen und die Definition von \(G'(s) \) nutzen
3) Definition von \(y - G(s) \)
4) Aufteilen des Integrals in

\[
R_1(S_{T-\tau}, \tau) = \int_0^\tau e^{-r(\tau-s)} \frac{e^{-(y-G(s))^2}}{2\pi(\tau-s)} j(s) \left[\frac{\sigma}{2} + G'(s) - \frac{y - G(s)}{2(\tau-s)} \right] ds
\]

\[
R_2(S_{T-\tau}, \tau) = K \int_0^\tau e^{-r(\tau-s)} \frac{e^{-(y-G(s))^2}}{2\pi(\tau-s)} \left[G'(s) - \frac{y - G(s)}{2(\tau-s)} \right] ds.
\]

Diese Teile können nun einzeln bearbeitet werden. Beginne mit \(R_1(S_{T-\tau}, \tau) \).

\[
R_1(S_{T-\tau}, \tau) \equiv \int_0^\tau e^{-r(\tau-s)} \frac{\sigma j(s)}{\sqrt{\tau-s}} \left[\frac{\sigma(\tau-s) + 2(\tau-s)G'(s) - y + G(s)}{2(\tau-s)} \right] ds
\]

\[
\cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{-(y-G(s))^2 + (\sigma(\tau-s))^2}{2(\tau-s)}} e^{\frac{(y-G(s))^2}{2(\tau-s)}} d\tau
\]

\[
\equiv - \int_0^\tau e^{-q(\tau-s)} \cdot S_{T-\tau} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{-(y-G(s))^2 + (\sigma(\tau-s))^2}{2(\tau-s)}} \cdot \frac{\sigma(\tau-s) + y - G(s)}{\sqrt{\tau-s}} ds
\]

\[
\equiv - \int_0^\tau e^{-q(\tau-s)} \cdot S_{T-\tau} \cdot \frac{\partial}{\partial s} \left[N \left(\frac{\sigma(\tau-s) + y - G(s)}{\sqrt{\tau-s}} \right) \right] ds
\]

5) Verschieben des \(\frac{1}{\sqrt{2\pi}} \), den Inhalt der eckigen Klammer auf einen Nenner bringen und quadratisch Ergänzen.

Seite 70
6) Auflösen der zweiten \(e \)-Funktion und

\[
\frac{\partial}{\partial s} \left[\frac{\sigma(\tau - s) + y - G(s)}{\sqrt{\tau - s}} \right] = \frac{\partial}{\partial s} \left[\frac{\sigma(\tau - s) + \frac{[\ln(S_{T-r}) + (\tau - q - \frac{\sigma^2}{2})\tau]}{\sigma} - \frac{[\ln(j(s)) + (\tau - q - \frac{\sigma^2}{2})s]}{\sigma}}{\sqrt{\tau - s}} \right]
\]

\[
= \frac{\partial}{\partial s} \left[\left(\sigma + \frac{k}{\sigma} \right) \sqrt{\tau - s} + \frac{1}{\sigma} (\ln(S_{T-r}) - \ln(j(s))) \frac{1}{\sqrt{\tau - s}} \right]
\]

\[
= - \frac{1}{\sqrt{\tau - s}} \left[\frac{\sigma(\tau - s) + K}{\sigma} (\tau - s) + \frac{2 j'(s)}{\sigma j(s)} (\tau - s) - \frac{1}{\sigma} \ln \left(\frac{S_{T-r}}{j(s)} \right) \right]
\]

\[
= - \frac{1}{\sqrt{\tau - s}} \left[\frac{\sigma(\tau - s) + 2(\tau - s)G'(s) - y + G(s)}{2(\tau - s)} \right].
\]

7) Leibnizformel für Parameterintegrale anwenden.

\(R_2(S_{T-r}, \tau) \) kann ähnlich behandelt werden.

\[
R_2(S_{T-r}, \tau) = - K \int_0^\tau e^{-r(\tau-s)} \frac{(y-G(s))^2}{2(\tau-s)} \left[-\sqrt{\tau - s}G'(s) + \frac{1}{2\sqrt{\tau-s}} (y - G(s)) \right] ds
\]

\[
= - K \int_0^\tau e^{-r(\tau-s)} \frac{(y-G(s))^2}{2\sqrt{2\pi}} \frac{\partial}{\partial s} \left[\frac{y - G(s)}{\sqrt{\tau - s}} \right] ds
\]

\[
= - K \int_0^\tau e^{-r(\tau-s)} \frac{\partial}{\partial s} \left[N \left(\frac{y - G(s)}{\sqrt{\tau - s}} \right) \right] ds
\]

8) Die Summe in der eckigen Klammer gleichnamig machen und \(- \frac{1}{\sqrt{\tau-s}} \) reziehen.

9) \[
\frac{\partial}{\partial s} \left[\frac{y - G(s)}{\sqrt{\tau - s}} \right] = \frac{\frac{1}{\sigma} \ln(j(s)) + \frac{1}{\sigma} k(\tau - s)}{2\sqrt{\tau-s}} - \frac{(\tau-s)}{\sigma} \left(\frac{j'(s)}{j(s)} + k \right)
\]

\[
= \frac{1}{2\sqrt{\tau-s}} (y - G(s)) - \frac{\sqrt{(\tau - s)}G'(s)}{(\tau - s)}
\]

10) Leibnizformel für Parameterintegrale anwenden.

Füge beide Teile wieder zusammen. Das gewünschte Ziel, die Ableitung zu entfernen, kann durch partielle Integration erreicht werden.
Betrachtet man nun die ausintegrierten Terme, so ist nicht direkt klar, wogegen sie für $s \to \tau$ konvergieren.

Genauere Betrachtung liefert

\[
R(S_{T-\tau}, \tau) = \int_0^{\tau} e^{-q(s-s)} \cdot S_{T-\tau} \cdot \frac{\partial}{\partial s} \left[N \left(\frac{\sigma(\tau - s) + y - G(s)}{\sqrt{\tau - s}} \right) \right] ds
- K \int_0^{\tau} e^{-r(s-s)} \frac{\partial}{\partial s} \left[N \left(\frac{y - G(s)}{\sqrt{\tau - s}} \right) \right] ds
= -ST_{T-\tau} \left[\int_0^{\tau} e^{-q(s-s)} N \left(\frac{\sigma(\tau - s) + y - G(s)}{\sqrt{\tau - s}} \right) ds \right]
- \int_0^{\tau} q e^{-q(s-s)} N \left(\frac{\sigma(\tau - s) + y - G(s)}{\sqrt{\tau - s}} \right) ds
+ K \left(\int_0^{\tau} e^{-r(s-s)} N \left(\frac{y - G(s)}{\sqrt{\tau - s}} \right) ds \right)
\]

Betrachtet man nun die ausintegrierten Terme, so ist nicht direkt klar, wogegen sie für $s \to \tau$ konvergieren.

Genauere Betrachtung liefert

\[
\lim_{s \to \tau} \frac{y - G(s)}{\sqrt{\tau - s}} = \lim_{s \to \tau} \left(\frac{\ln(S_{T-\tau}) - \ln(j(s))}{\sigma \sqrt{\tau - s}} + \frac{k(\tau - s)}{\sigma \sqrt{\tau - s}} \right) = \lim_{s \to \tau} \frac{\ln(S_{T-\tau}) - \ln(j(s))}{\sigma \sqrt{\tau - s}} = \begin{cases} 0 & S_{T-\tau} = j(s) \\ -\infty & S_{T-\tau} < j(s) \end{cases}
\]

durch $\ln(S_{T-\tau}/j(s)) < 0$ für $S_{T-\tau} < j(s)$ und $\ln(S_{T-\tau}/j(s))$ endlich.

Diese beiden Möglichkeiten werden durch δ berücksichtigt.

\[
\delta(S_{T-\tau}) = \begin{cases} \frac{1}{2} & S_{T-\tau} = j(s) \\ 0 & \text{sonst} \end{cases}
\]

\[
R(S_{T-\tau}, \tau) = -ST_{T-\tau} \left(\delta(S_{T-\tau}) - e^{-q} N \left(\frac{\sigma + y - G(0)}{\sqrt{\tau}} \right) \right)
+ ST_{T-\tau} \left(\int_0^{\tau} q e^{-q(s-s)} N \left(\frac{\sigma(\tau - s) + y - G(s)}{\sqrt{\tau - s}} \right) ds \right)
+ K \left(\delta(S_{T-\tau}) - e^{-r} N \left(\frac{y - G(0)}{\sqrt{\tau}} \right) \right) - \int_0^{\tau} r e^{-r(s-s)} N \left(\frac{y - G(s)}{\sqrt{\tau - s}} \right) ds
= e^{-q} ST_{T-\tau} \cdot N \left(\frac{\ln(S_{T-\tau}/j(0^+)) + k\tau}{\sigma \sqrt{\tau}} \right)
- K e^{-r} N \left(\frac{\ln(S_{T-\tau}/j(0^+)) + k\tau}{\sigma \sqrt{\tau}} \right) - \delta(S_{T-\tau}) \cdot (S_{T-\tau} - K)
+ \int_0^{\tau} q ST_{T-\tau} e^{-q(s-s)} N \left(\frac{\sigma(\tau - s) + y - G(s)}{\sqrt{\tau - s}} \right) - \tau K e^{-r(s-s)} N \left(\frac{y - G(s)}{\sqrt{\tau - s}} \right) ds
\]
Durch diese Version des Integralterms fallen die ersten beiden Terme des EEPs in (4.16) weg und es folgt die Darstellung des Optionspreises nach Kim vor Ausübung.

\[
C(S_{T-\tau}, \tau) = C_E(S_{T-\tau}, \tau)
\]
\[
+ \int_0^\tau qS_{T-\tau}e^{-q(\tau-s)}N\left(\frac{\ln\left(\frac{S_{T-\tau}}{j(s)}\right) + (k + \sigma^2)(\tau - s)}{\sigma\sqrt{\tau - s}}\right) - rKe^{-r(\tau-s)}N\left(\frac{\ln\left(\frac{S_{T-\tau}}{j(s)}\right) + k(\tau - s)}{\sigma\sqrt{\tau - s}}\right) ds
\]

(4.17)

\[
C(S_{T-\tau}, \tau) = C_E(S_{T-\tau}, \tau) + EEP
\]

Wenn das Finanzgut die Grenzfunktion erreicht entsteht eine Integralgleichung für die Grenzfunktion.

\[
j(\tau) - K = C_E(j(\tau), \tau) +
\]
\[
+ \int_0^\tau qj(\tau)e^{-q(\tau-s)}N\left(\frac{\ln\left(\frac{j(\tau)}{j(s)}\right) + (k + \sigma^2)(\tau - s)}{\sigma\sqrt{\tau - s}}\right) - rKe^{-r(\tau-s)}N\left(\frac{\ln\left(\frac{j(\tau)}{j(s)}\right) + k(\tau - s)}{\sigma\sqrt{\tau - s}}\right) ds
\]

(4.18)

Bemerkung

In dieser Darstellung ist der Faktor \(\frac{1}{2} \) nicht mehr notwendig, denn für \(S_{T-\tau} = j(\tau) \) gilt

\[
\frac{(j(\tau) - K)}{2} = C_E(S_{T-\tau}, \tau) - \frac{(j(\tau) - K)}{2} + EEP
\]

(4.19)

wegen der Konvergenz der Fouriertransformation zum Mittelwert an der Unstetigkeitsstelle und \(\delta \). Beachte das das Early Exercise Premium auch von \(j(\tau) \) bzw \(S \) abhängt, dies aber nicht von Bedeutung ist. Bringt man nun \(-\frac{(j(\tau) - K)}{2} \) auf die linke Seite der Gleichung, so hat man eine Darstellung, die die Definition des Wertes an der Sprungstelle in der Heaviside-Step Funktion nicht mehr benötigt.

Ein weiterer Vorteil der Darstellung von Kim ist, dass (4.18) eine Gleichung für die Grenzfunktion liefert.

Ebenso erlaubt diese Version der Preisfunktion eine ökonomische Interpretation des Early Exercise Premiums. Wenn man als Käufer der Calloption in \(t \) vorzeitig in \(t^* \) ausübt, bekommt man \((S_{t^*} - K) \) ausgezahlt. Kauft man davon das Basisfinanzgut und leihst sich \(K \), dann ist die Strategie selbstfinanzierend. Bis zum Zeitpunkt \(T \) streicht man Dividendenzahlungen ein und bezahlt die Zinsen für \(K \). In \(T \) hat man dann den gleichen Wert wie jemand, der die europäische Optione gekauft hat, nämlich \((S_T - K)_+ \). Das Early Exercise Premium ist somit die Differenz aus erwarteten Dividenden und Zinsen, nach vorzeitiger Auslösung, wie im Integralterm zu erkennen.
4.3 Der amerikanische Callpreis ohne Dividendenzahlungen

Im Folgenden wird gezeigt, dass die Berechnung eines Callpreises ohne Dividendenauszahlungen des Basisfinanzguts nicht sinnvoll ist. Die Ausarbeitung beruht auf [1], Kapitel 8.

Satz

Ohne Dividendenzahlungen des Basisfinanzguts stimmen der Preis einer amerikanischen Calloption und der Preis einer europäischen Calloption bei gleichem Basisfinanzgut und gleicher Laufzeit überein.

Beweis

Der Beweis beruht auf folgendem

Lemma

Sei \(h : \mathbb{R}^+ \rightarrow \mathbb{R} \) stetig und konvex mit \(h(0) = 0 \).

 Dann ist \(e^{-rt}h(S_t) \) ein Submartingal, wenn \(S_t \) außerdem ein Martingal ist.

Beweis des Lemmas

Da die Funktion \(h(x) \) konvex ist, erfüllt sie für \(0 \leq \lambda \leq 1 \) und \(x_1 \leq x_2 \)

\[
h((1 - \lambda)x_1 + \lambda x_2) \leq (1 - \lambda)h(x_1) + \lambda h(x_2).
\]

Für \(x_1 = 0 \) und \(x = x_2 \) gilt somit

\[
h(\lambda x) \leq \lambda h(x)
\]

Setze \(0 \leq u \leq t \leq T \), daraus folgt \(0 \leq \exp(-r(t-u)) \leq 1 \). Mit der Monotonie des bedingten Erwartungswertes, der Jensen Ungleichung und der Martingaleigenschaft von \(\exp(-rt)S_t \) unter dem Martingalmaß entsteht:

\[
E \left[e^{-r(T-u)}h(S_T) \mid \mathcal{F}_u \right] \geq E \left[h \left(e^{-r(T-u)}S_T \mid \mathcal{F}_u \right) \right] \\
\geq h \left(E \left[e^{-r(T-u)}S_T \mid \mathcal{F}_u \right] \right) \\
= h \left(e^{ru}E \left[e^{-rt}S_t \mid \mathcal{F}_u \right] \right) \\
= h(S_u)
\]

Dies ist äquivalent zu

\[
E \left[e^{-rt}h(S_t) \mid \mathcal{F}_u \right] \geq e^{-ru}h(S_u)
\]

und schließt den Beweis des Lemmas.

Wenn nun \(h(x) = (x - K)_+ \) ist, dann gilt mit \(x \leq y \)

\[
h((1 - \lambda)x + \lambda y) \leq (1 - \lambda)h(x) + \lambda h(y)
\]

für alle drei möglichen Fälle: \(\{ x, y \mid h(x) = 0, h(y) = 0 \} \), \(\{ x, y \mid h(x) = 0, h(y) > 0 \} \) und \(\{ x, y \mid h(x) > 0, h(y) > 0 \} \). Damit ist \(h(x) \) konvex und das Lemma liefert

\[
E \left[e^{-r(T-u)}(S_T - K)_+ \mid \mathcal{F}_u \right] \geq (S_u - K)_+.
\]
Das heißt, es ist am Optimalsten mit der Ausübung bis T zu warten, da der innere Wert der amerikanischen Calloption sonst immer vom europäischen Callpreis dominiert wird.

\[\square \]

Bemerkung

Das Lemma gilt nicht bei Dividendenzahlungen, da unter dem Martingalmaß \(\exp(-rt)S_t \) kein Martingal, sondern ein Supermartingal ist. Die Drift nach unten entsteht, weil die Zinsgewinne aus der angelegten Dividende fehlen. Wenn in der Preisversion von Kim \(q = 0 \) gesetzt wird, ist direkt zu erkennen, dass vorzeitiges Ausüben suboptimal ist, denn das Early Exercise Premium ist in diesem Fall immer negativ.

Ebenso ist das Lemma nicht für die Putoption anwendbar, da für \(h(x) = (K - x)_+ \) nicht \(h(0) = 0 \) gilt.
Kapitel 5

Der Preis für die amerikanische Putoption bei endlicher und unendlicher Laufzeit

5.1 Endliche Laufzeit

Betrachte nun eine amerikanische Putoption auf ein Basisfinanzgut \(S_t \) mit \(T < \infty \). Diese Sektion bezieht sich auf das Paper *Alternative Charaterizations of American Put Options* von Carr, Jarrow und Myneni, [14].

Definiere den Prozess \(L \) als abgezinsten Preis der Putoption im Zeitpunkt \(t \).

\[
L(S_t, t) \equiv e^{-rt} P(S_t, t)
\]

\(e^{-rt} \) ist in \(t \) und \(S \) stetig differenzierbar. Nun kann die, schon in Kapitel 3 erwähnte, erweiterte Itô-Formel angewendet werden, da \(L(S_t, t) \) eine \(C^1 \)-Funktion in \(S \) ist.

\[
L(S_T, T) = L(S_0, 0) + \int_0^T \frac{\partial L(S_t, t)}{\partial S} dS_t + \int_0^T \frac{\partial L(S_t, t)}{\partial t} dt + \frac{1}{2} \int_0^T \frac{\partial^2 L(S_t, t)}{\partial S^2} d(S, S)_t
\]

Durch die quadratische Variation einer geometrischen Brownschen Bewegung folgt

\[
L(S_T, T) = L(S_0, 0) + \int_0^T \frac{\partial L(S_t, t)}{\partial S} dS_t + \int_0^T \frac{\partial L(S_t, t)}{\partial t} dt + \frac{\sigma^2 S_t^2 \partial^2 L(S_t, t)}{2} dt.
\]

Wenn \(L(S_t, t) \) wieder ersetzt werden soll, muss \(\frac{\partial L}{\partial t} \) genauer betrachtet werden.

\[
\frac{\partial L(S_t, t)}{\partial t} = \frac{\partial e^{-rt} P(S_t, t)}{\partial t} = e^{-rt} \frac{\partial P(S_t, t)}{\partial t} - re^{-rt} P(S_t, t)
\]

Damit folgt:

\[
e^{-rT} P(S_T, T) = P(S_0, 0) + \int_0^T e^{-rt} \frac{\partial P(S_t, t)}{\partial S} dS_t + \int_0^T \frac{\sigma^2 S_t^2 e^{-rt} \frac{\partial^2 P(S_t, t)}{\partial S^2} - re^{-rt} P(S_t, t)}{2} dt
\]

Es soll eine Preisfunktion für \(t = 0 \) angegeben werden. Dafür muss über die komplette Laufzeit integriert werden. Der Preis nach vorzeitiger Ausübung ist bekannt,

\(P(a(t), t) = (K - a(t))_+ \), also kann \(P(S_t, t) \) in Preis vor und nach Ausübung geteilt werden.

\[
P(S_t, t) = \mathbb{1}_{(S_t > a(t))} P(S_t, t) + \mathbb{1}_{(S_t \leq a(t))} (K - S_t)_+
\]
Da $P(S_0,0)$ bestehen bleibt, weil $S_0 > a(0)$ vorausgesetzt ist und am Ende der Vertragslaufzeit

$$P(S_T, T) = (K - S_T)_+$$

gilt, folgt:

$$e^{-rT} (K - S_T)_+ = P(S_0, 0) + \int_0^T e^{-rt} \left(\mathbf{1}_{(S_t > a(t))} P(S_t, t) + \mathbf{1}_{(S_t \leq a(t))} (K - S_t)_+ \right) \frac{\partial P(S_t, t)}{\partial S} dS_t + \int_0^T \frac{\sigma^2 S_t^2 e^{-rt} \partial^2 P(S_t, t)}{2} - \mathbf{1}_{(S_t > a(t))} P(S_t, t) + \mathbf{1}_{(S_t \leq a(t))} (K - S_t)_+ \right) \frac{\partial^2 P(S_t, t)}{\partial S^2} dt$$

Natürlich übt man die Option nur aus, wenn die Auszahlung positiv ist. Daher ist

$$(K - S_t)_+ = (K - S_t).$$

Außerdem gilt für die Indikatorfunktionen

$$\frac{\partial \mathbf{1}_{[1]}(S_t)}{\partial S} = 0 = \frac{\partial \mathbf{1}_{[1]}(S_t)}{\partial t}.$$

$$e^{-rT} (K - S_T)_+ = P(S_0, 0) + \int_0^T e^{-rt} \left(\mathbf{1}_{(S_t > a(t))} P(S_t, t) + \mathbf{1}_{(S_t \leq a(t))} (K - S_t)_+ \right) \frac{\partial P(S_t, t)}{\partial S} dS_t + \int_0^T \frac{\sigma^2 S_t^2 e^{-rt} \partial^2 P(S_t, t)}{2} - \mathbf{1}_{(S_t > a(t))} P(S_t, t) + \mathbf{1}_{(S_t \leq a(t))} (K - S_t)_+ \right) \frac{\partial^2 P(S_t, t)}{\partial S^2} dt$$

Setze nun die stochastische Differentialgleichung von S_t ein.

$$e^{-rT} (K - S_T)_+ = P(S_0, 0) + \int_0^T e^{-rt} \left(\mathbf{1}_{(S_t > a(t))} P(S_t, t) + \mathbf{1}_{(S_t \leq a(t))} (K - S_t)_+ \right) \frac{\partial P(S_t, t)}{\partial S} dS_t + \int_0^T \frac{\sigma^2 S_t^2 e^{-rt} \partial^2 P(S_t, t)}{2} - \mathbf{1}_{(S_t > a(t))} P(S_t, t) + \mathbf{1}_{(S_t \leq a(t))} (K - S_t)_+ \right) \frac{\partial^2 P(S_t, t)}{\partial S^2} dt + \int_0^T \left(\left(\mathbf{1}_{(S_t > a(t))} P(S_t, t) + \mathbf{1}_{(S_t \leq a(t))} (K - S_t)_+ \right) \left(\frac{\partial P(S_t, t)}{\partial t} + \frac{\partial P(S_t, t)}{\partial S} \right) \right) dt$$

Durch Umstellen ergibt sich im dt-Term die Black-Scholes-Differentialgleichung, die für $S_t > a(t)$ gleich Null ist.
\[e^{-rT}(K-S_T) \]

\[= P(S_0,0) + \int_0^T e^{-rt} \sigma S_t \left(\mathbf{1}_{(S_t > a(t))} \frac{\partial P(S_t,t)}{\partial S} - \mathbf{1}_{(S_t \leq a(t))} \right) dW_t + \int_0^T e^{-rt} \left[\mathbf{1}_{(S_t > a(t))} \left(rS_t \frac{\partial P(S_t,t)}{\partial S} + \frac{\sigma^2}{2} S_t \frac{\partial^2 P(S_t,t)}{\partial S^2} - rP(S_t,t) + \frac{\partial P(S_t,t)}{\partial t} \right) \right] + \int_0^T \mathbf{1}_{(S_t \leq a(t))} (-rK) \right) dt \\
= P(S_0,0) - rK \int_0^T e^{-rt} \mathbf{1}_{(S_t \leq a(t))} dt + \int_0^T e^{-rt} \sigma S_t \left(\mathbf{1}_{(S_t > a(t))} \frac{\partial P(S_t,t)}{\partial S} - \mathbf{1}_{(S_t \leq a(t))} \right) dW_t \\
\]

Nehme nun den Erwartungswert zum Martingalmaß \(Q \) auf beiden Seiten der Gleichung.

\[E\left[e^{-rT}(K-S_T) \right] = \\
= P(S_0,0) - rK \cdot E \left[\int_0^T e^{-rt} \mathbf{1}_{(S_t \leq a(t))} dt \right] + E \left[\int_0^T e^{-rt} \sigma S_t \left(\mathbf{1}_{(S_t > a(t))} \frac{\partial P(S_t,t)}{\partial S} - \mathbf{1}_{(S_t \leq a(t))} \right) dW_t \right] \\
\]

Der linke Teil der Gleichung entspricht dem Preis einer europäischen Putoption in \(t = 0 \), bezeichnet durch \(P_E(S_0,0) \).

\[P_E(S_0,0) = P(S_0,0) - rK \cdot E \left[\int_0^T e^{-rt} \mathbf{1}_{(S_t \leq a(t))} dt \right] + E \left[\int_0^T e^{-rt} \sigma S_t \left(\mathbf{1}_{(S_t > a(t))} \frac{\partial P(S_t,t)}{\partial S} - \mathbf{1}_{(S_t \leq a(t))} \right) dW_t \right] = X_t \]

Es soll gezeigt werden, dass der letzte Term der Gleichung gleich Null ist. Dies ist der Fall falls das Itô-Integral \(X_t \) ein Martingal ist, denn dann gilt \(E\left[X_T \mid \mathcal{F}_0 \right] = X_0 = 0 \).

Aus [1] ist bekannt, dass jedes Itô-Integral, dessen Integrand \(x_t \ E\left[\int_0^T x_t^2 dt \right] < \infty \) erfüllt, ein Martingal ist.

\[E \left[\int_0^T x_t^2 dt \right] = E \left[\int_0^T e^{-2rt} \sigma^2 S_t^2 \left(\mathbf{1}_{(S_t > a(t))} \left(\frac{\partial P(S_t,t)}{\partial S} \right)^2 - \mathbf{1}_{(S_t \leq a(t))} \right) dt \right] \\
= E \left[\int_0^T e^{-2rt} \sigma^2 S_t^2 \mathbf{1}_{(S_t > a(t))} \left(\frac{\partial P(S_t,t)}{\partial S} \right)^2 dt \right] - E \left[\int_0^T e^{-2rt} \sigma^2 S_t^2 \mathbf{1}_{(S_t \leq a(t))} dt \right] \\
\]

Da \(T \) endlich ist, gilt dies auch für den \(S_t \leq a(t) \)-Term. Für \(S_t > a(t) \) ist \(\frac{\partial P}{\partial S} \) stetig und der Integrand ist größer als Null. Damit kann, nach Fubini, die Integrationsreihenfolge vertauscht werden.

\[E \left[\int_0^T e^{-2rt} \left(\frac{\partial P(S_t,t)}{\partial S} \right)^2 dt \right] = \int_0^T e^{-2rt} E \left[\left(\frac{\partial P(S_t,t)}{\partial S} \right)^2 \right] dt < \infty \]
Denn $\frac{\partial P}{\partial S}(S, t)$ ist beschränkt: Für t fest und $S \in [a(t), \infty]$ ist aus Kapitel 3 bekannt, dass $\frac{\partial P}{\partial S} \leq 0$ und $\frac{\partial P^2}{\partial S^2} \geq 0$ gilt. Alles verarbeitet gibt $-1 \leq \frac{\partial P}{\partial S}(\cdot, t) \leq 0 \ \forall t$.

\[
\Rightarrow E\left[\int_0^T e^{-rt} \sigma S_t \left(\mathbb{1}_{(S_t > a(t))} \frac{\partial P(S_t, t)}{\partial S} - \mathbb{1}_{(S_t \leq a(t))} \right) dW_t \right] = 0
\]

\[
\Rightarrow P_E(S_0, 0) = P(S_0, 0) - rK \cdot E \left[\int_0^T e^{-rt} \mathbb{1}_{(S_t \leq a(t))} dt \right]
\]

Der Erwartungswert kann ebenfalls mit Fubini vereinfacht werden.

\[
E\left[\int_0^T e^{-rt} \mathbb{1}_{(S_t \leq a(t))} dt \right] = \int_{-\infty}^{\infty} \int_0^T e^{-rt} \mathbb{1}_{(S_t \leq a(t))} dt \ dQ
\]

\[
= \int_0^T e^{-rt} \int_{-\infty}^{\infty} \mathbb{1}_{(S_t \leq a(t))} dQ \ dt
\]

\[
= \int_0^T e^{-rt} Q(S_t \leq a(t)) \ dt
\]

Die Wahrscheinlichkeit $Q(S_t \leq a(t))$ lässt sich berechnen, da W_t eine Brownsche Bewegung unter Q ist.

\[
Q(S_t \leq a(t)) = Q\left(S_0 e^{\left(r - \frac{\sigma^2}{2} \right) t + \sigma W_t } \leq a(t) \right)
\]

\[
= Q\left(W_t \leq \frac{\ln \left(\frac{a(t)}{S_0} \right) - \left(r - \frac{\sigma^2}{2} \right) t}{\sigma} \right)
\]

\[
= N\left(\frac{\ln \left(\frac{a(t)}{S_0} \right) - \left(r - \frac{\sigma^2}{2} \right) t}{\sigma \sqrt{t}} \right)
\]

Mit diesem Ergebnis ergibt sich für die Preisfunktion

\[
P_E(S_0, 0) = P(S_0, 0) - rK \int_0^T e^{-rt} N\left(\frac{\ln \left(\frac{a(t)}{S_0} \right) - \left(r - \frac{\sigma^2}{2} \right) t}{\sigma \sqrt{t}} \right) \ dt,
\]

oder

\[
P(S_0, 0) = P_E(S_0, 0) + rK \int_0^T e^{-rt} N\left(\frac{\ln \left(\frac{a(t)}{S_0} \right) - \left(r - \frac{\sigma^2}{2} \right) t}{\sigma \sqrt{t}} \right) \ dt.
\]

Bemerkung

Es wurde also eine Darstellung des Preises einer Putoption in $t=0$ erarbeitet, die, wie im Call-Fall, den Preis in europäische Option und Early Exercise Premium aufsplittet. Das Early Exercise Premium in dieser Version ähnelt dem von Kim aus Kapitel 4. Die ökonomische Interpretation kann deswegen übernommen werden.
5.2 Unendliche Laufzeit

Die Ausarbeitung beruht auf einem Paper von Henry McKean, [15].

Für die amerikanische Putoption mit unendlicher Laufzeit (T=∞) ist es möglich die Grenzfunktion explizit zu bestimmen. Es wird gezeigt, dass der Preis für die Option nicht von der Zeit abhängt und somit konstant in t ist. Damit vereinfacht sich die Black-Scholes-Differentialgleichung von einer partiellen zu einer gewöhnlichen Differentialgleichung, für die es einen Lösungsalgorithmus gibt.

Satz

Aufbauend auf der Preisfunktion für eine endliche amerikanische Putoption, kann die Preisfunktion bei unendlicher Laufzeit der Option angegeben werden. Sei x der Startwert des Finanzguts.

\[P(x) = \sup_{\tau \geq 0} [e^{-r\tau} (K - S_\tau^x)] \]

Die Preisfunktion ist also konstant in der Zeit. Für den Fall, dass die Option nie ausgeübt wird, \(\tau = \infty \), setze den Preis gleich 0.

Beweis

Mit der Definition des Pupreises zum Zeitpunkt \(t \) und Wert des Basisfinanzguts \(x \) folgt dann:

\[
P(x, t) = \sup_{\tau \geq t} E \left[e^{-r(\tau-t)} (K - xS_\tau^x) \right] \
= \sup_{\tau \geq t} E \left[e^{-r(\tau-t)} \left(K - x \exp \left((r - \frac{\sigma^2}{2})(\tau - t) + \sigma(W_\tau - W_t) \right) \right) \right] \
= \sup_{\chi = \tau - t} E \left[e^{-r\chi} \left(K - x \exp \left((r - \frac{\sigma^2}{2})\chi + \sigma(W_{\chi + t} - W_t) \right) \right) \right] \
= \sup_{\chi \geq t} E \left[e^{-r\chi} (K - xS_{\chi}) \right] \
= P(x, 0)
\]

Der Preis einer amerikanischen Option \(P(x, t) \) mit Laufzeit \(T \) ist abhängig vom Wert des Finanzguts in \(t \) und der Restlaufzeit der Option. Die Restlaufzeit bei unendlicher Laufzeit ist für alle Werte \(t \) gleich.

Korollar

Damit ist \(\frac{\partial P}{\partial t} = 0 \) und \(P(S) \) erfüllt die gewöhnliche Differentialgleichung

\[
\sigma^2 S^2 \frac{1}{2} \frac{\partial^2 P(S)}{\partial S^2} - rP(S) + rS \frac{\partial P(S)}{\partial S} = 0.
\]

Da der Preis in \(t \) konstant ist, muss auch die Grenzfunktion konstant sein. Definiere deswegen \(a \) als

\[a = a(t). \]

Die Randwerte in \(S \) können aus Kapitel 2 übernommen werde:

\[
\lim_{S \to \infty} P(S) = 0 \quad P(a) = (K - a)_+
\]
Lösen der Differentialgleichung

Aus der partiellen Differentialgleichung ist nun eine lineare, homogene, gewöhnliche Differentialgleichung geworden, die löubar ist.

Der Einfachheit halber stelle sie folgendermaßen dar:

\[
\frac{\sigma^2}{2}x^2 y''(x) + rxy'(x) - ry(x) = 0
\]

Für diese Art von Differentialgleichung weiß man, dass es 2 linear unabhängige Lösungen \(\chi_1, \chi_2 \) gibt. Die Menge aller Lösungen bezeichnet \(\varsigma \), \(\varsigma = \{ \alpha_1 \chi_1 + \alpha_2 \chi_2 \mid \alpha_1, \alpha_2 \in \mathbb{R} \} \). \(\alpha_1 \) und \(\alpha_2 \) werden über die Randwerte berechnet und bestimmen eine eindeutige Lösung. Für mehr Details zu gewöhnlichen Differentialgleichungen siehe [8]

Wenn man \(y(x) = x^\alpha \) wählt, gilt

\[
y'(x) = (x^\alpha)' = \alpha x^{\alpha - 1}, \quad y''(x) = \alpha (\alpha - 1) x^{\alpha - 2}
\]

und man kann die Differentialgleichung umschreiben zu

\[
\left(-r + r\alpha + \frac{\sigma^2}{2} \alpha (\alpha - 1) \right) y = 0
\]

\[
\Leftrightarrow -r + r\alpha + \frac{\sigma^2}{2} (\alpha^2 - \alpha) = 0
\]

\[
\Leftrightarrow \frac{\sigma^2}{2} \alpha^2 + \left(r - \frac{\sigma^2}{2} \right) \alpha - r = 0
\]

\[
\Leftrightarrow \alpha^2 + \left(\frac{2r}{\sigma^2} - 1 \right) \alpha + \frac{2r}{\sigma^2} = 0.
\]

Diese Gleichung kann mit der pq-Formel gelöst werden.

\[
\chi_1, \chi_2 = -\frac{1}{2} \left(\frac{2r}{\sigma^2} - 1 \right) \pm \sqrt{\left(\frac{2r}{\sigma^2} - 1 \right)^2 - \frac{2r}{\sigma^2}}
\]

\[
= -\left(\frac{r}{\sigma^2} - \frac{1}{2} \right) \pm \sqrt{\frac{r^2}{\sigma^2} + \frac{r}{\sigma^2} + \frac{1}{4}}
\]

\[
= -\left(\frac{r}{\sigma^2} - \frac{1}{2} \right) \pm \sqrt{\left(\frac{r}{\sigma^2} + \frac{1}{2} \right)^2}
\]

\[
\Rightarrow \chi_1 = -\frac{2r}{\sigma^2}, \quad \chi_2 = 1
\]

\[
\Rightarrow P(S) = \alpha_1 S^{\frac{2r}{\sigma^2}} + \alpha_2 S
\]

Um die eindeutige Lösung für die Differentialgleichung zu finden, müssen \(\alpha_1 \) und \(\alpha_2 \) über die Randwerte berechnet werden.

\[
\lim_{S \to \infty} P(S) = 0 \Rightarrow \alpha_2 = 0
\]

\[
P(a) = \alpha_1 \cdot a^{\left(\frac{-2r}{\sigma^2} \right)} = K - a \quad \Leftrightarrow \quad \alpha_1 = \frac{K - a}{a^{\left(\frac{-2r}{\sigma^2} \right)}}
\]
\[P(S) = (K - a) \left(\frac{S}{a} \right)^{-\frac{2r}{\sigma^2}} \]

Es fehlt noch die Bestimmung der Grenzfunktion, beziehungsweise des Grenzwertes \(a \), damit die Preisfunktion vollständig auswertbar ist.

Bestimmung der Grenzfunktion

Da die Preisfunktion die Stetigkeitseigenschaft

\[\frac{\partial P(S,t)}{\partial S} \bigg|_{S=a} = -1 \]

erfüllt, kann die Grenzfunktion direkt aus der Formel gewonnen werden.

\[\frac{\partial}{\partial S} \left((K - a) \left(\frac{S}{a} \right)^{-\frac{2r}{\sigma^2}} \right) \bigg|_{S=a} = -\frac{(K - a) \frac{2r}{\sigma^2}}{a} \]

Dies ergibt die Gleichung

\[(K - a) \frac{2r}{\sigma^2} = a. \]

Die optimale Ausübung ist also gegeben, wenn das Basisfinanzgut

\[a = \frac{2r}{1 + \frac{2r}{\sigma^2}} K \]

erreicht.
Kapitel 6

Der Putpreis für die endliche Basket Option

Das optimale Stoppen gestaltet sich schwieriger, da die Entwicklung von S^1 und S^2 beachtet werden muss. Siehe dazu auch die Eigenschaften der Grenzregionen in Kapitel 3.

Die Spaltung des Putpreises kann, wie im eindimensionalen Fall, in den europäischen Basket-Put und Early Exercise Premium erfolgen.

\begin{align}
P_E(S^1_t, S^2_t, t) &= P_E(S^1_t, S^2_t, t) + EEP \\
&= E \left[e^{-r(T-t)} \left(K - (S^1_T + S^2_T) \right)_+ \big| \mathcal{F}_t \right] \\
&\quad + \int_t^T e^{-r(u-t)} E \left[(rK - (q_1S^1_v + q_2S^2_v)) \mathbb{1}_{(S^2_v \leq a^2(S^1_v, v))} \big| \mathcal{F}_t \right] dv
\end{align}

Das Early Exercise Premium basiert auf der ökonomischen Interpretation, die schon bei Kim gegeben wurde:

Die Strategie ist, nach vorzeitigem Ausüben der Option, K zu kaufen und S^1 und S^2 leerzuverkaufen. Damit ist Selbstfinanziertheit gegeben und am Ende ist der Unterschied zur europäischen Basket-Option die Differenz aus erwarteten Zinsgewinnen von K und den zu bezahlenden Dividenden von S^1 und S^2. Man beachte, dass es keinen Unterschied macht, ob man als optimale Auslösestrategie den ersten Eintritt von S^2_t oder S^1_t in die Grenzregion wählt.

Die europäische Basket-Option wurde schon in Kapitel 2 behandelt. Im Folgenden soll das Early Exercise Premium vereinfacht werden.

Um den Schreibungsaufwand zu minimieren und die Übersichtlichkeit zu bewahren, definiere

\[n(x) = \frac{1}{\sqrt{2\pi (v-t)}} e^{-\frac{1}{2(v-t)} x^2} \]

und definie die geometrische Brownsche Bewegung von t nach v, $v \geq t$, mit Wert $S^1_t = x_1$ und $S^2_t = x_2$ als

\[x_1 S^1_v \quad \text{und} \quad x_1 S^1_v, \]
Betrachte als Erstes die Indikatorfunktion.

\[x_2 S^2_v \leq a^2(x_1 S^1_v, v) \]

Hier ist zu beachten, dass \(S^2_t \), aufgrund der Konstruktion in Kapitel 2, nicht unabhängig von \(S^1_t \) ist. Die Wahrscheinlichkeit für den Eintritt kann also nicht vereinfacht werden. Um dies zu umgehen, müssen die stochastischen Prozesse in den Basisfinanzgütern verändert werden. Nehme die 2 korrelierten Brownsche Bewegungen \(W^1_t \) und \(W^2_t \) mit \(dW^1_t dW^2_t = \rho dt \). Die neue Unsicherheit in den geometrischen Brownschen Bewegungen sei

\[B^1_t = W^1_t \]
\[B^2_t = \rho W^1_t + \sqrt{1-\rho^2} U_t \]

mit

\[U_t = \frac{-\rho W^1_t + W^2_t}{\sqrt{1-\rho^2}}. \]

Setzt man die Definition von \(U_t \) ein, so erkennt man, dass eine Brownsche Bewegung vorliegt, da \(B^2_t = W^2_t \) ist. Ebenso bleibt die Korrelation bestehen.

\[dB^1_t dB^2_t = \rho dt \]

Nun ist noch zu klären, welche Eigenschaften \(U_t \) hat und warum es definiert wurde. \(U_t \) ist stochastisch unabhängig von \(W^1_t \).

Betrachte die Korrelation.

\[dW^1_t dU_t = dW^1_t \cdot d\left(\frac{-\rho W^1_t + W^2_t}{\sqrt{1-\rho^2}} \right) \]
\[= (-\rho dW^1_t dW^1_t + dW^1_t dW^2_t) \cdot \frac{1}{\sqrt{1-\rho^2}} = (-\rho dt^2 + \rho dt) \cdot \frac{1}{\sqrt{1-\rho^2}} = 0 \]

Somit sind die Prozesse unkorreliert. Wenn nun \(U_t \) normalverteilt ist, folgt die Unabhängigkeit. Bestimme die Verteilung von \(U_t \).

Da \(W^1_t \) und \(W^2_t \) korreliert sind, muss auf die Konstruktion aus Kapitel 2 zurückgegriffen werden. Setze \(\bar{W}^1_t, \bar{W}^2_t \) als die beiden unabhängigen Ausgangs-Brownsche-Bewegungen.

\[U_t = \frac{-\rho W^1_t + W^2_t}{\sqrt{1-\rho^2}} \]
\[= \frac{-\rho}{\sqrt{\sigma^2_{12} + \sigma^2_1}} \left(\sigma_{12} \bar{W}^2_t + \sigma_1 \bar{W}^1_t \right) + \frac{1}{\sqrt{\sigma^2_{21} + \sigma^2_2}} \left(\sigma_{21} \bar{W}^1_t + \sigma_2 \bar{W}^2_t \right) \]
\[= \bar{W}^1_t \frac{\sigma_{21}}{\sqrt{\sigma^2_{21} + \sigma^2_1}} + \bar{W}^2_t \frac{\sigma_{21}}{\sqrt{\sigma^2_{21} + \sigma^2_2}} - \frac{\rho \sigma_{12}}{\sqrt{\sigma^2_{12} + \sigma^2_1}} \]
Als Summe aus unabhängigen, normalverteilten Zufallsvariablen, ist U_t normalverteilt mit Erwartungswert

$$E[U_t] = E[\bar{W}_1 \frac{\sigma_{21}}{\sqrt{\sigma_{21}^2 + \sigma_1^2}} - \frac{\rho \sigma_1}{\sqrt{\sigma_{12}^2 + \sigma_1^2}}] + E[\bar{W}_2 \frac{\sigma_2}{\sqrt{\sigma_{21}^2 + \sigma_2^2}} - \frac{\rho \sigma_1}{\sqrt{\sigma_{12}^2 + \sigma_1^2}}]$$

$$= E[\bar{W}_1] \frac{\sigma_{21}}{\sqrt{1 - \rho^2}} - \frac{\rho \sigma_1}{\sqrt{1 - \rho^2}} + E[\bar{W}_2] \frac{\sigma_2}{\sqrt{1 - \rho^2}} - \frac{\rho \sigma_1}{\sqrt{1 - \rho^2}}$$

$$= 0$$

und Varianz

$$Var[U_t] = Var[\bar{W}_1 \frac{\sigma_{21}}{\sqrt{\sigma_{21}^2 + \sigma_1^2}} - \frac{\rho \sigma_1}{\sqrt{\sigma_{12}^2 + \sigma_1^2}}] + Var[\bar{W}_2 \frac{\sigma_2}{\sqrt{\sigma_{21}^2 + \sigma_2^2}} - \frac{\rho \sigma_1}{\sqrt{\sigma_{12}^2 + \sigma_1^2}}]$$

$$= Var[\bar{W}_1] \left(\frac{\sigma_{21}}{\sqrt{\sigma_{21}^2 + \sigma_2^2}} - \frac{\rho \sigma_1}{\sqrt{\sigma_{12}^2 + \sigma_1^2}} \right)^2 + Var[\bar{W}_2] \left(\frac{\sigma_2}{\sqrt{\sigma_{21}^2 + \sigma_2^2}} - \frac{\rho \sigma_1}{\sqrt{\sigma_{12}^2 + \sigma_1^2}} \right)^2$$

$$= t \left(\frac{\sigma_{21}}{\sqrt{\sigma_{21}^2 + \sigma_2^2}} - \frac{\rho \sigma_1}{\sqrt{\sigma_{12}^2 + \sigma_1^2}} \right)^2 + \left(\frac{\sigma_2}{\sqrt{\sigma_{21}^2 + \sigma_2^2}} - \frac{\rho \sigma_1}{\sqrt{\sigma_{12}^2 + \sigma_1^2}} \right)^2$$

$$= t \left(\frac{1 + \rho^2 - 2 \rho^2}{1 - \rho^2} \right)$$

$$= t.$$
Definiere \(d(x_1 S^1_v, B^1_v - B^1_t, v, t) \),
\[
d(x_2, x_1 S^1_v, B^1_v - B^1_t, v, t) = \frac{\ln \left(\frac{a^2(x_1 S^1_v)}{x^2} \right) - \left(r - q_2 - \frac{\sigma^2}{2} \right) (v - t)}{\sigma_2 \sqrt{1 - \rho^2}} - \frac{(B^1_v - B^1_t) \rho}{\sqrt{1 - \rho^2}},
\]
denn dies vereinfacht
\[
x_2 S^2_v \leq a^2(x_1 S^1_v, v)
\]
⇔
\[
x_2 e^{\left(r - q_2 - \frac{\sigma^2}{2} \right) (v - t) + \sigma_2(B^2_v - B^1_v)} \leq a^2(x_1 S^1_v, v)
\]
⇔
\[
B^2_v - B^1_v \leq \frac{\ln \left(\frac{a^2(x_1 S^1_v)}{x^2} \right) - \left(r - q_2 - \frac{\sigma^2}{2} \right) (v - t)}{\sigma_2}
\]
⇔
\[
-\rho(B^1_v - B^1_t) + \sqrt{1 - \rho^2}(U_v - U_t) \leq \frac{\ln \left(\frac{a^2(x_1 S^1_v, v)}{x^2} \right) - \left(r - q_2 - \frac{\sigma^2}{2} \right) (v - t)}{\sigma_2 \sqrt{1 - \rho^2}} + \frac{\rho(B^1_v - B^1_t)}{\sqrt{1 - \rho^2}}
\]
zu
\[
U_v - U_t \leq d(x_2, x_1 S^1_v, B^1_v - B^1_t, v, t).
\]
Damit sind die linke und die rechte Seite der Ungleichung stochastisch unabhängig.

Die Linearität des bedingten Erwartungswerts vereinfacht die Ausgangsgleichung des EEPs.

\[
\int_t^T e^{-r(v-t)} \mathbb{E} \left[(r K - (q_1 x_1 S^1_v + q_2 x_2 S^2_v)) 1_{(x_2 S^2_v \leq a^2(x_1 S^1_v, v))} \right] dv
\]
\[
= \int_t^T e^{-r(v-t)} \left(\mathbb{E} \left[r K 1_{(x_2 S^2_v \leq a^2(x_1 S^1_v, v))} \right] - \mathbb{E} \left[q_1 x_1 S^1_v 1_{(x_2 S^2_v \leq a^2(x_1 S^1_v, v))} \right] - \mathbb{E} \left[q_2 x_2 S^2_v 1_{(x_2 S^2_v \leq a^2(x_1 S^1_v, v))} \right] \right) dv
\]
Nun kann die Formel für bedingte Wahrscheinlichkeiten benutzt werden.

\[
Q \left[B^1_v - B^1_t \leq a \right] = \int_{-\infty}^a n(w) \; dw \quad a \in \mathbb{R}
\]
\[
Q \left[U_v - U_t \leq d(x_2, x_1 S^1_v, B^1_v - B^1_t, v, t) \right] \left[B^1_v - B^1_t = w \right] = \int_{-\infty}^{d(x_2, x_1 S^1_v, w, v, t)} n(u) \; du \quad w \in \mathbb{R}
\]
Eingesetzt in den ersten Erwartungswert folgt:
\[
\mathbb{E} \left[r K 1_{(x_2 S^2_v \leq a^2(x_1 S^1_v, v))} \right] = r K \cdot \int_{-\infty}^\infty n(w) \int_{-\infty}^{d(x_2, x_1 S^1_v, w, v, t)} n(u) \; du \; dw
\]
Die beiden anderen Erwartungswerte müssen noch einem Maßwechsel unterzogen werden.
Es fehlt noch ein auszuwertender Erwartungswert. Unter diesem Maß ist $U = e^{-\frac{\sigma_1^2}{2}(v-t) + \sigma_1(B_t - B_0)} \mathbb{1}_{(x_2 S_0^2 \leq a^2(x_1 S^1_0, v))}$ benutzt wird. Unter diesem Maß ist $U - U_t + \sigma_1(v-t) \sim \mathcal{N}(0, v-t)$ verteilt. Sei $g : \mathbb{R} \to \mathbb{R}$ stetig und beschränkt. Dann gilt:

\[
\tilde{E} [g(U_v - U_t + \sigma_1(v-t))] = \tilde{E} \left[g(U_v - U_t + \sigma_1(v-t)) e^{\frac{\sigma_1^2}{2}(v-t) - \sigma_1(B_t - B_0)} \right] \\
= \int_{\mathbb{R}} \frac{g(x)}{\sqrt{2\pi(v-t)}} e^{-\frac{(x-\sigma_1(v-t))^2}{2(v-t)}} e^{\frac{\sigma_1^2}{2}(v-t) - \sigma_1x} \, dx \\
= \int_{\mathbb{R}} \frac{g(x)}{\sqrt{2\pi(v-t)}} e^{-\frac{x^2}{2(v-t)}} \, dx
\]

Dies ist auch gültig, wenn zum Maßwechsel über die geometrische Brownsche Bewegung S_0^2 benutzt wird. Unter diesem Maß ist $U_v - U_t + \sigma_2(v-t) \sim \mathcal{N}(0, v-t)$ verteilt.

Es fehlt noch ein auszuwertender Erwartungswert.

\[
\tilde{E} [g(U_v - U_t + \sigma_2(v-t))] = \tilde{E} \left[g(U_v - U_t + \sigma_2(v-t)) e^{\frac{\sigma_2^2}{2}(v-t) - \sigma_2(B_t - B_0)} \right] \\
= \int_{\mathbb{R}} \frac{g(x)}{\sqrt{2\pi(v-t)}} e^{-\frac{(x-\sigma_2(v-t))^2}{2(v-t)}} e^{\frac{\sigma_2^2}{2}(v-t) - \sigma_2x} \, dx \\
= \int_{\mathbb{R}} \frac{g(x)}{\sqrt{2\pi(v-t)}} e^{-\frac{x^2}{2(v-t)}} \, dx
\]
Diese drei Ergebnisse zusammengefasst, ergeben eine Integraldarstellung des amerikanischen Basketputs.

\[P_{\Sigma}(x_1, x_2, t) = P_E(x_1, x_2, t) \]

\[+ \int_t^T e^{-r(v-t)} rK \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d(x_2, x_1 S^1, w, v, t) n(w) n(u) \, du \, dw \]

\[- q_1 x_1 e^{-q_1(v-t)} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d(x_2, x_1 S^1, w, v, t) + \sigma_1 (v-t) n(w) n(u) \, du \, dw \]

\[- q_2 x_2 e^{-q_2(v-t)} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d(x_2, x_1 S^1, w, v, t) + \sigma_2 (v-t) n(w) n(u) \, du \, dv \]
Kapitel 7

Fazit

In dieser Diplomarbeit wurde gezeigt, dass der Preis einer amerikanischen Option als Integralterm darstellbar ist. Das Integral hängt von einer Grenzfunktion ab, die den optimalen Wert der Finanzguts angibt, bei dem ausgeübt werden sollte. Wird der optimale Zeitpunkt nicht genutzt, so folgt aus der Supermartingaleigenschaft ein Abwärtstrend des diskontierten Wertprozesses. Im nächsten Kapitel wurden Eigenschaften der Grenzfunktion gezeigt, die eine erste Skizze der Grenzfunktion ermöglichen und hilfreich bei der Berechnung der Integraldarstellungen sind.

Im Falle der Putoption konnte eine explizite Formel für den Preis bei unendlicher Laufzeit angegeben werden, allerdings werden diese Art von Optionen nicht gehandelt, [1].
Die Integraldarstellung des Basketputs ist nicht viel komplexer als die einer einfachen Putoption, allerdings hängt die Grenzfunktion von 2 Dimensionen ab und ist somit schwieriger numerisch auszuwerten.
Die Parameter sind \(r = 0, 1, q = 0, K = 100, \sigma = 0,3 \) und \(T = 1 \) Jahr.
Bei diesen Parametern hat die Grenzfunktion folgende Gestalt:

![Grafik zur Grenzfunktion einer amerikanischen Putoption](image1)

Außerdem kann der Preis der Option, abhängig von dem Aktienpreis bei vier verschiedenen Restlaufzeiten, geplottet werden.

![Grafik zum Preis einer amerikanischen Putoption](image2)
Es stellt sich die Frage, ob das Modell noch mehr der Realität angepasst werden kann. Im Kapitel über die Finanzwelt wurde angedeutet, dass einige Voraussetzungen erweiterbar sind. Eine Möglichkeit, das Modell zu verändern, wäre den Kapitalmarktzins nicht mehr als deterministisch anzunehmen, sondern ebenfalls einem stochastischen Prozess unterliegen zu lassen.

Das Thema liefert also noch genügend Raum für weitere mathematische Bearbeitung.
Kapitel 8

Literaturverzeichnis

- [1] Shreve - Stochastic Calculus for Finance II: Continuous-Time Models
 Springer Verlag, Finance

 Department of Statistics, University of Warwick

 http://en.wikipedia.org → GNU Free Documentation License

- [4] Broadie and Detemple - The Valuation Of American Options On Multiple Assets
 Mathematical Finance, Vol.7, No.3 (July 1997), 241-286

 Mathematical Finance, Vol.5, No.2 (April 1995), 77-95

 Stochastic Processes and Applications 15, 1983

 Option Prices
 School of Finance and Economics, University of Technology, Sydney

- [8] Bernd Aulbach - Gewöhnliche Differentialgleichungen
 Spektrum Akademischer Verlag

- [9] Lamberton, Lapeyre - Hedging Index Options With Few Assets

- [10] Harro Heuser - Analysis 2
 Teubner-Verlag

 Springer-Verlag

- [12] Chen, Chadam, Jiang, Zheng - Convexity of the Exercise Boundary of the American
 Put Option on a Zero Dividend Asset
 Mathematical Finance, Vol. 18, No. 1 (January 2008), 185-197

 Vieweg-Verlag
• [14] Carr, Jarrow and Myneni - Alternative Charaterizations of American Put Options

 Industrial Management Review 6 (1965), 32–40

• [16] Karatzas and Shreve - Brownian Motion and Stochastic Calculus
 Springer-Verlag

• [17] Dettman, J.W. - Applied Complex Variables
 Dover, New York

• [18] Heinz Bauer - Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie
 De-Gruyter Verlag

 Dover Publishing

• [20] Mit freundlicher Genehmigung von Oleg Reichmann
 ETH Zürich

• [21] Volkert Paulsen - Bounds for the American perpetual put on a stock index
 J. Applied Probability Volume 38, Number 1 (2001), 55-66

• [22] Song-Ping Zhu - An exact and explicit solution for the valuation of American put options
 School of Mathematics and Applied Statistics, University of Wollongong, Australia
Erklärung

Hiermit versichere ich, dass ich die vorliegende Diplomarbeit selbstständig erarbeitet und verfasst habe und nur die angegebenen Quellen verwendet wurden.

Münster, 25. April 2009

Tobias Nigbur