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Kapitel 1

Einleitung

Selbst in Krisenzeiten steht der Handel mit Finanzderivaten auf den weltweiten Finanzmärkten
nicht still. Es werden Finanztitel ge- und verkauft, für die faire Preise berechnet werden
müssen. Hier spielt die Mathematik die zentrale Rolle. Der Finanzmarkt und der Verlauf des
Finanzguts werden mathematisch modelliert und darüber Preise berechnet. Je besser das
mathematische Modell die Wirklichkeit abbildet, desto mehr Risiken lassen sich minimieren,
umso höher ist das Vertrauen in die zugrunde liegende Finanzmathematik.
Diese Diplomarbeit beschäftigt sich mit dem Bepreisen von amerikanischen Optionen. Für ihre
Arbeit an der Optionspreistheorie und insbesondere der Berechnung des europäischen
Optionspreises, wurde Fischer Black und Myron Scholes 1997 der Nobelpreis verliehen. Ein
Teil dieser Grundlagen wird im zweiten Kapitel betrachtet.
Interessanter sind allerdings amerikanische Optionen: Als Besitzer einer solchen Option fragt
man sich, bei welchem Wert des zugrunde liegenden Finanzguts man von seiner Option
Gebrauch machen sollte. Es liegt also ein Stoppproblem vor.
Da von den möglichen Ausübungszeitpunkten auch der Preis der Option abhängt, gibt es nur
eine Möglichkeit arbitragefrei auszuüben, nämlich am optimalen Zeitpunkt. Mathematisch
gesehen erfüllt die Preisfunktion eine partielle Differentialgleichung bis zum
Ausübungszeitpunkt. Da dieser Zeitpunkt nicht fest ist, sondern vom Wert des Basisfinanzguts
abhängt, wird von einem freien Randwert gesprochen.
Das Problem des Lösens einer solchen Differentialgleichung geht zurück auf Henry McKean,
1965, der sich mit einer Wärme-Gleichung beschäftigte. Er erzielte zwar keine Lösung, schaffte
jedoch einige nützliche Grundlagen.
Im Laufe dieser Diplomarbeit wird gezeigt, dass die Regionen der Aktienwerte, für die die
Option gehalten werden sollte und für die ausgeübt werden sollte, von einer Funktion,
abhängig von der Zeit, getrennt werden. Diese Funktion ist nicht bekannt, aber in Kapitel 3
werden einige wichtige Eigenschaften dieser Grenzfunktion gezeigt.
Wenn man voraussetzt, dass die Grenzfunktion bekannt ist, kann eine Integraldarstellung für
die Put- und die Calloption angegeben werden. In Kapitel 4 und 5 werden zwei verschiedene
Herangehensweisen vorgestellt und die Ergebnisse kritisch betrachtet.
Wenn die Option ausgeübt wird, entspricht der Preis genau ihrer Auszahlungsfunktion, da
sonst direkt Arbitrage erzielt werden könnte. Da an diesem Eintrittszeitpunkt der Wert des
Basisfinanzguts gerade der Grenzfunktion entspricht, erhält man eine Integralgleichung.
Numerische Methoden erlauben es nun, eine Näherungslösung anzugeben. Mit dieser Lösung
ist wiederum eine numerische Lösung des Preises möglich.
Für den Preis einer amerikanischen Option die ewig läuft, also nie verfällt, kann explizit die
Grenz- und Preisfunktion angegeben werden. Dies ist auch Bestandteil von Kapitel 5.
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Optionen müssen nicht nur auf einem, sondern können auf mehreren, korrelierten Finanzgütern
basieren und werden dann Basket- oder auch Rainbowoptionen genannt. Ein Vorteil ist, dass
man sich gegen Schwankungen am Finanzmarkt absichern kann, wenn die Option auf negativ
korrelierten Finanzgütern beruht. Allerdings erschwert sich dadurch das optimale Stoppen, da
die Wertentwicklung aller Finanzgüter beachtet werden muss.
Eine Integraldarstellung für Basketoptionen wird in Kapitel 6 gegeben und Eigenschaften der
Stoppregion werden in Kapitel 3 verifiziert.

Seite 7



Tobias Nigbur Die Integraldarstellung amerikanischer Optionspreise

Kapitel 2

Modellwelt und Requisiten

2.1 Die Finanzwelt

Es wird versucht, den realen Finanzmarkt möglichst sinnvoll abzubilden. Komplett
realitätstreu ist dies allerdings kaum möglich, da der Finanzmarkt starken Schwankungen
unterliegt und einige Annahmen dieses Modell unnötig verkomplizieren würden.

Folgende Voraussetzungen werden an den Markt gestellt:

• Es werden Finanztitel gehandelt.
Ohne Finanztitel und deren Handel hätte der Markt keinen Sinn. Es werden Aktien
gehandelt, es gibt einen Geldmarkt und Finanzderivate in Form von Optionen und
Termingeschäften sind möglich. In der Finanzwelt wird von einem Underlying oder
Basisfinanzgut einer Option gesprochen. Dies können Aktien, Währungen, Rohstoffe oder
Energie sein.

• Dividenden
Wenn Aktiengesellschaften einen Teil ihres Gewinns an die Aktienbesitzer auszahlen,
nennt man dies Dividenden. Dividenden werden in einem eigenen Kapitel behandelt.

• Leerverkäufe sind beliebig möglich.
Ein Leerverkauf ist der Verkauf eines Finanztitels, den man nicht besitzt. Dieser
Finanztitel wird dann zu einem späteren Zeitpunkt wieder zurück gekauft. Man wettet
also auf fallende Preise, um Gewinn zu erzielen.
Leerverkäufe sind in der Realität auch möglich. Ein gutes Beispiel sind Hedge Fonds, die
aus Leerverkäufen und Derivaten unter hohem Risiko versuchen, hohe Renditen zu
erzielen.
Zur Zeit sind Leerverkäufe von einigen Regierungen wegen der akuten Finanzkrise
verboten.

• Finanztitel sind beliebig teilbar.
Man kann Finanztitel beliebig stückeln und verkaufen, was natürlich bei Wertpapieren
nicht möglich ist.

• Es gibt keine Beschränkungen von Aufnahmen oder Anlagen von Finanzen.

Seite 8



Tobias Nigbur Die Integraldarstellung amerikanischer Optionspreise

Theoretisch kann man extrem große Mengen an Geld leihen, ohne dass man Sicherheiten
vorweisen muß. In der Realwelt ist die Aufnahme oder Anlage von steigenden Beträgen
meist an eine steigende Zinskurve gebunden.

• Der Aufnahme- und der Anlagezins sind gleich.
Diese Annahme ist nicht sehr realitätsnah. Wie jeder aus eigener Erfahrung weiß, sind in
der realen Welt der Aufnahme und der Anlagezins nicht gleich, denn Finanzinstitute sind
gewinnorientiert und wollen sich gegen Kreditausfälle absichern. Zusätzlich wird in der
Realität die Dauer der Anlage oder Aufnahme, bei gleichem Betrag, unterschiedlich
bezinst (Zinsstrukturkurve).

• Der Markt ist arbitragefrei.
Arbitrage heißt, direkter Gewinn ohne Risiko kann erzielt werden durch geschicktes
Kaufen und Verkaufen von Finanztiteln. Eine derartige Situation kann auftreten, wenn
Finanztitel falsch bepreist sind oder unterschiedliche Werte in verschiedenen
geografischen Orten haben. In Zeiten des schnellen Handels über das Internet ist es so
gut wie nicht möglich, direkt Arbitrage abzugreifen. Außerdem würde der Markt dieses
Problem direkt ausgleichen, da jeder Anleger diese Möglichkeit ausnutzen würde und sich
durch die erhöhte Nachfrage die Preise anpassen. Das Problem der Bepreisung besteht
heutzutage in der richtigen und passenden Modellbildung.
Arbitrage ist in den folgenden Beweisen ein häufiges Argument, denn zwei Finanztitel
mit der gleichen Auszahlungsstruktur müssen den gleichen Preis haben.

• Keine Transaktionskosten oder Steuern
Transaktionskosten bestehen in der Realität eigentlich immer, sind aber abhängig vom
handelnden Individuum. Beispiele sind Telefon-/Internetkosten, Opportunitätskosten und
Brokerkosten. Steuern werden bewusst ausgeblendet, da sie von der Politik laufend
verändert werden, wie zum Beispiel die neue Besteuerung von Aktiengewinnen.

• Rationale Marktteilnehmer mit gleichen Informationen.
Jeder Marktteilnehmer will seinen Gewinn maximieren, bei Risikoaversität.
Es herrscht Informationssymmetrie: Jeder Händler weiß gleich viel über den zukünftigen
Verlauf eines Finanztitels. Insiderhandel ist also nicht möglich.

Der Finanzmarkt kommt einem vollkommenen Markt also sehr nahe. Es gibt eine Menge
Märkte, die weit von einem vollkommenen Markt entfernt sind. Das Aussetzen einer
Voraussetzung kann sogar zum kompletten Marktversagen führen. Ein populäres Beispiel ist
der Gebrauchtwagenmarkt: Bei Informationsasymmetrien kommt kein Handel zustande.
[George Akerlof: The Market for ’Lemons’: Quality Uncertainty and the Market Mechanism,
The Quarterly Journal of Economics, Vol. 84 No. 3 (Aug. 1970), S. 488–500]
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2.2 Optionen

Optionen sind Verträge zwischen 2 Parteien, bei denen der Käufer (long-position) das Recht
erwirbt, zu einem oder mehreren Zeitpunkten eine bestimmte Anzahl von Finanzgütern zu
einem Ausübungspreis K an den Verkäufer (short-position) zu kaufen oder verkaufen. Das
Recht ist keine Pflicht, der Käufer kann die Option also auch verfallen lassen.
Optionen werden gehandelt, weil man auf steigende oder fallende Kurse wetten, oder sich
absichern möchte. Optionen lassen sich in 2 Klassen unterteilen.

• Put-Optionen: Verkaufsoptionen
Die Auszahlungsfunktion für den Käufer einer Putoption auf ein Finanzgut S ist
max(K − S, 0) = (K − S)+

Als Käufer wettet man auf fallende, als Verkäufer auf steigende Kurse.

• Call-Optionen: Kaufoptionen
Die Auszahlungsfunktion für den Käufer einer Calloption auf ein Finanzgut S ist
max(S −K, 0) = (S −K)+

Als Käufer wettet man auf steigende, als Verkäufer auf fallende Kurse.

Wenn man vom einem Einperiodenmodell ausgeht und den Diskontierungsfaktor
vernachlässigt, kann der Profit in Abhängigkeit des Aktienwerts gut visualisiert werden. Wenn
die Option in t = 0 10 Geldeinheiten gekostet hat und der Ausübungspreis K=100 ist, dann
zeigen folgende zwei Grafiken den Profit in t = 1 in Abhängigkeit vom Aktienwert.

http://de.wikipedia.org/wiki/Call-Option [3] http://de.wikipedia.org/wiki/Put-Option [3]

Natürlich muss davon ausgegangen werden, dass sich die 10 Geldeinheiten über die eine
Periode verzinst hätten und sich somit die Funktionen leicht verschieben.
Wie man erkennt, lässt sich mit einer Call-Option, im Gegensatz zur Put-Option, theoretisch
unendlich viel Profit erzielen. Der Profit bei der Put-Option ist begrenzt, da das
Basisfinanzgut nur positive Werte annehmen kann.

Wenn die Wahrscheinlichkeit für alle möglichen zukünftigen Zustände des Finanzguts bekannt
und der Verzinsungsfaktor deterministisch ist, welchen fairen Preis hat dann die Option in
t = 0?
Ein fairer Preis ist ein Preis, der Arbitrage ausschließt und somit weder den Käufer noch den
Verkäufer der Option benachteiligt. Die Berechnung dieser Optionspreise für verschiedene
Arten von Optionen ist Inhalt dieser Diplomarbeit.
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Optionen lassen sich auch nach möglichen Ausübungszeitpunkten separieren.

Europäische Option
Eine europäische Option ist ein Vertrag zu einem Preis PE(St, t) (Put) oder CE(St, t) (Call)
zum Zeitpunkt t und Kurswert des Basisfinanzguts S zum Zeitpunkt t, St mit Restlaufzeit
T − t. Dem Käufer wird erlaubt, eine bestimmte Aktie zum Ende der Laufzeit für einen
festgelegten Betrag K zu kaufen bzw. verkaufen, oder die Option verfallen zu lassen.

Amerikanische Option
Eine amerikanische Option wird zum Preis P (St, t) (Put) oder C(St, t) (Call) in Abhängigkeit
von der Restlaufzeit T − t und des aktuellen Kurswertes des Basisfinanzguts St, verkauft. Die
amerikanische Option ist eine europäische Option mit dem zusätzlichen Recht, zu jedem
Zeitpunkt während der Vertragslaufzeit von seinem Kauf- bzw Verkaufsrecht Gebrauch zu
machen.
Deswegen muss eine amerikanische Option, bei gleichem Basisfinanzgut, gleicher Laufzeit und
gleichem Ausübungsbetrag mehr Wert als eine europäische Option sein, weil es die Möglichkeit
zur frühen, optimalen Ausübung gibt. Das ist auch der Grund, warum eine amerikanische
Option mit Vertragslaufzeit T1 einen höheren Preis hat als eine mit T2 für T1 > T2.
Als innerer Wert einer amerikanischen Option wird der Gewinn bei sofortigem Ausüben der
Option bezeichnet.

Basket Option
Eine Basket Option basiert auf einem Portfolio von Aktien. Es kann also eine Vielzahl von
Basisfinanzgütern geben, die alle miteinander korreliert sind. Basket Optionen können als
europäische oder amerikanische Basket Optionen gehandelt werden.
Die Benutzung von einem Portfolio von Aktien als Basis hat den Vorteil, dass sich Risiken
durch Korrelationseffekte minimieren lassen.
Kombiniert man zum Beispiel die Aktie eines ölfördernden Unternehmens und eines
ölverbrauchenden Unternehmens, hat man sich gegen Ölpreisschwankungen abgesichert, denn
von einem Preisanstieg des Öls profitiert das ölfördernden Unternehmen und von einem
Preisverfall das ölverbrauchende Unternehmen.
Die Auszahlungsfunktion für einen Basketput auf zwei Finanzgüter ist (K − (S1 + S2))+.
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2.3 Mathematisches Modell

Der Inhalt dieses Kapitels soll einen kurzen Überblick über die Modellierung des
Basisfinanzguts geben. Finanzmathematische Grundlagen werden nicht aufgeführt. In [1] und
ähnlicher Fachliteratur kann der geneigte Leser diese Grundlagen nachlesen.

2.3.1 Der Kursverlauf

Grundlage für die Berechnungen ist ein Wahrscheinlichkeitsraum

(Ω,A, Q)

Ω ist die Menge aller zukünftigen Zustände und A eine Sigma-Algebra auf Ω.
Q ist ein Maß für die Wahrscheinlichkeit des Eintritts von A ∈ A.
Außerdem gibt es einen Zeithorizont mit natürlicher Filtration,

([0, T ] ,Ft)

die von einer stochastischen Prozess Wt erzeugt wird.

Ft := S(Ws, s ≤ t)

Sichere Anlage
Es wird von einer stetigen Verzinsung von angelegtem oder geliehenen Kapitals ausgegangen.
Wenn Rt den Betrag zum Zeitpunkt t angibt, der aus R0 entstanden ist, dann gilt mit dem
konstanten Zinssatz r:

dRt =rRtdt
d(ln(Rt)) =rdt

ln(Rt) =
∫ t

0
r dt+ c

Somit ist das Kapital in t Rt = R0e
rt und er(t−s) der Verzinsungsfaktor von s nach t und

e−r(t−s) der Diskontierungsfaktor von t nach s, s ≤ t.

Der Aktienkurs
Der zukünftige, unsichere Kurs einer Aktie muss modelliert werden: Es wird ein stetiger,
stochastischer Prozess gesucht, der den realen Schwankungen einer Aktie ähnlich ist.

Brownsche Bewegung

W : Ω× [0, T ]→ R

Wenn Wt(ω) folgende 3 Bedingungen erfüllt, liegt eine Brownsche Bewegung (manchmal auch
Wiener Prozess gennant) vor:

W0(ω) = 0 Q− f − sω (2.1)
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W (ω) : t 7−→Wt(ω) stetig für alle t ∈ [0, T ] Q− f − s (2.2)

Wt(ω) hat unabhängige Zuwächse und (Wt(ω)−Ws(ω)) ∼ N (0, t− s) t ≥ s (2.3)

Negative Aktienkurse sind natürlich nicht sinnvoll und die Aktie sollte über die Zeit einen
Wertzuwachs verbuchen, da auch der risikolose Zinssatz r echtgrößer als Null ist.

Geometrische Brownsche Bewegung

St(ω) = S0e

(
µ−σ

2

2

)
t+σWt(ω) (2.4)

µ ist die Drift der Aktie, denn es gilt

E [St] = S0e

(
µ−σ

2

2

)
t
E
[
eσWt(ω)

]
= S0e

µt

da eσWt log-normalverteilt ist und dies ist wie eine stetige Verzinsung des Startpreises S0 zum
Zinssatz µ.
Die Volatilität σ gibt den Einfluss des Risikos in Form einer Browschen Bewegung auf den
Aktienwert an.
Beide Faktoren werden als konstant angenommen. µ ist größer als r, da die Aktie sonst nicht
attraktiv wäre und σ echt größer als Null, damit der Wert der Aktie nicht gegen Null tendiert.
Mögliche Verläufe einer Geometrischen Brownschen Bewegung stellt folgende Grafik dar.[20]
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Der Verlauf einer Geometrischen Brownschen Bewegung kann durch eine stochastische
Differentialgleichung dargestellt werden. Hierzu wird die Itô-Formel benutzt.

dSt = µStdt+ σStdWt

Es ist auch möglich, sich den Aktienverlauf über diese stochastische Differentialgleichung zu
definieren und auf die geometrische Brownsche Bewegung zu kommen. Dafür muss, wie bei der
sicheren Anlage, der Logarithmus benutzt werden.
Um den Zusammenhang zum Marktverlauf zu erkennen, stelle die Formel um.

dSt = rStdt+ (µ− r)︸ ︷︷ ︸
Risiko-Zuschlag

Stdt+ σStdWt

Der Risiko-Zuschlag ist die zusätzliche Drift, die die geometrische Brownsche Bewegung
erfährt, damit die Aktie für Anleger überhaupt interessant ist.

Durch das No-Arbitrage-Theorem ist die Arbitragefreiheit sichergestellt, wenn der diskontierte
Aktienwertverlauf ein Martingal ist, also keine Drift besitzt.
Ziel ist es, mit der Girsanov-Transformation einen Maßwechsel vorzunehmen, unter dem die
Drift der geometrischen Brownschen Bewegung r beträgt.

dSt = rStdt+ σSt

(
(µ− r)
σ

dt+ dWt

)
Nach Girsanov ist W̃t = Wt − vt, v ∈ R, eine Brownsche Bewegung unter dem Maß Q̃.
Umgestellt zu dWt = dW̃t + vdt erkennt man, dass

v = −µ− r
σ

gelten muss, damit Q̃ das Martingalmaß bezeichnet.

⇒ W̃t = Wt −
(
−µ− r

σ

)
t

Eingesetzt in die stochastische Differentialgleichung entsteht

dSt = rStdt+ σStdW̃t. (2.5)

Diese Differentialgleichung wird, unter dem neuen Maß, erfüllt von

St = S0e

(
r−σ

2

2

)
t+σW̃t (2.6)

Bemerkung
Das Martingal-Representation-Theorem stellt fest, dass der Markt, der aus diesem
Aktienpreisprozess und einer sicheren Anlage besteht, vollständig ist. Aus der Vollständigkeit
schließt das second fundamental theorem of asset pricing, dass Q̃ eindeutig bestimmt ist. Siehe
[1]
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2.3.2 Mehrdimensionale Erweiterung

Um Basket Optionen zu bewerten, wird ein ähnliches Modell zur Modellierung des Verlaufs des
Basisfinanzguts benötigt, wie im eindimensionalen Fall. Die Schwierigkeit entsteht dabei, dass
die Summe von geometrischen Brownschen Bewegungen nicht wieder eine solche ist. In den zu
Grunde liegenden Papern dieser Arbeit wird meist nur von korrelierten Finanzgütern
gesprochen. Diese Grundlage soll hier noch einmal aufbereitet werden.
In der Realität unterliegt eigentlich jedes Paar Wertpapiere einer mehr oder weniger starken
Korrelation. Diese Korrelationen herauszufinden, ist ein eigenes wissenschaftliches Thema.
Gehe davon aus, dass es einen Vektor ~Wt aus zwei stochastisch unabhängigen Brownschen
Bewegungen W 1

t und W 2
t gibt. Wenn nun daraus zwei korrelierte geometrische Brownsche

Bewegungen konstruiert werden sollen, dann muß W 1
t und W 2

t in jeder der beiden
Differentialgleichungen vorkommen.

dS1
t = µ1S

1
t dt+ S1

t (σ12dW
2
t + σ1dW

1
t ) (2.7)

dS2
t = µ2S

2
t dt+ S2

t (σ21dW
1
t + σ2dW

2
t ) (2.8)

Die konstanten Werte σ12 und σ21 aus R bezeichnen den Einfluß der jeweils anderen
Brownschen Bewegung.
Nun soll, in Anlehnung an [1], für den 2 dimensionalen Fall ein Maßwechsel zum Martingalmaß
vorgenommen werden.
Definiere β(t) als Verzinsungsprozess.

β(t) = e(rt)

Nach dem Maßwechsel nach Girsanov sollte der diskontiere Werteprozess des Finanzguts keine
Drift mehr besitzen.
Durch Anwenden der Quotientenregel im dt Fall entsteht mit der Itô-Formel:

d

(
Sit
β

)
=
Sit
β

[
(µi − r)dt+

(
σijdW

j
t + σidW

i
t

)]
i = 1, 2 j 6= i

Wenn der Maßwechsel durch eine mehrdimensionale Girsanov-Transformation erfolgen soll,
dann sind W̃ 1

t = W 1
t − θ1t und W̃ 2

t = W 2
t − θ2t Brownsche Bewegungen unter dem neuen Maß

Q̃. Nun müssen diese beiden Konstanten bestimmt werden. Setze dazu die beiden Gleichungen
ein.

d

(
Sit
β

)
=
Sit
β

(
σij(θjdt+ dW̃ j

t ) + σi(θidt+ dW̃ i
t )
)

i = 1, 2 j 6= i

Also muss für θ1 und θ2 folgendes gelten:

(µi − r) = σijθj + σiθi i = 1, 2 j 6= i

Dementsprechend entsteht im Falle von n Basisfinanzgütern ein lineares Gleichungssystem mit
n Unbekannten und n Gleichungen, welches eindeutig lösbar ist, wenn die Brownschen
Bewegungen paarweise stochastisch unabhängig sind. In diesem Fall liegt ein vollständiger
Markt vor und das Martingalmaß ist eindeutig bestimmt.
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Die Lösung des Gleichungssystems für θ1 und θ2 ist im vorliegenden, zweidimensionalen Fall:

θ1 =
σ12(µ2 − r)− σ2(µ1 − r)

σ21σ12 − σ1σ2

θ2 =
(µ2 − r)
σ2

− σ21

σ2
θ1

Über die mehrdimensionale Girsanov-Transformation kann nun explizit das neue Maß Q̃
bestimmt werden.
Unter diesem Maß gilt für die stochastischen Differentialgleichungen von S1

t und S2
t :

dS1
t =S1

t (rdt+ σ12dW̃
2
t + σ1dW̃

1
t )

dS2
t =S2

t (rdt+ σ21dW̃
1
t + σ2dW̃

2
t )

Diese lassen sich wieder in ein Black-Scholes-Modell verwandeln.

dS1
t =rS1

t dt+ S1
t

√
σ2

12 + σ2
1dŴ

1
t (2.9)

dS2
t =rS2

t dt+ S2
t

√
σ2

21 + σ2
2dŴ

2
t (2.10)

mit
Ŵ i
t =

1√
σ2
ij + σ2

i

(
σijW̃

j
t + σiW̃

i
t

)
i = 1, 2 j 6= i

In dieser Darstellung ist Ŵ i
t , i = 1, 2, wieder eine Brownsche Bewegung unter Q̃:

Ŵ i
t ist adaptiert an Ft, hat stetige Pfade und ist ein Martingal, da die Differentialdarstellung

dŴ i
t keinen Driftterm besitzt.

dŴ i
t =

1√
σ2
ij + σ2

i

(
σijdW̃

j
t + σidW̃

i
t

)
i = 1, 2 j 6= i

dŴ i
t dŴ

i
t =

 1√
σ2
ij + σ2

i

(
σijdW̃

j
t + σidW̃

i
t

) 1√
σ2
ij + σ2

i

(
σijdW̃

j
t + σidW̃

i
t

)
=

1
σ2
ij + σ2

i

(
σ2
ijdW̃

j
t dW̃

j
t + σ2

i dW̃
i
t dW̃

i
t

)
= dt ∀t i = 1, 2

Nach dem Lévy Theorem, siehe [1], reichen diese Eigenschaften, damit eine Brownsche
Bewegung vorliegt.
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Die geometrischen Brownschen Bewegungen sind nun korreliert, da die Brownschen
Bewegungen korreliert sind. Setze σ̂i =

√
σ2
ij + σ2

i und definiere den konstanten
Korrelationskoeffizienten ρ durch:

dŴ i
t dŴ

j
t =

 1√
σ2
ij + σ2

i

(
σijdW̃

j
t + σidW̃

i
t

) 1√
σ2
ji + σ2

j

(
σjidW̃

i
t + σjdW̃

j
t

)
=

(σjiσi + σijσj)√
σ2
ij + σ2

i

√
σ2
ji + σ2

j

dt

=
(σjiσi + σijσj)

σ̂iσ̂j
dt

= ρ dt ∀t i 6= j

Lösungen für die stochastischen Differentialgleichungen (2.10) und (2.11) sind:

S1
t = S1

0 exp
([
r − σ̂2

1

2

]
t+ σ̂1Ŵ

1
t

)
(2.11)

S2
t = S2

0 exp
([
r − σ̂2

2

2

]
t+ σ̂2Ŵ

2
t

)
(2.12)

mit

Ŵ i
t =

1√
σ2
ij + σ2

i

(
σijW̃

j
t + σiW̃

i
t

)
i = 1, 2 j 6= i

und

σ̂i =
√
σ2
ij + σ2

i i = 1, 2 j 6= i

Notation
Von nun an gelte dass:
Q anstatt Q̃ das transformiertes Maß bezeichnet und Wt die dazugehörige Brownsche
Bewegung ist, es sei denn, es wird explizit im Text erwähnt.
Desweiteren wird σ für σ̂ stehen.
Da auch Preise für immerhalb der Laufzeit angegeben werden sollen, definiere Sxv als eine
geometrische Brownsche Bewegung mit Startwert x = St zum Zeitpunkt v, wobei t < v.

Sxv = St exp
(

(r − σ2

2
)(v − t) + σ(Wv −Wt)

)
Für t = 0:

Sv = S0 exp
(

(r − σ2

2
)v + σWv

)
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2.4 Dividenden

Dividenden sind zyklische Auszahlungen der Firmen an ihre Aktienbesitzer. In Deutschland
wird meist einmal im Jahr ein Teil des erwirtschafteten Gewinns ausgezahlt, aber nicht alle
börsennotierten Firmen zahlen Dividenden an ihre Aktienbesitzer. In diesem Fall besteht der
ganze Gewinn eines Aktienbesitzers aus Kursgewinnen. Gründe dafür können eine anstehende
größere Investition sein, oder dass aus Prinzip keine Dividende bezahlt wird.

Die zyklische Dividendenzahlung wird auch diskrete Dividendenzahlung genannt.
Diese Zahlungsreihe birgt ein Problem: Der Optionsbesitzer bezieht keinen zusätzlichen
Nutzen, wenn eine Dividende ausgezahlt wird. Also ist die Dividende vom Wert des Finanzguts
abzuziehen. Bei diskreten Dividenden verliert der Verlauf der Aktie seine Stetigkeit, da
Sprünge bei Dividendenauszahlung auftreten.

Da diese Art der Dividendenzahlung nicht optimal ist, werden stetige Dividendenzahlungen
behandelt. Bei dieser Art von Dividendenzahlungen wird angenommen, dass die Dividende
stetig ausgezahlt wird und proportional mit konstantem Faktor q, (q < r), vom Aktienkurs
abhängt.
Da Arbitrage ausgeschlossen ist muss die Dividende vom Verlauf des Basisfinanzguts
abgezogen werden.

dSt = rStdt+ σStWt − qStdt = (r − q)Stdt+ StσWt (2.13)

Diese Differentialgleichung wird erfüllt von:

St(ω) = S0e

(
r−q−σ

2

2

)
t+σWt(ω) (2.14)

Bei dieser Darstellung existiert kein Stetigkeitsproblem.

Bemerkung
Der diskontierte Aktienwert mit Dividendenauszahlungen unter dem Martingalmaß Q ist kein
Martingal. Erst wenn die Dividende wieder angelegt wird, entsteht die Martingaleigenschaft
und stellt die Arbitragefreiheit sicher.
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2.5 Europäische Optionen

Im Folgenden wird eine Preisfunktion für europäische Optionen nach Black-Scholes angegeben.

2.5.1 Preis bei einem Basisfinanzgut

Putpreis
Definiere den Putpreis als Funktion vom Wert des Basisfinanzguts St = x und der Restlaufzeit
(T − t).

PE(x, T − t) := E
[
e−r(T−t)(K − ST )+ | Ft

]
Analog hierzu defiere den Callpreis als CE(x, (T − t)).
Der stochastische Prozess St erfüllt die Markoveigenschaft, wodurch die Informationen Fs,
s < t, für die Preisberechnung in t irrelevant sind.

ST = S0 exp
(

(r − q − σ2

2
)T + σWT

)
= S0 exp

(
(r − q − σ2

2
)t+ σWt

)
exp

(
(r − q − σ2

2
)(T − t) + σ(WT −Wt)

)
= St︸︷︷︸
Ft messbar

exp
(

(r − q − σ2

2
)(T − t) + σ(WT −Wt)

)
︸ ︷︷ ︸

unabhängig von Ft

= x exp
(

(r − q − σ2

2
)(T − t) + σ(WT −Wt)

)
Für die Preisberechnung wird als Erstes der Positivteil der Auszahlungsfunktion als
Indikatorfunktion ausgedrückt und die Linearität des Erwartungswertes genutzt.

E
[
e−r(T−t)(K − SxT )+

]
= E

[
e−r(T−t)K1(SxT<K) − e

−r(T−t)SxT1(SxT<K)
]

= e−r(T−t)K · E
[
1(SxT<K)

]
− E

[
e−r(T−t)SxT1(SxT<K)

]
= e−r(T−t)K ·Q (SxT < K)− xE

[
exp

((
−q − σ2

2

)
(T − t) + σ(WT −Wt)

)
1(SxT<K)

]
= e−r(T−t)K ·Q (SxT < K)− xe−q(T−t)E

[
exp

((
−σ

2

2

)
(T − t) + σ(WT −Wt)

)
1(SxT<K)

]

Auf den Erwartungswert kann die Girsanov-Transformation angewendet werden, denn
exp

((
−σ2

2

)
(T − t) + σ(WT −Wt)

)
ist ein Martingal mit Start in t und

E

[
exp

(
−σ

2

2
(T − t) + σ(WT −Wt)

)∣∣∣∣Ft] = exp
(
σ2

2
t− σWt

)
E

[
exp

((
−σ

2

2

)
T + σWT

)∣∣∣∣Ft] = 1.
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Unter dem neuen Maß Q̄ ist (W̄T − W̄t) = (WT −Wt)− σ(T − t) eine Brownsche Bewegung.

E
[
e−r(T−t)(K − SxT )+

]
= e−r(T−t)K ·Q [SxT < K]− xe−q(T−t) · Q̄ [SxT < K]

= e−r(T−t)K ·Q
[
exp

((
r − q − σ2

2

)
(T − t) + σ(WT −Wt)

)
<
K

x

]
− xe−q(T−t) · Q̄ [SxT < K]

= e−r(T−t)K ·Q

WT −Wt <
ln
(
K
x

)
−
(
r − q − σ2

2

)
(T − t)

σ

− xe−q(T−t) · Q̄ [SxT < K]

(WT −Wt) ∼ N (0, T − t) unter Q. Setze N ,

N [d] =
1√
2π

∫ d

−∞
e
−x2

2 dx,

als Verteilungsfunktion der Standardnormalverteilung fest.

E
[
e−r(T−t)(K − SxT )+

]
= e−r(T−t)K·N

 ln
(
K
x

)
−
(
r − q − σ2

2

)
(T − t)

σ
√
T − t

−xe−q(T−t)·Q̄ [SxT < K]

Betrachte das transformierte Maß Q̃.

Q̄ [SxT < K] = Q̃

[
exp

((
r − q − σ2

2

)
(T − t) + σ(WT −Wt)

)
<
K

x

]

= Q̄

WT −Wt <
ln
(
K
x

)
−
(
r − q − σ2

2

)
(T − t)

σ


= Q̄

WT −Wt − σ(T − t) <
ln
(
K
x

)
−
(
r − q − σ2

2

)
(T − t)

σ
− σ(T − t)


= Q̄

W̄T − W̄t <
ln
(
K
x

)
−
(
r − q + σ2

2

)
(T − t)

σ


= N

 ln (Kx )−
(
r − q + σ2

2

)
(T − t)

σ
√
T − t



Beide Ergebnisse zusammen liefern den Putpreis einer europäischen Option.

PE(x, T − t) =

e−r(T−t)K ·N

 ln
(
K
x

)
−
(
r − q − σ2

2

)
(T − t)

σ
√
T − t

−xe−q(T−t) ·N
 ln

(
K
x

)
−
(
r − q + σ2

2

)
(T − t)

σ
√
T − t


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Callpreis
Aus dem Putpreis lässt sich direkt der Callpreis ableiten.
Die Auszahlungsfunktion verändert sich von (K − ST )1(K≥SxT ) zu (ST −K)1(K≤SxT ). Es muss
also der Putpreis mit −1 multipliziert werden. Ebenso die Integralgrenze der Normalverteilung
für die Eintrittswahrscheinlichkeit des Basisfinanzguts in den Positivteil der
Auszahlungsfunktion. Falls X ∼ N (0, 1) unter Q, dann folgt mit der Symmetrieeigenschaft der
Standardnormalverteilung Q(X ≥ a) = Q(X ≤ −a) für a ∈ R.
Zusammen erhält man:

CE(x, T − t) =

xe−q(T−t) ·N

 ln
(
x
K

)
+
(
r − q + σ2

2

)
(T − t)

σ
√
T − t

−e−r(T−t)K ·N
 ln

(
x
K

)
+
(
r − q − σ2

2

)
(T − t)

σ
√
T − t


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2.5.2 Preis bei mehreren Basisfinanzgütern

In dieser Sektion wird der Preis einer europäischen Putoption berechnet, die auf zwei
Finanzgütern basiert. Genauso wie bei einem Basisfinanzgut wird auf eine
Girsanov-Transformation zurückgegriffen. Die Bearbeitung erfolgt nach
Lamberton, Lapeyre [9].
Für S1

t = x1 und S2
t = x2 ist die Preisfunktion:

PE(x1, x2, t) = E
[
e−r(T−t)(K − (S1

T + S2
T ))+ | Ft

]
= E

[
e−r(T−t)(K − (Sx1

T
1 + Sx2

T
2))+

]
Aufgrund der Konstruktion der zwei korrelierten Finanzgüter wird daraus, analog zum Fall mit
einem Basisfinanzgut:

PE(x1, x2, t) =e−r(T−t)K · E
[
1(

S
x1
T

1
+S

x2
T

2≤K
)]

+ x1e
−q1(T−t)E

[
exp

(
−σ

2
1

2
(T − t) + σ1(W 1

T −W 1
t )
)
1(

S
x1
T

1
+S

x2
T

2≤K
)]

+ x2e
−q2(T−t)E

[
exp

(
−σ

2
2

2
(T − t) + σ2(W 2

T −W 2
t )
)
1(

S
x1
T

1
+S

x2
T

2≤K
)]

Benutze die Girsanov-Transformation.

PE(x1, x2, t) =e−r(T−t)K ·Q
[
Sx1
T

1 + Sx2
T

2 ≤ K
]

+ x1e
−q1(T−t)Q̃1

[
Sx1
T

1 + Sx2
T

2 ≤ K
]

+ x2e
−q2(T−t)Q̃2

[
Sx1
T

1 + Sx2
T

2 ≤ K
]

Über die Brownschen-Bewegungen unter den Maßen Q̃1 und Q̃2, die die
Girsanov-Transformation liefert, können die Wahrscheinlichkeiten genauer berechnet werden.
Dies ist aber nicht relevant für den Rest der Diplomarbeit.
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2.6 Die Black-Scholes Differentialgleichung

Sei weiterhin St das Finanzgut, auf dem die Option basiert.

dSt = rStdt+ σStdWt

f(St, t) sei der Preis einer Option mit Laufzeit T und Basisfinanzgut S, die nur vom aktuellen
Wert des Finanzguts St und dem aktuellen Zeitpunkt t beziehungsweise der Restlaufzeit
abhängt. Die Optionen, die diese Eigenschaft erfüllen sind sowohl europäische als auch
amerikanische Put- und Calloptionen. Ein Beispiel für eine Option die diese Eigenschaft nicht
besitzt, ist die Lookback-Option.

f : ]0,∞[× [0, T ]→ R+

Wenn die Preisfunktion zweimal stetig in der ersten und einmal stetig in der zweiten Variable
differenzierbar ist, dann kann die Itô-Formel angewendet werden.

df(St, t) =
∂f(St, t)

∂t
dt+

∂f(St, t)
∂S

dSt +
1
2
∂2f(St, t)
∂S2

d 〈S, S〉t

=
(
∂f(St, t)

∂t
+
σ2S2

t

2
∂2f(St, t)
∂S2

)
dt+

∂f(St, t)
∂S

dSt

=
(
∂f(St, t)

∂t
+
σ2S2

t

2
∂2f(St, t)
∂S2

)
dt+

∂f(St, t)
∂S

(rStdt+ σStdWt)

=
(
∂f(St, t)

∂t
+
σ2S2

t

2
∂2f(St, t)
∂S2

+ rSt
∂f(St, t)
∂S

)
dt+ σSt

∂f(St, t)
∂S

dWt

Die zweite Gleichung entsteht durch Auflösen der quadratischen Variation d 〈S, S〉t = σ2S2
t dt,

wegen d 〈W,W 〉t = dt.
Da von einem Modell mit einer sicheren Anlage und einem stochastischem Prozess
ausgegangen wird, liefert das Martingale Representation Theorem, [1], die Vollständigkeit des
Modells. Deswegen kann die Auszahlungsstruktur der Option, durch ein geeignetes, risikoloses
Portfolio dubliziert werden.
Kaufe die Option f und verkaufe einen konstanten Teil ∆ von S. Der Wert des Portfolios ist

A(St, t) = f(St, t)−∆St

und als stochastische Differentialgleichung:

dA(St, t) = df(St, t)−∆dSt.

Setze nun die Formeln für df(St, t) und dSt ein.

dA(St, t) =
(
∂f(St, t)

∂t
+ σ2S2

t

1
2
∂2f(St, t)
∂S2

+ rSt
∂f(St, t)
∂S

− rSt∆
)
dt+σSt

(
∂f(St, t)
∂S

−∆
)
dWt

Da risikolos dubliziert werden soll, muss die Unsicherheit wegfallen.

σSt

(
∂f(St, t)
∂S

−∆
)

= 0
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⇒ ∆ =
∂f(St, t)
∂S

⇒ dA(St, t) =
(
∂f(St, t)

∂t
+ σ2S2

t

1
2
∂2f(St, t)
∂S2

)
dt

Das Portfolio verändert sich aber über die Zeit wie eine sichere Anlage:

dA(St, t) = r

(
f(St, t)−

∂f(St, t)
∂S

St

)
dt

Da bei beiden Strategien durch die gleiche Auszahlungsstruktur den gleichen Preis haben
müssen, folgt:

dA(St, t) =
(
∂f(St, t)

∂t
+ σ2S2

t

1
2
∂2f(St, t)
∂S2

)
dt

⇔
(
rf(St, t)− rSt

∂f(St, t)
∂S

)
dt =

(
∂f(St, t)

∂t
+ σ2S2

t

1
2
∂2f(St, t)
∂S2

)
dt

⇒ rf(St, t)− rSt
∂f(St, t)
∂S

=
∂f(St, t)

∂t
+ σ2S2

t

1
2
∂2f(St, t)
∂S2

Umgestellt ergibt sich eine partielle Differentialgleichung, die auch
Black-Scholes-Differentialgleichung genannt wird.

∂f(St, t)
∂t

+ σ2S2
t

1
2
∂2f(St, t)
∂S2

− rf(St, t) + rSt
∂f(St, t)
∂S

= 0 (2.15)

Bei Dividendenzahlung verändert sich die partielle Differentialgleichung zu:

∂f(St, t)
∂t

+ σ2S2
t

1
2
∂2f(St, t)
∂S2

− rf(St, t) + (r − q)St
∂f(St, t)
∂S

= 0 (2.16)

Randwerte für Put und Call
Am Ende der Laufzeit muss der Wert der Option f(ST , T ) = (ST −K)+ bzw
f(ST , T ) = (K − ST )+ entsprechen, da sonst Arbitragemöglichkeiten entstehen.
Eine Limesbetrachtung für St, in Abhängigkeit der Auszahlungsfunktion, kann durchgeführt
werden.
Für die Calloption gilt f(S, t) ∼ S für S →∞ und limS→0 f(S, t) = 0, da eine Kaufoption
vorliegt.
Ebenso kann für die Putoption limS→∞ f(S, t) = 0 und limS→0 f(S, t) = e−r(T−t)K festgestellt
werden.

Bemerkung
Es ist auch möglich, über die Differentialgleichung und Randwerte die Lösung für das
Black-Scholes-Modell der europäischen Option anzugeben.
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Kapitel 3

Die Grenzfunktion

3.1 Die Preisfunktion und optimales Stoppen

Dieses Kapitel beschränkt sich auf die Betrachtung des Putpreises.
Um die Arbitragefreiheit im Modell zu bewahren, definiere den Preis einer amerikanischen
Putoption P (x, t) in t und mit aktuellem Basisgutwert St = x und Laufzeit T durch:

P (x, t) = sup
τ∈ΨTt

E[e−r(τ−t)(K − Sτ )+ | Ft] = sup
τ∈ΨTt

E[e−r(τ−t)(K − Sxτ )+]

Ψ ist die Menge aller Stoppzeiten bezüglich der Filtration F und ΨT
t ⊂ Ψ, die Menge aller

Stoppzeiten aus Ψ aus dem Intervall [t, T ].
Für diesen Preisprozess gilt:

P (St, t) ≥ (K − St)+, St ∈ ]0,∞[, t ∈ [0, T ]

Insbesondere

P (St, t) =

{
> (K − St)+ vor optimaler Ausübung
= (K − St)+ nach optimaler Ausübung

Die strikte Ungleichung ist grade die Aussage der Optimalität, siehe Krylov, [11].

Stetigkeit
Die mathematische Argumentation für die Stetigkeit der Preisfunktion in den Variablen t und
x geht zurück auf Krylov, [11].

Übergangsbedingung
McKean zeigt in [15], dass die Ableitung in S der Preisfunktion stetig am Auslösepunkt ist. Sei
Sτ der optimale Wert zum Auslösen.

∂P (St, τ)
∂S

∣∣∣∣
S=Sτ

=
∂(K − St)

∂S

∣∣∣∣
S=Sτ

= −1

Häufig wird diese Gleichung Smooth-Fit-Eigenschaft genannt. Damit ist es möglich die
erweiterte Itô-Formel auf die Funktion P (St, t) über die komplette Laufzeit der Option
anzuwenden, siehe Karatzas und Shreve [16]. Dies war vorher nicht möglich, da P (St, t) keine
C2-Funktion ist. Es existiert eine Unstetigkeitsstelle der zweiten Ableitung im
Auslösezeitpunkt. ∂2(K−S)

∂S2 ≡ 0 und ∂P 2

∂S2 > 0. Im Folgenden ist die erweiterte Itô-Formel
gemeint, wenn von der Itô-Formel gesprochen wird.
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Satz
Der diskontierte Putpreis e−rtP (St, t) ist ein Supermatingal.
Beweis
Bestimme die Drift des diskontierten Putpreises e−rtP (St, t) über die Itô-Formel.

d
(
e−rtP (St, t)

)
=e−rt

(
∂P (St, t)

∂t
+ σ2S2

t

1
2
∂2P (St, t)

∂S2
− rP (St, t) + rSt

∂P (St, t)
∂S

)
dt

+ rSt
∂P (St, t)

∂S
dWt

Vor der Ausübung erfüllt der Preis die Black-Scholes-Differentialgleichung, da er nur vom
aktuellen Wert von S und t abhängt. Durch Einsetzen der Auszahlungsfunktion erkennt man,
dass der Preis die partielle Differentialgleichung nach Ausübung nicht erfüllt. Somit gilt die
Black-Scholes-Differentialgleichung bis zum Ausüben, weswegen auch häufig von einem freien
Randwertproblem gesprochen wird. Die Drift fällt hier somit weg.
Nach Ausübung der Option gilt P (St, t) = (K − St), da nur bei positiven Werten ausgeübt
wird.

e−rt
(
∂(K − St)

∂t
+ σ2S2

t

1
2
∂2(K − St)

∂S2
− r(K − St) + rSt

∂(K − St)
∂S

)
dt

= e−rt (−rK + rSt − rSt) dt

= −e−rtrK dt.

Der Preisprozess hat also die Tendenz zu fallen, nachdem die Option ausgeübt wurde.
�

Damit ist die diskontierte Preisfunktion ein Martingal bis zur Ausübung und danach ein
Supermartingal, also insgesamt ein Supermartingal. Sei τ∗ die optimale Stoppzeit. Mit dem
Optimal-Sampling-Theorem und Q(τ∗ < T ) = 1, für T <∞, folgt, dass das gestoppte
Supermartingal ein Martingal ist.

Korollar
Damit ist die optimale Stoppzeit gegeben durch

τ∗ = inf {t |P (St, t) = (K − St)+} .

Bemerkung
Aus der Supermartingal- und Stetigkeitseigenschaft kann gefolgert werden, dass die Funktion
P (St, t) eindeutig bestimmt ist. Näheres ist in [1] nachzulesen.

Bezeichne durch

Γ = {(x, t) ∈ R+ × R+ |P (x, t) > (K − x)+} (3.1)

die Fortführungsregion, in der die Putption optimalerweise nicht ausgeübt wird.
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Satz
Die Fortführungsregion ist offen und wird von Γc durch eine Funktion a(t) getrennt.

Γt = {x | (x, t) ∈ Γ, t ∈ [0, T ] fest} = ]a(t),+∞[

Beweis
Fixiere t.
Es ist zu zeigen, dass für ein beliebiges, suboptimales x, jedes y, x < y, auch suboptimal ist.
τ sei die optimale Stoppzeit bei Startwert x in t. Damit ist τ auch eine Stoppzeit bei Startwert
y, aber suboptimal, da x < y.

P (y, t)− P (x, t) = P (y, t)− E[e−r(τ−t)(K − Sxτ )+]

≥ E[e−r(τ−t)(K − Syτ )+]− E[e−r(τ−t)(K − Sxτ )+]

= E[e−r(τ−t)((K − Syτ )+ − (K − Sxτ )+)]

Eine Funktion lässt sich in Positivteil und Negativteil zerlegen.

f(x) = f(x)+ − f(x)−

Außerdem ist Syτ > Sxτ , da beide auf der selben Brownschen Bewegung basieren.
Zusammen liefern die beiden Aussagen eine weitere Abschätzung.

P (y, t)− P (x, t) ≥ E[e−r(τ−t)((K − Syτ )+ − (K − Sxτ )+)]

= E[e−r(τ−t)((K − Syτ )− (K − Sxτ ))] + E[e−r(τ−t)((K − Syτ )− − (K − Sxτ )−)]

≥ E[e−r(τ−t)((K − Syτ )− (K − Sxτ ))]

= E[e−r(τ−t)(Syτ − Sxτ )]

= E[e−r(τ−t)Syτ ]− E[e−r(τ−t)Sxτ ]
= (y − x)

Da τ endlich ist, gilt nach dem Optimal Sampling Theorem, dass das gestoppte Martingal
wieder ein Martingal ist und somit gleich seinem Startwert.
Für den Preisprozess mit Startpunkt y gilt also:

P (y, t) ≥ (y − x) + P (x, t) > (y − x) + (K − x)+ ≥ (K − y)

Die Behauptung P (y, t) > (K − y)+ folgt mit der Tatsache, dass der Preis einer
amerikanischen Putoption immer echt größer als Null ist.

�
Das heißt a(t) nimmt nur einen Wert für jedes t an und kann also als Funktion bezeichnet
werden.

a : [0, T ] −→ R+
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Bemerkung
Da ein arbitragefreies Modell vorliegt, muss

a(T ) = K (3.2)

gelten. Am Ende der Vertragslaufzeit zum Zeitpunkt T übt man nur aus, wenn die Auszahlung
positiv ist.

R>0 × [0, T ] ist darstellbar als disjunkte Vereinigung folgender Mengen:

Fortführungsregion Γ = (a(t),+∞)× [0, T ]
Stoppregion Γc = (0, a(t)]× [0, T ] , ∀t ∈ [0, T ], ∀T ∈ R+

Die Menge Γ ist nicht leer, da S0 > a(0) angenommen wird.
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3.2 Amerikanische Basketoptionen und deren Grenzregionen

Wie bei der mehrdimensionalen europäischen Basketoption wird nur der Putfall betrachtet.
Definiere die Preisfunktion einer amerikanischen Basketoption mit Ausübungspreis K und
Laufzeit T analog zum eindimensionalen Fall. Sei x1 = S1

t und x2 = S2
t .

P (x1, x2, t) = sup
τ∈ΨTt

E
[
e−r(τ−t)

(
K − S1

τ − S2
τ

)
+

∣∣∣Ft] = sup
τ∈ΨTt

E
[
e−r(τ−t)

(
K − Sx1

τ
1 − Sx2

τ
2
)

+

]
Auch hier gilt aus Arbitragegründen

P (S1
T , S

2
T , T ) = (K − S1

T − S2
T )+

und

P
(
S1
t , S

2
t , t
)
≥
(
K − S1

t − S2
t

)
+
.

Die Option wird ausgelöst, wenn das Tripel (S1
t , S

2
t , t) die Stoppregion trifft. Betrachtet man

nur ein Finanzgut, so hängt der Auslösezeitpunkt nicht nur von t, sondern auch vom aktuellen
Wert des anderen Finanzguts ab. Betrachtet man simultan beide Grenzfunktionen a1(S2

t , t)
und a2(S1

t , t), so müssen diese zu einer gleichen führen: Der optimal Zeitpunkt zu stoppen ist
bei beiden gleich.
Für die Stoppregion {(x1, x2, t)|P (x1, x2, t) = (K − x1 − x2)+, x1, x2 ∈ R+, t ∈ [0, T ]}
können einige Eigenschaften verifiziert werden, deren Ausarbeitung auf [21] beruht.

Abgeschlossenheit
Mit der mehrdimensionalen Itô-Formel und der mehrdimensionalen
Black-Scholes-Differentialgleichung kann gezeigt werden, dass der abgezinste Preisprozess ein
Martingal bis zur Ausübung und danach ein Supermartingal ist. Dies gilt analog zum
eindimensionalen Fall. Damit ist die Stoppzeit die erste Eintrittszeit in die Stoppregion und da
der Preisprozess auf einer Stoppzeit beruht, muss die Stoppregion abgeschlossen sein.

Konvexität
Die Konvexität folgt über die Konvexität der Preisfunktion. Das Supremum einer Menge
konvexe Funktionen ist wieder konvex. Daraus folgt für 0 ≤ λ ≤ 1:

P (λx+ (1− λ)w, λy + (1− λ)z, t) ≤ λP (x, y, t) + (1− λ)P (w, z, t)
= λ(K − x− y) + (1− λ)(K − w − z)
= K − (λx+ (1− λ)w)− (λy + (1− λ)z),

wenn P (x, y, t) = (K − x− y) und P (w, z, t) = (K − w − z) gilt.
Die gewünschte Eigenschaft folgt wegen P

(
S1
t , S

2
t , t
)
≥
(
K − S1

t − S2
t

)
+

.
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Southwest Connectedness
Die SC sagt aus, dass wenn ein Triple (x, y, t) in der Stoppregion ist, dies auch für alle Tripel
(a, b, t), a ≤ x und b ≤ y gilt. Mathematisch zu zeigen ist also

P (λ1x, λ2y, t) = (K − λ1x− λ2y)+ , 0 ≤ λ1 ≤ 1, 0 ≤ λ2 ≤ 1,

wenn

P (x, y, t) = (K − x− y)+

gilt.
Sei τ eine Stoppzeit und xSt stellt die geometrischen Brownschen Bewegungen mit Startwert x
dar.

E
[
e−r(τ−t)(K − λ1xS

1
τ − λ2yS

2
τ )+

]
= E

[
e−r(τ−t)(K − λ1xS

1
τ − λ2yS

2
τ )+

]
± E

[
e−r(τ−t)(K − xS1

τ − yS2
τ )+

]
≤ E

[
e−r(τ−t)

(
−(λ1x− x)S1

τ − (λ2y − y)S2
τ

)
+

]
+ E

[
e−r(τ−t)(K − xS1

τ − yS2
τ )+

]
= E

e−r(τ−t)
(x− λ1x︸ ︷︷ ︸

≥0

)S1
τ + (y − λ2y︸ ︷︷ ︸

≥0

)S2
τ


+

+ E
[
e−r(τ−t)(K − xS1

τ − yS2
τ )+

]
= E

[
e−r(τ−t)

(
(x− λ1x)S1

τ + (y − λ2y)S2
τ

)]
+ E

[
e−r(τ−t)(K − xS1

τ − yS2
τ )+

]
= E

[
e−r(τ−t)(x− λ1x)S1

τ

]
+ E

[
e−r(τ−t)(y − λ2y)S2

τ

]
+ E

[
e−r(τ−t)(K − xS1

τ − yS2
τ )+

]
Die Ungleichung entsteht durch c1

+ − c2
+ ≤ (c1 − c2)+ für Funktionen c1 und c2.

Benutze das Lemma von Fatou, um das Supremum in den Erwartungswert zu ziehen. Das
Ergebnis liefert dann die Martingaleigenschaft des diskontierten Basisfinanzguts und die
Arbitragefreiheit.

P (λ1x, λ2y, t) ≤ sup
τ∈ΨTt

E
[
e−r(τ−t)(x− λ1x)S1

τ

]
+ sup
τ∈ΨTt

E
[
e−r(τ−t)(y − λ2y)S2

τ

]
+ P (x, y, t)

≤ E

[
sup
τ∈ΨTt

e−r(τ−t)(x− λ1x)S1
τ

]
+ E

[
sup
τ∈ΨTt

e−r(τ−t)(y − λ2y)S2
τ

]
+ (K − x− y)

= (x− λ1x) + (y − λ2y) + (K − x− y)
= K − (λ1x+ 1− λ2y)
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Durch diese Eigenschaften kann eine Skizze für festes t erstellt werden.

Die Schnittpunkte mit den Achsen lassen sich berechnen. Es gilt limS1→0 a
2(S1, t) = a(t),

wobei a(t) die Grenzfunktion zu einer Putoption mit Ausübungspreis K und Basisfinanzgut S2

zum Zeitpunkt t ist.
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3.3 Steigung, Stetigkeit und Konvexität

Es können einige Aussagen über die Eigenschaften der Grenzfunktion gemacht werden. Dies ist
wichtig für das Verständnis der Funktion und es sagt einiges über die Praxistauglichkeit und
Möglichkeit der numerischen Annäherung aus.
Der folgende Monotonie- und Stetigkeitsbeweis stützt sich auf das Paper von Jacka [2].

Steigung
Bei festem Wert des Basisfinanzguts St ist die Putoption wertvoller je kleiner t ist, denn
ΨT
t−ε ⊆ ΨT

t , ε > 0. Es folgt:
∂P (St, t)

∂t
≤ 0

Für festes t muss der Preis für die Putopion bei steigendem St fallen, denn die
Wahrscheinlichkeit nimmt ab, dass die Grenzregion getroffen wird. Also:

∂P (St, t)
∂S

≤ 0

Hieraus folgt die Steigungseigenschaft der Grenzfunktion:
Da P (St, ·) fallend ist und a(t) + ε in der Fortführungsregion zum Zeitpunkt t liegt, gilt:

P (a(t) + ε, t− δ) ≥ P (a(t) + ε, t) > (K − (a(t) + ε))+

Das heißt im Zeitpunkt (t− δ) ist a(t) + ε noch nicht in die Stoppregion.

⇒ a(t− δ) ≤ a(t)

Die Grenzfunktion für den Put ist monoton steigend.
Analog lässt sich zeigen, dass die Grenzfunktion für den Call monoton fallend ist.

Stetigkeit
Der Beweis der Stetigkeit der Grenzfunktion beruht auf dem Paper [2] von Jacka und besteht
aus zwei Teilen. Als erstes wird die Stetigkeit von links über die Eigenschaften der
Preisfunktion und der Grenzfunktion gezeigt. Die Stetigkeit von rechts erfordert mehr Arbeit.
P (St, t) sei weiterhin die Preisfunktion, a(t) die Grenzfunktion und g(y) die
Auszahlungsfunktion. Für diesen Beweis werden die Funktionen rückwärts durch die Zeit
betrachetet. Nehme also die Bijektion

t = T − χ

für χ ∈ [0, T ].
Also ist die Grenzfunktion monoton fallend in t und ∂P (St,t)

∂t ist positiv.
Linksstetigkeit
P (St, t) ist stetig in beiden Variablen und g(y) als Kombination stetiger Funktionen wieder
stetig. Die Fortführungsregion Γ, definiert als

Γ = {(St, t) |P (St, t)− g(St) > 0, St ∈ ]0,∞[, t ∈ [0, T ]} ,

ist also offen. Definiere die Stoppregion Γc,

Γc = {(St, t) |P (St, t)− g(St) = 0, St ∈ ]0,∞[, t ∈ [0, T ]} .
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Wenn nun eine Folge (tn)n von unten gegen ein t konvergiert, folgt aus der Abgeschlossenheit
von Γc, dass (a(tn), tn) für alle n und der Grenzwert der Folge in Γc liegt.
Es bleibt also zu zeigen, dass a(tn) gegen a(t) konvergiert.
Da ∂P (St,t)

∂t ≥ 0 gilt, wird für steigende t und festes St der Preis größer. Da die Folge in der
Stoppregion bleibt und g(y) nicht von t abhängt, muss St steigen, da ∂P (St,t)

∂S ≤ 0 gilt.
Also gilt a(t−) ≤ a(t). Da aber a(t) monoton fallend ist, gilt a(t−) ≥ a(t), woraus a(tn)→ a(t)
folgt.
Damit ist die Linksstetigkeit bewiesen.
Rechtsstetigkeit
Der Beweis beruht auf Abschätzungen der Black-Scholes-Differentialgleichung,

−∂P (St, t)
∂t

− rP (St, t) +
1
2
σ2S2

t

∂2P (St, t)
∂S2

+ rSt
∂P (St, t)

∂S
= 0,

der Preisfunktion in der Fortführungsregion Γ. Beachte t = T − χ.
Da ∂P

∂t ≥ 0 und ∂P
∂S ≤ 0 gilt, gelangt man zu

1
2
σ2S2

t

∂2P (St, t)
∂S2

≥ rP (St, t).

Definiere nun die Menge Γn durch

Γn = Γ ∩ [0,K]×
[

1
n
, n

]
,

für n und 1
n aus ]0, T [.

Die Menge ist kompakt, da sie abgeschlossen und beschränkt ist. Deswegen nimmt P (St, t), als
stetige Funktion, auf der Menge ein Minimum an. Zusätzlich muss der Preis der Option in der
Menge größer Null sein, woraus die Abschätzung

inf
(St,t)∈Γn

1
2
σ2S2

t

∂2P (St, t)
∂S2

≥ εn > 0

entsteht.
Wähle nun ein festes t ∈ ]0, T [ und n so, dass 1

n ≤ t < n gilt. Nehme außerdem ein u aus dem
Intervall [N, t) und ein S aus [a(t+) + η,K]. Das Ziel ist es, zu zeigen, dass der Wert des
Basisfinanzguts für alle η > 0 zum Zeitpunkt u, in der Fortführungsregion liegt. Dies ist
äquivalent zu P (S, u)− g(S, u) > 0. Da P (a(t), t) und g(a(t)) übereinstimmen, P (St, t) eine C2

Funktion in S in der Fortführungsregion ist und die zweite Ableitung von g(y) verschwindet,
kann folgende Gleichungskette aufgestellt werden.

P (S, u)− g(S, u) = P (S, u)− g(S, u) + P (a(u), u)− P (a(u), u)
= P (S, u)− P (a(u), u)− [g(S, u)− g(a(u), u)]

=
∫ S

a(u)

∂P (ξ, u)
∂S

− ∂g(ξ, u)
∂S

dξ

=
∫ S

a(u)

∂P (ξ, u)
∂S

− ∂g(ξ, u)
∂S

− ∂P (a(u), u)
∂S

+
∂g(a(u), u)

∂S
dξ

=
∫ S

a(u)

∫ ξ

a(u)

∂2P (ς, u)
∂S2

− ∂2g(ς, u)
∂S2

dς dξ
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Durch Multiplizieren mit Eins kann das Doppelintegral mit εn abgeschätzt werden.

P (S, u)− g(S, u) =
∫ S

a(u)

∫ ξ

a(u)
1 · ∂

2P (ς, u)
∂S2

dς dξ

=
∫ S

a(u)

∫ ξ

a(u)

(
1
2
σ2S2

)(
1
2
σ2S2

)−1 ∂2P (ς, u)
∂S2

dς dξ

≥ εn
∫ S

a(u)

∫ ξ

a(u)

(
1
2
σ2S2

)−1

dς dξ

= εn

∫ S

a(u)

(
1
2
σ2S2

)−1

(ξ − a(u)) dξ

= εn
2
σ2

(S − a(u))2

K2
> 0

Wenn nun eine Folge (un)n von oben gegen t fällt, gilt mit der Stetigkeit von P (St, t) und g(y)

P (a(t+) + η, t)− g(a(t+) + η, t) ≥ εn
2
σ2

(S − a(t+))2

K2
> 0

für alle η > 0 und damit a(t+) ≥ a(t).
Da aber a(t) auch fallend in t ist folgt die Rechtsstetigkeit.

Konvexität
Im Januar 2008 veröffentlichten Xinfu Chen und John Chadam von der University of
Pittsburgh zusammen mit Lishang Jiang von der Tongji University und Weian Zheng von der
University of California, Irvine, [12], den Beweis der schon länger vermuteten und bis dahin
nur in numerischen Simulationen zu erkennenden strengen Konvexität der Grenzfunktion.
In diesem Fall musste allerdings ein Basisfinanzgut benutzt werden, dass keine Dividenden
zahlt, denn es gibt Konstellationen, die die Konvexität verletzen würden [J. Detemple].
Auf den Beweis wird an dieser Stelle verzichtet. Er ist nachzulesen in [12].
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3.4 Das Verhalten am Ende der Laufzeit

Einen Einfluß auf die Anwendbarkeit der Ergebnisse der Integraldarstellungen wird die
Steigung der Grenzfunktion zum Ende der Laufzeit haben. Guy Barnes hat in seinem Paper
Critical Stock Price Near Expiration [5] einen Beweis dafür geliefert, dass die Grenzfunktion
kurz vor Fälligkeit der Option eine unendlich große Steigung durchläuft. Dieser Beweis soll
ausgeführt werden.
Die Preisfunktion eines amerikanischen Puts erfüllt folgende benötigte Voraussetzungen:

P (St, t) ≥ (K − St)+ P (ST , T ) = (K − ST )+

und

∂P (St, t)
∂t

+ σ2S2
t

1
2
∂2P (St, t)

∂S2
− rP (St, t) + rSt

∂P (St, t)
∂S

= 0

vor Ausübung.
Dies lässt sich auch schreiben als:

min
[
∂P (St, t)

∂t
+ σ2S2

t

1
2
∂2P (St, t)

∂S2
− rP (St, t) + rSt

∂P (St, t)
∂S

, P (St, t)− (K − St)+

]
= 0

(3.3)
P (ST , T ) = (K − ST )+ (3.4)

a(t) sei weiterhin die Grenzfunktion für die amerikanische Putoption. Die zentrale Aussage des
Papers ist:

Satz

a(t)−K
K

∼ −σ
√

(T − t) |ln(T − t)| für t<T, t nahe T

Das ist eine andere Schreibweise für:

lim
t→T

a(t)−K
K

−σ
√

(T − t) |ln(T − t)|
= 1 oder lim

τ→0

a(τ)−K
K

−σ
√
τ |ln(τ)|

= 1 für τ = T − t

Bemerkung
Die Steigung folgt mir dem Differenzenquotienten.

lim
t→T

a(t)−K
K

−σ
√

(T − t) |ln(T − t)|
= 1

⇔ lim
t→T

a(t)− a(T )√
(T − t)

= lim
t→T
−Kσ

√
|ln(T − t)|

⇔ lim
t→T

a(T )− a(t)
T − t

= Kσ lim
t→T

√
|ln(T − t)|√

(T − t)
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Beweis
Nehme an, dass es Lösungen U+(St, t) und U−(St, t), in R+ × [0, T ], für die beiden folgenden
Terme gibt.

min
[
∂U+(St, t)

∂t
+ σ2S2

t

1
2
∂2U+(St, t)

∂S2
− rU+(St, t) + rSt

∂U+(St, t)
∂S

, U+(St, t)− (K − St)+

]
≥ 0

(3.5)

min
[
∂U−(St, t)

∂t
+ σ2S2

t

1
2
∂2U−(St, t)

∂S2
− rU−(St, t) + rSt

∂U−(St, t)
∂S

, U−(St, t)− (K − St)+

]
≤ 0

(3.6)

U+(St, t) heißt Supersolution und U−(St, t) Subsolution von P (St, t).
Nehme weiter an, zu U+(St, t) gibt es eine eindeutige Funktione a+(t) > 0, die ∀ t ∈ [t+, T ], ab
einem t+ ∈ (0, T ) folgende Gleichung erfüllt

U+(a+(t), t) = (K − a+(t))+.

Ebenso soll es zu U−(St, t) eine eindeutige Funktion a−(t) > 0 geben, für die ∀ t ∈ [t−, T ], ab
einem t− ∈ (0, T )

St ≤ a−(t) ⇒ U−(St, t) = (K − St)+ (3.7)
St > a−(t) ⇒ U−(St, t) > (K − St)+ (3.8)

gilt.
Wenn a+(t) und a−(t) das zu zeigende Verhalten von a(t) am Ende der Laufzeit

lim
t→T

a±(t)−K
K

−σ
√

(T − t) |ln(T − t)|
= 1

erfüllen, ist der Beweis beendet.
Aufgrund der Konstruktion von U+(St, t) und U−(St, t) folgt mit dem Maximumsprinzip:

U−(St, t) ≤ P (St, t) ≤ U+(St, t) (3.9)

Mit diesen Annahmen ist der Satz gezeigt, wenn folgende Ungleichungen Gültigkeit haben.

a+(t) ≤ a(t) ≤ a−(t) ∀ t ∈ [0, T ] (3.10)

Für St > a−(t) folgt:
(K − St)+ < U−(St, t) ≤ P (St, t)

⇒ a(t) ≤ a−(t)

und

(K − a+(t)) ≤ P (a+(t), t) ≤ U+(a+(t), t) = (K − a+(t))

also gilt, dass
U(a+(t), t) = (K − a+(t))

und damit die erste Ungleichung.
Somit gilt der Satz für a(t).

�
Wenn also die Existenz einer Supersolution und einer Subsolution mit zugehörigen, eindeutigen
Funktionen a+(t) und a−(t) nachgewiesen wird, ist der Satz gezeigt.
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Konstruktion der Supersolution
Definiere die stetige Funktion U+(St, t) als Lösung ab einem bestimmten t+0 für die 3
Konditionen.

∂U+(St, t)
∂t

+ σ2S2
t

1
2
∂2U+(St, t)

∂S2
− rU+(St, t) + rSt

∂U+(St, t)
∂S

≥ 0 (3.11)

U+(St, t) ≥ (K − St)+ (3.12)

U+(ST , T ) = (K − ST )+ (3.13)

Wenn nun PE(St, t) der Black-Scholes-Preis der europäischen Option ist, kann U+(St, t)
dargestellt werden als Kombination von PE(St, t) und einer Funktion f(t), mit f ≥ 0, f ∈ C1

auf [0, T ].
U+(St, t) = f(t)PE(St, t) ∀ (t, S) ∈ [t+0 , T ]× (0,∞) (3.14)

f(T ) = 1
∂f(t)
∂t

≤ 0 ∀t ∈ [t+0 , T ] (3.15)

Mit diesen beiden Annahmen an f(t) folgt (3.11) und (3.13).
Lemma
Es existiert eine abnehmende C1 Funktion f auf [t+0 , T ] mit f(T)=1 und für alle t aus diesem
Intervall existiert ein nichtnegatives a+(t) mit:

a+(t) ≤ K (3.16)
f(t)PE(a+(t), t) = (K − a+(t))+ (3.17)

f(t)
∂PE(St, t)

∂S

∣∣∣∣
a+(t)

= − 1 (3.18)

Vor dem Beweis des Lemmas ist zu klären warum dieses Lemma zeigt, dass (3.12) gilt.
PE(St, t) ist konvex in St, da die Preisfunktion für die europäische Option konvex ist und die
Differentialgleichung (3.5) größer als Null ist. U+(St, t) ist dadurch ebenfalls konvex, als
Kombination einer konvexen und einer positiven Funktion.
Wenn nun St ≤ a+(t) ist, folgt aus der Konvexität

∂U+(St, t)
∂S

∣∣∣∣
St

≤ ∂U+(St, t)
∂S

∣∣∣∣
a+(t)

= −1.

Da aber a+(t) ≤ K gilt, folgt:

(K − St)+ ≤ U+(St, t) ⇔ (K − St)+ − U+(St, t) ≤ 0

(K − St)+ − U+(St, t) =(K − St)− U+(St, t)
=(K − a+(t))− (K − a+(t)) + (K − St)− U+(St, t) + U+(a+(t), t)− U+(a+(t), t)

=(K − a+(t))− U+(a+(t), t) +
∫ S

a+(t)

(
−1− ∂U+(St, t)

∂S

∣∣∣∣
v

)
dv

Die Ungleichheit folgt mit

U+(a+(t), t) = (K − a+(t)) , St ≤ a+(t)
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und mit der Konvexität

−1− ∂U+(St, t)
∂S

≥ 0

Nun muss noch der Fall a+(t) ≤ S(t) betrachtet werden. Über die Konvexität folgt diesmal

−1 =
∂U+(St, t)

∂S

∣∣∣∣
a+(t)

≤ ∂U+(St, t)
∂S

(t, S)
∣∣∣∣
St

und die Ungleichheit wird zu:

(K − a+(t))− U+(a+(t), t) +
∫ St

a+(t)

(
−1− ∂U+(St, t)

∂S

∣∣∣∣
v

)
dv ≤ 0

Mit

−1− ∂U+(St, t)
∂S

≤ 0

Dies zeigt (3.12). Nun wird das Lemma bewiesen.
Beweis des Lemmas
Mit

ξ = T − t
c(ξ) = f(t)

y(ξ) =
1

σ
√
ξ

ln
ST−ξ
Ke−rξ

y+(ξ) =
1

σ
√
ξ

ln
a+(T − ξ)
Ke−rξ

v(ξ, y) = PE(t, St)
u(ξ, y) = P (t, St)

φ(x) = 1−N(x) =
∫ ∞
x

1√
2π
e
−ι2
2 dι

kann der europäische Putpreis folgendermaßen dargestellt werden:

v(ξ, y(ξ)) = Ke−rξ
[
φ

(
y(ξ)− σ

√
ξ

2

)
− ey(ξ)σ

√
ξφ

(
y(ξ) +

σ
√
ξ

2

)]
v(ξ, y(ξ)) ist also der transformierte Putpreis. Diese Transformationen vereinfachen den
Beweis, denn nun kann das Verhalten von y+(ξ) untersucht werden, um danach Rückschlüsse
auf a+(t) zu ziehen.
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Wenn nun auch die Aussage des Lemmas mit Hilfe der Kettenregel transformiert wird,

c(ξ)v(ξ, y+) = K
(

1− e−rξ+σ
√
ξy+(ξ)

)
(3.19)

c(ξ)
∂v(ξ, y(ξ))

∂y

∣∣∣∣
y+(ξ)

= −Kσ
√
ξe−rξ+σ

√
ξy+(ξ) , (3.20)

ist dies äquivalent mit
∂v(ξ,y)
∂y

∣∣∣
y+(ξ)

v(ξ, y+(ξ))
=
−Kσ

√
ξe−rξ+σ

√
ξy+(ξ)

K
(
1− e−rξ+σ

√
ξy+(ξ)

) .

Es reicht also, diese Gleichung zu bestätigen und c(ξ) ∈ C1 steigend für ξ nahe 0+ zu zeigen,
um das Lemma zu beweisen.
Durch Einsetzen von v(ξ, y(ξ)) entsteht

∂
∂y

(
Ke−rξ

[
φ
(
y − σ

√
ξ

2

)
− eyσ

√
ξφ
(
y + σ

√
ξ

2

)])∣∣∣
y+(ξ)

Ke−rξ
[
φ
(
y+(ξ)− σ

√
ξ

2

)
− ey+(ξ)σ

√
ξφ
(
y+(ξ) + σ

√
ξ

2

)] =
−σ
√
ξe−rξ+σ

√
ξy+(ξ)

1− e−rξ+σ
√
ξy+(ξ)

.

Dies lässt sich weiter vereinfachen indem die Parameterintegrale mit der Leibnizregel, [10],
aufgelöst werden

1√
2π
e
−
(
y+(ξ)−σ

√
ξ

2

)2

2 − 1√
2π
ey

+(ξ)σ
√
ξe
−
(
y+(ξ)+

σ
√
ξ

2

)2

2 − σ
√
ξey

+(ξ)σ
√
ξφ
(
y+(ξ) + σ

√
ξ

2

)
φ
(
y+(ξ)− σ

√
ξ

2

)
− ey+(ξ)σ

√
ξφ
(
y+(ξ) + σ

√
ξ

2

) =
−σ
√
ξe−rξ+σ

√
ξy+(ξ)

1− e−rξ+σ
√
ξy+(ξ)

.

Da die Gleichheit

eyσ
√
ξe
−
(
y+

σ
√
ξ

2

)2

2 = e
−
(
y−σ

√
ξ

2

)2

2

gilt, bekommt man

e−rξφ

(
y+ − σ

√
ξ

2

)
= φ

(
y+ +

σ
√
ξ

2

)
.

Definiere die Funktion h(ξ, y) durch

h(ξ, y) = e−rξφ

(
y − σ

√
ξ

2

)
− φ

(
y +

σ
√
ξ

2

)
.

Nun muss gezeigt werden, dass genau ein a+(T − ξ) existiert. Da der Logarithmus stetig ist,
genügt es zu zeigen, dass nur genau ein y+(ξ) existiert, also h(ξ, y) nur genau eine Nullstelle in
y für festes ξ hat.
Betrachte als erstes das Verhalten für y gegen +/−∞.

lim
y→−∞

h(ξ, y) = e−rξ − 1 < 0 lim
y→+∞

h(ξ, y) = 0

Dann die Steigungen die h in y durchläuft.
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∂h(ξ, y)
∂y

=
∂

∂y
e−rξφ

(
y − σ

√
ξ

2

)
− φ

(
y +

σ
√
ξ

2

)
= − 1√

2π
e−

y2

2
−σ

2ξ
8

(
e−rξ+

yσξ
2 − e−

yσξ
2

)
Also steigt h für {

y | e−rξ+
yσξ
2 < e−

yσξ
2

}
=
{
y | y ∈ (−∞,

√
ξr

σ
)
}

und fällt dementsprechend für{
y | e−rξ+

yσξ
2 > e−

yσξ
2

}
=
{
y | y ∈ (

√
ξr

σ
,∞)

}
.

Damit ist y+(ξ) die einzige Nullstelle und somit eindeutig.
Bemerkung
Da die Nullstelle in dem Intervall ist, für das h(ξ, y) monoton wachsend in y ist, gilt

∂h(ξ, y)
∂y

∣∣∣∣
y+(ξ)

> 0

und

y+(ξ) ≤
√
ξr

σ
⇒ a+(T − ξ) ≤ K.

Bevor der noch ausstehende Beweis über das Verhalten von c(ξ) geführt wird, betrachte
folgendes
Lemma

y+(ξ)
ξ→0−→ −∞

Insbesondere

y+(ξ)2 ∼ |ln(ξ)| für ξ nahe 0+

Beweis
Um den ersten Teil zu beweisen, fixiere A < 0 und betrachte
h(ξ, A) = −e−rξφ

(
A− σ

√
ξ

2

)
− φ

(
A+ σ

√
ξ

2

)
für ξ nahe 0+. Für diesen Wert ist e−rξ ≈ 1.

Die Funktionswerte φ
(
A± σ

√
ξ

2

)
werden mit der Taylorentwicklung angenähert. Entwickle

φ(x) um A bis n=1 und setzte A± σ
√
ξ

2 ein. Das Restglied R2 ist o(
√
ξ), da die e-Funktion

schneller fällt als jedes Polynom.

φ(A± σ
√
ξ

2
) = φ(A) + φ′(A)

(
A± σ

√
ξ

2
−A

)
+R2

φ′(A) =
∂φ(x)
∂x

∣∣∣∣
x=A

=
∂

∂x

∫ +∞

x

1√
2π
e−

ι2

2 dι

∣∣∣∣
x=A

= − 1√
2π
e−

A2

2

R2 = φ′′(A)
σ2ξ

4
= A

1√
2π
e−

A2

2
σ2ξ

4
= o(

√
ξ)
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Also

h(ξ, A) = φ(A)− φ′(A)
σ
√
ξ

2
− φ(A)− φ′(A)

σ
√
ξ

2
+ o(

√
ξ)

= +
σ
√
ξ√

2π
e−

A2

2 + o(
√
ξ)

Aus der letzen Gleichung kann man schließen, dass für jedes A < 0 ein ξ0 > 0 existiert, so dass
∀ξ ≤ ξ0 h(ξ, A) > 0 gilt. Also muss für ξ < ξ0 y

+(ξ) < A sein, denn h(ξ, y+(ξ)) = 0.
Damit ist der erste Teil des Lemmas bewiesen.

Fixiere nun ξ > 0. Dann existiert nach dem Mittelwertsatz der Integralrechnung ein
y0 ∈

[
y+(ξ)−

√
ξσ
2 , y+(ξ) +

√
ξσ
2

]
, so daß

φ

(
y+(ξ)− σ

√
ξ

2

)
− φ

(
y+(ξ) +

σ
√
ξ

2

)
=
σ
√
ξ√

2π
e
−y20

2 .

Für ein ξ klein genug, ist y+ + σ
√
ξ

2 ≤ 0 und e−x
2

ist monoton wachsend für x ∈ [κ,K], κ,K ≤ 0
und κ ≤ K. Zusammen mit der vorherigen Gleichung entstehen zwei Ungleichungen

σ
√
ξ√

2π
e
−
(
y+(ξ)−σ

√
ξ

2

)2

2 ≤ φ
(
y+(ξ)− σ

√
ξ

2

)
− φ

(
y+(ξ) +

σ
√
ξ

2

)
≤ σ
√
ξ√

2π
e
−
(
y+(ξ)+

σ
√
ξ

2

)2

2 . (3.21)

Auf der anderen Seite kann

e−rξφ

(
y+(ξ)− σ

√
ξ

2

)
= φ

(
y+(ξ) +

σ
√
ξ

2

)
umgestellt werden zu

φ

(
y+(ξ)− σ

√
ξ

2

)
− φ

(
y+(ξ) +

σ
√
ξ

2

)
=
(

1− e−rξ
)
φ

(
y+(ξ) +

σ
√
ξ

2

)
was sich bei kleinen ξ verhält wie

φ

(
y+(ξ)− σ

√
ξ

2

)
− φ

(
y+(ξ) +

σ
√
ξ

2

)
∼ 1− e−rξ

da y+(ξ)→ −∞ für ξ → 0 strebt.
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Für ξ nahe Null ist die Funktion 1− e−rξ annähernd linear und kann durch rξ angenähert
werden.
Ein Beispiel für r = 0, 5.

Dies kann mit der Regel von l´Hospital gezeigt werden.

lim
x→0

1− e−rx

rx
= lim

x→0

re−rx

r
= 1

Daraus folgt

φ

(
y+(ξ)− σ

√
ξ

2

)
− φ

(
y+(ξ) +

σ
√
ξ

2

)
∼ rξ . (3.22)

Annahme

y+(ξ) = o

(
1√
ξ

)
, dh. lim

ξ→0

∣∣∣y+(ξ)
√
ξ
∣∣∣ = 0

Sollte dies nicht gelten, würde ein a ∈ R>0 und eine gegen Null fallende Folge ξn existieren mit
y+(ξn)

√
ξn ≤ −a bzw y+(ξn) ≤ −a√

ξn
, so daß

σ
√
ξn√

2π
e
−
(
y+(ξn)+

σ
√
ξn

2

)2

2 = O

(√
ξne
− a2

2ξm

)
dh. 0 ≤ lim sup

n→∞

∣∣∣∣∣∣∣∣∣
σ
√
ξn√

2π
e
−
(
y+(ξn)+

σ
√
ξn

2

)2

2

√
ξne
− a2

2ξm

∣∣∣∣∣∣∣∣∣ <∞
gilt.
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0 ≤
σ
√
ξn√

2π
e
−
(
y+(ξn)+

σ
√
ξn

2

)2

2

√
ξne
− a

2ξm

=
σ√
2π
e
−y+(ξn)

2

2
− y

+(ξn)σ
√
ξn

2
−σ

2ξn
8

+ a2

2ξn

≤ σ√
2π
e−

a2

2
−aξnσ

2
−σ

2ξ2n
8

+a
2 −→
n→∞

σ√
2π
e−

a2

2
+a

2 <∞

Aber O
(√

ξne
− a2

2ξm

)
= o(ξn) und dies angewand auf (3.21) in Kombination mit (3.22) ergibt

den Widerspruch rξn = o(ξn), was die Annahme bestätigt.

Wegen y+(ξ) = o
(

1√
ξ

)
können die Grenzen von (3.21) abgeschätzt werden,

e
−
(
y+(ξ)−σ

√
ξ

2

)2

2

e
−y+2

(ξ)
2

= e−
σ
√
xiy+(ξ)

2
−σ

2ξ
8 −→

ξ→0
1 ,

e
−
(
y+(ξ)+

σ
√
ξ

2

)2

2

e
−y+2

(ξ)
2

= e+
σ
√
xiy+(ξ)

2
−σ

2ξ
8 −→

ξ→0
1 ,

woraus ein weiteres Verhalten von φ
(
y+(ξ)− σ

√
ξ

2

)
− φ

(
y+(ξ) + σ

√
ξ

2

)
für kleine ξ angegeben

werden kann:

φ

(
y+(ξ)− σ

√
ξ

2

)
− φ

(
y+(ξ) +

σ
√
ξ

2

)
∼ σ
√
ξ√

2π
e
−y+(ξ)

2

2

In Kombination mit (3.22) folgt

σ
√
ξ√

2π
e
−y+(ξ)

2

2 ∼ rξ.

Wenn

lim
x→0

f(x)
g(x)

= 1 = lim
x→0

f ′(x)
g′(x)

und f(x)→ 0 gilt, hat man für die logarithmierten Funktionen dank der L´Hospital-Regel

lim
x→0

ln(f(x))
ln(g(x))

= lim
x→0

g(x)
f(x)

f ′(x)
g′(x)

= 1

Nun folgt

lim
ξ→0

ln
(

σ
r
√

2π
e
−y+(ξ)

2

2

)
ln(
√
ξ)

= lim
ξ→0

ln
(

σ
r
√

2π

)
ln(
√
ξ)︸ ︷︷ ︸

=0

+ lim
ξ→0

ln
(
e
−y+(ξ)

2

2

)
ln(
√
ξ)

= 1

Also

−y+(ξ)2

2
∼ ln

√
ξ , (3.23)

umgestellt zu

y+(ξ)2 ∼ 2 ·
∣∣∣∣12 ln(ξ)

∣∣∣∣
Seite 43



Tobias Nigbur Die Integraldarstellung amerikanischer Optionspreise

folgt die Behauptung des Lemmas.
�

Da y+(ξ) definiert war als

y+(ξ) =
1

σ
√
ξ

ln
(
a+(T − ξ)
Ke−rξ

)
,

folgt aus dem Lemma
1

σ
√
ξ

ln
(
a+(T − ξ)
Ke−rξ

)
∼
√
|ln(ξ)|.

Umstellen liefert

ln
(
a+(T − ξ)

K

)
− ln(e−rξ) ∼ −σ

√
ξ |ln(ξ)|

und

lim
ξ→0

ln
(
a+(T−ξ)

K

)
−σ
√
ξ |ln(ξ)|

− lim
ξ→0

ln(e−rξ)
−σ
√
ξ |ln(ξ)|︸ ︷︷ ︸

=0

= 1.

Dadurch gilt

ln
(
a+(T − ξ)

K

)
∼ −σ

√
ξ |ln(ξ)|.

Wie im Logarithmusfall, gilt für die e-Funktion

lim
x→0

f(x)
x

= lim
x→0

f ′(x)
1

= 1 ⇒ lim
x→0

ef(x)

ex
= lim

x→0
f ′(x)ef(x)−x = 1,

insbesondere, weil die e-Funktion stetig in 0 ist.

exp
(

ln
(
a+(T − ξ)

K

))
∼ exp

(
−σ
√
ξ |ln(ξ)|

)
Mit rx ∼ 1− e−rx für x→ 0 und nach Rücktransformation erhält man das gesuchte Ergebnis.

a+(t)−K
K

∼ −σ
√

(T − t) |ln(T − t)|

Nun bleibt zu zeigen, dass c(ξ) steigend ist für kleine ξ.
Wenn c(ξ) definiert ist als

c(ξ)
∂v(ξ, y)
∂y

∣∣∣∣
y+(ξ)

= −Kσ
√
ξe−rξ+σ

√
ξy+(ξ) ,

folgt nach Einsetzen der Funktion v(ξ, y), wie bei der Umstellung zu (3.20),

c(ξ) =
1

φ
(
y+(ξ) + σ

√
ξ

2

) .
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c(ξ) steigt also, wenn y+(ξ) + σ
√
ξ

2 steigt, denn φ ist nach Definition fallend. Da die
Wurzelfunktion steigend ist, genügt es die positive Steigung von y+(ξ) zu zeigen.

∂h(ξ, y)
∂y

∣∣∣∣
y+(ξ)

> 0

aufgrund der Bemerkung. Außerdem ist h(ξ, y) = 0 eine implizite Funktion. Nach dem
Implizite-Funktionen-Theorem, [13], folgt

∂y+(ξ)
∂ξ

= −
∂h(ξ,y+(ξ))

∂ξ

∂h(ξ,y)
∂y

∣∣∣
y+(ξ)

Wenn nun also ∂h
∂ξ für kleine ξ kleiner Null ist, ist c(ξ) monoton steigend.

∂h(ξ, y(ξ)
∂ξ

=
∂

∂ξ

(
e−rξφ

(
y(ξ)− σ

√
ξ

2

)
− φ

(
y(ξ) +

σ
√
ξ

2

))
Mit der Parameterintegralformel folgt

∂h(ξ, y+(ξ))
∂ξ

= −re−rξφ
(
y+(ξ)− σ

√
ξ

2

)
+

σ

4
√

2πξ

(
e−rξe−

(y+(ξ)−σ
√
ξ

2 )

2 + e−
(y+(ξ)+

σ
√
ξ

2 )

2

)

= −re−rξφ
(
y+(ξ)− σ

√
ξ

2

)
+

σ

4
√

2πξ

(
e−rξe−

y+(ξ)
2

2 e
y+(ξ)σ

√
ξ

2 e
σ2ξ
8 + e−

y+(ξ)
2

2 e−
y+(ξ)σ

√
ξ

2 e
σ2ξ
8

)
,

was mit (3.23) für limξ→0+ zu − r
2 wird. Also ∂h

∂ξ < 0, woraus die Behauptung folgt.
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Konstruktion der Subsolution
Wie schon gezeigt wurde, ist eine europäische Option bei gleichen Parametern immer weniger
Wert als eine amerikanische Option. Also ist PE(St, t) eine Subsolution zu P (St, t), genauso
wie (K − St)+, da P (St, t) ≥ (K − St)+. Wenn U−(St, t) definiert wird als

U−(St, t) = sup {PE(St, t), (K − St)+} ,

bleibt es, als Supremum zweier Subsolutions, eine Subsolution.
Suche nun die Grenzfunktion a−(t) für U−(St, t). Für diese Funktion muss
U−(a−(t), t) = (K − a−(t))+ gelten und dies folgt aus

PE(a−(t), t) = (K − a−(t))+ . (3.24)

Definiere wieder sechs Hilfsfunktionen.

ξ = T − t

y(ξ) =
1

σ
√
ξ

ln
ST−ξ
Ke−rξ

y−(ξ) =
1

σ
√
ξ

ln
a−(T − ξ)
Ke−rξ

v(ξ, y) = PE(t, St)
u(ξ, y) = P (t, St)

φ(x) = 1−N(x) =
∫ ∞
x

1√
2π
e
−ι2
2 dι

Diese Notationen verändern den europäischen Optionspreis, genau wie bei der Supersolution
und aus (3.24) wird:

Ke−rξ
[
φ

(
y−(ξ)− σ

√
ξ

2

)
− ey−(ξ)σ

√
ξφ

(
y−(ξ) +

σ
√
ξ

2

)]
= K −Ke−rξeσ

√
ξy−(ξ)

⇔ φ

(
y−(ξ)− σ

√
ξ

2

)
− ey−(ξ)σ

√
ξφ

(
y−(ξ) +

σ
√
ξ

2

)
= erξ − eσ

√
ξy−(ξ)

Lemma
Für alle ξ > 0 existiert y−(ξ) und ist eindeutig.
Beweis
Setze

k(ξ, y(ξ)) = φ

(
y(ξ)− σ

√
ξ

2

)
− ey(ξ)σ

√
ξφ

(
y(ξ) +

σ
√
ξ

2

)
− erξ + eσ

√
ξy(ξ) ,

dann hat diese Funktion zwei Eigenschaften aufgrund von φ

lim
y→−∞

k(ξ, y) = 1− erξ < 0

lim
y→+∞

k(ξ, y) =∞ .
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Wenn nun k streng monoton steigend ist, dann gibt es genau eine Nullstelle und y−(ξ) existiert
und ist eindeutig.

∂k(ξ, y)
∂y

= σ
√
ξeσ
√
ξy(ξ)

(
1− φ

(
y(ξ) +

σ
√
ξ

2

))
> 0

�

Lemma

y−(ξ) −→
ξ→0+

−∞ (3.25)

Beweis
Genau wie im Beweis für a+ fixiere A < 0, betrachte k(ξ, A) für ξ nahe 0+ und approximiere
die Normalverteilungen durch Taylorentwicklung. Ebenfalls kann der dort geführte Beweis,
dass (1− erξ) ∼ rξ für kleine ξ verändert werden zu (1− eσA

√
ξ) ∼ −σA

√
ξ bzw.

(1 + σA
√
ξ) ∼ eσA

√
ξ für kleine ξ.

k(ξ, A) = φ

(
A− σ

√
ξ

2

)
− eAσ

√
ξφ

(
A+

σ
√
ξ

2

)
− erξ + eσ

√
ξA

= φ(A)− σ
√
ξ

2
φ′(A)− (1 + σA

√
ξ)(φ(A) +

σ
√
ξ

2
φ′(A))− 1 + (1 + σA

√
ξ) + o(

√
ξ)

= −σ
√
ξφ′(A)− σA

√
ξφ(A)− σ2ξ

2
φ′(A)A+ σA

√
ξ + o(

√
ξ)

= −σ
√
ξφ′(A) + (1− φ(A))σA

√
ξ − σ2ξ

2
φ′(A)A+ o(

√
ξ)

ξ→0+

= −σ
√
ξφ′(A) + (1− φ(A))σA

√
ξ + o(

√
ξ)

=
σ
√
ξ√

2π
e−

A2

2 +
σA
√
ξ√

2π

∫ A

−∞
e−

u2

2 du+ o(
√
ξ)

Das Integral kann durch partielle Integration verändert werden∫ A

−∞
u−2e−

u2

2 du
pI
= −u−1e−

u2

2

∣∣∣∣A
−∞
−
∫ A

−∞
e−

u2

2 du = −A−1e−
A2

2 −
∫ A

−∞
e−

u2

2 du

und vereinfacht k(ξ, A) zu

k(ξ, A) = −Aσ
√
ξ√

2π

∫ A

−∞
e−

u2

2 du+ o(
√
ξ) .

Da k(ξ, y) in y fällt, resultiert die Behauptung mit

∀A < 0 ∃ξ0 > 0 so, dass ∀ξ < ξ0 k(ξ, A) > 0 .

�

Lemma (
y−(ξ)

)n√
ξ −→
ξ→0+

0 ∀n ∈ N (3.26)
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Beweis
Es gilt y+(ξ) < y−(ξ) ≤ 0, da U−(St, t) < U+(St, t) nach Definition. Bei der Betrachtung der
Supersolution wurde y+(ξ) ∼ −

√
|ln(ξ)| gezeigt. Hinreichend ist also√

|ln(ξ)|
n√

ξ −→
ξ→0+

0 .

Dies kann mit L´Hospital gezeigt werden.
Für n gerade gilt

lim
x→0+

√
|ln(x)|

n√
x = lim

x→0+

√
|ln(x)|n

1√
x

= lim
x→0+

n(n− 2)(n− 4)...2 |ln(x)|
1√
x

= lim
x→0+

n(n− 2)(n− 4)...2
√
x = 0

und ebenso für ungerade n

lim
x→0+

√
|ln(x)|

n√
x = lim

x→0+

√
|ln(x)|n

1√
x

= lim
x→0+

n(n− 2)(n− 4)...12 |ln(x)|−
1
2

1√
x

= lim
x→0+

n(n− 2)(n− 4)...
1
2

√
x√

|ln(x)|
= 0.

�
Notation
Um die Ausführungen so übersichtlich wie möglich zu gestalten setze y−(ξ) = y und
N(x) = 1− φ(x).

φ

(
y−(ξ)− σ

√
ξ

2

)
− ey−(ξ)σ

√
ξφ

(
y−(ξ) +

σ
√
ξ

2

)
= erξ − eσ

√
ξy−(ξ)

⇔ 1−N
(
y − σ

√
ξ

2

)
− eyσ

√
ξ(1−N

(
y +

σ
√
ξ

2

)
) = erξ − eσ

√
ξy

⇔ N

(
y − σ

√
ξ

2

)
− eyσ

√
ξN

(
y +

σ
√
ξ

2

)
= 1− erξ (3.27)

Eine weitere Abschätzung wird benötigt.
Entwickle N(x) mit der Taylorentwicklung um Punkt y und benutze das Lagrange Restglied.

N(x) = N(y) +N ′(y)(x− y)− 1
2

(x− y)2 1√
2π
ue−

u2

2 u ∈ [y − σ
√
ξ

2
, y]

N

(
y − σ

√
ξ

2

)
= N(y)−N ′(y)

σ
√
ξ

2
− 1

2

(
σ
√
ξ

2

)2 1√
2π
ue−

u2

2

≤ N(y)−N ′(y)
σ
√
ξ

2
+

1
2

(
σ
√
ξ

2

)2 1√
2π

sup
u∈[y−σ

√
ξ

2
,y]

−ue−
u2

2

Stelle dies um zu∣∣∣∣N (y − σ
√
ξ

2

)
−N(y) +N ′(y)

σ
√
ξ

2

∣∣∣∣ ≤ 1
2

(
σ
√
ξ

2

)2 1√
2π

sup
u∈[y−σ

√
ξ

2
,y]

ue−
u2

2 .
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Aber da y → −∞ für ξ → 0, erhält man∣∣∣∣N (y − σ
√
ξ

2

)
−N(y) +N ′(y)

σ
√
ξ

2

∣∣∣∣ ≤1
2

(
σ
√
ξ

2

)2 1√
2π
o(1)

=o(ξ) (3.28)

Setzt man genauso y + σ
√
ξ

2 in die Taylorentwicklung ein so entsteht∣∣∣∣N (y +
σ
√
ξ

2

)
−N(y)−N ′(y)

σ
√
ξ

2

∣∣∣∣ = o(ξ). (3.29)

Wenn (3.28) und (3.29) umgestellt werden, um in den ersten Teil der Gleichung von (3.27)
eingesetzt zu werden, gelangt man zu

N

(
y − σ

√
ξ

2

)
− eyσ

√
ξN

(
y +

σ
√
ξ

2

)
=N(y)

(
1− eyσ

√
ξ
)
−N ′(y)

σ
√
ξ

2

(
1 + eyσ

√
ξ
)

+ o(ξ),

(3.30)

weil unter Mithilfe des letzten Lemmas

o(ξ)
(

1− eyσ
√
ξ
)

= o(ξ)o(1) = o(ξ)

gilt.
Wieder mit dem letzten Lemma folgt:

f ∈ O(
√
ξy) ⇒ 0 ≤ lim sup

ξ→0

∣∣∣∣f√ξy6

√
ξy

∣∣∣∣ ≤ lim sup
ξ→0

∣∣∣∣ f√
ξy

∣∣∣∣ <∞ ⇒ f ∈ O(
1
y5

) (3.31)

Lemma

N(y) =
e−

y2

2

√
2π

(
−1
y

+
1
y3

+O

(
1
y5

))
(3.32)

1− eyσ
√
ξ = −σ

√
ξy(1 +O(

√
ξy)) (3.33)

1 + eyσ
√
ξ = 2 + σ

√
ξy(1 +O(

√
ξy)) (3.34)

Beweis
Der Beweis benutzt die Errorfunktion, siehe [19],

erf(x) =
2√
π

∫ x

0
e−t

2
dt.

Damit lässt sich n(x) = N(x)−N(0) für x ≥ 0 darstellen als

n(x) =
1
2
erf(x).

Für große x kann die Errorfunktion aufgespalten werden

erf(x) =
2√
π

(∫ ∞
0

e−t
2
dt−

∫ ∞
x

e−t
2
dt

)
= 1− 2√

π

∫ ∞
x

e−t
2
dt
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und daraus eine Reihendarstellung mit partieller Integration gewonnen werden.

erf(x) = 1− 2
e−

x2

2

√
2π

(
1
x
− 1
x3

+
3
x5
− ...

)
.

Wenn dies für N(x) und für −x ausgeführt wird, folgt

N(y) =
e−

y2

2

√
2π

(
−1
y

+
1
y3

+O

(
1
y5

))
.

Für 0 ≤ s < 1 gilt

es − 1− s =
∞∑
k=0

sk

k!
− 1− s =

∞∑
k=2

sk

k!
≤ s2

∞∑
k=2

sk−2

k!
< s2(e− 2) < s2

und durch Umstellen von

es − 1− s = O(s2),

mit O(s)O(s) = O(s2), folgt die Behauptung.
Die dritte Gleichung geht aus der zweiten durch Multiplikation mit −1 und Addition von 2
hervor.

�

Es entsteht

1− eyσ
√
ξ = −σ

√
ξy

(
1 +O

(
1
y5

))
(3.35)

durch Kombination von (3.31) mit (3.33).
Dann werden die linken und die rechten Seiten der Gleichungen (3.32) und (3.35) miteinander
multipliziert.

N(y)(1− eyσ
√
ξ) = −σ

√
ξy
e−

y2

2

√
2π

(
−1
y

+
1
y3

+O

(
1
y5

))

= σ
√
ξ
e−

y2

2

√
2π

(
1− 1

y2
+O

(
1
y4

))
(3.36)

Da y ∈ O(y) und f ∈ O(y−10)⇒ f ∈ O(y−5).
Setze nun die gewonnenen Darstellungen für N(y)(1− eyσ

√
ξ) und (1 + eyσ

√
ξ) in (3.30) ein und

fasse zusammen.
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N

(
y − σ

√
ξ

2

)
− eyσ

√
ξN

(
y +

σ
√
ξ

2

)
=σ
√
ξ
e−

y2

2

√
2π

(
1− 1

y2
+O

(
1
y4

))

− σ
√
ξ

2
e−

y2

2

√
2π

(
2 + σ

√
ξy

[
1 +O

(
1
y5

)])
+ o(ξ)

=− e−
y2

2

√
2π

[
σ
√
ξ

y2
+ σ

√
ξO

(
1
y4

)
− σ2ξy

2
− σ2ξ

2
O

(
1
y4

)]
+ o(ξ) (3.37)

Für die ausmultiplizierten letzten drei Summanden gilt o(ξ). Sie können also in dem schon
vorhandenen o(ξ) Term zusammengefasst werden.

N

(
y − σ

√
ξ

2

)
− eyσ

√
ξN

(
y +

σ
√
ξ

2

)
= −e

− y
2

2

√
2π

σ
√
ξ

y2
+ o(ξ)

Dank (3.27) weiß man, dass der linke Teil der Gleichung gleich 1− erξ ist und sich damit für
kleine ξ wie rξ verhält.

e−
y2

2

√
2π

σ
√
ξ

y2
+ o(ξ) ∼ rξ

o(ξ)
ξ fällt aufgrund der Definition von o(ξ) weg. Durch Logarithmieren erhält man

−y
2

2
+ ln

(
σ√

2πry2

)
∼ ln(

√
ξ).

Mit

lim
ξ→0

ln
(

σ√
2πry2

)
ln(
√
ξ)

= lim
ξ→0
−

ln
(√

2πry2
)

ln(
√
ξ)

= 0

folgt

y−(ξ) ∼
√
|ln(ξ)|

und über die Definition von y−(ξ) und die bekannten Umformungen aus dem Supersolutionfall
die Subsolution.

Bemerkung
Das asymptotische Verhalten am Ende der Laufzeit kann auch über die Konvexität
nachgewiesen werden. Siehe [12].
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Bemerkung
Dank der gewonnen Informationen, ist es möglich eine Skizze der Grenzfunktionen anzugeben.
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Kapitel 4

Darstellung des amerikanischen
Callpreises für endliche Laufzeiten

4.1 Die Formel nach McKean

Da, im Gegensatz zur europäischen Option, ein Randwert der
Black-Scholes-Differentialgleichung für die amerikanische Option nicht deterministisch ist,
sondern vom Verlauf des zugrundeliegenden Finanzguts abhängt, ist es schwierig diese zu
lösen. In der Fachliteratur wird auch häufig von einem freien Randwert gesprochen. In dieser
Sektion wird der Ansatz von McKean betrachtet, der nach Vereinfachung und Zeitinversion
eine Fouriertransformation anwendet und daraus eine lösbare gewöhnliche Differentialgleichung
erhält. Um diese Transformationen zu ermöglichen ist allerdings die Kenntnis der
Grenzfunktion vorausgesetzt. Nach Rücktransformierung entsteht ein Integralterm für die
Preisfunktion für den amerikanischen Call, der die Grenzfunktion beinhaltet. Warum diese
Darstellung trotz fehlender Informationen über die Grenzfunktion hilfreich ist, wird am Ende
des Kapitels diskutiert. Die Ausarbeitung dieses Darstellung beruht auf dem Paper A Survey
of the Integral Representation of American Option Prices von Chiarella, Ziogas und Kuchera
[7]. Am Ende wird noch auf die Praxistauglichkeit der gewonnenen Lösung eingegangen. Die
Grundlagen zu gewöhnlichen Differentialgleichungen wie zum Beispiel der Lösungsalgorithmus
und Existenz- und Eindeutigkeitsbeweise können in [8] nachgelesen werden.
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4.1.1 Transformationen

Ausgangsformel ist die Black-Scholes Differentialgleichung

∂C(St, t)
∂t

+ σ2S2
t

1
2
∂2C(St, t)

∂S2
− rC(St, t) + (r − q)St

∂C(St, t)
∂S

= 0 (4.1)

und die Grenzfunktion b(t) der Calloption, die hier mit Cb(St, t) benannt ist, um die
Zugehörigkeit von Grenzfunktion zu Preisfunktion zu kennzeichnen.
Transformiere die Zeit durch eine Bijektion

t = T − τ.

Dies verdeutlicht die Abhängigkeit des Preises von der Restlaufzeit der Option.
Die geometrische Brownsche Bewegung St vereinfache zu ex.

St = ex

Definiere nun Vj , als

Cb(St, t) ≡ Vj(x, τ) ,

mit j (τ) = b (T − τ) als Grenzfunktion für V (x, τ).
Nun verändert sich durch diese Transformationen auch die partielle Differentialgleichung (4.1).
Zur Berechnung setze g(τ) = T − τ und h(x) = ex, dann folgt für die Differentialterme

∂V (x, τ)
∂τ

=
C(ex, g(τ))

∂τ
=
∂g(τ)
∂τ

∂C(ex, t)
∂t

= −∂C(St, t)
∂t

∂V (x, τ)
∂x

=
∂C(h(x), t)

∂x
=
∂h(x)
∂x

∂C(ex, t)
∂ex

= ex · ∂C(St, t)
∂S

∂2V (x, τ)
∂x2

=
∂

∂x

(
∂h(x)
∂x

· ∂C(ex, t)
∂ex

)
=
∂2h(x)
∂x2

· ∂C(ex, t)
∂ex

+
(
∂h(x)
∂x

)2

· ∂
2C(ex, t)
∂(ex)2

= ex · ∂C(St, t)
∂S

+ (ex)2 · ∂
2C(St, t)
∂S2

.

Eingesetzt in die partielle Differentialgleichung (4.1) ergibt sich:

−∂Vj(x, τ)
∂τ

+
1
2
σ2∂

2Vj(x, τ)
∂x2

+

r − q − 1
2
σ2︸ ︷︷ ︸

k

 ∂Vj(x, τ)
∂x

− rVj(x, τ) = 0 (4.2)

Die Black-Scholes Differentialgleichung gilt nur bis zum Ausübungszeitpunkt, deswegen muss
der Geltungsbereich für die Transformation angepasst werden.

0 ≤ ex ≤ b(t) ⇔ −∞ ≤ x ≤ ln (b (t)) = ln (j (τ))

Definiere v(x) als Transformierte der Auszahlungsfunktion c(S). Die Auszahlungsfunktion wird
also noch nicht genau spezifiziert, allerdins muss c(S) streng monoton sein, damit eine
Bijektion zu v(x) entstehen kann.
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Durch die Transformation verändern sich die Randwerte und Übergangsbedingung aus
Kapitel 3.

Cb (ST , T ) = c (ST ) → Vj (x, 0) = v (x) für ST ∈ ]0,∞[ (4.3)
lim
St→0

Cb(St, t) = 0 t ≥ 0 → lim
x→−∞

Vj(x, τ) = 0 τ ≥ 0 (4.4)

Cb(b(t), t) = c(b(t)) t ≥ 0 → Vj(ln(j(τ)), τ) = v(ln(j(τ))) τ ≥ 0 (4.5)
∂Cb(St, t)

∂S

∣∣∣∣
b(t)

=
∂c(St)
∂S

∣∣∣∣
b(t)

= c′(b(t)) → ∂Vj(x, τ)
∂x

∣∣∣∣
ln(j(τ))

=
∂v(x)
∂x

∣∣∣∣
ln(j(τ))

= v′(ln(j(τ))) (4.6)

Da eine Fouriertransformation in der Variablen x angewendet werden soll, muss (4.2) für alle
x ∈ R definiert sein, deswegen setze (4.2) für x > ln(j(τ)) gleich Null durch Kombination mit
der

Heaviside-Step-Funktion H, H(x) =


1 x > 0
1
2 x = 0
0 x < 0

.

Es entsteht

H (ln (j (τ))− x) ·
(
−∂Vj(x, τ)

∂τ
+

1
2
σ2∂

2Vj(x, τ)
∂x2

+ k
∂Vj(x, τ)

∂x
− rVj(x, τ)

)
= 0

und durch Umformung erhält man die zu transformierende Funktion

H (ln (j (τ))− x) · ∂Vj(x, τ)
∂τ

= H (ln (j (τ))− x) ·
(

1
2
σ2∂

2Vj(x, τ)
∂x2

+ k
∂Vj(x, τ)

∂x
− rVj(x, τ)

)
(4.7)

.
Bemerkung
Für die Unstetigkeitsstelle x = ln (j (τ)) der zu transformierende Funktion gilt also
Vj(ln(j(τ)), τ) = v(ln(j(τ)))

2 . Der Grund hierfür ist, dass eine Fouriertransformation einer in
einem Punkt unstetigen Funktion gegen den Mittelwert an der Sprungstelle konvergiert. Siehe
Dettmann, [17].
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4.1.2 Die Fouriertransformation

Definition
Definiere die Fouriertransformation in einer Variablen einer fast-sicher stetigen Funktion
f(x, y), f : R× R→ R, als

F {f(·, y)} (η) =
∫ ∞
−∞

eiηxf(x, y)dx .

Die Stetigkeit der Differentialterme der Black-Scholes Differentialgleichung wurde durch die
Transformationen nicht beeinträchtigt. Durch die Linearität des Integrals kann jeder Term der
in x fouriertransformierten Differentialgleichung einzeln betrachtet werden.

F

{
H (ln (j (τ))− x) · ∂Vj(·, τ)

∂τ

}
(η) =

1
2
σ2F

{
H (ln (j (τ))− x) · ∂

2Vj(·, τ)
∂x2

}
(η)

+ kF

{
H (ln (j (τ))− x) · ∂Vj(·, τ)

∂x

}
(η)

− rF {H (ln (j (τ))− x) · Vj(·, τ)} (η) (4.8)

Da die Fouriertransformation immer in der Variablen x stattfindet, wird dieses nicht mehr
explizit erwähnt.
Definiere F j als Fouriertransformation bis zum Wert ln(j(τ)) und Ṽj(η, τ) als Kurzversion von
F j {Vj(x, τ)} (η). Die gewöhnliche Differentialgleichung, die Ṽ erfüllt, wird in der Variablen τ
sein, da sich alle Differentiationen nach x ausintegrieren lassen.

F {H (ln (j (τ))− x) · Vj(x, τ)} (η) =
∫ ∞
−∞

eiηxH (ln (j (τ))− x)Vj(x, τ)dx

=
∫ ln(j(τ))

−∞
eiηxVj(x, τ)dx ≡ F j {Vj(x, τ)} (η) ≡ Ṽj(η, τ)

Unter Mithilfe der transformierten Randwerte und Übergangsbedingung können die einzelnen
Fouriertransformationen vereinfacht werden.

F j
{
∂Vj(x, τ)

∂x

}
(η) =

∫ ln(j(τ))

−∞
eiηx

∂Vj(x, τ)
∂x

dx

part.I.
= eiηx · Vj(x, τ)

∣∣ln(j(τ))

−∞ − iη
∫ ln(j(τ))

−∞
eiηxVj(x, τ)dx

(4.5)
= eiη·ln(j(τ))v(ln(j(τ)))− iηṼj(η, τ) (4.9)

F j
{
∂2Vj(x, τ)

∂x2

}
(η) =

∫ ln(j(τ))

−∞
eiηx

∂2Vj(x, τ)
∂x2

dx

part.I.
= eiηx · ∂Vj(x, τ)

∂x

∣∣∣∣ln(j(τ))

−∞
− iη

∫ ln(j(τ))

−∞
eiηx

∂Vj(x, τ)
∂x

dx

(4.9)
= eiη·ln(j(τ))∂Vj(x, τ)

∂x

∣∣∣∣
ln(j(τ))

− iη
[
eiη·ln(j(τ))v(ln(j(τ)))− iηṼj(η, τ)

]
(4.6)
= eiη·ln(j(τ)) · v′(ln(j(τ)))− iη

[
eiη·ln(j(τ))v(ln(j(τ)))− iηṼj(η, τ)

]
= eiη·ln(j(τ))

[
v′(ln(j(τ)))− iηv(ln(j(τ)))

]
− η2Ṽj(η, τ) (4.10)
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Um Differentiation und Integration im folgenden Fall zu vertauschen, wird die Leibnizregel für
Parameterintegrale benötigt.

∂

∂t

∫ ϕ(t)

χ(t)
f(x, t) dx =

∫ ϕ(t)

χ(t)

∂f(x, t)
∂t

dx+ f(ϕ(t), t)
∂ϕ

∂t
− f(χ(t), t)

∂χ

∂t
(4.11)

Für stetig differenzierbare Funktionen f(x, ·), χ(t) und ϕ(t). Der Beweis ist in [10] nachlesbar.
Also

F j
{
∂Vj(x, τ)

∂τ

}
(η) =

∫ ln(j(τ))

−∞
eiηx

∂Vj(x, τ)
∂τ

dx

(4.11)
=

∂

∂τ

[∫ ln(j(τ))

−∞
eiηxVj(x, τ)dx

]
− ∂j(τ)

∂τ

1
j(τ)

eiη·ln(j(τ))Vj(ln(j(τ)), τ)

=
∂

∂τ
F j {Vj(x, τ)} − ∂j(τ)

∂τ

1
j(τ)

eiη·ln(j(τ))Vj(ln(j(τ)), τ)

(4.5)
=

∂Ṽj(η, τ)
∂τ

− ∂j(τ)
∂τ

1
j(τ)

eiη·ln(j(τ))v(ln(j(τ)))

Aus der Ausgangsgleichung (4.8) entsteht mit der Definition von F j

F j
{
∂Vj(x, τ)

∂τ

}
(η) =

1
2
σ2F j

{
∂2Vj(x, τ)

∂x2

}
(η) + kF j

{
∂Vj(x, τ)

∂x

}
(η)− rF j {Vj(x, τ)} (η)

und daraus wird mit den gewonnen Gleichungen:

∂Ṽj(η, τ)
∂τ

− ∂j(τ)
∂τ

1
j(τ)

eiη·ln(j(τ))v(ln(j(τ))) =
1
2
σ2eiη·ln(j(τ))

[
v′(ln(j(τ)))− iηv(ln(j(τ)))

]
− η2Ṽj(η, τ)

+ k
[
eiη·ln(j(τ))v(ln(j(τ)))− iηṼj(η, τ)

]
− rṼj(η, τ)

Oder

∂Ṽj(η, τ)
∂τ

+
(

1
2
σ2η2 + iηk + r

)
Ṽj(η, τ)

= eiη·ln(j(τ))

[
1
2
σ2
[
v′(ln(j(τ)))− iηv(ln(j(τ)))

]
+ v(ln(j(τ)))

(
k +

∂j(τ)
∂τ

1
j(τ)

)]
.

(4.12)

Das Ziel, durch Transformationen des Preisprozesses eine gewöhnliche Differentialgleichung zu
erhalten, wurde erreicht.

Bemerkung
Diese Darstellung setzt implizit die Kenntnis der Grenzfunktion voraus. Zusätzlich ist nicht
sicher, dass die Grenzfunktion überhaupt differenzierbar, beziehungsweise stetig differenzierbar
ist. Ein Beweis hierfür ist noch nicht erbracht worden.
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4.1.3 Lösen der gewöhnlichen Differentialgleichung

Die inhomogene, lineare Differentialgleichung erster Ordnung kann mit dem System Variation
der Konstanten gelöst werden. Die Gleichung sieht folgendermaßen aus:

Ṽj
′
(η, τ) = −ϕ(η)Ṽj(η, τ) + φ(η, τ)

mit

∂Ṽj(η, τ)
∂τ

= Ṽj
′
(η, τ)

und

ϕ(η) =
(

1
2
σ2η2 + iηk + r

)
und

φ(η, τ) = eiη·ln(j(τ))

[
1
2
σ2
(
v′(ln(j(τ)))− iηv(ln(j(τ)))

)
+ v(ln(j(τ)))

(
k +

∂j(τ)
∂τ

1
j(τ)

)]
.

Fange mit

Ṽj
′
(η, τ) = −ϕ(η)Ṽj(η, τ)

an.

y(τ) = e−
∫ τ
0 ϕ(η)ds = e−ϕ(η)τ

löst die Differentialgleichung. Nun muss noch der φ Term berücksichtigt werden.
Setze dafür

ỹ(τ) = c(τ)e−ϕ(η)τ .

Die Konstante c variiert.

ỹ′(τ) = c′(τ)e−ϕ(η)τ − c(τ)ϕ(η)e−ϕ(η)τ = −ϕ(η)ỹ(τ) + c′(τ)e−ϕ(η)τ

Um die Differentialgleichung zu lösen, muss also

c′(τ) = φ(η, τ)eϕ(η)τ

gelten. Integriere:

c(τ) =
∫ τ

0
φ(η, s)eϕ(η)sds+ Ṽj(η, 0)

Die in τ konstante Funktion Ṽj(η, 0) wird zur Erfüllung der gegebenen Anfangsbedingung
gebraucht.
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Damit ist die Funktion gefunden, die die Differentialgleichung erfüllt.

Ṽj(η, τ) = e−ϕ(η)τ Ṽj(η, 0) + e−ϕ(η)τ

∫ τ

0
φ(η, s)eϕ(η)sds

= e−ϕ(η)τ Ṽj(η, 0) +
∫ τ

0
φ(η, s)e−ϕ(η)(τ−s)ds (4.13)

mit

ϕ(η) =
(

1
2
σ2η2 + iηk + r

)
und

φ(η, τ) = eiη·ln(j(τ))

[
1
2
σ2v′(ln(j(τ))) + v(ln(j(τ)))

(
r − 1

2
σ2 − iη1

2
σ2 +

∂j(τ)
∂τ

1
j(τ)

)]
Folglich ist das nächste Ziel die Rücktransformierung.
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4.1.4 Die Rücktransformation

In diesem Abschnitt wird Vj(x, τ) aus Ṽ (η, τ) zurück gewonnen.
Definition
Für eine fast-sicher stetige Funktion f(x, τ), f : R× R→ R, definiere:

F−1 {f(·, τ)} (x) :=
1

2π

∫ ∞
−∞

e−iηxf(η, τ)dη

Dies ist das Inverse der Fouriertransformation.
Satz
Setze f(x, τ) = H(ln(j(τ))− x)g(x, τ), also f : R× [0, T ]→ R, dann gilt

g(x, τ) = F−1 {F {f(·, τ)} (·)} (x) =
1

2π

∫ ∞
−∞

[∫ ln(j(τ))

−∞
g(x, τ)eiηx dx

]
e−iηx dη .

Beweis
Der Beweis zeigt, dass das Standard-Fourier-Transformationstheorem, siehe [11],

f(x, τ) =
1

2π

∫ ∞
−∞

[∫ ∞
−∞

f(x, τ)eiηx dx

]
e−iηx dη

die unvollständige Variante

g(x, τ) =
1

2π

∫ ∞
−∞

[∫ ln(j(τ))

−∞
g(x, τ)eiηx dx

]
e−iηx dη

mit einschließt.
f(x, τ) = H(ln(j(τ))− x)g(x, τ) eingesetzt gibt

H(ln(j(τ))− x)g(x, τ) =
1

2π

∫ ∞
−∞

[∫ ∞
−∞

H(ln(j(τ))− x))g(x, τ)eiηx dx

]
e−iηx dη

=
1

2π

∫ ∞
−∞

[∫ ln(j(τ))

−∞
g(x, τ)eiηx dx

]
e−iηx dη ,

mit der Heaviside-Step-Function folgt

g(x, τ) =
1

2π

∫ ∞
−∞

[∫ ln(j(τ))

−∞
g(x, τ)eiηx dx

]
e−iηx dη −∞ < x < ln(j(τ))

g(x, τ)
2

=
1

2π

∫ ∞
−∞

[∫ ln(j(τ))

−∞
g(x, τ)eiηx dx

]
e−iηx dη x = ln(j(τ))

und damit die Behauptung.
�
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Einige Hilfsmittel für die Rücktransformation werden benötigt.

Lemma
Für ρ1 > 0 gilt:

∫ ∞
−∞

e−ρ1η
2−ρ2ηdη =

√
π

ρ1
e
ρ22
4ρ1 (4.14)∫ ∞

−∞
ηe−ρ1η

2−ρ2ηdη = −
√
π

ρ1

ρ2

2ρ1
e
ρ22
4ρ1 (4.15)

Beweis

∫ ∞
−∞

ηe−ρ1η
2−ρ2ηdη =

∫ ∞
−∞

ηe
−(ρ1η2+ρ2η+

ρ2
2

4ρ1
− ρ2

2

4ρ1
)
dη

ρ1≥0
=

∫ ∞
−∞

ηe
−(
√
ρ1η−−ρ2

2

4ρ1
)2
e
ρ2

2

4ρ1 dη

= e
ρ2

2

4ρ1

∫ ∞
−∞

ηe
− 1

2

√ρ1η−−ρ22

4ρ1
1√
2

2

dη

= e
ρ2

2

4ρ1
√
π

1
1√
2

√
2π

∫ ∞
−∞

ηe
− 1

2

√ρ1η−−ρ22

4ρ1
1√
2

2

dη

Substituiere
√
ρ1η = y ⇒ √ρ1dη = dy. Die Grenzen bleiben bestehen.

∫ ∞
−∞

ηe−ρ1η
2−ρ2ηdη = e

ρ2
2

4ρ1
√
π

1
1√
2

√
2π

∫ ∞
−∞

y
√
ρ1
e
− 1

2

 y−−ρ2
2

4ρ1
1√
2

2

1
√
ρ1
dy

In der Situation (4.14) würde der Term y√
ρ1

wegfallen.

Der Integrationsterm ist der Erwartungswert einer N
(
−ρ22

4ρ1
, 1

2

)
verteilten Zufallsvariable Y .

Im Falle (4.14) steht im Integral eine Normalverteilungsdichte, womit (4.14) folgt.

∫ ∞
−∞

ηe−ρ1η
2−ρ2ηdη = e

ρ2
2

4ρ1

√
π

ρ1

1
1√
2

√
2π

∫ ∞
−∞

ye
− 1

2

 y−−ρ2
2

4ρ1
1√
2

2

dy

= e
ρ2

2

4ρ1

√
π

ρ1

1
1√
2

√
2π
E [Y ] = e

ρ2
2

4ρ1

√
π

ρ1

−ρ2
2

4ρ1

�
Definition
Der Faltungsoperator zweier fast-sicher stetiger Funktionen f, g : R→ R ist definiert als

f ∗ g (x) =
∫

R
f(x− u)g(u)du.
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Faltungstheorem
f und g seien fast-sicher stetige Funktionen mit Faltung f ∗ g und Fouriertransformierten
F {f}, F {g}, dann gilt

(1)F {f ∗ g} = F {f} · F {g} (2)F {f · g} = F {f} ∗ F {g} (3)f ∗ g = F−1 {F {f} · F {g}}

Auf den Beweis wird an dieser Stelle verzichtet, er kann aber in [18] nachgelesen werden.

Teil 3 des Theorems soll angewendet werden, da F−1
{
e−ϕ(η)τ Ṽj(η, 0)

}
(x) benötigt wird.

F−1
{
e−ϕ(η)τ

}
(x) und F−1

{
Ṽj(η, 0)

}
(x) werden berechnet und danach gefaltet.

F−1
{
e−ϕ(η)τ

}
(x) =

1
2π

∫ ∞
−∞

e−( 1
2
σ2η2+iηk+r)τe−iηxdη

=
1

2π
e−rτ

∫ ∞
−∞

e(− 1
2
σ2τ)η2−i(x+k)ηdη

(4.14)
=

1
σ
√

2πτ
e−rτe

−(x+kτ)2

2σ2τ
1
2
σ2τ > 0 da τ > 0

F−1
{
Ṽj(η, 0)

}
(x) = F−1

{
F j {Vj(x, 0)}

}
(x) = F−1

{
F
{
H(ln(j(0+))− x)Vj(x, 0)

}}
(x)

= H(ln(j(0+))− x)Vj(x, 0) = H(ln(j(0+))− x)v(x)

Bemerkung
0+ wird verwendet, da, wie in Kapitel 3 gezeigt, die Funktion b(t) sich asyptotisch zur
Senkrechten durch T verhält.

Teile nun für die Funktion Vj(x, τ) in zwei Teile auf.

Vj(x, τ) = V 1
j (x, τ) + V 2

j (x, τ)

= F−1
{
e−ϕ(η)τ Ṽj(η, 0)

}
(x) + F−1

{∫ τ

0
φ(η, s)e−ϕ(η)(τ−s)ds

}
(x)

Dank des Faltungstheorems und den oben bestimmten Gleichungen ergibt sich V 1
j .

V 1
j (x, τ) = F−1

{
e−ϕ(η)τ Ṽj(η, 0)

}
(x)

=
∫ ∞
−∞

F−1
{
e−ϕ(η)τ

}
(x− u) · F−1

{
Ṽj(η, 0)

}
(u)du

=
∫ ∞
−∞

1
σ
√

2πτ
e−rτe

−((x−u)+kτ)2

2σ2τ ·H(ln(j(0+))− u)v(u)du

=
∫ ln(j(0+))

−∞

1
σ
√

2πτ
e−rτe

−((x−u)+kτ)2

2σ2τ v(u)du
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Es bleibt V 2
j zu bestimmen.

V 2
j (x, τ) = F−1

{∫ τ

0
φ(η, s)e−ϕ(η)(τ−s)ds

}
(x)

=
1

2π

∫ ∞
−∞

e−iηx
∫ τ

0
φ(η, s)e−ϕ(η)(τ−s)ds dη

Schreibe nun

φ(η, τ) = eiη·ln(j(τ))

[
1
2
σ2v′(ln(j(τ))) + v(ln(j(τ)))

(
k − iη1

2
σ2 +

∂j(τ)
∂τ

1
j(τ)

)]
als

φ(η, τ) = eiη·ln(j(τ)) [φ1(τ)− ηφ2(τ)]

mit

φ1(τ) =
1
2
σ2v′(ln(j(τ))) +

(
∂j(τ)
∂τ

1
j(τ)

+ k

)
v(ln(j(τ)))

und

φ2(τ) =
σ2i

2
v(ln(j(τ))) .

Nun sind φ1 φ2 unabhängig von η und die Integrationsreihenfolge kann vertauscht werden.

V 2
j (x, τ) =

1
2π

∫ ∞
−∞

e−iηx
∫ τ

0
φ(η, s)e−ϕ(η)(τ−s)ds dη

=
1

2π

∫ ∞
−∞

e−iηx
∫ τ

0
eiη·ln(j(s)) [φ1(s)− ηφ2(s)] e−ϕ(η)(τ−s)ds dη

=
1

2π

∫ τ

0

∫ ∞
−∞

e−iηxeiη·ln(j(s))e−ϕ(η)(τ−s) [φ1(s)− ηφ2(s)] dη ds

ϕ(η)
=

1
2π

∫ τ

0
e−r(τ−s)

∫ ∞
−∞

e−η
2(σ

2

2
(τ−s))−η[ix−i·ln(j(s))+i(τ−s)k)] [φ1(s)− ηφ2(s)] dη ds

=
1

2π

∫ τ

0
e−r(τ−s)

∫ ∞
−∞

e−η
2·ρ1−η·ρ2 [φ1(s)− ηφ2(s)] dη ds

Mit ρ1 > 0 , da 0 < s < τ , ist man in der Situation des Lemmas.

V 2
j (x, τ) =

1
2π

∫ τ

0
e−r(τ−s)

[
φ1(s)

√
π

ρ1
e
ρ22
4ρ1 + φ2(s)

√
π

ρ1
e
ρ22
4ρ1

ρ2

2ρ1

]
ds

φ1φ2=
∫ τ

0

e
−r(τ−s)+ ρ22

4ρ1

2
√
πρ1

[
σ2

2
v′(ln(j(s))) +

(
∂j(s)
∂s

1
j(s)

+ k)
)
v(ln(j(s))) +

σ2iv(ln(j(s)))ρ2

4ρ1

]
ds

ρ1ρ2=
∫ τ

0

e−r(τ−s)−h(x,s)

σ
√

2π(τ − s)

[
σ2

2
v′(ln(j(s))) +

(
∂j(s)
∂s

1
j(s)

+
1
2

[
k − x− ln(j(s))

τ − s

])
v(ln(j(s)))

]
ds
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Mit

h(x, s) ≡ [x− ln(j(s)) + k(τ − s)]2

2σ2(τ − s)

kann Vj explizit aufgeschrieben werden.

Vj(x, τ)

=
∫ ln(j(0+))

−∞

1
σ
√

2πτ
e−rτe

−((x−u)+kτ)2

2σ2τ v(u)du

+
∫ τ

0

e−r(τ−s)−h(x,s)

σ
√

2π(τ − s)

[
σ2

2
v′(ln(j(s))) +

(
∂j(s)
∂s

1
j(s)

+
1
2

[
k − x− ln(j(s))

τ − s

])
v(ln(j(s)))

]
ds

für 0 < τ ≤ T und −∞ < x < ln(j(τ))

Bemerkung
Es war möglich eine Integraldarstellung zu erlangen, ohne explizite Angabe der
Auszahlungsfunktion. Die einzige Annahme an die an die Auszahlungsfunktion ist die
Monotonie. Die Auszahlungsfunktion der Calloption wird im nächsten Schritt eingesetzt.
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4.1.5 Die Formel nach McKean für den Call

Die Auszahlungsfunktion einer Calloption ist streng monoton steigend für S ≥ K, deswegen
gilt:

c(St) = (St −K)+ ⇒ v(x) = (ex −K)+ ⇒ v(x) = 0 ⇔ −∞ < x ≤ ln(K)

Setze dies in Vj(x, τ) beziehungsweise in V 1
j (x, τ) und V 2

j (x, τ) ein.

V 1
j (x, τ) =

∫ ln(j(0+))

−∞

1
σ
√

2πτ
e−rτe

−((x−u)+kτ)2

2σ2τ v(u)du

v(x)
=

∫ ln(j(0+))

ln(K)

1
σ
√

2πτ
e−rτ+ue

−((x−u)+(kτ)2

2σ2τ du−K
∫ ln(j(0+))

ln(K)

1
σ
√

2πτ
e−rτe

−((x−u)+kτ)2

2σ2τ du

≡ I1(x, τ)−KI2(x, τ)

Betrachte I1 als Erstes.

I1(x, τ) =
∫ ln(j(0+))

ln(K)

1
σ
√

2πτ
e
u2σ2τ−2σ2rτ2+((x−u)−kτ)2

2σ2τ du

= e
−2rσ2τ2−x2−kτ2−2xkτ

2σ2τ
1

σ
√

2πτ

∫ ln(j(0))

ln(K)
e
−(u2−2u(σ2τ+x+k)

2σ2τ du

quadr. Erg.
= ex · 1

σ
√

2πτ

∫ ln(j(0))

ln(K)
e
−(u−(x+kτ))2

2σ2τ du︸ ︷︷ ︸
Verteilungsfkt einer N(x+kτ,σ2τ)-Zufallsvariable

Seien X und Z Zufallsvariablen, mit

X ∼ N(x+ kτ, σ2τ) und Z ∼ N(0, 1).

⇒ X
d=

Z

σ
√
τ

+ (x+ kτ)

Das Integral kann, dank der Symmetrie um Null einer N(0, σ2) verteilten Zufallsvariable,
vereinfacht werden:

1
σ
√

2πτ

∫ ln(j(0+))

ln(K)
e
−(u−(x+kτ))2

2σ2τ du

= P (X ≤ ln(j(0+)))− P (X ≤ ln(K))
= P (X − E [X] ≤ ln(j(0+))− E [X])− P (X − E [X] ≤ ln(K)− E [X])

Sym.
= P (X − E [X] ≤ − ln(K) + E [X])− P

(
X − E [X] ≤ − ln(j(0+)) + E [X]

)
= P

(
Z ≤ − ln(K) + E [X]

σ
√
τ

)
− P

(
Z ≤ − ln(j(0+)) + E [X]

σ
√
τ

)
= N

(
− ln(K) + E [X]

σ
√
τ

)
−N

(
− ln(j(0+)) + E [X]

σ
√
τ

)
)

Daraus folgt I1.

I1(x, τ) = ex
[
N

(
− ln(K) + (x+ kτ)

σ
√
τ

)
−N

(
− ln(j(0+)) + (x+ kτ)

σ
√
τ

)]
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Es fehlt I2. Durch die Gleichung (x− u+ kτ)2 = (u− (x+ kτ))2 und der linearen
Transformation einer normalverteilten zu einer standardnormalverteilten Zufallsvariable erhält
man

I2(x, τ) =
∫ ln(j(0+))

ln(K)

1
σ
√

2πτ
e−rτe

−(x−u+kτ)2

2σ2τ du

= e−rτ · 1
σ
√

2πτ

∫ ln(j(0+))

ln(K)
e−

(u−(x+kτ))2

2σ2τ du︸ ︷︷ ︸
Verteilungsfkt einer N(x+kτ,σ

√
τ) Zufallsvariable X.

= e−rτ
[
P
(
X ≤ ln(j(0+))

)
− P (X ≤ ln(K))

]
= e−rτ

[
P
(
X − E [X] ≤ ln(j(0+))− E [X]

)
− P (X − E [X] ≤ ln(K)− E [X])

]
Sym.
= e−rτ

[
P (X − E [X] ≤ − ln(K) + E [X])− P

(
X − E [X] ≤ − ln(j(0+)) + E [X]

)]
l.Transf.= e−rτ

[
P

(
Z ≤ − ln(K) + E [X]

σ
√
τ

)
− P

(
Z ≤ − ln(j(0+)) + E [X]

σ
√
τ

)]
.

Zusammengefasst hat man nun eine Darstellung für V 1
j .

V 1
j (x, τ) =ex

[
N

(
− ln(K) + (x+ kτ)

σ
√
τ

)
−N

(
− ln(j(0)) + (x+ kτ)

σ
√
τ

)]
−Ke−rτ

[
N

(
− ln(K) + (x+ kτ

σ
√
τ

)
−N

(
− ln(j(0)) + (x+ kτ

σ
√
τ

)]
=exN

(
− ln(K) + (x+ kτ)

σ
√
τ

)
−Ke−rτN

(
− ln(K) + (x+ kτ

σ
√
τ

)
−
[
exN

(
− ln(j(0)) + (x+ kτ)

σ
√
τ

)
−Ke−rτN

(
− ln(j(0)) + (x+ kτ

σ
√
τ

)]

Weiter gehts mit V 2
j (x, τ).

V 2
j (x, τ) =

∫ τ

0

e−r(τ−s)

σ
√

2π(τ − s)
e−h(x,s)Q(x, s)ds

mit

h(x, s) ≡ [x− ln(j(s)) + k(τ − s)]2

2σ2(τ − s)
und

Q(x, s) =
σ2

2
v′(ln(j(s))) +

(
∂j(s)
∂s

1
j(s)

+
1
2

[
k − x− ln(j(s))

τ − s

])
v(ln(j(s))).

Die Auszahlungsfunktion ist nur Bestandteil von Q(x, s).

Seite 66



Tobias Nigbur Die Integraldarstellung amerikanischer Optionspreise

Für die Auszahlungsfunktion mit (4.6) gilt:

v(x) = (ex −K)+ ⇒ v(ln(j(s))) = c(j(s)) = (j(s)−K)+

v′(ln(j(s))) =
∂v(x)
∂x

∣∣∣∣
ln(j(s))

=
∂c(ex)
∂x

∣∣∣∣
ln(j(s))

=
∂(ex −K)

∂x

∣∣∣∣
ln(j(s))

= j(s)

Eingesetzt in Q(x, s) entsteht:

Q(x, s) =
σ2

2
j(s) +

(
∂j(s)
∂s

1
j(s)

+
1
2

[
k − x− ln(j(s))

τ − s

])
(j(s)−K)

Damit folgt die gesuchte Funktion Vj

Vj(x, τ) =exN
(
− ln(K) + (x+ kτ)

σ
√
τ

)
−Ke−rτN

(
− ln(K) + (x+ kτ

σ
√
τ

)
−
[
exN

(
− ln(j(0)) + (x+ kτ)

σ
√
τ

)
−Ke−rτN

(
− ln(j(0+)) + (x+ kτ

σ
√
τ

)]
+
∫ τ

0

e−r(τ−s)−h(x,s)

σ
√

2π(τ − s)
Q(x, s)ds

und die Fouriertransformation ist aufgehoben. Nun muss noch die Transformationen in S
rückgängig gemacht werden, um ein Ergebnis zu erzielen.
Ersetze nun wieder S: St = ex ⇔ ln(ST−τ ) = x.

Cj(ST−τ , τ) =ST−τ ·N
(

ln(ST−τ/K) + kτ

σ
√
τ

)
−Ke−rτN

(
ln(ST−τ/K) + kτ

σ
√
τ

)
−
[
ST−τ ·N

(
ln(ST−τ/j(0+)) + kτ

σ
√
τ

)
−Ke−rτN

(
ln(ST−τ/j(0+)) + kτ

σ
√
τ

)]
+
∫ τ

0

e−r(τ−s)−h(ST−τ ,s)

σ
√

2π(τ − s)
Q(ST−τ , s)ds

=CE(ST−τ , τ) + Early Excerise Premium

mit

h(ST−τ , s) ≡
(ln(ST−τj(s) ) + k(τ − s))2

2σ2(τ − s)
und

k = (r − q − σ2

2
) τ = T − t

und

Q(ST−τ , s) =
σ2

2
j(s) +

(
∂j(s)
∂s

1
j(s)

+
1
2

[
k − ln(ST−τ )− ln(j(s))

τ − s

])
(j(s)−K)

Diese Funktion wird McKean Darstellung der amerikanischen Calloption genannt.
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Bemerkung
Die Preisfunktion zerfällt also in den Black-Scholes Preis einer europäischen Calloption
bezüglich τ und S und ein Early Exercise Premium. Leider kann in dieser Darstellung keine
ersichtliche ökonomische Interpretation des Premiums vorgenommen werden.
Wie schon erwähnt, beruht die Fouriertransformation und die damit resultierende
Preisdarstellung auf der Kenntnis der Grenzfunktion. Um einen Nutzen aus dieser Darstellung
zu ziehen, müsste die Preisfunktion an der Stelle Cj(j(τ), τ) = (j(τ)−K)+ numerisch
ausgewertet werden, da eine Integralgleichung für die Grenzfunktion entsteht. Danach könnte
man den Preis über die numerisch errechnete Grenzfunktion berechnen. Leider ist die
Grenzfunktion nicht leicht auszuwerten, denn es wird über dessen Ableitung integriert.
Kim (1990) hat in seiner Darstellung die Ableitung der Grenzfunktion umgangen. Dies ist
Inhalt der nächsten Sektion.
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4.2 Die Darstellung nach Kim

Die Preisfunktion von Kim (1990) baut auf der Preisfunktion von McKean aus der letzten
Sektion auf und entfernt die Ableitung der Grenzfunktion durch partielle Integration.
Diese Ausarbeitung beruht ebenfalls auf [7].

Es werden einige Funktionen definiert, die das Arbeiten erleichtern.
Drücke die McKean-Darstellung aus der letzten Sektion folgendermaßen aus:

Cj(ST−τ , τ) =CE(ST−τ , τ)−
[
ST−τ ·N

(
ln(ST−τ/j(0+)) + kτ

σ
√
τ

)
−Ke−rτN

(
ln(ST−τ/j(0+)) + kτ

σ
√
τ

)]
+R(ST−τ , τ) (4.16)

mit

R(ST−τ , τ) =
∫ τ

0

e−r(τ−s)−h(ST−τ ,s)

σ
√

2π(τ − s)

[
σ2

2
j(s) +

(
∂j(s)
∂s

1
j(s)

+
1
2

[
k − ln(ST−τ )− ln(j(s))

τ − s

])
(j(s)−K)

]
ds

h(ST−τ , s) wird in zwei Funktionen unterteilt, von denen die eine konstant und die andere
variabel in s ist.

h(ST−τ , s) =

[
ln(ST−τj(s) ) +

(
r − q − σ2

2

)
(τ − s)

]2

2σ2(τ − s)

=
1

2(τ − s)

 ln(ST−τ ) +
(
r − q − σ2

2

)
(τ − s)

σ
−

ln(j(s)) +
(
r − q − σ2

2

)
(τ − s)

σ

2

=
[x−G(s)]2

2(τ − s)

mit

y ≡
[ln(ST−τ ) +

(
r − q − σ2

2

)
τ ]

σ

und

G(s) ≡
[ln(j(s)) +

(
r − q − σ2

2

)
s]

σ

Für die Ableitung von G(s) in s gilt:

∂G(s)
∂s

=

[
j′(s)
j(s) +

(
r − q − σ2

2

)]
σ
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Da die folgenden Umformungen, aufgrund der Länge der Gleichungen, sehr unübersichtlich
sind, wird ein Kommentar für jede Gleichung unter der Formel angegeben.
R(S, τ) kann mit diesen Definitionen geschrieben werden als

R(ST−τ , τ) 1=
∫ τ

0
e−r(τ−s)

e
(y−G(s))2

2(τ−s)√
2π(τ − s)

σj(s)
2

+
1
σ

j′(s)
j(s)

+ k − k +
1
2

k − ln
(
ST−τ
j(s)

)
τ − s

 (j(s)−K)

 ds
2=
∫ τ

0
e−r(τ−s)

e
(y−G(s))2

2(τ−s)√
2π(τ − s)

σj(s)
2

+

G′(s)− k

σ
+

1
2σ

k − ln
(
ST−τ
j(s)

)
τ − s

 (j(s)−K)

 ds
3=
∫ τ

0
e−r(τ−s)

e
(y−G(s))2

2(τ−s)√
2π(τ − s)

[
σj(s)

2
+
(
G′(s)− y −G(s)

2(τ − s)

)
(j(s)−K)

]
ds

4≡R1(ST−τ , τ)−R2(ST−τ , τ).

1) Umformungen von h(ST−τ , s) einsetzen, hinzufügen von ±k und 1
σ in die eckige Klammer

ziehen.
2) 1

σ in die runde Klammer ziehen und die Definition von G′(s) nutzen
3) Definition von y −G(s)
4) Aufteilen des Integrals in

R1(ST−τ , τ) =
∫ τ

0
e−r(τ−s)

e
(y−G(s))2

2(τ−s)√
2π(τ − s)

j(s)
[
σ

2
+G′(s)− y −G(s)

2(τ − s)

]
ds

R2(ST−τ , τ) =K
∫ τ

0
e−r(τ−s)

e
(y−G(s))2

2(τ−s)√
2π(τ − s)

[
G′(s)− y −G(s)

2(τ − s)

]
ds.

Diese Teile können nun einzeln bearbeitet werden. Beginne mit R1(ST−τ , τ).

R1(ST−τ , τ) 5=
∫ τ

0
e−r(τ−s)

j(s)√
τ − s

[
σ(τ − s) + 2(τ − s)G′(s)− y +G(s)

2(τ − s)

]
· 1√

2π
e
− [y−G(s)+σ(τ−s)]2

2(τ−s) e(y−G(s))σ+σ2

2
(τ−s)ds

6=−
∫ τ

0
e−q(τ−s) · ST−τ ·

1√
2π
e
− [y−G(s)+σ(τ−s)]2

2(τ−s) · ∂
∂s

[
σ(τ − s) + y −G(s)√

τ − s

]
ds

7=−
∫ τ

0
e−q(τ−s) · ST−τ ·

∂

∂s

[
N

(
σ(τ − s) + y −G(s)√

τ − s

)]
ds

5) Verschieben des 1√
2π

, den Inhalt der eckigen Klammer auf einen Nenner bringen
und quadratisch Ergänzen.
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6) Auflösen der zweiten e-Funktion und

∂

∂s

[
σ(τ − s) + y −G(s)√

τ − s

]
=

∂

∂s

σ(τ − s) +
[ln(ST−τ )+

(
r−q−σ

2

2

)
τ ]

σ −
[ln(j(s))+

(
r−q−σ

2

2

)
s]

σ√
τ − s


=

∂

∂s

[(
σ +

k

σ

)√
τ − s+

1
σ

(ln(ST−τ )− ln(j(s)))
1√
τ − s

]

= − 1√
τ − s

σ(τ − s) + K
σ (τ − s) + 2

σ
j′(s)
j(s) (τ − s)− 1

σ ln
(
ST−τ
j(s)

)
2(τ − s)


= − 1√

τ − s

[
σ(τ − s) + 2(τ − s)G′(s)− y +G(s)

2(τ − s)

]
.

7) Leibnizformel für Parameterintegrale anwenden.

R2(ST−τ , τ) kann ähnlich behandelt werden.

R2(ST−τ , τ) 8=−K
∫ τ

0
e−r(τ−s)

e
(y−G(s))2

2(τ−s)
√

2π

[
−
√

(τ − s)G′(s) + 1
2
√
τ−s(y −G(s))

(τ − s)

]
ds

9=−K
∫ τ

0
e−r(τ−s)

e
(y−G(s))2

2(τ−s)
√

2π
∂

∂s

[
y −G(s)√
τ − s

]
ds

10=−K
∫ τ

0
e−r(τ−s)

∂

∂s

[
N

(
y −G(s)√
τ − s

)]
ds

8) Die Summe in der eckigen Klammer gleichnamig machen und − 1√
τ−s reinziehen.

9)

∂

∂s

[
y −G(s)√
τ − s

]
=

(
1
σ ln( St

j(s)) + 1
σk(τ − s)

)
1

2
√
τ−s −

(τ−s)
σ

(
j′(s)
j(s) + k

)
τ − s

=
1

2
√
τ−s(y −G(s))−

√
(τ − s)G′(s)

(τ − s)

10) Leibnizformel für Parameterintegrale anwenden.
Füge beide Teile wieder zusammen. Das gewünschte Ziel, die Ableitung zu entfernen, kann
durch partielle Integration erreicht werden.
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R(ST−τ , τ) = −
∫ τ

0
e−q(τ−s) · ST−τ ·

∂

∂s

[
N

(
σ(τ − s) + y −G(s)√

τ − s

)]
ds

−K
∫ τ

0
e−r(τ−s)

∂

∂s

[
N

(
y −G(s)√
τ − s

)]
ds

= −ST−τ
([
e−q(τ−s)N

(
σ(τ − s) + y −G(s)√

τ − s

)]τ
0

−
∫ τ

0
qe−q(τ−s)

[
N

(
σ(τ − s) + y −G(s)√

τ − s

)]
ds

)
+K

([
e−r(τ−s)N

(
y −G(s)√
τ − s

)]τ
0

−
∫ τ

0
re−r(τ−s)N

(
y −G(s)√
τ − s

)
ds

)
Betrachtet man nun die ausintegrierten Terme, so ist nicht direkt klar, wogegen sie für s→ τ
konvergieren.
Genauere Betrachtung liefert

lim
s→τ

y −G(s)√
τ − s

= lim
s→τ

(
ln(ST−τ )− ln(j(s))

σ
√
τ − s

+
k(τ − s)
σ
√
τ − s

)
= lim

s→τ

ln(ST−τ )− ln(j(s))
σ
√
τ − s

=

{
0 ST−τ = j(s)
−∞ ST−τ < j(s)

durch ln(ST−τ/j(s)) < 0 für ST−τ < j(s) und ln(ST−τ/j(s)) endlich.
Diese beiden Möglichkeiten werden durch δ berücksichtigt.

δ(ST−τ ) =

{
1
2 ST−τ = j(s)
0 sonst

.

R(ST−τ , τ) = −ST−τ
(
δ(ST−τ )− e−qτN

(
στ + y −G(0)√

τ

))
+ ST−τ

(∫ τ

0
qe−q(τ−s)

[
N

(
σ(τ − s) + y −G(s)√

τ − s

)]
ds

)
+K

(
δ(ST−τ )− erτN

(
y −G(0)√

τ

)
−
∫ τ

0
re−r(τ−s)N

(
y −G(s)√
τ − s

)
ds

)
= e−qτST−τ ·N

(
ln(ST−τ/j(0+)) + kτ

σ
√
τ

)
−Ke−rτN

(
ln(ST−τ/j(0+)) + kτ

σ
√
τ

)
− δ(ST−τ ) · (ST−τ −K)

+
∫ τ

0
qST−τe

−q(τ−s)N

(
σ(τ − s) + y −G(s)√

τ − s

)
− rKe−r(τ−s)N

(
y −G(s)√
τ − s

)
ds

Seite 72



Tobias Nigbur Die Integraldarstellung amerikanischer Optionspreise

Durch diese Version des Integralterms fallen die ersten beiden Terme des EEPs in (4.16) weg
und es folgt die Darstellung des Optionspreises nach Kim vor Ausübung.

C(ST−τ ,τ) = CE(ST−τ , τ)

+
∫ τ

0
qST−τe

−q(τ−s)N

 ln
(
ST−τ
j(s)

)
+ (k + σ2)(τ − s)

σ
√
τ − s

− rKe−r(τ−s)N
 ln

(
ST−τ
j(s)

)
+ k(τ − s)

σ
√
τ − s

 ds

(4.17)

C(ST−τ , τ) = CE(ST−τ , τ) + EEP

Wenn das Finanzgut die Grenzfunktion erreicht entsteht eine Integralgleichung für die
Grenzfunktion.

j(τ)−K = CE(j(τ), τ)+

+
∫ τ

0
qj(τ)e−q(τ−s)N

 ln
(
j(τ)
j(s)

)
+ (k + σ2)(τ − s)

σ
√
τ − s

− rKe−r(τ−s)N
 ln

(
j(τ)
j(s)

)
+ k(τ − s)

σ
√
τ − s

 ds

(4.18)

Bemerkung
In dieser Darstellung ist der Faktor 1

2 nicht mehr notwendig, denn für ST−τ = j(τ) gilt

(j(τ)−K)
2

= CE(ST−τ , τ)− (j(τ)−K)
2

+ EEP (4.19)

wegen der Konvergenz der Fouriertransformation zum Mittelwert an der Unstetigkeitsstelle
und δ. Beachte das das Early Exercise Premium auch von j(τ) bzw S abhängt, dies hier aber
nicht von Bedeutung ist. Bringt man nun − (j(τ)−K)

2 auf die linke Seite der Gleichung, so hat
man eine Darstellung, die die Definition des Wertes an der Sprungstelle in der Heavide-Step
Funktion nicht mehr benötigt.
Ein weiterer Vorteil der Darstellung von Kim ist, dass (4.18) eine Gleichung für die
Grenzfunktion liefert.
Ebenso erlaubt diese Version der Preisfunktion eine ökonomische Interpretation des Early
Exercise Premiums. Wenn man als Käufer der Calloption in t vorzeitig in t∗ ausübt, bekommt
man (St∗ −K) ausgezahlt. Kauft man davon das Basisfinanzgut und leiht sich K, dann ist die
Strategie selbstfinanzierend. Bis zum Zeitpunkt T streicht man Dividendenzahlungen ein und
bezahlt die Zinsen für K. In T hat man dann den gleichen Wert wie jemand, der die
europäische Optione gekauft hat, nämlich (ST −K)+. Das Early Exercise Premium ist somit
die Differenz aus erwarteten Dividenden und Zinsen, nach vorzeitiger Auslösung, wie im
Integralterm zu erkennen.
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4.3 Der amerikanische Callpreis ohne Dividendenzahlungen

Im Folgenden wird gezeigt, dass die Berechnung eines Callpreises ohne Dividendenauszahlungen
des Basisfinanzguts nicht sinnvoll ist. Die Ausarbeitung beruht auf [1], Kapitel 8.

Satz
Ohne Dividendenzahlungen des Basisfinanzguts stimmen der Preis einer amerikanischen
Calloption und der Preis einer europäischen Calloption bei gleichem Basisfinanzgut und
gleicher Laufzeit überein.

Beweis
Der Beweis beruht auf folgendem

Lemma
Sei h : R+ → R stetig und konvex mit h(0) = 0.
Dann ist e−rth(St) ein Submartingal, wenn St außerdem ein Martingal ist.

Beweis des Lemmas
Da die Funktion h(x) konvex ist, erfüllt sie für 0 ≤ λ ≤ 1 und x1 ≤ x2

h ((1− λ)x1 + λx2) ≤ (1− λ)h(x1) + λh(x2).

Für x1 = 0 und x = x2 gilt somit
h(λx) ≤ λh(x)

Setze 0 ≤ u ≤ t ≤ T , daraus folgt 0 ≤ exp(−r(t− u)) ≤ 1. Mit der Monotonie des bedingten
Erwartungswertes, der Jensen Ungleichung und der Martingaleigenschaft von exp(−rt)St unter
dem Martingalmaß entsteht:

E
[
e−r(t−u)h(St) | Fu

]
≥ E

[
h
(
e−r(t−u)St

)
| Fu

]
≥ h

(
E
[
e−r(t−u)St | Fu

])
= h

(
eruE

[
e−rtSt | Fu

])
= h(Su)

Dies ist äquivalent zu

E
[
e−rth(St) | Fu

]
≥ e−ruh(Su)

und schließt den Beweis des Lemmas.

Wenn nun h(x) = (x−K)+ ist, dann gilt mit x ≤ y

h ((1− λ)x+ λy) ≤ (1− λ)h(x) + λh(y)

für alle drei möglichen Fälle: {x, y |h(x) = 0, h(y) = 0}, {x, y |h(x) = 0, h(y) > 0} und
{x, y |h(x) > 0, h(y) > 0}. Damit ist h(x) konvex und das Lemma liefert

E
[
e−r(T−u)(ST −K)+ | Fu

]
≥ (Su −K)+.
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Das heißt, es ist am Optimalsten mit der Ausübung bis T zu warten, da der innere Wert der
amerikanischen Calloption sonst immer vom europäischen Callpreis dominiert wird.

�
Bemerkung
Das Lemma gilt nicht bei Dividendenzahlungen, da unter dem Martingalmaß exp(−rt)St kein
Martingal, sondern ein Supermartingal ist. Die Drift nach unten entsteht, weil die Zinsgewinne
aus der angelegten Dividende fehlen. Wenn in der Preisversion von Kim q = 0 gesetzt wird, ist
direkt zu erkennen, dass vorzeitiges Ausüben suboptimal ist, denn das Early Exercise Premium
ist in diesem Fall immer negativ.
Ebenso ist das Lemma nicht für die Putoption anwendbar, da für h(x) = (K − x)+ nicht
h(0) = 0 gilt.
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Kapitel 5

Der Preis für die amerikanische
Putoption bei endlicher und
unendlicher Laufzeit

5.1 Endliche Laufzeit

Betrachte nun eine amerikanische Putoption auf ein Basisfinanzgut St mit T <∞. Diese
Sektion bezieht sich auf das Paper Alternative Charaterizations of American Put Options von
Carr, Jarrow und Myneni, [14].
Definiere den Prozess L als abgezinsten Preis der Putoption im Zeitpunkt t.

L(St, t) ≡ e−rtP (St, t)

e−rt ist in t und S stetig differenzierbar. Nun kann die, schon in Kapitel 3 erwähnte, erweiterte
Itô-Formel angewendet werden, da L(St, t) eine C1-Funktion in S ist.

L(ST , T ) = L(S0, 0) +
∫ T

0

∂L(St, t)
∂S

dSt +
∫ T

0

∂L(St, t)
∂t

dt+
1
2

∫ T

0

∂2L(St, t)
∂S2

d 〈S, S〉t

Durch die quadratische Variation einer geometrischen Brownschen Bewegung folgt

L(ST , T ) = L(S0, 0) +
∫ T

0

∂L(St, t)
∂S

dSt +
∫ T

0

∂L(St, t)
∂t

+
σ2S2

t

2
∂2L(St, t)
∂S2

dt.

Wenn L(St, t) wieder ersetzt werden soll, muss ∂L
∂t genauer betrachtet werden.

∂L(St, t)
∂t

=
∂e−rtP (St, t)

∂t
= e−rt

∂P (St, t)
∂t

− re−rtP (St, t)

Damit folgt:

e−rTP (ST , T ) = P (S0, 0)+
∫ T

0
e−rt

∂P (St, t)
∂S

dSt+
∫ T

0

σ2S2
t e
−rt

2
∂2P (St, t)

∂S2
−re−rtP (St, t)+e−rt

∂P (St, t)
∂t

dt

Es soll eine Preisfunktion für t = 0 angegeben werden. Dafür muss über die komplette Laufzeit
integriert werden. Der Preis nach vorzeitiger Ausgeübund ist bekannt,
P (a(t), t) = (K − a(t))+, also kann P (St, t) in Preis vor und nach Ausübung geteilt werden.

P (St, t) = 1(St>a(t))P (St, t) + 1(St≤a(t))(K − St)+
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Da P (S0, 0) bestehen bleibt, weil S0 > a(0) vorausgesetzt ist und am Ende der Vertragslaufzeit

P (ST , T ) = (K − ST )+

gilt, folgt:

e−rT (K − ST )+ = P (S0, 0)

+
∫ T

0
e−rt

∂
(
1(St>at)P (St, t) + 1(St≤a(t))(K − St)+

)
∂S

dSt

+
∫ T

0

σ2S2
t e
−rt

2
∂2
(
1(St>at)P (St, t) + 1(St≤a(t))(K − St)+

)
∂S2

−re−rt
(
1(St>a(t))P (St, t) + 1(St≤a(t))(K − St)+

)
+e−rt

∂
(
1(St>a(t))P (St, t) + 1(St≤a(t))(K − St)+

)
∂t

dt

Natürlich übt man die Option nur aus, wenn die Auszahlung positiv ist. Daher ist

(K − St)+ = (K − St).

Außerdem gilt für die Indikatorfunkionen

∂1()

∂S
= 0 =

∂1()

∂t
.

e−rT (K − ST )+

= P (S0, 0)

+
∫ T

0
e−rt

(
1(St>a(t))

∂P (St, t)
∂S

− 1(St≤a(t))

)
dSt

+
∫ T

0
e−rt

[
1(St>a(t))

(
σ2S2

t

2
∂2P (St, t)

∂S2
− rP (St, t) +

∂P (St, t)
∂t

)
+ 1(St≤a(t)) (−r(K − St))

]
dt

Setze nun die stochastische Differentialgleichung von St ein.

e−rT (K − ST )+

=P (S0, 0)

+
∫ T

0
e−rt

(
1(St>a(t))

∂P (St, t)
∂S

− 1(St≤a(t))

)
(rStdt+ σStdWt)

+
∫ T

0
e−rt

[
1(St>a(t))

(
σ2S2

t

2
∂2P (St, t)

∂S2
− rP (St, t) +

∂P (St, t)
∂t

)
+ 1(St≤a(t)) (−r(K − St))

]
dt

Durch Umstellen ergibt sich im dt-Term die Black-Scholes-Differentialgleichung, die für
St > a(t) gleich Null ist.
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e−rT (K − ST )+

=P (S0, 0)

+
∫ T

0
e−rtσSt

(
1(St>a(t))

∂P (St, t)
∂S

− 1(St≤a(t))

)
dWt

+
∫ T

0
e−rt

[
1(St>a(t))

(
rSt

∂P (St, t)
∂S

+
σ2S2

t

2
∂2P (St, t)

∂S2
− rP (St, t) +

∂P (St, t)
∂t

)
+ 1(St≤a(t)) (−rK)

]
dt

=P (S0, 0)− rK
∫ T

0
e−rt1(St≤a(t)) dt+

∫ T

0
e−rtσSt

(
1(St>a(t))

∂P (St, t)
∂S

− 1(St≤a(t))

)
dWt

Nehme nun den Erwartungswert zum Martingalmaß Q auf beiden Seiten der Gleichung.

E
[
e−rT (K − ST )+

]
=

P (S0, 0)−rK ·E
[∫ T

0
e−rt1(St≤a(t))dt

]
+E

[∫ T

0
e−rtσSt

(
1(St>a(t))

∂P (St, t)
∂S

− 1(St≤a(t))

)
dWt

]
Der linke Teil der Gleichung entspricht dem Preis einer europäischen Putoption in t = 0,
bezeichnet durch PE(S0, 0).

PE(S0, 0) = P (S0, 0)−rK·E
[∫ T

0
e−rt1(St≤a(t))dt

]
+E


∫ T

0
e−rtσSt

(
1(St>a(t))

∂P (St, t)
∂S

− 1(St≤a(t))

)
dWt︸ ︷︷ ︸

=:Xt


Es soll gezeigt werden, dass der letzte Term der Gleichung gleich Null ist. Dies ist der Fall falls
das Itô-Integral Xt ein Martingal ist, denn dann gilt E [XT | F0] = X0 = 0.
Aus [1] ist bekannt, dass jedes Itô-Integral, dessen Integrand xt E

[∫ T
0 x2

tdt
]
<∞ erfüllt, ein

Martingal ist.

E

[∫ T

0
x2
t dt

]
= E

[∫ T

0
e−2rtσ2S2

t

(
1(St>at)

(
∂P (St, t)

∂S

)2

− 1(St≤a(t))

)
dt

]

= E

[∫ T

0
e−2rtσ2S2

t 1(St>at)

(
∂P (St, t)

∂S

)2

dt

]
− E

[∫ T

0
e−2rtσ2S2

t 1(St≤a(t)) dt

]

Da T endlich ist, gilt dies auch für den St ≤ a(t)-Term. Für St > at ist ∂P
∂S stetig und der

Integrand ist größer als Null. Damit kann, nach Fubini, die Integrationsreihenfolge vertauscht
werden.

E

[∫ T

0
e−2rt

(
∂P (St, t)

∂S

)2

dt

]
=
∫ T

0
e−2rtE

[(
∂P (St, t)

∂S

)2
]
dt

<∞
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Denn ∂P
∂S (S, t) ist beschränkt: Für t fest und S ∈ ]a(t),∞[ ist aus Kapitel 3 bekannt, dass

∂P
∂S ≤ 0 und ∂P 2

∂S2 ≥ 0 gilt. Alles verarbeitet gibt −1 ≤ ∂P
∂S (·, t) ≤ 0 ∀t.

⇒ E

[∫ T

0
e−rtσSt

(
1(St>at)

∂P (St, t)
∂S

− 1(St≤a(t))

)
dWt

]
= 0

⇒ PE(S0, 0) = P (S0, 0)− rK · E
[∫ T

0
e−rt1(St≤a(t))dt

]
Der Erwartungswert kann ebenfalls mit Fubini vereinfacht werden.

E

[∫ T

0
e−rt1(St≤a(t))dt

]
=
∫ ∞
−∞

∫ T

0
e−rt1(St≤a(t)) dt dQ

=
∫ T

0
e−rt

∫ ∞
−∞

1(St≤a(t)) dQ dt

=
∫ T

0
e−rtQ (St ≤ a(t)) dt

Die Wahrscheinlichkeit Q (St ≤ a(t)) lässt sich berechnen, da Wt eine Brownsche Bewegung
unter Q ist.

Q (St ≤ a(t)) = Q

(
S0e

((
r−σ

2

2

)
t+σWt

)
≤ a(t)

)

= Q

Wt ≤
ln
(
a(t)
S0

)
−
(
r − σ2

2

)
t

σ


= N

 ln
(
a(t)
S0

)
−
(
r − σ2

2

)
t

σ
√
t


Mit diesem Ergebnis ergibt sich für die Preisfunktion

PE(S0, 0) = P (S0, 0)− rK
∫ T

0
e−rtN

 ln
(
a(t)
S0

)
−
(
r − σ2

2

)
t

σ
√
t

 dt,

oder

P (S0, 0) = PE(S0, 0) + rK

∫ T

0
e−rtN

 ln
(
a(t)
S0

)
−
(
r − σ2

2

)
t

σ
√
t

 dt.

Bemerkung
Es wurde also eine Darstellung des Preises einer Putoption in t=0 erarbeitet, die, wie im
Call-Fall, den Preis in europäische Option und Early Exercise Premium aufsplittet. Das Early
Exercise Premium in dieser Version ähnelt dem von Kim aus Kapitel 4. Die ökonomische
Interpretation kann deswegen übernommen werden.
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5.2 Unendliche Laufzeit

Die Ausarbeitung beruht auf einem Paper von Henry McKean, [15].
Für die amerikanische Putoption mit unendlicher Laufzeit (T=∞) ist es möglich die
Grenzfunktion explizit zu bestimmen. Es wird gezeigt, dass der Preis für die Option nicht von
der Zeit abhängt und somit konstant in t ist. Damit vereinfacht sich die
Black-Scholes-Differentialgleichung von einer partiellen zu einer gewöhnlichen
Differentialgleichung, für die es einen Lösungsalgorithmus gibt.
Satz
Aufbauend auf der Preisfunktion für eine endliche amerikanische Putoption, kann die
Preisfunktion bei unendlicher Laufzeit der Option angegeben werden. Sei x der Startwert des
Finanzguts.

P (x) = sup
τ≥0

E
[
e−rτ (K − Sxτ )+

]
Die Preisfunktion ist also konstant in der Zeit. Für den Fall, dass die Option nie ausgeübt
wird, τ =∞, setze den Preis gleich 0.
Beweis
Mit der Definition des Pupreises zum Zeitpunkt t und Wert des Basisfinanzguts x folgt dann:

P (x, t) = sup
τ≥t

E
[
e−r(τ−t)(K − xSτ )+

]
= sup

τ−t≥0
E

[
e−r(τ−t)

(
K − x exp

(
(r − σ2

2
)(τ − t) + σ(Wτ −Wt)

))
+

]
χ=τ−t

= sup
χ≥0

E

[
e−rχ

(
K − x exp

(
(r − σ2

2
)χ+ σ(Wχ+t −Wt)

))
+

]
= sup

χ≥0
E
[
e−rχ(K − xSχ)+

]
= P (x, 0)

Der Preis einer amerikanischen Option P (x, t) mit Laufzeit T ist abhängig vom Wert des
Finanzguts in t und der Restlaufzeit der Option. Die Restlaufzeit bei unendlicher Laufzeit ist
für alle Werte t gleich.

�
Korollar
Damit ist ∂P

∂t = 0 und P (S) erfüllt die gewöhnliche Differentialgleichung

σ2S2 1
2
∂2P (S)
∂S2

− rP (S) + rS
∂P (S)
∂S

= 0.

Da der Preis in t konstant ist, muss auch die Grenzfunktion konstant sein. Definiere deswegen
a als

a ≡ a(t).

Die Randwerte in S können aus Kapitel 2 übernommen werde:

lim
S→∞

P (S) = 0 P (a) = (K − a)+
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Lösen der Differentialgleichung
Aus der partiellen Differentialgleichung ist nun eine lineare, homogene, gewöhnliche
Differentialgleichung geworden, die lösbar ist.
Der Einfachheit halber stelle sie folgendermaßen dar:

σ2x2

2
y′′(x) + rxy′(x)− ry(x) = 0

Für diese Art von Differentialgleichung weiß man, dass es 2 linear unabhängige Lösungen χ1 ,
χ2 gibt. Die Menge aller Lösungen bezeichnet ς. ς = {α1χ1 + α2χ2|α1, α2 ∈ R}. α1 und α2

werden über die Randwerte berechnet und bestimmen eine eindeutige Lösung. Für mehr
Details zu gewöhnlichen Differentialgleichungen siehe [8]
Wenn man y(x) = xα wählt, gilt

y′(x) = (xα)′ = αx(α−1) , y′′(x) = α(α− 1)x(α−2)

und man kann die Differentialgleichung umschreiben zu

(
−r + rα+

σ2

2
α(α− 1)

)
y = 0

⇔ −r + rα+
σ2

2
(α2 − α) = 0

⇔ σ2

2
α2 +

(
r − σ2

2

)
α− r = 0

⇔ α2 +
(

2r
σ2
− 1
)
α+

2r
σ2

= 0.

Diese Gleichung kann mit der pq-Formel gelöst werden.

χ1, χ2 = −1
2

(
2r
σ2
− 1
)
±

√(
2r
σ2 − 1

)2
4

+
2r
σ2

= −
(
r

σ2
− 1

2

)
±
√
r2

σ4
+

r

σ2
+

1
4

= −
(
r

σ2
− 1

2

)
±

√(
r

σ2
+

1
2

)2

⇒ χ1 = −2r
σ2

χ2 = 1

⇒ P (S) = α1S
− 2r
σ2 + α2S

Um die eindeutige Lösung für die Differentialgleichung zu finden, müssen α1 und α2 über die
Randwerte berechnet werden.

lim
S→∞

P (S) = 0 ⇒ α2 = 0

P (a) = α1 · a
(
− 2r
σ2

)
= K − a ⇔ α1 =

K − a

a

(
− 2r
σ2

)
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⇒ P (S) = (K − a)
(
S

a

)(− 2r
σ2

)

Es fehlt noch die Bestimmung der Grenzfunktion, beziehungsweise des Grenzwertes a, damit
die Preisfunktion vollständig auswertbar ist.

Bestimmung der Grenzfunktion
Da die Preisfunktion die Stetigkeitseigenschaft

∂P (S, t)
∂S

∣∣∣∣
S=a

= −1

erfüllt, kann die Grenzfunktion direkt aus der Formel gewonnen werden.

∂

∂S

(K − a)
(
S

a

)(− 2r
σ2

)∣∣∣∣∣∣
S=a

= −
(K − a) 2r

σ2

a

Dies ergibt die Gleichung

(K − a)
2r
σ2

= a.

Die optimale Ausübung ist also gegeben, wenn das Basisfinanzgut

a =
2r
σ2

1 + 2r
σ2

K

erreicht.
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Kapitel 6

Der Putpreis für die endliche Basket
Option

Detemple und Broadie beschäftigten sich in [4] mit der Berechnung des Callpreises. Auf dieser
Grundlage wird nun der Putpreis für eine Amerikanische Basket Option bestimmt, die auf den
beiden Basisfinanzgütern S1

v und S2
v beruht.

Das optimale Stoppen gestaltet sich schwieriger, da die Entwicklung von S1 und S2 beachtet
werden muss. Siehe dazu auch die Eigenschaften der Grenzregionen in Kapitel 3.
Die Spaltung des Putpreises kann, wie im eindimensionalen Fall, in den europäischen
Basket-Put und Early Exercise Premium erfolgen.

PΣ(S1
t , S

2
t , t) =PE(S1

t , S
2
t , t) + EEP (6.1)

=E
[
e−r(T−t)

(
K −

(
S1
T + S2

T

))
+

∣∣∣Ft]
+
∫ T

t
e−r(v−t)E

[(
rK −

(
q1S

1
v + q2S

2
v

))
1(S2

v≤a2(S1
v ,v))

∣∣Ft] dv (6.2)

Das Early Exercise Premium basiert auf der ökonomischen Interpretation, die schon bei Kim
gegeben wurde:
Die Strategie ist, nach vorzeitigem Ausüben der Option, K zu kaufen und S1 und S2

leerzuverkaufen. Damit ist Selbstfinanziertheit gegeben und am Ende ist der Unterschied zur
euopäischen Basket-Option die Differenz aus erwarteten Zinsgewinnen von K und den zu
bezahlenden Dividenden von S1 und S2. Man beachte, dass es keinen Unterschied macht, ob
man als optimale Auslösestrategie den ersten Eintritt von S2

v oder S1
v in die Grenzregion wählt.

Die europäische Basket-Option wurde schon in Kapitel 2 behandelt. Im Folgenden soll das
Early Exercise Premium vereinfacht werden.
Um den Schreibaufwand zu minimieren und die Übersichtlichkeit zu bewahren, definiere

n(x) =
1√

2π(v − t)
e
− 1

2(v−t)x
2

und definiere die geometrische Brownsche Bewegung von t nach v, v ≥ t, mit Wert S1
t = x1

und S2
t = x2 als

x1S
1
v und x1S

1
v ,
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Betrachte als Erstes die Indikatorfunktion.

x2S
2
v ≤ a2(x1S

1
v , v)

Hier ist zu beachten, dass S2
t , aufgrund der Konstruktion in Kapitel 2, nicht unabhängig von

S1
t ist. Die Wahrscheinlichkeit für den Eintritt kann also nicht vereinfacht werden. Um dies zu

umgehen, müssen die stochastischen Prozesse in den Basisfinanzgütern verändert werden.
Nehme die 2 korrelierten Brownsche Bewegungen W 1

t und W 2
t mit dW 1

t dW
2
t = ρdt. Die neue

Unsicherheit in den geometrischen Brownschen Bewegungen sei

B1
t =W 1

t

B2
t =ρW 1

t +
√

1− ρ2Ut

mit

Ut =
−ρW 1

t +W 2
t√

1− ρ2
.

Setzt man die Definition von Ut ein, so erkennt man, dass eine Brownsche Bewegung vorliegt,
da B2

t = W 2
t ist. Ebenso bleibt die Korrelation bestehen.

dB1
t dB

2
t = ρdt

Nun ist noch zu klären, welche Eigenschaften Ut hat und warum es definiert wurde.
Ut ist stochastisch unabhängig von W 1

t .
Betrachte die Korrelation.

dW 1
t dUt =dW 1

t · d

(
−ρW 1

t +W 2
t√

1− ρ2

)
=
(
−ρdW 1

t dW
1
t + dW 1

t dW
2
t

) 1√
1− ρ2

= (−ρdt+ ρdt)
1√

1− ρ2
= 0

Somit sind die Prozesse unkorreliert. Wenn nun Ut normalverteilt ist, folgt die Unabhängigkeit.
Bestimme die Verteilung von Ut.
Da W 1

t und W 2
t korreliert sind, muss auf die Konstruktion aus Kapitel 2 zurückgegriffen

werden. Setze W̄ 1
t W̄

2
t als die beiden unabhängigen Ausgangs-Brownsche-Bewegungen.

Ut =
−ρW 1

t +W 2
t√

1− ρ2

=

−ρ√
σ2
12+σ2

1

(
σ12W̄

2
t + σ1W̄

1
t

)
+ 1√

σ2
21+σ2

2

(
σ21W̄

1
t + σ2W̄

2
t

)
√

1− ρ2

=W̄ 1
t

σ21√
σ2
21+σ2

2

− ρσ1√
σ2
12+σ2

1√
1− ρ2

+ W̄ 2
t

σ2√
σ2
21+σ2

2

− ρσ12√
σ2
12+σ2

1√
1− ρ2
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Als Summe aus unabhängigen, normalverteilten Zufallsvariablen, ist Ut normalverteilt mit
Erwartungswert

E [Ut] =E

W̄ 1
t

σ21√
σ2
21+σ2

2

− ρσ1√
σ2
12+σ2

1√
1− ρ2

+ W̄ 2
t

σ2√
σ2
21+σ2

2

− ρσ12√
σ2
12+σ2

1√
1− ρ2


=E

[
W̄ 1
t

] σ21√
σ2
21+σ2

2

− ρσ1√
σ2
12+σ2

1√
1− ρ2

+ E
[
W̄ 2
t

] σ2√
σ2
21+σ2

2

− ρσ12√
σ2
12+σ2

1√
1− ρ2

=0

und Varianz

V ar [Ut] =V ar

W̄ 1
t

σ21√
σ2
21+σ2

2

− ρσ1√
σ2
12+σ2

1√
1− ρ2

+ V ar

W̄ 2
t

σ2√
σ2
21+σ2

2

− ρσ12√
σ2
12+σ2

1√
1− ρ2


=V ar

[
W̄ 1
t

] σ21√
σ2
21+σ2

2

− ρσ1√
σ2
12+σ2

1√
1− ρ2

2

+ V ar
[
W̄ 2
t

] σ2√
σ2
21+σ2

2

− ρσ12√
σ2
12+σ2

1√
1− ρ2

2

=t

(
σ21√
σ2
21+σ2

2

− ρσ1√
σ2
12+σ2

1

)2

+
(

σ2√
σ2
21+σ2

2

− ρσ12√
σ2
12+σ2

1

)2

1− ρ2

=t
(

1 + ρ2 − 2ρ2

1− ρ2

)
=t.

Aufgrund von

ρ =
(σ12σ2 + σ21σ1)√
σ2

12 + σ2
1

√
σ2

21 + σ2
2

.

Die Unabhängigkeit ist also bewiesen und es gilt:

Ut ∼ N (0, t) Uv − Ut ∼ N (0, v − t)
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Definiere d(x1S
1
v , B

1
v −B1

t , v, t),

d(x2, x1S
1
v , B

1
v −B1

t , v, t) =
ln
(
a2(x1S1

v ,v)
x2

)
−
(
r − q2 −

σ2
2
2

)
(v − t)

σ2

√
1− ρ2

− (B1
v −B1

t )ρ√
1− ρ2

,

denn dies vereinfacht

x2S
2
v ≤ a2(x1S

1
v , v)

⇔ x2e

(
r−q2−

σ2
2
2

)
(v−t)+σ2(B2

v−B2
t )
≤ a2(x1S

1
v , v)

⇔ B2
v −B2

t ≤
ln
(
a2(x1S1

v ,v)
x2

)
−
(
r − q2 −

σ2
2
2

)
(v − t)

σ2

⇔ −ρ(B1
v −B1

t ) +
√

1− ρ2(Uv − Ut) ≤
ln
(
a2(x1S1

v ,v)
x2

)
−
(
r − q2 −

σ2
2
2

)
(v − t)

σ2

⇔ (Uv − Ut) ≤
ln
(
a2(x1S1

v ,v)
x2

)
−
(
r − q2 −

σ2
2
2

)
(v − t)

σ2

√
1− ρ2

+
ρ(B1

v −B1
t )√

1− ρ2

zu
Uv − Ut ≤ d(x2, x1S

1
v , B

1
v −B1

t , v, t).

Damit sind die linke und die rechte Seite der Ungleichung stochastisch unabhängig.
Die Linearität des bedingten Erwartungswerts vereinfacht die Ausgangsgleichung des EEPs.

∫ T

t
e−r(v−t)E

[(
rK −

(
q1x1S

1
v + q2x2S

2
v

))
1(x2S2

v≤a2(x1S1
v ,v))

]
dv

=
∫ T

t
e−r(v−t)

(
E
[
rK1(x2S2

v≤a2(x1S1
v ,v))

]
− E

[
q1x1S

1
v1(x2S2

v≤a2(x1S1
v ,v))

]
− E

[
q2x2S

2
v1(x2S2

v≤a2(x1S1
v ,v))

])
dv

Nun kann die Formel für bedingte Wahrscheinlichkeiten benutzt werden.

Q
[
B1
v −B1

t ≤ a
]

=
∫ a

−∞
n(w) dw a ∈ R

Q
[
Uv − Ut ≤ d(x2, x1S

1
v , B

1
v −B1

t , v, t)
∣∣B1

v −B1
t = w

]
=
∫ d(x2,x1S1

v ,w,v,t)

−∞
n(u) du w ∈ R

Eingesetzt in den ersten Erwartungswert folgt:

E
[
rK1(x2S2

v≤a2(x1S1
v ,v))

]
= rK ·

∫ ∞
−∞

n(w)
∫ d(x2,x1S1,w,v,t)

−∞
n(u) du dw

Die beiden anderen Erwartunswerte müssen noch einem Maßwechsel unterzogen werden.
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E
[
q1x1S

1
v1(x2S2

v≤a2(x1S1
v ,v))

]
= q1x1e

(r−q1)(v−t)E

[
e−

σ2
1
2

(v−t)+σ1(B1
v−B1

t )
1(x2S2

v≤a2(x1S1
v ,v))

]
= q1x1e

(r−q1)(v−t)Q̂
[
x2S

2
v ≤ a2(x1S

1
v , v)

]
= q1x1e

(r−q1)(v−t)Q̂

(B2
v −B2

t ) ≤
ln
(
a2(x1S1

v ,v)
x2

)
−
(
r − q2 −

σ2
2
2

)
(v − t)

σ2


= q1x1e

(r−q1)(v−t)Q̂
[
(Uv − Ut) + σ1(v − t) ≤ d(x2, x1S

1
v , B

1
v −B1

t , v, t) + σ1(v − t)
]

= q1x1e
(r−q1)(v−t)

∫ ∞
−∞

n(w)
∫ d(x2x1S1,w,v,t)+σ1(v−t)

−∞
n(u) du dw

Es bleibt zu zeigen: Unter Q̂ ist Uv − Ut + σ1(v − t) ∼ N (0, v − t) verteilt.
Sei g : R→ R stetig und beschränkt. Dann gilt:

Ê [g(Uv − Ut + σ1(v − t))] =E
[
g(Uv − Ut + σ1(v − t))e

σ2
1
2

(v−t)−σ1(B1
v−B1

t )

]
=
∫

R

g(x)√
2π(v − t)

e
− (x−σ1(v−t))2

2(v−t) e
σ2
1
2

(v−t)−σ1x dx

=
∫

R

g(x)√
2π(v − t)

e
− x2

2(v−t) dx

Dies ist auch gültig, wenn zum Maßwechsel über die geometrische Brownsche Bewegung S2
v

benutzt wird. Unter diesem Maß ist Uv − Ut + σ2(v − t) ∼ N (0, v − t) verteilt.
Es fehlt noch ein auszuwertender Erwartungswert.

E
[
q2x2S

2
v1(x2S2

v≤a2(x1S1
v ,v))

]
= q2x2e

(r−q2)(v−t)E

[
e−

σ2
2
2

(v−t)+σ2(B2
v−B2

t )
1(x2S2

v≤a2(x1S1
v ,v))

]
= q2x2e

(r−q2)(v−t)Q̄
[
x2S

2
v ≤ a2(x1S

1
v , v)

]
= q2x2e

(r−q2(v−t)Q̄
[
(Uv − Ut) + σ2(v − t) ≤ d(x2, x1S

1
v , B

1
v −B1

t , v, t) + σ2(v − t)
]

= q2x2e
(r−q2)(v−t)

∫ ∞
−∞

n(w)
∫ d(x2,x1S1,w,v,t)+σ2(v−t)

−∞
n(u) du dw
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Diese drei Ergebnisse zusammengefasst, ergeben eine Integraldarstellung des amerikanischen
Basketputs.

PΣ(x1, x2, t) =PE(x1, x2, t)

+
∫ T

t
e−r(v−t)rK ·

∫ ∞
−∞

∫ d(x2,x1S1,w,v,t)

−∞
n(w)n(u) du dw

− q1x
1e−q1(v−t)

∫ ∞
−∞

∫ d(x2,x1S1,w,v,t)+σ1(v−t)

−∞
n(w)n(u) du dw

− q2x
2e−q2(v−t)

∫ ∞
−∞

∫ d(x2,x1S1,w,v,t)+σ2(v−t)

−∞
n(w)n(u) du dw dv
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Kapitel 7

Fazit

In dieser Diplomarbeit wurde gezeigt, dass der Preis einer amerikanischen Option als
Integralterm darstellbar ist. Das Integral hängt von einer Grenzfunktion ab, die den optimalen
Wert der Finanzguts angibt, bei dem ausgeübt werden sollte. Wird der optimale Zeitpunkt
nicht genutzt, so folgt aus der Supermartingaleigenschaft ein Abwärtstrend des diskontierten
Wertprozesses. Im nächsten Kapitel wurden Eigenschaften der Grenzfunktion gezeigt, die eine
erste Skizze der Grenzfunktion ermöglichen und hilfreich bei der Berechnung der
Integraldarstellungen sind.
Alle erlangten Integraldarstellungen erlauben eine Aufspaltung des amerikanischen
Optionspreises in europäischen Optionspreis plus ein Premium, das aus der vorzeigen
Ausübung resultiert. Eine ökonomische Interpretation zeigt, wie der Wertzuwachs zwischen
amerikanischer und europäischer Option zustande kommt. Zur Auswertung der
Integraldarstellung der Grenzfunktion eignet sich die Darstellung von Kim am besten. In Paper
[7] wird diese Grenzfunktion an Hand von mehreren numerischen Verfahren für die Werte
K = 1, σ = 20%, r = 12%, q = 8% und T − t = 0, 25 bestimmt.
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Im Falle der Putoption konnte eine explizite Formel für den Preis bei unendlicher Laufzeit
angegeben werden, allerdings werden diese Art von Optionen nicht gehandelt, [1].
Die Integraldarstellung des Basketputs ist nicht viel komplexer als die einer einfachen
Putoption, allerdings hängt die Grenzfunktion von 2 Dimensionen ab und ist somit schwieriger
numerisch auszuwerten.
Inzwischen ist eine explizite Darstellung des Preisprozesses und der Grenzfunktion einer
amerikanischen Putoption angegeben worden. Song-Ping Zhu veröffentlichte dies 2006 in
seinem Paper An exact and explicit solution for the valuation of American put options, [22].
Dank der analytischen Lösungen können die gesuchten Funktionen geplottet werden. Ein
Beispiel aus dem Zhu-Paper soll hier vorgestellt werden.
Die Parameter sind r = 0, 1, q = 0, K = 100, σ = 0, 3 und T = 1 Jahr.
Bei diesen Parametern hat die Grenzfunktion folgende Gestalt:

Außerdem kann der Preis der Option, abhängig von dem Aktienpreis bei vier verschiedenen
Restlaufzeiten, geplottet werden.
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Es stellt sich die Frage, ob das Modell noch mehr der Realität angepasst werden kann.
Im Kapitel über die Finanzwelt wurde angedeutet, dass einige Voraussetzungen erweiterbar
sind. Eine Möglichkeit, das Modell zu verändern, wäre den Kapitalmarktzins nicht mehr als
deterministisch anzunehmen, sondern ebenfalls einem stochastischen Prozess unterliegen zu
lassen.
Das mathematische Modell erlaubt auch einige Erweiterungen. Zum Beispiel ist eine Kritik an
dem Black-Scholes-Modell die konstante Volatilität des Aktienpreisprozesses.
Eine Integraldarstellung unter den gegebenen Annahmen zu erreichen, war nicht einfach.
Deswegen muss im Einzelfall betrachtet werden, inwiefern Erweiterungen nützlich sind und wie
stark sie auf die Komplexität des Modells einwirken.
Das Thema liefert also noch genügend Raum für weitere mathematische Bearbeitung.
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Kapitel 8
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