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Kapitel 1

Einleitung

Selbst in Krisenzeiten steht der Handel mit Finanzderivaten auf den weltweiten Finanzmérkten
nicht still. Es werden Finanztitel ge- und verkauft, fiir die faire Preise berechnet werden
miissen. Hier spielt die Mathematik die zentrale Rolle. Der Finanzmarkt und der Verlauf des
Finanzguts werden mathematisch modelliert und dariiber Preise berechnet. Je besser das
mathematische Modell die Wirklichkeit abbildet, desto mehr Risiken lassen sich minimieren,
umso hoher ist das Vertrauen in die zugrunde liegende Finanzmathematik.

Diese Diplomarbeit beschéftigt sich mit dem Bepreisen von amerikanischen Optionen. Fiir ihre
Arbeit an der Optionspreistheorie und insbesondere der Berechnung des européischen
Optionspreises, wurde Fischer Black und Myron Scholes 1997 der Nobelpreis verlichen. Ein
Teil dieser Grundlagen wird im zweiten Kapitel betrachtet.

Interessanter sind allerdings amerikanische Optionen: Als Besitzer einer solchen Option fragt
man sich, bei welchem Wert des zugrunde liegenden Finanzguts man von seiner Option
Gebrauch machen sollte. Es liegt also ein Stoppproblem vor.

Da von den moglichen Ausiibungszeitpunkten auch der Preis der Option abhingt, gibt es nur
eine Moglichkeit arbitragefrei auszuiiben, ndmlich am optimalen Zeitpunkt. Mathematisch
gesehen erfiillt die Preisfunktion eine partielle Differentialgleichung bis zum
Ausiibungszeitpunkt. Da dieser Zeitpunkt nicht fest ist, sondern vom Wert des Basisfinanzguts
abhingt, wird von einem freien Randwert gesprochen.

Das Problem des Losens einer solchen Differentialgleichung geht zuriick auf Henry McKean,
1965, der sich mit einer Warme-Gleichung beschéftigte. Er erzielte zwar keine Losung, schaffte
jedoch einige niitzliche Grundlagen.

Im Laufe dieser Diplomarbeit wird gezeigt, dass die Regionen der Aktienwerte, fiir die die
Option gehalten werden sollte und fiir die ausgeiibt werden sollte, von einer Funktion,
abhingig von der Zeit, getrennt werden. Diese Funktion ist nicht bekannt, aber in Kapitel 3
werden einige wichtige Eigenschaften dieser Grenzfunktion gezeigt.

Wenn man voraussetzt, dass die Grenzfunktion bekannt ist, kann eine Integraldarstellung fiir
die Put- und die Calloption angegeben werden. In Kapitel 4 und 5 werden zwei verschiedene
Herangehensweisen vorgestellt und die Ergebnisse kritisch betrachtet.

Wenn die Option ausgeiibt wird, entspricht der Preis genau ihrer Auszahlungsfunktion, da
sonst direkt Arbitrage erzielt werden kénnte. Da an diesem Eintrittszeitpunkt der Wert des
Basisfinanzguts gerade der Grenzfunktion entspricht, erhilt man eine Integralgleichung.
Numerische Methoden erlauben es nun, eine Nidherungslosung anzugeben. Mit dieser Losung
ist wiederum eine numerische Losung des Preises moglich.

Fiir den Preis einer amerikanischen Option die ewig lduft, also nie verfillt, kann explizit die
Grenz- und Preisfunktion angegeben werden. Dies ist auch Bestandteil von Kapitel 5.
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Optionen miissen nicht nur auf einem, sondern kénnen auf mehreren, korrelierten Finanzgiitern
basieren und werden dann Basket- oder auch Rainbowoptionen genannt. Ein Vorteil ist, dass
man sich gegen Schwankungen am Finanzmarkt absichern kann, wenn die Option auf negativ
korrelierten Finanzgiitern beruht. Allerdings erschwert sich dadurch das optimale Stoppen, da
die Wertentwicklung aller Finanzgiiter beachtet werden muss.

Eine Integraldarstellung fiir Basketoptionen wird in Kapitel 6 gegeben und Eigenschaften der
Stoppregion werden in Kapitel 3 verifiziert.
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Kapitel 2

Modellwelt und Requisiten

2.1 Die Finanzwelt

Es wird versucht, den realen Finanzmarkt moglichst sinnvoll abzubilden. Komplett
realitéitstreu ist dies allerdings kaum mdglich, da der Finanzmarkt starken Schwankungen
unterliegt und einige Annahmen dieses Modell unnétig verkomplizieren wiirden.

Folgende Voraussetzungen werden an den Markt gestellt:

e Es werden Finanztitel gehandelt.
Ohne Finanztitel und deren Handel hiitte der Markt keinen Sinn. Es werden Aktien
gehandelt, es gibt einen Geldmarkt und Finanzderivate in Form von Optionen und
Termingeschéften sind moglich. In der Finanzwelt wird von einem Underlying oder
Basisfinanzgut einer Option gesprochen. Dies kénnen Aktien, Wahrungen, Rohstoffe oder
Energie sein.

e Dividenden
Wenn Aktiengesellschaften einen Teil ihres Gewinns an die Aktienbesitzer auszahlen,
nennt man dies Dividenden. Dividenden werden in einem eigenen Kapitel behandelt.

e Leerverkéufe sind beliebig moglich.
Ein Leerverkauf ist der Verkauf eines Finanztitels, den man nicht besitzt. Dieser
Finanztitel wird dann zu einem spéteren Zeitpunkt wieder zuriick gekauft. Man wettet
also auf fallende Preise, um Gewinn zu erzielen.
Leerverkéufe sind in der Realitédt auch moglich. Ein gutes Beispiel sind Hedge Fonds, die
aus Leerverkdufen und Derivaten unter hohem Risiko versuchen, hohe Renditen zu
erzielen.
Zur Zeit sind Leerverkédufe von einigen Regierungen wegen der akuten Finanzkrise
verboten.

e Finanztitel sind beliebig teilbar.
Man kann Finanztitel beliebig stiickeln und verkaufen, was natiirlich bei Wertpapieren
nicht moglich ist.

e Es gibt keine Beschrinkungen von Aufnahmen oder Anlagen von Finanzen.
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Theoretisch kann man extrem grofle Mengen an Geld leihen, ohne dass man Sicherheiten
vorweisen muf. In der Realwelt ist die Aufnahme oder Anlage von steigenden Betriagen
meist an eine steigende Zinskurve gebunden.

e Der Aufnahme- und der Anlagezins sind gleich.
Diese Annahme ist nicht sehr realitdtsnah. Wie jeder aus eigener Erfahrung weif; sind in
der realen Welt der Aufnahme und der Anlagezins nicht gleich, denn Finanzinstitute sind
gewinnorientiert und wollen sich gegen Kreditausfille absichern. Zusétzlich wird in der
Realitét die Dauer der Anlage oder Aufnahme, bei gleichem Betrag, unterschiedlich
bezinst (Zinsstrukturkurve).

e Der Markt ist arbitragefrei.
Arbitrage heif3t, direkter Gewinn ohne Risiko kann erzielt werden durch geschicktes
Kaufen und Verkaufen von Finanztiteln. Eine derartige Situation kann auftreten, wenn
Finanztitel falsch bepreist sind oder unterschiedliche Werte in verschiedenen
geografischen Orten haben. In Zeiten des schnellen Handels iiber das Internet ist es so
gut wie nicht moglich, direkt Arbitrage abzugreifen. Auflerdem wiirde der Markt dieses
Problem direkt ausgleichen, da jeder Anleger diese Moglichkeit ausnutzen wiirde und sich
durch die erhéhte Nachfrage die Preise anpassen. Das Problem der Bepreisung besteht
heutzutage in der richtigen und passenden Modellbildung.
Arbitrage ist in den folgenden Beweisen ein hiufiges Argument, denn zwei Finanztitel
mit der gleichen Auszahlungsstruktur miissen den gleichen Preis haben.

e Keine Transaktionskosten oder Steuern
Transaktionskosten bestehen in der Realitét eigentlich immer, sind aber abhéingig vom
handelnden Individuum. Beispiele sind Telefon- /Internetkosten, Opportunititskosten und
Brokerkosten. Steuern werden bewusst ausgeblendet, da sie von der Politik laufend
verandert werden, wie zum Beispiel die neue Besteuerung von Aktiengewinnen.

e Rationale Marktteilnehmer mit gleichen Informationen.
Jeder Marktteilnehmer will seinen Gewinn maximieren, bei Risikoaversitét.
Es herrscht Informationssymmetrie: Jeder Handler weifl gleich viel {iber den zukiinftigen
Verlauf eines Finanztitels. Insiderhandel ist also nicht moglich.

Der Finanzmarkt kommt einem vollkommenen Markt also sehr nahe. Es gibt eine Menge
Maérkte, die weit von einem vollkommenen Markt entfernt sind. Das Aussetzen einer
Voraussetzung kann sogar zum kompletten Marktversagen fithren. Ein populédres Beispiel ist
der Gebrauchtwagenmarkt: Bei Informationsasymmetrien kommt kein Handel zustande.
[George Akerlof: The Market for 'Lemons’: Quality Uncertainty and the Market Mechanism,
The Quarterly Journal of Economics, Vol. 84 No. 3 (Aug. 1970), S. 488-500]
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2.2 Optionen

Optionen sind Vertrége zwischen 2 Parteien, bei denen der Kaufer (long-position) das Recht
erwirbt, zu einem oder mehreren Zeitpunkten eine bestimmte Anzahl von Finanzgiitern zu
einem Ausiibungspreis K an den Verkéufer (short-position) zu kaufen oder verkaufen. Das
Recht ist keine Pflicht, der Kdufer kann die Option also auch verfallen lassen.

Optionen werden gehandelt, weil man auf steigende oder fallende Kurse wetten, oder sich
absichern mochte. Optionen lassen sich in 2 Klassen unterteilen.

e Put-Optionen: Verkaufsoptionen
Die Auszahlungsfunktion fiir den K&ufer einer Putoption auf ein Finanzgut S ist
max(K —S5,0) = (K — 9)+
Als Kédufer wettet man auf fallende, als Verkdufer auf steigende Kurse.

e Call-Optionen: Kaufoptionen
Die Auszahlungsfunktion fiir den K&ufer einer Calloption auf ein Finanzgut S ist
max(S — K,0) = (S — K)4+
Als Kéufer wettet man auf steigende, als Verkaufer auf fallende Kurse.

Wenn man vom einem Einperiodenmodell ausgeht und den Diskontierungsfaktor
vernachléssigt, kann der Profit in Abh#ngigkeit des Aktienwerts gut visualisiert werden. Wenn
die Option in t = 0 10 Geldeinheiten gekostet hat und der Ausiibungspreis K=100 ist, dann
zeigen folgende zwei Grafiken den Profit in ¢ = 1 in Abhéingigkeit vom Aktienwert.

Short Call / . Short Put

T -1

Profit
o
Profit
[=]

Long Call Long Put

@
I T W1
»—-
u
1

Preis des Basiswerts Preis des Basiswerts

http://de.wikipedia.org/wiki/Call-Option [3] http://de.wikipedia.org/wiki/Put-Option [3]

Natiirlich muss davon ausgegangen werden, dass sich die 10 Geldeinheiten iiber die eine
Periode verzinst hétten und sich somit die Funktionen leicht verschieben.

Wie man erkennt, ldsst sich mit einer Call-Option, im Gegensatz zur Put-Option, theoretisch
unendlich viel Profit erzielen. Der Profit bei der Put-Option ist begrenzt, da das
Basisfinanzgut nur positive Werte annehmen kann.

Wenn die Wahrscheinlichkeit fiir alle moglichen zukiinftigen Zusténde des Finanzguts bekannt
und der Verzinsungsfaktor deterministisch ist, welchen fairen Preis hat dann die Option in

t =07

Ein fairer Preis ist ein Preis, der Arbitrage ausschliefit und somit weder den K#ufer noch den
Verkéufer der Option benachteiligt. Die Berechnung dieser Optionspreise fiir verschiedene
Arten von Optionen ist Inhalt dieser Diplomarbeit.
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Optionen lassen sich auch nach moglichen Ausiibungszeitpunkten separieren.

Européiische Option

Eine européische Option ist ein Vertrag zu einem Preis Pg(St,t) (Put) oder Cg(St,t) (Call)
zum Zeitpunkt t und Kurswert des Basisfinanzguts S zum Zeitpunkt ¢, S; mit Restlaufzeit
T —t. Dem Kéufer wird erlaubt, eine bestimmte Aktie zum Ende der Laufzeit fiir einen
festgelegten Betrag K zu kaufen bzw. verkaufen, oder die Option verfallen zu lassen.

Amerikanische Option

Eine amerikanische Option wird zum Preis P(S,t) (Put) oder C(S,t) (Call) in Abhéngigkeit
von der Restlaufzeit T' — t und des aktuellen Kurswertes des Basisfinanzguts Sy, verkauft. Die
amerikanische Option ist eine européische Option mit dem zusétzlichen Recht, zu jedem
Zeitpunkt wihrend der Vertragslaufzeit von seinem Kauf- bzw Verkaufsrecht Gebrauch zu
machen.

Deswegen muss eine amerikanische Option, bei gleichem Basisfinanzgut, gleicher Laufzeit und
gleichem Ausiibungsbetrag mehr Wert als eine européische Option sein, weil es die Moglichkeit
zur frithen, optimalen Ausiibung gibt. Das ist auch der Grund, warum eine amerikanische
Option mit Vertragslaufzeit 77 einen hoheren Preis hat als eine mit 715 fiir 77 > Tb.

Als innerer Wert einer amerikanischen Option wird der Gewinn bei sofortigem Ausiiben der
Option bezeichnet.

Basket Option

Eine Basket Option basiert auf einem Portfolio von Aktien. Es kann also eine Vielzahl von
Basisfinanzgiitern geben, die alle miteinander korreliert sind. Basket Optionen kénnen als
européische oder amerikanische Basket Optionen gehandelt werden.

Die Benutzung von einem Portfolio von Aktien als Basis hat den Vorteil, dass sich Risiken
durch Korrelationseffekte minimieren lassen.

Kombiniert man zum Beispiel die Aktie eines 6lférdernden Unternehmens und eines
lverbrauchenden Unternehmens, hat man sich gegen Olpreisschwankungen abgesichert, denn
von einem Preisanstieg des Ols profitiert das élférdernden Unternehmen und von einem
Preisverfall das 6lverbrauchende Unternehmen.

Die Auszahlungsfunktion fiir einen Basketput auf zwei Finanzgiiter ist (K — (S* + S2))..
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2.3 Mathematisches Modell

Der Inhalt dieses Kapitels soll einen kurzen Uberblick iiber die Modellierung des
Basisfinanzguts geben. Finanzmathematische Grundlagen werden nicht aufgefiihrt. In [1] und
dhnlicher Fachliteratur kann der geneigte Leser diese Grundlagen nachlesen.

2.3.1 Der Kursverlauf

Grundlage fiir die Berechnungen ist ein Wahrscheinlichkeitsraum

(©2,A4,Q)
Q ist die Menge aller zukiinftigen Zustdnde und A eine Sigma-Algebra auf 2.
Q ist ein MaB fiir die Wahrscheinlichkeit des Eintritts von A € A.
AuBlerdem gibt es einen Zeithorizont mit natiirlicher Filtration,

([07 T] ) ft)

die von einer stochastischen Prozess W; erzeugt wird.

Fi:=8(Ws,s < 't)

Sichere Anlage

Es wird von einer stetigen Verzinsung von angelegtem oder gelichenen Kapitals ausgegangen.
Wenn R; den Betrag zum Zeitpunkt ¢ angibt, der aus Ry entstanden ist, dann gilt mit dem
konstanten Zinssatz r:

ClRt :T‘tht
d(In(Ry)) =rdt

¢
In(Ry) :/ rdt+c
0

Somit ist das Kapital in ¢t R; = Rpe™ und e"*=*) der Verzinsungsfaktor von s nach ¢ und
e~ "(t=5) der Diskontierungsfaktor von ¢ nach s, s < t.

Der Aktienkurs
Der zukiinftige, unsichere Kurs einer Aktie muss modelliert werden: Es wird ein stetiger,
stochastischer Prozess gesucht, der den realen Schwankungen einer Aktie dhnlich ist.

Brownsche Bewegung

W:Qx[0,T] =R

Wenn W;(w) folgende 3 Bedingungen erfiillt, liegt eine Brownsche Bewegung (manchmal auch
Wiener Prozess gennant) vor:

Wo(w)=0 Q—f—sw (2.1)
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W(w) : t — Wi(w) stetig fiir allet € [0,7] Q—f—s (2.2)
Wi (w) hat unabhingige Zuwichse und (Wiy(w) — Wi(w)) ~ N(0,t —s) t > s (2.3)

Pfade zweier unabhéangiger Wienerprozesse

Negative Aktienkurse sind natiirlich nicht sinnvoll und die Aktie sollte {iber die Zeit einen
Wertzuwachs verbuchen, da auch der risikolose Zinssatz r echtgrofler als Null ist.

Geometrische Brownsche Bewegung

0,2
St(w) = S()€<M_7>t+UWt(w) (2.4)
u ist die Drift der Aktie, denn es gilt

E[S] = Soe(“_g)tE [e"Wt(W)] = Spett

da eVt log-normalverteilt ist und dies ist wie eine stetige Verzinsung des Startpreises Sy zum
Zinssatz .

Die Volatilitdt o gibt den Einfluss des Risikos in Form einer Browschen Bewegung auf den
Aktienwert an.

Beide Faktoren werden als konstant angenommen. p ist grofler als r, da die Aktie sonst nicht
attraktiv wére und o echt grofler als Null, damit der Wert der Aktie nicht gegen Null tendiert.
Mbogliche Verldufe einer Geometrischen Brownschen Bewegung stellt folgende Grafik dar.[20]

Difusionsprozess
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Der Verlauf einer Geometrischen Brownschen Bewegung kann durch eine stochastische
Differentialgleichung dargestellt werden. Hierzu wird die It6-Formel benutzt.

dSt = M;S’tdt + O'Stth

Es ist auch moglich, sich den Aktienverlauf iiber diese stochastische Differentialgleichung zu
definieren und auf die geometrische Brownsche Bewegung zu kommen. Dafiir muss, wie bei der
sicheren Anlage, der Logarithmus benutzt werden.

Um den Zusammenhang zum Marktverlauf zu erkennen, stelle die Formel um.

dS; =rSidt+ (u—r) Sidt+ oSidW,
———
Risiko-Zuschlag

Der Risiko-Zuschlag ist die zusétzliche Drift, die die geometrische Brownsche Bewegung
erfahrt, damit die Aktie fiir Anleger iiberhaupt interessant ist.

Durch das No-Arbitrage-Theorem ist die Arbitragefreiheit sichergestellt, wenn der diskontierte
Aktienwertverlauf ein Martingal ist, also keine Drift besitzt.

Ziel ist es, mit der Girsanov-Transformation einen Mafliwechsel vorzunehmen, unter dem die
Drift der geometrischen Brownschen Bewegung r betrégt.

dS, = rSydt + oS, ((“ - " g+ th>
Nach Girsanov ist W = Wi —vt, v € R, eine Brownsche Bewegung unter dem MaB Q.
Umgestellt zu dW; = dWy + vdt erkennt man, dass

w—r
o

V= —

gelten muss, damit @ das Martingalma$ bezeichnet.

= VNVtZWt— <—H_T>t

2

Eingesetzt in die stochastische Differentialgleichung entsteht

dS; = rSidt + O'Stth. (25)

Diese Differentialgleichung wird, unter dem neuen Maf, erfiillt von

S, = Soe(’“‘ﬁ)”"m (2.6)

Bemerkung

Das Martingal-Representation-Theorem stellt fest, dass der Markt, der aus diesem
Aktienpreisprozess und einer sicheren Anlage besteht, vollstéindig ist. Aus der Vollstédndigkeit
schlieBt das second fundamental theorem of asset pricing, dass Q eindeutig bestimmt ist. Siehe

1]
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2.3.2 Mehrdimensionale Erweiterung

Um Basket Optionen zu bewerten, wird ein dhnliches Modell zur Modellierung des Verlaufs des
Basisfinanzguts benétigt, wie im eindimensionalen Fall. Die Schwierigkeit entsteht dabei, dass
die Summe von geometrischen Brownschen Bewegungen nicht wieder eine solche ist. In den zu
Grunde liegenden Papern dieser Arbeit wird meist nur von korrelierten Finanzgiitern
gesprochen. Diese Grundlage soll hier noch einmal aufbereitet werden.

In der Realitat unterliegt eigentlich jedes Paar Wertpapiere einer mehr oder weniger starken
Korrelation. Diese Korrelationen herauszufinden, ist ein eigenes wissenschaftliches Thema.
Gehe davon aus, dass es einen Vektor W, aus zwei stochastisch unabhéngigen Brownschen
Bewegungen W, und W2 gibt. Wenn nun daraus zwei korrelierte geometrische Brownsche
Bewegungen konstruiert werden sollen, dann muff W' und W7 in jeder der beiden
Differentialgleichungen vorkommen.

dS} = St + S} (o12dW7 + o1 dW}) (2.7)
dSE = paSidt + 57 (021dW; + o2dW) 28)

Die konstanten Werte 012 und o9; aus R bezeichnen den Einflul der jeweils anderen
Brownschen Bewegung.

Nun soll, in Anlehnung an [1], fiir den 2 dimensionalen Fall ein Mafiwechsel zum Martingalmaf
vorgenommen werden.

Definiere (t) als Verzinsungsprozess.

B(t) = el

Nach dem Mafiwechsel nach Girsanov sollte der diskontiere Werteprozess des Finanzguts keine
Drift mehr besitzen.
Durch Anwenden der Quotientenregel im dt Fall entsteht mit der It6-Formel:

Se St ; ;
d (5) =5 (i = )b+ (o33dW7 + 0:dWi)| i=1,2 ) #i
Wenn der MaBiwechsel durch eine mehrdimensionale Girsanov-Transformation erfolgen soll,
dann sind Wl =W} — 61t und W2 = W2 — st Brownsche Bewegungen unter dem neuen Maf
. Nun miissen diese beiden Konstanten bestimmt werden. Setze dazu die beiden Gleichungen
ein.

d (%) = Zt (Uij(ejdt-i-dwtj) + Uz(ezdt"i_thZ)) i=127 7&2

Also muss fiir 6; und 6, folgendes gelten:

(ui—r):aij9j+ai(9¢ i:1,2j;£i

Dementsprechend entsteht im Falle von n Basisfinanzgiitern ein lineares Gleichungssystem mit
n Unbekannten und n Gleichungen, welches eindeutig 16sbar ist, wenn die Brownschen
Bewegungen paarweise stochastisch unabhéngig sind. In diesem Fall liegt ein vollstandiger
Markt vor und das Martingalmaf} ist eindeutig bestimmt.
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Die Losung des Gleichungssystems fiir §; und 6, ist im vorliegenden, zweidimensionalen Fall:

0, _o12(p2 —7) — o2 — )
021012 — 0102
0, :M _ 91,
o2 o2

1

Uber die mehrdimensionale Girsanov-Transformation kann nun explizit das neue Maf Q
bestimmt werden.
Unter diesem Ma8 gilt fiir die stochastischen Differentialgleichungen von S} und S?:

dS} =S} (rdt + o12dW2 + o1dW})
dS? =S2(rdt + o21dW} + o2dW?)

Diese lassen sich wieder in ein Black-Scholes-Modell verwandeln.

dS} =rStdt + S}/ o2, + o2dW} (2.9)
dS? =rSkdt + S?\/02, + o2dW} (2.10)

. 1 . i
lei(aijwpra,wg) i=1,2 j#i

t
/ 2 2
aij+ai

In dieser Darstellung ist Wf, 1 = 1,2, wieder eine Brownsche Bewegung unter Q:
W} ist adaptiert an JF, hat stetige Pfade und ist ein Martingal, da die Differentialdarstellung
dW} keinen Driftterm besitzt.

mit

. 1 y .
AW = ——— (00dWi +oidWi) =12 j#i
o+ 0;
R 1 i o y y
AWidW; = | ——— (aijdwg + a,-dwg> (aijdwg + aithZ)

2 2 2 2
oy to; o5+ 0

1 - - o - ~ . ~ .
o (afjdwg dWi + a?dwgdwg)
o5 +0;

=dt Yt i=1,2

ij

Nach dem Lévy Theorem, siehe [1], reichen diese Eigenschaften, damit eine Brownsche
Bewegung vorliegt.
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Die geometrischen Brownschen Bewegungen sind nun korreliert, da die Brownschen
Bewegungen korreliert sind. Setze 6; = , /O'Z-Qj + 0? und definiere den konstanten

Korrelationskoeffizienten p durch:

AWidW} = <az~detj + aithZ)

1 1

2 2 2 2
1/‘71‘]‘"‘01‘ Uji-l-O'j
(0ji0i + 0ij0;) gt

2 2 2 2
T3 + o} \/aji + o

(05idW; + oja7)

_ (9ji0i + 0ij0;)

dt

N

0i0;

=p dt Vit 1#£ ]

Losungen fiir die stochastischen Differentialgleichungen (2.10) und (2.11) sind:

2
S} = S} exp <[r - 0’21} t+ 61Wt1) (2.11)
52 .
S? = 52 exp <[r — 22} t+ &th2> (2.12)
mit
A i 1 = ] T 1 . . .
W = (O’ith +Uz’Wt) i=1,2 j#1i
O’Z-Qj + o}
und
Gi = /oy + 0} i=1,2 j#4
Notation

Von nun an gelte dass:

Q anstatt Q das transformiertes MaB bezeichnet und W; die dazugehérige Brownsche
Bewegung ist, es sei denn, es wird explizit im Text erwihnt.

Desweiteren wird o fiir 6 stehen.

Da auch Preise fiir immerhalb der Laufzeit angegeben werden sollen, definiere S7 als eine
geometrische Brownsche Bewegung mit Startwert © = Sy zum Zeitpunkt v, wobei ¢t < v.

0.2

5 (v —1t)+o(W, — Wt)>

Sy = Srexp ((r —

Fir ¢t = 0:
o2
Sy = Sp exp <(r - 7)’0 + JW»U>
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2.4 Dividenden

Dividenden sind zyklische Auszahlungen der Firmen an ihre Aktienbesitzer. In Deutschland
wird meist einmal im Jahr ein Teil des erwirtschafteten Gewinns ausgezahlt, aber nicht alle
borsennotierten Firmen zahlen Dividenden an ihre Aktienbesitzer. In diesem Fall besteht der
ganze Gewinn eines Aktienbesitzers aus Kursgewinnen. Griinde dafiir kénnen eine anstehende
groflere Investition sein, oder dass aus Prinzip keine Dividende bezahlt wird.

Die zyklische Dividendenzahlung wird auch diskrete Dividendenzahlung genannt.

Diese Zahlungsreihe birgt ein Problem: Der Optionsbesitzer bezieht keinen zusétzlichen
Nutzen, wenn eine Dividende ausgezahlt wird. Also ist die Dividende vom Wert des Finanzguts
abzuziehen. Bei diskreten Dividenden verliert der Verlauf der Aktie seine Stetigkeit, da
Spriinge bei Dividendenauszahlung auftreten.

Da diese Art der Dividendenzahlung nicht optimal ist, werden stetige Dividendenzahlungen
behandelt. Bei dieser Art von Dividendenzahlungen wird angenommen, dass die Dividende
stetig ausgezahlt wird und proportional mit konstantem Faktor ¢, (¢ < r), vom Aktienkurs
abhingt.

Da Arbitrage ausgeschlossen ist muss die Dividende vom Verlauf des Basisfinanzguts
abgezogen werden.

dS; = rSidt + o SiWy — qSidt = (7“ — q)Stdt + SioW; (213)

Diese Differentialgleichung wird erfiillt von:

a2

Sy(w) = Spelr=IF ) 1HoWele) (2.14)

Bei dieser Darstellung existiert kein Stetigkeitsproblem.

Bemerkung

Der diskontierte Aktienwert mit Dividendenauszahlungen unter dem Martingalmaf} @ ist kein
Martingal. Erst wenn die Dividende wieder angelegt wird, entsteht die Martingaleigenschaft
und stellt die Arbitragefreiheit sicher.
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2.5 Européiische Optionen

Im Folgenden wird eine Preisfunktion fiir européische Optionen nach Black-Scholes angegeben.

2.5.1 Preis bei einem Basisfinanzgut

Putpreis
Definiere den Putpreis als Funktion vom Wert des Basisfinanzguts S; = x und der Restlaufzeit
(T —1t).

Pp(a,T 1) = E [ T(K — S7), |

Analog hierzu defiere den Callpreis als Cg(z, (T —t)).
Der stochastische Prozess S; erfiillt die Markoveigenschaft, wodurch die Informationen Fj,
s < t, fur die Preisberechnung in ¢ irrelevant sind.

2
St = Syexp ((r —q— %)T + O'WT>

= snexp (= 0= S+ o) e (= a = 5T~ 1)+ oW~ )

2

= S e <(r - %)(T — )+ o(Wrp — Wt)>

JF: messbar
unabhéngig von F;

2
o
= zexp <(r —q— ?)(T —t)+o(Wp — Wt))
Fiir die Preisberechnung wird als Erstes der Positivteil der Auszahlungsfunktion als
Indikatorfunktion ausgedriickt und die Linearitit des Erwartungswertes genutzt.

B e (K - 57)4 ]

=F [eiT(Tit)Kl(S%<K) — eir(Tit)S%].(

S§<K)}
—e "IV . E [1(5%<K)} - F [e_T(T_t)SIz“l(s;<K)}
2

="K Q(SF < K) —2E [eXp <<—q - 02> (T =t)+o(Wr — Wt>> 1(S§<K):|

= 0K Qs < K) = ae T fexp (=) (- 0+ oW~ W) ) 15y

Auf den Erwartungswert kann die Girsanov-Transformation angewendet werden, denn

exp ((—%) (T —t)+o(Wr — Wt)) ist ein Martingal mit Start in ¢ und

e [ N Gt P R P
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Unter dem neuen Maf8 Q ist (Wr — W;) = (Wp — W;) — o(T — t) eine Brownsche Bewegung.
B e TO(K - 55)4 ]
=" THEK . Q9% < K] —ze T . Q5% < K]

=TT VK. Q [exp ((r —q- U;) (T —t) +o(Wr — Wt)) < ﬂ —ze 1T Q[SF < K]

In (&) - r—q-2 (T —1)
—e " TK.Q | Wp —W, < ( ) ( 2> — e~

Q[ST < K]

g

(Wp — Wy) ~ N(0,T — t) unter Q. Setze N,

14 a2
N[d]:\/%/ e 2 de,

als Verteilungsfunktion der Standardnormalverteilung fest.

ln(%)—(r—q—‘;) (T —1)

E [e‘T(T_t)(K _ s%w — TN
oI —t

—ze”1TY.Q [S% < K]

Betrachte das transformierte Maf Q.

Q[S%<K}:c}[exp<<r_q_0) (T_t)H(WT_Wt)) <K]

2 x
olwew E —(r—:—%)(T—t)
Q_WTWta(Tt)<ln(I;)<T:CT22>(Tt)a(Tt)]
:Q_WT_Wt<ln 5)—(r—:+f)(T—t>

-ln(f)(rq—&-";)(Tt)]
=N
ovT —t

Beide Ergebnisse zusammen liefern den Putpreis einer européischen Option.

PE(.%',T—t) =
In (&) - (r—q—"é) (T —1)
ovT —1

(%)~ (r—q+%) (T -1
oVT -t

e "I N e TN
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Callpreis

Aus dem Putpreis lésst sich direkt der Callpreis ableiten.

Die Auszahlungsfunktion veréndert sich von (K — ST)]l( K>sz) 24 (St - K )]1( K<53)" Es muss
also der Putpreis mit —1 multipliziert werden. Ebenso die Integralgrenze der Normalverteilung
fiir die Eintrittswahrscheinlichkeit des Basisfinanzguts in den Positivteil der
Auszahlungsfunktion. Falls X ~ A(0,1) unter @, dann folgt mit der Symmetrieeigenschaft der
Standardnormalverteilung Q(X > a) = Q(X < —a) fiir a € R.

Zusammen erhélt man:

Cg(x, T —1t) =

ln(%)#—(r—q#—"—;)(T—t) A ln(%)—i-(r—q—%z)(T—t)
VTt ‘ | VT 1

ze—1(T=t) N
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2.5.2 Preis bei mehreren Basisfinanzgiitern

In dieser Sektion wird der Preis einer européischen Putoption berechnet, die auf zwei
Finanzgiitern basiert. Genauso wie bei einem Basisfinanzgut wird auf eine
Girsanov-Transformation zuriickgegriffen. Die Bearbeitung erfolgt nach

Lamberton, Lapeyre [9].

Fiir S} = x1 und S? = x5 ist die Preisfunktion:

Pg(w1,22,1) = B |e 7T 0(K — (Sh+ SP)4 | R = B [T — (57" + 572))4

Aufgrund der Konstruktion der zwei korrelierten Finanzgiiter wird daraus, analog zum Fall mit
einem Basisfinanzgut:

Pp(w1,2,t) =" TVK - E [1<S;11+s;22g1()]

+ze g [GXP < (T =)+ o (Wr — th)) ]1(

of
_? 5;11+S;22§K>
2
—q2(T—1) 9% 2 12
+ x0e” 2 E |:eXp < 5 (T —t) 4+ o2 (W5 Wy )> 1(5;11+S;22<K)]

Benutze die Girsanov-Transformation.

Pg(a1,22,t) =e "TVK . Q [Sfi/{ll + 5722 < K]
+ e 00! {S%ll + 53522 < K}
+$2€—Q2(T—t)Q2 [S;Qll + 5%22 < K}
Uber die Brownschen-Bewegungen unter den MaBen Q! und @2, die die

Girsanov-Transformation liefert, konnen die Wahrscheinlichkeiten genauer berechnet werden.
Dies ist aber nicht relevant fiir den Rest der Diplomarbeit.
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2.6 Die Black-Scholes Differentialgleichung

Sei weiterhin S; das Finanzgut, auf dem die Option basiert.

dSt = ’I"Stdt + O'Stth

f(St, t) sei der Preis einer Option mit Laufzeit T und Basisfinanzgut S, die nur vom aktuellen
Wert des Finanzguts S; und dem aktuellen Zeitpunkt ¢ beziehungsweise der Restlaufzeit
abhéngt. Die Optionen, die diese Eigenschaft erfiillen sind sowohl européische als auch
amerikanische Put- und Calloptionen. Ein Beispiel fiir eine Option die diese Eigenschaft nicht
besitzt, ist die Lookback-Option.

f: 0,00 x [0,T] — RT

Wenn die Preisfunktion zweimal stetig in der ersten und einmal stetig in der zweiten Variable
differenzierbar ist, dann kann die It6-Formel angewendet werden.

af(S,, DF(S,. 102£(S,,
df (Si, t) = f(att D gt + fgst D gs, + QJ;(S; Days, S),
_ af(Stat) U2St2 82 St) 8f St7 ClS
o 2 952 !
C(0f(Snt) 0282 02F(S,,t)
= < 5 5 952 ( Stdt+05tth)
_ af(StJ t) U2S1€2 82f(5t7 af(stv ) af(Stu t)
= < T ) s e ) dt 4 08 = aw

Die zweite Gleichung entsteht durch Auflésen der quadratischen Variation d (S, S), = o2S2dt,
wegen d (W, W), = dt.

Da von einem Modell mit einer sicheren Anlage und einem stochastischem Prozess
ausgegangen wird, liefert das Martingale Representation Theorem, [1], die Vollstéindigkeit des
Modells. Deswegen kann die Auszahlungsstruktur der Option, durch ein geeignetes, risikoloses
Portfolio dubliziert werden.

Kaufe die Option f und verkaufe einen konstanten Teil A von S. Der Wert des Portfolios ist

A(S,t) = f(S,t) — ASy
und als stochastische Differentialgleichung:

dA(St, t) = df (S, t) — AdS;.
Setze nun die Formeln fiir df (S, t) und dS; ein.

O1(Sit) | 2gnl O*F(Sist) OF(Sit) OF(Sit)
A(St, ) < 81} + o Stiw‘i‘TStT TStA dt+USt T A th

Da risikolos dubliziert werden soll, muss die Unsicherheit wegfallen.

O'St<af(85;’t)—A):O
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_ 8f(St7t)
= 8="35

dA(S,t) = | ———= ————=|dt
Das Portfolio verdndert sich aber iiber die Zeit wie eine sichere Anlage:

t
dASL 1) =1 £(s,1) = 2LOED ¢ ) gy
a8
Da bei beiden Strategien durch die gleiche Auszahlungsstruktur den gleichen Preis haben

miissen, folgt:

Of (S, t) [ Of(S,t) 9 2182f(St,t)

& <rf(St,t)—rStaS )dt_<6t +o St27852 dt
o 0f(Sut) _0f(Si,t) 92 102f(St, 1)
= 1f(Sit) =S 55— o T° St§7852

Umgestellt ergibt sich eine partielle Differentialgleichung, die auch
Black-Scholes-Differentialgleichung genannt wird.

af(Stﬂt) 2 2182]0(51&,75) _ af(St7t) _
ot + o“5; 5 852 rf(Se, t) + 1Sy 55 = 0 (2.15)

Bei Dividendenzahlung veréndert sich die partielle Differentialgleichung zu:

2
(WJWQSZ;W —Tf(St,t)Jr(r—q)Stwf;;’ﬂ =0 (2.16)

Randwerte fiir Put und Call

Am Ende der Laufzeit muss der Wert der Option f(S7,T) = (St — K)4+ bzw

f(St,T) = (K — Sr)+ entsprechen, da sonst Arbitragemoglichkeiten entstehen.

Eine Limesbetrachtung fiir Sy, in Abhéngigkeit der Auszahlungsfunktion, kann durchgefiihrt
werden.

Fiir die Calloption gilt f(S,t) ~ S fiir S — oo und limg_g f(S,t) = 0, da eine Kaufoption
vorliegt.

Ebenso kann fiir die Putoption limg_. f(S,t) = 0 und limg_q f(S,t) = e "T"Y K festgestellt
werden.

Bemerkung
Es ist auch moglich, iiber die Differentialgleichung und Randwerte die Losung fiir das
Black-Scholes-Modell der européischen Option anzugeben.
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Kapitel 3

Die Grenzfunktion

3.1 Die Preisfunktion und optimales Stoppen

Dieses Kapitel beschrankt sich auf die Betrachtung des Putpreises.
Um die Arbitragefreiheit im Modell zu bewahren, definiere den Preis einer amerikanischen
Putoption P(z,t) in ¢t und mit aktuellem Basisgutwert S; = z und Laufzeit T durch:

P(a,t) = sup Ele " D(K = 8,)4 | F] = sup Ble™"0(K - 2).]
TE\I/? TE\I/’{
U ist die Menge aller Stoppzeiten beziiglich der Filtration F und ¥} C ¥, die Menge aller
Stoppzeiten aus ¥ aus dem Intervall [t,T7.
Fiir diesen Preisprozess gilt:

P(St,t) Z (K — St)+, St € }0,00[, t e [O,T]

Insbesondere
> (K — S¢)+ vor optimaler Ausiibung

P(Stvt) = {

= (K — S¢)+ nach optimaler Ausiibung
Die strikte Ungleichung ist grade die Aussage der Optimalitéit, siehe Krylov, [11].

Stetigkeit
Die mathematische Argumentation fiir die Stetigkeit der Preisfunktion in den Variablen ¢ und
x geht zuriick auf Krylov, [11].

Ubergangsbedingung
McKean zeigt in [15], dass die Ableitung in S der Preisfunktion stetig am Auslosepunkt ist. Sei
S; der optimale Wert zum Auslésen.

8P(St,7') . 8(K - St) _ 1

08 ls=s, 08 lems,

H#ufig wird diese Gleichung Smooth-Fit-Eigenschaft genannt. Damit ist es moglich die
erweiterte It6-Formel auf die Funktion P(S;,t) iiber die komplette Laufzeit der Option
anzuwenden, siehe Karatzas und Shreve [16]. Dies war vorher nicht moglich, da P(Si,t) keine
C%-Funktion ist. Es existiert eine Unstetigkeitsstelle der zweiten Ableitung im
Auslosezeitpunkt. 62(8[;;5) =0 und g—g; > 0. Im Folgenden ist die erweiterte It6-Formel
gemeint, wenn von der Ito-Formel gesprochen wird.
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Satz

Der diskontierte Putpreis e "t P(S;,t) ist ein Supermatingal.

Beweis

Bestimme die Drift des diskontierten Putpreises e "' P(S;, ) iiber die It6-Formel.

_, i (OP(Si,t) 5 5 10%P(S;,1) OP(Sy,t)
d (e P(Sy,1)) =e" (6t + 75 2 982 rP(Se:t) +TStT di
OP(S;,t
+ rstést) AW,

Vor der Ausiibung erfiillt der Preis die Black-Scholes-Differentialgleichung, da er nur vom
aktuellen Wert von S und ¢ abhéngt. Durch Einsetzen der Auszahlungsfunktion erkennt man,
dass der Preis die partielle Differentialgleichung nach Ausiibung nicht erfiillt. Somit gilt die
Black-Scholes-Differentialgleichung bis zum Ausiiben, weswegen auch hiufig von einem freien
Randwertproblem gesprochen wird. Die Drift fillt hier somit weg.

Nach Ausiibung der Option gilt P(S;,t) = (K — S;), da nur bei positiven Werten ausgeiibt
wird.

. (O(K —Sy) 10%(K — S) I(K — S)

rt 202 _ _ D .

e < T + o*5; 5 597 (K — St) + 1St 55 dt
=e " (—rK +rS; —rS;) dt

= —e "rK dt.

Der Preisprozess hat also die Tendenz zu fallen, nachdem die Option ausgeiibt wurde.

Damit ist die diskontierte Preisfunktion ein Martingal bis zur Ausiibung und danach ein
Supermartingal, also insgesamt ein Supermartingal. Sei 7* die optimale Stoppzeit. Mit dem
Optimal-Sampling-Theorem und Q(7* < T) =1, fiir T' < oo, folgt, dass das gestoppte
Supermartingal ein Martingal ist.

Korollar
Damit ist die optimale Stoppzeit gegeben durch

7" =inf {t | P(S,t) = (K — S¢)+}.

Bemerkung
Aus der Supermartingal- und Stetigkeitseigenschaft kann gefolgert werden, dass die Funktion
P(S;,t) eindeutig bestimmt ist. Niheres ist in [1] nachzulesen.

Bezeichne durch

I ={(x,t) e R x R" | P(x,t) > (K — ).} (3.1)

die Fortfithrungsregion, in der die Putption optimalerweise nicht ausgeiibt wird.
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Satz
Die Fortfiihrungsregion ist offen und wird von I'® durch eine Funktion a(t) getrennt.

'y ={z|(x,t) e',t € [0,T] fest} =]a(t), +o0|

Beweis

Fixiere t.

Es ist zu zeigen, dass fiir ein beliebiges, suboptimales x, jedes y, x < y, auch suboptimal ist.

7 sei die optimale Stoppzeit bei Startwert x in t. Damit ist 7 auch eine Stoppzeit bei Startwert
y, aber suboptimal, da z < y.

P(y.t) - P(a,t) = P(y,t) — Ble " (K — S2),]
Ble™ (K — 8Y),] — Ele (K ~ 57).]
= Ble (K — )4 — (K — 57)2)]

v

FEine Funktion lésst sich in Positivteil und Negativteil zerlegen.

fl@)=f(@)" = f(=)”

AuBerdem ist S¥ > SZ, da beide auf der selben Brownschen Bewegung basieren.
Zusammen liefern die beiden Aussagen eine weitere Abschétzung.

Ply.t) = Pla,t) = Ble " TO((K = $2)4 = (K = 8).)
— Bl 00K — 8) — (K = S9)]+ Bl (K — 82)- — (K = 52).)
(K = S2) = (K — 52))

Da 7 endlich ist, gilt nach dem Optimal Sampling Theorem, dass das gestoppte Martingal
wieder ein Martingal ist und somit gleich seinem Startwert.
Fiir den Preisprozess mit Startpunkt y gilt also:

Py,t) = (y —z) + P(a,t) > (y —2) + (K —2)y > (K —y)

Die Behauptung P(y,t) > (K — y)4 folgt mit der Tatsache, dass der Preis einer
amerikanischen Putoption immer echt grofler als Null ist.

O
Das heifit a(t) nimmt nur einen Wert fiir jedes ¢ an und kann also als Funktion bezeichnet
werden.

a: [0,T] — R*
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Bemerkung
Da ein arbitragefreies Modell vorliegt, muss

a(T) = K (3.2)

gelten. Am Ende der Vertragslaufzeit zum Zeitpunkt T iibt man nur aus, wenn die Auszahlung
positiv ist.

R>0 x [0, 7] ist darstellbar als disjunkte Vereinigung folgender Mengen:

Fortfithrungsregion I' = (a(t), +00) x [0, 7]
Stoppregion I'“ = (0,a(t)] x [0,T], Vte€[0,T], VT € RT

Die Menge T ist nicht leer, da Sy > a(0) angenommen wird.
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3.2 Amerikanische Basketoptionen und deren Grenzregionen

Wie bei der mehrdimensionalen européischen Basketoption wird nur der Putfall betrachtet.
Definiere die Preisfunktion einer amerikanischen Basketoption mit Ausiibungspreis K und
Laufzeit T analog zum eindimensionalen Fall. Sei 1 = S} und 29 = St2 .

Plar,as,t) = sup B o770 (K = 51— 82) | F] = sup B [e7 0 (i — 577 - 572),

Tev! =

Auch hier gilt aus Arbitragegriinden

P(S’}“v S%,T) = (K - Sﬂl“ - STQ“)-I-

und

P(Stlvsz‘??t) > (K_Stl_StZ)+

Die Option wird ausgelost, wenn das Tripel (S}, S?,t) die Stoppregion trifft. Betrachtet man
nur ein Finanzgut, so hingt der Auslésezeitpunkt nicht nur von ¢, sondern auch vom aktuellen
Wert des anderen Finanzguts ab. Betrachtet man simultan beide Grenzfunktionen a'(S?,t)
und a?(S},t), so miissen diese zu einer gleichen fithren: Der optimal Zeitpunkt zu stoppen ist
bei beiden gleich.

Fiir die Stoppregion { (z1, z2,t)| P(z1,22,t) = (K — 21 — 22)+, z1,72 € R, t€[0,T]}
konnen einige Eigenschaften verifiziert werden, deren Ausarbeitung auf [21] beruht.

Abgeschlossenheit

Mit der mehrdimensionalen It6-Formel und der mehrdimensionalen
Black-Scholes-Differentialgleichung kann gezeigt werden, dass der abgezinste Preisprozess ein
Martingal bis zur Ausiibung und danach ein Supermartingal ist. Dies gilt analog zum
eindimensionalen Fall. Damit ist die Stoppzeit die erste Eintrittszeit in die Stoppregion und da
der Preisprozess auf einer Stoppzeit beruht, muss die Stoppregion abgeschlossen sein.

Konvexitit
Die Konvexitét folgt iiber die Konvexitdt der Preisfunktion. Das Supremum einer Menge
konvexe Funktionen ist wieder konvex. Daraus folgt fiir 0 < A < 1:

Pz + (1 —XNw,\y+ (1 = N)z,t) < AP(z,y,t) + (1 — \)P(w, 2, )
=AMK—-z—-y)+ 1 - (K —-w-2)
=K-M+1-XNw)—Ay+(1-N)z),

wenn P(x,y,t) = (K —z —y) und P(w, z,t) = (K —w — z) gilt.
Die gewiinschte Eigenschaft folgt wegen P (Stl, S?, t) > (K -8 - Sf)Jr.
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Southwest Connectedness
Die SC sagt aus, dass wenn ein Triple (z,y,t) in der Stoppregion ist, dies auch fiir alle Tripel
(a,b,t), a <z und b < y gilt. Mathematisch zu zeigen ist also

P(M iz, Ay, t) = (K — Mz — Ay)+ , 0 A <1, 0 A<,

wenn

P(ﬂf,y,t) = (K*l‘*y)+

gilt.
Sei 7 eine Stoppzeit und x5; stellt die geometrischen Brownschen Bewegungen mit Startwert x
dar.

E [e—“T—t)(K ~ MzS! - AgySf)J

= B [ (K — \xSt — A2y53)+] +FE [e_T(T_t)(K — xSt — y53)+]

< B e (—(Mx — 2)S} — (Aoy — y)Sz)Jr

} +FE [e*T(T*t)(K — xSt~ yS72.)+i|
=B |70 (@ na)Sh+ (= hay)S2 | | + B e TTOK — a8t - ys?), ]
>0 >0 n

-y :e_T(T_t) (& — M\z)St+ (y - Aw)sz)} +E [e_r(T_t) (K — 28! — yszw

= E e (x — )\1:6)571.} +FE [e*T(T*t) (y — /\gy)SZ} +FE [e*T(T*t)(K — xS} — ySf)Jr]
Die Ungleichung entsteht durch ¢! — ¢% < (¢! — ¢?)4 fiir Funktionen ¢! und ¢?.
Benutze das Lemma von Fatou, um das Supremum in den Erwartungswert zu ziehen. Das
Ergebnis liefert dann die Martingaleigenschaft des diskontierten Basisfinanzguts und die
Arbitragefreiheit.

P(\z, oy, t) < sup B [e7 0 (@ = \2)SE| + sup B [e7 0 (y = doy)S2| + Pla,y, )

rev! rev?l
<E|sup e (@ —M\2)SH + E | sup e 7T (y — \oy)S? | + (K — 2z — )
Tev! rew]

= (=) +(y—Aoy) + (K -z —y)
:K—(/\lx—i—l—/\gy)
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Durch diese Eigenschaften kann eine Skizze fiir festes ¢ erstellt werden.

5%,

a2(S' t)
/

Stoppregion

0 ,51

Die Schnittpunkte mit den Achsen lassen sich berechnen. Es gilt limgi_a?(S, t) = a(t),
wobei a(t) die Grenzfunktion zu einer Putoption mit Ausiibungspreis K und Basisfinanzgut S
zum Zeitpunkt ¢ ist.
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3.3 Steigung, Stetigkeit und Konvexitéit

Es konnen einige Aussagen iiber die Eigenschaften der Grenzfunktion gemacht werden. Dies ist
wichtig fiir das Verstdndnis der Funktion und es sagt einiges iiber die Praxistauglichkeit und
Moglichkeit der numerischen Annéherung aus.

Der folgende Monotonie- und Stetigkeitsbeweis stiitzt sich auf das Paper von Jacka [2].

Steigung
Bei festem Wert des Basisfinanzguts S; ist die Putoption wertvoller je kleiner t ist, denn
¥l C Ul e> 0. Es folgt:
OP(S,t) <0
ot -
Fiir festes ¢ muss der Preis fiir die Putopion bei steigendem S; fallen, denn die
Wahrscheinlichkeit nimmt ab, dass die Grenzregion getroffen wird. Also:

os
Hieraus folgt die Steigungseigenschaft der Grenzfunktion:
Da P(Sy,-) fallend ist und a(t) + € in der Fortfithrungsregion zum Zeitpunkt ¢ liegt, gilt:

P(a(t) +€,t —0) > P(a(t) + €,t) > (K — (a(t) + €))+
Das heifit im Zeitpunkt (¢ — ) ist a(t) + € noch nicht in die Stoppregion.

= a(t—9) <a(t)

Die Grenzfunktion fiir den Put ist monoton steigend.
Analog ldsst sich zeigen, dass die Grenzfunktion fiir den Call monoton fallend ist.

Stetigkeit

Der Beweis der Stetigkeit der Grenzfunktion beruht auf dem Paper [2] von Jacka und besteht
aus zwei Teilen. Als erstes wird die Stetigkeit von links iiber die Eigenschaften der
Preisfunktion und der Grenzfunktion gezeigt. Die Stetigkeit von rechts erfordert mehr Arbeit.
P(S;,t) sei weiterhin die Preisfunktion, a(t) die Grenzfunktion und ¢(y) die
Auszahlungsfunktion. Fiir diesen Beweis werden die Funktionen riickwérts durch die Zeit
betrachetet. Nehme also die Bijektion

t=T—x
fir x € [0, 7.
Also ist die Grenzfunktion monoton fallend in ¢ und % ist positiv.
Linksstetigkeit

P(Sy,t) ist stetig in beiden Variablen und g(y) als Kombination stetiger Funktionen wieder
stetig. Die Fortfithrungsregion I', definiert als

I'={(S,t) | P(Si,t) — g(S) >0, Sp€]0,00[, t€[0,T]},

ist also offen. Definiere die Stoppregion I,

<= {(St,t) |P(St,t) — g(St) =0, S € ]0,00[, t e [O,T]} .
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Wenn nun eine Folge (), von unten gegen ein ¢ konvergiert, folgt aus der Abgeschlossenheit
von I'¢) dass (a(t,),ty) fiir alle n und der Grenzwert der Folge in T'° liegt.
Es bleibt also zu zeigen, dass a(t,) gegen a(t) konvergiert.

Da aP(S t:t) > 0 gilt, wird fiir steigende ¢t und festes S; der Preis grofier. Da die Folge in der

Stoppreglon bleibt und g(y) nicht von ¢ abhéngt, muss S; steigen, da % < 0 gilt.

Also gilt a(t™) < a(t). Da aber a(t) monoton fallend ist, gilt a(t™) > a(t), woraus a(t,) — a(t)
folgt.

Damit ist die Linksstetigkeit bewiesen.

Rechtsstetigkeit

Der Beweis beruht auf Abschéitzungen der Black-Scholes-Differentialgleichung,

OP(S¢,t) OP(S,t)
- S,
o1 95> " as
der Preisfunktion in der Fortfﬁhrungsreglon I'. Beachte t =T — .
Da %—f > 0 und g—g < 0 gilt, gelangt man zu

1 2s26 P(St7 )

—’I“P(St,t) t == 0,

Definiere nun die Menge I';, durch

1
I,=T n [0,K]x [n]
n

fiir n undi aus 0, 7.

Die Menge ist kompakt, da sie abgeschlossen und beschrénkt ist. Deswegen nimmt P(S;,t), als
stetige Funktion, auf der Menge ein Minimum an. Zusétzlich muss der Preis der Option in der
Menge grofler Null sein, woraus die Abschitzung

. 1 2 282P(St7t)
(S:ggrnga o —a52 >€, >0
entsteht.
Wiéhle nun ein festes ¢ € |0, 7| und n so, dass % <t < n gilt. Nehme auflerdem ein u aus dem
Intervall [N, t) und ein S aus [a(tT) + n, K]. Das Ziel ist es, zu zeigen, dass der Wert des
Basisfinanzguts fiir alle > 0 zum Zeitpunkt u, in der Fortfithrungsregion liegt. Dies ist
dquivalent zu P(S,u) — g(S,u) > 0. Da P(a(t),t) und g(a(t)) iibereinstimmen, P(S;,t) eine C>
Funktion in S in der Fortfithrungsregion ist und die zweite Ableitung von g(y) verschwindet,
kann folgende Gleichungskette aufgestellt werden.

P(S,u) — g(S,u) = P(S,u) — g(S,u) + P(a(u),u) — P(a(u),u)
P(S,u) — P(a(u),u) — [9(S,u) — g(a(u), )]

[ 0P(&w)  9g(&,u)

- /a(u) oS 9S8 de

7 ap(g,) _9g9(§u)  OP(a(u),u)  9g(a(u),u)
= /au a5 a5 a5 &

(92 ,u) 82 S, U
- T T
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Durch Multiplizieren mit Eins kann das Doppelintegral mit €, abgeschéitzt werden.

62Pgu
P(S,u) — g(S,u) /u/(u - aSQ)def
_ L o) (L oo OPls.u)
_/G(u) B <2 S > <2a s o ds dg
S 13 1 -1
en/ 0252 ds d¢
a(u) Ja(u) 2

o [ ; (ios) (€~ alw) de

Y

P(a(t™) +n,t) — gla(tt) +n,t) > €n—3 >0

fiir alle n > 0 und damit a(t™) > a(t).
Da aber a(t) auch fallend in ¢ ist folgt die Rechtsstetigkeit.

Konvexitit

Im Januar 2008 veroffentlichten Xinfu Chen und John Chadam von der University of
Pittsburgh zusammen mit Lishang Jiang von der Tongji University und Weian Zheng von der
University of California, Irvine, [12], den Beweis der schon linger vermuteten und bis dahin
nur in numerischen Simulationen zu erkennenden strengen Konvexitit der Grenzfunktion.

In diesem Fall musste allerdings ein Basisfinanzgut benutzt werden, dass keine Dividenden
zahlt, denn es gibt Konstellationen, die die Konvexitét verletzen wiirden [J. Detemple].

Auf den Beweis wird an dieser Stelle verzichtet. Er ist nachzulesen in [12].
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3.4 Das Verhalten am Ende der Laufzeit

Einen Einflufl auf die Anwendbarkeit der Ergebnisse der Integraldarstellungen wird die
Steigung der Grenzfunktion zum Ende der Laufzeit haben. Guy Barnes hat in seinem Paper
Critical Stock Price Near Ezpiration [5] einen Beweis dafiir geliefert, dass die Grenzfunktion
kurz vor Falligkeit der Option eine unendlich grofie Steigung durchlduft. Dieser Beweis soll
ausgefiihrt werden.

Die Preisfunktion eines amerikanischen Puts erfiillt folgende bendtigte Voraussetzungen:

P(S;,t)> (K —8)s  P(Sr,T) = (K — Sr)s+

und

8P(St7 ) 5216 P(Stv )
ot 052

OP(Sy, 1)

P(St,t) + rS; BYS

=0

vor Ausiibung.
Dies lasst sich auch schreiben als:

OP(Sy, )
ot 7Pty T 582

08 ’

min — TP(St, t) +rS; P(St, t) — (K — St)+:| =0

(3.3)
P(S7,T) = (K — Sr)+ (3.4)

a(t) sei weiterhin die Grenzfunktion fiir die amerikanische Putoption. Die zentrale Aussage des
Papers ist:

Satz

t
a()K ~ —0o\/(T —t)[In(T —t)| fiir t<T, t nahe T

Das ist eine andere Schreibweise fiir:

a(t)—K a(r)—K
lim K =1 oder lim —& — =1 firr=T-—1

t—=T 0\/ t) [In(T —t)] =0 —g /7 |In(T)|

Bemerkung
Die Steigung folgt mir dem Differenzenquotienten.

a(t)—-K
lim LY =1

t—=T —g /(T — t) |In(T — t)]

& lim alt) — a(T) = lim —Ko+/|In( )]
t—T (T — t)

s lim a(T) — a(?) = Ko lim (T — ?)]
t—=T T —1 t—T (T —t)
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Beweis
Nehme an, dass es Losungen U™ (S;,t) und U~ (S, t), in RT x [0, 77, fiir die beiden folgenden
Terme gibt.

OUT (S, t)

5 102U (S, 1) OU(Sy,t)

mln[ ot 0'25,55 852 —TU+(St,t)+7’St 99 , U+(St, K St +:|
(3.5)

. [ OU (S, t 102U~ (Sy,t _ OU~ (S, t _
min |:a(tt) —|—0’25t2285(,2t) —rU (St,t) +7’St8(St) , U (St, K St _|_:|

(3.6)

U™t (S, t) heifit Supersolution und U~ (S, t) Subsolution von P(S;,t).
Nehme weiter an, zu U™ (S, t) gibt es eine eindeutige Funktione a™(t) > 0, die V ¢t € [¢tT,T], ab
einem t* € (0,7 folgende Gleichung erfiillt

U (@t (8),8) = (K — a* ().
Ebenso soll es zu U~ (S, 1) eine eindeutige Funktion a™(t) > 0 geben, fiir die V t € [t~,T], ab
einem t~ € (0,7)

St < a*(t) = Ui(St,t) = (K — St)+ (37)
Sy > a*(t) = U7<St,t) > (K — St)+ (38)
gilt.
Wenn at(t) und a™ (t) das zu zeigende Verhalten von a(t) am Ende der Laufzeit
at (t)—K
lim K =1
P g T — ) In(T — D)

erfiillen, ist der Beweis beendet.
Aufgrund der Konstruktion von U™ (S;,t) und U~ (S, t) folgt mit dem Maximumsprinzip:

U™ (Si,t) < P(S,t) U (S, t) (3.9)
Mit diesen Annahmen ist der Satz gezeigt, wenn folgende Ungleichungen Giiltigkeit haben.

at(t)<a(t)<a (t) V¥V tel0,T] (3.10)
Fiir S > a™(t) folgt:
(K — St)+ < U (S, t) < P(S,t)
= a(t) <a (t)

und

(K —a*(t)) < P(a"(t),t) U (a"(t),t) = (K — a™ (1))
also gilt, dass

und damit die erste Ungleichung.
Somit gilt der Satz fiir a(t).

O
Wenn also die Existenz einer Supersolution und einer Subsolution mit zugehorigen, eindeutigen
Funktionen a™(¢) und a™~ (¢) nachgewiesen wird, ist der Satz gezeigt.
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Konstruktion der Supersolution
Definiere die stetige Funktion UT (S, t) als Losung ab einem bestimmten ¢ fiir die 3
Konditionen.

OUT (S, t) 5. ,10°UT (S, 1) N OUT(Sy,t)
—_ i — > )
T + 0°S; 5 952 rU™ (S, t) + rS; 55 >0 (3.11)
Ut(Si,t) > (K — Sp)+ (3.12)
Ut(Sr,T) = (K — St)+ (3.13)

Wenn nun Pg(St,t) der Black-Scholes-Preis der européischen Option ist, kann U™ (S, t)
dargestellt werden als Kombination von Pg(S,t) und einer Funktion f(t), mit f >0, f € C*
auf [0, 7.

U*(Sit) = FOPs(Sut) Y (£,9) € [, 7] x (0,00) (3.14)
f(T)=1 agtt) <0 Vtelty, T (3.15)
Mit diesen beiden Annahmen an f(¢) folgt (3.11) und (3.13).

Lemma
Es existiert eine abnehmende C! Funktion f auf [t§, 7] mit f(T)=1 und fiir alle t aus diesem
Intervall existiert ein nichtnegatives a™(t) mit:

at(t) < K (3.16)
F()Pe(a(t).t) = (K —a*()s (3.17)
OPg(S,t)

flt)y——"2 = -1 3.18)
—%g . (

Vor dem Beweis des Lemmas ist zu kléren warum dieses Lemma zeigt, dass (3.12) gilt.
Pg(Sy,t) ist konvex in S;, da die Preisfunktion fiir die européische Option konvex ist und die
Differentialgleichung (3.5) grofier als Null ist. U™ (S, t) ist dadurch ebenfalls konvex, als
Kombination einer konvexen und einer positiven Funktion.

Wenn nun S; < a™(t) ist, folgt aus der Konvexitéit

AU (S, t)
a8

+
_ OUF(Su1)
o~ 08
t

at(t)

Da aber a*(t) < K gilt, folgt:

(K — St)+ < U+(St,t) = (K — St)+ — U+(St,t) <0
(K —Sp)y —UT(Si,t) =(K — S;) — U (S, t)
(K —a™(t)) = (K —a™(t) + (K = S) = U (S, t) + U (a™ (t),1) = U™ (a" (1), 1)

N § U (5y,t)
=(K —at(t)) = Ut (a®(t),t) + /ﬁ(t) (—1 ST v) dv

Die Ungleichheit folgt mit
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und mit der Konvexitét

+
_oUT(S,t) >0
oS -
Nun muss noch der Fall a*(t) < S(t) betrachtet werden. Uber die Konvexitit folgt diesmal

-1

+ +
1 OUT (S, 1) < U™ (S, 1) (1, 5)
85 a+(t) 35 A
und die Ungleichheit wird zu:
St +
(K —a™(t)) = Ut (a™(t),t) —|—/ (—1 — M > dv < 0
aJr(t) 85 )
Mit
AU (S, t)
-1-——"-<
oS =0

Dies zeigt (3.12). Nun wird das Lemma bewiesen.
Beweis des Lemmas
Mit

E=T—t
c(§) = f(t)
_ b S
y(§) U—\/Eln Ke—r€
CL+ —
y+ (é—) o 01 é_ In [Evze_’rgf)
U(é-:y) = PE(t, St)
U(g,y) = P(tast)
> 1 =
o) =1—N(z) = ) me2 du

kann der européische Putpreis folgendermafien dargestellt werden:

(&, y(€)) = Ke™™ [(;5 <y(§) _ o;/E) — e¥©vey <y(§) + 0\2/5>]

v(&,y(€)) ist also der transformierte Putpreis. Diese Transformationen vereinfachen den
Beweis, denn nun kann das Verhalten von y*(€) untersucht werden, um danach Riickschliisse
auf a™(t) zu ziehen.
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Wenn nun auch die Aussage des Lemmas mit Hilfe der Kettenregel transformiert wird,

()u(&y™) = K (1 - e7rerovar@) (3.19)
C(g) aU(Eaay(g)) — _KO,\/gefr§+U\/Ey+(£) 7 (320)
Yy yt(€)
ist dies dquivalent mit
ov(&,y)
Jy y+ (&) _ —KU\/EB_T§+U\/EZ!+(€)

v(&yT(€) K (1—erstoVErt©)

Es reicht also, diese Gleichung zu bestiitigen und c(¢) € C! steigend fiir ¢ nahe 0% zu zeigen,
um das Lemma zu beweisen.
Durch Einsetzen von v(&,y(€)) entsteht

g (e[ (= ¥) — o 0+ ),y —ovgeremare
Ke € (6 (y+(6) = %) — v ©7vEg (yr(€) + 7% ) | e

Dies lasst sich weiter vereinfachen indem die Parameterintegrale mit der Leibnizregel, [10],
aufgelost werden

7(y+<5>7"%§)2 7(y+<§>+%@)2

gme 7 e OVl o R (O7VEg <y+ (&) + %ﬁ) gy JEeTETIVEH(©)
o a - — e TétoVEYT
& <y+(§) _ T\/E) ALV (y+(§) i T\/E> 1 — e—réHoVEyt(©)

Da die Gleichheit

gilt, bekommt man

=24 wo ()

Definiere die Funktion h(,y) durch

Nun muss gezeigt werden, dass genau ein at (T — &) existiert. Da der Logarithmus stetig ist,
geniigt es zu zeigen, dass nur genau ein y* (£) existiert, also h(&,y) nur genau eine Nullstelle in
y fiir festes & hat.

Betrachte als erstes das Verhalten fiir y gegen +/ — oc.

lim h(&y)=e " —1<0 lim h(&y) =0
Yy——+00

Y——00

Dann die Steigungen die h in y durchliuft.
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Also steigt h fiir
fulerers <o) = {ylve )

und fillt dementsprechend fiir
{yleers > ) = {y |y € (@T,OO)}

Damit ist y7(£) die einzige Nullstelle und somit eindeutig.

Bemerkung
Da die Nullstelle in dem Intervall ist, fiir das h(€,y) monoton wachsend in y ist, gilt

oh

Yo lyr©

und

VEr

y () < - at(T-¢) <K.
Bevor der noch ausstehende Beweis iiber das Verhalten von ¢(§) gefiithrt wird, betrachte
folgendes
Lemma
§—0
Yy (§) == —o0
Insbesondere
y*(€)* ~ [In(¢)| fiir £ nahe 0F

Beweis

Um den ersten Teil zu beweisen, fixiere A < 0 und betrachte
h(¢,A) = —e "¢ (A - UT\/E) —¢ (A + ”T‘/E> fiir £ nahe 0F. Fiir diesen Wert ist e™"¢ ~ 1.

Die Funktionswerte ¢ (A + ”T‘/E) werden mit der Taylorentwicklung angenéhert. Entwickle

¢(x) um A bis n=1 und setzte A + UT‘/E ein. Das Restglied Ry ist o(y/€), da die e-Funktion
schneller féllt als jedes Polynom.

oV , N
sax T8 = o(4) + ¢/(1) (Ai2—A> R,

o [T 1 2
= / e 2d.
r=A Ox T V 2m
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Also

e, 4) = o(4) — 9 () 7L at

_ L oVE
=+ 5 +0(v/¢€)

Aus der letzen Gleichung kann man schlieflen, dass fiir jedes A < 0 ein &, > 0 existiert, so dass
VE < & h(&, A) > 0 gilt. Also muss fiir £ < & yT(£) < A sein, denn h(&,yt(£)) = 0.
Damit ist der erste Teil des Lemmas bewiesen.

Fixiere nun ¢ > 0. Dann existiert nach dem Mittelwertsatz der Integralrechnung ein
yo € |yt (&) - @7y+(§) + @}, so daf}

o (@ - T ) -0 (0 + 08 ) = D2

Fiir ein £ klein genug, ist y* + %\/E < 0 und e~ ist monoton wachsend fiir z € [k, K], k, K <0
und k£ < K. Zusammen mit der vorherigen Gleichung entstehen zwei Ungleichungen

o (v+eo-2yE)° o o o ~(vHeo+oyE)’
ﬁfe(Q)§¢@ﬂ8—;f)—¢@W©+ff)§J£e(2'CMD

Auf der anderen Seite kann

umgestellt werden zu

i (y%) B cr2¢5> ¢ <y+(§) N 05) = (1-e7)0 <y+(£) - Uf)

was sich bei kleinen & verhélt wie
6 (5@ - TL) —o (@ + T ) v1-es
da yT(§) — —oo fiir £ — 0 strebt.
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Fiir £ nahe Null ist die Funktion 1 — e~"¢ annihernd linear und kann durch r¢ angenihert
werden.
Ein Beispiel fiir r = 0, 5.

0.25

0.29

0.154

014

0.05

k3

Dies kann mit der Regel von 1" Hospital gezeigt werden.

Daraus folgt

o (@ - T8 ) o (@ + Y ) ~re (3.22)

Annahme

y () =o (\}E) , dh. g% ’y+(§)\/g‘ =0

Sollte dies nicht gelten, wiirde ein a € R>? und eine gegen Null fallende Folge &, existieren mit
Yy (&) VEn < —abaw y* (&) < &, so daB

—<y+(§'n)+a‘2i)2

—(y+(£n)+L2@)2 W2 Ivin o 2
OV S (x/fne_%m> dh. 0 < lim sup | Y2~ - < o0
vV 271’ n—oo \/56_257
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oV 2 )
27:6 2 o —y+(§n>27?!+(5n)0'\/§7ni<725n+i
0§ v = — e 2 2 8 2n
VEne %Em V2T
g ,ﬁ,m,ﬁ+ﬁ g ,ﬁ+2
< e 2 2 8 2 — e 272 < o0
2 n—00 /271

a2
Aber O <\/§7ne_2€m> = 0(&,) und dies angewand auf (3.21) in Kombination mit (3.22) ergibt
den Widerspruch r&, = o(&,), was die Annahme bestétigt.

Wegen y(£) = o <i> koénnen die Grenzen von (3.21) abgeschiitzt werden,

VE
2 2
~(vto-2f) -(vro+o¥E)

e 2 _oVaiyt(©) o3¢ e 2 LovEiytE©) o2
——=c¢ 2 8§ —1, ———=¢e 2 8§ — 1,
—y (&) £—0 —yt7© £—0

e~ 2 e 2

woraus ein weiteres Verhalten von ¢ (y“‘({ ) — UT\/E) —¢ <y+ &)+ GT\/E) fiir kleine £ angegeben

werden kann:
o€ o€ oVE —vt©®
o <y+(f) - 2) —¢ <y+(£) + 2) ~ \/7276 2

In Kombination mit (3.22) folgt

07\/5671:2@)2 s
oY
Wenn .
tim L) _ g iy L)
g T @)

und f(x) — 0 gilt, hat man fiir die logarithmierten Funktionen dank der L “Hospital-Regel
In(f(z)) . g(z) f'(z)

2 In(g@) ~ 22 f(@) ¢'0)

Nun folgt
Tt 2 o+ 2
ln< - ey2<s>> 1n< i ) ln<ey2(§)>
lim — —lim Y2 g N )
-0 In(v/€) -0 In(v¢) &0 In(VE)
=0
Also
—y(©)°
— o~ In /¢ , (3.23)
umgestellt zu
+(e)2 1
y (€7 ~2- |3 ()
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folgt die Behauptung des Lemmas.

Da y*(€) definiert war als

o= e ()

folgt aus dem Lemma

U\l/gln (“;gf) ~ /(@]

Umstellen liefert

aHT —
In <(€{ §)> —In(e™") ~ —o/€ |In(¢)]

und
&0 —0\/Em()] &0 —0\/E]I()]
=0

Dadurch gilt

In (‘ﬁif@) ~—o/E(E)].

Wie im Logarithmusfall, gilt fiir die e-Funktion

/ f(=)
lim f@) = lim fz) =1 = lim " = lim fl(x)elf @2 =1,
z—0 X z—0 1 z—0 e* z—0

insbesondere, weil die e-Funktion stetig in 0 ist.

oo (1 (=9 o o/ ETTEN)

Mit rx ~ 1 — e~ fiir x — 0 und nach Riicktransformation erhilt man das gesuchte Ergebnis.

at(t) - K
COZK /T DT D

Nun bleibt zu zeigen, dass ¢(§) steigend ist fiir kleine &.
Wenn ¢(§) definiert ist als

ov(&,y)

o — _Koy/fEe TETVEST©)

y+ (&)
folgt nach Einsetzen der Funktion v(¢,y), wie bei der Umstellung zu (3.20),

c(§)

_ 1
O o)
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c(€) steigt also, wenn y*(£) + UT\/E steigt, denn ¢ ist nach Definition fallend. Da die
Waurzelfunktion steigend ist, geniigt es die positive Steigung von y*(£) zu zeigen.

oh(,y)

0
oy =

y+ (&)
aufgrund der Bemerkung. Auflerdem ist h(§,y) = 0 eine implizite Funktion. Nach dem
Implizite-Funktionen-Theorem, [13], folgt

Oh(EyT(8))
() T
0¢ Oh(&y)
W Ay

Wenn nun also g—}g fiir kleine £ kleiner Null ist, ist ¢(£) monoton steigend.
Oh(Ey(E) _ D ( _oVE Ve
Mit der Parameterintegralformel folgt
Oh(Eyt(©) e [ 4 o/E o e s B O O )
85 *Tefﬁy(f) 5 +4\/H66 2 +e P}

2 2
o o eyt ®" yT(©ovE % _yt©
\/E> + 1 (e em T2 e 2 8§ +e 2

e (1O - 7y ) + 1 ‘

was mit (3.23) fiir limg_o+ zu —§ wird. Also g—g < 0, woraus die Behauptung folgt.

e e 8

_yt©ove a2s>
2
)

2

Seite 45



Tobias Nigbur Die Integraldarstellung amerikanischer Optionspreise

Konstruktion der Subsolution

Wie schon gezeigt wurde, ist eine européische Option bei gleichen Parametern immer weniger
Wert als eine amerikanische Option. Also ist Pg (S, t) eine Subsolution zu P(S:,t), genauso
wie (K — S)4, da P(St,t) > (K — St)+. Wenn U™ (S, t) definiert wird als

U_(St,t) = sup {PE(St,t), (K — St)Jr} y

bleibt es, als Supremum zweier Subsolutions, eine Subsolution.
Suche nun die Grenzfunktion a™(t) fiir U~ (S, t). Fiir diese Funktion muss
U= (a(t),t) = (K —a (t))+ gelten und dies folgt aus

Pe(a=(t),t) = (K —a~(t))+ . (3.24)

Definiere wieder sechs Hilfsfunktionen.

E=T—t
_ 1, S
y(§) = };7§]Ill(e—Tf
ey 1 a= (T —¢)
Yy (f) - U\/E n KC_Tf

U(£7 y) = PE'(ta St)
u(ﬁ,y) = P(tv St)

qﬁ(:p):l—N(:L'):/oo \/12?652 du

Diese Notationen verédndern den européischen Optionspreis, genau wie bei der Supersolution
und aus (3.24) wird:

Ke ¢ [¢ <y—(§) _ U\Q/E> _ ey*(E)a\/E(b <y— () + U\Q/g>] — K — Ke €eoVEy™ (§)

= o (1@ = T5E) e g (i (4 TYE ) —ertm B @
Lemma

Fiir alle £ > 0 existiert ¥y~ (£) und ist eindeutig.

Beweis

Setze

k@mm=¢@@—“f>—www¢@@+“f>_ﬁ+gmw%

dann hat diese Funktion zwei Eigenschaften aufgrund von ¢

lim k(& y)=1—€"*<0
y——00

lim k(§,y) =00 .

y—-+oo
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Wenn nun k streng monoton steigend ist, dann gibt es genau eine Nullstelle und y~ (&) existiert

und ist eindeutig.
D) g eeran® (16 (416 + T52) ) >0

Lemma

v(©) =~ (3.25)
Beweis
Genau wie im Beweis fiir a™ fixiere A < 0, betrachte k(&, A) fiir £ nahe 0% und approximiere
die Normalverteilungen durch Taylorentwicklung. Ebenfalls kann der dort gefithrte Beweis,
dass (1 — e¢) ~ r€ fiir kleine & veriindert werden zu (1 — e74V8) ~ —g AV/€ baw.
(14 0 AVE) ~ eV fiir Kleine £.

KeA) = o (A - "\f) _ eAnE <A . Uf) Ry
= ¢(4) - 0\2/%’(14) — (1 +dAVE)(H(A) + U\Q/Egz)’(A)) 14 (14 0AVE) + o(1/7)

= —0/EH(A) — o A/EH(A —f¢>< A+ 0 AV/E+0(1/¢)
2
= o VEHA) + (L o(A)rAVE - TES(A)A + o(/E)
0T o2 (A) + (1 — $(A))TAVE + o( /)

A2 A A u?
= 0\-/\2/;751_62 + U\/%E 3 ez du—i—o(\/g)

Das Integral kann durch partielle Integration verdndert werden

A 2 2
_9 _uZ pl 1 —us
/ w e T du® —ule s

— 00

und vereinfacht (&, A) zu

k(E, A) = — % e du+ o(\/E) .

Da k(§,y) in y fillt, resultiert die Behauptung mit

VA<0 3 >0 so,dass VE<& k(§,A) >0

Lemma

(y= (&))" \/E£_>—O>+ 0 VneN (3.26)

Seite 47



Tobias Nigbur Die Integraldarstellung amerikanischer Optionspreise

Beweis
Es gilt yT (&) <y (&) <0, da U™ (S, t) < UT(S;,t) nach Definition. Bei der Betrachtung der
Supersolution wurde y* (&) ~ —/|In(€)| gezeigt. Hinreichend ist also

V|In(§) \/g—o; 0.

Dies kann mit L "Hospital gezeigt werden.
Fiir n gerade gilt

In(z)[" oo nn—2)(n—4)...2|In(x
Wﬁ-h ’()‘:xlﬂéﬂ (n —2)( L) 2 |in()|
Ve vz
= lim n(n—2)(n—4)..2/z =0

x—0

und ebenso fiir ungerade n

D=

"z = 11%1+|l71($)\n_ lim n(n —2)(n—4)...4[n(z)|"

in(a)

1 z—0t L
vz vz
ZIIH)& n(n —2)(n —4) ;\/ﬁT 0.
Il
Notation
Um die Ausfithrungen so iibersichtlich wie moglich zu gestalten setze y~(£) = y und
N(z)=1- ¢(x).
¢ (y(&) _ Uf) _ v ©9VEy (y(&) + ‘7\2/2> — o€ ooVET(©)
& N <y - 0\2/5> — VVEN <y + 0—\2/5) =1-¢* (3.27)

Eine weitere Abschitzung wird benétigt.
Entwickle N(x) mit der Taylorentwicklung um Punkt y und benutze das Lagrange Restglied.

N@) = NG+ N —1) - e P —ue T uely- T8y
ov& L ooVE 1 (oyvE\?T 1 e
N<y—2>=N(y)—N(y)2—2<2> ol
pooVE 1 (0VE 2 _u?
<N(y)-N (y)T +t5 <2> Nors ue[ysuapfy} —ue” 2

Stelle dies um zu

]N (v-75%) - vw) +N’<y>"*/’§] <
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Aber da y — —oo fiir £ — 0, erhélt man

N (5= T ) - N+ v Ty <
—o(¢) (3.28)

Setzt man genauso y + ‘[ in die Taylorentwicklung ein so entsteht

‘N <y+ Uf) — N(y) - N'(y U\[‘ (3.29)

Wenn (3.28) und (3.29) umgestellt werden, um in den ersten Teil der Gleichung von (3.27)
eingesetzt zu werden, gelangt man zu

N (y - 0\2/2> — VVEN <y + 0\2/5> =N(y) (1 — eyg‘@) — N’(y)(j;/E (1 + eyg‘@) +0(§),

(3.30)
weil unter Mithilfe des letzten Lemmas
o() (1= e#7V8) = o(§)o(1) = o(¢)
gilt.
Wieder mit dem letzten Lemma folgt:
. VeS| _ f 1
f€eO0HWE&) = 0<limsup <limsup |—| <00 = feO(—= 3.31
(Vey) =0 | V& e—0 | VEy (y5) (3:31)
Lemma
-y 1 1 1
e 2
N(y) = —+=+0(—= 3.32
) \/%< y oyl (?ﬁ)) (3.52)
1—evVe = 0\ /ey(1 + O(\/€y)) (3.33)
1+ e V8 =24 o\/Ey(1 4+ O(/y)) (3.34)
Beweis
Der Beweis benutzt die Errorfunktion, siehe [19
erf(z /
f

Damit lasst sich n(zx) = N(z) — N(0) fiir x > 0 darstellen als

n(x) = éerf(x).

Fiir grofle  kann die Errorfunktion aufgespalten werden

67"f(~”6):\/27—T</Oooe_t2dt—/;oe—t2 )—1_/
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und daraus eine Reihendarstellung mit partieller Integration gewonnen werden.

22
ez (1 1 3

Wenn dies fiir N(x) und fiir —z ausgefiihrt wird, folgt

ok o0 00 k-2

und durch Umstellen von

ef —1—s5=0(s%,

mit O(s)O(s) = O(s?), folgt die Behauptung.
Die dritte Gleichung geht aus der zweiten durch Multiplikation mit —1 und Addition von 2
hervor.

Es entsteht

1—evVe = _5\/Ey (1 +0 <y15)> (3.35)

durch Kombination von (3.31) mit (3.33).
Dann werden die linken und die rechten Seiten der Gleichungen (3.32) und (3.35) miteinander
multipliziert.

2

N(y)(1 =) = —oﬂy‘;;iﬂ (-5 +z+0 ()

e_% 1 1
- 5\/%<1_y2+0<y4)> (3.36)
Day € O(y) und f € O(y~ %) = f € O(y™9).

Setze nun die gewonnenen Darstellungen fiir N (y)(1 — e¥°V¢) und (1 + €¥°V¢) in (3.30) ein und
fasse zusammen.
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V2r Yy
+0(§) (3.37)

Fiir die ausmultiplizierten letzten drei Summanden gilt o(£). Sie kénnen also in dem schon
vorhandenen o(§) Term zusammengefasst werden.

_¥y
N(y_aﬁ> _ woVEN <y+0¢5> _ Ve e
2 2 Vo2 Yy
Dank (3.27) weifl man, dass der linke Teil der Gleichung gleich 1 — €€ ist und sich damit fiir
kleine ¢ wie r€ verhalt.

[N

N

C T o) e
o(§)

=22 fallt aufgrund der Definition von o(£) weg. Durch Logarithmieren erhélt man

13
—y2+ln< id >~1n<\/£).

2 V2mry?
Mit
lim In (\/ﬁry > =l _ln (mryz) —
¢&-0  In(v¢) -0 In(v%)
folgt

y~ (&) ~ VIIn(¢)]

und iiber die Definition von y~(£) und die bekannten Umformungen aus dem Supersolutionfall
die Subsolution.

Bemerkung
Das asymptotische Verhalten am Ende der Laufzeit kann auch iiber die Konvexitét
nachgewiesen werden. Siche [12].
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Bemerkung

Dank der gewonnen Informationen, ist es moglich eine Skizze der Grenzfunktionen anzugeben.

[

c

O Putoption

Calloption
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Kapitel 4

Darstellung des amerikanischen
Callpreises fiir endliche Laufzeiten

4.1 Die Formel nach McKean

Da, im Gegensatz zur européischen Option, ein Randwert der
Black-Scholes-Differentialgleichung fiir die amerikanische Option nicht deterministisch ist,
sondern vom Verlauf des zugrundeliegenden Finanzguts abhéngt, ist es schwierig diese zu
16sen. In der Fachliteratur wird auch héufig von einem freien Randwert gesprochen. In dieser
Sektion wird der Ansatz von McKean betrachtet, der nach Vereinfachung und Zeitinversion
eine Fouriertransformation anwendet und daraus eine losbare gewohnliche Differentialgleichung
erhélt. Um diese Transformationen zu ermdoglichen ist allerdings die Kenntnis der
Grenzfunktion vorausgesetzt. Nach Riicktransformierung entsteht ein Integralterm fiir die
Preisfunktion fiir den amerikanischen Call, der die Grenzfunktion beinhaltet. Warum diese
Darstellung trotz fehlender Informationen iiber die Grenzfunktion hilfreich ist, wird am Ende
des Kapitels diskutiert. Die Ausarbeitung dieses Darstellung beruht auf dem Paper A Survey
of the Integral Representation of American Option Prices von Chiarella, Ziogas und Kuchera
[7]. Am Ende wird noch auf die Praxistauglichkeit der gewonnenen Losung eingegangen. Die
Grundlagen zu gewohnlichen Differentialgleichungen wie zum Beispiel der Losungsalgorithmus
und Existenz- und Eindeutigkeitsbeweise kénnen in [8] nachgelesen werden.
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4.1.1 Transformationen

Ausgangsformel ist die Black-Scholes Differentialgleichung

2
30(8”? bl | 025 20592 D _ rC(S;,t) + (r — q)stacé“?’ 2
und die Grenzfunktion b(t) der Calloption, die hier mit Cy(S,t) benannt ist, um die
Zugehorigkeit von Grenzfunktion zu Preisfunktion zu kennzeichnen.
Transformiere die Zeit durch eine Bijektion

=0 (4.1)

t=T—T.

Dies verdeutlicht die Abhéngigkeit des Preises von der Restlaufzeit der Option.
Die geometrische Brownsche Bewegung .S; vereinfache zu e”.

St:ex

Definiere nun Vj, als

Cyp(St, t) = Vj(z,7)

mit j (7) = b (T — 7) als Grenzfunktion fiir V' (z, 7).
Nun veréndert sich durch diese Transformationen auch die partielle Differentialgleichung (4.1).
Zur Berechnung setze g(7) = T — 7 und h(x) = e*, dann folgt fiir die Differentialterme

oV(z,7) C(e” g(1)) 0g(r)0C(e",t)  OC(Si,t)
or  or  or o ot
oV(x,7) 0C(h(x),t) Oh(x)0oC(e*,t) . 0C(S:1)
ox 0z 0z 9 ° 8S
P?V(x,7) 9 (Oh(x) AC(e*,t)\  0%h(x) AC(e*,t)  (Oh(z)\? 8%C(e*,1)
0z _83:< dr v >_ 9x2  Bev < ox ) ' d(ev)?
L, 0C(S,1) oo 02C(Si,t)
B G TR
Eingesetzt in die partielle Differentialgleichung (4.1) ergibt sich:
2
—av]a(i’T) + 20278 Vég’ﬂ r—q-— %az 8‘/3;?7) —rVi(x,7) =0 (4.2)
k

Die Black-Scholes Differentialgleichung gilt nur bis zum Ausiibungszeitpunkt, deswegen muss
der Geltungsbereich fiir die Transformation angepasst werden.

0<e"<bt) &  —co<z<In(()=Ih((r)

Definiere v(z) als Transformierte der Auszahlungsfunktion ¢(S). Die Auszahlungsfunktion wird
also noch nicht genau spezifiziert, allerdins muss ¢(S) streng monoton sein, damit eine
Bijektion zu v(x) entstehen kann.
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Durch die Transformation verindern sich die Randwerte und Ubergangsbedingung aus
Kapitel 3.

Cy(S7,T)=c(St) — Vj(x,0)=v(zx) fir Sy €]0,00[ (4.3)
SligloCb(St,t)zo t>0 — xEIElOOX/J(x,T)zo T>0 )
Co(b(t),t) = c(b(t)) t=20 —  Vi(In(j(r)),7) = v(n(j(7))) 720 (4.5)
OCy(Si,t) _ 0c(Sy 0 _ oVj(z,T)
95 |y 95 |y (ble)) 9 |in(j(r))
S PE _ymGey @)
In(j(7))

Da eine Fouriertransformation in der Variablen x angewendet werden soll, muss (4.2) fiir alle
x € R definiert sein, deswegen setze (4.2) fir = > In(j(7)) gleich Null durch Kombination mit
der

x>0
=0
x <0

Heaviside-Step-Funktion H, H(z) =

S = =

Es entsteht

(x, T 2Vi(x, T (z, T
H(n(j(r)) —=x)- (_5‘/38(77 ) + %028 ‘23(32’ ) —l—kavja(x’ ) —er(x,T)> =0

und durch Umformung erhélt man die zu transformierende Funktion

oV; 1 ,9%V; A%
H(ln(j () — ) - Ja(f”) = H(Wn(j(r) — ) <202 éi”;"”) +k 3;2’7) —rVj(a, T)>
(4.7)
Bemerkung
Fiir die Unstetigkeitsstelle x = In (j (7)) der zu transformierende Funktion gilt also
Vi(In(j(7)),7) = M Der Grund hierfiir ist, dass eine Fouriertransformation einer in

einem Punkt unstetigen Funktion gegen den Mittelwert an der Sprungstelle konvergiert. Siehe
Dettmann, [17].
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4.1.2 Die Fouriertransformation

Definition
Definiere die Fouriertransformation in einer Variablen einer fast-sicher stetigen Funktion
f(z,y), f: RxR— R, als

o0

F{F(0)} (n) = / ¢ F ()

—0o0
Die Stetigkeit der Differentialterme der Black-Scholes Differentialgleichung wurde durch die
Transformationen nicht beeintrachtigt. Durch die Linearitét des Integrals kann jeder Term der
in x fouriertransformierten Differentialgleichung einzeln betrachtet werden.

il T 2V T
PlaaGe) -0 22 o) e {HwGe) -0 225 o)

T or 2 0z
wke {a i ) -2 250D )
S F(HWGE) -0 VN0 (8)

Da die Fouriertransformation immer in der Variablen z stattfindet, wird dieses nicht mehr
explizit erwahnt.
Definiere FV als Fouriertransformation bis zum Wert In( §(7)) und V;(n,7) als Kurzversion von

FI{V;(x,7)} (n). Die gewthnliche Differentialgleichung, die V erfiillt, wird in der Variablen 7
sein, da sich alle Differentiationen nach x ausintegrieren lassen.

o0

F{H(In(j (7)) —z) - Vj(z,7)} (n) = / e H (In(j (1)) — ) Vi(x, T)dx

In(j(7)) ) B
- / eV, (2, 7)dx = F7 (Vi 7)} () = Vi, 7)

Unter Mithilfe der transformierten Randwerte und Ubergangsbedingung kénnen die einzelnen
Fouriertransformationen vereinfacht werden.

[V (e.r) ) OV, 7)
; [OVi(z,T) _ ine OVi\T, T)
F{ 2 }(n) /OO € 0r 0@
‘ nfir In(j(r))
I )P0 [ o, e
(4:5) 6i7]~ln(j('r))v(1n(j(7_>)) _ 277‘7] (n’ 7—) (49)
[0%V(x,T) GG (7). O*Vj(x, )
i { Vi@, 7) _ ine " Vi\T, T)
{ Ox? } () /oo ‘ Ox? o
4 : In(j(7)) In(j(r)) -
pa'r:t.f. P M _ Zn/ elnxwdx
or | . Ox
(4.9) ein-ln(j(f))a‘/ja(m —in [ez’n-ln(j(r))v(ln(j(ﬂ)) — ian(n,T)}
T nGi(n)
(4:6) em.ln(j('r)) . ’Ul(ln(](T))) —in [einln(j(T))v(ln(j(';—))) — 217‘;3(77, 7‘):|
= () [v'(In(j(7))) — inv(In(j(7)))] — 772‘73'(7777') (4.10)
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Um Differentiation und Integration im folgenden Fall zu vertauschen, wird die Leibnizregel fiir
Parameterintegrale benétigt.

o ¢ B o(t) df(z,1) B Dy
at/x@ Fo) dw—/x(t) ST ot fo(t),050 — F, 05 (@)

Fiir stetig differenzierbare Funktionen f(x,-), x(t) und ¢(t). Der Beweis ist in [10] nachlesbar.
Also

g ) I T = e —_ I
F { or }(77) /oo ‘ or o
w9 /m(j(f)) Y (27| 8j(7)iein~ln(j('r))v.(ln( (7)), 7)
= ar | ). J\Z, T or ](7') ! T
o . 9j(T) 1 (i) ;
9 i _DNT) L (i) v
45 OVitn,1)  95(T) 1 (). s
L5 - 5 T v(In(j(7)))

Aus der Ausgangsgleichung (4.8) entsteht mit der Definition von F7

o {22 ) = Lo { ZUET ) e {PSET ) — o 150 )

und daraus wird mit den gewonnen Gleichungen:

oVi(n,7)  0j(r) 1
or or j(7)

Iy In((7))) =50 [o (1n(i (7)) — i (G (7)))] — PV, 7)

+k [ein-ln(j(T))v(]n(j(T))) _ 17]‘7](7], 7')] — r‘/j(Th T)
Oder

ov;(n,)

1 . ~
g + <202772 +ink + r) Vi(n,T)

_ oininGi() [102 [q/(ln(j(T))) — @'m;(ln(j(T)))} + v(In(j(7))) <k + 8?9(:) 37-))] )

(4.12)

Das Ziel, durch Transformationen des Preisprozesses eine gewohnliche Differentialgleichung zu
erhalten, wurde erreicht.

Bemerkung

Diese Darstellung setzt implizit die Kenntnis der Grenzfunktion voraus. Zusétzlich ist nicht
sicher, dass die Grenzfunktion iiberhaupt differenzierbar, bezichungsweise stetig differenzierbar
ist. Ein Beweis hierfiir ist noch nicht erbracht worden.
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4.1.3 Losen der gewohnlichen Differentialgleichung

Die inhomogene, lineare Differentialgleichung erster Ordnung kann mit dem System Variation
der Konstanten gelost werden. Die Gleichung sieht folgendermaflen aus:

Vi (n,7) = —p(m)V;(n,7) + 6(n,7)

mit
8Vja(z,7') _ ‘73‘/(7777')
und
w(n) = <202772 +ink + 7“)
und
6(0.7) = D | 62 () — imelia(i(r)) + o) (+ 20 )]
Fange mit
Vi (n,7) = —p(n)Vi(n,7)

y(r) = e Jo s — o—emr

16st die Differentialgleichung. Nun muss noch der ¢ Term beriicksichtigt werden.
Setze dafiir

§(r) = e(r)e 20",

Die Konstante ¢ variiert.

7 (1) = (1)e= M7 — ¢(1)p(n)e ™M™ = —p(n)§(1) + ¢ (7)e=?MT

Um die Differentialgleichung zu l6sen, muss also

d(r) = ¢ln, 7)e?T
gelten. Integriere:
o) = [ ol e ds + (3.0
0

Die in 7 konstante Funktion V}-(n, 0) wird zur Erfiillung der gegebenen Anfangsbedingung
gebraucht.
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Damit ist die Funktion gefunden, die die Differentialgleichung erfiillt.

Vi(n,7) = e #M7V;(n,0) + e~ / ¢(n, s)e? M ds
= e V(1,0 / d(n, s)e PMI=3) (s (4.13)

mit

und

o(n, ) = 1) [2 o (In((7)) + v(In(j(r))) (r—;a2_zn;ff?+a7 >1)>]

Folglich ist das néchste Ziel die Riicktransformierung.
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4.1.4 Die Riicktransformation

In diesem Abschnitt wird Vj(z,7) aus V (5, 7) zuriick gewonnen.
Definition

Fiir eine fast-sicher stetige Funktion f(x,7), f : R x R — R, definiere:
1 L[
P} @)= o [ ey

—00

Dies ist das Inverse der Fouriertransformation.
Satz
Setze f(x,7) = H(In(j(7)) — x)g(x,7), also f : R x [0,T] — R, dann gilt

2m —00 —00

o) In(5(7)) ] )
g(e.7) = FHF (.0} ()} (2) = = / l/ " g r)en dx] ey

Beweis
Der Beweis zeigt, dass das Standard-Fourier-Transformationstheorem, siehe [11],

flx,7) = % /_OO [/_00 f(x,T)eim d:z] e T dn

die unvollsténdige Variante
1 [o© In(j(r)) A A
sy =5 [ | [ g ol e ay
T J—00 —o0

mit einschlief3t.
f(z,7) = H(In(j(1)) — x)g(z, T) eingesetzt gibt

A7)~ algte. ) = 5 [~ | [ HO0G) ~ gt e da] e ay
1 :; _EIO(J'(T)) . .
[/ g(z,T)e"* dx] e " dn

27 J o —00

mit der Heaviside-Step-Function folgt

"o

1 [ In(j(7)) ) ,
g(x,7) / / g(x,7)e"™ dx| e ™ dn —oo < x < In(j(1))

1 oo [ G , 4
g(g;’ﬂzzﬁ/ [/ g, 7)e" d| e dn r =1n(j(r))

und damit die Behauptung.
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Einige Hilfsmittel fiir die Riicktransformation werden benétigt.

Lemma
Fiir p; > 0 gilt:

2
/oo e_pmz_mndn — \/764?1 (4.14)
oo p

1
0 03
/ 1767'0“727'02776%7:— NI v (4.15)
oo p12p1
Beweis
00 o0
/ ne~ PP gy = / e~ P17 +p2"+m7m)dn
— 00 —00
o) 2
0 / ~vP S )Qe%dn
—0o0
2
1(F” 4/11)
pp? oo Ta| T
—00

p2”
= 64.01 ﬁ

2 2
_1(\/777 4p1>
00 2\ L
/ ne V2 dn
—00

1
1 ./
ﬁ 2

Substituiere \/p1n =y = /p1dn = dy. Die Grenzen bleiben bestehen.

2 2
—P2
o0 2 1 o0 7% ! ?ﬁ) 1
o2 L2 Yy 73
ne PYTPAdn = et \/T0 —c —dy
/_oo i\/27r —o0 V/P1 V/P1

In der Situation (4.14) wiirde der Term \/% wegfallen.
Der Integrationsterm ist der Erwartungswert einer N ( 4p , %) verteilten Zufallsvariable Y.

Im Falle (4.14) steht im Integral eine Normalverteilungsdichte, womit (4.14) folgt.

2
1<y%%)
o0 p22\/> -3 T
efpm —p2nq _64,017 / e V2 d
/0077 n 5277 Y Y
2 2 2
e VT - BY] = ¥ VT P2
P G5V2m p1 4p

Definition
Der Faltungsoperator zweier fast-sicher stetiger Funktionen f, g : R — R ist definiert als

- /R f (@ — u)g(u)du
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Faltungstheorem
f und g seien fast-sicher stetige Funktionen mit Faltung f % g und Fouriertransformierten

F{f}, F{g}, dann gilt

(WF{f+gy =F{f} -Flg} @QF{f-g}=F{f}xF{g} @) fxg=F "{F{f} F{g}}

Auf den Beweis wird an dieser Stelle verzichtet, er kann aber in [18] nachgelesen werden.

Teil 3 des Theorems soll angewendet werden, da F~! {6_90(’7)7‘%(77, O)} (z) benotigt wird.
F1 {e“f’(")T} (r) und F~! {Vj(n, 0)} (z) werden berechnet und danach gefaltet.

1 {e—go(n)‘r} (.%') _ 2i > e—(%02772+i17k+7")7—€—ina:d7]
™

_ iefTT /oo 6(7%027)7]27i(:v+k)ndn

27 oo

4.14 1 o —(wtkn)? 1
(414) e "Te 20%r —o?r>0daT>0

2rT 2

F {Vj(n,o)} (@) = F YV 0} (@) =F {F{HWGO) - 2)Vi(z,0)}} (z)
= H(ln(J(0+)) —z)Vj(z, 0) = H(ln(9(0+)) —z)v(x)

Bemerkung

0" wird verwendet, da, wie in Kapitel 3 gezeigt, die Funktion b(t) sich asyptotisch zur
Senkrechten durch T verhélt.

Teile nun fiir die Funktion Vj(x,7) in zwei Teile auf.

Vj(z,7) = Vi (z,7) + Vi(z,7)

=1 {6730(77)7‘7]‘(?7,0)} (z) + 1 {/DT o(n, S)ew(n)(rs)ds} ()

Dank des Faltungstheorems und den oben bestimmten Gleichungen ergibt sich V;-l.

Ve = {00}
= [y @ o P {0} o

1 —((@—w)+h7)?
= / e H(In(5(07)) — u)v(u)du

/1H(J'(0+)) 1 e —(e—wtkn)?
—00 oV 2nT

e "Te 2%t w(u)du

Seite 62



Tobias Nigbur Die Integraldarstellung amerikanischer Optionspreise

Es bleibt Vj2 zu bestimmen.

Ve = £ [ ot 0k @

_ 1 / ine / (. 8)e—#MT=3)gs
27 —o0 0

Schreibe nun

6(0.7) = 0D [ St In(i () + o(nir) (k= ingo? + 257 )

2 or j(r)
als
8(n,7) = U [61(7) — ()]
mit
n(r) = 5o (i) + (74 k) o)
und

o?i
¢2(7) = —-o(In(j(7))) -

Nun sind ¢; ¢2 unabhéngig von n und die Integrationsreihenfolge kann vertauscht werden.

2 1 72 T T=S
Vier) = oo [ e [ ot st dy
1 o —inx i m-In(y(s T—S8
= o e / NG 1 (5) — mals)] = HDT s dn
—00
_ / —mx 277 In(y ) —p(m)(t—s) [¢1( ) n¢2(3)] d?’] ds
0 —00
1 o?
Sﬁg) 27T 0 e —r(r—s) /OO 67772(7(7- s))—nliz—i-In(j(s))+i(r—s) [¢1( ) 77¢2(3)] dn ds
= o [ e [ e on(s) < ous)) dn ds
T 0 — 00

Mit p; >0, da 0 < s <7, ist man in der Situation des Lemmas.

1 T T 3 T o5
2 - e~ T(r=3) AP il P2
Vi(w, ) 27 ), [qzbl( )Mple Pl +¢2(s)1/ple P1 2/)1] ds

T e_r(T_s)Jr% o? (s a2iv(In(j(s
$192 /0 - [20’(111(]'(5))) + <8‘7( )L +k)> v(In(j(s))) + (In(5( )))P2] ds
1
2

2\/7p1

e [ ’”(;2;)7'“5) ) + (2t - 2RI g | as
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Mit
kann Vj explizit aufgeschrieben werden.
Vi(w,T)

In(5(01)) 1 r —(@=w)tkn)?
e "Te” 227 w(u)du

N 0% 2 st + (2L L[ 2B ] a

fir0<7<Tund —oo <z <In(j(r))

Bemerkung

Es war moglich eine Integraldarstellung zu erlangen, ohne explizite Angabe der
Auszahlungsfunktion. Die einzige Annahme an die an die Auszahlungsfunktion ist die
Monotonie. Die Auszahlungsfunktion der Calloption wird im néchsten Schritt eingesetzt.
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4.1.5 Die Formel nach McKean fiir den Call

Die Auszahlungsfunktion einer Calloption ist streng monoton steigend fiir S > K, deswegen
gilt:

c(S)=(S:—K)y = v()=€E"-K)y = v(r)=0 < —-oco<z<In(K)

Setze dies in Vj(z, 7) beziehungsweise in V}l(x, 7) und Vf(x, 7) ein.

m(07) 1 (2= w) k)2
le (x,7) = / e "Te” 2% w(u)du
o oV 2nT
o@  (MOOD) 1 uren? WGO) 1 —(emwrn?
= —e e 2027 du — K e "Te 2027 U
In(K) oV 2nT In(K) oV2nT
= L(z,7)— Kly(z,7)
Betrachte I; als Erstes.
I ( ) /'hl(j(OJr)) 1 u202'r—202TT2+((1—1l)_k7)2 d
1z, T = e 2027 U
7 In(K) ov2nT
I R S | In(G(0))  _ (2 2u(oriatk)
= e 2027 e 2021 U
oV2rT Jin(k)
quadr. Brg. 1 /1“(7(0)) G%W .
oV2rT Jin(k)

/

~~

Verteilungsfkt einer N(z+k7,027)-Zufallsvariable

Seien X und Z Zufallsvariablen, mit

XNN(iL’—{—kZT,O’QT) und Z ~ N(0,1).

= x4 2 k
5 \[ + (x 4+ k71)
Das Integral kann, dank der Symmetrie um Null einer N (0, 0?) verteilten Zufallsvariable,

vereinfacht werden:

+ ) —('u.f(zékk‘r))2
204T U

oV 2nT /ln(K)

—  P(X <In(j(0"))) - P(X < In(K))
—  P(X - E[X] <n(j(0")) - E[X]) - P(X — E[X] < In(K) - E[X])

= P(X—E[X]g—ln(K)—i—E[X])—P(X—E[X]_—ln 0+)) E[X ])
B —In(K) + E [X] B —In(j(01)) + F[X]

- P<Z< o7 ) P<Z< o )

B —ln(K)—i—E[X] _ —ln(j(O"'))—l—E[X]

- N( o ) N( o7 )>

Daraus folgt 1.

Lo = e [N <—ln(K)J—|\—F£x+kT)) e <—1n(j(0+a)z/—; (x—i—lw))]
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Es fehlt 5. Durch die Gleichung (x — u + k7)? = (u — (z + k7))? und der linearen
Transformation einer normalverteilten zu einer standardnormalverteilten Zufallsvariable erhéilt
man

1Il(j(0+)) 1 —(a:—u+k:'r)2
Ir(x,T) = /I(K) a\/i e "Te 22 du
n
—rT In(j(07)) u—(z+k7))?
= (& . T 2027 du
O'\/27TT In(K)

Verteilungsfkt einer N(CE—‘rkT o+/T) Zufallsvariable X.

[P (X < In(j 0+))) ~ P(X <In(K))]

= ”[ ( <1n(j(0+))—E[X])—P(X—E[X] <In(K) — E[X])]
[P (

Sym < —In(K)+ E[X]) - P (X — E[X] < —In(j(0")) + E[X])]
]

I.Tr;nsf. o [P (Z B _1 (Ii)\/J;E[X]) b (Z . —ln(j(o(:\)% BX ﬂ ‘

Zusammengefasst hat man nun eine Darstellung fiir le.

V(o 1) =e? [N <—ln(K) +(z+ m)) e (—ln(j(O))\;(x—i—kT))]

—rT

J oT o
- Ke_i {J\é(ln([(i\—%x—l—lﬂ) N <1lnl(<j(03)\/j;(mk~l— m)}
—In(K) + (z + kt oy (—I(K) + (x4 kT
:exN< (1)0\'/%) )>kK€ N< ( ()jlﬁ('o ) k
_ [exN<— n(j( L);(H T)> _Ke_TTN<— n(( (),)ﬁ(ﬂ r)}

Weiter gehts mit Vf(:n,T).

V2(z,7) = /T ﬂe—h(x,s)Q(x s)ds
I 0 oy 2m(T — ) ’

mit
z —In(j(s T —3))?
) = EZ RGO R )
und
o? (s r —1In(j(s
Qo) = GG + (22 4 [k = 22D ) g,
Die Auszahlungsfunktion ist nur Bestandteil von Q(z, s).
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Fiir die Auszahlungsfunktion mit (4.6) gilt:

o) = (e = K)r = on(s)) = c(ils) = (G(s) — K)+

v (in(j(s)) = 20

) 0T
Eingesetzt in Q(x, s) entsteht:

Q.9 = e+ (B0 L L~ == RUENTY i)

Damit folgt die gesuchte Funktion V;

Vi(z, 1) =e"N (_IH(K) Gy kT)) — Ke"™N (—IH(K) + (z + /w)

ov/T o/
B [exN ( ln(j(Og\;rF(x + m)) P ( ln(j(OJ;)\)/;r (a + kTﬂ
T o=r(r—5)—h(z,s)

——(Q(x, s)ds
* 0 o+ 27(T —9) Q)

und die Fouriertransformation ist aufgehoben. Nun muss noch die Transformationen in S
riickgéngig gemacht werden, um ein Ergebnis zu erzielen.
Ersetze nun wieder S: S; = e* < In(Sp_,) = x.

Cj(Sr—ry7) =S7—r - N <IH(ST_;/}§) : kT) ~ RN <ln(ST_;/ﬁ) +kT>
n(Sr_/j(0" T - n(Sr—7/§(0° T
B [ST_T-NC (St (/:\(/()F )+ k )_Ke T (1 (St (/TJ\(/OF ) +k ﬂ

T e—T(T_s)_h(STfT’S)

" 0 0y27(T— ) Q

Sr—r,8)ds

=Cg(Sr—+,7) + Early Excerise Premium

mit
(ln(S.T;T) + k(1 — 5))?
h(St—-,s) = 3()
202%(1 — 3)
und
2
k:(r—q—%) T=T-—t
und

0_2 (s n _ — In(j(s
QUsr—rvs) = Tao) + (B L L RO UGN i) —

Diese Funktion wird McKean Darstellung der amerikanischen Calloption genannt.
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Bemerkung

Die Preisfunktion zerfillt also in den Black-Scholes Preis einer européischen Calloption
beziiglich 7 und S und ein Early Exercise Premium. Leider kann in dieser Darstellung keine
ersichtliche 6konomische Interpretation des Premiums vorgenommen werden.

Wie schon erwihnt, beruht die Fouriertransformation und die damit resultierende
Preisdarstellung auf der Kenntnis der Grenzfunktion. Um einen Nutzen aus dieser Darstellung
zu ziehen, miisste die Preisfunktion an der Stelle C;(j(7),7) = (j(7) — K )+ numerisch
ausgewertet werden, da eine Integralgleichung fiir die Grenzfunktion entsteht. Danach kénnte
man den Preis iiber die numerisch errechnete Grenzfunktion berechnen. Leider ist die
Grenzfunktion nicht leicht auszuwerten, denn es wird iiber dessen Ableitung integriert.

Kim (1990) hat in seiner Darstellung die Ableitung der Grenzfunktion umgangen. Dies ist
Inhalt der néchsten Sektion.
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4.2 Die Darstellung nach Kim

Die Preisfunktion von Kim (1990) baut auf der Preisfunktion von McKean aus der letzten
Sektion auf und entfernt die Ableitung der Grenzfunktion durch partielle Integration.
Diese Ausarbeitung beruht ebenfalls auf [7].

Es werden einige Funktionen definiert, die das Arbeiten erleichtern.
Driicke die McKean-Darstellung aus der letzten Sektion folgendermafien aus:

Cj(Sr—r,7) =CE(S7—7,T) — [ST_T N <ln(STT£_j\(/O;)) t k7> _Ke "N <1H(STT/UJ'\(;+)) + k:T)]

+ R(Sp—r,7T) (4.16)
mit

R(Spr) T o—r(T=5)—h(ST_7.5) [Uzj(s)—i— <aj(s)}+1 [k_ In(Sr_-) —ln(j(s))D Ges) _K)] s

0o o+/2r(T —s) 2 Os j(s) 2 T—35

h(St—+,s) wird in zwei Funktionen unterteilt, von denen die eine konstant und die andere
variabel in s ist.

M1, 5) 20%(1 — 3)
1 In(Sr—;) + <r—q—%) (tr—s) In(j(s))+ (r—q—%) (1 —3) ?
S 2(1—s) o a o
[z — G(s)]”
2(1 —s)
mit ,
| tsr)+ (; —q-5%)7]
und ,
G = O+ (r-a-%)s

Fiir die Ableitung von G(s) in s gilt:

oc(s) _ |5+ (0= %)

0s o
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Da die folgenden Umformungen, aufgrund der Lénge der Gleichungen, sehr uniibersichtlich
sind, wird ein Kommentar fiir jede Gleichung unter der Formel angegeben.
R(S,7) kann mit diesen Definitionen geschrieben werden als

T <y27(G_(5)))2 [ ( ) 1 ./( ) 1 hl (ngi)T )
R(Sr_s, i/ o) o ]_3 th—k+ o k= —"2L 0 (i(s) - K) | ds
(577 % | e | & 5 [F= 2| | ) - K
(y=G(s)? S,
T h’l -
2(1t—s) S
i/ i) € )i es k—( ) ((s) — K)| ds
0 2r(1 — 8) 20 T—35
. <y2—( >)>2 )
3 —r(T—s) € e |: < / 3) . - :|
= e +(G'(s s)—K)| ds
/ e Sy ) U)K

4
=Ri(S7—7,7) — Ro(S7—7,T

1) Umformungen von h(S7_;, s) einsetzen, hinzufiigen von +k und % in die eckige Klammer

ziehen.

2) 1 in die runde Klammer ziehen und die Definition von G’(s) nutzen
3) Definition von y — G(s)

4) Aufteilen des Integrals in

(W=G(5))?
T _ _ 2(T—s) ) o y— G(S)
Ra(Sprr) = [ e S [+G’ _}d
(77 7) / ‘ 2m(T — s)](s) 2 (#) 2(r —s)
<y2(c(s>>>2 G(s)
e T s y — S
Ro(S7—r,7) =K —r(r=s) G'(s) — ] ds.
= / 27r(7‘ —5) [ (s) 2(r —s) ’

Diese Teile kénnen nun einzeln bearbeitet werden. Beginne mit Ry(S7—r, 7).

Ri(Spi) & /OT o 7(r=5) \/J% [a(r — )+ 2(72(—7322')(3) oyt G(S)}

y=G(s)+o(r—s)? o2
1 LGl (yG()ot % (r—s) g

e
v 2T

T 2
6 ~q(r=3) . g . 1 _%g |:O'(T—S)—|—y—G(S):| J
/0 ‘ = \/2776 ds VT — 5 iy

1—/07@_‘1(7_5)-%4'58 [N <0(T—3:%— G(S))] s

5) Verschieben des %, den Inhalt der eckigen Klammer auf einen Nenner bringen

und quadratisch Ergénzen.
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6) Auflosen der zweiten e-Funktion und

) ) )
In(Sr—7)+(r—q—% )7 In(j(s)+(r—g—%)s
0 [o(r—8)+y—G()] _ 0 0(T—s)+[(T )g ! 2>]_[(3()) (Uq 2>]
Os T—8 ~ Os F—s
o[ k 1 | 1
-2 _<a+0) T s+ (n(Sr-r) ~ In(j(s))) T_S]

ane

1 o(T—s) + 5(r—5) + ((S))(T_S)_JDC;T(S_)T)
Vs 27 =)

1 [U(T—S)+2(T—8)G/(S) —y—i—G(s)]
VT — s 2(1 — s) '

7) Leibnizformel fiir Parameterintegrale anwenden.

Ro(S7—,7) kann dhnlich behandelt werden.

ds

8
R - f_K —r(t—s)
Z(ST 7 / (7' — 8)

7T

T [—\m = )G (5) + 5 A=y — G(s))

(W-G(s)?2

T 2(r—s) GS
:_K —r(r— s)e Yy -
- [ e

o[ L

8) Die Summe in der eckigen Klammer gleichnamig machen und —%_S reinziehen.
9)

10) Leibnizformel fiir Parameterintegrale anwenden.
Fiige beide Teile wieder zusammen. Das gewiinschte Ziel, die Ableitung zu entfernen, kann
durch partielle Integration erreicht werden.
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gl

T o(t—s —G(s
o (o (G g s ()
(e () ()

Betrachtet man nun die ausintegrierten Terme, so ist nicht direkt klar, wogegen sie fiir s — 7
konvergieren.
Genauere Betrachtung liefert

tim 49 _ gy (1“<ST—T> —InG(s) |k s>> o S =) [0 Sr = (s)
ST VT s T oVT =5 o\T =8 5—=T o\T — s —00 St—r < j(s)

durch In(S7—_-/j(s)) <0 fiir Sp—; < j(s) und In(Sr_;/j(s)) endlich.
Diese beiden Moglichkeiten werden durch § beriicksichtigt.

% St_r= ](5) '

0 sonst

5(STf‘r) = {

R(S7—r,7) = —Sr_r (5(STT) — ¢ TN (”“ﬁf;e(o)))

o ([ et [ (P20 =60)) )

+ K <5(ST_T) — "N <y—\/c;(0)> - /0 T perr=s N <Z/_T¢Gf(z)> ds>

—e Sy N <1n(ST—T{Tj\(/O;+)) + /w)

ln(STT(/jj\(g)) + kT) —5(Sr) - (Sr—7 — K)

+ /0 " 4Sr_re N <“(T - f}%‘ G(8)> —rKe "IN (%) ds

— Ke™"™N (

V)
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Durch diese Version des Integralterms fallen die ersten beiden Terme des EEPs in (4.16) weg
und es folgt die Darstellung des Optionspreises nach Kim vor Ausiibung.

C(Sr—7,7) = Cp(Sr—+,T)

T P ln<5ﬁ;)7>+(k+a2)(7'—s) () (STT + k(1 —
e i)y _rKe TN
+/0 45T-r¢ o\T — s e o\T — 5
(4.17)

C(Sr—r,7) =Cg(Sr—r,7) + EEP

Wenn das Finanzgut die Grenzfunktion erreicht entsteht eine Integralgleichung fiir die
Grenzfunktion.

J(r) = K = Cp(i(r),7)+

T In (?8) + (k +0?)(1 — s) In (i((g + k(T — s)
+/ qj(r)e TN —rKe TN ds
0

Bemerkung
In dieser Darstellung ist der Faktor % nicht mehr notwendig, denn fiir Sp_, = j(7) gilt

((r) - K)

5 () - U =) | ppp (4.19)

2

wegen der Konvergenz der Fouriertransformation zum Mittelwert an der Unstetigkeitsstelle
und §. Beachte das das Early Exercise Premium auch von j(7) bzw S abhéngt, dies hier aber
nicht von Bedeutung ist. Bringt man nun —M auf die linke Seite der Gleichung, so hat
man eine Darstellung, die die Definition des Wertes an der Sprungstelle in der Heavide-Step
Funktion nicht mehr benétigt.

Ein weiterer Vorteil der Darstellung von Kim ist, dass (4.18) eine Gleichung fiir die
Grenzfunktion liefert.

Ebenso erlaubt diese Version der Preisfunktion eine 6konomische Interpretation des Early
Exercise Premiums. Wenn man als Kéufer der Calloption in ¢ vorzeitig in t* ausiibt, bekommt
man (S — K) ausgezahlt. Kauft man davon das Basisfinanzgut und leiht sich K, dann ist die
Strategie selbstfinanzierend. Bis zum Zeitpunkt 7" streicht man Dividendenzahlungen ein und
bezahlt die Zinsen fiir K. In T hat man dann den gleichen Wert wie jemand, der die
européische Optione gekauft hat, ndmlich (Sp — K)4. Das Early Exercise Premium ist somit
die Differenz aus erwarteten Dividenden und Zinsen, nach vorzeitiger Auslosung, wie im
Integralterm zu erkennen.
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4.3 Der amerikanische Callpreis ohne Dividendenzahlungen

Im Folgenden wird gezeigt, dass die Berechnung eines Callpreises ohne Dividendenauszahlungen
des Basisfinanzguts nicht sinnvoll ist. Die Ausarbeitung beruht auf [1], Kapitel 8.

Satz

Ohne Dividendenzahlungen des Basisfinanzguts stimmen der Preis einer amerikanischen
Calloption und der Preis einer européischen Calloption bei gleichem Basisfinanzgut und
gleicher Laufzeit iiberein.

Beweis
Der Beweis beruht auf folgendem

Lemma
Sei h: RT — R stetig und konvex mit h(0) = 0.
Dann ist e "*h(S;) ein Submartingal, wenn S; auflerdem ein Martingal ist.

Beweis des Lemmas
Da die Funktion h(z) konvex ist, erfiillt sie fiir 0 < A <1 und 1 < x5

h((1 = N1+ Aza) < (1 — Nh(z1) + Ma(z).

Fiir x1 = 0 und = = x5 gilt somit
h(Az) < Ah(x)

Setze 0 < u <t < T, daraus folgt 0 < exp(—r(t —u)) < 1. Mit der Monotonie des bedingten
Erwartungswertes, der Jensen Ungleichung und der Martingaleigenschaft von exp(—rt)S; unter
dem Martingalmaf entsteht:

E [e*’"(t*“)h(St) \fu] >E [h (e”"(t’“)St> |fu}
h (E [e—“t—")St |qu
h(e™E [e7"Sy | Ful)
h(Su)

Y

Dies ist dquivalent zu
FE [e*’"th(St) \fu] > e "™h(Sy)
und schliefft den Beweis des Lemmas.

Wenn nun h(z) = (x — K)4 ist, dann gilt mit x <y

h((1=XNz+ Ay) < (1—=XNh(x)+ Ah(y)

fiir alle drei moglichen Falle: {x,y | h(z) = 0,h(y) =0}, {z,y | h(z) = 0,h(y) > 0} und
{z,y | h(x) > 0,h(y) > 0}. Damit ist h(z) konvex und das Lemma liefert

Ele ™ T=W(Sr — K)y | Ful| > (Su—K)4.
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Das heifit, es ist am Optimalsten mit der Ausiibung bis T zu warten, da der innere Wert der
amerikanischen Calloption sonst immer vom européischen Callpreis dominiert wird.

O
Bemerkung
Das Lemma gilt nicht bei Dividendenzahlungen, da unter dem Martingalma$l exp(—rt)S; kein
Martingal, sondern ein Supermartingal ist. Die Drift nach unten entsteht, weil die Zinsgewinne
aus der angelegten Dividende fehlen. Wenn in der Preisversion von Kim ¢ = 0 gesetzt wird, ist
direkt zu erkennen, dass vorzeitiges Ausiiben suboptimal ist, denn das Early Exercise Premium
ist in diesem Fall immer negativ.
Ebenso ist das Lemma nicht fiir die Putoption anwendbar, da fiir h(x) = (K — x)4 nicht
h(0) = 0 gilt.
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Kapitel 5

Der Preis fiir die amerikanische
Putoption bei endlicher und
unendlicher Laufzeit

5.1 Endliche Laufzeit

Betrachte nun eine amerikanische Putoption auf ein Basisfinanzgut S; mit 7" < oco. Diese
Sektion bezieht sich auf das Paper Alternative Charaterizations of American Put Options von
Carr, Jarrow und Myneni, [14].

Definiere den Prozess L als abgezinsten Preis der Putoption im Zeitpunkt .

L(St, t) = €_rtP(St, t)

e " ist in t und S stetig differenzierbar. Nun kann die, schon in Kapitel 3 erwihnte, erweiterte
[t6-Formel angewendet werden, da L(S;,t) eine C!-Funktion in S ist.

T T T a2
L(ST,T):L(SO,O)+/ stt+/ WdHl/ TLGLY 415 sy,
0 0 0

08 ot 2 052
Durch die quadratische Variation einer geometrischen Brownschen Bewegung folgt
OL( St, TOL(S;,t) o028 O°L(Sy,t)
L(S L(S dS dt.
(57, T 0,0 / o /0 a2 o8

Wenn L(S;,t) wieder ersetzt werden soll, muss %—f genauer betrachtet werden.

—rt
aL(astt, t) _ Oe gt(sty t) _ ertw%a'im — re*”P(St, t)

Damit folgt:

T T 262, ,—rt 52
e "TP(Sy,T) = P(SO,O)+/ e_rtiap(st’t) dSt—i—/ oS e PS5 1) —re_rtP(St,t)+e_rt78P(St7t) dt
0 0

oS 2 052 ot

Es soll eine Preisfunktion fiir ¢ = 0 angegeben werden. Dafiir muss iiber die komplette Laufzeit
integriert werden. Der Preis nach vorzeitiger Ausgeiibund ist bekannt,
P(a(t),t) = (K — a(t))+, also kann P (S, t) in Preis vor und nach Ausiibung geteilt werden.

P(St,t) = 1(g,5a(t) P(St; 1) + L(g,<a(t)) (K — St)+
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Da P(Sp,0) bestehen bleibt, weil Sy > a(0) vorausgesetzt ist und am Ende der Vertragslaufzeit

P(57,T) = (K — Sr)+
gilt, folgt:

e (K —57)1 = P(S0,0)
T 9 (Ligour P(Sit) + L <aren (K — S
+/ ot (L(s,>a0) P(St, 1) as(stg &) 1)+) is,
0
/T 0282¢7 0% (L(5,5a0) P(St,t) + L(s,<a(ty) (K — St) 1)
0 2 052
—re™"" (L(s,>a() P(St,t) + Ls, <a(ey) (K — St)+)
10 (L8, 5a() P (S, t) + Lig,<a(e)) (K — St)+)
ot

Natiirlich {ibt man die Option nur aus, wenn die Auszahlung positiv ist. Daher ist

—+

dt

+e

(K —Si)+ = (K —5).

AuBlerdem gilt fiir die Indikatorfunkionen

s T ot
—rT(K ST)

= P(So,0)

T OP(S;,t
+/ e ( (Se>a t))ést) _]]'(St<a(t))) dS;
0

T 0282 92P(S,,t OP(Sy,t
+/0 e {ﬂ(s»a ))( 5 3(55 )—TP(SntH(a,f))H(stSa(t)) (=r(K —5y))) dt

Setze nun die stochastische Differentialgleichung von S; ein.
€7TT(K — ST)+

=P(S),0)

r IP(S,t
—|—/0 (& rt <1(St>a(t))é;) - ]]-(Stga(t))> (T‘Stdt + O'Stth)

T 252 52 P(S). t OP(Si,t
+/ e "t |:]]-(St>a(t)) <0 : ot rP(S,t) + (t)> + 1(s,<a(e)) (=1 (K — 5)) | dt
0

2 052 ot

Durch Umstellen ergibt sich im dt-Term die Black-Scholes-Differentialgleichung, die fiir
Sy > a(t) gleich Null ist.
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efrT(K _ ST)+
=P(Sy,0)
T . OP(S;,t
+/ e "o, (ﬂ(st>a(t))ésf) _ ]l(stSa(t))) AW,
0

T _r 6P(St, ) 0'252 82P(St, t) @P(St, t)
+ / e Tt |:]]-(5t>a( t)) <7“St 39 + 5 14 557 — ’I“P(St,t) + 875) + :H-(Stga(t)) (’I“K):| dt

T OP(Si,t
P(8),0) = rK / Ls,<a(e) @+ /0 ¢ oS, <11<st>a(t>> ést) 4“‘““”) th

Nehme nun den Erwartungswert zum Martingalmafl () auf beiden Seiten der Gleichung.

E [e_rT(K — ST)+] =

r r OP(S;,t
P(Sp,0)—rK-E [/0 e t]].(StSa(t))dt:| +FE [/0 e g8, <]].(St>a(t))ésf) — ]]-(Stga(t))> th:|

Der linke Teil der Gleichung entspricht dem Preis einer européischen Putoption in ¢ = 0,
bezeichnet durch Pg(Sy,0).

g —rt ’ —rt 6P(St7 t)
PE‘(S0,0) = P(S0,0)—TKE (& :H'(Stfa(t))dt +E & O'St 1(5t>a(t))T - ]]-(nga(t)) th
0 0

/

~~

=:X¢

Es soll gezeigt werden, dass der letzte Term der Gleichung gleich Null ist. Dies ist der Fall falls
das Ito-Integral X; ein Martingal ist, denn dann gilt E [ Xp| Fy] = Xo = 0.

Aus [1] ist bekannt, dass jedes Ito-Integral, dessen Integrand z; E [ fOT x?dt} < oo erfiillt, ein
Martingal ist.

T
EU z? dt]—E
0

=F

r OP(Sy,t)\?
/0 e 2 t0'2St2 (1(St>at) (8;) — ]].(Stga(t)) dt

T 2 T
o OP(S5;,t —2r
/0 S TR <§)§)> “ _EUO ¢S (sizatey)

Da T endlich ist, gilt dies auch fiir den S; < a(t)-Term. Fiir S; > a; 1st stet1g und der
Integrand ist grofler als Null. Damit kann, nach Fubini, die Integratlonsrelhenfolge vertauscht

/OTe—2” (apéif’t)f dt] :/OTe—WE <6)P((;;f’”>2] dt

<oo

werden.

E
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Denn ég—lg(S, t) ist beschrénkt: Fiir ¢ fest und S € ]a(t), oo[ ist aus Kapitel 3 bekannt, dass
g—]g < 0 und or? > 0 gilt. Alles verarbeitet gibt —1 < g—];(',t) < 0 Vt.

852
T OP(Sy,t)
= F ; e oSy ]].(St>at)7as _]]-(Stga(t)) dWi| =0

T
= Pg(S0,0) = P(S0,0) —rK - E [/ e_rt1(5t<a(t))dt]
0

Der Erwartungswert kann ebenfalls mit Fubini vereinfacht werden.

T 00 T
B |:/O eTt]].(St<a(t))dt] :/ /0 67rt:ﬂ.(5t§a(t)) dt dQ

T 0o
:/0 e_rt/ ]]-(Stga(t)) dQ dt
T

:/ e "Q (S < a(t)) dt

0

Die Wahrscheinlichkeit @ (S; < a(t)) ldsst sich berechnen, da W; eine Brownsche Bewegung
unter @ ist.

Q(S;<al)=Q <Soe((’°‘”22>t+"w’f> < a(t)>

in (40 - (r— %)
- N o
Mit diesem Ergebnis ergibt sich fiir die Preisfunktion

a@®)\ _ (,._ o2
PE(SO,O)—P(SO,O)—TK/Te”N 1n(Sf)) <r 22>t dt,
0

oder

P(Sp,0) = Pg(Sp,0) +rK /T e "N - (@) ~ <r ~ Uj) t dt.
0

Bemerkung

Es wurde also eine Darstellung des Preises einer Putoption in t=0 erarbeitet, die, wie im
Call-Fall, den Preis in européische Option und Early Exercise Premium aufsplittet. Das Early
Exercise Premium in dieser Version dhnelt dem von Kim aus Kapitel 4. Die 6konomische
Interpretation kann deswegen iibernommen werden.
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5.2 Unendliche Laufzeit

Die Ausarbeitung beruht auf einem Paper von Henry McKean, [15].

Fiir die amerikanische Putoption mit unendlicher Laufzeit (T=00) ist es moglich die
Grenzfunktion explizit zu bestimmen. Es wird gezeigt, dass der Preis fiir die Option nicht von
der Zeit abhéngt und somit konstant in ¢ ist. Damit vereinfacht sich die
Black-Scholes-Differentialgleichung von einer partiellen zu einer gewohnlichen
Differentialgleichung, fiir die es einen Losungsalgorithmus gibt.

Satz

Aufbauend auf der Preisfunktion fiir eine endliche amerikanische Putoption, kann die
Preisfunktion bei unendlicher Laufzeit der Option angegeben werden. Sei x der Startwert des
Finanzguts.

P(z) =supE [e”"(K — 57)4]
72>0
Die Preisfunktion ist also konstant in der Zeit. Fiir den Fall, dass die Option nie ausgeiibt
wird, 7 = oo, setze den Preis gleich 0.
Beweis
Mit der Definition des Pupreises zum Zeitpunkt ¢t und Wert des Basisfinanzguts x folgt dann:

P(z,t) = supk [e*T(T*t)(K - xST)+:|

T>t

sup E {er(Tt) (K — zexp <(7’ - 022)(7' —t)+o(Wr - Wt)))J

T—t>0

. 2
T supE [e”‘ <K — zexp ((7’ - U—)x +o(Wyps — Wt)>) }
x>0 2 +

=  supFE[e"™(K —x5y)4]
x=0
P(z,0)

Der Preis einer amerikanischen Option P(z,t) mit Laufzeit T ist abhéingig vom Wert des
Finanzguts in ¢ und der Restlaufzeit der Option. Die Restlaufzeit bei unendlicher Laufzeit ist
fiir alle Werte t gleich.

O
Korollar
Damit ist %—f = 0 und P(9) erfiillt die gewohnliche Differentialgleichung

192P(9)
202+
T

oP(S)

Da der Preis in ¢ konstant ist, muss auch die Grenzfunktion konstant sein. Definiere deswegen
a als

a=af(t).

Die Randwerte in .S kénnen aus Kapitel 2 iibernommen werde:

lim P(S)=0 Pla) = (K —a)+

S—o00
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Loésen der Differentialgleichung

Aus der partiellen Differentialgleichung ist nun eine lineare, homogene, gew6hnliche
Differentialgleichung geworden, die losbar ist.

Der Einfachheit halber stelle sie folgendermaflen dar:

olx?

5 Y (@) +ray(z) —ry(z) =0
Fiir diese Art von Differentialgleichung weifl man, dass es 2 linear unabhéngige Ldsungen i ,
X2 gibt. Die Menge aller Losungen bezeichnet ¢. ¢ = {a1x1 + aaxa| a1, a2 € R}. g und as
werden {iber die Randwerte berechnet und bestimmen eine eindeutige Losung. Fiir mehr
Details zu gewohnlichen Differentialgleichungen siehe [§]
Wenn man y(z) = z® wihlt, gilt

(a—1) (a—2)

Y(@) = (@) = a2 | (@) = ala— Da

und man kann die Differentialgleichung umschreiben zu

o2
<—7“+7"04~|—204(04— 1)) y=0

o2
& —7“—1—7“04—1—?(042—0[):0
2 2
& U2a2+(ra>ozr:0
2 2
& a2+<2—1>a+220.
o o

r 1 r2 r 1
== — —_— - :l: E— J—
<02 2) S
r 1 T 1\?
— . :l: . _
(02 2) <a2 + 2>
2r
= X1=—%5 X2 =1
o

2r
= PS)=a15 2 + xS
Um die eindeutige Losung fiir die Differentialgleichung zu finden, miissen o und aq iiber die
Randwerte berechnet werden.

lim P(S)=0 = as=0
S—o00
2r

P(a):al-a(fffﬁ =K—-a & o=
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- p) = - (£) %)

a

Es fehlt noch die Bestimmung der Grenzfunktion, beziechungsweise des Grenzwertes a, damit
die Preisfunktion vollstindig auswertbar ist.

Bestimmung der Grenzfunktion
Da die Preisfunktion die Stetigkeitseigenschaft

OP(S, 1)
a5 S=a

erfiillt, kann die Grenzfunktion direkt aus der Formel gewonnen werden.

=-1

0 s\ (-2) (K —a)2;
i (K —a) — Y 2
oS a
S=a
Dies ergibt die Gleichung
2r

(K —a)— =a.

Die optimale Ausiibung ist also gegeben, wenn das Basisfinanzgut

erreicht.
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Kapitel 6

Der Putpreis fiir die endliche Basket
Option

Detemple und Broadie beschiftigten sich in [4] mit der Berechnung des Callpreises. Auf dieser
Grundlage wird nun der Putpreis fiir eine Amerikanische Basket Option bestimmt, die auf den
beiden Basisfinanzgiitern S} und S? beruht.

Das optimale Stoppen gestaltet sich schwieriger, da die Entwicklung von S und S? beachtet
werden muss. Siehe dazu auch die Eigenschaften der Grenzregionen in Kapitel 3.

Die Spaltung des Putpreises kann, wie im eindimensionalen Fall, in den européischen
Basket-Put und Early Exercise Premium erfolgen.

PE(StI’SEvt) :PE(StlaSt27t)+EEP (61)
=B e (K — (S} + 5%)),, | 7]

T
+ / ¢ "VIE[(rK — (01S) +0257)) Lisz<az(sion | F) dv - (6.2)
t

Das Early Exercise Premium basiert auf der 6konomischen Interpretation, die schon bei Kim
gegeben wurde:
Die Strategie ist, nach vorzeitigem Ausiiben der Option, K zu kaufen und S! und S?
leerzuverkaufen. Damit ist Selbstfinanziertheit gegeben und am Ende ist der Unterschied zur
euopéischen Basket-Option die Differenz aus erwarteten Zinsgewinnen von K und den zu
bezahlenden Dividenden von S' und S?. Man beachte, dass es keinen Unterschied macht, ob
man als optimale Auslésestrategie den ersten Eintritt von S2 oder S} in die Grenzregion wiihlt.
Die europdische Basket-Option wurde schon in Kapitel 2 behandelt. Im Folgenden soll das
Early Exercise Premium vereinfacht werden.
Um den Schreibaufwand zu minimieren und die Ubersichtlichkeit zu bewahren, definiere

1 1 2

n(z) = ——=e "
2r(v —t)

und definiere die geometrische Brownsche Bewegung von ¢ nach v, v > t, mit Wert S} = x;
und S? = x5 als
1S} und 218},
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Betrachte als Erstes die Indikatorfunktion.

ngg < az(xlSi,v)

Hier ist zu beachten, dass S?, aufgrund der Konstruktion in Kapitel 2, nicht unabhéngig von
S} ist. Die Wahrscheinlichkeit fiir den Eintritt kann also nicht vereinfacht werden. Um dies zu
umgehen, miissen die stochastischen Prozesse in den Basisfinanzgiitern verédndert werden.
Nehme die 2 korrelierten Brownsche Bewegungen W, und W2 mit dW!dW? = pdt. Die neue
Unsicherheit in den geometrischen Brownschen Bewegungen sei

B} =w}
BY =pW} + /1 - p?U,
mit ) )
U, = —pWy + Wy .
1— p?
Setzt man die Definition von U, ein, so erkennt man, dass eine Brownsche Bewegung vorliegt,
da B? = W? ist. Ebenso bleibt die Korrelation bestehen.

dB}dB? = pdt

Nun ist noch zu kldren, welche Eigenschaften U; hat und warum es definiert wurde.
U, ist stochastisch unabhiingig von Wl
Betrachte die Korrelation.

sl 2
AW dU, =dW} - d (M)

V1= p?

1
= (—pdW}dW} + AW} dW?) = (—pdt + pdt) ———= =0

1
V1= p? V1= p?
Somit sind die Prozesse unkorreliert. Wenn nun U; normalverteilt ist, folgt die Unabhéngigkeit.
Bestimme die Verteilung von Us.
Da W} und Wt2_ korreliert sind, muss auf die Konstruktion aus Kapitel 2 zuriickgegriffen
werden. Setze W}! W2 als die beiden unabhiingigen Ausgangs-Brownsche-Bewegungen.

:_P'th + W
1— p?
7\/(% (0'12Wt2 + O'1Wt1) +

Ut
i o
V1= p?

021 pPa g2 _ PI12

_ 1
i VIR Vot | o Vol Johtad
- t

! V1-—p? V1—p?
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Als Summe aus unabhéingigen, normalverteilten Zufallsvariablen, ist U; normalverteilt mit
Erwartungswert

021 _ Po1 g2 _ P12
E [Ut] —E th \/‘7%1+U§ \/‘7%2+‘7% + WtQ \/UglJ“’S \/‘T%QJFU%
V1= p? 1— p?
021 _ _ _po1 o2 _ _ pJi2
-y [th] \/‘751‘*‘0% \/‘7%2"“’% +E [th] \/‘7314“75 \/‘7%2"‘”%

=0

und Varianz

021 _ pPo1 o9 _ P12
Var [Ut] =Var th \/U§1+U% \/0%2+U% + Var = t2 \/oglJrU% \/U%2+a%
7 Vig
021 - po1 2 o2 __ poi2 2
=Var [Wﬂ Vit ottt + Var [Wﬂ Vit ottt

1— p? V1= p?

2 2
021 _ pPo1 + g2 _ pPo12
— \/‘751 +0o3 \/‘7%2+U% \/‘751 +o3 \/‘7%2+U%

1— p?
_ (1—1—,02 —2p2>
1— p?
=t.

Aufgrund von

_ (01202 + 02101)
Voly + 01/ 05, + a3

Die Unabhéngigkeit ist also bewiesen und es gilt:

p

UtNN(O,t) Uv—UtNN(O,’U—t)
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Definiere d(x1S., BE — B} v,t),

ln(
d(xg,xlS,i,Bi —Btl,v?t) = — ,

denn dies vereinfacht

1952 < a?(z15),v)

2
r—qo——= | (v—t)+o B2 B2
x26< 0% ) (=)o D < 2anso)

In ( 2(2715“’“ ) <r —q9 — %5) (v—1)
& B? - B?<

2
r— —%) (v—t)

2 (22)
& —p(By = B)+V1-p(U,—Up) <
(

Q(wls _ ﬁ _
(U—Ut)<ln< 2)-(r-e-F)0-0 B8

N M

=

zu

U, — Uy < d(z9,21S), Bl — B}, v,t).

Damit sind die linke und die rechte Seite der Ungleichung stochastisch unabhéingig.
Die Linearitit des bedingten Erwartungswerts vereinfacht die Ausgangsgleichung des EEPs.

T
/ eTODE[(rK — (215} + 022252)) L(py52<a2(r51,0)) )
t

T
N / ¢ UT(E [rK L, 53<a2(@ison)] — B (01215 ey 53202 @1530))) — E [020257 L (2, 52<02(21 53.09)) ) B0
t

Nun kann die Formel fiir bedingte Wahrscheinlichkeiten benutzt werden.

Q[B})—Btlﬁa]:/a n(w) dw a€R

—00

d(z2,x15;,w,v,t)
Q (U, — U < d(z2,215), By — B} ,v,t)| By — B} = w| = / n(u) du weR

—0o0
Eingesetzt in den ersten Erwartungswert folgt:
() d(z2,z151,w,v,t)
E [TK]I(MS%SGQ(MS%’U))] =rK / n(w)/ n(u) du dw
—00 —0o0

Die beiden anderen Erwartunswerte miissen noch einem Maflwechsel unterzogen werden.

Seite 86



Tobias Nigbur Die Integraldarstellung amerikanischer Optionspreise

E [1215, L (2,52 <a? (@1 51.0))]
2
o1
2

— qlxle(r—m)(v—t)E e~ (U—t)—&-al(B%—Btl)]_(x253<a2(115%7v))}

= g1~ [.’,EQSE < aQ(xlSi,’u)]

7‘12(“@;5&’1})) - (7“ —q2 — %%) (v—1t)

02

|
= qa1eT MG (B2 - B}) < (

= gz [(Uv —Uy) +o1(v —t) < d(z9, 218, Bl — Bl,v,t) + o1(v — t)]

0o d(a:zarlsl,w,v,t)—i-gl(v—t)
:qlxle(r_‘h)(”_t)/ n(w)/ n(u) du dw

—00

Es bleibt zu zeigen: Unter Q ist U, — Uy + o1(v — t) ~ N(0,v — t) verteilt.
Sei g : R — R stetig und beschréankt. Dann gilt:

02
Elg(U, — Uy + o1(v — t))] =E [g(UU — U+ o1(v —t))ez v=)=o1(By=B))

x) @ w=t)? o

gl et o g
e 20n g2 (VT gy
/R V2 (v —t)
A

(
Dies ist auch giiltig, wenn zum Mafiwechsel iiber die geometrische Brownsche Bewegung 52

benutzt wird. Unter diesem Maf ist U, — Uy + o2(v — t) ~ N (0,v — t) verteilt.
Es fehlt noch ein auszuwertender Erwartungswert.

22

e 2(1} 2(v—t) dx
v

E [Q2x2531(msg§a2(x15 ))]

_ q2x26(r7q2)(v7t)E [ 2 (v—t)+02(B2— Bz)]]-(x252<a2(a;151 )

= quQe(T_QQ)(”_t)Q [ngg < a2(m15’11,,v)]
= go2e"" TN Q [(U, — Up) + o2(v — t) < d(w2, 2158, By — Bl v,t) + oa(v — t)]

oo d(z2,218" w,v,t)+o2(v—t)
:quge(r_‘p)(”_t)/ n(w)/ n(u) du dw

—0o0 — 00
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Diese drei Ergebnisse zusammengefasst, ergeben eine Integraldarstellung des amerikanischen
Basketputs.

(o) 0 d(z2,x181 w,v,t)
—i—/ e T ’I“K'/ /
t

n(w)n(u) du dw
0o pd(ze,w18twv,t)+0o1(v—t)
—qlxleql(”t)/ / n(w)n(u) du dw
oo pd(z2,18Y wv,t)+oz(v—t)
— e qQ(“_t)/ / n(w)n(u) du dw dv
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Kapitel 7

Fazit

In dieser Diplomarbeit wurde gezeigt, dass der Preis einer amerikanischen Option als
Integralterm darstellbar ist. Das Integral hingt von einer Grenzfunktion ab, die den optimalen
Wert der Finanzguts angibt, bei dem ausgeiibt werden sollte. Wird der optimale Zeitpunkt
nicht genutzt, so folgt aus der Supermartingaleigenschaft ein Abwértstrend des diskontierten
Wertprozesses. Im néchsten Kapitel wurden Eigenschaften der Grenzfunktion gezeigt, die eine
erste Skizze der Grenzfunktion ermdglichen und hilfreich bei der Berechnung der
Integraldarstellungen sind.

Alle erlangten Integraldarstellungen erlauben eine Aufspaltung des amerikanischen
Optionspreises in européischen Optionspreis plus ein Premium, das aus der vorzeigen
Ausiibung resultiert. Eine 6konomische Interpretation zeigt, wie der Wertzuwachs zwischen
amerikanischer und européischer Option zustande kommt. Zur Auswertung der
Integraldarstellung der Grenzfunktion eignet sich die Darstellung von Kim am besten. In Paper
[7] wird diese Grenzfunktion an Hand von mehreren numerischen Verfahren fiir die Werte
K=1,0=20%,r=12%, ¢ = 8% und T — t = 0, 25 bestimmt.

Free Boundary: American Call, r=0.12, q=0.08
T T

16
159 B
158 —
-
ik
-
157 R 4
e
-
1.56 o e
-
-
-
e - = R
£ 155 e
-
-
154 o E
-
Kd
-
153 - B
-
’
1521 * i
’
’
151 1 = |ntegration
T = = Method of Lines
r + = Fourier-Hermite estimate
15 L L L I
0 0.05 0.1 0.15 0.2 0.25
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Im Falle der Putoption konnte eine explizite Formel fiir den Preis bei unendlicher Laufzeit
angegeben werden, allerdings werden diese Art von Optionen nicht gehandelt, [1].

Die Integraldarstellung des Basketputs ist nicht viel komplexer als die einer einfachen
Putoption, allerdings héngt die Grenzfunktion von 2 Dimensionen ab und ist somit schwieriger
numerisch auszuwerten.

Inzwischen ist eine explizite Darstellung des Preisprozesses und der Grenzfunktion einer
amerikanischen Putoption angegeben worden. Song-Ping Zhu verdtffentlichte dies 2006 in
seinem Paper An exact and explicit solution for the valuation of American put options, [22].
Dank der analytischen Losungen kénnen die gesuchten Funktionen geplottet werden. Ein
Beispiel aus dem Zhu-Paper soll hier vorgestellt werden.

Die Parameter sind r =0,1, ¢ =0, K =100, 0 = 0,3 und T' =1 Jahr.

Bei diesen Parametern hat die Grenzfunktion folgende Gestalt:

100

95 1

— Analytical solution
90 + Numerical solution of Wu and Kwok (1997)| 7

851

80

75 1

70 =

Optimal exercise price ($)

65 R

60 : : : : :
0 2 4 6 8 10 12
Time to expiration (months)

AuBlerdem kann der Preis der Option, abhéngig von dem Aktienpreis bei vier verschiedenen
Restlaufzeiten, geplottet werden.

100
0 r 7
gol —1=1.000 Year |
. 1=0.738 Years
__ 10y ---1=0.508 Years ]
— -
~ 60| + 1=0.249 Years J
g
a 50r 1
S
= 40t 1
(@]
30+ 7
20 f 1
10+ 7
0 . A .‘:“*‘*h

0 20 40 60 80 100 120 140 160 180 200
Stock price ($)
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Es stellt sich die Frage, ob das Modell noch mehr der Realitét angepasst werden kann.

Im Kapitel iiber die Finanzwelt wurde angedeutet, dass einige Voraussetzungen erweiterbar
sind. Eine Moglichkeit, das Modell zu veréindern, wére den Kapitalmarktzins nicht mehr als
deterministisch anzunehmen, sondern ebenfalls einem stochastischen Prozess unterliegen zu
lassen.

Das mathematische Modell erlaubt auch einige Erweiterungen. Zum Beispiel ist eine Kritik an
dem Black-Scholes-Modell die konstante Volatilitéit des Aktienpreisprozesses.

Eine Integraldarstellung unter den gegebenen Annahmen zu erreichen, war nicht einfach.
Deswegen muss im Einzelfall betrachtet werden, inwiefern Erweiterungen niitzlich sind und wie
stark sie auf die Komplexitit des Modells einwirken.

Das Thema liefert also noch geniigend Raum fiir weitere mathematische Bearbeitung.
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Kapitel 8
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