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Einleitung

Die Geschichte des Ratings reicht bis ins 19. Jahrhundert zurück. Mit der Ausdeh-
nung des Eisenbahnnetzes über den US-amerikanischen Kontinent, wurden enorme
Kredite benötigt, die einzelne Banken alleine nicht mehr aufbringen konnten. Aus
diesem Grund gaben die Industrieunternehmen zusätzliche Anleihen aus, um fi-
nanzielle Mittel von Investoren zu beschaffen. Da die Anleger ohne Informationen
über das Risiko nicht bereit waren ihr Geld an die Eisenbahngesellschaften zu ge-
ben, veröffentlichte Henry Varnum Poor 1868 das „Manual of the Railroads of the
United States“. In diesem Schreiben wurden Informationen über die Eisenbahnge-
sellschaften zusammengefasst. Somit war dieses die erste Bonitätsbeurteilung eines
Unternehmens. Seitdem sind Bonitätsbewertungen unumgänglich in der Finanzin-
dustrie.

Mit der Umsetzung von Basel II in das europäisches Recht 2007 wurde die Bedeu-
tung des Ratings in Deutschland erhöht. Basel II ist ein Empfehlungsschreiben des
Baseler Ausschusses für Bankenaufsicht. Mit der Umsetzung von Basel II wird die
Eigenkapitalanforderung der Banken an das Risiko des Portfeuille gekoppelt. Das
bedeutet, dass die Bank bei einem höheren Ausfallrisiko des Kredits diesen mit
mehr Eigenkapital hinterlegen muss. Das wiederrum führt zu einer Verteuerung des
geliehenen Geldes für die Bank. Die höheren Kosten werden an den Antragssteller
durch z.B. höhere Zinsen weitergegeben.

Aber auch für andere Industriezweige ist die Bonitätsbewertung von Bedeutung. So
prüfen viele Unternehmen zuerst die Bonität von Kunden, bevor sie mit ihnen Ge-
schäftsbeziehungen eingehen. Im Falle einer schlechten Bewertung werden entweder
besondere Zahlungsbedingungen gefordert oder die Geschäftbeziehung sogar ganz
abgelehnt. Die Bewertung der Bonität wird mit Hilfe von Ratingsystemen ermittelt.

Unter dem Begriff der Validierung wird der gesamte Prozess der Überprüfung
von Ratingsystemen verstanden. Gründsätzlich wird zwischen der qualitativen und
quantitativen Validierung unterschieden. In Abbildung 1 ist die Struktur von Vali-
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dierungsprozessen aufgezeigt.

Abbildung 1: Komponenten der Validierung

Die qualitative Validierung ist der quantitativen Validierung in der Regel voran-
gestellt. Dabei besteht diese aus den Bereichen Modelldesign, Datenqualität und
interne Verwendung.
Die Hauptaufgabe des Modelldesigns ist die Dokumentation des Ratingsystems.
Wichtige Kriterien sind hierbei der Umfang und die Vollständigkeit der Dokumenta-
tion. Das bedeutet, dass der Ratingprozess bzw. die Architektur des Ratingmodells
transparent gemacht werden sollen. Weiterhin soll dadurch die Auswahl sowie der
Einfluss von Risikoparametern ökonomisch begründet werden.

Der Datenqualität kommt bei der Entwicklung eines Ratingsystems eine eminente
Bedeutung zu und ist damit schon ein erstes Gütemaß für das Modell. Bei der Va-
lidierung der Datenqualität wird untersucht, ob die Daten vollständig sind. Eben-
falls muss geprüft werden, ob die zur Entwicklung oder Validierung verwendete
Stichprobe repräsentativ ist. Nur wenn dieses erfüllt ist, lässt sich das ermittelte
Ratingergebnis nachvollziehen.

Bei der Validierung der internen Verwendung wird lediglich überprüft, inwieweit das
Ratingsystem in das Risikomanagement eingebunden ist. Die interne Verwendung
ist jedoch ein Indiz für das Vertrauen in das Ratingmodell.
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Die zweite Säule der Validierung besteht aus der quantitativen Validierung des Ra-
tingmodells. Wichtig für diese Validierungsmethode ist ein ausreichender Stichpro-
benumfang. Die quantitative Validierung unterteilt sich in das statistische Backtes-
ting sowie das Benchmarking.

Das Backtesting wird anhand von firmeninternen Daten durchgeführt, wobei beim
Benchmarking das Ratingmodell anhand von Vergleichsdaten überprüft wird. Dieses
ermöglicht den Vergleich verschiedener Ratingmodelle auf einer identischen Daten-
basis. Bei beiden quantitativen Validierungskomponenten wird die Trennschärfe, die
Kalibrierung der Ausfallwahrscheinlichkeiten sowie die Stabilität des Ratingmodells
untersucht.

Die Fähigkeit ex ante zwischen ausgefallenen (Defaulter) und solventen (Non-Defaulter)
Debitoren zu unterschieden, wird Trennschärfe genannt. Je besser das Ratingmo-
dell ausfallgefährdete Debitoren erkennen kann, desto höher ist die Trennschärfe.
Die Trennschärfe dient somit als Gütemaß des Ratingmodells.

Die Kalibrierung der Ausfallwahrscheinlichkeit untersucht die Abweichung der pro-
gnostizierten von der tatsächlichen Ausfallwahrscheinlichkeit. Dabei dürfen sich die-
se für ein adäquates Risikomanagement nicht signifikant unterscheiden.

Die Beständigkeit des Ratingmodells über einen längeren Zeitraum sowie sich än-
dernde Rahmenbedingungen, nennt man Stabilität des Ratingmodells. Die Stabili-
tät wird validiert, indem die vorangegangenen Validierungskomponenten mit Hilfe
verschiedener Szenerien untersucht werden.

Die vorliegende Arbeit widmet sich ausschließlich dem statistischen Backtesting. Im
ersten Kapitel werden die statistischen Grundlagen geklärt sowie ein Grundgerüst
für die weiteren Validierungstechniken entwickelt. Das zweite Kapitel beschäftigt
sich mit der Messung der Trennschärfe. Dabei werden ausgewählte Beispiele der
Trennschärfemessung vorgestellt.

Der Kalibrierung des Ratingsystems widmet sich das dritte Kapitel. Anhand des
Ein-Faktor Modells wird dabei die prognostizierte Ausfallwahrscheinlichkeit gegen
die wahre Ausfallwahrscheinlichkeit getestet. Im vierten Kapitel werden die vorge-
stellten Methoden der Validierung auf die Datenerhebung der Fahrzeugwerk Ber-
nard KRONE GmbH angewandt und somit das Ratingsystem der Fa. KRONE
überprüft. Abschließend wird ein Fazit über die gewonnenen Ergebnisse gezogen.

Ich möchte ganz herzlich Herrn Privatdozent Dr. Volkert Paulsen für die Betreuung
dieser Arbeit danken. Ein besonderer Dank gilt auch der Fahrzeugwerk Bernard
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KRONE GmbH, insbesondere Herrn Hubert Börger für die Durchführung der Ar-
beit im Rahmen meines Betriebspraktikums. Für die Durchsicht ein Dank an Felix
Brinkmann.

Gemäß § 21 (6) der Diplomprüfungsordnung für den Studiengang Mathematik der
Westfälischen Wilhelms-Universität Münster vom 15. Juli 1998 versichere ich, dass
ich die vorliegende Diplomarbeit selbständig verfasst und keine anderen als die im
Literaturverzeichnis angegebenen Quellen und Hilfsmittel benutzt habe.

Münster, den 28. April 2010

Ulrich K. Frye



Kapitel 1

Statistische Grundlagen

In diesem Kapitel wird ein Modell vorgestellt, welches als Gerüst der gängigen
Validierungstechnik dient. Zunächst werden die statistischen Grundlagen erklärt.

Dazu sei (Ω, σ(Ω), P ) ein Wahrscheinlichkeitsraum, welcher unspezifiziert bleibt. Ω

kann dabei als Menge aller Debitoren aufgefasst werden.

Jedem Debitor werden nun zwei Zufallsvariablen S und X zugeordnet.
S : Ω −→ R gibt dabei den sogenannten Score -entlang einer stetigen Skala- des
Debitors an. Der Score -Realisation der Zufallsvariablen S- fasst die aus der Buch-
führung gewonnenen Daten bzgl. eines Debitors in einem einzelnen Wert zusammen
und ist somit eine Kennzahl für die Kreditwürdigkeit bzw. Bonität des Debitors.
Dabei gilt, dass ein hoher Score auch eine hohe Bonität impliziert bzw. ein nied-
riger Score eine geringe Bonität. In diesem Modell wird S auch als Score-Variable
bezeichnet.
Die Zufallsvariable X : Ω −→ {0, 1} soll den Status des Debitors -ausgefallen bzw.
nicht ausgefallen- am Ende einer Beobachtungsperiode angeben. Die Zufallsvariable
ordnet dem Debitor hierzu im Falle eines Ausfalls den Status 1 bzw. im Falle eines
solventen Debitors den Wert 0 zu. Formal für den i-ten Debitor:

X(i) = Xi =

 1, i ist ausgefallen

0, i ist nicht ausgefallen

Der Status des Debitors ist zu Anfang der Beobachtungsperiode nicht bekannt. Die
Zufallsvariable X ist somit latent. Ziel ist es, mit Hilfe des Scores s, den zukünftigen
Zustand des Debitors vorherzusagen.

5



6 1.1. GRUNDLAGEN

1.1 Grundlagen

Zunächst sollen einige Bezeichnungsweisen für den weiteren Verlauf eingeführt wer-
den.

Die Menge Ω der Debitoren lässt sich am Ende der Beobachtungsperiode in die
disjunkten Mengen der Defaulter D und der der Non-Defaulter N aufteilen. Die
Aufteilung wird dabei kanonisch durch die Realisation der Zufallsvariablen X gege-
ben. Die Randverteilung von X ist offensichtlich Binomial-verteilt mit

p
def
= P (X = 1) = 1− P (X = 0) (1.1)

Dabei sei mit p die totale Ausfallwahrscheinlichkeit -also die Wahrscheinlichkeit,
dass am Ende einer Periode ein Debitor ausgefallen ist- gemeint. Mit fD : R −→
[0, 1] ist die bedingte Dichte bzgl. des Lebesque Maßes von S -gegeben X = 1

bezeichnet. Die Verteilungsfunktion ist entsprechend gegeben durch

FD(s) = P (S ≤ s | X = 1) =

∫ s

−∞
fD(u) du.

Des Weiteren wird mit fN : R −→ [0, 1] die bedingte Dichte von S -gegeben X=0
bezeichnet. Die Verteilungsfunktion von S -gegeben X=0 ist gegeben durch

FN(s) = P (S ≤ s | X = 0) =

∫ s

−∞
fN(u) du.

Die unbedingte Dichte der Verteilung S sei f : R −→ [0, 1]. Die Verteilungsfunktion
von S wird festgelegt durch

F (s) = P (S ≤ s) =

∫ s

−∞
f(u) du (1.2)

In der Abbildung (1.1) ist ein Beispiel für die bedingten Dichten fD und fN gegeben.
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Abbildung 1.1: Beispiel für bedingte Dichten

Vermöge dem Satz von der totalen Wahrscheinlichkeit, kann die unbedingte Dichte
f geschrieben werden als

f(s) = p · fD(s) + (1− p) · fN(s) (1.3)

Mit dem Satz von Bayes lässt sich die bedingte Ausfallwahrscheinlichkeit P (X =

1 | S = s) dann errechnen zu

P (X = 1 | S = s) =
p · fD(s)

f(s)
(1.4)

Abbildung 1.2 illustriert die bedingte Ausfallwahrscheinlichkeit - gegeben den Score
s- gemäß (1.4).
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Abbildung 1.2: bedingte Ausfallwahrscheinlichkeit als Funktion der Score Werte

1.2 Einführung von Ratingklassen

Aufgrund der Stetigkeit der Scorevariablen S werden nur wenige bzw. keine Be-
obachtungen pro Realisation gezählt. Jedoch ist für das Backtesting eines Rating-
systems eine gewisse Anzahl an Debitoren pro Realisation erforderlich. Zu diesem
Zweck fordert das Baseler Komitee für Bankenaufsicht eine endliche Anzahl von
Ratingklassen in einem Ratingsystem. Im Folgenden wird ein Übergang zu einer
diskreten Dichte konstruiert, sodass den obigen Anforderungen genügt wird. Ein
erstes Verfahren wird wie folgt konstruiert.

Es werden k Ratingklassen durch rekursiv definierte Scoregrenzen sk−1 > sk−2 >

... > s1 definiert, wobei k die Ratingklasse mit der höchsten Bonität angibt. Zu
jeder Ratingklasse wird dann eine feste Ausfallwahrscheinlichkeit pj, mit j = 1, ..., k

bestimmt. Es gilt:
pk < pk−1 < ... < p2 < p1

Weiter wird angenommen, dass die bedingte Ausfallwahrscheinlichkeit P (X = 1 |
S = s) als Funktion in s fallend ist. Auf diesen Aspekt wird noch im Laufe der
Arbeit (vgl. Abschnitt 2.3) näher eingegangen. Die Scoregrenzen werden festgelegt
durch:

pk = P (X = 1 | S ≥ sk−1) =

p
∞∫

sk−1

fD(u) du

∞∫
sk−1

f(u) du
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und

pi = P (X = 1 | si > S ≥ si−1) =

p
si∫

si−1

fD(u) du

si∫
si−1

f(u) du

für i = 2, ..., k − 1. (1.5)

Ein Debitor mit Score s wird anhand der Funktion

R(s) =


k s ≥ sk−1

i , falls si > s ≥ si−1

1 s1 > s

(1.6)

einer Ratingklasse zugeordnet. Dabei wird z.B. ein Debitor mit Score größer oder
gleich sk−1 der Ratingklasse k zugeordnet, sowie falls der Score echt kleiner s1 ist
der ersten Ratingklasse.

Die Ausfallwahrscheinlichkeit der „schlechtesten“ Ratingklasse 1 ist über die Ausfall-
wahrscheinlichkeiten der k−1 anderen Ratingklassen definiert. Diese wird festgelegt
durch

p1 = P (X = 1 | R(s) = 1) = P (X = 1 | s1 > S) =

p
s1∫
−∞

fD(u) du

s1∫
−∞

f(u) du

.

Des Weiteren lässt sich beobachten, dass die Abbildung r 7−→ P (X = 1 | R(s) = r)

monoton fällt in r, falls die Funktion s 7−→ P [X = 1 | S = s] für fallende s fallend
ist.

1.2.1 Bemerkung
Betrachtet man das System über mehrere Perioden, so müssen die Score-Grenzen
mit der Zeit angepasst werden, damit die Ausfallwahrscheinlichkeiten der Rating-
klassen konstant bleiben. Dann spricht man von einem through − the − cycle-
Ratingsystem.

Ein weiteres Verfahren zur Kontruktion von Ratingklassen besteht darin, den Anteil
der Non-Defaulter pro Ratingklasse konstant zu halten, d.h.:
Es werden k Ratingklassen gewählt, wobei die Ratingklasse k wieder die höchs-



10 1.3. MONOTONIE

te Bonität angibt. Die relative Anzahl der Non-Defaulter pro Ratingklasse 0 <

r1, r2, ..., rk mit
k∑
i=1

ri = 1 bleibt konstant. Die Scoregrenzen sk−1 > sk−2 > ... > s1

werden dann rekursiv festgelegt durch

rk = P (S ≥ sk−1 | X = 0) =

∞∫
sk−1

fN(s) ds

und

ri = P (si > S ≥ si−1 | X = 0) =

si∫
si−1

fN(s) ds, für i = 2, ..., k − 1.

Die Abbildung der Scores auf die Ratingklasse ist analog zu (1.6) definiert. Somit

folgt wegen
k∑
i=1

ri = 1

P (R(s) = 1 | X = 0) = P (S < s1 | X = 0) = r1.

1.2.2 Bemerkung
Wird das System wieder über mehrere Perioden betrachtet, so müssen auch hier die
Score-Grenzen mit der Zeit angepasst werden, damit der Anteil der Non-Defaulter
konstant bleibt. Jedoch wird mit diesem Verfahren ein großer Shift der Score-
Variablen vermieden. Es wird in diesem Fall von einem point−in−time-Ratingsystem
gesprochen.

Im weiteren Verlauf der Arbeit wird allgemein von Ratingsystemen gesprochen, falls
die Score Variable und ihre Einteilung in Ratingklassen gemeint ist.

1.3 Monotonie

Im vorherigen Kapitel wurde die Monotonie der bedingten Ausfallwahrscheinlichkeit
P (X = 1 | S = ·) vorausgesetzt. Dieses ist jedoch nicht immer gewährleistet. Ziel
ist es, nun mit Hilfe eines statistischen Tests, die Bedingungen für die Monotonie
näher zu analysieren. Zunächst wird ein optimaler Test bestimmt.

Dazu wird zufällig ein Debitor ausgewählt und sein Score notiert. Da noch keine
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Informationen über seinen zukünftigen Status vorliegen, wird mit Hilfe des Scores
auf die Zustandsvariable X geschlossen.

Anzunehmen ist, dass (s, x) eine Realisation von (S,X) ist. s ist beobachtet worden,
x ist noch nicht bekannt. Es stellt sich die Frage, ob x = 0 oder x = 1 ist. Es wird
eine Entscheidungsmenge E gewählt, sodass ein Ausfall angenommen wird, sofern
der Score des Debitors in der Menge E liegt. Falls dieses nicht der Fall ist, wird von
Solvenz des Debitors ausgegangen.

s ∈ E =⇒Annahme x = 1

s /∈ E =⇒Annahme x = 0

Um die Menge E zu bestimmen, wird die bedingte Score Verteilung der Defaulter
P (S ∈ · | X = 1) und die bedingte Score Verteilung der Non-Defaulter P (S ∈
· | X = 0) betrachtet. Ziel ist es, die Menge E so zu wählen, dass die bedingte
Score Verteilung der Defaulter maximal und die bedingte Score Verteilung der Non-
Defaulter minimal wird. Dazu wird die Hypothese H0 (der Debitor ist zukünftiger
Defaulter) bzw. die Alternative H1 (der Debitor bleibt liquide) aufgestellt. Dann
werden diese Hypothesen gegeneinander getestet.

H0 : x = 1 gegen H1 : x = 0

In einem solchen Test können zwei Fehler begangen werden. Zum Einen der Fehler
1. Art -die Hypothese H0 wird ablehnt, obwohl diese wahr ist-, zum Anderen der
Fehler 2. Art -die Hypothese H0 wird beibehalten, obwohl die Alternative H1 gilt.

• Fehler 1. Art: Debitor wird für solvent gehalten, obwohl er Defaulter ist

• Fehler 2. Art: Debitor wird als Defaulter angenommen, obwohl er solvent
bleibt

Um nun optimal zu entscheiden, werden die Wahrscheinlichkeiten der beiden Feh-
lermöglichkeiten betrachtet.

Die Wahrscheinlichkeit des Fehlers 1. Art ergibt sich aus der bedingten Verteilung
der Defaulter, unter der Annahme, dass der Score des Debitors kein Element der
Menge E ist.

P (Fehler 1. Art) = P (S /∈ E | X = 1)

Die Wahrscheinlichkeit des Fehlers 2. Art, ist die Wahrscheinlichkeit unter der Ver-
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teilung der Non-Defaulter, dass der Debitor einen Score aus der Menge E hat.

P (Fehler 2. Art) = P (S ∈ E | X = 0)

Da der Fehler 1. Art kritischer ist, wird dieser nach oben hin durch eine Schranke α
begrenzt, d.h. ein Test zum Niveau α durchgeführt. Dadurch ergibt sich als modifi-
ziertes Ziel, einen gleichmäßig besten Test zum Niveau α zu finden, der den Fehler
2. Art minimiert.

P (Fehler 1. Art) ≤ Schranke

P (Fehler 2. Art) minimieren

Zunächst muss der sogenante Likelihood Quotient und das zugehörige α-Fraktil
eingeführt werden.

1.3.1 Definition
Seien fD und fN Dichtefunktionen von S, dann heißt

LR(S)
def
=

fD
fN

(S)

Likelihood Quotient der Score Variablen S.

1.3.2 Definition
Das α-Fraktil von LR(S) wird definiert durch

rα
def
= inf

r≤0
{P (LR(S) ≤ r | X = 1) ≥ 1− α}.

Aufgrund der Stetigkeit kann das α-Fraktil durch Auflösung der folgenden Gleichung
bestimmt werden.

1− α = P (LR(S) ≤ rα | X = 1)

Mit Hilfe des Neymann-Pearson Lemmas folgt, dass

ϕ =

 1, für LR(S) > rα

0, sonst

einen gleichmäßig besten Test zum Niveau α definiert. Dabei bedeutet ϕ = 1 die
Ablehnung der Hypothese H0. Dieses Ergebnis wird auf das Problem übertragen.
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Falls

• S /∈ E ⇐⇒ ϕ = 1

• P (S /∈ E | X = 1) ≤ α

gilt, so folgt
P (LR(S) ≤ rα | X = 0) ≤ P (S ∈ E | X = 0). (1.7)

Mit Hilfe von (1.7) kann nun die gesuchte Menge E definiert werden.

E
def
= {s : LR(s) ≤ rα} (1.8)

Damit ist gezeigt, dass der gleichmäßig beste Test in der Betrachtung des Likelihood
Quotienten liegt. Außerdem kann mit Hilfe der Menge E (1.8) zwischen Defaultern
und Non-Defaultern unterschieden werden.

Um die Monotonie der Ausfallwahrscheinlichkeiten zu untersuchen, wird die Bayes
Formel genutzt. Mit dieser kann gezeigt werden, dass die bedingte Ausfallwahr-
scheinlichkeit P (X = 1 | S = s) genau dann monoton ist, wenn der Likelihood
Quotient monoton ist.

Um diesen Aspekt weiter zu erläutern, wird die Eigenschaft der Linearität einer
Score Variable eingeführt.

1.3.3 Definition
Die Score Variable S ist linear bzgl. der Verteilung P (S ∈ · | X = 1) und P (S ∈ · |
X = 0), falls

ϕ =

 1 falls S > rα

0 sonst

einen gleichmäßig besten Test zum Niveau α definiert.

Durch die Definition und (1.8) lässt sich folgende Bemerkung machen.

1.3.4 Bemerkung
Die Score Variable S ist genau dann linear bzgl. der Verteilung P (S ∈ · | X = 1)

und P (S ∈ · | X = 0), wenn der Likelihood Quotient LR(S) monoton ist und damit
auch die bedingte Ausfallwahrscheinlichkeit.
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In der Praxis ist es schwer, die Monotonie nachzuweisen. Jedoch ist es aus betriebs-
wirtschaftlicher Sicht klar, dass die Monotonie der bedingten Ausfallwahrscheinlich-
keit gegeben sein muss. Denn mit schlechter werdendem Score muss die bedingte
Ausfallwahrscheinlichkeit des Debitors größer werden. Indirekt kann dieses schon
als erstes Validierungskriterium des Ratings angesehen werden.



Kapitel 2

Validierungstechniken für die
Trennschärfe von Ratingsystemen

Dieses Kapitel bezieht sich auf die Messung der Trennschärfe -die Fähigkeit zwi-
schen Defaultern und Non-Defaultern zu unterscheiden- von Ratingsystemen. Wie
bereits in der Einleitung erwähnt, ist die Trennschärfe ein Maß für die Güte eines
Ratingsystems. Es gilt, je höher die Trennschärfe eines Ratingsystems, desto besser
kann dieses zwischen Defaultern und Non-Defaultern differenzieren. Die Trennschär-
fe kann auf verschiedene Weise ermittelt werden. Einige in der Wirtschaft bedeu-
tende Verfahren werden in diesem Kapitel vorgestellt. Zum Einen das Cumulative
Accuracy Profile, zum Anderen die Reciever Operating Characteristic. Abschließend
werden weitere Verfahren genannt.

2.1 Cumulative Accuracy Profile

Das Cumulative Accuracy Profile (CAP ) ist ein graphisches Hilfsmittel zur Bestim-
mung der Trennschärfe von Ratingsystemen.

Mit FD und FN sei -wie im ersten Kapitel- die bedingte Verteilungsfunktion der
Score Variablen S unter X = 1 bzw. X = 0 verstanden. p sei wiederum die to-
tale Ausfallwahrscheinlichkeit der Debitoren. Somit kann mit Hilfe von (1.3) die
unbedingte Verteilungsfunktion F (s) der Score Variablen S bestimmt werden. Es
ist:

F (s) =

∫ s

−∞
f(u) du

(1.3)
= (1− p)FN(s) + pFD(s) (2.1)

15
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Hiermit wird nun die CAP -Funktion definiert.

2.1.1 Definition
Die Funktion CAP : [0, 1] −→ [0, 1] definiert durch

CAP (u)
def
= FD(F−1(u)), u ∈ [0, 1] (2.2)

heißt Cumulative Accuracy Profile (CAP )-Funktion, wobei
F−1(u)

def
= sup

s
{P [S ≤ s] < u} die Pseudo-Inverse von F sei.

Abbildung 2.1: CAP - Kurve für Ratingsysteme

Alternativ erhält man die Kurve der CAP -Funktion, indemman die Punkte (F (s), FD(s))

für s ∈ R plottet.

2.1.2 Bemerkung
Im CAP -Modell werden die Verteilungsfunktionen F (s) und FD(s) auch als Alarm-
rate bzw. Trefferquote bezeichnet. Anschaulich gibt die Alarmrate F (s) den relative
Anteil aller Debitoren, kleiner oder gleich einem Score s, an. Mit der Trefferquote
FD(s) ist der relative Anteil der Defaulter kleiner oder gleich einem Score s gemeint.
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Die Abbildung 2.1 zeigt Beispiele für CAP-Funktionen. Diese Beispiele werden nun
näher beschrieben.

• perfektes Ratingsystem

Der Graph eines perfekten Ratingsystems wächst linear vom Ursprung bis
zum Punkt (p, 1) und ist von (p, 1) bis (1, 1) konstant. Die Score Variable eines
perfekten Ratingsystems ordnet allen Defaultern -besitzen einen Anteil von p
an der Grundgesamtheit der Debitoren- im Vorhinein den niedrigsten Score
zu. Somit unterscheidet das perfekte Ratingsystem nur zwischen Defaultern
und Non-Defaultern. Der Definitionsbereich der bedingten Dichten fD und fN
der Score Variablen ist disjunkt (Abbildung 2.2). Formal:

{s : fD(s) > 0} ∩ {s : fN(s) > 0} = ∅ für alle s

Abbildung 2.2: Bedingte Dichten bei perfektem Ratingsystem

• triviales Ratingsystem

Im Falle eines trivialen Ratingsystems besitzt das Ratingsystem keine Trenn-
schärfe -keine Unterscheidung zwischen Defaultern und Non-Defaultern. Des-
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halb sind die bedingten Dichten fD und fN der Score Variablen identisch. Die
Kurve dieses Ratingsystems ist eine Gerade durch den Ursprung und (1, 1).
Anschaulich besitzt jeder Score den gleichen Anteil von Defaultern und Non-
Defaultern. Die Score Variable ordnet die Debitoren zufällig den Score Werten
zu -Coin-Toss.

• Ratingsystem in der Praxis

Ein reales Ratingsystem besitzt eine CAP -Kurve zwischen diesen beiden Ex-
trema. Ein solches Ratingsystem besitzt Trennschärfe und liegt deshalb ober-
halb der Kurve des trivialen Ratingmodells. Es kann aber nicht mit Sicherheit
zwischen Defaulter und Non-Defaulter unterscheiden und ist somit unterhalb
der Kurve des perfekten Ratingmsystems. Auf die Konkavität der Kurve wird
im weiteren Verlauf dieses Kapitels näher eingegangen.

2.1.3 Bemerkung
In der Praxis ist es unwahrscheinlich, dass ein Ratingsystem die CAP -Kurve eines
perfekten Ratingsystems besitzt, da dies bedeutet, dass mit Sicherheit ein Defaulter
vorhersehbar ist. Genauso unwahrscheinlich ist die Kurve eines trivialen Ratingsys-
tems. Ein solches Ratingsystem ist nutzlos, da es nicht zwischen Defaultern und
Non-Defaultern unterscheiden kann (Münze werfen ist günstiger).

Zur weiteren Untersuchung der CAP -Kurve -z.B. die Konkavität- wird die Ableitung
der CAP -Funktion betrachtet. Zunächst wird die Ableitung der Pseudo-Inversen
gebildet. Die Verteilungsfunktion F ist stetig und streng monoton auf dem Intervall
[0, 1]. Weiter sei F in s differenzierbar mit F ′(s) 6= 0. Dann ist F−1 in F (s) = u

differenzierbar und es gilt

F−1′(u) =
1

F ′(s)
=

1

F ′(F−1(u))
(2.3)

Damit wird nun die Ableitung der CAP -Funktion bestimmt. Es gilt

CAP ′(u)
(2.3)
=

fD(F−1(u))

f(F−1(u))
.

Mit der Bayes Formel (1.4) folgt

CAP ′(u) =
fD(F−1(u))

f(F−1(u))
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(1.4)
=

1
p
P (X = 1 | S = F−1(u)) · f(F−1(u))

f(F−1(u))

=
P (X = 1 | S = F−1(u))

p
(2.4)

Mit der Darstellung (2.4) folgt aus der Monotonie der bedingten Ausfallwahrschein-
lichkeit die Konkavität der CAP -Funktion. Da die bedingte Ausfallwahrscheinlich-
keit monoton fallend ist, fällt CAP ′(u) in u und somit ist die CAP -Funktion konkav.

Um nun eine Kennzahl zur Messung der Trennschärfe zu bekommen, wird die Fläche
zwischen der Diagonalen und der CAP -Kurve betrachtet.

Abbildung 2.3: CAP - Kurve für Ratingsysteme

Die Fläche zwischen CAP -Kurve und der Diagonalen -hellgraue Fläche in Abbil-
dung 2.3- ist gegeben durch ∫ 1

0

CAP (u) du− 1

2

Weiterhin berechnet sich die Fläche zwischen CAP -Kurve des perfekten Ratingsys-
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tems und der Diagonalen -dunkelgraue Fläche in Abbildung 2.3- zu

1

2
− p

2

Der Quotient aus diesen beiden Flächen bildet eine Kennzahl zur Bestimmung der
Trennschärfe, die Accuracy Ratio.

2.1.4 Definition
Die Accuracy Ratio (AR) ist definiert als

AR
def
=

1∫
0

CAP (u) du− 1

2
1

2
− p

2

=

2
1∫
0

CAP (u) du− 1

1− p
. (2.5)

Die Kennzahl AR kann folgendermaßen anschaulich verstanden werden. Man wählt
zwei zufällige Debitoren, einen aus der Grundgesamtheit der Defaulter, den ande-
ren aus der Grundgesamtheit der Non-Defaulter. Die AR ergibt sich dann aus der
Differenz der Wahrscheinlichkeit, dass der Score des Defaulters kleiner ist als der
Score des Non-Defaulters und der Wahrscheinlichkeit, dass der Score des Defaulters
größer ist als der Score des Non-Defaulters. Formal:

AR = P (SD < SN)− P (SD > SN), (2.6)

wobei SD und SN unabhängig und FD bzw. FN verteilt sind. Der Beweis von (2.6)
wird im nachfolgenden Kapitel geführt.

2.1.5 Bemerkung
Die Trennschärfe des Ratingsystems ist somit umso besser, je größer die Accuracy
Ratio ist. Eine große AR bedeutet auch eine große Ausfallwahrscheinlichkeit für
niedrige Score-Werte und umgekehrt.



KAPITEL 2. TRENNSCHÄRFE 21

2.2 Reciever Operating Characteristic

Ein weiteres graphisches Hilfsmittel zur Bestimmung der Trennschärfe ist die Re-
ciever Operating Characteristic.

Zusätzlich zur Definition von Trefferquote und Alarmrate wird eine weitere De-
finition benötigt. Dabei handelt es sich um die Fehlalarmquote. Diese ist als die
bedingte Wahrscheinlichkeit -der Score eines Non-Defaulters ist kleiner oder gleich
einer bestimmten Score-Grenze s-

P (S ≤ s | X = 0) = FN(s)

definiert. Die Fehlalarmquote gibt den Anteil der Non-Defaulter unter einer Schran-
ke s an. Damit ist es nun möglich, die ROC-Funktion zu definieren.

2.2.1 Definition
Die Funktion ROC : [0, 1] −→ [0, 1] gegeben durch

ROC(u)
def
= FD(F−1

N (u)), u ∈ (0, 1) (2.7)

heißt Reciever Operating Characteristic (ROC)-Funktion, wobei F−1
N die Pseudo-

Inverse von FN sei.

2.2.2 Bemerkung
Die ROC-Funktion und CAP -Funktion unterscheiden sich darin, dass die CAP -
Funktion durch F (s) von der totalen Ausfallwahrscheinlichkeit p abhängt.

Nun wird auf die Charakterisierung der Kurve der ROC-Funktion eingegangen. Der
Graph der ROC-Funktion kann durch Plotten von (FN(s), FD(s)), s ∈ R bestimmt
werden.

Die in Abbildung 2.4 gezeigten Beispiele für ROC-Funktionen werden nun weiter
beschrieben.

• perfektes Ratingsystem

Die ROC-Kurve ist eine Konstante (ROC(u) ≡ 1). Die Score Variable des
perfekte Ratings ordnet allen Defaultern den „schlechtesten“ Score Wert zu,
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Abbildung 2.4: ROC - Kurve für Ratingsysteme

die Non-Defaulter werden auf alle weiteren Score Werte verteilt -keinem Non-
Defaulter wird der „schlechteste“ Score Wert zugeordnet.

• triviales Ratingsystem

Der Graph eines trivialen Ratingsystems ist eine Gerade durch den Ursprung
und den Punkt (1, 1). Die Score Variable ordnet jedem Debitor einen zu-
fälligen Score zu, die bedingten Dichten fD und fN sind deshalb identisch.
(=⇒ ROC(u) = u)

• reales Ratingmodell

Der Graph eines realen Ratingsystems ist eine konkave Kurve zwischen den
beiden Extrema -perfektes Rating und triviales Rating.

Zur weiteren Untersuchung der ROC-Kurve wird wieder die Ableitung der ROC-
Funktion betrachtet. Die Ableitung ist gegeben durch

ROC ′(u) =
fD(F−1

N (u))

fN(F−1
N (u))

, u ∈ (0, 1). (2.8)

Die Existenz der Ableitung der ROC-Funktion folgt mit derselben Argumentation
wie bei der Ableitung der CAP -Funktion.

Der Quotient aus (2.8) entspricht dem Likelihood Qutienten, der bereits im Kapitel
1.3 -Monotonie- untersucht wurde. In Kapitel 1.3 wurde gezeigt, dass der Likelihood
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Quotient genau dann monoton fallend ist, wenn die bedingte Ausfallwahrscheinlich-
keit in s monoton fällt. Somit folgt aus der monoton fallenden Eigenschaft der
bedingten Ausfallwahrscheinlichkeit die Konkavität der ROC-Kurve.

Abbildung 2.5: Ableitung der ROC - Kurve aus Abbildung 2.4

Für das ROC-Verfahren soll wie beim CAP -Verfahren eine einzelne Kennzahl zur
Bestimmung der Trennschärfe definiert werden. Hierzu wird die Fläche unter der
ROC-Kurve betrachtet.

2.2.3 Definition
Die Kennzahl AUROC (Area Under ROC) ist definiert als die Fläche unterhalb der
ROC-Kurve

AUROC
def
=

∫ 1

0

ROC(u) du

=

∫ 1

0

FD(F−1
N (s)) ds

Die AUROC lässt sich auch als Wahrscheinlichkeit interpretieren und zwar so, dass
der Score eines zufällig gewählten Non-Defaulters größer ist, als der Score eines
zufällig gewählten ausgefallenen Debitors. Es gilt

AUROC = P (SD < SN), (2.9)
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wobei SD und SN unabhängig und FD bzw. FN verteilt sind.

Beweis:
Es sei S die Menge aller möglichen Score Werte s. Dann gilt

AUROC =

∫ 1

0

FD(F−1
N (s)) ds,

Trafo
=

∫
S

FD(s) dFN(s)

=

∫
S

FD(SN) dP

= EP [P (SD < SN) | SN ]

Eig. bed. EW
= P (SD < SN) (2.10)

�

Die Maximierung der AUROC dient somit der Maximierung der Trennschärfe
des Ratingsystems, da mit größer werdender AUROC die Wahrscheinlichkeit -
P (SD < SN)-, anhand des Score Wertes zwischen Defaultern und Non-Defaultern
zu unterscheiden, steigt.

Weiterhin lassen sich die Area Under ROC und Accuracy Ratio über die Formel

AUROC =
AR + 1

2
(2.11)

ineinander überführen.

Es gilt nämlich

AUROC =

∫ 1

0

FD(F−1
N (s)) ds

Trafo
=

∫
S

FD(s) d(FN(s))

(2.1)
=

∫
S

FD(s) d(
F (s)− pFD(s)

1− p
)

=

∫
S

FD(s)

1− p
d(F (s))−

∫
S

pFD(s)

1− p
d(FD(s))

=

∫
S
FD(s) d(F (s))

1− p
−
p
∫

S
FD(s) d(FD(s))

1− p
Trafo
=

∫ 1

0
FD(F−1(u)) du

1− p
−
p
∫ 1

0
FD(F−1

D (u)) du

1− p
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=

∫ 1

0
CAP (u) du

1− p
−

1
2
p

1− p

=
1

2

(
2
∫ 1

0
CAP (u) du− 1

1− p
+

1− p
1− p

)
(2.5)
=

1

2
(AR + 1)

Mit Hilfe von (2.11) ist es nun möglich, den ausstehenden Beweis von (2.6) zu
führen.

Beweis:

AR
(2.11)
= 2 · AUROC − 1

(2.9)
= 2 · P (SD < SN)− 1

= 2 · P (SD < SN)− (P (SD < SN) + P (SD > SN))

= P (SD < SN)− P (SD > SN)

�

2.2.4 Bemerkung
(2.11) zeigt, dass die Accuracy Ratio -wie die Area under ROC- von den bedingten
Dichten der Score Variablen S abhängt, aber nicht von der totalen Ausfallwahr-
scheinlichkeit p.

2.2.5 Bemerkung
Die ROC-Kurve kann auch als Diagramm des Fehlers 1. Art und Fehlers 2. Art
interpretiert werden.

Testet man die Hypothesen

H0 : X = 1 gegen H1 : X = 0

entspricht FN(s) der Wahrscheinlichkeit des Fehlers 2. Art und 1−FD(s) der Wahr-
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scheinlichkeit des Fehlers 1. Art, wobei die Testfunktion ϕ gegeben durch

ϕ =

 1, falls S > s

0, sonst

zugrundeliegt. ϕ = 0 bedeutet das Annehmen der Hypothese H0.

2.3 Weitere Trennschärfemaße

In Kapitel 2.1 und 2.2 wurden die Gütemaße Cumulative Accuracy Profile und
Reciever Operating Characteristic vorgestellt. Nun wird ein kurzer Überblick über
weitere Trennschärfemaße gegeben. Zuerst wird der Bayes Fehler -wozu auch der
Spezialfall Klassifikationsfehler zählt- vorgestellt. Daraufhin wird der Pietra-Index
analysiert. Abschließend wird der -Entropie basierende- bedingte Entropie Quotient
hergeleitet.

2.3.1 Bayes Fehler

Die ROC-Kurve kann als Diagramm der Fehlerarten bzgl. der verschiedenen Score
Werte s gedeutet werden. Mit Hilfe der Fehleranalyse kann ein weiteres Trennschär-
femaß entwickelt werden. Dazu wird der Gesamtfehler betrachtet, im Gegensatz zur
seperaten Analyse des Fehlers 1. Art bzw. 2. Art. Zunnächst wird der Begriff des
Klassifikators eingeführt.

2.3.1 Definition
Ein Klassifikator b ist eine Funktion, der Elemente aus einem Merkmalsraum -hier
Score s- auf eine Menge von Mustern C abbildet.

b : R −→ C

In diesem Fall wird C = {0, 1} betrachtet, wobei C = 0 als Solvenz und C = 1 als
Ausfall des Debitors gedeutet wird.

Der sogenannte Bayes Klassifikator ordnet die Merkmale anhand der a posteriori
Wahrscheinlichkeit -P (X = 1|S = s)- den Mustern zu. Das Mermal wird dem
Muster zugeordnet, für die die a posteriori Wahrscheinlichkeit am Größten ist (Bayes
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Entscheidungsregel):

b(s) = 1 ⇐⇒ P (X = 1|S = s) > P (X = 0|S = s) (2.12)

b(s) = 0 ⇐⇒ P (X = 0|S = s) > P (X = 1|S = s) (2.13)

Aufgrund des Satzes von Bayes (1.4)

P (X = 1|S = s) =
P (S = s|X = 1)P (X = 1)

P (S = s|X = 1)P (X = 1) + P (S = S|X = 0)P (X = 0)

kann die Bayes Entscheidungsregel -(2.12) und (2.13)- berechnet werden durch:

b(s) = 1 ⇐⇒ P (S = s|X = 1)P (X = 1) > P (S = s|X = 0)P (X = 0)

b(s) = 0 ⇐⇒ P (S = s|X = 0)P (X = 0) > P (S = s|X = 1)P (X = 1)

Weiter ist die Bayes Entscheidungsregel optimal bzgl. der Fehlerwahrscheinlichkeit.
D.h. der Bayes Klassifikator minimiert die Fehlerwahrscheinlichkeit.

BF
def
= min

s∈S
{P (Fehler bei Score s)}

= min
s∈S
{P (X = 1)P (S > s | X = 1) + P (X = 0)P (S ≤ s | X = 0)}

= min
s∈S
{p(1− FD(s)) + (1− p)FN(s)} (2.14)

Die Kennzahl BF wird Bayes Fehler gennant und ist ein Gütemaß für die Trenn-
schärfe.

Der Bayes Fehler gibt die Fehlerwahrscheinlichkeit bei optimalem Einsatz des Ra-
tingsystems wieder, also den Anteil der Debitoren, die bei optimaler Zuordnung
falsch klassifiziert werden. Deshalb gilt, je kleiner der Bayes Fehler, desto höher ist
die Trennschärfe des Ratingsystems.

2.3.2 Bemerkung
Bei einem perfekten Ratingsystem werden alle Debitoren richtig klassifiziert, der
Bayes Fehler wäre somit gleich null und die Trennschärfe maximal.

Ein Spezialfall des Bayes Fehler ist der Klassifikationsfehler (KF ). Bei diesem wird
die totale Ausfallwahrscheinlichkeit p gleich 1/2 gesetzt.
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Für p = 1
2
ist

KF = BF1/2 = min
s∈S
{1

2
(1− FD(s)) +

1

2
FN(s)}

=
1

2
min
s∈S
{1− FD(s) + FN(s)}

=
1

2
(1 − max

s∈S
| FD(s)− FN(s) | ∈ [0, 1] (2.15)

2.3.3 Bemerkung
Der Klassifikationsfehler ist nicht von der totalen Ausfallwahrscheinlichkeit p abhän-
gig und eignet sich daher besser zum Vergleich von Ratingsystemen als die Bayes
Fehler.

Mit der Schreibweise (2.15) des Klassifikationsfehlers lässt sich eine Beziehung zu
einem weiteren Trennschärfemaß -Pietra-Index- aufweisen.

2.3.2 Pietra-Index

Mit Hilfe des Pietra-Index, der auch als Kolmogorov-Smirnoff-Teststatistik bekannt
ist, wird getestet, ob die Verteilungsfunktionen FD und FN identisch sind.

2.3.4 Definition
Seien FD und FN die Verteilungsfunktionen der Defaulter bzw. Non-Defaulter, dann
heißt

PI
def
= max

s∈S
| FD(s)− FN(s) |

Pietra Index der Verteilungen FD, FN .

Getestet werden die Hypothesen

H0 : FD = FN , H1 : FD 6= FN .

Damit kann nun folgende Testfunktion definiert werden.
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2.3.5 Bemerkung
Als Kolmogorov-Smirnoff Test wird folgender Test zum Niveau α verstanden.

ϕ =

1, falls PI > Dα

0, falls PI ≤ Dα

Dabei ist Dα ein kritischer Wert, der mit Hilfe der Literatur 1 berechnet werden
kann. Weiter bedeutet ϕ = 1 Ablehnung der Hypothese H0.

Wird die Hypothese angenommen (ϕ = 0), so sind die Verteilungsfunktionen iden-
tisch, d.h. FD ≡ FN . Die ROC-Kurve eines solchen Ratingsystems ist in Abbildung
2.6 gezeigt. Daraus folgt, dass die Score Variable und somit das Ratingsystem kei-
nerlei Trennschärfe besitzt.

Abbildung 2.6: ROC - Kurve bei Identität der bedingten Vtlg.Fkt.

Dadurch besteht mit dem Pietra-Index ein weiteres Maß zur Messung der Trenn-
schärfe.

1kritischer Wert ist der Tabelle der Kolmogorov-Smirnoff Verteilung entnehmbar, Anhang Ta-
belle 4.16
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2.3.3 Bedingter Entropie Quotient

Im Folgenden werden die Entropie basierten Trennschärfemaße behandelt. Die-
se Trennschärfemaße betrachten den Informationsgewinn, der durch den Einsatz
des Ratingsystems gewonnen wird. In diesem Zusammenhang wird Information als
messbare Größe interpretiert, die dem Grad der Kenntnis über ein zukünftiges Er-
eignis entspricht.

Zunächst wird der Begriff der Entropie eingeführt.

2.3.6 Definition
Für ein dichotomes Ereignis -Ereignis tritt ein oder nicht- mit Eintrittswahrschein-
lichkeit p wird durch

H(p)
def
= −(p log(p) + (1− p) log(1− p)) (2.16)

die sogenannte Entropie von p definiert.

Abbildung 2.7: Informationsentropie als Funktion der Ausfallwahrscheinlichkeit

Anhand von Abbildung 2.7 kann deutlich gesehen werden, dass H(p)→ 0 strebt ge-
nau dann, wenn p→ 0 oder p→ 1. Somit ist die Entropie ein Maß der Unsicherheit
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über den Ausgang eines Ereignisses.

Die Unsicherheit ist für eine Eintrittswahrscheinlichkeit von p = 0, 5 am Größten
(100 %).

Um nun die Trennschärfe eines Ratingsystems zu messen, wird die Entropie der
bedingten Ausfallwahrscheinlichkeit betrachtet.

2.3.7 Definition
Sei H(P (X = 1|S = s)) die Entropie der bedingten Ausfallwahrscheinlichkeit, dann
ist die über alle Scores gemittelte bedingte Entropie definiert als

HS
def
= E[H(P (X = 1|S = s))]. (2.17)

Die gemittelte bedingte Entropie HS gibt die verbliebene Unsicherheit nach Anwen-
dung des Ratingsystems über den zukünftigen Ausfallstatus an. Falls der Wert der
gemittelten bedingten Entropie HS dicht bei null ist, deutet dieses auf eine hohe
Trennschärfe des Ratingsystems hin.

Um eine vergleichbare Kennzahl des Entropiemaßes zu bekommen, wird die Entropie
normiert.

H(p)−HS

H(p)
= 1− HS

H(p)
∈ [0, 1] (2.18)

Die so gewonnene Kennzahl heißt bedingter Entropie Quotient (CIER). Der be-
dingte Entropie Quotient ist eine Kennzahl dafür, wie viele Informationen ein Ra-
tingsystem trägt.

Falls bei der Anwendung des Ratingsystems keinerlei Informationen gewonnen wer-
den, ist CIER = 0. Für ein ideales Ratingsystem ist CIER = 1. Somit lässt sich
zusammenfassend sagen, je größer der Wert des CIER ist, desto größer ist die
Trennschärfe des Ratingsystems.





Kapitel 3

Kalibrierung von Ratingsystemen

Von dem Begriff der Trennschärfe eines Ratingsystems ist der, der Kalibrierung eines
Ratingsystems abzugrenzen. Während unter der Trennschärfe eines Ratingsystems
die Fähigkeit ex ante einen Defaulter zu identifizieren verstanden wird, beschreibt
die Kalibrierung die Zuweisung der Ausfallwahrscheinlichkeiten zu den einzelnen
Ratingklassen. Somit kann es durchaus möglich sein, dass ein Ratingsystem trenn-
scharf, aber nicht gut kalibriert ist. Der umgekehrte Fall -perfekt kalibriert, aber
keinerlei Trennschärfe- ist ebenfalls möglich.

Ziel dieses Kapitels ist es nun, die Ausfallwahrscheinlichkeiten der verschiedenen Ra-
tingklassen -Kapitel 1.2- zu überprüfen, d.h. ob diese richtig kalibriert sind. Zuerst
wird ein Modell vorgestellt, mit dem eine solche Überprüfung ermöglicht wird. In
einem zweiten Schritt wird auf die Kalibrierung eines trivialen Modells -der Unab-
hängigkeit der Ausfallereignisse- eingegangen. Anschließend wird die realitätsnahe
Modellierung von abhängigen Ausfällen diskutiert.

3.1 Einfaktor-Modell

Sei n die Anzahl der Debitoren im Kunden-Portfeuille Ω. Diese unterteilen sich
in k Ratingklassen mit jeweils nr, r = 1, .., k Debitoren. Die Zufallsvariable Br

beschreibe die Bonität des Debitors in der r-ten Ratingklasse und wird gegeben
durch

Br(i) = Bri =
√
υrZ +

√
1− υrUri r = 1, ..., k i = 1, ..., nr (3.1)

33
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Dabei sei die Zufallsvariable Z ein makroökonomischer Risikofaktor und die Zufalls-
variable Uri das firmenspezifische Risiko des i-ten Unternehmens. Z als auch Uri sei-
en N (0, 1)-verteilt. Der jeweilige Einfluss der Risikoparameter sei durch υr ∈ [0, 1]

gesteuert. Des Weiteren seien für alle r, i Z und Uri paarweise unabhängig und somit
Bri wiederum N (0, 1)-verteilt.
Zusätzlich sei eine Schranke cr für die Bonität festgelegt. Falls ein Debitor unter die-
se Schranke fällt, fällt dieser aus. Somit werden die Ausfälle der r-ten Ratingklasse
durch die Zufallsvariable

Xr(i) = Xri =

1 für Bri ≤ cr

0 sonst

beschrieben. Diese Schranke cr wird eindeutig über die Ausfallwahrscheinlichkeit pr
der r-ten Ratingklasse festgelegt. Es gilt:

cr = Φ−1(pr), (3.2)

denn für die Ausfallwahrscheinlichkeit der r-ten Ratingklasse gilt:

pr = P (Xri = 1) = P (Bri ≤ cr) = Φ(cr)

⇐⇒ cr = Φ−1(pr)

Somit folgt, dass Xri ∼ B(1, pr). Die empirische Ausfallquote p̄r der r-ten Rating-
klasse ist gegeben durch

p̄r
def
=

1

n

nr∑
i=1

Xri.

Nun lässt sich folgendes beobachten.

1. Die Korrelation zweier Bonitätsvariablen Bri und Bsj, r 6= s ∨ i 6= j ist
gegeben durch

υrs
def
= Cor[Bri, Bsj] =

√
υrυs.

Sowie die Korrelation innerhalb einer Ratingklasse durch

υrr =
√
υ2
r = υr,

denn mit (i) V ar[Bri] = V ar[Bsj] = 1 und (ii) der Unabhängigkeit der Uri, Usj
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und Z folgt:

υrs
(i)
= Cov[Bri, Bsj]

= E[BriBsj]− E[Bri]︸ ︷︷ ︸
= 0

·E[Bsj]︸ ︷︷ ︸
= 0

= E[(
√
υrZ +

√
1− υrUri)(

√
υsZ +

√
1− υsUsj)

(ii)
=
√
υrυsE[Z2]︸ ︷︷ ︸

= 1

+
√

1− υr
√
υsE[UriZ]︸ ︷︷ ︸

= 0

+

√
1− υs

√
1− υr E[UriUsj]︸ ︷︷ ︸

= 0

+
√
υr
√

1− υsE[UsjZ]︸ ︷︷ ︸
= 0

=
√
υrυs

2. Die Korrelation zweier Ausfallvariablen Xri und Xsj, r 6= s ∨ i 6= j

υAusrs
def
= Cor(Xri, Xsj) =

Φ2(Φ−1(pr),Φ
−1(ps); υrs)− prps√

pr(1− pr)ps(1− ps)
,

wobei mit Φ2(x, y, υ)
def
= P{X ≤ x, Y ≤ y} = P ((X, Y ) ∈ (−∞, x]× (−∞, y])

die bivariate Normalverteilung mit Korrelation υ gemeint ist.

Denn mit (i) Bri, Bsj ∼ N (0, 1) und (ii) Xri, Xsj ∼ B(1, pr) folgt:

υAusrs =
E[(Xri −

= pr︷ ︸︸ ︷
E[Xri])(Xsj −

= ps︷ ︸︸ ︷
E[Xsj])]√

V [Xri]V [Xsj]

(ii)
=

E[XriXsj]− pr

= ps︷ ︸︸ ︷
E[Xsj]−ps

= pr︷ ︸︸ ︷
E[Xri] +prps√

pr(1− pr)ps(1− ps)

=
E[XriXsj]− prps√
pr(1− pr)ps(1− ps)

=
P (Bri ≤ cr, Bsj ≤ cs)− prps√

pr(1− pr)ps(1− ps)
(3.2)
=

P ((Bri, Bsj) ∈ (−∞,Φ−1(pr)]× (−∞,Φ−1(ps)])− prps√
pr(1− pr)ps(1− ps)

(i)
=

Φ2(Φ−1(pr),Φ
−1(ps), υrs)√

pr(1− pr)ps(1− ps)
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3. Es gilt υAusrs = 0⇐⇒ υrs = 0,

denn

υrs = 0

⇐⇒ Bri ∧Bsj unabhängig ∀i 6= j

⇐⇒ P (Bri ≤ Φ−1(pr), Bsj ≤ Φ−1(ps)) = P (Bri ≤ Φ−1(pr))︸ ︷︷ ︸
= pr

P (Bsj ≤ Φ−1(ps))︸ ︷︷ ︸
= ps

⇐⇒ P (Bri ≤ Φ−1(pr), Bsj ≤ Φ−1(ps))︸ ︷︷ ︸
= Φ2(Φ−1(pr),Φ−1(ps),υrs)

−prps = 0

⇐⇒ υAusrs = 0

3.2 Verteilung einer Ausfallquote

Ziel ist es nun, eine Verteilung zu finden, gegen die die empirische Ausfallquote
konvergiert.
Zunächst soll der triviale Fall von unabhängigen Ausfallereignissen untersucht wer-
den.

Ar sei die Zufallsvariable, die die Anzahl der Ausfälle in der r-ten Ratingklasse
beschreibt:

Ar =
nr∑
i=1

Xri, (3.3)

wobei Xri i.i.d. und Xri ∼ B(1, pr) wie im vorherigen Abschnitt ist. Also ist Ar
B(nr, pr)-verteilt. Weiterhin ist nach dem starken Gesetz der großen Zahlen,

p̄r =
1

nr
Ar =

1

nr

nr∑
i=1

Xri
nr→∞−→ E[Xri] = pr P − f.s.

Die Unabhängigkeit der Ausfallereignisse ist für die Praxis keine realistische Mo-
dellannahme. Daher wird nun der Fall der abhängigen Ereignisse analysiert. Da alle
vorherigen Ergebnisse auf der Annahme der Unabhängigkeit beruhen, konvergiert
die Ausfallquote im Fall der Abhängigkeit nicht gegen die Ausfallwahrscheinlichkeit.
Viel mehr konvergiert die Ausfallquote in Verteilung gegen eine nicht deterministi-
sche Zufallsvariable, denn für die Varianz dieser Ausfallquote gilt

V ar[p̄r]
nr→∞−→ υAusrr pr(1− pr).
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Beweis:

V ar[p̄r] = V ar[
1

nr

nr∑
i=1

Xri] =
1

nr

(
nr∑
i=1

V ar[Xri] +
nr∑
j 6=k

Cov[Xrj, Xrk]

)

=
nrpr(1− pr)

n2
r

+
1

n2
r

nr∑
j 6=k

υAusrr pr(1− pr)︸ ︷︷ ︸
(n2
r−nr)υAusrr pr(1−pr)

=
nrpr(1− pr)

n2
r

+
nr − 1

nr
υAusrr pr(1− pr)

Für abhängige Ausfallereignisse ist υr > 0. Daraus folgt mit (1.), dass υAusrr > 0 und
somit auch lim

nr→∞
V ar[p̄r] > 0. Damit konvergiert die Varianz nicht gegen null und

somit konvergiert die Ausfallquote nicht gegen einen konstanten Wert.

�

Die asymptotische Verteilung der Ausfallquote p̄r für nr →∞ wird gegeben durch

p̄r
V−→ gr(Z) = Φ

(
Φ−1(pr)−

√
υrZ√

1− υr

)
(3.4)

Zum Nachweis von (3.4) wird auf [12] Seite 6 verwiesen.

Für υr > 0 hat die Zufallsvariable gr(Z) die Verteilungsfunktion

Fr(x)
def
= P (gr(Z) ≤ x) = Φ

(
Φ−1(x)

√
1− υr − Φ−1(pr)√

υr

)
, (3.5)

Diese wird auch als Probit-Verteilung bezeichnet.

Beweis:

P (gr(Z) ≤ x)
(3.4)
= P

(
Φ

(
Φ−1(pr)−

√
υrZ√

1− υr

)
≤ x

)
= P

(
−Z ≤

√
1− υrΦ−1(x)− Φ−1(pr)√

υr

)
= Φ

(
Φ−1(x)

√
1− υr − Φ−1(pr)√

υr

)
�
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3.3 Test einer Ausfallwahrscheinlichkeit

Nun soll ein statistischer Test hergeleitet werden, der es ermöglicht, die Ausfallwahr-
scheinlichkeit einer Ratingklasse zu testen. Im ersten Teil wird kurz auf den trivialen
Fall -unabhängige Ausfallereignisse- eingegangen. Daraufhin wird der realitätsnahe
Fall von abhängigen Ereignissen untersucht. Zunächst werden einige Bezeichnungen
eingeführt.

Mit pr, r = 1, ..., k, ist die tatsächliche Ausfallwahrscheinlichkeit der r-ten Rating-
klasse gemeint. Unter πr mit r = 1, ..., k wird die prognostizierte Ausfallwahrschein-
lichkeit der r-ten Ratingklasse verstanden. p̄r mit r = 1, ..., k bezeichnet -wie im
vorherigen Abschnitt- die empirische Ausfallquote.

Getestet wird, ob die tätsächliche Ausfallwahrscheinlichkeit pr in H0 ⊂ Θ 1 (Hy-
pothese) oder in H1 (Alternative) liegt. Unterstützend ist hierbei die Teststatistik
T mit dem Wertebereich X . Der Wertebereich wird disjunkt in die Teilmenge A
-Akzeptanzbereich- und die Teilmenge K -kritischer Bereich- aufgeteilt. Dann wird
durch ϕ : X −→ [0, 1] gegeben durch

ϕ =

 1, falls T ∈ K

0, Falls T ∈ A
(3.6)

ein Test definiert, wobei ϕ(x) = 1 die Ablehnung der Hypothese bedeutet.
Erfüllt die Gütefunktion 2 von ϕ

βϕ(θ) ≤ α mit α ∈ [0, 1] (3.7)

für alle θ ∈ H0, dann heißt ϕ Test zum Niveau α für H0 gegen H1. Genügt die
Gütefunktion zusätzlich

βϕ(θ) ≥ α ∀ θ ∈ H1, (3.8)

so wird von einem unverfälschten Test zum Niveau α gesprochen. Mit P (T ∈ K |
H0) ist im Folgenden βϕ(θ) gemeint, falls θ ∈ H0 beliebig ist.

Unabhängige Ausfallereignisse
Im Fall von unabhängigen Ausfallereignissen wird die aus (3.3) bekannte Zufallsva-
riable für die Anzahl der Ausfälle in der r-ten Ratingklasse als geeignete Teststatistik
Tr gewählt.

1Der Parameterraum Θ ist die Menge der zu testenden Parameter, hier Θ ∈ [0, 1]
2Die Gütefunktion von ϕ ist gegeben durch βϕ : θ 7→ Eθϕ mit θ ∈ Θ
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Die Hypothese wird so gewählt, dass die tatsächliche Ausfallwahrscheinlichkeit pr
kleiner gleich der geschätzten Ausfallwahrscheinlichkeit πr ist. Die Alternative lau-
tet, dass die geschätzte Wahrscheinlichkeit zu niedrig geschätzt wurde, d.h.

H0 = [0, πr] und H1 = (πr, 1]

Sei α die vorgegebene Wahrscheinlichkeit des Fehlers 1. Art. Dann muss für den
kritischen Bereich Kα gelten:

P (p̄r ∈ Kα | H0) = α (3.9)

Die HypotheseH0 wird abgelehnt, falls die Ausfallquote p̄r in dem kritischen Bereich
Kα liegt.

Der kritische Bereich für einen Test zum Niveau α ergibt sich mit Hilfe von (3.9) zu

Kα
def
=

(
arg max

i=1,...,nr

{
i∑

j=0

B(nr, pr)(j) = 1− α

}
, nr

]
.

Beweis:
Der kritische Bereich Kα ist nach oben beschränkt durch die Anzahl der Debitoren
nr der r-ten Ratingklasse. Für die untere Schranke von Kα gilt:

P (p̄r > κα | H0) = α ⇐⇒ 1− P (p̄r ≤ κα | H0) = α

⇐⇒ F (κα) = 1− α

⇐⇒
κα∑
j=1

B(nr, pr)(j) = 1− α

⇐⇒ κα = arg max
i=1,...,nr

{
i∑

j=0

B(nr, pr)(j) = 1− α

}

�

Der durch die Testfunktion ϕ mit

ϕ =

 1, falls T ∈ Kα

0, Falls T ∈ A
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definierte Test zum Niveau α heißt Binomialtest für unabhängige Ausfallereignisse.

Abhängige Ausfallereignisse
Nun soll der Fall der abhängigen Ausfälle untersucht werden.
Es wird ein Test aufgestellt, der auf der Teststatistik p̄r basiert. Die Hypothesen
aus dem unabhängigen Fall werden beibehalten.

H0 = [0, πr] und H1 = (πr, 1]

Aufgrund der asymptotischen Verteilung von p̄r im abhängigen Fall, wird die An-
forderung an den kritischen Bereich K̂α umformuliert:

lim
nr→∞

P (p̄r ∈ K̂α | H0) = α.

Da [0, πr] gegen (πr, 1] getestet wird, führt eine geringe Ausfallquote p̄r zu einer
Akzeptanz von H0. Deshalb genügt es, eine untere Schranke κα für den kritischen
Bereich K̂α zu bestimmen. Es muss gelten:

lim
nr→∞

P (p̄r > κα | H0) = α ⇐⇒ 1−
= Fr(κα)︷ ︸︸ ︷

lim
nr→∞

P (p̄r ≤ κα | H0) = α

⇐⇒ Φ

(√
1− υrΦ−1(κα)− Φ−1(πr)√

υr

)
= 1− α

⇐⇒ κα = Φ

(√
υrΦ

−1(1− α) + Φ−1(πr)√
1− υr

)

Also ist der kritische Bereich K̂α
def
= (κα,∞).

Für die Berechnung von κα ist es nützlich, auf Quantiltabellen zurückzugreifen. Um
dieses zu bekommen, wird eine passende Teststatistik gesucht. Hierzu wird

Tr
def
=

√
1− υrΦ−1(p̄r)− Φ−1(πr)√

υr
. (3.10)

als Teststatistik gewählt. Unter der Hypothese H0, also pr = πr, ist Tr asymptotisch
N (0, 1)-verteilt.
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Beweis:
Es gilt:

lim
nr→∞

P (Tr ≤ x) = lim
nr→∞

P

(√
1− υrΦ−1(p̄r)− Φ−1(pr)√

υr
≤ x

)
= lim

nr→∞
P

(
p̄r ≤ Φ

(√
υrx+ Φ−1(pr)√

1− υr

))
(3.4)
= P

(
Φ

(
Φ−1(pr)−

√
υrZ√

1− υr

)
≤ Φ

(√
υrx+ Φ−1(pr)√

1− υr

))
= P (−Z ≤ x)

Z∼N (0,1)
= Φ(x)

�

Weiterhin gilt unter der Hypothese H0 offensichtlich

lim
nr→∞

P (Tr > Φ−1(1− α)) = α.

Somit definiert die Teststatistik Tr mit dem Ablehnbereich

K̃α
def
= (Φ−1(1− α),∞) (3.11)

einen Test zum Niveau α.

Damit wurden nun zwei Tests vorgestellt. Der erste Test beruht auf der Statistik
p̄r und ist verständlich, da die Hypothese direkt an der Ausfallquote getestet wird.
Beim anderen Test wird die Teststatistik Tr verwendet, um die Berechnung des
Quantils zu erleichtern. Diese beiden Tests sind jedoch äquivalent. Es gilt

p̄r ∈ K̂α ⇐⇒ Tr ∈ K̃α
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Beweis:

Tr ∈ K̃α ⇐⇒ Tr > Φ−1(1− α)

⇐⇒
√

1− υrΦ−1(p̄r)− Φ−1(πr)√
υr

> Φ−1(1− α)

⇐⇒ p̄r > Φ

(
Φ−1(1− α)

√
υr + Φ−1(πr)√

1− υr

)
︸ ︷︷ ︸

= κα

⇐⇒ p̄r ∈ K̂α

�

Bisher galt das Interesse dem Fehler 1. Art. Im Folgenden wird der Fehler 2. Art
intensiver analysiert. Eine erste Schranke für den Fehler 2. Art folgt aus der Unver-
fälschtheit des Tests.

Die Gütefunktion βϕ(pr) ist gegeben durch

βϕ(pr) = 1− Φ
(√

υrΦ
−1(1− α) + Φ−1(πr)− Φ−1(pr)√

υr

)
(3.12)

Beweis:

βϕ(pr) = lim
nr→∞

P (Tr ∈ K̃α | pr)

= lim
nr→∞

P

(√
1− υrΦ−1(p̄r)− Φ−1(πr)√

υr
> Φ−1(1− α) | pr

)
= lim

nr→∞
P

(
p̄r > Φ

(√
υrΦ

−1(1− α) + Φ−1(πr)√
1− υr

)
| pr
)

(3.4)
= 1− P

(
gr(Z) ≤ Φ

(√
υrΦ

−1(1− α) + Φ−1(πr)√
1− υr

)
| pr
)

(3.5)
= 1− Φ


√

1− υrΦ−1

(
Φ

(√
υrΦ

−1(1− α) + Φ−1(πr)√
1− υr

))
− Φ−1(pr)

√
υr


= 1− Φ

(√
υrΦ

−1(1− α) + Φ−1(πr)− Φ−1(pr)√
υr

)
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�

Die Unverfälschtheit des Tests zum Niveau α folgt aus (3.8)

βϕ(pr) ≥ α ∀ pr ∈ H1.

Beweis:
Sei die Alternative H1 gültig.

βϕ(pr) = 1− Φ
(√

υrΦ
−1(1− α) + Φ−1(πr)− Φ−1(pr)√

υr

)

Da pr ≤ πr und Φ−1 eine streng monotone Funktion ist, folgt:

βϕ(pr) ≤ 1− Φ
(√

υrΦ
−1(1− α) + Φ−1(πr)− Φ−1(πr)√

υr

)
= 1− (1− α) = α

�

Der Fehler 2. Art (3.13) ist durch 1−α beschränkt. Diese obere Schranke ist jedoch
sehr groß, sodass mit großer Wahrscheinlichkeit die Hypothese H0 angenommen
wird, obwohl H1 gilt. Deshalb wird ein adäquateres Verfahren gesucht, das den
Fehler 2. Art weiter einschränkt.

Zunächst wird der Modellfehler pr − πr untersucht. Bei größer werdendem Modell-
fehler, wird die Differenz Φ−1(πr)−Φ−1(pr) aus (3.12) kleiner, da die Funktion Φ−1

streng monoton steigend ist. Deshalb wächst die Gütefunktion (3.12) bei wachsen-
dem Modellfehler. Der Fehler 2. Art, der durch die Gütefunktion definiert ist, wird
kleiner.

P (Fehler 2.Art) = 1− βϕ(pr) (3.13)

Dadurch erscheint es sinnvoll, den Test so zu konstruieren, dass die Wahrscheinlich-
keit für den Fehler 1. Art ≤ α ist und der Modellfehler pr − πr ≥ einer Schranke c
mit der Wahrscheinlichkeit 1− β erkannt wird.

Es wird der Test basierend auf der Teststatistik Tr gewählt. Der kritische Bereich
Kα,β muss den neuen Anforderungen angepasst werden. Für pr−πr ≥ c, soll Tr mit
einer Wahrscheinlichkeit von 1−β in Kα,β liegen, wobei für den Grenzfall pr−πr = c
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Gleichheit gelten soll. Somit gilt:

lim
nr→∞

P (Tr ∈ Kα,β | pr − πr = c) = 1− β

⇐⇒ lim
nr→∞

P (Tr > ιβ | pr − πr = c) = 1− β (3.14)

Daraus folgt:

lim
nr→∞

P (Tr > ιβ | pr − πr ≥ c) ≥ 1− β

Beweis:

Es gilt pr ≥ πr + c.

lim
nr→∞

P (Tr > ιβ | pr) = 1− Φ
(√

υrΦ
−1(ιβ) + Φ−1(πr)− Φ−1(pr)√

υr

)
= 1− Φ

(√
υrΦ

−1(ιβ) + Φ−1(πr)− Φ−1(πr + c)
√
υr

)
(3.14)
= 1− β

�

Die untere Grenze ιβ des kritischen Bereiches Kα,β wird mit Hilfe von (3.14) be-
rechnet zu

ιβ =

√
υrΦ

−1(πr + c)− Φ−1(πr)√
υr

Damit erfüllt der kritische Bereich

Kα,β
def
= (ιβ,∞)

die Anforderung an den Fehler 2. Art. Jedoch ist mit dem Ablehnbereich Kα,β

die Begrenzung des Fehlers 1. Art durch α nicht mehr gewährleistet, da im All-
gemeinen der Ablehnbereich K̃α aus (3.11) nicht mit Kα,β übereinstimmt. Damit
den Bedingungen beider Fehlerarten gerecht wird, wird der Entscheidungsbereich -
Wertebereich der Teststatistik- in drei Zonen unterteilt. Die erste Zone -grüne Zone-
bedeutet eine sofortige Annahme der Hypothese. Liegt die Teststatistik in der zwei-
ten -gelben Zone- so kann keine genaue Entscheidung getroffen werden, da nur einer
der beiden Fehlerarten die Anforderung erfüllt. Bei der letzten Zone -rote Zone- wird
die Hypothese eindeutig abgewiesen. Um die Zonen näher zu bestimmen, werden
im Folgenden drei Fälle unterschieden.
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1. Es gilt Φ−1(1− α) > ιβ.

Dann wird der Akzeptanzbereich definiert als

A1
α,β

def
= [0, ιβ].

Gilt Tr ∈ A1
α,β, wird die Hypothese H0 ohne Weiteres angenommen. A1

α,β

entspricht der grünen Zone. Befindet sich die Teststatistik Tr im Intervall
(ιβ, Φ

−1(1 − α)], so kann keine genaue Entscheidung getroffen werden. Die
Anforderung an den Fehler 1. Art wird eingehalten, jedoch wird die Beschrän-
kung der Wahrscheinlichkeit des Fehlers 2. Art nicht erreicht. Das Intervall
(ιβ, Φ

−1(1 − α)] ist die gelbe Zone. Liegt die Teststatistik Tr allerdings im
kritischen Bereich K1

α,β
def
= (Φ−1(1 − α),∞), so wird die Hypothese H0 ohne

Weiteres verworfen, rote Zone.

2. Es gilt Φ−1(1− α) < ιβ.

In diesem Fall ergibt sich der Akzeptanzbereich -grüne Zone- A2
α,β zu

A2
α,β

def
= [0, Φ−1(1− α)].

Fällt die Teststatistik Tr in das Intervall (Φ−1(1− α), ιβ], so lässt sich erneut
keine genaue Entscheidung treffen. Deshalb wird dieses Intervall der gelben
Zone zugeordnet. Der Fehler 2. Art ist beschränkt, allerdings besitzen die
Anforderungen an den Fehler 1. Art keine Gültigkeit mehr. Die rote Zone ent-
spricht dem kritischen Bereich K2

α,β
def
= (ιβ,∞), der eine eindeutige Ablehnung

der Hypothese zulässt.

3. Es gilt Φ−1(1− α) = ιβ.

Dieser Fall stellt den Idealfall dar. Der Wertebereich X der Teststatistik Tr
wird disjunkt in den Akzeptanzbereich (grüne Zone)

A3
α,β

def
= [0, ιβ]

sowie den kritischen Bereich (rote Zone)

K3
α,β

def
= (ιβ,∞)

aufgeteilt. Es existiert keine gelbe Zone. Somit lässt sich eindeutig eine Ent-
scheidung für das Akzeptieren bzw. Verwerfen der Hypothese treffen.
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Da sich bei gegebenem Fehler 1. Art bzw. Fehler 2. Art die Bereichsgrenzen durch die
Wahl der Modellfehlerschranke c verändern lassen, scheint es sinnvoll, die Schranke c
so zu wählen, dass die Bereiche denen im Idealfall (3.Fall) entsprechen. Dadurch er-
hält man einen optimalen Test sowie eindeutige Entscheidungsregeln. Die Schranke
wird berechnet zu

c = Φ
(√

υr(Φ
−1(1− α)− Φ−1(β)) + Φ−1(πr)

)
− πr (3.15)

Beweis:

Es gilt:

Φ−1(1− α) = ιβ

⇐⇒ Φ−1(1− α) =

√
υrΦ

−1(β) + Φ−1(πr + c)− Φ−1(πr)√
υr

⇐⇒ Φ−1(πr + c) =
√
υrΦ

−1(1− α)−
√
υrΦ

−1(β) + Φ−1(πr)

⇐⇒ c = Φ
(√

υrΦ
−1(1− α)−

√
υrΦ

−1(β) + Φ−1(πr)
)
− πr

�

Ein weiteres Verfahren, den Test zu optimieren, besteht darin, den bisherigen Test
in zwei Tests aufzuteilen. Zuerst wird ein Test der Hypothesen

H0 = [0, πr] vs. H1 = (πr,∞)

basierend auf der Teststatistik Tr zum Niveau α durchgeführt.
Dann wird ein Test der Hypothesen

H ′0 = [πr + c,∞) vs. H ′1 = [0, πr + c)

zum Niveau β durchgeführt. Der Test wird analog zum vorherigen Test kontruiert.
Die Teststatistik wird definiert als

T̃r
def
=

√
1− υrΦ−1(p̄r)− Φ−1(πr + c)

√
υr

.

Unter der Hypothese H ′0 ist T̃r standardnormalverteilt. Damit ergibt sich die untere
Schranke des kritischen Bereiches zu κβ = Φ−1(1− β) und somit

Kβ
def
= (Φ−1(1− β),∞).
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Die geschätzte Ausfallwahrscheinlichkeit πr wird angenommen, falls die Hypothese
H0 des ersten Tests angenommen wird und die Hypothese H ′0 des zweiten Tests ab-
gelehnt wird. Ist dieses nicht der Fall, wird die geschätzte Ausfallwahrscheinlichkeit
verworfen.

Mit Hilfe des ersten Tests wird die Wahrscheinlichkeit für den Fehler 1. Art durch α
beschränkt. Durch den zweiten Test erhält man aufgrund des Hypothesentausches
eine Schranke für den Fehler 2. Art in Höhe von β. Somit werden beide Fehler
adäquat eingeschränkt.





Kapitel 4

Datenanalyse der Fahrzeugwerk
Bernard KRONE GmbH

Die Fahrzeugwerk Bernard KRONE GmbH ist einer der führenden Hersteller von
LKW-Anhängern und Aufliegern in Europa. Das Fahrzeugwerk gehört zur Bernard
KRONE Holding GmbH & Co.KG. Im Geschäftsjahr 2006/2007 belief sich der Um-
satz auf 832 Mio. Euro.

Die Produktion der Fahrzeugwerke ist auftragsbezogen. Bevor ein Fahrzeug für die
technische Überprüfung bzw. Produktion freigegeben wird, wird zunächst die Bo-
nität des Auftraggebers überprüft. Bei der Überprüfung wird auf die Bonitätsbe-
wertung bzw. Risikoeinschätzung der CreditReform e.V. Nordhorn zurückgegriffen.
Dabei wird dem Debitor ein Score s bzw. Ratingklasse r zugeordnet.

Die möglichen Score Werte bzw. Ratingklassen können der Tabelle 4.1 entnommen
werden. Weiter zeigt Tabelle 4.1 die von der CreditReform prognostizierten Aus-
fallwahrscheinlichkeiten πr. Dabei gibt πr die Wahrscheinlichkeit an, mit der ein
Debitor in der r-ten Ratingklasse vorraussichtlich innerhalb eines Jahres ausfällt.

r 1 2 3 4 5 6 7
s 199 - 200 201 - 350 351 - 399 400 - 449 450 - 499 500 - 550 551 - 600
πr 26,87% 15,46% 6,04% 1,46% 0,73% 0,32% 0,07%

Tabelle 4.1: Score-Werte s und ihre Einteilung in Ratingklassen

Zur Validierung des Ratingsystems wurde eine Datenerhebung durchgeführt. Die
Datenerhebung fand mit Hilfe des Unternehmens-Informationssystems mySAP ERP
statt. Die hierfür geschriebene Transaktionsmaske ist in Abbildung 4.1 zu sehen. Der
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Beobachtungszeitraum bezog sich vom 01.Juli 2007 bis zum 30.Juni 2008. Erfasst
wurden alle Debitoren, denen ein Rating zugeordnet wurde. Danach wurde weiter
gefiltert, ob mit diesen Debitoren ein Geschäftsvorgang im Beobachtungszeitraum
abgeschlossen wurde bzw. inwieweit offene Forderungen gegenüber dem Debitor
bestehen. Tabelle 4.2 zeigt die Ergebisse der Erhebung.

Abbildung 4.1: Transaktionsmaske mySAP ERP

r 1 2 3 4 5 6 7 gesamt
Debitoren 201 120 222 1460 2102 588 58 4751

Tabelle 4.2: Datenerhebung

Weiterhin ist für die Validierung die Anzahl der Ausfälle relevant. Dabei wird nach
Basel II des Basler Ausschusses für Bankenaufsicht ein Ausfall verzeichnet, falls ein
Debitor mehr als 90 Tage in Zahlungsverzug ist. Die Ergebnisse sind in Tabelle 4.3
aufgelistet.

r 1 2 3 4 5 6 7 gesamt
Defaulter 54 20 12 14 10 2 0 112
Non-defaulter 147 100 210 1446 2092 586 58 4639

Tabelle 4.3: Trennung in Defaulter und Non-Defaulter

Danach werden die kumulierten Wahrscheinlichkeiten F̄D und F̄N berechnet. Dazu
werden die Daten aus 4.2 und 4.3 herangezogen. Die Verteilungsfunktion F̄ lässt
sich ebenfalls über diese Daten bestimmen. Es besteht auch die Möglichkeit, diese
mit Hilfe der Formel (2.1) zu ermitteln.

F̄ (r) = (1− p̄)F̄N(r) + p̄F̄D(r)
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r 1 2 3 4 5 6 7
F̄D(r) 48,21 66,07 76,79 89,29 98,21 100 100
F̄N(r) 3,17 5,32 9,85 41,02 86,12 98,75 100
F̄ (r) 4,23 6,76 11,43 42,16 86,4 98,78 100

Tabelle 4.4: kum. Wahrscheinlichkeiten, Angaben in %

4.1 Trennschärfeberechnung des Ratingsystems

Damit Aussagen über die Trennschärfe des Ratings der Fa. KRONE getroffen wer-
den können, werden die Ergebnisse aus dem dritten Kapitel auf die Daten der Da-
tenerhebung angewandt.

Cumulative Accuracy Profile
Zuerst wird dazu das Cumulative Accuracy Profile untersucht (Kapitel 2.1). Die
Werte werden mit Hilfe der Gleichung (2.2)

CAP (u)
def
= F̄D(F̄−1(u)), u ∈ [0, 1]

und den Daten aus Tabelle 4.4 berechnet.

u 0,0423 0,0676 0,1143 0,4216 0,864 0,9878 1
CAP (u) 0,4821 0,6607 0,7679 0,8929 0,9821 1 1

Tabelle 4.5: Funktionswerte CAP (u)

Die Daten aus Tabelle 4.5 zeigen, dass ein hoher Prozentanteil der Defaulter in die
„schlechten“ Ratingklassen eingeordnet werden. Beispielsweise befinden sich unter
den 4,23% „schlechtesten“ Debitoren bereits 48,23% der Defaulter.

Weiterhin ist es nun möglich, den Graph der CAP -Funktion zu plotten und das
Trennschärfemaß Accuracy Ratio zu berechnen. In Abbildung 4.2 ist der Graph der
Funktionswerte aus Tabelle 4.5 zu sehen.

Die Accuracy Ratio (2.5) ist gegeben durch

AR =

2
1∫
0

CAP (u) du− 1

1− p̄
,

wobei p̄ = 112
4751

= 2, 36% die totale Ausfallwahrscheinlichkeit der Datenerhebung
beschreibt. Weiter werden für die Berechnung die Wahrscheinlichkeiten f̄(r) bzw.
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f̄D(r) für r = 1, .., 7 benötigt. Diese geben die Wahrscheinlichkeit wieder, mit der
ein Debitor bzw. Defaulter in der r-ten Ratingklasse ist. Mit Hilfe der Tabelle 4.3
ergibt sich:

r 1 2 3 4 5 6 7 Σ
f̄D(r) 48,21 17,86 10,71 12,5 8,93 1,79 0 1
f̄N(r) 3,17 2,16 4,53 31,17 45,1 12,63 1,25 1
f̄(r) 4,23 2,53 4,67 30,73 44,24 12,38 1,22 1

Tabelle 4.6: Anteil in den Ratingklasse, Angaben in %

Abbildung 4.2: CAP - Kurve des Ratingsystems der Fa. KRONE

Mit den Werten aus Tabelle 4.6 berechnet sich die Fläche unter der CAP -Kurve zu∫ 1

0

CAP (u) du =
7∑
r=1

(
1

2
f̄(r)f̄D(r) + f̄(r)F̄D(1− r)

)
= 0, 8625.

Damit besteht nun die Möglichkeit, die Accuracy Ratio zu berechnen. Es ist

AR =
2 · 0, 8625− 1

1− 0, 0236
= 0, 7432.
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Der Wert der AR des CreditReform Ratings 1 liegt in diesem Beispiel bei ARCR =

0, 6849.

Reciever Operating Characteristic
Als nächstes wird das ROC Verfahren untersucht. Mit den Daten aus Tabelle 4.3
und der ROC-Funktion (2.7)

ROC(u)
def
= FD(F−1

N (u))

werden die Werte berechnet(Tabelle 4.7).

u 0,0317 0,0532 0,0985 0,4102 0,8612 0,9875 1
ROC(u) 0,4821 0,6607 0,7679 0,8929 0,9821 1 1

Tabelle 4.7: Funktionswerte ROC(u)

Geplottet siehe Abbildung 4.3.

Abbildung 4.3: ROC - Kurve des Ratingsystems der Fa. KRONE

Für eine optimale Einteilung der Ratingklassen, muss die ROC-Kurve konkav sein.
Da dieses anhand des Graphens nicht genau ersichtlich ist, wird die Ableitung
ROC ′(u) betrachtet. Die Ableitung der ROC-Funktion wird gemäß (2.8) herge-

1siehe Anhang, Berechnung der Gütemaße des CreditReform Ratings
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leitet.

ROC ′(u) =
f̄D(F̄−1

N (u))

f̄N(F̄−1
N (u))

u 0,0317 0,0532 0,0985 0,4102 0,8612 0,9875 1
ROC ′(u) 0,1521 0,0827 0,0236 0,004 0,002 0,0014 0

Tabelle 4.8: Ableitung von ROC(u)

Anhand der Tabelle 4.8 ist offensichtlich, dass die Ableitung, die dem Likelihood
Quotienten entspricht, streng monoton fallend ist. Somit ist der Graph der ROC-
Funktion konkav und die Einteilung der Ratingklassen testtheoretisch optimal (siehe
dazu Kapitel 1.3).
Bei diesem Validierungsverfahren ist das Maß der Trennschärfe die AUROC. Die
AUROC ist die Fläche unter der ROC-Kurve und wird mit Hilfe der Daten aus
Tabelle 4.6 berechnet.

AUROC =

∫ 1

0

ROC(u) du

=
7∑
r=1

(
1

2
f̄N(r) + f̄N(r) + F̄D(r − 1)

)
= 0, 8726

Interpretiert man die AUROC als Wahrscheinlichkeit, gemäß (2.9), so bedeutet
dieses Resultat, dass das Rating der Fa. KRONE einen Defaulter mit 87, 26% von
einem Non-Defaulter unterscheiden kann.
Zum Vergleich ist die AUROCCR des CreditReform Ratings 2 gleich 0, 8425.

Bayes Fehler
In Kapitel 2.3.1 wurde der Bayes Fehler hergeleitet. Dieses ist ein Maß für die
Fehlerwahrscheinlichkeit bei optimalem Einsatz des Ratingsystems. Zunächst wird
der Geamtfehler gemäß (2.14) berechnet.

P (Fehler(r)) = p̄(1− F̄D(r)) + (1− p̄)F̄N(r) für r = 1, ..., 7

Die Fehlerwahrscheinlichkeit der Ratingklassen sind in Tabelle 4.9 zusammengefasst.
Für die Berechnung wurden die Daten der Tabelle 4.3 entnommen.

Der Bayes Fehler (2.14) minimiert die Fehlerwahrscheinlichkeit. Somit werden auch

2siehe Anhang, Berechnung der Gütemaße des CreditReform Ratings
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r 1 2 3 4 5 6 7
P (Fehler(r)) 4,31 6 10,17 40,31 94,13 96,42 97,64

Tabelle 4.9: Fehlerwahrscheinlichkeit der Ratinklassen, in %

bei optimalem Einsatz des Ratings der Fa. KRONE noch immer 4, 31% der Debi-
toren falsch klassifiziert bzw. eingeteilt.

Pietra-Index
Für den Fall identischer Verteilungsfunktionen besitzt das Ratingsystem keine Trenn-
schärfe. Um dieses zu widerlegen, wird der Pietra-Index zum Testen der Identität
der Verteilungsfunktion herangezogen. Zunächst wird |F̄D − F̄N | bestimmt.

r 1 2 3 4 5 6 7
|F̄D(r)− F̄N(r)| 0,5405 0,6075 0,6693 0,4826 0,1210 0,0125 0

Tabelle 4.10: Abstand der Verteilungsfunktionen

Das Maximum der Werte aus Tabelle 4.10 ist der Pietra-Index. Dieser wird nun als
Teststatistik zum Testen der Hypothesen

H0 : F̄D = F̄N gegen H1 : F̄D 6= F̄N

verwendet. Der Test wird zum Niveau 1% durchgeführt (Bemerkung 2.3.4). Der
kritische Wert berechnet sich zu

D =
1, 63√
4751

= 0, 0236

Da die Teststatistik (Pietra-Index = 0, 6693) demnach im kritischen Bereich liegt,
kann die Hypothese mit einer Sicherheit von 99% verworfen werden. D.h. die Ver-
teilungsfunktionen sind nicht identisch und somit besitzt das Ratingsystem der Fa.
KRONE Trennschärfe.

Informationsentropie
Der Informationsgewinn, den man mit dem Einsatz eines Ratingsystems erhält,
berechnet man mit Hilfe von Entropie Quotienten CIER (2.18). Dazu wird nun der
Entropie Quotient der Fa. KRONE berechnet. Zuerst wird die Entropie der totalen
Ausfallwahrscheinlichkeit p = 0, 0236 mit Hilfe von (2.16) bestimmt.

H(0, 0236) = − (0, 0236 · log2(0, 0236) + (1− 0, 0236) · log2(1− 0, 0236))

= 0, 1612 (4.1)
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Dieses bedeutet, dass die Ungewissheit über den Zustand des Debitors 16, 12% be-
trägt. Da durch das Ratingsystem mehr Informationen des Debitors bekannt sind
als durch die durchschnittliche Ausfallwahrscheinlichkeit, wird die Entropie der be-
dingten Ausfallwahrscheinlichkeit pr für alle r = 1, ..., 7 bestimmt (Tabelle 4.11).

r 1 2 3 4 5 6 7
H(p̄r) 0 0,0328 0,0439 0,0782 0,3036 0,6501 0,8396

Tabelle 4.11: Entropie der bedingten empirischen Ausfallwahrscheinlichkeit

Die bedingte Entropie HR ergibt sich gemäß (2.17) als Erwartungswert über alle
Entropiewerte der bedingten Ausfallwahrscheinlichkeiten. Somit folgt mit den Wer-
ten der Tabelle 4.11:

E(H(pr)) =
7∑
r=1

f̄(r)H(p̄r)

= 0, 1137 (4.2)

Der bedingte Entropie Quotient (2.18) ergibt sich mit den Werten aus (4.1) und
(4.2) zu:

CIER = 1− 0, 1137

0, 1612
= 0, 2946

Damit lässt sich abschließend zusammenfassen, dass das Ratingmodell der Fa.KRONE
einen Informationsgewinn von 29, 46% liefert. Zum Vergleich besitzt das Ratingsys-
tem der CreditReform 3 einen Informationsgewinn in Höhe von 24, 65%.

4.2 Test einer Ausfallwahrscheinlichkeit

Nachdem im vorangegangenen Abschnitt lediglich die Trennschärfe des Ratingsys-
tems behandelt wurde, wird nun getestet, inwieweit die tatsächliche Ausfallwahr-
scheinlichkeit mit der prognostizierten Ausfallwahrscheinlichkeit übereinstimmt. Da
der asymptotische Test eine Ratingklassengröße von mehr als 500 Debitoren vor-
aussetzt, wird die Ratingklasse 5 zum Testen der Ausfallwahrscheinlichkeit als Bei-
spiel herangezogen. Als Ausfallkorrelation der Transport- bzw. Logistikbranche wird
υ5 = 0, 0184 angenommen 4.

3siehe Anhang, Berechnung der Gütemaße des CreditReform Ratings
4Ausfallkorrelation Branchenklasse Verkehr des VDA
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Die Datenerhebung beinhaltete n = 4751 Debitoren, die in k = 7 Ratingklassen
unterteilt waren. Davon wurden n5 = 2102 Debitoren der Ratingklasse 5 zugeordnet
(Tabelle 4.2). Während des Beobachtungszeitraumes wurde eine Ausfallquote von

p̄5 =
10

2102
= 0, 00476

registriert (Tabelle 4.3). Die prognostizierte Ausfallwahrscheinlichkeit kann den Un-
terlagen der CreditReform entnommen werden (Tabelle 4.1) und beträgt für die
Ratingklasse 5 π5 = 0, 0073. Mit diesen Daten ist es nun möglich, einen Test zum
Niveau α = 5% festzulegen.
Der Parameterraum Θ des zu testenden Parameters entspricht

Θ = [0, 1]

Getestet wird nun, ob die tatsächliche Ausfallwahrscheinlichkeit p5 in der Hypo-
these H0 oder in der Alternative H1 liegt. Da es im Interesse des Kreditors liegt,
das Ausfallrisiko nicht zu unterschätzen, wird die Hypothese H0 so gewählt, dass
die prognostizierte Ausfallwahrscheinlichkeit mit hoher vorgegebener Wahrschein-
lichkeit (1− α) angenommen werden kann. Damit ergeben sich die Hypothesen

H0 : p5 ≤ 0, 0073 und H1 : p5 > 0, 0073.

Die Teststatistik für diesen Test (3.10) wurde in Kapitel 3.3 hergeleitet und lautet
für die Ratingklasse 5:

T5 =

√
1− 0, 0184Φ−1(0, 00476)− Φ−1(0, 0073)√

0, 0184

= − 0, 9353 (4.3)

Um zu überprüfen, ob die Hypothese abgelehnt wird oder nicht, wird der Akzep-
tanzbereich sowie der kritische Bereich K5% bestimmt. Mit Hilfe von (3.11) folgt

K5% = (Φ−1(0, 95)︸ ︷︷ ︸
= 1,6449

,∞). (4.4)

Mit (4.3) und (4.4) folgt,

T5 /∈ K5%.
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Deshalb gilt für die Testfunktion (3.6)

ϕ(T5) = 0.

Dieses Resultat bedeutet, dass die Hypothese H0 mit 95%-iger Sicherheit angenom-
men wird und somit die tatsächliche Ausfallwahrscheinlichkeit p5 der prognostizier-
ten Ausfallwahrscheinlichkeit π5 = 0, 0073 entspricht.

Um noch Informationen über den Fehler 2. Art zu bekommen, wird der Modellfehler
p5−π5 betrachtet. Nach Kapitel 3.3 liefert das Gleichsetzen der kritischen Grenzen
bei gegebenem Fehler 1. Art bzw. Fehler 2. Art optimale Entscheidungsregeln. Mit
Hilfe von (3.15) wird eine obere Schranke für den Modellfehler bestimmt. Bei einem
Fehler 1. Art von 5% und einem Fehler 2. Art von 50% berechnet sich diese zu

c = Φ
(√

0, 0184
(
Φ−1(0, 95)− Φ−1(0, 5)

)
+ Φ−1(0, 0073)

)
− 0, 0073 = 0, 0059

Das bedeutet, dass ein Modellfehler p5 − π5 ≥ 0, 0059 mit einer Wahrscheinlichkeit
von 50% erkannt wird.

Zum Abschluss sei noch gesagt, dass die prognostizierten Ausfallwahrscheinlichkei-
ten π4 und π6 der Ratingklasse 4 und 6 durch analoge Rechnungen angenommen
werden. Ebenfalls wird die Ausfallwahrscheinlichkeit π7 der siebten Ratingklasse
angenommen, da eine Ausfallwahrscheinlichkeit von 0% in jedem Fall akzeptiert
wird. Über die übrigen Ausfallwahrscheinlichkeiten lässt sich aufgrund der geringen
Datenanzahl keine adäquate Aussage treffen.



Fazit

Ziel dieser Arbeit bestand darin, das Ratingsystem eines mittelständigen Unterneh-
mens zu validieren. Besonders wurde dazu auf quantitave Validierung eingegangen.

Nachdem ein Modell entwickelt wurde, wurde die Gütemaße der Trennschärfe her-
geleitet. Besonders bewährt haben sich dabei das Cumulative Accuracy Profile und
die Reciever Operating Charackteristic. Diese sind sehr gut erforscht und liefern
gleichzeitig auch sehr anschauliche Ergebnisse über die Trennschärfe eines Rating-
systems. In einer solchen Arbeit dürfen weitere Gütemaße -wie die Bayessche Fehler
oder Pietra Index- jedoch nicht fehlen, weswegen diese ebenfalls im zweiten Kapitel
vorgestellt wurden.

Ein weiterer Schwerpunkt der Arbeit lag auf der Kalibrierung der Ausfallwahr-
scheinlichkeiten. Dabei ist es imminent, die Abhängigkeit der Ausfallereignisse zu
modellieren. Dazu wurde auf den asymptotischen Test im Ein-Faktor Modell zu-
rückgegriffen. Die Abhängigkeit wurde durch die Korrelation der Ausfallvariablen
modelliert. Des Weiteren ist die Grundvoraussetzung für einen solchen Test eine
gewisse Anzahl an Daten.

Grundlage für die Anwendung der gewonnenen Erkenntnisse war es, eine gewisse
Datenqualität zu gewährleisten. Dabei war das Unternehmens-Informationssystem
-SAP- eine hervorrangende Unterstützung. Durch eine geschriebene Transaktions-
maske konnte auf die Datenbank der Buchhaltung zugegriffen und nach den ge-
wünschten Kennzahlen gefiltert werden. Diese ließen sich dann ohne Weiteres zur
Weiterverarbeitung in ein Tabellenkalkulationsprogramm exportieren.
Die damit berechneten Gütemaße wiesen stets einen „besseren“ -jedoch keinen si-
gnifikant besseren- Wert auf 5. Damit wurden die vorgegebenen Ratingeinstufungen
der CreditReform optimal umgesetzt.
Beim Testen der Ausfallwahrscheinlichkeit konnten aufgrund der Datenmenge ledig-

5z.B. ARKRONE = 0, 8625; ARCR = 0, 6849 & AUROCKRONE = 0, 8726; AUROCCR =
0, 8425
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lich die Ratingklassen 4,5 und 6 getestet werden, da ein solcher Test eine mindest
Anzahl von 500 Debitoren fordert, um zu gerechten Ergebnissen zu gelangen. Die
prognostizierten Ausfallwahrscheinlichkeiten dieser Ratingklassen wurden alle durch
den Test angenommen 6.

Damit lässt sich als Resultat dieser Arbeit der Fa. KRONE eine sehr gute Umsetzung
der Ratings bescheinigen.

6Test zum Niveau 5% bei einem „Fehler 2. Art“ in Höhe von 50%



Anhang

Berechnung der Gütemaße der Trennschärfe des CreditReform Ratings

Auf Grundlage der im vierten Kapitel betrachteten Datenerhebung werden nun die
Trennschärfemaße des CreditReform Ratings berechnet. Die Datenerhebung ergab
n = 4751 Debitoren, die folgendermaßen den Ratingklassen (r = 1, ..., 7) zugeteilt
wurden.

r 1 2 3 4 5 6 7 gesamt
Debitoren 201 120 222 1460 2102 588 58 4751

r 1 2 3 4 5 6 7
πr 26,87% 15,46% 6,04% 1,46% 0,73% 0,32% 0,07%

Tabelle 4.12: prognostizierte Ausfallwahrscheinlichkeit der CreditReform

Mit den prognostizierten Ausfallwahrscheinlichkeiten πr (Tabelle 4.12) und Tabelle
4.2 ergeben sich die theoretisch prognostizierten Ausfälle zu

r 1 2 3 4 5 6 7
Defaulter 54,0087 18,552 13,4088 21,316 15,3446 1,8816 0,00406

Tabelle 4.13: theoretische Ausfälle des CreditReform Ratings

Die kumulierten Wahrscheinlichkeiten F̄D, F̄N sowie F̄ berechnen sich zu Tabelle
4.14.

Weiter werden für die Berechnung die Wahrscheinlichkeiten f̄(r) bzw. f̄D(r) für
r = 1, .., 7 benötigt. Diese geben die Wahrscheinlichkeit wieder, mit der ein Debitor
bzw. Defaulter in der r-ten Ratingklasse ist. Mit Hilfe der Tabelle 4.13 werden die
Werte aus 4.15 berechnet.

Die totale Ausfallwahrscheinlichkeit berechnet sich zu p = 124,51576
4751

= 2, 62%.
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r 1 2 3 4 5 6 7
F̄D(r) 43,36 58,26 69,02 86,14 98,46 99,97 100
F̄N(r) 4,23 6,76 11,43 42,16 86,40 98,78 100
F̄ (r) 4,23 6,76 11,43 42,16 86,4 98,78 100

Tabelle 4.14: kum. Wahrscheinlichkeiten, Angaben in %

r 1 2 3 4 5 6 7 Σ
f̄D(r) 43,36 14,89 10,77 17,11 12,32 1,51 0,03 1
f̄N(r) 3,18 2,19 4,51 31,10 45,10 12,67 1,25 1
f̄(r) 4,23 2,53 4,67 30,73 44,24 12,38 1,22 1

Tabelle 4.15: Anteil in den Ratingklasse, Angaben in %

Damit können nun -analog zu den Berechnungen aus dem vierten Kapitel- die Gü-
temaße Accuracy Ratio, Area under the ROC, usw. berechnet werden. Es folgt:

ARCR = 0, 6849

AUROCCR = 0, 8425

CIERCR = 0, 2465
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Kritische Werte des Kolmogorov-Smirnoff Tests

Datenanzahl n Signifikanzniveau 0,10 0,05 0,01
1 0,950 0,975 0,995
2 0,776 0,842 0,929
3 0,642 0,708 0,828
4 0,564 0,624 0,733
5 0,510 0,565 0,669
6 0,470 0,521 0,618
7 0,438 0,486 0,577
8 0,411 0,457 0,543
9 0,388 0,432 0,514
10 0,368 0,410 0,490
11 0,352 0,391 0,468
12 0,338 0,375 0,450
13 0,325 0,361 0,433
14 0,314 0,349 0,418
15 0,304 0,338 0,404
16 0,295 0,328 0,392
17 0,286 0,318 0,381
18 0,278 0,309 0,371
19 0,272 0,301 0,363
20 0,264 0,294 0,356
25 0,240 0,270 0,320
30 0,220 0,240 0,290
35 0,210 0,230 0,270
> 35 1,22√

n
1,36√
n

1,63√
n

Tabelle 4.16: Kritische Werte des Kolmogorov-Smirnoff Tests



Literaturverzeichnis

[1] Alsmeyer, G. (2005) Wahrscheinlichkeitstheorie, Skripten zur Mathematischen
Statistik Nr. 30. 4. Auflage ,Münster

[2] Alsmeyer, G. (2006) Mathematische Statistik, Skripten zur Mathematischen
Statistik Nr. 36. 3. Auflage ,Münster

[3] Tasche, D. (2009) Estimating discriminatory power and PD curves when the
number of defaults is small. Preprint, Technische Universität München

[4] Tasche, D. (2006) Validation of internal rating systems and PD estimates. Pre-
print, Technische Universität München

[5] Pluta, K. & Tasche, D. (2006) Thinking positively. Preprint, Technische Uni-
versität München

[6] Engelmann, B. & Rauhmeier, R. (2006) The Basel II Risk Parameters, Esti-
mation, Validation and Stress Testing. Springer 1. Auflage, Berlin

[7] Engelmann, B., Hayden, E. & Tasche, D. (2006) Measuring the discrimina-
tive power of rating systems. Working Paper, Discussion paper No. 01/2003,
Banking and Financial Supervision, Deutsche Bundesbank

[8] Henking, A., Bluhm, C. & Fahrmeier, L. (2006) Kreditrisikomessung, Statisti-
sche Grundlagen, Methoden und Modellierung. Springer 1. Auflage , Berlin

[9] Tasche, D. (2002) Remarks on the monotonicity of default probabilities. Wor-
king Paper, Technische Universität München

[10] Thonabauer, G. & Nösslinger,B. (2004) Leitfadenreihe zum Kreditrisiko, Ra-
tingmodelle und -validierung. Österreichische Nationalbank, Wien

[11] Cormann, U. (2005) Backtesting von Kreditrisikomodellen. Bachelor Thesis,
Siegen

IX



X LITERATURVERZEICHNIS

[12] Huschens, S. (2004) Backtesting von Ausfallwahrscheinlichkeiten. Dresdner Bei-
träge zu Quantitativen Verfahren Technische Universität Dresden

[13] Höse, S. & Huschens, S. (2003) Sind interne Ratingsysteme im Rahmen von Ba-
sel II evaluierbar?, Zur Schätzung von Ausfallwahrscheinlichkeiten durch Aus-
fallquoten. Zeitschrift für Betriebswirtschaft 73 Gabler, Münschen

[14] Oehler, A. (2002) Kreditrisikomanagement, Kernbereiche, Aufsicht und Ent-
wicklungstendenzen. Schäffer-Poeschel 2. überarb. Auflage, Stuttgart


	Abbildungsverzeichnis
	Tabellenverzeichnisverzeichnis
	Einleitung
	1 Statistische Grundlagen
	1.1 Grundlagen
	1.2 Einführung von Ratingklassen
	1.3 Monotonie

	2 Trennschärfe
	2.1 Cumulative Accuracy Profile
	2.2 Reciever Operating Characteristic
	2.3 Weitere Trennschärfemaße
	2.3.1 Bayes Fehler
	2.3.2 Pietra-Index
	2.3.3 Bedingter Entropie Quotient


	3 Kalibrierung von Ratingsystemen
	3.1 Einfaktor-Modell
	3.2 Verteilung einer Ausfallquote
	3.3 Test einer Ausfallwahrscheinlichkeit

	4 Datenanalyse
	4.1 Trennschärfeberechnung
	4.2 Test einer Ausfallwahrscheinlichkeit

	Fazit
	Anhang
	Literaturverzeichnis

