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Einleitung

Die Geschichte des Ratings reicht bis ins 19. Jahrhundert zuriick. Mit der Ausdeh-
nung des Eisenbahnnetzes iiber den US-amerikanischen Kontinent, wurden enorme
Kredite bendtigt, die einzelne Banken alleine nicht mehr aufbringen konnten. Aus
diesem Grund gaben die Industrieunternehmen zusétzliche Anleihen aus, um fi-
nanzielle Mittel von Investoren zu beschaffen. Da die Anleger ohne Informationen
iiber das Risiko nicht bereit waren ihr Geld an die Eisenbahngesellschaften zu ge-
ben, verdffentlichte Henry Varnum Poor 1868 das ,,Manual of the Railroads of the
United States”. In diesem Schreiben wurden Informationen iiber die Eisenbahnge-
sellschaften zusammengefasst. Somit war dieses die erste Bonitdtsbeurteilung eines
Unternehmens. Seitdem sind Bonitédtsbewertungen unumgénglich in der Finanzin-

dustrie.

Mit der Umsetzung von Basel II in das européisches Recht 2007 wurde die Bedeu-
tung des Ratings in Deutschland erhoht. Basel II ist ein Empfehlungsschreiben des
Baseler Ausschusses fiir Bankenaufsicht. Mit der Umsetzung von Basel II wird die
Eigenkapitalanforderung der Banken an das Risiko des Portfeuille gekoppelt. Das
bedeutet, dass die Bank bei einem hoheren Ausfallrisiko des Kredits diesen mit
mehr Figenkapital hinterlegen muss. Das wiederrum fithrt zu einer Verteuerung des
geliechenen Geldes fiir die Bank. Die hoheren Kosten werden an den Antragssteller

durch z.B. hohere Zinsen weitergegeben.

Aber auch fiir andere Industriezweige ist die Bonitatsbewertung von Bedeutung. So
priifen viele Unternehmen zuerst die Bonitdt von Kunden, bevor sie mit ihnen Ge-
schiftsbeziehungen eingehen. Im Falle einer schlechten Bewertung werden entweder
besondere Zahlungsbedingungen gefordert oder die Geschéftbeziehung sogar ganz

abgelehnt. Die Bewertung der Bonitédt wird mit Hilfe von Ratingsystemen ermittelt.

Unter dem Begriff der Validierung wird der gesamte Prozess der Uberpriifung
von Ratingsystemen verstanden. Griindséatzlich wird zwischen der qualitativen und

quantitativen Validierung unterschieden. In Abbildung 1 ist die Struktur von Vali-



dierungsprozessen aufgezeigt.

Validierung
Qualitative Validierung Quantitative Validierung
Modell- Daten- interne . ;
Benchmark
design qualitat WVerwendung Backtesting encimaring
Trennschérfe Kalibrierung Stabilisierung

Abblldung 1: Komponenten der Validierung

Die qualitative Validierung ist der quantitativen Validierung in der Regel voran-
gestellt. Dabei besteht diese aus den Bereichen Modelldesign, Datenqualitdt und
interne Verwendung.

Die Hauptaufgabe des Modelldesigns ist die Dokumentation des Ratingsystems.
Wichtige Kriterien sind hierbei der Umfang und die Vollstéandigkeit der Dokumenta-
tion. Das bedeutet, dass der Ratingprozess bzw. die Architektur des Ratingmodells
transparent gemacht werden sollen. Weiterhin soll dadurch die Auswahl sowie der

Einfluss von Risikoparametern 6konomisch begriindet werden.

Der Datenqualitdt kommt bei der Entwicklung eines Ratingsystems eine eminente
Bedeutung zu und ist damit schon ein erstes Giitemaf fiir das Modell. Bei der Va-
lidierung der Datenqualitat wird untersucht, ob die Daten vollstdndig sind. Eben-
falls muss gepriift werden, ob die zur Entwicklung oder Validierung verwendete
Stichprobe reprasentativ ist. Nur wenn dieses erfiillt ist, ldsst sich das ermittelte

Ratingergebnis nachvollziehen.

Bei der Validierung der internen Verwendung wird lediglich {iberpriift, inwieweit das
Ratingsystem in das Risikomanagement eingebunden ist. Die interne Verwendung

ist jedoch ein Indiz fiir das Vertrauen in das Ratingmodell.



Die zweite Séule der Validierung besteht aus der quantitativen Validierung des Ra-
tingmodells. Wichtig fiir diese Validierungsmethode ist ein ausreichender Stichpro-
benumfang. Die quantitative Validierung unterteilt sich in das statistische Backtes-

ting sowie das Benchmarking.

Das Backtesting wird anhand von firmeninternen Daten durchgefiihrt, wobei beim
Benchmarking das Ratingmodell anhand von Vergleichsdaten {iberpriift wird. Dieses
ermoglicht den Vergleich verschiedener Ratingmodelle auf einer identischen Daten-
basis. Bei beiden quantitativen Validierungskomponenten wird die Trennschérfe, die
Kalibrierung der Ausfallwahrscheinlichkeiten sowie die Stabilitat des Ratingmodells

untersucht.

Die Fahigkeit ex ante zwischen ausgefallenen (Defaulter) und solventen (Non-Defaulter)
Debitoren zu unterschieden, wird Trennschérfe genannt. Je besser das Ratingmo-
dell ausfallgefahrdete Debitoren erkennen kann, desto hoher ist die Trennschérfe.

Die Trennschérfe dient somit als Giitemafs des Ratingmodells.

Die Kalibrierung der Ausfallwahrscheinlichkeit untersucht die Abweichung der pro-
gnostizierten von der tatsédchlichen Ausfallwahrscheinlichkeit. Dabei diirfen sich die-

se fiir ein addquates Risikomanagement nicht signifikant unterscheiden.

Die Bestandigkeit des Ratingmodells iiber einen langeren Zeitraum sowie sich an-
dernde Rahmenbedingungen, nennt man Stabilitdt des Ratingmodells. Die Stabili-
tdat wird validiert, indem die vorangegangenen Validierungskomponenten mit Hilfe

verschiedener Szenerien untersucht werden.

Die vorliegende Arbeit widmet sich ausschlieflich dem statistischen Backtesting. Im
ersten Kapitel werden die statistischen Grundlagen gekléart sowie ein Grundgeriist
fiir die weiteren Validierungstechniken entwickelt. Das zweite Kapitel beschéftigt
sich mit der Messung der Trennschérfe. Dabei werden ausgewéahlte Beispiele der

Trennscharfemessung vorgestellt.

Der Kalibrierung des Ratingsystems widmet sich das dritte Kapitel. Anhand des
Ein-Faktor Modells wird dabei die prognostizierte Ausfallwahrscheinlichkeit gegen
die wahre Ausfallwahrscheinlichkeit getestet. Im vierten Kapitel werden die vorge-
stellten Methoden der Validierung auf die Datenerhebung der Fahrzeugwerk Ber-
nard KRONE GmbH angewandt und somit das Ratingsystem der Fa. KRONE

iiberpriift. Abschliefsend wird ein Fazit iiber die gewonnenen Ergebnisse gezogen.

Ich m&chte ganz herzlich Herrn Privatdozent Dr. Volkert Paulsen fiir die Betreuung

dieser Arbeit danken. Ein besonderer Dank gilt auch der Fahrzeugwerk Bernard



KRONE GmbH, insbesondere Herrn Hubert Borger fiir die Durchfithrung der Ar-
beit im Rahmen meines Betriebspraktikums. Fiir die Durchsicht ein Dank an Felix

Brinkmann.

Gemék § 21 (6) der Diplompriifungsordnung fiir den Studiengang Mathematik der
Westfilischen Wilhelms-Universitat Miinster vom 15. Juli 1998 versichere ich, dass
ich die vorliegende Diplomarbeit selbstandig verfasst und keine anderen als die im

Literaturverzeichnis angegebenen Quellen und Hilfsmittel benutzt habe.

Miinster, den 28. April 2010

Ulrich K. Frye



Kapitel 1

Statistische Grundlagen

In diesem Kapitel wird ein Modell vorgestellt, welches als Geriist der gédngigen

Validierungstechnik dient. Zunéchst werden die statistischen Grundlagen erklart.

Dazu sei (2, 0(Q2), P) ein Wahrscheinlichkeitsraum, welcher unspezifiziert bleibt. €

kann dabei als Menge aller Debitoren aufgefasst werden.

Jedem Debitor werden nun zwei Zufallsvariablen S und X zugeordnet.

S : 2 — R gibt dabei den sogenannten Score -entlang einer stetigen Skala- des
Debitors an. Der Score -Realisation der Zufallsvariablen S- fasst die aus der Buch-
fiihrung gewonnenen Daten bzgl. eines Debitors in einem einzelnen Wert zusammen
und ist somit eine Kennzahl fiir die Kreditwiirdigkeit bzw. Bonitédt des Debitors.
Dabei gilt, dass ein hoher Score auch eine hohe Bonitédt impliziert bzw. ein nied-
riger Score eine geringe Bonitat. In diesem Modell wird S auch als Score-Variable
bezeichnet.

Die Zufallsvariable X : 2 — {0, 1} soll den Status des Debitors -ausgefallen bzw.
nicht ausgefallen- am Ende einer Beobachtungsperiode angeben. Die Zufallsvariable
ordnet dem Debitor hierzu im Falle eines Ausfalls den Status 1 bzw. im Falle eines

solventen Debitors den Wert 0 zu. Formal fiir den i-ten Debitor:

1, 7 ist ausgefallen

0, 7 ist nicht ausgefallen

Der Status des Debitors ist zu Anfang der Beobachtungsperiode nicht bekannt. Die
Zufallsvariable X ist somit latent. Ziel ist es, mit Hilfe des Scores s, den zukiinftigen

Zustand des Debitors vorherzusagen.
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1.1 Grundlagen

Zunachst sollen einige Bezeichnungsweisen fiir den weiteren Verlauf eingefiihrt wer-

den.

Die Menge €2 der Debitoren léasst sich am Ende der Beobachtungsperiode in die
disjunkten Mengen der Defaulter D und der der Non-Defaulter N aufteilen. Die
Aufteilung wird dabei kanonisch durch die Realisation der Zufallsvariablen X gege-

ben. Die Randverteilung von X ist offensichtlich Binomial-verteilt mit
p=PX=1) =1-PX=0) (1.1)

Dabei sei mit p die totale Ausfallwahrscheinlichkeit -also die Wahrscheinlichkeit,
dass am Ende einer Periode ein Debitor ausgefallen ist- gemeint. Mit fp : R —
[0,1] ist die bedingte Dichte bzgl. des Lebesque Mafkes von S -gegeben X = 1

bezeichnet. Die Verteilungsfunktion ist entsprechend gegeben durch
Fo(s) = P(S<s|X=1) = / Fo(u) du.

Des Weiteren wird mit fy : R — [0, 1] die bedingte Dichte von S -gegeben X=0
bezeichnet. Die Verteilungsfunktion von S -gegeben X=0 ist gegeben durch

Fx(s) = P(S<s|X=0) = /_ Fx(u) du.

Die unbedingte Dichte der Verteilung S sei f : R — [0, 1]. Die Verteilungsfunktion
von S wird festgelegt durch

F(s) = P(S<s) = /_ f(u) du (1.2)

In der Abbildung (1.1) ist ein Beispiel fiir die bedingten Dichten fp und fx gegeben.
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Abblldung 1.1: Beispiel fiir bedingte Dichten

Vermége dem Satz von der totalen Wahrscheinlichkeit, kann die unbedingte Dichte

f geschrieben werden als
f(s) = p-fp(s)+ (1 —p)- fn(s) (1.3)

Mit dem Satz von Bayes lasst sich die bedingte Ausfallwahrscheinlichkeit P(X =

1| S =s) dann errechnen zu

P(X:1|S:s):p'f—z><s) (1.4)

Abbildung 1.2 illustriert die bedingte Ausfallwahrscheinlichkeit - gegeben den Score
s- geméak (1.4).
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Abblldung 1.2: bedingte Ausfallwahrscheinlichkeit als Funktion der Score Werte

1.2 Einfiuhrung von Ratingklassen

Aufgrund der Stetigkeit der Scorevariablen S werden nur wenige bzw. keine Be-
obachtungen pro Realisation gezéhlt. Jedoch ist fiir das Backtesting eines Rating-
systems eine gewisse Anzahl an Debitoren pro Realisation erforderlich. Zu diesem
Zweck fordert das Baseler Komitee fiir Bankenaufsicht eine endliche Anzahl von
Ratingklassen in einem Ratingsystem. Im Folgenden wird ein Ubergang zu einer
diskreten Dichte konstruiert, sodass den obigen Anforderungen geniigt wird. Ein

erstes Verfahren wird wie folgt konstruiert.

Es werden k Ratingklassen durch rekursiv definierte Scoregrenzen s,_; > Sp_o >
. > s1 definiert, wobei k die Ratingklasse mit der héchsten Bonitdt angibt. Zu
jeder Ratingklasse wird dann eine feste Ausfallwahrscheinlichkeit p;, mit j =1, ...,k

bestimmt. Es gilt:
Dk < Pr—1 < ... < P2 <Pp1

Weiter wird angenommen, dass die bedingte Ausfallwahrscheinlichkeit P(X =1 |
S = s) als Funktion in s fallend ist. Auf diesen Aspekt wird noch im Laufe der
Arbeit (vgl. Abschnitt 2.3) ndher eingegangen. Die Scoregrenzen werden festgelegt
durch:

p | folu) du
pe= P(X=1]8>s51) =
[ f(u) du
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und

p [ fo(u) du
pi = P(X=1]8>8>s_) =—5" firi=2,...,k—1. (15)
[ f(u) du

Ein Debitor mit Score s wird anhand der Funktion

k S 2 Sk-1
R(s) = < i , falls S;i >8> 8 (1.6)
1 S1> S8

einer Ratingklasse zugeordnet. Dabei wird z.B. ein Debitor mit Score grofer oder
gleich s;_; der Ratingklasse k zugeordnet, sowie falls der Score echt kleiner s; ist

der ersten Ratingklasse.

Die Ausfallwahrscheinlichkeit der ,schlechtesten Ratingklasse 1 ist iiber die Ausfall-
wahrscheinlichkeiten der £ —1 anderen Ratingklassen definiert. Diese wird festgelegt
durch

prD(U)dU
pr=PX=1|R(s)=1) = P(X=1|s>5) = — .
_ff(u)du

Des Weiteren lasst sich beobachten, dass die Abbildung r — P(X =1 R(s) =)
monoton féllt in 7, falls die Funktion s — P[X =1 | S = ] fiir fallende s fallend

1st.

1.2.1 Bemerkung

Betrachtet man das System iiber mehrere Perioden, so miissen die Score-Grenzen
mit der Zeit angepasst werden, damit die Ausfallwahrscheinlichkeiten der Rating-
klassen konstant bleiben. Dann spricht man von einem through — the — cycle-

Ratingsystem.

Ein weiteres Verfahren zur Kontruktion von Ratingklassen besteht darin, den Anteil
der Non-Defaulter pro Ratingklasse konstant zu halten, d.h.:
Es werden k Ratingklassen gewéhlt, wobei die Ratingklasse k£ wieder die hochs-



10 1.3. MONOTONIE

te Bonitat angibt. Die relative Anzahl der Non-Defaulter pro Ratingklasse 0 <
k
1,79, ...,7 mit > 7; = 1 bleibt konstant. Die Scoregrenzen s,_1 > sx_o > ... > s;

i=1
werden dann rekursiv festgelegt durch

Tk:P(SZSk_l‘X:O):/fN(S)dS
Sk—1
und

ry = P(Si>528i_1|X:O) = /fN(S) dS, furz:2,,k‘—1
Si—1

Die Abbildung der Scores auf die Ratingklasse ist analog zu (1.6) definiert. Somit

k
folgt wegen > r; = 1
i=1

P(R(s)=1|X=0) = P(S<s | X=0) = n.

1.2.2 Bemerkung

Wird das System wieder iiber mehrere Perioden betrachtet, so miissen auch hier die
Score-Grenzen mit der Zeit angepasst werden, damit der Anteil der Non-Defaulter
konstant bleibt. Jedoch wird mit diesem Verfahren ein grofer Shift der Score-
Variablen vermieden. Es wird in diesem Fall von einem point—in—time-Ratingsystem

gesprochen.

Im weiteren Verlauf der Arbeit wird allgemein von Ratingsystemen gesprochen, falls

die Score Variable und ihre Einteilung in Ratingklassen gemeint ist.

1.3 Monotonie

Im vorherigen Kapitel wurde die Monotonie der bedingten Ausfallwahrscheinlichkeit
P(X =11 S =) vorausgesetzt. Dieses ist jedoch nicht immer gewahrleistet. Ziel
ist es, nun mit Hilfe eines statistischen Tests, die Bedingungen fiir die Monotonie

naher zu analysieren. Zundchst wird ein optimaler Test bestimmt.

Dazu wird zuféllig ein Debitor ausgewahlt und sein Score notiert. Da noch keine
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Informationen iiber seinen zukiinftigen Status vorliegen, wird mit Hilfe des Scores

auf die Zustandsvariable X geschlossen.

Anzunehmen ist, dass (s, z) eine Realisation von (S, X) ist. s ist beobachtet worden,
x ist noch nicht bekannt. Es stellt sich die Frage, ob x = 0 oder x = 1 ist. Es wird
eine Entscheidungsmenge E gewihlt, sodass ein Ausfall angenommen wird, sofern
der Score des Debitors in der Menge F liegt. Falls dieses nicht der Fall ist, wird von

Solvenz des Debitors ausgegangen.

s € F=Annahmez =1

s ¢ E = Annahme x =0

Um die Menge F zu bestimmen, wird die bedingte Score Verteilung der Defaulter
P(S € - | X = 1) und die bedingte Score Verteilung der Non-Defaulter P(S €
- | X = 0) betrachtet. Ziel ist es, die Menge E so zu wihlen, dass die bedingte
Score Verteilung der Defaulter maximal und die bedingte Score Verteilung der Non-
Defaulter minimal wird. Dazu wird die Hypothese Hy (der Debitor ist zukiinftiger
Defaulter) bzw. die Alternative H; (der Debitor bleibt liquide) aufgestellt. Dann

werden diese Hypothesen gegeneinander getestet.
Hy : =1 gegen H 1 x=0

In einem solchen Test konnen zwei Fehler begangen werden. Zum Einen der Fehler
1. Art -die Hypothese Hy wird ablehnt, obwohl diese wahr ist-, zum Anderen der
Fehler 2. Art -die Hypothese Hy wird beibehalten, obwohl die Alternative H; gilt.

e Fehler 1. Art: Debitor wird fiir solvent gehalten, obwohl er Defaulter ist

e Fehler 2. Art: Debitor wird als Defaulter angenommen, obwohl er solvent

bleibt

Um nun optimal zu entscheiden, werden die Wahrscheinlichkeiten der beiden Feh-

lermoglichkeiten betrachtet.

Die Wahrscheinlichkeit des Fehlers 1. Art ergibt sich aus der bedingten Verteilung
der Defaulter, unter der Annahme, dass der Score des Debitors kein Element der
Menge FE ist.

P(Fehler 1. Art) = P(S¢ E| X =1)

Die Wahrscheinlichkeit des Fehlers 2. Art, ist die Wahrscheinlichkeit unter der Ver-
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teilung der Non-Defaulter, dass der Debitor einen Score aus der Menge FE hat.
P(Fehler 2. Art) = P(Se€ E| X =0)

Da der Fehler 1. Art kritischer ist, wird dieser nach oben hin durch eine Schranke «
begrenzt, d.h. ein Test zum Niveau a durchgefiihrt. Dadurch ergibt sich als modifi-
ziertes Ziel, einen gleichméfig besten Test zum Niveau « zu finden, der den Fehler

2. Art minimiert.

P(Fehler 1. Art) < Schranke
P(Fehler 2. Art) minimieren

Zunéchst muss der sogenante Likelihood Quotient und das zugehorige a-Fraktil

eingefiithrt werden.

1.3.1 Definition
Seien fp und fyn Dichtefunktionen von S, dann heifst

LR(S) “ 12 (s)
In
Likelihood Quotient der Score Variablen S.

1.3.2 Definition
Das a-Fraktil von LR(S) wird definiert durch

ro € inf{P(LR(S)<r|X=1) > 1-a}.

r<0

Aufgrund der Stetigkeit kann das a-Fraktil durch Auflosung der folgenden Gleichung

bestimmt werden.

l—a = P(LR(S) <71, | X =1)
Mit Hilfe des Neymann-Pearson Lemmas folgt, dass
1, fir LR(S) > 14

gp et
0, sonst

einen gleichméfig besten Test zum Niveau « definiert. Dabei bedeutet ¢ = 1 die

Ablehnung der Hypothese Hj. Dieses Ergebnis wird auf das Problem iibertragen.
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Falls
e S¢FE = o =1
e PS¢E|X=1) <«

gilt, so folgt
P(LR(S)<r,| X =0) < P(SeFE|X=0). (1.7)

Mit Hilfe von (1.7) kann nun die gesuchte Menge E definiert werden.

E Y {s: LR(s) <r,} (1.8)
Damit ist gezeigt, dass der gleichméfig beste Test in der Betrachtung des Likelihood
Quotienten liegt. Aufserdem kann mit Hilfe der Menge E (1.8) zwischen Defaultern

und Non-Defaultern unterschieden werden.

Um die Monotonie der Ausfallwahrscheinlichkeiten zu untersuchen, wird die Bayes
Formel genutzt. Mit dieser kann gezeigt werden, dass die bedingte Ausfallwahr-
scheinlichkeit P(X = 1| S = s) genau dann monoton ist, wenn der Likelihood

Quotient monoton ist.

Um diesen Aspekt weiter zu erlautern, wird die Eigenschaft der Linearitét einer

Score Variable eingefiihrt.

1.3.3 Definition
Die Score Variable S ist linear bzgl. der Verteilung P(S € - | X = 1) und P(S € - |
X =0), falls

1 falls S > r,

90 pry
0 sonst

einen gleichméfig besten Test zum Niveau « definiert.

Durch die Definition und (1.8) l&sst sich folgende Bemerkung machen.

1.3.4 Bemerkung

Die Score Variable S ist genau dann linear bzgl. der Verteilung P(S € - | X = 1)
und P(S € - | X = 0), wenn der Likelihood Quotient LR(S) monoton ist und damit
auch die bedingte Ausfallwahrscheinlichkeit.
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In der Praxis ist es schwer, die Monotonie nachzuweisen. Jedoch ist es aus betriebs-
wirtschaftlicher Sicht klar, dass die Monotonie der bedingten Ausfallwahrscheinlich-
keit gegeben sein muss. Denn mit schlechter werdendem Score muss die bedingte
Ausfallwahrscheinlichkeit des Debitors grofer werden. Indirekt kann dieses schon

als erstes Validierungskriterium des Ratings angesehen werden.



Kapitel 2

Validierungstechniken fiir die

Trennscharfe von Ratingsystemen

Dieses Kapitel bezieht sich auf die Messung der Trennschérfe -die Fahigkeit zwi-
schen Defaultern und Non-Defaultern zu unterscheiden- von Ratingsystemen. Wie
bereits in der Einleitung erwéhnt, ist die Trennschéarfe ein Mak fiir die Giite eines
Ratingsystems. Es gilt, je hoher die Trennschirfe eines Ratingsystems, desto besser
kann dieses zwischen Defaultern und Non-Defaultern differenzieren. Die Trennschér-
fe kann auf verschiedene Weise ermittelt werden. Einige in der Wirtschaft bedeu-
tende Verfahren werden in diesem Kapitel vorgestellt. Zum Einen das Cumulative
Accuracy Profile, zum Anderen die Reciever Operating Characteristic. Abschliefsend

werden weitere Verfahren genannt.

2.1 Cumulative Accuracy Profile

Das Cumulative Accuracy Profile (C'AP) ist ein graphisches Hilfsmittel zur Bestim-

mung der Trennschérfe von Ratingsystemen.

Mit Fp und Fy sei -wie im ersten Kapitel- die bedingte Verteilungsfunktion der
Score Variablen S unter X = 1 bzw. X = 0 verstanden. p sei wiederum die to-
tale Ausfallwahrscheinlichkeit der Debitoren. Somit kann mit Hilfe von (1.3) die
unbedingte Verteilungsfunktion F(s) der Score Variablen S bestimmt werden. Es
ist: .

P(s) = [ s du 2 (1= p)Fe(s) + pFo(s (2.1)

15
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Hiermit wird nun die C' AP-Funktion definiert.

2.1.1 Definition
Die Funktion CAP : [0,1] — [0, 1] definiert durch

CAP(w) & Fp(F'(w), welo,1] (2.2)

heifst Cumulative Accuracy Profile (C'AP)-Funktion, wobei

F(u) & sup{P[S < s] < u} die Pseudo-Inverse von F sei.

Beispiel fir CAP - Funktionen

1 /7
0,8 / /
0,6 - / /
04 + o -
! —zufilliges Rating
——reales Rating
0,2

/ perfektes Rating

F_Dis)

0 0,2 0,4 0,6 0,8 1
F(s)

Abblldung 2.1: CAP - Kurve fiir Ratingsysteme

Alternativ erhélt man die Kurve der C A P-Funktion, indem man die Punkte (F'(s), Fp(s))

fiir s € R plottet.

2.1.2 Bemerkung

Im C AP-Modell werden die Verteilungsfunktionen F'(s) und Fp(s) auch als Alarm-
rate bzw. Trefferquote bezeichnet. Anschaulich gibt die Alarmrate F'(s) den relative
Anteil aller Debitoren, kleiner oder gleich einem Score s, an. Mit der Trefferquote

Fp(s) ist der relative Anteil der Defaulter kleiner oder gleich einem Score s gemeint.
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Die Abbildung 2.1 zeigt Beispiele fiir CAP-Funktionen. Diese Beispiele werden nun

naher beschrieben.
e perfektes Ratingsystem

Der Graph eines perfekten Ratingsystems wiéchst linear vom Ursprung bis
zum Punkt (p, 1) und ist von (p, 1) bis (1, 1) konstant. Die Score Variable eines
perfekten Ratingsystems ordnet allen Defaultern -besitzen einen Anteil von p
an der Grundgesamtheit der Debitoren- im Vorhinein den niedrigsten Score
zu. Somit unterscheidet das perfekte Ratingsystem nur zwischen Defaultern
und Non-Defaultern. Der Definitionsbereich der bedingten Dichten fp und fy
der Score Variablen ist disjunkt (Abbildung 2.2). Formal:

{s:fp(s)>0}N{s: fn(s) >0} =0  firalles

bedingte Dichte

0,7

—"defaulter”

0,6
/\ =—"nan-defaulter"

0,5 / \

OJq m

. \ [
AN N

a 100 200 300 400 500 600 700

Dichte
—
l-.---.
--"-.—.

Score Wert

Abblldung 2.2: Bedingte Dichten bei perfektem Ratingsystem

e triviales Ratingsystem

Im Falle eines trivialen Ratingsystems besitzt das Ratingsystem keine Trenn-

schérfe -keine Unterscheidung zwischen Defaultern und Non-Defaultern. Des-
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halb sind die bedingten Dichten fp und fy der Score Variablen identisch. Die
Kurve dieses Ratingsystems ist eine Gerade durch den Ursprung und (1,1).
Anschaulich besitzt jeder Score den gleichen Anteil von Defaultern und Non-
Defaultern. Die Score Variable ordnet die Debitoren zuféllig den Score Werten

zu - Coin-Toss.
e Ratingsystem in der Praxis

Ein reales Ratingsystem besitzt eine C'AP-Kurve zwischen diesen beiden Ex-
trema. Ein solches Ratingsystem besitzt Trennschérfe und liegt deshalb ober-
halb der Kurve des trivialen Ratingmodells. Es kann aber nicht mit Sicherheit
zwischen Defaulter und Non-Defaulter unterscheiden und ist somit unterhalb
der Kurve des perfekten Ratingmsystems. Auf die Konkavitét der Kurve wird

im weiteren Verlauf dieses Kapitels naher eingegangen.

2.1.3 Bemerkung

In der Praxis ist es unwahrscheinlich, dass ein Ratingsystem die C'AP-Kurve eines
perfekten Ratingsystems besitzt, da dies bedeutet, dass mit Sicherheit ein Defaulter
vorhersehbar ist. Genauso unwahrscheinlich ist die Kurve eines trivialen Ratingsys-
tems. Ein solches Ratingsystem ist nutzlos, da es nicht zwischen Defaultern und

Non-Defaultern unterscheiden kann (Miinze werfen ist giinstiger).

Zur weiteren Untersuchung der C AP-Kurve -z.B. die Konkavitat- wird die Ableitung
der C'AP-Funktion betrachtet. Zunéchst wird die Ableitung der Pseudo-Inversen
gebildet. Die Verteilungsfunktion F'ist stetig und streng monoton auf dem Intervall
[0,1]. Weiter sei F' in s differenzierbar mit F”(s) # 0. Dann ist F~! in F(s) = u

differenzierbar und es gilt

FV(u) = = (2.3)

Damit wird nun die Ableitung der C'A P-Funktion bestimmt. Es gilt

o @3) fp(F ' (u)
CAP'(u) "= )

Mit der Bayes Formel (1.4) folgt

fo(F~"(u))

CAP() = i)
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(1) yPX =118 =F"(u) f(F"(u))

Mit der Darstellung (2.4) folgt aus der Monotonie der bedingten Ausfallwahrschein-
lichkeit die Konkavitéit der C'AP-Funktion. Da die bedingte Ausfallwahrscheinlich-
keit monoton fallend ist, fallt C AP’(u) in v und somit ist die C'A P-Funktion konkav.

Um nun eine Kennzahl zur Messung der Trennschérfe zu bekommen, wird die Fléche

zwischen der Diagonalen und der C'AP-Kurve betrachtet.

CAP-Funktion

F_Dis)

Fls)

Abblldung 2.3: CAP - Kurve fiir Ratingsysteme

Die Fléache zwischen C'AP-Kurve und der Diagonalen -hellgraue Fliache in Abbil-
dung 2.3- ist gegeben durch

1
/ CAP(u) du — E
0 2

Weiterhin berechnet sich die Fléche zwischen C'AP-Kurve des perfekten Ratingsys-
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tems und der Diagonalen -dunkelgraue Fliache in Abbildung 2.3- zu

N | —
DO |3

Der Quotient aus diesen beiden Fléchen bildet eine Kennzahl zur Bestimmung der

Trennschérfe, die Accuracy Ratio.

2.1.4 Definition
Die Accuracy Ratio (AR) ist definiert als

! 1
J CAP(u) du — =
AR = 2 &

N | —

p

2

1

2 [CAP(u) du —1
0

- — . (2.5)

Die Kennzahl AR kann folgendermafen anschaulich verstanden werden. Man wéhlt
zwei zuféllige Debitoren, einen aus der Grundgesamtheit der Defaulter, den ande-
ren aus der Grundgesamtheit der Non-Defaulter. Die AR ergibt sich dann aus der
Differenz der Wahrscheinlichkeit, dass der Score des Defaulters kleiner ist als der
Score des Non-Defaulters und der Wahrscheinlichkeit, dass der Score des Defaulters

grofer ist als der Score des Non-Defaulters. Formal:
AR = P(SD<SN)—P(SD>SN), (26)

wobei Sp und Sy unabhéngig und Fp bzw. Fly verteilt sind. Der Beweis von (2.6)

wird im nachfolgenden Kapitel gefiihrt.

2.1.5 Bemerkung
Die Trennschérfe des Ratingsystems ist somit umso besser, je grofer die Accuracy
Ratio ist. Eine grofse AR bedeutet auch eine grofe Ausfallwahrscheinlichkeit fiir

niedrige Score-Werte und umgekehrt.
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2.2 Reciever Operating Characteristic

Ein weiteres graphisches Hilfsmittel zur Bestimmung der Trennschérfe ist die Re-

ciever Operating Characteristic.

Zusétzlich zur Definition von Trefferquote und Alarmrate wird eine weitere De-
finition bendtigt. Dabei handelt es sich um die Fehlalarmquote. Diese ist als die
bedingte Wahrscheinlichkeit -der Score eines Non-Defaulters ist kleiner oder gleich

einer bestimmten Score-Grenze s-
P(S<s|X=0) = Fy(s)

definiert. Die Fehlalarmquote gibt den Anteil der Non-Defaulter unter einer Schran-

ke s an. Damit ist es nun moglich, die ROC-Funktion zu definieren.

2.2.1 Definition
Die Funktion ROC : [0,1] — [0, 1] gegeben durch

ROC(u) ¥ Fp(Fy'(uw)),  we(0,1) (2.7)

heiflt Reciever Operating Characteristic (ROC)-Funktion, wobei Fy' die Pseudo-

Inverse von Fly sei.

2.2.2 Bemerkung
Die ROC-Funktion und C'AP-Funktion unterscheiden sich darin, dass die C'AP-
Funktion durch F'(s) von der totalen Ausfallwahrscheinlichkeit p abhéngt.

Nun wird auf die Charakterisierung der Kurve der ROC-Funktion eingegangen. Der
Graph der ROC-Funktion kann durch Plotten von (Fy(s), Fp(s)), s € R bestimmt

werden.

Die in Abbildung 2.4 gezeigten Beispiele fiir ROC-Funktionen werden nun weiter

beschrieben.
e perfektes Ratingsystem

Die ROC-Kurve ist eine Konstante (ROC(u) = 1). Die Score Variable des

perfekte Ratings ordnet allen Defaultern den ,schlechtesten Score Wert zu,
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Beispiel fur ROC - Funktionen

0,8 /—____—-—'""—"_ //
v / /
0,4 — zufalliges Rating

/ / perfektes Rating
0,2

——reales Rating

F_Dis)

F_N(s)

Abblldung 2.4: ROC - Kurve fiir Ratingsysteme
die Non-Defaulter werden auf alle weiteren Score Werte verteilt -keinem Non-
Defaulter wird der ,schlechteste Score Wert zugeordnet.
e triviales Ratingsystem

Der Graph eines trivialen Ratingsystems ist eine Gerade durch den Ursprung
und den Punkt (1,1). Die Score Variable ordnet jedem Debitor einen zu-
falligen Score zu, die bedingten Dichten fp und fy sind deshalb identisch.
(= ROC(u) = u)

e reales Ratingmodell

Der Graph eines realen Ratingsystems ist eine konkave Kurve zwischen den

beiden Extrema -perfektes Rating und triviales Rating.

Zur weiteren Untersuchung der ROC-Kurve wird wieder die Ableitung der ROC-
Funktion betrachtet. Die Ableitung ist gegeben durch

ROC!(u) = 2N ) e (0, 1), (2.8)

Die Existenz der Ableitung der ROC-Funktion folgt mit derselben Argumentation
wie bei der Ableitung der C'A P-Funktion.

Der Quotient aus (2.8) entspricht dem Likelihood Qutienten, der bereits im Kapitel
1.3 -Monotonie- untersucht wurde. In Kapitel 1.3 wurde gezeigt, dass der Likelihood
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Quotient genau dann monoton fallend ist, wenn die bedingte Ausfallwahrscheinlich-
keit in s monoton fillt. Somit folgt aus der monoton fallenden Eigenschaft der
bedingten Ausfallwahrscheinlichkeit die Konkavitat der ROC-Kurve.

Ableitung der ROC - Kurve
15

=]
210
2 \
|9
a)
o
o

5 \\

0

0 0,2 0,4 0,6 0,8 1
u

Abbildung 2.5: Ableitung der ROC - Kurve aus Abbildung 2.4

Fiir das ROC-Verfahren soll wie beim C'AP-Verfahren eine einzelne Kennzahl zur
Bestimmung der Trennschérfe definiert werden. Hierzu wird die Flache unter der

ROC-Kurve betrachtet.

2.2.3 Definition
Die Kennzahl AUROC (Area Under ROC) ist definiert als die Fléche unterhalb der

ROC-Kurve

1
AUROC & / ROC!(u) du
0

= [ Fotrst ) as

Die AUROC lésst sich auch als Wahrscheinlichkeit interpretieren und zwar so, dass
der Score eines zufillig gewahlten Non-Defaulters grofer ist, als der Score eines

zufillig gewédhlten ausgefallenen Debitors. Es gilt

AUROC = P(SD < SN), (29)
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wobei Sp und Sy unabhéngig und Fp bzw. F)y verteilt sind.

Beweis:

Es sei 8 die Menge aller moglichen Score Werte s. Dann gilt
1
AUROC = / Fo(Fy\(s) ds,
0

Teafo / Fp(s) dFy(s)

8

= / Fp(Sy) dP

8
= Ep[P(Sp < Sy) | Sn]

Fie bed- BV pg;, < Sy) (2.10)

O

Die Maximierung der AUROC' dient somit der Maximierung der Trennschérfe
des Ratingsystems, da mit grofer werdender AUROC' die Wahrscheinlichkeit -
P(Sp < Sy)-, anhand des Score Wertes zwischen Defaultern und Non-Defaultern

zu unterscheiden, steigt.

Weiterhin lassen sich die Area Under ROC und Accuracy Ratio Uiber die Formel

AR +1

AUROC = 5

(2.11)

ineinander Uberfiithren.

Es gilt ndmlich

1
AUROC = /FD(F]#(S)) ds
0

8
@ [ g Fs) = pFo(s)
2 /SFDUd( ——
) g [P
= [T are) - [ o)
 JuFo(s) d(F(s))  p fy Fols) d(Fp(s))
1—p 1—p
Trafo OIFD(Fil u)) du’ pf[)lFD(FD_l(u)) du
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fol CAP(u) du B ip
L—=p l—p

_ 1(2fOICAP(u) du—1+1—p>

2 1—0p 1—p

51
@9?AR+U

Mit Hilfe von (2.11) ist es nun moglich, den ausstehenden Beweis von (2.6) zu

fiihren.
Bewelis:

AR “EYo. AUROC -1
0 9. P(Sp < Sy) — 1
:2'P(SD<SN)—(P(SD<SN)+P(SD>SN))

:P(SD<SN)—P(SD>SN)

2.2.4 Bemerkung

(2.11) zeigt, dass die Accuracy Ratio -wie die Area under ROC- von den bedingten
Dichten der Score Variablen S abhéngt, aber nicht von der totalen Ausfallwahr-
scheinlichkeit p.

2.2.5 Bemerkung
Die ROC-Kurve kann auch als Diagramm des Fehlers 1. Art und Fehlers 2. Art

interpretiert werden.

Testet man die Hypothesen
Hy : X=1 gegen H : X=0

entspricht Fyy(s) der Wahrscheinlichkeit des Fehlers 2. Art und 1 — Fpp(s) der Wahr-
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scheinlichkeit des Fehlers 1. Art, wobei die Testfunktion ¢ gegeben durch

1, falls S > s
('0 =
0, sonst

zugrundeliegt. ¢ = 0 bedeutet das Annehmen der Hypothese Hj.

2.3  Weitere Trennscharfemalie

In Kapitel 2.1 und 2.2 wurden die Giitemafe Cumulative Accuracy Profile und
Reciever Operating Characteristic vorgestellt. Nun wird ein kurzer Uberblick {iber
weitere Trennscharfemafie gegeben. Zuerst wird der Bayes Fehler -wozu auch der
Spezialfall Klassifikationsfehler zahlt- vorgestellt. Daraufhin wird der Pietra-Index
analysiert. Abschlieftend wird der -Entropie basierende- bedingte Entropie Quotient
hergeleitet.

2.3.1 Bayes Fehler

Die ROC-Kurve kann als Diagramm der Fehlerarten bzgl. der verschiedenen Score
Werte s gedeutet werden. Mit Hilfe der Fehleranalyse kann ein weiteres Trennschér-
femaf entwickelt werden. Dazu wird der Gesamtfehler betrachtet, im Gegensatz zur
seperaten Analyse des Fehlers 1. Art bzw. 2. Art. Zunnéchst wird der Begriff des
Klassifikators eingefiihrt.

2.3.1 Definition
Ein Klassifikator b ist eine Funktion, der Elemente aus einem Merkmalsraum -hier

Score s- auf eine Menge von Mustern C' abbildet.
b:R—C

In diesem Fall wird C = {0, 1} betrachtet, wobei C' = 0 als Solvenz und C' =1 als
Ausfall des Debitors gedeutet wird.

Der sogenannte Bayes Klassifikator ordnet die Merkmale anhand der a posteriori
Wahrscheinlichkeit -P(X = 1|S = s)- den Mustern zu. Das Mermal wird dem

Muster zugeordnet, fiir die die a posteriori Wahrscheinlichkeit am Grofsten ist (Bayes
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Entscheidungsregel):

Aufgrund des Satzes von Bayes (1.4)

P(S = s|X =1)P(X =1)
P(S=sX=1)P(X =1)+ P(S=S[X =0)P(X =0)

P(X=1|S=s) =

kann die Bayes Entscheidungsregel -(2.12) und (2.13)- berechnet werden durch:

Weiter ist die Bayes Entscheidungsregel optimal bzgl. der Fehlerwahrscheinlichkeit.
D.h. der Bayes Klassifikator minimiert die Fehlerwahrscheinlichkeit.

BF ¥ mm {P(Fehler bei Score s)}

—min {P(X = 1)P(S>s| X =1)+P(X =0)P(S < s | X =0)}

seS

= min {p(1 — Fp(s)) + (1 —p)Fn(s)} (2.14)

seS

Die Kennzahl BF' wird Bayes Fehler gennant und ist ein Giitemalfs fiir die Trenn-
schérfe.

Der Bayes Fehler gibt die Fehlerwahrscheinlichkeit bei optimalem Einsatz des Ra-
tingsystems wieder, also den Anteil der Debitoren, die bei optimaler Zuordnung
falsch klassifiziert werden. Deshalb gilt, je kleiner der Bayes Fehler, desto hoher ist

die Trennschérfe des Ratingsystems.

2.3.2 Bemerkung
Bei einem perfekten Ratingsystem werden alle Debitoren richtig klassifiziert, der

Bayes Fehler wire somit gleich null und die Trennschérfe maximal.

Ein Spezialfall des Bayes Fehler ist der Klassifikationsfehler (K F'). Bei diesem wird
die totale Ausfallwahrscheinlichkeit p gleich 1/2 gesetzt.
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Fiirp:%ist
KF = BFy = min {=(1— Fp(s)) + ~ Fy(s)
= Bl =min {3 p(s)) + 3 Fn(s)}
L.
= 5 mmin {1—Fp(s)+ Fn(s)}
1
=3 (1 — max | Fp(s) — Fn(s) | € [0,1] (2.15)

2.3.3 Bemerkung

Der Klassifikationsfehler ist nicht von der totalen Ausfallwahrscheinlichkeit p abhéan-
gig und eignet sich daher besser zum Vergleich von Ratingsystemen als die Bayes
Fehler.

Mit der Schreibweise (2.15) des Klassifikationsfehlers lésst sich eine Beziehung zu

einem weiteren Trennschirfemalf -Pietra-Index- aufweisen.

2.3.2 Pietra-Index

Mit Hilfe des Pietra-Index, der auch als Kolmogorov-Smirnoff-Teststatistik bekannt

ist, wird getestet, ob die Verteilungsfunktionen Fp und Fly identisch sind.

2.3.4 Definition
Seien F'p und Fy die Verteilungsfunktionen der Defaulter bzw. Non-Defaulter, dann
heifst

PI % max | Fp(s) — Fy(s) |

seS

Pietra Index der Verteilungen Fp, Fy.

Getestet werden die Hypothesen

H()iFD:FN s HllFD#FN.

Damit kann nun folgende Testfunktion definiert werden.
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2.3.5 Bemerkung

Als Kolmogorov-Smirnoff Test wird folgender Test zum Niveau « verstanden.

1, falls PI > D,
0, falls PI < D,

Dabei ist D, ein kritischer Wert, der mit Hilfe der Literatur ! berechnet werden

kann. Weiter bedeutet ¢ = 1 Ablehnung der Hypothese H,.

Wird die Hypothese angenommen (p = 0), so sind die Verteilungsfunktionen iden-
tisch, d.h. Fp = Fy. Die ROC-Kurve eines solchen Ratingsystems ist in Abbildung
2.6 gezeigt. Daraus folgt, dass die Score Variable und somit das Ratingsystem kei-

nerlei Trennschéarfe besitzt.

ROC-Funktion

0,8 /
0,6 /
y _—

F_Dis)

F_N(s)

Abblldung 2.6: ROC - Kurve bei Identitit der bedingten Vtlg.Fkt.

Dadurch besteht mit dem Pietra-Index ein weiteres Mafs zur Messung der Trenn-

scharfe.

kritischer Wert ist der Tabelle der Kolmogorov-Smirnoff Verteilung entnehmbar, Anhang Ta-
belle 4.16
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2.3.3 Bedingter Entropie Quotient

Im Folgenden werden die Entropie basierten Trennscharfemafe behandelt. Die-
se Trennscharfemafie betrachten den Informationsgewinn, der durch den Einsatz
des Ratingsystems gewonnen wird. In diesem Zusammenhang wird Information als
messbare Grofe interpretiert, die dem Grad der Kenntnis iiber ein zukiinftiges Er-

eignis entspricht.

Zunachst wird der Begriff der Entropie eingefiihrt.

2.3.6 Definition
Fiir ein dichotomes Ereignis -Freignis tritt ein oder nicht- mit Eintrittswahrschein-
lichkeit p wird durch

H(p) & —(p log(p) + (1 — p)log(1 — p)) (2.16)

die sogenannte Entropie von p definiert.

Informationsentropie

3 / \
. AN
o/ N\
o/ \

0 0,1 0,2 0,3 04 0,5 0,6 07 0,8 05 1

Informatinsentropie H{p)

Ausfallwahrscheinlichkeit p

Abblldlll’lg 2.7: Informationsentropie als Funktion der Ausfallwahrscheinlichkeit

Anhand von Abbildung 2.7 kann deutlich gesehen werden, dass H(p) — 0 strebt ge-

nau dann, wenn p — 0 oder p — 1. Somit ist die Entropie ein Mafs der Unsicherheit
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iiber den Ausgang eines Ereignisses.

Die Unsicherheit ist fiir eine Eintrittswahrscheinlichkeit von p = 0,5 am Grofiten

(100 %).

Um nun die Trennschérfe eines Ratingsystems zu messen, wird die Entropie der
bedingten Ausfallwahrscheinlichkeit betrachtet.

2.3.7 Definition
Sei H(P(X = 1|S = s)) die Entropie der bedingten Ausfallwahrscheinlichkeit, dann

ist die iiber alle Scores gemittelte bedingte Entropie definiert als

def

Hs © BIH(P(X = 1S = 9)). (2.17)

Die gemittelte bedingte Entropie Hg gibt die verbliebene Unsicherheit nach Anwen-
dung des Ratingsystems iiber den zukiinftigen Ausfallstatus an. Falls der Wert der
gemittelten bedingten Entropie Hg dicht bei null ist, deutet dieses auf eine hohe

Trennschéarfe des Ratingsystems hin.

Um eine vergleichbare Kennzahl des Entropiemafies zu bekommen, wird die Entropie
normiert.

H(p) - Hs _ L s

H(p) H(p)

Die so gewonnene Kennzahl heifit bedingter Entropie Quotient (CIER). Der be-

dingte Entropie Quotient ist eine Kennzahl dafiir, wie viele Informationen ein Ra-

e [0,1] (2.18)

tingsystem tragt.

Falls bei der Anwendung des Ratingsystems keinerlei Informationen gewonnen wer-
den, ist CIER = 0. Fiir ein ideales Ratingsystem ist CIEFR = 1. Somit lasst sich
zusammenfassend sagen, je grofer der Wert des CITER ist, desto grofer ist die

Trennschérfe des Ratingsystems.






Kapitel 3

Kalibrierung von Ratingsystemen

Von dem Begriff der Trennschérfe eines Ratingsystems ist der, der Kalibrierung eines
Ratingsystems abzugrenzen. Wéahrend unter der Trennschéarfe eines Ratingsystems
die Fahigkeit ex ante einen Defaulter zu identifizieren verstanden wird, beschreibt
die Kalibrierung die Zuweisung der Ausfallwahrscheinlichkeiten zu den einzelnen
Ratingklassen. Somit kann es durchaus moglich sein, dass ein Ratingsystem trenn-
scharf, aber nicht gut kalibriert ist. Der umgekehrte Fall -perfekt kalibriert, aber

keinerlei Trennschérfe- ist ebenfalls moglich.

Ziel dieses Kapitels ist es nun, die Ausfallwahrscheinlichkeiten der verschiedenen Ra-
tingklassen -Kapitel 1.2- zu {iberpriifen, d.h. ob diese richtig kalibriert sind. Zuerst
wird ein Modell vorgestellt, mit dem eine solche Uberpriifung erméglicht wird. In
einem zweiten Schritt wird auf die Kalibrierung eines trivialen Modells -der Unab-
héngigkeit der Ausfallereignisse- eingegangen. Anschlieffend wird die realitdtsnahe

Modellierung von abhéngigen Ausfillen diskutiert.

3.1 Einfaktor-Modell

Sei n die Anzahl der Debitoren im Kunden-Portfeuille 2. Diese unterteilen sich
in k£ Ratingklassen mit jeweils n,, r = 1,..,k Debitoren. Die Zufallsvariable B,
beschreibe die Bonitat des Debitors in der r-ten Ratingklasse und wird gegeben
durch

B.(i) = B,y = Vo Z+vV1—vU, r=1,...k 1=1,...,n, (3.1)

33
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Dabei sei die Zufallsvariable Z ein makrodkonomischer Risikofaktor und die Zufalls-
variable U,; das firmenspezifische Risiko des i-ten Unternehmens. Z als auch U,; sei-
en N(0, 1)-verteilt. Der jeweilige Einfluss der Risikoparameter sei durch v, € [0, 1]
gesteuert. Des Weiteren seien fiir alle 7,7 Z und U,; paarweise unabhéngig und somit
B,; wiederum N (0, 1)-verteilt.

Zusétzlich sei eine Schranke ¢, fiir die Bonitét festgelegt. Falls ein Debitor unter die-
se Schranke féllt, fallt dieser aus. Somit werden die Ausfille der r-ten Ratingklasse

durch die Zufallsvariable

1 fir B,; <e¢,

0 sonst

beschrieben. Diese Schranke ¢, wird eindeutig iiber die Ausfallwahrscheinlichkeit p,

der r-ten Ratingklasse festgelegt. Es gilt:
¢ = o7 Y(py), (3.2)
denn fiir die Ausfallwahrscheinlichkeit der r-ten Ratingklasse gilt:

Pr = P(sz = 1) = P(Bm < CT) - (I)(C’/‘)

= = o Y(p)

Somit folgt, dass X,; ~ B(1,p,). Die empirische Ausfallquote p, der r-ten Rating-
klasse ist gegeben durch

et 1
r = Xm'-
Nun lésst sich folgendes beobachten.

1. Die Korrelation zweier Bonitdtsvariablen B,; und Bg;, r # s V i # j ist

gegeben durch
Urs def Cor[B, Bsj] = +/vrvs.
Sowie die Korrelation innerhalb einer Ratingklasse durch

— 2 —
U = UR = Uy,

denn mit (¢) Var[B,;] = Var[Bs;] = 1 und (i7) der Unabhéngigkeit der U,;, Uy,
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und Z folgt:

@ COU [Bm‘, st]
= E[B,iBy;] — E[B,i| - E[By]

—— N —
=0 =0

= El(V0rZ + VT = 0,Up)(V0:Z + VI = 0.Uy)
mE[ZQ] +v1 = v,/0s E[UMZ]

\/1—1}3\/1—?)7« [ T sg]"’\/v_r\/l — Us E[US]Z]
—_—— N——

UrUs

=0

=0

2. Die Korrelation zweier Ausfallvariablen X,; und X, r #s V i #j

Aus d_ef _
v = Cor(X,, X)) =

Dy (P (pr), @ (ps); Urs)

— DPrPs

wobei mit ®y(x,y, v) & P{X <z,Y <y} =P(X,Y) €

\/pr(l - pr)ps(l - ps)

(=00, 2] X (=00,y])

die bivariate Normalverteilung mit Korrelation v gemeint ist.

Denn mit (i) By, Byj ~

Aus
rs

32) P((Bri, Bsj) € (—00,® ! (p,)] X (=00, P~

@)

N(0,1) und (i) X4, Xs; ~ B(1, p,) folgt:

= Pr = DPs

E[(Xm - E[Xri])(ij — E[XSJ])]

V[XT"L]V[XSJ]

=Ps = DPr

— —
E[Xm'ij] — Dr E[X ] —Ds E[Xm] +p7“ps

Vor (1= p)ps(1 = py)

E[X,; X — prps

V(1

— pr)ps(1 — ps)

P<Bm S Cr, Bsy S Cs) — DPrPs

V(1

— pr)ps(1 — ps)

Y(ps)])

— DPrPs

By(D-

\/pr(l - pr)ps(l - ps)

Hpr), @7 (ps), Urs)

V(1

pr ps 1 _ps)
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3. Es gilt vA% =0 <= v,, = 0,

rs

denn

Ups = 0
<= B,; \ B,; unabhangig Vi # j
= P(B,; < ®7}(p,), By; < @7 (ps)) = P(Bri < @7\ (py)) P(Bs; < @' (ps))

~~ ~~

=DPr =Ps

< P(B,; <® '(p,),Bs; <@ (ps)) —prps = 0

(.

-~

= <1>2(q>71 (pT)vq>71(ps)aUrs)

?iUAUS:O

rs

3.2 Verteilung einer Ausfallquote

Ziel ist es nun, eine Verteilung zu finden, gegen die die empirische Ausfallquote
konvergiert.
Zunéchst soll der triviale Fall von unabhéngigen Ausfallereignissen untersucht wer-

den.

A, sei die Zufallsvariable, die die Anzahl der Ausfille in der r-ten Ratingklasse
beschreibt:

A, = 2 X, (3.3)

wobei X,; i.i.d. und X,; ~ B(1,p,) wie im vorherigen Abschnitt ist. Also ist A,
B(n.., p,)-verteilt. Weiterhin ist nach dem starken Gesetz der grofsen Zahlen,

1 ] & o0
o = —A, = — Y X,; = E[X,] = p» P — f.s.
= nz — E[Xy] =0p f.s

i=1

Die Unabhéngigkeit der Ausfallereignisse ist fiir die Praxis keine realistische Mo-
dellannahme. Daher wird nun der Fall der abhéngigen Ereignisse analysiert. Da alle
vorherigen Ergebnisse auf der Annahme der Unabhéngigkeit beruhen, konvergiert
die Ausfallquote im Fall der Abhéngigkeit nicht gegen die Ausfallwahrscheinlichkeit.
Viel mehr konvergiert die Ausfallquote in Verteilung gegen eine nicht deterministi-

sche Zufallsvariable, denn fiir die Varianz dieser Ausfallquote gilt

Nyr—00 Aus

Va/r[ﬁT‘] T—> U,,,,,, pT’(l_pT‘>



KAPITEL 3. KALIBRIERUNG VON RATINGSYSTEMEN 37

Beweis:

Var[p,] = Var[ni Z X, = (Z Var[X,;] + Z Cov[X,;, er]>

i7k
nrp
= nrellop) LS - )
i

(n2=nr)op, (1-pr)

—1 us
= n2 + n A pr(l _pr)

/

Fiir abhiingige Ausfallereignisse ist v, > 0. Daraus folgt mit (1.), dass v > 0 und

somit auch lim Var[p,] > 0. Damit konvergiert die Varianz nicht gegen null und

Ny —00

somit konvergiert die Ausfallquote nicht gegen einen konstanten Wert.

O

Die asymptotische Verteilung der Ausfallquote p, fiir n, — oo wird gegeben durch

pr—— g:(2) = @ (¢—1wz> (3.4)

Zum Nachweis von (3.4) wird auf [12]| Seite 6 verwiesen.

Fiir v, > 0 hat die Zufallsvariable g,(Z) die Verteilungsfunktion

Fi(e) & Plg.(2) < 1) = @(‘I’ @)v1=-v, -8 (p”), (3.5)

Diese wird auch als Probit-Verteilung bezeichnet.

Beweis:
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3.3 Test einer Ausfallwahrscheinlichkeit

Nun soll ein statistischer Test hergeleitet werden, der es ermdglicht, die Ausfallwahr-
scheinlichkeit einer Ratingklasse zu testen. Im ersten Teil wird kurz auf den trivialen
Fall -unabhéngige Ausfallereignisse- eingegangen. Daraufthin wird der realitdtsnahe
Fall von abhéngigen Ereignissen untersucht. Zunéchst werden einige Bezeichnungen

eingefiihrt.

Mit p,., r = 1, ..., k, ist die tatsdchliche Ausfallwahrscheinlichkeit der r-ten Rating-
klasse gemeint. Unter 7, mit » = 1, ..., k wird die prognostizierte Ausfallwahrschein-
lichkeit der r-ten Ratingklasse verstanden. p, mit » = 1,..., k bezeichnet -wie im

vorherigen Abschnitt- die empirische Ausfallquote.

Getestet wird, ob die tétsichliche Ausfallwahrscheinlichkeit p, in Hy € © * (Hy-
pothese) oder in H; (Alternative) liegt. Unterstiitzend ist hierbei die Teststatistik
T mit dem Wertebereich X. Der Wertebereich wird disjunkt in die Teilmenge A
-Akzeptanzbereich- und die Teilmenge K -kritischer Bereich- aufgeteilt. Dann wird
durch ¢ : X — [0, 1] gegeben durch

1, falls T € K
= (3.6)
0, FallsT € A
ein Test definiert, wobei ¢(x) = 1 die Ablehnung der Hypothese bedeutet.
Erfiillt die Giitefunktion ? von ¢
B,(0) < « mit « € [0, 1] (3.7)

fiir alle § € Hy, dann heifst ¢ Test zum Niveau « fiir Hy gegen H;. Geniigt die
Giitefunktion zusétzlich
Bs(0) > « V0e Hy, (3.8)

so wird von einem unverfilschten Test zum Niveau a gesprochen. Mit P(T € K |
Hy) ist im Folgenden (3,(6) gemeint, falls § € H, beliebig ist.

Unabhingige Ausfallereignisse

Im Fall von unabhéngigen Ausfallereignissen wird die aus (3.3) bekannte Zufallsva-
riable fiir die Anzahl der Ausfélle in der r-ten Ratingklasse als geeignete Teststatistik
T, gewahlt.

!Der Parameterraum © ist die Menge der zu testenden Parameter, hier © € [0, 1]
2Die Giitefunktion von ¢ ist gegeben durch S, : 0 — Egp mit 0 € ©
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Die Hypothese wird so gewéhlt, dass die tatséchliche Ausfallwahrscheinlichkeit p,
kleiner gleich der geschétzten Ausfallwahrscheinlichkeit 7, ist. Die Alternative lau-

tet, dass die geschatzte Wahrscheinlichkeit zu niedrig geschétzt wurde, d.h.
Hy = [0,7,] und H, = (m,1]
Sei a die vorgegebene Wahrscheinlichkeit des Fehlers 1. Art. Dann muss fiir den
kritischen Bereich K, gelten:
P(pr € K, | Hy) =« (3.9)

Die Hypothese Hy wird abgelehnt, falls die Ausfallquote p, in dem kritischen Bereich
K, liegt.

Der kritische Bereich fiir einen Test zum Niveau « ergibt sich mit Hilfe von (3.9) zu

def : .
K, = (arg/ﬁqu%{zgl?(nr,pr)(]) = 1—@} Ty
]:

Beweis:
Der kritische Bereich K, ist nach oben beschrankt durch die Anzahl der Debitoren

n, der r-ten Ratingklasse. Fiir die untere Schranke von K, gilt:

P(pr> ko | Hy) = o <= 1—=P(p, < ko | Hy) = «

< F(ka) = 1—«

= Y Bp)() = 1-a

=1

= Ko = argi:max {ZB<nrapr)(j):1_a}
r =0

1,...,n

Der durch die Testfunktion ¢ mit

1, falls T € K,
0, FallsT € A
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definierte Test zum Niveau « heifst Binomialtest fiir unabhéngige Ausfallereignisse.

Abhangige Ausfallereignisse
Nun soll der Fall der abhéngigen Ausfélle untersucht werden.
Es wird ein Test aufgestellt, der auf der Teststatistik p, basiert. Die Hypothesen

aus dem unabhédngigen Fall werden beibehalten.
H() = [0,7’('7«] und H1 = (7TT,1]

Aufgrund der asymptotischen Verteilung von p, im abhéngigen Fall, wird die An-

forderung an den kritischen Bereich K,, umformuliert:

lim P(p, € K, | Hy) = a.

Ny —00

Da [0,7,] gegen (m,, 1] getestet wird, fiilhrt eine geringe Ausfallquote p, zu einer
Akzeptanz von Hy. Deshalb geniigt es, eine untere Schranke k, fiir den kritischen

Bereich K, zu bestimmen. Es muss gelten:

= j&ga)

™~

lim P(p, > ko | Hy) = o <= 1— lim P(p, < ko | Hy) = «

np—00 oy (m@_l\(//%) —@‘1(7Tr))
— Q)(\/U_@‘l(l\/%r 45_1(7”))

= 1—«

Also ist der kritische Bereich K, & (Ko, 00).

Fiir die Berechnung von k,, ist es niitzlich, auf Quantiltabellen zuriickzugreifen. Um
dieses zu bekommen, wird eine passende Teststatistik gesucht. Hierzu wird

T, Y L— 07 (p) = &7 (m) (3.10)

VOr

als Teststatistik gewdhlt. Unter der Hypothese Hy, also p, = ., ist T}. asymptotisch
N(0, 1)-verteilt.
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Beweis:
Es gilt:

lim P(T, <zx) = limP

Ny —00 Ny —00

(
= lim P (‘7« < (\/v_’“ﬁqj_l(p’")))
®

“pr) - \/U_TZ) < (\/Frf/%ﬁl(pr)))

V 1- 'Urgpil(pr) - gpil(pr) S .Z‘)

— P(—z <z) 7O ()
O
Weiterhin gilt unter der Hypothese H offensichtlich
lim P(T, > & (1 —a)) = a
Somit definiert die Teststatistik 7, mit dem Ablehnbereich
- def 1
K, = (& (1—a),) (3.11)

einen Test zum Niveau «.

Damit wurden nun zwei Tests vorgestellt. Der erste Test beruht auf der Statistik
P, und ist verstandlich, da die Hypothese direkt an der Ausfallquote getestet wird.
Beim anderen Test wird die Teststatistik 7, verwendet, um die Berechnung des

Quantils zu erleichtern. Diese beiden Tests sind jedoch dquivalent. Es gilt

€K, — T.€K,
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Bewelis:

T.ec Koy <— T,>%'(1-a)
1-— 7’@71 _r - @71 T
e V1-u® (b)) (rv)

> P11 —
Nox (1-a)
o 1(1 — .+ &,
— 5= (1 —a)yo, +9 (m)
V1—u,
— p, €K,

Bisher galt das Interesse dem Fehler 1. Art. Im Folgenden wird der Fehler 2. Art
intensiver analysiert. Eine erste Schranke fiir den Fehler 2. Art folgt aus der Unver-
félschtheit des Tests.

Die Giitefunktion [,(p,) ist gegeben durch

i = -0 (YU )
Beweis:
Be(pr) = lim P(T, € Ko | py)
~ tim P (“ﬁ@f_) ~ o a) )
1 (i <o (VY )
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O
Die Unverfélschtheit des Tests zum Niveau « folgt aus (3.8)
Bopr) =2 @ Vp, € Hy.
Beweis:
Sei die Alternative H; giiltig.
0P Y1 — )+ () — D (p,
iy =1 (LT ) )
Vo
Da p, < 7, und &~ ! eine streng monotone Funktion ist, folgt:
0,21 —a) + P Yr,) — D Hx,)
ﬂw(pr) <1-9 \/_
Vo
=1-(1-a) = «
O

Der Fehler 2. Art (3.13) ist durch 1 — « beschrénkt. Diese obere Schranke ist jedoch
sehr grof, sodass mit grofer Wahrscheinlichkeit die Hypothese H; angenommen
wird, obwohl H; gilt. Deshalb wird ein addquateres Verfahren gesucht, das den

Fehler 2. Art weiter einschrankt.

Zunachst wird der Modellfehler p, — 7, untersucht. Bei grofser werdendem Modell-
fehler, wird die Differenz @~ !(,) — & !(p,) aus (3.12) kleiner, da die Funktion ¢!
streng monoton steigend ist. Deshalb wichst die Giitefunktion (3.12) bei wachsen-
dem Modellfehler. Der Fehler 2. Art, der durch die Giitefunktion definiert ist, wird
kleiner.

P(Fehler 2.Art) = 1— 5,(p,) (3.13)

Dadurch erscheint es sinnvoll, den Test so zu konstruieren, dass die Wahrscheinlich-
keit fiir den Fehler 1. Art < « ist und der Modellfehler p, — 7w, > einer Schranke ¢
mit der Wahrscheinlichkeit 1 — 3 erkannt wird.

Es wird der Test basierend auf der Teststatistik 7, gewahlt. Der kritische Bereich
K, 53 muss den neuen Anforderungen angepasst werden. Fiir p, — m, > ¢, soll T, mit

einer Wahrscheinlichkeit von 1— 3 in K, s liegen, wobei fiir den Grenzfall p, —m, = ¢



44 3.3. TEST EINER AUSFALLWAHRSCHEINLICHKEIT

Gleichheit gelten soll. Somit gilt:

lim P(T, € Ko |pr—m=¢) = 1=0

Ny —00

<~ lim P(T, > |pr—7,=¢) = 10 (3.14)

Ny —00

Daraus folgt:

lim P(T, >3 |pr—m>¢) > 1—0

Ny —00

Beweis:

Es gilt p, > 7, + c.

lim P(T, > 13| p;) = 1—@ (m@—l(w) + &7 (m,) — cp—l(m))

Nyr—00

Die untere Grenze vz des kritischen Bereiches K, g wird mit Hilfe von (3.14) be-

rechnet zu

VN o) = 0 ()
’ Vor

Damit erfillt der kritische Bereich

Kawg = (Lﬁ7 OO)

die Anforderung an den Fehler 2. Art. Jedoch ist mit dem Ablehnbereich K, 3
die Begrenzung des Fehlers 1. Art durch « nicht mehr gewéhrleistet, da im All-
gemeinen der Ablehnbereich K, aus (3.11) nicht mit K, g iibereinstimmt. Damit
den Bedingungen beider Fehlerarten gerecht wird, wird der Entscheidungsbereich -
Wertebereich der Teststatistik- in drei Zonen unterteilt. Die erste Zone -griine Zone-
bedeutet eine sofortige Annahme der Hypothese. Liegt die Teststatistik in der zwei-
ten -gelben Zone- so kann keine genaue Entscheidung getroffen werden, da nur einer
der beiden Fehlerarten die Anforderung erfiillt. Bei der letzten Zone -rote Zone- wird
die Hypothese eindeutig abgewiesen. Um die Zonen néher zu bestimmen, werden

im Folgenden drei Falle unterschieden.
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1. Esgilt o711 —a) > .

Dann wird der Akzeptanzbereich definiert als

Gilt T, € A}m, wird die Hypothese H, ohne Weiteres angenommen. Aéﬁ
entspricht der griinen Zone. Befindet sich die Teststatistik 7, im Intervall
(13,271 (1 — a)], so kann keine genaue Entscheidung getroffen werden. Die
Anforderung an den Fehler 1. Art wird eingehalten, jedoch wird die Beschrén-
kung der Wahrscheinlichkeit des Fehlers 2. Art nicht erreicht. Das Intervall
(15,2711 — )] ist die gelbe Zone. Liegt die Teststatistik 7, allerdings im
kritischen Bereich K 4 of (@711 — ), 00), so wird die Hypothese Hy ohne

Weiteres verworfen, rote Zone.
2. BEsgilt 2711 — ) < 5.
In diesem Fall ergibt sich der Akzeptanzbereich -griine Zone- Ai’ 52U

A2, E 0,071 (1 - a)].

Fillt die Teststatistik 7, in das Intervall (#7*(1 — ), tp], so ldsst sich erneut
keine genaue Entscheidung treffen. Deshalb wird dieses Intervall der gelben
Zone zugeordnet. Der Fehler 2. Art ist beschrinkt, allerdings besitzen die
Anforderungen an den Fehler 1. Art keine Giiltigkeit mehr. Die rote Zone ent-
spricht dem kritischen Bereich K7, 4 o (18, 00), der eine eindeutige Ablehnung

der Hypothese zulésst.
3. Esgilt 2711 — ) = 15

Dieser Fall stellt den Idealfall dar. Der Wertebereich X der Teststatistik 7,

wird disjunkt in den Akzeptanzbereich (griine Zone)
def
Ai,ﬁ = [07 Lﬁ]

sowie den kritischen Bereich (rote Zone)

aufgeteilt. Es existiert keine gelbe Zone. Somit lasst sich eindeutig eine Ent-

scheidung fiir das Akzeptieren bzw. Verwerfen der Hypothese treffen.
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Da sich bei gegebenem Fehler 1. Art bzw. Fehler 2. Art die Bereichsgrenzen durch die
Wahl der Modellfehlerschranke ¢ verédndern lassen, scheint es sinnvoll, die Schranke ¢
so zu wéhlen, dass die Bereiche denen im Idealfall (3.Fall) entsprechen. Dadurch er-
hélt man einen optimalen Test sowie eindeutige Entscheidungsregeln. Die Schranke

wird berechnet zu

¢ =d(Vo (@' (1l—a)—d'(B)+D (7)) —m, (3.15)
Beweis:
Es gilt:

M1 —a) =y

— i(1—a) = VIO +¢‘\1/(Uf +co) =7} (m)

= (1 +c) = Vo0 (1—a) = o 07 (B) + 27 ()
= c =9 (V2 ' (1-a)— V0,2 (B)+ P (r,)) — 7"

Ein weiteres Verfahren, den Test zu optimieren, besteht darin, den bisherigen Test

in zwei Tests aufzuteilen. Zuerst wird ein Test der Hypothesen
Hy = [0,7,] VS. H, = (m,00)

basierend auf der Teststatistik 7, zum Niveau o durchgefiihrt.

Dann wird ein Test der Hypothesen
Hy = [m +¢,00) VS. H} = [0,m +c¢)

zum Niveau § durchgefiihrt. Der Test wird analog zum vorherigen Test kontruiert.
Die Teststatistik wird definiert als

T def V 1— /Urdj_l(pr) - dj_l(ﬂ-r + C)
ro— \/U_r .

Unter der Hypothese H ist T, standardnormalverteilt. Damit ergibt sich die untere

Schranke des kritischen Bereiches zu 5 = @~'(1 — 3) und somit
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Die geschétzte Ausfallwahrscheinlichkeit m, wird angenommen, falls die Hypothese
Hy des ersten Tests angenommen wird und die Hypothese H{, des zweiten Tests ab-
gelehnt wird. Ist dieses nicht der Fall, wird die geschitzte Ausfallwahrscheinlichkeit

verworfen.

Mit Hilfe des ersten Tests wird die Wahrscheinlichkeit fiir den Fehler 1. Art durch o
beschrankt. Durch den zweiten Test erhélt man aufgrund des Hypothesentausches
eine Schranke fiir den Fehler 2. Art in Hohe von (3. Somit werden beide Fehler

adédquat eingeschrankt.






Kapitel 4

Datenanalyse der Fahrzeugwerk
Bernard KRONE GmbH

Die Fahrzeugwerk Bernard KRONE GmbH ist einer der fithrenden Hersteller von
LKW-Anhéngern und Aufliegern in Europa. Das Fahrzeugwerk gehort zur Bernard
KRONE Holding GmbH & Co.KG. Im Geschéftsjahr 2006/2007 belief sich der Um-
satz auf 832 Mio. Euro.

Die Produktion der Fahrzeugwerke ist auftragsbezogen. Bevor ein Fahrzeug fiir die
technische Uberpriifung bzw. Produktion freigegeben wird, wird zuniichst die Bo-
nitit des Auftraggebers iiberpriift. Bei der Uberpriifung wird auf die Bonitéitsbe-
wertung bzw. Risikoeinschitzung der CreditReform e.V. Nordhorn zuriickgegriffen.

Dabei wird dem Debitor ein Score s bzw. Ratingklasse r zugeordnet.

Die moglichen Score Werte bzw. Ratingklassen konnen der Tabelle 4.1 entnommen
werden. Weiter zeigt Tabelle 4.1 die von der CreditReform prognostizierten Aus-
fallwahrscheinlichkeiten .. Dabei gibt m, die Wahrscheinlichkeit an, mit der ein

Debitor in der r-ten Ratingklasse vorraussichtlich innerhalb eines Jahres ausfallt.

r 1 2 3 4 ) 6 7

199 - 200 | 201 - 350 | 351 - 399 | 400 - 449 | 450 - 499 | 500 - 550 | 551 - 600

|| 26,87% 15,46% 6,04% 1,46% 0,73% 0,32% 0,07%

Tabelle 4.1: Score-Werte s und ihre Einteilung in Ratingklassen

Zur Validierung des Ratingsystems wurde eine Datenerhebung durchgefiihrt. Die
Datenerhebung fand mit Hilfe des Unternehmens-Informationssystems mySAP ERP

statt. Die hierfiir geschriebene Transaktionsmaske ist in Abbildung 4.1 zu sehen. Der
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Beobachtungszeitraum bezog sich vom 01.Juli 2007 bis zum 30.Juni 2008. Erfasst
wurden alle Debitoren, denen ein Rating zugeordnet wurde. Danach wurde weiter

gefiltert, ob mit diesen Debitoren ein Geschéftsvorgang im Beobachtungszeitraum

abgeschlossen wurde bzw. inwieweit offene Forderungen gegeniiber dem Debitor
bestehen. Tabelle 4.2 zeigt die Ergebisse der Erhebung.

[} BAH e SHEETO0 HE @
Offene Posten Liste Debitoren

Anzahl Forderungen

Stichtag OP's (aktuelly 31.01.2009

JETANDARD

Abblldung 4.1: Transaktionsmaske mySAP ERP

|r |1 ]2 [ 3] 4 | 5 |6 |7|gesamt|
| Debitoren | 201 | 120 | 222 | 1460 | 2102 | 588 | 58 | 4751 |

Tabelle 4.2: Datenerhebung

Weiterhin ist fiir die Validierung die Anzahl der Ausfélle relevant. Dabei wird nach
Basel II des Basler Ausschusses fiir Bankenaufsicht ein Ausfall verzeichnet, falls ein

Debitor mehr als 90 Tage in Zahlungsverzug ist. Die Ergebnisse sind in Tabelle 4.3

aufgelistet.
r 1 2 3 4 5) 6 7 | gesamt
Defaulter 54 | 20 | 12 | 14 10 2 10 112

Non-defaulter || 147 | 100 | 210 | 1446 | 2092 | 586 | 58 | 4639

Tabelle 4.3: Trennung in Defaulter und Non-Defaulter
Danach werden die kumulierten Wahrscheinlichkeiten Fj, und Fy berechnet. Dazu
werden die Daten aus 4.2 und 4.3 herangezogen. Die Verteilungsfunktion F' lisst

sich ebenfalls {iber diese Daten bestimmen. Es besteht auch die Moglichkeit, diese

mit Hilfe der Formel (2.1) zu ermitteln.

F(r) = (1=p)Fy(r) +pFp(r)
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r 1 2 3 4 ) 6 7

Fp(r) || 48,21 | 66,07 | 76,79 | 89,29 | 98,21 | 100 | 100
Fn(r) || 3,17 | 5,32 | 9,85 | 41,02 | 86,12 | 98,75 | 100
F(r) 4,23 | 6,76 | 11,43 | 42,16 | 86,4 | 98,78 | 100

Tabelle 4.4: kum. Wahrscheinlichkeiten, Angaben in %

4.1 Trennscharfeberechnung des Ratingsystems

Damit Aussagen iiber die Trennschérfe des Ratings der Fa. KRONE getroffen wer-
den koénnen, werden die Ergebnisse aus dem dritten Kapitel auf die Daten der Da-

tenerhebung angewandt.

Cumulative Accuracy Profile
Zuerst wird dazu das Cumulative Accuracy Profile untersucht (Kapitel 2.1). Die
Werte werden mit Hilfe der Gleichung (2.2)

CAP(w) & Fp(F'(w), welo,1]

und den Daten aus Tabelle 4.4 berechnet.

| u | 0,0423 | 0,0676 | 0,1143 | 0,4216 | 0,864 | 0,9878 | 1 |
| CAP(u) | 0,4821 | 0,6607 | 0,7679 | 0,8929 | 0,9821 | 1 |1

Tabelle 4.5: Funktionswerte C AP (u)

Die Daten aus Tabelle 4.5 zeigen, dass ein hoher Prozentanteil der Defaulter in die
,schlechten Ratingklassen eingeordnet werden. Beispielsweise befinden sich unter
den 4,23% ,schlechtesten” Debitoren bereits 48,23% der Defaulter.

Weiterhin ist es nun moglich, den Graph der C'AP-Funktion zu plotten und das
Trennscharfemaf Accuracy Ratio zu berechnen. In Abbildung 4.2 ist der Graph der

Funktionswerte aus Tabelle 4.5 zu sehen.
Die Accuracy Ratio (2.5) ist gegeben durch

1
2 [CAP(u) du —1
0

A pu—
R - ,

wobei p = % = 2,36% die totale Ausfallwahrscheinlichkeit der Datenerhebung

beschreibt. Weiter werden fiir die Berechnung die Wahrscheinlichkeiten f(r) bzw.
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fp(r) fir r = 1,..,7 bendtigt. Diese geben die Wahrscheinlichkeit wieder, mit der
ein Debitor bzw. Defaulter in der r-ten Ratingklasse ist. Mit Hilfe der Tabelle 4.3
ergibt sich:

r 1 2 3 4 5} 6 7T X
Fo(r) |[48,21 | 17,86 | 10,71 | 125 | 893 | 1,79 | 0 |1
Fn(r) | 3.17 | 2,16 | 4,53 | 31,17 | 45,1 | 12,63 | 1,25 | 1
For) | 423 | 253 | 4,67 | 30,73 | 44,24 | 12,38 [ 1,22 | 1
Tabelle 4.6: Anteil in den Ratingklasse, Angaben in %
1 = had
0;8 /I/
— 0,6
-
]
T
“ 04 /
0,2
0
0 0,2 0,4 0,6 0,8 1
u

Abblldung 4.2: CAP - Kurve des Ratingsystems der Fa. KRONE

Mit den Werten aus Tabelle 4.6 berechnet sich die Flache unter der C AP-Kurve zu

/01 CAP(u) du = i (%f(r)fp(r) + f(r)Fp(1 — r))

r=1

=0, 8625.

Damit besteht nun die Moglichkeit, die Accuracy Ratio zu berechnen. Es ist

2-0,8625 -1
A = —’ — 42
R 1-0,0236 0,743
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Der Wert der AR des CreditReform Ratings ! liegt in diesem Beispiel bei ARqp =
0, 6849.

Reciever Operating Characteristic
Als néachstes wird das ROC' Verfahren untersucht. Mit den Daten aus Tabelle 4.3
und der ROC-Funktion (2.7)

ROC(u) &

Fp(Fy' (u))
werden die Werte berechnet(Tabelle 4.7).

| u | 0,0317 | 0,0532 | 0,0985 | 0,4102 | 0,8612 | 0,9875 | 1 |
| ROC(u) || 0,4821 | 0,6607 | 0,7679 | 0,8929 | 09821 | 1 |1 |

Tabelle 4.7: Funktionswerte ROC (u)

Geplottet siche Abbildung 4.3.

ROC({u)

Abblldung 4.3: ROC - Kurve des Ratingsystems der Fa. KRONE

Fiir eine optimale Einteilung der Ratingklassen, muss die ROC-Kurve konkav sein.
Da dieses anhand des Graphens nicht genau ersichtlich ist, wird die Ableitung
ROC’(u) betrachtet. Die Ableitung der ROC-Funktion wird geméf (2.8) herge-

!siehe Anhang, Berechnung der Giitemafe des CreditReform Ratings
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leitet. f (__1( )
ROCT) = F(Fyw)
|

| u | 0,0317 | 0,0532 | 0,0985 | 0,4102 | 0,8612 | 0,9875 |
|

1
| ROC'(u) || 0,1521 | 0,0827 | 0,0236 | 0,004 | 0,002 | 0,0014 | O |

Tabelle 4.8: Ableitung von ROC (u)

Anhand der Tabelle 4.8 ist offensichtlich, dass die Ableitung, die dem Likelihood
Quotienten entspricht, streng monoton fallend ist. Somit ist der Graph der ROC-
Funktion konkav und die Einteilung der Ratingklassen testtheoretisch optimal (siehe
dazu Kapitel 1.3).

Bei diesem Validierungsverfahren ist das Mafs der Trennschéarfe die AUROC'. Die
AUROC ist die Fliache unter der ROC-Kurve und wird mit Hilfe der Daten aus
Tabelle 4.6 berechnet.

1
AUROC = / ROC (u) du
0

=0,8726

Interpretiert man die AUROC' als Wahrscheinlichkeit, geméf (2.9), so bedeutet
dieses Resultat, dass das Rating der Fa. KRONE einen Defaulter mit 87,26% von

einem Non-Defaulter unterscheiden kann.

Zum Vergleich ist die AUROCqg des CreditReform Ratings ? gleich 0, 8425.

Bayes Fehler

In Kapitel 2.3.1 wurde der Bayes Fehler hergeleitet. Dieses ist ein Maf fiir die
Fehlerwahrscheinlichkeit bei optimalem Einsatz des Ratingsystems. Zunéchst wird
der Geamtfehler geméfs (2.14) berechnet.

P(Fehler(r)) = p(1 — Fp(r)) + (1 — p)Fn(r) firr=1,..,7

Die Fehlerwahrscheinlichkeit der Ratingklassen sind in Tabelle 4.9 zusammengefasst.

Fiir die Berechnung wurden die Daten der Tabelle 4.3 entnommen.

Der Bayes Fehler (2.14) minimiert die Fehlerwahrscheinlichkeit. Somit werden auch

2siche Anhang, Berechnung der GiitemaRe des CreditReform Ratings
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T | 1 2] 3 | 4 | 5 | 6 | 7
| P(Fehler(r)) || 4,31 [ 6 | 10,17 | 40,31 | 94,13 | 96,42 | 97,64 |

Tabelle 4.9: Fehlerwahrscheinlichkeit der Ratinklassen, in %

bei optimalem Einsatz des Ratings der Fa. KRONE noch immer 4,31% der Debi-

toren falsch klassifiziert bzw. eingeteilt.

Pietra-Index
Fiir den Fall identischer Verteilungsfunktionen besitzt das Ratingsystem keine Trenn-
scharfe. Um dieses zu widerlegen, wird der Pietra-Index zum Testen der Identitét

der Verteilungsfunktion herangezogen. Zunichst wird |Fp — Fy| bestimmt.

I | 1 | 2 | 3 | 4 | 5 | 6 |7]
| [Fp(r) — Fn(r)| || 0,5405 | 0,6075 | 0,6693 | 0,4826 | 0,1210 | 0,0125 | O |

Tabelle 4.10: Abstand der Verteilungsfunktionen

Das Maximum der Werte aus Tabelle 4.10 ist der Pietra-Index. Dieser wird nun als

Teststatistik zum Testen der Hypothesen
Hy : Fp = Fy gegen H, : Fp # Fy
verwendet. Der Test wird zum Niveau 1% durchgefithrt (Bemerkung 2.3.4). Der

kritische Wert berechnet sich zu

1,63
VAT51

Da die Teststatistik (Pietra-Index = 0,6693) demnach im kritischen Bereich liegt,

kann die Hypothese mit einer Sicherheit von 99% verworfen werden. D.h. die Ver-

D —

= 0,0236

teilungsfunktionen sind nicht identisch und somit besitzt das Ratingsystem der Fa.
KRONE Trennschérfe.

Informationsentropie

Der Informationsgewinn, den man mit dem FEinsatz eines Ratingsystems erhilt,
berechnet man mit Hilfe von Entropie Quotienten C1ER (2.18). Dazu wird nun der
Entropie Quotient der Fa. KRONE berechnet. Zuerst wird die Entropie der totalen
Ausfallwahrscheinlichkeit p = 0,0236 mit Hilfe von (2.16) bestimmt.

H(0,0236) = — (0,0236 - log,(0,0236) + (1 — 0,0236) - log,(1 — 0,0236))
= 0,1612 (4.1)
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Dieses bedeutet, dass die Ungewissheit iiber den Zustand des Debitors 16, 12% be-
tragt. Da durch das Ratingsystem mehr Informationen des Debitors bekannt sind
als durch die durchschnittliche Ausfallwahrscheinlichkeit, wird die Entropie der be-
dingten Ausfallwahrscheinlichkeit p, fiir alle r = 1, ..., 7 bestimmt (Tabelle 4.11).

o2 | 3 | 4 | 5 | 6 | 7 |
| H(p,) || 00,0328 | 0,0439 | 0,0782 | 0,3036 | 0,6501 | 0,8396

Tabelle 4.11: Entropie der bedingten empirischen Ausfallwahrscheinlichkeit

Die bedingte Entropie Hp ergibt sich geméf (2.17) als Erwartungswert iiber alle
Entropiewerte der bedingten Ausfallwahrscheinlichkeiten. Somit folgt mit den Wer-
ten der Tabelle 4.11:

E(H(p,) = ) _f(r)H(p,)

0,1137 (4.2)

Der bedingte Entropie Quotient (2.18) ergibt sich mit den Werten aus (4.1) und
(4.2) zu:

0,1137

IER =1
CIER 0,1612

= 0,2946

Damit lésst sich abschliefsend zusammenfassen, dass das Ratingmodell der Fa. KRONE
einen Informationsgewinn von 29, 46% liefert. Zum Vergleich besitzt das Ratingsys-

tem der CreditReform ® einen Informationsgewinn in Hohe von 24, 65%.

4.2 Test einer Ausfallwahrscheinlichkeit

Nachdem im vorangegangenen Abschnitt lediglich die Trennschérfe des Ratingsys-
tems behandelt wurde, wird nun getestet, inwieweit die tatséchliche Ausfallwahr-
scheinlichkeit mit der prognostizierten Ausfallwahrscheinlichkeit {ibereinstimmt. Da
der asymptotische Test eine Ratingklassengrofie von mehr als 500 Debitoren vor-
aussetzt, wird die Ratingklasse 5 zum Testen der Ausfallwahrscheinlichkeit als Bei-
spiel herangezogen. Als Ausfallkorrelation der Transport- bzw. Logistikbranche wird

vs = 0,0184 angenommen 4.

3siche Anhang, Berechnung der Giitemake des CreditReform Ratings
4 Ausfallkorrelation Branchenklasse Verkehr des VDA
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Die Datenerhebung beinhaltete n = 4751 Debitoren, die in k = 7 Ratingklassen
unterteilt waren. Davon wurden ns = 2102 Debitoren der Ratingklasse 5 zugeordnet

(Tabelle 4.2). Wahrend des Beobachtungszeitraumes wurde eine Ausfallquote von

10
D = —-— = 4
Ds 5102 0,00476

registriert (Tabelle 4.3). Die prognostizierte Ausfallwahrscheinlichkeit kann den Un-
terlagen der CreditReform entnommen werden (Tabelle 4.1) und betrégt fiir die
Ratingklasse 5 m5 = 0,0073. Mit diesen Daten ist es nun moglich, einen Test zum
Niveau a = 5% festzulegen.

Der Parameterraum © des zu testenden Parameters entspricht
O = [0,1]

Getestet wird nun, ob die tatséchliche Ausfallwahrscheinlichkeit ps in der Hypo-
these Hy oder in der Alternative H; liegt. Da es im Interesse des Kreditors liegt,
das Ausfallrisiko nicht zu unterschétzen, wird die Hypothese Hy so gewéhlt, dass
die prognostizierte Ausfallwahrscheinlichkeit mit hoher vorgegebener Wahrschein-

lichkeit (1 — «) angenommen werden kann. Damit ergeben sich die Hypothesen
Hy : ps < 0,0073 und Hy : ps > 0,0073.

Die Teststatistik fiir diesen Test (3.10) wurde in Kapitel 3.3 hergeleitet und lautet
fiir die Ratingklasse 5:

VI =0,018491(0,00476) — &~1(0, 0073)
V/0,0184
= —0,9353 (4.3)

T5 -

Um zu tberpriifen, ob die Hypothese abgelehnt wird oder nicht, wird der Akzep-
tanzbereich sowie der kritische Bereich K5y bestimmt. Mit Hilfe von (3.11) folgt

Ksq = (©71(0,95),00). (4.4)

= 1,6449

Mit (4.3) und (4.4) folgt,

Ts ¢ Ksy.
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Deshalb gilt fiir die Testfunktion (3.6)

p(T5) = 0.

Dieses Resultat bedeutet, dass die Hypothese Hy mit 95%-iger Sicherheit angenom-
men wird und somit die tatséchliche Ausfallwahrscheinlichkeit ps; der prognostizier-
ten Ausfallwahrscheinlichkeit 75 = 0,0073 entspricht.

Um noch Informationen iiber den Fehler 2. Art zu bekommen, wird der Modellfehler
ps — 5 betrachtet. Nach Kapitel 3.3 liefert das Gleichsetzen der kritischen Grenzen
bei gegebenem Fehler 1. Art bzw. Fehler 2. Art optimale Entscheidungsregeln. Mit
Hilfe von (3.15) wird eine obere Schranke fiir den Modellfehler bestimmt. Bei einem
Fehler 1. Art von 5% und einem Fehler 2. Art von 50% berechnet sich diese zu

c =& <\/0,0184 (71(0,95) — 27'(0,5)) +q5*1(0,0073)> —0,0073 = 0,0059

Das bedeutet, dass ein Modellfehler ps — w5 > 0,0059 mit einer Wahrscheinlichkeit

von 50% erkannt wird.

Zum Abschluss sei noch gesagt, dass die prognostizierten Ausfallwahrscheinlichkei-
ten m,; und mg der Ratingklasse 4 und 6 durch analoge Rechnungen angenommen
werden. Ebenfalls wird die Ausfallwahrscheinlichkeit 7, der siebten Ratingklasse
angenommen, da eine Ausfallwahrscheinlichkeit von 0% in jedem Fall akzeptiert
wird. Uber die iibrigen Ausfallwahrscheinlichkeiten lisst sich aufgrund der geringen

Datenanzahl keine addquate Aussage treffen.



Fazit

Ziel dieser Arbeit bestand darin, das Ratingsystem eines mittelstdndigen Unterneh-

mens zu validieren. Besonders wurde dazu auf quantitave Validierung eingegangen.

Nachdem ein Modell entwickelt wurde, wurde die Giitemafe der Trennschérfe her-
geleitet. Besonders bewéhrt haben sich dabei das Cumulative Accuracy Profile und
die Reciever Operating Charackteristic. Diese sind sehr gut erforscht und liefern
gleichzeitig auch sehr anschauliche Ergebnisse iiber die Trennschérfe eines Rating-
systems. In einer solchen Arbeit diirfen weitere Giitemafe -wie die Bayessche Fehler
oder Pietra Index- jedoch nicht fehlen, weswegen diese ebenfalls im zweiten Kapitel

vorgestellt wurden.

Ein weiterer Schwerpunkt der Arbeit lag auf der Kalibrierung der Ausfallwahr-
scheinlichkeiten. Dabei ist es imminent, die Abhéangigkeit der Ausfallereignisse zu
modellieren. Dazu wurde auf den asymptotischen Test im Ein-Faktor Modell zu-
riickgegriffen. Die Abhéangigkeit wurde durch die Korrelation der Ausfallvariablen
modelliert. Des Weiteren ist die Grundvoraussetzung fiir einen solchen Test eine

gewisse Anzahl an Daten.

Grundlage fiir die Anwendung der gewonnenen Erkenntnisse war es, eine gewisse
Datenqualitéit zu gewéhrleisten. Dabei war das Unternehmens-Informationssystem
-SAP- eine hervorrangende Unterstiitzung. Durch eine geschriebene Transaktions-
maske konnte auf die Datenbank der Buchhaltung zugegriffen und nach den ge-
wiinschten Kennzahlen gefiltert werden. Diese liefen sich dann ohne Weiteres zur
Weiterverarbeitung in ein Tabellenkalkulationsprogramm exportieren.

Die damit berechneten Giitemafe wiesen stets einen ,besseren” -jedoch keinen si-
gnifikant besseren- Wert auf ®. Damit wurden die vorgegebenen Ratingeinstufungen
der CreditReform optimal umgesetzt.

Beim Testen der Ausfallwahrscheinlichkeit konnten aufgrund der Datenmenge ledig-

5Z.B. ARKRONE = 0,8625; ARCR = 0,6849 & AUROCKRONE = 0,8726; AUROCCR =
0, 8425

29
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lich die Ratingklassen 4,5 und 6 getestet werden, da ein solcher Test eine mindest
Anzahl von 500 Debitoren fordert, um zu gerechten Ergebnissen zu gelangen. Die
prognostizierten Ausfallwahrscheinlichkeiten dieser Ratingklassen wurden alle durch

den Test angenommen ©.

Damit lasst sich als Resultat dieser Arbeit der Fa. KRONE eine sehr gute Umsetzung

der Ratings bescheinigen.

6Test zum Niveau 5% bei einem ,Fehler 2. Art“ in Hohe von 50%



Anhang

Berechnung der Giitemafse der Trennschirfe des CreditReform Ratings

Auf Grundlage der im vierten Kapitel betrachteten Datenerhebung werden nun die
Trennscharfemafse des CreditReform Ratings berechnet. Die Datenerhebung ergab
n = 4751 Debitoren, die folgendermafen den Ratingklassen (r = 1,...,7) zugeteilt
wurden.
‘r “1‘2‘3‘4‘5‘6‘7‘gesamt‘
Debitoren | 201 | 120 | 222 | 1460 | 2102 | 588 | 58 | 4751 |

o 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| || 26,87% | 15,46% | 6,04% | 1,46% | 0,73% | 0,32% | 0,07% |

Tabelle 4.12: prognostizierte Ausfallwahrscheinlichkeit der CreditReform
Mit den prognostizierten Ausfallwahrscheinlichkeiten 7, (Tabelle 4.12) und Tabelle
4.2 ergeben sich die theoretisch prognostizierten Ausfille zu

- | | 2 | 3 | 4 | 5 | 6 | 7 |
| Defaulter || 54,0087 | 18,552 | 13,4088 | 21,316 | 15,3446 | 1,8816 | 0,00406 |

Tabelle 4.13: theoretische Ausfélle des CreditReform Ratings

Die kumulierten Wahrscheinlichkeiten Fp, Fy sowie F berechnen sich zu Tabelle
4.14.

Weiter werden fiir die Berechnung die Wahrscheinlichkeiten f(r) bzw. fp(r) fiir
r=1,..,7 benotigt. Diese geben die Wahrscheinlichkeit wieder, mit der ein Debitor
bzw. Defaulter in der r-ten Ratingklasse ist. Mit Hilfe der Tabelle 4.13 werden die
Werte aus 4.15 berechnet.

Die totale Ausfallwahrscheinlichkeit berechnet sich zu p = 12%1’?;5’ 6 — 2 62%.

61
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r 1 2 3 4 5 6 7

Fp(r) || 43,36 | 58,26 | 69,02 | 86,14 | 98,46 | 99,97 | 100
Fn(r) | 4,23 | 6,76 | 11,43 | 42,16 | 86,40 | 98,78 | 100
F(r) 4,23 | 6,76 | 11,43 | 42,16 | 86,4 | 98,78 | 100

Tabelle 4.14: kum. Wahrscheinlichkeiten, Angaben in %

r 1 2 3 4 5 6 7
Fo(r) 43,36 [ 14,80 [ 10,77 | 17,11 | 12,32 | 1,51 | 0,03

(r) || 318 | 2,19 | 4,51 | 31,10 | 45,10 | 12,67 | 1,25
Fory | 423 | 2,53 | 4,67 | 30,73 | 44,24 | 12,38 | 1,22

=== M

Tabelle 4.15: Anteil in den Ratingklasse, Angaben in %

Damit kénnen nun -analog zu den Berechnungen aus dem vierten Kapitel- die Gii-

temake Accuracy Ratio, Area under the ROC, usw. berechnet werden. Es folgt:

ARcr = 0,6849
AUROCer = 0,8425
CIERcr = 0,2465
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Kritische Werte des Kolmogorov-Smirnoff Tests

Datenanzahl n | Signifikanzniveau | 0,10 | 0,05 | 0,01
1 0,950 | 0,975 | 0,995
2 0,776 | 0,842 | 0,929
3 0,642 | 0,708 | 0,828
4 0,564 | 0,624 | 0,733
5 0,510 | 0,565 | 0,669
6 0,470 | 0,521 | 0,618
7 0,438 | 0,486 | 0,577
8 0,411 | 0,457 | 0,543
9 0,388 | 0,432 | 0,514
10 0,368 | 0,410 | 0,490
11 0,352 | 0,391 | 0,468
12 0,338 | 0,375 | 0,450
13 0,325 | 0,361 | 0,433
14 0,314 | 0,349 | 0,418
15 0,304 | 0,338 | 0,404
16 0,295 | 0,328 | 0,392
17 0,286 | 0,318 | 0,381
18 0,278 | 0,309 | 0,371
19 0,272 | 0,301 | 0,363
20 0,264 | 0,294 | 0,356
25 0,240 | 0,270 | 0,320
30 0,220 | 0,240 | 0,290
35 0,210 | 0,230 | 0,270

T,22 1,36 1,63
> 35 N NG N

Tabelle 4.16: Kritische Werte des Kolmogorov-Smirnoff Tests
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