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1 EINLEITUNG

1 Einleitung

Bei der Betrachtung des aktuellen Kapitalmarktes fällt auf, dass ein großer Teil

gehandelter Produkte Zinsderivate sind. Zinsen spielen in der heutigen Zeit eine

immer größer werdende Rolle, gerade für Finanzinstitute ist die korrekte Be-

wertung von Zinsderivaten von großer Wichtigkeit. Ursprung der Zinsderivate

liegt vor allem im Risikomanagement der Unternehmen, dort werden diese in den

unterschiedlichsten Formen zur Absicherung verwendet. Natürlich werden auch

immer mehr Spekulationsgeschäfte über Zinsderivate vollzogen. Zinsderivate oder

speziell Zinsen im allgemeinen sind auch für Privatpersonen im Alltag geläufig, sei

es beispielsweise bei der Kreditaufnahme für den Kauf eines Hauses oder durch

die unschöne Nachricht des “Libor-Skandals“1, welcher 2012 durch die Medien

ging.

Um eine bessere Vorstellung zu bekommen, welche Summen bei Zinsgeschäften er-

zielt werden, sollen die folgenden zwei Beispiele genannt werden: Allein im Libor-

Skandal hat die Deutsche Bank 500 Millionen Euro durch Absicherungsgeschäfte

verdient2; im Over the Counter Handel wurde von Juni 2011 bis Juni 2012 ein

Volumen von 362 Billionen Dollar mit Zinsderivaten erreicht3. Diese Beispiele

zeigen die immensen Beträge, die im Zinshandel vorliegen. Fügt man alle Börsen

bzw. alle weiteren Zinsderivategeschäfte hinzu, steigt dieser Wert dementspre-

chend. Aufgrund des hohen Handelsvolumens ist es somit unumgänglich genaue

Prognosen bzw. Bewertungen zu erstellen. Gerade im Bereich des Risikomana-

gements werden immer mehr an die Bedürfnisse des Unternehmens entsprechen-

de Zinsderivate erstellt, welche aufgrund der komplizierten Auszahlungsstruktur

recht schwer zu bewerten sind und somit eine komplexe mathematische Theorie

benötigen.

1sueddeutsche.de/thema/Libor-Skandal
2 wallstreetjournal.de; Artikel: Das Milliardenspiel der Deutschen Bank mit dem Libor
3http://www.isda.org; Market Analysis 060612.pdf
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1.1 Zinsen und deren Besonderheiten 1 EINLEITUNG

1.1 Zinsen und deren Besonderheiten

Wie bereits angedeutet haben Zinsen vor allem im Risikomanagement von Unter-

nehmen eine große Bedeutung.4 Daher bieten sich zur Erläuterung von Zinsderiva-

ten einige Firmenbeispiele an. Viele Unternehmen sind zu Teilen fremdfinanziert,

so dass die Kosten bei steigenden Zinsen zu starken Verlusten bis im Extremfall

zur Existenzgefährdung führen können. Aber auch die Geldanlage hat einen Ein-

fluss auf das Ergebnis eines Unternehmens. Legt das Unternehmen das Geld zu

einem variablen Zinssatz an, so kann bei fallenden Zinsen weniger Ertrag als ge-

plant erwirtschaftet werden. Die alternative Wahl hingegen zu einer zum Beispiel

festverzinslichen Anleihe führt bei steigenden Zinsen zu Wertverlust der Anleihe.

Eine weitere häufig auftretende Situation ist die Geldanlage bzw. Finanzierung

für in der Zukunft geplante Einnahmen bzw. Projekte. Ein typisches Szenario

ist die geplante Kreditaufnahme zu einem späteren Zeitpunkt, so ist es teilweise

für die Planung notwendig, den aktuellen Zinssatz zu sichern um nicht in Gefahr

zu laufen aufgrund des eventuellen höheren Zinssatzes zum späteren Zeitpunkt

in Liquiditätsprobleme zu geraten. Wie in jedem Fachbereich wurden durch die

Entwicklung der Theorie und der Optimierung immer neuer und besser werdende

Strategien zur Absicherung herangezogen. Dadurch haben in den letzten Jahr-

zehnten die eben beschriebenen “Standardabsicherungen“ immer komplexere und

speziellere Formen angenommen, die für Laien teilweise sehr abstrakt und oft in-

tuitiv nicht verständlich wirken.

Im direkten Vergleich zu Aktien fallen einige Unterschiede bezüglich der Struktur

von Zinsen auf. Diese Besonderheiten sollen in diesem Abschnitt kurz angespro-

chen werden, um zu verdeutlichen, weshalb es nicht möglich ist, Aktienmodelle,

beispielsweise das Black Schloles Modell, eins zu eins übernehmen zu können.

Die Aussage: “Der Zins beträgt 10%“, verdeutlicht bei genauer Betrachtung ei-

nige Besonderheiten, mit denen man sich bei Zinsstrukturmodellen beschäftigen

4siehe [4]
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1.1 Zinsen und deren Besonderheiten 1 EINLEITUNG

muss. Man erkennt direkt, dass ohne weitere Angaben wie der Anlagenperiode

und ob der Zinssatz für eine sofortige oder zukünftige Anlage ist, die gerade

genannte Aussage wenig Sinn macht. Eine Eigenschaft von Zinsen ist, dass die

Anlagenperiode Einfluss auf den Zinssatz hat. Nimmt man sich zum Beispiel heu-

te einen Kredit für ein Jahr, so wird dies ein anderer Zinssatz sein als für einen

Kredit über 3 Monate. Mathematisch betrachtet gibt es somit unendliche viele

Anlageperioden bzw. unendlich viele Zinssätze, wobei diese unumgänglicherweise

untereinander eine gewisse Abhängigkeit haben. Um noch einmal auf Aktien-

modelle einzugehen, dort genügt es bei der Bewertung von Aktienderivaten in

der Regel die Aktie an sich zu modellieren, bei Zinsen hingegen muss man sich

erst einmal überlegen was genau modelliert werden soll. Durch die unterschiedli-

chen Laufzeiten muss somit ein Modell erstellt werden, dass alle Zinsen umfasst.

Das heißt, zu jedem Anlagezeitpunkt und jeder Anlageperiode wird ein Zinssatz

modelliert. Bezeichnet wird ein solches Modell als Zinsstrukturmodell. Eine

Möglichkeit die Zinsstruktur zu beschreiben ist über Zero-Coupon Bonds. Dies

sind Derivate, die zu einem festgelegten Zeitpunkt S einen sicheren Betrag N aus-

zahlen. Mit Blick auf deren Kursverlauf wird deutlich, dass sie sich grundlegend

von Aktien unterscheiden. Während Aktienpreise im Laufe der Zeit immer unsi-

cherer werden, ist dies für Zero-Coupon Bonds nicht der Fall. Die Zero-Coupon

Bonds, sofern wir davon ausgehen, dass kein Ausfallrisko vorliegt, zahlen zum

Laufzeitende einen sicheren Betrag aus und müssen somit gegen Ende ihrer Lauf-

zeit ihren Auszahlungswert als Preis einnehmen. Modellansätze, in denen der

Kurs um einen konstanten Faktor steigt und fällt, beispielsweise im CRR-Modell

sind somit nicht mehr möglich.
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1.2 Zielsetzung und Aufbau 1 EINLEITUNG

1.2 Zielsetzung und Aufbau

Ziel dieser Diplomarbeit ist die Beschreibung und Erläuterung der Zinsstruktur

mittels des Markov-Functional Models, das primär dazu geeignet ist sogenannte

exotische Zinsderivate zu bewerten.

Dazu wurde die Arbeit in 7 Kapitel unterteilt. Im vorangegangen Unterkapitel

wurde bereits eine kurze Einführung über Zinsen gegeben, wieso es überhaupt

notwendig ist diese zu modellieren und deren Besonderheiten im Vergleich zu

Aktien geschildert. Darauf folgend werden im nächsten Kapitel die Grundlagen

der Zinsstrukturmodelle betrachtet, speziell die Darstellung der Zinsstruktur über

Zero-Coupon Bonds. Des Weiteren werden einige Sätze, die wir im weiteren Ver-

lauf benötigen, bewiesen. In Kapitel 3 handelt es sich um die Einführung und

Bewertung von Standardzinsderivaten, die speziell für das Markov-Functional

Model zur Kalibrierung benötigt werden. Anschließend werden exotische Deriva-

te betrachtet und deren Probleme geschildert. In Kapitel 5 wird aufbauend auf

die vorangegangen Erörterungen das Markov-Functional Model definiert und im

speziellen das Libor- und Swap-Markov-Functional Model beschrieben. In Ka-

pitel 6 wird das Markov-Functional Model in Bezug zum Libor-Markt Modell

gebracht. Die Zusammenfassung im letzten Kapitel schließt die Arbeit ab.
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2 GRUNDLAGEN

2 Grundlagen

Für den weiteren Verlauf betrachten wir den filtrierten Wahrscheinlichkeitsraum

(Ω,F , P, (Ft)t≥0). Zudem erfüllt die Filtration die “usual conditions “, d.h.

i) Die Filtration (Ft)t≥0 ist rechtsseitig stetig.

ii) F0 enthält alle P-Nullmengen und alle Teilmengen von P-Nullmengen.

Wie in der Einleitung angedeutet gibt es mehrere Möglichkeiten, die Zinsstruk-

tur zu modellieren. Eine davon ist die Modellierung über Zero-Coupon Bonds.

Daher werden wir als nächstes Zero-Coupon Bonds formal einführen und deren

Zusammenhang mit Zinsen erläutern.

Definition 2.1 (Zero-Coupon Bond)

Ein Zero-Coupon Bond zahlt dem Inhaber zu einem vereinbarten Zeitpunkt S den

Nominalbetrag N aus, den wir im weiteren Verlauf mit N = 1 setzen werden. Zur

grafischen Darstellung der Zahlungsstruktur siehe Abbildung 1. Den Preis eines

Zero-Coupon Bonds bezeichnen wir zum Zeitpunkt 0 ≤ t ≤ S mit

DtS.

Die Wertentwicklung des Zero-Coupon Bonds beschreibt somit der stochastische

Prozess (DtS)0≤t≤S. Die Besonderheit, speziell im Vergleich zu Aktien, ist, dass

die Unsicherheit mit der Zeit nachlässt bzw. zum Laufzeitende dem Auszahlungs-

wert entspricht. Gehen wir davon aus, dass kein Ausfallrisiko besteht, so ist der

Wert des Zero-Coupon Bonds D·S zum Zeitpunkt S gegeben durch

DSS = 1. (2.1)
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2 GRUNDLAGEN

Abbildung 1: Cashflow-Zero-Coupon Bond

Definition 2.2 (Forward-Rate)

Eine weitere Möglichkeit, die Zinsstruktur darzustellen, ist diese direkt über Zin-

sen zu beschreiben. Die Forward-Rate ist der Zins, der zum Zeitpunkt t vereinbart

wird für die Anlage über den Zeitraum von T bis S, wobei t ≤ T < S gilt. Die

Forward-Rate bezeichnen wir mit

Ft(T, S).

Den Zinssatz Ft(t, S), d.h. der Beginn der Anlage stimmt mit dem heutigen Zeit-

punkt t überein, bezeichnen wir als Spot-Rate.

Um den Zusammenhang zwischen Zero-Coupon Bonds und die Forward-Raten

zu bestimmen, betrachten wir nachfolgende Anlagestrategie. Zum aktuellen Zeit-

punkt t verkaufen wir den Zero-Coupon Bond DtT und kaufen DtT

DtS
Anteile des

Zero-Coupon Bonds DtS. Da sich diese beiden Zahlungen aufheben, entstehen

zum Zeitpunkt t keine Kosten bzw.

DtT −
DtT

DtS

DtS = 0.

Zum Zeitpunkt T ist aus dem verkauften Zero-Coupon die Zahlung 1 fällig und

6



2 GRUNDLAGEN

zum Zeitpunkt S erhalten wir aus dem gekauften Zero-Coupon Bond die Zahlung

DtT

DtS
. Der diskrete Zins bzw. die Forward-Rate ergibt sich dann aus

1 + (S − T )Ft(T, S) =
DtT

DtS

⇔

Ft(T, S) =
1

S − T

(
DtT

DtS

− 1

)

=
DtT −DtS

αDtS

wobei α := T − S die Periodenlänge bezeichnet. Die für uns relevante Forward-

Rate ist die (Forward-) Libor-Rate, die wir nun einführen.

Definition 2.3 (Libor-Rate)

Die Libor-Rate (London Interbank Offered Rate) entspricht dem Referenzzinssatz

im internationalen Interbankengeschäft. Täglich um 11 Uhr Londoner Zeit legen

ausgewählte internationale Geschäftsbanken ihren Zinssatz fest, zu dem sie sich

von anderen Banken Geld leihen können. Die Libor-Rate ergibt sich als arithme-

tisches Mittel aus diesen Zinssätzen. Für den weiteren Verlauf bezeichnen wir die

Libor-Rate mit

Lt[T, S] : = Ft(T, S)

=
DtT −DtS

αDtS

.

Analog zur Forward-Rate und Spot-Rate wird der Forward-Libor und Spot-Libor

definiert.5

5für weitere Zusammenhänge sei auf 2.2 in [5] verwiesen.
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2 GRUNDLAGEN

Im zweiten Teil dieses Kapitels werden wir einige Sätze beweisen, die später

benötigt werden. Das folgende Lemma wird in Kapitel 3 für das Black Modell

verwendet.

Lemma 2.4

Gegeben sei ein Wiener Prozess W und eine deterministische Funktion σt. Dann

ist
∫ t

0
σudWu für t > 0 normalverteilt und es gilt

i) E
(∫ t

0

σudWu

)
= 0;

ii) V
(∫ t

0

σudWu

)
=

∫ t

0

σ2
udu

Beweis.

Die Idee ist, den Grenzprozess zu betrachten, indem wir das Ito-Integral
∫ t

0
σudWu

durch

n−1∑
i=0

σui(Wui+1
−Wui)

für Zerlegungen 0 = u0 < u1 < · · · < un = t annähern.

Der Punkt i) ergibt sich dann durch

E
(∫ t

0

σudWu

)
= E

(
n−1∑
i=0

σui(Wui+1
−Wui)

)

=
n−1∑
i=0

σui E(Wui+1
−Wui)︸ ︷︷ ︸

=0

= 0

8



2 GRUNDLAGEN

und der Punkt ii) folgt aus

V
(∫ t

0

σudWu

)
= V

(
n−1∑
i=0

σui(Wui+1
−Wui)

)

=
n−1∑
i=0

σ2
ui
V
(
Wui+1

−Wui

)︸ ︷︷ ︸
=ui+1−ui

=
n−1∑
i=0

σ2
ui

(ui+1 − ui)

→
∫ t

0

σ2
udu.

Den Limes, den wir im letzten Schritt verwendet haben, bezieht sich darauf, dass

wir die Feinheit der Zerlegung gegen 0 laufen lassen.

Um zu zeigen, dass
∫ t

0
σudWu normalverteilt ist, benutzen wir die Momenter-

zeugende Funktion bzw. zu zeigen ist:

E
(

exp

(
λ

∫ t

0

σudWu

))
= exp

(
1

2
λ2

∫ t

0

σ2du

)
∀λ ∈ R

Dazu betrachten wir das Doleans Martingal

Lt = exp

(
λ

∫ t

0

σudWu −
1

2

[
λ

∫ ·
0

σudWu

]
t

)

= exp

(
λ

∫ t

0

σudWu −
1

2
λ2

∫ t

0

σ2
udu

)
.

Die Martingaleigenschaft ist durch das Novikov-Kriterium6 erfüllt und somit gilt

6siehe Satz 7.12 in [10]
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2 GRUNDLAGEN

für das Doleans Martingal7

E(Lt) = 1, ∀t ≥ 0

bzw.

E
(

exp

(
λ

∫ t

0

σudWu −
1

2
λ2

∫ t

0

σ2
udu

))
= 1

und daraus folgt

E
(

exp

(
λ

∫ t

0

σudWu

))
= exp

(
1

2
λ2

∫ t

0

σ2du

)
, ∀λ ∈ R.

Definition 2.5 (Markov-Prozess)

Ein adaptierter stochastischer Prozess (Xt)0≤t≤S bezüglich der Filtration (Ft)0≤t≤S

mit Werten in (E, E) heißt Markov Prozess, falls der Prozess die Eigenschaft

P (Xt+s ∈ A|Ft) = P (Xt+s ∈ A|Xt)

P-fast sicher, für alle s, t ∈ [0, S] und für alle A ∈ E erfüllt.

Bemerkung :

Der Markov Prozess besitzt somit eine Art Gedächtnislosigkeit. Zu interpretieren

ist diese “Gedächtnislosigkeit“ in der Art, als das der weitere Verlauf des Prozesses

nicht von den vorigen Zuständen abhängt, sondern nur vom aktuellen Zustand.

Lemma 2.6

Seien (M1,M1) und (M1,M1) meßbare Räume, (Ω,F , P ) ein Wahrscheinlich-

keitsraum und G eine Unter-Sigma Algebra von F . Des Weiteren betrachten wir

7siehe Satz 6.15 in [15]
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2 GRUNDLAGEN

die messbaren Abbildungen

X1 : (Ω,F)→ (M1,M1), X2 : (Ω,F)→ (M2,M2),

sowie

h : (M1 ×M2,M1 ⊗M2)→ (R,B(R))

Sind folgende Eigenschaften

i) X1 ist unabhängig von G

ii) X2 ist messbar bezüglich G

iii) Der Erwartungswert E(h(X1, X2)) existiert

erfüllt, dann gilt:

E(h(X1, X2)|G) = E(h(X1, X2)|X2) P − f.s.

Beweis.

Beweisen lässt sich die Aussage durch das Funktions-Erweiterungsargument8, d.h.

wir betrachten zuerst primitive Funktionen der Form

h = 1{A×B}

für A ∈M1 und B ∈M2. Durch die Eigenschaften i) und ii) folgt 1{X1∈A} ist un-

abhängig von G und 1{X2∈B} ist G-messbar. Somit gilt aufgrund der Eigenschaften

8siehe Seite 32 in [1]
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2 GRUNDLAGEN

des bedingten Erwartungswertes:

E(h(X1, X2)|G) = E(1{X1∈A}1{X2∈B}|G)

= 1{X2∈B}E(1{X1∈A}|G)

= 1{X2∈B}E(1{X1∈A})

= 1{X2∈B}P (X1 ∈ A)

Mit der gleichen Berechnung folgt:

E(h(X1, X2)|X2) = 1{X2∈B}E(1{X1∈A}|X2)

= 1{X2∈B}P (X1 ∈ A)

Somit gilt P-fast sicher

E(h(X1, X2)|G) = E(h(X1, X2)|X2).

Für den Fall h = 1{D} mit D ∈M1⊗M2 folgt die Behauptung mit dem Dynkin-

System Argument9. Das Mengensystem

D := {D ∈M1 ⊗M2|h = 1{D} erfüllt die Behauptung}

bildet ein Dynkin System. Durch den ersten Teil des Beweises erhalten wir als

durchschnittsstabilen Erzeuger

ε := {A×B|A ∈M1, B ∈M2}.

9siehe Seite 10 in [1]

12



2 GRUNDLAGEN

Somit folgt:

D = σ(ε) =M1 ⊗M2.

Durch Linearität folgt es für positive primitive Funktionen und durch Limesbil-

dung für positive messbare Funktionen. Die endgültige Behauptung folgt dann

durch Aufspaltung in Positiv- und Negativteil.

Bemerkung :

Sind die Eigenschaften des Satzes erfüllt, gilt insbesondere

P (X1 +X2 ∈ D|G) = P (X1 +X2 ∈ D|X2) P − f.s.

Satz 2.7

Gegeben sei ein Wiener Prozess W bezüglich der Filtration (Ft)0≤t≤S und eine

deterministische Funktion σt. Der adaptierte stochastische Prozess X mit der

Darstellung

Xt =

∫ t

0

σudWu

ist ein Markov Prozess.

Beweis.

Zu zeigen ist die Markov Eigenschaft

P (Xt+s ∈ A|Ft) = P (Xt+s ∈ A|Xt)

für alle A ∈ B(R).

13



2 GRUNDLAGEN

Dazu betrachten wir die Zerlegung von Xt+s in

Xt+s =

∫ t+s

0

σudWu

=

∫ t

0

σudWu +

∫ t+s

t

σudWu

= Xt +

∫ t+s

t

σudWu.

Um Lemma 2.6 anwenden zu können, muss Xt Ft-messbar sein und
∫ t+s
t

σudWu

unabhängig von Ft. Das Xt Ft-messbar ist folgt per Definition, für die Un-

abhängigkeit betrachten wir das Ito-Integral als Grenzprozess von

In =
n∑
i=1

σt+(i−1)∆t · (Wt+i∆t −Wt+(i−1)∆t), ∆t =
s

n
.

Die in der Summe auftretenden Summanden (Wt+i∆t −Wt+(i−1)∆t) sind für i =

1, . . . , n durch die Eigenschaften des Wiener Prozesses unabhängig von Ft. Da

σt eine deterministische Funktion ist, folgt die Unabhängigkeit von In und Ft.

Durch die L2 Konvergenz (insbesondere liegt damit die Konvergenz in Verteilung

vor) überträgt sich die Unabhängigkeit auf das Ito-Integral
∫ t+s
t

σudWu.

Somit gilt nach Lemma 2.6 :

P (Xt+s ∈ A|Ft) = P (Xt +

∫ t+s

t

σudWu ∈ A|Ft)

= P (Xt +

∫ t+s

t

σudWu ∈ A|Xt)

= P (Xt+s ∈ A|Xt)
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3 STANDARD-ZINSDERIVATE

3 Standard-Zinsderivate

In diesem Abschnitt geht es um die Einführung und Bewertung einiger Standard-

Zinsderivate, die indirekt im Zusammenhang zum Markov-Functional Model ste-

hen. Daher ist es notwendig mit diesen Produkten bzw. mit der Bewertung dieser

Produkte vertraut zu sein.

3.1 Foward Rate Agreement

Ein Forward Rate Agreement, nachfolgend FRA genannt, ist ein außerbörsli-

ches Zinstermingeschäft bzw. eine Zinsausgleichsvereinbarung. Das FRA dient

zur Absicherung eines Zinses bei zukünftiger Mittelaufnahme oder -anlage für

den Zeitraum T bis S. Die Absicherung wird dadurch gegeben, dass zwei Ver-

tragspartner zum aktuellen Zeitpunkt t ≤ T vereinbaren, an einem in der Zukunft

liegenden Termin S einen variablen Zinssatz gegen einen festen Zinssatz K bzgl.

eines Nominalbetrags N zu tauschen. Als variabler Zinssatz kommt der Euribor

oder Libor in Betracht. Wir werden uns in dieser Arbeit ausschließlich mit dem

Libor bzw. der Libor-Rate Lt[T, S] beschäftigen.

Abbildung 2: Cashflow-Diagramm FRA

Anschaulich wird der FRA im Cashflow-Diagramm (Abbildung 2) gezeigt. Der

gestrichelte Pfeil in Cashflow-Diagrammen soll grundsätzlich dazu verwendet wer-

den, den variablen Betrag darzustellen, d.h. den Betrag der zum aktuellen Zeit-

punkt t nicht sicher gegeben ist.
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Der Käufer des FRAs, der die sogenannte Long-Position einnimmt, verpflichtet

sich somit den festen Betrag NαK an die Short-Position, dem Verkäufer des

FRA, zu bezahlen. Im Gegenzug erhält er den variablen Betrag NαLT [T, S] vom

Verkäufer des FRAs. Mit α := S − T wird wieder die Länge der Anlageperiode

bezeichnet. In der Praxis werden die Beträge NαLT [T, S] und NαK allerdings

nicht getauscht, sondern es wird lediglich die Differenz erhalten oder, im Falle

eines negativen Wertes, ausgeglichen. Das Nominal werden wir aus Gründen der

Vereinfachung mit eins festlegen, da es für die weitere Berechnung keine spezielle

Rolle besitzt. Somit ergibt sich aus der Sicht der Long-Position zum Zeitpunkt S

eine (positive oder negative) Zahlung von

α(LT [T, S]−K). (3.1)

Multipliziert man dies mit −1, so erhält man die entsprechende Zahlung der

Short-Position. Eine weitere Eigenschaft des FRAs ist, dass zum Zeitpunkt t ≤ T

der Ausübung für beide Parteien keine Kosten entstehen. Dies erreicht man, in

dem ein angemessener Wert für K gewählt wird. Als fairer Wert wird die forward

Libor-Rate gewählt, d. h. zum Ausübungszeitpunkt t gilt

K = Lt[T, S]. (3.2)

Weshalb K = Lt[T, S] gilt, wird bei der Berechnung des Preises für den FRA

deutlich. Eine Möglichkeit den FRA zu bewerten, wäre der klassische Weg über

den Erwartungswert bezüglich eines äquivalenten Martingalmaßes. In diesem Fall

lässt sich zudem auch recht leicht eine geeignete Duplikationsstrategie bilden, da-

her werden wir diesen Weg wählen. Die Duplikationsstrategie sieht folgenderma-

ßen aus:

Zum Zeitpunkt t wird der Zero-Coupon Bond DtT erworben und (1 +αK) Zero-
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Coupon Bonds DtS werden verkauft. Der Wert zum Zeitpunkt t entspricht somit

Vt = DtT − (1 + αK)DtS.

Zum Zeitpunkt T erhalten wir aus dem gekauften Zero-Coupon Bond DTT =

1 und legen diese zur aktuellen Libor-Rate LT [T, S] bis zum Zeitpunkt S an.

Am Laufzeitende S erhalten wir somit 1 + αLT [T, S] und aus dem verkauften

Zero-Coupon Bond (1 + αK)DtS entstehen Kosten von (1 + αK). Das heißt, die

Auszahlung zum Zeitpunkt S beträgt

(1 + αLT [T, S])− (1 + αK) = α(LT [T, S]−K).

Diese Auszahlung entspricht genau der Auszahlung (3.1) des FRAs, somit folgt

aus Arbitragegründen, dass der Wert des FRAs und der Anlagestrategie identisch

sein muss. Somit ist der Preis des FRA

Vt = DtT − (1 + αK)DtS. (3.3)

Setzen wir Vt = 0, es entstehen also keine Kosten zum Ausübungszeitpunkt, so

folgt durch Umformung

Vt = 0

⇔ DtT − (1 + αK)DtS = 0

⇔ αK =
DtT −DtS

DtS

⇔ K = Lt[T, S]

und wir erhalten die Gleichung (3.2). Der Wert des FRAs ist nur zum Zeitpunkt

der Ausübung 0, in der Regel unterliegt er im Laufe der Zeit gewissen Kurs-
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schwankungen und ist somit ungleich 0.

3.2 Cap / Caplets

Ein Cap ist eine Absicherung oder auch Spekulation auf steigende Zinsen, in unse-

rem Fall der Libor-Rate. Bestandteil des Caps ist eine Summe von Call-Optionen

auf die Libor-Rate, wobei die einzelnen Call-Optionen als Caplets bezeichnet

werden. Relevanter für das Markov-Functional Model sind Caplets, daher werden

wir uns primär damit beschäftigen. Für die Bewertung von Caps sei erwähnt,

dass die Bewertung von Caplets genügt, da Caps nur eine Summe von Caplets

darstellen. Der Unterschied zu den vorigen Derivaten wird also durch den Opti-

onscharakter erzeugt. Der Inhaber des Caplets besitzt das Recht, aber nicht die

Pflicht, zu einem Zeitpunkt S den vorher festgelegten Zinssatz K zu erhalten.

Genauer gesprochen besteht ein Caplet bzgl. der Libor-Rate aus einem Start-

zeitpunkt T , einem Laufzeitende S und einem Strike K. Der Preis des Caplets

zum Zeitpunkt t wird mit Vt bezeichnet. Die Auszahlung zum Zeitpunkt S ist die

optionale Differenz zwischen der Libor-Rate LT [T, S] und Strike K, formal lässt

es sich beschreiben mit

VS = α (LT [T, S]−K)1{LT [T,S]≥K}. (3.4)

Der Wert Vt des Caplets zum Zeitpunkt t ≤ S lässt sich diesmal nicht über eine

Duplikationsstrategie bestimmen. Daher wird ein arbitragefreies Zinsstrukturmo-

dell aufgestellt, um den Preis des Caplets zu bestimmen.

In diesem Modell wählen wir als Basisfinanzgüter die Zero-Coupon Bonds (Dts)0≤t≤s

für 0 < s ≤ S. Durch die Annahme, dass unser Modell arbitragefrei ist, existiert

ein äquivalentes Martingalmaß N, so dass die Numeraire normierten Zero-Coupon

Bonds Martingale sind. Abkürzend bezeichnen wir dies als Numeraire Paar (N,N)

wobei N das Numeraire darstellt.
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Für die Bewertung des Caplets werden wir als Numeraire DtS wählen und das

zugehörige Martingalmaß, auch Forwardmartingalmaß genannt, bezeichnen wir

mit Q. Um die Notation etwas übersichtlicher zu halten, bezeichnen wir für die

folgenden Rechnungen

Lt := Lt[T, S].

Betrachten wir die Libor-Rate, die wir durch Zero-Coupon Bonds ausdrücken

können,

Lt =
DtT −DtS

DtS

=
DtT

Nt

− DtS

Nt

,

so wird deutlich, dass die Libor-Rate auch ein Martingal darstellt. Um ein arbi-

tragefreies Modell zu gestalten, muss also die Libor-Rate Lt ein Martingal bzgl.

des Maßes Q sein. Dies erreichen wir unter der Annahme, dass die Libor-Rate

folgende stochastische Differentialgleichung

dLt = LtσtdWt

= LtdMt

mit Mt =
∫ t

0
σudWu erfüllt und die Volatilität durch eine deterministische Funk-

tion σt gegeben ist. Mit W ist der Wiener Prozess bzgl. des Maßes Q gemeint.

Die Lösung dieser stochastischen Differenentialgleichung ist nach [15] Satz 6.12
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somit das Doleans-Martingal

Lt = L0 exp

(
Mt −

1

2
[M ]t

)

= L0 exp

(∫ t

0

σudWu −
1

2

∫ t

0

σ2
udu

)
.

Mit diesen Modelleigenschaften ist die Verteilung der Libor-Rate bekannt und

der Preis des Caplets ergibt sich durch

Vt = NtEN [α(LT −K)1{LT≥K}N
−1
S | Ft

]
= DtSEQ

[
α(LT −K)1{LT≥K} | Ft

]
Satz 3.1 (Black Formel für Caplets)

Mit den eben erklärten Eigenschaften entspricht der Preis des Caplets zum aktu-

ellen Zeitpunkt t = 0 der Formel von Black

V0 = D0Sα(L0Φ(d1)−KΦ(d2))

wobei Φ(x) die Verteilungsfunktion der Standardnormalverteilung entspricht, α =

S − T , und

d1 :=
log
(
L0

K

)
+ 1

2

∫ T
0
σ2
udu√∫ T

0
σ2
udu

;

d2 :=
log(L0

K
)− 1

2

∫ T
0
σ2
udu√∫ T

0
σ2
udu

.

Beweis.

In der Berechnung von V0 = DtSEQ
[
α(LT −K)1{LT≥K}|F0

]
wird Lemma 2.4
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benutzt, zur Erinnerung, dessen Aussage war

∫ T

0

σudWu ∼ N
(

0,

∫ T

0

σ2
udu

)
.

Um die nachfolgende Berechnung übersichtlicher zu gestalten, werden wir den

Erwartungswert in zwei Teile zerlegen und diese einzeln berechnen. Die Zerlegung

entspricht

V0 = DtSEQ
[
α(LT −K)1{LT≥K}

]
= DtSEQ

[
αLT1{LT≥K}

]
−DtSEQ

[
αK1{LT≥K}

]
= DtSα

EQ
[
LT1{LT≥K}

]︸ ︷︷ ︸
(i)

−EQ
[
K1{LT≥K}

]︸ ︷︷ ︸
(ii)

 .

Zuerst berechnen wir den Teil (ii) wie folgt:

EQ
[
K1{LT≥K}

]
= KEQ

[
1{LT≥K}

]
= KQ(LT ≥ K)

= KQ

[
L0 exp

(∫ T

0

σudWu −
1

2

∫ T

0

σ2
udu

)
≥ K

]

= KQ

[∫ T

0

σudWu ≥ log(K)− log(L0) +
1

2

∫ T

0

σ2
udu

]

= KQ

 ∫ T0 σudWu√∫ T
0
σ2
udu
≥

log(K)− log(L0) + 1
2

∫ T
0
σ2
udu√∫ T

0
σ2
udu



= K

1− Φ

 log(K)− log(L0) + 1
2

∫ T
0
σ2
udu√∫ T

0
σ2
udu


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= KΦ

− log(K)− log(L0) + 1
2

∫ T
0
σ2
udu√∫ T

0
σ2
udu



= KΦ

 log(L0

K
)− 1

2

∫ T
0
σ2
udu√∫ T

0
σ2
udu

 .

Um Teil (i) zu berechnen, definieren wir Z mit Z ∼ N (0, 1) und somit gilt

√∫ T

0

σ2
udu · Z ∼ N

(
0,

∫ T

0

σ2
udu

)
.

Mit ϕ(x) bezeichnen wir die Dichte der Standardnormalverteilung, d. h.

ϕ(x) =
1√
2π

exp

(
−1

2
x2

)
.

Teil (i) ergibt sich dann durch

EQ
[
LT1{LT≥K}

]
= EQ

[
L0 exp

(∫ T

0

σudWu −
1

2

∫ T

0

σ2
udu

)
1{LT≥K}

]

= EQ
L0 exp

√∫ T

0

σ2
udu · Z −

1

2

∫ T

0

σ2
udu

1{LT≥K}


(1)
=

∫ ∞
A

L0 exp

√∫ T

0

σ2
udu · z −

1

2

∫ T

0

σ2
udu

ϕ(z)dz

=
L0√
2π

∫ ∞
A

exp

√∫ T

0

σ2
udu · z −

1

2

∫ T

0

σ2
udu−

1

2
z2

 dz

=
L0√
2π

∫ ∞
A

exp

√∫ T

0

σ2
udu · z −

1

2

∫ T

0

σ2
udu−

1

2
z2

 dz
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=
L0√
2π

∫ ∞
A

exp

−1

2

z2 − 2

√∫ T

0

σ2
udu · z +

∫ T

0

σ2
udu

 dz

=
L0√
2π

∫ ∞
A

exp

−1

2

z −
√∫ T

0

σ2
udu

2 dz

(2)
=

L0√
2π

∫ ∞
Ã

exp

(
−1

2
z̃2

)
dz̃

= L0(1− Φ(Ã))

= L0Φ(−Ã).

Beim Gleichheitszeichen (1) ergibt sich die Integrationsgrenze A durch Umfor-

mung von {LT ≥ K} bzw.

{LT ≥ K} ⇔
{
L0 exp

(∫ T

0

σudWu −
1

2

∫ T

0

σ2
udu

)
≥ K

}

⇔

Z ≥ log
(
K
L0

)
+ 1

2

∫ T
0
σ2
udu√∫ T

0
σ2
udu


und somit ist

A :=
log
(
K
L0

)
+ 1

2

∫ T
0
σ2
udu√∫ T

0
σ2
udu

.

Gleichheitszeichen (2) erfolgt durch die Substitution

z̃ := z −

√∫ T

0

σ2
udu
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und die neue Integrationsgrenze Ã entspricht

Ã := A−

√∫ T

0

σ2
udu =

log
(
K
L0

)
− 1

2

∫ T
0
σ2
udu√∫ T

0
σ2
udu

.

Setzt man nun die Ergebnisse von (i) und (ii) in die Ausgangsgleichung ein, so

folgt

V0 = D0Sα

L0Φ

 log
(
L0

K

)
+ 1

2

∫ T
0
σ2
udu√∫ T

0
σ2
udu

−KΦ

 log(L0

K
)− 1

2

∫ T
0
σ2
udu√∫ T

0
σ2
udu

 ,
was zu zeigen war.

3.3 Digitale Caplets

Ein digitaler Caplet unterscheidet sich zum Caplet darin, dass die Höhe der Aus-

zahlung fixiert wird. Tritt der Fall LT [T, S] > K ein, so wird der vereinbarte

Betrag D ausgezahlt. Wir werden für weitere Rechnungen D = 1 setzen. Die

Auszahlung entspricht zum Laufzeitende S somit

1{LT>K}.

Satz 3.2 (Black Formel für digitale Caplets)

Der Preis des digitalen Caplets mit Startzeitpunkt T und Laufzeitende S bezüglich

der Libor-Rate LT [T, S] ergibt sich zum aktuellen Zeitpunkt t = 0 durch

V0 = D0SΦ(d2)

24



3.4 Zinsswap 3 STANDARD-ZINSDERIVATE

wobei

d2 :=
log(L0

K
)− 1

2

∫ T
0
σ2
udu√∫ T

0
σ2
udu

.

Beweis.

Der Beweis erfolgt analog zum Beweis von Satz 3.1,

V0 = D0SEQ
(
1{LT>K}

)
= D0SQ

(
L0 exp

(∫ T

0

σudWu −
1

2

∫ T

0

σ2
udu

)
> K

)

= D0SΦ

 log(L0

K
)− 1

2

∫ T
0
σ2
udu√∫ T

0
σ2
udu

 .

3.4 Zinsswap

Von der Grundidee ähnelt ein Zinsswap einem FRA, nur das im Zinsswap mehrere

Zahlungen stattfinden. Es wird dort zwischen zwei Vertragspartnern ein Start-

zeitpunkt T festgelegt und zusätzlich werden zu den Zeitpunkten T1, . . . , Tn ein

Tauschgeschäft zwischen der variablen Libor-Rate LTi [Ti, Ti+1] und einem fes-

ten Zinssatz K vereinbart. Unterschieden wird zwischen dem Payer-Zinsswap

und dem Receiver-Zinsswap. Der Inhaber des Payer-Zinsswap erhält die varia-

ble Libor-Rate und bezahlt den festen Betrag K. Die entsprechende Gegenpartei

ist der Inhaber des Receiver-Zinsswap, dieser erhält den festen Betrag K und

bezahlt die variable Libor-Rate. Die Länge der einzelnen Anlagenperioden ent-

spricht αi = Ti − Ti−1 für i = 1, . . . , n, wobei wir T0 = T setzen. Der genaue

Zahlungsstrom bzgl. des Payer-Swap wird im Cashflow-Diagramm (Abbildung 3)
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verdeutlicht.

Abbildung 3: Cashflow-Diagramm Payer-Swap

Generell muss die variable und die feste Zahlung nicht zum selben Zeitpunkt

stattfinden, wir werden dies für unseren weiteren Verlauf jedoch voraussetzen.

Der Zinsswap besitzt keine Kosten zum Ausübungszeitpunkt t ≤ T , so dass wie

beim FRA hier ebenfalls ein fairer Wert für K bestimmt werden muss. Um K

zu bestimmen, folgt man der gleichen Idee wie beim FRA, d.h. wir bewerten

zunächst den Zinsswap. Da der Zinsswap im Endeffekt eine Folge von FRAs

darstellt, könnte man den Wert des Zinsswaps direkt über die Summe der zu-

gehörigen FRA Preise herleiten. Im nachfolgenden soll die Herleitung allerdings

ausführlicher ausfallen, um mit diversen Notationen, die später im Swap-Markov-

Functional Model benötigen werden, vertraut zu werden. Um den Wert des Zins-

swap zu ermitteln, betrachten wir erst den Wert der festen Zahlungen αiK und

anschließend den Wert der variablen Zahlungen αLTi [Ti, Ti+1].

Den Wert der festen Zahlungen zum Zeitpunkt t, welchen wir mit V FST
t bezeich-

nen, erhalten wir durch Diskontierung mittels Zero-Coupon Bond. Somit gilt

V FST
t =

n∑
i=1

αiKDtTi

= K
n∑
i=1

αiDtTi

= KPt[T, ~S]
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wobei ~S = (T1, . . . , Tn) und

Pt[T, ~S] :=
n∑
i=1

αiDtTi .

Wir werden im weiteren Verlauf dieser Arbeit den Betrag Pt[T, ~S] als Barwert

der festen Zinsswapzahlung (BfZ) bezeichnen.

Der Wert V V AR
t der variablen Zahlungen lässt sich über eine Duplikationsstrategie

bestimmen. Dazu wird zum Zeitpunkt t der Zero-Coupon Bond DtT gekauft und

der Zero-Coupon Bond DtTn verkauft. Die Kosten, die entstehen sind somit

V V AR
t = DtT −DtTn .

Zum Zeitpunkt T erhalten wir aus dem gekauften Zero-Coupon Bond DTT = 1

und legen diesen zur aktuellen Libor-Rate LT [T, T1] an. Daraus erhalten wir zum

Zeitpunkt T1 eine Auszahlung von 1 + α1LT [T, T1]. Der Betrag α1LT [T, T1] ent-

spricht genau der Swap Zahlung und die 1 kann erneut zur Libor-Rate LT1 [T1, T2]

angelegt werden. Das heißt zum Zeitpunkt T2 erhält man 1+α2LT1 [T1, T2]. Analog

zur vorigen Auszahlung können wir damit wieder den Swap decken und den Rest

anlegen. Das wird bis zum Zeitpunkt Tn wiederholt und man erhält den Betrag

1 − LTn−1 [Tn−1, Tn]. Der Betrag LTn−1 [Tn−1, Tn] entspricht wieder der Zinsswap

Zahlung und mit dem Betrag 1 können wir den in t verkauften Zero-Coupon

Bond DtTn , der nun den Wert DTnTn = 1 besitzt, decken. Aus Arbitragegründen

ist der Wert der variablen Zahlungen somit

V V AR
t = DtT −DtTn
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und die Bewertungsformel des Payer-Swaps entspricht

Vt = V V AR
t − V FST

t

= DtT −DtTn −KPt[T, ~S]. (3.5)

An dieser Stelle wird deutlich, dass die Zeitpunkte der variablen Zahlung keine

Rolle für die Bewertung spielen. Setzen wir nun Vt = 0, so erhalten wir den

angemessenen Wert für K. Dieser Wert wird Forward-Swap Rate genannt und

mit yt[T, ~S] bezeichnet. Formal bedeutet dies

Vt = 0

⇔ yt[T, ~S] =
DtT −DtTn

Pt[T, ~S]
.

Zusammenfassend wird dies im folgenden Satz wiedergegeben.

Satz 3.3 (Preis des Zinsswaps)

Der Preis eines Payer-Zinsswaps mit Startzeitpunkt T und Auszahlungen zu den

Zeitpunkten T1, . . . , Tn bzgl. der Libor-Rate LTi [Ti, Ti+1] und Strike K ergibt sich

durch

Vt = Pt[T, ~S](yt[T, ~S]−K)

wobei

yt[T, ~S] =
DtT −DtTn

Pt[T, ~S]
;

Pt[T, ~S] =
n∑
i=1

αjDtTi

mit ~S = (T1, . . . , Tn). Den Preis des Receiver-Zinsswaps erhält man durch Multi-

plikation mit −1.
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Beweis.

Durch umformen und einsetzen von yt[T, ~S] in die Bewertungsformel des Payer-

Zinsswap (3.5) erhalten wir

Vt = DtT −DtTn −KPt[T, ~S]

= Pt[T, ~S]yt[T, S]−KPt[T, ~S]

= Pt[T, ~S](yt[T, ~S]−K).

3.5 Zinsswaption

Ein Zinsswaption ist eine Option auf einen Zinsswap. Betrachtet wird der Zins-

swap, mit Startzeitpunkt T und Auszahlungen T1, . . . , Tn bzgl. der Libor-Rate

LTi [Ti, Ti+1] und Strike K. Äquivalent zum Zinsswap gibt es beim Zinsswaption

einen Payer- und einen Receiver-Zinsswaption. Der Payer-Zinsswaption besitzt

die Option zum Ausübungszeitpunkt T , welcher der Startzeitpunkt des Zinsswaps

ist, in den Payer-Zinsswap einzutreten. Analog bietet der Receicer-Zinsswaption

die Option in den Receiver-Zinsswap einzutreten. Eine Ausübung findet nur statt,

wenn der entsprechende Zinsswap Preis einen positiven Wert besitzt. In der Praxis

tritt man allerdings nicht in den Swap ein, um alle Auszahlungen des Zinsswaps

zu erhalten, sondern der Wert des Zinsswaps zum Zeitpunkt T wird ausgezahlt.

Bezeichnen wir mit V PS
t den Preis des Payer-Zinsswaps und mit V RS

t den Preis

des Receiver-Zinsswaps, so ergeben sich folgende Auszahlungen für den Zinsswap-

tion:

Der Inhaber der Payer-Zinsswaption erhält zum Zeitpunkt T die Auszahlung

V PS
T 1{V PS

T >0}.
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Das Gegenstück, der Receiver-Zinsswaption, besitzt zum Zeitpunkt T die Aus-

zahlung

V RS
T 1{V RS

T >0}.

Um den Wert dieser Optionen zu bestimmen, ziehen wir die gleichen Ideen, die

zur Bewertung eines Caplets zugrunde liegen, heran. Im folgenden werden wir

uns auf die Bewertung des Payer-Zinsswaption beschränken.

Unsere Basisfinanzgüter stellen in diesem Modell somit wieder die Zero-Coupon

Bonds dar und der Wert des Payer-Zinsswaptions lässt sich mit der bekannten

Bewertungsformel bestimmen bzw. mit

Vt = NtEN(V PS
T 1{V PS

T >0}N
−1
T | Ft) (3.6)

= NtEN(PT [T, ~S](yT [T, ~S]−K)1{PT [T,~S](yT [T,~S]−K)>0}N
−1
T | Ft)

= NtEN(PT (yT −K)1{PT (yT−K)>0}N
−1
T | Ft)

für ein Numeraire Paar (N,N).

Im weiteren Verlauf werden wir Pt[T, ~S] mit Pt und yt[T, ~S] mit yt bezeichnen,

sofern bekannt ist, auf welches Zeitintervall sich der BfZ und die Swap-Rate be-

zieht.

Zur Berechnung des Erwartungswertes gehen wir ähnlich wie bei der Bewertung

des Caplets vor. Als Numeraire bietet sich hier der Barwert der festen Zins-

swapzahlung Pt an. Das entsprechende Martingalmaß wird als Swaptionmaß

bezeichnet und mit S definiert. Somit ist unser Numeraire Paar (Pt,S). Betrach-

ten wir

yt =
DtT −DtTn

Pt
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so liegt hier die gleiche Situation wie bei der Bewertung des Caplets vor. Damit yt

die Martingaleigenschaft unter S erfüllt, modellieren wir ihn analog zum Caplet-

Fall mit

dyt = ytσtdWt

für eine deterministische beschränkte Funktion σt und einem Wiener Prozess W

bzgl. des Swaptionmaß S. Fügen wir diese Annahmen in Gleichung (3.6) ein, so

lässt sich der Wert des Payer-Zinsswaptions durch

Vt = PtES((yT −K)1{yT−K>0} | Ft)

bestimmen.

Satz 3.4 (Black Formel für Swaptions)

Der Preis zum aktuellen Zeitpunkt t = 0 eines Payer-Zinsswaptions mit Ausübungs-

zeitpunkt T bezüglich des Zinsswaps beträgt

V0 = P0(y0Φ(d1)−KΦ(d2))

mit

d1 :=
log
(
y0
K

)
+ 1

2

∫ T
0
σ2
udu√∫ T

0
σ2
udu

;

d2 :=
log(y0

K
)− 1

2

∫ T
0
σ2
udu√∫ T

0
σ2
udu

.

Der zugrunde liegende Zinsswap enthält als Parameter den Startzeitpunkt T und

Auszahlungen T1, . . . , Tn bzgl. der Libor-Rate LTi [Ti, Ti+1] und Strike K.
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Beweis.

Die Vorgehensweise entspricht der des Beweises von Satz 3.1.

3.6 Digitaler BfZ-Zinsswaption

Ein digitaler BfZ-Zinsswaption ist von der Grundidee äquivalent zum digitalen

Caplet. Der einzige Unterschied besteht darin, dass das zugrunde liegende Un-

derlying der Swaption ist. Wie beim digitalen Caplet ist beim digitalen BfZ-

Zinsswaption die Auszahlungshöhe ebenfalls fixiert. Der BfZ, der Barwert der

festen Zinsswapzahlung Pt, bezieht sich in der Namensgebung des digitalten BfZ-

Zinsswaption auf die Auszahlungshöhe. Die Auszahlung erfolgt zum Zeitpunkt

T , also der Startzeitpunkt des entsprechenden Zinsswaps bzw. der Ausübungs-

zeitpunkt des entsprechnenden Zinsswaptions. Auch hier wird wieder zwischen

dem digitalen Payer- und dem Receiver-BfZ-Zinsswaption unterschieden, den wir

nachfolgend als digitalen Payer-Swaption und digitalen Receiver-Swaption be-

zeichnen. Zu beachten ist, dass im allgemeinen Fall bei dieser Bezeichnung die

Auszahlungshöhe beliebig wählbar ist. Wir werden jedoch stets den Barwert der

festen Zinsswapzahlung Pt als Auszahlung betrachten, da nur dieser Fall für den

weiteren Verlauf benötigt wird. Somit ist die Auszahlung zum Zeitpunkt T des

digitalen Payer-Swaptions

PT1{yT−K>0} = PT1{yT>K}.

Die Auszahlung des digitalen Receiver-Swaptions beträgt

PT1{yT<K}.

Satz 3.5 (Black Formel für digitale Swaptions)

Der Preis zum Zeitpunkt t = 0 eines digitalen Payer-Swaptions mit den vorher
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eingeführten Eigenschaften ergibt sich durch

V0 = P0Φ(d2)

mit

d2 :=
log(y0

K
)− 1

2

∫ T
0
σ2
udu√∫ T

0
σ2
udu

.

Beweis.

Die Vorgehensweise erfolgt analog zu der im Swaption Fall, d. h. wir arbeiten

mit dem Numeraire Paar (Pt,S) und die Swap-Rate yt wird lognormalverteilt

angenommen. Daraus folgt

V0 = P0ES (PT1{yT>K}P−1
T

)
= P0ES (1{yT>K})
= P0S (yT > K) .

3.7 Implizite Volatilität

Betrachten wir die Black Formel für Caplets, digitale Caplets, Swaptions und

digitiale Swaptions, so haben wir dort eine deterministische Volatilitätsfunktion

σt unterstellt. Diese Volatilitätsfunktion wird durch historische Daten erzeugt.

Die implizite Volatilität hingegen lässt sich anhand der Marktpreise bestimmen

und ist somit direkt am Markt beobachtbar. Zur Bestimmung der impliziten

Volatilität wird im Black Modell eine konstante Volatilität σ angenommen. Wir

zeigen dies am Beispiel der Black Formel für Caplets, für die anderen Derivate

ist die Vorgehensweise analog.
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Gehen wir von einer konstanten Volatilität σ aus und setzen diese in die Black

Formel für Caplets (Satz 3.1) ein, so erhalten wir als Preis:

V0(σ) = D0Sα(L0Φ(d1)−KΦ(d2))

wobei

d1 =
log
(
L0

K

)
+ 1

2
σ2T

σ
√
T

;

d2 =
log(L0

K
)− 1

2
σ2T

σ
√
T

.

Der Wert σ̃, für den V0(σ̃) dem aktuellen Marktpreis entspricht, wird die impli-

zite Volatilität genannt.

Satz 3.6

Unter der Annahme, dass die Marktpreise mit der Black Formel bewertet wurden,

ergibt sich im Fall für digitale Caplets mit impliziter Volatilität σ̃1 der Preis durch

V0 = D0SΦ(d2)

wobei

d2 :=
log(L0

K
)− 1

2
σ̃2

1T

σ̃1

√
T

.

Im Fall des digitalen Swaptions ergibt sich mit impliziter Volatilität σ̃2 der Preis

durch

V0 = P0Φ(d2)
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wobei

d2 :=
log(y0

K
)− 1

2
σ̃2

2T

σ̃2

√
T

.

Beweis.

Ergibt sich direkt aus den vorigen Kapiteln.
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4 Exotische Derivate

Ziel des Markov-Functional Models ist es, exotische Zinsderivate zu bewerten.

Daher ist für das Verständnis des Modells von Vorteil, einen Einblick in die Ei-

genschaften exotischer Derivate zu erhalten. Dazu soll zunächst dargestellt wer-

den, was man unter exotischen Derivaten versteht bzw. welche Eigenschaften sie

kennzeichnen. Darauf wird in diesem Kapitel näher eingegangen und anhand von

Beispielen veranschaulicht.

4.1 Arten von Derivaten

In der vorangegangen Betrachtung der Standard-Zinsderivate ist deutlich gewor-

den, dass die Auszahlung von nur einem bestimmten Zeitpunkt abhängt. Das

heißt, um diese Standard-Derivate zu bewerten, ist es ausreichend ein Modell

für diesen einen Zeitpunkt zu modellieren, was die Berechnungen im speziellen

Fall oft vereinfacht. Optionen, dessen Auszahlung nur von einem Zeitpunkt T

abhängen, werden als Europäische Optionen bezeichnet. Der Inhaber einer

Europäischen Option erwirbt also das Recht, aber nicht die Pflicht, zu einem

Zeitpunkt T die Option auszuüben. Bei der Amerikanischen Option erhält

der Inhaber das Recht, aber nicht die Pflicht, während der gesamten Laufzeit die

Option auszuüben. Eine weitere Form von Optionen ist die sogenannte Bermu-

da Option, diese gibt das Recht, aber nicht die Pflicht, zu vorher festgelegten

Zeitpunkten T1, . . . , Tn die Option auszuüben. Bei Amerikanischen und Bermuda

Optionen hängt die Auszahlung also nicht mehr von nur einem Zeitpunkt ab,

folglich ist die Bewertung solcher Optionen komplizierter. Im Falle von Zinsop-

tionen wird somit ein Modell benötigt, welches die komplette bzw. alle relevan-

ten Zeitpunkte der Zinsstruktur modelliert. Optionen oder allgemeiner Derivate,

dessen Auszahlung von mehreren Zeitpunkten abhängen, werden wir als multi-

temporale Derivate oder pfadabhängige Derivate bezeichnen. Eine weitere

Unterscheidung, die oft in der Literatur anzutreffen ist, ist die zwischen Vanilla
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Derivaten und exotischen Derivaten. Für die Trennung oder Einteilung solcher

Derivate in diese beiden Gruppen gibt es keine einheitliche Definition, so dass

sich in der Literatur teilweise unterschiedliche Aussagen dazu finden lassen. In

der Regel werden mit Vanilla Derivate Standard Derivate bezeichnet. Exoti-

sche Derivate sind demnach eher außergewöhnliche und nicht gängige Derivate.

Meistens gehören sie in die Kategorie der multitemporalen Derivate und zeichnen

sich oft durch eine komplizierte Auszahlungsstrukur aus.

Um dies zu verdeutlichen, werden im nächsten Abschnitt einige Beispiele Exoti-

scher Zinsderivate aufgezeigt.

4.2 Beispiele

Wie bereits erwähnt verfolgt das Markov-Functional Model das Ziel, exotische

Zinsderivate zu bewerten. Im Hauptteil dieser Arbeit wird das Libor- und das

Swap-Markov-Functional Model erörtert. Um vorab einen kurzen Einblick in die

Anwendungen dieser beiden Modelle zu erhalten, betrachten wir entsprechende

Beispiele für diese Modelle. Das Libor-Markov-Functional Model eignet sich zum

Beispiel für die Bewertung von Limit-Caps und Chooser-Caps, für das Swap-

Markov-Functional Model betrachten wir als Beispiel ein Bermuda-Swaption.

4.2.1 Limit-Cap

Ein Limit Cap ähnelt sehr dem Standard Cap, mit dem Unterschied, dass ein

weiterer Parameter, der sogenannte Limitwert m, eingeführt wird. Wie bereits

im vorigen Kapitel beschrieben, besteht ein Cap aus einer Abfolge von Caplets.

Konkret besteht ein Cap aus dem Startzeitpunkt T = T0, den Auszahlungszeit-

punkten Ti, der Periodenlänge αi = Ti−Ti−1 und Strikes Ki für i = 1, . . . , n. Der

Preis dieser Option zum Zeitpunkt t wird mit Vt bezeichnet und die Auszahlungen
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zu den Zeitpunkten Ti entsprechen somit

αi(LTi [Ti, Ti+1]−Ki)1{LTi
[Ti,Ti+1]>Ki}.

für i = 0, . . . , n− 1. Verdeutlicht wird dies wieder im Cashflow Diagramm, wobei

wir die Schreibweise (LTi [Ti, Ti+1]−Ki)
+ := max(LTi [Ti, Ti+1]−Ki, 0) benutzen.

Abbildung 4: Cashflow-Diagramm Cap

Die Erweiterung im Limit-Cap ist der vorher festgelegte Limitwert m, der besagt,

dass nur die ersten m Caplets, die im Geld sind, ausgezahlt werden. Sobald die

ersten m Auszahlungen stattgefunden haben, verfallen die restlichen Auszahlun-

gen, unabhängig davon, ob die späteren Caplets ebenfalls im Geld sind. Für die

Wahl m = d erhalten wir wieder den normalen Cap und die Bewertung des Limit-

Caps ist somit bekannt. Wird m < d gewählt, wird die Bewertung komplizierter,

da wir es nicht mehr nur über die Summation von Capletspreisen bestimmen

können.

4.2.2 Chooser-Caps

Ein Chooser-Cap ist von der Grundausstattung identisch zu dem Limit-Cap, al-

lerdings ergibt sich beim Chooser-Cap ein weiterer Vorteil für den Inhaber. Wie

im Limit-Cap wird ein Limitwertm vorher festgelegt, um die Auszahlungen vonm

Caplets die im Geld sind, zu erhalten. Der zusätzliche Vorteil, der beim Chooser-

Cap gegeben wird, ist die Entscheidung, Auszahlungen ablehnen zu können. Be-
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trachtet man den Fall vom Limit-Cap heißt das, der Inhaber ist gezwungen, die

ersten m Auszahlungen, bei denen die Caplets im Geld sind, auszuüben. Im Falle

vom Chooser-Cap besteht allerdings die Möglichkeit, auf eine bessere Auszahlung

zu warten. Welche Auszahlungen gewählt werden, spielt somit keine Rolle, es darf

aber maximal die festgelegten m Auszahlungen nicht überschreiten. Des Weiteren

ist wichtig zu erwähnen, dass falls eine Auszahlung abgelehnt wird, besteht im

Nachhinein keine Möglichkeit mehr, unabhängig davon, ob der Inhaber noch nicht

die vollen m Auszahlungen ausgenutzt hat, diese zu erhalten. Der Chooser-Cap

bietet somit mehr Flexibilität im Vergleich zum Limit-Cap. Wählt der Inhaber

die Strategie, die ersten m Auszahlungen zu wählen, so ist die Auszahlung iden-

tisch zum Limit-Cap. Daher muss der Preis des Chooser-Caps mindestens dem

Preis des Limit-Caps entsprechen.

4.2.3 Bermuda Swaption

Eines der bekanntesten Exotischen Zinsderivate im Markt, die auf den Swap ba-

sieren, ist das Bermuda-Swaption. Betrachten wir einen Payer-Swap mit Startzeit-

punkt T , Zahlungen zu den Zeitpunkten T1, . . . , Tn und Strike K, so verpflichtet

sich der Inhaber des Swaps alle Zahlungen, auch wenn sie zum Nachteil sind, aus-

zugleichen. Der Bermuda-Payer-Swaption zeichnet sich dadurch aus, dass es

dem Inhaber das Recht gibt, zu einem späteren Zeitpunkt T1, . . . , Tn in den Swap

einzutreten. Das Gegenstück ist der Cancellable-Swap, dieser gibt das Recht, zu

den Zeitpunkten T1, . . . , Tn aus dem Swap auszutreten.
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5 Markov-Functional Model

5.1 Einleitung

Mit dem in den vorangegangen Kapiteln eingeführten Vorwissen lässt sich nun

das Markov-Functional Model beschreiben. Viele Zinsstrukturmodelle beschrei-

ben ihre Zinskurve mittels infinitesimalen Zinsen, die so am Markt nicht beob-

achtbar sind. Das daraus folgende Problem ist die Kalibrierung am Markt. Das

Markov-Functional Model besitzt wie das Libor-Markt Modell die Fähigkeit, die

am Markt tatsächlich beobachtbaren (Libor, Swap) Sätze zu modellieren. Möchte

man zum Beispiel einen Bermudian Swaption bewerten, der das Recht gibt aus

einem 10-Jahres Swap, welches vierteljährliche Ausschüttungen liefert, auszutre-

ten, so entspricht im Libor-Markt Modell die Dimension des Prozesses der Anzahl

der modellierten Libors, also in diesem Fall 39.10 Es liegt auf der Hand, dass dies

die Implementierung bzw. Berechnung in der Praxis erschwert. Diese Dimensi-

onsproblematik ist eine der Hauptmotivationen des Markov-Functional Models.

Der entscheidende Vorteil und auch die Kernidee des Markov-Functional Models

ist, dass die Zero-Coupon Bonds über eine Funktion eines Markov Prozesses X

beschrieben werden. Damit aber eine effiziente und anwendungsfreundliche Imple-

mentierung ermöglicht wird, muss der Markov Prozess von niedriger Dimension

sein. In der Regel ist X ein- oder höchstens zweidimensional. Durch diese nied-

rige Dimension lässt sich die Bewertung eines Derivates ähnlich effizient wie bei-

spielsweise im Vasicek-Hull-White Modell berechnen. In der vorliegenden Arbeit

beschränken wir uns auf den Fall, dass der Markov Prozess X eindimensional ist.

Die Informationen, die für dieses Modell benötigt werden, sind die Marktpreise

und Bewertungsformeln von Caplets und Swaps, für einen geeigneten Bereich von

Strikes K und Laufzeiten T . Mittels dieser Daten als Input, lässt sich die funktio-

nale Form der Forward-Libor und der Forward-Swap Raten als Output erzeugen.

10Seite 338 in [8]
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Im Markov-Functional Model berechnet man allerdings nicht den Libor oder die

Swap Raten direkt, sondern Zero Coupon Bonds. Allerdings lassen sich die Libor

bzw. Swap Raten dann aus den entsprechenden Zero Coupon Bonds herleiten,

wie in vorigen Kapiteln gezeigt wurde.

5.2 Das Modell

Damit ein Zinsstruktur Modell hinsichtlich der Umsetzung in der Praxis sinnvoll

bleibt, wird das Markov-Functional Model so aufgebaut, dass es folgende vier

Kriterien erfüllt:

a) Es soll arbitragefrei sein;

b) Es soll gut kalibrierbar sein bzgl. der Marktpreise relevanter Standardproduk-

te;

c) Es soll realistisch und transparent in seinen Eigenschaften sein;

d) Eine effiziente Implementierung soll möglich sein.

Betrachtet man mal andere Zinsmodelle mit Hinblick auf die vier Kriterien a)-d)

wird deutlich, dass mindestens eines der Kriterien nicht erfüllt wird. Durch die

Markov-Functional Eigenschaften werden wir in der Lage sein, Modelle zu ent-

wickeln, welche alle vier Kriterien erfüllen und die zudem vor allem verwendet

werden können, um multi-temporale Produkte zu bewerten. Um Kriterium d)

zu erfüllen, also dass das Markov-Functional Model in der Praxis effizient imple-

mentierbar gestaltbar bleibt, muss der Markov Prozess von Dimension eins oder

höchstens zwei sein. Da das Ziel darin besteht, multi-temporale Produkte zu be-

werten, stellt dies eine starke Restriktion dar.

Unser Zinsstrukturmodell, dass wir beschreiben werden, besteht aus einer endli-
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chen Menge von Zero-Coupon Bonds

{DtT | t ≤ T ; T ∈ T},

wobei T := {T1, . . . , Tn+1} entspricht. Die Sigma-Algebra, welche unsere verfügba-

ren Informationen zum Zeitpunkt t darstellt, entspricht

Ft := σ(DuT | u ≤ t; T ∈ T).

Eine Eigenschaft des Markov-Functional Models ist es, die Zero-Coupon Bonds

über eine Funktion eines Markov Prozesses X zu beschreiben. Um zwischen dem

stochastischen Prozess (DtS)0≤t≤S und der funktionalen Form des Zero-Coupon

Bonds zu unterscheiden, bezeichnen wir die funktionale Form des Zero-Coupon

Bonds mit

BtS : R→ R

Xt 7→ BtS(Xt)

für 0 ≤ t ≤ S und S ∈ T.

Die Erfinder des Markov-Functional Models, Hunt und Kennedy, haben das Mo-

dell folgendermaßen definiert:

Definition 5.1 (Markov-Functional Model)

Ein Zinstrukturmodell heißt Markov-Functional Model, falls ein Numeraire

Paar (N,N), d.h. die Zero-Coupon Bond Preise ausgedrückt in Numeraire Ein-

heiten sind Martingale, existiert und ein Prozess X, so dass folgendes gilt

(P1) Der Prozess X ist ein Markov Prozess unter dem Maß N;

(P2) Die Zero-Coupon Bonds sind als Funktion eines Markov Prozesses X dar-
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stellbar, d.h.

DtS = BtS(Xt), 0 ≤ t ≤ S,

für S ∈ T;

(P3) Die Zero-Coupon Bonds sind strikt monoton fallendene Funktionen in X;

(P4) Der Numeraire N , selbst ein Preisprozess, lässt sich als funktionale Form

darstellen, d.h.

Nt = Nt(Xt), 0 ≤ t ≤ ∂∗,

wobei ∂∗ die maximale Fälligkeit des Numeraires entspricht.

Wirft man einen Blick auf die Definition des Markov-Functional Models, so wird

deutlich, dass der Hauptbestandteil der Markov Prozess X darstellt. Wir gehen

damit von der Annahme aus, dass der Markt zum Zeitpunkt t durch Xt be-

schrieben werden kann. Eine weitere wichtige Annahme des Modells ist, dass die

Zero-Coupon Bonds strikt monotone Funktionen in X sind, d.h. der Wert eines

Zero-Coupon Bond zum Zeitpunkt t vollständig durch den Prozess Xt bestimmt

ist.

Bevor wir das Libor- und Swap-Markov Functional Model ausführlich beschrei-

ben, werfen wir noch einen Blick auf die Definition 5.1. Wählen wir als Numeraire

den Zero-Coupon Bond mit der maximalen Fälligkeit, also B·Tn+1 , so genügt es

nur die funktionale Form des Numeraires zu bestimmen. Das heißt, bezogen auf

die Definition des Markov-Functional Models, dass sich die Punkte
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(P2) Die Zero-Coupon Bonds sind als Funktion eines Markov Prozesses X dar-

stellbar, d.h.

DtS = BtS(Xt), 0 ≤ t ≤ S,

für S ∈ T;

und

(P4) Der Numeraire N , selbst ein Preisprozess, lässt sich als funktionale Form

darstellen, d.h.

Nt = Nt(Xt), 0 ≤ t ≤ ∂∗,

wobei ∂∗ die maximale Fälligkeit des Numeraires entspricht;

deutlich vereinfachen lassen. Um dies zu zeigen, definieren wir zuerst unseren

Markov Prozess X. Eine übliche Wahl in der Praxis für einen eindimensionalen

Markov Prozess X ist

dXt = σtdWt, x0 = 0, (5.1)

wobei σt eine deterministische Funktion ist und W ein Wiener-Prozess. In An-

wendungen wird oft die deterministische Funktion σt = σ exp(at) für ein σ > 0

und einen mean reversions11 Parameter a benutzt. Der Vorteil dieser Wahl von

X liegt darin, dass die Verteilung von X analytisch bekannt ist. Die bedingte

Verteilung von Xs bedingt unter Xt für t ≤ s entspricht der Normalverteilung

mit Erwartungswert Xt und Varianz
∫ s
t
σ2
udu. Die bedingte Dichte bezeichnen wir

11nähere Informationen dazu in [16] 9.5.1 und in [6] 22.3.
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mit

φXs|Xt(x) =
1√

2πσ̃2
exp

(
−1

2

(x− µ)2

σ̃2

)
,

wobei σ̃2 die Varianz und µ den Erwartungswert von Xs bedingt unter Xt be-

zeichnet. Der Prozess X ist nach Satz 2.7 ein Markov Prozess und erfüllt somit

den ersten Punkt (P1) der Definition des Markov-Functional Models.

Durch die Annahme eines Numeraire Paares (N,N) ergibt sich für die Zero-

Coupon Bonds BtS(Xt) für 0 ≤ t ≤ S und S ∈ T

BtS(Xt) = Nt(Xt)E

[
BSS(XS)

NS(XS)

∣∣∣∣ Ft] .
Als Numeraire wählen wir, wie oben angedeutet, den Zero-Coupon Bond B·Tn+1

und bezeichnen das entsprechende Martingalmaß mit Qn+1. Dann ergibt sich

durch die Eigenschaft des Markov Prozesses X aus der vorigen Gleichung:

BtS(Xt) = BtTn+1EQ
n+1

(
BSS

BSTn+1(XS)

∣∣∣∣ Ft)
(1)
= BtTn+1EQ

n+1

(
1

BSTn+1(XS)

∣∣∣∣ Ft)
(2)
= BtTn+1EQ

n+1

(
1

BSTn+1(XS)

∣∣∣∣ Xt

)
(3)
= BtTn+1

∫ ∞
−∞

1

BSTn+1(z)
φXS |Xt(z)dz.

Für Punkt (1) wurde die Eigenschaft (2.1) des Zero-Coupon Bonds, bzw. das

BSS ≡ 1

gilt, benutzt. Für (2) wurde die Eigenschaft des Markov Prozesses X verwendet
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und im Punkt (3), dass XS bedingt unter Xt normalverteilt ist.

Aus dieser Gleichung wird also deutlich, dass sich die funktionale Form aller wei-

teren Zero-Coupon Bonds mittels des Numeraires bestimmen lassen. Die Haupt-

aufgabe des Markov-Functional Model besteht folglich daraus, die funktionale

Form des Numeraires

BtTn+1(Xt)

für t ≤ Tn+1 zu bestimmen.

5.3 Libor-Markov-Functional Model

Zu Beginn wird geklärt, welche Daten als Input für unser Modell vorhanden

sind. Zum Zeitpunkt 0 liegen uns Zero-Coupon Bonds D0Ti und Marktpreise

V ref
0 (Ti, Ki) von Standardderivaten (z.B. Caplets oder Swaps) für unterschiedli-

che Laufzeiten Ti sowie verschiedener StrikesKi vor. Welche Marktpreise V ref
t (Ti, Ki)

gewählt werden, hängt vom Derivat ab, welches es zu bewerten gilt.

Im Libor-Markov-Functional Model sind unsere zugrunde liegenden Marktprei-

se die Preise von Caplets. Als Bewertungsformel für Caplets verwenden wir die

Formel von Black. Es ist zwar möglich, ein anderes Bewertungsverfahren zu un-

terstellen, allerdings wird im Libor- und Swap-Markov-Functional Model in der

Regel das Modell von Black verwendet und kommt somit auch in dieser Arbeit

zum Tragen. Wie in Kapitel 4 gezeigt wurde, hängen die Preise der exotischen

Derivate oft indirekt von einer Menge von Libor-Raten bzw. Zero-Coupon Bonds

ab. Ist es möglich, diese Zero-Coupon Bonds zu modellieren, so können auch die

Preise dieser Derivate bestimmt werden. Wir gehen dementsprechend von der An-

nahme aus, dass unser multi-temporales Derivat, welches bewertet werden soll,

von den Zero-Coupon Bonds BTiTj für 1 ≤ i < j ≤ n+ 1 abhängt.

In der Praxis stellt diese Annahme einen typischen Fall dar und ist insofern sinn-

voll gewählt. Somit genügt es, die Zero-Coupon Bonds BTiTj für 1 ≤ i < j ≤ n+1
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zu modellieren. Das Libor-Markov-Functional Model löst diese Aufgabenstellung,

indem es eine funktionale Form der Libor-Raten bzw. Zero-Coupon Bonds her-

leitet. Die Idee dabei ist, die funktionale Form der Zero-Coupon Bonds durch

entsprechenden (digitalen) Capletpreisen zu erzeugen.

Wir nehmen an, dass die Marktpreise der Caplets mit der Black Formel mit im-

pliziter Volatilität σ̃i gegeben sind. Als Numeraire wählen wir B·Tn+1 und das

entsprechende Martingalmaß bezeichnen wir mit Qn+1. Um im Einklang mit der

Black Formel für Caplets zu bleiben, wählen wir die Libor-Raten ebenfalls lognor-

malverteilt. Daraus folgt, dass sich die Dynamik der Libor-Rate Lnt darstellen

lässt durch

dLnt = σnt L
n
t dWt,

wobei Wt ein Wiener Prozess bzgl. Qn+1 und σnt eine deterministische Funktion

ist. Im nächsten Schritt folgt die Bestimmung des Markov Prozesses X. Wie in

der Gleichung (5.1) beschrieben, bestimmten wir den Markov Prozess X mit der

Dynamik

dXt = σnt dWt, X0 = 0

bzw. in der Integraldarstellung

Xt =

∫ t

0

σnudWu. (5.2)

Somit ist (P1) der Definition 5.1 erfüllt. Die Punkte (P2) und (P4) bedeuten

bezüglich des betrachtenden Falls, das nun die Zero-Coupon Bonds und das Nu-

meraire BTiTn+1 für i = 1, . . . , n + 1 zu bestimmen ist. Wie im vorigen Kapitel
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beschrieben, genügt es im Libor-Markov-Functional Model nur das Numeraire

BTiTn+1

für i = 1, . . . , n + 1 zu bestimmen. Ist nämlich die funktionale Form des Nume-

raires BTiTn+1 gegeben, so lassen sich die restlichen Zero-Coupon Bonds daraus

herleiten.

Berechnung des Numeraires :

Zur Bestimmung der Numeraires wird entgegengesetzt zur chronologischen Rei-

henfolge vorgegangen. Das bedeutet B·Tn+1 wird bestimmt, in dem man sich von

Tn+1 bis T1 vorarbeitet. Der erste Schritt besteht darin, folglich die funktionale

Form von BTn+1Tn+1(XTn+1) zu bestimmen.

Dieser Wert ist per Definition des Zero-Coupon Bonds gegeben und es gilt

BTn+1Tn+1(XTn+1) ≡ 1.

Im zweiten Schritt wird die funktionale Form von BTnTn+1(XTn) bestimmt. In

Kapitel 2 haben wir den Zusammenhang zwischen der Libor-Rate und den Zero-

Coupon Bonds erläutert. Das heißt, wir können den Zero-Coupon Bond BTnTn+1

bzw. unser Numeraire darstellen durch

BTnTn+1 =
1

1 + αnLnTn
=

1

1 + αnLTn [Tn, Tn+1]
. (5.3)

Die Libor-Rate Lnt wurde als lognormalverteilt angenommen bzw. es gilt

dLnt = σnt L
n
t dWt.
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Die Lösung der stochastischen Differentialgleichung ist

Lnt = Ln0 exp

(
−1

2

∫ t

0

(σnu)2du+

∫ t

0

σnudWu

)

bzw. zum Zeitpunkt Tn entspricht sie

LnTn = Ln0 exp

(
−1

2

∫ Tn

0

(σnu)2du+

∫ Tn

0

σnudWu

)
.

Setzen wir in diese Gleichung die für XTn definierte Darstellung (5.2) ein, so er-

halten wir

LnTn = Ln0 exp

(
−1

2

∫ Tn

0

(σnu)2du+XTn

)
.

Damit ergibt sich die funktionale Form von BTnTn+1 durch Einsetzen von LTn in

die Gleichung (5.3) durch

BTnTn+1(XTn) =
1

1 + αnLn0 exp
(
−1

2

∫ Tn
0

(σnu)2du+XTn

) .
Die funktionale Form von BTn+1Tn+1 und BTnTn+1 ist damit bestimmt. Die weiteren

Zero-Coupon Bonds BTiTn+1 für i = 1, . . . , n− 1 werden nun unter Zuhilfenahme

der Caplet- bzw. digitalen Capletpreisen erzeugt. Anstatt nun rückwärts der Rei-

henfolge entlangzugehen und BTn−1Tn+1 zu bestimmen, geben wir ein rekursives

Schema an, um alle restlichen Zero-Coupon Bonds zu erhalten. Ausführlich soll

dies am Beispiel von BTmTn+1 für T1 ≤ Tm < Tn gezeigt werden. Da wir rückwärts

vorgehen, ist bei der Bestimmung von BTmTn+1 die funktionale Form des Zero-

Coupon Bond BTm+1Tn+1 als bekannt vorausgesetzt.

Um BTmTn+1 mit den aktuellen Marktpreisen zu kalibrieren, werfen wir zunächst

einen formalen Blick auf die Bewertungsformel des digitalen Caplets.

Der digitale Caplet bezüglich der Libor-Rate LmTm = LTm [Tm, Tm+1] mit Strike K
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hat gemäß der Definition von Kapitel 3.3 zum Zeitpunkt Tm+1 die Auszahlung

1{Lm
Tm

>K}.

Diskontiert man dies auf den Zeitpunkt Tm, so können wir den Wert der Auszah-

lung zum Zeitpunkt Tm alternativ darstellen durch

BTmTm+1(XTm)1{Lm
Tm

(XTm )>K}.

Mit V m
t (K) bezeichnen wir den digitalen Capletpreis zum Zeitpunkt t auf die

Libor-Rate LmTm mit Strike K. Bezüglich des Numeraires B·Tn+1 und des Martin-

galmaßes Qn+1, lässt sich der Preis zum Zeitpunkt t = 0 des digitalen Caplets

darstellen durch die Bewertungsformel

V m
0 (K) = B0Tn+1EQ

n+1

(
BTmTm+1(XTm)

BTmTn+1(XTm)
1{Lm

Tm
(XTm )>K}

)
.

Da wir vorausgesetzt haben, dass die digitalen Capletpreise mit der Black Formel

mit impliziter Volatilität σ̃m gegeben sind, ist der Preis V m
0 (K) gemäß Satz 3.6:

V m
0 (K) = B0Tm+1(X0)Φ(dm2 ),

wobei

dm2 =
log(L0

K
)− 1

2
σ̃2
mTm

σ̃m
√
Tm

.

Durch (P3) der Definition 5.1, also dass unser Numeraire eine strikt monoton

fallende Funktion von X ist, überträgt sich dies auf die Libor-Rate. Die Libor-

Rate LmTm ist somit eine strikt monoton wachsende Funktion von XTm und somit
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existiert ein eindeutiges X∗Tm , so dass

LmTm(X∗Tm) = K

Qn+1 fast sicher gilt. Damit lässt sich die Auszahlung zum Zeitpunkt Tm des

digitalen Caplets umformen zu

V m
Tm = BTmTm+1(XTm)1{Lm

Tm
(XTm )>K}

⇔

V m
Tm = BTmTm+1(XTm)1{XTm>X

∗
Tm
}.

Der Preis des digitalen Caplets mit Strike K zum Zeitpunkt t = 0 lässt sich durch

den Erwartungswert bezüglich unser Martingalmaß Qn+1 berechnen durch

V m
0 (K) = B0Tn+1EQ

n+1

(
BTmTm+1(XTm)

BTmTn+1(XTm)
1{XTm>XTm∗}

)
(5.4)

= B0Tn+1EQ
n+1

[
1{XTm>XTm∗}E

Qn+1

(
BTm+1Tm+1(XTm+1)

BTm+1Tn+1(XTm+1)

∣∣∣∣ FTm)]

= B0Tn+1EQ
n+1

[
1{XTm>XTm∗}E

Qn+1

(
1

BTm+1Tn+1(XTm+1)

∣∣∣∣ FTm)]

= B0Tn+1EQ
n+1

[
1{XTm>XTm∗}E

Qn+1

(
1

BTm+1Tn+1(XTm+1)

∣∣∣∣ XTm

)]

= B0Tn+1EQ
n+1

[
1{XTm>XTm∗}

∫ ∞
−∞

1

BTm+1Tn+1(z)
φXTm+1

|XTm
(z)dz

]

= B0Tn+1

∫ ∞
X∗

Tm

[∫ ∞
−∞

1

BTm+1Tn+1(z)
φXTm+1

|XTm
(z)dz

]
φXTm |X0(u)du.

In der letzten Zeile wird deutlich, dass das Integral nur noch von den Zero-

Coupon Bonds BTm+1Tn+1 und B0Tn+1 abhängt. Im vorigen Iterations-Schritt wur-

de BTm+1Tn+1 bestimmt und B0Tn+1 ist durch den Markt gegeben. Das heißt dem-
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nach, für X∗Tm ∈ R lässt sich, wenn auch nur numerisch, dieses Integral lösen.

Den numerischen Wert dieses Integrals bezeichnen wir mit J(X∗Tm).

Zur Erinnerung, X∗Tm wurde so gewählt, dass

LmTm(X∗Tm) = K

gilt. Wir wählen also einX∗Tm so, dass J(X∗Tm) mit dem Marktpreis übereinstimmt.

Durch Gleichsetzen von J(X∗Tm) und dem gegeben Marktpreis V m
0 (K) bzw.

J(X∗Tm) = V m
0 (K) = V m

0 (LmTm(X∗Tm))

erhalten wir eine Gleichung in LmTm(X∗Tm) und können damit die funktionale Form

der Libor-Rate bestimmen. Dies erreichen wir, in dem wir den Marktpreis V m
0 (K)

bzw. J(X∗Tm) nach der Libor-Rate LmTm(X∗Tm) auflösen:

J(X∗Tm) = B0Tm+1(X0)Φ

 log
(

L0

Lm
Tm

(X∗
Tm

)

)
− 1

2
σ̃2
mTm

σ̃m
√
Tm


⇔

LmTm(X∗Tm) = Lm0 exp

(
−1

2
σ̃2
mTm − σ̃m

√
TmΦ−1

(
J(X∗Tm)

B0Tm+1

))
,

wobei Φ−1 der Inversen der Verteilungsfunktion der Standardnormalverteilung

entspricht.

Damit wäre die funktionale Form der Libor-Rate LmTm(X∗Tm) bestimmt und so-

mit lässt sich auch die funktionale Form des Zero-Coupon Bonds BTmTn+1(X
∗
Tm

)
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herleiten. Dazu werden wir erst die Libor-Rate umformen in

LmTm(X∗Tm) =
1−BTmTm+1(X

∗
Tm

)

αmBTmTm+1(X
∗
Tm

)

=
1−BTmTm+1(X

∗
Tm

)

αmBTmTm+1(X
∗
Tm

)
·

=1︷ ︸︸ ︷
1

BTmTn+1
(X∗

Tm
)

1
BTmTn+1

(X∗
Tm

)

=

1
BTmTn+1

(X∗
Tm

)
− BTmTm+1

(X∗
Tm

)

BTmTn+1
(X∗

Tm
)

αm
BTmTm+1

(X∗
Tm

)

BTmTn+1
(X∗

Tm
)

. (5.5)

Lösen wir diese Gleichung nach unserem gesuchten Zero-Coupon BondBTmTn+1(X
∗
Tm

)

auf, so erhalten wir die funktionale Form

BTmTn+1(X
∗
Tm) =

(
(1 + αmL

m
Tm(X∗Tm))

BTmTm+1(X
∗
Tm

)

BTmTn+1(X
∗
Tm

)

)−1

.

Der auf der rechten Seite auftretende Wert
BTmTm+1

(X∗
Tm

)

BTmTn+1
(X∗

Tm
)

wurde in der Berech-

nung vom Integral J(X∗Tm) bzw. in der Berechnung des Erwartungswertes (5.4)

berechnet und ist somit bekannt.

Mit dieser Kalibrierung haben wir also zu einem gegeben Capletpreis mit Strike

K die funktionale Form BTmTn+1(X
∗
Tm

) bestimmt. Um alle Werte X∗Tm ∈ R bzw.

die funktionale Form des Zero-Coupon Bonds BTmTn+1(XTm) daraus zu erhalten,

benötigen wir rein theoretisch unendlich viele Capletpreise mit Strikes Ki. In der

Praxis sind allerdings nur endlich viele Capletpreise gegeben. Nehmen wir an, es

seien die Capletpreise V m
0 (Ki) mit unterschiedlichen Strikes Ki für i = 1, . . . , d

gegeben, so erhalten wir die diskrete Menge

{X∗Tm,i | L
m
Tm(X∗Tm,i) = Ki}.

Die funktionale Libor-Rate erhalten wir dann analog zur Berechnung (5.5) und
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wird dargestellt durch

LmTm(X∗Tm,i) =

1
BTmTn+1

(X∗
Tm,i)

− BTmTm+1
(X∗

Tm,i)

BTmTn+1
(X∗

Tm,i)

αm
BTmTm+1

(X∗
Tm,i)

BTmTn+1
(X∗

Tm,i)

für i = 1, . . . , d.

Schlussendlich erhalten wir damit die Menge bzgl. der Zero-Coupon BondsX∗Tm,i
∣∣∣∣∣ BTmTn+1(X

∗
Tm,i) =

(
(1 + αmL

m
Tm(X∗Tm,i))

BTmTm+1(X
∗
Tm,i

)

BTmTn+1(X
∗
Tm,i

)

)−1

; i = 1, . . . , d

 .

Dies ist aufgrund der endlichen Menge an Capletpreisen nur eine diskrete Menge.

Um die restlichen Zero-Coupon Bonds BTmTn+1(X
∗
Tm,i

) für i 6= 1, . . . , d zu erlan-

gen, wird zwischen den bereits berechneten Zero-Coupon Bonds BTmTn+1(X
∗
Tm,i

)

für i = 1, . . . , d mit geeignetem Interpolationsverfahren interpoliert. Daraus er-

gibt sich die gewünschte stetige funktionale Form des Zero-Coupon BondsBTmTn+1(XTm).

Mit dieser Vorgehensweise der Rückwärts-Berechnung ist es folglich möglich,

die restlichen Zero-Coupon Bonds bzw. unser Numeraire BTiTn+1(XTi) für i =

1, . . . , n− 1 zu bestimmen.

5.4 Swap-Markov-Functional Model

Eine andere Möglichkeit, die funktionale Form der Zero-Coupon Bonds zu bestim-

men, ergibt sich über das Swap-Markov-Functional Model. Dieses Modell eignet

sich, um Swap basierte Produkte zu bewerten, wie zum Beispiel ein Bermudian

Swaption. Der Unterschied zum Libor-Markov-Functional Model besteht darin,

dass wir die funktionale Form der Zero-Coupon Bonds nicht über die Verbindung

zur Libor-Rate sondern über Swap-Raten herleiten.

Wir betrachten dazu eine Menge von Swaps mit Laufzeitende Tn+1. Genauer

genommen betrachten wir n + 1 Payer-Swaps, wobei wir die einzelnen Swaps
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mit SWi für i = 0, . . . , n bezeichnen. Der erste Swap SW0 soll zum Zeitpunkt T0

starten und die Auszahlungen zu den Zeitpunkten T1, . . . , Tn+1 liefern. Der zweite

Swap SW1 startet zum Zeitpunkt T1 und liefert zu den Zeitpunkten T2, . . . , Tn+1

die Auszahlungen. Allgemein bezeichnet somit SWi den Swap startend zum Zeit-

punkt Ti mit den Auszahlungszeitpunkten Ti+1, . . . , Tn+1. Die entsprechenden

Swap-Raten werden wie im Kapitel 3.4 definiert bzw. auf dieses Modell ange-

passt durch

yit[Ti, ~Si] =
BtTi −BtTn+1

P i
t [Ti, ~Si]

wobei

P i
t [Ti, ~Si] =

n+1∑
j=i+1

αj−1BtTj ;

~Si : = (Ti, . . . , Tn+1)

αi : = Ti+1 − Ti

für i = 0, . . . , n gilt.

Um die Notation einfach zu halten, bezeichnen wir mit yit die Swap-Rate yit[Ti, ~Si]

bezüglich des Swaps SWi. Entsprechend wird P i
t , der Barwert der festen Zins-

swapzahlung (BfZ), mit P i
t [Ti, ~Si] bezeichnet. Die Grundannahmen sind iden-

tisch zu denen des Libor-Markov-Functional Models. Wir wählen somit erneut

den Zero-Coupon Bond B·Tn+1 als Numeraire und das zugehörige Martingalmaß

Qn+1.

Der Markov Prozess entspricht wie im Libor-Markov-Functional Model der Dy-

namik

dXt = σnt dWt, X0 = 0.
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Basierend auf den gleichen Vorraussetzungen wie im Libor-Fall, bedeutet das,

dass es im Swap-Markov-Functional Model ebenfalls genügt, nur die funktiona-

le Form der Zero-Coupon Bonds bzw. des Numeraires B·Tn+1 zu bestimmen. Die

restlichen Zero-Coupon Bonds ergeben sich analog zum Libor-Markov-Functional

Model.

Berechnung des Numeraires :

Um die funktionale Form des Numeraires zu bestimmen, folgen wir der gleichen

Idee, d.h. wir arbeiten uns rückwärts in der Zeit vor.

Wir starten somit beim Zeitpunkt Tn+1, die funktionale Form des Zero-Coupon

Bond BTn+1Tn+1 ist per Definition bekannt und entspricht

BTn+1Tn+1(XTn+1) ≡ 1.

Die funktionale Form des Zero-Coupon Bonds zum Zeitpunkt Tn ergibt sich,

indem wir uns den Swap SWn bzw. dessen Swap-Rate ynTn betrachten. Das heißt,

durch

ynTn =
BTnTn −BTnTn+1

P n
Tn

[Tn, ~Sn]

=
1−BTnTn+1

αnBTnTn+1

= LnTn

entspricht die Swap-Rate ynTn der Libor-Rate. Damit haben wir für den Zeitpunkt

Tn das gleiche Szenario wie im Libor-Markov-Functional Model und die funktio-
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nale Form ergibt sich durch

BTnTn+1(XTn) =
1

1 + αnLn0 exp
(
−1

2

∫ Tn
0

(σnu)2du+XTn

) .
Analog zum Libor-Markov-Functional Model werden wir die restlichen Zero-

Coupon Bonds BTiTn+1 für i = 1, . . . , n − 1 rekursiv herleiten, indem wir erneut

die funktionale Form des Zero-Coupon Bonds BTmTn+1 mit 0 ≤ Tm < Tn bestim-

men. Die dahintersteckende Idee ist, nicht die Caplet-Preise als Kalibrierung zu

verwenden sondern die digitalen Swaption Preise. Unter der Annahme, dass die

digitalen Swaption Preise mittels der Black Formel mit impliziter Volatilität σ̃m

gegeben sind, ergibt sich der Preis des digitalen Swaptions nach Satz 3.6 durch

V m
0 = Pm

0 Φ(d2)

wobei

d2 :=
log(

ym0
K

)− 1
2
σ̃2
mTm

σ̃m
√
Tm

.

Für diesen Fall wird angenommen, dass die Swap-Rate eine strikt monoton wach-

sende Funktion vom Markov Prozess X ist. Daraus folgt, das ein eindeutiges X∗Tm

existiert, so dass

ymTm(X∗Tm) = K (5.6)

gilt. Die Auszahlung des digitalen Swaptions bezüglich des Swaps SWTm zum

Zeitpunkt Tm beträgt

1{ymTm>K}
Pm
Tm .

Mit der Wahl des Zero-Coupon Bonds B·Tn+1 als Numeraire und dem entsprechen-
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dem Martingalmaß Qn+1 lässt sich der Preis des digitalen Swaptions alternativ

berechnen durch

V m
0 = B0Tn+1EQ

n+1

(
1{ymTm (XTm )>K}P

m
Tm

(XTm)

BTmTn+1(XTm)

)
(5.7)

(1)
= B0Tn+1EQ

n+1

(
1{XTm>X

∗
Tm
}

Pm
Tm

(XTm)

BTmTn+1(XTm)

)

= B0Tn+1EQ
n+1

(
1{XTm>x

∗
Tm
}EQ

n+1

[
Pm
Tm+1

(XTm+1)

BTm+1Tn+1(XTm+1)

∣∣∣∣FTm])

= B0Tn+1

∫ ∞
X∗

Tm

(∫ ∞
−∞

Pm
Tm+1

(z)

BTm+1Tn+1(z)
φXTm+1

|XTm
(z)dz

)
φXTm |X0(u)du.

In Gleichung (1) haben wir die Gleichung (5.6) verwendet. Per Definition ist

Pm
Tm+1

=
n+1∑

j=m+1

αj−1BTm+1Tj ;

= αmBTm+1Tm+1 + αm+1BTm+1Tm+2 + · · ·+ αnBTm+1Tn+1

und hängt nur von BTm+1S für S = Tm+1, . . . , Tn+1 ab. Somit ist die funktionale

Form

Pm
Tm+1

(XTm+1)

BTm+1Tn+1(XTm+1)
,

die bei der Berechnung des Integrales benötigt wird schon im vorigen Iterations-

schritt berechnet worden. Den Wert des Integrals bezeichnen wir mit J(X∗Tm)

und gehen identisch zur Vorgehensweise des Libor-Falls vor. Wir setzen den

Marktpreis per Black Formel unter der Berücksichtigung von Gleichung (5.6)

mit J(X∗Tm) gleich und erhalten die funktionale Form der Swap-Rate

ymTm(X∗Tm) = ym0 exp

(
−1

2
σ̃2
mTm − σ̃m

√
TmΦ−1

(
J(X∗Tm)

Pm
0

))
.
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Durch die Darstellung der Swap-Rate mittels

ymTm(X∗Tm) =
1−BTmTn+1(X

∗
Tm

)

Pm
Tm

(X∗Tm)

=
1−BTmTn+1(X

∗
Tm

)

Pm
Tm

(X∗Tm)
·

1
BTmTn+1

(X∗
Tm

)

1
BTmTn+1

(X∗
Tm

)

=

1
BTmTn+1

(X∗
Tm

)
− 1

Pm
Tm

(X∗
Tm

)

BTmTm+1
(X∗

Tm
)

erhalten wir durch Umformung nach BTmTn+1(X
∗
Tm

) die funktionale Form

BTmTn+1(X
∗
Tm) =

(
1 + ymTm(X∗Tm)

Pm
Tm

(X∗Tm)

BTmTn+1(X
∗
Tm

)

)−1

.

Der in der Gleichung auftretende Ausdruck
Pm
Tm

(X∗
Tm

)

BTmTn+1
(X∗

Tm
)

wurde in der Berech-

nung des Erwartungswertes (5.7) berechnet und ist somit bekannt. Die restlichen

Zero-Coupons lassen sich dann analog zum Libor-Markov-Functional Model be-

stimmen.
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6 LIBOR-MARKT MODELL

6 Libor-Markt Modell

Ziel dieses Kapitels ist es, aufzuzeigen, dass das Libor-Markov-Functional Mo-

del kein direkter Spezialfall vom Libor-Markt Modell ist. Um dies zu tun, wird

zunächst das Libor-Markt Modell dargestellt.

Aufgebaut wird das Libor-Markt Modell auf einer Tenorstruktur T1 < T2 < · · · <

Tn < Tn+1 <∞, wobei die Periodenlänge mit αi := Ti+1 − Ti für i = 1, . . . , n be-

zeichnet wird. Um die Notation einfach zu halten, definieren wir die Libor-Raten

mit

Lit := Lt[Ti, Ti+1].

für i = 1, . . . , n.

Unter der Annahme eines abitragefreien Modells wählen wir als Numeraire den

Zero-Coupon Bond D·Tn+1 und das entsprechende Martingalmaß wird mit Qn+1

bezeichnet. Damit sind unsere Numeraire normierten Basisfinanzgüter

(
DtTi

DtTn+1

)
0≤t≤Ti

für i = 1, . . . , n+ 1

Qn+1-Martingale.

Im Libor-Markt Modell werden die einzelnen Libor-Raten als Lösung der sto-

chastischen Differentialgleichung

dLit = µitL
i
tdt+ σitL

i
tdW

i
t

unter Qn+1 angenommen,12 wobei Wt = (W 1
t , . . . ,W

n
t ) der korrelierte Wiener

Prozess mit der Eigenschaft d[W i,W j]t = ρijdt entspricht. Als Drift bezeichnen

wir die Funktion µi und die deterministische beschränkte Volatilitätsfunktion

wird durch σi dargestellt.

12 Für weitere Informationen sei auf [7] verwiesen.
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6 LIBOR-MARKT MODELL

Um den Drift der Libor-Raten Lit für i = 1, . . . , n unter dem Martingalmaß

Qn+1 weiter zu spezifizieren, betrachten wir das äquivalente Martingalmaß Qi+1

bezüglich des Numeraires D·Ti+1
. Unter diesem Maß sind somit die Numeraire

normierten Zero-Coupon Bonds
D·Tk
D·Ti+1

für 1 ≤ k ≤ n+1 Martingale. Durch einen

Maßwechsel von Qn+1 nach Qi+1 lässt sich die Gestalt von µi bestimmen und als

Resultat erhalten wir folgenden Satz:

Satz 6.1

Das Libor-Markt Modell ist arbitragefrei unter dem Maß Qn+1, falls der Drift der

Form

µit = −

(
n∑

j=i+1

αjL
j
t

1 + αjL
j
t

σjtρij

)
σit

entspricht. Unter dem Maß Qn+1 erfüllen somit die Libor-Raten den Differenti-

algleichungen

dLit = −

(
n∑

j=i+1

αjL
j
t

1 + αjL
j
t

σjtρij

)
σitL

i
tdt+ σitL

i
tdW

i
t .

Beweis.

Siehe [7] Satz 2.1

Wie im vorigen Kapitel aufgezeigt wurde, existieren zwei grundlegende Eigen-

schaften des Libor-Markov-Functional Models:

Zum Einen wird die Libor-Rate als eine Funktion von einem eindimensionalen

Markov Prozess X dargestellt. Zum Anderen ist die funktionale Form der Libor-

Rate eine streng monotone Funktion in X ist.

Das sich das Libor-Markt Modell nicht als ein eindimensionales Markov-Functional

Model darstellen lässt, ergibt sich aus Theorem 19.4 aus [8]:
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6 LIBOR-MARKT MODELL

Satz 6.2

In einen Libor-Markt Modell mit den Libor-Raten L1, . . . , Ln mit n > 1 existiert

kein eindimensionaler Prozess X mit den Eigenschaften:

(i) Die Libor-Raten lassen sich als Funktion eines Markov Prozesses X darstel-

len;

(ii) Die Libor-Raten sind streng monotone Funktionen in X.

Beweis.

Wir werden diese Aussage indirekt beweisen, indem wir annehmen, es gäbe einen

Prozess X der die Eigenschaften i) und ii) erfüllt. Durch die Invertierbarkeit der

Funktion

Xt 7→ Lit(Xt)

für i = 1, . . . , n lässt sich Lit darstellen durch

Lit = Lit(L
n
t ). (6.1)

Aufgrund der Libor-Markt Modell Bedingungen erfüllen die Libor-Raten die Dif-

ferentialgleichungen

dLit = −

(
n∑

j=i+1

αjL
j
t

1 + αjL
j
t

σjtρij

)
σitL

i
tdt+ σitL

i
tdW

i
t (6.2)

unter unserem äquivalentem MartingalmaßQn+1 bezüglich des NumerairesD·,Tn+1 .

Wenden wir nun das Ito-Lemma auf Gleichung (6.1) an, erhalten wir die Diffe-
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6 LIBOR-MARKT MODELL

rentialgleichung

dLit =

[
∂Lit
∂t

+
1

2
(σnt L

n
t )2 ∂

2Lit
∂2Lnt

]
dt+

∂Lit
∂Lnt

σnt L
n
t dW

n
t .

13 (6.3)

Setzen wir die lokalen Martingalanteile der Gleichungen (6.2) und (6.3) gleich,

d.h.

σitL
i
tdW

i
t =

∂Lit
∂Lnt

σnt L
n
t dW

n
t

folgt W i ≡ W n sowie

σitL
i
t =

∂Lit
∂Lnt

σnt L
n
t

⇔
∂Lit
∂Lnt

=
σitL

i
t

σnt L
n
t

. (6.4)

Löst man die Differentialgleichung (6.4) ergibt sich

Lit = ci(t)(L
n
t )βi(t),

wobei ci(t) eine Funktion von t ist und βi(t) =
σi
t

σn
t

.

Aufgrund der Bedingung W i ≡ W n ergibt sich die Differentialgleichung

dLit = −

(
n∑

j=i+1

αjL
j
t

1 + αjL
j
t

σjt

)
σitL

i
tdt+ σitL

i
tdW

n
t (6.5)

aus der Differentialgleichung (6.2). Durch Einsetzen von Lit = ci(t)(L
n
t )βi(t) in

die Differentialgleichung (6.3) und Gleichsetzen der endlichen Variationsteile der

13Die ausführliche Berechnung befindet sich im Anhang (Rechnung 1)
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6 LIBOR-MARKT MODELL

Gleichungen (6.3) und (6.5) erhalten wir

1

σit

(
c′i(t)

ci(t)
+ β′i(t) ln(Lit)

)
+

1

2
σit(βi(t)− 1) = −

n∑
j=i+1

αjσ
j
tL

j
t

1 + αLjt

14 (6.6)

Setzt man in dieser Gleichung den Index i = n − 1, folgt σnt = 0 und das führt

zum Widerspruch im Libor-Markt Modell.

Für weitere Vergleiche zwischen dem Libor-Markt Modell und dem Libor-Markov-

Functional Model sei auf [3] verwiesen.

14Die ausführliche Berechnung der Darstellung (6.6) befindet sich im Anhang(Rechnung 2)
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7 ZUSAMMENFASSUNG

7 Zusammenfassung

Die Arbeit hat die Theorie des Markov-Functional Models Schritt für Schritt

näher gebracht. Aufbauend auf den Grundlagen wurden die notwendigen Zinsde-

rivate dargestellt und erläutert. Dadurch konnte im Hauptkapitel das Ziel dieser

Arbeit erreicht werden, welches darin bestand, die funktionale Form der Zero-

Coupon Bonds herzuleiten. Anschließend wurde das Markov-Functional Model

in Beziehung zum populäreren Libor-Markt Modell gebracht. Dadurch wurde

deutlich, dass das Markov-Functional Model kein Spezialfall vom Libor-Markt

Modell ist.

In Bezug auf die Beurteilung des Markov-Functional Models stellen sich Vor- als

auch Nachteile heraus. Ein wesentlicher Vorteil liegt in der einfachen Implemen-

tierung, da das Modell von einem eindimensionalem Markov Prozess gesteuert

wird. Dadurch ist es möglich, exotische Derivate relativ unkompliziert zu bewer-

ten, vor allem im Vergleich zu anderen Zinsstrukturmodellen.

Dieser Vorteil stellt zugleich die Schwäche des Modells dar. Alle Zero-Coupon

Bonds über einen Markov Prozess zu steuern bzw. den kompletten Zufallsanteil

der Zinsstruktur über einen Wiener Prozess zu beschreiben, könnte gegebenen-

falls zu ungenauen Prognosen führen.

Sinnvoll wäre daher im nächsten Schritt das Markov-Functional Model mit al-

ternativen Modellen zu vergleichen. Durch einen Vergleich könnten Vor- und

Nachteile im Markov-Functional Model spezifiziert werden. Dafür würde sich bei-

spielsweise das Libor-Markt Modell anbieten, da es mit diesem Modell möglich

ist, exotische Zinsderivate zu bewerten und dessen Abweichungen zum Markov-

Functional Ansatz zu betrachten.

Eine weitere Möglichkeit besteht darin, das Markov-Functional Model näher zu

analysieren, wenn der Markov-Prozess eine Dimension größer 1 besitzt und dann

wiederum in Vergleich zu anderen Modellen zu stellen.
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8 ANHANG

8 Anhang

Rechnung 1

Zu zeigen ist: Anwendung des Ito Lemmas auf Lit = Lit(L
n
t ) ergibt

dLit =

[
∂Lit
∂t

+
1

2
(σnt L

n
t )2 ∂

2Lit
∂2Lnt

]
dt+

∂Lit
∂Lnt

σnt L
n
t dW

n
t .

Relevant für die Rechnung ist die Bemerkung, dass Lnt unter dem Maß Qn+1 ein

lokales Martingal darstellt und damit µn ≡ 0 bzw.

dLnt = σnt L
n
t dW

n
t (8.1)

gilt. Des Weiteren gilt

d[Ln]t = d[Ln, Ln]t

= d[σnLn ·W n, σnLn ·W n]t

= (σnt L
n
t )2d[W n,W n]t

15

= (σnt L
n
t )2dt. (8.2)

Wenden wir das Ito-Lemma auf Lit = Lit(L
n
t ) unter der Berücksichtigung der

Gleichungen (8.1) und (8.2) an, erhalten wir

dLit =
∂Lit
∂t

dt+
∂Lit
∂Lnt

dLnt +
1

2

∂2Lit
∂2Lnt

d[Ln]t

=
∂Lit
∂t

dt+
∂Lit
∂Lnt

σnt L
n
t dW

n
t +

1

2

∂2Lit
∂2Lnt

(σnt L
n
t )2dt

=

[
∂Lit
∂t

+
1

2
(σnt L

n
t )2 ∂

2Lit
∂2Lnt

]
dt+

∂Lit
∂Lnt

σnt L
n
t dW

n
t .

15Theorem 3.77 in [9]
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Rechnung 2

Zu zeigen ist: Durch Einsetzen von Lit = ci(t)(L
n
t )βi(t) in die Differentialgleichung

(6.3) und Gleichsetzen der endlichen Variationsteile der Gleichungen (6.3) und

(6.5) erhalten wir die Darstellung (6.6). Der endliche Variationsterm von (6.3)

entspricht

∂Lit
∂t

+
1

2
(σnt L

n
t )2 ∂

2Lit
∂2Lnt

und von (6.5)

−

(
n∑

j=i+1

αjL
j
t

1 + αjL
j
t

σjt

)
σitL

i
t.

en und einsetzen von Lit = ci(t)(L
n
t )βi(t) = ci(t) exp[βi(t) ln(Lnt )] ergibt

∂Lit
∂t

+
1

2
(σnt L

n
t )2 ∂

2Lit
∂2Lnt

= −

(
n∑

j=i+1

αjL
j
t

1 + αjL
j
t

σjt

)
σitL

i
t

⇔

1

σitL
i
t

(
∂Lit
∂t

+
1

2
(σnt L

n
t )2 ∂

2Lit
∂2Lnt

)
= −

n∑
j=i+1

αjσ
j
tL

j
t

1 + αjL
j
t

.

Der rechte Teil der Gleichung stimmt mit (6.6) überein, der linke Teil wird unter

Berücksichtigung von

Lit = ci(t)(L
n
t )βi(t) bzw. (Lnt )βi(t) =

Lit
ci(t)

und

βi(t) =
σit
σnt

67



8 ANHANG

folgendermaßen umgeformt:

1

σitL
i
t

(
∂Lit
∂t

+
1

2
(σnt L

n
t )2 ∂

2Lit
∂2Lnt

)

=
1

σitL
i
t

(
c′i(t)(L

n
t )βi(t) + ci(t)β

′
i(t) ln(Lnt )(Lnt )βi(t) +

1

2
(σnt L

n
t )2ci(t)βi(t)(βi(t)− 1)(Lnt )βi(t)−2

)

=
1

σitL
i
t

(
c′i(t)L

i
t

ci(t)
+ β′i(t) ln(Lnt )Lit +

1

2
(σnt L

n
t )2βi(t)(βi(t)− 1)

ci(t)(L
n
t )βi(t)

(Lnt )2

)

=
1

σitL
i
t

(
c′i(t)L

i
t

ci(t)
+ β′i(t) ln(Lnt )Lit +

1

2
(σnt L

n
t )2 σ

i
t

σnt
(βi(t)− 1)

Lit
(Lnt )2

)

=
1

σit

(
c′i(t)

ci(t)
+ β′i(t) ln(Lnt )

)
+

1

2
σnt (βi(t)− 1)
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