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1 EINLEITUNG

1 Einleitung

Bei der Betrachtung des aktuellen Kapitalmarktes fillt auf, dass ein grofler Teil
gehandelter Produkte Zinsderivate sind. Zinsen spielen in der heutigen Zeit eine
immer groffer werdende Rolle, gerade fiir Finanzinstitute ist die korrekte Be-
wertung von Zinsderivaten von grofler Wichtigkeit. Ursprung der Zinsderivate
liegt vor allem im Risikomanagement der Unternehmen, dort werden diese in den
unterschiedlichsten Formen zur Absicherung verwendet. Natiirlich werden auch
immer mehr Spekulationsgeschifte iiber Zinsderivate vollzogen. Zinsderivate oder
speziell Zinsen im allgemeinen sind auch fiir Privatpersonen im Alltag geldufig, sei
es beispielsweise bei der Kreditaufnahme fiir den Kauf eines Hauses oder durch
die unschéne Nachricht des “Libor-Skandals“!, welcher 2012 durch die Medien
ging.

Um eine bessere Vorstellung zu bekommen, welche Summen bei Zinsgeschéften er-
zielt werden, sollen die folgenden zwei Beispiele genannt werden: Allein im Libor-
Skandal hat die Deutsche Bank 500 Millionen Euro durch Absicherungsgeschéfte
verdient?; im Over the Counter Handel wurde von Juni 2011 bis Juni 2012 ein
Volumen von 362 Billionen Dollar mit Zinsderivaten erreicht®. Diese Beispiele
zeigen die immensen Betrége, die im Zinshandel vorliegen. Fiigt man alle Borsen
bzw. alle weiteren Zinsderivategeschéfte hinzu, steigt dieser Wert dementspre-
chend. Aufgrund des hohen Handelsvolumens ist es somit unumggnglich genaue
Prognosen bzw. Bewertungen zu erstellen. Gerade im Bereich des Risikomana-
gements werden immer mehr an die Bediirfnisse des Unternehmens entsprechen-
de Zinsderivate erstellt, welche aufgrund der komplizierten Auszahlungsstruktur
recht schwer zu bewerten sind und somit eine komplexe mathematische Theorie

bendtigen.

!sueddeutsche.de/thema/Libor-Skandal
2 wallstreetjournal.de; Artikel: Das Milliardenspiel der Deutschen Bank mit dem Libor
3http://www.isda.org; Market Analysis 060612.pdf
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1.1 Zinsen und deren Besonderheiten

Wie bereits angedeutet haben Zinsen vor allem im Risikomanagement von Unter-
nehmen eine grofie Bedeutung.* Daher bieten sich zur Erliuterung von Zinsderiva-
ten einige Firmenbeispiele an. Viele Unternehmen sind zu Teilen fremdfinanziert,
so dass die Kosten bei steigenden Zinsen zu starken Verlusten bis im Extremfall
zur Existenzgefihrdung fithren kénnen. Aber auch die Geldanlage hat einen Ein-
fluss auf das Ergebnis eines Unternehmens. Legt das Unternehmen das Geld zu
einem variablen Zinssatz an, so kann bei fallenden Zinsen weniger Ertrag als ge-
plant erwirtschaftet werden. Die alternative Wahl hingegen zu einer zum Beispiel
festverzinslichen Anleihe fithrt bei steigenden Zinsen zu Wertverlust der Anleihe.
Eine weitere héufig auftretende Situation ist die Geldanlage bzw. Finanzierung
fiir in der Zukunft geplante Einnahmen bzw. Projekte. Ein typisches Szenario
ist die geplante Kreditaufnahme zu einem spéteren Zeitpunkt, so ist es teilweise
fiir die Planung notwendig, den aktuellen Zinssatz zu sichern um nicht in Gefahr
zu laufen aufgrund des eventuellen hoheren Zinssatzes zum spéteren Zeitpunkt
in Liquiditdtsprobleme zu geraten. Wie in jedem Fachbereich wurden durch die
Entwicklung der Theorie und der Optimierung immer neuer und besser werdende
Strategien zur Absicherung herangezogen. Dadurch haben in den letzten Jahr-
zehnten die eben beschriebenen “Standardabsicherungen® immer komplexere und
speziellere Formen angenommen, die fiir Laien teilweise sehr abstrakt und oft in-
tuitiv nicht versténdlich wirken.

Im direkten Vergleich zu Aktien fallen einige Unterschiede beziiglich der Struktur
von Zinsen auf. Diese Besonderheiten sollen in diesem Abschnitt kurz angespro-
chen werden, um zu verdeutlichen, weshalb es nicht moglich ist, Aktienmodelle,
beispielsweise das Black Schloles Modell, eins zu eins iibernehmen zu kénnen.
Die Aussage: “Der Zins betriagt 10%*, verdeutlicht bei genauer Betrachtung ei-

nige Besonderheiten, mit denen man sich bei Zinsstrukturmodellen beschéftigen

4siehe [4]
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muss. Man erkennt direkt, dass ohne weitere Angaben wie der Anlagenperiode
und ob der Zinssatz fiir eine sofortige oder zukiinftige Anlage ist, die gerade
genannte Aussage wenig Sinn macht. Eine Eigenschaft von Zinsen ist, dass die
Anlagenperiode Einfluss auf den Zinssatz hat. Nimmt man sich zum Beispiel heu-
te einen Kredit fiir ein Jahr, so wird dies ein anderer Zinssatz sein als fiir einen
Kredit iiber 3 Monate. Mathematisch betrachtet gibt es somit unendliche viele
Anlageperioden bzw. unendlich viele Zinssétze, wobei diese unumgénglicherweise
untereinander eine gewisse Abhéngigkeit haben. Um noch einmal auf Aktien-
modelle einzugehen, dort geniigt es bei der Bewertung von Aktienderivaten in
der Regel die Aktie an sich zu modellieren, bei Zinsen hingegen muss man sich
erst einmal iiberlegen was genau modelliert werden soll. Durch die unterschiedli-
chen Laufzeiten muss somit ein Modell erstellt werden, dass alle Zinsen umfasst.
Das heifit, zu jedem Anlagezeitpunkt und jeder Anlageperiode wird ein Zinssatz
modelliert. Bezeichnet wird ein solches Modell als Zinsstrukturmodell. Eine
Moéglichkeit die Zinsstruktur zu beschreiben ist iiber Zero-Coupon Bonds. Dies
sind Derivate, die zu einem festgelegten Zeitpunkt S einen sicheren Betrag N aus-
zahlen. Mit Blick auf deren Kursverlauf wird deutlich, dass sie sich grundlegend
von Aktien unterscheiden. Wahrend Aktienpreise im Laufe der Zeit immer unsi-
cherer werden, ist dies fiir Zero-Coupon Bonds nicht der Fall. Die Zero-Coupon
Bonds, sofern wir davon ausgehen, dass kein Ausfallrisko vorliegt, zahlen zum
Laufzeitende einen sicheren Betrag aus und miissen somit gegen Ende ihrer Lauf-
zeit ihren Auszahlungswert als Preis einnehmen. Modellansédtze, in denen der
Kurs um einen konstanten Faktor steigt und fallt, beispielsweise im CRR-Modell

sind somit nicht mehr moglich.
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1.2 Zielsetzung und Aufbau

Ziel dieser Diplomarbeit ist die Beschreibung und Erlauterung der Zinsstruktur
mittels des Markov-Functional Models, das primér dazu geeignet ist sogenannte
exotische Zinsderivate zu bewerten.

Dazu wurde die Arbeit in 7 Kapitel unterteilt. Im vorangegangen Unterkapitel
wurde bereits eine kurze Einfithrung iiber Zinsen gegeben, wieso es iiberhaupt
notwendig ist diese zu modellieren und deren Besonderheiten im Vergleich zu
Aktien geschildert. Darauf folgend werden im néchsten Kapitel die Grundlagen
der Zinsstrukturmodelle betrachtet, speziell die Darstellung der Zinsstruktur iiber
Zero-Coupon Bonds. Des Weiteren werden einige Sétze, die wir im weiteren Ver-
lauf benotigen, bewiesen. In Kapitel 3 handelt es sich um die Einfithrung und
Bewertung von Standardzinsderivaten, die speziell fiir das Markov-Functional
Model zur Kalibrierung benétigt werden. Anschlieend werden exotische Deriva-
te betrachtet und deren Probleme geschildert. In Kapitel 5 wird aufbauend auf
die vorangegangen Ercrterungen das Markov-Functional Model definiert und im
speziellen das Libor- und Swap-Markov-Functional Model beschrieben. In Ka-
pitel 6 wird das Markov-Functional Model in Bezug zum Libor-Markt Modell

gebracht. Die Zusammenfassung im letzten Kapitel schliefit die Arbeit ab.
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2 Grundlagen

Fiir den weiteren Verlauf betrachten wir den filtrierten Wahrscheinlichkeitsraum

(Q, F, P, (Ft)t>0). Zudem erfiillt die Filtration die “usual conditions “, d.h.

i) Die Filtration (F;):>o ist rechtsseitig stetig.

ii) Fo enthélt alle P-Nullmengen und alle Teilmengen von P-Nullmengen.

Wie in der Einleitung angedeutet gibt es mehrere Moglichkeiten, die Zinsstruk-
tur zu modellieren. Eine davon ist die Modellierung iiber Zero-Coupon Bonds.
Daher werden wir als néchstes Zero-Coupon Bonds formal einfiihren und deren

Zusammenhang mit Zinsen erlautern.

Definition 2.1 (Zero-Coupon Bond)

Ein Zero-Coupon Bond zahlt dem Inhaber zu einem vereinbarten Zeitpunkt S den
Nominalbetrag N aus, den wir im weiteren Verlauf mit N = 1 setzen werden. Zur
grafischen Darstellung der Zahlungsstruktur siche Abbildung 1. Den Preis eines

Zero-Coupon Bonds bezeichnen wir zum Zeitpunkt 0 < t < S mit
D;s.

Die Wertentwicklung des Zero-Coupon Bonds beschreibt somit der stochastische
Prozess (Dys)o<t<s. Die Besonderheit, speziell im Vergleich zu Aktien, ist, dass
die Unsicherheit mit der Zeit nachldsst bzw. zum Laufzeitende dem Auszahlungs-
wert entspricht. Gehen wir davon aus, dass kein Ausfallrisiko besteht, so ist der

Wert des Zero-Coupon Bonds D.s zum Zeitpunkt S gegeben durch

Dgs = 1. (2.1)
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1

1 >
‘t S Zeitt
DtS

Abbildung 1: Cashflow-Zero-Coupon Bond

Definition 2.2 (Forward-Rate)

Eine weitere Mdéglichkeit, die Zinsstruktur darzustellen, ist diese direkt tiber Zin-
sen zu beschreiben. Die Forward-Rate ist der Zins, der zum Zeitpunkt t vereinbart
wird fiir die Anlage tiber den Zeitraum von T bis S, wobei t < T < S gilt. Die

Forward-Rate bezeichnen wir mit
F,(T,S).

Den Zinssatz Fy(t,S), d.h. der Beginn der Anlage stimmt mit dem heutigen Zeit-

punkt t dberein, bezeichnen wir als Spot-Rate.

Um den Zusammenhang zwischen Zero-Coupon Bonds und die Forward-Raten

zu bestimmen, betrachten wir nachfolgende Anlagestrategie. Zum aktuellen Zeit-

punkt ¢ verkaufen wir den Zero-Coupon Bond D;7 und kaufen g—g Anteile des

Zero-Coupon Bonds D;g. Da sich diese beiden Zahlungen aufheben, entstehen

zum Zeitpunkt ¢ keine Kosten bzw.

D
Dyr — D—ths — 0.

Zum Zeitpunkt T ist aus dem verkauften Zero-Coupon die Zahlung 1 fillig und

6
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zum Zeitpunkt S erhalten wir aus dem gekauften Zero-Coupon Bond die Zahlung

g—g. Der diskrete Zins bzw. die Forward-Rate ergibt sich dann aus

D
1+ (S —T)E(T,S) = =X
tS
~
1 Dyr
F(T,5) = —— (=X —1
(T.5) S—T(Dts )
Dyr — Dy
aDygs

wobei o := T — S die Periodenlénge bezeichnet. Die fiir uns relevante Forward-

Rate ist die (Forward-) Libor-Rate, die wir nun einfiihren.

Definition 2.3 (Libor-Rate)

Die Libor-Rate (London Interbank Offered Rate) entspricht dem Referenzzinssatz
im internationalen Interbankengeschdft. Tdglich um 11 Uhr Londoner Zeit legen
ausgewdhlte internationale Geschdiftsbanken ihren Zinssatz fest, zu dem sie sich
von anderen Banken Geld lethen kénnen. Die Libor-Rate ergibt sich als arithme-
tisches Mittel aus diesen Zinssdtzen. Fir den weiteren Verlauf bezeichnen wir die

Libor-Rate mit

Lt[Tv S] F= E(T’ S)

_ Dir — Dis
aDtS ’

Analog zur Forward-Rate und Spot-Rate wird der Forward-Libor und Spot-Libor
definiert.’

°fiir weitere Zusammenhénge sei auf 2.2 in [5] verwiesen.

7



2 GRUNDLAGEN

Im zweiten Teil dieses Kapitels werden wir einige Sétze beweisen, die spéter
bendtigt werden. Das folgende Lemma wird in Kapitel 3 fiir das Black Modell

verwendet.

Lemma 2.4
Gegeben sei ein Wiener Prozess W und eine deterministische Funktion o,. Dann

15t f(f o dW,, fiirt > 0 normalverteilt und es gilt

t
i) E (/ auqu) = 0;
0
t t
i) V </ auqu) :/ o2du
0 0

Die Idee ist, den Grenzprozess zu betrachten, indem wir das Ito-Integral fot oudW,

durch

Beweis.

n—1
Z Uui(WUi+1 - Wuz)
1=0

fiir Zerlegungen 0 = up < uy < --- < u,, =t anndhern.

Der Punkt @) ergibt sich dann durch

¢ n—1
0 =0

n—1

= Z O, E(WUH—I - Wuz)
=0 ~
=0
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und der Punkt i) folgt aus

¢ n—1
0 =0

n—1

= Z 012;1- \4 (Wui+1 - Wuz)

i=0 N
=Uj+1— Ui

n—1
= Z Ui- (wit1 — ;)
=0

t
— / o2du.
0

Den Limes, den wir im letzten Schritt verwendet haben, bezieht sich darauf, dass

wir die Feinheit der Zerlegung gegen 0 laufen lassen.

Um zu zeigen, dass f(f 0.dW,, normalverteilt ist, benutzen wir die Momenter-

zeugende Funktion bzw. zu zeigen ist:

t t
E (exp ()\/ auqu)) = exp (%/\2/ 02du) YA eR
0 0

Dazu betrachten wir das Doleans Martingal

t 1 .
L; = exp ()\/ o, dW, — = {)\/ auqu] )
0 2 0 t
t 1 t
= exp ()\/ o, dW,, — —)\2/ szu) i
0 2 0

Die Martingaleigenschaft ist durch das Novikov-Kriterium® erfiillt und somit gilt

bsiehe Satz 7.12 in [10]
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fiir das Doleans Martingal”

bzw.

t 1 t
E (exp ()\/ o dW, — —)\2/ O'Zdu)) =1
0 2 0

und daraus folgt

t 1 t
E (exp ()\/ auqu)) = exp (5)\2/ UQdu) , VAeR
0 0

Definition 2.5 (Markov-Prozess)
Fin adaptierter stochastischer Prozess (Xi)o<i<s beziiglich der Filtration (Fi)o<t<s

mit Werten in (E, &) heifft Markov Prozess, falls der Prozess die Figenschaft
P(Xt+5 € A‘E) — P(Xt+5 € A‘Xt)

P-fast sicher, fir alle s,t € [0,S] und fir alle A € & erfiillt.

Bemerkung :
Der Markov Prozess besitzt somit eine Art Gedéchtnislosigkeit. Zu interpretieren
ist diese “Gedéchtnislosigkeit in der Art, als das der weitere Verlauf des Prozesses

nicht von den vorigen Zustédnden abhéngt, sondern nur vom aktuellen Zustand.

Lemma 2.6
Seien (My, My) und (My, My) mefbare Raume, (2, F, P) ein Wahrscheinlich-

keitsraum und G eine Unter-Sigma Algebra von F. Des Weiteren betrachten wir

Tsiehe Satz 6.15 in [15]

10
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die messbaren Abbildungen
Xy (O F) = (M, My), Xo:(QQF) = (My, My),
sowie
h: (My x My, My @ My) — (R, B(R))
Sind folgende Figenschaften

i) X1 ist unabhdingig von G
i) Xo ist messbar beziglich G

iii) Der Erwartungswert BE(h(Xy, X3)) ezistiert

erfillt, dann gilt:

E(h(X1, X5)|G) = E(h(X1, X2)|X2) P — fs.

Beweis.

Beweisen liisst sich die Aussage durch das Funktions-Erweiterungsargument®, d.h.

wir betrachten zuerst primitive Funktionen der Form
h=Taxn

fir A € My und B € M,. Durch die Eigenschaften i) und ii) folgt 1 ;x, 4y ist un-
abhéngig von G und 1x,epy ist G-messbar. Somit gilt aufgrund der Eigenschaften

8siehe Seite 32 in [1]

11
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des bedingten Erwartungswertes:

E(h(X1, X2)|G) = E(Lx,earlix.eny|9)
= 1ix,emyE(1{x,e43|9)
= 1 xenE(Lix,eay)
= Lix,emyP(X1 € A)

Mit der gleichen Berechnung folgt:

E(h(X1, X2)[X2) = Lix,eny E(1ix,cay| X2)

= ]l{XgeB}P(Xl € A)

Somit gilt P-fast sicher

E(h(X1, X5)|G) = E(h(X1, X3)[Xo).

Fiir den Fall h = 1{py mit D € M; ® M, folgt die Behauptung mit dem Dynkin-

System Argument?. Das Mengensystem

D :={D € My ® My|h = 1yp; erfiillt die Behauptung}

bildet ein Dynkin System. Durch den ersten Teil des Beweises erhalten wir als

durchschnittsstabilen Erzeuger

€ .= {AXB’AGMl, BEMQ}.

Isiehe Seite 10 in [1]

12
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Somit folgt:

D=o0(e) = M; @ M.

Durch Linearitét folgt es fiir positive primitive Funktionen und durch Limesbil-
dung fiir positive messbare Funktionen. Die endgiiltige Behauptung folgt dann

durch Aufspaltung in Positiv- und Negativteil. m

Bemerkung :

Sind die Eigenschaften des Satzes erfiillt, gilt insbesondere
P(X1+ X,€D|G)=P(X;+ X, € D|X5) P-—fs.

Satz 2.7
Gegeben sei ein Wiener Prozess W beziiglich der Filtration (Fi)o<i<s und eine
deterministische Funktion o;. Der adaptierte stochastische Prozess X mait der

Darstellung

t
Xt:/ O'uqu
0

1st ein Markov Prozess.

Bewezs.

Zu zeigen ist die Markov Eigenschaft
P(Xt+s c A‘E) - P(Xt+s c A|Xt)

fur alle A € B(R).

13
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Dazu betrachten wir die Zerlegung von Xy, in

t+s
Xt+s = / Juqu
0

t t4s
:/ Uuqu+/ o, dW,
0 t

t+s
t

Um Lemma 2.6 anwenden zu koénnen, muss X; F;-messbar sein und ﬁt+s o, dW,
unabhéngig von F;. Das X; JF;-messbar ist folgt per Definition, fiir die Un-

abhéangigkeit betrachten wir das Ito-Integral als Grenzprozess von

I, = Z Ot4(i—1)At * (Wt+iAt - Wt+(i71)At)7 At =
i=1

S
n

Die in der Summe auftretenden Summanden (Wijiae — Wipi—1)ae) sind fiir ¢ =
1,...,n durch die Eigenschaften des Wiener Prozesses unabhéngig von F;. Da
o eine deterministische Funktion ist, folgt die Unabhéngigkeit von I,, und F;.
Durch die Ly Konvergenz (insbesondere liegt damit die Konvergenz in Verteilung
vor) iibertragt sich die Unabhéngigkeit auf das Ito-Integral fttJrS 0 dWy,.

Somit gilt nach Lemma 2.6 :
t+s
P(Xt+5 S A’Ft) = P(Xt "—/ Uuqu < A’Ft)
t

t+s
= P(X, +/ ol dW, € A|X,)
t

- P(Xt+5 € AlXt)

14



3 STANDARD-ZINSDERIVATE

3 Standard-Zinsderivate

In diesem Abschnitt geht es um die Einfithrung und Bewertung einiger Standard-
Zinsderivate, die indirekt im Zusammenhang zum Markov-Functional Model ste-
hen. Daher ist es notwendig mit diesen Produkten bzw. mit der Bewertung dieser

Produkte vertraut zu sein.

3.1 Foward Rate Agreement

Ein Forward Rate Agreement, nachfolgend FRA genannt, ist ein auflerborsli-
ches Zinstermingeschéft bzw. eine Zinsausgleichsvereinbarung. Das FRA dient
zur Absicherung eines Zinses bei zukiinftiger Mittelaufnahme oder -anlage fiir
den Zeitraum T bis S. Die Absicherung wird dadurch gegeben, dass zwei Ver-
tragspartner zum aktuellen Zeitpunkt ¢ < T vereinbaren, an einem in der Zukunft
liegenden Termin S einen variablen Zinssatz gegen einen festen Zinssatz K bzgl.
eines Nominalbetrags N zu tauschen. Als variabler Zinssatz kommt der Euribor
oder Libor in Betracht. Wir werden uns in dieser Arbeit ausschliefllich mit dem

Libor bzw. der Libor-Rate L;[T, S] beschiftigen.

NoL[T,S]

i " >
T S‘ Zeitt
NaK

Abbildung 2: Cashflow-Diagramm FRA

Anschaulich wird der FRA im Cashflow-Diagramm (Abbildung 2) gezeigt. Der
gestrichelte Pfeil in Cashflow-Diagrammen soll grundsétzlich dazu verwendet wer-
den, den variablen Betrag darzustellen, d.h. den Betrag der zum aktuellen Zeit-

punkt ¢ nicht sicher gegeben ist.

15



3.1 Foward Rate Agreement 3 STANDARD-ZINSDERIVATE

Der Kaufer des FRAs, der die sogenannte Long-Position einnimmt, verpflichtet
sich somit den festen Betrag NaK an die Short-Position, dem Verkéufer des
FRA, zu bezahlen. Im Gegenzug erhélt er den variablen Betrag Na Ly [T, S| vom
Verkaufer des FRAs. Mit o := S — T wird wieder die Lange der Anlageperiode
bezeichnet. In der Praxis werden die Betrdge NaLr[T,S] und NaK allerdings
nicht getauscht, sondern es wird lediglich die Differenz erhalten oder, im Falle
eines negativen Wertes, ausgeglichen. Das Nominal werden wir aus Griinden der
Vereinfachung mit eins festlegen, da es fiir die weitere Berechnung keine spezielle
Rolle besitzt. Somit ergibt sich aus der Sicht der Long-Position zum Zeitpunkt S

eine (positive oder negative) Zahlung von

a(Ly[T, 8] - K). (3.1)

Multipliziert man dies mit —1, so erhilt man die entsprechende Zahlung der
Short-Position. Eine weitere Eigenschaft des FRAs ist, dass zum Zeitpunkt ¢t < T
der Ausiibung fiir beide Parteien keine Kosten entstehen. Dies erreicht man, in
dem ein angemessener Wert fiir K gewéhlt wird. Als fairer Wert wird die forward

Libor-Rate gewéhlt, d. h. zum Ausiibungszeitpunkt ¢ gilt

K = L,[T, 5. (3.2)

Weshalb K = L4[T,S] gilt, wird bei der Berechnung des Preises fiir den FRA
deutlich. Eine Moglichkeit den FRA zu bewerten, wére der klassische Weg iiber
den Erwartungswert beziiglich eines dquivalenten Martingalmafles. In diesem Fall
lasst sich zudem auch recht leicht eine geeignete Duplikationsstrategie bilden, da-
her werden wir diesen Weg wéhlen. Die Duplikationsstrategie sieht folgenderma-
Ben aus:

Zum Zeitpunkt t wird der Zero-Coupon Bond Dy erworben und (1 + oK) Zero-

16
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Coupon Bonds D;s werden verkauft. Der Wert zum Zeitpunkt ¢ entspricht somit

‘/;5 = DtT — (1 ‘I— Q{K)DtS.

Zum Zeitpunkt T erhalten wir aus dem gekauften Zero-Coupon Bond Drr =
1 und legen diese zur aktuellen Libor-Rate Lz [T, S] bis zum Zeitpunkt S an.
Am Laufzeitende S erhalten wir somit 1 + aLp[T, S] und aus dem verkauften
Zero-Coupon Bond (1 4+ aK)D;g entstehen Kosten von (1 4+ aK). Das heifit, die

Auszahlung zum Zeitpunkt S betrigt

(1+ aLy[T, S]) — (1 + aK) = a(L7[T, S] - K).

Diese Auszahlung entspricht genau der Auszahlung (3.1) des FRAs, somit folgt
aus Arbitragegriinden, dass der Wert des FRAs und der Anlagestrategie identisch

sein muss. Somit ist der Preis des FRA

V, = Dyr — (14 aK)D;s. (3.3)

Setzen wir V; = 0, es entstehen also keine Kosten zum Ausiibungszeitpunkt, so

folgt durch Umformung

Vi=0

<~ DtT—(1+OéK)DtS:0

Dyr — Dys

= o = ———=
Dyg
& K = LT, 8]

und wir erhalten die Gleichung (3.2). Der Wert des FRAs ist nur zum Zeitpunkt

der Ausiibung 0, in der Regel unterliegt er im Laufe der Zeit gewissen Kurs-
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schwankungen und ist somit ungleich 0.

3.2 Cap / Caplets

Ein Cap ist eine Absicherung oder auch Spekulation auf steigende Zinsen, in unse-
rem Fall der Libor-Rate. Bestandteil des Caps ist eine Summe von Call-Optionen
auf die Libor-Rate, wobei die einzelnen Call-Optionen als Caplets bezeichnet
werden. Relevanter fiir das Markov-Functional Model sind Caplets, daher werden
wir uns primér damit beschéftigen. Fiir die Bewertung von Caps sei erwahnt,
dass die Bewertung von Caplets geniigt, da Caps nur eine Summe von Caplets
darstellen. Der Unterschied zu den vorigen Derivaten wird also durch den Opti-
onscharakter erzeugt. Der Inhaber des Caplets besitzt das Recht, aber nicht die
Pflicht, zu einem Zeitpunkt S den vorher festgelegten Zinssatz K zu erhalten.
Genauer gesprochen besteht ein Caplet bzgl. der Libor-Rate aus einem Start-
zeitpunkt 7T, einem Laufzeitende S und einem Strike K. Der Preis des Caplets
zum Zeitpunkt ¢ wird mit V; bezeichnet. Die Auszahlung zum Zeitpunkt S ist die
optionale Differenz zwischen der Libor-Rate Ly [T, S| und Strike K, formal lasst

es sich beschreiben mit
Vs =a(Lr[T,S] — K) L 151>k} (3.4)

Der Wert V; des Caplets zum Zeitpunkt ¢t < S lésst sich diesmal nicht iiber eine
Duplikationsstrategie bestimmen. Daher wird ein arbitragefreies Zinsstrukturmo-

dell aufgestellt, um den Preis des Caplets zu bestimmen.

In diesem Modell wihlen wir als Basisfinanzgiiter die Zero-Coupon Bonds (Dys)o<t<s
fir 0 < s < S. Durch die Annahme, dass unser Modell arbitragefrei ist, existiert
ein dquivalentes Martingalmafl N, so dass die Numeraire normierten Zero-Coupon
Bonds Martingale sind. Abkiirzend bezeichnen wir dies als Numeraire Paar (N, N)

wobel N das Numeraire darstellt.

18
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Fiir die Bewertung des Caplets werden wir als Numeraire D;s wéhlen und das
zugehorige Martingalmafl, auch Forwardmartingalmafl genannt, bezeichnen wir
mit (). Um die Notation etwas iibersichtlicher zu halten, bezeichnen wir fiir die

folgenden Rechnungen

Lt = Lt[T, S]

Betrachten wir die Libor-Rate, die wir durch Zero-Coupon Bonds ausdriicken

konnen,

. _ Dir—Dis

! Dys
_ D Dis
N, N’

so wird deutlich, dass die Libor-Rate auch ein Martingal darstellt. Um ein arbi-
tragefreies Modell zu gestalten, muss also die Libor-Rate L; ein Martingal bzgl.
des Mafles @) sein. Dies erreichen wir unter der Annahme, dass die Libor-Rate

folgende stochastische Differentialgleichung

st = LtUtth
== Ltht

mit M, = fot o.dW,, erfiilllt und die Volatilitdt durch eine deterministische Funk-
tion o; gegeben ist. Mit W ist der Wiener Prozess bzgl. des Mafles () gemeint.
Die Losung dieser stochastischen Differenentialgleichung ist nach [15] Satz 6.12
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somit das Doleans-Martingal

1
Lt = LO exp (Mt — §[M]t)

t 1 t
= Lgexp </ o, dW,, — —/ aidu) )
0 2 Jo

Mit diesen Modelleigenschaften ist die Verteilung der Libor-Rate bekannt und
der Preis des Caplets ergibt sich durch

V; = NEY [a(Ly — K)L1,53Ng " | F]
= DysE® [a(Ly — K)lg1,5x | Fi

Satz 3.1 (Black Formel fiir Caplets)
Mit den eben erkldrten Figenschaften entspricht der Preis des Caplets zum aktu-

ellen Zeitpunkt t = 0 der Formel von Black
Vo = Dosa(Lo®(dy) — K(dy))

wobei O(x) die Verteilungsfunktion der Standardnormalverteilung entspricht, oo =

S =T, und

o os () + 3 [ ot
fOT o2du

i, = log(%) — %fOT o2du
fOT o2du

Beweis.

In der Berechnung von V; = D,gE® [a(LT — K)]I{LTZK}U:O} wird Lemma 2.4
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benutzt, zur Erinnerung, dessen Aussage war

T T
/ 0udWy ~ N (0,/ Jidu) .
0 0

Um die nachfolgende Berechnung iibersichtlicher zu gestalten, werden wir den
Erwartungswert in zwei Teile zerlegen und diese einzeln berechnen. Die Zerlegung
entspricht

Vo = DisE® [a(Lr — K) (15K

= DisE® [aLrli1,5x3] — DisE® [aK 11,5 x3]

= Disor | B9 [Lrlyp,ony] —E9 [Kl1,>x)]
(i (i)

Zuerst berechnen wir den Teil (ii) wie folgt:

E® [Kﬂ{LTzK}} = KE® []I{LTZK}]

= KQ(Lr > K)
B T 1 T
= KQ |Lyexp (/ oudW,, — 5/ aidu) > K}
L 0 0
r T 1 T
=KQ / o, dW,, > log(K) —log(Ly) + 3 oldu
LJo 0

audW _ log() —log(Lo) + 3 i 02du
Qdu fOT o2du

log(K) —log(Lo) + 3 fOT o2du
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log(K) — log(Lo) + & [ o2du

=Ko
fOTagdu
e log(£2) —% o Oodu
[ o2du

Um Teil (i) zu berechnen, definieren wir Z mit Z ~ A(0,1) und somit gilt

T T
/ odu-7Z ~ N (0,/ Jidu) :
0 0

Mit p(z) bezeichnen wir die Dichte der Standardnormalverteilung, d. h.

- e (1),

Teil (i) ergibt sich dann durch

r T 1 T
E? [LT]I{LTZK}} = E¥ Lo exp (/ TudWo = 5/ U2du) ]l{LT>K}}

= E® | Loexp 1/ o2du - Z—— Udu Li,>ky
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LO o 1 2 9 /T 2d _|_/T Qd d
= exp | —5 [ 27— 24 odu -z o, du z
V2T Ja 2 0 0
1
2

2
LO oo /T )
= exp z— ] o2du dz
V21 Ja 0

Beim Gleichheitszeichen (1) ergibt sich die Integrationsgrenze A durch Umfor-
mung von {Ly > K} bzw.

T 1 T
0 0
K 1 (T 2
S 10g <L_0> —+ 3 f(] O'Udu

Z >
\/fOT o2du

und somit ist

Gleichheitszeichen (2) erfolgt durch die Substitution

T
Z:=2z— / o2du
0
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und die neue Integrationsgrenze A entspricht

[ 7 1 (5) — 1 (T2
A= A— / o2du = o8 \Lo 20 % u.
0 \/fOT o2du

Setzt man nun die Ergebnisse von (i) und (ii) in die Ausgangsgleichung ein, so

folgt
log (£2) + 1 [T o2du log(Le) — L [T 524y
VE):DOSQ L()(I) g(K) 2f0 u —Kd g(K) 2f0 Ou ,
fOT o2du fOT o2du
was zu zeigen war. O

3.3 Digitale Caplets

Ein digitaler Caplet unterscheidet sich zum Caplet darin, dass die Hohe der Aus-
zahlung fixiert wird. Tritt der Fall Ly[T,S] > K ein, so wird der vereinbarte
Betrag D ausgezahlt. Wir werden fiir weitere Rechnungen D = 1 setzen. Die

Auszahlung entspricht zum Laufzeitende S somit

Lrr>ky

Satz 3.2 (Black Formel fiir digitale Caplets)
Der Preis des digitalen Caplets mit Startzeitpunkt T und Laufzeitende S beziiglich
der Libor-Rate Ly[T, S] ergibt sich zum aktuellen Zeitpunkt t = 0 durch

Vo = Dos®(d2)
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wobei

Beweis.

Der Beweis erfolgt analog zum Beweis von Satz 3.1,

Vo = DosE® (11,>x73)

T 1 T
= DOSQ (LO exp (/ O'uqu — 5/ O'idu> > K)
0 0

log(%) — %fOT o2du

fOT o2du

u

= Dys®

3.4 Zinsswap

Von der Grundidee dhnelt ein Zinsswap einem FRA, nur das im Zinsswap mehrere
Zahlungen stattfinden. Es wird dort zwischen zwei Vertragspartnern ein Start-
zeitpunkt T festgelegt und zusétzlich werden zu den Zeitpunkten T7,...,7T, ein
Tauschgeschéft zwischen der variablen Libor-Rate Lr,[T;,T;41] und einem fes-
ten Zinssatz K vereinbart. Unterschieden wird zwischen dem Payer-Zinsswap
und dem Receiver-Zinsswap. Der Inhaber des Payer-Zinsswap erhélt die varia-
ble Libor-Rate und bezahlt den festen Betrag K. Die entsprechende Gegenpartei
ist der Inhaber des Receiver-Zinsswap, dieser erhélt den festen Betrag K und
bezahlt die variable Libor-Rate. Die Lénge der einzelnen Anlagenperioden ent-
spricht a; = T; — T;_ fiir ¢« = 1,...,n, wobei wir Ty = T setzen. Der genaue

Zahlungsstrom bzgl. des Payer-Swap wird im Cashflow-Diagramm (Abbildung 3)
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verdeutlicht.

aLATT) oLy [T,

_|_

i
—#
e —
s = =

" >
‘ T, Zeitt
a K

Abbildung 3: Cashflow-Diagramm Payer-Swap

Generell muss die variable und die feste Zahlung nicht zum selben Zeitpunkt
stattfinden, wir werden dies fiir unseren weiteren Verlauf jedoch voraussetzen.
Der Zinsswap besitzt keine Kosten zum Ausiibungszeitpunkt ¢ < T, so dass wie
beim FRA hier ebenfalls ein fairer Wert fiir K bestimmt werden muss. Um K
zu bestimmen, folgt man der gleichen Idee wie beim FRA, d.h. wir bewerten
zunéchst den Zinsswap. Da der Zinsswap im Endeffekt eine Folge von FRAs
darstellt, konnte man den Wert des Zinsswaps direkt iiber die Summe der zu-
gehorigen FRA Preise herleiten. Im nachfolgenden soll die Herleitung allerdings
ausfithrlicher ausfallen, um mit diversen Notationen, die spéater im Swap-Markov-
Functional Model benotigen werden, vertraut zu werden. Um den Wert des Zins-
swap zu ermitteln, betrachten wir erst den Wert der festen Zahlungen o; K und
anschliefend den Wert der variablen Zahlungen oLz, [T}, T;41].

Den Wert der festen Zahlungen zum Zeitpunkt ¢, welchen wir mit V77 bezeich-

nen, erhalten wir durch Diskontierung mittels Zero-Coupon Bond. Somit gilt
‘/tFST — ZaiKDtTi
i=1

=K i aiDtTi
i=1

—.
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wobei § = (T1,...,T,) und

PJT,5) =" a;Dy,.
i=1
Wir werden im weiteren Verlauf dieser Arbeit den Betrag P[T), 5_”] als Barwert
der festen Zinsswapzahlung (BfZ) bezeichnen.
Der Wert V,V4E der variablen Zahlungen lisst sich iiber eine Duplikationsstrategie
bestimmen. Dazu wird zum Zeitpunkt ¢ der Zero-Coupon Bond D;r gekauft und

der Zero-Coupon Bond D, verkauft. Die Kosten, die entstehen sind somit
VYAR = Dyp — Dy,

Zum Zeitpunkt T erhalten wir aus dem gekauften Zero-Coupon Bond Dpr = 1
und legen diesen zur aktuellen Libor-Rate Ly [T, 7] an. Daraus erhalten wir zum
Zeitpunkt T) eine Auszahlung von 1+ «a; Lp[T,T1]. Der Betrag oy Lr[T,T;] ent-
spricht genau der Swap Zahlung und die 1 kann erneut zur Libor-Rate Ly, [T}, T5]
angelegt werden. Das heifit zum Zeitpunkt 75 erhdlt man 14 as L7, [T7, T3]. Analog
zur vorigen Auszahlung kénnen wir damit wieder den Swap decken und den Rest
anlegen. Das wird bis zum Zeitpunkt 7;, wiederholt und man erhélt den Betrag
1 — Ly, [Th-1,T,]. Der Betrag Ly, ,[T,,_1,T,] entspricht wieder der Zinsswap
Zahlung und mit dem Betrag 1 konnen wir den in ¢ verkauften Zero-Coupon
Bond Dyr,, der nun den Wert Dr . = 1 besitzt, decken. Aus Arbitragegriinden

ist der Wert der variablen Zahlungen somit

VAR
Vi ™" = Dir — Dy,
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und die Bewertungsformel des Payer-Swaps entspricht

‘/; — ‘/;VAR . ‘/;FST

= Dyp — Dyr, — KPT, S]. (3.5)

An dieser Stelle wird deutlich, dass die Zeitpunkte der variablen Zahlung keine
Rolle fiir die Bewertung spielen. Setzen wir nun V; = 0, so erhalten wir den
angemessenen Wert fiir K. Dieser Wert wird Forward-Swap Rate genannt und

—

mit [T, S| bezeichnet. Formal bedeutet dies

Zusammenfassend wird dies im folgenden Satz wiedergegeben.

Satz 3.3 (Preis des Zinsswaps)

Der Preis eines Payer-Zinsswaps mit Startzeitpunkt T und Auszahlungen zu den
Zeitpunkten Ty, ..., T, bzgl. der Libor-Rate Lr,[T;, T;+1| und Strike K ergibt sich
durch

. =,

‘/t = Pt{T7 S](yt[Tv S] - K)

wobes

. D _D
yt[Tv S] = tT——an;
PT, S|

PT,5) = ;D
i=1

mit S = (Ty,...,T,). Den Preis des Receiver-Zinsswaps erhdlt man durch Multi-
plikation mit —1.
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Beweis.

Durch umformen und einsetzen von [T, S] in die Bewertungsformel des Payer-

Zinsswap (3.5) erhalten wir

—

Vi = Dir — Dy, — KBTS

- =

- Pt[T7 S]yt[Ta S] - KB[T, S]

- -

3.5 Zinsswaption

Ein Zinsswaption ist eine Option auf einen Zinsswap. Betrachtet wird der Zins-
swap, mit Startzeitpunkt 7" und Auszahlungen T7i,...,T, bzgl. der Libor-Rate
Lz, [T;, Tyy1] und Strike K. Aquivalent zum Zinsswap gibt es beim Zinsswaption
einen Payer- und einen Receiver-Zinsswaption. Der Payer-Zinsswaption besitzt
die Option zum Ausiibungszeitpunkt 7', welcher der Startzeitpunkt des Zinsswaps
ist, in den Payer-Zinsswap einzutreten. Analog bietet der Receicer-Zinsswaption
die Option in den Receiver-Zinsswap einzutreten. Eine Ausiibung findet nur statt,
wenn der entsprechende Zinsswap Preis einen positiven Wert besitzt. In der Praxis
tritt man allerdings nicht in den Swap ein, um alle Auszahlungen des Zinsswaps
zu erhalten, sondern der Wert des Zinsswaps zum Zeitpunkt 7" wird ausgezahlt.
Bezeichnen wir mit V,”¥ den Preis des Payer-Zinsswaps und mit V,*® den Preis
des Receiver-Zinsswaps, so ergeben sich folgende Auszahlungen fiir den Zinsswap-
tion:

Der Inhaber der Payer-Zinsswaption erhélt zum Zeitpunkt T die Auszahlung

VT?S]I{VIES>O} .
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Das Gegenstiick, der Receiver-Zinsswaption, besitzt zum Zeitpunkt 7' die Aus-

zahlung

Um den Wert dieser Optionen zu bestimmen, ziehen wir die gleichen Ideen, die
zur Bewertung eines Caplets zugrunde liegen, heran. Im folgenden werden wir
uns auf die Bewertung des Payer-Zinsswaption beschranken.

Unsere Basisfinanzgiiter stellen in diesem Modell somit wieder die Zero-Coupon
Bonds dar und der Wert des Payer-Zinsswaptions ldsst sich mit der bekannten

Bewertungsformel bestimmen bzw. mit

Vi = NEY (Vi U ypso o Nyt | Fr) (3.6)
= NE"(Pr[T, S)(yr(T, 5] - )L poir 8 yeir5-m)soy N | Fe)

= NEY(Pr(yr — K)lprr—x)>0yNp ' | F)

fiir ein Numeraire Paar (N, N).

Im weiteren Verlauf werden wir B[T, 5] mit P, und y,[T, S] mit y, bezeichnen,
sofern bekannt ist, auf welches Zeitintervall sich der BfZ und die Swap-Rate be-
zieht.

Zur Berechnung des Erwartungswertes gehen wir dhnlich wie bei der Bewertung
des Caplets vor. Als Numeraire bietet sich hier der Barwert der festen Zins-
swapzahlung P, an. Das entsprechende Martingalmafl wird als Swaptionmaf}

bezeichnet und mit S definiert. Somit ist unser Numeraire Paar (F;,S). Betrach-

ten wir

_ Dyr — Dy,
Yt —Pt
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so liegt hier die gleiche Situation wie bei der Bewertung des Caplets vor. Damit v,
die Martingaleigenschaft unter S erfiillt, modellieren wir ihn analog zum Caplet-

Fall mit
dy; = yiodWy

fiir eine deterministische beschrankte Funktion o; und einem Wiener Prozess W
bzgl. des Swaptionmafl S. Fiigen wir diese Annahmen in Gleichung (3.6) ein, so

lasst sich der Wert des Payer-Zinsswaptions durch
Vi = BE*((yr — K) gy, x>0y | Fi)

bestimmen.

Satz 3.4 (Black Formel fiir Swaptions)
Der Preis zum aktuellen Zeitpunktt = 0 eines Payer-Zinsswaptions mit Ausiibungs-

zeitpunkt T beziiglich des Zinsswaps betrdgt
Vo = Fo(yo®(dy) — K®(dz))

mit

dl = ’
Jo o2du
T
4, = log(%2) — % fo o2du
fOT o2du

Der zugrunde liegende Zinsswap enthdlt als Parameter den Startzeitpunkt T und

Auszahlungen Ty, ..., T, bzgl. der Libor-Rate Lr.[T;, T;11] und Strike K.
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Beweis.

Die Vorgehensweise entspricht der des Beweises von Satz 3.1. O

3.6 Digitaler BfZ-Zinsswaption

Ein digitaler BfZ-Zinsswaption ist von der Grundidee dquivalent zum digitalen
Caplet. Der einzige Unterschied besteht darin, dass das zugrunde liegende Un-
derlying der Swaption ist. Wie beim digitalen Caplet ist beim digitalen BfZ-
Zinsswaption die Auszahlungshéhe ebenfalls fixiert. Der BfZ, der Barwert der
festen Zinsswapzahlung P;, bezieht sich in der Namensgebung des digitalten BfZ-
Zinsswaption auf die Auszahlungshohe. Die Auszahlung erfolgt zum Zeitpunkt
T, also der Startzeitpunkt des entsprechenden Zinsswaps bzw. der Ausiibungs-
zeitpunkt des entsprechnenden Zinsswaptions. Auch hier wird wieder zwischen
dem digitalen Payer- und dem Receiver-BfZ-Zinsswaption unterschieden, den wir
nachfolgend als digitalen Payer-Swaption und digitalen Receiver-Swaption be-
zeichnen. Zu beachten ist, dass im allgemeinen Fall bei dieser Bezeichnung die
Auszahlungshohe beliebig wihlbar ist. Wir werden jedoch stets den Barwert der
festen Zinsswapzahlung P; als Auszahlung betrachten, da nur dieser Fall fiir den
weiteren Verlauf benétigt wird. Somit ist die Auszahlung zum Zeitpunkt T des

digitalen Payer-Swaptions

Prigy,— x>0y = Priy,>ky-
Die Auszahlung des digitalen Receiver-Swaptions betragt
Prigy, <k}
Satz 3.5 (Black Formel fiir digitale Swaptions)

Der Preis zum Zeitpunkt t = 0 eines digitalen Payer-Swaptions mit den vorher
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eingefiihrten Figenschaften ergibt sich durch

Vo = By®(dy)
mit
g, — 108(%) — LT 2du
foT oadu
Beweis.

Die Vorgehensweise erfolgt analog zu der im Swaption Fall, d. h. wir arbeiten
mit dem Numeraire Paar (P;,S) und die Swap-Rate y; wird lognormalverteilt

angenommen. Daraus folgt

Vo = RE® (Prilyy, -y Prt)

= RE® (1(y,>k})

3.7 Implizite Volatilitat

Betrachten wir die Black Formel fiir Caplets, digitale Caplets, Swaptions und
digitiale Swaptions, so haben wir dort eine deterministische Volatilitatsfunktion
oy unterstellt. Diese Volatilitdtsfunktion wird durch historische Daten erzeugt.
Die implizite Volatilitdt hingegen lisst sich anhand der Marktpreise bestimmen
und ist somit direkt am Markt beobachtbar. Zur Bestimmung der impliziten
Volatilitdt wird im Black Modell eine konstante Volatilitdt o angenommen. Wir
zeigen dies am Beispiel der Black Formel fiir Caplets, fiir die anderen Derivate

ist die Vorgehensweise analog.
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Gehen wir von einer konstanten Volatilitidt o aus und setzen diese in die Black

Formel fiir Caplets (Satz 3.1) ein, so erhalten wir als Preis:
%(O’) = D()SOé(LO(I)(dl) - K(I)(dg))

wobel

o los () +30°T
1 — Uﬁ )

. log(%2) — 1o2T
T

Der Wert &, fir den V5(6) dem aktuellen Marktpreis entspricht, wird die impli-

zite Volatilitat genannt.

Satz 3.6
Unter der Annahme, dass die Marktpreise mit der Black Formel bewertet wurden,

ergibt sich vm Fall fiir digitale Caplets mit impliziter Volatilitit o1 der Preis durch
Vo = Dos®(d2)

wobei

 log(52) — 61T

dy 1=
? VT

Im Fuall des digitalen Swaptions ergibt sich mit impliziter Volatilitit 6o der Preis

durch

Vo = Po®(d)
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wobei
0, log(%) — $63T
GV T
Beweis.
Ergibt sich direkt aus den vorigen Kapiteln. ]
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4 Exotische Derivate

Ziel des Markov-Functional Models ist es, exotische Zinsderivate zu bewerten.
Daher ist fiir das Verstédndnis des Modells von Vorteil, einen Einblick in die Ei-
genschaften exotischer Derivate zu erhalten. Dazu soll zundchst dargestellt wer-
den, was man unter exotischen Derivaten versteht bzw. welche Eigenschaften sie
kennzeichnen. Darauf wird in diesem Kapitel néher eingegangen und anhand von

Beispielen veranschaulicht.

4.1 Arten von Derivaten

In der vorangegangen Betrachtung der Standard-Zinsderivate ist deutlich gewor-
den, dass die Auszahlung von nur einem bestimmten Zeitpunkt abhingt. Das
heifft, um diese Standard-Derivate zu bewerten, ist es ausreichend ein Modell
fiir diesen einen Zeitpunkt zu modellieren, was die Berechnungen im speziellen
Fall oft vereinfacht. Optionen, dessen Auszahlung nur von einem Zeitpunkt T'
abhéngen, werden als Européische Optionen bezeichnet. Der Inhaber einer
Européischen Option erwirbt also das Recht, aber nicht die Pflicht, zu einem
Zeitpunkt T die Option auszuiiben. Bei der Amerikanischen Option erhélt
der Inhaber das Recht, aber nicht die Pflicht, wédhrend der gesamten Laufzeit die
Option auszuiiben. Eine weitere Form von Optionen ist die sogenannte Bermu-
da Option, diese gibt das Recht, aber nicht die Pflicht, zu vorher festgelegten
Zeitpunkten 17, ..., T, die Option auszuiiben. Bei Amerikanischen und Bermuda
Optionen hangt die Auszahlung also nicht mehr von nur einem Zeitpunkt ab,
folglich ist die Bewertung solcher Optionen komplizierter. Im Falle von Zinsop-
tionen wird somit ein Modell benotigt, welches die komplette bzw. alle relevan-
ten Zeitpunkte der Zinsstruktur modelliert. Optionen oder allgemeiner Derivate,
dessen Auszahlung von mehreren Zeitpunkten abhéngen, werden wir als multi-
temporale Derivate oder pfadabhéingige Derivate bezeichnen. Eine weitere

Unterscheidung, die oft in der Literatur anzutreffen ist, ist die zwischen Vanilla
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Derivaten und exotischen Derivaten. Fiir die Trennung oder Einteilung solcher
Derivate in diese beiden Gruppen gibt es keine einheitliche Definition, so dass
sich in der Literatur teilweise unterschiedliche Aussagen dazu finden lassen. In
der Regel werden mit Vanilla Derivate Standard Derivate bezeichnet. Exoti-
sche Derivate sind demnach eher auflergewohnliche und nicht géngige Derivate.
Meistens gehoren sie in die Kategorie der multitemporalen Derivate und zeichnen
sich oft durch eine komplizierte Auszahlungsstrukur aus.

Um dies zu verdeutlichen, werden im néchsten Abschnitt einige Beispiele Exoti-

scher Zinsderivate aufgezeigt.

4.2 Beispiele

Wie bereits erwahnt verfolgt das Markov-Functional Model das Ziel, exotische
Zinsderivate zu bewerten. Im Hauptteil dieser Arbeit wird das Libor- und das
Swap-Markov-Functional Model erértert. Um vorab einen kurzen Einblick in die
Anwendungen dieser beiden Modelle zu erhalten, betrachten wir entsprechende
Beispiele fiir diese Modelle. Das Libor-Markov-Functional Model eignet sich zum
Beispiel fiir die Bewertung von Limit-Caps und Chooser-Caps, fiir das Swap-

Markov-Functional Model betrachten wir als Beispiel ein Bermuda-Swaption.

4.2.1 Limit-Cap

Ein Limit Cap dhnelt sehr dem Standard Cap, mit dem Unterschied, dass ein
weiterer Parameter, der sogenannte Limitwert m, eingefithrt wird. Wie bereits
im vorigen Kapitel beschrieben, besteht ein Cap aus einer Abfolge von Caplets.
Konkret besteht ein Cap aus dem Startzeitpunkt 7" = Tg, den Auszahlungszeit-
punkten 7}, der Periodenlénge o; = T; —T;_1 und Strikes K; fiir: = 1,...,n. Der

Preis dieser Option zum Zeitpunkt ¢t wird mit V; bezeichnet und die Auszahlungen
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zu den Zeitpunkten 7T} entsprechen somit
ai(L, [Ty, Tiva] = Ki)Ling (1,105 K0}

fiir: = 0,...,n— 1. Verdeutlicht wird dies wieder im Cashflow Diagramm, wobei

wir die Schreibweise (L, [T}, Ti11] — K;)" := max(Ly, [T}, Ti11] — K, 0) benutzen.

o (LT TR oLy [T, 1KY
S B
T T

t"i'
v,

Abbildung 4: Cashflow-Diagramm Cap

Die Erweiterung im Limit-Cap ist der vorher festgelegte Limitwert m, der besagt,
dass nur die ersten m Caplets, die im Geld sind, ausgezahlt werden. Sobald die
ersten m Auszahlungen stattgefunden haben, verfallen die restlichen Auszahlun-
gen, unabhéngig davon, ob die spéteren Caplets ebenfalls im Geld sind. Fiir die
Wahl m = d erhalten wir wieder den normalen Cap und die Bewertung des Limit-
Caps ist somit bekannt. Wird m < d gewahlt, wird die Bewertung komplizierter,
da wir es nicht mehr nur {iber die Summation von Capletspreisen bestimmen

konnen.

4.2.2 Chooser-Caps

Ein Chooser-Cap ist von der Grundausstattung identisch zu dem Limit-Cap, al-
lerdings ergibt sich beim Chooser-Cap ein weiterer Vorteil fiir den Inhaber. Wie
im Limit-Cap wird ein Limitwert m vorher festgelegt, um die Auszahlungen von m
Caplets die im Geld sind, zu erhalten. Der zusétzliche Vorteil, der beim Chooser-

Cap gegeben wird, ist die Entscheidung, Auszahlungen ablehnen zu kénnen. Be-
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trachtet man den Fall vom Limit-Cap heifit das, der Inhaber ist gezwungen, die
ersten m Auszahlungen, bei denen die Caplets im Geld sind, auszuiiben. Im Falle
vom Chooser-Cap besteht allerdings die Moglichkeit, auf eine bessere Auszahlung
zu warten. Welche Auszahlungen gewéahlt werden, spielt somit keine Rolle, es darf
aber maximal die festgelegten m Auszahlungen nicht iiberschreiten. Des Weiteren
ist wichtig zu erwdhnen, dass falls eine Auszahlung abgelehnt wird, besteht im
Nachhinein keine Moglichkeit mehr, unabhéngig davon, ob der Inhaber noch nicht
die vollen m Auszahlungen ausgenutzt hat, diese zu erhalten. Der Chooser-Cap
bietet somit mehr Flexibilitdt im Vergleich zum Limit-Cap. W&hlt der Inhaber
die Strategie, die ersten m Auszahlungen zu wéhlen, so ist die Auszahlung iden-
tisch zum Limit-Cap. Daher muss der Preis des Chooser-Caps mindestens dem

Preis des Limit-Caps entsprechen.

4.2.3 Bermuda Swaption

Eines der bekanntesten Exotischen Zinsderivate im Markt, die auf den Swap ba-
sieren, ist das Bermuda-Swaption. Betrachten wir einen Payer-Swap mit Startzeit-
punkt 7', Zahlungen zu den Zeitpunkten 77, ... 7T, und Strike K, so verpflichtet
sich der Inhaber des Swaps alle Zahlungen, auch wenn sie zum Nachteil sind, aus-
zugleichen. Der Bermuda-Payer-Swaption zeichnet sich dadurch aus, dass es
dem Inhaber das Recht gibt, zu einem spéteren Zeitpunkt 77, ..., 7, in den Swap
einzutreten. Das Gegenstiick ist der Cancellable-Swap, dieser gibt das Recht, zu

den Zeitpunkten 77, ...,T,, aus dem Swap auszutreten.
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5 Markov-Functional Model

5.1 Einleitung

Mit dem in den vorangegangen Kapiteln eingefithrten Vorwissen lésst sich nun
das Markov-Functional Model beschreiben. Viele Zinsstrukturmodelle beschrei-
ben ihre Zinskurve mittels infinitesimalen Zinsen, die so am Markt nicht beob-
achtbar sind. Das daraus folgende Problem ist die Kalibrierung am Markt. Das
Markov-Functional Model besitzt wie das Libor-Markt Modell die Fahigkeit, die
am Markt tatséchlich beobachtbaren (Libor, Swap) Sétze zu modellieren. Mochte
man zum Beispiel einen Bermudian Swaption bewerten, der das Recht gibt aus
einem 10-Jahres Swap, welches vierteljahrliche Ausschiittungen liefert, auszutre-
ten, so entspricht im Libor-Markt Modell die Dimension des Prozesses der Anzahl
der modellierten Libors, also in diesem Fall 39.1° Es liegt auf der Hand, dass dies
die Implementierung bzw. Berechnung in der Praxis erschwert. Diese Dimensi-
onsproblematik ist eine der Hauptmotivationen des Markov-Functional Models.
Der entscheidende Vorteil und auch die Kernidee des Markov-Functional Models
ist, dass die Zero-Coupon Bonds iiber eine Funktion eines Markov Prozesses X
beschrieben werden. Damit aber eine effiziente und anwendungsfreundliche Imple-
mentierung erméglicht wird, muss der Markov Prozess von niedriger Dimension
sein. In der Regel ist X ein- oder hochstens zweidimensional. Durch diese nied-
rige Dimension lasst sich die Bewertung eines Derivates dhnlich effizient wie bei-
spielsweise im Vasicek-Hull-White Modell berechnen. In der vorliegenden Arbeit
beschrinken wir uns auf den Fall, dass der Markov Prozess X eindimensional ist.
Die Informationen, die fiir dieses Modell benétigt werden, sind die Marktpreise
und Bewertungsformeln von Caplets und Swaps, fiir einen geeigneten Bereich von
Strikes K und Laufzeiten T'. Mittels dieser Daten als Input, lasst sich die funktio-

nale Form der Forward-Libor und der Forward-Swap Raten als Output erzeugen.

10Geite 338 in [8]
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Im Markov-Functional Model berechnet man allerdings nicht den Libor oder die
Swap Raten direkt, sondern Zero Coupon Bonds. Allerdings lassen sich die Libor
bzw. Swap Raten dann aus den entsprechenden Zero Coupon Bonds herleiten,

wie in vorigen Kapiteln gezeigt wurde.

5.2 Das Modell

Damit ein Zinsstruktur Modell hinsichtlich der Umsetzung in der Praxis sinnvoll
bleibt, wird das Markov-Functional Model so aufgebaut, dass es folgende vier
Kriterien erfiillt:

a) Es soll arbitragefrei sein;

b) Es soll gut kalibrierbar sein bzgl. der Marktpreise relevanter Standardproduk-
te;

c¢) Es soll realistisch und transparent in seinen Eigenschaften sein;

d) Eine effiziente Implementierung soll moglich sein.

Betrachtet man mal andere Zinsmodelle mit Hinblick auf die vier Kriterien a)-d)
wird deutlich, dass mindestens eines der Kriterien nicht erfiillt wird. Durch die
Markov-Functional Eigenschaften werden wir in der Lage sein, Modelle zu ent-
wickeln, welche alle vier Kriterien erfiillen und die zudem vor allem verwendet
werden konnen, um multi-temporale Produkte zu bewerten. Um Kriterium d)
zu erfiillen, also dass das Markov-Functional Model in der Praxis effizient imple-
mentierbar gestaltbar bleibt, muss der Markov Prozess von Dimension eins oder
hochstens zwei sein. Da das Ziel darin besteht, multi-temporale Produkte zu be-

werten, stellt dies eine starke Restriktion dar.

Unser Zinsstrukturmodell, dass wir beschreiben werden, besteht aus einer endli-
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chen Menge von Zero-Coupon Bonds

{Dy |t <T; T €T},

wobei T := {71, ..., T,1} entspricht. Die Sigma-Algebra, welche unsere verfiigha-

ren Informationen zum Zeitpunkt ¢ darstellt, entspricht

Fii=0Dyr |u<t; TeT).

Eine Eigenschaft des Markov-Functional Models ist es, die Zero-Coupon Bonds
iiber eine Funktion eines Markov Prozesses X zu beschreiben. Um zwischen dem
stochastischen Prozess (Dys)o<t<s und der funktionalen Form des Zero-Coupon
Bonds zu unterscheiden, bezeichnen wir die funktionale Form des Zero-Coupon

Bonds mit

Bis :R—=R

X; — Bis(Xy)

fir0<¢<Sund S eT.
Die Erfinder des Markov-Functional Models, Hunt und Kennedy, haben das Mo-
dell folgendermaflen definiert:

Definition 5.1 (Markov-Functional Model)
FEin Zinstrukturmodell heifft Markov-Functional Model, falls ein Numeraire
Paar (N,N), d.h. die Zero-Coupon Bond Preise ausgedriickt in Numeraire Ein-

heiten sind Martingale, existiert und ein Prozess X, so dass folgendes gilt

(P1) Der Prozess X ist ein Markov Prozess unter dem Mafi N;

(P2) Die Zero-Coupon Bonds sind als Funktion eines Markov Prozesses X dar-
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stellbar, d.h.

Dis = Bis(Xy), 0<t<S,

fir S eT;

(P3) Die Zero-Coupon Bonds sind strikt monoton fallendene Funktionen in X;

(P4) Der Numeraire N, selbst ein Preisprozess, lisst sich als funktionale Form

darstellen, d.h.

Ni=Ni(X),  0<t<d,

wobei 0* die maximale Failligkeit des Numeraires entspricht.

Wirft man einen Blick auf die Definition des Markov-Functional Models, so wird
deutlich, dass der Hauptbestandteil der Markov Prozess X darstellt. Wir gehen
damit von der Annahme aus, dass der Markt zum Zeitpunkt ¢ durch X; be-
schrieben werden kann. Eine weitere wichtige Annahme des Modells ist, dass die
Zero-Coupon Bonds strikt monotone Funktionen in X sind, d.h. der Wert eines
Zero-Coupon Bond zum Zeitpunkt ¢ vollstéandig durch den Prozess X; bestimmt

ist.

Bevor wir das Libor- und Swap-Markov Functional Model ausfiihrlich beschrei-
ben, werfen wir noch einen Blick auf die Definition 5.1. Wahlen wir als Numeraire
den Zero-Coupon Bond mit der maximalen Filligkeit, also B.p, ,, so geniigt es
nur die funktionale Form des Numeraires zu bestimmen. Das heifit, bezogen auf

die Definition des Markov-Functional Models, dass sich die Punkte
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(P2) Die Zero-Coupon Bonds sind als Funktion eines Markov Prozesses X dar-
stellbar, d.h.

Dis = Bis(Xy), 0<t<S,

fir S € T;
und

(P4) Der Numeraire N, selbst ein Preisprozess, ldsst sich als funktionale Form

darstellen, d.h.
Nt = Nt(Xt), 0 S t S 8*,

wobei 0" die maximale Filligkeit des Numeraires entspricht;

deutlich vereinfachen lassen. Um dies zu zeigen, definieren wir zuerst unseren
Markov Prozess X. Eine iibliche Wahl in der Praxis fiir einen eindimensionalen

Markov Prozess X ist
dXt = O'tth, To = 0, (51)

wobei o; eine deterministische Funktion ist und W ein Wiener-Prozess. In An-
wendungen wird oft die deterministische Funktion ¢, = o exp(at) fiir ein ¢ > 0
und einen mean reversions'! Parameter a benutzt. Der Vorteil dieser Wahl von
X liegt darin, dass die Verteilung von X analytisch bekannt ist. Die bedingte
Verteilung von X, bedingt unter X; fiir ¢ < s entspricht der Normalverteilung

mit Erwartungswert X; und Varianz fts o2du. Die bedingte Dichte bezeichnen wir

"nghere Informationen dazu in [16] 9.5.1 und in [6] 22.3.
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mit

1 1(z —p)°
QSXs\Xt(:L‘) = \/W exXp _57 ;

wobei 62 die Varianz und p den Erwartungswert von X, bedingt unter X, be-
zeichnet. Der Prozess X ist nach Satz 2.7 ein Markov Prozess und erfiillt somit

den ersten Punkt (P1) der Definition des Markov-Functional Models.

Durch die Annahme eines Numeraire Paares (N,N) ergibt sich fiir die Zero-

Coupon Bonds Bys(X;) fir 0 <t < Sund S €T

Bis(Xy) = Ni(X,)E [% ‘ ft} '

Als Numeraire wéhlen wir, wie oben angedeutet, den Zero-Coupon Bond B.z,
und bezeichnen das entsprechende Martingalma8 mit Q*!. Dann ergibt sich

durch die Eigenschaft des Markov Prozesses X aus der vorigen Gleichung:

. B
B,o(X,) =B,y BT [ —255 | F
tS( t) s <BSTn+1(XS) '

(1) Qnt1 1
=B E — | F
e <BSTH+1 (Xs) ’ t)

1

(2) Qntl
= By, E — | X
e <BSTH+1(XS) ’ t)

3) s 1
=~ B dz.
s /_oo Bsr, . (2) Pxoix(2)dz
Fiir Punkt (1) wurde die Eigenschaft (2.1) des Zero-Coupon Bonds, bzw. das
BSS =1

gilt, benutzt. Fiir (2) wurde die Eigenschaft des Markov Prozesses X verwendet
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und im Punkt (3), dass Xg bedingt unter X; normalverteilt ist.

Aus dieser Gleichung wird also deutlich, dass sich die funktionale Form aller wei-
teren Zero-Coupon Bonds mittels des Numeraires bestimmen lassen. Die Haupt-
aufgabe des Markov-Functional Model besteht folglich daraus, die funktionale

Form des Numeraires

BtTn+1 (Xt)

fiir t < T, 41 zu bestimmen.

5.3 Libor-Markov-Functional Model

Zu Beginn wird geklédrt, welche Daten als Input fiir unser Modell vorhanden
sind. Zum Zeitpunkt 0 liegen uns Zero-Coupon Bonds Dy, und Marktpreise
V/(T;, K;) von Standardderivaten (z.B. Caplets oder Swaps) fiir unterschiedli-
che Laufzeiten T; sowie verschiedener Strikes K; vor. Welche Marktpreise erf (T;, K5)
gewahlt werden, hingt vom Derivat ab, welches es zu bewerten gilt.

Im Libor-Markov-Functional Model sind unsere zugrunde liegenden Marktprei-
se die Preise von Caplets. Als Bewertungsformel fiir Caplets verwenden wir die
Formel von Black. Es ist zwar moglich, ein anderes Bewertungsverfahren zu un-
terstellen, allerdings wird im Libor- und Swap-Markov-Functional Model in der
Regel das Modell von Black verwendet und kommt somit auch in dieser Arbeit
zum Tragen. Wie in Kapitel 4 gezeigt wurde, hiingen die Preise der exotischen
Derivate oft indirekt von einer Menge von Libor-Raten bzw. Zero-Coupon Bonds
ab. Ist es moglich, diese Zero-Coupon Bonds zu modellieren, so kénnen auch die
Preise dieser Derivate bestimmt werden. Wir gehen dementsprechend von der An-
nahme aus, dass unser multi-temporales Derivat, welches bewertet werden soll,
von den Zero-Coupon Bonds BTZ,TJ. fiir 1 <i < j <n+ 1 abhéngt.

In der Praxis stellt diese Annahme einen typischen Fall dar und ist insofern sinn-

voll gewihlt. Somit geniigt es, die Zero-Coupon Bonds Br,p, fir 1 <i < j <n+1
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zu modellieren. Das Libor-Markov-Functional Model 16st diese Aufgabenstellung,
indem es eine funktionale Form der Libor-Raten bzw. Zero-Coupon Bonds her-
leitet. Die Idee dabei ist, die funktionale Form der Zero-Coupon Bonds durch

entsprechenden (digitalen) Capletpreisen zu erzeugen.

Wir nehmen an, dass die Marktpreise der Caplets mit der Black Formel mit im-
pliziter Volatilitdt &; gegeben sind. Als Numeraire wihlen wir B.p, ., und das
entsprechende Martingalmafl bezeichnen wir mit Q™"*. Um im Einklang mit der
Black Formel fiir Caplets zu bleiben, wéhlen wir die Libor-Raten ebenfalls lognor-
malverteilt. Daraus folgt, dass sich die Dynamik der Libor-Rate L} darstellen

lasst durch
dLy = oy L} dW,,

wobei W, ein Wiener Prozess bzgl. Q"' und o} eine deterministische Funktion
ist. Im néchsten Schritt folgt die Bestimmung des Markov Prozesses X. Wie in
der Gleichung (5.1) beschrieben, bestimmten wir den Markov Prozess X mit der

Dynamik
dXy =o}dW;, Xo=0
bzw. in der Integraldarstellung
t
X, = / ol dW,,. (5.2)
0

Somit ist (P1) der Definition 5.1 erfiillt. Die Punkte (P2) und (P4) bedeuten
beziiglich des betrachtenden Falls, das nun die Zero-Coupon Bonds und das Nu-

meraire Brp,., fiir ¢ = 1,...,n 4+ 1 zu bestimmen ist. Wie im vorigen Kapitel
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beschrieben, geniigt es im Libor-Markov-Functional Model nur das Numeraire

BTiTn+1

fir:=1,...,n+ 1 zu bestimmen. Ist ndmlich die funktionale Form des Nume-
raires Br,7,., gegeben, so lassen sich die restlichen Zero-Coupon Bonds daraus

herleiten.

Berechnung des Numeraires :

Zur Bestimmung der Numeraires wird entgegengesetzt zur chronologischen Rei-
henfolge vorgegangen. Das bedeutet B.7,,, wird bestimmt, in dem man sich von
T,41 bis T vorarbeitet. Der erste Schritt besteht darin, folglich die funktionale

Form von By, (X7,,,) zu bestimmen.

+1Th+1

Dieser Wert ist per Definition des Zero-Coupon Bonds gegeben und es gilt

BTn+1Tn+1 (XTn+l) =L

Im zweiten Schritt wird die funktionale Form von Brp 1, ., (X7,) bestimmt. In

Tht1

Kapitel 2 haben wir den Zusammenhang zwischen der Libor-Rate und den Zero-

Coupon Bonds erldutert. Das heifit, wir konnen den Zero-Coupon Bond By, 7, .,

bzw. unser Numeraire darstellen durch

1 1
1L+ an Ly, 1+ anLly, [Ty, T

BTnTn+1 = (53)

Die Libor-Rate L} wurde als lognormalverteilt angenommen bzw. es gilt

ALY = o7 LI dW,.
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Die Losung der stochastischen Differentialgleichung ist

1 t t
L} = Lyexp (—5/ (0;‘)2du+/ UZqu>
0 0

bzw. zum Zeitpunkt T,, entspricht sie

1 [T Tn
Ly, = Lgexp (—5/ (o™)?du +/ UZqu) .
0 0

Setzen wir in diese Gleichung die fiir X7, definierte Darstellung (5.2) ein, so er-

halten wir
n n 1 Tn n\2
Ly, = Lyexp —5 (o) du+ X7, | .
0

Damit ergibt sich die funktionale Form von By, durch Einsetzen von Ly, in

die Gleichung (5.3) durch

Tn+1

1

Br,1,,,(Xr,) = ; :
1+ o, L2 exp (—5 Jo " (o) ?du + XTn>

Die funktionale Form von Br, und Br, 1. ., ist damit bestimmt. Die weiteren

+1Tn+1 n+1

Zero-Coupon Bonds Brp, ., firi=1,...,n — 1 werden nun unter Zuhilfenahme
der Caplet- bzw. digitalen Capletpreisen erzeugt. Anstatt nun riickwérts der Rei-
henfolge entlangzugehen und By, ,7,,, zu bestimmen, geben wir ein rekursives
Schema an, um alle restlichen Zero-Coupon Bonds zu erhalten. Ausfiihrlich soll
dies am Beispiel von By, 1, ., fir T1 < T, < T, gezeigt werden. Da wir riickwirts

vorgehen, ist bei der Bestimmung von Brp die funktionale Form des Zero-

Tn+1

Coupon Bond Br,,
UITl BTmT

n+1

1 Thys als bekannt vorausgesetzt.
mit den aktuellen Marktpreisen zu kalibrieren, werfen wir zunéchst
einen formalen Blick auf die Bewertungsformel des digitalen Caplets.

Der digitale Caplet beziiglich der Libor-Rate L} = L, [Ty, Trnq1] mit Strike K
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hat geméfl der Definition von Kapitel 3.3 zum Zeitpunkt 7,,,, die Auszahlung
Lipy >ky-

Diskontiert man dies auf den Zeitpunkt 7, so konnen wir den Wert der Auszah-

lung zum Zeitpunkt 7,,, alternativ darstellen durch

BTme+1 (XTm)]l{L}nm (X1, )> K}

Mit V/"(K) bezeichnen wir den digitalen Capletpreis zum Zeitpunkt t auf die
Libor-Rate L7 mit Strike K. Beziiglich des Numeraires B.7, , und des Martin-
galmafles Q"*!, lisst sich der Preis zum Zeitpunkt t = 0 des digitalen Caplets

darstellen durch die Bewertungsformel

EQ"’+1 (BTme+l (XTm)

Lepm .
BTan_H (XTm> {LTm(XTm)>K})

Da wir vorausgesetzt haben, dass die digitalen Capletpreise mit der Black Formel

mit impliziter Volatilitat &, gegeben sind, ist der Preis Vj™(K') geméfl Satz 3.6:
‘/Om(K) = BOTm+1 (XO)QJ(dQ”),

wobei

m 10g(%) B %672;1Tm
d2 -

OmV I

Durch (P3) der Definition 5.1, also dass unser Numeraire eine strikt monoton
fallende Funktion von X ist, iibertrigt sich dies auf die Libor-Rate. Die Libor-

Rate L7y ist somit eine strikt monoton wachsende Funktion von X7, und somit
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existiert ein eindeutiges X7, , so dass
Ly, (X7,) = K

Q" fast sicher gilt. Damit lisst sich die Auszahlung zum Zeitpunkt 7, des

digitalen Caplets umformen zu

Vi = Br 1 (X1, ) g (xp,,)> K}
o

m
Vi

— BTme+1 (XTm)]l{XTm >X5 3

Der Preis des digitalen Caplets mit Strike K zum Zeitpunkt ¢ = 0 lésst sich durch

den Erwartungswert beziiglich unser Martingalmafl Q™! berechnen durch

m n+1 BT"LTm (XTm)
Vo"(K) = Bor, , E? (BTT,LTHL1 (X7,,) X Y
o T n Br T (XT )
= BOTn ]Ef i ]]. X X * ]EQ B < S - me
+1 I { X1, > X1, %} BTm+1Tn+1 (XTm+1)
_ B E n+1 -1 EQ'fH»l < 1 ..F >:|
0T 1 I X, > X %} BTm+1Tn+1 (XTerl) "
_ By B |1 E9™ ( 1 * ) }
0T h+1 I { X1, > X} BTm+1Tn+1 (XTerl) "
_ By Q" -]l o ox /OO ;(bx 1xp, (2)dz
n+1 i { Tm > Tm*} —00 BTm+1Tn+1 (Z) fr

= Bor,,, /OO [/_OO ;(z)(bXTmH'XTm (z)dz} Oxr,, X0 (u)du.

X%m o BTm+1Tn+1

In der letzten Zeile wird deutlich, dass das Integral nur noch von den Zero-

Coupon Bonds By, und Byr, ., abhingt. Im vorigen Iterations-Schritt wur-

+1Th+1 +1

de Br,,. 1,,, bestimmt und Byr, , ist durch den Markt gegeben. Das heifit dem-
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5.3 Libor-Markov-Functional Model 5 MARKOV-FUNCTIONAL MODEL

nach, fir X7, € R lédsst sich, wenn auch nur numerisch, dieses Integral 16sen.
Den numerischen Wert dieses Integrals bezeichnen wir mit J(X7. ).

Zur Erinnerung, X7, ~wurde so gewéhlt, dass
Ly (Xr,) = K

gilt. Wir wihlen also ein X7, so, dass J(X7, ) mit dem Marktpreis iibereinstimmt.

Durch Gleichsetzen von J(X7, ) und dem gegeben Marktpreis Vi"(K) bzw.

J(Xz,) = V" (K) = V" (L7, (XT,,))

erhalten wir eine Gleichung in L7 (X7, ) und kénnen damit die funktionale Form
der Libor-Rate bestimmen. Dies erreichen wir, in dem wir den Marktpreis V™ (K)

bzw. J(X7 ) nach der Libor-Rate L7 (X7 ) auflésen:

J(X;:m> = BOTm+1 (Xo)q)

0N T
<~
1 — (X
L?m(X;m) = Ly"exp (—é&fnTm — G qu)—l ( ( Tm))) 7
0T m+1

wobei @71 der Inversen der Verteilungsfunktion der Standardnormalverteilung
entspricht.
Damit wére die funktionale Form der Libor-Rate L7 (X7, ) bestimmt und so-

mit ldsst sich auch die funktionale Form des Zero-Coupon Bonds Br,, 1, , (X7, )
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5.3 Libor-Markov-Functional Model 5 MARKOV-FUNCTIONAL MODEL

herleiten. Dazu werden wir erst die Libor-Rate umformen in

L™ (X5 ) = L= Bt (XF,)
Tm T OszTme+1 (X;Z':m)

=1
——~

1 - BTme+1 (X;:m) . BTan+1(X3:m)

* 1
OémBTme+1 (XTm) BTan+1 (Xi*"m)

1 _ BTme+1 (X;‘m)
o BTan+1(X;“m) BTan+1 (X;"m) (5 5)

BTmT7n+1 (X%m)
m BTan+1 (X';“m)

Losen wir diese Gleichung nach unserem gesuchten Zero-Coupon Bond Br,, 7, , (X7, )

auf, so erhalten wir die funktionale Form

B, 71 (X7, ) i

BTan+1 (Xik“m) - <(1 + ang}m (Xr;m)) BT T, (X* )
mInt1 T

Der auf der rechten Seite auftretende Wert M wurde in der Berech-
BTan+1 (XTm)

nung vom Integral J(X7 ) bzw. in der Berechnung des Erwartungswertes (5.4)

berechnet und ist somit bekannt.

Mit dieser Kalibrierung haben wir also zu einem gegeben Capletpreis mit Strike

K die funktionale Form By, 1

n

.1 (X7, ) bestimmt. Um alle Werte X7. € R bzw.
die funktionale Form des Zero-Coupon Bonds Br,,1,,, (X1, ) daraus zu erhalten,
benotigen wir rein theoretisch unendlich viele Capletpreise mit Strikes K;. In der
Praxis sind allerdings nur endlich viele Capletpreise gegeben. Nehmen wir an, es
seien die Capletpreise V7"(K;) mit unterschiedlichen Strikes K; fiir i = 1,...,d

gegeben, so erhalten wir die diskrete Menge
{Xik“m,i | L?M(X;m,i) - Ki}-

Die funktionale Libor-Rate erhalten wir dann analog zur Berechnung (5.5) und
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5.4 Swap-Markov-Functional Model 5 MARKOV-FUNCTIONAL MODEL

wird dargestellt durch

1 _ BTme+1 (X;"m,z)
Bry,1, 1 (X7, ) Brnr, o (X7, )
+ s + s

LTTnm (X:?mﬂ =

BTme+1(X;“m,i)
M B 11 Ky, 0)

fire=1,...,d.

Schlussendlich erhalten wir damit die Menge bzgl. der Zero-Coupon Bonds

*
XTm,i

-1
BTanJrl(XTm,i) = <(1 + O‘mLTm(XTm,i)) Br 1 : (X ’) pi=1,...,d
min+1 Tm,i

Dies ist aufgrund der endlichen Menge an Capletpreisen nur eine diskrete Menge.
Um die restlichen Zero-Coupon Bonds Br,r,,, (X7, ;) fiir i # 1,...,d zu erlan-
gen, wird zwischen den bereits berechneten Zero-Coupon Bonds By, 1, (X7, ;)
fiir + = 1,...,d mit geeignetem Interpolationsverfahren interpoliert. Daraus er-

gibt sich die gewiinschte stetige funktionale Form des Zero-Coupon Bonds By, 7,, ., (X1, ).

Mit dieser Vorgehensweise der Riickwirts-Berechnung ist es folglich moglich,
die restlichen Zero-Coupon Bonds bzw. unser Numeraire By, ., (X7,) fir ¢ =

1,...,n —1 zu bestimmen.

5.4 Swap-Markov-Functional Model

Eine andere Moglichkeit, die funktionale Form der Zero-Coupon Bonds zu bestim-
men, ergibt sich iiber das Swap-Markov-Functional Model. Dieses Modell eignet
sich, um Swap basierte Produkte zu bewerten, wie zum Beispiel ein Bermudian
Swaption. Der Unterschied zum Libor-Markov-Functional Model besteht darin,
dass wir die funktionale Form der Zero-Coupon Bonds nicht {iber die Verbindung
zur Libor-Rate sondern {iber Swap-Raten herleiten.

Wir betrachten dazu eine Menge von Swaps mit Laufzeitende T,,,;. Genauer

genommen betrachten wir n + 1 Payer-Swaps, wobei wir die einzelnen Swaps
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5.4 Swap-Markov-Functional Model 5 MARKOV-FUNCTIONAL MODEL

mit SW; fiir © = 0,...,n bezeichnen. Der erste Swap SW, soll zum Zeitpunkt Ty
starten und die Auszahlungen zu den Zeitpunkten 77, ..., T, liefern. Der zweite
Swap SW; startet zum Zeitpunkt 77 und liefert zu den Zeitpunkten 75, ..., T,
die Auszahlungen. Allgemein bezeichnet somit SW; den Swap startend zum Zeit-
punkt 7; mit den Auszahlungszeitpunkten T;,q,...,7T, 1. Die entsprechenden
Swap-Raten werden wie im Kapitel 3.4 definiert bzw. auf dieses Modell ange-

passt durch

, = By, — B
ylT,, §i) = = =gt
Ptl [Tw Sl]
wobei
n+1
P/[T;, 5] = Z Oéj—1BtTj;
j=i+1

S = (T, ..., Tus1)

=T —T;

fir i =0,...,n gilt.

Um die Notation einfach zu halten, bezeichnen wir mit 3 die Swap-Rate [T}, S;]
beziiglich des Swaps SW;. Entsprechend wird P}, der Barwert der festen Zins-
swapzahlung (BfZ), mit Pi[T}, S;] bezeichnet. Die Grundannahmen sind iden-
tisch zu denen des Libor-Markov-Functional Models. Wir wihlen somit erneut
den Zero-Coupon Bond B.7,,, als Numeraire und das zugehérige Martingalmaf
Q.

Der Markov Prozess entspricht wie im Libor-Markov-Functional Model der Dy-

namik

dXt = U?th, X() =0.
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5.4 Swap-Markov-Functional Model 5 MARKOV-FUNCTIONAL MODEL

Basierend auf den gleichen Vorraussetzungen wie im Libor-Fall, bedeutet das,
dass es im Swap-Markov-Functional Model ebenfalls geniigt, nur die funktiona-
le Form der Zero-Coupon Bonds bzw. des Numeraires B.7, ., zu bestimmen. Die

restlichen Zero-Coupon Bonds ergeben sich analog zum Libor-Markov-Functional

Model.

Berechnung des Numeraires :

Um die funktionale Form des Numeraires zu bestimmen, folgen wir der gleichen
Idee, d.h. wir arbeiten uns riickwérts in der Zeit vor.
Wir starten somit beim Zeitpunkt 7)1, die funktionale Form des Zero-Coupon

Bond Br,.,71,., ist per Definition bekannt und entspricht

BTn+1Tn+1 (XTn+l) =L

Die funktionale Form des Zero-Coupon Bonds zum Zeitpunkt T, ergibt sich,
indem wir uns den Swap SW), bzw. dessen Swap-Rate y7. betrachten. Das heifit,

durch

Br,1, — Br, 1,4
Py (T, S,]

no__
Y7, —

Trn+1

_1- By,

anBTnTn_H

0
_LT"

entspricht die Swap-Rate y7. der Libor-Rate. Damit haben wir fiir den Zeitpunkt

T,, das gleiche Szenario wie im Libor-Markov-Functional Model und die funktio-
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5.4 Swap-Markov-Functional Model 5 MARKOV-FUNCTIONAL MODEL

nale Form ergibt sich durch

1

Br,1,,(Xr,) = :
o 1+ a, L2 exp (—% fOT"(ag)Qdu + XTn>

Analog zum Libor-Markov-Functional Model werden wir die restlichen Zero-
Coupon Bonds By, fiir i = 1,...,n — 1 rekursiv herleiten, indem wir erneut
die funktionale Form des Zero-Coupon Bonds By, 1, , mit 0 < T, < T,, bestim-
men. Die dahintersteckende Idee ist, nicht die Caplet-Preise als Kalibrierung zu
verwenden sondern die digitalen Swaption Preise. Unter der Annahme, dass die
digitalen Swaption Preise mittels der Black Formel mit impliziter Volatilitit &,

gegeben sind, ergibt sich der Preis des digitalen Swaptions nach Satz 3.6 durch
Vo' = By ®(dy)

wobei

log(%) — 36%.Tn

dy 1=
2 Go/Thn

Fiir diesen Fall wird angenommen, dass die Swap-Rate eine strikt monoton wach-
sende Funktion vom Markov Prozess X ist. Daraus folgt, das ein eindeutiges X7,

existiert, so dass
yr, (X1,) = K (5.6)

gilt. Die Auszahlung des digitalen Swaptions beziiglich des Swaps SWry, zum
Zeitpunkt T,,, betragt

Ly >k} Pr,, -
Mit der Wahl des Zero-Coupon Bonds B.7, ,, als Numeraire und dem entsprechen-
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5.4 Swap-Markov-Functional Model 5 MARKOV-FUNCTIONAL MODEL

dem Martingalmafl Q™" lisst sich der Preis des digitalen Swaptions alternativ

berechnen durch

BTan+1 (X1,)

1
D B,

L P (X
Vom:BoTnﬂEQ"“( (0 )10 T Tm)) (5.7)

1 P (Xr,,)
Xrn>X2} B (X1,,)
min+41 m

P,},’:‘n+1 (XTm+1 )

)

[ [eS) pm 1( )
— BOTn.;_l / (/ BTm;(ﬁXTWH_JXTm (Z)dZ) ¢XTm|X0 (u)du
T,

;: 77L+1T7L+1 <Z>

— By RO (]1 w5 B9 {
OTn+1 {XTm> Tm} BTm+1Tn+1 (XTm+1)

In Gleichung (1) haben wir die Gleichung (5.6) verwendet. Per Definition ist
n+1
Tm+1 Z aj— 1BTm+1T ;

j=m+1

= amBTm+1Tm+l + am+1BTm+le+2 + e + anBTm+1Tn+l

und héngt nur von Br, ¢ fiir S = T,,11,...,T,,4+1 ab. Somit ist die funktionale

Form

PCZT&+1 (XTm+1 )

BTm+1Tn+1 (XTm+1) ’

die bei der Berechnung des Integrales benotigt wird schon im vorigen Iterations-
schritt berechnet worden. Den Wert des Integrals bezeichnen wir mit J(X7. )
und gehen identisch zur Vorgehensweise des Libor-Falls vor. Wir setzen den
Marktpreis per Black Formel unter der Beriicksichtigung von Gleichung (5.6)
mit .J(X7 ) gleich und erhalten die funktionale Form der Swap-Rate

mi(XTm> =Yy €exXp (——0’ Ty — G/ Ty ® ( Tm )) '
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Durch die Darstellung der Swap-Rate mittels

1 - Br,1,.,(X7,)
yr, (X1,,) = e
T Pp(X7,)

1
]‘ - BTan+l (X;:m) . BTan+1 (X;m)
br, (X7,) '

BTan+1 (X'}m)

1 —1

BTan+1 (X;:m )
Pry, (Xt,)
Bt T 41 (X;"m)

erhalten wir durch Umformung nach By, 1

n

.1 (X7, ) die funktionale Form

PR (XG,) )){

B (65,) = (140, 066,) 5 o
min+1 Tm

P (X2 ) .
% wurde in der Berech-
Tan+1( Tm)

Der in der Gleichung auftretende Ausdruck
nung des Erwartungswertes (5.7) berechnet und ist somit bekannt. Die restlichen
Zero-Coupons lassen sich dann analog zum Libor-Markov-Functional Model be-

stimmen.
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6 LIBOR-MARKT MODELL

6 Libor-Markt Modell

Ziel dieses Kapitels ist es, aufzuzeigen, dass das Libor-Markov-Functional Mo-
del kein direkter Spezialfall vom Libor-Markt Modell ist. Um dies zu tun, wird
zunéchst das Libor-Markt Modell dargestellt.

Aufgebaut wird das Libor-Markt Modell auf einer Tenorstruktur 77 < Ty < --- <
T, < T,+1 < 0o, wobei die Periodenldnge mit o; := Tj,1 — T; fiiri = 1,...,n be-
zeichnet wird. Um die Notation einfach zu halten, definieren wir die Libor-Raten

mit
L := LT, Ti).

firi=1,...,n.
Unter der Annahme eines abitragefreien Modells wihlen wir als Numeraire den
Zero-Coupon Bond D.r,,, und das entsprechende Martingalmal wird mit Q"

bezeichnet. Damit sind unsere Numeraire normierten Basisfinanzgiiter

Dy
( tTl) firi=1,...,n+1
Ditin ) oci<r

Q" -Martingale.
Im Libor-Markt Modell werden die einzelnen Libor-Raten als Losung der sto-

chastischen Differentialgleichung
dL; = ptLidt + ol LidW}

unter Q"' angenommen,'? wobei W, = (W}, ..., W) der korrelierte Wiener
Prozess mit der Eigenschaft d[IW*, W], = p;;dt entspricht. Als Drift bezeichnen
wir die Funktion p’ und die deterministische beschrinkte Volatilititsfunktion

wird durch ¢! dargestellt.

12 Fiir weitere Informationen sei auf [7] verwiesen.
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Um den Drift der Libor-Raten L! fiir 7+ = 1,...,n unter dem Martingalmaf}
Q"' weiter zu spezifizieren, betrachten wir das dquivalente Martingalmafl Q*+!

beziiglich des Numeraires D.,,,. Unter diesem Mafl sind somit die Numeraire

D.z,

D'Ti+1

normierten Zero-Coupon Bonds fiir 1 < k < n—+1 Martingale. Durch einen
Mafwechsel von Q" nach Q! lisst sich die Gestalt von u¢ bestimmen und als

Resultat erhalten wir folgenden Satz:

Satz 6.1
Das Libor-Markt Modell ist arbitragefrei unter dem Maf Q™, falls der Drift der

Form

i - O‘ng j i
= — g ———0ip;i | O
Iut ( 1+C¥]Li tpj t

j=it+l

entspricht. Unter dem Mafs Q™" erfiillen somit die Libor-Raten den Differenti-

algleichungen
, n oL o o
(j;l L+ a;L;
Beweis.
Siehe [7] Satz 2.1 O

Wie im vorigen Kapitel aufgezeigt wurde, existieren zwei grundlegende Eigen-
schaften des Libor-Markov-Functional Models:

Zum Einen wird die Libor-Rate als eine Funktion von einem eindimensionalen
Markov Prozess X dargestellt. Zum Anderen ist die funktionale Form der Libor-

Rate eine streng monotone Funktion in X ist.

Das sich das Libor-Markt Modell nicht als ein eindimensionales Markov-Functional

Model darstellen lisst, ergibt sich aus Theorem 19.4 aus [8]:
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6 LIBOR-MARKT MODELL

Satz 6.2
In einen Libor-Markt Modell mit den Libor-Raten L', ..., L™ mitn > 1 existiert

kein eindimensionaler Prozess X mit den Eigenschaften:

(i) Die Libor-Raten lassen sich als Funktion eines Markov Prozesses X darstel-

len;

(ii) Die Libor-Raten sind streng monotone Funktionen in X.

Beweis.
Wir werden diese Aussage indirekt beweisen, indem wir annehmen, es gidbe einen
Prozess X der die Eigenschaften i) und ii) erfiillt. Durch die Invertierbarkeit der

Funktion
X, — LX)
fiir i = 1,...,n lisst sich L! darstellen durch
Li = Li(L)). (6.1)

Aufgrund der Libor-Markt Modell Bedingungen erfiillen die Libor-Raten die Dif-

ferentialgleichungen

, n oL , o o
L= 3 ] pl-]) ol Lidt + ot LidW; (6.2)
(jzi—i-l L+ ajLi

unter unserem dquivalentem Martingalmafl Q™ ** beziiglich des Numeraires D. 1, , , .

Wenden wir nun das Ito-Lemma auf Gleichung (6.1) an, erhalten wir die Diffe-
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6 LIBOR-MARKT MODELL

rentialgleichung
; oLy 1, 0L oLy .o
dLi = T 5(0t LY) oLy dt + oLy Lydwr .13 (6.3)

Setzen wir die lokalen Martingalanteile der Gleichungen (6.2) und (6.3) gleich,
d.h.

o ) oL
o LidW, = ooy LidWy
t

folgt Wi = W™ sowie

.. 0oL
O_sz — tO_nLn
tt 8.[/? t 't
=4
oL B oiLi

_— = 6.4
oLy  opL} (6-4)

Lost man die Differentialgleichung (6.4) ergibt sich

Ly = ci(t)(L7)™,

wobei ¢;(t) eine Funktion von ¢ ist und §;(t) = o

= .
Ot

Aufgrund der Bedingung W* = W™ ergibt sich die Differentialgleichung

. n a-Lj . . o
dLi = — —JJ—#>#Mﬁ+¢MﬂW (6.5)
(j:zi; L+ a;L;

aus der Differentialgleichung (6.2). Durch Einsetzen von L! = ¢;(t)(L?)%® in

die Differentialgleichung (6.3) und Gleichsetzen der endlichen Variationsteile der

13Dje ausfiihrliche Berechnung befindet sich im Anhang (Rechnung 1)
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Gleichungen (6.3) und (6.5) erhalten wir

Aok e (g )
14 ali

1 (CQ(“ LA 1n(L3;)> + %aé(@-(t) —1)==>

ot \ai(t) S

Setzt man in dieser Gleichung den Index ¢ = n — 1, folgt o} = 0 und das fiihrt
zum Widerspruch im Libor-Markt Modell.
O

Fiir weitere Vergleiche zwischen dem Libor-Markt Modell und dem Libor-Markov-

Functional Model sei auf [3] verwiesen.

14Die ausfiihrliche Berechnung der Darstellung (6.6) befindet sich im Anhang(Rechnung 2)
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7 ZUSAMMENFASSUNG

7 Zusammenfassung

Die Arbeit hat die Theorie des Markov-Functional Models Schritt fiir Schritt
naher gebracht. Aufbauend auf den Grundlagen wurden die notwendigen Zinsde-
rivate dargestellt und erldutert. Dadurch konnte im Hauptkapitel das Ziel dieser
Arbeit erreicht werden, welches darin bestand, die funktionale Form der Zero-
Coupon Bonds herzuleiten. Anschliefend wurde das Markov-Functional Model
in Beziehung zum populédreren Libor-Markt Modell gebracht. Dadurch wurde
deutlich, dass das Markov-Functional Model kein Spezialfall vom Libor-Markt
Modell ist.

In Bezug auf die Beurteilung des Markov-Functional Models stellen sich Vor- als
auch Nachteile heraus. Ein wesentlicher Vorteil liegt in der einfachen Implemen-
tierung, da das Modell von einem eindimensionalem Markov Prozess gesteuert
wird. Dadurch ist es moglich, exotische Derivate relativ unkompliziert zu bewer-
ten, vor allem im Vergleich zu anderen Zinsstrukturmodellen.

Dieser Vorteil stellt zugleich die Schwéche des Modells dar. Alle Zero-Coupon
Bonds iiber einen Markov Prozess zu steuern bzw. den kompletten Zufallsanteil
der Zinsstruktur iiber einen Wiener Prozess zu beschreiben, konnte gegebenen-
falls zu ungenauen Prognosen fiihren.

Sinnvoll wére daher im n#chsten Schritt das Markov-Functional Model mit al-
ternativen Modellen zu vergleichen. Durch einen Vergleich kénnten Vor- und
Nachteile im Markov-Functional Model spezifiziert werden. Dafiir wiirde sich bei-
spielsweise das Libor-Markt Modell anbieten, da es mit diesem Modell moglich
ist, exotische Zinsderivate zu bewerten und dessen Abweichungen zum Markov-
Functional Ansatz zu betrachten.

Eine weitere Moglichkeit besteht darin, das Markov-Functional Model ndher zu
analysieren, wenn der Markov-Prozess eine Dimension grofler 1 besitzt und dann

wiederum in Vergleich zu anderen Modellen zu stellen.
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8 Anhang

Rechnung 1

Zu zeigen ist: Anwendung des Ito Lemmas auf L! = L{(L?) ergibt

oL 1 L, L oL
e SR 91 dt
o Tl ) G | M oL

AL} = ol LI AW,

Relevant fiir die Rechnung ist die Bemerkung, dass L} unter dem Maf Q™! ein

lokales Martingal darstellt und damit p" = 0 bzw.
dLy = o, L}dW; (8.1)
gilt. Des Weiteren gilt

d[Ln]t - d[Ln, Ln]t
= d[e"L" - W", o"L" - W"],
= (o7 LY)*d[W™, W],

= (o L)*dt. (8.2)

Wenden wir das Ito-Lemma auf L; = Li(L}) unter der Beriicksichtigung der

Gleichungen (8.1) und (8.2) an, erhalten wir

19°L
dL} + ==L

oLi oL
dt
i 2 PLy

dL} =
Lot oLy

d[L"];

oL oL 1 2L
_ Py Ol 1oL
- 2 Ly

'rLLn 2
Bt oLy (o7 i) dt

ol LPdW +

oL;
dt + o Lr AWy
ory] @ T arp

oLt 1 I 0L}
= att+§(0tLt>2 -

5 Theorem 3.77 in [9]
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Rechnung 2

Zu zeigen ist: Durch Einsetzen von Li = ¢;()(L?)%® in die Differentialgleichung
(6.3) und Gleichsetzen der endlichen Variationsteile der Gleichungen (6.3) und
(6.5) erhalten wir die Darstellung (6.6). Der endliche Variationsterm von (6.3)
entspricht

oLt 1 0Lt
(g7 2 t
o Talotd) 2Ly

und von (6.5)

(> a; Ly PEARETY
1+OéjLi t e

j=it+l

en und einsetzen von L! = ¢;(t)(L")%® = ¢;(t) exp[Bi(t) In(L})] ergibt

oL 1 02 L LN 7 A N
- nLn2 t_ 7t ) iri
ot +2<0t t) 2Ly (Z 1+OéjLiat> Oyl

j=it+1
4

1 [/OLi 1 O2Li - ol !
i z( f S (opLy)’ 2 i)z_z e tj'

j=it+1

Der rechte Teil der Gleichung stimmt mit (6.6) iiberein, der linke Teil wird unter

Beriicksichtigung von

L= (L) baw. ()"0 = 2
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folgendermaflen umgeformt:

( or Tl ; 8%?)

ZU;L%- (CN)(L") O e (0)B5(8) I(LP) (LY + = (07 L)) Bi (1) (Bi(t) — 1)( )ﬁ(t”)
_ L (4L w(Lr npn (1) (L7)

_a;‘i(ci(t) + BI(t) In(LMLE + = (oM L) B (1) (Bi(t) — ) e )

R L I e Sy g

T il ( e(0) + Bi(t)1 (Lt>Lt+2( nL? ? )
25;(28+ﬁ<t>1n</3">)+ o} (Bi(t) = 1)
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