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1 Einleitung

Die Theorie der großen Abweichungen beschäftigt sich - grob gesagt - mit der Asymptotik
von Wahrscheinlichkeiten seltener Ereignisse. Man hat also, wie z.B. im schwachen
Gesetz der großen Zahlen, eine Folge von Wahrscheinlichkeiten vorliegen, die gegen Null
konvergiert, und versucht die Konvergenzgeschwindigkeit mittels einer exponentiellen
Rate und einer Ratenfunktion zu quantifizieren. In dieser Arbeit soll insbesondere der
Satz von Cramér vorgestellt werden, der eine Möglichkeit aufzeigt, in gewissen Fällen
eine solche Quantifizierung vorzunehmen. Im Beweis dieses Satzes werden wir mit expo-
nentieller Maßtransformation arbeiten, d.h. wir werden das Wahrscheinlichkeitsmaß
so transformieren, dass die seltenen Ereignisse, deren Wahrscheinlichkeit gesucht ist,
typisch werden. Diese Idee wird uns durch die ganze Arbeit begleiten.

Gerade im Kreditrisikomanagement ist man daran interessiert Wahrscheinlichkeiten
extrem seltener Ereignisse möglichst genau bestimmen zu können. Ein solches, seltenes
Ereignis kann beispielsweise der Ausfall sehr vieler hoch gerateter Kredite in einem
Portfolio sein, der dann zu einem dementsprechend hohen Verlust führt. Da Kredit-
portfolios häufig sehr groß sind, können asymptotische Resultate, wie sie die Theorie
großer Abweichungen gibt, zur näherungsweisen Berechnung von Wahrscheinlichkeiten
solcher seltenen Ereignisse herangezogen werden. Der Satz von Cramér beispielsweise
gibt eine Abschätzung für die Wahrscheinlichkeit dafür, dass in einem sehr großen
Kreditportfolio deutlich mehr Kredite ausfallen als erwartet. Er setzt dabei jedoch die
Unabhängigkeit der Kredite voraus. Gerade die Subprime-Krise hat aber gezeigt, dass
Abhängigkeiten innerhalb eines Portfolios eine nicht zu unterschätzende Rolle spielen,
wenn man Aussagen über die Wahrscheinlichkeiten großer Verluste treffen möchte.

Wir werden daher in Kapitel 3 ein Kreditrisikomodell einführen, mit dem wir ein Portfolio
abhängiger Kredite modellieren können. Anschließend werden wir zwei Sätze über die
Asymptotik von Wahrscheinlichkeiten seltener Ereignisse in abhängigen Kreditportfolios
beweisen. Es wird sich jedoch herausstellen, dass die Resultate weniger Relevanz für
die direkte Abschätzung von Wahrscheinlichkeiten für den Ausfall vieler Kredite in
großen Portfolios haben als vielmehr für die Schätzung dieser Wahrscheinlichkeiten
mittels Monte Carlo Simulation bzw. Importance Sampling. Mit ihrer Hilfe gelingt es
nämlich, asymptotisch optimale Importance Sampling Schätzer zu finden, also Schätzer,
mit denen man Wahrscheinlichkeiten seltener Ereignisse mit verhältnismäßig wenigen
Simulationen verhältnismäßig genau bestimmen kann. Die Methode des Importance
Sampling und das Problem der Bestimmung asymptotisch optimaler Schätzer werden
wir in Kapitel 4 thematisieren.
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2 Der Satz von Cramér - ein Prinzip großer Abweichungen

2.1 Der Satz von Cramér

Ein prominentes Beispiel für ein sog. Prinzip großer Abweichungen1 ist der Satz von
Cramér, der von seinem Namensgeber Carl Harald Cramér 1938 für Zufallsvariablen
mit Dichten gezeigt und 1952 von Herman Chernoff verallgemeinert wurde. Er sagt
aus, dass sich die Wahrscheinlichkeit P[Sn ≥ nx], wenn Sn die n-te Partialsumme einer
Folge unabhängiger, identisch verteilter Zufallsvariablen bezeichnet und nx größer als
der Erwartungswert von Sn ist, unter bestimmten Bedingungen für große n etwa so
verhält wie C(n)e−nI(x). Dabei ist I(x) eine Ratenfunktion, die von der Verteilung der
unabhängigen Zufallsvariablen bestimmt wird, und C(n) eine subexponentielle Funktion
(d.h. eine Funktion für die gilt lim

n→∞

lnC(n)
n = 0), über deren nähere Gestalt der Satz

aber keine Aussage macht.2 In Anlehnung an Löwe, der ihn als Theorem 1.6 aufführt,
und König(2006), bei dem er als Satz 1.4.3 vorkommt, soll der Satz von Cramér hier
vorgestellt und bewiesen werden.

2.1 Satz (von Cramér)
Sei (Xi)i∈N eine Folge von unabhängigen reellen Zufallsvariablen auf einem Wahrschein-
lichkeitsraum (Ω,A,P) mit identischer Verteilung PX1 und momenterzeugender Funktion

φX1(t) := E[etX1]< ∞ für alle t ∈ R

und sei Sn := ∑
n
i=1 Xi. Dann gilt für alle x > E[X1]

lim
n→∞

1
n

lnP[Sn ≥ nx] =−I(x),

wobei
I(x) := sup

t∈R
[tx− lnφX1(t)]

die sogenannte Legendre-Transformierte von lnφX1(t) ist.

2.2 Bemerkung
Für diese Arbeit setzen wir lnx =−∞ genau dann, wenn x = 0.

Für den Beweis des Satzes von Cramér zeigen wir im folgenden Lemma zunächst
zwei grundsätzliche Eigenschaften der momenterzeugenden Funktion, die wir auch an
anderen Stellen in dieser Arbeit benutzen werden.

2.3 Lemma
Sei X1 eine Zufallsvariable mit endlicher momenterzeugender Funktion φX1 und sei PX1

die Verteilung der Zufallsvariable X1. Dann gilt:

1 Die genaue Defintion eines Prinzips großer Abweichungen geben wir in 2.10.
2 Die genaue Gestalt von C ist schwer zu bestimmen. Aus diesem Grund schreibt man üblicherweise

lim
n→∞

1
n lnP[Sn ≥ nx] =−I(x) statt P[Sn ≥ nx]vC(n)e−nI(x) (vgl. Bucklew (2004, S. 27)).
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1. φX1 ist unendlich oft differenzierbar mit

φ
(n)
X1

(t) =
∫
R

xnetxPX1(dx)< ∞ für alle t ∈ R und n ∈ N.

2. φX1 ist strikt konvex, sofern X1 nicht Dirac-verteilt mit P[X1 = 0] = 1 ist.

Um dieses Lemma beweisen zu können, brauchen wir ein Lemma über die Vertauschbar-
keit von Integral und Ableitung, das beispielsweise von Klenke (2008) als Differentiati-
onslemma (Satz 6.28) aufgeführt wird.

2.4 Lemma (Differentiationslemma)
Sei (Ω̄, Ā, µ̄) ein Wahrscheinlichkeitsraum und I ⊂ R ein nichttriviales, offenes Intervall.
Sei zudem f : Ω̄× I→ R eine Abbildung mit den Eigenschaften

1. für jedes t ∈ I ist (x 7→ f (x, t)) ∈ L1(µ̄),
2. für fast alle x ∈ Ω̄ ist I→ R, t 7→ f (x, t) differenzierbar, wobei wir die Ableitung mit

f ′ bezeichnen,
3. h := sup

t∈I
| f ′(·, t)| ∈ L1(µ̄).

Dann gilt: Für jedes t ∈ I ist f ′(·, t) ∈ L1(µ̄) und die Funktion F : t 7→
∫

f (x, t)µ̄(dx) ist
differenzierbar mit Ableitung

F ′(t) =
∫

f ′(x, t)µ̄(dx).

BEWEIS: Die Aussage folgt aus dem Satz über die dominierte Konvergenz. Für Details
siehe Klenke (2008, S. 143f.).

Hiermit zeigt man nun leicht Lemma 2.3.
BEWEIS (Lemma 2.3):

1. Für den Beweis der Aussage wählt man t0 > 0 beliebig und sieht dann unter
Benutzung des Differentiationslemmas schnell mit vollständiger Induktion über n,
dass für alle n ∈ N die Funktion φ

(n−1)
X1

auf (−t0, t0) differenzierbar ist mit

φ
(n)
X1

(t) =
∫
R

xnetxPX1(dx)< ∞ für jedes t ∈ (−t0, t0).

Da t0 > 0 beliebig gewählt wurde, folgt die Differenzierbarkeit auf ganz R.
2. Gilt P[X1 = 0] < 1, ist φX1 strikt konvex, da dann φ ′′X1

(t) =
∫
R x2etxPX1(dx) > 0 für

jedes t ∈ R ist.
�

2.5 Korollar
Aus Lemma 2.3 folgt E[X1] = φ ′X1

(0)< ∞ und damit die Existenz von E[X1] im Satz von
Cramér.
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Kommen wir nun zum eigentlichen Beweis des Satzes von Cramér.

BEWEIS (Satz von Cramér): Wir können o. B. d. A. x = 0 und E[X1]< 0 annehmen, da
mit Substitution X̂i = Xi− x alle anderen Fälle aus diesem folgen:

lim
n→∞

1
n

lnP[Sn ≥ nx] = lim
n→∞

1
n

lnP[
n

∑
i=1

(Xi− x)≥ 0] = lim
n→∞

1
n

lnP[
n

∑
i=1

X̂i ≥ 0]

!
=−sup

t∈R
[− lnE[etX̂1]] =−sup

t∈R
[− lnE[etX1e−tx]] =−sup

t∈R
[tx− lnE[etX1 ]]

=−I(x)

Wir müssen also zeigen

lim
n→∞

1
n

lnP[Sn ≥ 0] =−I(0).

Für das weitere Prozedere führen wir die Schreibweisen ψX1(t) := lnφX1(t) und
g := inf

t∈R
φX1(t) ein. ψX1 heißt auch kumulantenerzeugende Funktion von X1. Natürlich ist

g≥ 0 und wegen der Monotonie des Logarithmus gilt

I(0) = sup
t∈R

[− lnφX1(t)] =− inf
t∈R

[lnφX1(t)] =− lng,

wobei nach Bemerkung 2.2 I(0) = ∞ für g = 0 ist.
Damit bleibt zu zeigen

lim
n→∞

1
n

lnP[Sn ≥ 0] = lng. (1)

Dafür unterscheiden wir zwei Fälle, abhängig davon, wo P Masse hat. Der erste kann
recht schnell abgehandelt werden, der zweite erfordert etwas mehr Aufwand. Wesentli-
che Schritte sind die Anwendung der exponentiellen Chebyshev-Ungleichung3 und die
Durchführung einer exponentiellen Maßtransformation, der wir wegen ihrer Bedeutung
einen eigenen Abschnitt am Ende dieses Kapitels widmen. Diese Schritte werden auch in
anderen Beweisen in dieser Arbeit eine zentrale Rolle spielen.

1. P(X1 ≤ 0) = 1
Weil X1 mit positiver Wahrscheinlichkeit negative Werte annimmt (da E[X1]< 0),
ist in diesem Fall φ ′X1

(t) =
∫
R xetxPX1(dx)< 0 für jedes t ∈ R und damit φX1 streng

monoton fallend. Folglich gilt mit dem Satz von der monotonen Konvergenz
g = lim

t→∞
φX1(t) = lim

t→∞

∫
(−∞,0] e

txPX1(dx) = P[X1 = 0], wenn wir berücksichtigen, dass

die Funktion (t 7→ etx) für x ∈ (−∞,0] monoton fällt und dass lim
t→∞

etx = 0 für x < 0

und lim
t→∞

etx = 1 für x = 0 ist. Wegen der Unabhängigkeit und identischen Verteilung

der Xi gilt weiter

P[Sn ≥ 0] = P[X1 = X2 = · · ·= Xn = 0] =
n

∏
i=1

P[Xi = 0] = gn

3 Die exponentielle Chebyshev-Ungleichung ist wegen ihrer zentralen Rolle im Anhang mit Beweis
aufgeführt (Satz 6.1).
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und damit
lim
n→∞

1
n

lnP[Sn ≥ 0] = lim
n→∞

1
n

lngn = lng.

2. P[X1 < 0]> 0 und P[X1 > 0]> 0
In diesem Fall gilt wiederum wegen des Satzes von der monotonen Konvergenz

lim
t→±∞

φX1(t) = lim
t→±∞

∫
(−∞,0]

etxPX1(dx)+ lim
t→±∞

∫
(0,∞)

etxPX1(dx) = ∞.

Aus der strikten Konvexität von φX1 folgt dann, dass es ein eindeutiges τ ∈ R gibt,
so dass φX1 in τ minimal wird, also so, dass φ ′X1

(τ) = 0 und φX1(τ) = g > 0 ist. Da
φ ′X1

(0)=E[X1]< 0= φ ′X1
(τ) ist, ist wegen der Konvexität von φX1 τ > 0 und man kann

die exponentielle Chebyshev-Ungleichung anwenden. Wegen der Unabhängigkeit
und identischen Verteilung der Xi gilt also insgesamt

P[Sn ≥ 0]≤ E[eτSn] = E

[
n

∏
i=1

eτXi

]
= (φX1(τ))

n = gn.

So erhalten wir die obere Schranke

limsup
n→∞

1
n

lnP[Sn ≥ 0]≤ limsup
n→∞

1
n

lngn = lng. (2)

Dass lng auch unteres Schranke ist, also

liminf
n→∞

1
n

lnP[Sn ≥ 0]≥ lng, (3)

zeigen wir nun mithilfe einer exponentiellen Maßtransformation. Die Idee, die
dahinter steht, ist die Verteilung der Xi so umzugewichten, dass sie den Erwar-
tungswert Null besitzt und somit das Ereignis {Sn ≥ 0} nicht mehr selten, sondern
typisch ist. Wir werden auf diese Idee am Ende dieses Kapitels noch genauer
eingehen.

Wir führen also eine neue Folge (Yi)i∈N von unabhängigen und identisch verteilten
Zufallsvariablen ein, die die transformierte Verteilung

PY1(dx) :=
1
g

eτxPX1(dx)

besitzen.
Zunächst weisen wir nach, dass E[Y1] = 0 und V[Y1] ∈ (0,∞) gilt. Dafür betrachten

wir φY1(t) := E[etY1], die momenterzeugende Funktion von Y1. Es gilt

φY1(t) =
∫
R

etxPY1(dx) =
1
g

∫
R

etxeτxPX1(dx) =
1
g

φX1(t + τ). (4)
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Folglich ist auch φY1 endlich und unendlich oft differenzierbar. Erinnern wir uns,
dass für jedes t ∈ R φ ′′X1

(t)> 0 ist (Lemma 2.3), erhalten wir

E[Y1] = φ
′
Y1
(0) =

1
g

φ
′
X1
(τ) = 0

und V[Y1] = E[(Y1−E[Y1])
2] = E[Y 2

1 ] = φ
′′
Y1
(0) =

1
g

φ
′′
X1
(τ) ∈ (0,∞).

(5)

Nun führen wir die Partialsummenfolge Tn = ∑
n
i=1Yi ein und beweisen

P[Sn ≥ 0] = gnE[e−τTn1{Tn≥0}] (6)

und liminf
n→∞

1
n

lnE[e−τTn1{Tn≥0}]≥ 0. (7)

Daraus ergibt sich dann nämlich direkt die untere Schranke (3):

liminf
n→∞

1
n

lnP[Sn ≥ 0] = liminf
n→∞

1
n

ln(gnE[e−τTn1{Tn≥0}])

= lng+ liminf
n→∞

1
n

lnE[e−τTn1{Tn≥0}]≥ lng.

(6) gilt, da PX1(dx) = ge−τxPY1(dx) und daher

P[Sn ≥ 0] = E[1{Sn≥0}] =
∫
R

· · ·

∫
R

1{∑n
i=1 xi≥0}PX1(dx1)

 · · ·PX1(dxn)

=
∫
R

· · ·

∫
R

1{∑n
i=1 xi≥0}ge−τx1PY1(dx1)

 · · ·ge−τxnPY1(dxn)

= gn
∫
R

· · ·

∫
R

1{∑n
i=1 xi≥0}e

−τ ∑
n
i=1 xiPY1(dx1)

 · · ·PY1(dxn)

= gnE[e−τTn1{Tn≥0}].

Für den Beweis von (7) wählen wir ein beliebiges C > 0. Dann erhalten wir wegen
der Monotonie und Linearität des Erwartungswerts

E[e−τTn1{Tn≥0}]≥ E[e−τTn1{0≤Tn≤C
√

nV[Y1]}
]≥ E[e−τC

√
nV[Y1]1{0≤Tn≤C

√
nV[Y1]}

]

= e−τC
√

nV[Y1]E[1{0≤Tn≤C
√

nV[Y1]}
] = e−τC

√
nV[Y1]P

[
Tn√

nV[Y1]
∈ [0,C]

]
.

Wegen der Monotonie des Logarithmus gilt dann auch

1
n

lnE[e−τTn1{Tn≥0}]≥
−τC

√
V[Y1]√
n

+
1
n

lnP

[
Tn√

nV[Y1]
∈ [0,C]

]
.
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Benutzt man nun (5) und den Zentralen Grenzwertsatz, erhält man

liminf
n→∞

1
n

lnE[e−τTn1{Tn≥0}]≥ liminf
n→∞

(
−τC

√
V[Y1]√
n

+
1
n

lnP

[
Tn√

nV[Y1]
∈ [0,C]

])

= liminf
n→∞

−τC
√

V[Y1]√
n

+ liminf
n→∞

1
n

ln(
1√
2π

∫
[0,C]

e−
x2
2 dx) = 0,

wobei die letzte Gleichheit sich daraus ergibt, dass

1√
2π

∫
[0,C]

e−
x2
2 dx ∈ (0,1).

Damit ist auch (7) gezeigt und wir haben somit die untere Schranke.

Aus der oberen Schranke (2) und der unteren Schranke (3) ergibt sich dann
insgesamt (1), womit der Satz bewiesen ist. �

2.6 Bemerkung
• Der Satz von Cramér sagt aus, dass sich die Wahrscheinlichkeit P[Sn ≥ nx] asym-

ptotisch wie C(n)e−nI(x) verhält, wobei C(n) eine subexponentielle Funktion ist. Er
sagt nicht aus, dass P[Sn ≥ nx] und e−nI(x) asymptotisch äquivalent sind, wie man
vielleicht auf den ersten Blick meinen könnte. Deutlich wird das, wenn man sich vor
Augen führt, dass sowohl für P[Sn ≥ nx] = e−nI(x) als auch für P[Sn ≥ nx] = 1

n3 e−nI(x)

gilt, dass lim
n→∞

1
n lnP[Sn ≥ nx] =−I(x).

• Wie man am obigen Beweis leicht nachvollziehen kann, gilt die Abschätzung
1
n lnP[Sn ≥ nx]≤−I(x), bzw. P[Sn ≥ nx]≤ e−nI(x) für alle n ∈ N und x≥ E[X1].

2.7 Beispiel
Wir wollen hier exemplarisch die Legendre-Transformierte I für eine Folge (Xi)i∈N un-
abhängiger Zufallsvariablen berechnen, die zum Parameter p Bernoulli-verteilt sind.
Zunächst berechnen wir dafür die kumulantenerzeugende Funktion von X1;

ψ(t) = lnE[etX1] = ln(pet +(1− p)e0) = ln(1− p+ pet). (8)

Für jedes x ∈ R ist nun I(x) das Supremum von

hx(t) := tx− ln(1− p+ pet).

Um dieses Supremum zu bestimmen, suchen wir Nullstellen tx der Funktion

h′x(t) = x− pet

1− p+ pet .
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Für x ∈ (0,1) erhalten wir als einzige Nullstelle tx = ln
(

x−px
p−px

)
.

Da h′′x (t) =
(

pet

1−p+pet

)2
− pet

1−p+pet < 0 für alle t ∈R gilt, liegt an der Stelle tx ein Maximum
vor und wir erhalten für alle x ∈ (0,1)

I(x) = hx(tx) = x ln
(

x
p

)
+(1− x) ln

(
1− x
1− p

)
.

In allen anderen Fällen hat h′x keine Nullstellen. Wir sehen aber

I(0) = sup
t∈R

[− ln(1− p+ pet)] =− ln(1− p)

und

I(1) = sup
t∈R

[t− ln(1− p+ pet)] =− ln
(

inf
t∈R

[
1− p+ pet

et

])
=− ln p = ln

1
p
.

Für x > 1, also x = 1+ ε mit ε > 0, berechnen wir

I(x) = sup
t∈R

[xt− ln(1− p+ pet)] =− ln
(

inf
t∈R

[
1− p+ pet

ext

])
=− ln

(
inf
t∈R

[
1− p

etx +
p

etε

])
= ∞

und für x < 0, also x =−ε mit ε > 0

I(x) =− ln
(

inf
t∈R

[
1− p+ pet

e−εt

])
=− ln

(
inf
t∈R

[
(1− p)eεt + pe(1+ε)t

])
= ∞.

Also erhalten wir insgesamt

I(x) =

{
x ln( x

p)+(1− x) ln( 1−x
1−p) für x ∈ [0,1]

∞ für x�∈[0,1]
.

In Abbildung 1 ist die berechnete Legendre-Transformierte für den Parameter p = 0,2
dargestellt. An ihr erkennen wir typische Eigenschaften einer Legendre-Transformierten,
die wir hier ohne Beweis angeben. Ein Beweis findet sich beispielsweise bei Winter
(2009) unter Lemma 1.12.

2.8 Lemma (Eigenschaften der Legendre-Transformierten im Satz von Cramér)
Sei X eine reellwertige Zufallsvariable mit µ = E[X ] und σ2 = V[X ] > 0. Die moment-
erzeugende Funktion φX von X sei endlich. Dann besitzt die Legendre-Transformierte
I(x) := supt∈R[tx− lnφX(t)] die folgenden Eigenschaften:

1. Für jedes x ∈ R gilt I(x)≥ 0. I(x) = 0 gilt genau dann, wenn x = µ.
2. I ist konvex und von unten halbstetig auf R.
3. Auf dem Intervall (ess inf(X),esssup(X)) ist I stetig und strikt konvex. Dabei ist

ess inf(X) := sup{v ∈ R|P[X < v] = 0} das wesentliche Infimum
und esssup(X) := inf{w ∈ R|P[X > w] = 0} das wesentliche Supremum der Zufallsva-
riable X .

4. Für jedes s≥ 0 ist die Niveaumenge Ns := {x ∈ R|I(x)≤ s} kompakt.
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Abbildung 1: Ratenfunktion der Ber(0,2)-Verteilung auf dem Intervall [0,1]. Außerhalb
dieses Intervalls nimmt I(x) den Wert ∞ an.

2.2 Das Prinzip großer Abweichungen

Um den Satz von Cramér in den formalen Rahmen der Theorie großer Abweichungen zu
stellen, werden wir in Anlehnung an König (2006) hier noch eine allgemeine Definition
eines Prinzips großer Abweichungen geben. Zunächst geben wir aber die Definition einer
Ratenfunktion.

2.9 Definition (Ratenfunktion)
Sei (E,d) ein metrischer Raum. Eine von unten halbstetige Funktion J : E → [0,∞],
die nicht konstant den Wert ∞ annimmt, heißt Ratenfunktion. Ist für jedes s ≥ 0 die
Niveaumenge Ns := {x ∈ E|J(x)≤ s} kompakt, so nennen wir J eine gute Ratenfunktion.

Die Legendre-Transformierte I aus dem Satz von Cramér haben wir bislang einfach
als Ratenfunktion bezeichnet. An den Eigenschaften aus Lemma 2.8 sehen wir schnell,
dass I tatsächlich eine Ratenfunktion nach obiger Definition ist. I ist sogar eine gute
Ratenfunktion.

2.10 Definition (Prinzip großer Abweichungen)
Sei (E,d) ein metrischer Raum und BE die von den offenen Mengen auf E erzeugte
σ -Algebra. Ferner sei (µn)n∈N eine Folge von Wahrscheinlichkeitsmaßen auf (E,BE) und
(γn)n∈N eine Folge positiver Zahlen mit γn→ ∞ für n→ ∞. I sei eine Ratenfunktion auf E
nach Definition 2.9.
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Dann sagt man, dass die Folge (µn)n∈N einem Prinzip großer Abweichungen mit Raten-
funktion I und Skala γn genügt, falls die folgenden Bedingungen erfüllt sind:
LDP 1 Für jede offene Menge G⊂ E gilt liminfn→∞

1
γn

ln µn(G)≥− infx∈G I(x).

LDP 2 Für jede abgeschlossene Menge F ⊂ E gilt limsupn→∞
1
γn

ln µn(F)≤− infx∈F I(x).

Man sagt, eine Folge (ξn)n∈N von E-wertigen Zufallsvariablen erfüllt ein Prinzip großer
Abweichungen, wenn die Folge ihrer Verteilungen einem solchen genügt.4

Wenn eine Folge (µn)n∈N von Wahrscheinlichkeitsmaßen ein Prinzip großer Abwei-
chungen erfüllt, heißt das insbesondere, dass für Mengen A ⊂ E mit der Eigenschaft
infx∈Å I(x) = infx∈Ā I(x) gilt µn(A)v exp(−γn(infx∈A I(x)−χn)), wobei (χn)n∈N eine Nullfol-
ge ist (vgl. König (2006) Bemerkung 2.1.2.3).

Man kann den Satz von Cramér zu einem Prinzip großer Abweichungen nach Definition
2.10 fortsetzen. So zeigt zum Beispiel König (2006) unter Satz 2.2.1:

2.11 Satz (Fortsetzung des Satzes von Cramér zu einem Prinzip gr. Abweichungen)
Sei (Xi)i∈N eine Folge von unabhängigen und identisch verteilten reellen Zufallsvariablen
mit endlicher momenterzeugender Funktion φX1 und sei Sn := ∑

n
i=1 Xi. Dann erfüllt die

Folge (1
nSn)n∈N ein Prinzip großer Abweichungen auf R mit Skala n und Ratenfunktion I.

Dabei ist I wie in Satz 2.1 die Legendre-Transformierte von lnφX1.

Wir werden auf den Beweis dieses Satzes hier verzichten, da er für die in den nächsten
Kapiteln vorgestellten Anwendungen nicht relevant ist.
Eine weitreichende Verallgemeinerung des Satz von Cramér findet man im Satz von
Gärtner-Ellis, der ebenfalls ein Prinzip großer Abweichungen beschreibt. Man findet ihn
unter anderem bei König (2006) und Bucklew (2004), aber auch in den meisten anderen
Arbeiten, die in die Theorie großer Abweichungen einführen.

2.3 Die exponentielle Maßtransformation - ein Exkurs

Im Beweis des Satzes von Cramér haben wir die Technik der exponentiellen Maßtransfor-
mation benutzt, um ein seltenes Ereignis zu einem typischen Ereignis zu machen. Diese
Technik begegnet uns oft in Beweisen von asymptotischen Aussagen über Wahrschein-
lichkeiten seltener Ereignisse. Wir werden auch in den folgenden Kapiteln immer wieder
darauf zurückgreifen. Daher soll sie an dieser Stelle etwas allgemeiner eingeführt werden.

Sei X eine reelle Zufallsvariable auf einem Wahrscheinlichkeitsraum (Ω,A,P), die die
Verteilung PX besitzt. Die momenterzeugende Funktion φX(t) = E[etX ] sei für alle t ∈ R
endlich. Dann können wir durch

PY (t)
(dx) :=

etx

φX(t)
PX(dx) (9)

4 Vgl. König (2006), Definition 2.1.1 und Bemerkung 2.1.2.4.
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die Verteilung einer neuen Zufallsvariable Y (t) definieren. Die Zufallsvariable Y (t) besitzt
somit die PX -Dichte rt(x) := etx

φX (t)
und die Verteilungsfunktion

FY (t)(a) = P[Y ≤ a] =
∫

(−∞,a)

PY (t)
(dx) =

∫
(−∞,a)

etx

φX(t)
PX(dx).

Dass PY (t)
tatsächlich eine Wahrscheinlichkeitsverteilung ist, sieht man schnell ein, wenn

man sich vor Augen führt, dass die Dichte rt für alle t ∈ R positiv ist und dass gilt∫
R

rt(x)PX(dx) =
1

φX(t)

∫
R

etxPX(dx) =
φX(t)
φX(t)

= 1.

Die transformierte Verteilung PY (t)
hängt von einem Parameter t ∈ R ab. Das gibt uns die

Möglichkeit, sie unseren Zwecken durch Wahl eines geeigneten Parameters anzupassen.
Um zu verstehen, inwieweit wir die Verteilung anpassen können, beweisen wir

2.12 Lemma
In der oben geschilderten Situation existiert für alle x ∈ (ess inf(X),esssup(X)) ein tx ∈
R, so dass gilt E[Y (tx)] = x. (Zur Erinnerung: ess inf(X) := sup{v ∈ R|P[X < v] = 0} und
esssup(X) := inf{w ∈ R|P[X > w] = 0})

Wir können also mittels exponentieller Transformation den Erwartungswert von X auf
einen beliebigen Wert x verschieben, für den P[X ≤ x]< 1 und P[X ≥ x]< 1 gilt.

BEWEIS:5 Wir suchen für jedes x ∈ (ess inf(X),esssup(X)) ein tx ∈ R, das die Gleichung
x = E[Y (tx)] = φ ′

Y (tx)(0) erfüllt. Es ist (vgl. (4))

φY (t)(s) =
∫
R

esxPY (t)
(dx) =

1
φX(t)

∫
R

e(s+t)xPX(dx) =
φX(s+ t)

φX(t)

und folglich

φ
′
Y (t)(s) =

φ ′X(s+ t)
φX(t)

sowie insbesondere

φ
′
Y (t)(0) =

φ ′X(t)
φX(t)

.

Also muss tx die Gleichung

x =
φ ′(tx)
φ(tx)

erfüllen. Dass für jedes x∈ (ess inf(X),esssup(X)) ein solches tx existiert zeigen wir, indem
wir beweisen, dass a := ess inf(X) und b := esssup(X) die Asymptoten von h(t) := φ ′(t)

φ(t)

5 Vgl. für diesen Beweis Gebennus (2006), Lemma 1.10. Gebennus lässt jedoch den Fall ess inf(X) < 0
außer Acht.
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sind. Es gilt

h(t) =
E[XetX ]

E[etX ]

≥
E[aetX ]
E[etX ]

= a

≤ E[betX ]
E[etX ]

= b,

das heißt für jedes t ∈ R ist h(t) ∈ [a,b]. Nun müssen wir noch zeigen, dass a und b nicht
nur untere und obere Schranken von h, sondern tatsächlich Asymptoten sind. Wir zeigen
hier nur, dass b Asymptote ist. Der Beweis für a läuft analog.
Wir können o. B. d. A. a ≥ 0 annehmen. Ist a < 0 können wir nämlich zu X̂ := X − a
übergehen und zeigen, dass E[X̂etX̂ ]

etX̂ die Asymptoten 0 und b−a hat. Da nämlich gilt

E[X̂etX̂ ]

etX̂
=

e−aE[XetX ]−ae−aE[etX ]

e−aE[etX ]
=

E[XetX ]

E[etX ]
−a,

hat dann E[XetX ]
E[etX ]

die Asymptoten a und b.
Sei also ε > 0 beliebig und Aε := {X > b− ε}. Dann gilt für t > 0

h(t) =
E[XetX ]

E[etX ]
≥ E[1Aε

(X)(b− ε)etX ]

E[1Aε
(X)etX ]+E[1Ac

ε
(X)etX ]

= (b− ε)
E[1Aε

(X)etX ]

E[1Aε
(X)etX ]+E[1Ac

ε
(X)etX ]

≥ (b− ε)
E[1Aε

(X)etX ]

E[1Aε
(X)etX ]+P[Ac

ε ]et(b−ε)
.

Lässt man t gegen unendlich laufen, konvergiert der letzte Term gegen b− ε. Das sieht
man folgendermaßen ein: Der Bruch E[1Aε

(X)etX ]

E[1Aε
(X)etX ]+P[Ac

ε ]et(b−ε )
konvergiert genau dann gegen

1, wenn sein Kehrwert E[1Aε
(X)etX ]+P[Ac

ε ]e
t(b−ε )

E[1Aε
(X)etX ]

gegen 1 konvergiert, wenn also P[Ac
ε ]e

t(b−ε )
E[1Aε

(X)etX ]

gegen Null konvergiert. Letzteres können wir leicht zeigen. Da P[A ε

2
]> 0 nach Definition

von esssup(X), gilt

0≤ P[Ac
ε ]e

t(b−ε)

E[1Aε
(X)etX ]

≤ P[Ac
ε ]e

t(b−ε)

E[1A ε
2
(X)etX ]

≤ P[Ac
ε ]e

t(b−ε)

P[A ε

2
]et(b− ε

2 )

=
P[Ac

ε ]

P[A ε

2
]
e−

ε

2 t

Der letzte Term konvergiert für t→ ∞ offensichlich gegen Null.
Es gilt also insgesamt

b≥ lim
t→∞

h(t)≥ b− ε.
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Da ε > 0 beliebig war, ist damit gezeigt, dass b Asymptote von h(t) ist. �

Nun wollen wir nach McNeil et al. (2005, S. 369f.) noch ein Beispiel zur exponentiellen
Transformation geben, in dem die Zufallsvariable, deren Verteilung transformiert werden
soll, eine Lebesgue-Dichte besitzt.

2.13 Beispiel
Sei X eine standardnormalverteilte Zufallsvariable. Transformieren wir die Verteilung
von X exponentiell, erhalten wir eine neue Verteilung

PY (t)
(dx) =

etx

φX(t)
PX(dx) =

etx

φX(t)
ϕ(x)λ (dx).

Die momenterzeugende Funktion der standardnormalverteilten Zufallsvariable X ist

φX(t) = e
t2
2 (vgl. z.B. McNeil et al. (2005, S. 370). Die transformierte Verteilung PY (t)

hat
also die Lebesgue-Dichte

gt(x) :=
etx

φX(t)
ϕ(x) =

1√
2π

etx− 1
2 (t

2−x2) =
1√
2π

e
1
2 (x−t)2

.

Folglich ist eine Zufallsvariable Y (t), die die transformierte Verteilung PY (t)
besitzt, nor-

malverteilt mit Erwartungswert t und Varianz 1. Wir können also durch exponentielle
Transformation den Erwartungswert einer standardnormalverteilten Zufallsvariable be-
liebig verschieben (vgl. Lemma 2.12). Im Fall der Standardnormalverteilung bleibt die
Varianz bei der Transformation unverändert.
In Kapitel 3 werden wir auf dieses Beispiel zurückkommen.
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3 Große Abweichungen im homogenen Einfaktor-Kreditrisikomodell

3.1 Das homogene Einfaktor-Kreditrisikomodell

In diesem Abschnitt stellen wir in Anlehnung an Bluhm et al. (2010) und Glasserman und
Li (2005) ein Kreditrisikomodell vor, mit dem wir dann anschließend arbeiten wollen.
Dabei legen wir einen geeigneten, nicht näher spezifizierten Wahrscheinlichkeitsraum zu
Grunde.
Wir betrachten ein Portfolio aus n Krediten, die alle die gleiche Wahrscheinlichkeit p
besitzen, in einem festen Betrachtungszeitraum (z.B. ein Jahr) auszufallen.6 In der Praxis
entspricht das in etwa einem Portfolio aus Krediten der gleichen Ratingklasse. Zusätzlich
nehmen wir an, dass bei jedem Kredit der gleiche konstante Verlust V = 1 aus einem
Ausfall resultiert.7

Den Ausfall des i-ten Kredits modellieren wir mit einer Zufallsvariable Yi. Wenn der
i-te Kredit innerhalb des Betrachtungszeitraums ausfällt, nimmt Yi den Wert 1 an, sonst
den Wert 0. Für jedes i ∈ {1 . . .n} ist Yi somit zum Parameter p Bernoulli-verteilt. Die
Zufallsvariable

Ln =
n

∑
i=1

Yi

gibt dann den Gesamtverlust in dem Portfolio an.
Unser Ziel ist es im Folgenden, Aussagen über die Wahrscheinlichkeit P(Ln≥ nq) für einen
Schwellenwert 1> q>E[Y1] = p zu treffen. Dafür müssen wir uns jedoch zuvor Gedanken
über die Abhängigkeitsstruktur in dem Portfolio machen. Sind die Yi unabhängig, ist
Ln binomialverteilt und wir können P(Ln ≥ nq) direkt berechnen oder (für großes n)
mit Hilfe des Zentralen Grenzwertsatzes abschätzen. In der Praxis ist die Annahme
der Unabhängigkeit jedoch kaum haltbar, da sich makroökonomische Einflüsse oft auf
mehrere Kreditnehmer zugleich auswirken (vgl. z.B. McNeil et al. (2005, S. 329f.)).
Die Abhängigkeit der Yi modellieren wir über die Abhängigkeit von latenten Boni-
tätsvariablen Xi. Die Bonitätsvariablen geben Auskunft über die Kreditwürdigkeit der
entsprechenden Kreditnehmer. Man nimmt an, dass der Vektor (X1, ...,Xn) multivariat nor-
malverteilt ist. Die einzelnen Einträge Xi werden standardnormalverteilt angenommen.
Sie können beispielsweise die standardisierten logarithmischen Vermögenswertrenditen
der Kreditnehmer angeben.8 Wir nehmen an, dass der i-te Kreditnehmer ausfällt, wenn
dessen Bonitätsvariable Xi am Ende des Betrachungszeitraums unter einer bestimmten
Schranke x liegt. Diese Schranke x wird genau so gewählt, dass P[Xi ≤ x] = P[Yi = 1] = p
gilt, also x = Φ−1(p). Da die Xi identisch verteilt sind und die Ausfallwahrscheinlichkeit
aller Kredite gleich ist, ergibt sich für jeden Kredit die gleiche Schwelle.

6 Wir lassen hier nur die Möglichkeiten „Ausfall“ und „kein Ausfall“ zu (two-state model). Sonstige
Übergänge von einer Ratingklasse in eine andere (rating migration), wie sie zum Beispiel bei Credit
Metrics eine Rolle spielen, lassen wir außer Acht (vgl. zu Credit Metrics Paulsen (2009)).

7 In anderen Modellen werden unterschiedliche oder sogar zufällige Verluste zugelassen (vgl. Bluhm et al.
(2010, S. 82f.)).

8 Vgl. Bluhm et al. (2010, S. 65f.) Bluhm et al. räumen jedoch ein, dass empirische Untersuchungen
zeigen, dass es passendere Verteilungen als die Normalverteilung gibt, um die logarithmische Vermö-
genswertrenditen zu beschreiben.
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Die Bonitätsvariablen X1 . . .Xn hängen nun in folgender Weise voneinander ab:
Für jedes i ∈ {1 . . .n} postulieren wir den Zusammenhang

Xi = κZ +
√

1−κ2εi, κ ∈ [0,1]. (10)

Z ist dabei eine standardnormalverteilte Zufallsvariable, die einen makroökonomischen
Einfluss abbildet, der auf alle Kreditnehmer einwirkt. Hat man ein Portfolio aus Kredi-
ten deutscher Unternehmen, kann sich in Z beispielsweise die Gesamtwirtschaftslage
Deutschlands widerspiegeln. Man bezeichnet Z als systematischen Risikofaktor. Mit der
ebenfalls standardnormalverteilten Zufallsvarible εi dagegen modelliert man Einflüsse,
die nur den i-ten Kreditnehmer treffen. Sie heißt daher auch idiosynkratischer oder spezi-
fischer Risikofaktor des i-ten Kreditnehmers. Die εi und Z sind insgesamt stochastisch
unabhängig voneinander. Man rechnet leicht nach, dass unter den oben getroffenen
Annahmen die Zufallsvariable κZ +

√
1−κ2εi tatsächlich für alle i ∈ {1 . . .n} standard-

normalverteilt ist und (10) somit Sinn ergibt.
Die Konstante κ2 quantifiziert, welcher Anteil der Schwankung der Bonitätsvariablen
durch makroökonomische Schwankungen erklärt werden kann. Genauer gesagt gilt für
jedes i ∈ {1 . . .n} wegen der Unabhängigkeit von Z und εi

V[Xi] = κ
2V[Z]+ (1−κ

2)V[εi].

Wir gehen in unserem Modell davon aus, dass κ für alle Kreditnehmer gleich groß ist.
Man rechnet leicht nach, dass κ2 genau der lineare Korrelationskoeffizient von zwei
Bonitätsvariablen Xi und X j ist.9 Aufgrund der Standardnormalverteilung von Xi und X j,
der Bilinearität der Kovarianz und der Unabhängigkeit von εi, ε j und Z gilt nämlich

ρ(Xi,X j) = cov(Xi,X j)

= κ
2cov(κ,κ)+κ

√
1−κ2cov(Z,εi)+κ

√
1−κ2cov(Z,ε j)+(1−κ

2)cov(εi,ε j)

= κ
2V(Z) = κ

2.

Wegen dieser Bedeutung der Konstante κ2 schreibt man vielfach ρ statt κ2. Unsere
Festlegung κ ≥ 0 impliziert, dass die Bonität der Kreditnehmer mit dem systematischen
Risikofaktor wächst. Der systematische Risikofaktor sollte so gewählt werden, dass diese
Festlegung sinnvoll ist.
Das beschriebene Modell ist ein Einfaktormodell, da das systematische Risiko mit nur
einem Faktor beschrieben wird. Mehrfaktormodelle berücksichtigen mehrere systemati-
sche Faktoren, die bei verschiedenen Kreditnehmern unterschiedlich gewichtet werden,
je nachdem, wie sensibel diese auf den jeweiligen Einfluss reagieren. Man bezeichnet
unser Modell als homogen, da die Konstanten κ, p und c für jeden Kreditnehmer den
selben Wert annehmen.
Zudem fällt unser Modell in die Klasse der Gauß-Copula-Modelle. Der Name rührt

9 Man beachte, dass κ2 die Korrelation von Bonitätsvariablen angibt und nicht die Korrelation von Ausfal-
lindikatoren. Wegen des Zusammenhangs der Bonität mit dem Vermögenswert eines Kreditnehmers
bezeichnet man κ2 auch als asset-Korrelation, während man die Korrelation der Ausfallindikatoren als
default-Korrelation oder Ausfallkorrelation bezeichnet. Zur Ausfallkorrelation vgl. Bluhm et al. (2010, S.
56-58).
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daher, dass die sogenannte Gauß-Copula in unserem Modell die Abhängigkeit der
Bonitätsvariablen modelliert, indem sie die Standardnormalverteilungen der Xi zu der
multivariaten Normalverteilung des Vektors (X1, . . . ,Xn) zusammenführt. Die Benutzung
der Gauß-Copula bei der Modellierung der Abhängigkeit von Kreditnehmern wurde
im Zusammenhang mit der Subprime-Krise scharf kritisiert (vgl. z.B. Salmon (2009)).
Gegenstand der Kritik war unter anderem die unzureichende Berücksichtigung von
Extremereignissen, die mehrere Kreditnehmer gleichzeitig treffen. Selbst wenn nämlich
die Bonitätsvariablen zweier Kreditnehmer durch die Gauß-Copula mit starker Korre-
lation κ2 6= 1 gekoppelt sind, treten in dem Modell extreme Verluste der Kreditnehmer,
die dann häufig zu einem Ausfall führen,(fast)unabhängig voneinander auf. Das ist
natürlich von der Realität weit entfernt.10 Dennoch soll das Modell hier verwendet
werden, da sich darin interessante Beobachtungen machen lassen, die vielleicht auf
andere Copula-Modelle übertragbar sind.

3.2 Unabhängige Kredite

Im Fall κ = 0 sind die Bonitätsindikatoren Xi und damit auch die Ausfallindikatoren
Yi unabhängig. Diesen Fall wird man allerdings in der Praxis kaum antreffen (vgl. z.B.
McNeil et al. (2005, S. 329f.)). Wie oben bereits erwähnt ist die Zufallsvariable Ln als
Summe unabhängiger Bernoulli-verteilter Zufallsvariablen in diesem Fall binomialverteilt
zu den Parametern n und p. Das starke Gesetz der großen Zahlen besagt in diesem
Fall, dass Ln

n P-fast sicher gegen die Ausfallwahrscheinlichkeit p konvergiert. Aus dem
schwachen Gesetz der großen Zahlen folgt für beliebige Werte δ > 0

P[Ln ≥ n(p+δ )]→ 0 für n→ ∞. (11)

Mit dem Satz von Cramér können wir auch eine asymptotische Abschätzung treffen, wie
schnell die Wahrscheinlichkeit in (11) gegen Null konvergiert. Danach gilt nämlich für
alle δ ∈ (0,1− p]

lim
n→∞

1
n

lnP[Ln ≥ n(p+δ )] =−I(p+δ ),

wobei

I(x) = x ln
(

x
p

)
+(1− x) ln

(
1− x
1− p

)
,

da die Yi Bernoulli-verteilt sind (vgl. Beispiel 2.7). P[Ln ≥ n(p+ δ )] verhält sich also

asymptotisch wie C(n)e−n
(
(p+δ ) ln( p+δ

p )+(1−p−δ ) ln( 1−p−δ

1−p )
)
, wobei C(n) eine subexponentiel-

le Funktion ist. Es gilt sogar für alle n ∈ N

P[Ln ≥ n(p+δ )]≤ e−n
(
(p+δ ) ln( p+δ

p )+(1−p−δ ) ln( 1−p−δ

1−p )
)

(vgl. Bemerkung 2.6). Könnte man sich also in der Praxis ein Portfolio aus n völlig
unabhängigen Krediten zusammenstellen, die jeweils mit Wahrscheinlichkeit p ausfallen,

10 Die Gauß-Copula erzeugt asymptotische Unabhängigkeit, vgl. u.a. Cottin und Döhler (2009, S. 281),
Bluhm et al. (2010 S. 343f.).
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so wüsste man, dass die Wahrscheinlichkeit, dass der Portfolioverlust um mehr als
einen gewissen Wert nδ > 0 vom erwarteten Portfolioverlust np abweicht, den Wert
e−nI(p+δ ) (I wie oben angegeben) nicht übersteigt. Mit wachsender Portfoliogröße fällt
die Wahrscheinlichkeit, dass der Portfolioverlust um mehr als einen gewissen Wert nδ > 0
vom erwarteten Portfolioverlust np abweicht, mit Rate I(p+δ ) exponentiell gegen Null.
Natürlich kann man im unabhängigen Fall P[Ln ≥ n(p+δ )] auch direkt berechnen oder
mittels des Zentralen Grenzwertsatzes abschätzen.

3.3 Abhängige Kredite

In diesem Abschnitt werden wir versuchen, auch für den (realistischeren) Fall abhängiger
Kredite (κ > 0) Aussagen über die Wahrscheinlichkeit P[Ln ≥ nq], insbesondere für sehr
große Werte von n bzw. n→ ∞, zu treffen. Das machen wir wiederum vor allem über
asymptotische Resultate, aus denen wir dann Approximationen für große Werte von n
ableiten können. Da Kreditportfolios häufig sehr groß sind (vgl. z.B. McNeil et al. (2005,
S. 330)), ist das für die Praxis durchaus von Interesse. Es stellt sich jedoch das Problem,
dass man den Approximationsfehler oft nicht quantifizieren kann.
Im Fall abhängiger Kredite kann man die Wahrscheinlichkeiten P[Ln ≥ nq] nicht mehr ein-
fach berechnen, sondern ist auf Abschätzungen und Simulationen angewiesen. Bedingt
unter dem systematischen Faktor Z sind die Ausfallindikatoren Yi auch im Fall abhängiger
Kredite unabhängig und identisch Bernoulli-verteilt. Die bedingte Ausfallwahrscheinlich-
keit ist

p(Z) = P[Y1 = 1|Z] = P[X1 >−Φ
−1(p)|Z]

= P
[
κZ +

√
1−κ2ε1 >−Φ

−1(p)|Z
]

= P
[

ε1 >
−κZ−Φ−1(p)√

1−κ2
|Z
]
= Φ

(
κZ +Φ−1(p)√

1−κ2

)
.

(12)

Damit ist Ln bedingt unter Z binomialverteilt zu den Parametern n und p(Z), d.h.
P[Ln = k|Z = z] =

(n
k

)
p(z)k(1− p(z))n−k Die unbedingte Verteilung von Ln erhalten wir,

indem wir über die Verteilung von Z integrieren. Da p eine bijektive Abbildung von den
reellen Zahlen in das Intervall (0,1) ist, können wir ebenso gut über die Verteilung von
p(Z) integrieren und erhalten

P[Ln = k] =
(

n
k

) ∫
(0,1)

rk(1− r)n−kdF(r) (13)

und folglich

P[Ln ≥ nq] =
n

∑
k=nq

(
n
k

) ∫
(0,1)

rk(1− r)n−kdF(r). (14)

Dabei bezeichnet F die Verteilungsfunktion der Zufallsvariable p(Z). Da p streng monoton
wachsend ist und surjektiv auf das Intervall (0,1) abbildet, berechnen wir diese zu

F(x) = P[p(Z)≤ x] = P[Z ≤ p−1(x)] = 1{0<x<1}(x)

√
1−κ2Φ−1(x)−Φ−1(p)

κ
+1{x≥1}(x).
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Die Verteilung von p(Z) bezeichnet man als Probit-Normalverteilung oder Vasicek-
Verteilung. Die Integrale in (13) und (14) kann man beispielsweise mit Hilfe von Monte
Carlo Methoden (vgl. Kapitel 4) numerisch berechnen. Für den Grenzfall n→ ∞ können
wir die Verteilung von Ln jedoch auch ohne derartige Rechnungen direkt angeben, wie
wir gleich in (15) sehen werden.
Aus dem starken Gesetz der großen Zahlen folgt

E
[
1{ lim

n→∞

Ln
n =p(Z)}|Z

]
= P

[
lim
n→∞

Ln

n
= p(Z)|Z

]
= 1 P-fast sicher.

Daraus resultiert wiederum

P
[

lim
n→∞

Ln

n
= p(Z)

]
= E

[
1{ lim

n→∞

Ln
n =p(Z)}

]
= E

[
E
[
1{ lim

n→∞

Ln
n =p(Z)}|Z

]]
= E[1] = 1.

Also konvergiert Ln
n hier nicht wie im unabhängigen Fall fast sicher gegen eine Konstante,

sondern gegen die Zufallsvariable p(Z). Für hinreichend großes n ist folglich der Anteil
an Krediten, die in einem Portfolio der Größe n ausfallen, für einen gegebenen makro-
ökonomischen Faktor Z = z approximativ gleich p(z).
Da aus fast sicherer Konvergenz schon Konvergenz in Verteilung folgt, können wir zudem
für alle 0 < q < 1 asymptotisch abschätzen

lim
n→∞

P[Ln ≤ nq] = P[p(Z)≤ q] = Φ

(√
1−κ2Φ−1(q)−Φ−1(p)

κ

)
. (15)

Während also im unabhängigen Fall für alle δ > 0 die Wahrscheinlichkeit P[Ln ≥ n(p+
δ )] für wachsendes n gegen Null konvergiert, konvergiert sie im abhängigen Fall ge-

gen die echt positive Konstante 1−Φ

(√
1−κ2Φ−1(q)−Φ−1(p)

κ

)
. Aus der Grenzverteilung

Fκ,p(q) = lim
n→∞

P[Ln ≤ nq] von Ln können wir durch Ableiten eine Grenzdichte fκ,p der

Zufallsvariable Ln herleiten:

fκ,p(q) =
dFκ,p(q)

dq

=
1√
2π

exp
(
− 1

2κ2

(√
1−κ2Φ

−1(q)−Φ
−1(p)

)2
)√

1−κ2

κ

(
1√
2π

exp
(
−1

2
(Φ−1(q))2

))−1

=

√
1−κ2

κ
exp
(

1
2
(Φ−1(q))2− 1

2κ2

(√
1−κ2Φ

−1(q)−Φ
−1(p)

)2
)
.

In Abbildung 2 ist die Grenzdichte für κ = 0.5 und p = 0.2 dargestellt. Man kann deutlich
eine schwere rechte Flanke erkennen. Auch für einen festen, großen Wert n weist die
Dichtefunktion eine schwere rechte Flanke auf. Diese resultiert aus der Abhängigkeit der
Ausfallindikatoren. Für unabhängige Ausfallindikatoren ist die Dichtefunktion nämlich
annähernd symmetrisch, da Ln in diesem Fall binomialverteilt und damit für großes n
approximativ normalverteilt ist (vgl. McNeil et al. (2005, S. 330)).
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Abbildung 2: Grenzdichte für κ = 0.5, p = 0.2

Unser Ziel ist es nun, wie im Satz von Cramér eine asymptotische Abschätzung dafür zu
finden, wie schnell die Wahrscheinlichkeiten seltener Ereignisse gegen Null konvergieren,
wenn n gegen ∞ wächst. Wie wir gesehen haben, konvergiert allerdings die Wahrschein-
lichkeit für das Ereignis {Ln ≥ nq} im abhängigen Fall nicht gegen Null, sondern gegen
eine positive Konstante. Wollen wir, dass das Ereignis {Ln ≥ nq} selten wird, wenn n
wächst, müssen wir mit wachsendem n entweder die Korrelation κ2 gegen Null fallen
lassen, die Ausfallwahrscheinlichkeit p gegen Null fallen lassen, oder die Schwelle q
gegen Eins wachsen lassen. Wir wollen uns hier mit dem zweiten und dritten Fall be-
schäftigen. Der zweite ist interessant, wenn man in sehr großen Portfolios aus sehr hoch
gerateten Krediten die Wahrscheinlichkeit dafür bestimmen möchte, dass mehr Kredite
ausfallen als erwartet. Der dritte ist interessant, wenn man in sehr großen Portfolios die
Wahrscheinlichkeit dafür bestimmen möchte, dass deutlich mehr Kredite ausfallen als
erwartet. Beim ersten Fall geht man von einer sehr kleinen Korrelation zwischen den
Kreditnehmern aus. Dieser Fall soll hier nicht betrachtet werden. Für p∈ (0, 1

2) behandeln
ihn Glassermann und Li (2005) im Zusammenhang mit Importance Sampling in Theorem
2 für verschiedene Geschwindigkeiten, mit denen κ gegen Null konvergiert. Für den
Fall κ = a

nα mit α > 1
2 und a> 0 ermitteln sie genau das Resultat aus dem Satz von Cramér.
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Fall 3: Große Schwelle q

Zunächst behandeln wir in Anlehnung an Pham (2010) und Glasserman und Li (2005)
den dritten Fall. Wir benötigen eine Folge von Schwellen (qn)n∈N ∈ (0,1)N, die für wach-
sendes n von unten gegen Eins konvergiert. Die Wahl qn = Φ(c

√
lnn) mit 0 < c <

√
2

erweist sich als besonders geeignet. Dieser Fall gibt uns nämlich ein interessantes Resultat,
das wir auch später im Zusammenhang mit Importance Sampling nutzen können.

3.1 Satz
Sei qn :=Φ(c

√
lnn) mit 0< c<

√
2. Dann gilt in dem beschriebenen homogenen Einfaktor-

Kreditrisikomodell

lim
n→∞

1
lnn

lnP[Ln ≥ nqn] =−
c2

2
1−κ2

κ2 . (16)

Dieser Satz besagt, dass sich die Wahrscheinlichkeit P[Ln ≥ nqn] für große n annähernd so

verhält wie C2(n)n
− c2

2
1−κ2

κ2 , wobei C2(n) hier eine Funktion ist, für die gilt lim
n→∞

lnC2(n)
lnn = 0,

über deren nähere Gestalt jedoch keine Aussage gemacht wird. Auffällig ist, dass die
Ausfallwahrscheinlichkeit p in dem Grenzwert (16) keine maßgebliche Rolle spielt.
Sie kann die Geschwindigkeit, mit der die Wahrscheinlichkeit P[Ln ≥ nqn] für große
n gegen Null fällt, nur beeinflussen, indem sie in die Funktion C2(n) einfließt, die
jedoch für große n nur eine untergeordnete Rolle spielt, da sie subpolynomiell wächst.
Die Korrelation κ2 hingegen übt einen großen Einfluss aus. Weisen die Bonitäten der

Kreditnehmer eine geringe Abhängigkeit voneinander auf, fällt C2(n)n
− c2

2
1−κ2

κ2 für große
n deutlich schneller gegen Null, als wenn sie in hohem Grade voneinander abhängen.
Der Ausfall vieler Kredite in einem Portfolio ist also deutlich wahrscheinlicher, wenn die
Bonitäten der Kreditnehmer stark voneinander abhängen. Große Ausfälle resultieren
demnach hauptsächlich aus einer schlechten wirtschaftlichen Gesamtlage, die sich im
systematischen Risikofaktor niederschlägt (vgl. Pham (2010, S. 41)).
BEWEIS:11 Wir zeigen zunächst die untere Schranke

liminf
n→∞

1
lnn

lnP[Ln ≥ nqn]≥−
c2

2
1−κ2

κ2 . (17)

Nach der Definition der bedingten Wahrscheinlichkeit gilt

P[Ln ≥ nqn]≥ P[Ln ≥ nqn, p(Z)≥ qn] = P[Ln ≥ nqn|p(Z)≥ qn]P[p(Z)≥ qn]. (18)

Wir definieren nun für jedes n≥ 1

zn := p−1(qn) =

√
1−κ2c

√
lnn−Φ−1(p)
κ

. (19)

11 Dieser Beweis orientiert sich an den Beweisen von Pham (2010)(dort unter Theorem 6.1) und Glasser-
man und Li (2005) (dort unter Theorem 3). Der Beweis von Pham ist jedoch bei den asymptotischen
Abschätzungen zum Teil ungenau, der Beweis von Glasserman und Li lässt den Fall, dass die Ausfall-
wahrscheinlichkeit p kleiner als 0,5 ist, außer Acht. Daher ist der hier geführte Beweis als Überarbeitung
der Beweise von Pham und Glasserman und Li zu verstehen.
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Weil p streng monoton wachsend ist, gilt {P(Z)≥ qn}= {Z ≥ p−1(qn)}= {Z ≥ zn}.
Da zudem der Verlust Ln wächst, wenn der systematische Risikofaktor Z größere Werte
annimmt, erhalten wir

P[Ln ≥ nqn|p(Z)≥ qn] = P[Ln ≥ nqn|Z ≥ zn]

≥ P[Ln ≥ nqn|Z = zn] = P[Ln ≥ nqn|p(Z) = qn].
(20)

Zusammen mit (18) ergibt sich dann

P[Ln ≥ nqn]≥ P[Ln ≥ nqn|p(Z) = qn]P[Z ≥ zn].

Gegeben p(Z) = qn ist Ln binomialverteilt zu den Parametern n und qn. Für binomialver-
teilte Zufallsvariablen führt Slud (1977, S. 404) die folgende Ungleichung an:

3.2 Lemma (Slud)
Sei Y eine Zufallsvariable, die zu den Parametern n und p0 binomialverteilt ist. Dann gilt
für alle k ≤ np0

P[Y ≥ k]≥ 1−Φ

(
k−np0√

np0

)
. (21)

BEWEIS: Slud nennt diese Ungleichung als Folgerung aus zwei anderen Ungleichungen,
die wir hier nicht beweisen werden:

1. Für alle k ∈ N0 gilt 1−Pλ (k−1)≥ 1−Φ(k−λ√
λ
) (nach Bohmann 1963).

2. Für alle k ≤ n2 p0
n+1 gilt 1−Pnp0(k)≤ 1−Bn,p0(k) (nach Anderson/Samuels 1965).

Dabei bezeichnet Pλ die kumulierte Poisson-Verteilung zum Parameter λ ≥ 0, also
Pλ (k) = ∑

k
j=0

λ j

j! e−λ und Bn,p0 die kumulierte Binomialverteilung zu den Parametern

n ∈ N und p0 ∈ [0,1], also Bn,p0(k) = ∑
k
j=0
(n

j

)
p j

0(1− p0)
n− j.

Aus k ≤ np0 folgt k−1≤ np0−1≤ n2 p0−np0−n−1
n+1 ≤ n2 p0

n+1 . Daher können wir beide Unglei-
chungen anwenden und erhalten für k ≤ np0:

1−Bn,p0(k−1)≥ 1−Pnp0(k−1)≥ 1−Φ

(
k−np0√

np0

)
,

also (21).

Mit dieser Ungleichung können wir nun in unserem Fall abschätzen

P[Ln ≥ nqn|p(Z) = qn]≥ 1−Φ

(
nqn−nqn√

nqn

)
=

1
2
.

Für den gesuchten Grenzwert erhalten wir nun, wenn wir uns erinnern, dass Z standard-
normalverteilt ist,

liminf
n→∞

1
lnn

lnP[Ln ≥ nqn]≥ liminf
n→∞

1
lnn

ln
(

1
2
P[Z ≥ zn]

)
= liminf

n→∞

1
lnn

ln
1
2
+ liminf

n→∞

1
lnn

lnP[Z ≥ zn] = liminf
n→∞

1
lnn

lnP[Z ≥ zn]

= liminf
n→∞

1
lnn

ln(1−Φ(zn)).
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Um dies weiter zu berechnen nutzen wir die Abschätzung

1−Φ(x)v
ϕ(x)

x
für x→ ∞,

die beispielsweise Feller (1968) auf Seite 175 beweist. Wir geben den Beweis im Anhang
unter 6.3. Da zn→ ∞ für n→ ∞, erhalten wir

liminf
n→∞

1
lnn

ln(1−Φ(zn)) = liminf
n→∞

1
lnn

ln
ϕ(zn)

zn

= liminf
n→∞

1
lnn

((
ln

κ√
1−κ2c

√
lnn−Φ−1(p)

)

+ ln

 1√
2π

exp

−1
2

(√
1−κ2c

√
lnn−Φ−1(p)
κ

)2


= liminf
n→∞

 lnκ

lnn
−

ln
(√

1−κ2c
√

lnn−Φ−1(p)
)

lnn

− ln
√

2π

lnn
− 1

2lnn

(√
1−κ2c

√
lnn−Φ−1(p)
κ

)2


=−c2

2
1−κ2

κ2 .

Damit ist die untere Schranke (17) gezeigt.
Nun zeigen wir die obere Schranke

limsup
n→∞

1
lnn

lnP[Ln ≥ nqn]≤−
c2

2
1−κ2

κ2 . (22)

Da die Yi unter der Bedingung Z = z unabhängig und zum Parameter p(z) Bernoulli-
verteilt sind, berechnen wir analog zu (8) in Beispiel 2.7 die bedingte kumulantenerzeu-
gende Funktion der Yi,

ψ(t,z) = lnE[etYi|Z = z] = ln(1− p(z)+ p(z)et).

Mit Hilfe der exponentiellen Chebyshev-Ungleichung für bedingte Wahrscheinlichkeiten
(vgl. Bemerkung 6.2) erhalten wir für alle t ≥ 0

P[Ln ≥ nqn|Z]≤ e−tnqnE[etLn|Z] P-fast sicher

und, wenn wir berücksichtigen, dass die Yi unter Z bedingt unabhängig und identisch
verteilt sind, weiter

e−tnqnE[etLn|Z] = e−tnqnE[
n

∏
i=1

Yi|Z] = e−tnqn(E[etY1|Z])n = e−n(tqn−ψ(t,Z)) P-fast sicher.

(23)
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Da (23) für alle t ≥ 0 gilt, haben wir also

P[Ln ≥ nqn|Z]≤ exp

(
−nsup

t≥0
[tqn−ψ(t,Z)]

)
P-fast sicher.

Wegen der Linearität des Erwartungswerts können wir daraus folgern, dass

P[Ln ≥ nqn] = E[P[Ln ≥ nqn|Z]]≤ E

[
exp

(
−nsup

t≥0
[tqn−ψ(t,Z)]

)]
. (24)

im Folgenden wollen wir die Funktion

Fn(z) :=−nsup
t≥0

[tqn−ψ(t,z)]

genauer untersuchen.
Zunächst berechnen wir wie in Beispiel 2.7

sup
t∈R

[tqn−ψ(t,z)] = qn ln
qn

p(z)
+(1−qn) ln

1−qn

1− p(z)
,

wobei t0 := ln qn−p(z)qn
p(z)−p(z)qn

der eindeutige Maximierer von tqn−ψ(t,z)ist.

t0 ≥ 0 gilt nun genau dann, wenn p(z) ≤ qn ist. Für qn < p(z) ist t0 negativ. Da das
Maximum bei t0 das einzige Extremum der für alle q und z stetigen Funktion (t 7→
tq−ψ(t,z)) ist, wird in diesem Fall das Maximum der Funktion über alle t ≥ 0 an der
Randstelle t = 0 angenommen und es ist supt≥0[tqn−ψ(t,z)] = 0. Insgesamt haben wir
also

sup
t≥0

[tqn−ψ(t,Z)] = 1{p(z)≤qn}

(
qn ln

qn

p(z)
+(1−qn) ln

1−qn

1− p(z)

)
= 1{z≤zn}

(
qn ln

qn

p(z)
+(1−qn) ln

1−qn

1− p(z)

)
und somit

Fn(z) =−n1{z≤zn}

(
qn ln

qn

p(z)
+(1−qn) ln

1−qn

1− p(z)

)
.

Wir stellen fest, dass Fn für z < zn zweimal stetig differenzierbar ist und dass für alle
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z < zn gilt

F ′n(z) =−n
(
− qn

p(z)
+

1−qn

1− p(z)

)
p′(z)

= n
(

qn

p(z)
− 1−qn

1− p(z)

)
ϕ

(
κz+Φ−1(p)√

1−κ2

)
κ√

1−κ2

F ′′n (z) = n

((
− qn

(p(z))2 −
1−qn

(1− p(z))2

)(
ϕ

(
κz−Φ−1(p)√

1−κ2

)
κ√

1−κ2

)2

+

(
qn

p(z)
− 1−qn

1− p(z)

)(
κ√

1−κ2

)2(
−κz+Φ−1(p)√

1−κ2

)
ϕ

(
κz+Φ−1(p)√

1−κ2

))

= nϕ

(
κz+Φ−1(p)√

1−κ2

)(
κ√

1−κ2

)2[(
− qn

(p(z))2 −
1−qn

(1− p(z))2

)
ϕ

(
κz+Φ−1(p)√

1−κ2

)
+

(
qn

p(z)
− 1−qn

1− p(z)

)(
−κz+Φ−1(p)√

1−κ2

)]
,

wenn man berücksichtigt, dass die Ableitungen von p(z)

p′(z) =
κ√

1−κ2
ϕ

(
κz+Φ−1(p)√

1−κ2

)
und p′′(z) =−κz+Φ−1(p)√

1−κ2

(
κ√

1−κ2

)2

ϕ

(
κz+Φ−1(p)√

1−κ2

)
sind.
Mit Hilfe der Ableitungen erhalten wir einige Eigenschaften der Funktion Fn.
Für alle n ∈ N gilt:
• Fn(z) ist für alle z ∈ R nichtpositiv, denn für t = 0 ist tqn−ψ(t,z) = 0 und damit ist

supt≥0[tqn−ψ(t,z)]≥ 0 und Fn(z) =−nsupt≥0[tqn−ψ(t,z)]≤ 0. Der Maximalwert 0
wird für alle z≥ zn angenommen.
• Fn ist stetig differenzierbar. In den Stellen z 6= zn ist das offensichtlich, für die Stelle

zn sieht man das daran, dass

lim
z↗zn

Fn(z) = 0 = Fn(zn)

und lim
z↗zn

F ′n(z) = 0 = lim
z↘zn

F ′n(z).

• Fn ist monoton wachsend, denn F ′n(z) ist für jedes z ∈ R nichtnegativ.
• Fn ist konkav. Für z < zn ist nämlich F ′′n (z) negativ und für z≥ zn nimmt die Funk-

tion F ′n(z) konstant ihren Minimalwert 0 an, womit insgesamt F ′n monoton fal-
lend ist. Dass F ′′n (z) für z < zn, d.h. für p(z)< qn, negativ ist, ist offensichtlich für
−κz+Φ−1(p)√

1−κ2 ≤ 0. Ist −κz+Φ−1(p)√
1−κ2 > 0, benutzt man die Abschätzung x < ϕ(x)

Φ(−x) , die für
alle x > 0 gilt und direkt aus der Abschätzung von Feller (vgl. Anhang 6.3) folgt.
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Damit gilt

F ′′n (z)≤ nϕ

(
κz+Φ−1(p)√

1−κ2

)(
κ√

1−κ2

)2[(
− qn

(p(z))2 −
1−qn

(1− p(z))2

)
ϕ

(
κz+Φ−1(p)√

1−κ2

)

+

(
qn

p(z)
− 1−qn

1− p(z)

)
1

Φ(κz+Φ−1(p)√
1−κ2 )

ϕ

(
−κz+Φ−1(p)√

1−κ2

)
= n

(
ϕ

(
κz+Φ−1(p)√

1−κ2

))2(
κ√

1−κ2

)2[
− 1−qn

(1− p(z))2 −
1−qn

(1− p(z))p(z)

]
< 0,

wenn man zusätzlich berücksichtigt, dass p(z) = Φ(κz+Φ−1(p)√
1−κ2 ) ist und dass ϕ sym-

metrisch ist.
Diese Eigenschaften werden uns bei unseren weiteren Überlegungen nützlich sein.
In (24) haben wir bereits

P[Ln ≥ nqn]≤ E[eFn(Z)]

erhalten. Unser Ziel ist es, dies weiter nach oben abzuschätzen. Dafür arbeiten wir
mit einer exponentiellen Maßtransformation, wie wir sie bereits in Kapitel 2 kennen-
gelernt haben. Wir transformieren die Standardnormalverteilung von Z exponentiell
mit Parameter µ ∈ R, den es später geschickt zu wählen gilt. Dadurch erhalten wir eine
Normalverteilung mit Erwartungswert µ und Varianz 1 (vgl. Beispiel 2.13). Zµ sei nun
eine Zufallsvariable, die gemäß dieser transformierten Verteilung verteilt ist:

PZµ (dx) = exp
(

µx− 1
2

µ
2
)
PZ(dx).

Dann gilt

E[exp(Fn(Z))] = E
[

exp
(

Fn(Zµ)−µZµ +
1
2

µ
2
)]

.

Da Fn konkav ist, gilt weiter

Fn(Zµ)≤ Fn(µ)+F ′n(µ)(Zµ −µ),

so dass wir wegen der Monotonie der Exponentialfunktion und des Erwartungswerts
abschätzen können

E[exp(Fn(Z))]≤ E
[

exp
(

Fn(µ)+F ′n(µ)(Zµ −µ)−µZµ +
1
2

µ
2
)]

= E
[

exp
(

Fn(µ)+(F ′n(µ)−µ)Zµ −µF ′n(µ)+
1
2

µ
2
)]

.

(25)

Wenn wir nun µ = µn so wählen, dass µn ein Fixpunkt von F ′n ist, hängt der Term, dessen
Erwartungswert in (25) berechnet werden soll, nicht mehr von Zµ ab und ist somit
konstant. Damit vereinfacht sich unsere Abschätzung zu

E[exp(Fn(Z))]≤ exp
(

Fn(µn)−
1
2

µ
2
n

)
.
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Wir müssen jedoch noch zeigen, dass tatsächlich ein µn existiert, das die Fixpunktglei-
chung

F ′n(µn)−µn = 0 (26)

löst. Dafür bedienen wir uns des Zwischenwertsatzes.
Wegen der Nichtnegativität von F ′n ist F ′n(µ)− µ > 0 für µ < 0. Für µ > max{zn,0} ist
F ′n(µ) = 0 und damit F ′n(µ)−µ < 0. Da die Funktion (µ 7→ F ′n(µ)−µ) stetig ist, muss also
ein µ ∈ [0,max{zn,0}] existieren, das (26) löst.

Insgesamt haben wir jetzt die Abschätzung

P[Ln ≥ nqn]≤ exp
(

Fn(µn)−
1
2

µ
2
n

)
. (27)

Wenn wir zeigen können, dass µn v zn, sind wir fertig, denn dann ist wegen der Nichtpo-
sitivität von Fn

limsup
n→∞

1
lnn

lnP[Ln ≥ nqn]≤ limsup
n→∞

1
lnn

Fn(µn)− limsup
n→∞

1
lnn

1
2

µ
2
n

≤−1
2

limsup
n→∞

µ2
n

lnn
=−1

2
limsup

n→∞

z2
n

lnn

=−1
2

limsup
n→∞

1
lnn

(√
1−κ2c

√
lnn−Φ−1(p)
κ

)2

=−c2

2
1−κ2

κ2 .

(28)

Wir zeigen also, dass für jedes hinreichend kleine ε > 0 ein n0 ∈ N existiert, so dass
zn(1− ε) < µn < zn für alle n ≥ n0. Da die Funktion (µ 7→ F ′n(µ)− µ) als Summe von
zwei monoton fallenden Funktionen monoton fallend ist und µn eine Nullstelle dieser
Funktion ist, genügt es hierfür zu zeigen, dass

F ′n(zn(1− ε))− zn(1− ε)> 0 (29)
und F ′n(zn)− zn < 0. (30)

Die Ungleichung (30) ist erfüllt, da F ′n(zn) = 0 für alle n ∈ N und zn→ ∞ für n→ ∞.
Um die Ungleichung (29) zu zeigen, bedarf es größeren Aufwands.
Wir erinnern uns, dass

F ′n(zn(1− ε)) = n
(

p(zn)

p(zn(1− ε))
− 1− p(zn)

1− p(zn(1− ε))

)
ϕ

(
κzn(1− ε)+Φ−1(p)√

1−κ2

)
κ√

1−κ2

und zeigen

lim
n→∞

F ′n(zn(1− ε))

g(n)
= const. > 0

und
zn(1− ε)

g(n)
= 0
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mit

g(n) := n1− c2
2 (1−ε)2

exp
(
−cε(1− ε)Φ−1(p)√

1−κ2

√
lnn
)
> 0,

woraus dann direkt (29) folgt.

Da zn→ ∞ für n→ ∞, erhalten wir

lim
n→∞

p(zn)

p(zn(1− ε))
= lim

n→∞
Φ

(
κzn +Φ−1(p)√

1−κ2

)(
Φ

(
κzn(1− ε)+Φ−1(p)√

1−κ2

))−1

= 1

und mit Hilfe der Abschätzung 1−Φ(x)v ϕ(x)
x für x→ ∞ (Satz 6.3) außerdem

lim
n→∞

1− p(zn)

1− p(zn(1− ε))
= lim

n→∞

(
κzn(1− ε)+Φ−1(p)

)
ϕ

(
κzn+Φ−1(p)√

1−κ2

)
(κzn +Φ−1(p))ϕ

(
κzn(1−ε)+Φ−1(p)√

1−κ2

)
= lim

n→∞

κzn(1− ε)+Φ−1(p)
κzn +Φ−1(p)

exp
(
−1

2
z2

n

(
−κ

2
ε

2 +2κ
2
ε +

2κεΦ−1(p)
zn

))
= 0.

Die letzte Gleichheit gilt, da −κ2ε2 +2κ2ε > 0 für 0 < ε < 2.

Weiter berechnen wir mit Hilfe der Definition von zn in (19)

ϕ

(
κzn(1− ε)+Φ−1(p)√

1−κ2

)
= ϕ

(
c(1− ε)

√
lnn+

Φ−1(p)ε√
1−κ2

)
=

1√
2π

n−
c2
2 (1−ε)2

exp
(
−cε(1− ε)Φ−1(p)√

1−κ2

√
lnn
)

exp

(
−1

2

(
Φ−1(p)ε√

1−κ2

)2
)
.

Damit gilt dann

lim
n→∞

 F ′n(zn(1− ε))

n1− c2
2 (1−ε)2 exp

(
−cε(1−ε)Φ−1(p)√

1−κ2

√
lnn
)
=

1√
2π

κ√
1−κ2

exp

(
−1

2

(
Φ−1(p)ε√

1−κ2

)2
)
> 0.

Zu zeigen ist noch

lim
n→∞

 zn(1− ε)

n1− c2
2 (1−ε)2 exp

(
−cε(1−ε)Φ−1(p)√

1−κ2

√
lnn
)


= lim
n→∞


√

1−κ2c(1−ε)
κ

√
lnn− Φ−1(p)(1−ε)

κ
(1− ε)

n1− c2
2 (1−ε)2 exp

(
−cε(1−ε)Φ−1(p)√

1−κ2

√
lnn
)
 !

= 0.

(31)

Für b := −cε(1−ε)Φ−1(p)√
1−κ2 ≥ 0, d.h. p ≤ 1

2 , gilt (31), da in diesem Fall exp
(

b
√

lnn
)

für

wachsendes n gegen unendlich divergiert (bzw. für p = 1
2 gegen 1 konvergiert) und
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zudem
√

lnn langsamer gegen unendlich divergiert als jede positive Potenz von n. Für
b < 0, d.h. p > 1

2 sieht man (31) folgendermaßen ein:

lim
n→∞

 zn(1− ε)

n1− c2
2 (1−ε)2 exp

(
b
√

lnn
)


= lim
n→∞

1− ε

κ

− Φ−1(p)√
n1− c2

2 (1−ε)2

+ c
√

1−κ2

√
lnn√

n1− c2
2 (1−ε)2

 1√
n1− c2

2 (1−ε)2

exp(−b
√

lnn).

Da lnn langsamer konvergiert als jede positive Potenz von n, konvergiert der Faktor in
den eckigen Klammern gegen Null. Wir berechnen weiter

lim
n→∞

1√
n1− c2

2 (1−ε)2

exp(−b
√

lnn) = lim
n→∞

exp
(√

lnn
[
−
(

1
2
− c2

4
(1− ε)2

)√
lnn+b

])
= 0,

denn
√

lnn
[
−
(

1
2 −

c2

4 (1− ε)2
)√

lnn+b
]
→−∞ für n→ ∞. Damit ist (31) gezeigt und

wir erhalten insgesamt (29). �

Fall 2: Kleine Ausfallwahrscheinlichkeit p

Nun lassen wir die Ausfallwahrscheinlichkeit p mit wachsender Portfoliogröße n gegen
Null fallen. Dieser Fall ist besonders relevant für große Portfolios aus hoch gerateten
Krediten, für welche die jährliche Ausfallwahrscheinlichkeit extrem klein ist. (Für Kredite
aus der Ratingklasse A liegen beispielsweise die Ausfallwahrscheinlichkeiten häufig unter
0,1% (vgl. Glasserman und Li (2005, S. 14)).) Außerdem hat dieser Fall Relevanz, wenn
man das Portfolio nur über einen kurzen Zeitraum betrachtet, innerhalb dessen die
Wahrscheinlichkeit für einen Ausfall extrem gering ist. Wählen wir die Folge pn geschickt,
können wir ein ähnliches Resultat wie Satz 3.1 beweisen. pn =Φ(−c

√
n) mit c> 0 erweist

sich als geeignet.

3.3 Satz
Sei pn :=Φ(−c

√
n) mit c> 0 die Ausfallwahrscheinlichkeit eines Kredits im beschriebenen

homogenen Einfaktor-Kreditrisikomodell. Dann gilt

lim
n→∞

1
n

lnP[Ln ≥ nq] =− c2

2κ2 . (32)

Aus diesem Satz kann man folgern, dass sich die Wahrscheinlichkeit P[Ln ≥ nq] für
hinreichend großes n annähernd so verhält wie C3(n)exp(−n c2

2κ2 ), wobei C3(n) eine

subexponentielle Funktion ist (d.h. eine Funktion für die gilt lim
n→∞

lnC3(n)
n = 0), über

deren nähere Gestalt keine Aussage gemacht wird. Es fällt auf, dass die Schwelle q
in dem Grenzwert auf der rechten Seite von (32) überhaupt keine Rolle spielt. Die
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Geschwindigkeit, mit der die Wahrscheinlichkeit P[Ln ≥ nq] für große n gegen Null fällt,
kann sie also nur beeinflussen, indem sie in die Funktion C3(n) einfließt, die jedoch für
große n nur eine untergeordnete Rolle spielt, da sie lediglich subexponentiell wächst. Wie
bereits in Satz 3.1 wird allerdings auch hier der große Einfluss der Korrelation κ deutlich.
Weisen die Bonitäten der Kreditnehmer nur eine geringe Abhängigkeit voneinander auf,
fällt C3(n)exp(−n c2

2κ2 ) für große n deutlich schneller gegen Null, als wenn sie in hohem
Grade voneinander abhängen.
BEWEIS: Dieser Beweis orientiert sich am Beweis von Glasserman und Li (2005) (dort
unter Theorem 4), ist aber dabei in möglichst großer Analogie zum Beweis von Satz 3.1
geführt.
Wir zeigen wieder zunächst die untere Schranke

liminf
n→∞

1
n

lnP[Ln ≥ nq]≥− c2

2κ2 .

Wie in Satz 3.1 sind die Yi bedingt unter Z unabhängig und identisch Bernoulli-verteilt
zum Parameter p(Z). Hier hängt jedoch der Parameter von n ab, so dass wir besser pn(Z)
schreiben:

pn(Z) = Φ

(
κZ +Φ−1(pn)√

1−κ2

)
= Φ

(
κZ− c

√
n√

1−κ2

)
.

Offensichtlich ist die Funktion pn für jedes n ∈ N monoton wachsend. Wir definieren
analog zu (19)

zn := p−1
n (q) =

√
1−κ2Φ−1(q)+ c

√
n

κ

und bemerken, dass auch hier zn für wachsendes n gegen unendlich konvergiert. Nun
können wir mit der gleichen Argumentation wie im Beweis von 3.1 (Definition der
bedingten Wahrscheinlichkeit, Lemma von Slud) aus der Standardnormalverteilung von
Z folgern

liminf
n→∞

1
n

lnP[Ln ≥ nq]≥ liminf
n→∞

1
n

ln(1−Φ(zn)).

Benutzen wir wieder die Abschätzung von Feller (Satz 6.3) erhalten wir weiter

liminf
n→∞

1
n

ln(1−Φ(zn)) = liminf
n→∞

1
n

ln
ϕ(zn)

zn

= liminf
n→∞

(
lnκ

n
− ln(

√
1−κ2Φ−1(q)+ c

√
n)

n
− ln
√

2π

n

− 1
2n

(√
1−κ2Φ−1(q)+ c

√
n

κ

)2


=− c2

2κ2

und damit die untere Schranke.
Jetzt zeigen wir die obere Schranke

limsup
n→∞

1
n

lnP[Ln ≥ nq]≤− c2

2κ2 .
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Analog zum Beweis von 3.1 erhalten wir mit Hilfe der exponentiellen Chebyshev-
Ungleichung für bedingte Wahrscheinlichkeiten die Abschätzung

P[Ln ≥ nq]≤ E[eFn(Z)].

Dabei ist

Fn(Z) = exp

(
−nsup

t≥0
[tq−ψn(t,Z)]

)
mit bedingter kumulantenerzeugender Funktion

ψn(t,Z) := ln(1− pn(Z)+ pn(Z)et).

Die Eigenschaften von Fn auf Seite 26 bleiben erhalten. So können wir auch hier mittels
exponentieller Maßtransformation weiter abschätzen

P[Ln ≥ nq]≤ eFn(µn)− 1
2 µn,

wobei µn die Lösung der Fixpunktgleichung F ′n(µ)−µ = 0 ist.
Nun gilt es wieder µn v zn zu zeigen, denn dann gilt wegen der Nichtpositivität von Fn

limsup
n→∞

1
n

lnP[Ln ≥ nq]≤ limsup
n→∞

1
n

Fn(µn)− limsup
n→∞

1
n

1
2

µ
2
n

≤−1
2

limsup
n→∞

µ2
n

n
=−1

2
limsup

n→∞

z2
n
n

=−1
2

limsup
n→∞

1
n

(√
1−κ2Φ−1(q)+ c

√
n

κ

)2

=− c2

2κ2 ,

womit Satz 3.3 gezeigt ist.
Um die asymptotische Äquivalenz von µn und zn zu beweisen, genügt es - wie oben
gesehen - zu zeigen, dass für jedes ε > 0 ein n0 ∈ N existiert, sodass für alle n≥ n0

F ′n(zn(1− ε))− zn(1− ε)> 0 (33)
und F ′n(zn)− zn < 0. (34)

Die Ungleichung (34) ist erfüllt, da F ′n(zn) = 0 für alle n ∈ N und zn→ ∞ für n→ ∞.
Für die Ungleichung (33) zeigen wir

lim
n→∞

F ′n(zn(1− ε))

n
√

n
= const. > 0

und

lim
n→∞

zn(1− ε)

n
√

n
= 0.
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Es ist

F ′n(zn(1− ε)) = n
(

q
pn(zn(1− ε))

− 1−q
1− pn(zn(1− ε))

)
ϕ

(
κzn(1− ε)− c

√
n√

1−κ2

)
κ√

1−κ2
.

Wir setzen nun bn := κzn(1−ε)−c
√

n√
1−κ2 und berechnen

lim
n→∞

bn = lim
n→∞

(
√

1−κ2Φ−1(q)+ c
√

n)(1− ε)− c
√

n√
1−κ2

=−∞. (35)

Damit gilt

lim
n→∞

1−q
1− pn(zn(1− ε))

= lim
n→∞

1−q
1−Φ(bn)

= 1−q.

Aus der Abschätzung von Feller (Satz 6.3) folgt wegen der Symmetrie von ϕ für x→ ∞

ϕ(−x)
Φ(−x)

v x.

Auf Grund von (35) und wegen des Grenzverhaltens von ϕ ergibt sich daraus

lim
n→∞

F ′n(zn(1− ε))

n
√

n
= lim

n→∞

1√
n

κ√
1−κ2

(
q

Φ(bn)
ϕ(bn)− (1−q)ϕ(bn)

)
= lim

n→∞

1√
n

κ√
1−κ2

(−bnq)

= lim
n→∞
−q

κ√
1−κ2

(
√

1−κ2Φ−1(q)+ c
√

n)(1− ε)− c
√

n
√

n
√

1−κ2

= qcε
κ

1−κ2

= const. > 0.

Zudem gilt

lim
n→∞

zn(1− ε)

n
√

n
= lim

n→∞

(√
1−κ2Φ−1(q)(1− ε)

κn
√

n
+

c
√

n(1− ε)

κn
√

n

)
= 0.

Damit ist die Ungleichung (33) gezeigt und somit der letzte Schritt zum Beweis von Satz
3.3 getan. �

Wir haben nun insgesamt drei Resultate, die uns Auskunft über die Wahrscheinlich-
keit P[Ln ≥ nq] geben, wenn die Zufallsvariable Ln die Anzahl an Ausfällen in einem
homogenen Portfolio aus abhängigen Krediten mit asset-Korrelation κ2 zählt:

1. lim
n→∞

P[Ln ≥ nq] = P[p(Z)≥ q] = 1−Φ

(√
1−κ2Φ−1(q)−Φ−1(p)

κ

)
,

wobei p die Ausfallwahrscheinlichkeit eines Kredits ist.

2. P[Ln ≥ nqn]vC2(n)n
− c2

2
1−κ2

κ2 für n→ ∞, wobei qn := Φ(c
√

lnn) und 0 < c <
√

2.
Zudem ist p die Ausfallwahrscheinlichkeit eines Kredits
und C2 eine subpolynomielle Funktion.
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3. P[Ln ≥ nq]vC3(n)e
−n c2

2κ2 für n→ ∞,
wobei pn := Φ(−c

√
n) und c > 0. Zudem ist C3 eine subexponentielle Funktion.

Diese Resultate sind jedoch alle asymptotisch, was bedeutet, dass wir, wenn wir sie zur
Berechnung von P[Ln ≥ nq] für eine feste Portfoliogröße n heranziehen, immer einen
Approximationsfehler machen, dessen Größe uns nicht bekannt ist. In 1 stellt sich das
Problem, dass wir nicht wissen, wie schnell Ln

n gegen p(Z) konvergiert. In 2 und 3 stoßen
wir vor allem auf die Schwierigkeit, dass wir die Funktion C nicht kennen, die gerade
in kleineren Portfolios einen nicht zu unterschätzenden Einfluss haben kann. Zudem
kennen wir auch hier die Konvergenzgeschwindigkeit nicht. Im folgenden Kapitel werden
wir eine weitere Möglichkeit kennenlernen, wie wir P[Ln ≥ nq] approximativ bestimmen
können.
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4 Schätzung von Wahrscheinlichkeiten mit Monte Carlo Methoden

Wir werden in diesem Kapitel in Anlehnung an Glasserman und Li (2005) und Kapitel
8.5 von McNeil et al. (2005) eine Möglichkeit besprechen, wie man mittels Monte Carlo
Methoden die Wahrscheinlichkeit P[Ln≥ nq] schätzen kann. Unsere Schätzungen beruhen
auf Simulationen von Zufallsvariablen. Wir haben das Anliegen, ein möglichst genaues
Schätzergebnis bei möglichst wenigen Simulationen zu erzielen. Die Anzahl der für eine
gewisse Genauigkeit nötigen Simulationen kann man unter anderem durch Importance
Sampling senken. In Abschnitt 4.3 werden wir sehen, wie man im Zusammenhang mit
Importance Sampling die Ergebnisse aus Kapitel 3 nutzen kann, um möglichst „gute“
(d.h. bei möglichst wenigen Simulationen möglichst genaue) Schätzer zu konstruieren.
Erst geben wir aber eine kurze Einführung in die Methoden.

4.1 Importance Sampling - die Idee

Wir stellen uns hier zunächst der allgemeineren Aufgabe, einen Schätzer für die Wahr-
scheinlichkeit γ := P[L ≥ x] zu bestimmen, wenn L eine reelle Zufallsvariable ist, die
mit Verteilung PL verteilt ist. Wir nehmen an, dass der Erwartungswert von L existiert
und dass die Varianz von L endlich ist. Ein sinnvoller Ansatz scheint es zu sein, P[L≥ x]
über die relative Häufigkeit zu schätzen, mit der Werte Li ≥ x in einer großen Stichprobe
L1, . . . ,LN auftauchen, die unabhängig gemäß der Verteilung von L simuliert wird. Dieser
Standard Monte Carlo Schätzer hat dann die Form

γ̂N =
1
N

N

∑
i=1

1{Li≥x}.

Er ist offensichtlich erwartungstreu und aus dem starken Gesetz der großen Zahlen ergibt
sich zudem, dass er mit wachsender Stichprobengröße N P-fast sicher gegen γ konver-
giert. Besonders dann, wenn {L≥ x} ein seltenes Ereignis ist, benötigt man jedoch recht
viele Simulationen, um mit γ̂N eine brauchbare Schätzung für γ zu erhalten. Natürlich
treten nämlich seltene Ereignisse auch in Simulationen selten auf. Man braucht aber eine
gewisse Anzahl von Beobachtungen eines seltenen Ereignisses in einer Simulation, um
zuverlässige Aussagen über seine Wahrscheinlichkeit treffen zu können (vgl. Sandmann
(2004, S. 35)). Es kann beispielsweise geschehen - und ist sogar nicht unwahrscheinlich -,
dass unter 10000 simulierten Variablen keine einzige ist, die im Intervall [x,∞) liegt, wenn
P[L≥ x] = 10−6 ist. Es wäre dennoch ein fataler Fehler, P[L≥ x] = 0 zu schätzen.
Wir verdeutlichen diesen Zusammenhang weiter, indem wir mit Hilfe des zentralen
Grenzwertsatzes abschätzen, welchen Wert der relative Fehler |γ̂N−γ|

γ
mit einer Konfidenz-

wahrscheinlichkeit von (1−α) nicht überschreitet. Der zentrale Grenzwertsatz gibt uns
für jedes a≥ 0

P
[
|γ̂N− γ|

γ
≤ a√

N

]
→ 2Φ

(
γa√

ν

)
−1 für N→ ∞.
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Dabei ist ν die Varianz der Zufallsvariable 1{Li≥x}, die man zu ν = γ(1− γ) errechnet.

Setzen wir a := Φ−1 (1− α

2

)√γ(1−γ)
γ

erhalten wir so

P
[
|γ̂N− γ|

γ
≤Φ

−1
(

1− α

2

) √
ν√

Nγ

]
→ 1−α. (36)

Folglich überschreitet der relative Fehler |γ̂N−γ|
γ

mit Wahrscheinlichkeit (1−α) nicht den

Wert Φ−1 (1− α

2

)√γ(1−γ)√
Nγ

. Da
√

γ(1−γ)
γ

gegen unendlich konvergiert, wenn man γ gegen
Null laufen lässt, muss man also, wenn das Ereignis {L≥ x} selten ist, eine verhältnismä-
ßig große Zahl N an Simulationen zu Grunde legen, um den relativen Fehler - zumindest
zur Wahrscheinlichkeit (1−α) - in Grenzen zu halten.

Die Fehlerschranke in (36) ist für jedes α ∈ (0,1) proportional zu
√

γ(1−γ)√
Nγ

. Daher kön-
nen wir diese Größe, den sogenannten Variationskoeffizienten, als Maß für die Güte
eines erwartungstreuen Schätzers nutzen. Der Variationskoeffizient des Schätzers γ̂N ist
allgemein definiert als

δrel :=

√
V[γ̂N ]

E[γ̂N ]
.

4.2 Importance Sampling

Die Durchführung vieler Simulationen ist sehr aufwendig. Ein anderer Weg, den Variati-
onskoeffizienten in Grenzen zu halten, ist die Varianz des Schätzers γ̂N durch Importance
Sampling zu verringern, ohne dabei N, die Anzahl der Simulationen, zu erhöhen, oder
den Erwartungswert von γ̂N zu verändern. Diesen Weg werden wir nun verfolgen. Dabei
nutzen wir die Methode der exponentiellen Maßtransformation, die wir in Kapitel 2
bereits kennengelernt haben. Wie in (9) definieren wir uns auch hier eine neue Wahr-
scheinlichkeitsverteilung PD(t)

durch

PD(t)
(dy) :=

ety

φL(t)
PL(dy). (37)

Dann ist

γ = E[γ̂N ] =
1
N

N

∑
i=1

E[1{Li≥x}] = E[1{L≥x}]

=
∫
R

1[x,∞)(y)PL(dy) =
∫
R

1[x,∞)(y)e
−ty

φL(t)PD(t)
(dy)

= E[1{D(t)≥x}e
−tD(t)

φL(t)],

Wir erhalten also auch einen erwartungstreuen Schätzer für γ, wenn wir statt einer
Stichprobe L1, . . . ,LN eine Stichprobe D(t)

1 , . . . ,D(t)
n , die nach der Verteilung PD(t)

simuliert
wird, zugrunde legen und dann γ durch

γ̄
(t)
N :=

1
N

N

∑
i=1

1{D(t)
i ≥x}e

−tD(t)
i φL(t) (38)
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schätzen. Für t = 0 ist offensichtlich γ̄
(t)
N = γ̂N . Wir versuchen nun aber den Parameter t

so zu wählen, dass die Varianz von γ̄
(t)
N möglichst klein und insbesondere kleiner als die

Varianz von γ̂N ist. Die Varianzen errechnen sich folgendermaßen:

V[γ̂N ] =
1
N
(E[12

{L≥x}]− γ
2) = γ(1− γ) (39)

V[γ̄(t)N ] =
1
N
(E[12

{D(t)≥x}(e
−tD(t)

φL(t))2]− γ
2) =

1
N
(E[1{D(t)≥x}(e

−tD(t)
φL(t))2]− γ

2). (40)

Eine Minimierung der Varianz von γ̄
(t)
N ist also gleichbedeutend mit einer Minimierung

des zweiten Moments von 1{D(t)≥x} exp(−tD(t))φL(t), das wir im Folgenden mit M2(t,x)
bezeichnen. Wir sollten demnach versuchen, t so zu wählen, dass e−tyφL(t) für y ≥ x
möglichst klein ist. Das bedeutet, dass wir das Ereignis {D(t) ≥ x} wahrscheinlicher
machen als das Ereignis {L≥ x}, was schnell klar wird, wenn man sich an die Definition
von PD(t)

in (37) erinnert. Beim Importance Sampling gewichten wir also durch einen
Maßwechsel die für uns wichtigen Werte y ≥ x höher und gleichen dies durch einen
Korrekturterm (hier e−tyφL(t)) wieder aus, so dass der Schätzer, den wir so gewinnen,
erwartungstreu bleibt, aber eine geringere Varianz besitzt.
Bevor wir uns damit beschäftigen, wie wir in unserem Modell aus Kapitel 3 einen
möglichst guten Schätzer für P[Ln ≥ nq] gewinnen, wollen wir noch kurz anmerken, dass
es theoretisch sogar möglich ist, die Varianz eines Schätzers auf Null zu reduzieren. Dafür
ändert man die Verteilung von L nicht mit exponentieller Maßtransformation, sondern
man setzt

PD(dy) :=
1[x,∞)(y)
E[1{L≥x}]

PL(dy).

Dann erzeugt man eine unabhängige Stichprobe D1, . . . ,DN nach der Verteilung PD und
schätzt γ durch

γ̃N :=
1
N

N

∑
i=1

1{Di≥x}
E[1{L≥x}]

1{Di≥x}
= E[1{L≥x}] = γ.

Der Schätzer γ̃N liefert also immer, selbst wenn man nur eine einelementige Stichprobe
simuliert, das richtige Ergebnis und hat somit die Varianz V[γ̃N ] = 0. Man kann ihn
jedoch in der Praxis nicht nutzen, weil er nur unter Kenntnis von E[1{L≥x}] konstruiert
werden kann, und genau das ja der Wert ist, den man eigentlich schätzen möchte.
Interessant wäre es, herauszufinden, ob es auch zu einer wesentlichen Varianzreduk-
tion kommt, wenn man in γ̃N den unbekannten Wert E[1{L≥x}] durch eine erste grobe
Schätzung ersetzt, wie man sie beispielsweise aus der Theorie der großen Abweichungen
erhalten kann. Wollen wir P[Ln ≥ nq] = E[1{Ln≥nq}] in unserem Modell aus Kapitel 3
schätzen, könnten wir zum Beispiel die Approximation aus dem Satz von Cramér für den
unabhängigen Fall nutzen und die Approximationen, die auf Seite 33 zusammengefasst
sind, für den abhängigen Fall. Diese sind zwar als alleinige Approximationen der Wahr-
scheinlichkeit P[Ln ≥ nq] insbesondere für kleine Werte von n sehr ungenau, könnten
aber so im Zusammenhang mit Importance Sampling gegebenenfalls dazu beitragen,
einen Schätzer mit kleiner Varianz für die Wahrscheinlichkeit P[Ln ≥ nq] zu konstruieren,
der auch bei einer geringen Anzahl an Simulationen brauchbare Ergebnisse liefert. Es
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wäre lohnenswert, dies durch eine Simulationsstudie zu überprüfen.

4.3 Konstruktion asymptotisch optimaler Importance Sampling Schätzer

Wir gehen nun weiter auf die Schätzung von P[Ln ≥ nq] in unserem Kreditrisikomodell
aus Kapitel 3 ein. Insbesondere sind wir daran interessiert, die Wahrscheinlichkeiten für
seltene Ereignisse genau schätzen zu können, also beispielsweise die Wahrscheinlichkeit
für den Ausfall sehr vieler Kredite (d.h. P[Ln ≥ nq] für eine sehr große Schwelle q) oder
die Wahrscheinlichkeit für den Ausfall überdurchschnittlich vieler sehr hoch gerateter
Kredite (d.h. P[Ln ≥ nq] für eine sehr kleine Ausfallwahrscheinlichkeit p = P[Y1 = 1]). Wir
werden dafür die oben vorgestellte Importance Sampling Methode mit exponentieller
Maßtransformation nutzen. Von einem guten Schätzer verlangen wir zum einen, dass er
erwartungstreu ist, und zum anderen, dass er eine möglichst kleine Varianz besitzt. Möch-
ten wir die Wahrscheinlichkeit eines seltenen Ereignisses schätzen, sind asymptotisch
optimale Schätzer in dieser Hinsicht besonders geeignet.12 Sie zeichnen sich dadurch aus,
dass bei ihnen M2(t,nq) (definiert wie oben) unter allen erwartungstreuen Schätzern
mit der schnellsten Rate fällt, wenn die Wahrscheinlichkeit, die man mit ihnen schätzen
möchte, gegen Null konvergiert.

4.3.1 Anwendung auf ein unabhängiges Kreditportfolio

Wir versuchen zunächst für den Fall eines unabhängigen Kreditportfolios einen asympto-
tisch optimalen Schätzer für P[Ln ≥ nq] mit p < q < 1 zu konstruieren. Dabei orientieren
wir uns an Remark 2.3 in Pham (2010). Eigentlich ist hier eine Schätzung gar nicht nötig,
da man P[Ln ≥ nq] auch direkt berechnen kann. Wir werden aber dennoch näher darauf
eingehen, da dieser Fall, in dem der korrekte Wert P[Ln ≥ nq] bekannt ist, die Möglichkeit
bietet, in einer Simulation festzustellen, inwieweit die Nutzung eines asymptotisch opti-
malen Schätzers das Schätzergebnis auch für realistische Portfoliogrößen im Vergleich
zum Standard Monte Carlo Schätzer verbessert.
Durch exponentielle Maßtransformation, wie in (38) beschrieben, erhalten wir den
Schätzer

γ̄
(t)
N :=

1
N

N

∑
i=1

1{D(n,t)
i ≥nq}e

−tD(n,t)
i φLn(t),

für P[Ln ≥ nq]. Dabei sind D(n,t)
1 , . . . ,D(n,t)

N unabhängig voneinander nach der Verteilung
PD(n,t)

simuliert, die durch

P[D(n,t) = y]) =
ety

φLn(t)
P[Ln = y]

definiert ist. Wegen der Unabhängigkeit und identischen Bernoulli-Verteilung der Ausfal-
lindikatoren Yi gilt φLn(t) = (φY1)

n = (1− p+ pet)n. D(n,t) ist also binomialverteilt zu den
Parametern n und pet

1−p+pet .

12 Vgl. Glasserman und Li (2005, S. 6).
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Nun suchen wir einen Parameter t, für den M2(t,nq) = E[1{D(n,t)≥nq}(e
−tD(n,t)

φLn(t))
2] mög-

lichst klein ist. Einerseits haben die Abschätzung

M2(t,nq) = E[1{D(n,t)≥nq}(e
−tD(n,t)

φLn(t))
2]≤ (e−tnq(φY1(t))

n)2 = exp(−2n(tq− lnφY1(t))).

Andererseits können wir aus der Jensenschen Ungleichung und dem Satz von Cramér
folgern, dass für n→ ∞ gilt

M2(t,nq)≥ (E[1{D(n,t)≥nq}e
−tD(n,t)

φLn(t)])
2 = P[Ln ≥ nq]2 vC(n)exp(−2nsup

t∈R
[tq− lnφY1(t)]).

Damit ist die schnellstmögliche Rate, mit der M2(t,nq) fallen kann, gerade doppelt so
groß wie die Rate, mit der die Wahrscheinlichkeit P[Ln ≥ nq] fällt. Wir erhalten also
einen asymptotisch optimalen Schätzer, wenn wir t = tq = ln

(
q−pq
p−pq

)
wählen. Dieser Wert

maximiert nämlich tq− lnφY1(t) (vgl. Beispiel 2.7). So gilt dann

lim
n→∞

1
n

M2(tq,nq) = 2 lim
n→∞

1
n

lnP[Ln ≥ nq]. (41)

Resultate zur asymptotischen Optimalität werden oft in der Form (41) angegeben.

4.3.2 Anwendung auf ein abhängiges Kreditportfolio

Wir möchten nun in Anlehnung an Glasserman und Li (2005) auch für den Fall eines
abhängigen Kreditportfolios einen asymptotisch optimalen Schätzer für P[Ln ≥ nq] herlei-
ten. Ein erste Möglichkeit, P[Ln ≥ nq] im abhängigen Fall zu schätzen, ist die folgende:
Wir generieren zunächst N1 Werte Z1, . . . ,ZN1 für Z nach der Standardnormalverteilung.
Dann berechnen wir für jeden dieser Werte die bedingte Ausfallwahrscheinlichkeit p(Z j)
wie in (12). Bedingt unter Z = Z j ist Ln binomialverteilt zu den Parametern n und p(Z j).
Ist p(Z j)< q, konstruieren daher den Schätzer

γ̄
(tq(Z j))
N2

:=
1

N2

N2

∑
i=1

1
{D

(n,tq(Z j))
i ≥nq}

exp
(
−tq(Z j)D

(n,tq(Z j))
i

)
φLn(tq(Z j),Z j)

für die Wahrscheinlichkeit P[Ln ≥ nq|Z = Z j], wobei tq(Z j) die Maximalstelle tq für den
Fall p = p(Z j) bezeichnet und φLn(t,z) := E[etLn|Z = z] die bedingte momenterzeugende

Funktion von Ln ist. D(n,tq(Z j))
1 , . . . ,D(n,tq(Z j))

N2
sind analog zum unabhängigen Fall nach

einer Binomialverteilung mit den Parametern n und p(Z j)e
tq(Z j)

1−p(Z j)+p(Z j)e
tq(Z j)

generiert. Diesen

Schätzer für P[Ln ≥ nq|Z = Z j] haben wir im vorigen Abschnitt als asymptotisch optimal
nachgewiesen. Ist p(Z j)≥ q, gehen wir genauso vor, transformieren aber die Verteilung
von D(n,tq(Z j)) nicht, d.h. wir setzen tq(Z j) = 0. Den Schätzer für den abhängigen Fall er-

halten wir schließlich, wenn wir das arithmetische Mittel der Schätzer γ̄
(tq(Z1))
N2

, . . . γ̄
(tq(ZN1))

N2
bilden, also

γ̄(N1,N2) =
1

N1

N1

∑
j=1

γ̄
(tq(Z j))
N2

.
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Ist die Korrelation κ2 der Bonitäten der Kreditnehmer klein, ist dieser Schätzer ziemlich
gut. Wenn die Bonitäten der Kreditnehmer aber stark korrelieren, ist er weniger effektiv,
da der systematische Risikofaktor Z, auf dessen Verteilung wir noch kein Importance
Sampling angewendet haben, in diesem Fall einen großen Einfluss hat. Glasserman und
Li (2005) führen diesen Punkt in Kapitel 4 ihres Papers weiter aus.
Wir werden also im Folgenden versuchen, den oben konstruierten Schätzer effektiver zu
machen, indem wir Importance Sampling auf die Verteilung von Z anwenden. In Beispiel
2.13 haben wir gesehen, dass wir durch Anwendung von exponentieller Maßtransfor-
mation den Erwartungswert einer standardnormalverteilten Zufallsvariable auf jeden
beliebigen Wert µ ∈ R verschieben können.
Nutzen wir diese Möglichkeit, können wir P[Ln ≥ nq] folgendermaßen erwartungstreu
schätzen:
Zunächst generieren wir N1 Werte T (µ)

1 , . . . ,T (µ)
N1

einer Zufallsvariablen T (µ), die nach
der N(µ,1)-Verteilung verteilt ist. Dann berechnen wir für jeden dieser Werte die be-
dingte Ausfallwahrscheinlichkeit p(T (µ)

j ) wie in (12). Wie im oben geschilderten Fall
konstruieren wir für jedes 1≤ j ≤ N1 den Schätzer

γ̄
(tq(T

(µ)
j ))

N2
:=

1
N2

N2

∑
i=1

1{
D
(n,tq(T

(µ)
j ))

i ≥nq

} exp
(
−tq(T

(µ)
j )D

(n,tq(T
(µ)
j ))

i

)
φLn(tq(T

(µ)
j ),T (µ)

j ),

wobei tq(T
(µ)
j ) = 1[0,q)(p(T (µ)

j )) ln
(

q−p(T (µ)
j )q

p(T (µ)
j )−p(T (µ)

j )q

)
ist und D

(n,tq(T
(µ)
j ))

1 , . . . ,D
(n,tq(T

(µ)
j ))

N2

nach einer Binomialverteilung mit den Parametern n und
p(T (µ)

j )e
tq(T

(µ)
j )

1−p(T (µ)
j )+p(T (µ)

j )e
tq(T

(µ)
j )

generiert

sind. Im Schätzer für P[Ln ≥ nq] müssen wir dann schließlich die Verschiebung des
Erwartungswerts von Z wieder ausgleichen, indem wir für jedes 1≤ j ≤ N1 den Schätzer

γ̄
(tq(T

(µ)
j ))

N2
mit exp

(
−µT (µ)

j + 1
2 µ2
)

multiplizieren. Wir erhalten somit insgesamt den
Schätzer

γ̄
(µ)
N1,N2

=
1

N1

N1

∑
j=1

γ̄
(tq(T

(µ)
j ))

N2
e−µT (µ)

j + 1
2 µ2

.

Die Frage ist nun, ob wir einen Wert µ finden, für den der Schätzer asymptotisch optimal
ist.
Zunächst einmal muss die Wahrscheinlichkeit P[Ln ≥ nq] für n→ ∞ gegen Null konver-
gieren, wenn wir sie durch einen asymptotisch optimalen Schätzer schätzen möchten.
Wir wissen aus Kapitel 3 jedoch, dass P[Ln ≥ nq] im abhängigen Fall gegen eine echt
positive Konstante konvergiert. Daher setzen wir wie in Satz 3.1 q = qn = Φ(c

√
lnn) mit

0 < c <
√

2 und lassen so P[Ln ≥ nqn] gegen Null laufen. Alternativ könnten wir auch
wie in Satz 3.3 die Ausfallswahrscheinlichkeit p von n abhängig wählen und gegen Null
laufen lassen.
Der Schätzer γ̄

(µ)
(N1,N2)

ist für jedes µ ∈ R erwartungstreu. Unser Ziel ist ein µ ∈ R zu
finden, für welches das zweite Moment

M2(µ,nqn)=E[1{
D(n,tqn (T

(µ)))≥nqn

}(exp(−tqn(T
(µ))D(n,tqn(T

(µ))))φLn(tqn(T
(µ)),T (µ))e−µT (µ)+ 1

2 µ2
)2

]
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mit der schnellstmöglichen Rate fällt, mit der es für einen erwartungstreuen Schätzer
fallen kann. Die Jensensche Ungleichung gibt uns die Abschätzung

M2(µ,nqn)≥ P[Ln ≥ nqn]
2. (42)

Die Rate, mit der M2(µ,nqn) fällt, muss also mindestens doppelt so groß sein wie die,
mit der die Wahrscheinlichkeit P[Ln ≥ nqn] fällt. Für die Wahrscheinlichkeit P[Ln ≥ nqn]
haben wir in Satz 3.1 berechnet:

lim
n→∞

1
lnn

lnP[Ln ≥ nqn] =−
c2

2
1−κ2

κ2

Sie fällt also mit der polynomiellen Rate c2

2
1−κ2

κ2 . Finden wir ein µ ∈R, für das M2(µ,nqn)

genau mit der polynomiellen Rate c2 1−κ2

κ2 fällt, so ist unser Schätzer γ̄
(µ)
(N1,N2)

für dieses µ

asymptotisch optimal. Wir werden gleich sehen, dass µn aus dem Beweis von Satz 3.1
diese Bedingung erfüllt.

M2(µ,nqn) können wir folgendermaßen nach oben abschätzen:

M2(µ,nqn) = E[1
{D(n,tqn (T

(µ)))≥nqn}
exp(−2tqn(T

(µ))D(n,tqn(T
(µ))))

+2n lnφY1(tqn(T
(µ)),T (µ))exp(−2µT (µ)+µ

2)]

≤ E[exp(−2ntqn(T
(µ))D(n,tqn(T

(µ))))+2n lnφY1(tqn(T
(µ)),T (µ)))exp(−2µT (µ)+µ

2)]

= E[exp(−2µT (µ)+µ
2 +2Fn(T (µ))].

Dabei ist Fn wie im Beweis von Satz 3.1 definiert als

Fn(z) =−nsup
t≥0

[tqn− lnφY1(t,z)].

Das Supremum in der Definition von Fn ist in unserem Fall ein Maximum und wird genau
an der Stelle tqn(T

(µ)) angenommen, denn genau so hatten wir tqn(T
(µ)) definiert. Wegen

der Konkavität von Fn erhalten wir wie in (25)

E[exp(−2µT (µ)+µ
2 +2Fn(T (µ))]

≤ E[exp(−2µT (µ)+µ
2 +2Fn(µ)+2F ′n(µ)(T

(µ)−µ))].
(43)

Wählen wir dann wie im Beweis von Satz 3.1 µ = µn als Fixpunkt von F ′n, hängt der
Term, dessen Erwartungswert in (43) berechnet werden soll, nicht mehr von T (µ) ab und
wir erhalten insgesamt

M2(µn,nqn)≤ exp(2Fn(µn)−µ
2
n ).

Da Fn nichtpositiv ist, ergibt sich weiter

M2(µn,nqn)≤ exp(−µ
2
n ).

Benutzen wir dann unser Resultat aus (28), haben wir

limsup
n→∞

1
lnn

lnM2(µn,nqn)≥
µ2

n
lnn

=−c2 1−κ2

κ2 .
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Zusammen mit der Abschätzung (42) haben wir also

lim
n→∞

1
lnn

lnM2(µn,nqn) =−c2 1−κ2

κ2 .

Somit fällt M2(µ,nqn) für µ = µn genau mit der polynomiellen Rate c2 1−κ2

κ2 und ist
asymptotisch optimal. Pham (2010, S. 45) weist darauf hin, dass auch die Wahl µ = zn
(zn definiert wie in Satz 3.1) zu einem asymptotisch optimalen Schätzer führt.

Wir haben hiermit einen asymptotisch optimalen Schätzer gefunden, den wir nutzen
können, um in einem großen Portfolio die Wahrscheinlichkeit für P[Ln ≥ nq] für eine
große Schwelle q approximativ zu berechnen. Mit Satz 3.3 erhalten wir ein ähnliches
Resultat für eine kleine Ausfallwahrscheinlichkeit p: Ist p = pn = Φ(−c

√
n) für >̧0 wie in

Satz 3.3, konstruieren wir folgendermaßen einen asymptotisch optimalen Schätzer für
die Wahrscheinlichkeit P[Ln ≥ nq]:
Wir generieren Werte T1, . . . ,TN1 nach einer Normalverteilung mit den Parametern µ = µn
und σ = 1. µn ist dabei Fixpunkt der ersten Ableitung der Funktion

Fn(z) = exp

(
−nsup

t≥0
[tq−ψn(t,z)]

)
,

wobei ψn(t,z) := ln(1− pn(z)+ pn(z)et) die bedingte kumulantenerzeugende Funktion
der Ausfallindikatoren Yi ist. Danach berechnen wir für jeden Wert Tj die bedingte
Ausfallwahrscheinlichkeit pn(Tj) wie in (12). Anschließend konstruieren wir wie oben
für jedes 1≤ j ≤ N1 den Schätzer

γ̄
(tq(Tj))
N2

:=
1

N2

N2

∑
i=1

1
{D

(n,tq(Tj))
i ≥nq}

exp(−tq(Tj)D
(n,tq(Tj))
i )φLn(tq(Tj),Tj),

wobei tq(Tj) = 1[0,q)(pn(Tj)) ln
(

q−p(Tj)q
pn(Tj)−pn(Tj)q

)
ist und D(n,tq(Tj))

1 , . . . ,D(n,tq(Tj))
N2

nach einer

Binomialverteilung mit den Parametern n und pn(Tj)e
tq(Tj)

1−pn(Tj)+pn(Tj)e
tq(Tj)

generiert sind. Daraus

ergibt sich dann schließlich der Schätzer

γ̄(N1,N2) =
1

N1

N1

∑
j=1

γ̄
(tq(Tj))
N2

e−µnTj+
1
2 µ2

n

für die Wahrscheinlichkeit P[Ln ≥ nq].

Die Schätzer für Wahrscheinlichkeiten seltener Ereignisse, die wir in diesem Abschnitt
hergeleitet haben, sind alle nur asymptotisch optimal. Trotzdem zeigen Simulationen,
dass sie auch für realistische Portfoliogrößen, wie zum Beispiel n = 1000, die Präzision
bei der Schätzung von Wahrscheinlichkeiten seltener Ereignisse deutlich erhöhen (vgl.
Glasserman und Li (2005)). Glasserman und Li (2005) zeigen anhand numerischer
Beispiele, dass das hier aufgezeigte Vorgehen auch in Mehrfaktormodellen zur effektiven
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Schätzung von Wahrscheinlichkeiten seltener Ereignisse eingesetzt werden kann. Man
muss jedoch bedenken, dass das vorgestellte Importance Sampling Verfahren etwa
doppelt so lange dauert wie das Standard Monte Carlo Verfahren, selbst wenn man
die Zeit, die zur Berechnung des Parameters µn benötigt wird, nicht einrechnet. Dieser
Mehraufwand zahlt sich aber durch den deutlichen Präzisionsgewinn bei der Berechnung
von Wahrscheinlichkeiten seltener Ereignisse aus (vgl. Glasserman und Li (2005, S.
16f.)).
Z. Li (2009) führt die Überlegungen von Glasserman und J. Li (2005) fort, indem er
zeigt, wie man im Gauß-Copula-Modell mit Hilfe von Importance Sampling effizient
Risikomaße wie Value at Risk und Expected Shortfall schätzen kann.
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5 Fazit und Ausblick

In dieser Arbeit wurde beispielhaft gezeigt, wie man die Theorie großer Abweichungen
im Kreditrisikomanagement nutzen kann. Hauptinteresse war es, gute Schätzungen für
Wahrscheinlichkeiten unerwartet hoher Verluste in einem Kreditportfolio zu erhalten.
Die Abhängigkeit der Ausfälle in einem Kreditportfolio haben wir mit einem Einfak-
tormodell modelliert. In diesem Modell konnten wir ausgehend vom Satz von Cramér
asymptotische Resultate herleiten, die uns helfen können, Wahrscheinlichkeiten seltener
Ereignisse in großen Kreditportfolios zu approximativ zu berechnen. Wir haben gesehen,
dass die Anwendung dieser Resultate vor allem im Zusammenhang mit Importance
Sampling großen Nutzen für die Schätzung von Wahrscheinlichkeiten seltener Ereignisse
hat. In der Praxis sind die Abhängigkeiten, die einem Portfolio unterliegen, natürlich
komplexer. Wie Glasserman und Li (2005) an numerischen Resultaten zeigen, lassen
sich die Beobachtungen, die wir zum Importance Sampling gemacht haben, jedoch auch
auf Mehrfaktormodelle übertragen. Interessant wäre es herauszufinden, inwiefern sich
unsere Beobachtungen auch auf Modelle übertragen lassen, in denen die Abhängigkeit
der Kredite nicht wie bei uns mit der Gauß-Copula modelliert wird, die momentan herber
Kritik ausgesetzt ist, da sie asymptotische Unabhängigkeit erzeugt.
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6 Anhang

6.1 Satz (Die exponentielle Chebyshev-Ungleichung)
Sei X eine reelle Zufallsvariable. Dann gilt für alle t ≥ 0 die folgende Ungleichung:

P[X ≥ a]≤ e−taE[etX ]

BEWEIS: Für alle t ≥ 0 gilt

X ≥ a =⇒ et(X−a) ≥ e0 = 1.

Wegen der Positivität der e-Funktion und wegen Linearität und Monotonie des Erwar-
tungswerts gilt dann insgesamt

P[X ≥ a] = E[1X≥a]≤ E[et(X−a)] = e−taE[etX ].

�
Diese Ungleichung ist genau die Markov-Ungleichung für die monoton wachsende
Funktion g(t) = et .

6.2 Bemerkung
Da der bedingte Erwartungswert P-fast sicher linear und monoton ist, gilt die exponenti-
elle Chebyshev-Ungleichung P-fast sicher auch in einer bedingten Form.

P[X ≥ a | Z]≤ e−taE[etX | Z] P-fast sicher

Dabei ist Z eine weitere Zufallsvariable, die auf dem gleichen Raum definiert ist wie X .

6.3 Satz
Für x→ ∞ gilt

1−Φ(x)v
1
x

ϕ(x).

Genauer gesagt gilt für alle x > 0 die folgende Ungleichung:(
1
x
− 1

x3

)
ϕ(x)< 1−Φ(x)<

1
x

ϕ(x).

BEWEIS:13 Man verifiziert leicht, dass der rechte und linke Term auf R\{0} differenzier-
bar sind und dass für die Ableitungen gilt

d
dx

((
1
x
− 1

x3

)
ϕ(x)

)
=

(
−1+3

1
x4

)
ϕ(x)

d
dx

(
1
x

ϕ(x)
)
=

(
−1− 1

x2

)
ϕ(x).

(44)

Offensichtlich gilt für alle x > 0 die Ungleichung(
1−3

1
x4

)
ϕ(x)< ϕ(x)<

(
1+

1
x2

)
ϕ(x).

13 Vgl. Feller (1968, S. 175f.).

45



Da
∫

∞

x ϕ(y)dy = 1−Φ(x), folgt daraus mit der Monotonie des Integrals unter Zurhilfenah-
me von (44) für x > 0(

1
x
− 1

x3

)
ϕ(x) =

∞∫
x

(
1−3

1
y4

)
ϕ(y)dy < 1−Φ(x)<

∞∫
x

(
1+

1
y2

)
ϕ(y)dy =

1
x

ϕ(x).

�
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