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1 Einleitung

Die Theorie der groRen Abweichungen beschéftigt sich - grob gesagt - mit der Asymptotik
von Wahrscheinlichkeiten seltener Ereignisse. Man hat also, wie z.B. im schwachen
Gesetz der groRen Zahlen, eine Folge von Wahrscheinlichkeiten vorliegen, die gegen Null
konvergiert, und versucht die Konvergenzgeschwindigkeit mittels einer exponentiellen
Rate und einer Ratenfunktion zu quantifizieren. In dieser Arbeit soll insbesondere der
Satz von Cramér vorgestellt werden, der eine Moglichkeit aufzeigt, in gewissen Fallen
eine solche Quantifizierung vorzunehmen. Im Beweis dieses Satzes werden wir mit expo-
nentieller MalStransformation arbeiten, d.h. wir werden das Wahrscheinlichkeitsmafd
so transformieren, dass die seltenen Ereignisse, deren Wahrscheinlichkeit gesucht ist,
typisch werden. Diese Idee wird uns durch die ganze Arbeit begleiten.

Gerade im Kreditrisikomanagement ist man daran interessiert Wahrscheinlichkeiten
extrem seltener Ereignisse moglichst genau bestimmen zu kénnen. Ein solches, seltenes
Ereignis kann beispielsweise der Ausfall sehr vieler hoch gerateter Kredite in einem
Portfolio sein, der dann zu einem dementsprechend hohen Verlust fiihrt. Da Kredit-
portfolios haufig sehr grol? sind, konnen asymptotische Resultate, wie sie die Theorie
groRer Abweichungen gibt, zur ndherungsweisen Berechnung von Wahrscheinlichkeiten
solcher seltenen Ereignisse herangezogen werden. Der Satz von Cramér beispielsweise
gibt eine Abschatzung fiir die Wahrscheinlichkeit dafiir, dass in einem sehr grof3en
Kreditportfolio deutlich mehr Kredite ausfallen als erwartet. Er setzt dabei jedoch die
Unabhéngigkeit der Kredite voraus. Gerade die Subprime-Krise hat aber gezeigt, dass
Abhéngigkeiten innerhalb eines Portfolios eine nicht zu unterschédtzende Rolle spielen,
wenn man Aussagen iiber die Wahrscheinlichkeiten groRer Verluste treffen mochte.

Wir werden daher in Kapitel 3 ein Kreditrisikomodell einfithren, mit dem wir ein Portfolio
abhéngiger Kredite modellieren konnen. Anschlief3end werden wir zwei Satze iiber die
Asymptotik von Wahrscheinlichkeiten seltener Ereignisse in abhdngigen Kreditportfolios
beweisen. Es wird sich jedoch herausstellen, dass die Resultate weniger Relevanz fiir
die direkte Abschiatzung von Wahrscheinlichkeiten fiir den Ausfall vieler Kredite in
grofden Portfolios haben als vielmehr fiir die Schatzung dieser Wahrscheinlichkeiten
mittels Monte Carlo Simulation bzw. Importance Sampling. Mit ihrer Hilfe gelingt es
ndmlich, asymptotisch optimale Importance Sampling Schétzer zu finden, also Schétzer,
mit denen man Wahrscheinlichkeiten seltener Ereignisse mit verhéltnismif3ig wenigen
Simulationen verhéltnismaRig genau bestimmen kann. Die Methode des Importance
Sampling und das Problem der Bestimmung asymptotisch optimaler Schatzer werden
wir in Kapitel 4 thematisieren.



2 Der Satz von Cramér - ein Prinzip groBer Abweichungen

2.1 Der Satz von Cramér

Ein prominentes Beispiel fiir ein sog. Prinzip groRer Abweichungen! ist der Satz von
Cramér, der von seinem Namensgeber Carl Harald Cramér 1938 fiir Zufallsvariablen
mit Dichten gezeigt und 1952 von Herman Chernoff verallgemeinert wurde. Er sagt
aus, dass sich die Wahrscheinlichkeit P[S, > nx|, wenn S, die n-te Partialsumme einer
Folge unabhéngiger, identisch verteilter Zufallsvariablen bezeichnet und nx gré3er als
der Erwartungswert von S, ist, unter bestimmten Bedingungen fiir grolde n etwa so
verhilt wie C(n)e /"), Dabei ist I(x) eine Ratenfunktion, die von der Verteilung der
unabhéngigen Zufallsvariablen bestimmt wird, und C(n) eine subexponentielle Funktion

(d.h. eine Funktion fiir die gilt 1i_r>n @ = 0), liber deren ndhere Gestalt der Satz

aber keine Aussage macht.? In Anlehnung an Léwe, der ihn als Theorem 1.6 auffiihrt,
und Konig(2006), bei dem er als Satz 1.4.3 vorkommt, soll der Satz von Cramér hier
vorgestellt und bewiesen werden.

2.1 Satz (von Cramér)
Sei (X;);en eine Folge von unabhéngigen reellen Zufallsvariablen auf einem Wahrschein-
lichkeitsraum (Q,2(,P) mit identischer Verteilung PX' und momenterzeugender Funktion

dx, (t) :=E[e®1] <o fiiraller € R

und sei S, := Y | X;. Dann gilt fiir alle x > E[X; ]

1
lim — InP[S, > nx] = —I(x),

n—soo n

wobei

I(x) == fgﬂg[tx—lwxl (1))

die sogenannte Legendre-Transformierte von In @y, (¢) ist.

2.2 Bemerkung
Fiir diese Arbeit setzen wir Inx = —eo genau dann, wenn x = 0.

Fiir den Beweis des Satzes von Cramér zeigen wir im folgenden Lemma zunéchst
zwei grundsatzliche Eigenschaften der momenterzeugenden Funktion, die wir auch an
anderen Stellen in dieser Arbeit benutzen werden.

2.3 Lemma
Sei X, eine Zufallsvariable mit endlicher momenterzeugender Funktion ¢x, und sei PXi
die Verteilung der Zufallsvariable X,. Dann gilt:

! Die genaue Defintion eines Prinzips groRer Abweichungen geben wir in 2.10.

2 Die genaue Gestalt von C ist schwer zu bestimmen. Aus diesem Grund schreibt man iiblicherweise
lim LInP[s, > nx] = —I(x) statt P[S, > nx] «~ C(n)e ™) (vgl. Bucklew (2004, S. 27)).
n—o0



1. ¢, ist unendlich oft differenzierbar mit

1) = [P @) <o fiiraller €% undn N
R

2. ¢, ist strikt konvex, sofern X, nicht Dirac-verteilt mit P[X; = 0] =1 ist.

Um dieses Lemma beweisen zu konnen, brauchen wir ein Lemma iiber die Vertauschbar-
keit von Integral und Ableitung, das beispielsweise von Klenke (2008) als Differentiati-
onslemma (Satz 6.28) aufgefiihrt wird.

2.4 Lemma (Differentiationslemma)
Sei (Q,%A, ft) ein Wahrscheinlichkeitsraum und I C R ein nichttriviales, offenes Intervall.
Sei zudem f : Q x I — R eine Abbildung mit den Eigenschaften
1. fiirjedest € I ist (x — f(x,1)) € £'(i1),
2. fiir fast alle x € Q ist I — R,t — f(x,t) differenzierbar, wobei wir die Ableitung mit
f' bezeichnen,

3. hi=sup|f'(-,1)] € £ (R).

tel
Dann gilt: Fiir jedes t € I ist f'(-,¢t) € £!(ji) und die Funktion F : t +— [ f(x,t)fi(dx) ist
differenzierbar mit Ableitung

Fi) = [ £/(xni(d).

BEWEIS: Die Aussage folgt aus dem Satz iiber die dominierte Konvergenz. Fiir Details
siehe Klenke (2008, S. 143f.).

Hiermit zeigt man nun leicht Lemma 2.3.
BEWEIS (Lemma 2.3):

1. Fiir den Beweis der Aussage wahlt man 7y > 0 beliebig und sieht dann unter
Benutzung des Differentiationslemmas schnell mit vollstdndiger Induktion iiber n,

dass fiir alle n € N die Funktion 4))(('11_1) auf (—1,1y) differenzierbar ist mit

0 (1) = [ e P (dx) < eo i jedes 1 € (~1o,1).
R

Da 9 > 0 beliebig gewéahlt wurde, folgt die Differenzierbarkeit auf ganz R.
2. Gilt P[X; = 0] < 1, ist ¢y, strikt konvex, da dann ¢y (1) = [ x*¢"P*1(dx) > 0 fiir
jedest € R ist.
U

2.5 Korollar
Aus Lemma 2.3 folgt E[X;] = ¢y, (0) < o und damit die Existenz von E[X;] im Satz von
Cramér.



Kommen wir nun zum eigentlichen Beweis des Satzes von Cramér.

BEWEIS (Satz von Cramér): Wir konnen o. B. d. A. x =0 und E[X;]| < 0 annehmen, da
mit Substitution X; = X; — x alle anderen Fille aus diesem folgen:

1 1 i
lim —InP[S;,, > nx| = lim —InP —x)>0]=1 —l]P’
im —InPP[ nx| Jim —In [Z x) im —1In ;

n—eo n = n—oo
= —sup[—InE[¢X1]] = — sup[— InE[e* 1] = — sup[tx — InE[e™X1]]
teR teR teR
—

Wir miissen also zeigen
1
lim —InP[S,, > 0] = —1(0).

n—oo g

Fiir das weitere Prozedere fiihren wir die Schreibweisen wyx,(7) := In¢y,(r) und
g:= inﬂg 0x, (1) ein. yy, heilst auch kumulantenerzeugende Funktion von Xj. Nattirlich ist
te

g > 0 und wegen der Monotonie des Logarithmus gilt

1(0) = sup|— Indy, (1] = — inf Iny, (1] = — Ing,
t€R teR

wobei nach Bemerkung 2.2 1(0) =  fiir g = 0 ist.
Damit bleibt zu zeigen

lim lln]P’[Sn >0] =Ing. (D

n—oon
Dafiir unterscheiden wir zwei Fille, abhidngig davon, wo P Masse hat. Der erste kann
recht schnell abgehandelt werden, der zweite erfordert etwas mehr Aufwand. Wesentli-
che Schritte sind die Anwendung der exponentiellen Chebyshev-Ungleichung?® und die
Durchfiihrung einer exponentiellen Malstransformation, der wir wegen ihrer Bedeutung
einen eigenen Abschnitt am Ende dieses Kapitels widmen. Diese Schritte werden auch in
anderen Beweisen in dieser Arbeit eine zentrale Rolle spielen.

1. P(X; <0) =1
Weil X; mit positiver Wahrscheinlichkeit negative Werte annimmt (da E[X;] < 0),
ist in diesem Fall ¢y (1) = [ xe*PX1 (dx) < 0 fiir jedes t € R und damit ¢y, streng
monoton fallend. Folglich gilt mit dem Satz von der monotonen Konvergenz
g= tli_)rg ox, (t) = }EB, J—eo ) e PX1(dx) = P[X; = 0], wenn wir beriicksichtigen, dass

die Funktion (7 — €™) fiir x € (—e0,0] monoton féllt und dass lgn r=0flirx<o0

und thm e =1 flir x = 0 ist. Wegen der Unabhéngigkeit und identischen Verteilung
—»00

der X; gilt weiter

P[S, > 0] =P[X; =X, = --- = n:()]:H]P[Xi:()]:gn
i=1

3 Die exponentielle Chebyshev-Ungleichung ist wegen ihrer zentralen Rolle im Anhang mit Beweis
aufgefiihrt (Satz 6.1).



und damit . .
,}1_I>I°10 - InP[S,, > 0] r}l_r;lon Ing" =Ing
. P[X; <0] >0und P[X; >0] >0
In diesem Fall gilt wiederum wegen des Satzes von der monotonen Konvergenz

lim ¢y, (t) = lim e PX1 (dx) + lim ¢PX1 (dx) = oo

t—oo t—Foo t—oo
(=o0,0] (0,)

Aus der strikten Konvexitit von ¢y, folgt dann, dass es ein eindeutiges 7 € R gibt,
so dass ¢x, in T minimal wird, also so, dass ¢y () =0 und ¢x,(7) = g > 0 ist. Da
dx, (0) = E[X1] < 0= ¢y (7) ist, ist wegen der Konvexitét von ¢x, >0 und man kann
die exponentielle Chebyshev—Ungleichung anwenden. Wegen der Unabhéngigkeit
und identischen Verteilung der X; gilt also insgesamt

P[S, > 0] <E[e™"] =E

He“] (6, (7))" = ¢".
So erhalten wir die obere Schranke

1 1
limsup —InP[S,, > 0] < limsup—Ing" =Ing. 2

n—e N n—soo

Dass Ing auch unteres Schranke ist, also

liminfllnIP’[Sn >0] >Ing, 3
n—e p
zeigen wir nun mithilfe einer exponentiellen Maltransformation. Die Idee, die
dahinter steht, ist die Verteilung der X; so umzugewichten, dass sie den Erwar-
tungswert Null besitzt und somit das Ereignis {S, > 0} nicht mehr selten, sondern
typisch ist. Wir werden auf diese Idee am Ende dieses Kapitels noch genauer
eingehen.

Wir fiihren also eine neue Folge (V;);cy von unabhédngigen und identisch verteilten
Zufallsvariablen ein, die die transformierte Verteilung

P! (dx) := ée”IP’X‘ (dx)

besitzen.
Zunichst weisen wir nach, dass E[Y;] = 0 und V[Y;] € (0, ) gilt. Dafiir betrachten

wir ¢y, (t) := E[e'"1], die momenterzeugende Funktion von Y;. Es gilt

o, (1) = / PN (dx) = é / P (dx) = é‘l’xl (t 4 7). @

R R



Folglich ist auch ¢y, endlich und unendlich oft differenzierbar. Erinnern wir uns,
dass fiir jedes € R ¢y (t) > 0 ist (Lemma 2.3), erhalten wir

E[Y)] = ¢}, (0) = é‘l))/(l(f) ~0

(5)
1
und V1] =E[(¥1 - E[1])*) = E[Y?] = ¢7,(0) = §¢;’(’1 (1) € (0,00).
Nun fiihren wir die Partialsummenfolge 7, = Y" , Y; ein und beweisen
P[Sn Z 0] = gn]E[e_TTn]]_{Tnzo}] (6)
und liminfllnE[e*TT”IL{Tnzo}] > 0. (7)

n—e n

Daraus ergibt sich dann namlich direkt die untere Schranke (3):

1 1
liminf = InP[S, > 0] = liminf = In(g"E[e” """ 17 5¢y])

n—oo n—oeo pn

1
=Ing+liminf=InE[e "1 7,50)] > Ing.

n—eo

(6) gilt, da PX1(dx) = ge~ ™P"!(dx) und daher

P[Sy > 0] = E[ls,>0}] = / o (/ Lig | vz0) P <dx1>) P (doy)
R

R

— / .. (/ ]1{2?:1xi20}ge71x1]P>Y1 (dxl)) .. .gefrxn[le (dxn>
R R

gn/. .. (/ﬂ{zf]xpO}eTZ?lxiPYl (dxl)) ...Ph (dxn)
R

R
= g”]E[e_TT”IL{TnZO}].

Fiir den Beweis von (7) wahlen wir ein beliebiges C > 0. Dann erhalten wir wegen
der Monotonie und Linearitdt des Erwartungswerts

e_TC\/nV[Yl] 1

=11, =TT
Ele™ Lir,>0y] = Ele ! IL{onggc\/W[m}] > Ef {OSTHSC\/nV[Yl]}]

T,
__—1C\/nV[Y]] — T/ V] |
—¢ "Bl o<, <cymmmy] =€ o [\/nV[Yl] cl.d).

Wegen der Monotonie des Logarithmus gilt dann auch

—InE[e~ "1 >V Pl TP |—2—€]0,C
. e (r,>01 > NG " VT [0,C]




Benutzt man nun (5) und den Zentralen Grenzwertsatz, erhdlt man

1 T, —1C V[Y]] 1 T,
hrllglolgfr—llnE[ liz,>0y] > lllgl(};lf (T + Zln}P) [T[Yl] € [0,C]

.. .—1C\/V[Yi]
_lggglfT-i—hr{glgfnln\/_

)

wobei die letzte Gleichheit sich daraus ergibt, dass

2dx€ (0,1).

=

Damit ist auch (7) gezeigt und wir haben somit die untere Schranke.

Aus der oberen Schranke (2) und der unteren Schranke (3) ergibt sich dann
insgesamt (1), womit der Satz bewiesen ist. O

2.6 Bemerkung
e Der Satz von Cramér sagt aus, dass sich die Wahrscheinlichkeit P[S, > nx| asym-

ptotisch wie C(n)e~"/™) verhilt, wobei C(n) eine subexponentielle Funktion ist. Er
sagt nicht aus, dass P[S, > nx] und ¢ "/¥) asymptotisch dquivalent sind, wie man
vielleicht auf den ersten Blick meinen konnte. Deutlich wird das, wenn man sich vor
Augen fiihrt, dass sowohl fiir P[S, > nx] = ¢~ als auch fiir P[S, > nx] = e

gilt, dass lim 1 InP[S, > nx] = —I(x).
n—yoo

e Wie man am obigen Beweis leicht nachvollziehen kann, gilt die Abschatzung
LInP[S, > nx] < —I(x), bzw. P[S,, > nx] < e "™ fiir alle n € N und x > E[X]].

2.7 Beispiel
Wir wollen hier exemplarisch die Legendre-Transformierte / fiir eine Folge (X;);cn un-

abhingiger Zufallsvariablen berechnen, die zum Parameter p Bernoulli-verteilt sind.
Zunachst berechnen wir dafiir die kumulantenerzeugende Funktion von Xi;

v(t) = InE[e®] = In(pe’ + (1 — p)e®) = In(1 — p+ pe'). (8)
Fiir jedes x € R ist nun /(x) das Supremum von
hy(t) :=tx—1In(1 — p+ pe).

Um dieses Supremum zu bestimmen, suchen wir Nullstellen ¢, der Funktion



Fiir x € (0,1) erhalten wir als einzige Nullstelle ¢, = In (;:f)fc )

2
Da /(1) = (]_;’i pe,> — l_ﬁf: _or <0 fiir alle r € R gilt, liegt an der Stelle #, ein Maximum

vor und wir erhalten fiir alle x € (0,1)

1(x) = he(ty) = xIn (If)) +(1—x)In (11:;) .

In allen anderen Féllen hat 7/ keine Nullstellen. Wir sehen aber

10) = fgﬂg[—ln(l —p+pe)]=—In(1-p)

und

1— d 1
I(1) =sup[t—In(1—p+pe')]=—In (inf [ﬂ]) =—Inp=1In—.
teR teR e p

Fiir x > 1, also x = 1 + € mit € > 0, berechnen wir

. 1—p+pe . l1-p p
!
I(x) ?gp[xt In(1—p+pe')]=—In <11€nf [T]) — —In <[1€nf [ i _|_et_8 o0

und fiir x < 0, also x = —e mit € >0

_ t
I(x)=—In (inf {lep%}) =—In (inf [(1 —p)e® +pe(1+8)t]) = oo,

teR teR

Also erhalten wir insgesamt

I(x) = xIn(3) + (1 —x) ln(%_;;) fir x € [0, 1]
«° fiir x2[0,1]

In Abbildung 1 ist die berechnete Legendre-Transformierte fiir den Parameter p = 0,2
dargestellt. An ihr erkennen wir typische Eigenschaften einer Legendre-Transformierten,
die wir hier ohne Beweis angeben. Ein Beweis findet sich beispielsweise bei Winter
(2009) unter Lemma 1.12.

2.8 Lemma (Eigenschaften der Legendre-Transformierten im Satz von Cramér)
Sei X eine reellwertige Zufallsvariable mit u = E[X] und 6? = V[X] > 0. Die moment-
erzeugende Funktion ¢x von X sei endlich. Dann besitzt die Legendre-Transformierte
I(x) := sup,cg[tx —In¢x ()] die folgenden Eigenschaften:
1. Fiir jedes x € R gilt I(x) > 0. I(x) = 0 gilt genau dann, wenn x = U.
2. 1 ist konvex und von unten halbstetig auf R.
3. Auf dem Intervall (essinf(X),esssup(X)) ist I stetig und strikt konvex. Dabei ist
essinf(X) := sup{v € R|P[X < v] =0} das wesentliche Infinum
und esssup(X) := inf{w € R|P[X > w| = 0} das wesentliche Supremum der Zufallsva-
riable X.

4. Fiir jedes s > 0 ist die Niveaumenge N, := {x € R|I(x) < s} kompakt.

10
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Abbildung 1: Ratenfunktion der Ber(0,2)-Verteilung auf dem Intervall [0, 1]. Auflerhalb
dieses Intervalls nimmt /(x) den Wert < an.

2.2 Das Prinzip groBer Abweichungen

Um den Satz von Cramér in den formalen Rahmen der Theorie grofer Abweichungen zu
stellen, werden wir in Anlehnung an Koénig (2006) hier noch eine allgemeine Definition
eines Prinzips grol3er Abweichungen geben. Zunéchst geben wir aber die Definition einer
Ratenfunktion.

2.9 Definition (Ratenfunktion)

Sei (E,d) ein metrischer Raum. Eine von unten halbstetige Funktion J : E — [0,00],
die nicht konstant den Wert o« annimmt, heit Ratenfunktion. Ist fiir jedes s > 0 die
Niveaumenge N; := {x € E|J(x) < s} kompakt, so nennen wir J eine gute Ratenfunktion.

Die Legendre-Transformierte / aus dem Satz von Cramér haben wir bislang einfach
als Ratenfunktion bezeichnet. An den Eigenschaften aus Lemma 2.8 sehen wir schnell,
dass I tatsédchlich eine Ratenfunktion nach obiger Definition ist. / ist sogar eine gute
Ratenfunktion.

2.10 Definition (Prinzip grofer Abweichungen)

Sei (E,d) ein metrischer Raum und Bz die von den offenen Mengen auf E erzeugte
o-Algebra. Ferner sei (u,),cn eine Folge von Wahrscheinlichkeitsmal3en auf (E,Bg) und
(7)nen eine Folge positiver Zahlen mit 9, — oo flir n — . [ sei eine Ratenfunktion auf E
nach Definition 2.9.

11



Dann sagt man, dass die Folge (u,),cn einem Prinzip grof3er Abweichungen mit Raten-
funktion 7 und Skala ¥, geniigt, falls die folgenden Bedingungen erfiillt sind:

LDP 1 Fiir jede offene Menge G C E gilt liminf,_,c % Inw,(G) > —infregI(x).
LDP 2 Fiir jede abgeschlossene Menge F C E gilt limsup, _M%In Un(F) < —infyep I(x).

Man sagt, eine Folge (&,),cn von E-wertigen Zufallsvariablen erfiillt ein Prinzip grol3er
Abweichungen, wenn die Folge ihrer Verteilungen einem solchen geniigt.*

Wenn eine Folge (u,),eny von Wahrscheinlichkeitsmal3en ein Prinzip grol3er Abwei-
chungen erfiillt, heil3t das insbesondere, dass fiir Mengen A C E mit der Eigenschaft
inf _; I(x) = inf, 5 I(x) gilt 1, (A) « exp(—Yu(infrea I(x) — Xn)), Wobei (¥n)nen eine Nullfol-

X

ge ist (vgl. Konig (2006) Bemerkung 2.1.2.3).

Man kann den Satz von Cramér zu einem Prinzip grolder Abweichungen nach Definition
2.10 fortsetzen. So zeigt zum Beispiel Konig (2006) unter Satz 2.2.1:

2.11 Satz (Fortsetzung des Satzes von Cramér zu einem Prinzip gr. Abweichungen)
Sei (X;);en eine Folge von unabhédngigen und identisch verteilten reellen Zufallsvariablen
mit endlicher momenterzeugender Funktion ¢x, und sei S, :=Y? | X;. Dann erfiillt die
Folge (%Sn)neN ein Prinzip grof3er Abweichungen auf R mit Skala n und Ratenfunktion I.
Dabei ist I wie in Satz 2.1 die Legendre-Transformierte von In ¢y, .

Wir werden auf den Beweis dieses Satzes hier verzichten, da er fiir die in den nichsten
Kapiteln vorgestellten Anwendungen nicht relevant ist.

Eine weitreichende Verallgemeinerung des Satz von Cramér findet man im Satz von
Gartner-Ellis, der ebenfalls ein Prinzip groller Abweichungen beschreibt. Man findet ihn
unter anderem bei Konig (2006) und Bucklew (2004), aber auch in den meisten anderen
Arbeiten, die in die Theorie grofser Abweichungen einfiihren.

2.3 Die exponentielle MaBtransformation - ein Exkurs

Im Beweis des Satzes von Cramér haben wir die Technik der exponentiellen Maf3transfor-
mation benutzt, um ein seltenes Ereignis zu einem typischen Ereignis zu machen. Diese
Technik begegnet uns oft in Beweisen von asymptotischen Aussagen iiber Wahrschein-
lichkeiten seltener Ereignisse. Wir werden auch in den folgenden Kapiteln immer wieder
darauf zuriickgreifen. Daher soll sie an dieser Stelle etwas allgemeiner eingefiihrt werden.

Sei X eine reelle Zufallsvariable auf einem Wahrscheinlichkeitsraum (Q,2(,P), die die
Verteilung PX besitzt. Die momenterzeugende Funktion ¢y (¢) = E[¢/X] sei fiir alle r € R
endlich. Dann konnen wir durch

etx

P (dx) := ¢X—@PX (dx) 9)

4Vgl. Koénig (2006), Definition 2.1.1 und Bemerkung 2.1.2.4.
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die Verteilung einer neuen Zufallsvariable Y®) definieren. Die Zufallsvariable ¥ ") besitzt
somit die PX-Dichte r,(x) := ¢;;2t) und die Verteilungsfunktion

FY(’)( ) Y < a / ]P)Y a’x

—00(1 —ooa

(PX

Dass P¥" tatsichlich eine Wahrscheinlichkeitsverteilung ist, sieht man schnell ein, wenn
man sich vor Augen fiihrt, dass die Dichte r, fiir alle t € R positiv ist und dass gilt

_ 1 o ) — ¢X(t) _
R/r,(x)IPX(dx)—d)X(t)R/ PX(dr) = Sy =1

Die transformierte Verteilung pr? hédngt von einem Parameter ¢+ € R ab. Das gibt uns die
Moglichkeit, sie unseren Zwecken durch Wahl eines geeigneten Parameters anzupassen.
Um zu verstehen, inwieweit wir die Verteilung anpassen konnen, beweisen wir

2.12 Lemma

In der oben geschilderten Situation existiert fiir alle x € (essinf(X),esssup(X)) ein t, €
R, so dass gilt E[Y")] = x. (Zur Erinnerung: essinf(X) := sup{v € R|P[X < v] =0} und
esssup(X) := inf{w € R|P[X > w| =0})

Wir konnen also mittels exponentieller Transformation den Erwartungswert von X auf
einen beliebigen Wert x verschieben, fiir den P[X <x] < 1 und P[X > x] < 1 gilt.

BEWEIS:> Wir suchen fiir jedes x € (essinf(X),esssup(X)) ein ¢, € R, das die Gleichung
x=E[y®] = ) (0) erfiillt. Es ist (vgl. (4))

)= [ ™ y® ) = 1 e(s t)x ) = ¢X(S+t)
0y 9 H! P (ay M)R/ P ) = PEE

und folglich

¢1/v<r) (s) = %

Px (1)
dx (1)

sowie insbesondere

Py (0) =

Also muss 7, die Gleichung
¢’ (1)
9 (tx)

erfiillen. Dass fiir jedes x € (essinf(X),esssup(X)) ein solches ¢, existiert zeigen wir, indem

wir beweisen, dass a := essinf(X) und b := esssup(X) die Asymptoten von h(t) := %

5> Vgl. fiir diesen Beweis Gebennus (2006), Lemma 1.10. Gebennus lisst jedoch den Fall essinf(X) <0
auller Acht.



sind. Es gilt

aetX
o) Exe) |2 I%[e,xj —a
E[etX] < Ebe'™] _ b,

das heil3t fiir jedes ¢ € R ist h(t) € [a,b]. Nun miissen wir noch zeigen, dass a und b nicht
nur untere und obere Schranken von 4, sondern tatsdchlich Asymptoten sind. Wir zeigen
hier nur, dass b Asymptote ist. Der Beweis fiir a lauft analog.

Wir konnen o. B. d. A. ¢ > 0 annehmen. Ist a < 0 kdnnen wir namlich zu X := X —a

]E[X 1

tibergehen und zeigen, dass =% | die Asymptoten 0 und » — @ hat. Da namlich gilt

el

EXeX] e “E[Xe™]—ae“Ele’™] E[Xe'™] .
X e 9E[e!X] o E[e'X] ’

hat dann % die Asymptoten « und b.

Sei also € > 0 beliebig und A, := {X > b—¢}. Dann gilt fiirr > 0
E[Xe'X] E[14,(X)(b — €)e'X]
E[e*] ™ E[la, (X)eX] + E[Lyg (X)e']
Bl
E[l4, (X)e*] + E[T4¢ (X )e]
E[la, (X)e™]
E[1a, (X)eX] + P[AgleP—¢)

h(t) =

:(b

> (b—¢)

Lasst man ¢ gegen unendlich laufen, konvergiert der letzte Term gegen b — €. Das sieht
E[lag (X)e']

E[L, (X)e'X]+P[Ag]e!~¢)

[Lag (X)e* ] +P[A] %) PlAgle'®—)

Ells, (et El1y; ()]

gegen Null konvergiert. Letzteres konnen wir leicht zeigen. Da P[Ag] > 0 nach Definition

konvergiert genau dann gegen

man folgendermalen ein: Der Bruch

. E .
1, wenn sein Kehrwert gegen 1 konvergiert, wenn also

von esssup(X), gilt

PlAgle) _ Plaglete)
"= BL, (00 = Bl (X)e

PlAg)e' ")

e 2!

_ PlAY]
-~ PA¢]

Der letzte Term konvergiert fiir t — o offensichlich gegen Null.
Es gilt also insgesamt

b> limh(t) > b—e.
[—oo
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Da € > 0 beliebig war, ist damit gezeigt, dass b Asymptote von h(t) ist. O

Nun wollen wir nach McNeil et al. (2005, S. 369f.) noch ein Beispiel zur exponentiellen
Transformation geben, in dem die Zufallsvariable, deren Verteilung transformiert werden
soll, eine Lebesgue-Dichte besitzt.

2.13 Beispiel
Sei X eine standardnormalverteilte Zufallsvariable. Transformieren wir die Verteilung
von X exponentiell, erhalten wir eine neue Verteilung

Ix etx

y® = — xX) = ——@(x x).
P (42) = 5P ) = oo

Die momenterzeugende Funktion der standardnormalverteilten Zufallsvariable X ist

t2 . . . . t
ox (1) = e2 (vgl. z.B. McNeil et al. (2005, S. 370). Die transformierte Verteilung PY" hat
also die Lebesgue-Dichte

e i) 1

g(x) := ¢X—<t)¢(x> = \/T_ﬂ:e .y

Folglich ist eine Zufallsvariable Y, die die transformierte Verteilung pr" besitzt, nor-
malverteilt mit Erwartungswert r und Varianz 1. Wir konnen also durch exponentielle
Transformation den Erwartungswert einer standardnormalverteilten Zufallsvariable be-
liebig verschieben (vgl. Lemma 2.12). Im Fall der Standardnormalverteilung bleibt die
Varianz bei der Transformation unverandert.

In Kapitel 3 werden wir auf dieses Beispiel zuriickkommen.
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3 GroBe Abweichungen im homogenen Einfaktor-Kreditrisikomodell

3.1 Das homogene Einfaktor-Kreditrisikomodell

In diesem Abschnitt stellen wir in Anlehnung an Bluhm et al. (2010) und Glasserman und
Li (2005) ein Kreditrisikomodell vor, mit dem wir dann anschliefRend arbeiten wollen.
Dabei legen wir einen geeigneten, nicht ndher spezifizierten Wahrscheinlichkeitsraum zu
Grunde.
Wir betrachten ein Portfolio aus n Krediten, die alle die gleiche Wahrscheinlichkeit p
besitzen, in einem festen Betrachtungszeitraum (z.B. ein Jahr) auszufallen.® In der Praxis
entspricht das in etwa einem Portfolio aus Krediten der gleichen Ratingklasse. Zusatzlich
nehmen wir an, dass bei jedem Kredit der gleiche konstante Verlust V = 1 aus einem
Ausfall resultiert.”
Den Ausfall des i-ten Kredits modellieren wir mit einer Zufallsvariable Y;. Wenn der
i-te Kredit innerhalb des Betrachtungszeitraums ausfallt, nimmt ¥; den Wert 1 an, sonst
den Wert 0. Fiir jedes i € {1...n} ist ¥; somit zum Parameter p Bernoulli-verteilt. Die
Zufallsvariable

L,=)

n
i=1

Y;

gibt dann den Gesamtverlust in dem Portfolio an.

Unser Ziel ist es im Folgenden, Aussagen iiber die Wahrscheinlichkeit P(L,, > ng) fiir einen
Schwellenwert 1 > g > E[Y;] = p zu treffen. Dafiir miissen wir uns jedoch zuvor Gedanken
iiber die Abhéngigkeitsstruktur in dem Portfolio machen. Sind die ¥; unabhéngig, ist
L, binomialverteilt und wir konnen P(L, > nq) direkt berechnen oder (fiir groRes n)
mit Hilfe des Zentralen Grenzwertsatzes abschétzen. In der Praxis ist die Annahme
der Unabhéngigkeit jedoch kaum haltbar, da sich makrodkonomische Einfliisse oft auf
mehrere Kreditnehmer zugleich auswirken (vgl. z.B. McNeil et al. (2005, S. 329f.)).

Die Abhéngigkeit der ¥; modellieren wir iiber die Abhangigkeit von latenten Boni-
tatsvariablen X;. Die Bonitédtsvariablen geben Auskunft iiber die Kreditwiirdigkeit der
entsprechenden Kreditnehmer. Man nimmt an, dass der Vektor (Xj, ..., X,,) multivariat nor-
malverteilt ist. Die einzelnen Eintrdage X; werden standardnormalverteilt angenommen.
Sie konnen beispielsweise die standardisierten logarithmischen Vermogenswertrenditen
der Kreditnehmer angeben.® Wir nehmen an, dass der i-te Kreditnehmer ausfillt, wenn
dessen Bonititsvariable X; am Ende des Betrachungszeitraums unter einer bestimmten
Schranke x liegt. Diese Schranke x wird genau so gewahlt, dass P[X; <x] =P[Y;=1]=p
gilt, also x = ®~!(p). Da die X; identisch verteilt sind und die Ausfallwahrscheinlichkeit
aller Kredite gleich ist, ergibt sich fiir jeden Kredit die gleiche Schwelle.

6 Wir lassen hier nur die Méglichkeiten ,,Ausfall“ und ,kein Ausfall“ zu (two-state model). Sonstige
Uberginge von einer Ratingklasse in eine andere (rating migration), wie sie zum Beispiel bei Credit
Metrics eine Rolle spielen, lassen wir aufser Acht (vgl. zu Credit Metrics Paulsen (2009)).

7 In anderen Modellen werden unterschiedliche oder sogar zufillige Verluste zugelassen (vgl. Bluhm et al.
(2010, S. 82f)).

8Vgl. Bluhm et al. (2010, S. 65f.) Bluhm et al. riumen jedoch ein, dass empirische Untersuchungen
zeigen, dass es passendere Verteilungen als die Normalverteilung gibt, um die logarithmische Vermo-
genswertrenditen zu beschreiben.
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Die Bonitdtsvariablen X; ... X, hdngen nun in folgender Weise voneinander ab:
Fiir jedes i € {1...n} postulieren wir den Zusammenhang

Xi=«xkZ+\V1-x2%¢g, Kkel01]. (10)

Z ist dabei eine standardnormalverteilte Zufallsvariable, die einen makrookonomischen
Einfluss abbildet, der auf alle Kreditnehmer einwirkt. Hat man ein Portfolio aus Kredi-
ten deutscher Unternehmen, kann sich in Z beispielsweise die Gesamtwirtschaftslage
Deutschlands widerspiegeln. Man bezeichnet Z als systematischen Risikofaktor. Mit der
ebenfalls standardnormalverteilten Zufallsvarible ¢ dagegen modelliert man Einfliisse,
die nur den i-ten Kreditnehmer treffen. Sie heil3t daher auch idiosynkratischer oder spezi-
fischer Risikofaktor des i-ten Kreditnehmers. Die & und Z sind insgesamt stochastisch
unabhingig voneinander. Man rechnet leicht nach, dass unter den oben getroffenen
Annahmen die Zufallsvariable kZ + /1 — k2¢; tatsichlich fiir alle i € {1...n} standard-
normalverteilt ist und (10) somit Sinn ergibt.

Die Konstante k> quantifiziert, welcher Anteil der Schwankung der Bonitétsvariablen
durch makro6konomische Schwankungen erklart werden kann. Genauer gesagt gilt fiir
jedes i€ {1...n} wegen der Unabhéngigkeit von Z und ¢;

VIX] = K2V[Z] + (1 — K2)V]g)].

Wir gehen in unserem Modell davon aus, dass « fiir alle Kreditnehmer gleich grof3 ist.
Man rechnet leicht nach, dass x? genau der lineare Korrelationskoeffizient von zwei
Bonitdtsvariablen X; und X; ist.” Aufgrund der Standardnormalverteilung von X; und X is
der Bilinearitat der Kovarianz und der Unabhéngigkeit von ¢;, ¢; und Z gilt ndmlich

p(Xi,Xj) = COV(X,',X]')
= K%cov(K, k) + KV 1 — k2cov(Z, &) + k\/ 1 — K2cov(Z, €;) + (1 — k*)cov(&;, €;)

= k*V(2Z) = k%

Wegen dieser Bedeutung der Konstante k> schreibt man vielfach p statt k2. Unsere
Festlegung x > 0 impliziert, dass die Bonitat der Kreditnehmer mit dem systematischen
Risikofaktor wéchst. Der systematische Risikofaktor sollte so gewahlt werden, dass diese
Festlegung sinnvoll ist.

Das beschriebene Modell ist ein Einfaktormodell, da das systematische Risiko mit nur
einem Faktor beschrieben wird. Mehrfaktormodelle beriicksichtigen mehrere systemati-
sche Faktoren, die bei verschiedenen Kreditnehmern unterschiedlich gewichtet werden,
je nachdem, wie sensibel diese auf den jeweiligen Einfluss reagieren. Man bezeichnet
unser Modell als homogen, da die Konstanten x, p und c fiir jeden Kreditnehmer den
selben Wert annehmen.

Zudem féllt unser Modell in die Klasse der Gauf3-Copula-Modelle. Der Name riihrt

? Man beachte, dass x> die Korrelation von Bonitiitsvariablen angibt und nicht die Korrelation von Ausfal-
lindikatoren. Wegen des Zusammenhangs der Bonitdt mit dem Vermogenswert eines Kreditnehmers
bezeichnet man k2 auch als asset-Korrelation, wiahrend man die Korrelation der Ausfallindikatoren als
default-Korrelation oder Ausfallkorrelation bezeichnet. Zur Ausfallkorrelation vgl. Bluhm et al. (2010, S.
56-58).
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daher, dass die sogenannte Gauf3-Copula in unserem Modell die Abhéngigkeit der
Bonitatsvariablen modelliert, indem sie die Standardnormalverteilungen der X; zu der
multivariaten Normalverteilung des Vektors (Xj,...,X,) zusammenfiihrt. Die Benutzung
der Gaul3-Copula bei der Modellierung der Abhéngigkeit von Kreditnehmern wurde
im Zusammenhang mit der Subprime-Krise scharf kritisiert (vgl. z.B. Salmon (2009)).
Gegenstand der Kritik war unter anderem die unzureichende Beriicksichtigung von
Extremereignissen, die mehrere Kreditnehmer gleichzeitig treffen. Selbst wenn namlich
die Bonitétsvariablen zweier Kreditnehmer durch die Gaul3-Copula mit starker Korre-
lation x? # 1 gekoppelt sind, treten in dem Modell extreme Verluste der Kreditnehmer,
die dann héaufig zu einem Ausfall fiihren,(fast)unabhédngig voneinander auf. Das ist
natiirlich von der Realitit weit entfernt.!® Dennoch soll das Modell hier verwendet
werden, da sich darin interessante Beobachtungen machen lassen, die vielleicht auf
andere Copula-Modelle iibertragbar sind.

3.2 Unabhangige Kredite

Im Fall k¥ = 0 sind die Bonititsindikatoren X; und damit auch die Ausfallindikatoren
Y; unabhingig. Diesen Fall wird man allerdings in der Praxis kaum antreffen (vgl. z.B.
McNeil et al. (2005, S. 329f.)). Wie oben bereits erwdhnt ist die Zufallsvariable L, als
Summe unabhingiger Bernoulli-verteilter Zufallsvariablen in diesem Fall binomialverteilt
zu den Parametern n und p. Das starke Gesetz der grof3en Zahlen besagt in diesem
Fall, dass % P-fast sicher gegen die Ausfallwahrscheinlichkeit p konvergiert. Aus dem
schwachen Gesetz der groRen Zahlen folgt fiir beliebige Werte 6 > 0

P[L, >n(p+06)] =0 fiirn— co. (11)

Mit dem Satz von Cramér konnen wir auch eine asymptotische Abschédtzung treffen, wie
schnell die Wahrscheinlichkeit in (11) gegen Null konvergiert. Danach gilt ndmlich fiir
alle 6 € (0,1 — p]

lim llnIP’[Ln >n(p+90)=-I(p+9),

n—oon

1(x) = xIn (;—)) +(1-x)n (;:;) ,

da die ¥; Bernoulli-verteilt sind (vgl. Beispiel 2.7). P[L, > n(p + §)] verhélt sich also

—n n(2te —p—8)In(izp=8
asymptotisch wie C(n)e <(p+5)1 (557)+(1=p=8)In(=55 ))
le Funktion ist. Es gilt sogar fiir alle n € N

wobei

, wobei C(n) eine subexponentiel-

8 —p—s
P(L, > n(p+ )] < & (PO H(1-p-8)n(5252)

(vgl. Bemerkung 2.6). Konnte man sich also in der Praxis ein Portfolio aus n vollig
unabhéngigen Krediten zusammenstellen, die jeweils mit Wahrscheinlichkeit p ausfallen,

10 Die Gaul-Copula erzeugt asymptotische Unabhiingigkeit, vgl. u.a. Cottin und Déhler (2009, S. 281),
Bluhm et al. (2010 S. 343f.).
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so wiisste man, dass die Wahrscheinlichkeit, dass der Portfolioverlust um mehr als
einen gewissen Wert ndé > 0 vom erwarteten Portfolioverlust np abweicht, den Wert
¢ (P+9) (] wie oben angegeben) nicht iibersteigt. Mit wachsender PortfoliogroRe fallt
die Wahrscheinlichkeit, dass der Portfolioverlust um mehr als einen gewissen Wert nd > 0
vom erwarteten Portfolioverlust np abweicht, mit Rate I(p + 6) exponentiell gegen Null.
Natiirlich kann man im unabhéngigen Fall P[L, > n(p + 6)] auch direkt berechnen oder
mittels des Zentralen Grenzwertsatzes abschatzen.

3.3 Abhidngige Kredite

In diesem Abschnitt werden wir versuchen, auch fiir den (realistischeren) Fall abhéangiger
Kredite (x > 0) Aussagen iiber die Wahrscheinlichkeit P[L, > ng], insbesondere fiir sehr
grolde Werte von n bzw. n — oo, zu treffen. Das machen wir wiederum vor allem {iber
asymptotische Resultate, aus denen wir dann Approximationen fiir grofse Werte von n
ableiten konnen. Da Kreditportfolios hdufig sehr grof? sind (vgl. z.B. McNeil et al. (2005,
S. 330)), ist das fiir die Praxis durchaus von Interesse. Es stellt sich jedoch das Problem,
dass man den Approximationsfehler oft nicht quantifizieren kann.

Im Fall abhéngiger Kredite kann man die Wahrscheinlichkeiten P[L, > ng] nicht mehr ein-
fach berechnen, sondern ist auf Abschatzungen und Simulationen angewiesen. Bedingt
unter dem systematischen Faktor Z sind die Ausfallindikatoren ¥; auch im Fall abhédngiger
Kredite unabhéngig und identisch Bernoulli-verteilt. Die bedingte Ausfallwahrscheinlich-
keit ist

p(2) =Py = 1|Z] =P[X; > ~@~'(p)|Z]

=P [KZ—i— V1—x2e > —qD’l(p)]Z]

:P%ﬁ>_f;§;;mﬂ}:¢<g%§%%ﬂ)

Damit ist L, bedingt unter Z binomialverteilt zu den Parametern » und p(Z), d.h.
P[L, = k|Z =z] = (}) p(z)*(1 — p(z))"* Die unbedingte Verteilung von L, erhalten wir,
indem wir iiber die Verteilung von Z integrieren. Da p eine bijektive Abbildung von den
reellen Zahlen in das Intervall (0, 1) ist, konnen wir ebenso gut iiber die Verteilung von
p(Z) integrieren und erhalten

(12)

P[L, = k| = (Z) / *(1 = r)"kaF (r) (13)
(0,1)
und folglich
P[L, > nq| = Z (Z) / (1= r)"kdF(r). 14)
k=na N 000y

Dabei bezeichnet F die Verteilungsfunktion der Zufallsvariable p(Z). Da p streng monoton
wachsend ist und surjektiv auf das Intervall (0, 1) abbildet, berechnen wir diese zu

VI=#0 ()~ @ (p)

K

F(x) =Plp(Z) <x] =PIZ < p~ ' (x)] = Tjocxcry (v) + L1y (%).
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Die Verteilung von p(Z) bezeichnet man als Probit-Normalverteilung oder Vasicek-
Verteilung. Die Integrale in (13) und (14) kann man beispielsweise mit Hilfe von Monte
Carlo Methoden (vgl. Kapitel 4) numerisch berechnen. Fiir den Grenzfall n — o kdnnen
wir die Verteilung von L, jedoch auch ohne derartige Rechnungen direkt angeben, wie
wir gleich in (15) sehen werden.

Aus dem starken Gesetz der grofden Zahlen folgt

n—o

. L, ,
E [1{,313; L,fp(z)}lzl =P [hm — = p(Z)|Z] =1 [P-fast sicher.
Daraus resultiert wiederum

L,
F [}EE‘J = p<Z>] =E [ﬂ{nm Ln—mzn»] =E {E {ﬂ{ggg L,f—p<z>}’ZH =E[l}=1

n—oo

Also konvergiert 1‘7” hier nicht wie im unabhéngigen Fall fast sicher gegen eine Konstante,
sondern gegen die Zufallsvariable p(Z). Fiir hinreichend groRRes n ist folglich der Anteil
an Krediten, die in einem Portfolio der Gré3e n ausfallen, fiir einen gegebenen makro-
okonomischen Faktor Z = z approximativ gleich p(z).

Da aus fast sicherer Konvergenz schon Konvergenz in Verteilung folgt, konnen wir zudem
fiir alle 0 < ¢ < 1 asymptotisch abschétzen

lim P[L, < nq] =P[p(Z) < q] =P

n—0o

(15)
K

<¢1 — K20 (g) - <I>1<p>>
Wiéhrend also im unabhéngigen Fall fiir alle 6 > 0 die Wahrscheinlichkeit P[L, > n(p +

0)] fir wachsendes n gegen Null konvergiert, konvergiert sie im abhéngigen Fall ge-
& (V1=K (q) -2 (p)
K

gen die echt positive Konstante 1 — . Aus der Grenzverteilung
Fx »(q) = lim P[L, < ng] von L, konnen wir durch Ableiten eine Grenzdichte fy , der
n—o0

Zufallsvariable L, herleiten:

frol) = 2
- e (o (Vim0 ) ) Y (e (o))
e (5@ @) 5 (VIm KR -0 ) ).

In Abbildung 2 ist die Grenzdichte fiir k = 0.5 und p = 0.2 dargestellt. Man kann deutlich
eine schwere rechte Flanke erkennen. Auch fiir einen festen, grolden Wert n weist die
Dichtefunktion eine schwere rechte Flanke auf. Diese resultiert aus der Abhéangigkeit der
Ausfallindikatoren. Fiir unabhingige Ausfallindikatoren ist die Dichtefunktion ndmlich
anndhernd symmetrisch, da L, in diesem Fall binomialverteilt und damit fiir grof3es n
approximativ normalverteilt ist (vgl. McNeil et al. (2005, S. 330)).
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Abbildung 2: Grenzdichte fiir k =0.5, p=0.2

Unser Ziel ist es nun, wie im Satz von Cramér eine asymptotische Abschétzung dafiir zu
finden, wie schnell die Wahrscheinlichkeiten seltener Ereignisse gegen Null konvergieren,
wenn n gegen o wachst. Wie wir gesehen haben, konvergiert allerdings die Wahrschein-
lichkeit fiir das Ereignis {L, > nq} im abhingigen Fall nicht gegen Null, sondern gegen
eine positive Konstante. Wollen wir, dass das Ereignis {L, > nq} selten wird, wenn n
wichst, miissen wir mit wachsendem n entweder die Korrelation kx> gegen Null fallen
lassen, die Ausfallwahrscheinlichkeit p gegen Null fallen lassen, oder die Schwelle ¢
gegen Eins wachsen lassen. Wir wollen uns hier mit dem zweiten und dritten Fall be-
schéaftigen. Der zweite ist interessant, wenn man in sehr grof3en Portfolios aus sehr hoch
gerateten Krediten die Wahrscheinlichkeit dafiir bestimmen mochte, dass mehr Kredite
ausfallen als erwartet. Der dritte ist interessant, wenn man in sehr grof3en Portfolios die
Wahrscheinlichkeit dafiir bestimmen mochte, dass deutlich mehr Kredite ausfallen als
erwartet. Beim ersten Fall geht man von einer sehr kleinen Korrelation zwischen den
Kreditnehmern aus. Dieser Fall soll hier nicht betrachtet werden. Fiir p € (0, %) behandeln
ihn Glassermann und Li (2005) im Zusammenhang mit Importance Sampling in Theorem
2 fiir verschiedene Geschwindigkeiten, mit denen x gegen Null konvergiert. Fiir den
Fall k = .z mit o0 > % und a > 0 ermitteln sie genau das Resultat aus dem Satz von Cramér.
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Fall 3: GroBe Schwelle q

Zunachst behandeln wir in Anlehnung an Pham (2010) und Glasserman und Li (2005)
den dritten Fall. Wir benétigen eine Folge von Schwellen (g,),exn € (0, 1)Y, die fiir wach-
sendes n von unten gegen Eins konvergiert. Die Wahl g, = ®(cvInn) mit 0 < ¢ < v/2
erweist sich als besonders geeignet. Dieser Fall gibt uns ndmlich ein interessantes Resultat,
das wir auch spater im Zusammenhang mit Importance Sampling nutzen konnen.

3.1 Satz
Sei g, := ®(cv/Inn) mit0 < ¢ < +/2. Dann gilt in dem beschriebenen homogenen Einfaktor-

Kreditrisikomodell
lim ——InP[L, > ng,] cl-x (16)
im — InP[L, > ng,| = —— )
n—eo Inn "q 2 K2

Dieser Satz besagt, dass sich die Wahrscheinlichkeit P[L,, > ng,| fiir grof3e n anndhernd so
2

K2
verhalt wie Cz(n)nf%IT, wobei C;(n) hier eine Funktion ist, fiir die gilt r}grolo % =0,
iiber deren nihere Gestalt jedoch keine Aussage gemacht wird. Auffillig ist, dass die
Ausfallwahrscheinlichkeit p in dem Grenzwert (16) keine maf3gebliche Rolle spielt.
Sie kann die Geschwindigkeit, mit der die Wahrscheinlichkeit P[L, > ng,] fiir groRe
n gegen Null fallt, nur beeinflussen, indem sie in die Funktion C,(n) einflie3t, die
jedoch fiir grolde n nur eine untergeordnete Rolle spielt, da sie subpolynomiell wichst.

Die Korrelation x? hingegen {ibt einen grofRen Einfluss aus. Weisen die Bonititen der
2
K

2
Kreditnehmer eine geringe Abhingigkeit voneinander auf, fallt Cz(n)n_%IT fiir grof3e
n deutlich schneller gegen Null, als wenn sie in hohem Grade voneinander abhédngen.
Der Ausfall vieler Kredite in einem Portfolio ist also deutlich wahrscheinlicher, wenn die
Bonitédten der Kreditnehmer stark voneinander abhédngen. GroRe Ausfille resultieren
demnach hauptsachlich aus einer schlechten wirtschaftlichen Gesamtlage, die sich im
systematischen Risikofaktor niederschlagt (vgl. Pham (2010, S. 41)).

BEWEIS:!! Wir zeigen zunichst die untere Schranke

1 21— K2
llglgfﬂlnP[Ln > ngn| > 52 a7
Nach der Definition der bedingten Wahrscheinlichkeit gilt
P[Ly > ngn] > P[Ly > ngn, p(Z) > qn] = P[Ly > nqu|p(Z) > qu|P[p(Z) > qu]. (18)
Wir definieren nun fiir jedes n > 1
_ V1—«x2cy/Inn— !
i=p ) = (p). (19)

K

1 Dieser Beweis orientiert sich an den Beweisen von Pham (2010) (dort unter Theorem 6.1) und Glasser-
man und Li (2005) (dort unter Theorem 3). Der Beweis von Pham ist jedoch bei den asymptotischen
Abschétzungen zum Teil ungenau, der Beweis von Glasserman und Li ldsst den Fall, dass die Ausfall-
wahrscheinlichkeit p kleiner als 0,5 ist, auer Acht. Daher ist der hier gefiihrte Beweis als Uberarbeitung
der Beweise von Pham und Glasserman und Li zu verstehen.
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Weil p streng monoton wachsend ist, gilt {P(Z) > g,} ={Z > p~'qn)} = {Z > 2.}
Da zudem der Verlust L, wichst, wenn der systematische Risikofaktor Z grofsere Werte
annimmt, erhalten wir

> P[L, > ngn|Z = z,) = P[L, > nqn|p(Z) = qun).

Zusammen mit (18) ergibt sich dann
P[Ly > ngn] > P[Ly > ngu|p(Z) = qu]P[Z > z,].

Gegeben p(Z) = g, ist L, binomialverteilt zu den Parametern n und g,,. Fiir binomialver-
teilte Zufallsvariablen fiihrt Slud (1977, S. 404) die folgende Ungleichung an:

3.2 Lemma (Slud)
Sei Y eine Zufallsvariable, die zu den Parametern n und p, binomialverteilt ist. Dann gilt
fiir alle k < np

k —npo
Py >kl >1—-® . 21
v =H= (\/n_l?o) (@D

BEWEIS: Slud nennt diese Ungleichung als Folgerung aus zwei anderen Ungleichungen,
die wir hier nicht beweisen werden:

1. Furalleke Ny gilt 1 —Py(k—1)>1— cb(%) (nach Bohmann 1963).

2. Furalle k < ’,if]o gilt 1 — B, (k) < 1 — By p,(k) (nach Anderson/Samuels 1965).

Dabei bezeichnet P, die kumulierte Poisson-Verteilung zum Parameter A > 0, also

Py (k) = Z’]?ZO %e"l und B, ,, die kumulierte Binomialverteilung zu den Parametern

neNund po € [0,1], also By, p, (k) = X5_g (1) p(1 = po)" /.

2 2
Aus k <npg folgt k—1 <npy—1< % < ';Jff Daher kénnen wir beide Unglei-

chungen anwenden und erhalten fiir k < npy:

k —npo
I—Bmpo(k—l) > I—Pnpo(k—l) > I—CI)( NG ),

also (21).

Mit dieser Ungleichung konnen wir nun in unserem Fall abschatzen

nqn—nqn) 1

]P)[Ln > nQn|p(Z) = Qn] > 1—CI)< i =5

Fiir den gesuchten Grenzwert erhalten wir nun, wenn wir uns erinnern, dass Z standard-
normalverteilt ist,

1 1 1
- S T 1o s
hr{r—lgf_lnn InP[L, > ng,] > hrglgf_lnn In (ZIP’[Z > zn])

1 1 1 1
= liminf — In = + liminf — InP[Z > z,] = liminf — InP[Z > z,]
n—e Inn 2 n—e Inn n—e Inn

1
= liminfl—ln(l —®(z,)).

n—oo NN
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Um dies weiter zu berechnen nutzen wir die Abschatzung
1—a0) -« 2% firy e
X

die beispielsweise Feller (1968) auf Seite 175 beweist. Wir geben den Beweis im Anhang
unter 6.3. Da z, — o fiir n — oo, erhalten wir

1 I
liminf—— In(1 — ®(z,))  liminf —— 1n 22
n—e Inn n—e Inn Zn

I
= liminf —

e Inn ((m mcx/;_n —<I>1(p)>

2
1 1 {V1—-x2cVInn—®(p)
+In| —exp| —x
V2T 2 K
[k I (\/1—K2cx/lnn—<l>_1(p)>
= liminf —
n—yoo nn Inn
2
Iny/27 1 (V1—-K2cV/Inn—d ! (p)
Inn 21nn K
B ol
2 k2
Damit ist die untere Schranke (17) gezeigt.
Nun zeigen wir die obere Schranke
. 1 21—x?
hfqnj::pn_nlnP[L" > ngp| < 5@ (22)

Da die ¥; unter der Bedingung Z = 7z unabhéngig und zum Parameter p(z) Bernoulli-
verteilt sind, berechnen wir analog zu (8) in Beispiel 2.7 die bedingte kumulantenerzeu-
gende Funktion der Y;,

y(t,2) =nE[e"|Z =z] =In(1 - p(z) + p(2)¢").

Mit Hilfe der exponentiellen Chebyshev-Ungleichung fiir bedingte Wahrscheinlichkeiten
(vgl. Bemerkung 6.2) erhalten wir fiir alle r > 0

P[L, > ng,|Z] < e """E[e''"|Z] P-fast sicher

und, wenn wir beriicksichtigen, dass die Y; unter Z bedingt unabhingig und identisch
verteilt sind, weiter

n
e M [e'In|Z] = e—tnqn]E[Hm 7] = e M (E[eM|Z])" = e Mtan—v(t2))  Pp_fast sicher.

i=1
(23)
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Da (23) fiir alle ¢ > 0 gilt, haben wir also

P[L, > ng,|Z] < exp (—n sup|tgn — w(t,Z)]) P-fast sicher.
t>0

Wegen der Linearitdt des Erwartungswerts konnen wir daraus folgern, dass

P[L, > ng,| = E[P[L, > ng,|Z]] <E . (24)

exp (—n supltq, — w(t,Z)])

t>0

im Folgenden wollen wir die Funktion

Fu(z) := —nfgg[tqn —y(t,z2)]

genauer untersuchen.
Zunachst berechnen wir wie in Beispiel 2.7

qn 1-— dn
supltgn, — v (t,2)| = gnIn ——+ (1 — g,) In ———,
1 [ Qn—P(Z)LIn : . .. .
wobei 7y :=In FEEIEr der eindeutige Maximierer von tg, — y(t,z)ist.

to > 0 gilt nun genau dann, wenn p(z) < g, ist. Fiir ¢, < p(z) ist 7y negativ. Da das
Maximum bei 7y das einzige Extremum der fiir alle ¢ und z stetigen Funktion (¢ —
tq— y(t,z)) ist, wird in diesem Fall das Maximum der Funktion iiber alle > 0 an der
Randstelle = 0 angenommen und es ist sup,~¢[fg, — ¥(,z)] = 0. Insgesamt haben wir
also

4n I —gn )
supltg, — w(t,Z)| =1 an— +(1—¢g,)In ————
lzlg[q V(1,2)] = 1)< (q o) (1—qn) 1 p(2)
qn 1 —gn
=1 2In——+(1—g,)Iln—
fesan (q "p@) +{1=an) nl—p(Z))

und somit

qn 1 —gn
Fy(z) = —nl pIn——4+(1—¢g,) In ——— | .
(Z) n {ZﬁZn} (q np(Z)+( q ) nl—p(Z))

Wir stellen fest, dass F, fiir z < z, zweimal stetig differenzierbar ist und dass fiir alle
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7 < z, gilt

i) =~ 10 )

7)) 1-p(z

(L Y (R )k
Fl(z)zn((‘@?ﬁ))f<11—;?§>>2) (o) Xy
(pq’;) 11—_pq(n)) (\/%)2( sz%p )(p(xz;%p)»
: w(( KZJ?;}(IJU)((%?I,ZL() )ﬁ]’?zn))z ~w) o ()
" pq(Z) - 1__;?;) —% ,

wenn man beriicksichtigt, dass die Ableitungen von p(z)

-1
Y@ = =0 (sz%%
vy Kzt @ 1(p) k \> (kz+® '(p)
und - p7z) =~ V1— K2 (x/l—icz) (p( VI—«2 )

sind.

Mit Hilfe der Ableitungen erhalten wir einige Eigenschaften der Funktion F,,.
Fiir alle n € N gilt:

e F,(z) ist fiir alle z € R nichtpositiv, denn fiir 7 = 0 ist g, — y(z,z) = 0 und damit ist
sup,~oltgn — ¥(t,z)] > 0 und F,(z) = —nsup,~o[tgn — Y(t,z)] < 0. Der Maximalwert 0
wird fiir alle z > z, angenommen. -

e F, ist stetig differenzierbar. In den Stellen z # z, ist das offensichtlich, fiir die Stelle
z, sieht man das daran, dass

lim F,(z) = 0 = Fy(z,)

2, "
und lim F)(z) =0 = lim F,(z).
2" Z\iZn

e F, ist monoton wachsend, denn F)(z) ist fiir jedes z € R nichtnegativ.

e F, ist konkav. Fiir z < z, ist ndmlich F’(z) negativ und fiir z > z, nimmt die Funk-
tion F)(z) konstant ihren Minimalwert 0 an, womit insgesamt F, monoton fal-

lend ist. Dass F,/(z) fiir z < z,, d.h. fiir p(z) < gn, negativ ist, ist offensichtlich fiir

_%_—;gp) < 0. Ist —%_() > 0, benutzt man die Abschitzung x < q)(( )) die fiir

alle x > 0 gilt und direkt aus der Abschitzung von Feller (vgl. Anhang 6.3) folgt.
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Damit gilt
Fi@) <ne (sz%p)) (m%z)z (oer T <sz%p)>

(150 s e ()

B KZ—I—CI)_I(p) 2 \/T 2 B 1—gqy B 1—qp
_n<(p( VI—«2 )) (m) { (1-p(2))? (l—p(Z))p(Z)}
<0,

wenn man zusétzlich beriicksichtigt, dass p(z) = CID(%;EM) ist und dass ¢ sym-

metrisch ist.

Diese Eigenschaften werden uns bei unseren weiteren Uberlegungen niitzlich sein.
In (24) haben wir bereits
P[L, > ng,) < E[ef?)]

erhalten. Unser Ziel ist es, dies weiter nach oben abzuschéitzen. Dafiir arbeiten wir
mit einer exponentiellen Mal3transformation, wie wir sie bereits in Kapitel 2 kennen-
gelernt haben. Wir transformieren die Standardnormalverteilung von Z exponentiell
mit Parameter u € R, den es spater geschickt zu wahlen gilt. Dadurch erhalten wir eine
Normalverteilung mit Erwartungswert p und Varianz 1 (vgl. Beispiel 2.13). Z,; sei nun
eine Zufallsvariable, die gemal} dieser transformierten Verteilung verteilt ist:

P24 (dx) = exp (/.Lx — %uz) PZ (dx).

Dann gilt
Efexp(Fa(2))] = E [exp (Fn<zu> —uZy+ %uZ)] |
Da F;, konkav ist, gilt weiter
Fa(Zy) < Fa(p) + (1) (Zu — 1),

so dass wir wegen der Monotonie der Exponentialfunktion und des Erwartungswerts
abschétzen konnen

Blexp(F(2)] < E [exp (B0 + ELG0)Zu 1)~ w2+ 30 )|
(25)

1
=E {exp (Fn(u) + (Fy (1) — 1)Zy — pF, (n) + Euzﬂ :
Wenn wir nun y = u, so wéhlen, dass u, ein Fixpunkt von F, ist, hangt der Term, dessen

Erwartungswert in (25) berechnet werden soll, nicht mehr von Z;, ab und ist somit
konstant. Damit vereinfacht sich unsere Abschitzung zu

Elexp(7(2))] < exp ( Faju) — 518 ).
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Wir miissen jedoch noch zeigen, dass tatsdchlich ein u, existiert, das die Fixpunktglei-
chung

Fy(Un) =y =0 (26)

16st. Dafiir bedienen wir uns des Zwischenwertsatzes.

Wegen der Nichtnegativitdt von F,, ist F,(u) —u > 0 fiir u < 0. Fiir p > max{z,,0} ist
F!(1) =0 und damit F(u) — u < 0. Da die Funktion (u +— F, (i) — u) stetig ist, muss also
ein u € [0,max{z,,0}] existieren, das (26) 10st.

Insgesamt haben wir jetzt die Abschatzung

PlL = ) < oxp (i)~ 302 ). 27)

Wenn wir zeigen konnen, dass u, - z,,, sind wir fertig, denn dann ist wegen der Nichtpo-
sitivitat von F,

1 1 11
limsup — InP[L,, > ng,] < limsup l—Fn(un) — limsup — =

1 2 1 2
< ——1i = —n
= P s T T2 P i
DNz @8
1., (\/I—ch\/lnn—cb_ (p))
= ——limsup —
B 2 1—x?
2 k2

Wir zeigen also, dass fiir jedes hinreichend kleine € > 0 ein ny € N existiert, so dass
zn(l —€) < Uy < z,, fiir alle n > ny. Da die Funktion (u — F(1) — 1) als Summe von
zwei monoton fallenden Funktionen monoton fallend ist und u, eine Nullstelle dieser
Funktion ist, gentigt es hierfiir zu zeigen, dass

F(za(1—€)) —z4(1 —€) >0 (29)
und  F,(zy) — 2, <O0. (30)

Die Ungleichung (30) ist erfiillt, da F}(z,) = O fiir alle n € N und z,, — oo flir n — co.
Um die Ungleichung (29) zu zeigen, bedarf es groBeren Aufwands.

Wir erinnern uns, dass

Fllan(1—e)) :”(p p(zn) 1—p(an) )Q(Kzn(l—E)Jr‘P‘l(p)) K

(zn(1—€)) 1-pla(l—e) V1-x2 V1-k2
und zeigen
lim Fa(a(1—¢) = const. >0
n—e g(n
und m(l—¢€)
gln) !



mit

L‘2 - _1
g(n) = nl_T(l_e)zexp (—ce(l\/% (p) \/lnn> >0,

woraus dann direkt (29) folgt.

Da z,, — oo flir n — oo, erhalten wir

ety e () (o (=)

und mit Hilfe der Abschéatzung 1 — ®(x) -« @ fiir x — oo (Satz 6.3) aullerdem

~1
_ Kzn(1 =€)+ (p)) @ (K252
lim - p(z) zlim( ) ( 1K )

n—eol —p(z,(1 —€))  n—eo (Kzn + D1 (p)) @ (Kzn(l—i):r:z”l(m>

z (1 —g) L] 1 2ked!
_ i a1 )+ (P)exp<__zz(_,<282+2k2£+ _@)):0,
n—eo Kz, +® 1(p) 2 n

Die letzte Gleichheit gilt, da —x?e? 4 2x%e > 0 fiir 0 < £ < 2.

Weiter berechnen wir mit Hilfe der Definition von z,, in (19)

; (Kzn(l ?/f)_;,jl(p)) _y (c(1 —e)Vinn+ q\)/llf—pif)

L2, ce(1—e)d ' (p) ) 1(c1>—1(p)e>2
= —_— 2(1 8) — l —_— .
(0 e
Damit gilt dann
Fl(zy(1 — 1 1 (o 2
1Lm . : n(2n( g(lfz))cpl( : = N K = eXp <_§( (P)j) ) > 0.
n1 =708 exp (_c P p m) 2rV/1—«k V1—-k
Zu zeigen ist noch
lim (1 —¢)
n—oo _& _ C — -1
- pl=7 0 8)2exp(—%vlnn)
(31)
1-K2c(1-8) /] @ !'(p)(1—¢) 1
— lim x - SN

e | 1-G(1-e)? exp (_ cs(l—'ls)_d;?(ﬁ) m)

Fiir b := _% >0, d.h. p< 1 gilt (31), da in diesem Fall exp (b\/lnn) fur

wachsendes n gegen unendlich divergiert (bzw. fiir p = % gegen 1 konvergiert) und
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zudem +/Inn langsamer gegen unendlich divergiert als jede positive Potenz von n. Fiir
b<0,dh.p> % sieht man (31) folgendermal3en ein:

l—¢
lim (1 €)

nve | gl (1me)? exp (b\/ lnn)

1-¢ o1 V1 1
= ILm — |~ () +cvV1—K2 o exp(—bV1Inn).
" a5 (1-e)? \/nlf%(lfs)z \/nlf%(lfs)z

Da Inn langsamer konvergiert als jede positive Potenz von n, konvergiert der Faktor in
den eckigen Klammern gegen Null. Wir berechnen weiter

lim ;exp(—b\/E) = lim exp (\/ﬂ {— (1 - 6—2(1 - e)2> m+b]) =0,

1-5(1—¢)?

S5}

n

denn vInn [— <% - 64—2(1 - 8)2> \/lnn+b] — —oo fiir n — oo, Damit ist (31) gezeigt und
wir erhalten insgesamt (29). O

Fall 2: Kleine Ausfallwahrscheinlichkeit p

Nun lassen wir die Ausfallwahrscheinlichkeit p mit wachsender Portfoliogrof3e n gegen
Null fallen. Dieser Fall ist besonders relevant fiir grof3e Portfolios aus hoch gerateten
Krediten, fiir welche die jahrliche Ausfallwahrscheinlichkeit extrem klein ist. (Fiir Kredite
aus der Ratingklasse A liegen beispielsweise die Ausfallwahrscheinlichkeiten haufig unter
0,1% (vgl. Glasserman und Li (2005, S. 14)).) Aulderdem hat dieser Fall Relevanz, wenn
man das Portfolio nur iiber einen kurzen Zeitraum betrachtet, innerhalb dessen die
Wahrscheinlichkeit fiir einen Ausfall extrem gering ist. Wahlen wir die Folge p, geschickt,
konnen wir ein dhnliches Resultat wie Satz 3.1 beweisen. p, = ®(—c+/n) mit ¢ > 0 erweist
sich als geeignet.

3.3 Satz
Sei p, := ®(—c+/n) mit ¢ > 0 die Ausfallwahrscheinlichkeit eines Kredits im beschriebenen
homogenen Einfaktor-Kreditrisikomodell. Dann gilt

c?

1
T
fm 0Bl 2 )= =5

(32)

Aus diesem Satz kann man folgern, dass sich die Wahrscheinlichkeit P[L, > ng| fiir
hinreichend grofles n anndhernd so verhélt wie C3(n)exp(—n%), wobei C3(n) eine

subexponentielle Funktion ist (d.h. eine Funktion fiir die gilt li_r)n @ = 0), tiber
n—oo

deren ndhere Gestalt keine Aussage gemacht wird. Es féllt auf, dass die Schwelle ¢
in dem Grenzwert auf der rechten Seite von (32) iiberhaupt keine Rolle spielt. Die
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Geschwindigkeit, mit der die Wahrscheinlichkeit P[L, > nq] fiir gro8e n gegen Null fallt,
kann sie also nur beeinflussen, indem sie in die Funktion C3(n) einflie3t, die jedoch fiir
grof3e n nur eine untergeordnete Rolle spielt, da sie lediglich subexponentiell wachst. Wie
bereits in Satz 3.1 wird allerdings auch hier der grole Einfluss der Korrelation x deutlich.
Weisen die Bonititen der Kreditnehmer nur eine geringe Abhingigkeit voneinander auf,
fallt C3(n) exp(—n%) fiir grol3e n deutlich schneller gegen Null, als wenn sie in hohem
Grade voneinander abhingen.

BEWEIS: Dieser Beweis orientiert sich am Beweis von Glasserman und Li (2005) (dort
unter Theorem 4), ist aber dabei in moglichst groer Analogie zum Beweis von Satz 3.1
gefiihrt.

Wir zeigen wieder zunéchst die untere Schranke

C2

1
iminf — >ngl > ———
hr{r_lgfn InP[L, > ng| > 7
Wie in Satz 3.1 sind die ¥; bedingt unter Z unabhingig und identisch Bernoulli-verteilt
zum Parameter p(Z). Hier hdngt jedoch der Parameter von n ab, so dass wir besser p,(Z)

schreiben: ]
Z+ D 7 —
pn(Z) = @ (L(p")) —d (M) .
V1—x2 V1—x2
Offensichtlich ist die Funktion p, fiir jedes n € N monoton wachsend. Wir definieren
analog zu (19)
_ V1I-x2d 7 (g) +cyn
K
und bemerken, dass auch hier z, fiir wachsendes n gegen unendlich konvergiert. Nun
konnen wir mit der gleichen Argumentation wie im Beweis von 3.1 (Definition der
bedingten Wahrscheinlichkeit, Lemma von Slud) aus der Standardnormalverteilung von
Z folgern

in = p;l(Q)

1 1
liminf — InP[L, > ng] > liminf —In(1 — ®(z,)).
n—eo

n—o 1
Benutzen wir wieder die Abschitzung von Feller (Satz 6.3) erhalten wir weiter

1 1
liminf > In(1 — ®(z,)) = liminf - 1n 22
n—oo n n—oo n Zn
.. (Inxk In(vV1-x2®(g)+cy/n) InV2rm
= liminf — —
n—yoo n n n
2

1 (V1I-x2®7(q) +cy/n
2n K
2K2

und damit die untere Schranke.
Jetzt zeigen wir die obere Schranke

2

1
limsup — InP[L, > ng] < ——.
imsup = InPlly > ngl < —5 5
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Analog zum Beweis von 3.1 erhalten wir mit Hilfe der exponentiellen Chebyshev-
Ungleichung fiir bedingte Wahrscheinlichkeiten die Abschitzung

P[L, > ng] < E[e?)].
Dabei ist

F,(Z) =exp <—n sup(tq — l;/,,(t,Z)])

t>0

mit bedingter kumulantenerzeugender Funktion

Ya(t,2) :=In(1 = pu(Z) + pn(Z)e").

Die Eigenschaften von F, auf Seite 26 bleiben erhalten. So kdnnen wir auch hier mittels
exponentieller Mal3transformation weiter abschitzen

P[L, > ng) < el =2k,

wobei u, die Losung der Fixpunktgleichung F, (i) — u = 0 ist.
Nun gilt es wieder u, - z, zu zeigen, denn dann gilt wegen der Nichtpositivitiat von F,

1 1 11
limsup —InPP[L,, > ng] < limsup —F},(U,) — limsup——u,%
n—oo N n—oo N n—seo N2
1 2 1 2
< ——limsup& = ——limsupz—"
2
1 1 (\/1—K2¢1(q)+c\/ﬁ)
= ——limsup—
n—oo n K
2K2’

womit Satz 3.3 gezeigt ist.

Um die asymptotische Aquivalenz von u, und z, zu beweisen, geniigt es - wie oben

gesehen - zu zeigen, dass fiir jedes € > 0 ein n( € N existiert, sodass fiir alle n > ny
El(zp(1—€))—z,(1—€)>0 (33)

Die Ungleichung (34) ist erfiillt, da F}(z,) = O fiir alle n € N und z,, — oo flir n — .
Fiir die Ungleichung (33) zeigen wir

Fy(zn(1—€))

li = t.>0
n1_r>r°10 n\/ﬁ const. >
und .
tim 20 —8) _ g,
N
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Es ist

/ B q 1—gq Kzn(1—€)—cy/n K
At =n (et i) (e ) v

. 1—g)—
Wir setzen nun b, := W und berechnen

lim b, = lim (V1-x2@7H(g) teym(l—€) —cyn =

n—oo n—soo 1T— K2 —. (35)

Damit gilt

- -
lim q —lim— 4 _—1_g
n—eo 1 — pp(zp(1 —€))  n—e 1 —D(by)

Aus der Abschétzung von Feller (Satz 6.3) folgt wegen der Symmetrie von ¢ fiir x — o

o)
D(—x)

Auf Grund von (35) und wegen des Grenzverhaltens von ¢ ergibt sich daraus

. Fl(z(1—¢) . 1 K q
lim & =/ — b,)—(1— b
) 1 K
:ngl;lo_n 1_K2(_an)
K (VTR (g eym)(1—g) ey
n—yoo q\/l—K2 NAYA
K
= chl — K2
= const. > 0.
Zudem gilt
1— 1—x2d (g)(1 - 1—
o 2(1—8) <¢ 20! (g)(1 ) | el e)) o
n—eo  ny/n n—soo Kn./n Kn\/n
Damit ist die Ungleichung (33) gezeigt und somit der letzte Schritt zum Beweis von Satz
3.3 getan. O

Wir haben nun insgesamt drei Resultate, die uns Auskunft {iber die Wahrscheinlich-
keit P[L, > nq] geben, wenn die Zufallsvariable L, die Anzahl an Ausfillen in einem
homogenen Portfolio aus abhingigen Krediten mit asset-Korrelation x? zihlt:

1. lim P[L, > ng) =P[p(2) 2 q] =1 - @ (m@l(q)—@*(m) ,

K

wobei p die Ausfallwahrscheinlichkeit eines Kredits ist.
2 1-x2

2. P[L, > ng,] «~ Ca(n)n” Z &2 fiir n — oo, wobei g, := ®(cv/Inn) und 0 < ¢ < v/2.
Zudem ist p die Ausfallwahrscheinlichkeit eines Kredits
und C, eine subpolynomielle Funktion.
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2
3. P[L, > ng] -« C3(n)e_n;7 fiir n — oo,
wobei p, := ®(—cy/n) und ¢ > 0. Zudem ist C; eine subexponentielle Funktion.

Diese Resultate sind jedoch alle asymptotisch, was bedeutet, dass wir, wenn wir sie zur
Berechnung von P[L, > nq] fiir eine feste Portfoliogrof3e n heranziehen, immer einen
Approximationsfehler machen, dessen Grof3e uns nicht bekannt ist. In 1 stellt sich das
Problem, dass wir nicht wissen, wie schnell % gegen p(Z) konvergiert. In 2 und 3 stof3en
wir vor allem auf die Schwierigkeit, dass wir die Funktion C nicht kennen, die gerade
in kleineren Portfolios einen nicht zu unterschitzenden Einfluss haben kann. Zudem
kennen wir auch hier die Konvergenzgeschwindigkeit nicht. Im folgenden Kapitel werden
wir eine weitere Moglichkeit kennenlernen, wie wir P[L,, > nq| approximativ bestimmen
konnen.
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4 Schatzung von Wahrscheinlichkeiten mit Monte Carlo Methoden

Wir werden in diesem Kapitel in Anlehnung an Glasserman und Li (2005) und Kapitel
8.5 von McNeil et al. (2005) eine Moglichkeit besprechen, wie man mittels Monte Carlo
Methoden die Wahrscheinlichkeit IP[L, > nqg] schitzen kann. Unsere Schatzungen beruhen
auf Simulationen von Zufallsvariablen. Wir haben das Anliegen, ein moglichst genaues
Schétzergebnis bei moglichst wenigen Simulationen zu erzielen. Die Anzahl der fiir eine
gewisse Genauigkeit notigen Simulationen kann man unter anderem durch Importance
Sampling senken. In Abschnitt 4.3 werden wir sehen, wie man im Zusammenhang mit
Importance Sampling die Ergebnisse aus Kapitel 3 nutzen kann, um moglichst ,,gute”
(d.h. bei moglichst wenigen Simulationen moglichst genaue) Schéatzer zu konstruieren.
Erst geben wir aber eine kurze Einfiihrung in die Methoden.

4.1 Importance Sampling - die Idee

Wir stellen uns hier zunachst der allgemeineren Aufgabe, einen Schétzer fiir die Wahr-
scheinlichkeit y:= P[L > x| zu bestimmen, wenn L eine reelle Zufallsvariable ist, die
mit Verteilung P’ verteilt ist. Wir nehmen an, dass der Erwartungswert von L existiert
und dass die Varianz von L endlich ist. Ein sinnvoller Ansatz scheint es zu sein, P[L > x|
iiber die relative Haufigkeit zu schitzen, mit der Werte L; > x in einer grol3en Stichprobe
Ly,...,Ly auftauchen, die unabhéngig gemald der Verteilung von L simuliert wird. Dieser
Standard Monte Carlo Schétzer hat dann die Form

)
W= 2 >
Ni:l {Li>x}

Er ist offensichtlich erwartungstreu und aus dem starken Gesetz der grof3en Zahlen ergibt
sich zudem, dass er mit wachsender Stichprobengroéf3e N P-fast sicher gegen y konver-
giert. Besonders dann, wenn {L > x} ein seltenes Ereignis ist, benotigt man jedoch recht
viele Simulationen, um mit §y eine brauchbare Schitzung fiir y zu erhalten. Nattirlich
treten namlich seltene Ereignisse auch in Simulationen selten auf. Man braucht aber eine
gewisse Anzahl von Beobachtungen eines seltenen Ereignisses in einer Simulation, um
zuverlassige Aussagen iiber seine Wahrscheinlichkeit treffen zu konnen (vgl. Sandmann
(2004, S. 35)). Es kann beispielsweise geschehen - und ist sogar nicht unwahrscheinlich -,
dass unter 10000 simulierten Variablen keine einzige ist, die im Intervall [x, o) liegt, wenn
P[L > x] = 107 ist. Es wére dennoch ein fataler Fehler, P[L > x] = 0 zu schitzen.

Wir verdeutlichen diesen Zusammenhang weiter, indem wir mit Hilfe des zentralen
Grenzwertsatzes abschitzen, welchen Wert der relative Fehler WN—Y_}" mit einer Konfidenz-
wahrscheinlichkeit von (1 — a) nicht iiberschreitet. Der zentrale Grenzwertsatz gibt uns
fiir jedes a >0

Iw—7vl _ a } (Ya) .
P < =20 —= | -1 flir N — oo.
[ Y ~ VN VYV
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Dabei ist v die Varianz der Zufallsvariable 1(; ), die man zu v = y(1 — ) errechnet.

Setzen wir a := ® ! (1-%) # erhalten wir so
P{@gopl(l—%)\/%]—n—a. (36)

Folglich tiberschreitet der relative Fehler =1 mit Wahrscheinlichkeit (I — @) nicht den

Y
Wert ! (1-9) Y \Y(ﬁi’;?’)_ Da 7(;_7/) gegen unendlich konvergiert, wenn man y gegen
Null laufen lasst, muss man also, wenn das Ereignis {L > x} selten ist, eine verhéltnisma-

Rig grofde Zahl N an Simulationen zu Grunde legen, um den relativen Fehler - zumindest
zur Wahrscheinlichkeit (1 — &) - in Grenzen zu halten.

Die Fehlerschranke in (36) ist fiir jedes o € (0, 1) proportional zu V(f_;];Y) Daher kon-

nen wir diese Grofde, den sogenannten Variationskoeffizienten, als Mal} fiir die Giite
eines erwartungstreuen Schéatzers nutzen. Der Variationskoeffizient des Schétzers fy ist
allgemein definiert als

4.2 Importance Sampling

Die Durchfiithrung vieler Simulationen ist sehr aufwendig. Ein anderer Weg, den Variati-
onskoeffizienten in Grenzen zu halten, ist die Varianz des Schétzers Jy durch Importance
Sampling zu verringern, ohne dabei N, die Anzahl der Simulationen, zu erh6hen, oder
den Erwartungswert von Jy zu verdndern. Diesen Weg werden wir nun verfolgen. Dabei
nutzen wir die Methode der exponentiellen Mal3transformation, die wir in Kapitel 2
bereits kennengelernt haben. Wie in (9) definieren wir uns auch hier eine neue Wahr-
scheinlichkeitsverteilung PP durch

1y

D) —
P™ (dy) == o)

PE(dy). (37)

Dann ist

1

y=E[fn] = ]T/ [H{L >x] = E[l{z>0]

“MZ

:/ U (¥ PL () / L) ()09 (1)BP" ()

=E[lpozge” YoL(),

Wir erhalten also auch einen erwartungstreuen Schétzer fiir y, wenn wir statt einer

Stichprobe L;,...,Ly eine Stichprobe DEI), ... ,D,(f), die nach der Verteilung PP simuliert

wird, zugrunde legen und dann y durch

70 1 ¥ p
/ -ZNZ psg€ " 9L) (38)
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schéitzen. Fiir t+ = 0 ist offensichtlich '}7](\f)

so zu wahlen, dass die Varianz von }71(\5) moglichst klein und insbesondere kleiner als die

Varianz von fy ist. Die Varianzen errechnen sich folgendermalen:

= 9. Wir versuchen nun aber den Parameter ¢

1 2

V[in] = ]—V(E[R{sz}] —-7)=y(1-7) (39)
V[-}(\;)] _ ]%](E[ %D(t)Zx} (e—tD(’) ¢L(t))2] _ },2> = ]lv(]E[]l{DmZx} (e*tD(’) ¢L(I))2] . ,},2) (40)

Eine Minimierung der Varianz von '}7](\;) ist also gleichbedeutend mit einer Minimierung

des zweiten Moments von 1y exp(—tD®) ¢, (¢), das wir im Folgenden mit M?(r, x)

bezeichnen. Wir sollten demnach versuchen, 7 so zu wéhlen, dass e ¢, (¢) fir y > x
moglichst klein ist. Das bedeutet, dass wir das Ereignis {D) > x} wahrscheinlicher
machen als das Ereignis {L > x}, was schnell klar wird, wenn man sich an die Definition

von PP in (37) erinnert. Beim Importance Sampling gewichten wir also durch einen
Maf3wechsel die fiir uns wichtigen Werte y > x hoher und gleichen dies durch einen
Korrekturterm (hier e ¢, (r)) wieder aus, so dass der Schitzer, den wir so gewinnen,
erwartungstreu bleibt, aber eine geringere Varianz besitzt.

Bevor wir uns damit beschéftigen, wie wir in unserem Modell aus Kapitel 3 einen
moglichst guten Schétzer fiir P[L, > nq] gewinnen, wollen wir noch kurz anmerken, dass
es theoretisch sogar moglich ist, die Varianz eines Schatzers auf Null zu reduzieren. Dafiir
dndert man die Verteilung von L nicht mit exponentieller Mal3transformation, sondern
man setzt

1 [x,00) (y )

E[l{z>x]

Dann erzeugt man eine unabhingige Stichprobe D;,..., Dy nach der Verteilung P” und
schéatzt y durch

PP (dy) := P*(dy).

I R E[1{1>x]
W= N ey, el =T

Der Schitzer fy liefert also immer, selbst wenn man nur eine einelementige Stichprobe
simuliert, das richtige Ergebnis und hat somit die Varianz V[{y] = 0. Man kann ihn
jedoch in der Praxis nicht nutzen, weil er nur unter Kenntnis von E[1; > 1] konstruiert
werden kann, und genau das ja der Wert ist, den man eigentlich schdtzen mochte.

Interessant wire es, herauszufinden, ob es auch zu einer wesentlichen Varianzreduk-
tion kommt, wenn man in fv den unbekannten Wert E[1;~ ;] durch eine erste grobe
Schitzung ersetzt, wie man sie beispielsweise aus der Theorie der groRen Abweichungen
erhalten kann. Wollen wir P[L, > ng] = E[1{ >, ] in unserem Modell aus Kapitel 3
schitzen, konnten wir zum Beispiel die Approximation aus dem Satz von Cramér fiir den
unabhéngigen Fall nutzen und die Approximationen, die auf Seite 33 zusammengefasst
sind, fiir den abhingigen Fall. Diese sind zwar als alleinige Approximationen der Wahr-
scheinlichkeit P[L, > ng| insbesondere fiir kleine Werte von n sehr ungenau, kénnten
aber so im Zusammenhang mit Importance Sampling gegebenenfalls dazu beitragen,
einen Schétzer mit kleiner Varianz fiir die Wahrscheinlichkeit P[L, > ng| zu konstruieren,
der auch bei einer geringen Anzahl an Simulationen brauchbare Ergebnisse liefert. Es
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ware lohnenswert, dies durch eine Simulationsstudie zu tiberpriifen.

4.3 Konstruktion asymptotisch optimaler Importance Sampling Schatzer

Wir gehen nun weiter auf die Schatzung von P[L, > ng| in unserem Kreditrisikomodell
aus Kapitel 3 ein. Insbesondere sind wir daran interessiert, die Wahrscheinlichkeiten fiir
seltene Ereignisse genau schétzen zu konnen, also beispielsweise die Wahrscheinlichkeit
fiir den Ausfall sehr vieler Kredite (d.h. IP[L, > ng] fiir eine sehr grof3e Schwelle ¢) oder
die Wahrscheinlichkeit fiir den Ausfall iiberdurchschnittlich vieler sehr hoch gerateter
Kredite (d.h. P[L, > nq] fiir eine sehr kleine Ausfallwahrscheinlichkeit p = P[Y; = 1]). Wir
werden dafiir die oben vorgestellte Importance Sampling Methode mit exponentieller
Maltransformation nutzen. Von einem guten Schétzer verlangen wir zum einen, dass er
erwartungstreu ist, und zum anderen, dass er eine moglichst kleine Varianz besitzt. Moch-
ten wir die Wahrscheinlichkeit eines seltenen Ereignisses schétzen, sind asymptotisch
optimale Schétzer in dieser Hinsicht besonders geeignet.1? Sie zeichnen sich dadurch aus,
dass bei ihnen M?(t,nq) (definiert wie oben) unter allen erwartungstreuen Schitzern
mit der schnellsten Rate fillt, wenn die Wahrscheinlichkeit, die man mit ihnen schitzen
mochte, gegen Null konvergiert.

4.3.1 Anwendung auf ein unabhangiges Kreditportfolio

Wir versuchen zunéchst fiir den Fall eines unabhéngigen Kreditportfolios einen asympto-
tisch optimalen Schétzer fiir P[L, > ng| mit p < ¢ < | zu konstruieren. Dabei orientieren
wir uns an Remark 2.3 in Pham (2010). Eigentlich ist hier eine Schatzung gar nicht notig,
da man P[L, > ng| auch direkt berechnen kann. Wir werden aber dennoch nédher darauf
eingehen, da dieser Fall, in dem der korrekte Wert IP[L,, > nqg| bekannt ist, die Moglichkeit
bietet, in einer Simulation festzustellen, inwieweit die Nutzung eines asymptotisch opti-
malen Schétzers das Schitzergebnis auch fiir realistische Portfoliogro3en im Vergleich
zum Standard Monte Carlo Schétzer verbessert.

Durch exponentielle MaRtransformation, wie in (38) beschrieben, erhalten wir den

Schatzer
(”vt>

—(f — N
v Loy " 00

1N
v =N

i=1

fiir P[L, > nq|. Dabei sind Dgn’t), e ,Dl(\',l’t) unabhéngig voneinander nach der Verteilung
PP simuliert, die durch
e

PD") =y]) = WP[Ln =]

definiert ist. Wegen der Unabhéngigkeit und identischen Bernoulli-Verteilung der Ausfal-
lindikatoren ¥; gilt ¢ (r) = (¢y,)" = (1 — p+ pe')". D) ist also binomialverteilt zu den

pe'
Parametern n und —pipd

12ygl. Glasserman und Li (2005, S. 6).
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Nun suchen wir einen Parameter ¢, fiir den M*(1,nq) = E[1p>,, q}(e*’D@’f) or,(¢))?] mog-
lichst klein ist. Einerseits haben die Abschdtzung

P, (1)%] < (79, (1))")? = exp(—2n(tg — In gy, (1))).

Andererseits konnen wir aus der Jensenschen Ungleichung und dem Satz von Cramér
folgern, dass fiir n — oo gilt

Mz(l'7 I’lq) = E[]].{D(n,t)znq} (e

01, (1)])? = BILy > ng]’ ~ C(n) exp(~2nsupleg — In gy, (1)-

Mz(t,nq) 2 (]E[]].{D(n,t)znq}e_[D
teR

Damit ist die schnellstmégliche Rate, mit der M?(¢,nq) fallen kann, gerade doppelt so
grofd wie die Rate, mit der die Wahrscheinlichkeit P[L, > ng] fallt. Wir erhalten also

einen asymptotisch optimalen Schétzer, wenn wir r =7, = In (g:—’;‘q’) wiéhlen. Dieser Wert

maximiert ndmlich rq —In ¢y, (t) (vgl. Beispiel 2.7). So gilt dann

1 1
lim —M?(t;,nq) = 2 lim —InP[L, > nq]. (41)

n—oo n n—oo n

Resultate zur asymptotischen Optimalitdt werden oft in der Form (41) angegeben.

4.3.2 Anwendung auf ein abhangiges Kreditportfolio

Wir mochten nun in Anlehnung an Glasserman und Li (2005) auch fiir den Fall eines
abhéngigen Kreditportfolios einen asymptotisch optimalen Schétzer fiir P[L, > nq] herlei-
ten. Ein erste Moglichkeit, P[L, > nq] im abhéngigen Fall zu schétzen, ist die folgende:
Wir generieren zundchst Ny Werte Z,,...,Zy, fiir Z nach der Standardnormalverteilung.
Dann berechnen wir fiir jeden dieser Werte die bedingte Ausfallwahrscheinlichkeit p(Z;)
wie in (12). Bedingt unter Z = Z; ist L, binomialverteilt zu den Parametern » und p(Z;).
Ist p(Z;) < g, konstruieren daher den Schétzer

Ny
Sig(z)) 1 7 pnia(Z) N7
v, =N, ; H{Dfn-fq@j))an} eXp ( 14(Z;)D; ) ¢1,(14(Z}). Z;)
fiir die Wahrscheinlichkeit IP[L, > ng|Z = Z;|, wobei t,(Z;) die Maximalstelle ¢, fiir den
Fall p = p(Z,) bezeichnet und ¢y, (¢,z) := E[¢'!"|Z = 7] die bedingte momenterzeugende

Funktion von L, ist. Dgn’t"(zj )), e ,D](\',Z’t"(zj) ) sind analog zum unabhéingigen Fall nach

p(z;)ee%)
1=p(Zj)+p(Zj)e
Schétzer fiir P[L, > nq|Z = Z;] haben wir im vorigen Abschnitt als asymptotisch optimal
nachgewiesen. Ist p(Z;) > ¢, gehen wir genauso vor, transformieren aber die Verteilung

von D™Z)) nicht, d.h. wir setzen 1,(Z;) = 0. Den Schétzer fiir den abhéngigen Fall er-

halten wir schlief3lich, wenn wir das arithmetische Mittel der Schétzer }71(\2’ (Z')), . )71(\,[;1(ZN‘ )

bilden, also

einer Binomialverteilung mit den Parametern » und

R generiert. Diesen

i 1 & @)
%Nl,Nz):ﬁlZl Ny
]:
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Ist die Korrelation x? der Bonititen der Kreditnehmer klein, ist dieser Schétzer ziemlich
gut. Wenn die Bonititen der Kreditnehmer aber stark korrelieren, ist er weniger effektiv,
da der systematische Risikofaktor Z, auf dessen Verteilung wir noch kein Importance
Sampling angewendet haben, in diesem Fall einen grol3en Einfluss hat. Glasserman und
Li (2005) fiihren diesen Punkt in Kapitel 4 ihres Papers weiter aus.

Wir werden also im Folgenden versuchen, den oben konstruierten Schitzer effektiver zu
machen, indem wir Importance Sampling auf die Verteilung von Z anwenden. In Beispiel
2.13 haben wir gesehen, dass wir durch Anwendung von exponentieller Mal$transfor-
mation den Erwartungswert einer standardnormalverteilten Zufallsvariable auf jeden
beliebigen Wert 1 € R verschieben konnen.

Nutzen wir diese Moglichkeit, konnen wir IP[L, > nq| folgendermaf3en erwartungstreu
schitzen:

Zunachst generieren wir N; Werte Tl(“ ),...,TA(# ) einer Zufallsvariablen T, die nach
der N(u,1)-Verteilung verteilt ist. Dann berechnen wir fiir jeden dieser Werte die be-

dingte Ausfallwahrscheinlichkeit p(Tj(“ )) wie in (12). Wie im oben geschilderten Fall

konstruieren wir fiir jedes 1 < j < N; den Schétzer

() 1A (1) pma(T) () (0)
Ty, = N, ! 11{D<n,fq<rf“)>>> }eXp ~14(T;7)D; oL, (1g(T;7), T;7),
= ; >nq
(1) (k) (1)

. () (1) q—p(T;"")q . (n1q(T;77)) (n,1q(T;"7))

wobei l'q(Y} ) = ]]'[O,q)(p(j} ))ln (m) ist und D1 J ""’DNZ
J J
(e

nach einer Binomialverteilung mit den Parametern n und . generiert

(
1— P( (>)+p(T(u)) ( )
sind. Im Schétzer fiir P[L, > ng] miissen wir dann schlieBlich die Verschlebung des

Erwartungswerts von Z wieder ausgleichen, indem wir fiir jedes 1 < j < N; den Schétzer

TH)
37](\2’( ) mit exp (—uTj(” )y %/ﬂ) multiplizieren. Wir erhalten somit insgesamt den
Schatzer
M (u) 1,2
+,
yNth Ny Z yNz e

Die Frage ist nun, ob wir einen Wert u ﬁnden, fiir den der Schétzer asymptotisch optimal
1st.

Zunichst einmal muss die Wahrscheinlichkeit P[L, > nqg] fiir n — « gegen Null konver-
gieren, wenn wir sie durch einen asymptotisch optimalen Schitzer schitzen mochten.
Wir wissen aus Kapitel 3 jedoch, dass P[L, > ng] im abhédngigen Fall gegen eine echt
positive Konstante konvergiert. Daher setzen wir wie in Satz 3.1 ¢ = ¢, = ®(cVInn) mit
0 < ¢ < v/2 und lassen so P[L, > ng,] gegen Null laufen. Alternativ kénnten wir auch
wie in Satz 3.3 die Ausfallswahrscheinlichkeit p von n abhiangig wéhlen und gegen Null
laufen lassen.

Der Schatzer }7((51),1\]2) ist fiir jedes u € R erwartungstreu. Unser Ziel ist ein u € R zu

finden, fiir welches das zweite Moment
) B it (T T 1,2\ 2
M (“’”q”>_E[R{Dmn(ﬂ”)))zn%} (exp(—tqn(T(ﬂ))D( Lan T gy (2, (TWH)), TR )e=H +2u> ]
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mit der schnellstmoglichen Rate féllt, mit der es fiir einen erwartungstreuen Schitzer
fallen kann. Die Jensensche Ungleichung gibt uns die Abschéatzung

M?(1,ngy) > P[L, > ngy]*. (42)

Die Rate, mit der M?(u,ng,) fillt, muss also mindestens doppelt so groR sein wie die,
mit der die Wahrscheinlichkeit P[L, > ng,] féllt. Fiir die Wahrscheinlichkeit P[L, > ng,]
haben wir in Satz 3.1 berechnet:

1 2 1—x?
b S _ <
0 o Bl 2 ] = =7
Sie fallt also mit der polynomiellen Rate % 1—K£<2 . Finden wir ein u € R, fiir das M?(u,ng,)

genau mit der polynomiellen Rate c21’_<—§2 fallt, so ist unser Schatzer }7(%) M)

asymptotisch optimal. Wir werden gleich sehen, dass u, aus dem Beweis von Satz 3.1
diese Bedingung erfiillt.

fiir dieses u

M?(u,nq,) kénnen wir folgendermafen nach oben abschitzen:

n (1)
M2 (k) = E[]]_{D(”J(]n(T(“)))>n4n} exp(_2lqn(T(“))D( Aan (T )))

+2n1n @y, (14, (T™), TW ) exp(—2uT ™) + p?)]
< Elexp(—2ntg, (T)Dar M0y 1 2010 gy, (1, (T™)), TW)) exp(—2uT®) + p12)
= Elexp(—2uT™ + u? + 2F,(T™)].
Dabei ist F,, wie im Beweis von Satz 3.1 definiert als

F.(z) =—n sug[tqn —Ingy, (t,2)].

Das Supremum in der Definition von F, ist in unserem Fall ein Maximum und wird genau

an der Stelle 7, (T(*)) angenommen, denn genau so hatten wir #,,(T*)) definiert. Wegen

der Konkavitat von F;, erhalten wir wie in (25)
Elexp(—2uT™ + u? +2F,(TH)]

(43)
< Elexp(—2uT™) 1 u2 1 2F, (1) +2F/ () (TW — w))].

Wihlen wir dann wie im Beweis von Satz 3.1 u = u, als Fixpunkt von F,, hdngt der
Term, dessen Erwartungswert in (43) berechnet werden soll, nicht mehr von T () ab und
wir erhalten insgesamt

MZ(I-Lm’ZQn) < exp(2Fu(Un) — /Jr%)
Da F, nichtpositiv ist, ergibt sich weiter
Mz(“n»”‘]ﬂ) < exp(—,u,%).

Benutzen wir dann unser Resultat aus (28), haben wir

2 1—1(2
>u—":—c2 .

1
li — InM?
1211_}53p nn M (1) 2 Inn K2
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Zusammen mit der Abschétzung (42) haben wir also

.1 ) 1=k
nlgIolomlnM (,un,nqn) = — 2

Somit fallt M?(u,nq,) fir u = w, genau mit der polynomiellen Rate c21K§2 und ist

asymptotisch optimal. Pham (2010, S. 45) weist darauf hin, dass auch die Wahl u = z,
(zn definiert wie in Satz 3.1) zu einem asymptotisch optimalen Schétzer fiihrt.

Wir haben hiermit einen asymptotisch optimalen Schétzer gefunden, den wir nutzen
koénnen, um in einem grof3en Portfolio die Wahrscheinlichkeit fiir P[L, > ng| fiir eine
grolde Schwelle ¢ approximativ zu berechnen. Mit Satz 3.3 erhalten wir ein dhnliches
Resultat fiir eine kleine Ausfallwahrscheinlichkeit p: Ist p = p,, = ®(—cy/n) fiir >0 wie in
Satz 3.3, konstruieren wir folgendermalfen einen asymptotisch optimalen Schétzer fir
die Wahrscheinlichkeit P[L,, > ng]:

Wir generieren Werte 71, ..., Ty, nach einer Normalverteilung mit den Parametern u = u,
und o = 1. u, ist dabei Fixpunkt der ersten Ableitung der Funktion

Fy(z) = exp (—nsup[tq - Wn(ﬁZ)]) :
t>0
wobei y,(t,z) :=In(1 — p,(z) + pn(z)e') die bedingte kumulantenerzeugende Funktion
der Ausfallindikatoren Y; ist. Danach berechnen wir fiir jeden Wert 7; die bedingte
Ausfallwahrscheinlichkeit p,(7;) wie in (12). Anschliefend konstru1eren wir wie oben
fiir jedes 1 < j < N; den Schitzer

1 N

(n,t4(T;
::ﬁz; ™ }exp(_tq(Tj)Di g ])))d’Ln(tq(]})vTj)’

. —p(T; t (T .
wobei t,(T;) = 19 4)(pa(7;))In <#%}> ist und D(n o(7; )),...,D](\Z 7)) hach einer
Ne'a(T)
Binomialverteilung mit den Parametern n und pnlTj)e” 7 iy generiert sind. Daraus
1=pn(Tj)+pa(Tj)e

ergibt sich dann schlieRlich der Schatzer

T +
N 1,N2) Z YNZ e 2“"

fiir die Wahrscheinlichkeit P[L, > ng].

Die Schétzer fiir Wahrscheinlichkeiten seltener Ereignisse, die wir in diesem Abschnitt
hergeleitet haben, sind alle nur asymptotisch optimal. Trotzdem zeigen Simulationen,
dass sie auch fiir realistische Portfoliogré3en, wie zum Beispiel n = 1000, die Prazision
bei der Schatzung von Wahrscheinlichkeiten seltener Ereignisse deutlich erhohen (vgl.
Glasserman und Li (2005)). Glasserman und Li (2005) zeigen anhand numerischer
Beispiele, dass das hier aufgezeigte Vorgehen auch in Mehrfaktormodellen zur effektiven
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Schatzung von Wahrscheinlichkeiten seltener Ereignisse eingesetzt werden kann. Man
muss jedoch bedenken, dass das vorgestellte Importance Sampling Verfahren etwa
doppelt so lange dauert wie das Standard Monte Carlo Verfahren, selbst wenn man
die Zeit, die zur Berechnung des Parameters u, benotigt wird, nicht einrechnet. Dieser
Mehraufwand zahlt sich aber durch den deutlichen Préazisionsgewinn bei der Berechnung
von Wahrscheinlichkeiten seltener Ereignisse aus (vgl. Glasserman und Li (2005, S.
16£.)).

Z. Li (2009) fiihrt die Uberlegungen von Glasserman und J. Li (2005) fort, indem er
zeigt, wie man im Gaul3-Copula-Modell mit Hilfe von Importance Sampling effizient
Risikomaf3e wie Value at Risk und Expected Shortfall schédtzen kann.
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5 Fazit und Ausblick

In dieser Arbeit wurde beispielhaft gezeigt, wie man die Theorie groRer Abweichungen
im Kreditrisikomanagement nutzen kann. Hauptinteresse war es, gute Schatzungen fiir
Wahrscheinlichkeiten unerwartet hoher Verluste in einem Kreditportfolio zu erhalten.
Die Abhéngigkeit der Ausfille in einem Kreditportfolio haben wir mit einem Einfak-
tormodell modelliert. In diesem Modell konnten wir ausgehend vom Satz von Cramér
asymptotische Resultate herleiten, die uns helfen konnen, Wahrscheinlichkeiten seltener
Ereignisse in grofen Kreditportfolios zu approximativ zu berechnen. Wir haben gesehen,
dass die Anwendung dieser Resultate vor allem im Zusammenhang mit Importance
Sampling grol3en Nutzen fiir die Schitzung von Wahrscheinlichkeiten seltener Ereignisse
hat. In der Praxis sind die Abhédngigkeiten, die einem Portfolio unterliegen, natiirlich
komplexer. Wie Glasserman und Li (2005) an numerischen Resultaten zeigen, lassen
sich die Beobachtungen, die wir zum Importance Sampling gemacht haben, jedoch auch
auf Mehrfaktormodelle iibertragen. Interessant ware es herauszufinden, inwiefern sich
unsere Beobachtungen auch auf Modelle {ibertragen lassen, in denen die Abhangigkeit
der Kredite nicht wie bei uns mit der Gau3-Copula modelliert wird, die momentan herber
Kritik ausgesetzt ist, da sie asymptotische Unabhingigkeit erzeugt.
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6 Anhang

6.1 Satz (Die exponentielle Chebyshev-Ungleichung)
Sei X eine reelle Zufallsvariable. Dann gilt tiir alle t > 0 die folgende Ungleichung:

P[X > a] < e "“E[e'X]
BEWEIS: Fiir alle ¢ > 0 gilt
X>a = & 9>0-1,

Wegen der Positivitit der e-Funktion und wegen Linearitdt und Monotonie des Erwar-
tungswerts gilt dann insgesamt

P[X > a] = E[lx>4] < E[¢fX 9] = e "E[X].

O

Diese Ungleichung ist genau die Markov-Ungleichung fiir die monoton wachsende

Funktion g(¢) = ¢'.

6.2 Bemerkung
Da der bedingte Erwartungswert P-fast sicher linear und monoton ist, gilt die exponenti-
elle Chebyshev-Ungleichung P-fast sicher auch in einer bedingten Form.

PX >a|Z] < e "“E[eX | Z] P-fast sicher
Dabei ist Z eine weitere Zufallsvariable, die auf dem gleichen Raum definiert ist wie X.

6.3 Satz
Fiir x — oo gilt

1-@(0) o)

Genauer gesagt gilt fiir alle x > 0 die folgende Ungleichung:

(l _ l) o(x) < 1—d(x) < i(p(X)-

x x3

BEWEIS: 13 Man verifiziert leicht, dass der rechte und linke Term auf R\ {0} differenzier-
bar sind und dass fiir die Ableitungen gilt

S((G-5) o) = (~143%) o0 »

% ()—lcfp(x)) = (—1 —é) @(x).

Offensichtlich gilt fiir alle x > 0 die Ungleichung

(1 —3)%) o(x) < o(x) < (1 +é) o(x).

13 vgl. Feller (1968, S. 175f.).
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Da [ ¢(y)dy = 1 —®(x), folgt daraus mit der Monotonie des Integrals unter Zurhilfenah-
me von (44) firx >0

(3o g < () Lo
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