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1. Einfithrung und Motiviation

Die internationalen Finanzmérkte haben sich in den letzten Jahrzehnten zu einem es-
sentiellen Teil unserer Wirtschaftssysteme entwickelt. Nicht zuletzt durch die weltweite
Finanzkrise seit 2007 wurde jedoch deutlich, dass die Risiken von Spekulationen an
diesen Mérkten nicht unterschéitzt werden diirfen. Aber auch ohne gezielt an der Borse
zu spekulieren, werden z.B. Unternehmen in ihren Handlungen durch die schwanken-
den Kurse beeinflusst. Betrachten wir dazu ein international tétiges Unternehmen aus
Deutschland, welches Rohstoffe von einem Lieferanten aus den USA bezieht. Der Rech-
nungsbetrag muss in Dollar beglichen werden und es wird ein Zahlungsziel von 30 Tagen
gewahrt. Falls das Unternehmen keine Dollar vorrétig hélt, kann die Rechnung unter
Beriicksichtigung des aktuellen Wechselkurses auch in Euro bezahlt werden. Die Gefahr
fiir das Unternehmen besteht darin, dass sich der Kurswert fiir einen Dollar bis zum
Ende des Zahlungsziels ungiinstig entwickelt, wodurch die Kosten in die Hohe steigen.
Um diesem Risiko schon beim Rechnungseingang entgegenzuwirken, kauft das Unter-
nehmen an der Frankfurter Borse eine Call-Option auf den Dollarwert. So kann bei
einem Strikepreis K gesichert werden, dass die Kosten fiir einen Dollar am Zahlungs-
tag den Wert K nicht iibersteigen. Wenn der Kurs am Zahlungstag sogar unterhalb
von K liegt, ist es fiir das Unternehmen vorteilhafter die Option verstreichen zu lassen
und den aktuellen Preis fiir einen Dollar zu bezahlen. Fiir diese Chance das Risiko
zu mindern und dadurch die Héhe des moglichen Verlustes einzugrenzen, muss das
Unternehmen einen Preis, die Optionspramie, bezahlen. Nach dem Prinzip der Arbi-
tragefreiheit kann eine Call-Option nicht kostenlos ausgegeben werden, da sonst ohne
eingesetztes Kapitel und ohne Eingehen von Risiko eine Chance auf Gewinn bestiinde.
Aber was ist der arbitragefreie Preis einer Call-Option? Bereits im Jahr 1900 hat sich
Louis Bachelier mit diesem Thema auseinander gesetzt und auch in den nachfolgen-
den Jahren versuchten sich weitere Mathematiker daran, ein Modell aufzubauen mit
dem es moglich ist Derivate zu bewerten. Diese Modelle wurden jedoch teilweise un-
ter kritischen Annahmen, z.B. dass der Preis des Underlyings einem Prozess folgt, der
auch negative Werte annimmt, hergeleitet oder sie beinhalteten Variablen, die in der

Realitdat kaum zu quantifizieren sind, wie z.B. die personliche Risikoeinstellung.
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Fischer Black und Myron Samuel Scholes gelang es schliellich eine Bewertungsformel
fiir eine Call-Option herzuleiten, die ausschliellich auf erfassbaren Parametern beruht.
Das Ergebniss ist bekannt als Black-Scholes Formel und wurde von Black und Scholes
in ihrer Arbeit mit dem Titel ” The pricing of options and corporate liabilities.”[01] im
Jahr 1973 veroffentlicht. Die Handler an der Borse fingen in den darauffolgenden Jahren
an, die Ergebnisse von Black und Scholes mittels speziell programmierter Taschenrech-
ner fiir die Bewertung von Call-Optionen zu nutzen. Das finanzmathematische Modell
in dem die Bewertungsformel hergeleitet wurde, wird als das Black-Scholes Modell

bezeichnet.

Neben Fischer Black und Myron S. Scholes war auflerdem Robert Carhart Merton an
der Entwicklungs des Modells beteiligt, jedoch verdffentlichte Merton eine eigene Pu-
blikation mit dem Titel ” Theory of rational option pricing”[07]. Robert C. Merton und
Myron S. Scholes wurden 1997 fiir ihre Arbeit mit dem Nobelpreis fiir Wirtschaftswis-
senschaften ausgezeichnet. Da die Regularien eine posthum Verleihung des Nobepreises
untersagen, blieb es Fischer Black (11995) verwehrt die Auszeichnung ebenfalls verlie-

hen zu bekommen.

Das Black-Scholes Modell ist das zentrale Thema der vorliegenden Bachelorarbeit. Im
Folgenden wird selbiges hergeleitet, um anschliefend zu untersuchen, wie sich in die-
sem Finanzmarktmodell bestimmte Derivate bewerten lassen. Dabei stellt Kapitel 2 die
zentralen Bestandteile des Modells vor. Dazu gehoren sowohl die wahrscheinlichkeits-
theoretischen Grundlagen, als auch die stochastischen Prozesse fiir ein risky asset und
einen Bond. Mit diesen Ergebnissen wird im Anschluss das Aquivalente Martingalmaf
(Kapitel 3) mit Hilfe des Satzes von Girsanov berechnet. Die beiden Kapitel 4 und
5 befassen sich mit den arbitragefreien Preisen fiir eine européische Call-Option bzw.
eine Barriere-Option (Down-and-Out europaische Call-Option). In der Bewertung der

Barriere-Option wird dabei das Reflexionsprinzip fiir einen Wienerprozess bewiesen.

In dieser Bachelorarbeit werden Grundkenntnisse iiber Finanzmarktmodelle vorausge-
setzt. Um einen guten Leseflul zu ermdéglichen, werden an den entsprechenden Stellen

alle notwendigen Definitionen aufgefiithrt und erldautert.



2. Die Modellgrundlage

2.1. Motivation

Zu Beginn dieser Bachelorarbeit wird die Grundlage fiir die spétere Bewertung von
Derivaten gelegt, indem wir einen vollkommen Finanzmarkt in stetiger Zeit model-
lieren. Auf diesem Finanzmarkt werden Basisfinanzgiiter gehandelt, deren Kurswerte
als Underlying fiir die spiter zu bewertenden Derivate dienen. Um eine Aussage iiber
die Preise von Derivaten treffen zu konnen, muss als erstes betrachtet werden, wie
sich das Underlying in unserem Modell verhélt. Wenn beispielsweise der faire Preis
einer Call-Option auf eine Aktie gesucht wird, dann héngt dieser von den Eigenschaf-
ten des Kurswertes der Aktie ab. Welche Charakteristika der Aktie Einfluss auf den
Preis einer Call-Option nehmen, werden wir spéter in der Black-Scholes Formel sehen.
Es werden in dieser Arbeit nur Derivate bewertet, die auf einem risky asset beruhen
und daher beschrénkt sich das Finanzmarktmodell auf ein risky asset und einen Bond.
Der Bond verfiigt iiber eine deterministische Rendite, die iiber den gesamten Zeit-
raum als konstant angenommen wird. Die Rendite des risky assets und insbesondere
die Kurswerte sollen stochastisch sein. Um die Stochastizitdt mit Instrumenten aus
der Wahrscheinlichkeitstheorie darzustellen, werden wir als erstes die mathematischen
Grundlagen schaffen. Hierauf aufbauend leiten wir eine konkrete mathematische Form
der Kursverldufe her, die bestimmte von Black und Scholes geforderte Bedingungen
erfiillt.

In dem Finanzmarktmodell sollen keine Steuern, Dividendenzahlungen oder Transak-
tionskosten betrachtet werden. Auflerdem wird vorausgesetzt, dass es moglich ist in
beliebiger Hohe long- und short-Positionen einzugehen ohne zusétzliche Kosten oder

Gebiihren zahlen zu miissen.
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2.2. Finanzmathematische Definitionen

Dem Finanzmarktmodell von Black und Scholes liegt ein gegebener Wahrscheinlich-
keitsraum (€, F,[P) zu Grunde, iiber den wir keine niheren Informationen erhalten.
Der Wahrscheinlichkeitsraum stellt den Rahmen des Modells dar, wobei ein w € )
eindeutig bestimmt, was zu jedem Zeitpunkt auf dem Finanzmarkt geschieht. Das
Wahrscheinlichkeitsmafl P ist abstrakt gegeben und wird nicht néher definiert, weil
spater eine Annahme iiber die Verteilung der Kursverldufe des risky assets unter P

gemacht wird.

Wir betrachten den Finanzmarkt {iber einen endlichen Zeitraum und setzen dafiir ein
T € Ry fest. Das Black-Scholes Modell ist ein zeitstetiges Modell, d.h. ein Marktteil-
nehmer hat zu jeder Zeit die Mdoglichkeit am Markt zu handeln. Unsere Handelszeit-
punkte werden somit iiber das endliche und abgeschlossene Intervall [0, 7] dargestellt.
T ist demnach der letztmogliche Zeitpunkt zu dem Handel betrieben werden kann.
Dariiber hinaus ist 7" auch der Zeitpunkt, an dem die Derivate auslaufen und die Aus-

zahlung fallig ist.

Der Handel am Finanzmarkt zeichnet sich dadurch aus, dass trotz vieler Informationen
oft nicht bekannt ist, wie sich die Kurse zukiinftig entwickeln werden. Welche Informa-
tionen zu den einzelnen Zeitpunkten vorliegen, wird iiber die Filtration abgebildet.
Definition 2.2.1 (Filtration).

Fiir einen Wahrscheinlichkeitsraum (2, F,P) und eine Indexmenge I C Rsq ist eine
Filtration (Fi)ie; eine Familie von Unter-o-Algebren, d.h. Fy C F fir alle t aus I, mit
der Figenschaft, dass Fs C F; fiir alle s <t aus I.

Verwenden wir eine Filtration als Informationsverlauf, so interpretieren wir das Ele-
ment F; als Informationsstand fiir den Zeitpunkt t. Das bedeutet, die o-Algebra F;
beinhaltet genau die Ereignisse, fiir die ein Marktteilnehmer im zugehorigen Zeitpunkt
t weif}, ob sie eingetreten sind oder nicht. Die immer feiner werdenden o-Algebren
gewahrleisten deshalb, dass die Marktteilnehmer keine Informationen verlieren, die zu

einem vorherigen Zeitpunkten bereits bekannt waren.

Um spéter Derivate bewerten zu konnen, ist die néchste Aufgabe die Underlyings
mathematisch zu modellieren. Hierbei muss sowohl die Stochastizitdt der Kurswerte
als auch die Entwicklung in der Zeit beriicksichtigt werden. Beides ldsst sich in der

Definition eines stochastischen Prozesses wiederfinden.
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Definition 2.2.2 (Stochastischer Prozess).

Fiir einen Messraum (2, F) und einer Indexmenge I C Rsq ist ein reellwertiger sto-
chastischer Prozess X = (X,)ie; eine Familie von messbaren Funktionen X; : Q — R
fir allet € 1. Die Abbildung X (w) : I — R fiir ein festes w € ) nennen wir einen Pfad
von X . Bilden die Funktionen X, in den R’ ab, so nennen wir die Familie X = (Xt)ter

einen J-dimensionalen reellwertigen stochastischen Prozess.

Ein stochastischer Prozess kann als eine Zufallsvariable interpretiert werden, die nicht
in die reellen Zahlen abbildet, sondern in eine Menge von Funktionen. Wir modellieren
die Kurse der Basisfinanzgiiter iiber stochastische Prozesse und daher bestimmt ein
w € § bereits die Kurse fiir jeden Zeitpunkt. Da sowohl € als auch P nicht néher
spezifiziert wurden, benétigen wir Annahmen iiber die Verteilung von X bzw. der
einzelnen Elemente X;. Wie diese Annahmen aussehen und zu welchen stochastischen

Prozessen diese fithren, wird in den néchsten beiden Abschnitten erléautert.

Reellwertige Zufallsvariablen stellen im Finanzmarktmodell die Kurswerte der Basis-
finanzgiiter, Handlungen von Marktteilnehmern oder die Auszahlungen der Derivate
fiir einen festen Zeitpunkt ¢ dar. Durch die Filtration wird angegeben, welche Realisie-
rungen am Markt erkennbar sind. Die Werte aller F;-messbaren Abbildungen kénnen
zum Zeitpunkt ¢ beobachtet werden. Stellt X; den Kurs eines Basisfinanzgutes zum
Zeitpunkt ¢ dar, so soll dieser spétestens in ¢ am Markt bekannt sein. Diese Forderung
fithrt uns zu den adaptierten Prozessen.

Definition 2.2.3.

FEin stochastischer Prozess X = (Xy)ies ist adaptiert an die Filtration (Fy)ier, falls fir
alle t € I gilt, dass X, eine Fy-messbar Zufallsvariable ist.

Die Teilmengeninklusion in der Definition der Filtration sichert, dass die vorherigen
Realisierungen weiterhin bekannt sind. Fiir s < t ist X, F,-messbar und durch F; C F;
folgt, dass X, auch F;-messbar ist. Bei der Herleitung des stochastischen Prozesses
fiir das risky asset im Abschnitt 2.4, wird dann deutlich, wie zum Beispiel aus der
Unabhéngigkeit von X; und F; bereits die Unabhéngigkeit zwischen X; und X fiir alle
s <t folgt. Wir fordern daher fiir die Darstellung der Kurswerte, dass ein adaptierten

stochastischen Prozess verwendet wird.
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Die bis hier vorgestellten Werkzeuge fiir die Modellierung eines Finanzmarktes sind in
vielen Modellen wiederzufinden. Das Besondere am Modell von Black und Scholes ist
die Wahl der Prozesse fiir die exogenen Preise der Basisfinanzgiiter, vor allem der Pro-
zess des risky assets. Diese stochastischen Prozesse werden in den beiden nachfolgenden

Abschnitten hergeleitet und schliefen somit das zu Grunde liegende Finanzmarktmo-
dell ab.

2.3. Der Preisprozess fiir den Bond

Fiir den Bond wird der Preisprozess mit (B;):c[o,r] bezeichnet und fiir diesen unterstell-
ten Fischer Black und Samuel Scholes eine deterministische und konstante Verzinsung.
In diskreten Finanzmarktmodellen wird ein Zinssatz fiir die festverzinslichen Wert-
papiere verwendet. Da wir uns mit einem zeitstetigen Modell beschaftigen, wird die
stetige Verzinsung verwendet, die aus der Grenzwertbetrachtung immer kleiner wer-
dender Verzinsungszeitraume resultiert:

lim <1 + Z>n =e'.

n—00 n

Wir haben bei einer stetigen Verzinsung eine iiber den ganzen Zeitraum [0, 7' konstante

Zinsrate r > 0 und konnen den stochastischen Prozess fiir den Bondpreis darstellen als

(Bi)iepo,r] = (€"™)ieqo,m-

Der Bond stellt eine risikolose Anlage dar, d.h. der Verlauf des Prozesses ist unabhéngig
von dem eingetretenen w € (). Daher kennt jeder Marktteilnehmer bereits im Zeitpunkt
0 den ganzen Pfad des Prozesses. Mathematisch ist dies daran zu erkennen, dass fiir
jedes t € [0,T] B, bereits messbar beziiglich der trivialen o-Algebra ist. Insbesondere

ist der Prozess an jede Filtration adaptiert.

Wenn wir unsere Ergebnisse bis hierhin zusammenfassen, dann betrachten wir einen
vollkommenen Finanzmarkt tiber einen Zeitraum [0,77], der sich mathematisch als
Wahrscheinlichkeitsraum mit Filtration (€2, F,P, (F¢):cjo,r1) darstellt. AuBerdem wird
der Bond iiber den stochastischen Prozess (By)icjo,r] = (€™)ico,r] abgebildet. Als Letz-
tes beschéftigen wir uns in diesem Kapitel mit dem stochastischen Prozess fiir das risky
asset im Black-Scholes Modell.
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2.4. Der Preisprozess fiir das risky asset

In der originalen Publikation aus dem Jahr 1973 haben Black und Scholes mit den
folgenden stochastischen Differentialgleichungen die Prozesse fiir das risky asset und

den Bond hergeleitet:

dSt = ,uStdt + O'Stth
dBt = TBtdt.

Die Preisprozesse werden hier mit (S;);ecpor) fiir das risky asset und (B).ejo,r] fiir den
Bond bezeichnet. (W}).cjo,r steht in diesem Zusammenhang fiir einen Wienerprozess,
der in diesem Abschnitt definiert und nédher untersucht wird. Aber sowohl bei dem
Preisprozess des risky assets, als auch beim Aquivalenten Martingalmafl und dem Satz
von Girsanov im Kapitel 3, soll auf die stochastische Integration verzichtet werden.
Stattdessen werden Eigenschaften fiir den Prozess des risky assets gefordert, die im-
plizit in der Differentialgleichung enthalten sind. Hiermit soll ein Kandidat fiir den
Preisprozess hergeleitet werden. Die Eindeutigkeit dieses stochastischen Prozesses im
Black-Scholes Modell bedarf einer genaueren Auseinandersetzung mit Lévy-Prozessen

und wird hier nicht weiter betrachtet.

Die fiinf charakterisierenden Eigenschaften fiir den gesuchten stochastischen Prozess
werden nun aufgelistet und néher beleuchtet. Die einzelnen Forderungen leiten sich
aus Beobachtungen oder idealisierten Annahmen fiir Finanzmérkte ab. Wir wollen

also einen adaptierten stochastischen Prozess (St)te[()ﬂ"] finden, der Folgendes erfiillt:
i.) (St)teo,r) hat einen deterministischen Anfangswert Sy > 0.
Der Wert Sy entspricht dem Kurs bei dem der stochastische Prozess starten soll
und wird durch die Beobachtung am realen Finanzmarkt vorgegeben.
Seea—Si _ Sein—Sa

ii.) (St)icpor) hat stationére Renditen, das bedeutet == &
0,7Jund alle A e Rmit 0 <A+t <T, 0<A+s<T.

fir alle t,s €

Diese Eigenschaft bedeutet, dass die prozentuale Anderung des Preisprozesses in
den beiden Zeitintervallen [s, s+A] C [0, 7] und [¢,t+A] C [0, 7] der gleichen Ver-
teilung unterliegt. Es ist somit irrelevant zu welchem Zeitpunkt die Wahrschein-
lichkeitsverteilung fiir die Rendite betrachtet wird. Der bestimmende Parameter
ist hierbei der Zeitraum A, weil dieser bei den beiden Renditen als identisch

vorausgesetzt wird. Wir konnen also an dieser Stelle schon sehen, dass es ausrei-
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iii.)

iv.)

chend ist wenn wir Informationen iiber die Wahrscheinlichkeitsverteilung fiir die
moglichen Zeitraume erhalten. Diese konnen dann unabhéngig vom Zeitpunkt
genutzt werden. Insgesamt unterscheiden sich zwei Zeitpunkte fiir einen Investor,

in Bezug auf die Chance eine gute Rendite zu erreichen, nicht.

Sta—St

(Si)tep,r) hat unabhéngige Renditen, das bedeutet =“5—" ist unabhingig von
F firallet € [0,7],0 < A+t <T.

F; ist die o-Algebra, die den Informationsstand am Markt zum Zeitpunkt ¢ wi-
derspiegelt. S‘%t_st stellt die Rendite des risky assets ab dem Zeitpunkt ¢ iiber
einen beliebigen Zeitraum A dar. Wenn gefordert wird, dass die Zufallsvariable
der Rendite unabhéngig ist zu F;, dann muss sich der Kurs des risky assets ab dem
Zeitpunkt ¢ unabhéngig zu allen Ereignissen der vergangenen Zeit entwickeln. Fiir
einen Aktienkurs der zuletzt stark gestiegen ist, kann also nicht gefolgert werden,
dass dieser in der néchsten Zeit wieder fallen muss oder dass er die Entwicklung
unverandert fortsetzt. Der Aktienkurs entwickelt sich durch diese Forderung zu
jedem Zeitpunkt komplett autark von der vorherigen Entwicklung. Die Idee wird
deutlicher, wenn man eine beliebige Unterteilung 0 =, < t; < --- <t, < T und

die entsprechenden Renditen betrachtet. Aus der obigen Eigenschaft folgt induk-

Stl *Sto Stn—Stn_
AR

Beweis aus Anhang A.0.1. Demnach entwickeln sich die Renditen fiir disjunkte

tiv die Unabhéngigkeit von L. Der Beweis lauft analog zu dem

n—1
Zeitrdume immer unabhéngig voneinander.
log(g—é) ~ N (\t,0?t) fiir alle t € [0, 7] mit Konstanten A € R, o > 0.

Um die Idee dieser Forderung besser zu verstehen, kann man den Wert analog fiir
den schon bekannten Bondpreisprozess berechnen: log(%) = log(exp(rt)) = rt.
Hieraus wird deutlich, dass beim Bond die Verzinsung iiber den Zeitraum [0, ¢]
durch die Konstante r festgelegt wurde. Im Gegensatz dazu, soll fiir das risky
asset eine normalverteilte Zufallsvariable verwendet werden, welche die Zinsrate
modelliert. Die Normalverteilung resultiert aus dem Zentralen Grenzwertsatz,
weil man davon ausgeht, dass viele unabhéngige und identisch verteilte Ereignisse
Einfluss auf die Verdnderung der Zinsrate nehmen. Es lédsst sich leicht zeigen,
dass durch die Bestimmung der Verteilung von log(g—;) fir alle t € [0,77], die
Zinsraten iiber jeden beliebigen Zeitraum festgelegt sind. Mochte man alternativ

die Verteilung fiir ein Zeitintervall [¢;,t5] C [0,T] berechnen, so leitet sich diese
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durch folgende Rechnung aus der geforderten Eigenschaft her:
s) (55
log| =2 | =log | =2 =+
° ( S/ PSS
s:)+ s ()
=log| =2 ) +log| =
& (Stl 5SS
) e (5) s ()
Slog| == ) =log| =2) —log | = |.
s (Stl 5\s, 5\s,

Fiir die Verteilung der rechten Seite bedarf es der Faltung von zwei normalver-
teilten Zufallsvariablen. Foglich unterliegt die Rendite fiir [t1, %3] einer Normal-
verteilung mit den Parametern A(ty — t;) und o?(t; — t1). Wie bereits bei den
stationdren Renditen gesehen, unterscheidet sich die Verteilung nur fiir unter-
schiedlich lange Zeitintervalle und ist unabhéngig von dem Zeitpunkt, an dem sie
betrachtet wird.

v.) (St)iejo,r) besitzt stetige Pfade.

In den Wirtschaftsnachrichten greift man zur Vereinfachung auf die graphische
Veranschaulichung von Borsenkursen zuriick. Dabei zeigen stetige Graphen die
Werte einer Aktie fiir die letzten Wochen und Monate. Die Forderung von stetigen
Pfaden fiir den stochastischen Prozess des risky assets scheint deshalb zunéchst
einmal nachvollziehbar. Diese sind aber durchaus ein Kritikpunkt im Black-
Scholes Modell, da besonders Kursspriinge oder extreme Wertverédnderungen durch
die Stetigkeit nur sehr bedingt moglich sind. Auch bei der Wahrscheinlichkeits-
verteilung wird kritisiert, dass extremen Anderungen z.B. in ,,Crash“-Situationen
zu wenig Beachtung geschenkt wird. Dieser Kritikpunkt soll uns aber nicht weiter

beschéftigen.

Der vierten Eigenschaft entnehmen wir, dass eine normalverteilte Zufallsvariable benttigt
wird, um die stetige Zinsrate fiir einen festen Zeitraum zu modellieren. Die geforderte
Verteilung soll fiir alle ¢ € [0, 7] gelten und somit suchen wir einen stochastischen Pro-
zess, der auf der Normalverteilung basiert. Diese Eigenschaft und auch Parallelen zu
den anderen Anforderungen finden wir in der Defintion eines Wienerprozesses wieder,

den wir bereits in der stochastischen Differentialgleichung gesehen haben.
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Definition 2.4.1 (Wienerprozess).
Auf einem Wahrscheinlichkeitsraum (2, F, P, (Fi)wer) mit I C R wird ein adaptierter
stochastsicher Prozess W = (Wy)er als Standard Wienerprozess bezeichnet, wenn er

folgende Eigenschaften aufweist:
i.) Wy =0 P-fast sicher,
ii.) Wy — Wy ist N(0,t — s)-verteilt fiir alle s <t aus I,
iii.) Wy — Wy ist stochastisch unabhingig von F fir alle 0 < s <t aus I,
iv.) W besitzt P-fast sicher stetige Pfade.

Der Prozess X = (Xy)ier = (oW + 1 - t)te[o’T] wird Wienerprozess mat Drift . und
Volatilitit o genannt, wobei p € R und o > 0 ust.

o
e e et e L

0.5
|

0.0 0.2 0.4 0.6 0.8 1.0
Zeitintervall [0,1]

Abbildung 2.1.: Skizze eines Beispielpfades fiir einen Standard Wienerprozess

In Abbildung 2.1 wird veranschaulicht, wie ein Pfad eines Wienerprozesses aussehen
konnte. Diese Abbildung und auch die Nachfolgenden wurden mit dem Statistikpro-
gramm R, sowie dem Bildbearbeitungsprogramm Inkscape erzeugt. Die Befehle zur

Erzeugung des Pfades in R sind im Anhang A.0.5 zu finden.

Zur Notation in dieser Arbeit sei erwiahnt, dass der ganze Prozess iiber einen Grofbuch-



2 Die Modellgrundlage 11

staben ohne Index dargestellt wird und Variablen mit Indizes die einzelnen Elemente
des Prozesses reprasentieren. Dabei wird durch den Buchstaben W bzw. W; vorzugswei-
se ein Standard Wienerprozess, d.h. ohne Drift und mit Volatilitdat 1, bezeichnet. Durch
X bzw. X, soll dann ein Wienerprozess, der noch zuséatzlich einen Driftparameter sowie
Volatilitat beinhaltet, symbolisiert werden. Da sich die Prozesse bei unterschiedlichen
Maflen anders verhalten, soll dies jeweils fiir das Maf}, unter dem der Prozess definiert
wurde, gelten. Verschiedene Prozesse werden dann durch Akzente wie z.B. W oder W

gekennzeichnet.

Mochte man diesen Wienerprozess z.B. als Aktienpreisprozess verwenden, so ensteht
kein realitdtstreues Modell. Das Ereignis {S; < 0}, also dass der Aktienpreis negativ
wird, ist keine Nullmenge unter dem Mafl P. Aus den ersten beiden Eigenschaften
eines Wienerprozesses konnen direkt die Wahrscheinlichkeitsverteilungen fiir weitere

Zufallsgroflen abgeleitet werden:
Wy =W, — Wy ~ N(0,t), sowie W;_, ~ N(0,t — s) fiir alle s < .

Eine Aktie kann, im fiir den Halter ungiinstigsten Fall, wertlos werden. Es ist somit
ausgeschlossen, dass der Wert einer Aktie einen negativen Wert annimmt. Falls der
Aktienkurs zum Zeitpunkt ¢ durch W, dargestellt wiirde, wéire dieser Kurs durch die

Normalverteilung mit einer Wahrscheinlichkeit von % im negativen Wertebereich.

In den vier Eigenschaften des Wienerprozesses finden sich bereits Unabhéngigkeit, steti-
ge Pfade und die Normalverteilung wieder. Wir versuchen daher mit diesem Wienerpro-
zess weiter zu arbeiten und durch eine messbare Funktion, die nur vom Wienerprozess

abhéangt, diese Eigenschaften auf den Aktienpreisprozess zu iibertragen.

Die Elemente eines Wienerprozess mit Drift A und Volatilitdt o auf dem Wahrschein-
lichkeitsraum (€2, F, P, (F;)cjo,r)) besitzen unter P die geforderte Verteilung aus Bedin-
gung vier. Fiir einen Wienerprozess W = (W).ejo.1) ist Wy N (0, t)-verteilt und daher
konnen wir folgern, dass oW; + At N'(At, o%t)-verteilt ist. Deshalb setzen wir als sto-
chastischen Prozess fiir die stetigen Zinsraten diesen Wienerprozess mit Drift p und
Volatilitit o ein. Daraus ergibt sich fiir jedes t € [0, T7:

log (%) = oW, + At.

0

Diese Gleichung kénnen wir umstellen und {iber den deterministischen Anfangswert Sy
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erhalten wir eine explizite Darstellung des Aktienpreises zum Zeitpunkt ¢:

log (g—g) =W+ M

& S, = Sp - e7 Wt (2.1)

Durch die Normalverteilung aus dem Wienerprozess unterliegen die Zufallsgroflen des
risky assets einer logarithmischen Normalverteilung.

Bemerkung 2.4.2.

Fiir eine Zufallsvariable X auf dem Wahrscheinlichkeitsraum (€2, F,P), die zu den
Parametern ¢ € R und o > 0 normalverteilt ist, nennt man die Verteilung der Zufalls-

X

variable Y := e® eine Logarithmische Normalverteilung zu den Parametern p und o

und schreibt Y ~ LN (i, 0%).

In der Normalverteilung stellen unsere Parameter 1 und o2 bereits den Erwartungswert
und die Varianz dar. Fiir eine Logarithmische Normalverteilung wird der Erwartungs-
wert im néchsten Satz berechnet, da dieser in spateren Beweisen wiederholt verwendet
wird.

Satz 2.4.3.

Fiir eine Zufallsvariable Y ~ LN (i, 0?) berechnet sich der Erwartungswert zu

E[Y] = elt+2o?)

Beweis.
Der Beweis beruht auf einfachen Umformungen und der Eigenschaft eines Wahrschein-

lichkeitsmafles, dass das Integral iiber die Dichte genau 1 ergibt.

E[eX] = /Qex(w) dN (1, 0%)(w)

L ()
= | - e 2V ) d\zx
/R V2o (=)

x —2.13/L+/L2 —2x0

o 2)d/\(x)

1
g LA
/R V2mo?

o2

4>d/\(x)

/ 1 -3
g LA
R V2mwo?

< z2 —2x (y,+02 ) +;_L2+2,u,o'2 72M02+o'4 —0o

.
g A
/R vV 2mo?
B / 1 -1 (’“”(’”"2))2 %(’2’“’2"’4)
R V2mo?
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:e(u+%02>./ \/21_26(“)) d\(z)

N - 7
Dichte von N'(u+02,02)

-~
=1

]

Betrachten wir den Erwartungswert des risky assets fiir einen festen Zeitpunkt, dann

berechnet sich dieser durch den vorigen Satz 2.4.3 zu:

E[S,] = E[So - e”" ]

— SO . E[eth+)\-t]

=S - 6)\~t+%c72~t

Mit der Umparametrisierung A = p — %O’2 konnen wir eine bessere Interpretation des
Parameters erreichen. Der Preisprozess des risky assets und deren Erwartunswert zu
einem festen Zeitpunkt ¢ lassen sich jetzt leichter mit dem Bond und deren Erwar-

tungswert vergleichen:

E[St] :SO . 6>\-t+%02-t

5y eln-drtyho

:SO : e“'t

= G, =8 - e?Witlhmz07)t E[S,] =S, - e

Bt =1 €Tt ]E[Bt] =1- €Tt.

In der Forderung an das risky asset waren die Parameter A und o jeweils Modellpara-
meter, die von auflen gegeben werden. Nach der Umparametrisierung benutzen wir pu
und o, weil beim Vergleich der beiden Erwartungswerte deutlich wird, dass p den Drift
des risky assets, also die erwartete Zinsrate, abbildet und somit besser interpretierbar
ist als A. Die Schwankung oder auch Volatilitdt des risky assets wird weiter durch o
dargestellt und in Kapitel 4 werden wir sehen, dass nur die Volatilitét eine wichtige
Rolle spielt.

Der stochastische Prozess aus Gleichung 2.1 wird als geometrischer Wienerprozess be-

zeichnet.
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Definition 2.4.4 (Geometrischer Wienerprozess).
Fiir einen Standard Wienerprozess W = (Wy)er auf (Q, F, P, (Fi)wer) mit I C Rxg

o'WtJr(ufloQ)-t
-e 2

und p € R, 0 > 0 nennen wir (Ay)er = (AO einen geometrischen

Wienerprozess mit Drift p, Volatilitiat o und Anfangswert Ag .te[

Ein geometrischer Wienerprozess mit Anfangswert Sy stellt den Wertprozess fiir das
risky asset im Black-Scholes Modell dar. Wir haben hauptséchlich die Annahmen iiber
die Verteilung der Zinsraten benutzt, um zu einem geometrischen Wienerprozess zu
gelangen. Es bleibt noch zu zeigen, dass auch die weiteren geforderten Eigenschaften
von diesem Prozess erfiillt werden.

Satz 2.4.5.

Auf dem Wahrscheinlichkeitsraum (Q, F. P, (E)tE[QT]) des Black-Scholes Modells erfiillt
ein geometrischer Wienerprozess mit Drift u und Volatilitdt o und festem Startwert

So > 0 die geforderten Bedingungen an den Wertprozess des risky assets:
i.) (St)icpo,m) hat einen deterministischen Anfangswert Sy > 0,
ii.) (St)ecpo,m hat stationdre Renditen,
ii4.) (St)eepo,m) hat unabhingige Renditen,
iv.) log(g—;) ~ N (\t,0?t) fiir alle t € [0, T] mit Konstanten A € R, o > 0,

v.) (St)ieo,r) besitzt stetige Pfade.

Beweis.
Mit dem Standard Wienerprozess W = (Wy)cpo,r) auf (2, F, P, (Ft)iejo,r)) und den
konstanten Werten Sy > 0, 0 > 0 und p € R hat der geometrische Wienerprozess aus

dem Satz die Form (S¢).ejo.1) = <SO : e"W’f*(“—%"2)‘t> _
t€[0,T]

i.) (S¢)tepo,m hat einen deterministischen Anfangswert Sy > 0.

Diese Eigenschaft wurde bereits in der Umformung benutzt und ist erfiillt:

So - eoWort(u—30")0 Sy -e’ =Sy > 0.
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ii.) (S¢)teo,r) hat stationdre Renditen.

Wiéhle t,s € [0, 7] und A e Rmit 0 <A+t <T,0<A+s<T, dann gilt

Sees =S Sies g poes-wi(emdot)a g
St St

mit Wi a—W; ~ N(0,t +A —t) = N(0,A) und

Ssta = S _ Seta 1= eU(Ws+A_VVS)+(“_%J2)'A -1
S, S
mit Wy a—Ws ~N(0,s+ A —s) =N(0,A).

Die Verteilung der beiden Renditen héngt nur von der Verteilung des Standard
Wienerprozesses ab, denn die restlichen Variablen bleiben fiir jedes w € €2 kon-
stant. Da bei einem Wienerprozess die Zuwéchse Wiin — Wy und Wyn — W
nach Definition 2.4.1 identisch verteilt sind, besitzen auch die beiden Renditen
die selbe Wahrscheinlichkeitsverteilung. Méchte man die konkrete Verteilung be-
rechnen, so erhélt man eine um eins nach links verschobene, also auf dem In-
tervall (—1, 00) definierte, logarithmische Normalverteilung mit den Parametern
(,u — %0’2) A und ¢%A. Die stationiren Renditen sind also bei unserem geometri-

schen Wienerprozess erfiillt

iii.) (S¢)ico,r) hat unabhéngige Renditen.

Um diese Eigenschaft zu zeigen, definieren wir die Abbildung
f:R— R durch f(y) = eV H—30)A _

und bemerken, dass aus der Stetigkeit die Borel-Messbarbarkeit von f gefolgert
werden kann. Nun kann die Rendite, die im vorherigen Punkt schon untersucht
wurde, als Komposition der messbaren Abbildung f und dem Zuwachs des Stan-

dard Wienerprozesses Wy Ao — W, dargestellt werden:

2).A 1= St+A - St.

fo(Wya —W,) = o Wepa=Wi)+(n—30 3
t

Aus der Wahrscheinlichkeitstheorie ist bekannt, dass fiir eine Zufallsvariable X,
die unabhéngig ist zur o-Algebra F, auch fiir jede borel-messbare Abbildung f
die Zufallsvaribale fo X unabhéngig ist zu F. Die Unabhéngigkeit von Wy, A —W;
zu Fy iibertréigt sich somit durch die messbare Abbildung auch auf die Rendite.
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iv.)

Damit ist gezeigt, dass S't%;st unabhéngig ist zu F; fiir alle ¢ € [0,7] und der

geometrische Wienerprozess unabhéngige Renditen besitzt.

log(g—é) ~ N (At,o?t) fiir alle t € [0, 7] mit A € R, o > 0.

Diese Eigenschaft hatten wir benutzt, um den geometrischen Wienerprozess her-
zuleiten. Durch die Wahl eines Wienerprozesses mit Drift x4 und Volatitlitat o

konnten wir diese Verteilung modellieren. Es gilt

i (3) <o (-t (b))

Noch zu beachten ist, dass wir eine Umparametrisierung vorgenommen haben, um
eine bessere Interpretierbarkeit zu gewéhrleisten. Fiihren wir diese Substitution

iiber A = 1 — 10? wieder zuriick, so erhalten wir

log (%) ~ N(\t, o%t).

0

(St)ecpo,r) besitzt stetige Pfade.

Ein stochastischer Prozess besitzt stetige Pfade, wenn fiir jedes w € 2 die Abbil-
dung aus der Indexmenge in die reellen Zahlen stetig ist. In diesem Fall wihlen
wir w € Q fest und betrachten die Abbildung?

St : {(JJ} X I — R mlt St((,d) = SO . eUWt(w)"‘(M—%UQ)i'

In der vierten Bedingung des Wienerprozesses (Definition 2.4.1) wird gefordert,

dass der Prozess stetige Pfade besitzt. Also wissen wir, dass
Wiw) :{w} x I =R

eine stetige Abbildung darstellt. Unser Aktienpreis in Abhéngigkeit der Zeit ist
somit eine Komposition aus dem Element W, des Wienerprozesses und der steti-
gen Abbildung

f:R— Rmit f(z) =Sy ™20

und dadurch selbst eine stetige Abbildung. Dies gilt fiir alle w € € und deshalb

'Hier ist w fest gewihlt und die Abbildung ist abhingig von ¢, jedoch wird ¢ weiterhin im Index
geschrieben, um die Notation beizubehalten.
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besitzt der Aktienpreisprozess (St):cjo,1] stetige Pfade.

2.5. Kurze Zusammenfassung

Wir haben die Grundlagen des Black-Scholes Modell aus den Annahmen abgeleitet und
konnten die stochastischen Prozesse fiir das risky asset und den Bond herleiten. Diese

konnen angegeben werden mit
(Bt)iejor) = Bo - € mit By =1
fiir den Bondpreisprozess, sowie mit
(S))ecioa) = So - €?WVHE=3T mit Sy > 0,0 > 0,4 € R

fiir den stochastischen Preisprozess fiir das risky asset. Der letzte Prozess wird auch
als geometrischer Wienerprozess mit Drift ;4 und Volatilitdt o bezeichnet. Als Modell-
parameter verwenden wir 1" fiir den Endzeitpunkt, r fiir die Zinsrate des Bonds und

den Drift u, so wie die Volatilitdt o und Startwert Sy fiir das risky asset.

Wir sind jetzt in der Lage mit dem Modell zu arbeiten und werden uns in den folgenden
Kapiteln mit der Bewertung im Black-Scholes Modell beschéftigen. Dafiir bedarf es
zunéchst einer genaueren Analyse des Aquivalenten Martingalmafes, mit dem dann im

Anschlufl die Moglichkeit gegeben ist, den Preis eines Derivates zu berechnen.

Zur Veranschaulichung ist in Abbildung 2.2 noch ein Beispiel fiir einen Pfad des geome-
trischen Wienerprozesses abgebildet. Hierbei wurde ein positiver Drift verwendet und
der Startwert betragt 100.
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Abbildung 2.2.: Skizze eines Beispielpfades fiir einen geometrischen Wienerprozess mit
positivem Drift
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3. Das Aquivalente MartingalmaB

3.1. Motivation

In dieser Bachelorarbeit wird gezeigt, wie sich der Wert eines Derivates mit dem risky
asset als Underlying im Black-Scholes Modell berechnen lésst. Bei der Analyse von Fi-
nanzmérkten ist der Begriff der Arbitragefreiheit von zentraler Bedeutung. Wie schon in
der Einfiihrung (Kapitel 1) erwéhnt, bezeichnet eine Arbitragemoglichkeit die Chance
ohne Kapitaleinsatz und ohne Risiko eine positive Auszahlung zu erreichen. Durch be-
stimmte Marktmechanismen sollten Arbitragemoglichkeiten auf realen Finanzmérkten
nicht auftreten und daher mochten wir auch in den Modellen Arbitragefreiheit vorfin-
den. Im Black-Scholes Modell sind die Preise des Bonds und des risky assets exogen
gegeben und die Preise fiir die Derivate miissen bestimmt werden. Je nachdem wie
diese Preise gewahlt werden, bieten sich Arbitragemoglichkeiten oder nicht. Es kann
bewiesen werden, dass bei einer bestimmten Strategie zur Preisfestsetzung das Modell
arbitragefrei ist. Diese Strategie greift auf ein Aquivalentes Martingalma$ zuriick und
bewertet die Derivate anhand ihrer Claims'. Der Claim ist dabei eine F; messbare
Abbildung C : Q — R, die jedem w die Auszahlung des Derivates zum Zeitpunkt 7'
zuordnet, die beim Eintreten des jeweiligen w anféllt. Die Messbarkeit sichert, dass die
Auszahlung zum Zeitpunkt T feststeht und nicht von spéteren Zeitpunkten abhingig
ist. Mit Q als Aquivalentes Martingalmas lisst sich der arbitragefreie oder faire Preis

eines Derivates mit Claim C iiber die Form
EqlB7' - C] (3.1)

bestimmen.

'Fiir den Beweis der Preisfestsetzungsformel wird auf das Buch ,,Finanzmathematik: Die Bewertung
von Derivaten® von Albrecht Irle [04] verwiesen.
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3.2. Herleitung des Aquivalenten MartingalmaBes

Das Ziel dieses Kapitels ist es, ein Aquivalentes Martingalmaf zu finden, um den fairen
Preis fiir ein Derivat berechnen zu kénnen. Dafiir ist es zuerst erforderlich den Begriff
eines Martingals zu definieren.

Definition 3.2.1 (Martingal).

Es sei X = (X¢)ier ein adaptierter stochastischer Prozess auf (2, F,P, (Fi)ier) mit
I C Ry und E[|X,|] < oo fiir allet € I. Der Prozess X wird als Martingal bezeichnet,
wenn E[X;|Fs] = X P-fast sicher fiir alle s <t aus I erfillt ist.

Martingale werden in der Spieltheorie fiir faire Gliicksspiele und in der Finanzmathe-
matik fiir faire Preise verwendet. Die Martingaleigenschaft E[X;|F;] = X besagt, dass
weder eine positive noch eine negative Entwicklung zu erwarten ist. Auf einem Finanz-
markt wird aber durch die Existenz der risikolosen Anlage eine positive Entwicklung
des Wertes erwartet. In der Definition des Aquivalenten Martingalmafes wird diese
Erwartung durch das Abdiskontieren der Preisprozesse ausgeglichen. Hierfiir wird der
Bondpreisprozess verwendet und wenn der Wert in Einheiten des Bonds betrachtet
wird, ist es moglich die verschiedenen Zeitpunkte zu vergleichen.

Definition 3.2.2 (Aquivalentes MartingalmaR).

Sei (By, S}, ..., 8] Y)er ein J-dimensionaler adaptierter Preisprozess auf dem Wahr-
scheinlichkeitsraum (Q, F, P, (Fi)ier), wobei By den Bondpreis im Zeitpunkt t dar-
stellt. Sind P und Q zwei dquivalente Mafle, so wird Q als dquivalentes Martingal-

mafl oder dquivalentes riskikoneutrales Wahrscheinlichkeitsmafl bezeichnet, falls fiir
alle j e {1,...,J -1}

(gt)tel = (Bfl : Sf)te[

ein Martingal unter Q bildet.

Die Preise der Basisfinanzgiiter sind exogen, daher erscheint es sinnvoll, dass deren
abdiskontierter Preisprozess ein Martingal bildet. Anhand der Bewertungsformel folgt

dann, dass die Preise der Basisfinanzgiiter immer arbitragefrei sein miissen.

Das stochastische Element unseres Preisprozesses fiir das risky asset ist ein Standard
Wienerprozess, der uns eine gute Ausgangslage in Bezug auf Martingale bietet. Wir
erhalten mit einem Standard Wienerprozess einen stochastischen Prozess, der gleichzei-
tig die Martingaleigenschaft erfiillt. Aulerdem zeigt der folgende Satz, dass iiber einen

Standard Wienerprozess noch zwei weitere Martingale gewonnen werden kénnen.
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Satz 3.2.3.
Sei W = (Wi)icp,) ein Wienerprozess auf dem Wahrscheinlichkeitsraum (€, F,P)
und adaptiert an die Filtration (F;)icp,00)- Dann sind folgende stochastische Prozesse

Martingale:
i.) (Wi)iefo,00)
ii.) (Wi = 1)icpo,00)
iii.) (e?Wi=1/20%), 1o 00y mit a € R.

Der Prozess unter iii.) wird als Exponentialmartingal bezeichnet.

Beweis.
Fiir den Beweis miissen wir zeigen, dass der Erwartungswert vom Absolutbetrag der

Zufallsvariablen endlich ist und dass der Prozess die Martingaleigenschaft erfiillt, also
E[X|Fs] = X ist.

i.) Die Existenz aller Momente der Normalverteilung liefert die Endlichkeit des Er-
wartungswertes, sodass nur noch die Martingaleigenschaft gezeigt werden muss.
In der Definition des Wienerprozesses (Definition 2.4.1) erhalten wir Eigenschaf-
ten iiber die Zuwichse W, — Wy, die wir, iiber kleine Umformungen, an dieser
Stelle ausnutzen konnen. Daher berechnen wir fiir 0 < s < ¢t < oo und F, den

bedingten Erwartungswert und gelangen durch die Linearitét zu:

E[W:|Fs] = E[W; — W, + W|F]
= E[W, — W,|Fs] + E[W|Fsl.

Nun wissen wir, dass nach 2.4.1 iii.) W, — W, unabhéngig ist zu F5 und durch den
adaptierten Prozess ist W, messbar bzgl. F,. Somit vereinfacht sich der erste Teil

zu einem normalen Erwartungswert und der hintere Term zu W (siehe Appendix

Satz A.0.3):
= E[W, — W,] + W,

Der Erwartungswert berechnet sich durch die Normalverteilung A (0,t — s) aus
2.4.11ii.) zu 0 und es ergibt sich:

E[W;|Fs] = Ws.
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ii.) Die Existenz aller Momente resultiert auch hier aus der Normalverteilung von
W;. Genau wie zuvor mochten wir zunéchst umformen, um die Eigenschaften der
Zuwéchse ausnutzen zu konnen. Jedoch betrachten wir zur besseren Ubersicht

zunichst nur den bedingten Erwartungswert von W2 fiir ¢ € [0, 00):

E[W?2|F,] = E[W? — 2W, W, + 2W W, + W2 + W2 — 2W2|F,]
(W, — W) + 2W (W, — W) + W2 FJ]

(Wi — Wo)2|F] + 2E[W (W, — W,)|Fo] + E[WZ|F]
(Wi — Wi )?| F] + 2WE[(Wy — W) | F] + W2

[
E[
E[
E[

Mit derselben Begriindung wie zuvor haben wir W und W2 wegen ihrer Mess-
barkeit zu F; bereits herausziehen konnen, denn bei Verdnderungen durch eine
borel-messbare Abbildung bleiben Messbarkeit und Unabhéngigkeit erhalten. Im
nédchsten Schritt konnen wir deshalb wieder den bedingten Erwartungswert zu

einem einfachen Erwartungswert umschreiben:

E[W2|Fs] = E[(W, — W)?] + 2WE[(W, — W)] + W?
= V[(W, = W,)] + E[(W, — W,)]2 + 2W,E[(W, — W,)] + W2.

Uber W, — W, ~ N(0,t — 5) kennen wir die Varianz und den Erwartungswert

bzw. das zweite Moment fiir den Zuwachs des Wienerprozesses und erhalten
EW?|F) = (t — s) + W2
Folglich ist die Martingaleigenschaft erfiillt:

E[W;? — t|F] = E[W7|F] — t
=(t—s)+W2—t
=W?—s.

iii.) Analog zu den Beweisschritten fiir die ersten beiden Punkte nutzen wir wieder
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Messbarkeit (x) bzw. Unabhéngigkeit (xx) bzgl. F aus. Es gilt fiir a € R:

E[eaWt |fs] _ E[eaWt—aWs+aWs

F
_ E[ea(Wt—Ws) . eaWS Fs]
F

g eaWS . E[ea(Wtfws)].

; eaWS . ]E[ea(Wtfws)

Im Erwartungswert steht eine Zufallsvariable mit logarithmischer Normalvertei-
lung zu den Parametern 0 und a?(t — s), der sich mit Bezug auf Satz 2.4.3 be-

rechnen lésst:
E[ea(Wt—Ws)] _ (3e%t-9))
Nun folgt direkt die Martingaleigenschaft fiir das Exponentialmartingal:

E[c""'"2| F,] = B[ |F,] - 72"
aWs | E[ea(Wt—Ws)] . €—§a2t

=€
_ eaWS . e%aQ(t—s) . 6—%a2t
— eaWSf%(ﬁs.

]

Wie Beispiele fiir Martingale mit einem Wienerprozess aussehen konnen, ist jetzt be-
kannt. Wir haben gesehen, dass unter anderem ein geometrischer Wienerprozess ohne
Driftterm ein Martingal bildet und als Exponentialmartingal bezeichnet wird. Dieser
Prozess bleibt ein Martingal, wenn wir ihn mit einem konstanten Startwert versehen.
Um eine Idee zu entwickeln, wie das Aquivalente Martingalmafl hergeleitet werden
kann, betrachten wir den abdiskontierten Preisprozess unter dem urspriinglichen Maf}
P. Dieser hat bereits Ahnlichkeiten zu dem Exponentialmartingal und berechnet sich

zu:

§t = B;l .S, = et e‘TWt‘*‘(M—%JQ)t
oo 52)
R

Im Vergleich zu Satz 3.2.3 iii.) mit @ = o erhalten wir beim abdiskontierten Preispro-
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zess zusitzlich den Driftterm e~ Zur Modifikation dieses Prozesses steht uns nur
die Moglichkeit einen Maflwechsel durchzufiithren zur Verfiigung. Die Frage ist, wie die-
ser Prozess durch den Wechsel auf ein neu definiertes Mafl beeinflusst wird. Das einzige
Element, das an das Wahrscheinlichkeitsmafl P gekoppelt ist, ist der Wienerprozess. In
der Defintion 2.4.1 wird in Bedingung ii.) gefordert, dass das Bildmafl von W, unter
P einer Normalverteilung entspricht. Diese Eigenschaft bleibt bei einem Maf3iwechsel
allgemein nicht giiltig. Es muss demnach deutlich unterschieden werden zwischen Wie-
nerprozessen fiir zwei unterschiedliche Mafle. Deshalb erfiillen die Prozesse im Satz
3.2.3 die Martingaleigenschaft nur unter dem Maf, unter dem der Wienerprozess defi-
niert wurde. Diese vermeintliche Einschriankung auf die Kopplung von Wienerprozess
und Ma8B, lisst sich vorteilhaft nutzen, um ein Aquivalentes Martingalmaf herzuleiten.
Denn der Satz von Girsanov, auch als Girsanov-Transformation bezeichnet, erlaubt
eine Aussage iiber den Zusammenhang von zwei Wienerprozessen unter verschiedenen
MaBen. Wird die dort angegebene Dichte verwendet, um ein neues Mafl Q zu definieren,
so ergibt sich ein neuer Standard Wienerprozess unter Q, der sich vom urspriinglichen

Wienerprozess unter PP ableitet.

3.2.1. Der Satz von Girsanov

Satz 3.2.4 (Girsanov).

Sei W = (Wy)ieppr) ein Standard Wienerprozess auf (Q,]:, P, (.E)te[o’T]) mit T > 0
und ¥ € R. Fiir Ly := (W =39T) ivd durch Q(A) = fA Ly dP fiir alle A € Fr ein
zu P dquivalentes MafS Q auf Fr definiert, sodass W= (W — 9t)¢epo,m ein Standard-
Wienerprozess bzgl. Q ist.

Bevor dieser Satz verwendet oder beweisen wird, ist es wichtig auf einige Details nédher
einzugehen. Es wird ein neues Mafl Q durch Angabe der Dichte beziiglich P| £, definiert.
Als erstes sei erwéhnt, dass Ly > 0 und Fp-messbar ist und somit die Anforderung
fiir eine Radon-Nikodym Dichte erfiillt sind. Der Grund fiir die Einschrankung auf
die o-Algebra Fr ist die Messbarkeit von Lp. Diese resultiert aus der Adaptiertheit
des Wienerprozesses und der Fp-Messbarkeit von Wr. Die Messbarkeit kann allgemein
nicht fiir feinere Elemente aus der Filtration sichergestellt werden. Aber eine Fortset-
zung des Mafles Q auf F oder F; mit ¢ > T ist fiir unser Modell nicht notwendig, da
wir nur Derivate betrachten, deren Auszahlung spétestens im Zeitpunkt T erfolgen.
Desweiteren hat die Dichte die besondere Form von einem Element des Exponential-
martingals, welches wir schon im Satz 3.2.3 kennengelernt haben. Welche Vorteile wir

aus dieser Martingaleigenschaft fiir die Dichte ziehen kénnen und die Tatsache, dass
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das neu definierte Mafl Q auf Fr ein dquivalentes Mafl zu P ist, wird in dem néchsten
Satz genauer erlautert.

Satz 3.2.5 (Martingale als Dichte).

Sei (Q, F,P, (]—})te[o,T]) ein Wahrscheinlichkeitsraum und (Ly)ico.r) ein Martingal mit
Ep[Li] =1 und Ly > 0 fir alle t € [0,T], dann gilt Folgendes:

i.) Mit Ly als Dichte bzgl. P wird auf Fr ein zu P dquivalentes Wahrscheinlichkeits-
maf Q definiert.

i1.) Fir eine Fy-messbare, tiber Q integrierbare Zufallsvariable Y gilt

/YdQ:/Y-Ltd]P’
A A

fiir alle A € F;.
iii.) Fir eine Fy-messbare, iber Q integrierbare Zufallsvariable Y und F, C JF; gilt

EplY L | F]
EolY|Fs] = L—t
Beweis.

i.) Zu zeigen: Q ist ein zu P|z,. dquivalentes Wahrscheinlichkeitsma$.

Durch Ly > 0 haben wir die Dichte von Q bzgl. P fiir alle A € Fr definiert, dass
bedeutet fiir ein A € Fr gilt

Q(A) = /A Ly dP.

Das Martingal ist ein adaptierter Prozess und damit ist Ly Fpr-messbar, aulerdem ist
Ly nicht negativ. Daher sind die Bedingungen fiir eine Radon-Nikodym Dichte erfiillt
und es iibetragen sich die Mafeigenschaften von P auf Q. Damit gezeigt ist, dass Q
auch ein Wahrscheinlichkeitsmaf3 ist, muss noch die Normierung auf 1 gepriift werden.
Es gilt

Q) = / Ly dP = Ep[Ly] = 1.
Q
Diese Eigenschaft wird in den Voraussetzungen gefordert. Bei der Aquivalenz der beiden

Mafle, also fiir alle A € Fr soll Q(A) =0 < P(A) = 0 sein, folgt die Hinrichtung aus
der Tatsache, dass Ly > 0 ist und die Riickrichtung aus dem Satz von Radon-Nikodym.
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ii.) Zu zeigen: [,V dQ = [,Y - L, dP fiir eine F;-messbar, iiber Q integrierbare
Zufallsvariable Y und alle A € F;.

Sei Y eine F;-messbare, iiber QQ integrierbare Zufallsvariable und A € F;, dann gilt

/YdQ:/Y~LTdIP
A A

= / E[Y - Ly|F,] dP.
A

Diese Gleichung folgt aus den Eigenschaften, die bei der Definition des bedingten Er-
wartungswertes gefordert werden (siehe Anhang A.0.2 (ii) ), da wir gerade A aus F;
gewahlt haben. Der Erwartungswert wird auf F; bedingt und durch die Messbarkeit
von Y bzgl. dieser o-Algebra konnen wir Y herauszichen (siche Anhang A.0.3 (i)).

Daher ergibt sich weiter
/ Y dQ = / Y - E[Ly|F)] dP
A A

:/Y-Ltd]P’.
A

Im letzten Schritt nutzen wir die Martingaleigenschaft aus, die fiir den stochastischen

Prozess (Ly)iepo,r) vorausgesetzt wurde.

Desweiteren sei hier noch erwihnt, dass wir als Zufallsvariable auch 1 wéahlen kénnen

und sich somit

Q(A):/AILQ-Lt dP

A

fir alle A € F; berechnen lédsst. Dies macht deutlich, dass wir fiir jedes ¢ € [0, 7] auf
F; das Element L; des Martingals als Dichte fiir Q bzgl. P verwenden konnen.

iii.) Zu zeigen: Eg[Y|F,] = % fiir eine Fy-messbare, tiber Q integrierbare Zu-
fallsvariable Y mit F, C F;.

Sei Y eine F;-messbare, tiber Q integrierbare Zufallsvariable, 7y C F; und A € F,.
Dann ist Eg[Y|Fs] die fast-sicher eindeutige Fs-messbare Zufallsvariable fiir die gilt,
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dass
/ Eo[Y|F,] dQ = / Y dQ ™™ / Y . L, dP
A A A

und Ep[Y L;|F| ist die fast-sicher eindeutige Fs-messbare Zufallsvariable mit

/Y~Lt dP:/EP[YLt|fS] P
A A

L,
:/EP[YLt|J-"S]-— dP
A L

x / Ep[Y L|F,]
A

dQ.
Ly Q

In der letzten Gleichung (%) greifen wir auf Teil ii.) zuriick, denn wir integrieren iiber
eine F, messbare Zufallsvarible und kénnen deshalb durch L, zu dem Maf} QQ iibergehen.

Insgesamt folgt also fiir alle A € F;

Ep[Y L;| Fs]
Eo|lY|Fs| dQ= | ———— d
| Eatvi7)do = [ =2 ag

und beide Zufallsvariablen unter dem Integral sind F,-messbar. Daher kénnen wir mit

der fast-sicheren Eindeutigkeit des bedingten Erwartungswertes folgern, dass

EplY Li| F

ist. O

Den soeben bewiesenen Satz 3.2.5 werden wir fiir den Beweis des Satzes von Girsanov
verwenden, denn er ermdglicht uns zwischen den beiden Mafien zu wechseln. So kénnen
aus Informationen, die nur unter einem Mafl bekannt sind, auch Eigenschaften, die
unter dem anderen Maf} gelten, hergeleitet werden. Der erste Teil des Beweises von Satz
3.2.4 behandelt das WahrscheinlichkeitsmaB Q und die Aquivalenz zu P. Im zweiten

Beweisteil wird dann die Aussage iiber den Wienerprozess bzgl. Q gezeigt.
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Beweis des Satzes von Girsanov (3.2.4).

Durch die Voraussetzungen aus dem Satz ist Folgendes fiir den Beweis gegeben:
- €eRund T > 0,
- W = (Wi)iepo,r) als Standard-Wienerprozess auf (Q, F, P, (E)te[O,T])
- Lp:= e(MWr=39"T) 415 Dichte von Q bzgl. P|,.

(i) Zu zeigen: Q ist ein zu P|z, dquivalentes Wahrscheinlichkeitsmaf

Der stochastische Prozess (Li)icpor = <6§Wt’%ﬂ2t> o ist nach Satz 3.2.3 iii.) ein
te0,T
Martingal. Durch die Exponentialform ist fiir alle ¢ € [0, T'] erfiillt, dass L, > 0 ist und

auflerdem berechnet sich der Erwartungswert fiir jedes Element des Martingals durch

EIP’ [Lt] — EIP’ [eﬁWt—%rﬂQt]

Die Gleichung * folgt dabei aus der Tatsache, dass W; N(0, t)-verteilt und damit e’
LN (0,9?t)-verteilt ist. Die Berechnung des Erwartungswertes erfolgte mit dem Satz
2.4.3. Es sind alle Vorausetzungen fiir den Satz 3.2.5 erfiillt und wir erhalten durch die
Aussage in i.), dass Q und P zwei dquivalente Wahrscheinlichkeitsmafie auf Fr sind.

(ii) Zu zeigen: W= (Wi — Ut)sejo,1) ist ein Standard-Wienerprozess unter Q.

Es sind alle vier definierenden Eigenschaften eines Standard Wienerprozesses aus 2.4.1
fiir den Prozess W = (/VIZ),:E[QT] = (W; — 9t)eo,r) unter dem MaB Q nachzuweisen.
Diese werden im Folgenden Schritt fiir Schritt behandelt. W = (W}).cj0.17 bezeichnet
weiterhin einen Standard Wienerprozess unter P. Der Messraum (€2, F) sowie die Fil-
tration (]:t)te[O,T] sind fiir W und W identisch und so kann aus der Form von W leicht

gefolgert werden, dass auch dieser Prozess adaptiert ist an (F3),c(o -
i) I//V\() =Wy —19-0=0P-fs. und durch die Aquivalenz der MaBe auch Q-f.s..
ii.) Zu zeigen: W; — Wy ist unter Q N (0,t — s)-verteilt fiir 0 < s <t <T.

Es soll zunéchst gezeigt werden, dass die Zuwéchse von W unter Q normalverteilt
sind mit Erwartungswert 9(t — s) und Varianz (¢ — s). Daraus kann anschlieflend

die geforderte Verteilung von W unter Q gefolgert werden. Die Verteilung von W
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wird iiber die Verteilungsfunktion berechnet:

@Gm—mﬁﬁﬂﬁiéhmmxﬂWW@

= / Liwe-wo<ap (@) - Ly dP.
Q

Es wird Satz 3.2.5 ii.) verwendet mit 1{w,_w,<s} als F-messbar Funktion, denn
durch W; und W; als Fi-messbare Funktionen ist {W; — W < z} € F;. Nun gilt

weiter

/ ﬂ{Wt—ngx}(w) <Ly dP

Q

= / :H.{Wt_wsgr}(w) . e(ﬁWt—%’ﬁ2t) . eﬂWs_ﬁWS d]P)
Q

= / H{Wt*ngx}(W) . e(ﬂ(Wt_Ws)—%’ﬁQt) . eﬁWS dIP)
Q

Die Unabhéngigkeit von W;—Wj zu F; impliziert die Unabh&ngigkeit von W, —W
zu Wy = W, — W, (sieche Anhang A.0.1), daher gilt

/ Liw,—w,<a} (w) .e(ﬂ(Wt—Wg)—%Wt) Ve gp
Q

- / Lws—w,<ay (w) - PV W =390 gp. / e?Ws dp
Q Q

- / 1w, —w, <oy (W) - PV WI=39%0 g g [e?W5],
Q

Das Problem, die Verteilung von W; — Wy zu ermitteln, hat sich also nun durch
die Eigenschaft der Unabhéngigkeit auf zwei leicht zu behandelnde Integrale ver-
einfacht. Das erste Integral konnen wir umformen indem wir den Zuwachs als eine
Zufallsvariable betrachten, deren Verteilung bekannt ist, also W, — W, =Y ~
N(0,t — s). Hier kénnen wir mit Hilfe der Dichte fiir die Normalverteilung das
Integral berechnen. Das zweite Integral kann, wie oben bereits geschehen, iiber

die logarithmische Normalverteilung berechnet werden. Also ergibt sich

QW — W, <x}) = / ﬂ{ygx}(w) WY =39t gp Ep[eﬂWs]
Q

:/hwmweW%%hwmﬁ—ﬂwfw%
R

T
2

— / e(ﬁy_%ﬁ2t) . ; . eié(tyfs) dy . 6%1925
27(t — s)?

—0o0
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2
1,92 192, 1
6519 s+0y—359 t—§(ty_—s) dy

2
-1 (192(t—s)+ =) —219y)
e dy

1 (y272y19(t75)+192(t75)2
2
(&

/x;_ gty
J sy Y
e_%(w—z(_t;s))?)_ "

Dichtefunktion fiir N'(J9(t—s),(t—s))

Wir erhalten durch die Umformungen ein Integral {iber die Dichte einer Normal-
verteilung. Die Integrationsgrenzen sind unveréndert geblieben, deshalb ergibt
sich als Verteilungsfunktion fiir die Zuwéchse von W unter Q die Verteilungs-
funktion einer Normalverteilung zu 9(t — s) und (¢ — s). Daher ist W, — W,
unter Q NV (J(t — s), (t — s))-verteilt und wir kénnen folgern, dass W, - W, =
W, — Wy — 9(t — s) die geforderte N(0, (t — s))-Verteilung unter Q besitzt.

iii.) Zu zeigen: W\t — /WS ist stochastisch unabhingig von F fir alle 0 < s <t <T.

Betrachte F5, und W, —W, fiir 0 < s < t < T, dann werden folgende Eigenschaften

fiir diesen Beweis genutzt:
a) W, — W, Wy sind Fi-messbar, damit sind auch /V[Z — /V[Z, /V[Z,, JFi-messbar,
b) W, — W, und F; sind unabhéngig unter P.

Es gilt fiir jede borel-messbare und beschrinkte Abbildung h : R — R mit Satz
3.2.5 iii.), dass

L Ep [R(W, — W) - L ]—“S}
Eg [h(Wt W) ) ]—“S} - T
— E: h(Wt—Ws)-% ( ]—"s} .
—Ep h(Wt—Ws—ﬁ(t—S))L— .Fs .

Im vorletzten Schritt diirfen wir L—IS hineinziehen (Satz A.0.3), denn da Lg > 0



3 Das Aquivalente MartingalmaB 31

und messbar ist, ist auch ﬁ messbar bzgl. F;. Desweiteren ist

Lt (0Wi-wo)-107(t—s)) (3.3)

und wir definieren h(y) = h(y — 9(t — s)) - e(=27(=9)  Dieg ist eine borel-
messbare Funktion, denn A ist borel-messbar und die Exponentialfunktion ist
stetig und somit auch borel-messbar. Mit der Unabhéngigkeit aus b) wird der
bedingte Erwartungswert unter P zu einem normalen Erwartungswert (siche A.0.3

ii.)) und wir erhalten:

Ep [h(wt W, — It —s)) - % Fs}
= Ex [h(W, = W.) | 7.]

= Bp [R(W; - W,)]

= Ep :h(Wt — W, —d(t - 3)) - %} .

Fiir den Erwartungswert ist nur die Verteilung einer Zufallsvariablen relevant.
Mit der identischen Verteilung bei W, — W, und W,_,, unterliegt auch % der
gleichen Verteilung wie L;_, (siehe Gleichung 3.3). Im Erwartungswert konnen
demnach W; — W, durch W;_, und % durch L;_, ausgetauscht werden. So ist es
sehr leicht moglich wieder auf das Mafl Q zu wechseln:

Ep {h(Wt—Ws — 9t - 5)) - %}

=Ep [h(Wi_s — 0t —8)) - Ly

= Eq [A(W;—s — I(t — 5))]

= Eq [A(W; = W, = 0(t — 5))]

— Eq [h(W, - W,)|.
Fiir den Wechsel zum Mafl Q wird hier die Dichte L, , verwendet, weil W;_, nun
Fi_s-messbar ist (Satz 3.2.5ii.)). Auf Grundlage der vorherigen Begriindung kann
auch wieder zu W, — W; zuriicktransformiert werden und die Unabhéngigkeit von

o~

W — WS zu F, unter Q ist gezeigt.
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iv.) Zu zeigen: W= (Wi — 0t)¢eqo,r) besitzt stetige Pfade.

(Wi)ieo,r) besitzt stetige Pfade, daher ist auch /Wt : [0,7] — R fiir ein festes

w € () eine stetige Abbildung als Addition von zwei stetigen Funktionen.

]

Der Satz von Girsanov wurde bewiesen und zeigt sowohl die verwendete Dichtefunkti-
on, sowie die konkrete Verdnderung des Wienerprozesses bei einem Mafiwechsel. Wir
wissen jetzt, dass sich ein Standard Wienerprozess durch den Mafiwechsel zu einem
Wienerprozess mit linearen Driftterm transformiert. Um wieder auf einen Standard
Wienerprozess zu gelangen, muss dieser Driftterm eliminiert werden. Die Aufgabe be-
steht nun darin die konkrete Dichte festzulegen, welche unseren Wertprozess des risky
assets in ein Martingal wandelt. Hierfiir greifen wir auf die bereits gesehene Umformung
aus Gleichung 3.2 und den Satz 3.2.3 zuriick:

~ 1 _2
Se=B;" S = oWt (u—r=30%) ¢

o

ea(Wt— = -t)—lazt

Wenn wir ¢ aus dem Satz von Girsanov (Satz 3.2.4) als ¢ := £ definieren und infol-

o
=AW

_1(r=u)?
gedessen auch das Mafl Q mit die Dichte Ly := e( 7 2 (5" T> bzgl. P verwenden,
so transformiert sich unser Standard-Wienerprozesss unter P zu einem Wienerprozess
mit Drift () unter Q. Das bedeutet, der Prozess

(e

W = (Wt - T : t)te[O,T}

entspricht einem Standard Wienerprozess, also ohne Driftterm, unter Q. Demnach

erreichen wir unter QQ fiir den abdiskontieren Preisprozess
S? _ B—l S, = O'/W\t—%o'2't
t= Dy o =E¢€ )

genau die Form eines Exponentialmartingals aus Satz 3.2.3 mit dem Standard Wiener-

prozess W.
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Zur Vereinfachung werden in der nachfolgenden Tabelle die unterschiedlichen Prozesse
fiir das Mafl P aus dem Modell und das Aquivalente MartingalmaB Q abgebildet.

Mafl P Mafi Q
Standard Wienerprozess W = (Wi),ciom W= (W — =2 t)te[o,T]
02 = 02
(St)ejo.) (So . e"WtJ“(”*?)'t) (So . e"Wt*("*T)'t)
te0,T] te[0,T]
(gt)te[o’,ﬂ (So ) 60Wt+(ﬂ—7’—%)~t> (So ) eUWt—%~t>
te[0,T] t€[0,T]

Tabelle 3.1.: Ubersicht der Prozesse fiir die MaBe P und Q

3.3. Kurze Zusammenfassung

Mit Hilfe der Girsanov-Transformation konnte in diesem Kapitel ein Aquivialentes
Martingalmaf, bezeichnet mit Q, fiir das Black-Scholes Modell hergeleitet werden. Das
Wahrscheinlichkeitsmafi Q wurde dabei auf dem Wahrscheinlichkeitsraum (€, Fr, P)
definiert und fiir die Derivate, die in dieser Arbeit bewertet werden, stellt dies keine
Einschrinkung dar. Fiir die zu bewertenden Derivate werden die jeweiligen Claims
betrachtet und diese sind nach Voraussetzung immer Fr-messbar. Die Existenz des
Aquivalenten MartingalmaBes stellt sicher, dass wir arbitragefreie Preise im Black-
Scholes Modell berechnen koénnen. Fiir die Berechnung des fairen Preises wird die
zu Beginn des Kapitels genannte Formel verwendet. Desweiteren wird der Satz von

Girsanov auch bei spéateren Beweisen ein sehr hilfreiches Instrument sein.
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4. Bewertung einer Call-Option

4.1. Bewertung im Finanzmarktmodell

Das Aquivalente MartingalmaB steht uns jetzt zur Verfiigung, um Derivate anhand ihrer
Claims zu bewerten. Den Preis zum Zeitpunkt 0 eines Derivates mit Claim C': 2 — R

berechnen wir iiber die Formel
Py(C) = Eg[B;* - C). (4.1)

Eine der interessanten Folgerungen fiir Finanzmérkte, die aus dem Black-Scholes Mo-
dell gezogen werden konnen, zeigt sich anhand der Form der Preisprozesse unter dem
Aquivalenten Martingalmafl. Bei Betrachtung der Tabelle 3.1 fillt auf, dass mit dem
Ubergang von P zu Q die Driftvariable y aus dem stochastischen Prozess des risky assets
komplett verschwindet. Der Prozess beinhaltet nur noch die Zinsrate r und die Vola-
tilitdt o als Modellparameter. Welche Aussagen konnen jedoch aus diesem Phénomen

gezogen werden?

Im Bereich der Finanzmathematik stellt die Bewertung von Risiken eine anspruchsvolle
Aufgabe dar, welche fiir tiefergehende Betrachtungen gelost werden muss. Die Frage
ist zunéchst, wie das Risiko mathematisch definiert und gemessen wird und daraus
resultierend welche Parameter zum Beispiel das Risiko der Investition in eine Aktie
widerspiegeln. Die Bewertung von Risiken ist auch ein wesentlicher Bestandteil bei
der Bewertung von Derivaten, weil insbesondere die Ungewissheit iiber die Auszahlung
das Festlegen eines fairen Preises erschwert. Auch wenn an dieser Stelle Risiko nur in
Bezug auf Derivate und deren Bewertung betrachtet werden soll, konnen wir durch
den fehlenden Driftterm und die Bewertungsformel (4.1) schon eine Aussage fiir das
Black-Scholes Modell treffen. Dadurch, dass der Drift nicht mehr in dem Prozess un-
ter Q enthalten ist, wird er auch bei der Bewertungsformel nicht mehr beriicksichtigt.
Der faire Preis eines Derivates berechnet sich daher unabhéngig von der zu erwarten-

den Rendite pu. Das Risiko nimmt somit einzig iiber die Volatilitdt ¢ Einfluss auf die
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Preise von Derivaten im Black-Scholes Modell. Auch ohne die explizite Berechnung
kann bereits gefolgert werden, dass fiir Marktteilnehmer eines Finanzmarktes, die das
Black-Scholes Modell unterstellen und unterschiedliche Ansichten iiber die erwartete
Rendite eines risky assets besitzen, ein identischer Preis fiir das Derivat resultiert. Die
personliche Ansicht iiber die erwartete Rendite ist demnach fiir die Bewertung irrele-
vant. Unter dem risikoneutralen Wahrscheinlichkeitsmafl nimmt die Zinsrate, die am
Markt zu beobachten ist, die Rolle des Drifts im geometrischen Wienerprozess fiir das

risky asset ein.

Dieses Ergebnis sehen wir auch im néchsten Abschnitt, wenn wir eine Formel berechnen,

die den Preis fiir eine européische Call-Option angibt.

4.2. Die Black-Scholes Formel

In dem Black-Scholes Modell betrachten wir nun eine européische Call-Option auf das
risky asset. Eine Call-Option bietet dem K&aufer das Recht, aber nicht die Pflicht, das
risky asset zu einem Strikepreis K, der zum Zeitpunkt 0 festgelegt wird, zu kaufen.
Da der Kéufer nicht in der Pflicht steht, wird er die Option nur nutzen, wenn der
Kurs bei Falligkeit iiber dem Strikepreis liegt, also wenn Sp > K ist. In diesem Fall
bringt die Option eine Auszahlung in Hohe von S+ — K, denn der Besitzer der Option
bezahlt den Strikepreis K und erhélt die Aktie mit aktuellem Wert S7. Im anderen
Fall wird die Option verfallen und keine Auszahlung generieren. Wir erhalten somit
den Claim (Sp — K)* := max{Sy — K,0} = (S7 — K) - 1{g,>k} fiir den européischen
Call mit Strikepreis K und Félligkeit T'. Diese Abbildung ist Fr messbar, da wir den
Preisprozess des risky assets als einen adaptierten Prozess gewéhlt haben und somit St
Fr-messbar ist. Der Strikepreis K ist nur eine Konstante und unabhéngig von w. In der
Einfithrung (Kapitel 1) wurde bereits erwihnt, dass eine Arbitragemoglichkeit vorliegt,
wenn die Call-Option kostenlos ausgegeben wird. Wir besitzen jetzt alle Informationen
um den Preis einer européischen Call-Option zu berechnen und die resultierende Formel
ist bekannt als die Black-Scholes Formel.
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Satz 4.2.1 (Black-Scholes Formel).

Im Black-Scholes Modell mit Zinsrate r ist der faire Preis einer europdischen Call-
Option mit Strikepreis K und Laufzeit T auf ein risky asset mit Volatilitit o und
Anfangswert Sy zum Zeitpunkt t = 0 gegeben durch

Co(S0, T, K)

— S <1°g<%> Ul U_;>T> ~Ke T @ <log(%) e %)T> L (42

ovVT ovT

Mit ® wird hier die Verteilungsfunktion der N(0,1)-Verteilung bezeichnet.

Bewezs.
Die Bewertung erfolgt nach Gleichung (4.1) mit dem Claim (S — K)*. Fiir den Beweis
des Satzes muss nachgewiesen werden, dass die genannte Formel (4.2) das Ergebnis des

folgenden Erwartungswertes ist:
Eq[Br' - (Sr— K)*] = Egle™™" - (Sr — K)7].

Um mit diesem Erwartungswert besser rechnen zu konnen, verwenden wir zur Darstel-
lung eine Indikatorfunktion, denn fiir die Menge {Sy < K} ist max{0,5r — K} =0
und damit ist auch die Auszahlung sowie die abdiskontierte Auszahlung gleich 0. Der

Term lasst sich daher schreiben als

Egle™ - Lis;>xy - (Sr — K]
== EQ[G_TT . IL{ST>K} . ST] — EQ[G_TT . ]]‘{ST>K} . K)] (43)

Die beiden aufgefiihrten Erwartungswerte werden im Folgenden getrennt behandelt
und die beiden Ergebnisse zum Schluss wieder zusammengefiigt. Der vordere Teil kann
mit Hilfe des Satzes von Girsanov (3.2.4) umgeformt werden. Es muss beachtet werden,
dass wir den passenden stochastischen Prozess auswéhlen, also den Wienerprozess W
unter Q verwenden (siehe Tabelle 3.1).

Egle™ - Lysr>ky - Sl = / e spory St dQ
Q
—~ o2
= / e Lygpsry - So - VT 4Q (4.4)
Q

_ -2
= / So - ]l{ST>k} ceoWr=T T dQ.
Q
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Die Exponentialfunktion aus St und die Exponentialfunktion, die wir durch den Bond
erhalten haben, konnen zu einer Dichte zusammengefasst werden. Durch den Mafiwech-
seln auf ein neu definiertes Maf ist es nicht mehr notwendig die Exponentialfunktion
unter dem Integral weiter zu behandeln. Der grofle Vorteil den uns der Satz von Girsa-
nov nun bietet ist, dass wir ohne zusétzliche Rechnungen wissen wie der Preisprozess

des risky assets unter dem neuen Mafl aussieht bzw. verteilt ist.

—~ 2
Wir definieren also ein neues Mafl Q* auf Fr durch die Dichte e"7=%7T bzgl. Q. Es
ergeben sich somit folgende Prozesse, wobei (fV\V/t)te[o’T] den Standard Wienerprozess
unter Q* darstellt:

Maﬁ Q Maﬁ Q*
Standard Wienerprozess W = </M7t> W = (W\t . t>
te[0,T] t€[0,T]
— 02 N 02
(St)sepo.ry <So : e"Wt*(T—T)'t) <So . 60’Wt+(7‘+7)~t)
te[0,T t€[0,T]
~ o, o
(St)tE[QT} <S() . GJWt_T't> (SO . 60’Wt+7't>
te[0.T] te[0,7]

Tabelle 4.1.: Ubersicht der Prozesse mit neuem Mafl Q*

Der Preisprozess unter Q* resultiert dabei aus folgender kurzen Rechnung:

— 2 — 2
SO . eoWH—(r—%)-t _ SO . eUWt—azt—i—az-t—i—(r—%)At
=W,
—_—
—~ 2
SO . 60-(Wt — 0 - t) +(o2+r—%)t

—~ 2
= Sp - "W,

Transformiert man den Erwartungswert aus Gleichung 4.4 auf das neue Mafl Q*, so

vereinfacht sich die Rechnung zur Ermittlung einer einfachen Wahrscheinlichkeit:

/SO isrsky - V=T dQ = / So - Iisp>xy dQ”

Q Q
= S, Q*({Sy > K}) (4.5)
=S5 [1-Q({Sr < K}].

An dieser Stelle wird das Ereignis {Sr > K} bzw. {Sr < K}, welches wir bis jetzt

aufler Acht gelassen haben, wichtig. Durch den Mafiwechsel und den dadurch resultie-
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renden neuen Wienerprozess W, hat sich die Gestalt von S verdndert. Mit dem Satz
von Girsanov konnte die neue Form, wie in Tabelle 4.1 abgebildet, bereits hergeleitet
werden. Formen wir die Menge mit den gewonnenen Erkenntnissen um und nutzen die
bekannte Verteilung von W unter Q* aus, so gelangen wir zur Verteilungsfunktion der

Standardnormalverteilung ®.

(Sp < K} = {So W+ )T < K}
e (4 2) rem(£)
f<vn(5)-(-+3) 7
{v;;og() (%) 7

Unter Q* ist W unser Wlenerprozess und mlt Eigenschaft ii.) aus Definition 2.4.1 bzw.

!

~

der Umformulierung fiir Wt ist klar, dass \F standardnormalverteilt ist. Daher gilt

—Q"{Sr <K} =1-Q" W;§10g<s£0> ;§;+%2>-T

10g(?°)+<r+%2) T

=
oV/T

Durch die Symmetrie der Standardnormalverteilung zur Null, gilt fiir die Verteilungs-
funktion @, dass 1 — ®(z) = ®(—=x) ist. Dies wird im letzten Schritt ausgenutzt und es
folgt bereits der erste Teil der Black-Scholes Formel.
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Der zweite Erwartungswert ldsst sich analog umformen, daher soll nur kurz gezeigt

werden, wie diese Gleichungen konkret aussehen.

Egle™ - Lis;>xy - K] = / e Lspoky - K dQ
Q
—e . K-Q({Sr < K}).
Der Einsatz der Girsanov-Transformation ist hier nicht notwendig, denn eine dhnliche
Form wie in Gleichung 4.5 ist direkt gegeben. Unter dem Mafl Q hat der stochastische

Prozess eine leicht verédnderte Gestalt und dies wird bei der Umformung der Menge
deutlich. So ist in diesem Fall

(Sp < K} = {SO

Mit dem Argument aus Gleichung 4.6 kann die Wahrscheinlichkeit durch die Vertei-

lungsfunktion der Standardnormalverteilung ausgedriickt werden:

2

log(fo)—i—(r—%) -T

_Q({STSK}):CD U\/T

Mit der ersten Umformung aus Gleichung 4.3 kénnen wir nun beide Teilergebnisse ver-
wenden, um den Beweis fiir die Black-Scholes Formel abzuschliefen. Insgesamt ergibt

sich also

Eo[Br' - (St — K)*] = Egle ™" - Lyspsiy - St — Egle™™ - Iigpsky - K]
=95y @*({ST>K} +eT Q{ST>K})

10g(f3)

log e

_
~—
\_/

+e T K. ®
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4.3. Fazit und Ausblick

Mit der Black-Scholes Formel kann der arbitragefreie Preis bzw. Wert einer européischen
Call-Option im Black-Scholes Modell berechnet werden. Der Anfangskurs und die Vo-
latilitéat des risky assets sowie die Zinsrate sind am Markt gegeben. Die Volatilitat muss
hierbei anhand von vergangenen Daten geschétzt werden. Der Preis einer Option kann
daher nur iiber die Falligkeitsdauer und den Strikepreis beeinflusst werden und wie am
Anfang des Kapitels erwahnt, ist der Drift u fiir die Bewertung irrelevant. Sollen die
Einfliisse der verschiedenen Parameter genauer analysiert werden, so kénnen hierfiir die
sogenannten Greeks betrachtet werden. Als Greeks werden die partiellen Ableitungen

nach den verschiedenen Parametern der Black-Scholes Formel bezeichnet.

In der Publikation ,, The Pricing of Options and Corporate Liabilities* wurde die Black-
Scholes Formel nicht nur hergeleitet, sondern zusétzlich empirisch iiberpriift. Es stellte
sich heraus, dass die Kéufer von Optionen durchweg hohere Preise zahlten und die
Verkéufer der Optionen meistens Preise erhielten, die sehr nah an den errechneten
Preisen lagen. Dies ist vermutlich auf die Transaktionskosten zuriickzufiihren, die von
den Optionskaufern getragen werden miissen. Im Black-Scholes Modell werden Trans-

aktionskosten, Steuern etc. nicht beriicksichtigt.

Die Black-Scholes Formel kann nicht nur verwendet werden, um die européische Call-
Option zu bewerten, sondern auch den amerikanischen Call. Dieser erlaubt den Kauf
des Underlying zu jedem Zeitpunkt, aber es kann gezeigt werden, dass der Preis fiir
beide Optionen iibereinstimmen miissen. Mit einer Call-Put Paritéat lasst sich auch der
Preis der européischen Put-Option bestimmen. Insgesamt ermoglicht die Black-Scholes
Formel die Bewertung der bekanntesten Derivate und in Kapitel 5 wird ein weiteres

Derivat analysiert, welches auch auf die Black-Scholes Formel zuriickgreift.

In dem Beweis der Black-Scholes Formel wurde eine Strategie benutzt, die auch bei
der Bewertung anderer Derivate hilfreich ist. Wir berechnen den fairen Preis wie in
Gleichung 4.1 und kénnen den Satz von Girsanov anwenden. Immer wenn wir den ab-
diskontierten Preisprozess fiir das risky asset unter dem Aquivalenten Martingalmaf
betrachten, kann es hilfreich sein zu dem neuen Mafl Q* aus dem Beweis iiberzugehen.
In der nachfolgenden Tabelle sind daher alle drei Mafle, die wir bis hier verwendet ha-
ben, mit ihrem Wienerprozess, dem Preisprozess sowie dem abdiskontierten Preispro-

zess abgebildet.
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Maf3 P Mafl Q MaB Q*

Wienerprozess W, W, =W, — iy W, =W, — ot
0'2 =5 02 — 0_2
Kurswert .5; eoWitn=57)t Sy - Wit =5)t | G eoWit(r+5)t
Driftterm S, U r o
o a 17 02 o 02

disk. Kurs S; eoWit(p—r—75)t Sy - Wit Sy - Wit
Driftterm S, p—r 0 o2

Tabelle 4.2.: Ubersicht der Wienerprozesse und Preisprozesse
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5. Bewertung einer Barriere-Option

5.1. Barriere-Optionen

Eine leichte Abwandlung der normalen Call- und Put-Optionen sind die Barriere-
Optionen, welche in diesem Kapitel bewertet werden sollen. Aus den verschiedenen
Varianten von Barriere-Optionen wéhlen wir den Down-and-out Call und werden fiir
diesen den fairen Preis berechnen. Die Barriere-Optionen haben eine Besonderheit, wo-
durch die Berechnung des fairen Preises schwieriger ist als zuvor bei der Black-Scholes
Formel. Die Auszahlung héngt hier nicht nur von dem Kurswert zum Zeitpunkt 7T
ab, sondern von dem kompletten Pfad des Prozesses. Fiir unseren Down-and-Out Call
bedeutet dies, dass die Auszahlung identisch ist mit einer Call-Option unter der Vor-
aussetzung, dass der Kurs des risky assets zu keinem Zeitpunkt unter der vorher fest-
gelegten Barriere B sinkt. Liegt der Kurswert zu einem Zeitpunkt unterhalb oder auf
der Barriere, so erfolgt, auch wenn der Kurs zum Schluss oberhalb des Strikepreises
liegt, keine Auszahlung. Die Barriere B ist dabei kleiner als der Anfangskurs und auch
kleiner als der Strikepreis, da sonst immer eine Auszahlung von 0 erfolgen wiirde. In
Abbildung 5.1 sind zwei Varianten eines moglichen Kurspfads aufgezeichnet, die sich
nur minimal unterscheiden und im Endzeitpunkt bei dem gleichen Kurswert enden.
Fiir den blauen Pfad bringt die Down-and-Out Call-Option eine Auszahlung in Hohe
von S — K, da der Kurs wihrend des gesamten Zeitraums oberhalb der Barriere lag.
Nimmt der Kurs den rot eingezeichneten Verlauf an, so erhélt der Kéaufer der Option

keine Auszahlung, weil die Barriere an einem Zeitpunkt durchbrochen wurde.

Mathematisch stellt man diese zusétzliche Bedingung iiber eine Indikatorfunktion dar.
Wir haben bereits gesehen, dass eine Call-Option den Claim (Sp — K) - Itg,>x} be-
sitzt. Fligen wir nun an diesen Claim multiplikativ einen zweiten Indikator fiir die
Menge {0 gl<fT S; > B} an, so erhalten wir den Claim fiir unseren Down-and-Out
Call. Genau dann wenn der kleinste Wert des risky assets iiber der Barriere liegt,
muss auch der komplette Pfad oberhalb der Barriere sein. Das Infimum wird nur {iber

Kurswerte vor dem Zeitpunkt der Auszahlung (T') gebildet, sodass wir auch folgern
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Abbildung 5.1.: Skizze eines Beispielpfades fiir einen geometrischen Wienerprozess mit
positivem Drift

konnen, dass der Claim die Bedingung der Fr-Messbarkeit erfiillt. Die Multiplikation
der beiden Indikatoren kann zusammengefasst werden, sodass wir einen Indikator fiir
die Schnittmenge von {Sr > K} und {0 iltliT S; > B} betrachten miissen. Wie auch
schon im Beweis der Black-Scholes Formel, wird die Wahrscheinlichkeit des Ereignisses
{St > K, . iItliT S; > B} durch Mengenumformungen auf die Verteilung des Wienerpro-
zesses zuriickgefiihrt. Dabei konnten wir die Normalverteilung von W; ausnutzen und
den Preis einer Call-Option iiber ® angeben. In diesem Fall ist jedoch problematisch,
dass zuséatzlich noch das Infimum des Wienerprozesses Einfluss nimmt und sich diese
Wahrscheinlichkeit nicht ohne Weiteres berechnen léasst. Mit dem Ziel die Verteilung
des Infimums bestimmen zu koénnen, untersuchen wir den Wienerprozess im néchsten

Abschnitt genauer.
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5.2. Reflexionsprinzip fiir den Wienerprozess

In Kapitel 2 wurde der Wienerprozess definiert und im Anschluss zur Herleitung des
Preisprozesses im Black-Scholes Modell verwendet. Ebenfalls konnte gezeigt werden,
dass iiber einen Wienerprozess Martingale erzeugt werden konnen, die z.B. im Satz von
Girsanov als Dichte fungierten. Die néchste hilfreiche Eigenschaft soll in diesem Kapitel
hergeleitet werden. Wir méchten uns nun mit dem Reflexionsprinzip fiir Wienerprozesse
beschiéftigen, denn dieses liefert das noch fehlende Instrument, um spéter den Preis der
Barriere-Option zu berechnen. Das Reflexionsprinzip besagt, dass ein Wienerprozess,
der gespiegelt weiterverlauft sobald er z.B. einen bestimmten Wert zum ersten Mal
erreicht, immer noch einen Wienerprozess darstellt. Anders als zuvor beschéftigen wir
uns nun mit mehreren Wienerprozessen, die alle fiir das selbe Wahrscheinlichkeitsmafl
definiert sind. Wir wollen damit einsteigen, dass wir aus einem Standard Wienerprozess
zwei einfache Beispiele fiir weitere Wienerprozesse ableiten.

Satz 5.2.1.

Auf einem Wahrscheinlichkeitsraum (2, F,P, (F;)ier) mit einem Standard Wienerpro-
zess W = (Wy)ieo,00) 029l (Fit)icjo,0) erfiillen auch die Prozesse

i.) (=Wi)icpo,o0) 029l (Fi)tco,o0) und
ii.) (Wien — Wh)te[(),oo) bzgl. (ft—i-h)te[o,oo) fiir h >0

alle Figenschaften eines Standard Wienerprozesses.

Bewezs.
Die Eigenschaften miissen fiir die neuen Prozesse gepriift werden und hierfiir werden

nur kurz die wichtigen Argumente genannt, die fiir den Nachweis notwendig sind.

i~) (_Wt)tE[O,oo) ngl- («Ft>t€[0,oo)

f:R — R mit f(z) = —x ist eine stetige und messbare Abbildung und daher
lassen sich die stetigen Pfade und die Unabhéngigkeit zu den Elementen der
Filtration direkt aus dem urspriinglichen Wienerprozess folgern. Der Anfangswert
0 ist erfiillt und die Normalverteilung mit Erwartungswert 0 ist symmetrisch,
daher gilt, dass auch —(W, — W) N (0,t — s)-verteilt ist fiir alle 0 < s <t < oc.

ii.) (With — Wh)tepo,00) D28l (Frtn)ie(o,o0)

Der Anfangswert wird durch das Subtrahieren des Wertes W}, auf 0 gebracht und
die stetigen Pfade folgen aus den stetigen Pfaden von W. Bei der Unabhéngigkeit
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und der Verteilung muss beachtet werden, dass h hier einen festen Wert darstellt.
Fiir 0 < s <t gilt:

(Wt+h—Wh)—(Ws+h—Wh) ZWt+h—WS+hNN(O,t+h—S—h) :N<0,t—8).

Die Unabhéngigkeit ist durch die abgednderte Filtration (wir betrachten den
Prozess bzgl. (Fiin)tcjo,0)); die ebenfalls erst im Zeitpunkt h startet iiber die
Unabhéngigkeit von W = (W})icp0,00) 20 (Ft)tcfo,00) erfiillt.

]

Bevor eine dhnliche Aussage fiir den gespiegelte Wienerprozess bewiesen werden kann,
muss zunéchst gekldrt werden, wie dieser mathematisch dargestellt wird. Wenn der
Prozess gespiegelt werden soll sobald er einen Wert zum ersten Mal erreicht, dann
besteht das Problem darin, dass dies nicht zu einem konstanten Zeitpunkt geschieht.
Durch die verschiedenen Pfade, die der Prozess annehmen kann, wird diese Hohe im-
mer zu unterschiedlichen Zeiten erreicht. Dafiir wird eine Stoppzeit verwendet, die in
Abhéngigkeit von w anzeigt an welchem Zeitpunkt ein festgelegtes Kriterium erfiillt
ist.

Definition 5.2.2 (Stoppzeit).

Fiir eine Filtration (F;)ie; mit I C R ist eine Stoppzeit eine Abbildung T : Q — I* fir
die gilt, dass {T <t} € F; fir allet € I. Hierbei ist I* = I, falls I beschrdnkt ist und
sonst setzt man I* = 1 U {oo}.

Definition 5.2.3 (o-Algebra der 7-Vergangenheit).

Auf einem Wahrscheinlichkeitsraum (2, F,P) ist die o-Algebra der T-Vergangenheit
fir eine Stoppzeit T und die Filtration (Fi)ier definiert als

Fr={AeF:An{r <t} e F fir alle t}.

Eine Stoppzeit wird verwendet um Zeitpunkte anzugeben, die zu Beginn noch nicht
bekannt sind, weil sie von w abhéngen. Als anschauliches Beispiel kann man sich die
Stoppzeit als eine Strategie am Finanzmarkt vorstellen. Ein Investor mochte seine
Aktie verkaufen, weifl aber nicht wie sich der Aktienkurs entwickeln wird. Setzt er
zu Beginn schon willkiirlich den Zeitpunkt fest an dem die Aktie verkauft werden
soll, so besteht die Gefahr, dass der Aktienkurs zu dem Zeitpunkt sehr niedrig ist. Es
scheint daher sinnvoller ein Kriterium festzumachen, welches sich an dem Aktienkurs
orientiert. Zum Beispiel konnte der Investor die Aktie verkaufen, sobald der Kurs zum
ersten Mal den Wert 100 erreicht. Dabei soll der Anfangswert der Aktie kleiner als



5 Bewertung einer Barriere-Option 46

100 sein. Dies wird mit dem stochastischen Prozess (S)tcjo,o] als Kurswert iiber die
Stoppzeit 7 = inf{t : S; = 100} abgebildet. 7 ordnet dann jedem w € € den Zeitpunkt
zu, an dem der Kurs zum ersten mal den Wert 100 annimmt. Falls dies fiir ein w
nie geschehen sollte, nimmt 7 den Wert oo an. Uber die Bedingung {r < t} € F,
wird abgesichert, dass zu einem Zeitpunkt ¢ alle Informationen vorliegen, die benttigt
werden, um entscheiden zu kénnen ob gestoppt werden muss. Fiir unser Beispiel kann

die Menge umgeschrieben werden zu:

{r <t} = { sup S, > 100}. (5.1)
0<r<t
Sollte das Supremum {iiber alle Aktienkurse bis zum Zeitpunkt ¢ gréfler als 100 sein,
so muss wegen der stetigen Pfade auch der Kurs 100 vor dem Zeitpunkt ¢ einmal
angenommen worden sein. Andererseits muss das Supremum mindestens den Wert
100 annehmen, wenn die Stoppzeit anzeigt, dass der Kurs 100 vor ¢ bereits erreicht
wurde. Der Preisprozess ist adaptiert an unsere Filtration und daher sind alle S, mit
0 < r <t auch F; messbar. Deshalb ist auch das Supremum iiber diese Kurse messbar

und insbesondere ist {7 <t} in F; enthalten.

Fiir unseren Fall wird es spéter ausreichend sein, wenn wir die Stoppzeit betrachten,
die abbildet, zu welchem Zeitpunkt der Wienerprozess eine bestimmte konstante Hohe
erreicht hat. Das Reflexionsprinzip hingegen gilt allgemein fiir beliebige Stoppzeiten.
Dabei wird der Wienerprozess bis zur Stoppzeit unveréndert beibehalten und danach
reflektiert fortgefiihrt. Bevor wir uns anschauen wie der Prozess gespiegelt wird, be-
weisen wir eine Vorstufe des Reflexionsprinzip. In Anlehnung an Satz 5.2.1 ii.) soll
zunéchst bewiesen werden, dass ein Wienerprozess der erst ab einer Stoppzeit startet
weiterhin ein Wienerprozess ist, unter der Voraussetzung, dass der Anfangswert sowie
die Filtration angepasst werden. Der Zeitpunkt 0 des neuen Prozesses entspricht un-
terschiedlichen Zeitpunkten des urspriinglichen Wienerprozesses, je nachdem welches
w eintritt. Anders als im Reflexionsprinzip definieren wir fiir den Prozess keine Wer-
te, die bis zur Stoppzeit angenommen werden. Ab der Stoppzeit verlauft der Prozess
auflerdem identisch wie der Wienerprozess, d.h. wir betrachten noch keine Spiegelung
oder sonstige Manipulationen. Wenn die Stoppzeit den Wert oo annimmt, startet unser
Prozess gar nicht, daher zeigt der folgende Satz, dass unter der Bedingung dass 7 < oo

ist, die Eigenschaften fiir den Wienerprozess erfiillt werden.
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Satz 5.2.4.

Wir betrachten einen Wahrscheinlichkeitsraum (Q, F, P, (F)ier) mit Standard Wie-
nerprozess W = (Wi)iejo,00) 029l (Fi)iejo,00)- Der stochastische Prozess W = (Wris —
W:)iclo,00) S€i definiert unter P(1 < oo) mit Stoppzeit 7. Die zugehdrige Filtration ist
(Fritl{r<oo})tefo,o0)- Dann ist W7 ein Standard Wienerprozess bzgl. (Frii|{r<oo})ie(0,00)
unter P(- | 7 < 00).

Beweis.
Zu zeigen: W ist ein Standard Wienerprozess unter P(- | 7 < 00) bzgl. der Filtration

(FT+t’{T<OO})t€[O,OO)'
L) WI =W — W, =0

ii.) Wir zeigen in einer Rechnung, dass W{ - WST unter dem Mafl P(- | 7 < o0) die
Verteilung N(0,t — s) besitzt und stochastisch unabhéngig ist zu Fris|{r<oo}-
Hierfithr sei A € Frys mit A C {7 < oo} und h : R — R eine stetige und
beschrinkte Abbildung. Es ist zu zeigen, dass

/h(’W;-’VV;) dP(- | 7 < 00) = P(4 | T<oo)-/h(Wt—Ws) dP.
A
Diese Gleichung kann umgeschrieben werden zu

/h(’W;-W;) dIP(-|T<oo):IP(A|T<oo)-/h(Wt—WS) dP
A

o LaR(WS WD) AP p(A
P(1 < 00) P(1 < o0)
& 1a- (W] = W) dP = P(A) - /h(Wt — W,) dP
{r<oo}

Acizgeed / h(Wysr — Wiy dP = P(A) - / h(W; — W,) dP.
A

Daher kénnen wir die Verteilung zeigen, indem wir die letzte Gleichung nachwei-
sen. Der Wert W kiirzt sich dabei durch W{ — WST = (Wepe =Wo) = (Wops—W5)

raus.

Wir méchten die Stoppzeit approximieren durch 7, = inf {zﬁn 7 < 2% und £k € N }

In diesem Fall ist 7 < 7, und |7 — 7,,| < 5= — 0 fiir n — co. Wir erhalten die
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Konvergenz 7, \, 7 fiir n — oo. Fiir ein A € F,, ., mit A C {7 < oo} gilt dann

/h(WTnth — Whts) dP = /Z ﬂ{m:%}h(W%H - W2in+s) dP
A A keN

Nach Definition kann 7, nur die Werte 2% fir £ € N annehmen. Wir haben
h als beschrinkte Abbildung vorausgesetzt und bei P handelt es sich um ein
Wahrscheinlichkeitsmafl; daher kénnen wir eine integrierbare Majorante finden
und iiber den Satz der majorisierten Konvergenz (siehe [05], Korollar 6.26 Seite

142) die Summe mit dem Integral vertauschen:

=3 g H OV = W) P

keN 4

= Z/ h(Wi o —Wa ) dP.
ken /An{mu=3k } ’ i

Es wurde A aus F,, s gewéhlt und nach Definition 5.2.3 gilt daher, dass

k
Aﬂ{Tn+s§2—n+s}€fﬁl+s

ist fiir alle £ € N. Die Schnittmenge, das Komplement und die Vereinigung zweier

Mengen sind jeweils wieder in der o-Algebra enthalten, daher gilt

k—1 c k—1
<Aﬂ{7’n+8§ on —i—s}) :Acu{Tn+s>2—n+s}€sz—nl+s

Beachtet man auflerdem, dass Fi_1,
277.

s C Fx . ist, so wissen wir, dass folgende
277/

Menge in Fx enthalten ist:
2"

(AU frts > 52 4 5)) 0 (AN {rats < ot 5))

-1
= (ACmAm{Tng;n}) u({7n>k2—n}mAm{Tng2ﬁn})

=0

k

Nun handelt es sich um Elemente des urspriinglichen Wienerprozesses, weil wir
die Stoppzeit durch konkrete Zeitpunkte ersetzt haben. Auflerdem wurde gezeigt,
dass AN {Tn = Qﬁn} e F kg und iiber die Unabhéngigkeit des Standard Wiener-
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prozess W kann das Integral aufgeteilt werden:

=> P (A N {Tn = Qﬁn}) /h(W%t Wy .,) dP.

keN

Nun kann im Integral, wie auch schon im Beweis vom Satz von Girsanov gesehen,
Wi =W durch Wy — W, ersetzt werden, da sie nach Definition der gleichen
2n 2n

Verteilung unterliegen:

=3P (Am {Tn = 2%}) /h(Wt—WS) dP.

keN

Desweiteren erhalten wir iiber die Mengen {Tn = 2%} mit £ € N eine disjunkte
Zerlegung der Menge {7 < oo}, denn die definierte Stoppzeit 7,, kann nur Werte
der Form % oder oo annehmen. Die Summe iiber die Wahrscheinlichkeiten kann
somit zusammengefasst werden und wir erhalten mit A C {7 < oo}:

= P(A) / h(W, — W,) dP.

Wir haben gezeigt, dass unsere Gleichung fiir die approximierte Stoppzeit gilt,
d.h.

/ BW(Wo o1 — W) dP = P(A) / h(W; — W) dP.

Die rechte Seite der Gleichung ist unabhéngig von n, somit kénnen wir umformen

zu

P(A) - /h(Wt — W,) dP = lim P(A)- /h(Wt —W,) dP

n—oo

= lim h(W—,— 4t WT +S) dP

n—oo f 4 " "
= / llm h(W’Tn-f—t — W’Tn+5) d]P
4 M0

= / h( lim W7n+t — WTn+S) dP
A

n—o0

= /h(WT_Ht - Wr+s) dP
A

Weil die Abbildung h beschrankt ist, kann der Grenzwert {iber majorisierte Kon-

vergenz ins Integral gezogen werden und iiber die Stetigkeit von h gelangt der
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Grenzwert in das Funktionsargument hinein. Da A € F, . gewdhlt wurde, muss
noch angemerkt werden, dass F, s C F,, +s ist und dariiber die Gleichung auch
fiir alle A € F,, erfiillt ist. Dies ist erfiillt, weil zum einen 7 eine Stoppzeit ist
und dadurch folgt, dass {7 < t} € F; fiir alle t. Zum anderen haben wir die
Approximation so gewéhlt, dass 7,, > 7 ist und wir somit nun folgern koénnen,
dass {7 < t} C {7, < t} fiir alle ¢ gilt. Damit haben wir gezeigt, dass die

Unabhéngigkeit sowie die Verteilung fiir den Prozess WT gegeben sind.

iii.) W hat stetige Pfade und betrachten wir ein festes w € 2, so ist 7(w) ein kon-
stanter Wert. Die Pfade von W, sind dann um einen festen Wert W, nach unten
verschoben und stimmen mit einem spéateren Abschnitt der Pfade von W {iberein.

Insbesondere sind diese dann auch stetig.

]

Der Satz 5.2.4 wird hilfreich sein, um das Reflexionsprinzip zu zeigen. Was bis hierhin
auBer Acht gelassen wurde, ist die eigentliche Spieglung des Prozesses. Unabhéingig
von der Wahl der Stoppzeit soll diese geméfl einer Achse, die parallel zur Abszisse
verlauft, erfolgen. Die Hohe der Achse bestimmt sich dabei iiber den Wert, den der
Wienerprozess am Anfang der Reflektion annimmt. Das heifit bei einer Stoppzeit 7
und dem Wienerprozess W wird beziiglich der Achse y = W, gespiegelt. In Abbildung
5.2 sehen wir skizzenhaft wie der gespiegelte Pfad (rot) sich im Gegensatz zu dem
normalen Pfad des Wienerprozesses W verhélt. Der neue Prozess soll sich an dem
urspriinglichen Wienerprozess orientieren und immer wenn die Pfade des Einen steigen,
sollen die Pfade des Anderen Prozesses fallen. Mathematisch ausgedriickt werden also
die Zuwéchse des Wienerprozess bei dem neuen Prozess abgezogen. Bezeichnen wir den

reflektierten Prozess mit W = (Wt)te[o,oo) so ergibt sich fiir alle t > 7:
W, — (W, — W,) = 2W, — W,

Fiir alle Zeitpunkte vor der Stoppzeit nimmt der Prozess W denselben Verlauf wie der

Wienerprozess W, also gilt insgesamt:

— Wi(w) fir t < 7(w)
() = ..
2Wr(w) — Wi(w)  fiir t > 7(w).

Uber das Reflexionsprinzip beweisen wir die Wienerprozesseigenschaften des reflek-

tierten Prozesses, die wir danach fiir die Berechnung der Verteilung des Supremums



5 Bewertung einer Barriere-Option 51

Wi(w)

7(w)

Abbildung 5.2.: Skizze fiir den gespiegelten Pfad eines Wienerprozesses

benotigen.
Satz 5.2.5 (Reflexionsprinzip).
Es seien W ein Wienerprozess und T eine Stoppzeit. Der bei T gespiegelte Prozess W

wird definiert durch

T _ Wiw) firt < 7(w)
2Wo(w) — Wi(w)  fiirt > 7(w).

Dann ist der gespiegelte Prozess auch ein Wienerprozess unter PP.

Bewezs.

Es geniigt die Menge {7 < oo} und dariiber das Mafl P( - |7 < o0) zu betrachten,
da auf {7 = oo} W = W gilt und somit nichts mehr zu zeigen ist. Der Anfangswert
stimmt mit W iiberein und die stetigen Pfade sind eine Folgerungen der Stetigkeit der
Pfade von W.

Um die erforderliche Verteilung von W zu beweisen, definieren wir die messbare Ab-
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bildung H : C[0,00) x C[0,00) % [0,00) — C[0, 00) durch

f(s) 0<s<t

H(f.g:t)=
f#)+g(s=1)+9(0) s>t

mit C[0,00) als Menge der stetigen Funktionen, die aus dem Intervall [0, 00) in die
reellen Zahlen abbilden. Zusitzlich definieren wir die stochastischen Prozesse W7 und

W fiir die Stoppzeit 7 und den Wienerprozess W = (W} )¢cjo,00) durch

/W[ _ Wiw) 0<t<7(w)
Wr(w) t>7(w)
W, =W, (w) — We(w).

Der Prozess W™ wurde definiert wie in Satz 5.2.4. Bei der Definition von stochastischen
Prozessen wurde bereits angemerkt, dass man diese auch als Zufallsvariablen auf (2, P)
sehen kann, die nicht in R, sondern in eine Menge von Funktionen abbilden. Fiir die
Wienerprozesse ist diese Menge C|0, o0), da fiir die einzelnen Pfade die Stetigkeit vor-
ausgesetzt wurde. Uber den Satz 5.2.4 ist bekannt, dass W™ ein Wienerprozess ist und
iiber Satz 5.2.1 erhalten wir diese Aussage auch fiir —W7. Daher haben (/WT, wr, T)
und (WT, —WT, 7) dieselbe Verteilung und iiber die messbare Abbildung H erreichen

wir

P /WST 0<s<7(w)
HW"WTr)y=< _° __ _
Wi+ Wi —Wi s>7(w)
W 0<s<7(w)
= = W
W, +W,—=W, s>71(w)
DU Wr 0<s<7(w)
HW™, W r)=< _" __ ~
WI-WIL_ +W] s>7(w)
W 0<s<7(w) _
= =W.

2- W, =W s>71(w)

Daher wissen wir, dass auch W und W die selbe Verteilung haben und somit ist W ein

Wienerprozess. ]
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Ein Wienerprozess, der an einer Stoppzeit reflektiert wird, besitzt also die gleiche Ver-
teilung wie der unreflektierte Prozess. Mit dieser Aussage ist es nun moglich die Ver-
teilung von einem Ereignis zu berechnen, bei dem sowohl das Supremum, als auch der
Prozess selber oberhalb bzw. unterhalb einer Grenzen sein sollen.

Satz 5.2.6.

Fiir den Wienerprozess W definieren wir den Prozess M durch My = sup Ws. Mit
0<s<t

t>0,y>0undx >0 gilt dann

P(M; >y Wy <y—xz)=PW; >y+uz)

Beweis.

Es seien t > 0, y > 0 und = > 0. Wir mochten das Reflexionsprinzip ausnutzen und
den Wienerprozess W an der Stoppzeit 7, = inf{t : W, = y} reflektieren. Die Stoppzeit
zeigt den ersten Zeitpunkt an, fiir den der Wienerprozess die Hohe y erreicht und ist
schon aus dem Beispiel des Aktienverkaufs bekannt. Wir kénnen daher wieder folgern,

dass
{ry <t} ={M; >y} (5.2)

gilt. Der reflektierte Prozess wird mit W bezeichnet und wurde in Satz 5.2.5 definiert.
Durch die Stoppzeit erhalten wir W, = y und daher kénnen wir den Prozess vereinfa-

chen zu

— | Wiw) fir t < 7(w)
2y — Wi(w) furt > 7(w).

t =

Die Wahrscheinlichkeit wird zuerst iiber die Mengengleichung 5.2 umgeschrieben:
P(Mt zy,Wt <y—$) :P<Ty S t,Wt < y—l')

Nach dem Reflexionsprinzip wissen wir, dass W ein Wienerprozess unter dem Mafl P
ist und daher die gleiche Verteilung besitzt wie W. Auflerdem konnen wir 7 auch als
eine Stoppzeit fiir W auffassen, denn es gilt 7, = inf{t : W, = y} = inf{t : W, = y},

weil sich beide Prozesse bis zur Stoppzeit nicht unterscheiden. Somit kénnen wir in der
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Wahrscheinlichkeit auch 7 zusammen mit W betrachten:

P(My >y, Wy <y—x)=P(r, <t, W, <y —2x)
=P(r, <t, W, <y—2x).

Das Ereignis {7, < t,W; < y — 2} kann gut anhand der Abbildung 5.2 verdeutlicht
werden. Betrachten wir zuerst einzeln das Ereignis {W; < y — '}, so méchten wir
die Wahrscheinlichkeit berechnen, dass der Pfad an einer bestimmten Stelle unter der
gestrichelten Linie y — z liegt. Nun muss gleichzeitig erfiillt sein, dass {7, < t} ein-
tritt und das bedeutet, dass der Zeitpunkt den wir betrachten hinter der Stoppzeit 7
liegen muss. Da der Prozess W fiir ¢t > 7 nicht willkiirlich weiterverlduft, sondern den
gespiegelten Prozess von W abbildet, kénnen wir das Ereignis {WW, < y — '} auch iiber
W ausdriicken. Der Pfad von W verliuft genau dann unterhalb der Linie y — z, wenn
der urspriingliche Wienerprozess W sich oberhalb von y + x befindet. Es muss daher

gelten, dass
{r, <t W, <y—za}={r, <t,W,>y+uzx}

und dies ermoglicht uns die Berechnung der Wahrscheinlichkeit. 7 ist sowohl die Stopp-
zeit fiir W als auch fiir W und dadurch kann die Wahrscheinlichkeit weiter vereinfacht
werden. Wenn W, einen Wert oberhalb von y+2 annimmt, muss durch die stetigen Pfa-
de auch der Wert y vorher schon angenommen worden sein und daraus folgt, dass die
Stoppzeit 7 < ¢ sein muss. Dies liefert die Mengeninklusion {W; >y + =} C {r, < t}.
An dieser Stelle ist es wichtig, dass x > 0 ist. Die erste Behauptung des Satzes ist
gezeigt, denn es gilt

PM, >y Wy <y—uz)=P(r, <t, W, >y+x)

Die zweite Aussage ist eine Folgerung, die wir erlangen, wenn die Menge {M; > y} in

zwei disjunkte Teile gesplittet wird:
P(My > y) =P(M; 2 y, Wy < y) + P(M; = y, W > ).

Dabei konnen wir den ersten Teil verwenden, indem wir x = 0 setzen. Desweiteren

haben wir zuvor bereits gesehen, dass {W; > y+ 2} C {r, <t} = {M; > y} fiir alle
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x > 0 ist. Wir erhalten mit x = 0 iiber den ersten Teil, ndmlich
P(M; >y, W, <y) =P(W; > y),
die zweite Behauptung des Satzes

]P)(Mt > y) = ]P)(Mt >y, Wy < y) +IF)(]\415 >y, Wy > y)
=P(W, >y) +P(W; > y)

]

Wir haben jetzt einen Satz bewiesen, der es ermdglicht die Wahrscheinlichkeit eines
Ereignisses zu berechnen, welches das Supremum sowie auch ein einzelnes Element
eines Wienerprozesses betrachtet. Uber die Normalverteilung von W, kann P(W, >
y) berechnet werden. Als letzte Aussage in diesem Abschnitt soll der Satz ein wenig
verallgemeinert werden. Zum einen sollen die Grenzen aus der Ungleichung unabhéngig
gewahlt werden konnen, also statt y und y — x mit y € R,z > 0, allgemeiner z und
z mit x,z € R. Viel wichtiger ist, dass wir einen Wienerprozess mit Drift betrachten
wollen, denn dieser wird bei der Barriere-Option auftreten. Das Problem ist, dass wir
den Term des Drifts nicht aus dem Supremum auf die andere Seite bringen kénnen. Bei

einem Wienerprozess mit Drift a, also (X¢):cjo,00) = (Wit )ic(o,00), kann sup (W,+as)
0<s<t

nicht einfach aufgeteilt werden, sodass wir die Situation aus dem vorigen Satz erhalten
wiirden.

Satz 5.2.7.

Sei (Xt)iep,m ein Wienerprozess mit Drift a € R und Volatilitit 1 auf (Q, F, P, (F)cjo,17)

und (Zy)sepo,r) ist definiert durch Zy == sup X fiir allet aus [0, T]. Dann gilt fir z > x:
0<s<t

— at — 22— at
P(thx,Zt<z):<I><x a)—em-@(u).

Vit Vit

Beweis.
Fiir den Beweis benétigen wir einen Standard Wienerprozess (W;)icpo,r) unter P, so-

wie den Prozess M, := sup W,. Damit wir den Drift von (X;)scpo,r) besser behandeln
0<s<t

konnen, verwenden wir den Satz von Girsanov und definieren ein neues Maf§ P, durch

2
. . _a_
die Dichte dﬁg Wi—55t

schlagen werden, als in den vorherigen Anwendungen des Girsanov-Satzes. Dort wurde

= e auf Fr. An dieser Stelle soll eine andere Richtung einge-
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der Wienerprozess immer durch einen Standard Wienerprozess des neuen Mafles aus-
gedriickt, wie es beispielsweise in Tabelle 4.1 der Fall war. Nun betrachten wir unter P,
den urspriinglichen Prozess (W})scpo,r). Weil (W, —at).e(0,71 nach Girsanov ein Standard
Wienerprozess ist, kann gefolgert werden, dass nur (W;):cpo,r) einen Wienerprozess mit
Drift a unter P, abbildet. Der Prozess W unter dem neuen Mafl P, besitzt demnach
dieselbe Verteilung wie X unter P. Insbesondere gilt dies auch fiir die zugehorigen Pro-
zesse Z und M. Wir driicken die Wahrscheinlichkeit, die wir berechnen mdochten, als
Wahrscheinlichkeit unter dem Maf P, aus. Uber die Dichte gelangen wir zuriick zum
Maf} P:

P(Xt S x, Zt < Z) = Pa<Wt S SL’,Mt < Z)

Wy—a2
= et Tt (P,
{WtSCIZ,Mt<Z}

Durch diese Vorgehensweise erlangen wir den Vorteil, dass wir mit dem Standard Wie-
nerprozess W unter PP arbeiten konnen. Dafiir miissen wir die Exponentialfunktion der
Dichte mitbehandeln. Fiir diesen Fall ist es hilfreich die Wahrscheinlichkeit als eine
Zufallsvariable Y| die iiber das bedingte Mafl P(W; € -|M; < z) integriert wird, zu

betrachten:

a2
PX, <z 7, <z2)= / eWrTt P
{WtS$,Mt<Z}
a2 P(Mt < Z)
= [ Tigeny - Liwy<ey - eV 728 qP - — 2 5.3
/Q i<z} * Loy - P (M, < 2) (5:3)

=Y (w)

:/H{Wt<x}-eawt_a2t dP( - |M, < 2)-P(M, < 2).
Q

Uber diese Darstellung kénnen wir die Ergebnisse aus dem Satz 5.2.6 ausnutzen. Da wir
nicht mehr mit den Prozessen X und Z arbeiten, sondern den Standard Wienerprozess
W unter P benutzen, kann eine Aussage iiber das Ereignis {W; < z, M; < z} unter P
getroffen werden. Das Ziel ist eine Dichte fiir das Mal P(W; € - |M; < z) zu finden,
sodass wir das Integral berechnen kénnen. Hierfiir betrachten wir das Ereignis als einen

Teil einer disjunkten Zerlegung von {W, < x} und nutzen folgende Aquivalenz aus

IP(VVtSLE):P(WtSLU,Mt<Z)+]P><Wt§I7MtZZ)
SPW, <z, M <z)=P(W,; <z)-PW, <z, M > 2). (5.4)

Die rechte Seite kann zum einen iiber die Normalverteilung aus dem Wienerprozess
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und zum anderen mit dem Satz 5.2.6 berechnet werden. Dieser Satz besagte fiir ¢t > 0,
z >0 und g > 0, dass

PWy<z—q, My >y)=P(W; > 2+q)

ist. Geméafl den Voraussetzungen ist gegeben, dass z > x ist und somit kénnen wir

q =z —x > 0 setzen und erhalten
PWy <x, My > 2)=PW,>z2+2z—x)=P(W, >2z—uz).
Verwenden wir dies in der Gleichung 5.4, so folgt

PW, <z, M, < z) =P(W, <z)—P(W; > 2z —x)
=P(W, <z)—[1-P(W; <2z—1)]

:P<%§%> _HP(%S 22\/—;)
X" (%) — 140 <2z\/—¥x) .

wobei der Ubergang zur Verteilungsfunktion der Standardnormalverteilung ® iiber
% ~ N(0,1) geschieht. Eine bedingte Warscheinlichkeit ist gegeben als

P(Wt < iU,Mt < Z)

und mit den Berechnungen fiir die Schnittmenge (Gleichung 5.5) kann die Verteilungs-
funktion fiir das Mafl P(W, € - |M; < z) angegeben werden iiber

1 T >z

v(G) e ()
P(M<z)

]P)(Wt S Z"Mt < Z) =

Tz < z.

Leitet man diese Verteilungsfunktion nun nach x ab, so erhalten wir die Dichte des
Mafes

0 Y>>z

AN EERED
VEP(M<z)

y<z

mit ¢ als Dichte fiir die Standardnormalverteilung. Die Dichte kann also in unsere
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Umformung aus 5.3 eingesetzt werden:

/ Liw,<ay - e Tt qP(.|M; < 2) - P (M, < z)
Q

= /Z ]l(—OO,x](y) 'eayfét . w%m> dy W

e 2 0) — 2 (57)
/eay;tﬂ v Vi dy.

Im letzten Schritt wurde auflerdem ausgenutzt, dass nach Voraussetzung z > x ist. Die
2

Dichte der Standardnormalverteilung ist gegeben durch ¢(y) = \/%7 e~ und somit

sind die letzten notwendigen Schritte fiir den Beweis der Behauptung Umformungen

unter dem Integral:

T

a2 1 y? (2z—y)*
= eay_Tt — e 2t — e 2t dy
/ V27t ( )

—00

z
2 2 1 2 _y)2
y (22—y)
eay—%t—g dy— / — Gt 62az—2az dy
—0o0

[
— i . oW
/ V27t \ 27t

z x
1 _1( a®t—2aytty? 1 1 ( a®2—2ayt+dazt+(22—y)2
_ 2 t 2 t 2az
= e dy — e -e” dy
oo e

Vart NoET
— / ]- 67%<y;;t>2 dy _egaz . / ]_ 67%<<7JL\27M)2 dy

V27t ' V27t '

(. S J

Vo Vv
Verteilungsfunktion von N (at,t) Verteilungsfunktion von N (2z+at,t)

Die beiden Verteilungsfunktionen kénnen iiber die Verteilungsfunktion der Standard-
normalverteilung ausgedriickt werden, indem der Erwartungswert und die Varianz kor-

rigiert werden und es ergibt sich folgendes Ergebnis:

T — at x— 2z —at
PX,<xz,7,<2)=0 —e2 L ).
(Ki<2,2 <) ( 7 ) ( Vi >
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5.3. Der Preis eines Down-and-Qut Calls

Die Strategie zur Berechnung des fairen Preises kennen wir aus Kapitel 4 und der Claim
fiir den Down-and-Out Call wurde zu Beginn dieses Kapitels besprochen. Dieser ist fiir

den Strikepreis K, die Laufzeit T" und die Barriere B gegeben durch

(Sp— K)* inf S,>B

O — 0<t<T

0 sonst.

Uber den Satz 5.2.7 verfiigen wir iiber alle notwendigen Instrumente, um den Preis der
Barriere-Option zu berechnen.

Satz 5.3.1 (Preis eines Down-and-Out Calls).

Fiir einen Down-and-Out Call auf das risky asset im Black-Scholes Modell mit den
Parametern o als Volatilitit, Sy als Anfangskurs, K als Strikepreis, B als Barriere

und T als Endzeitpunkt berechnet sich der arbitragefreie Preis fiir den Zeitpunkt O zu:

28
S, o
Bu(S0 T, K, B) = Calsi ) = () - Culsu 080

mit 8= —5 — Z und y = (%)2. Fiir die Barriere gilt dabei, dass B < K und B < Sy
ist. Dabei ist Co(So, T, L) der arbitragefreie Preis einer Call Option zu Anfangskurs S,

Laufzeit T und Strikepreis L.

Beweis.

Der faire Preis ist das Ergebnis von Eg [e™ - (Sp — K)* -1 { }] und dieser

inf S;>B
0<t<T

Erwartungswert lédsst sich aufspalten zu:

Eq

—rT +
(& (ST—K) 1 ) ]
{()§?£T5t>3}
f— _TT~ —_— . . .
_/Qe (ST K) IL{STZK} 1{0§?£T5t>3} d@
f— _TT . . . — _TT . . .
—/Qe St - 1is,>K)} H{OSHéTSt>B} dQ /Qe K - 1¢s,>r3 ]1{0;?&593} dQ

o . * : _ T . :
=5-Q (STZK’O%?£T5t>B) e K Q(STZK’o%?ngSt>B)’

Wie schon im Beweis der Black-Scholes Formel kénnen wir den Erwartungswert so

aufteilen und umformen, dass wir nur noch die Wahrscheinlichkeit der Menge aus dem



5 Bewertung einer Barriere-Option 60

. . - . . _ W (o2 W o2
Indikator berechnen miissen. Uber die Dichte e "1 . e@Witt(r—5)t — coWit5t

wurde ein
MaBwechsel zu Q* durchgefiihrt. Zur Berechnung der Wahrscheinlichkeiten wurden im
Abschnitt 5.2 weitere Eigenschaften des Wienerprozesses gezeigt und das Ergebnis in
Form des Satzes 5.2.7 soll nun angewandt werden. Dafiir ist es notwendig die Mengen
umzuformen, damit ein Wienerprozess mit Drift zu erkennen ist. Fangen wir zunéchst

mit der Wahrscheinlichkeit unter Q an. Geméaf Tabelle 4.1 ist (Wt)te[o,ﬂ der Standard

—~ 02
Wienerprozess und (Sy)ejo,r) = (SO . ethJr(T_Q)t) der Preisprozess des risky
t€[0,T]

assets unter Q. Daher ergibt sich

{ Sr > K, mf St>B}

<t<T
W, 2 W, a2\
:{ e T+ 7’——) >K inf SO'€U t+<r_7) >B}
0<t<T

1 K — r o 1 B
> = = i -2 Z il
- 010g <SO> ’ ogelngWt—i_ (a Q)t ” Ulog (So>}
T < Zlog [ 22 . T < Zlog (22
<gos () s, s (5 7)e< Son ()}
- 1 So SN | S[))}
Xr < — — |, sup Xy < —log|— ,
- (K) veeer ' o g(B

wobei wir den Prozess X = ()A(t)te[o,ﬂ durch )A(t = Wt + (— - —)t definieren. Satz

5.2.1 zeigt, dass (— W\t)te 0,7 ein Standard Wienerprozess ist und daher haben wir mit

o? K ) —~ o? B
< —> T > log <S_o) , O%ItliTUWt + <r — ?> t > log (§0>
T

X einen Wienerprozess mit Drift o := (% — —) Wir kénnen den Satz 5.2.7 anwenden

und bekommen das Ergebnis

Q ({s > K, inf 8> B})
0<t<T
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=

log(?o)—F(r—%)T _(SO>2:-<I> 10g<32 >+<T—%2>T

=: B.

Analog wird fiir das Mafl Q* umgeformt. Wie in Tabelle 4.1 ersichtlich ist, verwenden
wir unter Q* den Standard Wienerprozess (/th)te[o,T] und den Preisprozess (S;)ico,1] =

T, o2 . . . .

(SO : e”W“L(“LT)t) . Die Mengenumformungen miissen fiir den Preisprozess ange-
t€[0,T]

passt werden und wir erhalten

{STEK, inf St>B}
0<t<T
—~ o 1 So . —~ o T 1 So
=J_ - < Zlo — - l =
{ WT+< 2 O')T 01 (K)’ Ogtlng Wt+( 2 0>T<010g(3)}
= 1 So ) > 1 So
= < = = - 200 L
{XT_alog<K)’ OglngXt<alog<B>}

Der Prozess X = (Xt)te[O,T] ist definiert durch X, = —fﬂz + (—% — 5) t. Mit der
gleichen Argumentation wie zuvor ist X ein Wienerprozess mit Drift g := (—% — g)

Wir verwenden abermals Satz 5.2.7 und erhalten als Ergebnis

Q ({ST > K, oé?ngSt > B})

log(?o)+<r+§>T S, Y log <%>+<r+"—§>T
AT -(3)

=

=: A.
Zusammenfassend erhalten wir einen sehr langen und unhandlichen Ausdruck fiir den
fairen Preis einer Down-and-Out Call-Option:

Eg |e™ - (Sp— K)*

1nf Si>B

log (EO 7’3 log (KB—;)> + (7" + "72> t
— S, |® . i

]—SO A—e 7. K.B

—e¢T K| P

log (52 7’ "—22 _(50)2;"(1) log<K—2>+<r—%2>t
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log(%)—l—(rﬁL";)t log(%)+<r—%2>t
o/t - oVt

_<%>2j-so~q> ox (i) + (r+ %)
>+<r—§>t

oVt

=5y ®

B

o log (22
+<%) T UK <KS°

Durch die Umstellung der Terme ist leicht zu erkennen, dass es sich bei den ersten bei-
den Summanden um die Black-Scholes Formel (Satz 4.2.1) fiir einen Call mit Anfangs-
kurs Sy, Strikepreis K und Laufzeit T handelt. Fiir die restlichen beiden Summanden

ist es hilfreich folgende Umformungen zu betrachten:

Dies kann im zweiten Teil ausgenutzt werden und wir kénnen dadurch wie folgt aus-

klammern:

_(&>?.SO.<I> log(%)—k(r%—”é)t

B o/l

Es liegt in diesem Fall ebenfalls die Form der Black-Scholes Formel vor, allerdings fiir

einen Call mit Anfangskurs Sy, Strikepreis vK und Laufzeit T', wobei v := (%)2 ist.

Der arbitragefreie Preis eines Down-and-Out Calls setzt sich demnach zusammen aus
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zwel Call-Preisen mit unterschiedlichen Parametern:
28

S
B0(507T> Kv B) = CD(SOaT> K) - (EO) : CO(SO>T7 ’}/K)

5.4. Fazit und Ausblick

Die Ahnlichkeit des Down-and-Out Calls mit einer gewdhnlichen européischen Call-
Option spiegelt sich also auch in dem arbitragefreien Preis wider. Wir erhalten die
gewichtete Summe der Preise von zwei Call-Optionen mit unterschiedlichen Parame-
tern. Auflerdem ist zu erkennen, dass der Preis der Barriere-Option immer niedriger ist,
als die der Call-Option. Diese Beziehung wird bereits anhand der Claims ersichtlich,
da der Down-and-Out Call immer eine Auszahlung generiert, die niedriger ist, als bei

eine Call-Option mit den selben Parametern.

Mit diesen Ergebnissen ist es moglich den Einfluss der Parameter auf den arbitrage-
freien Preis der Barriere-Option zu untersuchen. Hierfiir konnten wieder die Greeks
hilfreich sein, die wir schon bei der Black-Scholes Formel kennengelernt haben. Weiter-

hin kénnten andere Varianten der Barriere-Optionen bewertet werden.
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A. Anhang

Satz A.0.1.

Auf (Q, F, P, (Fi)ico,00)) € (Xi)icpo,o0) €in adaptierter stochastischer Prozess. Dann
folgt aus der Unabhdingigkeit von Xy — X zu Fs fir alle 0 < s <t < oo, dass auch
Xy, — Xy, -, Xy, — Xy, fiir jede Unterteilung 0 =ty < t; < --- < t, < oo unabhingig

sind.

Bewezs.

Wir fiithren einen Induktionsbeweis iiber n durch, also iiber die Anzahl der Elemente
unserer Unterteilung 0 =15 <t; < --- <1, < o0.

Behauptung:

Fiir alle n € N sind die Zufallsvariablen X;, — X3,,..., X, — X;,_, mit Unterteilung
0=ty <ty <---<t, <oounabhingig, falls X; — X, und F; fir alle 0 < s <t < o0
unabhéngig sind.

Induktionsanfang:
n=1:X, — X, Hier ist nichts zu zeigen.

n=2:Xy, — Xy, X, — Xy,

Nach Voraussetzung ist X;, — X;, unabhéngig zu F;, (%).

Als adaptierter Prozess ist X;, — X, JFi,-messbar, da X;, JFi -messbar ist und
Xy, Fi,-messbar, aber durch F,, C F;, auch F; -messbar ist.

Daher gilt o(X;, — Xy,) C Fy, und somit sind X;, — Xy, Xy, — Xt, unabhéngig
durch ().

Induktionsvoraussetzung:

Fiir eine beliebiges aber festes n € N gilt die Behauptung.
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Induktionsschritt:

n—>n+1 . th _Xt()7~--7Xt
Xy, — Xigye o Xy, — Xy,
o(Xy, — Xigye o, X, — X4, ,) C Fi, (folgt analog wie beim Induktionsanfang

_Xt

sind unabhéngig nach Induktionsvoraussetzung und

n+1

n

1

gezeigt) und da nach Voraussetzung X, ,, — X;, unabhéngig ist von F;,, folgt
der Induktionsschritt mit Satz A.0.4.

Definition A.0.2 (Bedingter Erwartungswert). [04]
Sei (2, F,P) ein Wahrscheinlichkeitsraum und A C F eine Unter-o-Algebra. Sei'Y ei-
ne Zufallsvariable, deren Erwartungswert existiert. Fine Zufallsvariable Z, die folgende

Bedingungen erfiillt:
i.) Z ist A-messbar
i.) [z Z dP = [, X dP fir alle Be A

heifit bedingter Erwaruntgswert von' Y unter A. Wir schreiben Z = E[Y|A].

Satz A.0.3 (Eigenschaften des bedingten Erwartungswertes). [02]

Seien XY integrierbare Zufallsvariablen auf (Q,F,P) und G, H jeweils o-Algebren
mit H C G C F. Dann gelten folgende Aussagen:

i.) Falls X -Y integrierbar und X G-messbar ist, dann ist E[X - Y|G] = X - E[Y|g].
ii.) Falls X und G unabhingig sind gilt E[X|G] = E[X].
iii.) B[ E[X|G] |H] = E[X|H].

Der Satz A.0.3 stammt aus ”Probability Theory in Finance - A Mathematical Guide
to the Black-Scholes Formular”’von Sedan Dineen und fiir den Beweis sei ebenfalls auf

die angegebene Literatur verwiesen.

Satz A.0.4 (06).
Fine endliche Menge von Zufallsvariablen X1, ..., X,+1 mit Werten in messbaren Rdumen
(Q, F;) ist genau dann unabhdngig, wenn Xy, ..., X, unabhingig sind und X, 1 un-

abhdngig ist von o(Xq,...,X,).

Fiir den Beweis sei auf das Skript ”Wahrscheinlichkeitstheorie” von Prof. Lowe (S.90

Korollar 9.15) verwiesen.
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Bemerkung A.0.5.
Die Abbildungen fiir den Wienerprozess bzw. geometrischen Wienerprozess wurden

dem Statistikprogramm R {iber die folgenden Befehle erzeugt:

#Definition des Intervalls

a<-0

b<-1

#Definition der Anzahl der Diskretisierungspunkte

n<-1000

#Definition des Zeitvektors

t<-c(seq(a,b,1/n))

#Definition der Zuwdchse des Wienerprozesses
W<-numeric(length(t))

#Funktion zur Erzeugung von Zufallszahlen fiir die Zuwé&chse
#gemadfl Normalverteilung
Erz_Zufallsvektor<-function(t){z<-numeric(length(t))
z<-rnorm(length(t), mean=0, sd=sqrt((b-a)/n))

z[1]<-0

return(z)}

#Erzeugung der Zufallszahlen fiir die Zuwé&chse
W<-Erz_Zufallsvektor(t)

#Funktion zur Addition der Zuwé&chse
AdditionZuwédchse<-function (W) {z<-numeric(length(W))

for (i in 2:length(W)){z[i]l<-sum(W[c(seq(1,i))]1)}

return(z)}

#Berechnung des Wienerprozesses

Wt<-AdditionZuwéchse (W)

#Graphische Darstellung des Ergebnisses (ggf. Y-Achse anpassen)
plot(t,Wt,type="1", xlim=c(a, b), ylim=c(-1, 1), xlab="Zeitintervall [a,b]",
ylab="Standard Wienerprozess", main= "Beispielpfad")
abline(h=c(seq(-1,1,0.5)), 1lty=2)

#Festlegung der Parameter (Anfangskurs SO, Volatilit&dt, Drift)

#fir das risky asset

S0 = 100
sigma = 0.6
mu = 0.3

#Funktion fiir die Berechnung des Kurswertes
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Geom_Wienerprozess<-function(S0O, sigma, mu, t, Wt)
{z<-numeric(length(t)) z[1]<-S0

for (i in 2:length(t)){z[il<-(exp(sigma*W[i]+(mu-1/2*sigma”2)*
(tlil-t[i-11))-D*z[i-1]+z[i-1]}

return(z)}

#Bestimmung der Kurswerte

St<-numeric(length(t))

St<-Geom_Wienerprozess(SO, sigma, mu, t, W)

#Graphische Darstellung des Ergebnisses (ggf. Y-Achse anpassen)
plot(t,St,type="1", xlim=c(a, b), ylim=c(50, 200),
xlab="Zeitintervall [0,1]", ylab="Aktienpreis", main= "Beispielpfad")
abline(h=c(seq(0,1000,10)), 1lty=2)
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