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1. Einführung und Motiviation

Die internationalen Finanzmärkte haben sich in den letzten Jahrzehnten zu einem es-

sentiellen Teil unserer Wirtschaftssysteme entwickelt. Nicht zuletzt durch die weltweite

Finanzkrise seit 2007 wurde jedoch deutlich, dass die Risiken von Spekulationen an

diesen Märkten nicht unterschätzt werden dürfen. Aber auch ohne gezielt an der Börse

zu spekulieren, werden z.B. Unternehmen in ihren Handlungen durch die schwanken-

den Kurse beeinflusst. Betrachten wir dazu ein international tätiges Unternehmen aus

Deutschland, welches Rohstoffe von einem Lieferanten aus den USA bezieht. Der Rech-

nungsbetrag muss in Dollar beglichen werden und es wird ein Zahlungsziel von 30 Tagen

gewährt. Falls das Unternehmen keine Dollar vorrätig hält, kann die Rechnung unter

Berücksichtigung des aktuellen Wechselkurses auch in Euro bezahlt werden. Die Gefahr

für das Unternehmen besteht darin, dass sich der Kurswert für einen Dollar bis zum

Ende des Zahlungsziels ungünstig entwickelt, wodurch die Kosten in die Höhe steigen.

Um diesem Risiko schon beim Rechnungseingang entgegenzuwirken, kauft das Unter-

nehmen an der Frankfurter Börse eine Call-Option auf den Dollarwert. So kann bei

einem Strikepreis K gesichert werden, dass die Kosten für einen Dollar am Zahlungs-

tag den Wert K nicht übersteigen. Wenn der Kurs am Zahlungstag sogar unterhalb

von K liegt, ist es für das Unternehmen vorteilhafter die Option verstreichen zu lassen

und den aktuellen Preis für einen Dollar zu bezahlen. Für diese Chance das Risiko

zu mindern und dadurch die Höhe des möglichen Verlustes einzugrenzen, muss das

Unternehmen einen Preis, die Optionsprämie, bezahlen. Nach dem Prinzip der Arbi-

tragefreiheit kann eine Call-Option nicht kostenlos ausgegeben werden, da sonst ohne

eingesetztes Kapitel und ohne Eingehen von Risiko eine Chance auf Gewinn bestünde.

Aber was ist der arbitragefreie Preis einer Call-Option? Bereits im Jahr 1900 hat sich

Louis Bachelier mit diesem Thema auseinander gesetzt und auch in den nachfolgen-

den Jahren versuchten sich weitere Mathematiker daran, ein Modell aufzubauen mit

dem es möglich ist Derivate zu bewerten. Diese Modelle wurden jedoch teilweise un-

ter kritischen Annahmen, z.B. dass der Preis des Underlyings einem Prozess folgt, der

auch negative Werte annimmt, hergeleitet oder sie beinhalteten Variablen, die in der

Realität kaum zu quantifizieren sind, wie z.B. die persönliche Risikoeinstellung.
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Fischer Black und Myron Samuel Scholes gelang es schließlich eine Bewertungsformel

für eine Call-Option herzuleiten, die ausschließlich auf erfassbaren Parametern beruht.

Das Ergebniss ist bekannt als Black-Scholes Formel und wurde von Black und Scholes

in ihrer Arbeit mit dem Titel ”The pricing of options and corporate liabilities.”[01] im

Jahr 1973 veröffentlicht. Die Händler an der Börse fingen in den darauffolgenden Jahren

an, die Ergebnisse von Black und Scholes mittels speziell programmierter Taschenrech-

ner für die Bewertung von Call-Optionen zu nutzen. Das finanzmathematische Modell

in dem die Bewertungsformel hergeleitet wurde, wird als das Black-Scholes Modell

bezeichnet.

Neben Fischer Black und Myron S. Scholes war außerdem Robert Carhart Merton an

der Entwicklungs des Modells beteiligt, jedoch veröffentlichte Merton eine eigene Pu-

blikation mit dem Titel ”Theory of rational option pricing”[07]. Robert C. Merton und

Myron S. Scholes wurden 1997 für ihre Arbeit mit dem Nobelpreis für Wirtschaftswis-

senschaften ausgezeichnet. Da die Regularien eine posthum Verleihung des Nobepreises

untersagen, blieb es Fischer Black (†1995) verwehrt die Auszeichnung ebenfalls verlie-

hen zu bekommen.

Das Black-Scholes Modell ist das zentrale Thema der vorliegenden Bachelorarbeit. Im

Folgenden wird selbiges hergeleitet, um anschließend zu untersuchen, wie sich in die-

sem Finanzmarktmodell bestimmte Derivate bewerten lassen. Dabei stellt Kapitel 2 die

zentralen Bestandteile des Modells vor. Dazu gehören sowohl die wahrscheinlichkeits-

theoretischen Grundlagen, als auch die stochastischen Prozesse für ein risky asset und

einen Bond. Mit diesen Ergebnissen wird im Anschluss das Äquivalente Martingalmaß

(Kapitel 3) mit Hilfe des Satzes von Girsanov berechnet. Die beiden Kapitel 4 und

5 befassen sich mit den arbitragefreien Preisen für eine europäische Call-Option bzw.

eine Barriere-Option (Down-and-Out europäische Call-Option). In der Bewertung der

Barriere-Option wird dabei das Reflexionsprinzip für einen Wienerprozess bewiesen.

In dieser Bachelorarbeit werden Grundkenntnisse über Finanzmarktmodelle vorausge-

setzt. Um einen guten Lesefluß zu ermöglichen, werden an den entsprechenden Stellen

alle notwendigen Definitionen aufgeführt und erläutert.
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2. Die Modellgrundlage

2.1. Motivation

Zu Beginn dieser Bachelorarbeit wird die Grundlage für die spätere Bewertung von

Derivaten gelegt, indem wir einen vollkommen Finanzmarkt in stetiger Zeit model-

lieren. Auf diesem Finanzmarkt werden Basisfinanzgüter gehandelt, deren Kurswerte

als Underlying für die später zu bewertenden Derivate dienen. Um eine Aussage über

die Preise von Derivaten treffen zu können, muss als erstes betrachtet werden, wie

sich das Underlying in unserem Modell verhält. Wenn beispielsweise der faire Preis

einer Call-Option auf eine Aktie gesucht wird, dann hängt dieser von den Eigenschaf-

ten des Kurswertes der Aktie ab. Welche Charakteristika der Aktie Einfluss auf den

Preis einer Call-Option nehmen, werden wir später in der Black-Scholes Formel sehen.

Es werden in dieser Arbeit nur Derivate bewertet, die auf einem risky asset beruhen

und daher beschränkt sich das Finanzmarktmodell auf ein risky asset und einen Bond.

Der Bond verfügt über eine deterministische Rendite, die über den gesamten Zeit-

raum als konstant angenommen wird. Die Rendite des risky assets und insbesondere

die Kurswerte sollen stochastisch sein. Um die Stochastizität mit Instrumenten aus

der Wahrscheinlichkeitstheorie darzustellen, werden wir als erstes die mathematischen

Grundlagen schaffen. Hierauf aufbauend leiten wir eine konkrete mathematische Form

der Kursverläufe her, die bestimmte von Black und Scholes geforderte Bedingungen

erfüllt.

In dem Finanzmarktmodell sollen keine Steuern, Dividendenzahlungen oder Transak-

tionskosten betrachtet werden. Außerdem wird vorausgesetzt, dass es möglich ist in

beliebiger Höhe long- und short-Positionen einzugehen ohne zusätzliche Kosten oder

Gebühren zahlen zu müssen.
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2.2. Finanzmathematische Definitionen

Dem Finanzmarktmodell von Black und Scholes liegt ein gegebener Wahrscheinlich-

keitsraum (Ω,F ,P) zu Grunde, über den wir keine näheren Informationen erhalten.

Der Wahrscheinlichkeitsraum stellt den Rahmen des Modells dar, wobei ein ω ∈ Ω

eindeutig bestimmt, was zu jedem Zeitpunkt auf dem Finanzmarkt geschieht. Das

Wahrscheinlichkeitsmaß P ist abstrakt gegeben und wird nicht näher definiert, weil

später eine Annahme über die Verteilung der Kursverläufe des risky assets unter P
gemacht wird.

Wir betrachten den Finanzmarkt über einen endlichen Zeitraum und setzen dafür ein

T ∈ R>0 fest. Das Black-Scholes Modell ist ein zeitstetiges Modell, d.h. ein Marktteil-

nehmer hat zu jeder Zeit die Möglichkeit am Markt zu handeln. Unsere Handelszeit-

punkte werden somit über das endliche und abgeschlossene Intervall [0, T ] dargestellt.

T ist demnach der letztmögliche Zeitpunkt zu dem Handel betrieben werden kann.

Darüber hinaus ist T auch der Zeitpunkt, an dem die Derivate auslaufen und die Aus-

zahlung fällig ist.

Der Handel am Finanzmarkt zeichnet sich dadurch aus, dass trotz vieler Informationen

oft nicht bekannt ist, wie sich die Kurse zukünftig entwickeln werden. Welche Informa-

tionen zu den einzelnen Zeitpunkten vorliegen, wird über die Filtration abgebildet.

Definition 2.2.1 (Filtration).

Für einen Wahrscheinlichkeitsraum (Ω,F ,P) und eine Indexmenge I ⊂ R≥0 ist eine

Filtration (Ft)t∈I eine Familie von Unter-σ-Algebren, d.h. Ft ⊂ F für alle t aus I, mit

der Eigenschaft, dass Fs ⊂ Ft für alle s < t aus I.

Verwenden wir eine Filtration als Informationsverlauf, so interpretieren wir das Ele-

ment Ft als Informationsstand für den Zeitpunkt t. Das bedeutet, die σ-Algebra Ft
beinhaltet genau die Ereignisse, für die ein Marktteilnehmer im zugehörigen Zeitpunkt

t weiß, ob sie eingetreten sind oder nicht. Die immer feiner werdenden σ-Algebren

gewährleisten deshalb, dass die Marktteilnehmer keine Informationen verlieren, die zu

einem vorherigen Zeitpunkten bereits bekannt waren.

Um später Derivate bewerten zu können, ist die nächste Aufgabe die Underlyings

mathematisch zu modellieren. Hierbei muss sowohl die Stochastizität der Kurswerte

als auch die Entwicklung in der Zeit berücksichtigt werden. Beides lässt sich in der

Definition eines stochastischen Prozesses wiederfinden.
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Definition 2.2.2 (Stochastischer Prozess).

Für einen Messraum (Ω,F) und einer Indexmenge I ⊂ R≥0 ist ein reellwertiger sto-

chastischer Prozess X = (Xt)t∈I eine Familie von messbaren Funktionen Xt : Ω → R
für alle t ∈ I. Die Abbildung X(ω) : I → R für ein festes ω ∈ Ω nennen wir einen Pfad

von X. Bilden die Funktionen Xt in den RJ ab, so nennen wir die Familie X = (Xt)t∈I

einen J-dimensionalen reellwertigen stochastischen Prozess.

Ein stochastischer Prozess kann als eine Zufallsvariable interpretiert werden, die nicht

in die reellen Zahlen abbildet, sondern in eine Menge von Funktionen. Wir modellieren

die Kurse der Basisfinanzgüter über stochastische Prozesse und daher bestimmt ein

ω ∈ Ω bereits die Kurse für jeden Zeitpunkt. Da sowohl Ω als auch P nicht näher

spezifiziert wurden, benötigen wir Annahmen über die Verteilung von X bzw. der

einzelnen Elemente Xt. Wie diese Annahmen aussehen und zu welchen stochastischen

Prozessen diese führen, wird in den nächsten beiden Abschnitten erläutert.

Reellwertige Zufallsvariablen stellen im Finanzmarktmodell die Kurswerte der Basis-

finanzgüter, Handlungen von Marktteilnehmern oder die Auszahlungen der Derivate

für einen festen Zeitpunkt t dar. Durch die Filtration wird angegeben, welche Realisie-

rungen am Markt erkennbar sind. Die Werte aller Ft-messbaren Abbildungen können

zum Zeitpunkt t beobachtet werden. Stellt Xt den Kurs eines Basisfinanzgutes zum

Zeitpunkt t dar, so soll dieser spätestens in t am Markt bekannt sein. Diese Forderung

führt uns zu den adaptierten Prozessen.

Definition 2.2.3.

Ein stochastischer Prozess X = (Xt)t∈I ist adaptiert an die Filtration (Ft)t∈I , falls für

alle t ∈ I gilt, dass Xt eine Ft-messbar Zufallsvariable ist.

Die Teilmengeninklusion in der Definition der Filtration sichert, dass die vorherigen

Realisierungen weiterhin bekannt sind. Für s ≤ t ist Xs Fs-messbar und durch Fs ⊂ Ft
folgt, dass Xs auch Ft-messbar ist. Bei der Herleitung des stochastischen Prozesses

für das risky asset im Abschnitt 2.4, wird dann deutlich, wie zum Beispiel aus der

Unabhängigkeit von Xt und Ft bereits die Unabhängigkeit zwischen Xt und Xs für alle

s ≤ t folgt. Wir fordern daher für die Darstellung der Kurswerte, dass ein adaptierten

stochastischen Prozess verwendet wird.
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Die bis hier vorgestellten Werkzeuge für die Modellierung eines Finanzmarktes sind in

vielen Modellen wiederzufinden. Das Besondere am Modell von Black und Scholes ist

die Wahl der Prozesse für die exogenen Preise der Basisfinanzgüter, vor allem der Pro-

zess des risky assets. Diese stochastischen Prozesse werden in den beiden nachfolgenden

Abschnitten hergeleitet und schließen somit das zu Grunde liegende Finanzmarktmo-

dell ab.

2.3. Der Preisprozess für den Bond

Für den Bond wird der Preisprozess mit (Bt)t∈[0,T ] bezeichnet und für diesen unterstell-

ten Fischer Black und Samuel Scholes eine deterministische und konstante Verzinsung.

In diskreten Finanzmarktmodellen wird ein Zinssatz für die festverzinslichen Wert-

papiere verwendet. Da wir uns mit einem zeitstetigen Modell beschäftigen, wird die

stetige Verzinsung verwendet, die aus der Grenzwertbetrachtung immer kleiner wer-

dender Verzinsungszeiträume resultiert:

lim
n→∞

(
1 +

r

n

)n
= er.

Wir haben bei einer stetigen Verzinsung eine über den ganzen Zeitraum [0, T ] konstante

Zinsrate r > 0 und können den stochastischen Prozess für den Bondpreis darstellen als

(Bt)t∈[0,T ] = (ert)t∈[0,T ].

Der Bond stellt eine risikolose Anlage dar, d.h. der Verlauf des Prozesses ist unabhängig

von dem eingetretenen ω ∈ Ω. Daher kennt jeder Marktteilnehmer bereits im Zeitpunkt

0 den ganzen Pfad des Prozesses. Mathematisch ist dies daran zu erkennen, dass für

jedes t ∈ [0, T ] Bt bereits messbar bezüglich der trivialen σ-Algebra ist. Insbesondere

ist der Prozess an jede Filtration adaptiert.

Wenn wir unsere Ergebnisse bis hierhin zusammenfassen, dann betrachten wir einen

vollkommenen Finanzmarkt über einen Zeitraum [0, T ], der sich mathematisch als

Wahrscheinlichkeitsraum mit Filtration (Ω,F ,P, (Ft)t∈[0,T ]) darstellt. Außerdem wird

der Bond über den stochastischen Prozess (Bt)t∈[0,T ] = (ert)t∈[0,T ] abgebildet. Als Letz-

tes beschäftigen wir uns in diesem Kapitel mit dem stochastischen Prozess für das risky

asset im Black-Scholes Modell.
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2.4. Der Preisprozess für das risky asset

In der originalen Publikation aus dem Jahr 1973 haben Black und Scholes mit den

folgenden stochastischen Differentialgleichungen die Prozesse für das risky asset und

den Bond hergeleitet:

dSt = µStdt+ σStdWt

dBt = rBtdt.

Die Preisprozesse werden hier mit (St)t∈[0,T ] für das risky asset und (Bt)t∈[0,T ] für den

Bond bezeichnet. (Wt)t∈[0,T ] steht in diesem Zusammenhang für einen Wienerprozess,

der in diesem Abschnitt definiert und näher untersucht wird. Aber sowohl bei dem

Preisprozess des risky assets, als auch beim Äquivalenten Martingalmaß und dem Satz

von Girsanov im Kapitel 3, soll auf die stochastische Integration verzichtet werden.

Stattdessen werden Eigenschaften für den Prozess des risky assets gefordert, die im-

plizit in der Differentialgleichung enthalten sind. Hiermit soll ein Kandidat für den

Preisprozess hergeleitet werden. Die Eindeutigkeit dieses stochastischen Prozesses im

Black-Scholes Modell bedarf einer genaueren Auseinandersetzung mit Lévy-Prozessen

und wird hier nicht weiter betrachtet.

Die fünf charakterisierenden Eigenschaften für den gesuchten stochastischen Prozess

werden nun aufgelistet und näher beleuchtet. Die einzelnen Forderungen leiten sich

aus Beobachtungen oder idealisierten Annahmen für Finanzmärkte ab. Wir wollen

also einen adaptierten stochastischen Prozess (St)t∈[0,T ] finden, der Folgendes erfüllt:

i.) (St)t∈[0,T ] hat einen deterministischen Anfangswert S0 > 0.

Der Wert S0 entspricht dem Kurs bei dem der stochastische Prozess starten soll

und wird durch die Beobachtung am realen Finanzmarkt vorgegeben.

ii.) (St)t∈[0,T ] hat stationäre Renditen, das bedeutet St+∆−St
St

∼ Ss+∆−Ss
Ss

für alle t, s ∈
[0, T ] und alle ∆ ∈ R mit 0 ≤ ∆ + t ≤ T , 0 ≤ ∆ + s ≤ T .

Diese Eigenschaft bedeutet, dass die prozentuale Änderung des Preisprozesses in

den beiden Zeitintervallen [s, s+∆] ⊂ [0, T ] und [t, t+∆] ⊂ [0, T ] der gleichen Ver-

teilung unterliegt. Es ist somit irrelevant zu welchem Zeitpunkt die Wahrschein-

lichkeitsverteilung für die Rendite betrachtet wird. Der bestimmende Parameter

ist hierbei der Zeitraum ∆, weil dieser bei den beiden Renditen als identisch

vorausgesetzt wird. Wir können also an dieser Stelle schon sehen, dass es ausrei-
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chend ist wenn wir Informationen über die Wahrscheinlichkeitsverteilung für die

möglichen Zeiträume erhalten. Diese können dann unabhängig vom Zeitpunkt

genutzt werden. Insgesamt unterscheiden sich zwei Zeitpunkte für einen Investor,

in Bezug auf die Chance eine gute Rendite zu erreichen, nicht.

iii.) (St)t∈[0,T ] hat unabhängige Renditen, das bedeutet St+∆−St
St

ist unabhängig von

Ft für alle t ∈ [0, T ], 0 ≤ ∆ + t ≤ T .

Ft ist die σ-Algebra, die den Informationsstand am Markt zum Zeitpunkt t wi-

derspiegelt. St+∆−St
St

stellt die Rendite des risky assets ab dem Zeitpunkt t über

einen beliebigen Zeitraum ∆ dar. Wenn gefordert wird, dass die Zufallsvariable

der Rendite unabhängig ist zu Ft, dann muss sich der Kurs des risky assets ab dem

Zeitpunkt t unabhängig zu allen Ereignissen der vergangenen Zeit entwickeln. Für

einen Aktienkurs der zuletzt stark gestiegen ist, kann also nicht gefolgert werden,

dass dieser in der nächsten Zeit wieder fallen muss oder dass er die Entwicklung

unverändert fortsetzt. Der Aktienkurs entwickelt sich durch diese Forderung zu

jedem Zeitpunkt komplett autark von der vorherigen Entwicklung. Die Idee wird

deutlicher, wenn man eine beliebige Unterteilung 0 = t0 < t1 < · · · < tn ≤ T und

die entsprechenden Renditen betrachtet. Aus der obigen Eigenschaft folgt induk-

tiv die Unabhängigkeit von
St1−St0
St0

,. . . ,
Stn−Stn−1

Stn−1
. Der Beweis läuft analog zu dem

Beweis aus Anhang A.0.1. Demnach entwickeln sich die Renditen für disjunkte

Zeiträume immer unabhängig voneinander.

iv.) log( St
S0

) ∼ N (λt, σ2t) für alle t ∈ [0, T ] mit Konstanten λ ∈ R, σ > 0.

Um die Idee dieser Forderung besser zu verstehen, kann man den Wert analog für

den schon bekannten Bondpreisprozess berechnen: log(Bt
B0

) = log(exp(rt)) = rt.

Hieraus wird deutlich, dass beim Bond die Verzinsung über den Zeitraum [0, t]

durch die Konstante r festgelegt wurde. Im Gegensatz dazu, soll für das risky

asset eine normalverteilte Zufallsvariable verwendet werden, welche die Zinsrate

modelliert. Die Normalverteilung resultiert aus dem Zentralen Grenzwertsatz,

weil man davon ausgeht, dass viele unabhängige und identisch verteilte Ereignisse

Einfluss auf die Veränderung der Zinsrate nehmen. Es lässt sich leicht zeigen,

dass durch die Bestimmung der Verteilung von log( St
S0

) für alle t ∈ [0, T ], die

Zinsraten über jeden beliebigen Zeitraum festgelegt sind. Möchte man alternativ

die Verteilung für ein Zeitintervall [t1, t2] ⊂ [0, T ] berechnen, so leitet sich diese
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durch folgende Rechnung aus der geforderten Eigenschaft her:

log

(
St2
S0

)
= log

(
St2
St1
· St1
S0

)
= log

(
St2
St1

)
+ log

(
St1
S0

)
⇔ log

(
St2
St1

)
= log

(
St2
S0

)
− log

(
St1
S0

)
.

Für die Verteilung der rechten Seite bedarf es der Faltung von zwei normalver-

teilten Zufallsvariablen. Foglich unterliegt die Rendite für [t1, t2] einer Normal-

verteilung mit den Parametern λ(t2 − t1) und σ2(t2 − t1). Wie bereits bei den

stationären Renditen gesehen, unterscheidet sich die Verteilung nur für unter-

schiedlich lange Zeitintervalle und ist unabhängig von dem Zeitpunkt, an dem sie

betrachtet wird.

v.) (St)t∈[0,T ] besitzt stetige Pfade.

In den Wirtschaftsnachrichten greift man zur Vereinfachung auf die graphische

Veranschaulichung von Börsenkursen zurück. Dabei zeigen stetige Graphen die

Werte einer Aktie für die letzten Wochen und Monate. Die Forderung von stetigen

Pfaden für den stochastischen Prozess des risky assets scheint deshalb zunächst

einmal nachvollziehbar. Diese sind aber durchaus ein Kritikpunkt im Black-

Scholes Modell, da besonders Kurssprünge oder extreme Wertveränderungen durch

die Stetigkeit nur sehr bedingt möglich sind. Auch bei der Wahrscheinlichkeits-

verteilung wird kritisiert, dass extremen Änderungen z.B. in
”
Crash“-Situationen

zu wenig Beachtung geschenkt wird. Dieser Kritikpunkt soll uns aber nicht weiter

beschäftigen.

Der vierten Eigenschaft entnehmen wir, dass eine normalverteilte Zufallsvariable benötigt

wird, um die stetige Zinsrate für einen festen Zeitraum zu modellieren. Die geforderte

Verteilung soll für alle t ∈ [0, T ] gelten und somit suchen wir einen stochastischen Pro-

zess, der auf der Normalverteilung basiert. Diese Eigenschaft und auch Parallelen zu

den anderen Anforderungen finden wir in der Defintion eines Wienerprozesses wieder,

den wir bereits in der stochastischen Differentialgleichung gesehen haben.
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Definition 2.4.1 (Wienerprozess).

Auf einem Wahrscheinlichkeitsraum (Ω,F ,P, (Ft)t∈I) mit I ⊂ R≥0 wird ein adaptierter

stochastsicher Prozess W = (Wt)t∈I als Standard Wienerprozess bezeichnet, wenn er

folgende Eigenschaften aufweist:

i.) W0 = 0 P-fast sicher,

ii.) Wt −Ws ist N (0, t− s)-verteilt für alle s < t aus I,

iii.) Wt −Ws ist stochastisch unabhängig von Fs für alle 0 ≤ s < t aus I,

iv.) W besitzt P-fast sicher stetige Pfade.

Der Prozess X = (Xt)t∈I := (σWt + µ · t)t∈[0,T ] wird Wienerprozess mit Drift µ und

Volatilität σ genannt, wobei µ ∈ R und σ > 0 ist.

1.
0

0.
5

0.
0

-0
.5

-1
.0

W
t(
ω
)

0.0 0.2 0.4 0.6 0.8 1.0

Zeitintervall [0,1]

Abbildung 2.1.: Skizze eines Beispielpfades für einen Standard Wienerprozess

In Abbildung 2.1 wird veranschaulicht, wie ein Pfad eines Wienerprozesses aussehen

könnte. Diese Abbildung und auch die Nachfolgenden wurden mit dem Statistikpro-

gramm R, sowie dem Bildbearbeitungsprogramm Inkscape erzeugt. Die Befehle zur

Erzeugung des Pfades in R sind im Anhang A.0.5 zu finden.

Zur Notation in dieser Arbeit sei erwähnt, dass der ganze Prozess über einen Großbuch-
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staben ohne Index dargestellt wird und Variablen mit Indizes die einzelnen Elemente

des Prozesses repräsentieren. Dabei wird durch den Buchstaben W bzw. Wt vorzugswei-

se ein Standard Wienerprozess, d.h. ohne Drift und mit Volatilität 1, bezeichnet. Durch

X bzw. Xt soll dann ein Wienerprozess, der noch zusätzlich einen Driftparameter sowie

Volatilität beinhaltet, symbolisiert werden. Da sich die Prozesse bei unterschiedlichen

Maßen anders verhalten, soll dies jeweils für das Maß, unter dem der Prozess definiert

wurde, gelten. Verschiedene Prozesse werden dann durch Akzente wie z.B. W̃ oder Ŵ

gekennzeichnet.

Möchte man diesen Wienerprozess z.B. als Aktienpreisprozess verwenden, so ensteht

kein realitätstreues Modell. Das Ereignis {St < 0}, also dass der Aktienpreis negativ

wird, ist keine Nullmenge unter dem Maß P. Aus den ersten beiden Eigenschaften

eines Wienerprozesses können direkt die Wahrscheinlichkeitsverteilungen für weitere

Zufallsgrößen abgeleitet werden:

Wt = Wt −W0 ∼ N (0, t), sowie Wt−s ∼ N (0, t− s) für alle s ≤ t.

Eine Aktie kann, im für den Halter ungünstigsten Fall, wertlos werden. Es ist somit

ausgeschlossen, dass der Wert einer Aktie einen negativen Wert annimmt. Falls der

Aktienkurs zum Zeitpunkt t durch Wt dargestellt würde, wäre dieser Kurs durch die

Normalverteilung mit einer Wahrscheinlichkeit von 1
2

im negativen Wertebereich.

In den vier Eigenschaften des Wienerprozesses finden sich bereits Unabhängigkeit, steti-

ge Pfade und die Normalverteilung wieder. Wir versuchen daher mit diesem Wienerpro-

zess weiter zu arbeiten und durch eine messbare Funktion, die nur vom Wienerprozess

abhängt, diese Eigenschaften auf den Aktienpreisprozess zu übertragen.

Die Elemente eines Wienerprozess mit Drift λ und Volatilität σ auf dem Wahrschein-

lichkeitsraum (Ω,F ,P, (Ft)t∈[0,T ]) besitzen unter P die geforderte Verteilung aus Bedin-

gung vier. Für einen Wienerprozess W = (Wt)t∈[0,T ] ist Wt N (0, t)-verteilt und daher

können wir folgern, dass σWt + λt N (λt, σ2t)-verteilt ist. Deshalb setzen wir als sto-

chastischen Prozess für die stetigen Zinsraten diesen Wienerprozess mit Drift µ und

Volatilität σ ein. Daraus ergibt sich für jedes t ∈ [0, T ]:

log

(
St
S0

)
= σWt + λt.

Diese Gleichung können wir umstellen und über den deterministischen Anfangswert S0
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erhalten wir eine explizite Darstellung des Aktienpreises zum Zeitpunkt t:

log
(
St
S0

)
= σWt + λt

⇔ St = S0 · eσ·Wt+λ·t. (2.1)

Durch die Normalverteilung aus dem Wienerprozess unterliegen die Zufallsgrößen des

risky assets einer logarithmischen Normalverteilung.

Bemerkung 2.4.2.

Für eine Zufallsvariable X auf dem Wahrscheinlichkeitsraum (Ω,F ,P), die zu den

Parametern µ ∈ R und σ > 0 normalverteilt ist, nennt man die Verteilung der Zufalls-

variable Y := eX eine Logarithmische Normalverteilung zu den Parametern µ und σ

und schreibt Y ∼ LN (µ, σ2).

In der Normalverteilung stellen unsere Parameter µ und σ2 bereits den Erwartungswert

und die Varianz dar. Für eine Logarithmische Normalverteilung wird der Erwartungs-

wert im nächsten Satz berechnet, da dieser in späteren Beweisen wiederholt verwendet

wird.

Satz 2.4.3.

Für eine Zufallsvariable Y ∼ LN (µ, σ2) berechnet sich der Erwartungswert zu

E[Y ] = e(µ+ 1
2
σ2).

Beweis.

Der Beweis beruht auf einfachen Umformungen und der Eigenschaft eines Wahrschein-

lichkeitsmaßes, dass das Integral über die Dichte genau 1 ergibt.

E[eX ] =

∫
Ω

eX(ω) dN (µ, σ2)(ω)

=

∫
R
ex · 1√

2πσ2
· e−

1
2(x−µσ )

2

dλ(x)

=

∫
R

1√
2πσ2

· e
− 1

2

(
x2−2xµ+µ2−2xσ2

σ2

)
dλ(x)

=

∫
R

1√
2πσ2

· e
− 1

2

(
x2−2x(µ+σ2)+µ2+2µσ2−2µσ2+σ4−σ4

σ2

)
dλ(x)

=

∫
R

1√
2πσ2

· e
− 1

2

(x−(µ+σ2))
2
−2µσ2−σ4

σ2


dλ(x)

=

∫
R

1√
2πσ2

· e−
1
2

(x−(µ+σ2))
2

σ2 − 1
2

(−2µσ2−σ4)
σ2 dλ(x)
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= e(µ+ 1
2
σ2) ·

∫
R

1√
2πσ2

· e−
1
2

(x−(µ+σ2))
2

σ2︸ ︷︷ ︸
Dichte von N (µ+σ2,σ2)

dλ(x)

︸ ︷︷ ︸
=1

= e(µ+ 1
2
σ2).

Betrachten wir den Erwartungswert des risky assets für einen festen Zeitpunkt, dann

berechnet sich dieser durch den vorigen Satz 2.4.3 zu:

E[St] = E[S0 · eσWt+λ·t]

= S0 · E[eσWt+λ·t]

= S0 · eλ·t+
1
2
σ2·t.

Mit der Umparametrisierung λ = µ − 1
2
σ2 können wir eine bessere Interpretation des

Parameters erreichen. Der Preisprozess des risky assets und deren Erwartunswert zu

einem festen Zeitpunkt t lassen sich jetzt leichter mit dem Bond und deren Erwar-

tungswert vergleichen:

E[St] =S0 · eλ·t+
1
2
σ2·t

=S0 · e(µ− 1
2
σ2)·t+ 1

2
σ2·t

=S0 · eµ·t

⇒ St =S0 · eσWt+(µ− 1
2
σ2)·t E[St] =S0 · eµt

Bt =1 · ert E[Bt] =1 · ert.

In der Forderung an das risky asset waren die Parameter λ und σ jeweils Modellpara-

meter, die von außen gegeben werden. Nach der Umparametrisierung benutzen wir µ

und σ, weil beim Vergleich der beiden Erwartungswerte deutlich wird, dass µ den Drift

des risky assets, also die erwartete Zinsrate, abbildet und somit besser interpretierbar

ist als λ. Die Schwankung oder auch Volatilität des risky assets wird weiter durch σ

dargestellt und in Kapitel 4 werden wir sehen, dass nur die Volatilität eine wichtige

Rolle spielt.

Der stochastische Prozess aus Gleichung 2.1 wird als geometrischer Wienerprozess be-

zeichnet.
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Definition 2.4.4 (Geometrischer Wienerprozess).

Für einen Standard Wienerprozess W = (Wt)t∈I auf (Ω,F ,P, (Ft)t∈I) mit I ⊂ R≥0

und µ ∈ R, σ > 0 nennen wir (At)t∈I =
(
A0 · eσWt+(µ− 1

2
σ2)·t

)
t∈I

einen geometrischen

Wienerprozess mit Drift µ, Volatiliẗıät σ und Anfangswert A0.

Ein geometrischer Wienerprozess mit Anfangswert S0 stellt den Wertprozess für das

risky asset im Black-Scholes Modell dar. Wir haben hauptsächlich die Annahmen über

die Verteilung der Zinsraten benutzt, um zu einem geometrischen Wienerprozess zu

gelangen. Es bleibt noch zu zeigen, dass auch die weiteren geforderten Eigenschaften

von diesem Prozess erfüllt werden.

Satz 2.4.5.

Auf dem Wahrscheinlichkeitsraum
(
Ω,F ,P, (Ft)t∈[0,T ]

)
des Black-Scholes Modells erfüllt

ein geometrischer Wienerprozess mit Drift µ und Volatilität σ und festem Startwert

S0 > 0 die geforderten Bedingungen an den Wertprozess des risky assets:

i.) (St)t∈[0,T ] hat einen deterministischen Anfangswert S0 > 0,

ii.) (St)t∈[0,T ] hat stationäre Renditen,

iii.) (St)t∈[0,T ] hat unabhängige Renditen,

iv.) log( St
S0

) ∼ N (λt, σ2t) für alle t ∈ [0, T ] mit Konstanten λ ∈ R, σ > 0,

v.) (St)t∈[0,T ] besitzt stetige Pfade.

Beweis.

Mit dem Standard Wienerprozess W = (Wt)t∈[0,T ] auf (Ω,F ,P, (Ft)t∈[0,T ]) und den

konstanten Werten S0 > 0, σ > 0 und µ ∈ R hat der geometrische Wienerprozess aus

dem Satz die Form (St)t∈[0,T ] =
(
S0 · eσWt+(µ− 1

2
σ2)·t

)
t∈[0,T ]

.

i.) (St)t∈[0,T ] hat einen deterministischen Anfangswert S0 > 0.

Diese Eigenschaft wurde bereits in der Umformung benutzt und ist erfüllt:

S0 · eσW0+(µ− 1
2
σ2)·0 = S0 · e0 = S0 > 0.
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ii.) (St)t∈[0,T ] hat stationäre Renditen.

Wähle t, s ∈ [0, T ] und ∆ ∈ R mit 0 ≤ ∆ + t ≤ T , 0 ≤ ∆ + s ≤ T , dann gilt

St+∆ − St
St

=
St+∆

St
− 1 = eσ(Wt+∆−Wt)+(µ− 1

2
σ2)·∆ − 1

mit Wt+∆−Wt ∼ N (0, t+ ∆− t) = N (0,∆) und

Ss+∆ − Ss
Ss

=
Ss+∆

Ss
− 1 = eσ(Ws+∆−Ws)+(µ− 1

2
σ2)·∆ − 1

mit Ws+∆−Ws ∼ N (0, s+ ∆− s) = N (0,∆).

Die Verteilung der beiden Renditen hängt nur von der Verteilung des Standard

Wienerprozesses ab, denn die restlichen Variablen bleiben für jedes ω ∈ Ω kon-

stant. Da bei einem Wienerprozess die Zuwächse Wt+∆ − Wt und Ws+∆ − Ws

nach Definition 2.4.1 identisch verteilt sind, besitzen auch die beiden Renditen

die selbe Wahrscheinlichkeitsverteilung. Möchte man die konkrete Verteilung be-

rechnen, so erhält man eine um eins nach links verschobene, also auf dem In-

tervall (−1,∞) definierte, logarithmische Normalverteilung mit den Parametern(
µ− 1

2
σ2
)

∆ und σ2∆. Die stationären Renditen sind also bei unserem geometri-

schen Wienerprozess erfüllt

iii.) (St)t∈[0,T ] hat unabhängige Renditen.

Um diese Eigenschaft zu zeigen, definieren wir die Abbildung

f : R→ R durch f(y) = eσy+(µ− 1
2
σ2)∆ − 1

und bemerken, dass aus der Stetigkeit die Borel-Messbarbarkeit von f gefolgert

werden kann. Nun kann die Rendite, die im vorherigen Punkt schon untersucht

wurde, als Komposition der messbaren Abbildung f und dem Zuwachs des Stan-

dard Wienerprozesses Wt+∆ −Wt dargestellt werden:

f ◦ (Wt+∆ −Wt) = eσ(Wt+∆−Wt)+(µ− 1
2
σ2)·∆ − 1 =

St+∆ − St
St

.

Aus der Wahrscheinlichkeitstheorie ist bekannt, dass für eine Zufallsvariable X,

die unabhängig ist zur σ-Algebra F , auch für jede borel-messbare Abbildung f

die Zufallsvaribale f ◦X unabhängig ist zu F . Die Unabhängigkeit von Wt+∆−Wt

zu Ft überträgt sich somit durch die messbare Abbildung auch auf die Rendite.



2 Die Modellgrundlage 16

Damit ist gezeigt, dass St+∆−St
St

unabhängig ist zu Ft für alle t ∈ [0, T ] und der

geometrische Wienerprozess unabhängige Renditen besitzt.

iv.) log( St
S0

) ∼ N (λt, σ2t) für alle t ∈ [0, T ] mit λ ∈ R, σ > 0.

Diese Eigenschaft hatten wir benutzt, um den geometrischen Wienerprozess her-

zuleiten. Durch die Wahl eines Wienerprozesses mit Drift µ und Volatitlität σ

konnten wir diese Verteilung modellieren. Es gilt

log

(
St
S0

)
= σWt +

(
µ− 1

2
σ2

)
t ∼ N

((
µ− 1

2
σ2

)
t, σ2t

)
.

Noch zu beachten ist, dass wir eine Umparametrisierung vorgenommen haben, um

eine bessere Interpretierbarkeit zu gewährleisten. Führen wir diese Substitution

über λ = µ− 1
2
σ2 wieder zurück, so erhalten wir

log

(
St
S0

)
∼ N (λt, σ2t).

v.) (St)t∈[0,T ] besitzt stetige Pfade.

Ein stochastischer Prozess besitzt stetige Pfade, wenn für jedes ω ∈ Ω die Abbil-

dung aus der Indexmenge in die reellen Zahlen stetig ist. In diesem Fall wählen

wir ω ∈ Ω fest und betrachten die Abbildung1

St : {ω} × I → R mit St(ω) = S0 · eσWt(ω)+(µ− 1
2
σ2)·t.

In der vierten Bedingung des Wienerprozesses (Definition 2.4.1) wird gefordert,

dass der Prozess stetige Pfade besitzt. Also wissen wir, dass

Wt(ω) : {ω} × I → R

eine stetige Abbildung darstellt. Unser Aktienpreis in Abhängigkeit der Zeit ist

somit eine Komposition aus dem Element Wt des Wienerprozesses und der steti-

gen Abbildung

f : R→ R mit f(x) = S0 · eσx+(µ− 1
2
σ2)t

und dadurch selbst eine stetige Abbildung. Dies gilt für alle ω ∈ Ω und deshalb

1Hier ist ω fest gewählt und die Abbildung ist abhängig von t, jedoch wird t weiterhin im Index
geschrieben, um die Notation beizubehalten.
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besitzt der Aktienpreisprozess (St)t∈[0,T ] stetige Pfade.

2.5. Kurze Zusammenfassung

Wir haben die Grundlagen des Black-Scholes Modell aus den Annahmen abgeleitet und

konnten die stochastischen Prozesse für das risky asset und den Bond herleiten. Diese

können angegeben werden mit

(Bt)t∈[0,T ] = B0 · ert mit B0 = 1

für den Bondpreisprozess, sowie mit

(St)t∈[0,T ] = S0 · eσWt+(µ− 1
2
σ2)t mit S0 > 0, σ > 0, µ ∈ R

für den stochastischen Preisprozess für das risky asset. Der letzte Prozess wird auch

als geometrischer Wienerprozess mit Drift µ und Volatilität σ bezeichnet. Als Modell-

parameter verwenden wir T für den Endzeitpunkt, r für die Zinsrate des Bonds und

den Drift µ, so wie die Volatilität σ und Startwert S0 für das risky asset.

Wir sind jetzt in der Lage mit dem Modell zu arbeiten und werden uns in den folgenden

Kapiteln mit der Bewertung im Black-Scholes Modell beschäftigen. Dafür bedarf es

zunächst einer genaueren Analyse des Äquivalenten Martingalmaßes, mit dem dann im

Anschluß die Möglichkeit gegeben ist, den Preis eines Derivates zu berechnen.

Zur Veranschaulichung ist in Abbildung 2.2 noch ein Beispiel für einen Pfad des geome-

trischen Wienerprozesses abgebildet. Hierbei wurde ein positiver Drift verwendet und

der Startwert beträgt 100.
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Zeitintervall [0,1]
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Abbildung 2.2.: Skizze eines Beispielpfades für einen geometrischen Wienerprozess mit
positivem Drift
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3. Das Äquivalente Martingalmaß

3.1. Motivation

In dieser Bachelorarbeit wird gezeigt, wie sich der Wert eines Derivates mit dem risky

asset als Underlying im Black-Scholes Modell berechnen lässt. Bei der Analyse von Fi-

nanzmärkten ist der Begriff der Arbitragefreiheit von zentraler Bedeutung. Wie schon in

der Einführung (Kapitel 1) erwähnt, bezeichnet eine Arbitragemöglichkeit die Chance

ohne Kapitaleinsatz und ohne Risiko eine positive Auszahlung zu erreichen. Durch be-

stimmte Marktmechanismen sollten Arbitragemöglichkeiten auf realen Finanzmärkten

nicht auftreten und daher möchten wir auch in den Modellen Arbitragefreiheit vorfin-

den. Im Black-Scholes Modell sind die Preise des Bonds und des risky assets exogen

gegeben und die Preise für die Derivate müssen bestimmt werden. Je nachdem wie

diese Preise gewählt werden, bieten sich Arbitragemöglichkeiten oder nicht. Es kann

bewiesen werden, dass bei einer bestimmten Strategie zur Preisfestsetzung das Modell

arbitragefrei ist. Diese Strategie greift auf ein Äquivalentes Martingalmaß zurück und

bewertet die Derivate anhand ihrer Claims1. Der Claim ist dabei eine FT messbare

Abbildung C : Ω → R, die jedem ω die Auszahlung des Derivates zum Zeitpunkt T

zuordnet, die beim Eintreten des jeweiligen ω anfällt. Die Messbarkeit sichert, dass die

Auszahlung zum Zeitpunkt T feststeht und nicht von späteren Zeitpunkten abhängig

ist. Mit Q als Äquivalentes Martingalmaß lässt sich der arbitragefreie oder faire Preis

eines Derivates mit Claim C über die Form

EQ[B−1
T · C] (3.1)

bestimmen.

1Für den Beweis der Preisfestsetzungsformel wird auf das Buch
”
Finanzmathematik: Die Bewertung

von Derivaten“ von Albrecht Irle [04] verwiesen.
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3.2. Herleitung des Äquivalenten Martingalmaßes

Das Ziel dieses Kapitels ist es, ein Äquivalentes Martingalmaß zu finden, um den fairen

Preis für ein Derivat berechnen zu können. Dafür ist es zuerst erforderlich den Begriff

eines Martingals zu definieren.

Definition 3.2.1 (Martingal).

Es sei X = (Xt)t∈I ein adaptierter stochastischer Prozess auf (Ω,F ,P, (Ft)t∈I) mit

I ⊂ R≥0 und E[|Xt|] <∞ für alle t ∈ I. Der Prozess X wird als Martingal bezeichnet,

wenn E[Xt|Fs] = Xs P-fast sicher für alle s ≤ t aus I erfüllt ist.

Martingale werden in der Spieltheorie für faire Glücksspiele und in der Finanzmathe-

matik für faire Preise verwendet. Die Martingaleigenschaft E[Xt|Fs] = Xs besagt, dass

weder eine positive noch eine negative Entwicklung zu erwarten ist. Auf einem Finanz-

markt wird aber durch die Existenz der risikolosen Anlage eine positive Entwicklung

des Wertes erwartet. In der Definition des Äquivalenten Martingalmaßes wird diese

Erwartung durch das Abdiskontieren der Preisprozesse ausgeglichen. Hierfür wird der

Bondpreisprozess verwendet und wenn der Wert in Einheiten des Bonds betrachtet

wird, ist es möglich die verschiedenen Zeitpunkte zu vergleichen.

Definition 3.2.2 (Äquivalentes Martingalmaß).

Sei (Bt, S
1
t , . . . , S

J−1
t )t∈I ein J-dimensionaler adaptierter Preisprozess auf dem Wahr-

scheinlichkeitsraum (Ω,F ,P, (Ft)t∈I), wobei Bt den Bondpreis im Zeitpunkt t dar-

stellt. Sind P und Q zwei äquivalente Maße, so wird Q als äquivalentes Martingal-

maß oder äquivalentes riskikoneutrales Wahrscheinlichkeitsmaß bezeichnet, falls für

alle j ∈ {1, . . . , J − 1}

(S̃t)t∈I := (B−1
t · S

j
t )t∈I

ein Martingal unter Q bildet.

Die Preise der Basisfinanzgüter sind exogen, daher erscheint es sinnvoll, dass deren

abdiskontierter Preisprozess ein Martingal bildet. Anhand der Bewertungsformel folgt

dann, dass die Preise der Basisfinanzgüter immer arbitragefrei sein müssen.

Das stochastische Element unseres Preisprozesses für das risky asset ist ein Standard

Wienerprozess, der uns eine gute Ausgangslage in Bezug auf Martingale bietet. Wir

erhalten mit einem Standard Wienerprozess einen stochastischen Prozess, der gleichzei-

tig die Martingaleigenschaft erfüllt. Außerdem zeigt der folgende Satz, dass über einen

Standard Wienerprozess noch zwei weitere Martingale gewonnen werden können.
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Satz 3.2.3.

Sei W = (Wt)t∈[0,∞) ein Wienerprozess auf dem Wahrscheinlichkeitsraum (Ω,F ,P)

und adaptiert an die Filtration (Ft)t∈[0,∞). Dann sind folgende stochastische Prozesse

Martingale:

i.) (Wt)t∈[0,∞)

ii.) (W 2
t − t)t∈[0,∞)

iii.) (eaWt−1/2a2t)t∈[0,∞) mit a ∈ R.

Der Prozess unter iii.) wird als Exponentialmartingal bezeichnet.

Beweis.

Für den Beweis müssen wir zeigen, dass der Erwartungswert vom Absolutbetrag der

Zufallsvariablen endlich ist und dass der Prozess die Martingaleigenschaft erfüllt, also

E[Xt|Fs] = Xs ist.

i.) Die Existenz aller Momente der Normalverteilung liefert die Endlichkeit des Er-

wartungswertes, sodass nur noch die Martingaleigenschaft gezeigt werden muss.

In der Definition des Wienerprozesses (Definition 2.4.1) erhalten wir Eigenschaf-

ten über die Zuwächse Wt −Ws, die wir, über kleine Umformungen, an dieser

Stelle ausnutzen können. Daher berechnen wir für 0 ≤ s ≤ t ≤ ∞ und Fs den

bedingten Erwartungswert und gelangen durch die Linearität zu:

E[Wt|Fs] = E[Wt −Ws +Ws|Fs]

= E[Wt −Ws|Fs] + E[Ws|Fs].

Nun wissen wir, dass nach 2.4.1 iii.) Wt−Ws unabhängig ist zu Fs und durch den

adaptierten Prozess ist Ws messbar bzgl. Fs. Somit vereinfacht sich der erste Teil

zu einem normalen Erwartungswert und der hintere Term zu Ws (siehe Appendix

Satz A.0.3):

= E[Wt −Ws] +Ws.

Der Erwartungswert berechnet sich durch die Normalverteilung N (0, t − s) aus

2.4.1 ii.) zu 0 und es ergibt sich:

E[Wt|Fs] = Ws.
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ii.) Die Existenz aller Momente resultiert auch hier aus der Normalverteilung von

Wt. Genau wie zuvor möchten wir zunächst umformen, um die Eigenschaften der

Zuwächse ausnutzen zu können. Jedoch betrachten wir zur besseren Übersicht

zunächst nur den bedingten Erwartungswert von W 2
t für t ∈ [0,∞):

E[W 2
t |Fs] = E[W 2

t − 2WsWt + 2WsWt +W 2
s +W 2

s − 2W 2
s |Fs]

= E[(Wt −Ws)
2 + 2Ws(Wt −Ws) +W 2

s |Fs]

= E[(Wt −Ws)
2|Fs] + 2E[Ws(Wt −Ws)|Fs] + E[W 2

s |Fs]

= E[(Wt −Ws)
2|Fs] + 2WsE[(Wt −Ws)|Fs] +W 2

s .

Mit derselben Begründung wie zuvor haben wir Ws und W 2
s wegen ihrer Mess-

barkeit zu Fs bereits herausziehen können, denn bei Veränderungen durch eine

borel-messbare Abbildung bleiben Messbarkeit und Unabhängigkeit erhalten. Im

nächsten Schritt können wir deshalb wieder den bedingten Erwartungswert zu

einem einfachen Erwartungswert umschreiben:

E[W 2
t |Fs] = E[(Wt −Ws)

2] + 2WsE[(Wt −Ws)] +W 2
s

= V[(Wt −Ws)] + E[(Wt −Ws)]
2 + 2WsE[(Wt −Ws)] +W 2

s .

Über Wt −Ws ∼ N (0, t − s) kennen wir die Varianz und den Erwartungswert

bzw. das zweite Moment für den Zuwachs des Wienerprozesses und erhalten

E[W 2
t |Fs] = (t− s) +W 2

s .

Folglich ist die Martingaleigenschaft erfüllt:

E[W 2
t − t|Fs] = E[W 2

t |Fs]− t

= (t− s) +W 2
s − t

= W 2
s − s.

iii.) Analog zu den Beweisschritten für die ersten beiden Punkte nutzen wir wieder
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Messbarkeit (?) bzw. Unabhängigkeit (??) bzgl. Fs aus. Es gilt für a ∈ R:

E[eaWt|Fs] = E[eaWt−aWs+aWs|Fs]

= E[ea(Wt−Ws) · eaWs |Fs]
?
= eaWs · E[ea(Wt−Ws)|Fs]
??
= eaWs · E[ea(Wt−Ws)].

Im Erwartungswert steht eine Zufallsvariable mit logarithmischer Normalvertei-

lung zu den Parametern 0 und a2(t − s), der sich mit Bezug auf Satz 2.4.3 be-

rechnen lässt:

E[ea(Wt−Ws)] = e(
1
2
a2(t−s)).

Nun folgt direkt die Martingaleigenschaft für das Exponentialmartingal:

E[eaWt− 1
2
a2t|Fs] = E[eaWt|Fs] · e−

1
2
a2t

= eaWs · E[ea(Wt−Ws)] · e−
1
2
a2t

= eaWs · e
1
2
a2(t−s) · e−

1
2
a2t

= eaWs− 1
2
a2s.

Wie Beispiele für Martingale mit einem Wienerprozess aussehen können, ist jetzt be-

kannt. Wir haben gesehen, dass unter anderem ein geometrischer Wienerprozess ohne

Driftterm ein Martingal bildet und als Exponentialmartingal bezeichnet wird. Dieser

Prozess bleibt ein Martingal, wenn wir ihn mit einem konstanten Startwert versehen.

Um eine Idee zu entwickeln, wie das Äquivalente Martingalmaß hergeleitet werden

kann, betrachten wir den abdiskontierten Preisprozess unter dem ursprünglichen Maß

P. Dieser hat bereits Ähnlichkeiten zu dem Exponentialmartingal und berechnet sich

zu:

S̃t = B−1
t · St = e−rt · eσWt+(µ− 1

2
σ2)·t

= eσWt+(µ−r− 1
2
σ2)·t (3.2)

= e(µ−r)t · eσWt− 1
2
σ2t.

Im Vergleich zu Satz 3.2.3 iii.) mit a = σ erhalten wir beim abdiskontierten Preispro-
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zess zusätzlich den Driftterm e(µ−r)t. Zur Modifikation dieses Prozesses steht uns nur

die Möglichkeit einen Maßwechsel durchzuführen zur Verfügung. Die Frage ist, wie die-

ser Prozess durch den Wechsel auf ein neu definiertes Maß beeinflusst wird. Das einzige

Element, das an das Wahrscheinlichkeitsmaß P gekoppelt ist, ist der Wienerprozess. In

der Defintion 2.4.1 wird in Bedingung ii.) gefordert, dass das Bildmaß von Wt unter

P einer Normalverteilung entspricht. Diese Eigenschaft bleibt bei einem Maßwechsel

allgemein nicht gültig. Es muss demnach deutlich unterschieden werden zwischen Wie-

nerprozessen für zwei unterschiedliche Maße. Deshalb erfüllen die Prozesse im Satz

3.2.3 die Martingaleigenschaft nur unter dem Maß, unter dem der Wienerprozess defi-

niert wurde. Diese vermeintliche Einschränkung auf die Kopplung von Wienerprozess

und Maß, lässt sich vorteilhaft nutzen, um ein Äquivalentes Martingalmaß herzuleiten.

Denn der Satz von Girsanov, auch als Girsanov-Transformation bezeichnet, erlaubt

eine Aussage über den Zusammenhang von zwei Wienerprozessen unter verschiedenen

Maßen. Wird die dort angegebene Dichte verwendet, um ein neues Maß Q zu definieren,

so ergibt sich ein neuer Standard Wienerprozess unter Q, der sich vom ursprünglichen

Wienerprozess unter P ableitet.

3.2.1. Der Satz von Girsanov

Satz 3.2.4 (Girsanov).

Sei W = (Wt)t∈[0,T ] ein Standard Wienerprozess auf
(
Ω,F ,P, (Ft)t∈[0,T ]

)
mit T > 0

und ϑ ∈ R. Für LT := e(ϑWT− 1
2
ϑ2T) wird durch Q(A) =

∫
A
LT dP für alle A ∈ FT ein

zu P äquivalentes Maß Q auf FT definiert, sodass Ŵ = (Wt − ϑt)t∈[0,T ] ein Standard-

Wienerprozess bzgl. Q ist.

Bevor dieser Satz verwendet oder beweisen wird, ist es wichtig auf einige Details näher

einzugehen. Es wird ein neues Maß Q durch Angabe der Dichte bezüglich P|FT definiert.

Als erstes sei erwähnt, dass LT ≥ 0 und FT -messbar ist und somit die Anforderung

für eine Radon-Nikodym Dichte erfüllt sind. Der Grund für die Einschränkung auf

die σ-Algebra FT ist die Messbarkeit von LT . Diese resultiert aus der Adaptiertheit

des Wienerprozesses und der FT -Messbarkeit von WT . Die Messbarkeit kann allgemein

nicht für feinere Elemente aus der Filtration sichergestellt werden. Aber eine Fortset-

zung des Maßes Q auf F oder Ft mit t > T ist für unser Modell nicht notwendig, da

wir nur Derivate betrachten, deren Auszahlung spätestens im Zeitpunkt T erfolgen.

Desweiteren hat die Dichte die besondere Form von einem Element des Exponential-

martingals, welches wir schon im Satz 3.2.3 kennengelernt haben. Welche Vorteile wir

aus dieser Martingaleigenschaft für die Dichte ziehen können und die Tatsache, dass
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das neu definierte Maß Q auf FT ein äquivalentes Maß zu P ist, wird in dem nächsten

Satz genauer erläutert.

Satz 3.2.5 (Martingale als Dichte).

Sei
(
Ω,F ,P, (Ft)t∈[0,T ]

)
ein Wahrscheinlichkeitsraum und (Lt)t∈[0,T ] ein Martingal mit

EP[Lt] = 1 und Lt > 0 für alle t ∈ [0, T ], dann gilt Folgendes:

i.) Mit LT als Dichte bzgl. P wird auf FT ein zu P äquivalentes Wahrscheinlichkeits-

maß Q definiert.

ii.) Für eine Ft-messbare, über Q integrierbare Zufallsvariable Y gilt∫
A

Y dQ =

∫
A

Y · Lt dP

für alle A ∈ Ft.

iii.) Für eine Ft-messbare, über Q integrierbare Zufallsvariable Y und Fs ⊂ Ft gilt

EQ[Y |Fs] =
EP[Y Lt|Fs]

Ls
.

Beweis.

i.) Zu zeigen: Q ist ein zu P|FT äquivalentes Wahrscheinlichkeitsmaß.

Durch LT > 0 haben wir die Dichte von Q bzgl. P für alle A ∈ FT definiert, dass

bedeutet für ein A ∈ FT gilt

Q(A) =

∫
A

LT dP.

Das Martingal ist ein adaptierter Prozess und damit ist LT FT -messbar, außerdem ist

LT nicht negativ. Daher sind die Bedingungen für eine Radon-Nikodym Dichte erfüllt

und es übetragen sich die Maßeigenschaften von P auf Q. Damit gezeigt ist, dass Q
auch ein Wahrscheinlichkeitsmaß ist, muss noch die Normierung auf 1 geprüft werden.

Es gilt

Q(Ω) =

∫
Ω

LT dP = EP[LT ] = 1.

Diese Eigenschaft wird in den Voraussetzungen gefordert. Bei der Äquivalenz der beiden

Maße, also für alle A ∈ FT soll Q(A) = 0 ⇔ P(A) = 0 sein, folgt die Hinrichtung aus

der Tatsache, dass LT > 0 ist und die Rückrichtung aus dem Satz von Radon-Nikodym.
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ii.) Zu zeigen:
∫
A
Y dQ =

∫
A
Y · Lt dP für eine Ft-messbar, über Q integrierbare

Zufallsvariable Y und alle A ∈ Ft.

Sei Y eine Ft-messbare, über Q integrierbare Zufallsvariable und A ∈ Ft, dann gilt∫
A

Y dQ =

∫
A

Y · LT dP

=

∫
A

E[Y · LT |Ft] dP.

Diese Gleichung folgt aus den Eigenschaften, die bei der Definition des bedingten Er-

wartungswertes gefordert werden (siehe Anhang A.0.2 (ii) ), da wir gerade A aus Ft
gewählt haben. Der Erwartungswert wird auf Ft bedingt und durch die Messbarkeit

von Y bzgl. dieser σ-Algebra können wir Y herausziehen (siehe Anhang A.0.3 (i)).

Daher ergibt sich weiter ∫
A

Y dQ =

∫
A

Y · E[LT |Ft] dP

=

∫
A

Y · Lt dP.

Im letzten Schritt nutzen wir die Martingaleigenschaft aus, die für den stochastischen

Prozess (Lt)t∈[0,T ] vorausgesetzt wurde.

Desweiteren sei hier noch erwähnt, dass wir als Zufallsvariable auch 1Ω wählen können

und sich somit

Q(A) =

∫
A

1Ω · Lt dP

=

∫
A

Lt dP

für alle A ∈ Ft berechnen lässt. Dies macht deutlich, dass wir für jedes t ∈ [0, T ] auf

Ft das Element Lt des Martingals als Dichte für Q bzgl. P verwenden können.

iii.) Zu zeigen: EQ[Y |Fs] = EP[Y Lt|Fs]
Ls

für eine Ft-messbare, über Q integrierbare Zu-

fallsvariable Y mit Fs ⊂ Ft.

Sei Y eine Ft-messbare, über Q integrierbare Zufallsvariable, Fs ⊂ Ft und A ∈ Fs.
Dann ist EQ[Y |Fs] die fast-sicher eindeutige Fs-messbare Zufallsvariable für die gilt,
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dass ∫
A

EQ[Y |Fs] dQ =

∫
A

Y dQ nach ii.)
=

∫
A

Y · Lt dP

und EP[Y Lt|Fs] ist die fast-sicher eindeutige Fs-messbare Zufallsvariable mit∫
A

Y · Lt dP =

∫
A

EP[Y Lt|Fs] dP

=

∫
A

EP[Y Lt|Fs] ·
Ls
Ls

dP

?
=

∫
A

EP[Y Lt|Fs]
Ls

dQ.

In der letzten Gleichung (?) greifen wir auf Teil ii.) zurück, denn wir integrieren über

eine Fs messbare Zufallsvarible und können deshalb durch Ls zu dem Maß Q übergehen.

Insgesamt folgt also für alle A ∈ Fs∫
A

EQ[Y |Fs] dQ =

∫
A

EP[Y Lt|Fs]
Ls

dQ

und beide Zufallsvariablen unter dem Integral sind Fs-messbar. Daher können wir mit

der fast-sicheren Eindeutigkeit des bedingten Erwartungswertes folgern, dass

EQ[Y |Fs] =
EP[Y Lt|Fs]

Ls

ist.

Den soeben bewiesenen Satz 3.2.5 werden wir für den Beweis des Satzes von Girsanov

verwenden, denn er ermöglicht uns zwischen den beiden Maßen zu wechseln. So können

aus Informationen, die nur unter einem Maß bekannt sind, auch Eigenschaften, die

unter dem anderen Maß gelten, hergeleitet werden. Der erste Teil des Beweises von Satz

3.2.4 behandelt das Wahrscheinlichkeitsmaß Q und die Äquivalenz zu P. Im zweiten

Beweisteil wird dann die Aussage über den Wienerprozess bzgl. Q gezeigt.



3 Das Äquivalente Martingalmaß 28

Beweis des Satzes von Girsanov (3.2.4).

Durch die Voraussetzungen aus dem Satz ist Folgendes für den Beweis gegeben:

- ϑ ∈ R und T > 0,

- W = (Wt)t∈[0,T ] als Standard-Wienerprozess auf
(
Ω,F ,P, (Ft)t∈[0,T ]

)
- LT := e(ϑWT− 1

2
ϑ2T) als Dichte von Q bzgl. P|FT .

(i) Zu zeigen: Q ist ein zu P|FT äquivalentes Wahrscheinlichkeitsmaß

Der stochastische Prozess (Lt)t∈[0,T ] =
(
eϑWt− 1

2
ϑ2t
)
t∈[0,T ]

ist nach Satz 3.2.3 iii.) ein

Martingal. Durch die Exponentialform ist für alle t ∈ [0, T ] erfüllt, dass Lt > 0 ist und

außerdem berechnet sich der Erwartungswert für jedes Element des Martingals durch

EP[Lt] = EP[eϑWt− 1
2
ϑ2t]

= EP[eϑWt ] · e−
1
2
ϑ2t

?
= e

1
2
ϑ2t · e−

1
2
ϑ2t

= 1.

Die Gleichung ? folgt dabei aus der Tatsache, dass Wt N (0, t)-verteilt und damit eϑWt

LN (0, ϑ2t)-verteilt ist. Die Berechnung des Erwartungswertes erfolgte mit dem Satz

2.4.3. Es sind alle Vorausetzungen für den Satz 3.2.5 erfüllt und wir erhalten durch die

Aussage in i.), dass Q und P zwei äquivalente Wahrscheinlichkeitsmaße auf FT sind.

(ii) Zu zeigen: Ŵ = (Wt − ϑt)t∈[0,T ] ist ein Standard-Wienerprozess unter Q.

Es sind alle vier definierenden Eigenschaften eines Standard Wienerprozesses aus 2.4.1

für den Prozess Ŵ = (Ŵt)t∈[0,T ] = (Wt − ϑt)t∈[0,T ] unter dem Maß Q nachzuweisen.

Diese werden im Folgenden Schritt für Schritt behandelt. W = (Wt)t∈[0,T ] bezeichnet

weiterhin einen Standard Wienerprozess unter P. Der Messraum (Ω,F) sowie die Fil-

tration (Ft)t∈[0,T ] sind für W und Ŵ identisch und so kann aus der Form von Ŵ leicht

gefolgert werden, dass auch dieser Prozess adaptiert ist an (Ft)t∈[0,T ].

i.) Ŵ0 = W0 − ϑ · 0 = 0 P-f.s. und durch die Äquivalenz der Maße auch Q-f.s..

ii.) Zu zeigen: Wt −Ws ist unter Q N (0, t− s)-verteilt für 0 ≤ s < t ≤ T .

Es soll zunächst gezeigt werden, dass die Zuwächse von W unter Q normalverteilt

sind mit Erwartungswert ϑ(t− s) und Varianz (t− s). Daraus kann anschließend

die geforderte Verteilung von Ŵ unter Q gefolgert werden. Die Verteilung von W



3 Das Äquivalente Martingalmaß 29

wird über die Verteilungsfunktion berechnet:

Q({Wt −Ws ≤ x}) =

∫
Ω

1{Wt−Ws≤x}(ω) dQ

=

∫
Ω

1{Wt−Ws≤x}(ω) · Lt dP.

Es wird Satz 3.2.5 ii.) verwendet mit 1{Wt−Ws≤x} als Ft-messbar Funktion, denn

durch Wt und Ws als Ft-messbare Funktionen ist {Wt −Ws ≤ x} ∈ Ft. Nun gilt

weiter ∫
Ω

1{Wt−Ws≤x}(ω) · Lt dP

=

∫
Ω

1{Wt−Ws≤x}(ω) · e(ϑWt− 1
2
ϑ2t) · eϑWs−ϑWs dP

=

∫
Ω

1{Wt−Ws≤x}(ω) · e(ϑ(Wt−Ws)− 1
2
ϑ2t) · eϑWs dP.

Die Unabhängigkeit von Wt−Ws zu Fs impliziert die Unabhängigkeit von Wt−Ws

zu Ws = Ws −W0 (siehe Anhang A.0.1), daher gilt∫
Ω

1{Wt−Ws≤x}(ω) · e(ϑ(Wt−Ws)− 1
2
ϑ2t) · eϑWs dP

=

∫
Ω

1{Wt−Ws≤x}(ω) · e(ϑ(Wt−Ws)− 1
2
ϑ2t) dP ·

∫
Ω

eϑWs dP

=

∫
Ω

1{Wt−Ws≤x}(ω) · e(ϑ(Wt−Ws)− 1
2
ϑ2t) dP · EP[eϑWs ].

Das Problem, die Verteilung von Wt −Ws zu ermitteln, hat sich also nun durch

die Eigenschaft der Unabhängigkeit auf zwei leicht zu behandelnde Integrale ver-

einfacht. Das erste Integral können wir umformen indem wir den Zuwachs als eine

Zufallsvariable betrachten, deren Verteilung bekannt ist, also Wt −Ws =: Y ∼
N (0, t − s). Hier können wir mit Hilfe der Dichte für die Normalverteilung das

Integral berechnen. Das zweite Integral kann, wie oben bereits geschehen, über

die logarithmische Normalverteilung berechnet werden. Also ergibt sich

Q({Wt −Ws ≤ x}) =

∫
Ω

1{Y≤x}(ω) · e(ϑY− 1
2
ϑ2t) dP · EP[eϑWs ]

=

∫
R
1{y≤x}(y) · e(ϑy− 1

2
ϑ2t) dN (0, t− s)(y) · e

1
2
ϑ2s

=

x∫
−∞

e(ϑy− 1
2
ϑ2t) · 1√

2π(t− s)2
· e−

1
2

y2

(t−s) dy · e
1
2
ϑ2s
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=

x∫
−∞

1√
2π(t− s)2

· e
1
2
ϑ2s+ϑy− 1

2
ϑ2t− 1

2
y2

(t−s) dy

=

x∫
−∞

1√
2π(t− s)2

· e
− 1

2

(
ϑ2(t−s)+ y2

(t−s)−2ϑy

)
dy

=

x∫
−∞

1√
2π(t− s)2

· e
− 1

2

(
y2−2yϑ(t−s)+ϑ2(t−s)2

(t−s)

)
dy

=

x∫
−∞

1√
2π(t− s)2

· e
− 1

2

(
(y−ϑ(t−s))2

(t−s)

)
.

︸ ︷︷ ︸
Dichtefunktion für N (ϑ(t−s),(t−s))

dy

Wir erhalten durch die Umformungen ein Integral über die Dichte einer Normal-

verteilung. Die Integrationsgrenzen sind unverändert geblieben, deshalb ergibt

sich als Verteilungsfunktion für die Zuwächse von W unter Q die Verteilungs-

funktion einer Normalverteilung zu ϑ(t − s) und (t − s). Daher ist Wt − Ws

unter Q N (ϑ(t − s), (t − s))-verteilt und wir können folgern, dass Ŵt − Ŵs =

Wt −Ws − ϑ(t− s) die geforderte N (0, (t− s))-Verteilung unter Q besitzt.

iii.) Zu zeigen: Ŵt − Ŵs ist stochastisch unabhängig von Fs für alle 0 ≤ s < t ≤ T .

Betrachte Fs und Wt−Ws für 0 ≤ s < t ≤ T , dann werden folgende Eigenschaften

für diesen Beweis genutzt:

a) Wt −Ws, Ws sind Ft-messbar, damit sind auch Ŵt − Ŵs, Ŵs Ft-messbar,

b) Wt −Ws und Fs sind unabhängig unter P.

Es gilt für jede borel-messbare und beschränkte Abbildung h : R → R mit Satz

3.2.5 iii.), dass

EQ

[
h(Ŵt − Ŵs)

∣∣∣ Fs] =
EP

[
h(Ŵt − Ŵs) · Lt

∣∣∣ Fs]
Ls

= EP

[
h(Ŵt − Ŵs) ·

Lt
Ls

∣∣∣ Fs] .
= EP

[
h(Wt −Ws − ϑ(t− s)) · Lt

Ls

∣∣∣ Fs] .
Im vorletzten Schritt dürfen wir 1

LS
hineinziehen (Satz A.0.3), denn da Ls > 0
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und messbar ist, ist auch 1
LS

messbar bzgl. Fs. Desweiteren ist

Lt
Ls

= e(ϑ(Wt−Ws)− 1
2
ϑ2(t−s)) (3.3)

und wir definieren h̃(y) = h(y − ϑ(t − s)) · e(ϑy−
1
2
ϑ2(t−s)). Dies ist eine borel-

messbare Funktion, denn h ist borel-messbar und die Exponentialfunktion ist

stetig und somit auch borel-messbar. Mit der Unabhängigkeit aus b) wird der

bedingte Erwartungswert unter P zu einem normalen Erwartungswert (siehe A.0.3

ii.)) und wir erhalten:

EP

[
h(Wt −Ws − ϑ(t− s)) · Lt

Ls

∣∣∣ Fs]
= EP

[
h̃(Wt −Ws) | Fs

]
= EP

[
h̃(Wt −Ws)

]
= EP

[
h(Wt −Ws − ϑ(t− s)) · Lt

Ls

]
.

Für den Erwartungswert ist nur die Verteilung einer Zufallsvariablen relevant.

Mit der identischen Verteilung bei Wt − Ws und Wt−s, unterliegt auch Lt
Ls

der

gleichen Verteilung wie Lt−s (siehe Gleichung 3.3). Im Erwartungswert können

demnach Wt −Ws durch Wt−s und Lt
Ls

durch Lt−s ausgetauscht werden. So ist es

sehr leicht möglich wieder auf das Maß Q zu wechseln:

EP

[
h(Wt −Ws − ϑ(t− s)) · Lt

Ls

]
= EP [h(Wt−s − ϑ(t− s)) · Lt−s]

= EQ [h(Wt−s − ϑ(t− s))]

= EQ [h(Wt −Ws − ϑ(t− s))]

= EQ

[
h(Ŵt − Ŵs)

]
.

Für den Wechsel zum Maß Q wird hier die Dichte Lt−s verwendet, weil Wt−s nun

Ft−s-messbar ist (Satz 3.2.5 ii.)). Auf Grundlage der vorherigen Begründung kann

auch wieder zu Wt−Ws zurücktransformiert werden und die Unabhängigkeit von

Ŵt − Ŵs zu Fs unter Q ist gezeigt.
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iv.) Zu zeigen: Ŵ = (Wt − ϑt)t∈[0,T ] besitzt stetige Pfade.

(Wt)t∈[0,T ] besitzt stetige Pfade, daher ist auch Ŵt : [0, T ] → R für ein festes

ω ∈ Ω eine stetige Abbildung als Addition von zwei stetigen Funktionen.

Der Satz von Girsanov wurde bewiesen und zeigt sowohl die verwendete Dichtefunkti-

on, sowie die konkrete Veränderung des Wienerprozesses bei einem Maßwechsel. Wir

wissen jetzt, dass sich ein Standard Wienerprozess durch den Maßwechsel zu einem

Wienerprozess mit linearen Driftterm transformiert. Um wieder auf einen Standard

Wienerprozess zu gelangen, muss dieser Driftterm eliminiert werden. Die Aufgabe be-

steht nun darin die konkrete Dichte festzulegen, welche unseren Wertprozess des risky

assets in ein Martingal wandelt. Hierfür greifen wir auf die bereits gesehene Umformung

aus Gleichung 3.2 und den Satz 3.2.3 zurück:

S̃t = B−1
t · St = eσWt+(µ−r− 1

2
σ2)·t

= eσ(Wt− r−µσ ·t)−
1
2
σ2·t.

Wenn wir ϑ aus dem Satz von Girsanov (Satz 3.2.4) als ϑ := r−µ
σ

definieren und infol-

gedessen auch das Maß Q mit die Dichte LT := e

(
r−µ
σ
WT− 1

2( r−µσ )
2
T
)

bzgl. P verwenden,

so transformiert sich unser Standard-Wienerprozesss unter P zu einem Wienerprozess

mit Drift (µ−r
σ

) unter Q. Das bedeutet, der Prozess

Ŵ := (Wt −
r − µ
σ
· t)t∈[0,T ]

entspricht einem Standard Wienerprozess, also ohne Driftterm, unter Q. Demnach

erreichen wir unter Q für den abdiskontieren Preisprozess

S̃t = B−1
t · St = eσŴt− 1

2
σ2·t,

genau die Form eines Exponentialmartingals aus Satz 3.2.3 mit dem Standard Wiener-

prozess Ŵ .
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Zur Vereinfachung werden in der nachfolgenden Tabelle die unterschiedlichen Prozesse

für das Maß P aus dem Modell und das Äquivalente Martingalmaß Q abgebildet.

Maß P Maß Q

Standard Wienerprozess W = (Wt)t∈[0,T ] Ŵ =
(
Wt − r−µ

σ
· t
)
t∈[0,T ]

(St)t∈[0,T ]

(
S0 · eσWt+(µ−σ

2

2
)·t
)
t∈[0,T ]

(
S0 · eσŴt+(r−σ

2

2
)·t
)
t∈[0,T ]

(S̃t)t∈[0,T ]

(
S0 · eσWt+(µ−r−σ

2

2
)·t
)
t∈[0,T ]

(
S0 · eσŴt−σ

2

2
·t
)
t∈[0,T ]

Tabelle 3.1.: Übersicht der Prozesse für die Maße P und Q

3.3. Kurze Zusammenfassung

Mit Hilfe der Girsanov-Transformation konnte in diesem Kapitel ein Äquivialentes

Martingalmaß, bezeichnet mit Q, für das Black-Scholes Modell hergeleitet werden. Das

Wahrscheinlichkeitsmaß Q wurde dabei auf dem Wahrscheinlichkeitsraum (Ω,FT ,P)

definiert und für die Derivate, die in dieser Arbeit bewertet werden, stellt dies keine

Einschränkung dar. Für die zu bewertenden Derivate werden die jeweiligen Claims

betrachtet und diese sind nach Voraussetzung immer FT -messbar. Die Existenz des

Äquivalenten Martingalmaßes stellt sicher, dass wir arbitragefreie Preise im Black-

Scholes Modell berechnen können. Für die Berechnung des fairen Preises wird die

zu Beginn des Kapitels genannte Formel verwendet. Desweiteren wird der Satz von

Girsanov auch bei späteren Beweisen ein sehr hilfreiches Instrument sein.



34

4. Bewertung einer Call-Option

4.1. Bewertung im Finanzmarktmodell

Das Äquivalente Martingalmaß steht uns jetzt zur Verfügung, um Derivate anhand ihrer

Claims zu bewerten. Den Preis zum Zeitpunkt 0 eines Derivates mit Claim C : Ω→ R
berechnen wir über die Formel

P0(C) = EQ[B−1
T · C]. (4.1)

Eine der interessanten Folgerungen für Finanzmärkte, die aus dem Black-Scholes Mo-

dell gezogen werden können, zeigt sich anhand der Form der Preisprozesse unter dem

Äquivalenten Martingalmaß. Bei Betrachtung der Tabelle 3.1 fällt auf, dass mit dem

Übergang von P zu Q die Driftvariable µ aus dem stochastischen Prozess des risky assets

komplett verschwindet. Der Prozess beinhaltet nur noch die Zinsrate r und die Vola-

tilität σ als Modellparameter. Welche Aussagen können jedoch aus diesem Phänomen

gezogen werden?

Im Bereich der Finanzmathematik stellt die Bewertung von Risiken eine anspruchsvolle

Aufgabe dar, welche für tiefergehende Betrachtungen gelöst werden muss. Die Frage

ist zunächst, wie das Risiko mathematisch definiert und gemessen wird und daraus

resultierend welche Parameter zum Beispiel das Risiko der Investition in eine Aktie

widerspiegeln. Die Bewertung von Risiken ist auch ein wesentlicher Bestandteil bei

der Bewertung von Derivaten, weil insbesondere die Ungewissheit über die Auszahlung

das Festlegen eines fairen Preises erschwert. Auch wenn an dieser Stelle Risiko nur in

Bezug auf Derivate und deren Bewertung betrachtet werden soll, können wir durch

den fehlenden Driftterm und die Bewertungsformel (4.1) schon eine Aussage für das

Black-Scholes Modell treffen. Dadurch, dass der Drift nicht mehr in dem Prozess un-

ter Q enthalten ist, wird er auch bei der Bewertungsformel nicht mehr berücksichtigt.

Der faire Preis eines Derivates berechnet sich daher unabhängig von der zu erwarten-

den Rendite µ. Das Risiko nimmt somit einzig über die Volatilität σ Einfluss auf die
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Preise von Derivaten im Black-Scholes Modell. Auch ohne die explizite Berechnung

kann bereits gefolgert werden, dass für Marktteilnehmer eines Finanzmarktes, die das

Black-Scholes Modell unterstellen und unterschiedliche Ansichten über die erwartete

Rendite eines risky assets besitzen, ein identischer Preis für das Derivat resultiert. Die

persönliche Ansicht über die erwartete Rendite ist demnach für die Bewertung irrele-

vant. Unter dem risikoneutralen Wahrscheinlichkeitsmaß nimmt die Zinsrate, die am

Markt zu beobachten ist, die Rolle des Drifts im geometrischen Wienerprozess für das

risky asset ein.

Dieses Ergebnis sehen wir auch im nächsten Abschnitt, wenn wir eine Formel berechnen,

die den Preis für eine europäische Call-Option angibt.

4.2. Die Black-Scholes Formel

In dem Black-Scholes Modell betrachten wir nun eine europäische Call-Option auf das

risky asset. Eine Call-Option bietet dem Käufer das Recht, aber nicht die Pflicht, das

risky asset zu einem Strikepreis K, der zum Zeitpunkt 0 festgelegt wird, zu kaufen.

Da der Käufer nicht in der Pflicht steht, wird er die Option nur nutzen, wenn der

Kurs bei Fälligkeit über dem Strikepreis liegt, also wenn ST > K ist. In diesem Fall

bringt die Option eine Auszahlung in Höhe von ST −K, denn der Besitzer der Option

bezahlt den Strikepreis K und erhält die Aktie mit aktuellem Wert ST . Im anderen

Fall wird die Option verfallen und keine Auszahlung generieren. Wir erhalten somit

den Claim (ST −K)+ := max{ST −K, 0} = (ST −K) · 1{ST>K} für den europäischen

Call mit Strikepreis K und Fälligkeit T . Diese Abbildung ist FT messbar, da wir den

Preisprozess des risky assets als einen adaptierten Prozess gewählt haben und somit ST

FT -messbar ist. Der Strikepreis K ist nur eine Konstante und unabhängig von ω. In der

Einführung (Kapitel 1) wurde bereits erwähnt, dass eine Arbitragemöglichkeit vorliegt,

wenn die Call-Option kostenlos ausgegeben wird. Wir besitzen jetzt alle Informationen

um den Preis einer europäischen Call-Option zu berechnen und die resultierende Formel

ist bekannt als die Black-Scholes Formel.



4 Bewertung einer Call-Option 36

Satz 4.2.1 (Black-Scholes Formel).

Im Black-Scholes Modell mit Zinsrate r ist der faire Preis einer europäischen Call-

Option mit Strikepreis K und Laufzeit T auf ein risky asset mit Volatilität σ und

Anfangswert S0 zum Zeitpunkt t = 0 gegeben durch

C0(S0, T,K)

= S0 · Φ

(
log(S0

K
) + (r + σ2

2
)T

σ
√
T

)
−Ke−rT · Φ

(
log(S0

K
) + (r − σ2

2
)T

σ
√
T

)
. (4.2)

Mit Φ wird hier die Verteilungsfunktion der N (0, 1)-Verteilung bezeichnet.

Beweis.

Die Bewertung erfolgt nach Gleichung (4.1) mit dem Claim (ST −K)+. Für den Beweis

des Satzes muss nachgewiesen werden, dass die genannte Formel (4.2) das Ergebnis des

folgenden Erwartungswertes ist:

EQ[B−1
T · (ST −K)+] = EQ[e−rT · (ST −K)+].

Um mit diesem Erwartungswert besser rechnen zu können, verwenden wir zur Darstel-

lung eine Indikatorfunktion, denn für die Menge {ST ≤ K} ist max{0, ST − K} = 0

und damit ist auch die Auszahlung sowie die abdiskontierte Auszahlung gleich 0. Der

Term lässt sich daher schreiben als

EQ[e−rT · 1{ST>K} · (ST −K)]

= EQ[e−rT · 1{ST>K} · ST ]− EQ[e−rT · 1{ST>K} ·K)]. (4.3)

Die beiden aufgeführten Erwartungswerte werden im Folgenden getrennt behandelt

und die beiden Ergebnisse zum Schluss wieder zusammengefügt. Der vordere Teil kann

mit Hilfe des Satzes von Girsanov (3.2.4) umgeformt werden. Es muss beachtet werden,

dass wir den passenden stochastischen Prozess auswählen, also den Wienerprozess Ŵ

unter Q verwenden (siehe Tabelle 3.1).

EQ[e−rT · 1{ST>K} · ST ] =

∫
Ω

e−rT · 1{ST>K} · ST dQ

=

∫
Ω

e−rT · 1{ST>K} · S0 · eσŴT+(r−σ
2

2
)T dQ (4.4)

=

∫
Ω

S0 · 1{ST>k} · eσŴT−σ
2

2
T dQ.
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Die Exponentialfunktion aus ST und die Exponentialfunktion, die wir durch den Bond

erhalten haben, können zu einer Dichte zusammengefasst werden. Durch den Maßwech-

seln auf ein neu definiertes Maß ist es nicht mehr notwendig die Exponentialfunktion

unter dem Integral weiter zu behandeln. Der große Vorteil den uns der Satz von Girsa-

nov nun bietet ist, dass wir ohne zusätzliche Rechnungen wissen wie der Preisprozess

des risky assets unter dem neuen Maß aussieht bzw. verteilt ist.

Wir definieren also ein neues Maß Q∗ auf FT durch die Dichte eσŴT−σ
2

2
T bzgl. Q. Es

ergeben sich somit folgende Prozesse, wobei (W̃t)t∈[0,T ] den Standard Wienerprozess

unter Q∗ darstellt:

Maß Q Maß Q∗

Standard Wienerprozess Ŵ =
(
Ŵt

)
t∈[0,T ]

W̃ =
(
Ŵt − σ · t

)
t∈[0,T ]

(St)t∈[0,T ]

(
S0 · eσŴt+(r−σ

2

2
)·t
)
t∈[0,T ]

(
S0 · eσW̃t+(r+σ2

2
)·t
)
t∈[0,T ]

(S̃t)t∈[0,T ]

(
S0 · eσŴt−σ

2

2
·t
)
t∈[0,T ]

(
S0 · eσW̃t+

σ2

2
·t
)
t∈[0,T ]

Tabelle 4.1.: Übersicht der Prozesse mit neuem Maß Q∗

Der Preisprozess unter Q∗ resultiert dabei aus folgender kurzen Rechnung:

S0 · eσŴt+(r−σ
2

2
)·t = S0 · eσŴt−σ2·t+σ2·t+(r−σ

2

2
)·t

= S0 · eσ·

=W̃t︷ ︸︸ ︷
(Ŵt − σ · t) +(σ2+r−σ

2

2
)·t

= S0 · eσW̃t+(r+σ2

2
)·t.

Transformiert man den Erwartungswert aus Gleichung 4.4 auf das neue Maß Q∗, so

vereinfacht sich die Rechnung zur Ermittlung einer einfachen Wahrscheinlichkeit:∫
Ω

S0 · 1{ST>K} · eσŴT−σ
2

2
T dQ =

∫
Ω

S0 · 1{ST>K} dQ∗

= S0 ·Q∗({ST > K}) (4.5)

= S0 · [1−Q∗({ST ≤ K}] .

An dieser Stelle wird das Ereignis {ST > K} bzw. {ST ≤ K}, welches wir bis jetzt

außer Acht gelassen haben, wichtig. Durch den Maßwechsel und den dadurch resultie-
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renden neuen Wienerprozess W̃ , hat sich die Gestalt von ST verändert. Mit dem Satz

von Girsanov konnte die neue Form, wie in Tabelle 4.1 abgebildet, bereits hergeleitet

werden. Formen wir die Menge mit den gewonnenen Erkenntnissen um und nutzen die

bekannte Verteilung von W̃ unter Q∗ aus, so gelangen wir zur Verteilungsfunktion der

Standardnormalverteilung Φ.

{ST ≤ K} =
{
S0 · eσW̃T+(r+σ2

2
)·T ≤ K

}
=

{
σW̃T +

(
r +

σ2

2

)
· T ≤ log

(
K

S0

)}
=

{
σW̃T ≤ log

(
K

S0

)
−
(
r +

σ2

2

)
· T
}

=

W̃T√
T
≤

log
(
K
S0

)
−
(
r + σ2

2

)
· T

σ
√
T

 .

Unter Q∗ ist W̃ unser Wienerprozess, und mit Eigenschaft ii.) aus Definition 2.4.1 bzw.

der Umformulierung für W̃t ist klar, dass W̃T√
T

standardnormalverteilt ist. Daher gilt

1−Q∗ ({ST ≤ K}) = 1−Q∗
W̃T√

T
≤

log
(
K
S0

)
−
(
r + σ2

2

)
· T

σ
√
T




= 1− Φ

 log
(
K
S0

)
−
(
r + σ2

2

)
· T

σ
√
T

 (4.6)

= 1− Φ

(−1) ·
log
(
S0

K

)
+
(
r + σ2

2

)
· T

σ
√
T


= Φ

 log
(
S0

K

)
+
(
r + σ2

2

)
· T

σ
√
T

 .

Durch die Symmetrie der Standardnormalverteilung zur Null, gilt für die Verteilungs-

funktion Φ, dass 1−Φ(x) = Φ(−x) ist. Dies wird im letzten Schritt ausgenutzt und es

folgt bereits der erste Teil der Black-Scholes Formel.
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Der zweite Erwartungswert lässt sich analog umformen, daher soll nur kurz gezeigt

werden, wie diese Gleichungen konkret aussehen.

EQ[e−rT · 1{ST>K} ·K] =

∫
Ω

e−rT · 1{ST>K} ·K dQ

= e−rT ·K ·Q({ST < K}).

Der Einsatz der Girsanov-Transformation ist hier nicht notwendig, denn eine ähnliche

Form wie in Gleichung 4.5 ist direkt gegeben. Unter dem Maß Q hat der stochastische

Prozess eine leicht veränderte Gestalt und dies wird bei der Umformung der Menge

deutlich. So ist in diesem Fall

{ST ≤ K} =
{
S0 · eσŴT+(r−σ

2

2
)·T ≤ K

}
=

ŴT√
T
≤

log
(
K
S0

)
−
(
r − σ2

2

)
· T

σ
√
T

 .

Mit dem Argument aus Gleichung 4.6 kann die Wahrscheinlichkeit durch die Vertei-

lungsfunktion der Standardnormalverteilung ausgedrückt werden:

1−Q ({ST ≤ K}) = Φ

 log
(
S0

K

)
+
(
r − σ2

2

)
· T

σ
√
T

 .

Mit der ersten Umformung aus Gleichung 4.3 können wir nun beide Teilergebnisse ver-

wenden, um den Beweis für die Black-Scholes Formel abzuschließen. Insgesamt ergibt

sich also

EQ[B−1
T · (ST −K)+] = EQ[e−rT · 1{ST>K} · ST ]− EQ[e−rT · 1{ST>K} ·K]

= S0 ·Q∗({ST > K}) + e−rT ·K ·Q({ST > K})

= S0 · Φ

 log
(
S0

K

)
+
(
r + σ2

2

)
· T

σ
√
T


+ e−rT ·K · Φ

 log
(
S0

K

)
+
(
r − σ2

2

)
· T

σ
√
T

 .
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4.3. Fazit und Ausblick

Mit der Black-Scholes Formel kann der arbitragefreie Preis bzw. Wert einer europäischen

Call-Option im Black-Scholes Modell berechnet werden. Der Anfangskurs und die Vo-

latilität des risky assets sowie die Zinsrate sind am Markt gegeben. Die Volatilität muss

hierbei anhand von vergangenen Daten geschätzt werden. Der Preis einer Option kann

daher nur über die Fälligkeitsdauer und den Strikepreis beeinflusst werden und wie am

Anfang des Kapitels erwähnt, ist der Drift µ für die Bewertung irrelevant. Sollen die

Einflüsse der verschiedenen Parameter genauer analysiert werden, so können hierfür die

sogenannten Greeks betrachtet werden. Als Greeks werden die partiellen Ableitungen

nach den verschiedenen Parametern der Black-Scholes Formel bezeichnet.

In der Publikation
”
The Pricing of Options and Corporate Liabilities“ wurde die Black-

Scholes Formel nicht nur hergeleitet, sondern zusätzlich empirisch überprüft. Es stellte

sich heraus, dass die Käufer von Optionen durchweg höhere Preise zahlten und die

Verkäufer der Optionen meistens Preise erhielten, die sehr nah an den errechneten

Preisen lagen. Dies ist vermutlich auf die Transaktionskosten zurückzuführen, die von

den Optionskäufern getragen werden müssen. Im Black-Scholes Modell werden Trans-

aktionskosten, Steuern etc. nicht berücksichtigt.

Die Black-Scholes Formel kann nicht nur verwendet werden, um die europäische Call-

Option zu bewerten, sondern auch den amerikanischen Call. Dieser erlaubt den Kauf

des Underlying zu jedem Zeitpunkt, aber es kann gezeigt werden, dass der Preis für

beide Optionen übereinstimmen müssen. Mit einer Call-Put Parität lässt sich auch der

Preis der europäischen Put-Option bestimmen. Insgesamt ermöglicht die Black-Scholes

Formel die Bewertung der bekanntesten Derivate und in Kapitel 5 wird ein weiteres

Derivat analysiert, welches auch auf die Black-Scholes Formel zurückgreift.

In dem Beweis der Black-Scholes Formel wurde eine Strategie benutzt, die auch bei

der Bewertung anderer Derivate hilfreich ist. Wir berechnen den fairen Preis wie in

Gleichung 4.1 und können den Satz von Girsanov anwenden. Immer wenn wir den ab-

diskontierten Preisprozess für das risky asset unter dem Äquivalenten Martingalmaß

betrachten, kann es hilfreich sein zu dem neuen Maß Q∗ aus dem Beweis überzugehen.

In der nachfolgenden Tabelle sind daher alle drei Maße, die wir bis hier verwendet ha-

ben, mit ihrem Wienerprozess, dem Preisprozess sowie dem abdiskontierten Preispro-

zess abgebildet.
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Maß P Maß Q Maß Q∗

Wienerprozess Wt Ŵt = Wt − r−µ
σ
· t W̃t = Ŵt − σ · t

Kurswert St S0 · eσWt+(µ−σ
2

2
)·t S0 · eσŴt+(r−σ

2

2
)·t S0 · eσW̃t+(r+σ2

2
)·t

Driftterm St µ r r + σ2

disk. Kurs S̃t S0 · eσWt+(µ−r−σ
2

2
)·t S0 · eσŴt−σ

2

2
·t S0 · eσW̃t+

σ2

2
·t

Driftterm S̃t µ− r 0 σ2

Tabelle 4.2.: Übersicht der Wienerprozesse und Preisprozesse
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5. Bewertung einer Barriere-Option

5.1. Barriere-Optionen

Eine leichte Abwandlung der normalen Call- und Put-Optionen sind die Barriere-

Optionen, welche in diesem Kapitel bewertet werden sollen. Aus den verschiedenen

Varianten von Barriere-Optionen wählen wir den Down-and-out Call und werden für

diesen den fairen Preis berechnen. Die Barriere-Optionen haben eine Besonderheit, wo-

durch die Berechnung des fairen Preises schwieriger ist als zuvor bei der Black-Scholes

Formel. Die Auszahlung hängt hier nicht nur von dem Kurswert zum Zeitpunkt T

ab, sondern von dem kompletten Pfad des Prozesses. Für unseren Down-and-Out Call

bedeutet dies, dass die Auszahlung identisch ist mit einer Call-Option unter der Vor-

aussetzung, dass der Kurs des risky assets zu keinem Zeitpunkt unter der vorher fest-

gelegten Barriere B sinkt. Liegt der Kurswert zu einem Zeitpunkt unterhalb oder auf

der Barriere, so erfolgt, auch wenn der Kurs zum Schluss oberhalb des Strikepreises

liegt, keine Auszahlung. Die Barriere B ist dabei kleiner als der Anfangskurs und auch

kleiner als der Strikepreis, da sonst immer eine Auszahlung von 0 erfolgen würde. In

Abbildung 5.1 sind zwei Varianten eines möglichen Kurspfads aufgezeichnet, die sich

nur minimal unterscheiden und im Endzeitpunkt bei dem gleichen Kurswert enden.

Für den blauen Pfad bringt die Down-and-Out Call-Option eine Auszahlung in Höhe

von ST −K, da der Kurs während des gesamten Zeitraums oberhalb der Barriere lag.

Nimmt der Kurs den rot eingezeichneten Verlauf an, so erhält der Käufer der Option

keine Auszahlung, weil die Barriere an einem Zeitpunkt durchbrochen wurde.

Mathematisch stellt man diese zusätzliche Bedingung über eine Indikatorfunktion dar.

Wir haben bereits gesehen, dass eine Call-Option den Claim (ST − K) · 1{ST>K} be-

sitzt. Fügen wir nun an diesen Claim multiplikativ einen zweiten Indikator für die

Menge { inf
0≤t≤T

St > B} an, so erhalten wir den Claim für unseren Down-and-Out

Call. Genau dann wenn der kleinste Wert des risky assets über der Barriere liegt,

muss auch der komplette Pfad oberhalb der Barriere sein. Das Infimum wird nur über

Kurswerte vor dem Zeitpunkt der Auszahlung (T ) gebildet, sodass wir auch folgern
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Abbildung 5.1.: Skizze eines Beispielpfades für einen geometrischen Wienerprozess mit
positivem Drift

können, dass der Claim die Bedingung der FT -Messbarkeit erfüllt. Die Multiplikation

der beiden Indikatoren kann zusammengefasst werden, sodass wir einen Indikator für

die Schnittmenge von {ST > K} und { inf
0≤t≤T

St > B} betrachten müssen. Wie auch

schon im Beweis der Black-Scholes Formel, wird die Wahrscheinlichkeit des Ereignisses

{ST > K, inf
0≤t≤T

St > B} durch Mengenumformungen auf die Verteilung des Wienerpro-

zesses zurückgeführt. Dabei konnten wir die Normalverteilung von Wt ausnutzen und

den Preis einer Call-Option über Φ angeben. In diesem Fall ist jedoch problematisch,

dass zusätzlich noch das Infimum des Wienerprozesses Einfluss nimmt und sich diese

Wahrscheinlichkeit nicht ohne Weiteres berechnen lässt. Mit dem Ziel die Verteilung

des Infimums bestimmen zu können, untersuchen wir den Wienerprozess im nächsten

Abschnitt genauer.
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5.2. Reflexionsprinzip für den Wienerprozess

In Kapitel 2 wurde der Wienerprozess definiert und im Anschluss zur Herleitung des

Preisprozesses im Black-Scholes Modell verwendet. Ebenfalls konnte gezeigt werden,

dass über einen Wienerprozess Martingale erzeugt werden können, die z.B. im Satz von

Girsanov als Dichte fungierten. Die nächste hilfreiche Eigenschaft soll in diesem Kapitel

hergeleitet werden. Wir möchten uns nun mit dem Reflexionsprinzip für Wienerprozesse

beschäftigen, denn dieses liefert das noch fehlende Instrument, um später den Preis der

Barriere-Option zu berechnen. Das Reflexionsprinzip besagt, dass ein Wienerprozess,

der gespiegelt weiterverläuft sobald er z.B. einen bestimmten Wert zum ersten Mal

erreicht, immer noch einen Wienerprozess darstellt. Anders als zuvor beschäftigen wir

uns nun mit mehreren Wienerprozessen, die alle für das selbe Wahrscheinlichkeitsmaß

definiert sind. Wir wollen damit einsteigen, dass wir aus einem Standard Wienerprozess

zwei einfache Beispiele für weitere Wienerprozesse ableiten.

Satz 5.2.1.

Auf einem Wahrscheinlichkeitsraum (Ω,F ,P, (Ft)t∈I) mit einem Standard Wienerpro-

zess W = (Wt)t∈[0,∞) bzgl. (Ft)t∈[0,∞) erfüllen auch die Prozesse

i.) (−Wt)t∈[0,∞) bzgl. (Ft)t∈[0,∞) und

ii.) (Wt+h −Wh)t∈[0,∞) bzgl. (Ft+h)t∈[0,∞) für h ≥ 0

alle Eigenschaften eines Standard Wienerprozesses.

Beweis.

Die Eigenschaften müssen für die neuen Prozesse geprüft werden und hierfür werden

nur kurz die wichtigen Argumente genannt, die für den Nachweis notwendig sind.

i.) (−Wt)t∈[0,∞) bzgl. (Ft)t∈[0,∞)

f : R → R mit f(x) = −x ist eine stetige und messbare Abbildung und daher

lassen sich die stetigen Pfade und die Unabhängigkeit zu den Elementen der

Filtration direkt aus dem ursprünglichen Wienerprozess folgern. Der Anfangswert

0 ist erfüllt und die Normalverteilung mit Erwartungswert 0 ist symmetrisch,

daher gilt, dass auch −(Wt −Ws) N (0, t− s)-verteilt ist für alle 0 ≤ s ≤ t <∞.

ii.) (Wt+h −Wh)t∈[0,∞) bzgl. (Ft+h)t∈[0,∞)

Der Anfangswert wird durch das Subtrahieren des Wertes Wh auf 0 gebracht und

die stetigen Pfade folgen aus den stetigen Pfaden von W . Bei der Unabhängigkeit
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und der Verteilung muss beachtet werden, dass h hier einen festen Wert darstellt.

Für 0 ≤ s ≤ t gilt:

(Wt+h −Wh)− (Ws+h −Wh) = Wt+h −Ws+h ∼ N (0, t+ h− s− h) = N (0, t− s).

Die Unabhängigkeit ist durch die abgeänderte Filtration (wir betrachten den

Prozess bzgl. (Ft+h)t∈[0,∞)), die ebenfalls erst im Zeitpunkt h startet über die

Unabhängigkeit von W = (Wt)t∈[0,∞) zu (Ft)t∈[0,∞) erfüllt.

Bevor eine ähnliche Aussage für den gespiegelte Wienerprozess bewiesen werden kann,

muss zunächst geklärt werden, wie dieser mathematisch dargestellt wird. Wenn der

Prozess gespiegelt werden soll sobald er einen Wert zum ersten Mal erreicht, dann

besteht das Problem darin, dass dies nicht zu einem konstanten Zeitpunkt geschieht.

Durch die verschiedenen Pfade, die der Prozess annehmen kann, wird diese Höhe im-

mer zu unterschiedlichen Zeiten erreicht. Dafür wird eine Stoppzeit verwendet, die in

Abhängigkeit von ω anzeigt an welchem Zeitpunkt ein festgelegtes Kriterium erfüllt

ist.

Definition 5.2.2 (Stoppzeit).

Für eine Filtration (Ft)t∈I mit I ⊂ R ist eine Stoppzeit eine Abbildung τ : Ω→ I∗ für

die gilt, dass {τ ≤ t} ∈ Ft für alle t ∈ I. Hierbei ist I∗ = I, falls I beschränkt ist und

sonst setzt man I∗ = I ∪ {∞}.
Definition 5.2.3 (σ-Algebra der τ -Vergangenheit).

Auf einem Wahrscheinlichkeitsraum (Ω,F ,P) ist die σ-Algebra der τ -Vergangenheit

für eine Stoppzeit τ und die Filtration (Ft)t∈I definiert als

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft für alle t}.

Eine Stoppzeit wird verwendet um Zeitpunkte anzugeben, die zu Beginn noch nicht

bekannt sind, weil sie von ω abhängen. Als anschauliches Beispiel kann man sich die

Stoppzeit als eine Strategie am Finanzmarkt vorstellen. Ein Investor möchte seine

Aktie verkaufen, weiß aber nicht wie sich der Aktienkurs entwickeln wird. Setzt er

zu Beginn schon willkürlich den Zeitpunkt fest an dem die Aktie verkauft werden

soll, so besteht die Gefahr, dass der Aktienkurs zu dem Zeitpunkt sehr niedrig ist. Es

scheint daher sinnvoller ein Kriterium festzumachen, welches sich an dem Aktienkurs

orientiert. Zum Beispiel könnte der Investor die Aktie verkaufen, sobald der Kurs zum

ersten Mal den Wert 100 erreicht. Dabei soll der Anfangswert der Aktie kleiner als
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100 sein. Dies wird mit dem stochastischen Prozess (St)t∈[0,∞] als Kurswert über die

Stoppzeit τ = inf{t : St = 100} abgebildet. τ ordnet dann jedem ω ∈ Ω den Zeitpunkt

zu, an dem der Kurs zum ersten mal den Wert 100 annimmt. Falls dies für ein ω

nie geschehen sollte, nimmt τ den Wert ∞ an. Über die Bedingung {τ ≤ t} ∈ Ft
wird abgesichert, dass zu einem Zeitpunkt t alle Informationen vorliegen, die benötigt

werden, um entscheiden zu können ob gestoppt werden muss. Für unser Beispiel kann

die Menge umgeschrieben werden zu:

{τ ≤ t} =

{
sup

0≤r≤t
Sr ≥ 100

}
. (5.1)

Sollte das Supremum über alle Aktienkurse bis zum Zeitpunkt t größer als 100 sein,

so muss wegen der stetigen Pfade auch der Kurs 100 vor dem Zeitpunkt t einmal

angenommen worden sein. Andererseits muss das Supremum mindestens den Wert

100 annehmen, wenn die Stoppzeit anzeigt, dass der Kurs 100 vor t bereits erreicht

wurde. Der Preisprozess ist adaptiert an unsere Filtration und daher sind alle Sr mit

0 ≤ r ≤ t auch Ft messbar. Deshalb ist auch das Supremum über diese Kurse messbar

und insbesondere ist {τ ≤ t} in Ft enthalten.

Für unseren Fall wird es später ausreichend sein, wenn wir die Stoppzeit betrachten,

die abbildet, zu welchem Zeitpunkt der Wienerprozess eine bestimmte konstante Höhe

erreicht hat. Das Reflexionsprinzip hingegen gilt allgemein für beliebige Stoppzeiten.

Dabei wird der Wienerprozess bis zur Stoppzeit unverändert beibehalten und danach

reflektiert fortgeführt. Bevor wir uns anschauen wie der Prozess gespiegelt wird, be-

weisen wir eine Vorstufe des Reflexionsprinzip. In Anlehnung an Satz 5.2.1 ii.) soll

zunächst bewiesen werden, dass ein Wienerprozess der erst ab einer Stoppzeit startet

weiterhin ein Wienerprozess ist, unter der Voraussetzung, dass der Anfangswert sowie

die Filtration angepasst werden. Der Zeitpunkt 0 des neuen Prozesses entspricht un-

terschiedlichen Zeitpunkten des ursprünglichen Wienerprozesses, je nachdem welches

ω eintritt. Anders als im Reflexionsprinzip definieren wir für den Prozess keine Wer-

te, die bis zur Stoppzeit angenommen werden. Ab der Stoppzeit verläuft der Prozess

außerdem identisch wie der Wienerprozess, d.h. wir betrachten noch keine Spiegelung

oder sonstige Manipulationen. Wenn die Stoppzeit den Wert∞ annimmt, startet unser

Prozess gar nicht, daher zeigt der folgende Satz, dass unter der Bedingung dass τ <∞
ist, die Eigenschaften für den Wienerprozess erfüllt werden.
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Satz 5.2.4.

Wir betrachten einen Wahrscheinlichkeitsraum (Ω,F ,P, (Ft)t∈I) mit Standard Wie-

nerprozess W = (Wt)t∈[0,∞) bzgl. (Ft)t∈[0,∞). Der stochastische Prozess W̃ τ = (Wτ+t −
Wτ )t∈[0,∞) sei definiert unter P(τ < ∞) mit Stoppzeit τ . Die zugehörige Filtration ist

(Fτ+t|{τ<∞})t∈[0,∞). Dann ist W̃ τ ein Standard Wienerprozess bzgl. (Fτ+t|{τ<∞})t∈[0,∞)

unter P(· | τ <∞).

Beweis.

Zu zeigen: W̃ τ ist ein Standard Wienerprozess unter P(· | τ <∞) bzgl. der Filtration

(Fτ+t|{τ<∞})t∈[0,∞).

i.) W̃ τ
0 = Wτ+0 −Wτ = 0

ii.) Wir zeigen in einer Rechnung, dass W̃ τ
t − W̃ τ

s unter dem Maß P(· | τ < ∞) die

Verteilung N (0, t − s) besitzt und stochastisch unabhängig ist zu Fτ+s|{τ<∞}.
Hierführ sei A ∈ Fτ+s mit A ⊂ {τ < ∞} und h : R → R eine stetige und

beschränkte Abbildung. Es ist zu zeigen, dass∫
A

h(W̃ τ
t − W̃ τ

s ) dP(· | τ <∞) = P(A | τ <∞) ·
∫
h(Wt −Ws) dP.

Diese Gleichung kann umgeschrieben werden zu∫
A

h(W̃ τ
t − W̃ τ

s ) dP(· | τ <∞) = P(A | τ <∞) ·
∫
h(Wt −Ws) dP

⇔

∫
{τ<∞} 1A · h(W̃ τ

t − W̃ τ
s ) dP

P(τ <∞)
=

P(A)

P(τ <∞)
·
∫
h(Wt −Ws) dP

⇔
∫
{τ<∞}

1A · h(W̃ τ
t − W̃ τ

s ) dP = P(A) ·
∫
h(Wt −Ws) dP

A⊂{τ<∞}⇔
∫
A

h(Wτ+t −Wτ+s) dP = P(A) ·
∫
h(Wt −Ws) dP.

Daher können wir die Verteilung zeigen, indem wir die letzte Gleichung nachwei-

sen. Der Wert Wτ kürzt sich dabei durch W̃ τ
t −W̃ τ

s = (Wτ+t−Wτ )−(Wτ+s−Wτ )

raus.

Wir möchten die Stoppzeit approximieren durch τn = inf
{
k

2n
: τ ≤ k

2n
und k ∈ N

}
.

In diesem Fall ist τ ≤ τn und |τ − τn| < 1
2n
→ 0 für n → ∞. Wir erhalten die
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Konvergenz τn ↘ τ für n→∞. Für ein A ∈ Fτn+s mit A ⊂ {τ <∞} gilt dann∫
A

h(Wτn+t −Wτn+s) dP =

∫
A

∑
k∈N

1{τn= k
2n}h(W k

2n
+t −W k

2n
+s) dP

Nach Definition kann τn nur die Werte k
2n

für k ∈ N annehmen. Wir haben

h als beschränkte Abbildung vorausgesetzt und bei P handelt es sich um ein

Wahrscheinlichkeitsmaß, daher können wir eine integrierbare Majorante finden

und über den Satz der majorisierten Konvergenz (siehe [05], Korollar 6.26 Seite

142) die Summe mit dem Integral vertauschen:

=
∑
k∈N

∫
A

1{τn= k
2n}h(W k

2n
+t −W k

2n
+s) dP

=
∑
k∈N

∫
A∩{τn= k

2n}
h(W k

2n
+t −W k

2n
+s) dP.

Es wurde A aus Fτn+s gewählt und nach Definition 5.2.3 gilt daher, dass

A ∩
{
τn + s ≤ k

2n
+ s

}
∈ F k

2n
+s

ist für alle k ∈ N. Die Schnittmenge, das Komplement und die Vereinigung zweier

Mengen sind jeweils wieder in der σ-Algebra enthalten, daher gilt(
A ∩

{
τn + s ≤ k − 1

2n
+ s

})c
= Ac ∪

{
τn + s >

k − 1

2n
+ s

}
∈ F k−1

2n
+s

Beachtet man außerdem, dass F k−1
2n

+s ⊂ F k
2n

+s ist, so wissen wir, dass folgende

Menge in F k
2n

+s enthalten ist:

(Ac ∪ {τn + s > k−1
2n

+ s}) ∩ (A ∩ {τn + s ≤ k

2n
+ s})

= (Ac ∩ A ∩ {τn ≤
k

2n
})︸ ︷︷ ︸

= ∅

∪ ({τn >
k − 1

2n
} ∩ A ∩ {τn ≤

k

2n
})

= A ∩ {τn =
k

2n
}.

Nun handelt es sich um Elemente des ursprünglichen Wienerprozesses, weil wir

die Stoppzeit durch konkrete Zeitpunkte ersetzt haben. Außerdem wurde gezeigt,

dass A∩
{
τn = k

2n

}
∈ F k

2n
+s und über die Unabhängigkeit des Standard Wiener-
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prozess W kann das Integral aufgeteilt werden:

=
∑
k∈N

P
(
A ∩

{
τn =

k

2n

})∫
h(W k

2n
+t −W k

2n
+s) dP.

Nun kann im Integral, wie auch schon im Beweis vom Satz von Girsanov gesehen,

W k
2n

+t−W k
2n

+s durch Wt−Ws ersetzt werden, da sie nach Definition der gleichen

Verteilung unterliegen:

=
∑
k∈N

P
(
A ∩

{
τn =

k

2n

})∫
h(Wt −Ws) dP.

Desweiteren erhalten wir über die Mengen
{
τn = k

2n

}
mit k ∈ N eine disjunkte

Zerlegung der Menge {τ <∞}, denn die definierte Stoppzeit τn kann nur Werte

der Form k
2n

oder ∞ annehmen. Die Summe über die Wahrscheinlichkeiten kann

somit zusammengefasst werden und wir erhalten mit A ⊂ {τ <∞}:

= P(A)

∫
h(Wt −Ws) dP.

Wir haben gezeigt, dass unsere Gleichung für die approximierte Stoppzeit gilt,

d.h. ∫
A

h(Wτn+t −Wτn+s) dP = P(A) ·
∫
h(Wt −Ws) dP.

Die rechte Seite der Gleichung ist unabhängig von n, somit können wir umformen

zu

P(A) ·
∫
h(Wt −Ws) dP = lim

n→∞
P(A) ·

∫
h(Wt −Ws) dP

= lim
n→∞

∫
A

h(Wτn+t −Wτn+s) dP

=

∫
A

lim
n→∞

h(Wτn+t −Wτn+s) dP

=

∫
A

h( lim
n→∞

Wτn+t −Wτn+s) dP

=

∫
A

h(Wτ+t −Wτ+s) dP.

Weil die Abbildung h beschränkt ist, kann der Grenzwert über majorisierte Kon-

vergenz ins Integral gezogen werden und über die Stetigkeit von h gelangt der
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Grenzwert in das Funktionsargument hinein. Da A ∈ Fτn+s gewählt wurde, muss

noch angemerkt werden, dass Fτ+s ⊂ Fτn+s ist und darüber die Gleichung auch

für alle A ∈ Fτ+s erfüllt ist. Dies ist erfüllt, weil zum einen τ eine Stoppzeit ist

und dadurch folgt, dass {τ ≤ t} ∈ Ft für alle t. Zum anderen haben wir die

Approximation so gewählt, dass τn ≥ τ ist und wir somit nun folgern können,

dass {τ ≤ t} ⊂ {τn ≤ t} für alle t gilt. Damit haben wir gezeigt, dass die

Unabhängigkeit sowie die Verteilung für den Prozess W̃τ gegeben sind.

iii.) W hat stetige Pfade und betrachten wir ein festes ω ∈ Ω, so ist τ(ω) ein kon-

stanter Wert. Die Pfade von W̃τ sind dann um einen festen Wert Wτ nach unten

verschoben und stimmen mit einem späteren Abschnitt der Pfade von W überein.

Insbesondere sind diese dann auch stetig.

Der Satz 5.2.4 wird hilfreich sein, um das Reflexionsprinzip zu zeigen. Was bis hierhin

außer Acht gelassen wurde, ist die eigentliche Spieglung des Prozesses. Unabhängig

von der Wahl der Stoppzeit soll diese gemäß einer Achse, die parallel zur Abszisse

verläuft, erfolgen. Die Höhe der Achse bestimmt sich dabei über den Wert, den der

Wienerprozess am Anfang der Reflektion annimmt. Das heißt bei einer Stoppzeit τ

und dem Wienerprozess W wird bezüglich der Achse y = Wτ gespiegelt. In Abbildung

5.2 sehen wir skizzenhaft wie der gespiegelte Pfad (rot) sich im Gegensatz zu dem

normalen Pfad des Wienerprozesses W verhält. Der neue Prozess soll sich an dem

ursprünglichen Wienerprozess orientieren und immer wenn die Pfade des Einen steigen,

sollen die Pfade des Anderen Prozesses fallen. Mathematisch ausgedrückt werden also

die Zuwächse des Wienerprozess bei dem neuen Prozess abgezogen. Bezeichnen wir den

reflektierten Prozess mit W = (W t)t∈[0,∞) so ergibt sich für alle t ≥ τ :

Wτ − (Wt −Wτ ) = 2Wτ −Wt.

Für alle Zeitpunkte vor der Stoppzeit nimmt der Prozess W denselben Verlauf wie der

Wienerprozess W , also gilt insgesamt:

W t(ω) =

Wt(ω) für t ≤ τ(ω)

2Wτ (ω)−Wt(ω) für t > τ(ω).

Über das Reflexionsprinzip beweisen wir die Wienerprozesseigenschaften des reflek-

tierten Prozesses, die wir danach für die Berechnung der Verteilung des Supremums
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W
t(
ω
)

Wτ (ω) = y

y + x

y − x

τ (ω)

Abbildung 5.2.: Skizze für den gespiegelten Pfad eines Wienerprozesses

benötigen.

Satz 5.2.5 (Reflexionsprinzip).

Es seien W ein Wienerprozess und τ eine Stoppzeit. Der bei τ gespiegelte Prozess W

wird definiert durch

W t(ω) =

Wt(ω) für t ≤ τ(ω)

2Wτ (ω)−Wt(ω) für t > τ(ω).

Dann ist der gespiegelte Prozess auch ein Wienerprozess unter P.

Beweis.

Es genügt die Menge {τ <∞} und darüber das Maß P ( · |τ <∞) zu betrachten,

da auf {τ =∞} W = W gilt und somit nichts mehr zu zeigen ist. Der Anfangswert

stimmt mit W überein und die stetigen Pfade sind eine Folgerungen der Stetigkeit der

Pfade von W .

Um die erforderliche Verteilung von W zu beweisen, definieren wir die messbare Ab-
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bildung H : C[0,∞)× C[0,∞)× [0,∞)→ C[0,∞) durch

H(f, g, t) =

f(s) 0 ≤ s ≤ t

f(t) + g(s− t) + g(0) s > t

mit C[0,∞) als Menge der stetigen Funktionen, die aus dem Intervall [0,∞) in die

reellen Zahlen abbilden. Zusätzlich definieren wir die stochastischen Prozesse Ŵ τ und

W̃ τ für die Stoppzeit τ und den Wienerprozess W = (Wt)t∈[0,∞) durch

Ŵ τ
t =

Wt(ω) 0 ≤ t ≤ τ(ω)

Wτ (ω) t > τ(ω)

W̃ τ
t = Wτ+t(ω)−Wτ (ω).

Der Prozess W̃ τ wurde definiert wie in Satz 5.2.4. Bei der Definition von stochastischen

Prozessen wurde bereits angemerkt, dass man diese auch als Zufallsvariablen auf (Ω,P)

sehen kann, die nicht in R, sondern in eine Menge von Funktionen abbilden. Für die

Wienerprozesse ist diese Menge C[0,∞), da für die einzelnen Pfade die Stetigkeit vor-

ausgesetzt wurde. Über den Satz 5.2.4 ist bekannt, dass W̃ τ ein Wienerprozess ist und

über Satz 5.2.1 erhalten wir diese Aussage auch für −W̃ τ . Daher haben (Ŵ τ , W̃ τ , τ)

und (Ŵ τ ,−W̃ τ , τ) dieselbe Verteilung und über die messbare Abbildung H erreichen

wir

H(Ŵ τ , W̃ τ , τ) =

Ŵ τ
s 0 ≤ s ≤ τ(ω)

Ŵ τ
τ + W̃ τ

s−τ − W̃ τ
0 s > τ(ω)

=

Ws 0 ≤ s ≤ τ(ω)

Wτ +Ws −Wτ s > τ(ω)
= W

H(Ŵ τ ,−W̃ τ , τ) =

Ŵ τ
s 0 ≤ s ≤ τ(ω)

Ŵ τ
τ − W̃ τ

s−τ + W̃ τ
0 s > τ(ω)

=

Ws 0 ≤ s ≤ τ(ω)

2 ·Wτ −Ws s > τ(ω)
= W.

Daher wissen wir, dass auch W und W die selbe Verteilung haben und somit ist W ein

Wienerprozess.
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Ein Wienerprozess, der an einer Stoppzeit reflektiert wird, besitzt also die gleiche Ver-

teilung wie der unreflektierte Prozess. Mit dieser Aussage ist es nun möglich die Ver-

teilung von einem Ereignis zu berechnen, bei dem sowohl das Supremum, als auch der

Prozess selber oberhalb bzw. unterhalb einer Grenzen sein sollen.

Satz 5.2.6.

Für den Wienerprozess W definieren wir den Prozess M durch Mt = sup
0≤s≤t

Ws. Mit

t > 0, y > 0 und x ≥ 0 gilt dann

P(Mt ≥ y,Wt < y − x) = P(Wt > y + x)

P(Mt ≥ y) = 2P(Wt ≥ y).

Beweis.

Es seien t > 0, y > 0 und x ≥ 0. Wir möchten das Reflexionsprinzip ausnutzen und

den Wienerprozess W an der Stoppzeit τy = inf{t : Wt = y} reflektieren. Die Stoppzeit

zeigt den ersten Zeitpunkt an, für den der Wienerprozess die Höhe y erreicht und ist

schon aus dem Beispiel des Aktienverkaufs bekannt. Wir können daher wieder folgern,

dass

{τy ≤ t} = {Mt ≥ y} (5.2)

gilt. Der reflektierte Prozess wird mit W bezeichnet und wurde in Satz 5.2.5 definiert.

Durch die Stoppzeit erhalten wir Wτ = y und daher können wir den Prozess vereinfa-

chen zu

W t =

Wt(ω) für t ≤ τ(ω)

2y −Wt(ω) für t > τ(ω).

Die Wahrscheinlichkeit wird zuerst über die Mengengleichung 5.2 umgeschrieben:

P(Mt ≥ y,Wt < y − x) = P(τy ≤ t,Wt < y − x).

Nach dem Reflexionsprinzip wissen wir, dass W ein Wienerprozess unter dem Maß P
ist und daher die gleiche Verteilung besitzt wie W . Außerdem können wir τ auch als

eine Stoppzeit für W auffassen, denn es gilt τy = inf{t : Wt = y} = inf{t : W t = y},
weil sich beide Prozesse bis zur Stoppzeit nicht unterscheiden. Somit können wir in der
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Wahrscheinlichkeit auch τ zusammen mit W betrachten:

P(Mt ≥ y,Wt < y − x) = P(τy ≤ t,Wt < y − x)

= P(τy ≤ t,W t < y − x).

Das Ereignis {τy ≤ t,W t < y − x} kann gut anhand der Abbildung 5.2 verdeutlicht

werden. Betrachten wir zuerst einzeln das Ereignis {W t < y − x}, so möchten wir

die Wahrscheinlichkeit berechnen, dass der Pfad an einer bestimmten Stelle unter der

gestrichelten Linie y − x liegt. Nun muss gleichzeitig erfüllt sein, dass {τy ≤ t} ein-

tritt und das bedeutet, dass der Zeitpunkt den wir betrachten hinter der Stoppzeit τ

liegen muss. Da der Prozess W für t > τ nicht willkürlich weiterverläuft, sondern den

gespiegelten Prozess von W abbildet, können wir das Ereignis {W t < y−x} auch über

W ausdrücken. Der Pfad von W verläuft genau dann unterhalb der Linie y − x, wenn

der ursprüngliche Wienerprozess W sich oberhalb von y + x befindet. Es muss daher

gelten, dass

{τy ≤ t,W t < y − x} = {τy ≤ t,Wt > y + x}

und dies ermöglicht uns die Berechnung der Wahrscheinlichkeit. τ ist sowohl die Stopp-

zeit für W als auch für W und dadurch kann die Wahrscheinlichkeit weiter vereinfacht

werden. Wenn Wt einen Wert oberhalb von y+x annimmt, muss durch die stetigen Pfa-

de auch der Wert y vorher schon angenommen worden sein und daraus folgt, dass die

Stoppzeit τ ≤ t sein muss. Dies liefert die Mengeninklusion {Wt > y + x} ⊂ {τy ≤ t}.
An dieser Stelle ist es wichtig, dass x ≥ 0 ist. Die erste Behauptung des Satzes ist

gezeigt, denn es gilt

P(Mt ≥ y,Wt < y − x) = P(τy ≤ t,Wt > y + x)

= P(Wt > y + x).

Die zweite Aussage ist eine Folgerung, die wir erlangen, wenn die Menge {Mt ≥ y} in

zwei disjunkte Teile gesplittet wird:

P(Mt ≥ y) = P(Mt ≥ y,Wt < y) + P(Mt ≥ y,Wt ≥ y).

Dabei können wir den ersten Teil verwenden, indem wir x = 0 setzen. Desweiteren

haben wir zuvor bereits gesehen, dass {Wt > y + x} ⊂ {τy ≤ t} = {Mt ≥ y} für alle
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x ≥ 0 ist. Wir erhalten mit x = 0 über den ersten Teil, nämlich

P(Mt ≥ y,Wt < y) = P(Wt > y),

die zweite Behauptung des Satzes

P(Mt ≥ y) = P(Mt ≥ y,Wt < y) + P(Mt ≥ y,Wt ≥ y)

= P(Wt > y) + P(Wt ≥ y)

= 2 · P(Wt ≥ y).

Wir haben jetzt einen Satz bewiesen, der es ermöglicht die Wahrscheinlichkeit eines

Ereignisses zu berechnen, welches das Supremum sowie auch ein einzelnes Element

eines Wienerprozesses betrachtet. Über die Normalverteilung von Wt kann P(Wt ≥
y) berechnet werden. Als letzte Aussage in diesem Abschnitt soll der Satz ein wenig

verallgemeinert werden. Zum einen sollen die Grenzen aus der Ungleichung unabhängig

gewählt werden können, also statt y und y − x mit y ∈ R, x ≥ 0, allgemeiner x und

z mit x, z ∈ R. Viel wichtiger ist, dass wir einen Wienerprozess mit Drift betrachten

wollen, denn dieser wird bei der Barriere-Option auftreten. Das Problem ist, dass wir

den Term des Drifts nicht aus dem Supremum auf die andere Seite bringen können. Bei

einem Wienerprozess mit Drift a, also (Xt)t∈[0,∞) = (Wt+at)t∈[0,∞), kann sup
0≤s≤t

(Ws+as)

nicht einfach aufgeteilt werden, sodass wir die Situation aus dem vorigen Satz erhalten

würden.

Satz 5.2.7.

Sei (Xt)t∈[0,T ] ein Wienerprozess mit Drift a ∈ R und Volatilität 1 auf (Ω,F ,P, (Ft)t∈[0,T ])

und (Zt)t∈[0,T ] ist definiert durch Zt := sup
0≤s≤t

Xs für alle t aus [0, T ]. Dann gilt für z ≥ x:

P(Xt ≤ x, Zt < z) = Φ

(
x− at√

t

)
− e2az · Φ

(
x− 2z − at√

t

)
.

Beweis.

Für den Beweis benötigen wir einen Standard Wienerprozess (Wt)t∈[0,T ] unter P, so-

wie den Prozess Mt := sup
0≤s≤t

Ws. Damit wir den Drift von (Xt)t∈[0,T ] besser behandeln

können, verwenden wir den Satz von Girsanov und definieren ein neues Maß Pa durch

die Dichte dPa
dP := eaWt−a

2

2
t auf FT . An dieser Stelle soll eine andere Richtung einge-

schlagen werden, als in den vorherigen Anwendungen des Girsanov-Satzes. Dort wurde
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der Wienerprozess immer durch einen Standard Wienerprozess des neuen Maßes aus-

gedrückt, wie es beispielsweise in Tabelle 4.1 der Fall war. Nun betrachten wir unter Pa
den ursprünglichen Prozess (Wt)t∈[0,T ]. Weil (Wt−at)t∈[0,T ] nach Girsanov ein Standard

Wienerprozess ist, kann gefolgert werden, dass nur (Wt)t∈[0,T ] einen Wienerprozess mit

Drift a unter Pa abbildet. Der Prozess W unter dem neuen Maß Pa besitzt demnach

dieselbe Verteilung wie X unter P. Insbesondere gilt dies auch für die zugehörigen Pro-

zesse Z und M . Wir drücken die Wahrscheinlichkeit, die wir berechnen möchten, als

Wahrscheinlichkeit unter dem Maß Pa aus. Über die Dichte gelangen wir zurück zum

Maß P:

P(Xt ≤ x, Zt < z) = Pa(Wt ≤ x,Mt < z)

=

∫
{Wt≤x,Mt<z}

eaWt−a
2

2
t dP.

Durch diese Vorgehensweise erlangen wir den Vorteil, dass wir mit dem Standard Wie-

nerprozess W unter P arbeiten können. Dafür müssen wir die Exponentialfunktion der

Dichte mitbehandeln. Für diesen Fall ist es hilfreich die Wahrscheinlichkeit als eine

Zufallsvariable Y , die über das bedingte Maß P(Wt ∈ ·|Mt < z) integriert wird, zu

betrachten:

P(Xt ≤ x, Zt < z) =

∫
{Wt≤x,Mt<z}

eaWt−a
2

2
t dP

=

∫
Ω

1{Mt<z} · 1{Wt≤x} · eaWt−a
2

2
t︸ ︷︷ ︸

=:Y (ω)

dP · P (Mt < z)

P (Mt < z)
(5.3)

=

∫
Ω

1{Wt≤x} · eaWt−a
2

2
t dP( · |Mt < z) · P (Mt < z) .

Über diese Darstellung können wir die Ergebnisse aus dem Satz 5.2.6 ausnutzen. Da wir

nicht mehr mit den Prozessen X und Z arbeiten, sondern den Standard Wienerprozess

W unter P benutzen, kann eine Aussage über das Ereignis {Wt ≤ x,Mt < z} unter P
getroffen werden. Das Ziel ist eine Dichte für das Maß P(Wt ∈ · |Mt < z) zu finden,

sodass wir das Integral berechnen können. Hierfür betrachten wir das Ereignis als einen

Teil einer disjunkten Zerlegung von {Wt ≤ x} und nutzen folgende Äquivalenz aus

P(Wt ≤ x) = P(Wt ≤ x,Mt < z) + P(Wt ≤ x,Mt ≥ z)

⇔ P(Wt ≤ x,Mt < z) = P(Wt ≤ x)− P(Wt ≤ x,Mt ≥ z). (5.4)

Die rechte Seite kann zum einen über die Normalverteilung aus dem Wienerprozess
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und zum anderen mit dem Satz 5.2.6 berechnet werden. Dieser Satz besagte für t > 0,

z > 0 und q ≥ 0, dass

P(Wt < z − q,Mt ≥ y) = P(Wt > z + q)

ist. Gemäß den Voraussetzungen ist gegeben, dass z ≥ x ist und somit können wir

q = z − x ≥ 0 setzen und erhalten

P(Wt < x,Mt ≥ z) = P(Wt > z + z − x) = P(Wt > 2z − x).

Verwenden wir dies in der Gleichung 5.4, so folgt

P(Wt ≤ x,Mt < z) = P(Wt ≤ x)− P(Wt > 2z − x)

= P(Wt ≤ x)− [1− P(Wt ≤ 2z − x)]

= P
(
Wt√
t
≤ x√

t

)
− 1 + P

(
Wt√
t
≤ 2z − x√

t

)
= Φ

(
x√
t

)
− 1 + Φ

(
2z − x√

t

)
, (5.5)

wobei der Übergang zur Verteilungsfunktion der Standardnormalverteilung Φ über
Wt√
t
∼ N (0, 1) geschieht. Eine bedingte Warscheinlichkeit ist gegeben als

P(Wt ≤ x|Mt < z) =
P(Wt ≤ x,Mt < z)

P(Mt < z)

und mit den Berechnungen für die Schnittmenge (Gleichung 5.5) kann die Verteilungs-

funktion für das Maß P(Wt ∈ · |Mt < z) angegeben werden über

P(Wt ≤ x|Mt < z) =

1 x > z

Φ
(
x√
t

)
−1+Φ

(
2z−x√

t

)
P(Mt<z)

x ≤ z.

Leitet man diese Verteilungsfunktion nun nach x ab, so erhalten wir die Dichte des

Maßes

h(y) =

0 y > z

ϕ
(
y√
t

)
−ϕ
(

2z−y√
t

)
√
t·P(Mt<z)

y ≤ z

mit ϕ als Dichte für die Standardnormalverteilung. Die Dichte kann also in unsere
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Umformung aus 5.3 eingesetzt werden:∫
Ω

1{Wt≤x} · eaWt−a
2

2
t dP(·|Mt < z) · P (Mt < z)

=

z∫
−∞

1(−∞,x](y) · eay−
a2

2
t ·
ϕ
(

y√
t

)
− ϕ

(
2z−y√

t

)
√
t ·������P (Mt < z)

dy ·������P(Mt < z)

=

x∫
−∞

eay−
a2

2
t ·
ϕ
(

y√
t

)
− ϕ

(
2z−y√

t

)
√
t

dy.

Im letzten Schritt wurde außerdem ausgenutzt, dass nach Voraussetzung z ≥ x ist. Die

Dichte der Standardnormalverteilung ist gegeben durch ϕ(y) = 1√
2π
· e− y

2

2 und somit

sind die letzten notwendigen Schritte für den Beweis der Behauptung Umformungen

unter dem Integral:

=

x∫
−∞

eay−
a2

2
t · 1√

2πt
·
(
e−

y2

2t − e−
(2z−y)2

2t

)
dy

=

x∫
−∞

1√
2πt
· eay−

a2

2
t− y

2

2t dy −
x∫

−∞

1√
2πt
· eay−

a2

2
t− (2z−y)2

2t e2az−2az dy

=

x∫
−∞

1√
2πt
· e
− 1

2

(
a2t2−2ayt+y2

t

)
dy −

x∫
−∞

1√
2πt
· e
− 1

2

(
a2t2−2ayt+4azt+(2z−y)2

t

)
· e2az dy

=

x∫
−∞

1√
2πt
· e−

1
2

(
y−at√

t

)2

dy

︸ ︷︷ ︸
Verteilungsfunktion von N (at,t)

−e2az ·
x∫

−∞

1√
2πt
· e−

1
2

(
(y−2z)−at√

t

)2

dy.

︸ ︷︷ ︸
Verteilungsfunktion von N (2z+at,t)

Die beiden Verteilungsfunktionen können über die Verteilungsfunktion der Standard-

normalverteilung ausgedrückt werden, indem der Erwartungswert und die Varianz kor-

rigiert werden und es ergibt sich folgendes Ergebnis:

P(Xt ≤ x, Zt < z) = Φ

(
x− at√

t

)
− e2az · Φ

(
x− 2z − at√

t

)
.
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5.3. Der Preis eines Down-and-Out Calls

Die Strategie zur Berechnung des fairen Preises kennen wir aus Kapitel 4 und der Claim

für den Down-and-Out Call wurde zu Beginn dieses Kapitels besprochen. Dieser ist für

den Strikepreis K, die Laufzeit T und die Barriere B gegeben durch

C =

(ST −K)+ inf
0≤t≤T

St > B

0 sonst.

Über den Satz 5.2.7 verfügen wir über alle notwendigen Instrumente, um den Preis der

Barriere-Option zu berechnen.

Satz 5.3.1 (Preis eines Down-and-Out Calls).

Für einen Down-and-Out Call auf das risky asset im Black-Scholes Modell mit den

Parametern σ als Volatilität, S0 als Anfangskurs, K als Strikepreis, B als Barriere

und T als Endzeitpunkt berechnet sich der arbitragefreie Preis für den Zeitpunkt 0 zu:

B0(S0, T,K,B) = C0(S0, T,K)−
(
S0

B

) 2β
σ

· C0(S0, T, γK)

mit β = −σ
2
− r

σ
und γ =

(
S0

B

)2
. Für die Barriere gilt dabei, dass B < K und B < S0

ist. Dabei ist C0(S0, T, L) der arbitragefreie Preis einer Call Option zu Anfangskurs S0,

Laufzeit T und Strikepreis L.

Beweis.

Der faire Preis ist das Ergebnis von EQ

[
e−rT · (ST −K)+ · 1{

inf
0≤t≤T

St>B

}
]

und dieser

Erwartungswert lässt sich aufspalten zu:

EQ

[
e−rT (ST −K)+

1{
inf

0≤t≤T
St>B

}
]

=

∫
Ω

e−rT · (ST −K) · 1{ST≥K} · 1{ inf
0≤t≤T

St>B} dQ

=

∫
Ω

e−rTST · 1{ST≥K} · 1{ inf
0≤t≤T

St>B} dQ−
∫

Ω

e−rTK · 1{ST≥K} · 1{ inf
0≤t≤T

St>B} dQ

= S0 ·Q∗
(
ST ≥ K, inf

0≤t≤T
St > B

)
− e−rT ·K ·Q

(
ST ≥ K, inf

0≤t≤T
St > B

)
.

Wie schon im Beweis der Black-Scholes Formel können wir den Erwartungswert so

aufteilen und umformen, dass wir nur noch die Wahrscheinlichkeit der Menge aus dem
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Indikator berechnen müssen. Über die Dichte e−rT · eσŴt+(r−σ
2

2
)t = eσŴt+

σ2

2
t wurde ein

Maßwechsel zu Q∗ durchgeführt. Zur Berechnung der Wahrscheinlichkeiten wurden im

Abschnitt 5.2 weitere Eigenschaften des Wienerprozesses gezeigt und das Ergebnis in

Form des Satzes 5.2.7 soll nun angewandt werden. Dafür ist es notwendig die Mengen

umzuformen, damit ein Wienerprozess mit Drift zu erkennen ist. Fangen wir zunächst

mit der Wahrscheinlichkeit unter Q an. Gemäß Tabelle 4.1 ist (Ŵt)t∈[0,T ] der Standard

Wienerprozess und (St)t∈[0,T ] =

(
S0 · e

σŴt+
(
r−σ

2

2

)
t

)
t∈[0,T ]

der Preisprozess des risky

assets unter Q. Daher ergibt sich{
ST ≥ K, inf

0≤t≤T
St > B

}
=

{
S0 · e

σŴT+
(
r−σ

2

2

)
T ≥ K, inf

0≤t≤T
S0 · e

σŴt+
(
r−σ

2

2

)
t
> B

}
=

{
σŴT +

(
r − σ2

2

)
T ≥ log

(
K

S0

)
, inf

0≤t≤T
σŴt +

(
r − σ2

2

)
t > log

(
B

S0

)}
=

{
ŴT +

( r
σ
− σ

2

)
T ≥ 1

σ
log

(
K

S0

)
, inf

0≤t≤T
Ŵt +

( r
σ
− σ

2

)
t >

1

σ
log

(
B

S0

)}
=

{
−ŴT +

(σ
2
− r

σ

)
T ≤ 1

σ
log

(
S0

K

)
, sup

0≤t≤T
−Ŵt +

(σ
2
− r

σ

)
t <

1

σ
log

(
S0

B

)}
=

{
X̂T ≤

1

σ
log

(
S0

K

)
, sup

0≤t≤T
X̂t <

1

σ
log

(
S0

B

)}
,

wobei wir den Prozess X̂ = (X̂t)t∈[0,T ] durch X̂t = −Ŵt +
(
σ
2
− r

σ

)
t definieren. Satz

5.2.1 zeigt, dass (−Ŵt)t∈[0,T ] ein Standard Wienerprozess ist und daher haben wir mit

X̂ einen Wienerprozess mit Drift α :=
(
σ
2
− r

σ

)
. Wir können den Satz 5.2.7 anwenden

und bekommen das Ergebnis

Q
({

ST ≥ K, inf
0≤t≤T

St > B

})
= Φ

(
1
σ

log
(
S0

K

)
− α · T

√
T

)
− e2α· 1

σ
log(S0

B ) · Φ

(
1
σ

log
(
S0

K

)
− 2 1

σ
log
(
S0

B

)
− α · T

√
T

)

= Φ

(
1
σ

log
(
S0

K

)
− α · T

√
T

)
− e

log

(
(S0
B )

2α
σ

)
· Φ


1
σ

log

(
S0

K
·
(
B
S0

)2
)
− α · T

√
T


= Φ

(
1
σ

log
(
S0

K

)
− α · T

√
T

)
−
(
S0

B

) 2α
σ

· Φ

 1
σ

log
(

B2

K·S0

)
− α · T

√
T


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= Φ

 log
(
S0

K

)
+
(
r − σ2

2

)
T

σ
√
T

− (S0

B

) 2α
σ

· Φ

 log
(

B2

K·S0

)
+
(
r − σ2

2

)
T

σ
√
T


=: B.

Analog wird für das Maß Q∗ umgeformt. Wie in Tabelle 4.1 ersichtlich ist, verwenden

wir unter Q∗ den Standard Wienerprozess (W̃t)t∈[0,T ] und den Preisprozess (St)t∈[0,T ] =(
S0 · eσW̃t+(r+σ2

2
)t
)
t∈[0,T ]

. Die Mengenumformungen müssen für den Preisprozess ange-

passt werden und wir erhalten{
ST ≥ K, inf

0≤t≤T
St > B

}
=

{
−W̃T +

(
−σ

2
− r

σ

)
T ≤ 1

σ
log

(
S0

K

)
, inf

0≤t≤T
−W̃t +

(
−σ

2
− r

σ

)
T <

1

σ
log

(
S0

B

)}
=

{
X̃T ≤

1

σ
log

(
S0

K

)
, inf

0≤t≤T
X̃t <

1

σ
log

(
S0

B

)}
.

Der Prozess X̃ = (X̃t)t∈[0,T ] ist definiert durch Xt = −W̃t +
(
−σ

2
− r

σ

)
t. Mit der

gleichen Argumentation wie zuvor ist X̃ ein Wienerprozess mit Drift β :=
(
−σ

2
− r

σ

)
.

Wir verwenden abermals Satz 5.2.7 und erhalten als Ergebnis

Q∗
({

ST ≥ K, inf
0≤t≤T

St > B

})

= Φ

 log
(
S0

K

)
+
(
r + σ2

2

)
T

σ
√
T

− (S0

B

) 2β
σ

· Φ

 log
(

B2

K·S0

)
+
(
r + σ2

2

)
T

σ
√
T


=: A.

Zusammenfassend erhalten wir einen sehr langen und unhandlichen Ausdruck für den

fairen Preis einer Down-and-Out Call-Option:

EQ

[
e−rT · (ST −K)+ · 1{

inf
t≤T

St>B

}
]

= S0 · A− e−rT ·K ·B

= S0

Φ

 log
(
S0

K

)
+
(
r + σ2

2

)
t

σ
√
t

− (S0

B

) 2β
σ

· Φ

 log
(

B2

K·S0

)
+
(
r + σ2

2

)
t

σ
√
t


− e−rT ·K

Φ

 log
(
S0

K

)
+
(
r − σ2

2

)
t

σ
√
t

− (S0

B

) 2α
σ

· Φ

 log
(

B2

K·S0

)
+
(
r − σ2

2

)
t

σ
√
t


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= S0 · Φ

 log
(
S0

K

)
+
(
r + σ2

2

)
t

σ
√
t

− e−rT ·K · Φ
 log

(
S0

K

)
+
(
r − σ2

2

)
t

σ
√
t


−
(
S0

B

) 2β
σ

· S0 · Φ

 log
(

B2

K·S0

)
+
(
r + σ2

2

)
t

σ
√
t


+

(
S0

B

) 2α
σ

· e−rT ·K · Φ

 log
(

B2

K·S0

)
+
(
r − σ2

2

)
t

σ
√
t

 .

Durch die Umstellung der Terme ist leicht zu erkennen, dass es sich bei den ersten bei-

den Summanden um die Black-Scholes Formel (Satz 4.2.1) für einen Call mit Anfangs-

kurs S0, Strikepreis K und Laufzeit T handelt. Für die restlichen beiden Summanden

ist es hilfreich folgende Umformungen zu betrachten:

2α

σ
=

2
(
σ
2
− r

σ

)
σ

=
2
(
σ
2
− r

σ

)
+ 2σ − 2σ

σ
=

2
(
σ
2
− r

σ
− σ

)
σ

+ 2

=
2
(
−σ

2
− r

σ

)
σ

+ 2 =
2β

σ
+ 2.

Dies kann im zweiten Teil ausgenutzt werden und wir können dadurch wie folgt aus-

klammern:

−
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B

) 2β
σ
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)
+
(
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)
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σ
√
t


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(
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B

) 2α
σ

· e−rT ·K · Φ

 log
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)
+
(
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2

)
t

σ
√
t


= −

(
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B

) 2β
σ

[
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(

B2
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)
+
(
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2

)
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√
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(
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·K · Φ
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(
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)
+
(
r − σ2

2

)
t

σ
√
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].
Es liegt in diesem Fall ebenfalls die Form der Black-Scholes Formel vor, allerdings für

einen Call mit Anfangskurs S0, Strikepreis γK und Laufzeit T , wobei γ :=
(
S0

B

)2
ist.

Der arbitragefreie Preis eines Down-and-Out Calls setzt sich demnach zusammen aus
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zwei Call-Preisen mit unterschiedlichen Parametern:

B0(S0, T,K,B) = C0(S0, T,K)−
(
S0

B

) 2β
σ

· C0(S0, T, γK).

5.4. Fazit und Ausblick

Die Ähnlichkeit des Down-and-Out Calls mit einer gewöhnlichen europäischen Call-

Option spiegelt sich also auch in dem arbitragefreien Preis wider. Wir erhalten die

gewichtete Summe der Preise von zwei Call-Optionen mit unterschiedlichen Parame-

tern. Außerdem ist zu erkennen, dass der Preis der Barriere-Option immer niedriger ist,

als die der Call-Option. Diese Beziehung wird bereits anhand der Claims ersichtlich,

da der Down-and-Out Call immer eine Auszahlung generiert, die niedriger ist, als bei

eine Call-Option mit den selben Parametern.

Mit diesen Ergebnissen ist es möglich den Einfluss der Parameter auf den arbitrage-

freien Preis der Barriere-Option zu untersuchen. Hierfür könnten wieder die Greeks

hilfreich sein, die wir schon bei der Black-Scholes Formel kennengelernt haben. Weiter-

hin könnten andere Varianten der Barriere-Optionen bewertet werden.
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A. Anhang

Satz A.0.1.

Auf (Ω,F ,P, (Ft)t∈[0,∞)) sei (Xt)t∈[0,∞) ein adaptierter stochastischer Prozess. Dann

folgt aus der Unabhängigkeit von Xt − Xs zu Fs für alle 0 ≤ s ≤ t < ∞, dass auch

Xt1−Xt0,. . . ,Xtn−Xtn−1 für jede Unterteilung 0 = t0 < t1 < · · · < tn <∞ unabhängig

sind.

Beweis.

Wir führen einen Induktionsbeweis über n durch, also über die Anzahl der Elemente

unserer Unterteilung 0 = t0 < t1 < · · · < tn <∞.

Behauptung:

Für alle n ∈ N sind die Zufallsvariablen Xt1 − Xt0 ,. . . ,Xtn − Xtn−1 mit Unterteilung

0 = t0 < t1 < · · · < tn <∞ unabhängig, falls Xt −Xs und Fs für alle 0 ≤ s ≤ t <∞
unabhängig sind.

Induktionsanfang:

n = 1 : Xt1 −Xt0 . Hier ist nichts zu zeigen.

n = 2 : Xt1 −Xt0 , Xt2 −Xt1

Nach Voraussetzung ist Xt2 −Xt1 unabhängig zu Ft1 (?).

Als adaptierter Prozess ist Xt1 − Xt0 Ft1-messbar, da Xt1 Ft1-messbar ist und

Xt0 Ft0-messbar, aber durch Ft0 ⊂ Ft1 auch Ft1-messbar ist.

Daher gilt σ(Xt1 −Xt0) ⊂ Ft1 und somit sind Xt1 −Xt0 , Xt2 −Xt1 unabhängig

durch (?).

Induktionsvoraussetzung:

Für eine beliebiges aber festes n ∈ N gilt die Behauptung.
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Induktionsschritt:

n→ n+ 1 : Xt1 −Xt0 ,. . . ,Xtn+1 −Xtn

Xt1 − Xt0 ,. . . ,Xtn − Xtn−1 sind unabhängig nach Induktionsvoraussetzung und

σ(Xt1 − Xt0 ,. . . ,Xtn − Xtn−1) ⊂ Ftn (folgt analog wie beim Induktionsanfang

gezeigt) und da nach Voraussetzung Xtn+1 − Xtn unabhängig ist von Ftn , folgt

der Induktionsschritt mit Satz A.0.4.

Definition A.0.2 (Bedingter Erwartungswert). [04]

Sei (Ω,F ,P) ein Wahrscheinlichkeitsraum und A ⊆ F eine Unter-σ-Algebra. Sei Y ei-

ne Zufallsvariable, deren Erwartungswert existiert. Eine Zufallsvariable Z, die folgende

Bedingungen erfüllt:

i.) Z ist A-messbar

ii.)
∫
B
Z dP =

∫
B
X dP für alle B ∈ A

heißt bedingter Erwaruntgswert von Y unter A. Wir schreiben Z = E[Y |A].

Satz A.0.3 (Eigenschaften des bedingten Erwartungswertes). [02]

Seien X,Y integrierbare Zufallsvariablen auf (Ω,F ,P) und G,H jeweils σ-Algebren

mit H ⊆ G ⊆ F . Dann gelten folgende Aussagen:

i.) Falls X · Y integrierbar und X G-messbar ist, dann ist E[X · Y |G] = X · E[Y |G].

ii.) Falls X und G unabhängig sind gilt E[X|G] = E[X].

iii.) E[ E[X|G] |H] = E[X|H].

Der Satz A.0.3 stammt aus ”Probability Theory in Finance - A Mathematical Guide

to the Black-Scholes Formular”von Seán Dineen und für den Beweis sei ebenfalls auf

die angegebene Literatur verwiesen.

Satz A.0.4 (06).

Eine endliche Menge von Zufallsvariablen X1, . . . , Xn+1 mit Werten in messbaren Räumen

(Ωi,Fi) ist genau dann unabhängig, wenn X1, . . . , Xn unabhängig sind und Xn+1 un-

abhängig ist von σ(X1, . . . , Xn).

Für den Beweis sei auf das Skript ”Wahrscheinlichkeitstheorie”von Prof. Löwe (S.90

Korollar 9.15) verwiesen.
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Bemerkung A.0.5.

Die Abbildungen für den Wienerprozess bzw. geometrischen Wienerprozess wurden

dem Statistikprogramm R über die folgenden Befehle erzeugt:

#Definition des Intervalls

a<-0

b<-1

#Definition der Anzahl der Diskretisierungspunkte

n<-1000

#Definition des Zeitvektors

t<-c(seq(a,b,1/n))

#Definition der Zuwächse des Wienerprozesses

W<-numeric(length(t))

#Funktion zur Erzeugung von Zufallszahlen für die Zuwächse

#gemäß Normalverteilung

Erz_Zufallsvektor<-function(t){z<-numeric(length(t))

z<-rnorm(length(t), mean=0, sd=sqrt((b-a)/n))

z[1]<-0

return(z)}

#Erzeugung der Zufallszahlen für die Zuwächse

W<-Erz_Zufallsvektor(t)

#Funktion zur Addition der Zuwächse

AdditionZuwächse<-function(W){z<-numeric(length(W))

for (i in 2:length(W)){z[i]<-sum(W[c(seq(1,i))])}

return(z)}

#Berechnung des Wienerprozesses

Wt<-AdditionZuwächse(W)

#Graphische Darstellung des Ergebnisses (ggf. Y-Achse anpassen)

plot(t,Wt,type="l", xlim=c(a, b), ylim=c(-1, 1), xlab="Zeitintervall [a,b]",

ylab="Standard Wienerprozess", main= "Beispielpfad")

abline(h=c(seq(-1,1,0.5)), lty=2)

#Festlegung der Parameter (Anfangskurs S0, Volatilität, Drift)

#für das risky asset

S0 = 100

sigma = 0.6

mu = 0.3

#Funktion für die Berechnung des Kurswertes
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Geom_Wienerprozess<-function(S0, sigma, mu, t, Wt)

{z<-numeric(length(t)) z[1]<-S0

for (i in 2:length(t)){z[i]<-(exp(sigma*W[i]+(mu-1/2*sigma^2)*

(t[i]-t[i-1]))-1)*z[i-1]+z[i-1]}

return(z)}

#Bestimmung der Kurswerte

St<-numeric(length(t))

St<-Geom_Wienerprozess(S0, sigma, mu, t, W)

#Graphische Darstellung des Ergebnisses (ggf. Y-Achse anpassen)

plot(t,St,type="l", xlim=c(a, b), ylim=c(50, 200),

xlab="Zeitintervall [0,1]", ylab="Aktienpreis", main= "Beispielpfad")

abline(h=c(seq(0,1000,10)), lty=2)
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