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1 Einfiihrung

Die vorliegende Bachelorarbeit befasst sich mit dem Thema der Portfolioopti-
mierung in diskreten, arbitragefreien Finanzmarktmodellen. Das heifit fiir ein
gegebenes Anfangskapital  mochte man eine optimale selbstfinanzierende Han-
delsstrategie bestimmen, so dass der erwartete Nutzen zum Zeipunkt T maximal
ist. Dieses dynamische Optimierungsproblem kann man in zwei Schritten losen.
Zuerst 16st man das statische Optimierungsproblem, indem man die optimale
Endauszahlung bestimmt, die den erwarteten Nutzen maximiert. Dann kann man
in einem vollstéandigen Fall ein Hedge fiir diese Auszahlung konstruieren. In einem
unvollstiandigen Modell muss diese Endauszahlung nicht hedgebar sein, das heifit
man muss auf die Methoden der Bestimmung der Superhedges zuriickgreifen.

Im ersten Kapitel wird die Nutzenfunktion definiert und die Formulierung des
dynamischen Portfoliooptimierungsproblems aufgestellt. Das zweite Kapitel be-
fasst sich mit dem vollstéindigen Finanzmarktmodell. Zuerst wird die Aquivalenz
zwischen dem dynamischen und dem statischen Optimierungsproblem gezeigt
und dann eine Methode zur Losung des statischen Portfoliooptimierungsproblems
hergeleitet. Als Anwendungsbeispiel fiir die entwickelte Methode betrachtet man
dann zuerst das Einperioden CRR-Modell. Die erhaltenen Ergebnisse kann man
dann auf das N-Perioden CRR-Modell ausweiten.

Im dritten Kapitel wird dann die Methode fiir ein unvollstédndiges Finanz-
marktmodell hergeleitet. Als Beispiel fiir ein unvollstandiges Modell betrachtet
man dann zuerst das Einperioden und dann das N-Perioden Trinomialmodell.
An einigen Beispielen wird gezeigt wie der optimale erwartete Nutzen numerisch

bestimmt werden kann.

1.1 Nutzenfunktion

Definition 1.1 Die Nutzenfunktion U : R — RU{—o00} stellt den Nutzen eines

Endvermégens zum Zeitpunkt 7" dar und erfiillt die Inada Bedingung, d.h. es gilt:



e U ist monoton steigend auf R, stetig differenzierbar und strikt konkav in

{U>—-0}={zeR|U(x) > —o0},
e lim, ,..U'(x) =0

e Ferner gilt entweder:
1. U(x) > —oo fiir alle € R, dann ist lim,, ., U'(z) = .
oder:
2. Es existiert ein a € R, sodass a =sup{z € R | U(z) = —o0}.
Dann ist U(z) = —oo fiir z < a und U(z) > —oo fiir x > a und es gilt
lim,, U'(x) = o0.
Im Folgenden schrankt man sich auf den Spezialfall a = 0 ein, dieser hat

wirtschaftlich gesehen eine grolere Bedeutung.

Beispiele: In Abhéngigkeit von dem Definitionsbereich {U > —oo} kann man

folgende Beispiele fiir die Nutzenfunktion betrachten:
1. Fir {U > —o0} = R: Ulx)=—e* a>0, ze€R

In(x), firz >0
2. Fiir {U > —o0} = (0,00) :  Ul(x) =

—o00, firx <0.

1.2 Formulierung des Portfoliooptimierungsproblems

Man betrachtet ein arbitragefreies, diskretes Finanzmarktmodell mit einem ab-
diskontierten Preisproze$ (S;)o<i<r auf einem Wahrscheinlichkeitsraum (2, F, P)
mit einer Filtration (F;)o<i<r. Wobei Q = {w;,ws,...,wy} ein endlicher Zu-
standsraum ist und (S;)o<¢<r adaptiert beziiglich (F;)o<i<r ist.

Man kann nun das Maximierungsproblem fiir den Erwartungswert der Nutzen-

funktion mit Anfangskapital = unter allen selbstfinanzierenden Handelsstrategien



definieren:

u(z) = EIEI%EP(U@ + (H - S)r)), (1)

wobei H der Raum der selbstfinanzierenden Handelsstrategien ist.

u(z) heilt indirekte Nutzenfunktion, sie gibt den optimalen erwarteten Nutzen
des Handelns mit Anfangskapital = an.

Dies ist ein einfaches Beispiel fiir ein Portfoliooptimierungsproblem. Die hierfiir
hergeleitete Methode léasst sich aber auf komplexere Modelle, die zum Beispiel
Entnahmen beriicksichtigen, erweitern.

Das Ziel ist es nun die optimale Handelsstrategie H (x) € H zum Anfangskapital

T 7zu bestimmen.

2 Maximierungsproblem in einem vollstindigen

Modell

2.1 Methode zur Lésung des Maximierungsproblems

Man betrachtet ein vollstdndiges Finanzmarktmodell. Nach dem 2. Fundamentalsatz
der Preistheorie existiert genau ein dquivalentes Martingalmafl ().

Fiir die weiteren Uberlegungen ist der folgende Satz von grofier Bedeutung.

Satz 2.1 Das Portfoliooptimierungsproblem (1) ist dquivalent zum folgenden Ma-

ximierungsproblem:

EpU(X7) =Y paU(&) — max! (2)



unter der Nebenbedingung

N
EqXr = b < 1, (3)
n=1
wobei X1 = (Xr(wn))1<n<n = (&n)1<n<n eine beliebige Fr-mef$bare Zufallsvaria-

ble ist.

Beweis: Es ist also zu zeigen:

N

w(z) = sup Ep(U(z+ (H - S)r)) = sup anU(én)

Hen €N, Tnly dnén<e n=1
= sup EpU(X7p),
Xr€eC(z)

mit C'(z) = { X7 : Xp ist Fr-meBbar und EqXr < x}.

(>): Sei Xp = (Xr(wn))i<n<n = (€n)1<n<n € C(x). Dies entspricht einer
Auszahlung zum Zeitpunkt 7" mit dem Anfangspreis y = Egzl Gnén < .
Da das Modell vollsténdig ist, ist X7 hedgebar. Das heifit, es existiert eine selbst-
finanzierende Handelsstrategie H mit Xo =y + (H - S)r.
Da U monoton steigend ist und y < z, gilt:
EpU(X7r) =EpU(y+(H-S)r) <EpU(x+(H-S)r) < supyey EpU(x+(H-S)r).
Daraus folgt:  supy,.co() EpU(Xr) < u(z).

(<): Sei H € H beliebig. Dann ist X7, definiert durch X7 = = + (H - S)r,
ein Endvermogen mit Anfangskapital Eg X7 = z, also ist Xr € C(z).

Somit ergibt sich:

]EPU(.I + (H . S)T) = EPU(XT) S sup ]EPU(XT)
Xrel(z)

= u(x) = sup EpU(x + (H - S)r) < sup EpU(X7).
HeH XreC(z)



Somit kann man das urspriingliche dynamische Maximierungsproblem durch
ein statisches mit einer Nebenbedingung erstetzen. Das heifit, statt in (1) un-
ter allen selbstfinanzierenden Handelsstrategien zu maximieren, deren Zusam-
mensetzung man fiir jede Periode bestimmen muss, maximiert man unter allen
Endauszahlungen X7 zum Zeitpunkt 7" mit Eg Xr = x.

Weiter kann man jetzt das Maximierungsproblem mit einer Nebenbedingung
aus dem Satz 2.1 in eins ohne eine Nebenbedingung mithilfe des Lagrange-

Ansatzes umformulieren. Die dazugehorige Langrange-Funktion lautet:

L&, vy) = Y paU() =y (Z Gnén — x)

n=1 n=1
N

=S (U6 -6 ) e @)
n=1 n

dabei ist y > 0 der Lagrange-Multiplikator.
Man betrachtet nun folgende Funktion:

‘If(y)zésurg L(&i, - ényy), ¥y >0 (5)

Durch das Einsetzen der Formulierung (4) in (5) wird das Maximierungsproblem

iiber RY in der Gleichung (5) in N Maximierungsprobleme iiber R iiberfiihrt:
sup (U(Sn) - y}g—"&) , 1<n<N. (6)
én n

Um dieses Maximierungsproblem zu losen braucht man die Definition der dual

konjugierten Funktion.

Definition 2.2 Ist U : R - R U {—o0} konkav, dann ist

V(y) = igg[U (y) —yz], y>0 (7)

die dual konjugierte Funktion von U.



Die Eigenschaften von V' werden im folgenden Satz beschrieben.

Satz 2.3 U erfiille die Inada Bedingung. Dann besitzt die dual konjugierte Funk-
tion V : Rt — R; y = sup,cr[U(x) — yx] folgende Eigenschaften.

1. 'V hat einen endlichen Wertebereich und ist stetig differenzierbar auf (0, c0),

o

es gilt =V’ = (U')"" und V st strikt konvezr auf (0, 00),

Co

lim o V' (y) = —o0

oo, falls {U>—o0} =R
4 imy 00 VI (y) = :
0, falls {U > —oc} =(0,00)

5. U(z) =1inf o[V (y) +yx], z€{U > —oo}.

Beweis: V(y) = sup,cg|U(z) — yz] fur y > 0.
U(z) ist strikt konkav und (—yz) ist konkav, also ist U(z) — yx auch strikt
konkav. Eine strikt konkave Funktion f besitzt ein globales Maximum an der
Stelle & genau dann, wenn f’(z) = 0 ist. Sei f(z) = U(z) — yx, dann gilt
f(@)=U(2)—y=0 & UZ) =y
U’ ist stetig und streng monoton fallend, da U stetig differenzierbar und strikt
konkav ist. Ferner ist U'({U > —oo}) = (0,00). Also ist U’ : {U > —oc0} —
(0, 00) bijektiv und somit existiert eine Umkehrfunktion (U’)~! von U’.
Also wird das Maximum an der Stelle #(y) = (U’)"!(y) angenommen und die
Funktion V ist gegeben durch V(y) = U(2(y)) — yz(y).

zu 1: V ist stetig differenzierbar, da U stetig differenzierbar ist.
Fiir alle y € (0,00) gilt 2(y) = (U')"*(y) € {U > —oo} C R, und somit auch
U(z(y)) € R. Also ist V(y) € R fiir alle y € (0, 00). Somit hat V einen endlichen
Wertebereich.

2 V'(y)=U(U)"'®) (U)7) (9) = (U @) +y((U) ) ()
=y((U))'(y) = () () +y(U) ) () = =(U) " (y).



V ist genau dann strikt konvex, wenn V' streng monoton wachsend ist.
Es gilt: U ist streng konkav, also ist U’ streng monoton fallend. Daraus folgt, dass
(U")~! streng monoton fallend ist. Also ist V'(y) = —(U’)"!(y) streng monoton
wachsend. Also ist V' strikt konvex.
zu 3: Esgilt lim,aoV'(y) = —lim,0(U') ' (y) = —c0, denn
U'(x) = 0 genau dann, wenn z gegen oo lauft. Also ist (U’)~(y) — oo fiir y — 0.
zu4: Sei {U > —oo} = R, dann gilt:
limy, oo V'(y) = — limy 00 (U') " (y) = o0, denn
Ulr) =0 x— —00 = limy,u(U)(y) = —cc.
Fiir {U > —o0} = (0, 00) gilt:
lim, 00 V'(y) = — limy, 0 (U’) " (y) = 0, denn
Ulr)=ccer—0 = lim,,(U)(y)=0.
zu 5: Die Funktion f(y) = V(y)+yx ist strikt konvex, besitzt also ein globales
Minimum an der Stelle y genau dann, wenn f’(y) = 0 . Es gilt also:
Viy)=—2 & U) 'y =2 & y=U'(2).
Also folgt aus V(y) = U((U")"(y)) — y(U") " (v):

iI;f[V(y) +yx] = V(U'(2)) + 2U'(2)

=U((U) (U (2) = U'(2)(U) (U (x)) + 2U'(x)
=U(x) = U'(z)x + 2U'(x) = U(x).

O

Die folgende Bemerkung ist auch fiir die kommenden Uberlegungen wichtig.

Bemerkung 2.4 Erfiillt V' die Eigenschaften 1 bis 4 aus dem Satz 2.3, so erfiillt
U(x) =inf,[V(y) + yz| fir = € {U > —oo} die Inada Bedingung.

Beweis: Sei U(z) = inf, [V (y) + yz] fir = € {U > —oo}. V(y) + yx ist strikt
konvex, somit existiert ein globales Minimum an der Stelle y, definiert durch

V'(y) = —x. V' ist streng monoton wachsend und stetig auf (0,00), da V' strikt
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konvex und stetig differenzierbar ist. Ferner ist lim, o V'(y) = —oc.

Falls lim, o, V'(y) = 0, so ist V' : (0,00) — (—00,0) bijektiv. Somit existiert
eine stetige Umkehrfunktion von (V')™!: (—00,0) — (0,00) und ¢ ist eindeutig
bestimmt durch § = (V') (—=z). Also ist die Funktion U gegeben durch:

U(z) = V((V)" Y ==z)) + (V)Y (—z) fir = > 0. Somit ist U(x) > —oo fiir
x > 0, ferner ist U stetig differenzierbar, da V' stetig differenzierbar ist.

Auflerdem gilt:

U'() = V() =) - (V)7 (=) + (7)) — 2 (V)Y (=)
= (V') ().

Daraus folgt:
lim, o U'(2) = lim, 0o (V') "} (—2) = 0, denn
V'(y) - —o0 < y— 0und
lim, o U'(z) = lim,_,o(V')"}(—x) = oo, denn
V'(y) =0 < y— oo,
Falls aber lim,_,., V'(y) = oo ist, so ist die Funktion V' : (0,00) — (—o0,+00)
bijektiv und es existiert eine stetige Umkehrfunktion (V') : (=00, 00) — (0, 00).
Dann ist U wieder gegeben durch U(z) = V((V')"'(—z)) + (V') }(—=x) fiir
x € R. Also ist U(x) > —oo und stetig differenzierbar fiir x € R. Ferner gilt:
lim, s o U'(x) =lim, o (V') (—2) = 00, denn V'(y) - 00 & y — o0,
AuBerdem ist U monoton steigend, da U'(z) = (V')"1(—z) > 0 fiir alle z € {U >
—oo} ist. Ferner ist U strikt konkav auf {U > —oo}. Denn wegen der strikten
Konvexitdt von V ist (V/)~! monoton wachsend. Also ist (V’)~!(—xz) monoton
fallend in x.
Also erfiillt U die Inada Bedingung.
U
Die folgenden drei Beispiele veranschaulichen, wie man fiir eine Nutzenfunk-

tion U die dazugehorige dual konjugierte Funktion V' bestimmen kann.



Beispiele: Fiir eine Nutzenfunktion U ist die dual konjugierte Funktion V' defi-
niert durch V' (y) = sup, (U(z)—yz). Das heifit um V' zu bestimmen muss man zu-
erst ein einfaches Maximierungsproblem fiir die Funktion f(z) = U(x)—yzx 16sen.
Da f strikt konkav und differenzierbar ist, ist die Extremstelle #(y) eindeutig be-
stimmt durch f'(z(y)) = 0. Also hat V folgende Gestalt: V(y) = U(z(y)) —yz(y).

1. Sei nun U(z) = In(z) fiir = > 0. Dann ist f(z) = In(x) — yx fiir ein y > 0
und f'(z) = 2 —y. Alsoist f'(Z(y)) = 0 genau dann, wenn Z(y) = é
Somit erhdlt man: V(y) = f(2(y)) = ln(i) - yi = —In(y) — 1.

2. Sei U(z) =L fir z € R, a € (—o0,1)\{0} eine Nutzenfunktion.

Dann ist f(x) = % — yz fiir ein festes y > 0 und f'(z) = 2! —y.
Bs folgt: f'(i(y)) = 0 < i(y) = y=r.

Somit erhdlt man: V(y) = f(yﬁ) = %yﬁ fiir v € (—00,1)\{0}.

3. Sei U(z) = _M fir x € R, @ > 0 eine Nutzenfunktion.
flz) = —M —yr = f'(z) =exp(—azr) —y und
F(@(y) =0 & d(y) = -2,
Also st V(y) = f(i(y)) = —exp(=22&)) . L —py 20 — ¥ (In(y) — 1).

(e}

Nun zuriick zu dem Maximierungsproblem.
Aus dem Satz 2.3 ist ersichtlich, dass fiir die Nutzenfunktion U die konjugierte
Funktion V' nur endliche Werte annehmen kann. Das heifit, dass das Maximie-
rungsproblem in (6) und damit auch in (5) eine Losung besitzt. Somit erhélt man

mit Hilfe von (4) und (7) folgende Gleichung fiir W:

U(y) = sup L(&i,...,&n,Y)

ISP,
- g
= sup Y pa <U(§n) - y—"fn) +yx
§158N Pn
- g
= pn sup (U(&) —y—6u ) +yz
n=1 &1,y EN Dn



N
=> mV <yq—”> +ya
gt Pn

d

Sei nun die Funktion v definiert durch:

J N
v(y) :=EpV <y£> = anV (y;i—n) , oy >0.

n=1 n

Bemerkung 2.5 Die Funktion v besitzt die gleichen qualitativen Eigenschaften
wie V im Satz 2.3 .

Beweis: v ist eine konvexe Kombination von V' ausgewertet auf linear skalierten
Werten. Somit hat v einen endlichen Wertebereich und ist stetig differenzierbar
und strikt konvex, da V diese Eigenschaften erfiillt.

Es gilt v'(y) = Zivzl V' (yi—:). Somit folgt aus lim, oV’ (yf}—i) = —o00, dass
lim,_,ov'(y) = —o0.

Analog gilt:

oo, fir {U>—-o0} =R, da lim, . V'(y) = oo,
lim v'(y) =
y—>00

0, fir {U> —o0}=(0,00), da lim, ,, V'(y) =0.

O

Die Funktion ¥(y) = v(y) + yx ist strikt konvex. W besitzt also ein globales
Minimum an der Stelle g, wenn folgendes gilt: ¥/(y) = 0 . Also ist ¢ definiert
durch v'(y) = —=z.

Aus der Bemerkung (2.5) folgt, dass v" stetig und strikt monoton steigend ist.
Ferner gilt fiir {U > —oo} = (0,00): lim,v'(y) = —oo und lim, ., v'(y) = 0.
Somit ist v’ : (0,00) — (—00,0) bijektiv. Das heifit, dass fiir jedes = > 0 genau
ein g(x) € (0,00) existiert mit v'(y(z)) = —=x.

Fir {U > —oo} = R gilt: lim, ¢’ (y) = —oo und lim, . v'(y) = oo.
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Dann ist v" : (0,00) — (—00,00) bijektiv und fiir jedes z € R existiert ein
eindeutiges g(z) € (0,00) mit v'(y(z)) = —=.

Somit existiert fiir alle x € {U > —oo} ein eindeutiges y(z), so dass

inf U(y) = ¥(y(x)).

y>0

Nun hélt man g(z) fest und betrachtet die strikt konkave Funktion

(&1 s &) = L&, -5 €, G()

i:; (V66 - #0126, ) + do)s

n

Analog zu oben kann man sich iiberlegen, dass aufgrund der strikten Konkavitét

ein eindeutiger Maximierer (&1, ..., &y) dieser Funktion existiert und es gilt
1 E N _ apandn s 1 agon 4o .. .
U'(&) =9y(x)— bzw. &, =V (y(m)—) fir alle n=1,...,N.

Insgesamt erhélt man

inf ¥ (y) = inf(v(y) +2y) = v(§(2)) + 2§(2) = T(§(x)) (8)
= 5sup L&, .. &N, 0(x)) = L(él, . ,gN,gj(x)).

L ist stetig differenzierbar an der Stelle (£1, ..., &y, 4(x)), da &, € {U > —oo}
fiir alle 1 < n < N. Somit ist VL(&, ..., Ex, 9(2)) =0
Insbesondere ist

0=0yL(&, - &N W6 bn o))

,,,,,

N N N .
= al/ (anU(fn) —y- (Z Gnn — $>) |(f1 ..... Enil(@) = anfn — .
n=1

n=1

11



Also ist die Nebenbedingung (3) erfiillt, denn Zgzl gnén = . Also gilt:

L, €n () = D palU(&n) (9)

Somit gilt
N A~
u(@) = plU(&). (10)
n=1

Denn u(x) > ij:lan(én) folgt aus

N N
u(z) = sup D palU() =Y palU(En),
61 7777 £N7 22]:1 qnénSI n=1 n=1

da fiir (él, L€ ~) die Nebenbedingung erfiillt ist.
u(z) < ij:lan(én) erhalt man aus der Tatsache, dass fiir alle (&, ...,&y), die

die Nebenbedingung erfiillen, gilt:

N N
D o paU(&) S L&, 6n (@) < LG, €n, (@) = Y palU ().
n=1 n=1

Mithilfe von (10),(9) und (8) erhdlt man nun fir = € {U > —oo}:

inf W(y) = inf(v(y) + 2y) = L&, én, () = Y pal(&n) = u(z).

y>0 y>0

Aus der Bemerkung 2.4 und der Tatsache, dass v die gleichen qualitativen Eigen-
schaften wie V' in 2.3 besitzt, folgt nun:
v ist die dual konjugierte Funktion von u und u erfiillt die Inada Bedingung.

Somit kann man g(z), definiert durch v'(g(z)) = —z, berechnen durch

§(z) = u'(z), fir x € {U > —o0}.

12



Der folgende Satz fasst die bisheringen Ergebnisse zusammen.

Man bezeichne mit X € C(z) den Optimierer Xp(w,) = &, firn=1,...,N.

Satz 2.6 Gegeben sei ein diskretes, arbitragefreies und vollstindiges Finanzmarkt-
modell mit einem abdiskontierten Preisprozess (Si)o<i<r auf einem endlichen

Wahrscheinlichkeitsraum (2, F, P) mit einer Filtration (F)o<i<r, wobei (S¢)o<i<r
adaptiert beziiglich (Fy)o<i<r ist. Sei Q das dquivatente Martingalmaf$ und U eine

Nutzenfunktion mit Inada Bedingunyg.

Seien u(x) und v(z) definiert durch

u(z) = sup EpU(Xrp(z)), =€ {U > —oc0}, (11)
Xr(z)eC(z)

v(y) = EpV (yg—g) , y>0.

Dann gilt:

1. Die Funktion v ist die dual konjugierte Funktion von w, und u erfillt die

Inada Bedingunyg.

2. Der Optimierer Xp(x) von (11) existiert und ist eindeutig. Es gilt
Xp(z) = =V (y%) oder auch y% = U'(Xp(z))

wobei x € {U > —o0}, y >0 und y =/ (z) bzw. v = —v'(y).

3. Fiir v und v gilt:

u(z) = Ep(U'(Xr(2))), v%w==EQ(V”<y§%)>

v () = Ep(Xr (0)U"(Xr(2))), 90'(y) = B (y%w (yg)) |

Beweis: 1. und 2. wurden in den oberen Uberlegungen gezeigt.

Es bleibt also 3. zu zeigen.

V() = (EpV (v33)) = Er (V' (v73)) = Eq (V' (i) nnd

13



y'(v) = vEp (BV' (vi#)) = Er (vFV' (vF))-

Aus 2. folgt:

u'(z) =y =Ep (y‘j%) = EP(U/(XT@))) und

/' (z) = —yv'(y) = —Ep (yj—?gv’ (yi—%)) =-Ep (—U/(XT(JJ))XT(JU))
= ]EP<XT<I>U/(XT(x)))'

Mithilfe von Satz 2.6 ist es nun moglich den Optimierer XT(x) zu bestimmen.
Da der Markt vollsténdig ist, existiert ein Hedge fiir XT(x), damit ist dann auch
die optimale Handelsstrategie festgelegt.

Im Folgenden wird als Anwendungsbeispiel, der oben hergeleiteten Methode, die
optimale Handelsstrategie fiir ein Anfangskapital x in einem CRR-Modell be-
stimmt. Zunéchst betrachtet man das Einperioden CRR-Modell. Hier ist die op-
timale Handelsstrategie durch den optimalen Anteil des Anfangskapitals, das am
Anfang der Periode in die Aktie investiert werden muss, bestimmt. Im néchsten
Schritt kann man dann das Einperioden-Modell auf das N-Perioden CRR-Modell

ausweiten.

2.2 Anwendung in einem Einperioden CRR-Modell

Man betrachtet nun ein arbitragefreies Einperioden CRR-Modell mit Q = {wy,ws},
Wahrscheinlichkeitsmaf§ P mit P({w;}) = p und P({ws}) =1 — p.

Sei $9=1 der Preis der festverzinslichen Anleihe zum Zeitpunkt 0 und S = 1+
der Preis zum Zeitpunkt 1 fiir ein » > —1. Fiir den Preis der risikobehafteten

Anleihe gilt:

R - 1+ u, falls wy eintritt,

1+ d, falls wy eintritt.

14



Da das Modell arbitragefrei ist, gilt d < r < u. Ferner soll d > —1 sein.

Fiir die abdiskontierte Preisentwicklung gilt:

Sy=1, SY=1,

1 + a, falls w; eintritt,
Sy =1, S| =
1 + d, falls wy eintritt

mit 1 +@=3%>1und 1+d=212 <1,
Man nimmt 0.B.d.A an, dass @ > —d. Denn dann gilt EpS} > S! d.h. die
optimale Handelsstrategie wird eine Long-Position in der Aktie haben. Fiir a <
—d fithrt man die unteren Berechnungen analog durch, dann ist aber eine Short-
Position in der Aktie méglich.
Fiir den dquivalenten Martingalmafl @ gilt:

d —d i

QH{wi}) =q= Z: iT und entsprechend Q({w2}) =1—¢ = —

Nun ist das Ziel fiir eine Nutzenfunktion U die optimale Handelsstrategie
mithilfe des Satzes 2.6 zu bestimmen. Man nehme die drei Nutzenfunktionen,
fiir die im Kapitel 1.2 die dual konjugierten Funktionen berechnet wurden, als
Beispiel.

1. Sei U(z) = £ fiir a € (—o0,1)\{0}, > 0 eine Nutzenfunktion. Dann ist
V(y) = — % mita—1= (8 —1)7! die dual konjugierte Funktion von U.

B
Nach dem Satz 2.6 gilt:

o) =B (v 5)
o) (12
() (5 ()

15



s s (8 0o (122)

Folgende Bemerkung ist fiir die Berechnung der indirekten Nutzenfunktion u

hilfreich.

Bemerkung: Seien V(y) die dual konjugierte Funktion von U(x) und ¢ > 0 eine

Konstante, dann ist ¢V (y) die dual konjugierte Funktion von cU (%)

Beweis: Setze U(z) = cU (%). Das heifit es ist zu zeigen, dass

cV(y) = sup,(U(x) — yx).

Setze T = 7. Dann gilt:

sup(U(z) — yx) = sup(cU(z) — cy7)

x

= csup(U(Z) — yZ) = ¢V (y).

xT

Da v = ¢V die dual konjugierte Funktion von u ist, folgt:

u(z) = ey U (%) — U (2) = cyU(z), mit

Fiir ein 2 > 0 kann man nun zuerst g(x) ausrechnen: y(x) = v'(z) = cyU'(x).

Somit gilt dann nach Satz 2.6:

fite) = v (i) 52)

— v (52) 7w v = v

16



Folglich gilt:

1 1
o 4 ot g -1 —J~ a—1 . .
Xy =" (p) Lo (p(ﬁ—d)) ;faﬂs wyemtritt 12)
ZL’C‘_/l (%Z) o = xc\_/l ((1—;0)7:212—(5)) o y falls W9 eintritt.

Da das Modell vollstéindig ist, existiert ein Hedge fiir X;(z). Nach dem 2. Fun-
damentalsatz der Preistheorie existieren also x1, x5 € R mit
~ I AS&
Xi(z) =z + , .
i) ASll
Setze h = x5, dann gilt

A

Xi(z) =2+ hAS}, da AS} =0 ist. (13)

Mithilfe von (12) und (13) kann man % ausrechnen.

Falls w; eintritt, dann gilt:

Das heifit, dass man um den maximalen erwarteten Nutzen zu erreichen, ka
Aktien am Anfang der Periode kaufen muss. Dabei kann k in Abhéngigkeit von
@, d und a genau berechnet werden und es gilt 0 < k < oo fiir v € (—00, 1)\{0}.
Man beachte, dass k grofler als 1 sein kann, d.h. es ist eine Short-Position in der
risikolosen Anleihe moglich.

2. Nimmt man nun U (z) = In(x) als Nutzenfunktion, so ist V(y) = —In(y)—1

17



die dual Konjugierte von U und es gilt nach Satz 2.6 :

v(y) =EpV (y%)

p )
- )1 (o (10))
= —In(y) —pln (%) —(I=p)ln G%g) -1

Da v die dual konjugierte Funktion von w ist, gilt nach Satz 2.3:

u(x) = infy>o(v(y) + yz).

Um nun « zu bestimmen muss man (v(y)+yx) nach y ableiten und dann die Ab-
leitung gleich 0 setzen. Wegen der strikten Konvexitdt von v ist dies hinreichend
fiir ein Minimum. Es gilt also:

(v(y) +ya) =—, +r=0&y=.

= u(z) =v(i)+1.-2=In(z)—ph (%) —(1-p)ln <1%Z>.

Weiter ist nach Satz 2.6 §(r) = v'(z) = 2 und

¢ dQ V(i) =t falls w; eintritt,
Xi(z) ==V (@(I)dp) —
-V (% : 8:3) = SIZ; -x, falls wo eintritt.

Aufgrund der Vollstdndigkeit des Marktmodells existiert nun wieder ein heR
mit X;(z) = + hAS}.
Somit folgt aus z + hit = X;(z)(wy) = .z, dass

()

Somit ist die Anzahl der Aktien h, die gehalten werden miissen, um den maxi-

] 8
I
VR

=,
]S
Q) |
2
|
—_
~
] 8
I
VR
=
I~
| |
I~
gz\%‘/‘
+
QU
~
8
I
>
&

malen erwarteten Nutzen zu erhalten, bestimmt.
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3. Sei U(z) = —exp(—z) die Nutzenfunktion, dann ist V(y) = y(In(y) — 1)

die dual konjugierte Funktion von U. Es gilt:

v(y) =EpV @%)
G ) )0l )
:yq(ln( —1+ln( >)+y 1—q) ( (y)—l“n(%;))

= y(n(y) — 1) +y- qln<%) 1—q)ln(1:;)

—V(y)+ ¢y mit ¢=qln (]3) 41— g G%]qg)

Die indirekte Nutzenfunktion v bestimmt man nun wieder mithilfe der ersten
Ableitung von (v(y) 4+ yx) nach y.

(0(y) +y2)) =V'(y) +c+z=Iy) - 1+yi +c+z=0

< n(y) =—x—ce y=exp(—z—c).

Also ist

u(z) = V(exp(—z — ¢)) + cexp(—x — ¢) + zexp(—x — ¢)
=exp(—2z —c¢)(—r —c—1)+cexp(—z —¢) + vexp(—z — ¢)
= —exp(—x —¢) und

j(x) = v/(x) = exp(—z —c).
Nun kann man wieder X;(z) bestimmen

. o —In(exp(—z—c)l)=x+c—In(2), falls w; eintritt,
fute) = v ()52 - ( 2 ()

r+c—1In ( p) falls wy eintritt.

Weiter gilt X;(z) = 2 + hAS?, fiir ein h € R.

19



Somit folgt aus z + @h = X (z)(w) =2 +c¢—In (%), dass

h:c—ln<%>:1qun<(l—q)p): 1~ln<i~ L).

i i (1-p)q) a—d \—d 1—-p

Somit ist die optimale Handelsstrategie durch die Parameter des Modells eindeu-

tig bestimmt. Bei diesem Beispiel ist bemerkenswert, dass h nicht von z abhéngt.

2.3 Ubertragung auf das N-Perioden CRR-Modell

Sei (/)N eine Familie von identisch verteilten, stochastisch unabhiingigen Zu-
fallsvariablen auf dem Wahrscheinlichkeitsraum (€2, F, P), sodass P(e; = 1) = p
und P(g; =0) =1—p fir 1 <t < N. Ferner sei (F;), eine Filtration, wobei
Fi=o0(en: 1 <n<t)dievon (g,)!_, erzeugte o-Algebra ist.

Sei der Zinssatz r der festverzinslichen Anleihe gleich 0. Der Aktienpreisprozess

S ist definiert durch: Sy=1 und fir t =1,..., N ist

Si1(1+u), fallse, =1
St -

St—l(l + d), falls Et = 0

=S a(1+u)*(1+d)' mit —1<d<0<u.

Das Ziel ist nun wieder das Maximierungsproblem
E|U (24500 kA8, )| - max!
fiir eine Nutzenfunktion U zu lésen, wobei (h,))_, € H.
Im folgenden werden die Nutzenfunktionen U(z) = £ fiir v € (—00,1)\{0} und
U(z) = In(x) untersucht.
1. Man betrachte zuerst die Nutzenfunktion U(z) = £ fiir o € (—o0,1)\{0}.
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Durch

u(z) 1= sup {E

(o Snss)e])

n=t+1

sind bedingte Nutzenfunktionen fiir ¢ = 0,..., N definiert, dabei wird iiber die
(Fn—1)d,.1-meBbare Zufallsvariablen (h,,)Y, ., maximiert.

Fiir die bedingte Nutzenfunktion gilt folgender Satz.

Satz 2.7 Fir die bedingte Nutzenfunktion definiert durch (14) gilt:

u(z) = ¢y 'U(x) firt=0,...,N und

h

B —
A

furt=1,... N,

wobei h der optimalen Handelsstrategie in einem Finperioden CRR-Modell ent-

spricht.

Beweis: Der Beweis erfolgt durch Riickwértsinduktion.

IA: Es gilt per Definition: uy(z) = U(x).
Fiir t = N — 1 betrachtet man nur eine Periode von N — 1 bis N. Man befindet
sich also in einem Einperioden Modell, dabei ist zu beachten, dass der Aktienpreis
zum Zeitpunkt N — 1 eine Fy_;-mebare Zufallsvariable ist.
In einem Einperioden Modell ist h die Anzahl der Aktien, die man halten sollte um
den maximalen erwarteten Nutzen zu erreichen, dabei ist der Aktienanfangspreis
Sg = 1. Dementsprechend ist dann hy = # die optimale Anzahl der Aktien
fiir Sy_1 als Anfangspreis. Zu beachten ist, dass hx Fn_1-meBbar ist.

Auf diese Weise erhalt man:

un—1(z) =sup{E [U (x + hyASN) |Fn-1] : hy ist Fy_i-meBbar}
=K [U (33 + iLNASN> |JT"N71:|
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| h
=FE U (m + Sno1((T+w)™N (14 d)' =y — 1)) |]:N—1]
I Sn-1

£+ B+ ) (1 ) 1)) [Pl

U( +
~E :U (x F R+ )T (14 d) e — 1))]
U( +

Bei dem fiinften Gleichheitszeichen ist zu beachten, dass (g;)Y, identisch verteilte,
stochastisch unabhéngige Zufallsvariablen sind und somit von Fy_; unabhéngig
sind. Aulerdem ist U eine stetige Funktion, also meBbar. Die Gleichheit folgt also
aus den Rechenregeln fiir bedingte Erwartungswerte.

Also ist uy_1 unabhéngig von Fx_; und das Maximierungsproblem entspricht
dem in einem Einperioden-Modell. Das heif3t, man kann die Ergebnisse aus Kapitel

2.1 anwenden:

un () = cpU(x) mit ey = (p (%)6 +(1—p) G—:Dﬂ> -

IV: Es gelte fiir ein beliebiges t aus {0,..., N}:

hy_s = fir0<s<t¢t-—1.

ISsN—-t— N—t—1.
Fiir den Induktionsschritt bendtigt man das folgende Lemma aus Finanzmathe-
matik 1.
Lemma: Seien (M, M;),(Ms, M) meBbare Raume, (2, F, P) ein Wahrschein-
lichkeitsraum, G eine Unter-o-Algebra von F. Seien X; : Q — M; und X5 : Q —
My meBbare Abbildungen und h : (M; X My, Mi@Ms) — (R, B(R)) meBibar. Es
gelte ferner: X7 ist unabhéingig von G, X5 ist mefibar beziiglich G und Eh(X, X5)
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existiert.
Dann gllt E(h(Xl, X2)|g) = ]E(h(Xl, X2>|X2> = E(h(Xl, )) OX2 P-fast sicher.
Es gilt nun:

U<x+ 3 msn> mm]}

n=N—t

2+ hy ASy 41 - hASl> P 1}}

I

w

=

i)
_/_,_/H,—/g —_—

U
E U<x+hN 2SSy —gor (14 w)=5—(1 + d) = —1)+t-ﬁA81) \FMH}}
U (2 + hy-ASx_+ 1581 |}

U

(2 + by iBASy—o+t-hAS ) 1 Fv] |}
— sup {E [uy (2 + hy ASy )]}

= ¢} sup{E[U (z + hy_+ASn_1)]}

=, E [U <;C T i}ASl)} =y - eU(x) = U ()

Hier ist zubeachten, dass sich das Supremum in jeder Gleichung auf die Kompo-
nenten der Handelsstrategie (h,,)Y_, beziehen. Bei dem zweiten Gleichheitszeichen
wurde die Induktionsvoraussetzung fiir die Komponenten der Handelsstragtegie
benutzt.

Bei dem vierten Gleichheitszeichen wird das Lemma benutzt, denn es gilt:

o (&,)N_, sind i.i.d, also unabhiingig von Fy_;_1,

ASH=891+u) (1 +d)'c — 1), hy_¢Sy_¢_1 ist Fy_s_1 -meBbar,

e setzt man
f(hN—tSN—t—h 51) = x+hN—tSN—t—1 ((1 +71)61 (]. +J)1761 — ].) +t- iLASl, dann
ist U o f eine Verkniipfung von stetigen Funktionen und somit insbesondere

mef3bar.

e ferner gilt E(U o f)(hy_t+Sn—it-1,61) < 00, da f(hy_tSn_t-1,€1) < oo fiir

alle w € Q.
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Also sind alle Voraussetzungen erfiillt und das Lemma liefert die Gleichung.

Das fiinfte Gleichheitszeichen folgt aus den Rechenregeln fiir bedingte Erwar-
tungswerte, und bei dem siebten wird die Induktionsvoraussetzung benutzt. Schlief3-
lich erhélt man das achte Gleichheitszeichen durch analoge Argumentation wie

im Induktionsanfang, da wieder ein Einperioden-Maximierungsproblem mit Ak-

tienanfangskurs Sy_; 1 vorliegt und somit h Net = ist.

SN—t—1

Insbesondere gilt nun: u(z) = up(z) = U ().

Fiir den Optimierer (X;(z))1<;<r mit dem Anfangskapital z > 0 gilt:

Xt(:v) = $+Z:L:1 hiAS, mit by = %71 fir1 <t <T.

Im Einperioden-Modell ist h=ux-k , wobei x das zur Verfiigung stehende Kapi-

tal ist. Also ist die optimale Handelsstrategie im Mehrperioden-Modell definiert

durch h, = XtTi(lm) -k, da zum Zeitpunkt ¢ Xt_l(x) als Kapital zur Verfiigung

steht. k kann wieder in Abhéngigkeit von dem Modell eindeutig bestimmt werden.
2. Sei nun U(z) = In(z) die Nutzenfunktion, dann ist V(y) = —In(y) — 1

die dual konjugierte Funktion von U. Um hier die optimale Handelsstrategie zu

bestimmen bittet es sich an direkt den Satz 2.6 anzuwenden.

Das heifit, man bestimmt zuerst die Funktion v(y) = EPV(yj—g).

Sei (L;)Y.; definiert durch

t t
Li=) -y =Y &, damnist
=1 i=1

N
n

P(Ly =n) = ( )pn(l—p)N_" firn=0,...,N.
Es gilt also:

Sy = So(1+u) (1 4+d) ™ fiirt=1,...,N.
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Sei @) der dquivalente MartingalmaBl mit ¢ = Q({& = 1}), dann gilt ¢ = u’—_cfj und

aQ \ _(a\" (L=a)""
ap v P 1—p '

Nun kann man v berechnen, es gilt:

. fj (7 )pa-n (—1n<y> - ((%) |

Nun gilt u(z) = inf,>o (v(y) + yx).

ﬂ)N_i> - 1)
1—p
=—In(y) — 1 - i\; (]j)pi(l — )V n ((%) , (%]q?) Ni>

I (R =}

Die Losung dieses Minimierungsproblems fiir eine strikt konvexe Funktion erhélt

man mithilfe der ersten Ableitung: (v(y) +yz)' = -, +2=0 & y=.

Es gilt also:

Weiter gilt nach dem Satz 2.6, dass

dP

g(z) = u'(z) = é und Xy(z) = -V’ (g@:)

2)--tper(
L

p

q

N

1—

1—g¢q

Auf diese Weise ist also die optimale Auszahlung Xy (z) bestimmt. Da das N-

Perioden CRR-Modell vollstindig ist, kann man fiir Xy (z) ein Hedge konstruie-

ren. Dieser entspricht dann der optimalen Handelsstratgie.
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3 Maximierungsproblem in einem

unvollstindigen Finanzmarktmodell

3.1 Methode zur Lésung des Maximierungsproblems

Man betrachtet nun ein arbitragefreies, diskretes, unvollstandiges Finanzmarkt-
modell. Nach dem 2. Fundamentalsatz der Preistheorie ist in diesem Fall das
daquivalente Martingalmaf nicht eindeutig, d.h. die Menge der dquivanten Mar-
tingalmaBe P ist nicht einelementig. Sei P die Menge aller Martingalmafe.

Man mochte nun wieder das dynamische Maximierungsproblem (1) in ein stati-

sches fiir das unvollstédndige Finanzmarktmodell iiberfiihren.

Satz 3.1 Das Mazimierungsproblem (1) ist dquivalent zu dem Mazimierungspro-
blem

SUDx, cc () EPU(X7)  mit

C(z) ={Xr € L°(Q, F, P)| EgXr < x fir alle Q € P}.

Beweis: Es ist also zu zeigen
u(@) = sy E(U( + (H - S)1)) = b, e BU (X)),

(>): Sei Xr € C(z). Xr entspricht einer Auszahlung zum Zeitpunkt 7', wobei
der arbitragefreie Preis y von Xr in der Menge II(X7) = {Eq X7 : @ € P} liegt.
Aus Finanzmathematik 1 ist auBerdem bekannt, dass II(Xr) ein offenes, nicht
leeres Intervall TI(X7) = (p_(X7), p (Xr)) mit
p—(X7) :==sup{z: 2+ (H-S)r < Xp mit H € H} und
p+(Xrp) =inf{z: 2+ (H - S)r > Xy mit H € H} ist.

Da X7 € C(z), ist EgXy < z fir alle @ € P. Somit liegt x nicht in II(X7),
genauer z > p, (Xr). Das heifit es existiert ein H € H mit x + (H - S)r > Xr.
Da U monoton steigend ist, gilt

E(U(Xr)) <E(U(x+(H-S)r)) < supyey E(U(z+(H-S)r)) fir alle X7 € C(x).
= SUPx,ec(x) E(U(X1)) < supyey E(U(z + (H - S)r)).
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(<): Diese Richtung geht analog zum Satz (2.1). Denn fiir ein H € H ist
Xr=a+(H-S)r ein Element in C(x), weil Eqg Xy = Eq(z + (H - S)r)) = x fur
alle @ € P ist. Also gilt:

EpU(x + (H - S)r)) = EpU(Xr)) < supx, co@) EpU(X7))
= u(z) < supx,ec() EpU(XT)).

U
Nun erhélt man wieder ein statisches Maximierungsproblem mit der Nebenbe-
dingung Xr(x) € C(z). Um diese Nebenbedingung genauer charakterisieren zu

konnen ist die folgende Bemerkung iiber den Raum P hilfreich.

Bemerkung 3.2 Die Menge der Martingalmafle P ist eine kompakte, konvexe
Hiille, erzeugt von endlich vielen Q™ € P fiir m = 1,..., M. Das heifit fiir alle
P € P existieren (y, ..., puy) € RY mit Zi\il p; =1und P = Zf\il i@

Beweis: Aufgrund der Endlichkeit von €2 ist die Menge aller Wahrscheinlichkeits-
mafle Q ein kompakter, konvexer Polygon mit N Ecken in RY. P ist eine konvexe
Teilmenge von Q.

Man betrachtet nun den Raum G = {(H - S)r : H € H} aller Endvermogen der
hedgebaren Claims. Dann gilt fiir P € Pund Y € G mit Y = (H - S)r fiir ein
HeH: Ep(x+(H-S)r) = x. Daraus folgt Ep((H-5)r) = (P,Y) = 0. Also sind
G und P orthogonal zueinander. Sei nun C die zu G orthogonale Hyperebene in
RY, dann ist P = C N Q. Somit existieren endlich viele Q" € P, m=1,..., M,
sodass P die von {Q!, ..., QM} erzeugte konvexe Hiille ist, da Q ein Polygon ist.
In der Abbildung 1 ist der Fall fiir 2 Basisfinanzgiiter und ein dreielementiges €2
abgebildet.
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,-"fﬂ a
Abbildung 1.
AuBerdem ist P abgeschlossen in Q. Denn sei (Q" = (q7,...,q%))nen eine kon-

vergente Folge in P mit dem Grenzwert Q = (q1,...,qy), dann gilt
EQSi = 3 oy 4nSi(wn) = 300 litlsoo ¢ Si(wn) = limyoe Y0 45Si(wn)
=limy_,oo S = Sy fiiralle [ >0.
Bei dem dritten Gleichheitszeichen ist zu beachten, dass die Summe endlich ist
und somit der Limes aus der Summe rausgezogen werden darf. Und das fiinfte
Gleichheitszeichen folgt aus der Martingaleigenschaft von (S;):>¢ beziiglich equi-
valenter Martingalmafe.
Also ist ) € P und somit ist P eine abgeschlossene Teilmenge von einer kom-
pakten Menge. Also ist P selbst kompakt.
O
Sei nun @@ € P. Dann existiert (p1,...,pun) € RY mit Zf\il u; = 1 und
Q=M Q. Also ist
Cx) ={Xr € L%, F,P)| EgmnXr <z firallem =1,..., M}.

Somit ist das Maximierungsproblem (1) dquivalent zu dem statischen Maximie-
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rungsproblem

SUpP x,.cc(z) EPU(X7) mit M Nebenbedingungen

EgmXr <z firm=1,..., M.

Um dieses zu 16sen wéhlt man nun den Lagrange-Ansatz fiir mehrere Nebenbe-

dingungen. Die Lagrange-Funktion lautet:

M
L(§1>"'7€N77717"'777M an gn Z (Z%Tfn—x)
m=1 n=1

M M
:an< Z mqn >+anx,
n=1 m= m=1

fir (&,...,¢én) € {U > —oo}¥ und (ny,...,nu) € RY.

Setzt man jetzt y = ny + - -+ + ny und p,, = % fii
y>0,Q:= 2%21 Um@™ € P und

=]
—
IN
3
IN
=
oL
&
=
=
)

L(£17"'7€N77717-"777M) :L<€17-~'7€N7y7Q)

fir (&1,...,&y) € {U > =00}, y > 0und Q = (q1,...,qn) € P. Also ist
die Lagrange-Funktion im unvollstédndigen Finanzmarktmodell zusétzlich von ei-
nem Martingalmafl () abhéngig, ansonsten entspricht die Formulierung (15) der
Formulierung (4) im vollsténdigen Modell.

Man definiert nun:

(gla"'ag]\ﬁva)'

Sei nun V' die dual konjugierte Funktion von U, dann erhélt man analog zum

U(y, Q) = supg,

,,,,,

vollstéandigen Fall
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U(y, Q)= Zn 1V (y%) +yz firy > 0und Q € P.
Die Minimierung von ¥ geschieht nun in zwei Schritten. Fiir ein festes y > 0
minimiert man zunéchst ¥ in Q. Fiir ein festes y > 0 ist ¥(y, Q) stetig in Q,
da V stetig ist. Da P kompakt und V' strikt konvex ist, existiert ein eindeutiger
Minimierer Q(y) = (¢1,---,qn) von V. Es gilt nun folgende Bemerkung fiir Q(y)

Bemerkung 3.3 Q(y) ist ein dquivalentes Martingalmaf, d.h. Q(y) eP.

Beweis: Sei Q(y) € P der Minimierer von ¥(y, Q) fiir ein festes y > 0, also gilt

Angenommen Q(y) liegt nicht in P. Dann existiert ein ny € {1,..., N} mit

Gn, = 0. Es gelte 0.E.d.A ng=1und ¢, >0 fiir n € {2,...,N}.
Dann gilt:

g . N .
/ an ! q / Gn
IV (y, @ ‘(y Oy)) Z@/V ( ) yV (y—l) + Zyv (yp_)
=yV'(0) + ZyV’ ( n) :
Es gilt aber V'(0) = —oo und yV’ ( ) <oofirne{2,...,N}.

Also ist S neo YV’ ( ) < 00 und somit doW(y, Q(¥))| (.60, 7 O-

Widerspruch zur Voraussetzung.

Sei die Funktion v definiert durch

N ~
e g3 () =X ()

Nun kann man analog zum vollsténdigen Fall zeigen, dass

U(y) = infoep W(y, Q) = X0y paV (yf,—:) +yx
einen eindeutigen Minimierer ¢(x), definiert durch v'(y(x)) = —x, besitzt.

Fiir Q(y) und §(z) kann man dann zeigen, dass ein eindeutiger Maximierer
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(&1,...,&x) von der Funktion (&y,...,&6x) = L(&1, ..., En,9(2), Q(y)) existiert
und es &, = — V' <g)(x);%) gilt.

Somit gilt VL(E, ..., Exn, (), Q(y)) = 0.

Daraus kann man folgern, dass v die dual konjugierte Funktion von w ist und
somit u die Inada Bedingung erfiillt.

Folgender Satz dient als Zusammenfassung der Erkenntnisse {iber das Maximie-

rungsproblem im unvollstédndigen Finanzmarktmodell.

Satz 3.4 Gegeben sei ein diskretes, arbitragefreies und unvollstindiges Finanz-
marktmodell mit einem abdiskontierten Preisprozess (St)o<t<r auf einem end-
lichen Wahrscheinlichkeitsraum (2, F, P) mit einer Filtration (Fi)o<t<r, wobei
(St)o<t<r adaptiert beziiglich (F;)o<i<r ist. Sei U eine Nutzenfunktion und erfiille
die Inada Bedingung. Ferner sei P die Menge der Martingalmafie und P C P die
Menge der dquivalenten Martingalmafe, wegen der Arbitragefreiheit gilt P # (.
Seien u(x) und v(y) definiert durch

u(z) = sup EpU(Xr(z)), x€{U > —oo}, (16)
Xrel(x)
v(y) = érelg) EpV (yg—g) , y>0. (17)

Dann gilt:

1. Die Funktion v ist die dual konjugierte Funktion von w, und u erfillt die

Inada Bedingunyg.

2. Die Optimierer Xp(z) und Q(y) von (16) und (17) existieren und sind
eindeutig. Es gilt Q(y) € P und

Xp(z) = -V <y%) beziehungsweise y%g/) = U'(Xy(x)),
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wobei x € {U > —oo}, y >0 und

y=1u'(x) bzw. z=—0'(y).

3. Fiiru" und v gilt:

u'(z) = Ep(U'(X7(2))), V(y) = Eg) (V, <ydfi21(3y)>>

v (x) = Ep(Xr(2)U'(Xr(2))), yo'(y) = Ep (ydgz(ay) v (ydgg))) |

Dieser Satz stellt eine Methode zur Losung des statischen Maximierungspro-

blems in einem unvollstédndigen Finanzmarktmodell dar. Man geht zunéchst wie
in dem vollstdndigen Fall vor. Wahlt man eine Nutzenfunktion U, so kann man
die dual Konjugierte V' berechnen.
Zur Bestimmung der Funktion v muss man aber in diesem Fall zuerst das Mi-
nimierungsproblem (17) lésen. Danach kann man wie im vollstdndigen Finanz-
marktmodell fortfahren und die optimale Auszahlung X7 (z) bestimmen. Auf-
grund der Unvollstdndigkeit des Modells entspricht der Superhedge von XT(SU)
der optimalen Handelsstrategie.

Als Anwendungsbeispiel zur Bestimmung des maximalen erwarteten Nutzens
u(z) in einem unvollstindigen Finanzmarktmodell betrachtet man zunéichst das

Einperioden Trinomialmodell.

3.2 Anwendung in einem Einperioden Trinomialmodell

Man betrachtet nun ein arbitragefreies Einperioden Modell mit einem Ergebnis-
raum € = {wy, wo, w3 }.

Das heifit der Aktienkurs S; kann nach dem Ablauf der Periode drei mogliche
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Werte annehmen. Sei Sy = 1 der Anfangsaktienpreis, dann ist

(

1+u falls wy eintritt,

S

1+m falls wy eintritt,

1+d falls ws eintritt,

\

mit 1+u >14+m > 14+ d > 0 eine Zufallsvariable, die den Aktienkurs am
Ende der Periode beschreibt. Auflerdem setzt man wieder u > —d um eine Long-
Position in der Aktie zu erhalten. Man nehme weiter an, dass der Zinssatz r der
festverzinslichen Anleihe gleich 0 ist.

Das Wahrscheinlichkeitsmafl P ist definiert durch:

P({wi}) = p1, P({wa}) = p2 und P({ws}) = ps.

Nun betrachtet man wieder die Nutzenfunktionen U(z) = In(z) und U(z) = £
fir o € (0,1). Mithilfe des Satzes 3.4 kann man nun den optimalen erwarteten
Nutzen u(z), sowie die optimale Auszahlung X;(z) in Abhéngigkeit von dem
Anfangskapital = ausrechnen. Da das Modell nicht vollstandig ist, ist diese Aus-
zahlung nicht unbedingt hedgebar. In solchen Fillen ist es aber mdéglich ein Su-

perhedge zu konstruieren.

3.2.1 Beispiel 1

Sei also U(x) = In(x) die Nutzenfunktion mit der dual konjugierten Funktion
V(y) = —In(y) - 1.

Das Ziel ist es nun den optimalen erwarteten Nutzen und die optimale Auszah-
lung in Abhéngigkeit von dem Anfangskapital und den Parametern des Modells
numerisch zu bestimmen.

Im ersten Schritt ist der Optimierer Q = (G1,d2,Gs) € P von (17) zu bestim-
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men, d.h es ist das Minimierungsproblem

d
élég; EpV (y%) mit den Nebenbedingungen

G +q¢+qg=1und EgS =5) zu losen.

Unter der Beriicksichtigung der ersten Nebenbedingung kann man die zweite Be-

dingung umformulieren, denn es gilt:

EoSi = (1+u)g +(1+m)ge+ (1+d)gs =S =1

& uqr +mge +dgs = 0.

Nun kann man wieder den Lagrange-Ansatz wéhlen, um dieses Minimierungspro-
blem mit zwei Nebenbedingungen zu l6sen, die dazugehorige Lagrange-Funktion

ist

d
L(q1,q2,q3, M1, A2) =EpV (yd_cl-?’) — M@+ @+ g —1) — Aa(ugs + mga + dgs)

(52 ) =D ot (52) < )i (52 ) < )

— Mg+ @+ g — 1) — Xo(ugr +mas + dgs).

Fiir den Optimierer (gi, ¢s, g3, A1 5\2) muss nun VL(q1, Ge, g3, A1, 5\2) = 0 gelten.

Somit erhélt man ein Gleichungssystem aus fiinf Gleichungen und Unbekannten:

00 L(q1, G2, G3, A1, A2) = P N —au=0

q1

aqu(Q1,QQ,C]3, )\17 )\2) = _% - )\1 — )\gm =0
2
Ps3

aqsL(C_Il,QmQ?H A1, >\2) = —q— — A —Xd=0
3
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O L(q1, 62,03, M1, 0) = — (1 + @2 +q3 —1) =0

O L(q1, 42,03, A1, A2) = —uqy —mgy — dgs = 0

Man erkennt, dass fiir diese Nutzenfunktion der Optimierer ) von y unabhingig
ist.
Nun kann man mit dem Newton-Verfahren die Nullstelle von VL numerisch be-

stimmen. Hierfiir bestimmt man die Hesse-Matrix Hess, von L:

B0 0 -1 —u
qi
o &2 0 -1 —m
a3
Hessp(q1,92,q3, A1, A2) = | 0 0 5—3 -1 —d
3
-1 -1 -1 0 0

—u —m —d 0 0

Wahlt man nun die Startwerte zo = (q1, ¢2, g3, A1, A2), so kann man sich iterativ
durch 2, =2, 1 — Hessr(z,-1)"' - VL(2,_1) einer Nullstelle von VL nihern.
Hierbei sind die Startwerte so geschickt zu wéhlen, dass z, gegen die Nullstelle
mit 0 < ¢; < 1 fiir i € {1,2, 3} konvergiert. Wie die oberen Uberlegungen gezeigt
haben ist der Optimierer Q eindeutig bestimmt, d.h. es existiert genau eine Null-
stelle von VL, die diese Eigenschaft erfiillt.

Dann kann man die Funktion v bestimmen

o(y) = EpV( ) szln( )_1.

Nun kann man die Funktion fiir den optimalen erwarteten Nutzen in Abhéngigkeit

von dem Anfangskapital bestimmen, es gilt: wu(z) = inf,>0(v(y) + yz) und

3
Di 1
(v(y) +yz)' — :———i-x—O & y=-
B TR g
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Alsoist  w(z)=v(i)+1=— S piln <p‘_§fx> :
Weiter ist die optimale Auszahlung X;(x) in Abhingigkeit von x interessant.

Nach dem Satz 3.4 gilt

T

Xi(z) = -V (g(@j-ﬁ) = x%.

3

. 1 1

g(x) = (z) = g pi =~ und
i=1

Das Programm 1 enthélt die numerische Umsetzung des Newton-Verfahrens und
liefert die Ausgabe von dem optimalen dquivalenten Martingalmaf Q und erwar-
teten Nutzen u(z), sowie die optimale Auszahlung X;(z) in Abhingigkeit von

dem Anfangskapital x und den Parametern des Trinomial-Modells.

3.2.2 Beispiel 2

Betrachtet man nun wieder ein Einperioden Trinomialmodell mit der Nutzenfunk-
tion U(z) = £ fiir a € (0,1), so kann man anolog wie im Beispiel 1 vorgehen.

Zuerst ist also EPV(y%) unter allen Martingalmaflen zu minimieren. Es gilt:

. dQ, . s~1-a A
f EpV(y—=) = inf i | y=
S EV ) =, 2 e (yp)

~

Das heiflt der Optimierer ) ist von y unabhéngig und man muss nun das Mini-

mierungsproblem
inf i — it den Nebenbedi
C1216173231) (pz) mit den Nebenbedingungen

1+ q+q =1 und ug +mqy +dgs =0 losen.
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Die dazugehorige Lagrange-Funktion ist

3 N\ aoT
L(qi, g2, 43, M1, 22) = Y _pi <%> =A@+ a2+ g5 — 1) — Aa(uqr + mas + dgs)

Also ist

VL(CIL 42,43, )\17 )\2) -

H@SSL(Ql; 42,43, )\la )‘2) -

— A — UM
)il—xl—mxg
)‘“‘1 A\ —

und
0 -1 —u
0 -1 —m
a 2—a ﬁ
(a—1)2 (qi;s ) -1 —d
—1 0 0
—d 0 0

Nun kann man wieder fiir geschickt gewihlte Startwerte den Optimierer ) mit

dem Newton-Verfahren bestimmen. Dann ist
( G
y_
Di
R G\ a1
Y (_>
i=1 pi

3
—yﬁw mit C:sz‘
i=1

11—«

" Pi
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a—1

Also gilt: v'(y) +2=0 & y=(%)
Und somit  u(z) =v(y) + = - y.

Das Programm 2 enthélt die numerische Umsetzung und liefert die Ausgabe von
dem optimalen &quivalenten Martingalmafl Q und optimalen erwarteten Nut-
zen. Hierbei ist zu beachten, dass die Startwerte mit dem Parameter o zusam-

menhéngen und somit fiir bestimmte o € (0, 1) neu gewihlt werden miissen.

3.2.3 Beispiel 3

Der folgende Spezialfall des Einperioden Trinomialmodells mit m = 0 ist auch
interessant zu untersuchen, da man hier, statt Satz 3.4 anzuwenden, die Erkenn-
tisse aus dem CRR-Modell nutzen kann und sogar die optimale Handelsstrategie
direkt angeben kann.

Man nimmt also an, dass der Aktienkurs folgende Werte nach dem Ablauf der

Periode annehmen kann:

(
14+u , falls w; eintritt,

So=1, S1=141 , falls wq eintritt,

1+d | falls wy eintritt,

\

und dass der Zinssatz r = 0 ist. Das Wahrscheinlichkeitsmafl P ist besimmt
durch:
P({ws}) =pe fureinpy, € (0,1) und P({w1}) = (1—p2)p1, PH{ws}) = (1—p2)ps
fiir p1,p3 € (0,1) mit p; + p3 = 1.
Wegen der Arbitragefreiheit gilt weiter 14+u > 1 > 1+d > 0. Ferner nimmt man
wieder an, dass u > —d, um eine Long-Position in der Aktie zu erhalten.

Nun berechnet man die optimale Handelsstrategie mithilfe des Einperioden
CRR-~Modells. Falls nétig, kann man dann auch den optimalen dquivalenten Mar-
tingalmafl bestimmen.

Das Ziel ist es ein A" € R zu bestimmen, sodass
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EpU(z + " AS)) = supyeg EpU(z + hAS;) =: u'™(z). Dann gilt:

u'"(x) = 216111; (p2U(z — hASy (w2)) + (1 — p2)p1U(x — hAS (w1)) + (1 — po)psU(x — hAS; (w3)))

= pU(x) + (1 — p2) ilellls (01U (2 + hu) + psU(z + hd))

= pU (@) + (1= p)u" (@) = pU (&) + (1= p2) (piU (@ + ht) + psU + hd) )

=pU(x) + (1 — pa)epU(z) =: ¢'U(x) mit i = py + (1 — pa)ey.

Bei dem zweiten Gleichheitszeichen ist zu beachten, dass AS;(wy) = 0 ist. Und bei
dem dritten, dass pyU(x+hu)+psU(z+hd) dem Ep(U(z+AS;)) im Einperioden
CRR-Modell entspricht.

Hieraus folgt, dass der Optimierer htri fiir dieses Einperioden Trinomialmodell
mit dem h aus dem Einperioden CRR-Modell iiberbestimmt. Das heifit
hiri = ac(c‘_/l(pil)ﬁf1 — 1u™) fiir U(z) = L. Dabei ist ¢ durch das eindeutig
bestimmte dquivalente Martingalmafl des Einperioden CRR-Models gegeben.

Nun kann man Satz 3.4 anwenden um @ zu berechnen. Es gilt:

aQ v UEi@)w) U _ 1
apP* i) i)
= Qen) = TH)Pn}) = 22

Q(wl) und Q(wg) erhélt man durch Losen des folgenden linearen Gleichungssys-
tems: X wr) + Q(ws) + Qws) =1
Eg(S1 = So) =0.

= Qw) = w und Q(ws) = #

Somit ist auf diese Weise die optimale Handelsstrategie und der dazugehorige
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optimale dquivalente Martingalmaf fiir dieses Einperioden Trinomialmodell ein-

deutig bestimmt.

3.3 Anwendung in einem N-Perioden Trinomialmodell

Man mochte nun das Trinomialmodell auf N Perioden ausweiten. Dafiir betrach-
tet man eine Familie von identisch verteilten , stochastisch unabhéngigen Zufalls-
variablen (&), auf dem Wahrscheinlichkeitsraum (Q, F, P), sodass P(§ = 1) =
p1, P(& = 0) = pound P(& = —1) = ps fiir 1 <t < N. Ferner sei (F)Y, die
Filtration, der von (§,)%_; erzeugten o-Algebren.

Sei Sp = 1 der Anfangsaktienkurs. Dann ist der Preis der Aktie zum Zeitpunkt
t € {1,..., N} rekursiv definiert durch:

(

Si—1(1+w), falls & =1

St=9S5_1(1+m), falls & =0

Si—1(1+d), falls &= —1.
\

mitl+u>14+m>1+d>0.

Setzt man jetzt

t t
Lt = Z ]l{gl:l} und Mt = Z ]1{51:0},
i=1 =1

dann gilt Sy = So(1+w)" (1 +m)M (1 4+ d)" "M fir 1<t <N.
AuBerdem gilt
() mpr-pyr-py ™™, falls n+m <t

n

P(Lt:n, Mt:m):

0, sonst,
L\ [t—n
P(Ly=n)=Y_ (n> ( . )p’f Py Py
=0
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P(M ) — t tL—n i n o t—n—i
t 2 \n ; Py Py - DP3 )

fir 1<t<N und 0<n<t.

Ferner gilt fiir ein Martingalmafl ¢)

e () ()" ()
dp ¥ 4! D2 b3

3.3.1 Beispiel 1

Man nehme U(z) = In(x) als Nutzenfunktion. Das Ziel ist den optimalen er-
warteten Nutzen u(x) in Abhéngigkeit von einem Startkapital z zu bestimmen.
Nun wendet man wieder Satz 3.4 an und verwendet den Lagrange-Ansatz zur

Bestimmung des Optimierers Q. Es gilt

d
L(q1,q2,q3, M1, X2) = EpV (Z/%) — Mg+ @2+ g3 — 1) — Xo(ugr + mgs + dgs)

mit
dQ N N-n q n q m q N—n—m
EpV (y—= | = P(Ly =n, My =m)-V = —2> (—3)
P <ydP> n:O?nX::O (Ln N ) (Z/ <p1> (p2 s
— She N N —n 7 m N—n—m 9 " 42 " 43 o
—Z by P2 " P3 | —ln{y| — — — -1].
0 m=o \T m b1 D2 D3

Ferner gilt:

N N-n
dq N\ (N —-n\ , . em T
0q1EpV(y@)=—Z (n>( - )pl-pz -y C—

N
1 1 N-
=Y nP(Ly=n)=—— EpLy = ——2*,
q = q1 41



dQ YL /N /N —n o Nenem M
3q2EPV(y@)=—Z <n)( . )pl'pz py T —

q2

N N—n n m Nen—-m M
n m Py D2 - D3 o

n=0 m=0
N N-n
N —n—

= >"N" P(Ly=n, My =m) nom

n=0 m=0 q3

N N-k k)
==Y > P(Ly=n, My=N—k—n)-—

k=0 n=0 qs

al k
==Y P(N—Ly-My=k) —

k=0 a3

N -

— —— Ep(N — Ly — My) = ——

q3 q3

Es gilt also:

_Np N
A )\1 U)\Q

N2y
a2 /\1 m/\g

VL(q1,q2,q3, A1, A2) = —Nps N — )y

q3

—(n+@+qg—1)
—(ug1 + maqs + dgs)
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Um die Nullstellen von VL zu bestimmen verwendet man erneut das Newton-

Verfahren. Die Hesse-Matrix von L ist

Nt g0 -1 —u
aj
0 X2z o —1 —m
a3
Hessp(q1, G2, q3, M1, A2) = 0 0 1\;‘53 1 —d

Wahlt man nun ein Startwert zy = (q1, g2, g3, A1, A2), so néhert sich

Zn = Zp_1 — Hesszl(zn_l) - VL(z,—1) einer Nullstelle von VL. Wieder sind die
Startwerte so zu wihlen, dass die Nullstelle (g1, ¢2, g3, A1 5\2)

0 < g <1 firee{1,2,3} erfiillt. Dann ist der optimale dquivalente Martingal-
maB Q gegeben durch (G1, G2, G3)-

Nun ist die Funktion v bestimmt durch

=3 S rtan = v (o () (2) (2)7)

n=0 m=

o

Also gilt:
N N-n 1 1 )
V) tr==3 > Ply=n My=m)-_+e=—"+r=0 & y=_.
n=0 m=0
Daraus folgt
. 1
u(w) = inf (v(y) + ya) = v (—) i1
y>0
N N-n 1 . n R m ) Nenem
e (28 (8 (8) 7)) -
n=0 m=0 T \P1 P2 D3
N N-n Cj n qA m qA N—n—m
=1In(z) — P(Ly =n, My =m)- 1In _1) (_2) (_3> '
@ non;) o N ) (<p1 D2 D3
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Das Programm 3 rechnet Q sowie u(z) in Abhéngigkeit von den Parametern des
Modells und des Anfangskapitals = aus.
3.3.2 Beispiel 2

Sei nun U(z) = L - 2* fiir @ € (0,1) die Nutzenfunktion. V(y) = =2 Cya-T st

die dual konjugierte Funktion von U, somit gilt:

dP
1—a N N-n q n q m q N—n—m ﬁ
= .yaT inf P(Ly =n, My =m) - —1> (—2> (—3)
« Qe Pnzz()mzo (Ly N ) ((Ih b2 b3
1_a «
= .ya-1 inf it
o Yy clg f(Q1>Q27Q3) mi

N N—n o\ ()" (4 N-n—m\ &1
Fl@r, a2,43) = 3= 2om—o P(Ly =1, My = m): (1,_1> <p_2> <p_3) :
Somit ist das Minimierungsproblem von y unabhéngig. Zur Losung des Minimie-
rungsproblems infoep f(q1, g2, ¢3) wihlt man erneut den Lagrange-Ansatz
L(q1, g2, 43, M, A2) = a1, 2, a3) — M(an + g2 + g3 — 1) — Aa(ugqn + mgz + dgs).
Mithilfe des Newton-Verfahrens bestimmt man die Nullstellen von VL. Das heif3t

zuerst sind die partiellen Ableitungen von L bis zur zweiten Ordnung zu berech-

nen.
N N-n no no 1
B _ _ a1~

I L(q1, G2, 43, M1, A2) = nz:%mz::oP(LN =n, My =m)- a—1 N

[e3

(@@ @) e

=:c1 — Al — Uy,
8q2L(Q17 42, G3, M1, /\2) =y — A1 —mAy und
aqu(qh 42,43, )\17 )\2> = C3 — >\1 — d)\z mit
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() () (2

(&3

N—n—m\ a-1
) ,

N N-n
mao ma g
Co = P L =n, M =m) - .ot
’ nzgm() ( " " ) a—1 o b1 D2
N N-—n
N —n—m)a E=nome
ngz _P(LN:n7 MN:m)< — ) - a—1
n=0 m=0 o
‘ (2>n (@)m (l)Nnm a—1
P D2 P3 '
Ferner gilt
N N-n
C1 _aq1aq1L(ChaQZ>Q3>)\1>)\2) ZZP(LN:TL, MN:m)
n=0 m=0
n m N—n—m %
no no o 1 G2 q3
s GGG )
a—1\a-—1 P Do D3
N N-n
C22 = aQQaQZL(QquQ7q37)\17)\2> Z Z P(LN =n, MN = m)
n=0 m=0
n m N—n—m a(il
s (G G G
a—1\a-—1 2 D1 Do D3 '
33 1= OgsOgs L(q1, @2, @3, M1, A2)
N N-n
N—n— N—n—
=3 PLy =0, My =y B ma <( - m)o‘—1>
a—1 a—1
n=0 m=0
<N7an:lm)a_2 ((q1>n (q2)m ( 1 )N—n—m) a—1
. qS . Pttt il _ ,
P1 D2 p3
aq28q1L<q17QQ7Q37)‘17)‘2> 8q1aCI2L(Q17Q27Q37)\17)\2)
N N-n no mo no ma _q
=YY PLy=n My=m) —— ——¢7 " ¢
a—1 a-1
n=0 m=0
N—-n—m a‘il
()
Y2 ’

i)_

4! P2
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C13 = aq36q1L(q17QQaq3a )‘la )‘2) - aqlaqu(Q1aQ2,Q37/\1,/\2)
N N-n

no N—-—n—m)a =»2o_1
S Pl iy M (e

n=0 m=0

(N—an:lm)a_l (( 1 >n (C]Q)m ( 1 )N—n—m) a—1
. q3 . — — — s
p1 P2 p3

Co3 = aqgaqu(thQ?(J?)a )‘17 )‘2) - 8q28q3L<q17qQJQ37/\1)/\2>
N N-n

mao N—-—-n—-m)a me_q
33 P My e N

n=0 m=0

(N—an:lm)a 1 ( (Ch >n ( 1 ) m ( 1 ) N—n—m) a—1
"3 A=) = — :
b b2 b3

So erhélt man V L(q1, g2, g3, A1, A2) und Hessr(q1, g2, g3, A1, A2)

€1 — Al — UAs
Cy — A\ — MAa
VL(qi,q2,q3, A1, A2) = c3 — A\ — d)o ,
—(pn+g+gp—1)
—(uq1 +mgz + dgs)

¢ ¢z c3 —1 —u
Cla Cp C3 —1 —m
Hessp(q1,G2,93, A1, 2 = | c13 o3 33 —1 —d
-1 -1 -1 0 0
—u —m —d 0 0

Das Newton-Verfahren liefert dann fiir geeignete Startwerte das optimale dqui-

valenten Martingalma$ Q.
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Weiter folgt aus

u(z) =v(y(z)) + §(z)z.
Das Programm 4 liefert die entsprechenden Ausgaben. Hier sind die Startwerte
A1 und Ay fiir das Newton-Verfahren von dem Parameter o« und der Anzahl der

Perioden abhéngig.

3.3.3 Beispiel 3

Man betrachte nun wieder den Spezialfall des Trinomiallmodells mit m = 0 fiir
die Nutzenfunktion U(z) = £ mit o € (0, 1).
Der Preis der Aktie zum Zeitpunkt ¢ € {1,..., N} ist gegeben durch:

(

Si1(1+a), falls & =1
St = St—17 falls ft =0

Si—1(1+d), falls & = —1.
\
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Das Ziel ist es das folgende Maximierungsproblem zu 16sen

u(z) := sup {EU (x + Z hnASn> | (ha))_, € 7-[}

n=1

= EU (x + Z iLnASn> = EU(Xy(z)).

n=1

Man betrachtet wieder die bedingte Nutzenfunktionen

N
u(z) = sup {E(U(x + ) haAS,) ]-"t)} :

n=t+1
wobei jeweils unter (h,,)Y_,,, maximiert wird.
Analog zum N-Perioden CRR-Modell kann man sich iiberlegen, dass uy_1(x) =
E(U(z + hiAS))) ist, und somit dem Maximierungsproblem im Einperioden
Trinomialmodell entspricht.
Mit Riickwértsinduktion sieht man dann, dass fiirallet € {1,..., N —1} uy_4(x)
dem Einperioden Maximierungsproblem entspricht. Ferner gilt dann
us(z) = (crHN=tU (), also insbesondere u(x) = ug(z) = (F)NU(z).

AuBerdem ist by = % Nach Kapitel 3.1 ist A" = h, also ist A" = %
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5 Anhang

Der Anhang beinhaltet die MATLAB-Programme 1 bis 4, sowie die Funktion
binomial. Diese Funktion wird im Programm 3 und 4 verwendet und berech-
net den Binomialkoeffizienten. Die m-Files der Programme befinden sich auf der
beigefiigten CD.

function [ x ] = binomial( n,k )
%Diese Funktion berechnet den Binomialkoeffizienten n iiber k.
x =1;
form = 1:k
x = x * (n+tl-m) / m;
end
end

5.1 Programm 1

%Dieses Programm berechnet fiir ein Einperioden Trinomialmodell und die
JsNutzenfunktion U(x)=log(x) das optimale dquivalente Martingalmaf$ Q,
/den maximalen erwarteten Nutzen u(x), sowie die optimale Auszahlung X.

% Parameter des Einperioden Trinomialmodells:

u=0.5;
m=0.2;
d=-0.3;
p1=0.3; % W’keit, dass Si=1+u
p2=0.3; % W’keit, dass S1=1+m
p3=0.4; % W’keit, dass S1=1+d

x=10; 7 Anfangskapital

%Startwerte fiir das Newton-Verfahren:
ql=1/3;

q2=1/3;

q3=1/3;

y1=2;

y2=3;

z=[q1,92,93,y1,y2]’;

N=100; %Anzahl der Iterationen

for i=1:N

% f entspricht dem Gradienten von L.

f=[-p1/z(1)-z(4)-u*z(5), ...
-p2/2(2)-z(4)-m*z(5), . ..
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-p3/2(3)-z(4)-d*z(5), . ..

-(z(D+z(2)+z(3)-1), ...

- (uxz (1) +m*z (2)+d*z(3))] ;
% df ist die Hesse-Matrix von L.
df=[p1/(z(1)"2), 0, 0, -1, -u;

0, p2/(z(2)°2), 0, -1, -d;

0, 0, p3/(z(3)°2), -1, -d,;

-1, -1, -1,0,0;

-u, -m, -d, 0,0];

% Der Iterationsschritt des Newton-Verfahrens

z=z-df\f’;

ql=z(1);

q2=z(2);

q3=z(3);

end

z

disp(’Das optimale dquivalente MartingalmaB Q ist gegeben durch:’)
ql=z(1)

q2=z(2)

q3=z(3)

disp(’Der optimale erwartete Nutzen ist:’)

u= -pl*xlog(ql/(pl*x))-p2*log(q2/(p2*x))-p3*log(q3/(p3*x))
disp(’Und die optimale Auszahlung nimmt folgende Werte an:’)
X=[x*p1/ql;x*p2/q2;x*p3/q3]

5.2 Programm 2

%Dieses Programm berechnet fiir ein Einperioden Trinomialmodell und die
JsNutzenfunktion U(x)=(x"a)/a das optimale &dquivalente Maringalmafl Q und
Jhden maximalen erwarteten Nutzen u(x).

% Parameter des Einperioden Trinomialmodells:

u=0.5;

m=0.2;

d=-0.3; % u,m,d sind die mdglichen Aktienkursanderungen
p1=0.3; % W’keit, dass Si=1+u

p2=0.3; % W’keit, dass S1=1+m

p3=0.4; % W’keit, dass S1=1+d

a=0.1;

x=100;

% Startwerte fiir das Newton-Verfahren
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ql=1/3;

q2=1/3;

q3=1/3;

y1=0;

y2=0;

z=[ql1,92,93,y1,y2]’;

N=100; % Anzahl der Iterationen

for i=1:N
% f entspricht dem Gradienten von L
f=[(a/(a-1))*(z(1)/p1)~(1/(a-1))-z(4)-uxz(5), ...
(a/(a-1))*(z(2)/p2)~(1/(a-1))-z(4)-m*z(5), ...
(a/(a-1))*(z(3)/p3)~(1/(a-1))-z(4)-d*z(5), ...
-(z(1D)+z(2)+z(3)-1), ...
- (u*z (1) +m*z (2) +d*z(3))] ;
% df entspricht der Hesse-Matrix von L
df=[(a/(a-1)"2)*((z(1)"(2-a))/p1)~(1/(a-1)), 0, 0, -1, -u;
0, (a/(a-1)"2)*((z(2)"(2-a))/p2)~(1/(a-1)), 0, -1, -d;
0, 0, (a/(a-1)"2)*((z(3)"(2-a))/p3)~(1/(a-1)), -1, -d,;
-1, -1, -1,0,0;
-u, -m, -d, 0,0];

% Der Iterationsschritt des Newton-Verfahrens
z=z-df\f’;

ql=z(1);

q2=z(2);

q3=z(3);

end

disp(’Das ausgezeichnete dquivalente MartingalmaB Q ist gegeben durch:’)
ql=z(1)

q2=z(2)

q3=z(3)

c=pl*(ql/pl)~(a/(a-1))+p2*(q2/p2) ~(a/(a-1))+p3*(q3/p3) ~(a/(a-1));
y=(x/c) " (a-1);

disp(’Der optimale erwartete Nutzen ist:’)

u=cx*x((1-a)/a)*y~(a/(a-1))+x*y

5.3 Programm 3

/Dieses Programm berechnet fiir ein N-Perioden Trinomialmodell und die
JNutzenfunktion U(x)=log(x) das optimale &dquivalente Martingalmaf
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%Q und den maximalen erwarteten Nutzen u(x).

% Parameter des N-Perioden Trinomialmodells:
N=100; %Anzahl der Perioden

0.3
p1=0.3; % W’keit, dass Si=1+u
0.3; % W’keit, dass Si1=1+m
p3=0.4; % W’keit, dass S1=1+d
x=100; % Anfangskapital

% Startwerte fiir das Newton-Verfahren:
qil=1/3;

q2=1/3;

q3=1/3;

y1=2;

y2=3;

z=[q1,92,93,y1,y2]’;

n=100; %Anzahl der Iterationen

for i=1:n
% f entspricht dem Gradienten von L
f=[-N*p1/z(1)-z(4)-uxz(5), ...
-N*p2/z(2)-z(4)-m*z(5), ...
-N*p3/z(3)-z(4)-d*z(5), ...
-(z(D)+z(2)+z(3)-1), ...
- (uxz (1) +m*z (2) +d*z(3))] ;
% df entspricht der Hesse-Matrix von L
df=[N*p1/(z(1)~2), 0, 0, -1, -u;
0, N*p2/(z(2)°2), 0, -1, -d;
0, 0, N%p3/(z(3)"2), -1, -d,;
-1, -1, -1,0,0
-u, -m, -d, 0,0];

% Der Iterationsschritt des Newton-Verfahrens:

z=z-df\f’;

ql=z(1);

q2=z(2);

q3=z(3);

end

disp(’Das optimale dquivalente MartingalmaB Q ist gegeben durch:’)
ql=z(1)
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q2=z(2)
q3=z(3)

% Berechnung des optimalen erwarteten Nutzens:
y=zeros(N+1,1);
for i=0:N
z=zeros(N-i+1,1);
for k=0:(N-1i)
z(k+1)=binomial (N,i)*binomial (N-i,k)*pl~i*p2-k*p3~(N-i-k)...
*1log((ql/pl) ~i*(q2/p2) "k*(q3/p3) " (N-i-k));
end
y(i+1)=sum(z) ;
end
c=sum(y) ;
disp(’Der optimale erwartete Nutzen ist:’)
u=log(x)-c

5.4 Programm 4

%#Dieses Programm berechnet fiir ein N-Perioden Trinomialmodell und
JNutzenfunktion U(x)=(x"a)/a das optimale &dquivalente MaringalmafBl Q
Jund den maximalen erwarteten Nutzen u(x).

% Parameter des N-Perioden Trinomialmodells:

u=0.5;
m=0.2;
d=-0.3;
p1=0.3; % W’keit, dass Sl=1+u
p2=0.3; % W’keit, dass S1=1+m
p3=0.4; % W’keit, dass S1=1+d

a=0.5; % fir a=0.001 setze y1=0, y2=0
x=10; % Startkapital
N=10; % Anzahl der Perioden

% Startwerte fiir das Newton-Verfahren
ql=1/3;

q2=1/3;

q3=1/3;

y1=-100;

y2=-100;

n=100; %Anzahl der Iterationen
z=[q1,92,93,y1,y2]’;
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% Berechnung des Gradienten

for

i=1:n

y=zeros (N+1,1);

for

end

j=0:N

w=zeros (N-j+1,1);

for k=0:(N-j)

w(k+1)=binomial (N, j)*binomial (N-j,k)*pl~j*p2-k*p3~ (N-j-k)...

*j*xz (1)~ ((j*a)/(a-1)-1)*((1/p1) ~j*(z(2) /p2) "k. ..
*(z(3)/p3) "~ (N-j-k))~(a/(a-1));

end

y(j+1)=sum(w) ;

cl=(a/(a-1))*sun(y) ;

y=zeros(N+1,1);

for

end

j=0:N
w=zeros (N-j+1,1);
for k=0:(N-j)
w(k+1)=kxz(2) " ((k*a)/(a-1)-1)*binomial (N, j)...
*binomial (N-j,k)*pl~ j*p2-k*p3~ (N-j-k)...
*((z(1)/p1) " j*(1/p2) "k*(z(3) /p3) ~(N-j-k)) ~(a/(a-1));
end
y(G+1)=sum(w) ;

c2=a/(a-1)*sum(y);

y=zeros (N+1,1);

for

end

§=0:N

w=zeros (N-j+1,1);

for k=0:(N-j)

w(k+1)=(N-j-k)*z(3) " (((N-j-k)*a)/(a-1)-1) ...

¥binomial (N, j)*binomial (N-j,k)*pl~j*p2 k+p3~ (N-j-k) . ..
*((z(1)/p1) " j*(z(2) /p2) "k*x(1/p3) ~(N-j-k)) "~ (a/(a-1));

end

y(j+1)=sum(w) ;

c3=a/(a-1)*sum(y);

h £

ist der Gradient von L

f=[cl-z(4)-uxz(5), ...

(c2-z(4)-m*xz(5)), ...
(c3-z(4)-d*xz(5)),...
-(z(D)+z(2)+z(3)-1), ...
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- (uxz (1) +m*z (2) +d*z(3))] ;

% Berechnung der Hesse-Matrix
% cl1
y=zeros (N+1,1);
for j=0:N
w=zeros (N-j+1,1);
for k=0:(N-j)
w(k+1)=binomial (N, j)*binomial (N-j,k)*pl~j*p2~k*p3~ (N-j-k)...
*((1/p1) " j*(z(2) /p2) "k*(z(3) /p3) ~(N-j-k)) ~(a/(a-1));
end
y(G+1)=((G*a)/(a-1)-1)*j*z (1) " ((j*a)/(a-1)-2) *sum(w) ;
end
cli=a/(a-1)*sum(y);

% c22
y=zeros(N+1,1);
for j=0:N
w=zeros (N-j+1,1);
for k=0:(N-j)
w(k+1)=((k*a)/(a-1)-1)*xk*z(2) " ((k*a) /(a-1)-2) *binomial (N, j) ...
*binomial (N-j,k)*pl~j*p2-k*p3~ (N-j-k)...
*((z(1)/p1)~j*(1/p2) "k*(z(3) /p3) ~(N-j-k)) ~(a/(a-1));
end
y(j+1)=sum(w) ;
end
c22=a/(a-1)*sum(y) ;

% ¢33

y=zeros (N+1,1);

for j=0:N
w=zeros (N-j+1,1);
for k=0:(N-j)

w(k+1)=(((N-j-k)*a)/(a-1)-1)*(N-j-k) *z(3) ~ (((N-j-k) *a)/(a-1)-2) ...

*binomial (N, j)*binomial (N-j,k)*pl~j*p2 k*p3~ (N-j-k)...
*((z(1)/p1)~j*(2(2)/p2) "k*(1/p3) ~(N-j-k)) ~(a/(a-1));
end
y(j+1)=sum(w) ;
end
c33=a/(a-1) *sum(y) ;

% cl12
y=zeros (N+1,1);
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for

end

cl2=

j=0:N

w=zeros (N-j+1,1);

for k=0:(N-j)

w(k+1)=j*z(1) " ((j*a)/(a-1)-1)*k*z(2) " ((kxa)/(a-1)-1)...

*binomial (N, j)*binomial (N-j,k)*pl~j*p2~k*p3~ (N-j-k)...
*((1/p1) " j*(1/p2) "k*(z(3) /p3) ~(N-j-k)) ~(a/(a-1));

end

y(G+1)=sum(w) ;

((a/(a-1))"2)*sum(y);

% c23
y=zeros (N+1,1);

for

end

c23=

§=0:N
w=zeros (N-j+1,1);
for k=0:(N-j)

w(k+1)=(N-j-k)*z(3) " (((N-j-k)*a)/(a-1)-1)*k*z(2) " ((k*a)/(a-1)-1) ...

*binomial (N, j)*binomial (N-j,k)*pl~j*p2-k*p3~(N-j-k)...
*((z(1)/p1) " j*(1/p2) "k*x(1/p3) ~(N-j-k)) " (a/(a-1));

end

y(j+1)=sum(w) ;

((a/(a-1))"2)*sum(y) ;

% c31
y=zeros(N+1,1);

for

end

c31=

j=0:N
w=zeros (N-j+1,1);
for k=0:(N-j)

w(k+1)=j*z (1)~ ((j*a)/(a-1)-1)*(N-j-k) *z(3) ~ (((N-j-k)*a)/(a-1)-1) ...

*binomial (N, j)*binomial (N-j,k)*pl~j*p2 k*p3~ (N-j-k)...
*((1/p1) " j*(z(2) /p2) "k*x(1/p3) ~(N-j-k))~(a/(a-1));

end

y(j+1)=sum(w) ;

((a/(a-1))"2)*sum(y) ;

% df ist die Hesse-Matrix von L
df=[c11, c12, c31, -1, -u;

cl2, c22, c23, -1, -d;
c31, c23, c33, -1, -d,;
-1, -1, -1,0,0;

-u, -m, -d, 0,0];
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% Der Iterationsschritt des Newton-Verfahrens
z=z-df\f’;

ql=z(1);
q2=z(2);
q3=z(3);
end

disp(’Das optimale dquivalente MartingalmaB Q ist gegeben durch:’)
ql=z(1)
q2=z(2)
q3=z(3)

% Berechnung des optimalen erwarteten Nutzens:
y=zeros(N+1,1);
for j=0:N

w=zeros (N-j+1,1);

for k=0:(N-j)

w(k+1)=binomial (N, j)*binomial (N-j,k)*pl~j*p2-k*p3~ (N-j-k)...

*((q1/p1) " j*(q2/p2) "k*(q3/p3) " (N-j-k)) " (a/(a-1));
end
y(j+1)=sum(w) ;
end
c=sum(y) ;
y=(x/c) " (a-1);
disp(’Der optimale erwartete Nutzen ist:’)
u=c*((1-a)/a)*y~(a/(a-1))+x*xy
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