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1 Einführung

Die vorliegende Bachelorarbeit befasst sich mit dem Thema der Portfolioopti-

mierung in diskreten, arbitragefreien Finanzmarktmodellen. Das heißt für ein

gegebenes Anfangskapital x möchte man eine optimale selbstfinanzierende Han-

delsstrategie bestimmen, so dass der erwartete Nutzen zum Zeipunkt T maximal

ist. Dieses dynamische Optimierungsproblem kann man in zwei Schritten lösen.

Zuerst löst man das statische Optimierungsproblem, indem man die optimale

Endauszahlung bestimmt, die den erwarteten Nutzen maximiert. Dann kann man

in einem vollständigen Fall ein Hedge für diese Auszahlung konstruieren. In einem

unvollständigen Modell muss diese Endauszahlung nicht hedgebar sein, das heißt

man muss auf die Methoden der Bestimmung der Superhedges zurückgreifen.

Im ersten Kapitel wird die Nutzenfunktion definiert und die Formulierung des

dynamischen Portfoliooptimierungsproblems aufgestellt. Das zweite Kapitel be-

fasst sich mit dem vollständigen Finanzmarktmodell. Zuerst wird die Äquivalenz

zwischen dem dynamischen und dem statischen Optimierungsproblem gezeigt

und dann eine Methode zur Lösung des statischen Portfoliooptimierungsproblems

hergeleitet. Als Anwendungsbeispiel für die entwickelte Methode betrachtet man

dann zuerst das Einperioden CRR-Modell. Die erhaltenen Ergebnisse kann man

dann auf das N-Perioden CRR-Modell ausweiten.

Im dritten Kapitel wird dann die Methode für ein unvollständiges Finanz-

marktmodell hergeleitet. Als Beispiel für ein unvollständiges Modell betrachtet

man dann zuerst das Einperioden und dann das N-Perioden Trinomialmodell.

An einigen Beispielen wird gezeigt wie der optimale erwartete Nutzen numerisch

bestimmt werden kann.

1.1 Nutzenfunktion

Definition 1.1 Die Nutzenfunktion U : R→ R∪{−∞} stellt den Nutzen eines

Endvermögens zum Zeitpunkt T dar und erfüllt die Inada Bedingung, d.h. es gilt:

1



• U ist monoton steigend auf R, stetig differenzierbar und strikt konkav in

{U > −∞} = {x ∈ R | U(x) > −∞},

• limx→∞ U
′(x) = 0

• Ferner gilt entweder:

1. U(x) > −∞ für alle x ∈ R, dann ist limx→−∞ U
′(x) =∞.

oder:

2. Es existiert ein a ∈ R, sodass a = sup{x ∈ R | U(x) = −∞}.

Dann ist U(x) = −∞ für x < a und U(x) > −∞ für x > a und es gilt

limx↘a U
′(x) =∞.

Im Folgenden schränkt man sich auf den Spezialfall a = 0 ein, dieser hat

wirtschaftlich gesehen eine größere Bedeutung.

Beispiele: In Abhängigkeit von dem Definitionsbereich {U > −∞} kann man

folgende Beispiele für die Nutzenfunktion betrachten:

1. Für {U > −∞} = R: U(x) = −e−αx α > 0, x ∈ R

2. Für {U > −∞} = (0,∞) : U(x) =

ln(x), für x > 0

−∞, für x ≤ 0.

.

1.2 Formulierung des Portfoliooptimierungsproblems

Man betrachtet ein arbitragefreies, diskretes Finanzmarktmodell mit einem ab-

diskontierten Preisprozeß (St)0≤t≤T auf einem Wahrscheinlichkeitsraum (Ω,F , P )

mit einer Filtration (Ft)0≤t≤T . Wobei Ω = {ω1, ω2, . . . , ωN} ein endlicher Zu-

standsraum ist und (St)0≤t≤T adaptiert bezüglich (Ft)0≤t≤T ist.

Man kann nun das Maximierungsproblem für den Erwartungswert der Nutzen-

funktion mit Anfangskapital x unter allen selbstfinanzierenden Handelsstrategien
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definieren:

u(x) := sup
H∈H

EP (U(x+ (H · S)T )), (1)

wobei H der Raum der selbstfinanzierenden Handelsstrategien ist.

u(x) heißt indirekte Nutzenfunktion, sie gibt den optimalen erwarteten Nutzen

des Handelns mit Anfangskapital x an.

Dies ist ein einfaches Beispiel für ein Portfoliooptimierungsproblem. Die hierfür

hergeleitete Methode lässt sich aber auf komplexere Modelle, die zum Beispiel

Entnahmen berücksichtigen, erweitern.

Das Ziel ist es nun die optimale Handelsstrategie Ĥ(x) ∈ H zum Anfangskapital

x zu bestimmen.

2 Maximierungsproblem in einem vollständigen

Modell

2.1 Methode zur Lösung des Maximierungsproblems

Man betrachtet ein vollständiges Finanzmarktmodell. Nach dem 2. Fundamentalsatz

der Preistheorie existiert genau ein äquivalentes Martingalmaß Q.

Für die weiteren Überlegungen ist der folgende Satz von großer Bedeutung.

Satz 2.1 Das Portfoliooptimierungsproblem (1) ist äquivalent zum folgenden Ma-

ximierungsproblem:

EPU(XT ) =
N∑
n=1

pnU(ξn)→ max! (2)
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unter der Nebenbedingung

EQXT =
N∑
n=1

qnξn ≤ x, (3)

wobei XT = (XT (ωn))1≤n≤N = (ξn)1≤n≤N eine beliebige FT -meßbare Zufallsvaria-

ble ist.

Beweis: Es ist also zu zeigen:

u(x) = sup
H∈H

EP (U(x+ (H · S)T )) = sup
ξ1,...,ξN ,

∑N
n=1 qnξn≤x

N∑
n=1

pnU(ξn)

= sup
XT∈C(x)

EPU(XT ),

mit C(x) = {XT : XT ist FT -meßbar und EQXT ≤ x}.

(≥): Sei XT = (XT (ωn))1≤n≤N = (ξn)1≤n≤N ∈ C(x). Dies entspricht einer

Auszahlung zum Zeitpunkt T mit dem Anfangspreis y =
∑N

n=1 qnξn ≤ x.

Da das Modell vollständig ist, ist XT hedgebar. Das heißt, es existiert eine selbst-

finanzierende Handelsstrategie H mit XT = y + (H · S)T .

Da U monoton steigend ist und y ≤ x, gilt:

EPU(XT ) = EPU(y+(H ·S)T ) ≤ EPU(x+(H ·S)T ) ≤ supH∈H EPU(x+(H ·S)T ).

Daraus folgt: supXT∈C(x) EPU(XT ) ≤ u(x).

(≤): Sei H ∈ H beliebig. Dann ist XT , definiert durch XT = x + (H · S)T ,

ein Endvermögen mit Anfangskapital EQXT = x, also ist XT ∈ C(x).

Somit ergibt sich:

EPU(x+ (H · S)T ) = EPU(XT ) ≤ sup
XT∈C(x)

EPU(XT )

⇒ u(x) = sup
H∈H

EPU(x+ (H · S)T ) ≤ sup
XT∈C(x)

EPU(XT ).

�
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Somit kann man das ursprüngliche dynamische Maximierungsproblem durch

ein statisches mit einer Nebenbedingung erstetzen. Das heißt, statt in (1) un-

ter allen selbstfinanzierenden Handelsstrategien zu maximieren, deren Zusam-

mensetzung man für jede Periode bestimmen muss, maximiert man unter allen

Endauszahlungen XT zum Zeitpunkt T mit EQXT = x.

Weiter kann man jetzt das Maximierungsproblem mit einer Nebenbedingung

aus dem Satz 2.1 in eins ohne eine Nebenbedingung mithilfe des Lagrange-

Ansatzes umformulieren. Die dazugehörige Langrange-Funktion lautet:

L(ξ1, . . . , ξN , y) =
N∑
n=1

pnU(ξn)− y

(
N∑
n=1

qnξn − x

)

=
N∑
n=1

pn

(
U(ξn)− y qn

pn
ξn

)
+ yx, (4)

dabei ist y ≥ 0 der Lagrange-Multiplikator.

Man betrachtet nun folgende Funktion:

Ψ(y) = sup
ξ1,...,ξN

L(ξ1, . . . , ξN , y), y ≥ 0 (5)

Durch das Einsetzen der Formulierung (4) in (5) wird das Maximierungsproblem

über RN in der Gleichung (5) in N Maximierungsprobleme über R überführt:

sup
ξn

(
U(ξn)− y qn

pn
ξn

)
, 1 ≤ n ≤ N. (6)

Um dieses Maximierungsproblem zu lösen braucht man die Definition der dual

konjugierten Funktion.

Definition 2.2 Ist U : R→ R ∪ {−∞} konkav, dann ist

V (y) = sup
x∈R

[U(y)− yx], y > 0 (7)

die dual konjugierte Funktion von U.
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Die Eigenschaften von V werden im folgenden Satz beschrieben.

Satz 2.3 U erfülle die Inada Bedingung. Dann besitzt die dual konjugierte Funk-

tion V : R+ → R; y 7→ supx∈R[U(x)− yx] folgende Eigenschaften.

1. V hat einen endlichen Wertebereich und ist stetig differenzierbar auf (0,∞),

2. es gilt −V ′ = (U ′)−1 und V ist strikt konvex auf (0,∞),

3. limy↘0 V
′(y) = −∞ ,

4. limy→∞ V
′(y) =

∞, falls {U > −∞} = R

0, falls {U > −∞} = (0,∞)

,

5. U(x) = infy≥0[V (y) + yx], x ∈ {U > −∞}.

Beweis: V (y) = supx∈R[U(x)− yx] für y > 0.

U(x) ist strikt konkav und (−yx) ist konkav, also ist U(x) − yx auch strikt

konkav. Eine strikt konkave Funktion f besitzt ein globales Maximum an der

Stelle x̂ genau dann, wenn f ′(x̂) = 0 ist. Sei f(x) = U(x)− yx, dann gilt

f ′(x̂) = U ′(x̂)− y = 0 ⇔ U ′(x̂) = y.

U ′ ist stetig und streng monoton fallend, da U stetig differenzierbar und strikt

konkav ist. Ferner ist U ′({U > −∞}) = (0,∞). Also ist U ′ : {U > −∞} →

(0,∞) bijektiv und somit existiert eine Umkehrfunktion (U ′)−1 von U ′.

Also wird das Maximum an der Stelle x̂(y) = (U ′)−1(y) angenommen und die

Funktion V ist gegeben durch V (y) = U(x̂(y))− yx̂(y).

zu 1: V ist stetig differenzierbar, da U stetig differenzierbar ist.

Für alle y ∈ (0,∞) gilt x̂(y) = (U ′)−1(y) ∈ {U > −∞} ⊆ R, und somit auch

U(x̂(y)) ∈ R. Also ist V (y) ∈ R für alle y ∈ (0,∞). Somit hat V einen endlichen

Wertebereich.

zu 2: V ′(y) = U ′((U ′)−1(y))
(
(U ′)−1

)′
(y)−

(
(U ′)−1(y) + y((U ′)−1)′(y)

)
= y((U ′)−1)′(y)− ((U ′)−1(y) + y((U ′)−1)′(y)) = −(U ′)−1(y).
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V ist genau dann strikt konvex, wenn V ′ streng monoton wachsend ist.

Es gilt: U ist streng konkav, also ist U ′ streng monoton fallend. Daraus folgt, dass

(U ′)−1 streng monoton fallend ist. Also ist V ′(y) = −(U ′)−1(y) streng monoton

wachsend. Also ist V strikt konvex.

zu 3: Es gilt limy↘0 V
′(y) = − limy↘0(U

′)−1(y) = −∞, denn

U ′(x) = 0 genau dann, wenn x gegen∞ läuft. Also ist (U ′)−1(y)→∞ für y → 0.

zu 4: Sei {U > −∞} = R, dann gilt:

limy→∞ V
′(y) = − limy→∞(U ′)−1(y) =∞, denn

U ′(x) =∞⇔ x→ −∞ ⇒ limy→∞(U ′)−1(y) = −∞.

Für {U > −∞} = (0,∞) gilt:

limy→∞ V
′(y) = − limy→∞(U ′)−1(y) = 0, denn

U ′(x) =∞⇔ x→ 0 ⇒ limy→∞(U ′)−1(y) = 0.

zu 5: Die Funktion f(y) = V (y)+yx ist strikt konvex, besitzt also ein globales

Minimum an der Stelle y genau dann, wenn f ′(y) = 0 . Es gilt also:

V ′(y) = −x ⇔ (U ′)−1(y) = x ⇔ y = U ′(x).

Also folgt aus V (y) = U((U ′)−1(y))− y(U ′)−1(y):

inf
y

[V (y) + yx] = V (U ′(x)) + xU ′(x)

= U((U ′)−1(U ′(x)))− U ′(x)(U ′)−1(U ′(x)) + xU ′(x)

= U(x)− U ′(x)x+ xU ′(x) = U(x).

�

Die folgende Bemerkung ist auch für die kommenden Überlegungen wichtig.

Bemerkung 2.4 Erfüllt V die Eigenschaften 1 bis 4 aus dem Satz 2.3, so erfüllt

U(x) = infy[V (y) + yx] für x ∈ {U > −∞} die Inada Bedingung.

Beweis: Sei U(x) = infy[V (y) + yx] für x ∈ {U > −∞}. V (y) + yx ist strikt

konvex, somit existiert ein globales Minimum an der Stelle y, definiert durch

V ′(y) = −x. V ′ ist streng monoton wachsend und stetig auf (0,∞), da V strikt
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konvex und stetig differenzierbar ist. Ferner ist limy→0 V
′(y) = −∞.

Falls limy→∞ V
′(y) = 0, so ist V ′ : (0,∞) → (−∞, 0) bijektiv. Somit existiert

eine stetige Umkehrfunktion von (V ′)−1 : (−∞, 0) → (0,∞) und ŷ ist eindeutig

bestimmt durch ŷ = (V ′)−1 (−x). Also ist die Funktion U gegeben durch:

U(x) = V ((V ′)−1(−x)) + x(V ′)−1(−x) für x > 0. Somit ist U(x) > −∞ für

x > 0, ferner ist U stetig differenzierbar, da V stetig differenzierbar ist.

Außerdem gilt:

U ′(x) = −V ′((V ′)−1(−x)) ·
(
(V ′)−1

)′
(−x) + (V ′)−1(−x)− x

(
(V ′)−1

)′
(−x)

= (V ′)−1(−x).

Daraus folgt:

limx→∞ U
′(x) = limx→∞(V ′)−1(−x) = 0, denn

V ′(y)→ −∞ ⇔ y → 0 und

limx→0 U
′(x) = limx→0(V

′)−1(−x) =∞, denn

V ′(y)→ 0 ⇔ y →∞.

Falls aber limy→∞ V
′(y) = ∞ ist, so ist die Funktion V ′ : (0,∞) → (−∞,+∞)

bijektiv und es existiert eine stetige Umkehrfunktion (V ′)−1 : (−∞,∞)→ (0,∞).

Dann ist U wieder gegeben durch U(x) = V ((V ′)−1(−x)) + x(V ′)−1(−x) für

x ∈ R. Also ist U(x) > −∞ und stetig differenzierbar für x ∈ R. Ferner gilt:

limx→−∞ U
′(x) = limx→−∞(V ′)−1(−x) =∞, denn V ′(y)→∞ ⇔ y →∞.

Außerdem ist U monoton steigend, da U ′(x) = (V ′)−1(−x) > 0 für alle x ∈ {U >

−∞} ist. Ferner ist U strikt konkav auf {U > −∞}. Denn wegen der strikten

Konvexität von V ist (V ′)−1 monoton wachsend. Also ist (V ′)−1(−x) monoton

fallend in x.

Also erfüllt U die Inada Bedingung.

�

Die folgenden drei Beispiele veranschaulichen, wie man für eine Nutzenfunk-

tion U die dazugehörige dual konjugierte Funktion V bestimmen kann.
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Beispiele: Für eine Nutzenfunktion U ist die dual konjugierte Funktion V defi-

niert durch V (y) = supx(U(x)−yx). Das heißt um V zu bestimmen muss man zu-

erst ein einfaches Maximierungsproblem für die Funktion f(x) = U(x)−yx lösen.

Da f strikt konkav und differenzierbar ist, ist die Extremstelle x̂(y) eindeutig be-

stimmt durch f ′(x̂(y)) = 0. Also hat V folgende Gestalt: V (y) = U(x̂(y))−yx̂(y).

1. Sei nun U(x) = ln(x) für x > 0. Dann ist f(x) = ln(x)− yx für ein y > 0

und f ′(x) = 1
x
− y. Also ist f ′(x̂(y)) = 0 genau dann, wenn x̂(y) = 1

y
.

Somit erhält man: V (y) = f(x̂(y)) = ln( 1
y
)− y 1

y
= − ln(y)− 1.

2. Sei U(x) = xα

α
für x ∈ R, α ∈ (−∞, 1)\{0} eine Nutzenfunktion.

Dann ist f(x) = xα

α
− yx für ein festes y > 0 und f ′(x) = xα−1 − y.

Es folgt: f ′(x̂(y)) = 0⇔ x̂(y) = y
1

α−1 .

Somit erhält man: V (y) = f(y
1

α−1 ) = 1−α
α
y

α
α−1 für α ∈ (−∞, 1)\{0}.

3. Sei U(x) = − exp(−αx)
α

für x ∈ R, α > 0 eine Nutzenfunktion.

f(x) = − exp(−αx)
α

− yx ⇒ f ′(x) = exp(−αx)− y und

f ′(x̂(y)) = 0⇔ x̂(y) = − ln(y)
α

.

Also ist V (y) = f(x̂(y)) = − exp(−α ln(y)
−α ) · 1

α
− y · ln(y)−α = y

α
· (ln(y)− 1).

Nun zurück zu dem Maximierungsproblem.

Aus dem Satz 2.3 ist ersichtlich, dass für die Nutzenfunktion U die konjugierte

Funktion V nur endliche Werte annehmen kann. Das heißt, dass das Maximie-

rungsproblem in (6) und damit auch in (5) eine Lösung besitzt. Somit erhält man

mit Hilfe von (4) und (7) folgende Gleichung für Ψ:

Ψ(y) = sup
ξ1,...,ξN

L(ξ1, . . . , ξN , y)

= sup
ξ1,...,ξN

N∑
n=1

pn

(
U(ξn)− y qn

pn
ξn

)
+ yx

=
N∑
n=1

pn sup
ξ1,...,ξN

(
U(ξn)− y qn

pn
ξn

)
+ yx
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=
N∑
n=1

pnV

(
y
qn
pn

)
+ yx

= EPV
(
y
dQ

dP

)
+ yx.

Sei nun die Funktion v definiert durch:

v(y) := EPV
(
y
dQ

dP

)
=

N∑
n=1

pnV

(
y
qn
pn

)
, y > 0.

Bemerkung 2.5 Die Funktion v besitzt die gleichen qualitativen Eigenschaften

wie V im Satz 2.3 .

Beweis: v ist eine konvexe Kombination von V ausgewertet auf linear skalierten

Werten. Somit hat v einen endlichen Wertebereich und ist stetig differenzierbar

und strikt konvex, da V diese Eigenschaften erfüllt.

Es gilt v′(y) =
∑N

n=1 qnV
′
(
y qn
pn

)
. Somit folgt aus limy→0 V

′
(
y qn
pn

)
= −∞, dass

limy→0 v
′(y) = −∞.

Analog gilt:

lim
y→∞

v′(y) =

∞, für {U > −∞} = R, da limy→∞ V
′(y) =∞,

0, für {U > −∞} = (0,∞), da limy→∞ V
′(y) = 0.

�

Die Funktion Ψ(y) = v(y) + yx ist strikt konvex. Ψ besitzt also ein globales

Minimum an der Stelle ŷ, wenn folgendes gilt: Ψ′(ŷ) = 0 . Also ist ŷ definiert

durch v′(ŷ) = −x.

Aus der Bemerkung (2.5) folgt, dass v′ stetig und strikt monoton steigend ist.

Ferner gilt für {U > −∞} = (0,∞): limy↘0 v
′(y) = −∞ und limy→∞ v

′(y) = 0.

Somit ist v′ : (0,∞) → (−∞, 0) bijektiv. Das heißt, dass für jedes x > 0 genau

ein ŷ(x) ∈ (0,∞) existiert mit v′(ŷ(x)) = −x.

Für {U > −∞} = R gilt: limy↘0 v
′(y) = −∞ und limy→∞ v

′(y) =∞.
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Dann ist v′ : (0,∞) → (−∞,∞) bijektiv und für jedes x ∈ R existiert ein

eindeutiges ŷ(x) ∈ (0,∞) mit v′(ŷ(x)) = −x.

Somit existiert für alle x ∈ {U > −∞} ein eindeutiges ŷ(x), so dass

inf
y>0

Ψ(y) = Ψ(ŷ(x)).

Nun hält man ŷ(x) fest und betrachtet die strikt konkave Funktion

(ξ1, . . . , ξN) 7→ L(ξ1, . . . , ξN , ŷ(x))

=
N∑
n=1

pn

(
U(ξn)− ŷ(x)

qn
pn
ξn

)
+ ŷ(x)x

Analog zu oben kann man sich überlegen, dass aufgrund der strikten Konkavität

ein eindeutiger Maximierer (ξ̂1, . . . , ξ̂N) dieser Funktion existiert und es gilt

U ′(ξ̂n) = ŷ(x)
qn
pn

bzw. ξ̂n = −V ′
(
ŷ(x)

qn
pn

)
für alle n = 1, . . . , N.

Insgesamt erhält man

inf
y>0

Ψ(y) = inf
y>0

(v(y) + xy) = v(ŷ(x)) + xŷ(x) = Ψ(ŷ(x)) (8)

= sup
ξ1,...,ξN

L(ξ1, . . . , ξN , ŷ(x)) = L(ξ̂1, . . . , ξ̂N , ŷ(x)).

L ist stetig differenzierbar an der Stelle (ξ̂1, . . . , ξ̂N , ŷ(x)), da ξ̂n ∈ {U > −∞}

für alle 1 ≤ n ≤ N . Somit ist ∇L(ξ̂1, . . . , ξ̂N , ŷ(x)) = 0.

Insbesondere ist

0 = ∂yL(ξ1, . . . , ξN , y)|(ξ̂1,...,ξ̂N ,ŷ(x))

= ∂y

(
N∑
n=1

pnU(ξn)− y ·

(
N∑
n=1

qnξn − x

))
|(ξ̂1,...,ξ̂N ,ŷ(x)) =

N∑
n=1

qnξ̂n − x.
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Also ist die Nebenbedingung (3) erfüllt, denn
∑N

n=1 qnξ̂n = x. Also gilt:

L(ξ̂1, . . . , ξ̂N , ŷ(x)) =
N∑
n=1

pnU(ξ̂n) (9)

Somit gilt

u(x) =
N∑
n=1

pnU(ξ̂n). (10)

Denn u(x) ≥
∑N

n=1 pnU(ξ̂n) folgt aus

u(x) = sup
ξ1,...,ξN ,

∑N
n=1 qnξn≤x

N∑
n=1

pnU(ξn) ≥
N∑
n=1

pnU(ξ̂n),

da für (ξ̂1, . . . , ξ̂N) die Nebenbedingung erfüllt ist.

u(x) ≤
∑N

n=1 pnU(ξ̂n) erhält man aus der Tatsache, dass für alle (ξ1, . . . , ξN), die

die Nebenbedingung erfüllen, gilt:

N∑
n=1

pnU(ξn) ≤ L(ξ1, . . . , ξN , ŷ(x)) ≤ L(ξ̂1, . . . , ξ̂N , ŷ(x)) =
N∑
n=1

pnU(ξ̂n).

Mithilfe von (10),(9) und (8) erhält man nun für x ∈ {U > −∞}:

inf
y>0

Ψ(y) = inf
y>0

(v(y) + xy) = L(ξ̂1, . . . , ξ̂N , ŷ(x)) =
N∑
n=1

pnU(ξ̂n) = u(x).

Aus der Bemerkung 2.4 und der Tatsache, dass v die gleichen qualitativen Eigen-

schaften wie V in 2.3 besitzt, folgt nun:

v ist die dual konjugierte Funktion von u und u erfüllt die Inada Bedingung.

Somit kann man ŷ(x), definiert durch v′(ŷ(x)) = −x, berechnen durch

ŷ(x) = u′(x), für x ∈ {U > −∞}.
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Der folgende Satz fasst die bisheringen Ergebnisse zusammen.

Man bezeichne mit X̂T ∈ C(x) den Optimierer X̂T (ωn) = ξ̂n für n = 1, . . . , N.

Satz 2.6 Gegeben sei ein diskretes, arbitragefreies und vollständiges Finanzmarkt-

modell mit einem abdiskontierten Preisprozess (St)0≤t≤T auf einem endlichen

Wahrscheinlichkeitsraum (Ω,F , P ) mit einer Filtration (Ft)0≤t≤T , wobei (St)0≤t≤T

adaptiert bezüglich (Ft)0≤t≤T ist. Sei Q das äquivatente Martingalmaß und U eine

Nutzenfunktion mit Inada Bedingung.

Seien u(x) und v(x) definiert durch

u(x) = sup
XT (x)∈C(x)

EPU(XT (x)), x ∈ {U > −∞}, (11)

v(y) = EPV
(
y
dQ

dP

)
, y > 0.

Dann gilt:

1. Die Funktion v ist die dual konjugierte Funktion von u, und u erfüllt die

Inada Bedingung.

2. Der Optimierer X̂T (x) von (11) existiert und ist eindeutig. Es gilt

X̂T (x) = −V ′
(
y dQ
dP

)
oder auch y dQ

dP
= U ′(X̂T (x))

wobei x ∈ {U > −∞}, y > 0 und y = u′(x) bzw. x = −v′(y).

3. Für u′ und v′ gilt:

u′(x) = EP (U ′(X̂T (x))), v′(y) = EQ
(
V ′
(
y
dQ

dP

))
xu′(x) = EP (X̂T (x)U ′(X̂T (x))), yv′(y) = EP

(
y
dQ

dP
V ′
(
y
dQ

dP

))
.

Beweis: 1. und 2. wurden in den oberen Überlegungen gezeigt.

Es bleibt also 3. zu zeigen.

v′(y) =
(
EPV

(
y dQ
dP

))′
= EP

(
dQ
dP
V ′
(
y dQ
dP

))
= EQ

(
V ′
(
y dQ
dP

))
und
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yv′(y) = yEP
(
dQ
dP
V ′
(
y dQ
dP

))
= EP

(
y dQ
dP
V ′
(
y dQ
dP

))
.

Aus 2. folgt:

u′(x) = y = EP
(
y dQ
dP

)
= EP (U ′(X̂T (x))) und

xu′(x) = −yv′(y) = −EP
(
y dQ
dP
V ′
(
y dQ
dP

))
= −EP

(
−U ′(X̂T (x))X̂T (x)

)
= EP (X̂T (x)U ′(X̂T (x))).

�

Mithilfe von Satz 2.6 ist es nun möglich den Optimierer X̂T (x) zu bestimmen.

Da der Markt vollständig ist, existiert ein Hedge für X̂T (x), damit ist dann auch

die optimale Handelsstrategie festgelegt.

Im Folgenden wird als Anwendungsbeispiel, der oben hergeleiteten Methode, die

optimale Handelsstrategie für ein Anfangskapital x in einem CRR-Modell be-

stimmt. Zunächst betrachtet man das Einperioden CRR-Modell. Hier ist die op-

timale Handelsstrategie durch den optimalen Anteil des Anfangskapitals, das am

Anfang der Periode in die Aktie investiert werden muss, bestimmt. Im nächsten

Schritt kann man dann das Einperioden-Modell auf das N-Perioden CRR-Modell

ausweiten.

2.2 Anwendung in einem Einperioden CRR-Modell

Man betrachtet nun ein arbitragefreies Einperioden CRR-Modell mit Ω = {ω1, ω2},

Wahrscheinlichkeitsmaß P mit P ({ω1}) = p und P ({ω2}) = 1− p.

Sei Ŝ0
0=1 der Preis der festverzinslichen Anleihe zum Zeitpunkt 0 und Ŝ0

1 = 1 + r

der Preis zum Zeitpunkt 1 für ein r > −1. Für den Preis der risikobehafteten

Anleihe gilt:

Ŝ1
0 = 1, Ŝ1

1 =

1 + u, falls ω1 eintritt,

1 + d, falls ω2 eintritt.
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Da das Modell arbitragefrei ist, gilt d < r < u. Ferner soll d > −1 sein.

Für die abdiskontierte Preisentwicklung gilt:

S0
0 = 1, S0

1 = 1,

S0
1 = 1, S1

1 =

1 + ũ, falls ω1 eintritt,

1 + d̃, falls ω2 eintritt

mit 1 + ũ = 1+u
1+r

> 1 und 1 + d̃ = 1+d
1+r

< 1.

Man nimmt o.B.d.A an, dass ũ ≥ −d̃. Denn dann gilt EPS1
1 ≥ S1

0 , d.h. die

optimale Handelsstrategie wird eine Long-Position in der Aktie haben. Für ũ <

−d̃ führt man die unteren Berechnungen analog durch, dann ist aber eine Short-

Position in der Aktie möglich.

Für den äquivalenten Martingalmaß Q gilt:

Q({ω1}) = q =
r − d
u− d

=
−d̃
ũ− d̃

und entsprechend Q({ω2}) = 1− q =
ũ

ũ− d̃
.

Nun ist das Ziel für eine Nutzenfunktion U die optimale Handelsstrategie

mithilfe des Satzes 2.6 zu bestimmen. Man nehme die drei Nutzenfunktionen,

für die im Kapitel 1.2 die dual konjugierten Funktionen berechnet wurden, als

Beispiel.

1. Sei U(x) = xα

α
für α ∈ (−∞, 1)\{0}, x > 0 eine Nutzenfunktion. Dann ist

V (y) = −yβ

β
mit α− 1 = (β − 1)−1 die dual konjugierte Funktion von U .

Nach dem Satz 2.6 gilt:

v(y) = EpV
(
y · dQ

dP

)
= pV

(
y · q

p

)
+ (1− p)V

(
y · 1− q

1− p

)
= p

(
−y

β

β
·
(
q

p

)β)
+ (1− p)

(
−y

β

β
·
(

1− q
1− p

)β)
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= cV V (y), mit cV = p

(
q

p

)β
+ (1− p)

(
1− q
1− p

)β
Folgende Bemerkung ist für die Berechnung der indirekten Nutzenfunktion u

hilfreich.

Bemerkung: Seien V (y) die dual konjugierte Funktion von U(x) und c > 0 eine

Konstante, dann ist cV (y) die dual konjugierte Funktion von cU
(
x
c

)
.

Beweis: Setze Ũ(x) = cU
(
x
c

)
. Das heißt es ist zu zeigen, dass

cV (y) = supx(Ũ(x)− yx).

Setze x̃ = x
c
. Dann gilt:

sup
x

(Ũ(x)− yx) = sup
x̃

(cU(x̃)− cyx̃)

= c sup
x̃

(U(x̃)− yx̃) = cV (y).

�

Da v = cV V die dual konjugierte Funktion von u ist, folgt:

u(x) = cVU

(
x

cV

)
= c1−αV U(x) = cUU(x), mit

cU = c1−αV =

(
p

(
q

p

)β
+ (1− p)

(
1− q
1− p

)β)1−α

.

Für ein x > 0 kann man nun zuerst ŷ(x) ausrechnen: ŷ(x) = u′(x) = cUU
′(x).

Somit gilt dann nach Satz 2.6:

X̂1(x) = −V ′
(
ŷ(x)

dQ

dP

)
= −V ′(U ′(x))c

1
α−1

U

(
dQ

dP

) 1
α−1

, da V ′(y) = −y
1

α−1
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= xc−1V

(
dQ

dP

) 1
α−1

, da − V ′ = (U ′)−1

Folglich gilt:

X̂1(x) =

xc
−1
V

(
q
p

) 1
α−1

= xc−1V

(
−d̃

p(ũ−d̃)

) 1
α−1

, falls ω1 eintritt

xc−1V

(
1−q
1−p

) 1
α−1

= xc−1V

(
ũ

(1−p)(ũ−d̃)

) 1
α−1

, falls ω2 eintritt.

(12)

Da das Modell vollständig ist, existiert ein Hedge für X̂1(x). Nach dem 2. Fun-

damentalsatz der Preistheorie existieren also x1, x2 ∈ R mit

X̂1(x) = x+

〈 x1

x2

 ,

 ∆S1
0

∆S1
1

〉.

Setze ĥ = x2, dann gilt

X̂1(x) = x+ ĥ∆S1
1 , da ∆S1

0 = 0 ist. (13)

Mithilfe von (12) und (13) kann man ĥ ausrechnen.

Falls ω1 eintritt, dann gilt:

x+ ĥũ = xc−1V

(
q

p

) 1
α−1

⇒ ĥ = x

(
c−1V

(
q

p

) 1
α−1

− 1

)
ũ−1 = k̂x.

Das heißt, dass man um den maximalen erwarteten Nutzen zu erreichen, k̂x

Aktien am Anfang der Periode kaufen muss. Dabei kann k̂ in Abhängigkeit von

ũ, d̃ und α genau berechnet werden und es gilt 0 < k̂ <∞ für α ∈ (−∞, 1)\{0}.

Man beachte, dass k̂ größer als 1 sein kann, d.h. es ist eine Short-Position in der

risikolosen Anleihe möglich.

2. Nimmt man nun U(x) = ln(x) als Nutzenfunktion, so ist V (y) = − ln(y)−1
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die dual Konjugierte von U und es gilt nach Satz 2.6 :

v(y) = EPV
(
y
dQ

dP

)
= p

(
− ln

(
y · q

p

)
− 1

)
+ (1− p)

(
− ln

(
y · 1− q

1− p

)
− 1

)
= p

(
− ln(y)− ln

(
q

p

)
− 1

)
+ (1− p)

(
− ln(y)− ln

(
1− q
1− p

)
− 1

)
= − ln(y)− p ln

(
q

p

)
− (1− p) ln

(
1− q
1− p

)
− 1.

Da v die dual konjugierte Funktion von u ist, gilt nach Satz 2.3:

u(x) = infy≥0(v(y) + yx).

Um nun u zu bestimmen muss man (v(y)+yx) nach y ableiten und dann die Ab-

leitung gleich 0 setzen. Wegen der strikten Konvexität von v ist dies hinreichend

für ein Minimum. Es gilt also:

(v(y) + yx)′ = − 1
y

+ x = 0⇔ y = 1
x
.

⇒ u(x) = v( 1
x
) + 1

x
· x = ln(x)− p ln

(
q
p

)
− (1− p) ln

(
1−q
1−p

)
.

Weiter ist nach Satz 2.6 ŷ(x) = u′(x) = 1
x

und

X̂1(x) = −V ′
(
ŷ(x)

dQ

dP

)
=

−V
′
(

1
x
· q
p

)
= p

q
· x, falls ω1 eintritt,

−V ′
(

1
x
· (1−q)
(1−p)

)
= (1−p)

(1−q) · x, falls ω2 eintritt.

Aufgrund der Vollständigkeit des Marktmodells existiert nun wieder ein ĥ ∈ R

mit X̂1(x) = x+ ĥ∆S1
1 .

Somit folgt aus x+ ĥũ = X̂1(x)(ω1) = p
q
· x, dass

ĥ =

(
p

q
− 1

)
x

ũ
=

(
p(ũ− d̃)

−d̃
− 1

)
x

ũ
=

(
p(ũ− d̃) + d̃

−ũd̃

)
x =: k̂x.

Somit ist die Anzahl der Aktien ĥ, die gehalten werden müssen, um den maxi-

malen erwarteten Nutzen zu erhalten, bestimmt.
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3. Sei U(x) = − exp(−x) die Nutzenfunktion, dann ist V (y) = y(ln(y) − 1)

die dual konjugierte Funktion von U . Es gilt:

v(y) = EPV
(
y
dQ

dP

)
= p

(
y
q

p
·
(

ln

(
y
q

p

)
− 1

))
+ (1− p)

(
y · 1− q

1− p
·
(

ln

(
y · 1− q

1− p

)
− 1

))
= yq

(
ln(y)− 1 + ln

(
q

p

))
+ y(1− q)

(
ln(y)− 1 + ln

(
1− q
1− p

))
= y(ln(y)− 1) + y · q ln

(
q

p

)
+ y · (1− q) ln

(
1− q
1− p

)
= V (y) + cy mit c = q ln

(
q

p

)
+ (1− q) ln

(
1− q
1− p

)
.

Die indirekte Nutzenfunktion u bestimmt man nun wieder mithilfe der ersten

Ableitung von (v(y) + yx) nach y.

(v(y) + yx))′ = V ′(y) + c+ x = ln(y)− 1 + y 1
y

+ c+ x = 0

⇔ ln(y) = −x− c⇔ y = exp(−x− c).

Also ist

u(x) = V (exp(−x− c)) + c exp(−x− c) + x exp(−x− c)

= exp(−x− c)(−x− c− 1) + c exp(−x− c) + x exp(−x− c)

= − exp(−x− c) und

ŷ(x) = u′(x) = exp(−x− c).

Nun kann man wieder X̂1(x) bestimmen

X̂1(x) = −V ′
(
ŷ(x)

dQ

dP

)
=

− ln
(

exp(−x− c) q
p

)
= x+ c− ln

(
q
p

)
, falls ω1 eintritt,

x+ c− ln
(

1−q
1−p

)
, falls ω2 eintritt.

Weiter gilt X̂1(x) = x+ ĥ∆S1
1 , für ein ĥ ∈ R.

19



Somit folgt aus x+ ũĥ = X̂1(x)(ω1) = x+ c− ln
(
q
p

)
, dass

ĥ =
c− ln

(
q
p

)
ũ

=
1− q
ũ

ln

(
(1− q)p
(1− p)q

)
=

1

ũ− d̃
ln

(
ũ

−d̃
· p

1− p

)
.

Somit ist die optimale Handelsstrategie durch die Parameter des Modells eindeu-

tig bestimmt. Bei diesem Beispiel ist bemerkenswert, dass ĥ nicht von x abhängt.

2.3 Übertragung auf das N-Perioden CRR-Modell

Sei (εt)
N
t=1 eine Familie von identisch verteilten, stochastisch unabhängigen Zu-

fallsvariablen auf dem Wahrscheinlichkeitsraum (Ω,F , P ), sodass P (εt = 1) = p

und P (εt = 0) = 1− p für 1 ≤ t ≤ N . Ferner sei (Ft)Nt=1 eine Filtration, wobei

Ft = σ(εn : 1 ≤ n ≤ t) die von (εn)tn=1 erzeugte σ-Algebra ist.

Sei der Zinssatz r der festverzinslichen Anleihe gleich 0. Der Aktienpreisprozess

S ist definiert durch: S0=1 und für t = 1, . . . , N ist

St =

St−1(1 + u), falls εt = 1

St−1(1 + d), falls εt = 0

= St−1(1 + u)εt(1 + d)1−εt mit − 1 < d < 0 < u.

Das Ziel ist nun wieder das Maximierungsproblem

E
[
U
(
x+

∑N
n=1 hn∆Sn

)]
→ max!

für eine Nutzenfunktion U zu lösen, wobei (hn)Nn=1 ∈ H.

Im folgenden werden die Nutzenfunktionen U(x) = xα

α
für α ∈ (−∞, 1)\{0} und

U(x) = ln(x) untersucht.

1. Man betrachte zuerst die Nutzenfunktion U(x) = xα

α
für α ∈ (−∞, 1)\{0}.
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Durch

ut(x) := sup

{
E

[
U

(
x+

N∑
n=t+1

hn∆Sn

)
|Ft

]}
(14)

sind bedingte Nutzenfunktionen für t = 0, . . . , N definiert, dabei wird über die

(Fn−1)Nn=t+1-meßbare Zufallsvariablen (hn)Nn=t+1 maximiert.

Für die bedingte Nutzenfunktion gilt folgender Satz.

Satz 2.7 Für die bedingte Nutzenfunktion definiert durch (14) gilt:

ut(x) = cN−tU U(x) für t = 0, . . . , N und

ĥt =
ĥ

St−1
für t = 1, . . . , N,

wobei ĥ der optimalen Handelsstrategie in einem Einperioden CRR-Modell ent-

spricht.

Beweis: Der Beweis erfolgt durch Rückwärtsinduktion.

IA: Es gilt per Definition: uN(x) = U(x).

Für t = N − 1 betrachtet man nur eine Periode von N − 1 bis N . Man befindet

sich also in einem Einperioden Modell, dabei ist zu beachten, dass der Aktienpreis

zum Zeitpunkt N − 1 eine FN−1-meßbare Zufallsvariable ist.

In einem Einperioden Modell ist ĥ die Anzahl der Aktien, die man halten sollte um

den maximalen erwarteten Nutzen zu erreichen, dabei ist der Aktienanfangspreis

S1
0 = 1. Dementsprechend ist dann ĥN = ĥ

SN−1
die optimale Anzahl der Aktien

für SN−1 als Anfangspreis. Zu beachten ist, dass ĥN FN−1-meßbar ist.

Auf diese Weise erhält man:

uN−1(x) = sup {E [U (x+ hN∆SN) |FN−1] : hN ist FN−1-meßbar}

= E
[
U
(
x+ ĥN∆SN

)
|FN−1

]
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= E

[
U

(
x+

ĥ

SN−1
SN−1((1 + u)εN (1 + d)1−εN − 1)

)
|FN−1

]
= E

[
U
(
x+ ĥ((1 + u)εN (1 + d)1−εN − 1)

)
|FN−1

]
= E

[
U
(
x+ ĥ((1 + u)ε1(1 + d)1−ε1 − 1)

)]
= E

[
U
(
x+ ĥ∆S1

)]
.

Bei dem fünften Gleichheitszeichen ist zu beachten, dass (εt)
N
t=1 identisch verteilte,

stochastisch unabhängige Zufallsvariablen sind und somit von FN−1 unabhängig

sind. Außerdem ist U eine stetige Funktion, also meßbar. Die Gleichheit folgt also

aus den Rechenregeln für bedingte Erwartungswerte.

Also ist uN−1 unabhängig von FN−1 und das Maximierungsproblem entspricht

dem in einem Einperioden-Modell. Das heißt, man kann die Ergebnisse aus Kapitel

2.1 anwenden:

uN−1(x) = cUU(x) mit cU =

(
p

(
q

p

)β
+ (1− p)

(
1− q
1− p

)β)1−α

.

IV: Es gelte für ein beliebiges t aus {0, . . . , N}:

uN−t(x) = ctUU(x) und

ĥN−s =
ĥ

SN−s−1
für 0 ≤ s ≤ t− 1.

IS: N − t→ N − t− 1.

Für den Induktionsschritt benötigt man das folgende Lemma aus Finanzmathe-

matik 1.

Lemma: Seien (M1,M1),(M2,M2) meßbare Räume, (Ω,F , P ) ein Wahrschein-

lichkeitsraum, G eine Unter-σ-Algebra von F . Seien X1 : Ω→M1 und X2 : Ω→

M2 meßbare Abbildungen und h : (M1×M2,M1⊗M2)→ (R,B(R)) meßbar. Es

gelte ferner: X1 ist unabhängig von G, X2 ist meßbar bezüglich G und Eh(X1, X2)
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existiert.

Dann gilt: E(h(X1, X2)|G) = E(h(X1, X2)|X2) = E(h(X1, ·)) ◦X2 P-fast sicher.

Es gilt nun:

uN−t−1(x) = sup

{
E

[
U

(
x+

N∑
n=N−t

hn∆Sn

)
|FN−t−1

]}
= sup

{
E
[
U
(
x+ hN−t∆SN−t + t · ĥ∆S1

)
|FN−t−1

]}
= sup

{
E
[
U
(
x+ hN−tSN−t−1((1 + u)εN−t(1 + d)1−εN−t − 1) + t · ĥ∆S1

)
|FN−t−1

]}
= sup

{
E
[
U
(
x+ hN−t∆SN−t + t · ĥ∆S1

)]}
= sup

{
E
[
E
[
U
(
x+ hN−t∆SN−t + t · ĥ∆S1

)
|FN−t

]]}
= sup {E [uN−t(x+ hN−t∆SN−t)]}

= ctU sup {E [U (x+ hN−t∆SN−t)]}

= ctU · E
[
U
(
x+ ĥ∆S1

)]
= ctU · cUU(x) = ct+1

U U(x)

Hier ist zubeachten, dass sich das Supremum in jeder Gleichung auf die Kompo-

nenten der Handelsstrategie (hn)Nn=1 beziehen. Bei dem zweiten Gleichheitszeichen

wurde die Induktionsvoraussetzung für die Komponenten der Handelsstragtegie

benutzt.

Bei dem vierten Gleichheitszeichen wird das Lemma benutzt, denn es gilt:

• (ξn)Nn=1 sind i.i.d, also unabhängig von FN−t−1,

∆S1
1 = S0

1((1 + u)ε1(1 + d)1−ε1 − 1), hN−tSN−t−1 ist FN−t−1 -meßbar,

• setzt man

f(hN−tSN−t−1, ε1) = x+hN−tSN−t−1((1+ũ)ε1(1+d̃)1−ε1−1)+t·ĥ∆S1, dann

ist U ◦f eine Verknüpfung von stetigen Funktionen und somit insbesondere

meßbar.

• ferner gilt E(U ◦ f)(hN−tSN−t−1, ε1) < ∞, da f(hN−tSN−t−1, ε1) < ∞ für

alle ω ∈ Ω.
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Also sind alle Voraussetzungen erfüllt und das Lemma liefert die Gleichung.

Das fünfte Gleichheitszeichen folgt aus den Rechenregeln für bedingte Erwar-

tungswerte, und bei dem siebten wird die Induktionsvoraussetzung benutzt. Schließ-

lich erhält man das achte Gleichheitszeichen durch analoge Argumentation wie

im Induktionsanfang, da wieder ein Einperioden-Maximierungsproblem mit Ak-

tienanfangskurs SN−t−1 vorliegt und somit ĥN−t = ĥ
SN−t−1

ist.

�

Insbesondere gilt nun: u(x) = u0(x) = cNUU(x).

Für den Optimierer (X̂t(x))1≤t≤T mit dem Anfangskapital x > 0 gilt:

X̂t(x) = x+
∑t

n=1 ĥt∆St mit ĥt = ĥ
St−1

für 1 ≤ t ≤ T .

Im Einperioden-Modell ist ĥ = x · k̂ , wobei x das zur Verfügung stehende Kapi-

tal ist. Also ist die optimale Handelsstrategie im Mehrperioden-Modell definiert

durch ĥt = X̂t−1(x)
St−1

· k̂ , da zum Zeitpunkt t X̂t−1(x) als Kapital zur Verfügung

steht. k̂ kann wieder in Abhängigkeit von dem Modell eindeutig bestimmt werden.

2. Sei nun U(x) = ln(x) die Nutzenfunktion, dann ist V (y) = − ln(y) − 1

die dual konjugierte Funktion von U . Um hier die optimale Handelsstrategie zu

bestimmen bittet es sich an direkt den Satz 2.6 anzuwenden.

Das heißt, man bestimmt zuerst die Funktion v(y) = EPV (y dQ
dP

).

Sei (Lt)
N
t=1 definiert durch

Lt =
t∑
i=1

1{ξi=1} =
t∑
i=1

ξi , dann ist

P (LN = n) =

(
N

n

)
pn(1− p)N−n für n = 0, . . . , N.

Es gilt also:

St = S0(1 + u)Lt(1 + d)t−Lt für t = 1, . . . , N.
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Sei Q der äquivalente Martingalmaß mit q = Q({ξt = 1}), dann gilt q = −d
u−d und

dQ

dP
|FN =

(
q

p

)LN
·
(

1− q
1− p

)N−LN
.

Nun kann man v berechnen, es gilt:

v(y) = EPV
(
y
dQ

dP

)
=

N∑
i=0

(
N

i

)
pi(1− p)N−i ·

(
− ln(y)− ln

((
q

p

)i
·
(

1− q
1− p

)N−i)
− 1

)

= − ln(y)− 1−
N∑
i=0

(
N

i

)
pi(1− p)N−i ln

((
q

p

)i
·
(

1− q
1− p

)N−i)
= − ln(y)− 1− c,

mit c =
N∑
i=0

(
N

i

)
pi(1− p)N−i ln

((
q

p

)i
·
(

1− q
1− p

)N−i)
.

Nun gilt u(x) = infy≥0 (v(y) + yx).

Die Lösung dieses Minimierungsproblems für eine strikt konvexe Funktion erhält

man mithilfe der ersten Ableitung: (v(y) + yx)′ = − 1
y

+ x = 0 ⇔ y = 1
x
.

Es gilt also:

u(x) = v

(
1

x

)
+

1

x
· x = ln(x)− c.

Weiter gilt nach dem Satz 2.6, dass

ŷ(x) = u′(x) =
1

x
und X̂N(x) = −V ′

(
ŷ(x)

dQ

dP

)
= x · dP

dQ
= x ·

(
p

q

)LN
·
(

1− p
1− q

)N−LN
.

Auf diese Weise ist also die optimale Auszahlung X̂N(x) bestimmt. Da das N-

Perioden CRR-Modell vollständig ist, kann man für X̂N(x) ein Hedge konstruie-

ren. Dieser entspricht dann der optimalen Handelsstratgie.
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3 Maximierungsproblem in einem

unvollständigen Finanzmarktmodell

3.1 Methode zur Lösung des Maximierungsproblems

Man betrachtet nun ein arbitragefreies, diskretes, unvollständiges Finanzmarkt-

modell. Nach dem 2. Fundamentalsatz der Preistheorie ist in diesem Fall das

äquivalente Martingalmaß nicht eindeutig, d.h. die Menge der äquivanten Mar-

tingalmaße P̃ ist nicht einelementig. Sei P die Menge aller Martingalmaße.

Man möchte nun wieder das dynamische Maximierungsproblem (1) in ein stati-

sches für das unvollständige Finanzmarktmodell überführen.

Satz 3.1 Das Maximierungsproblem (1) ist äquivalent zu dem Maximierungspro-

blem

supXT∈C(x) EPU(XT ) mit

C(x) = {XT ∈ L0(Ω,F , P )| EQXT ≤ x für alle Q ∈ P}.

Beweis: Es ist also zu zeigen

u(x) = supH∈H E(U(x+ (H · S)T )) = supXT∈C(x) E(U(XT )).

(≥): Sei XT ∈ C(x). XT entspricht einer Auszahlung zum Zeitpunkt T , wobei

der arbitragefreie Preis y von XT in der Menge Π(XT ) = {EQXT : Q ∈ P} liegt.

Aus Finanzmathematik 1 ist außerdem bekannt, dass Π(XT ) ein offenes, nicht

leeres Intervall Π(XT ) = (p−(XT ), p+(XT )) mit

p−(XT ) := sup{z : z + (H · S)T ≤ XT mit H ∈ H} und

p+(XT ) := inf{z : z + (H · S)T ≥ XT mit H ∈ H} ist.

Da XT ∈ C(x), ist EQXT ≤ x für alle Q ∈ P . Somit liegt x nicht in Π(XT ),

genauer x ≥ p+(XT ). Das heißt es existiert ein H ∈ H mit x+ (H · S)T ≥ XT .

Da U monoton steigend ist, gilt

E(U(XT )) ≤ E(U(x+(H ·S)T )) ≤ supH∈H E(U(x+(H ·S)T )) für alle XT ∈ C(x).

⇒ supXT∈C(x) E(U(XT )) ≤ supH∈H E(U(x+ (H · S)T )).
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(≤): Diese Richtung geht analog zum Satz (2.1). Denn für ein H ∈ H ist

XT = x+ (H · S)T ein Element in C(x), weil EQXT = EQ(x+ (H · S)T )) = x für

alle Q ∈ P ist. Also gilt:

EPU(x+ (H · S)T )) = EPU(XT )) ≤ supXT∈C(x) EPU(XT ))

⇒ u(x) ≤ supXT∈C(x) EPU(XT )).

�

Nun erhält man wieder ein statisches Maximierungsproblem mit der Nebenbe-

dingung XT (x) ∈ C(x). Um diese Nebenbedingung genauer charakterisieren zu

können ist die folgende Bemerkung über den Raum P hilfreich.

Bemerkung 3.2 Die Menge der Martingalmaße P ist eine kompakte, konvexe

Hülle, erzeugt von endlich vielen Qm ∈ P für m = 1, . . . ,M . Das heißt für alle

P ∈ P existieren (µ1, . . . , µM) ∈ RM
+ mit

∑M
i=1 µi = 1 und P =

∑M
i=1 µiQ

i.

Beweis: Aufgrund der Endlichkeit von Ω ist die Menge aller Wahrscheinlichkeits-

maße Q ein kompakter, konvexer Polygon mit N Ecken in RN . P ist eine konvexe

Teilmenge von Q.

Man betrachtet nun den Raum G = {(H · S)T : H ∈ H} aller Endvermögen der

hedgebaren Claims. Dann gilt für P ∈ P und Y ∈ G mit Y = (H · S)T für ein

H ∈ H : EP (x+(H ·S)T ) = x. Daraus folgt EP ((H ·S)T ) = 〈P, Y 〉 = 0. Also sind

G und P orthogonal zueinander. Sei nun C die zu G orthogonale Hyperebene in

RN , dann ist P = C ∩ Q. Somit existieren endlich viele Qm ∈ P , m = 1, . . . ,M ,

sodass P die von {Q1, . . . , QM} erzeugte konvexe Hülle ist, da Q ein Polygon ist.

In der Abbildung 1 ist der Fall für 2 Basisfinanzgüter und ein dreielementiges Ω

abgebildet.
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Außerdem ist P abgeschlossen in Q. Denn sei (Qn = (qn1 , . . . , q
n
N))n∈N eine kon-

vergente Folge in P mit dem Grenzwert Q = (q1, . . . , qN), dann gilt

EQSl =
∑N

n=1 qnSl(ωn) =
∑N

n=1 limk→∞ q
k
nSl(wn) = limk→∞

∑N
n=1 q

k
nSl(ωn)

= limk→∞ S0 = S0 für alle l ≥ 0.

Bei dem dritten Gleichheitszeichen ist zu beachten, dass die Summe endlich ist

und somit der Limes aus der Summe rausgezogen werden darf. Und das fünfte

Gleichheitszeichen folgt aus der Martingaleigenschaft von (St)t≥0 bezüglich equi-

valenter Martingalmaße.

Also ist Q ∈ P und somit ist P eine abgeschlossene Teilmenge von einer kom-

pakten Menge. Also ist P selbst kompakt.

�

Sei nun Q ∈ P . Dann existiert (µ1, . . . , µM) ∈ RM
+ mit

∑M
i=1 µi = 1 und

Q =
∑M

i=1 µiQ
i. Also ist

C(x) = {XT ∈ L0(Ω,F , P )| EQmXT ≤ x für alle m = 1, . . . ,M}.

Somit ist das Maximierungsproblem (1) äquivalent zu dem statischen Maximie-
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rungsproblem

supXT∈C(x) EPU(XT ) mit M Nebenbedingungen

EQmXT ≤ x für m = 1, . . . ,M .

Um dieses zu lösen wählt man nun den Lagrange-Ansatz für mehrere Nebenbe-

dingungen. Die Lagrange-Funktion lautet:

L(ξ1, . . . , ξN , η1, . . . , ηM) =
N∑
n=1

pnU(ξn)−
M∑
m=1

ηm

(
N∑
n=1

qmn ξn − x

)

=
N∑
n=1

pn

(
U(ξn)−

M∑
m=1

ηmq
m
n

pn
ξn

)
+

M∑
m=1

ηmx,

für (ξ1, . . . , ξN) ∈ {U > −∞}N und (η1, . . . , ηM) ∈ RM
+ .

Setzt man jetzt y = η1 + · · · + ηM und µm = ηm
y

für 1 ≤ m ≤ M , dann ist

y ≥ 0, Q :=
∑M

m=1 µmQ
m ∈ P und

L(ξ1, . . . , ξN , η1, . . . , ηM) = L(ξ1, . . . , ξN , y, Q)

=
N∑
n=1

pnU(ξn)− y ·
M∑
m=1

µm

(
N∑
n=1

qmn ξn − x

)
= EPU(XT )− y (EQ(XT − x))

=
N∑
n=1

pn

(
U(ξn)− yqn

pn
ξn

)
+ yx, (15)

für (ξ1, . . . , ξN) ∈ {U > −∞}N , y > 0 und Q = (q1, . . . , qN) ∈ P . Also ist

die Lagrange-Funktion im unvollständigen Finanzmarktmodell zusätzlich von ei-

nem Martingalmaß Q abhängig, ansonsten entspricht die Formulierung (15) der

Formulierung (4) im vollständigen Modell.

Man definiert nun:

Ψ(y,Q) = supξ1,...,ξN L(ξ1, . . . , ξN , y, Q).

Sei nun V die dual konjugierte Funktion von U , dann erhält man analog zum

vollständigen Fall
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Ψ(y,Q) =
∑N

n=1 pnV
(
y qn
pn

)
+ yx für y > 0 und Q ∈ P .

Die Minimierung von Ψ geschieht nun in zwei Schritten. Für ein festes y > 0

minimiert man zunächst Ψ in Q. Für ein festes y > 0 ist Ψ(y,Q) stetig in Q,

da V stetig ist. Da P kompakt und V strikt konvex ist, existiert ein eindeutiger

Minimierer Q̂(y) = (q̂1, . . . , q̂N) von Ψ. Es gilt nun folgende Bemerkung für Q̂(y).

Bemerkung 3.3 Q̂(y) ist ein äquivalentes Martingalmaß, d.h. Q̂(y) ∈ P̃ .

Beweis: Sei Q̂(y) ∈ P der Minimierer von Ψ(y,Q) für ein festes y > 0, also gilt

∂QΨ(y,Q(y))|(y,Q̂(y)) = 0.

Angenommen Q̂(y) liegt nicht in P̃ . Dann existiert ein n0 ∈ {1, . . . , N} mit

q̂n0 = 0. Es gelte o.E.d.A n0 = 1 und q̂n > 0 für n ∈ {2, . . . , N}.

Dann gilt:

∂QΨ(y,Q(y))|(y,Q̂(y)) =
N∑
n=1

yV ′
(
y
q̂n
pn

)
= yV ′

(
y
q̂1
p1

)
+

N∑
n=2

yV ′
(
y
q̂n
pn

)

= yV ′(0) +
N∑
n=2

yV ′
(
y
q̂n
pn

)
.

Es gilt aber V ′(0) = −∞ und yV ′
(
y q̂n
pn

)
<∞ für n ∈ {2, . . . , N}.

Also ist
∑N

n=2 yV
′
(
y q̂n
pn

)
<∞ und somit ∂QΨ(y,Q(y))|(y,Q̂(y)) 6= 0.

Widerspruch zur Voraussetzung.

�

Sei die Funktion v definiert durch

v := inf
Q∈P

N∑
n=1

pnV

(
y
qn
pn

)
=

N∑
n=1

pnV

(
y
q̂n
pn

)
.

Nun kann man analog zum vollständigen Fall zeigen, dass

Ψ(y) = infQ∈P Ψ(y,Q) =
∑N

n=1 pnV
(
y q̂n
pn

)
+ yx

einen eindeutigen Minimierer ŷ(x), definiert durch v′(ŷ(x)) = −x, besitzt.

Für Q̂(y) und ŷ(x) kann man dann zeigen, dass ein eindeutiger Maximierer
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(ξ̂1, . . . , ξ̂N) von der Funktion (ξ1, . . . , ξN) → L(ξ1, . . . , ξN , ŷ(x), Q̂(y)) existiert

und es ξ̂n = −V ′
(
ŷ(x) q̂n

pn

)
gilt.

Somit gilt ∇L(ξ̂1, . . . , ξ̂N , ŷ(x), Q̂(y)) = 0.

Daraus kann man folgern, dass v die dual konjugierte Funktion von u ist und

somit u die Inada Bedingung erfüllt.

Folgender Satz dient als Zusammenfassung der Erkenntnisse über das Maximie-

rungsproblem im unvollständigen Finanzmarktmodell.

Satz 3.4 Gegeben sei ein diskretes, arbitragefreies und unvollständiges Finanz-

marktmodell mit einem abdiskontierten Preisprozess (St)0≤t≤T auf einem end-

lichen Wahrscheinlichkeitsraum (Ω,F , P ) mit einer Filtration (Ft)0≤t≤T , wobei

(St)0≤t≤T adaptiert bezüglich (Ft)0≤t≤T ist. Sei U eine Nutzenfunktion und erfülle

die Inada Bedingung. Ferner sei P die Menge der Martingalmaße und P̃ ⊂ P die

Menge der äquivalenten Martingalmaße, wegen der Arbitragefreiheit gilt P̃ 6= ∅.

Seien u(x) und v(y) definiert durch

u(x) = sup
XT∈C(x)

EPU(XT (x)), x ∈ {U > −∞}, (16)

v(y) = inf
Q∈P

EPV
(
y
dQ

dP

)
, y > 0. (17)

Dann gilt:

1. Die Funktion v ist die dual konjugierte Funktion von u, und u erfüllt die

Inada Bedingung.

2. Die Optimierer X̂T (x) und Q̂(y) von (16) und (17) existieren und sind

eindeutig. Es gilt Q̂(y) ∈ P̃ und

X̂T (x) = −V ′
(
y
dQ̂(y)

dP

)
beziehungsweise y

dQ̂(y)

dP
= U ′(X̂T (x)),
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wobei x ∈ {U > −∞}, y > 0 und

y = u′(x) bzw. x = −v′(y).

3. Für u′ und v′ gilt:

u′(x) = EP (U ′(X̂T (x))), v′(y) = EQ̂(y)

(
V ′

(
y
dQ̂(y)

dP

))

xu′(x) = EP (X̂T (x)U ′(X̂T (x))), yv′(y) = EP

(
y
dQ̂(y)

dP
V ′

(
y
dQ̂(y)

dP

))
.

Dieser Satz stellt eine Methode zur Lösung des statischen Maximierungspro-

blems in einem unvollständigen Finanzmarktmodell dar. Man geht zunächst wie

in dem vollständigen Fall vor. Wählt man eine Nutzenfunktion U , so kann man

die dual Konjugierte V berechnen.

Zur Bestimmung der Funktion v muss man aber in diesem Fall zuerst das Mi-

nimierungsproblem (17) lösen. Danach kann man wie im vollständigen Finanz-

marktmodell fortfahren und die optimale Auszahlung X̂T (x) bestimmen. Auf-

grund der Unvollständigkeit des Modells entspricht der Superhedge von X̂T (x)

der optimalen Handelsstrategie.

Als Anwendungsbeispiel zur Bestimmung des maximalen erwarteten Nutzens

u(x) in einem unvollständigen Finanzmarktmodell betrachtet man zunächst das

Einperioden Trinomialmodell.

3.2 Anwendung in einem Einperioden Trinomialmodell

Man betrachtet nun ein arbitragefreies Einperioden Modell mit einem Ergebnis-

raum Ω = {ω1, ω2, ω3}.

Das heißt der Aktienkurs S1 kann nach dem Ablauf der Periode drei mögliche
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Werte annehmen. Sei S0 = 1 der Anfangsaktienpreis, dann ist

S1 =


1 + u falls ω1 eintritt,

1 +m falls ω2 eintritt,

1 + d falls ω3 eintritt,

mit 1 + u > 1 + m > 1 + d > 0 eine Zufallsvariable, die den Aktienkurs am

Ende der Periode beschreibt. Außerdem setzt man wieder u ≥ −d um eine Long-

Position in der Aktie zu erhalten. Man nehme weiter an, dass der Zinssatz r der

festverzinslichen Anleihe gleich 0 ist.

Das Wahrscheinlichkeitsmaß P ist definiert durch:

P ({ω1}) = p1, P ({ω2}) = p2 und P ({ω3}) = p3.

Nun betrachtet man wieder die Nutzenfunktionen U(x) = ln(x) und U(x) = xα

α

für α ∈ (0, 1). Mithilfe des Satzes 3.4 kann man nun den optimalen erwarteten

Nutzen u(x), sowie die optimale Auszahlung X̂1(x) in Abhängigkeit von dem

Anfangskapital x ausrechnen. Da das Modell nicht vollständig ist, ist diese Aus-

zahlung nicht unbedingt hedgebar. In solchen Fällen ist es aber möglich ein Su-

perhedge zu konstruieren.

3.2.1 Beispiel 1

Sei also U(x) = ln(x) die Nutzenfunktion mit der dual konjugierten Funktion

V (y) = − ln(y)− 1.

Das Ziel ist es nun den optimalen erwarteten Nutzen und die optimale Auszah-

lung in Abhängigkeit von dem Anfangskapital und den Parametern des Modells

numerisch zu bestimmen.

Im ersten Schritt ist der Optimierer Q̂ = (q̂1, q̂2, q̂3) ∈ P̃ von (17) zu bestim-
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men, d.h es ist das Minimierungsproblem

inf
Q∈P

EPV
(
y
dQ

dP

)
mit den Nebenbedingungen

q1 + q2 + q3 = 1 und EQS1 = S0 zu lösen.

Unter der Berücksichtigung der ersten Nebenbedingung kann man die zweite Be-

dingung umformulieren, denn es gilt:

EQS1 = (1 + u)q1 + (1 +m)q2 + (1 + d)q3 = S0 = 1

⇔ uq1 +mq2 + dq3 = 0.

Nun kann man wieder den Lagrange-Ansatz wählen, um dieses Minimierungspro-

blem mit zwei Nebenbedingungen zu lösen, die dazugehörige Lagrange-Funktion

ist

L(q1, q2, q3, λ1, λ2) =EPV
(
y
dQ

dP

)
− λ1(q1 + q2 + q3 − 1)− λ2(uq1 +mq2 + dq3)

=p1(− ln

(
y
q1
p1

)
− 1) + p2(− ln

(
y
q2
p2

)
− 1) + p3(− ln

(
y
q3
p3

)
− 1)

− λ1(q1 + q2 + q3 − 1)− λ2(uq1 +mq2 + dq3).

Für den Optimierer (q̂1, q̂2, q̂3, λ̂1, λ̂2) muss nun ∇L(q̂1, q̂2, q̂3, λ̂1, λ̂2) = 0 gelten.

Somit erhält man ein Gleichungssystem aus fünf Gleichungen und Unbekannten:

∂q1L(q1, q2, q3, λ1, λ2) = −p1
q1
− λ1 − λ2u = 0

∂q2L(q1, q2, q3, λ1, λ2) = −p2
q2
− λ1 − λ2m = 0

∂q3L(q1, q2, q3, λ1, λ2) = −p3
q3
− λ1 − λ2d = 0
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∂λ1L(q1, q2, q3, λ1, λ2) = −(q1 + q2 + q3 − 1) = 0

∂λ2L(q1, q2, q3, λ1, λ2) = −uq1 −mq2 − dq3 = 0

Man erkennt, dass für diese Nutzenfunktion der Optimierer Q̂ von y unabhängig

ist.

Nun kann man mit dem Newton-Verfahren die Nullstelle von ∇L numerisch be-

stimmen. Hierfür bestimmt man die Hesse-Matrix HessL von L:

HessL(q1, q2, q3, λ1, λ2) =



p1
q21

0 0 −1 −u

0 p2
q22

0 −1 −m

0 0 p3
q23
−1 −d

−1 −1 −1 0 0

−u −m −d 0 0


Wählt man nun die Startwerte z0 = (q1, q2, q3, λ1, λ2), so kann man sich iterativ

durch zn = zn−1 −HessL(zn−1)
−1 · ∇L(zn−1) einer Nullstelle von ∇L nähern.

Hierbei sind die Startwerte so geschickt zu wählen, dass zn gegen die Nullstelle

mit 0 < qi < 1 für i ∈ {1, 2, 3} konvergiert. Wie die oberen Überlegungen gezeigt

haben ist der Optimierer Q̂ eindeutig bestimmt, d.h. es existiert genau eine Null-

stelle von ∇L, die diese Eigenschaft erfüllt.

Dann kann man die Funktion v bestimmen

v(y) = EPV

(
y
dQ̂

dP

)
= −

3∑
i=1

pi ln

(
y
q̂i
pi

)
− 1.

Nun kann man die Funktion für den optimalen erwarteten Nutzen in Abhängigkeit

von dem Anfangskapital bestimmen, es gilt: u(x) = infy≥0(v(y) + yx) und

(v(y) + yx)′ = −
3∑
i=1

pi
y

+ x = −1

y
+ x = 0 ⇔ y =

1

x
.
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Also ist u(x) = v
(
1
x

)
+ 1 = −

∑3
i=1 pi ln

(
q̂i
pi·x

)
.

Weiter ist die optimale Auszahlung X̂1(x) in Abhängigkeit von x interessant.

Nach dem Satz 3.4 gilt

ŷ(x) = u′(x) =
3∑
i=1

pi
1

x
=

1

x
und

X̂1(x) = −V ′
(
ŷ(x)

dQ̂

dP

)
= x

dP

dQ̂
.

Das Programm 1 enthält die numerische Umsetzung des Newton-Verfahrens und

liefert die Ausgabe von dem optimalen äquivalenten Martingalmaß Q̂ und erwar-

teten Nutzen u(x), sowie die optimale Auszahlung X̂1(x) in Abhängigkeit von

dem Anfangskapital x und den Parametern des Trinomial-Modells.

3.2.2 Beispiel 2

Betrachtet man nun wieder ein Einperioden Trinomialmodell mit der Nutzenfunk-

tion U(x) = xα

α
für α ∈ (0, 1), so kann man anolog wie im Beispiel 1 vorgehen.

Zuerst ist also EPV (y dQ
dP

) unter allen Martingalmaßen zu minimieren. Es gilt:

inf
Q∈P

EPV (y
dQ

dP
) = inf

Q∈P

3∑
i=1

1− α
α
· pi
(
y
qi
pi

) α
α−1

= V (y) · inf
Q∈P

3∑
i=1

pi

(
qi
pi

) α
α−1

.

Das heißt der Optimierer Q̂ ist von y unabhängig und man muss nun das Mini-

mierungsproblem

inf
Q∈P

3∑
i=1

pi

(
qi
pi

) α
α−1

mit den Nebenbedingungen

q1 + q2 + q3 = 1 und uq1 +mq2 + dq3 = 0 lösen.
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Die dazugehörige Lagrange-Funktion ist

L(q1, q2, q3, λ1, λ2) =
3∑
i=1

pi

(
qi
pi

) α
α−1

− λ1(q1 + q2 + q3 − 1)− λ2(uq1 +mq2 + dq3)

Also ist

∇L(q1, q2, q3, λ1, λ2) =



α
α−1

(
q1
p1

) 1
α−1 − λ1 − uλ2

α
α−1

(
q2
p2

) 1
α−1 − λ1 −mλ2

α
α−1

(
q3
p3

) 1
α−1 − λ1 − dλ2

−(q1 + q2 + q3 − 1)

−(uq1 +mq2 + dq3)


und

HessL(q1, q2, q3, λ1, λ2) =



α
(α−1)2

(
q2−α1

p1

) 1
α−1

0 0 −1 −u

0 α
(α−1)2

(
q2−α2

p2

) 1
α−1

0 −1 −m

0 0 α
(α−1)2

(
q2−α3

p3

) 1
α−1 −1 −d

−1 −1 −1 0 0

−u −m −d 0 0


.

Nun kann man wieder für geschickt gewählte Startwerte den Optimierer Q̂ mit

dem Newton-Verfahren bestimmen. Dann ist

v(y) =
3∑
i=1

1− α
α
· pi
(
y
q̂i
pi

) α
α−1

und

v′(y) = −y
1

α−1

3∑
i=1

pi

(
q̂i
pi

) α
α−1

= −y
1

α−1 · c mit c =
3∑
i=1

pi

(
q̂i
pi

) α
α−1

.
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Also gilt: v′(y) + x = 0 ⇔ y =
(
x
c

)α−1
.

Und somit u(x) = v(y) + x · y.

Das Programm 2 enthält die numerische Umsetzung und liefert die Ausgabe von

dem optimalen äquivalenten Martingalmaß Q̂ und optimalen erwarteten Nut-

zen. Hierbei ist zu beachten, dass die Startwerte mit dem Parameter α zusam-

menhängen und somit für bestimmte α ∈ (0, 1) neu gewählt werden müssen.

3.2.3 Beispiel 3

Der folgende Spezialfall des Einperioden Trinomialmodells mit m = 0 ist auch

interessant zu untersuchen, da man hier, statt Satz 3.4 anzuwenden, die Erkenn-

tisse aus dem CRR-Modell nutzen kann und sogar die optimale Handelsstrategie

direkt angeben kann.

Man nimmt also an, dass der Aktienkurs folgende Werte nach dem Ablauf der

Periode annehmen kann:

S0 = 1, S1 =


1 + u , falls ω1 eintritt,

1 , falls ω2 eintritt,

1 + d , falls ω3 eintritt,

und dass der Zinssatz r = 0 ist. Das Wahrscheinlichkeitsmaß P ist besimmt

durch:

P ({ω2}) = p2 für ein p2 ∈ (0, 1) und P ({ω1}) = (1−p2)p1, P ({ω3}) = (1−p2)p3
für p1, p3 ∈ (0, 1) mit p1 + p3 = 1.

Wegen der Arbitragefreiheit gilt weiter 1 +u > 1 > 1 +d > 0. Ferner nimmt man

wieder an, dass u ≥ −d, um eine Long-Position in der Aktie zu erhalten.

Nun berechnet man die optimale Handelsstrategie mithilfe des Einperioden

CRR-Modells. Falls nötig, kann man dann auch den optimalen äquivalenten Mar-

tingalmaß bestimmen.

Das Ziel ist es ein ĥtri ∈ R zu bestimmen, sodass
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EPU(x+ ĥtri∆S1) = suph∈R EPU(x+ h∆S1) =: utri(x). Dann gilt:

utri(x) = sup
h∈R

(p2U(x− h∆S1(ω2)) + (1− p2)p1U(x− h∆S1(ω1)) + (1− p2)p3U(x− h∆S1(ω3)))

= p2U(x) + (1− p2) sup
h∈R

(p1U(x+ hu) + p3U(x+ hd))

= p2U(x) + (1− p2)ubi(x) = p2U(x) + (1− p2)
(
p1U(x+ ĥu) + p3U(x+ ĥd)

)
= p2U(x) + (1− p2)cUU(x) =: ctriU U(x) mit ctriU = p2 + (1− p2)cU .

Bei dem zweiten Gleichheitszeichen ist zu beachten, dass ∆S1(ω2) = 0 ist. Und bei

dem dritten, dass p1U(x+hu)+p3U(x+hd) dem EP (U(x+∆S1)) im Einperioden

CRR-Modell entspricht.

Hieraus folgt, dass der Optimierer ĥtri für dieses Einperioden Trinomialmodell

mit dem ĥ aus dem Einperioden CRR-Modell überbestimmt. Das heißt

ĥtri = x(c−1V ( q
p1

)β−1 − 1)u−1) für U(x) = xα

α
. Dabei ist q durch das eindeutig

bestimmte äquivalente Martingalmaß des Einperioden CRR-Models gegeben.

Nun kann man Satz 3.4 anwenden um Q̂ zu berechnen. Es gilt:

ŷ(x) =
(
utri
)′

(x) = ctriU U
′(x)

dQ̂

dP
(ω2) =

U ′(X̂1(x)(ω2))

ŷ(x)
=
U ′(x)

ŷ(x)
=

1

ctriU
.

⇒ Q̂(ω2) =
dQ̂

dP
(ω2)P ({ω2}) =

p2
ctriU

.

Q̂(ω1) und Q̂(ω3) erhält man durch Lösen des folgenden linearen Gleichungssys-

tems: Q̂(ω1) + Q̂(ω2) + Q̂(ω3) = 1

EQ̂(S1 − S0) = 0.

⇒ Q̂(ω1) =

(
p2
ctriU
− 1
)
d

u− d
und Q̂(ω3) =

(
1− p2

ctriU

)
u

u− d
.

Somit ist auf diese Weise die optimale Handelsstrategie und der dazugehörige
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optimale äquivalente Martingalmaß für dieses Einperioden Trinomialmodell ein-

deutig bestimmt.

3.3 Anwendung in einem N-Perioden Trinomialmodell

Man möchte nun das Trinomialmodell auf N Perioden ausweiten. Dafür betrach-

tet man eine Familie von identisch verteilten , stochastisch unabhängigen Zufalls-

variablen (ξt)
N
t=1 auf dem Wahrscheinlichkeitsraum (Ω,F , P ), sodass P (ξt = 1) =

p1, P (ξt = 0) = p2 und P (ξt = −1) = p3 für 1 ≤ t ≤ N . Ferner sei (Ft)Nt=1 die

Filtration, der von (ξn)tn=1 erzeugten σ-Algebren.

Sei S0 = 1 der Anfangsaktienkurs. Dann ist der Preis der Aktie zum Zeitpunkt

t ∈ {1, . . . , N} rekursiv definiert durch:

St =


St−1(1 + u), falls ξt = 1

St−1(1 +m), falls ξt = 0

St−1(1 + d), falls ξt = −1.

mit 1 + u > 1 +m > 1 + d > 0.

Setzt man jetzt

Lt =
t∑
i=1

1{ξi=1} und Mt =
t∑
i=1

1{ξi=0},

dann gilt St = S0(1 + u)Lt(1 +m)Mt(1 + d)t−Lt−Mt für 1 ≤ t ≤ N.

Außerdem gilt

P (Lt = n, Mt = m) =


(
t
n

)(
t−n
m

)
pn1 · pm2 · pt−n−m3 , falls n+m ≤ t

0, sonst,

P (Lt = n) =
t−n∑
i=0

(
t

n

)(
t− n
i

)
pn1 · pi2 · pt−n−i3 ,
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P (Mt = n) =
t−n∑
i=0

(
t

n

)(
t− n
i

)
pi1 · pn2 · pt−n−i3 ,

für 1 ≤ t ≤ N und 0 ≤ n ≤ t.

Ferner gilt für ein Martingalmaß Q

dQ

dP
|FN=

(
q1
p1

)LN (q2
p2

)MN
(
q3
p3

)N−LN−MN

.

3.3.1 Beispiel 1

Man nehme U(x) = ln(x) als Nutzenfunktion. Das Ziel ist den optimalen er-

warteten Nutzen u(x) in Abhängigkeit von einem Startkapital x zu bestimmen.

Nun wendet man wieder Satz 3.4 an und verwendet den Lagrange-Ansatz zur

Bestimmung des Optimierers Q̂. Es gilt

L(q1, q2, q3, λ1, λ2) = EPV
(
y
dQ

dP

)
− λ1(q1 + q2 + q3 − 1)− λ2(uq1 +mq2 + dq3)

mit

EPV
(
y
dQ

dP

)
=

N∑
n=0

N−n∑
m=0

P (LN = n, MN = m) · V

(
y

(
q1
p1

)n(
q2
p2

)m(
q3
p3

)N−n−m)

=
N∑
n=0

N−n∑
m=0

(
N

n

)(
N − n
m

)
pn1 · pm2 · pN−n−m3 ·

(
− ln

(
y

(
q1
p1

)n(
q2
p2

)m(
q3
p3

)N−n−m)
− 1

)
.

Ferner gilt:

∂q1EPV
(
y
dQ

dP

)
= −

N∑
n=0

N−n∑
m=0

(
N

n

)(
N − n
m

)
pn1 · pm2 · pN−n−m3 · n

q1

= − 1

q1

N∑
n=0

n
N−n∑
m=0

(
N

n

)(
N − n
m

)
pn1 · pm2 · pN−n−m3

= − 1

q1

N∑
n=0

nP (LN = n) = − 1

q1
· EPLN = −N · p1

q1
,
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∂q2EPV
(
y
dQ

dP

)
= −

N∑
n=0

N−n∑
m=0

(
N

n

)(
N − n
m

)
pn1 · pm2 · pN−n−m3 · m

q2

= −
N∑
m=0

N−m∑
n=0

(
N

n

)(
N − n
m

)
pn1 · pm2 · pN−n−m3 · m

q2

= − 1

q2
· EPMN = −N · p2

q2
,

∂q3EPV
(
y
dQ

dP

)
= −

N∑
n=0

N−n∑
m=0

(
N

n

)(
N − n
m

)
pn1 · pm2 · pN−n−m3 · N − n−m

q3

= −
N∑
n=0

N−n∑
m=0

P (LN = n, MN = m) · N − n−m
q3

= −
N∑
k=0

N−k∑
n=0

P (LN = n, MN = N − k − n) · k
q3

= −
N∑
k=0

P (N − LN −MN = k) · k
q3

= − 1

q3
· EP (N − LN −MN) = −N · p3

q3
.

Es gilt also:

∇L(q1, q2, q3, λ1, λ2) =



−N ·p1
q1
− λ1 − uλ2

−N ·p2
q2
− λ1 −mλ2

−N ·p3
q3
− λ1 − dλ2

−(q1 + q2 + q3 − 1)

−(uq1 +mq2 + dq3)


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Um die Nullstellen von ∇L zu bestimmen verwendet man erneut das Newton-

Verfahren. Die Hesse-Matrix von L ist

HessL(q1, q2, q3, λ1, λ2) =



N ·p1
q21

0 0 −1 −u

0 N ·p2
q22

0 −1 −m

0 0 N ·p3
q23

−1 −d

−1 −1 −1 0 0

−u −m −d 0 0


Wählt man nun ein Startwert z0 = (q1, q2, q3, λ1, λ2), so nähert sich

zn = zn−1 − Hess−1L (zn−1) · ∇L(zn−1) einer Nullstelle von ∇L. Wieder sind die

Startwerte so zu wählen, dass die Nullstelle (q̂1, q̂2, q̂3, λ̂1, λ̂2)

0 < q̂i < 1 für i ∈ {1, 2, 3} erfüllt. Dann ist der optimale äquivalente Martingal-

maß Q̂ gegeben durch (q̂1, q̂2, q̂3).

Nun ist die Funktion v bestimmt durch

v(y) =
N∑
n=0

N−n∑
m=0

P (LN = n, MN = m) · V

(
y

(
q̂1
p1

)n(
q̂2
p2

)m(
q̂3
p3

)N−n−m)

Also gilt:

v′(y) + x = −
N∑
n=0

N−n∑
m=0

P (LN = n, MN = m) · 1

y
+ x = −1

y
+ x = 0 ⇔ y =

1

x
.

Daraus folgt

u(x) = inf
y≥0

(v(y) + yx) = v

(
1

x

)
+ 1

=
N∑
n=0

N−n∑
m=0

P (LN = n, MN = m) ·

(
− ln

(
1

x

(
q̂1
p1

)n(
q̂2
p2

)m(
q̂3
p3

)N−n−m)
− 1

)
+ 1

= ln(x)−
N∑
n=0

N−n∑
m=0

P (LN = n, MN = m) · ln

((
q̂1
p1

)n(
q̂2
p2

)m(
q̂3
p3

)N−n−m)
.
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Das Programm 3 rechnet Q̂ sowie u(x) in Abhängigkeit von den Parametern des

Modells und des Anfangskapitals x aus.

3.3.2 Beispiel 2

Sei nun U(x) = 1
α
· xα für α ∈ (0, 1) die Nutzenfunktion. V (y) = 1−α

α
· y

α
α−1 ist

die dual konjugierte Funktion von U , somit gilt:

v(y) = inf
Q∈P

EPV
(
y
dQ

dP

)

=
1− α
α
· y

α
α−1 inf

Q∈P

N∑
n=0

N−n∑
m=0

P (LN = n, MN = m) ·

((
q1
p1

)n(
q2
p2

)m(
q3
p3

)N−n−m) α
α−1

=:
1− α
α
· y

α
α−1 inf

Q∈P
f(q1, q2, q3) mit

f(q1, q2, q3) =
∑N

n=0

∑N−n
m=0 P (LN = n, MN = m)·

((
q1
p1

)n (
q2
p2

)m (
q3
p3

)N−n−m) α
α−1

.

Somit ist das Minimierungsproblem von y unabhängig. Zur Lösung des Minimie-

rungsproblems infQ∈P f(q1, q2, q3) wählt man erneut den Lagrange-Ansatz

L(q1, q2, q3, λ1, λ2) = f(q1, q2, q3)− λ1(q1 + q2 + q3 − 1)− λ2(uq1 +mq2 + dq3).

Mithilfe des Newton-Verfahrens bestimmt man die Nullstellen von ∇L. Das heißt

zuerst sind die partiellen Ableitungen von L bis zur zweiten Ordnung zu berech-

nen.

∂q1L(q1, q2, q3, λ1, λ2) =
N∑
n=0

N−n∑
m=0

P (LN = n, MN = m) · nα

α− 1
· q

nα
α−1
−1

1

·

((
1

p1

)n(
q2
p2

)m(
q3
p3

)N−n−m) α
α−1

− λ1 − uλ2

=: c1 − λ1 − uλ2,

∂q2L(q1, q2, q3, λ1, λ2) = c2 − λ1 −mλ2 und

∂q3L(q1, q2, q3, λ1, λ2) = c3 − λ1 − dλ2 mit
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c2 =
N∑
n=0

N−n∑
m=0

P (LN = n, MN = m) · mα
α− 1

· q
mα
α−1
−1

2 ·

((
q1
p1

)n(
1

p2

)m(
q3
p3

)N−n−m) α
α−1

,

c3 =
N∑
n=0

N−n∑
m=0

P (LN = n, MN = m) · (N − n−m)α

α− 1
· q

(N−n−m)α
α−1

−1
3

·

((
q1
p1

)n(
q2
p2

)m(
1

p3

)N−n−m) α
α−1

.

Ferner gilt

c11 := ∂q1∂q1L(q1, q2, q3, λ1, λ2) =
N∑
n=0

N−n∑
m=0

P (LN = n, MN = m)

· nα

α− 1

(
nα

α− 1
− 1

)
· q

nα
α−1
−2

1 ·

((
1

p1

)n(
q2
p2

)m(
q3
p3

)N−n−m) α
α−1

,

c22 := ∂q2∂q2L(q1, q2, q3, λ1, λ2) =
N∑
n=0

N−n∑
m=0

P (LN = n, MN = m)

· mα
α− 1

(
mα

α− 1
− 1

)
· q

mα
α−1
−2

2 ·

((
q1
p1

)n(
1

p2

)m(
q3
p3

)N−n−m) α
α−1

,

c33 := ∂q3∂q3L(q1, q2, q3, λ1, λ2)

=
N∑
n=0

N−n∑
m=0

P (LN = n, MN = m) · (N − n−m)α

α− 1

(
(N − n−m)α

α− 1
− 1

)

· q
(N−n−m)α

α−1
−2

3 ·

((
q1
p1

)n(
q2
p2

)m(
1

p3

)N−n−m) α
α−1

,

c12 := ∂q2∂q1L(q1, q2, q3, λ1, λ2) = ∂q1∂q2L(q1, q2, q3, λ1, λ2)

=
N∑
n=0

N−n∑
m=0

P (LN = n, MN = m) · nα

α− 1
· mα
α− 1

· q
nα
α−1
−1

1 q
mα
α−1
−1

2

·

((
1

p1

)n(
1

p2

)m(
q3
p3

)N−n−m) α
α−1

,
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c13 := ∂q3∂q1L(q1, q2, q3, λ1, λ2) = ∂q1∂q3L(q1, q2, q3, λ1, λ2)

=
N∑
n=0

N−n∑
m=0

P (LN = n, MN = m) · nα

α− 1
· (N − n−m)α

α− 1
· q

nα
α−1
−1

1

· q
(N−n−m)α

α−1
−1

3 ·

((
1

p1

)n(
q2
p2

)m(
1

p3

)N−n−m) α
α−1

,

c23 := ∂q3∂q2L(q1, q2, q3, λ1, λ2) = ∂q2∂q3L(q1, q2, q3, λ1, λ2)

=
N∑
n=0

N−n∑
m=0

P (LN = n, MN = m) · mα
α− 1

· (N − n−m)α

α− 1
· q

mα
α−1
−1

2

· q
(N−n−m)α

α−1
−1

3 ·

((
q1
p1

)n(
1

p2

)m(
1

p3

)N−n−m) α
α−1

.

So erhält man ∇L(q1, q2, q3, λ1, λ2) und HessL(q1, q2, q3, λ1, λ2)

∇L(q1, q2, q3, λ1, λ2) =



c1 − λ1 − uλ2
c2 − λ1 −mλ2
c3 − λ1 − dλ2

−(q1 + q2 + q3 − 1)

−(uq1 +mq2 + dq3)


,

HessL(q1, q2, q3, λ1, λ2 =



c11 c12 c13 −1 −u

c12 c22 c23 −1 −m

c13 c23 c33 −1 −d

−1 −1 −1 0 0

−u −m −d 0 0


Das Newton-Verfahren liefert dann für geeignete Startwerte das optimale äqui-

valenten Martingalmaß Q̂.
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Weiter folgt aus

v(y) = EPV

(
y
dQ̂

dP

)

=
1− α
α
· y

α
α−1

N∑
n=0

N−n∑
m=0

P (LN = n, MN = m) ·

((
q̂1
p1

)n(
q̂2
p2

)m(
q̂3
p3

)N−n−m) α
α−1

=:
1− α
α
· y

α
α−1 · c, dass v′(y) = −y

1
α−1 · c ist.

Somit erhält man

v′(ŷ(x)) + x = 0 ⇔ ŷ(x) =
(x
c

)α−1
und

u(x) =v(ŷ(x)) + ŷ(x)x.

Das Programm 4 liefert die entsprechenden Ausgaben. Hier sind die Startwerte

λ1 und λ2 für das Newton-Verfahren von dem Parameter α und der Anzahl der

Perioden abhängig.

3.3.3 Beispiel 3

Man betrachte nun wieder den Spezialfall des Trinomiallmodells mit m = 0 für

die Nutzenfunktion U(x) = xα

α
mit α ∈ (0, 1).

Der Preis der Aktie zum Zeitpunkt t ∈ {1, . . . , N} ist gegeben durch:

St =


St−1(1 + ũ), falls ξt = 1

St−1, falls ξt = 0

St−1(1 + d̃), falls ξt = −1.
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Das Ziel ist es das folgende Maximierungsproblem zu lösen

u(x) := sup

{
EU

(
x+

N∑
n=1

hn∆Sn

)
| (hn)Nn=1 ∈ H

}

=: EU

(
x+

N∑
n=1

ĥn∆Sn

)
=: EU(X̂N(x)).

Man betrachtet wieder die bedingte Nutzenfunktionen

ut(x) = sup

{
E(U(x+

N∑
n=t+1

hn∆Sn)| Ft)

}
,

wobei jeweils unter (hn)Nn=t+1 maximiert wird.

Analog zum N-Perioden CRR-Modell kann man sich überlegen, dass uN−1(x) =

E(U(x + ĥtriN ∆S1)) ist, und somit dem Maximierungsproblem im Einperioden

Trinomialmodell entspricht.

Mit Rückwärtsinduktion sieht man dann, dass für alle t ∈ {1, . . . , N−1} uN−t(x)

dem Einperioden Maximierungsproblem entspricht. Ferner gilt dann

ut(x) = (ctriU )N−tU(x), also insbesondere u(x) = u0(x) = (ctriU )NU(x).

Außerdem ist ĥt = ĥtri

St−1
. Nach Kapitel 3.1 ist ĥtri = ĥ, also ist ĥtri = X̂t−1k̂

St−1
.
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5 Anhang

Der Anhang beinhaltet die MATLAB-Programme 1 bis 4, sowie die Funktion
binomial. Diese Funktion wird im Programm 3 und 4 verwendet und berech-
net den Binomialkoeffizienten. Die m-Files der Programme befinden sich auf der
beigefügten CD.

function [ x ] = binomial( n,k )

%Diese Funktion berechnet den Binomialkoeffizienten n über k.

x = 1;

for m = 1:k

x = x * (n+1-m) / m;

end

end

5.1 Programm 1

%Dieses Programm berechnet für ein Einperioden Trinomialmodell und die

%Nutzenfunktion U(x)=log(x) das optimale äquivalente Martingalmaß Q,

%den maximalen erwarteten Nutzen u(x), sowie die optimale Auszahlung X.

% Parameter des Einperioden Trinomialmodells:

u=0.5;

m=0.2;

d=-0.3;

p1=0.3; % W’keit, dass S1=1+u

p2=0.3; % W’keit, dass S1=1+m

p3=0.4; % W’keit, dass S1=1+d

x=10; % Anfangskapital

%Startwerte für das Newton-Verfahren:

q1=1/3;

q2=1/3;

q3=1/3;

y1=2;

y2=3;

z=[q1,q2,q3,y1,y2]’;

N=100; %Anzahl der Iterationen

for i=1:N

% f entspricht dem Gradienten von L.

f=[-p1/z(1)-z(4)-u*z(5),...

-p2/z(2)-z(4)-m*z(5),...
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-p3/z(3)-z(4)-d*z(5),...

-(z(1)+z(2)+z(3)-1),...

-(u*z(1)+m*z(2)+d*z(3))] ;

% df ist die Hesse-Matrix von L.

df=[p1/(z(1)^2), 0, 0, -1, -u;

0, p2/(z(2)^2), 0, -1, -d;

0, 0, p3/(z(3)^2), -1, -d,;

-1, -1, -1,0,0;

-u, -m, -d, 0,0];

% Der Iterationsschritt des Newton-Verfahrens

z=z-df\f’;

q1=z(1);

q2=z(2);

q3=z(3);

end

z

disp(’Das optimale äquivalente Martingalmaß Q ist gegeben durch:’)

q1=z(1)

q2=z(2)

q3=z(3)

disp(’Der optimale erwartete Nutzen ist:’)

u= -p1*log(q1/(p1*x))-p2*log(q2/(p2*x))-p3*log(q3/(p3*x))

disp(’Und die optimale Auszahlung nimmt folgende Werte an:’)

X=[x*p1/q1;x*p2/q2;x*p3/q3]

5.2 Programm 2

%Dieses Programm berechnet für ein Einperioden Trinomialmodell und die

%Nutzenfunktion U(x)=(x^a)/a das optimale äquivalente Maringalmaß Q und

%den maximalen erwarteten Nutzen u(x).

% Parameter des Einperioden Trinomialmodells:

u=0.5;

m=0.2;

d=-0.3; % u,m,d sind die möglichen Aktienkursänderungen

p1=0.3; % W’keit, dass S1=1+u

p2=0.3; % W’keit, dass S1=1+m

p3=0.4; % W’keit, dass S1=1+d

a=0.1;

x=100;

% Startwerte für das Newton-Verfahren
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q1=1/3;

q2=1/3;

q3=1/3;

y1=0;

y2=0;

z=[q1,q2,q3,y1,y2]’;

N=100; % Anzahl der Iterationen

for i=1:N

% f entspricht dem Gradienten von L

f=[(a/(a-1))*(z(1)/p1)^(1/(a-1))-z(4)-u*z(5),...

(a/(a-1))*(z(2)/p2)^(1/(a-1))-z(4)-m*z(5),...

(a/(a-1))*(z(3)/p3)^(1/(a-1))-z(4)-d*z(5),...

-(z(1)+z(2)+z(3)-1),...

-(u*z(1)+m*z(2)+d*z(3))] ;

% df entspricht der Hesse-Matrix von L

df=[(a/(a-1)^2)*((z(1)^(2-a))/p1)^(1/(a-1)), 0, 0, -1, -u;

0, (a/(a-1)^2)*((z(2)^(2-a))/p2)^(1/(a-1)), 0, -1, -d;

0, 0, (a/(a-1)^2)*((z(3)^(2-a))/p3)^(1/(a-1)), -1, -d,;

-1, -1, -1,0,0;

-u, -m, -d, 0,0];

% Der Iterationsschritt des Newton-Verfahrens

z=z-df\f’;

q1=z(1);

q2=z(2);

q3=z(3);

end

disp(’Das ausgezeichnete äquivalente Martingalmaß Q ist gegeben durch:’)

q1=z(1)

q2=z(2)

q3=z(3)

c=p1*(q1/p1)^(a/(a-1))+p2*(q2/p2)^(a/(a-1))+p3*(q3/p3)^(a/(a-1));

y=(x/c)^(a-1);

disp(’Der optimale erwartete Nutzen ist:’)

u=c*((1-a)/a)*y^(a/(a-1))+x*y

5.3 Programm 3

%Dieses Programm berechnet für ein N-Perioden Trinomialmodell und die

%Nutzenfunktion U(x)=log(x) das optimale äquivalente Martingalmaß
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%Q und den maximalen erwarteten Nutzen u(x).

% Parameter des N-Perioden Trinomialmodells:

N=100; %Anzahl der Perioden

u=0.5;

m=0.2;

d=-0.3;

p1=0.3; % W’keit, dass S1=1+u

p2=0.3; % W’keit, dass S1=1+m

p3=0.4; % W’keit, dass S1=1+d

x=100; % Anfangskapital

% Startwerte für das Newton-Verfahren:

q1=1/3;

q2=1/3;

q3=1/3;

y1=2;

y2=3;

z=[q1,q2,q3,y1,y2]’;

n=100; %Anzahl der Iterationen

for i=1:n

% f entspricht dem Gradienten von L

f=[-N*p1/z(1)-z(4)-u*z(5),...

-N*p2/z(2)-z(4)-m*z(5),...

-N*p3/z(3)-z(4)-d*z(5),...

-(z(1)+z(2)+z(3)-1),...

-(u*z(1)+m*z(2)+d*z(3))] ;

% df entspricht der Hesse-Matrix von L

df=[N*p1/(z(1)^2), 0, 0, -1, -u;

0, N*p2/(z(2)^2), 0, -1, -d;

0, 0, N*p3/(z(3)^2), -1, -d,;

-1, -1, -1,0,0

-u, -m, -d, 0,0];

% Der Iterationsschritt des Newton-Verfahrens:

z=z-df\f’;

q1=z(1);

q2=z(2);

q3=z(3);

end

disp(’Das optimale äquivalente Martingalmaß Q ist gegeben durch:’)

q1=z(1)
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q2=z(2)

q3=z(3)

% Berechnung des optimalen erwarteten Nutzens:

y=zeros(N+1,1);

for i=0:N

z=zeros(N-i+1,1);

for k=0:(N-i)

z(k+1)=binomial(N,i)*binomial(N-i,k)*p1^i*p2^k*p3^(N-i-k)...

*log((q1/p1)^i*(q2/p2)^k*(q3/p3)^(N-i-k));

end

y(i+1)=sum(z);

end

c=sum(y);

disp(’Der optimale erwartete Nutzen ist:’)

u=log(x)-c

5.4 Programm 4

%Dieses Programm berechnet für ein N-Perioden Trinomialmodell und

%Nutzenfunktion U(x)=(x^a)/a das optimale äquivalente Maringalmaß Q

%und den maximalen erwarteten Nutzen u(x).

% Parameter des N-Perioden Trinomialmodells:

u=0.5;

m=0.2;

d=-0.3;

p1=0.3; % W’keit, dass S1=1+u

p2=0.3; % W’keit, dass S1=1+m

p3=0.4; % W’keit, dass S1=1+d

a=0.5; % für a=0.001 setze y1=0, y2=0

x=10; % Startkapital

N=10; % Anzahl der Perioden

% Startwerte für das Newton-Verfahren

q1=1/3;

q2=1/3;

q3=1/3;

y1=-100;

y2=-100;

n=100; %Anzahl der Iterationen

z=[q1,q2,q3,y1,y2]’;
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% Berechnung des Gradienten

for i=1:n

y=zeros(N+1,1);

for j=0:N

w=zeros(N-j+1,1);

for k=0:(N-j)

w(k+1)=binomial(N,j)*binomial(N-j,k)*p1^j*p2^k*p3^(N-j-k)...

*j*z(1)^((j*a)/(a-1)-1)*((1/p1)^j*(z(2)/p2)^k...

*(z(3)/p3)^(N-j-k))^(a/(a-1));

end

y(j+1)=sum(w);

end

c1=(a/(a-1))*sum(y);

y=zeros(N+1,1);

for j=0:N

w=zeros(N-j+1,1);

for k=0:(N-j)

w(k+1)=k*z(2)^((k*a)/(a-1)-1)*binomial(N,j)...

*binomial(N-j,k)*p1^j*p2^k*p3^(N-j-k)...

*((z(1)/p1)^j*(1/p2)^k*(z(3)/p3)^(N-j-k))^(a/(a-1));

end

y(j+1)=sum(w);

end

c2=a/(a-1)*sum(y);

y=zeros(N+1,1);

for j=0:N

w=zeros(N-j+1,1);

for k=0:(N-j)

w(k+1)=(N-j-k)*z(3)^(((N-j-k)*a)/(a-1)-1)...

*binomial(N,j)*binomial(N-j,k)*p1^j*p2^k*p3^(N-j-k)...

*((z(1)/p1)^j*(z(2)/p2)^k*(1/p3)^(N-j-k))^(a/(a-1));

end

y(j+1)=sum(w);

end

c3=a/(a-1)*sum(y);

% f ist der Gradient von L

f=[c1-z(4)-u*z(5),...

(c2-z(4)-m*z(5)),...

(c3-z(4)-d*z(5)),...

-(z(1)+z(2)+z(3)-1),...
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-(u*z(1)+m*z(2)+d*z(3))] ;

% Berechnung der Hesse-Matrix

% c11

y=zeros(N+1,1);

for j=0:N

w=zeros(N-j+1,1);

for k=0:(N-j)

w(k+1)=binomial(N,j)*binomial(N-j,k)*p1^j*p2^k*p3^(N-j-k)...

*((1/p1)^j*(z(2)/p2)^k*(z(3)/p3)^(N-j-k))^(a/(a-1));

end

y(j+1)=((j*a)/(a-1)-1)*j*z(1)^((j*a)/(a-1)-2)*sum(w);

end

c11=a/(a-1)*sum(y);

% c22

y=zeros(N+1,1);

for j=0:N

w=zeros(N-j+1,1);

for k=0:(N-j)

w(k+1)=((k*a)/(a-1)-1)*k*z(2)^((k*a)/(a-1)-2)*binomial(N,j)...

*binomial(N-j,k)*p1^j*p2^k*p3^(N-j-k)...

*((z(1)/p1)^j*(1/p2)^k*(z(3)/p3)^(N-j-k))^(a/(a-1));

end

y(j+1)=sum(w);

end

c22=a/(a-1)*sum(y);

% c33

y=zeros(N+1,1);

for j=0:N

w=zeros(N-j+1,1);

for k=0:(N-j)

w(k+1)=(((N-j-k)*a)/(a-1)-1)*(N-j-k)*z(3)^(((N-j-k)*a)/(a-1)-2)...

*binomial(N,j)*binomial(N-j,k)*p1^j*p2^k*p3^(N-j-k)...

*((z(1)/p1)^j*(z(2)/p2)^k*(1/p3)^(N-j-k))^(a/(a-1));

end

y(j+1)=sum(w);

end

c33=a/(a-1)*sum(y);

% c12

y=zeros(N+1,1);
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for j=0:N

w=zeros(N-j+1,1);

for k=0:(N-j)

w(k+1)=j*z(1)^((j*a)/(a-1)-1)*k*z(2)^((k*a)/(a-1)-1)...

*binomial(N,j)*binomial(N-j,k)*p1^j*p2^k*p3^(N-j-k)...

*((1/p1)^j*(1/p2)^k*(z(3)/p3)^(N-j-k))^(a/(a-1));

end

y(j+1)=sum(w);

end

c12=((a/(a-1))^2)*sum(y);

% c23

y=zeros(N+1,1);

for j=0:N

w=zeros(N-j+1,1);

for k=0:(N-j)

w(k+1)=(N-j-k)*z(3)^(((N-j-k)*a)/(a-1)-1)*k*z(2)^((k*a)/(a-1)-1)...

*binomial(N,j)*binomial(N-j,k)*p1^j*p2^k*p3^(N-j-k)...

*((z(1)/p1)^j*(1/p2)^k*(1/p3)^(N-j-k))^(a/(a-1));

end

y(j+1)=sum(w);

end

c23=((a/(a-1))^2)*sum(y);

% c31

y=zeros(N+1,1);

for j=0:N

w=zeros(N-j+1,1);

for k=0:(N-j)

w(k+1)=j*z(1)^((j*a)/(a-1)-1)*(N-j-k)*z(3)^(((N-j-k)*a)/(a-1)-1)...

*binomial(N,j)*binomial(N-j,k)*p1^j*p2^k*p3^(N-j-k)...

*((1/p1)^j*(z(2)/p2)^k*(1/p3)^(N-j-k))^(a/(a-1));

end

y(j+1)=sum(w);

end

c31=((a/(a-1))^2)*sum(y);

% df ist die Hesse-Matrix von L

df=[c11, c12, c31, -1, -u;

c12, c22, c23, -1, -d;

c31, c23, c33, -1, -d,;

-1, -1, -1,0,0;

-u, -m, -d, 0,0];
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% Der Iterationsschritt des Newton-Verfahrens

z=z-df\f’;

q1=z(1);

q2=z(2);

q3=z(3);

end

disp(’Das optimale äquivalente Martingalmaß Q ist gegeben durch:’)

q1=z(1)

q2=z(2)

q3=z(3)

% Berechnung des optimalen erwarteten Nutzens:

y=zeros(N+1,1);

for j=0:N

w=zeros(N-j+1,1);

for k=0:(N-j)

w(k+1)=binomial(N,j)*binomial(N-j,k)*p1^j*p2^k*p3^(N-j-k)...

*((q1/p1)^j*(q2/p2)^k*(q3/p3)^(N-j-k))^(a/(a-1));

end

y(j+1)=sum(w);

end

c=sum(y);

y=(x/c)^(a-1);

disp(’Der optimale erwartete Nutzen ist:’)

u=c*((1-a)/a)*y^(a/(a-1))+x*y
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