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Abstract

We consider moments of the return times (or first hitting times) in a discrete time
discrete space Markov chain. It is classical that the finiteness of the first moment
of a return time of one state implies the finiteness of the first moment of the
first return time of any other state. We extend this statement to moments with
respect to a function f , where f satisfies a certain, best possible condition. This
generalizes results of K. L. Chung (1954) who considered the functions f(n) =
np and wondered “[...] what property of the power np lies behind this theorem
[...]”(see Chung (1967), p. 70). We exhibit that exactly the functions that do not
increase exponentially – neither globally nor locally – fulfill the above statement.
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1 Introduction

A classical result, see e.g. [Kol36], states that for any recurrent, irreducible Markov chain
on a countable state space the following holds: if for any state i the first moment of the
recurrence time is finite then this also applies to any other state. A first generalization of
this result appeared in [HR53]. If we denote by Tij the first time that the Markov chain
visits state j if it is started in i, then the result can be stated as follows: Ef(Tii) < ∞
for some state i implies that Ef(Tjj) < ∞ for any other state j, where f(x) = xn

for some integer n. The authors state the result as a lemma and refer to the proof to
an (unpublished) note by K. L. Chung and R. N. Snow. A more general result can be
found in [Chu54, Theorem 1], where f is allowed to be of the form xp, for any real p > 0.
After stating the theorem, the author also comments that the concept of generalized
moments defined in terms of a general function f was suggested to him by J. L. Doob,
but Chung only mentions that his results can also be shown for functions f satisfying
f(x + y) ≤ f(x) + Af(y), for some constant A.
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Further related research considers recursive formulas for second moments in terms of
first moments [Chu54, Sect. 2], factorial moments [Lam60], and also, more recently,
explicit formulas for higher polynomial moments [Sze08].

These considerations naturally lead to the question, for which functions it is true that
a finite generalized moment of the return time for one state i implies that the moment
is also finite for the return time for any other state of the Markov chain. In this note,
we characterize this class of functions. In the following, we only consider irreducible,
recurrent discrete time Markov with a countable state space.

To formulate our results, we introduce the following notation. The candidate functions
f are taken from the set

F := {f : N → (0,∞) is non-decreasing and lim
n→∞

f(n) = ∞}.

Then our objective is to classify the collection G of all f ∈ F such that for each irre-
ducible recurrent discrete time Markov chain with a finite or countably infinite state
space E, the following holds: if Ef(Tii) < ∞ for some i ∈ E then Ef(Tjj) < ∞ for all
j ∈ E.

Following Chung [Chu54] we additionally introduce the class H, by stating that f ∈ H,
if for any Markov chain the following holds: if there exist two states i and j such that
Ef(Tij) < ∞ and Ef(Tji) < ∞ then Ef(Tkℓ) < ∞ for any pair k, ℓ.

As the states i and j do not have to be distinct, it follows that H is contained in G.
The classical result due to Kolmogorov implies that the identity function belongs to H
and [Chu54] shows that any f(x) = xp, for p > 0, belongs to H.

Our main result states that the two classes G and H are in fact the same; and we also
give a characterization for a function to be in this class.

Theorem 1.1. Let f ∈ F . Then the following statements are equivalent:

(a) f ∈ H;

(b) f ∈ G;

(c) the following two conditions are satisfied:

(i) there exists K > 0 such that for any x, y > 0, f(x + y) ≤ Kf(x)f(y),

(ii) lim supn→∞
1
n

log f(n) = 0.

Condition (c) has an easy interpretation: It ensures that the function f does not grow
exponentially fast – neither globally nor locally. In fact, one can construct functions
outside G that globally increase as slowly as one wishes, but locally have parts of expo-
nential increase (cf. Example 3.3).

This note is structured as follows. In Section 2, we prove the implication (c) ⇒ (a) of
our main theorem. In Section 3, we prove the implication (b) ⇒ (c) by showing that any
function that violates either condition (i) or (ii) in (c) is not in the class G. Together
with the earlier observation that H ⊆ G, so that (a) ⇒ (b), this shows the equivalence
of the three statements.
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2 Proof of (c) ⇒ (a)

In this section, we prove that (c) ⇒ (a) in our main theorem. We start with the following
lemma, which collects some preliminary facts.

For this purpose, it is convenient to introduce the following notation: for states i and
j of a Markov chain, we denote by Uij the return time from i to i conditioned on not
crossing j (if there is such a path with positive probability). Further, Vij denotes the
first hitting time of state j when started from i conditioned on not returning to i before
hitting j.

state i Vij

Tij

Tii conditioned on crossing j

Tji

state j

U
(1)
ij U

(2)
ij U

(3)
ij

Figure 1: Visualization of the relevant return/hitting times

Lemma 2.1. Let f ∈ F .

(i) If for a state i of a Markov chain we have Ef(Tii) < ∞ then, for any state j,
Ef(Uij) < ∞ and Ef(Vij) < ∞.

(ii) If for a state i of a Markov chain we have Ef(Tii) < ∞ then, for any state j,
Ef(Tji) < ∞.

Proof. To see (i) note that if the probability p of going from from i to i without crossing
j is positive, we have

∞ > Ef(Tii) ≥ E[f(Tii)1l{do not cross j}] = E[f(Tii) | do not cross j ] p = p Ef(Uij).

This shows Ef(Uij) < ∞.

Similarly, since q := 1 − p is the probability of first hitting to j before returning to i,
which is positive since the Markov chain is recurrent and irreducible, we have

∞ > Ef(Tii) ≥ E[f(Tii)1l{do cross j}] = E[f(Tii) | do cross j ] q ≥ q Ef(Vij).

Here we used that Tii conditioned on crossing j is stochastically larger than Vij . This
shows Ef(Vij) < ∞.

To see (ii) note that

∞ > Ef(Tii) ≥ E[f(Tii)1l{do cross j}] = E[f(Tii) | do cross j ] q ≥ q Ef(Tji),

where q > 0 is as above. Here we used that Tii conditioned on crossing j is stochastically
larger than Tji. �
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We stress that, in the second part of Lemma 2.1, one cannot prove in the same way that
Ef(Tij) < ∞, since a typical path from i to i does not necessarily contain a path from i
to j. However, as the next lemma shows this can be shown if we assume that condition
(c) holds. This lemma is also the main part of the argument for the proof of (c) ⇒ (a)
in our main theorem.

Lemma 2.2. Let f ∈ F and assume that (c) holds.

(i) If for two states i and j of a Markov chain we have Ef(Tij) < ∞ and Ef(Tji) < ∞
then Ef(Tii) < ∞.

(ii) If for a state i of a Markov chain we have Ef(Tii) < ∞ then, for any state j,
Ef(Tij) < ∞.

Proof. First we show (i). Clearly Tii is stochastically dominated by Tij +Tji, where Tij

and Tji are independent. Using (c) and the monotonicity of f , we get

Ef(Tii) ≤ Ef(Tij + Tji) ≤ E[Kf(Tij)f(Tji)] = KEf(Tij)Ef(Tji) < ∞.

Now we turn our attention to (ii). For the purpose of this proof, define f(0) := 1/K,
where K is as in (i) of (c). Note that f(1) ≤ f(2) ≤ Kf(1)2, so that f(0) = K−1 ≤ f(1).
This shows that in fact f(x + y) ≤ Kf(x)f(y) for all x, y ≥ 0, since f(x + 0) = f(x) =
Kf(0)f(x).

The crucial observation (also cf. (3.3) below) is that

Tij =

M
∑

r=1

U (r) + V, (2.1)

where the random variables U (r) are i.i.d. copies of the random variable Uij as defined be-
fore Lemma 2.1 and V is a copy of the random variable Vij as defined before Lemma 2.1,
and all variables are independent. Further, M (independent of the U ’s and V ) is a geo-
metric random variable with mean 1/π−1, where π > 0 is the probability of first hitting
j before i when started from i.

It may be that π = 1 – which is the case if and only if there is no path from i to i
without crossing j – in which case Tij = V and we are already done. Excluding this
case, we derive from (c) and (2.1) that

Ef(Tij) ≤ KEf
(

M
∑

r=1

U (r)
)

Ef(V ) = K
∞

∑

m=0

(1 − π)mπ Ef
(

m
∑

r=1

U (r)
)

Ef(V ).

Since by Lemma 2.1(i) Ef(V ) < ∞, it is clear that the last expression is finite provided
that

lim sup
m→∞

1

m
log Ef

(

m
∑

r=1

U (r)
)

= 0 , (2.2)

where we know that Ef(U (1)) < ∞ from Lemma 2.1(i).
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To show (2.2) fix a large constant A > 0 and estimate using (c) as follows:

Ef(U (1) + . . . + U (m)) ≤ Ef
(

m
∑

r=1

(U (r) ∨ A)
)

≤ Ef
(

m
∑

r=1

(U (r)1l{U (r)>A} + A)
)

≤ Kf(Am)Ef
(

m
∑

r=1

U (r)1l{U (r)>A}

)

≤ Kf(Am)E
[

Km−1

m
∏

r=1

f
(

U (r)1l{U (r)>A}

)]

= f(Am)E
[

Kf
(

U (1)1l{U (1)>A}

)]m

.

Hence,

1

m
log Ef(U (1) + . . . + U (m)) ≤

1

m
log f(Am) + log(KEf(U (1)1l{U (1)>A})) .

Letting m → ∞ and using part (ii) of (c) we get

lim sup
m→∞

1

m
log Ef(U (1) + . . . + U (m)) ≤ log(KEf(U (1)1l{U (1)>A})) .

Letting now A → ∞ and using dominated convergence since Ef(U (1)) < ∞, we have

lim sup
m→∞

1

m
log Ef(U (1) + . . . + U (m)) ≤ log(Kf(0)) = 0,

which proves (2.2). �

Now we can prove that (c) ⇒ (a) in our main Theorem 1.1.

Proof of (c) ⇒ (a) in Theorem 1.1. Consider a Markov chain with state space E,
let f satisfy condition (c) of Theorem 1.1, and assume that i, j ∈ E satisfy Ef(Tij) < ∞
and Ef(Tji) < ∞. Let k, ℓ ∈ E. We want to show that Ef(Tkℓ) < ∞.

By Lemma 2.2(i), we have Ef(Tii) < ∞ and Ef(Tjj) < ∞. Thus, by Lemma 2.2(ii)
Ef(Tjℓ) < ∞. And by Lemma 2.1(ii) Ef(Tki) < ∞.

Therefore, using once again part (i) of (c), we have

Ef(Tkℓ) ≤ Ef(Tki + Tij + Tjℓ) ≤ K2
Ef(Tki)Ef(Tij)Ef(Tjℓ) < ∞.

�

3 Proof of (b) ⇒ (c)

In this section, we will show the implication (b) ⇒ (c) in Theorem 1.1 by showing
that the conditions of subexponential growth rate and submultiplicativity are in fact
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Figure 2: Transition graph of the Markov chain

necessary. In Lemma 3.1, we give abstract conditions on f , which imply that f /∈
G, which we exploit in Lemma 3.2 to show that if f violates the submultiplicativity
condition (i) of (c) in the main theorem, we have that f /∈ G. Finally, in Lemma 3.4, we
show that any function growing exponentially fast, i.e. does not satisfy condition (ii),
does not belong to G.

Lemma 3.1. If for a given f ∈ F one can construct two independent random variables
U1 and U2 taking values in N with infinite support such that Ef(Ui) < ∞ for i = 1, 2,
but Ef(U1 + U2) = ∞, then f /∈ G.

Proof. Given the two random variables, we will construct a Markov chain with two
special states 0 and 1 with the property that Ef(T11) < ∞, whereas Ef(T00) is infinite,
which shows that f /∈ G. The construction of the Markov chain is in some regards
similar to [YK39], where the authors construct a Markov chain with T00 having any
particular distribution.

Denote by {x1, x2, . . . }, {y1, y2, . . . } the support of U1 and U2, respectively. Formally,
we can write the state space E of our Markov chain as

{0}∪{1}∪{(L, n, m) : n ∈ N, m = 1, . . . , xn−1}∪{(R, n, m) : n ∈ N, m = 1, . . . , yn−1}.

The state 0 is connected only to 1, and if in state 0, the chain always moves to 1 next,
i.e. p01 = 1. If in state 1, the chain has three possibilities. The first one is that the
chain moves to 0 with probability p, for some parameter p ∈ (0, 1). Then, conditionally
on not going to 0, with equal probability it either moves “left” (i.e. to a state (L, n, 1))
or “right” (i.e. to a state (R, n, 1)).

Conditionally on the next move going to the “left”, we want T11 to have distribution
U1, therefore we set

p1,(L,n,1) =
1 − p

2
P(U1 = xn) ,

p(L,n,m−1),(L,n,m) = 1, n ∈ N, 1 < m ≤ xn ,
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where we identify (1, n, xn) with 1. Similarly, conditionally on the next move going
“right”, we would like T11 to have the distribution U2, and set

p1,(R,n,1) =
1 − p

2
P(U2 = yn) ,

p(R,n,m−1),(R,n,m) = 1, n ∈ N, 1 < m ≤ yn ,

where we again identify (R, n, yn) with 1.

Now, we can calculate the generalized moments of T00 and T11. Firstly, we find for T11

by conditioning on the three different possibilities

Ef(T11) = f(2)P{1 → 0} + Ef(U1)P{1 → “left”} + Ef(U2)P{1 → “right”} ,

which is finite by our assumptions on U1 and U2.

However, for T00, we obtain

Ef(T00) = Ef
(

M
∑

i=1

U
(i)
10 + 2

)

, (3.3)

where M is a geometric random variable with parameter p and U
(i)
10 are independent

random variables that have the same distribution as T11 conditioned on not going to 0
in the first step. (Note the relation of (3.3) and (2.1).) In particular we obtain a lower
bound by considering the following strategy: first the Markov chain jumps from 0 to
1, then it takes a tour to the “left” and after that it takes a tour of “right”, before it
finally returns to 0. Thus, we obtain using that f is non-decreasing

Ef(T00) ≥ E[f(2 + U
(1)
10 + U

(2)
10 ) | first left, then right ] P{ first left, then right }

≥ Ef(U1 + U2) p
(

1−p

2

)2
,

where the latter is infinite by our assumptions on U1 and U2; and thus as claimed Ef(T00)
is infinite. �

The next lemma uses the construction in Lemma 3.1 to show that any function not
satisfying the submultiplicativity condition (i) in (c) is not in G.

Lemma 3.2. Suppose that f ∈ F is such that for any C > 0, there exist xC and yC

such that
f(xC + yC) > Cf(xC)f(yC) ,

then f /∈ G.

Proof. By Lemma 3.1 it suffices to construct two random variables U1 and U2 such
that Ef(Ui) < ∞ for i = 1, 2 and Ef(U1 + U2) = ∞.

By our assumption on f , we can find increasing sequences (xk)k≥1 and (yk)k≥1 such that

f(xk + yk) > k6f(xk)f(yk) .
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Indeed, to see the existence of such sequences assume that for all x ≥ xk + 1 and
y ≥ yk + 1 the following inequality holds

f(x + y) ≤ (k + 1)6f(x)f(y) .

A short calculation implies that

f(x + y) ≤ (k + 1)6

(

f(xk ∨ yk + 1)

f(0)

)2

f(x)f(y) for all x, y ≥ 0 ,

in contradiction to the assumption of the lemma.

Then, for definiteness, let U1 be a random variable taking value xk with probability
pk := c1f(xk)

−1k−2 (with a suitable normalizing constant c1) and similarly, U2 takes
value yk with probability qk := c2f(yk)

−1k−2 (with a suitable normalizing constant c2).
In particular, we find that Ef(Ui) is finite for i = 1, 2. However,

Ef(U1 + U2) ≥
∑

k≥1

f(xk + yk)pkqk ≥ c1c2

∑

k≥1

k6f(xk)f(yk)f(xk)
−1k−2f(yk)

−1k−2 ,

which is infinite. �

The following example exhibits a “typical” function that can be chosen to satisfy (ii) of
(c), while not obeying (i) of (c).

Example 3.3. We now construct a function f , where we can choose the parameters in
such a way that the condition in Lemma 3.2 is satisfied and lim sup 1

n
log f(n) = 0. We

first describe the function g = log f . Take two sequences (si)i≥1 and (ui)i≥1 such that
ui ≤ si+1 − si and un → ∞ as n → ∞. Then, by setting g(0) = 0, s0 = u0 = 0 and for
i ≥ 0, define g to be constant on the interval (si +ui, si+1) and for i ≥ 1, assume that on
the interval (si, si + ui) the function g grows linearly with slope 1. Then, by adjusting
the parameters ui, si (in such a way that limn→∞ g(n)/n = 0) one can make sure that
the condition in Lemma 3.2 is fulfilled for f = eg, while at the same time by making the
differences si − si−1 large enough, one can let f grow as slowly as desired.

The following lemma shows that the condition on the subexponential growth rate of f
– (ii) of (c) – is really necessary.

Lemma 3.4. Suppose that f ∈ F satisfies

lim sup
n→∞

1

n
log f(n) > 0 ,

then f /∈ G.

Proof. By our assumption on f we can find an increasing sequence xi and δ > 0,
such that f(xi) ≥ eδxi . Then, consider the Markov chain with two states 0 and 1 and
transition probabilities p01 = p and p10 = 1 for some parameter p ∈ (0, 1). Now, Ef(T00)
is finite, while for any i ≥ 1,

Ef(T11) ≥ eδxiP{T11 ≥ xi} = eδxi(1 − p)xi−2 ,

which tends to infinity as i → ∞ provided that p is sufficiently small. �
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