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THE SCALING LIMIT OF THE INTERFACE OF THE
CONTINUOUS-SPACE SYMBIOTIC BRANCHING MODEL1

BY JOCHEN BLATH∗, MATTHIAS HAMMER∗ AND MARCEL ORTGIESE†

Technische Universität Berlin∗ and Westfälische Wilhelms-Universität Münster†

The continuous-space symbiotic branching model describes the evolu-
tion of two interacting populations that can reproduce locally only in the si-
multaneous presence of each other. If started with complementary Heaviside
initial conditions, the interface where both populations coexist remains com-
pact. Together with a diffusive scaling property, this suggests the presence of
an interesting scaling limit. Indeed, in the present paper, we show weak con-
vergence of the diffusively rescaled populations as measure-valued processes
in the Skorokhod, respectively the Meyer–Zheng, topology (for suitable pa-
rameter ranges). The limit can be characterized as the unique solution to a
martingale problem and satisfies a “separation of types” property. This pro-
vides an important step toward an understanding of the scaling limit for the
interface. As a corollary, we obtain an estimate on the moments of the width
of an approximate interface.

1. Introduction.

1.1. The symbiotic branching model and its interface. The symbiotic branch-
ing model of Etheridge and Fleischmann [11] is a spatial stochastic model of two
interacting populations described by the nonnegative solutions of the stochastic
partial differential equations

cSBM(�, γ )u0,v0
:
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(1)

with suitable nonnegative initial conditions u0(x) ≥ 0, v0(x) ≥ 0, x ∈ R. Here,
γ > 0 is the branching rate, and (Ẇ (1), Ẇ (2)) is a pair of correlated standard Gaus-
sian white noises on R+ ×R with correlation � ∈ [−1,1], that is, for t1, t2 ≥ 0,
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where � denotes the Lebesgue measure and A1,A2 are Borel sets. Solutions of
this model have been considered rigorously in the framework of the corresponding
martingale problem in Theorem 4 of [11], which states that, under natural con-
ditions on the initial conditions u0(·), v0(·), a solution exists for all � ∈ [−1,1].
Further, the martingale problem is well-posed for all � ∈ [−1,1), which implies
the strong Markov property except in the boundary case � = 1. The model interpo-
lates between several well-known examples of spatial population models. Indeed,
for � = −1 and u0 = 1 − v0, the system reduces to the continuous-space stepping
stone model, discussed, for example, by Tribe in [27]. For � = 0, the system is the
so-called mutually catalytic model of Dawson and Perkins [8], and for � = 1 and
u0 = v0, an instance of the parabolic Anderson model; see, for example, [21].

Natural questions about such (systems of) SPDEs are related to their long-term
behavior, for example, the limiting shape of the interface for suitable initial con-
ditions. For us, of particular interest are “complementary Heaviside initial condi-
tions,” that is,

u0(x) = 1R−(x) and v0(x) = 1R+(x), x ∈ R.

DEFINITION 1.1. The interface at time t of a solution (ut , vt )t≥0 of the sym-
biotic branching model cSBM(�, γ )u0,v0 with � ∈ [−1,1], γ > 0 is defined as

Ifct = cl
{
x ∈ R :ut(x)vt (x) > 0

}
,

where cl(A) denotes the closure of the set A in R.

The main question addressed by Etheridge and Fleischmann [11] is whether
for the above initial conditions, the “compact interface property” holds, that is,
whether the interface is compact at each time almost surely. This is answered af-
firmatively in their Theorem 6, together with the assertion that the interface prop-
agates with at most linear speed, that is, there exists a constant c = c(γ ) such that
for each � ∈ [−1,1], there is a (almost-surely) finite random time T0 such that,
almost surely, for all T ≥ T0, ⋃

t≤T

Ifct ⊆ [−cT , cT ].(3)

However, due to the scaling property of the symbiotic branching model [see (4)
below], one might expect that the fluctuations of the position of the interface should
be of order t1/2. Indeed, Blath, Döring and Etheridge [3], Theorem 2.11, strengthen
the linear propagation bounds (3) for a (rather small) parameter range:

THEOREM 1.2 ([3]). There exists �0 > −1 such that the following holds: Sup-
pose (ut , vt )t≥0 is a solution to cSBM(�, γ )1

R− ,1
R+ with −1 < � < �0. Then there

is a constant C(γ,�) > 0 and a finite random time T0 such that almost surely⋃
t≤T

Ifct ⊆ [−C
√

T log(T ),C
√

T log(T )
]
,
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for all T > T0.

The restriction to � < �0 seems artificial and comes from the technique of the
proof. Although the value of �0 ≈ −0.9958 is rather close to −1, the result is
remarkable, since it shows that sub-linear speed of propagation is not restricted to
situations in which solutions are uniformly bounded as, for instance, for � = −1.
The proof is based on the “dyadic grid technique” in [27] together with improved
bounds on the moments of the symbiotic branching model (see the “critical curve”
in Theorem 1.3 below), circumventing the lack of uniform boundedness of the
population sizes.

The symbiotic branching model exhibits the following fundamental scaling
property (see Lemma 8 of [11]): If (ut , vt )t≥0 is a solution to cSBM(�, γ )u0,v0 ,
then (

u
(K)
t (x), v

(K)
t (x)

) := (
uK2t (Kx), vK2t (Kx)

)
, x ∈ R,K > 0(4)

is a solution to cSBM(�,Kγ )
u

(K)
0 ,v

(K)
0

with initial states (u
(K)
0 , v

(K)
0 ) transformed

accordingly. Note that complementary Heaviside initial conditions (u0, v0) =
(1R−,1R+) are invariant under this rescaling. Thus in this case letting K → ∞
in (4) is equivalent to increasing the branching rate γ → ∞.

In light of the scaling property (4), one might hope that (at least for a suitable
range of parameters) a diffusive rescaling could lead to an interesting scaling limit.
In fact, the program of letting the branching rate tend to infinity has been carried
out for the discrete space version of (1). For the mutually catalytic model (the case
� = 0), Klenke and Mytnik construct in a series of papers [14–16] a nontrivial lim-
iting process for γ → ∞ (on the lattice) and study its long-term properties. This
limit is called the “infinite rate mutually catalytic branching process.” Moreover,
Klenke and Oeler [17] give a Trotter-type approximation and conjecture that, un-
der suitable assumptions, a nontrivial interface for the limiting process exists; see
page 485, before Corollary 1.2. Recently, analogous results have been derived by
Döring and Mytnik in the case � ∈ (−1,1) in [9, 10].

Returning to the continuous-space set-up, for � = −1 (the stepping stone
model) Tribe [27] proves a “functional limit theorem”: For a pair of (continuous)
functions (u, v), define

R(u, v) := sup
{
x :u(x) > 0

}
, L(u, v) = inf

{
x :v(x) > 0

}
.(5)

Note that for a solution (ut , vt )t≥0 of the symbiotic branching model, the in-
terface at time t is contained in the interval [L(ut , vt ),R(ut , vt )]. It is proved
in [27] for � = −1 and for continuous initial conditions u0 = 1 − v0 which sat-
isfy −∞ < L(u0, v0) ≤ R(u0, v0) < ∞ that under Brownian rescaling, the motion
of the position of the right endpoint of the interface t → 1

n
R(un2t ,1 −un2t ), t ≥ 0,

converges to a Brownian motion as n → ∞.
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The above results suggest the existence of an interesting diffusive scaling limit
for the continuous-space symbiotic branching model (and its interface) for � > −1.
This is the starting point of our investigation. However, compared to the case � =
−1, the situation is more involved here: For example, the total mass of the solution
is not necessarily bounded, and in particular, moments of the solution may diverge
as t → ∞, depending on �. For instance, second moments diverge for � ≥ 0. In
order to state this result, which was obtained in [3], we define the critical curve
p : (−1,1) → (1,∞) of the symbiotic branching model by

p(�) = π

arccos(−�)
,(6)

and denote its inverse by �(p) = − cos(π
p
) (for p > 1). This curve separates the

upper right quadrant into two areas: below the critical curve, where moments re-
main bounded, and above the critical curve, where moments increase to infinity as
t → ∞:

THEOREM 1.3 ([3], Theorem 2.5). Suppose (ut , vt )t≥0 is a solution to the
symbiotic branching model with initial conditions u0 = v0 ≡ 1. Let � ∈ (−1,1)

and γ > 0. Then, for every x ∈ R,

� < �(p) iff E1,1
[
ut (x)p

]
is bounded uniformly in all t ≥ 0.

In particular, if � < �(p), there exists a constant C(�) so that, uniformly for all
x ∈ R and t ≥ 0,

E1,1
[
ut (x)p

]≤ C(�), t ≥ 0.

REMARK 1.4. (i) Of course, due to symmetry, the same result holds for the v

population. The existence of a finite bound which is independent of x follows from
the fact that the system is translation invariant under the (1,1) starting condition.

(ii) In particular, for � < �(4) = − 1√
2

and any x1, . . . , x4 we have by the gener-
alized Hölder inequality that

E1,1
[
ut (x1)ut (x2)vt (x3)vt (x4)

]≤ max
i=1,...,4

E1,1
[
ut (xi)

4]≤ C(�),

and similarly if some of the v’s are replaced by u (and vice versa).

The main tool of our approach is the use of several dual processes for the sym-
biotic branching model. For the case � = −1 (heat equation with Wright–Fisher
noise), Tribe [27] uses the duality with coalescing Brownian motions. In our case,
we have to use instead a duality due to [11] with a system of colored Brown-
ian particles with an exponential correction term, involving collision local times.
Moreover, we will rely on an exponential self-duality for uniqueness. These duali-
ties will be explained in detail below.
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1.2. Main results and open problems. We define the measure-valued pro-
cesses

μ
(n)
t (dx) := un2t (nx) dx, ν

(n)
t (dx) := vn2t (nx) dx,(7)

obtained by taking the diffusively rescaled solutions of cSBM(�, γ ) as densities.
We consider the pair (μ

(n)
t , ν

(n)
t )t≥0 as random elements of C[0,∞)(M2

tem), the
space of continuous processes taking values in the space of (pairs of) tempered
measures endowed with the Skorokhod topology. Loosely speaking, Mtem con-
tains all the measures whose integral against any nonnegative function that is de-
caying exponentially fast at ±∞ is finite. We recall the precise definition of Mtem
and all other necessary spaces of functions and measures in Appendix A.1. Our
first main result reads as follows:

THEOREM 1.5. Assume � < �(4) = − 1√
2
. Let (ut , vt )t≥0 be a solution

to cSBM(�, γ )u0,v0 with complementary Heaviside initial conditions (u0, v0) =
(1R−,1R+). Then the processes (μ

(n)
t , ν

(n)
t )t≥0 converge weakly in C[0,∞)(M2

tem)

to a limit (μt , νt )t≥0 which has the following properties:

• Absolute continuity: For each fixed t > 0, μt and νt are absolutely continuous
w.r.t. the Lebesgue measure �, P-a.s.,

μt(dx) = μt(x) dx, νt (dx) = νt (x) dx, P-a.s.2

• Separation of types: For each fixed t > 0 the (absolutely continuous) measures
μt and νt are mutually singular: We have

μt(·)νt (·) = 0, P⊗ �-a.s.(8)

REMARK 1.6. (a) Identification of the limit. For � = −1, Tribe [27] shows
that the process (μ

(n)
t , ν

(n)
t )t≥0 converges weakly to

(1{x≤Bt } dx,1{x≥Bt } dx)t≥0,

for (Bt )t≥0 a standard Brownian motion. In our case, however, that is, for � ∈
(−1,− 1√

2
), one can show that the limit (μt , νt )t≥0 cannot be of the form

(1{x≤It } dx,1{x≥It } dx)t≥0

for a semimartingale (It )t≥0; see Remark 1.14 below for more details. Moreover,
we remark that the limiting process in Theorem 1.5 is also not trivial, that is, non-
deterministic: If it were, then by the Green function representation of the limit (see
Corollary A.4 below) it would have to be given by

(μt , νt ) = (Stu0, Stv0),

2For an absolutely continuous measure, we will usually use the same symbol to denote the measure
and its density.
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which, however, violates the “separation of types” condition (8).
(b) Restrictions on � and initial conditions. Note that the restrictions on the

range of parameters only comes from our proof of tightness for the rescaled so-
lutions. The decisive step is an estimate on the second moment of the integral∫

ut(x)vt (x) dx that is uniform in time. It is here that both assumptions � < − 1√
2

and complementary Heaviside initial conditions are essential. The restriction on
� comes from the fact that the second moment of the product utvt is really a
fourth moment, and we recall from Theorem 1.3 that only for � < �(4) = − 1√

2
fourth moments (at a single location) remain bounded in time. In fact, our tech-
nique would work in principle if we could control pth moments for p > 2, but
our integer-moment particle system duality in combination with the Burkholder–
Davis–Gundy inequality requires mixed fourth moments; see Lemma 3.4.

Similarly, the restriction to Heaviside initial conditions is due to the technique
of proof. Only in this case can we control the expression obtained via the particle
dual. Roughly speaking, we need the “simple” shape of the initial conditions to be
able to reduce the (spatial) integrals to pointwise estimates that can be controlled
via Theorem 1.3.

More generally, it seems conceivable (although probably technically much
more involved) that one can deal with initial conditions of the type u0,n =
1(−∞,an] + 1[bn,cn], v0,n = 1[an,bn] + 1[cn,∞) (and its obvious generalizations to
several blocks; cf. also [27] for � = −1). It seems difficult to go beyond this class,
and it is clear that the “overlap” of the support of the initial conditions needs to
vanish sufficiently quickly (for n → ∞) for the moment bound to hold.

Note that we can relax both assumptions to any � < 0 and general initial con-
ditions if we allow a weaker topology than the Skorokhod topology on C[0,∞); see
Theorem 1.10 below.

Unfortunately, we do not yet have a fully explicit representation of the limiting
process of Theorem 1.5 as in [27]. We can, however, characterize it as the unique
solution to a certain martingale problem. For the (standard) notation we again refer
the reader to Appendix A.1.

DEFINITION 1.7 [Martingale problem (MP)
�
μ0,ν0 ]. Fix � ∈ [−1,1] and (pos-

sibly random) initial conditions (μ0, ν0) ∈ M2
tem (resp., M2

rap). A continuous

M2
tem-valued (resp., M2

rap-valued) stochastic process (μt , νt )t≥0 is called a solu-
tion to the martingale problem (MP)

�
μ0,ν0 if there exists a continuous Mtem-valued

(resp., Mrap-valued) process (	t)t≥0 such that for each test function φ ∈ C(2)
rap

(resp., φ ∈ C(2)
tem), the process (M(φ),N(φ)) defined by

M(φ)t := 〈μt,φ〉 − 〈μ0, φ〉 −
∫ t

0

〈
μs,

1

2
�φ

〉
ds,

(9)

N(φ)t := 〈νt , φ〉 − 〈ν0, φ〉 −
∫ t

0

〈
νs,

1

2
�φ

〉
ds
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is a pair of continuous square-integrable martingales null at zero with covariance
structure [

M(φ),M(φ)
]
t = [

N(φ),N(φ)
]
t = 〈

	t,φ
2〉,

(10) [
M(φ),N(φ)

]
t = �

〈
	t,φ

2〉.
Observe that if there exists a process 	 controlling the correlation as in Defini-

tion 1.7, then it is uniquely determined by (μ, ν) via the martingales in (9). Obvi-
ously, 	0 = 0 and 	 has to be an increasing process in the sense that (〈	t,φ〉)t≥0
is increasing for all φ ≥ 0. Also, condition (10) implies that the martingale mea-
sure M (and similarly N ) is orthogonal in the sense of [28]; that is, for all test
functions φ,ψ with φψ ≡ 0 we have [M(φ),M(ψ)]t = 〈	t,φψ〉 = 0.

It is important to note that in the definition of the martingale problem (MP)
�
μ0,ν0 ,

we do not specify the measure-valued process 	 more explicitly. As a conse-
quence, it is not surprising that the martingale problem (MP)

�
μ0,ν0 is not well posed

without any further conditions.
Indeed, assume that the initial conditions are absolutely continuous with densi-

ties (u0, v0) ∈ (B+
tem)2, and let γ > 0 be arbitrary. If we denote by (u

[γ ]
t , v

[γ ]
t ) the

symbiotic branching process with finite branching rate γ , then (u
[γ ]
t , v

[γ ]
t ), consid-

ered as measure-valued processes, is a solution to (MP)
�
μ0,ν0 with 	 = 	[γ ] given

by

	
[γ ]
t (dx) := γ

∫ t

0
dsu[γ ]

s (x)v[γ ]
s (x) dx,(11)

for every γ > 0; see Theorem 4 in [11].
Certainly uniqueness in the martingale problem (MP)

�
μ0,ν0 can thus be achieved

by prescribing an explicit correlation structure as in (11). However, in order to
characterize the limiting object in Theorem 1.5, we proceed differently, and we
only require (a slightly stronger version of) the “separation of types” property (8)
for uniqueness.

Our uniqueness argument relies on a variant of the self-duality à la Mytnik [23].
Also, instead of requiring that the dual process lives in the space of continuous
measure-valued processes, we can relax this condition, and we will construct the
dual for a large class of initial conditions by approximations in the (less restrictive)
Meyer–Zheng topology.

Recall the self-duality function employed in [11]: let � ∈ (−1,1) and if either
(μ, ν,φ,ψ) ∈ M2

tem ×B2
rap or (μ, ν,φ,ψ) ∈ M2

rap ×B2
tem, denote

〈〈μ,ν,φ,ψ〉〉� := −
√

1 − �〈μ + ν,φ + ψ〉 + i
√

1 + �〈μ − ν,φ − ψ〉.(12)

Then we define the self-duality function F as

F(μ,ν,φ,ψ) := exp〈〈μ,ν,φ,ψ〉〉�.(13)

With this notation, we define another (somewhat weaker) martingale problem,
which is tailored for an application of the self-duality.
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DEFINITION 1.8 [Martingale problem (MP′)�μ0,ν0 ]. Fix � ∈ (−1,1) and (pos-
sibly random) initial conditions (μ0, ν0) ∈ M2

tem (resp., M2
rap). A càdlàg M2

tem-

valued (resp., M2
rap-valued) stochastic process (μt , νt )t≥0 is called a solution to

the martingale problem (MP′)�μ0,ν0 if the following holds: There exists an increas-
ing càdlàg Mtem-valued (resp., Mrap-valued) process (	t)t≥0 with 	0 = 0 and

Eμ0,ν0

[
	t(dx)

] ∈Mtem
(
resp., Eμ0,ν0

[
	t(dx)

] ∈ Mrap
)

(14)

for all t > 0, such that for all test functions φ,ψ ∈ (C(2)
rap)

+ [resp., φ,ψ ∈ (C(2)
tem)+],

the process

F(μt , νt , φ,ψ) − F(μ0, ν0, φ,ψ)

− 1

2

∫ t

0
F(μs, νs, φ,ψ)〈〈μs, νs,�φ,�ψ〉〉� ds(15)

− 4
(
1 − �2) ∫

[0,t]×R

F(μs, νs, φ,ψ)φ(x)ψ(x)	(ds, dx)

is a martingale.

In (15) we have interpreted the right-continuous and increasing process t →
	t(dx) as a (locally finite) measure 	(ds, dx) on R

+ ×R, via

	
([0, t] × B

) := 	t(B).

REMARK 1.9. Note that in contrast to Definition 1.7, we do not require a
solution of (MP′)�μ0,ν0 to be continuous, but only càdlàg. Hence we can construct

solutions to (MP′)�μ0,ν0 via approximations in the weaker Meyer–Zheng “pseudo-
path” topology (see [19] and [18] and cf. Appendix A.1), which allows us to work
with second instead of fourth moment bounds and more general initial conditions.

We do not include the boundary cases � = ±1, since either the real or imaginary
part in (12) vanishes, and we cannot use the resulting F for our approach, showing
uniqueness via self-duality.

As in Definition 1.7, the martingale problem of Definition 1.8 is not well posed:
In fact, by Corollary A.6 any solution to (MP)

�
μ0,ν0 is also a solution to (MP′)�μ0,ν0 ;

this is a simple application of Itô’s formula. In particular, for any γ > 0 the solu-
tion to the finite rate symbiotic branching model cSBM(�, γ )u0,v0

also solves the
martingale problem (MP′)�μ0,ν0 .

Somewhat surprisingly, even without prescribing 	 we can (at least for � < 0)
still prove self-duality and thus uniqueness, as long we require a certain “separation
of types” property. We denote by (St )t≥0 the usual heat semigroup.

THEOREM 1.10. Fix absolutely continuous initial conditions with densities
which are tempered or rapidly decreasing functions, that is, (μ0, ν0) ∈ (B+

tem)2,
respectively, (μ0, ν0) ∈ (B+

rap)
2. Assume that � ∈ (−1,0).
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(i) There exists a unique solution (μt , νt )t≥0 to the martingale problem
(MP′)�μ0,ν0 that is characterized by the following “separation of types” property:
For all t ∈ (0,∞), x ∈ R and ε > 0 we have

St+εμ0(x)St+εν0(x) ≥ Eμ0,ν0

[
Sεμt(x)Sενt (x)

] ε↓0→ 0.(16)

(ii) Moreover, for each γ > 0 denote by (μ
[γ ]
t , ν

[γ ]
t )t≥0 the solution to

cSBM(�, γ )μ0,ν0 , considered as measure-valued processes. Then, as γ ↑ ∞, the

sequence of processes (μ
[γ ]
t , ν

[γ ]
t )t≥0 converges in law in D[0,∞)(M2

tem), respec-
tively, in D[0,∞)(M2

rap), equipped with the Meyer–Zheng “pseudo-path” topology

to the unique solution of the martingale problem (MP′)�μ0,ν0 satisfying (16).

We call the unique solution to the martingale problem (MP′)�μ0,ν0 satisfying (16)
the continuous-space infinite rate symbiotic branching process.

Note that if the measures μt and νt are absolutely continuous for some t >

0, then by a simple application of Fatou’s lemma, condition (16) implies mutual
singularity of the measures, that is, the separation of types in the more intuitive
sense (8); see also the proof of Corollary 4.5.

REMARK 1.11. Comparison to the discrete-space infinite rate model. The
martingale problem (MP′)�μ0,ν0 may be regarded as a continuous-space analogue
of the martingale problem employed in [15], Theorem 1.1, to characterize the
discrete-space infinite rate mutually catalytic branching model. In the discrete case,
uniqueness is achieved by prescribing the condition that ut(k)vt (k) = 0 for all k in
the state space, and it suffices to consider test functions φ,ψ with disjoint support
(i.e., φψ ≡ 0). Consequently, the last term in (15) vanishes, and 	 does not appear.
Also, it is not possible to copy the self-duality proof from [15], Proposition 4.7,
since unlike in the discrete-space context in continuous space, we cannot apply
the Laplacian directly to the solutions. We have to “smooth out” the solutions (see
the proof of Proposition 5.1 below), which, however, destroys the disjoint support
property, giving the additional term in (15) involving the correlation structure 	.

A similarity to the discrete model is that we formulate the convergence in the
weaker Meyer–Zheng topology. This allows us to work with very general initial
conditions and to relax the condition on the correlation to � < 0. Unfortunately,
we cannot show convergence for all � ∈ (−1,1) as for the discrete model, as we
do need bounded second moments.

Finally, in the discrete model the limiting object can be described by a system
of stochastic differential equations with jumps. We do not yet have such an explicit
description of the limit and we will describe possible approaches to this problem
in Remark 1.16 below.

We return to the symbiotic branching model with complementary Heaviside ini-
tial conditions for some fixed branching rate γ > 0, and to the corresponding diffu-
sively rescaled solutions, considered as measure-valued processes (μ

(n)
t , ν

(n)
t )t≥0
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as in (7). From the scaling property (4) it follows that (μ
(n)
t , ν

(n)
t )t≥0 are in law

equal to the nonrescaled system (μ
[nγ ]
t , ν

[nγ ]
t )t≥0 with branching rate γ n. In par-

ticular, Theorem 1.10(ii) shows that (μ
(n)
t , ν

(n)
t )t≥0 converges in law in the Meyer–

Zheng “pseudo-path” topology for any � < 0.
However, in Theorem 1.5 we have stated convergence in the stronger Skorokhod

topology on C[0,∞)(M2
tem) (albeit for a smaller range of the parameter �). As we

have explained in Remark 1.6, this indicates that some extra input is needed. We
now state the full version of our main result, which generalizes Theorem 1.5 by
characterizing the limit for � > −1 as the continuous-space infinite rate symbiotic
branching process; recall that for � = −1, the limit is characterized by the results
in [27].

THEOREM 1.12. Assume � ∈ (−1,− 1√
2
). Let (ut , vt )t≥0 be a solution to

cSBM(�, γ )μ0,ν0 with complementary Heaviside initial conditions (μ0, ν0) =
(1R−,1R+). Then the sequence of processes (μ

(n)
t , ν

(n)
t )t≥0 converges in

C[0,∞)(M2
tem) w.r.t. the Skorokhod topology to the unique solution (μt , νt )t≥0 of

the martingale problem (MP′)�μ0,ν0 satisfying (16) from Theorem 1.10. Moreover,
the limit has the following properties:

• It is also the unique solution to the martingale problem (MP)
�
μ0,ν0 of Defini-

tion 1.7 with the property (16).
• Absolute continuity: For each fixed t > 0, μt and νt are absolutely continuous

w.r.t. the Lebesgue measure �,

μt(dx) = μt(x) dx, νt (dx) = νt (x) dx, P-a.s.

• The “separation of types” property holds also in the sense (8), that is, for each
t > 0, the (absolutely continuous) measures μt and νt are mutually singular:
We have

μt(·)νt (·) = 0, P⊗ �-a.s.

REMARK 1.13. Note that our result state convergence in the Skorokhod topol-
ogy, which is stronger than the Meyer–Zheng topology employed in Theorem 1.10
and also in the discrete-space model. For the continuous model, we believe that
the stronger result should also be true for a larger range of parameters. In contrast,
in the discrete model, the limit is given by a system of stochastic differential equa-
tions with jumps that is not continuous and so cannot be the Skorokhod limit of
continuous processes.

REMARK 1.14. With the help of the characterization in Theorem 1.12, one
can now show that unlike in the stepping stone case considered in [27], for � > −1
the limit cannot be of the form

(μt , νt )t≥0 = (1{x≤It } dx,1{x≥It } dx)t≥0,(17)
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for a semimartingale (It )t≥0. Indeed, suppose that (μt , νt ) is of this form and sat-
isfies the martingale problem (MP)

�
μ0,ν0 . First of all, since the limiting measure-

valued processes are continuous, this forces (It )t≥0 to be a continuous semimartin-
gale. Moreover, the initial conditons tell us that I0 = 0. Therefore, we can write
Is = Ms + As for a continuous local martingale Mt (with M0 = 0) and a contin-
uous, adapted process At that is of locally finite variation (and A0 = 0). Now, let
φ ∈ C(2)

rap . Then, by Itô’s formula, we have that

〈μt,φ〉 =
∫ It

−∞
φ(x) dx = 〈1R−, φ〉 +

∫ t

0
φ(Is) dIs + 1

2

∫ t

0
φ′(Is) d[I ]s

= 〈1R−, φ〉 +
∫ t

0
φ(Is) dMs +

∫ t

0
φ(Is) dAs + 1

2

∫ t

0
〈μs,�φ〉d[I ]s .

Thus, by the first condition (9) of (MP)
�
μ0,ν0 , we can deduce that∫ t

0
φ(Is) dAs + 1

2

∫ t

0
〈μs,�φ〉d[I ]s − 1

2

∫ t

0
〈μs,�φ〉ds

is a local martingale. Since it is continuous and of locally finite variation, the ex-
pression has to be constant equal to 0. Moreover, since φ was arbitrary, this allows
us to conclude that At is identically 0 and [I ]t = t . Hence, It is a Brownian motion
by Lévy’s characterization and thus[〈μ·, φ〉, 〈μ·, φ〉]t =

∫ t

0
φ(Is)

2 ds.

Finally, we note that

〈νt , φ〉 =
∫ ∞
It

φ(x) dx =
∫

φ(x) dx − 〈μt,φ〉.
In particular, we find that[〈μ·, φ〉, 〈ν·, φ〉]t = −[〈μ·, φ〉, 〈μ·, φ〉]t .
This contradicts the second condition (10) of (MP)

�
μ0,ν0 (since we assume � �=

−1), so that the limit cannot be of the form given in (17).

In the case � = −1, the authors in [22] exploit the corresponding fourth mo-
ment bound to get an estimate on the moments of the width of the interface
|R(ut , vt ) − L(ut , vt )|, without any rescaling [here we use the notation (5)]. How-
ever, this estimate heavily relies on the fact that there are “no holes” in the system
where both u and v are zero. In our case, we can imitate the reasoning to get an
estimate for the approximate interface defined in the following way. For any ε > 0,
define an approximate left endpoint of the interface as

Lt(ε) = inf
{
x ∈ R :

∫ x

−∞
ut (y)vt (y) dy ≥ ε

}
∧ R(ut , vt )



818 J. BLATH, M. HAMMER AND M. ORTGIESE

and similarly for the right endpoint

Rt(ε) = sup
{
x ∈ R :

∫ ∞
x

ut (y)vt (y) dy ≥ ε

}
∨ L(ut , vt ).

Since |R(ut , vt )|, |L(ut , vt )| are almost surely finite, Rt(ε),Lt (ε) are well defined.
Our final result states that this width of the approximate interface remains small
uniformly in t in the following way.

THEOREM 1.15. Suppose (u0, v0) = (1R−,1R+), (ut , vt ) is a solution of
cSBM(�, γ )u0,v0 and ε > 0. Then, for any � < �(4) = − 1√

2
, p ∈ (0,1) and any

δ ∈ (0,2(1 − p)), there exists a constant C = C(�, δ,p) such that for all t > 0,

E1
R− ,1

R+
((

Rt(ε) − Lt(ε)
)+)p ≤ Cε−2+δγ −(2+p−δ).

REMARK 1.16. Open problems. Ideally, one would like to characterize the
limiting process (μ, ν) in Theorems 1.10 and 1.12 in an explicit way. A first ap-
proach toward a better understanding of the limit would be the identification of the
quadratic (co-)variation of the limit martingales. Indeed, using the same method as
in [5], Lemma 41, it should be in principle possible to “compute” the limit of the
processes 	[γ ] from (11) as γ ↑ ∞, for general initial conditions and all � < 0.
The resulting expression will (as the “collision local time” in [5]) involve a spatial
smoothing of the limit densities and can then be used to specify the process 	

in the martingale problems (MP)
�
μ0,ν0 and (MP′)�μ0,ν0 . Remarkably, it seems that

proving the self-duality (Proposition 5.1 below), and hence uniqueness, using this
specification of 	 turns out to be technically substantially more involved than us-
ing the “separation of types” approach. In fact, the strength of our approach is that
we can show uniqueness while leaving the process 	 largely unspecified.

Nevertheless, it is promising to again specialize to the case of complementary
Heaviside initial conditions. In this case, we first note that the constant on the right-
hand side of Theorem 1.15 tends to 0 as γ ↑ ∞. This strongly suggests that the
interface of the diffusively rescaled processes shrinks to a single point in the limit.
That is, we expect the limit densities to be of the form

μt(x) = μt(x)1{x<It }, νt (x) = νt (x)1{x>It }, x ∈R,

with It := sup{x ∈ R :μt(x) > 0} = inf{x ∈ R :νt (x) > 0} denoting the position
of the interface. In fact, if we assume this and moreover that the densities are
sufficiently regular at the point of the interface, then the expression for 	 given
in terms of the above spatial smoothing (analogous to [5]) simplifies considerably.
Indeed, preliminary calculations suggest that under these assumptions,

	t(dx) = 1

|�|
∫ t

0
dsμs(Is−)νs(Is+)δIs (dx).

Note that this is in line with the stepping stone case � = −1 considered in [27],
and that the expression blows up as � ↑ 0. However, especially the assumption that
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the densities are sufficiently regular at the interface is rather strong. In particular,
it seems likely that for a proof one would have to go beyond the measure-valued
approach of the present paper. At the moment, we do not even know whether the
densities are locally bounded or not; recall, for example, that the densities of the
two-dimensional finite rate continuous mutually catalytic branching model consid-
ered in [5] are locally unbounded.

In order to prove that the interface shrinks to one point, a possible line of attack
would be to establish stationarity of the interface without any rescaling as in [22].
Another approach, which might also shed some light on the question of an explicit
equation for the limit, could be to diffusively rescale the discrete-space infinite
rate model and to investigate whether it converges to our limit process. This is also
supported by the conjecture of Klenke and Oeler [17], that for the discrete-space
infinite rate model, the interface is essentially a single point. However, carrying
out this rather ambitious program is clearly beyond the scope of the present paper,
and will be taken up in future research.

1.3. Strategy of proof and organization of the paper. The proof of our main re-
sult, Theorem 1.12, splits into two parts: The first step is to show tightness, while
the second step is to find a property that uniquely identifies the limit points. In our
case, we can show that any limit point satisfies the martingale problem (MP′)�μ0,ν0

and also the additional “separation of types” property (16) which by Theorem 1.10
gives uniqueness. More concretely the proof of Theorem 1.12 is obtained by com-
bining the following results:

• Tightness in C[0,∞)(M2
tem) is proved in Proposition 3.6.

• In Proposition 4.1, we show that any limit point satisfies (MP)
�
1
R− ,1

R+ and

therefore by Corollary A.6 also (MP′)�1
R− ,1

R+ . To guarantee uniqueness, we
also check in Lemma 4.4 that the “separation of types” condition (16) is satis-
fied.

• Finally, we note that the absolute continuity of the limit is proved in Proposi-
tion 4.2, from which together with Lemma 4.4 we obtain also the separation of
types in the form of (8); see Corollary 4.5.

The proof of Theorem 1.10 relies on a strong interplay between parts (i) and (ii).
More precisely, we will proceed as follows:

• We show tightness (in the Meyer–Zheng sense) for (μ[γ ], ν[γ ]) as γ → ∞ start-
ing with general initial conditions in B+

tem or B+
rap for any � < 0; see Proposi-

tion 3.8.
• Next, we show in Proposition 4.3 and Lemma 4.4 that any limit point satisfies

the martingale problem (MP′)�μ0,ν0 and also property (16).
• These first two steps cover the existence statement of part (i). Moreover, they

are also essential for the uniqueness as stated in Proposition 5.2. Indeed, the
uniqueness proof relies on a self-duality argument, where we need the existence
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of the dual process, which in our case is the infinite rate symbiotic branching
model with rapidly decreasing initial conditions.

• Part (ii) of Theorem 1.10 is now a corollary of what we have already shown.
Indeed, we have covered the tightness and proved that any limit point satisfies
(MP′)�μ0,ν0 including (16) so that uniqueness follows immediately.

The structure of the remaining paper is as follows: In Section 3, we show tight-
ness for complementary Heaviside initial conditions and � < − 1√

2
on C[0,∞) in the

Skorokhod sense, and for general initial conditions and all � < 0 on D[0,∞) in the
Meyer–Zheng sense. Next, we consider in Section 4 the properties of limit points
in both topologies. Furthermore, we prove uniqueness of the martingale problems
in Section 5. In Section 2, we provide a missing ingredient for the proof of tight-
ness in the strong sense, namely an estimate on integrated fourth mixed moments.
Finally, in Section 6 we prove Theorem 1.15 as a corollary to the fourth moment
bound.

Many of the basic techniques, such as using duality to show uniqueness and
deducing tightness from moments estimates, are standard in the literature for
measure-valued processes. Also, the Meyer–Zheng topology has been used for the
discrete infinite rate symbiotic branching model, because in this topology, tight-
ness relies only on relatively weak moment bounds. However, we would like to
highlight two novelties in our approach: In our Theorem 1.5 we claim convergence
in the Skorokhod topology, which is stronger than convergence in the Meyer–
Zheng sense. For our result, we use the Meyer–Zheng topology only to construct
the dual process that then yields uniqueness; cf. also Theorem 1.10. This approach
allows us to construct the dual process for a large class of initial conditions, which
is essential, since only then duality can be used to identify the law of the original
process.

The second novelty is to show uniqueness without specifying the correlation
(	t)t≥0 in the martingale problem. This should be compared to a similar situation
in [7], where the authors show uniqueness for the two-dimensional equivalent of
the mutually catalytic branching model, which satisfies a similar “separation of
types” property. In their case, they identify the correlation as an intersection local
time and only then deduce uniqueness.

One further important contribution is the integrated fourth moment bound of
Proposition 2.2 below which is essential for tightness in the C[0,∞)-sense. Its
derivation relies on careful estimates of intersection local times together with (uni-
formly) bounded fourth moments, which explains the restriction on �.

Notation: We have collected some of the standard facts and notation about
measure-valued processes in Appendix A.1. In Appendix A.2 we recall the
martingale problem formulation of the finite rate symbiotic branching model
cSBM(�, γ )u0,v0

and deduce some consequences of the martingale problem
(MP)

�
μ0,ν0 of Definition 1.7. Finally, Appendix A.3 is a collection of estimates

for Brownian motion and its local time. Throughout this paper, we will denote by
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c,C generic constants whose value may change from line to line. If the dependence
on parameters is essential, we will indicate this correspondingly.

2. A bound on integrated fourth mixed moments. The first step is a bound
on integrated fourth mixed moments that will allow us to prove tightness of the
sequence (7) of rescaled processes along the lines of [27]; see the next section.
For this estimate, we heavily use that the symbiotic branching model is dual to a
system of colored particles via a moment duality due to [11] that we explain now.

We aim to describe the asymptotic behavior of mixed moments of the form

Eu0,v0

[
ut (x1) · · ·ut(xn)vt (xn+1) · · ·vt (xn+m)

]
.

For � ∈ [−1,1], the dual works as follows: Consider n + m particles in R which
can take on two colors, say red and blue. Each particle moves like a Brow-
nian motion independently of all other particles. At time 0, we place n red
particles at positions x1, . . . , xn, respectively, and m blue particles at positions
xn+1, . . . , xn+m. As soon as two particles meet, they start collecting collision local
time. If both particles are of the same color, one of them changes color when their
collision local time exceeds an (independent) exponential time with parameter γ .
Denote by L=

t the total collision local time collected by all pairs of the same color

up to time t , and let L
�=
t be the collected local time of all pairs of different color

up to time t . Finally, let lt := (lredt , lbluet ), t ≥ 0, be the corresponding particle
process, that is, lredt (x) denotes the number of red particles at x at time t , and
lbluet (x) is defined accordingly for blue particles. Our mixed moment duality
function will then be given, up to an exponential correction involving both L=

t and

L
�=
t , by a moment duality function

(u, v)lt := ∏
x∈R :

lredt (x) or lbluet (x) �=0

u(x)l
red
t (x)v(x)l

blue
t (x).

Note that since there are only n + m particles, the potentially uncountably infinite
product is actually a finite product and hence well defined. The following lemma
is taken from [11], Proposition 12.

LEMMA 2.1. Let (ut , vt )t≥0 be a solution to cSBM(�, γ )u0,v0 with � ∈
[−1,1]. Then, for any x ∈R and t ≥ 0,

Eu0,v0

[
ut (x1) · · ·ut (xn)vt (xn+1) · · ·vt (xn+m)

]= E
[
(u0, v0)

lt eγ (L=
t +�L

�=
t )],(18)

where the dual process (lt )t≥0 behaves as explained above, starting in l0 =
(lred0 , lblue0 ) with red particles located in (x1, . . . , xn) and blue particles in
(xn+1, . . . , xn+m), respectively.
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Note that if u0 = v0 ≡ 1, the first factor in the expectation of the right-hand side
equals 1. Also note that for second mixed moments, the duality simplifies consid-
erably: In this case, the dual process is started from two particles of different color,
which by the definition of the process will retain their respective color for all time
(color changes can only occur if two particles of the same color meet). Introducing
two independent Brownian motions (Bi

t )t≥0, i = 1,2, with intersection local time
(L

1,2
t )t≥0, equation (18) can thus be written as

Eu0,v0

[
ut (x)vt (y)

]= Ex,y

[
u0
(
B1

t

)
v0
(
B2

t

)
eγ�L

1,2
t
]
,(19)

where here and in the following we will label the Brownian motions according to
their starting positions from left to right.

We now state the fourth (mixed) moment estimate announced above:

PROPOSITION 2.2 (Mixed moments). Let (ut , vt )t≥0 be a solution to
cSBM(�, γ )u0,v0

with initial values (u0, v0) = (1R−,1R+). Then, for � < �(4) =
− 1√

2
,

Eu0,v0

[∫ ∫
ut (x)ut (y)vt (x)vt (y) dx dy

]
≤ C(u0, v0;γ,�)

uniformly for all t ≥ 0.

Note that by Fubini’s theorem and a simple substitution, it is sufficient to prove
that for z > 0,

Eu0,v0

[∫
ut (x)ut (x − z)vt (x)vt (x − z) dx

]
is integrable in z. Our Ansatz is to use the moment duality from Lemma 2.1 and
combine it with the moment bounds of Theorem 1.3. However, Theorem 1.3 re-
quires constant initial conditions, which simplifies the moment duality consider-
ably.

In our case, the duality in (18) reads

E1
R− ,1

R+
[
ut(x)ut (x − z)vt (x)vt (x − z)

]
= Elred0 =(x,x−z),lblue0 =(x,x−z)

[
(u0, v0)

lt eγ (L=
t +�L

�=
t )].

To describe the dynamics of (lt )t≥0, we introduce a system of four independent
Brownian motions {Bi

t , i = 1, . . . ,4} with respective colors ci(t) ∈ {red,blue}
at time t . We label the Brownian motions according to their starting positions B1

0 =
0,B2

0 = 0,B3
0 = z,B4

0 = z in increasing order, and we set their initial colors to be
c1(0) = c3(0) = red, while c2(0) = c4(0) = blue. Defining

f red := u0 = 1R−, f blue := v0 = 1R+,
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we can rewrite the duality as

Eu0,v0

[
ut (x)vt (x)ut (x − z)vt (x − z)

]
= Elred0 =(0,z),lblue0 =(0,z)

[ 4∏
i=1

f ci(t)
(
x − Bi

t

)
eγ (L=

t +�L
�=
t )

]
.

We now integrate over x and estimate the integral. Note that the exponential term
does not depend on x. Hence, we may restrict our attention to∫ 4∏

i=1

f ci(t)
(
x − Bi

t

)
dx,(20)

for different color configurations. First observe that

f red(x − Bt) = 1{x<Bt } and f blue(x − Bt) = 1{x>Bt },(21)

so that one should think of the integral in (20) as an integral over a product of
Heaviside functions centered at Bi

t , where the color determines the shape.
Now denote by r(t) the index of the left-most red Brownian motion at time t ,

that is, cr(t)(t) = red and

B
r(t)
t ≤ Bi

t for all i such that ci(t) = red,

where we choose the smaller index to resolve ties. Similarly, we denote by �(t) the
index of the right-most blue Brownian motion, that is, c�(t)(t) = blue and

B
�(t)
t ≥ Bi

t for all i such that ci(t) = blue

(with the smaller index to resolve ties).
Observe that, due to the definition of our dual particle system (lt )t≥0, if we

start with four particles and two colors, there will always be at least one red
particle and at least one blue particle around at any time, no matter what the
actual color changes were (color changes can only occur if two particles of the
same color meet). Moreover, with the above notation, the integral in (20) is 0
unless B

r(t)
t > B

�(t)
t (see Figure 1), and since the product is either 0 or 1, we

obtain ∫ 4∏
i=1

f ci(t)
(
x − Bi

t

)
dx = (

B
r(t)
t − B

�(t)
t

)+;

see also Figure 2.
Altogether, we arrive at

Eu0,v0

∫
ut(x)ut (x − z)vt (x)vt (x − z) dx

(22)
= E(0,z),(0,z)

[(
Br(t) − B�(t))+eγ (L=

t +�L
�=
t )]
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FIG. 1. An illustration of the four factors in the product in (20) (drawn slightly shifted for illustra-
tion). The Heaviside functions are centred at the positions of the Brownian motions, and the color
determines the shape (red is dotted, and blue is drawn in black). Here, c1(t) = c2(t) = red and

c3(t) = c4(t) = blue. In this case, the product of all four factors is zero, since B
r(t)
t < B

�(t)
t .

and need to show that, for z > 0, this expression is integrable in z. We prepare
this with a lemma which covers the important case where the two particles that are
initially in the middle start in the same location.

LEMMA 2.3. Assume that � < �(4), and let −∞ < x < y < z < ∞ and δ ∈
(0, 1

2). Then, for any initial configuration l0 = x that contains four particles in
positions x, y, y, z and two of each color, that is,

x ∈ {(x, y), (y, z); (y, z), (x, y); (x, z), (y, y); (y, y), (x, z)
}
,

we have

Ex

[(
B

r(t)
t − B

�(t)
t

)+
eγ (L=

t +�L
�=
t )]

≤ C(�, γ, δ)min
{
(z − y + 1)(y − x + 1)

t1/2−δ
,1 ∨ tδ

}
.

FIG. 2. In this scenario, c1(t) = red, c2(t) = c3(t) = c4(t) = blue. Since B
�(t)
t < B

r(t)
t , the

integral gives a nonzero contribution corresponding to the shaded area.
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PROOF. Pick �′ so that � < �′ < �(4), and let δ ∈ (0, 1
2). Using the (general-

ized) Hölder inequality twice for p1,p2,p3 ≥ 1 with p3 = (1 − δ
2)−1 and p1 = p2

such that 1
p1

+ 1
p2

+ 1
p3

= 1, we obtain

Ex

[(
Br(t) − B�(t))+eγ (L=

t +�L
�=
t )]

≤ Ex

[((
Br(t) − B�(t))+)p1

]1/p1
Ex

[
ep2γ (L=

t +�′L�=
t )]1/p2(23)

×Ex

[
e−p3γ (�′−�)L

�=
t
]1/p3 .

By the moment duality (18), the second expectation in (23) corresponds to the
fourth mixed moment of a system with branching rate p2γ , correlation parameter
�′ and constant initial conditions. Since �′ < �(4), this expression is bounded by
a constant (depending only on �′) uniformly in t ≥ 0; see Theorem 1.3 and also
Remark 1.4.

For the first expectation on the right-hand side in (23), we claim that

Ex

[((
B

r(t)
t − B

�(t)
t

)+)p1
]1/p1 ≤ C(p1)t

1/2.(24)

The claim follows if we can show that the expectation on the left-hand side does
not depend on the distances of the starting points z − y, y − x. We recall that
the particles are labeled from left to right according to the initial positions. In
particular 2,3 are the labels of the particles started in y. Also, we can always
assume that B

�(t)
t < B

r(t)
t since this is the only scenario when we observe a positive

contribution to the expectation.
Denote by τi,j the first collision time of particles i, j . We claim that if B

�(t)
t <

B
r(t)
t , then there exist i, j ∈ {1, . . . ,4}, i �= j , such that ci(t) �= cj (t) and τij ≤ t .

Indeed, suppose first that no color change occurs up to time t . Then, if particles 2
and 3 (both started in y) have different colors, τ2,3 = 0, and the claim holds. Con-
versely, if 2 and 3 have the same color, there has to be a collision between particles
of different colors before time t , since the condition B

�(t)
t < B

r(t)
t implies that both

blue particles are to the left of the red particles at time t ; see Figure 3 for an
illustration.

Moreover, if there is a color change before time t , we can consider particle i

that has changed its color last before time t (out of all particles), say at time σ i .
Then by construction of the particle process, the color change happened through
the interaction with particle j , which just before the change had the same color,
but now satisfies ci(σi) �= cj (σi) and also τij ≤ σi ≤ t . However, since i was the
last particle to change color, it follows that cj (t) = cj (σi) �= ci(σi) = ci(t); see
also Figure 4.

Consequently, in order to show (24) we can assume that i, j are such that τij ≤ t

and ci(t) �= ci(t). Again note that if B
r(t)
t −B

�(t)
t > 0, all blue particles are to the
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FIG. 3. No color change occurs up to time t and two red particles (dotted line) start in y, while

two blue particles (black line) start in x and z, respectively. Moreover at time t , B
r(t)
t > B

�(t)
t so

that particles of distinct colors must have crossed.

FIG. 4. If a color change occurs, at least two particles of distinct colors at time t must have met
before.
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left of red particles, so that since particles i and j have different colors, we find
that (B

r(t)
t − B

�(t)
t )+ ≤ |Bi

t − B
j
t |. Therefore, by the strong Markov property,

Ex

[
1{τi,j≤t,ci (t) �=cj (t)}

((
B

r(t)
t − B

�(t)
t

)+)p1
]1/p1

≤ Ex

[
1{τi,j≤t}

∣∣Bi
t − B

j
t

∣∣p1
]1/p1

(25)

≤ Ex

[
1{τi,j≤t}E

[
sup

0≤s≤t−τi,j

∣∣Bi
τi,j+s − B

j
τi,j+s

∣∣p1 |Fτi,j

]]1/p1

≤ E0,0

[
sup

0≤s≤t

∣∣B1
s − B2

s

∣∣p1
]1/p1 ≤ C(p1)t

1/2.

By summing over all distinct pairs i, j , we thus obtain (24) (where we again make
use of the convention that the value of unspecified constants may change from line
to line).

Thus we can conclude from (23) that

Ex

[(
Br(t) − B�(t))+eγ (L=

t +�L
�=
t )]≤ C(p1,p2, γ, �)t1/2

Ex

[
e−γp3(�

′−�)L
�=
t
]1/p3 .

Recalling that 1
p3

= 1 − δ
2 , we see that in order to complete the proof it suffices to

show that for any s > 0, there is a constant C = C(s) such that for all t ≥ 0,

Ex

[
e−sL

�=
t
]

(26)

≤ C min
{
(z − y + log(t ∨ e))(y − x + log(t ∨ e))

t
,
(
log(t ∨ e)

)
t−1/2

}
,

where we note that the term log(t ∨ e) can be bounded by tδ
′ ∨ 1 for any δ′ > 0.

Also note that (26) holds trivially for t ≤ 1. Thus we will assume t ≥ 1 throughout
the rest of the proof.

First, recall that for the collision local time L
1,2
t up to time t of two independent

Brownian motions, started in positions x ≤ y, we have the classical bound that for
all t ≥ 1,

Px,y

{
L

1,2
t ≤ α log t

}≤ 1√
π

(2α log t + y − x)t−1/2, α > 0;(27)

see, for example, Corollary A.9. Now fix s > 0, and let c = 2
s
. We distinguish the

three cases:

(i) L
�=
t ≥ c log t ,

(ii) L
�=
t < c log t , but Ltot

t := L=
t + L

�=
t ≥ 2c log t ,

(iii) L
�=
t < c log t and Ltot

t < 2c log t .

Regarding (i), we can estimate

Ex

[
e−sL

�=
t 1{L�=

t ≥c log t}
]≤ t−sc = t−2,
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by our choice of c = 2
s
.

For (ii), we have in particular that L=
t ≥ c log t . Now, from the fourth moment

bounds (Theorem 1.3 and Remark 1.4 for the system with branching rate s
|�| ) to-

gether with the moment duality (18) for constant initial conditions, we can deduce
that

Ex

[
e−sL

�=
t 1{L�=

t <c log t,Ltot≥2c log t}
]

≤ t−cs/|�|
Ex

[
es/|�|(L=

t +�L
�=
t )1{L�=

t <c log t,Ltot≥2c log t}
]

≤ t−cs/|�|
Ex

[
es/|�|(L=

t +�L
�=
t )]

≤ C(�)t−cs/|�| ≤ C(�)t−cs = C(�)t−2.

Finally, consider case (iii). Here, note that if the total collision local time is small,
then in particular the collision local time between the two Brownian motions
started at y is small. That is, using (27),

Ex

[
e−sL

�=
t 1{L�=

t <c log t,Ltot
t <2c log t}

]≤ Py,y

{
L

1,2
t ≤ 2c log t

}≤ 4c√
π

(log t)t−1/2.

A different bound can be reached by considering the collision local times between
each pair of Brownian motions started in y, z and y, x respectively, leading to
[again using (27)]

Ex

[
e−sL

�=
t 1{L�=

t <c log t,Ltot
t <2c log t}

]≤ Px,y

{
L

1,2
t ≤ 2c log t

}
Py,z

{
L

1,2
t ≤ 2c log t

}
≤ 1

π
(4c log t + y − x)(4c log t + z − y)t−1.

Hence, we can take the minimum of the two bounds for (iii). Then, we notice that
since we are assuming that t ≥ 1, cases (i) and (ii) are dominated by the contribu-
tion of (iii), so that we obtain (26). �

PROOF OF PROPOSITION 2.2. Fix 0 < ε < 1
2 . By (22), it suffices to show that

there exists a constant C = C(γ,�, ε) such that for all z > 0,

E(0,z),(0,z)

[(
B

r(t)
t − B

�(t)
t

)+
eγ (L=

t +�L
�=
t )]≤ C

(
1 ∧ z−2(1−ε)),(28)

which is clearly integrable in z.
We condition on the time of the first collision of certain pairs of the four Brow-

nian motions. Indeed, let τi,j denote the first hitting time of the Brownian motions
with index i and j , and consider the stopping time

τ := τ1,3 ∧ τ1,4 ∧ τ2,3 ∧ τ2,4,

which is the first time that a motion started in 0 meets with a motion started in z.
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Note that we can always assume that τ ≤ t , for otherwise the expectation in (28)
is zero. Then, if (Ft )t≥0 denotes the filtration of the dual process, we can apply the
strong Markov property and use that up to time τ there are no particles of the same
color that accumulate local time. In particular, none of the particles have switched
color up to time τ , so the positions of Bi

τ at time τ and the color configuration at
time τ satisfy the assumptions of Lemma 2.3. Thus choosing δ := ε

8 in Lemma 2.3,
we obtain that there exists a constant C(�, γ, ε) such that

E(0,z),(0,z)

[(
B

r(t)
t − B

�(t)
t

)+
eγ (L=

t +�L
�=
t )]

= E(0,z),(0,z)

[
E
[(

B
r(t)
t − B

�(t)
t

)+
eγ (L=

t −L=
τ +�(L

�=
t −L

�=
τ ))|Fτ

]
eγ (L=

τ +�L
�=
τ )]

≤ 4C(�, γ, ε)E(0,z),(0,z)(29)

×
[
1{τ=τ2,3≤t} min

{
(B4

τ − B3
τ + 1)(B2

τ − B1
τ + 1)

(t − τ)1/2−δ
,

(t − τ)δ ∨ 1
}
e�γ (L1,2

τ +L3,4
τ )

]
.

Here, we also used that the four possible cases τ = τ1,3, τ1,4, τ2,3, τ2,4 are all
equally likely, and in all cases we obtain the same bound from Lemma 2.3. More-
over, in this scenario L

�=
τ = L1,2

τ + L3,4
τ .

In the following, we will use repeatedly the fact that for a standard Brownian
motion (Bt )t≥0 with maximum process (Mt)t≥0 and local time (L0

t )t≥0 at zero, by

Lévy’s equivalence (see, e.g., Lemma A.7) we have L0
t

d= Mt
d= |Bt | for all t > 0,

implying that for any s > 0 there exists a constant C = C(s) such that for t > 0,

E0
[
e−sL0

t
]= E0

[
e−s|Bt |]= 1√

2πt

∫
R

e−x2/(2t)e−s|x| dx ≤ C
(
1 ∧ t−1/2).(30)

In the analysis of the right-hand side of (29), we distinguish four cases (where
we always assume τ ≤ t):

(i) τ ≤ z2−ε;
(ii) τ > z2−ε and (z2−ε > t1/4 or t ≤ 2);

(iii) τ > z2−ε , but z2−ε ≤ t1/4 and τ ≤ t1/2−δ , t ≥ 2;
(iv) τ > z2−ε , z2−ε ≤ t1/4, but τ > t1/2−δ , t ≥ 2.

Case (i). On the event that τ ≤ z2−ε ∧ t , we obtain

E(0,z),(0,z)

[
1{τ=τ2,3≤z2−ε∧t} min

{
(B4

τ − B3
τ + 1)(B2

τ − B1
τ + 1)

(t − τ)1/2−δ
,

(t − τ)δ ∨ 1
}
e�γL

�=
τ

]
≤ E(0,z),(0,z)

[
1{τ=τ2,3≤z2−ε}

(
B4

τ − B3
τ + 1

)(
B2

τ − B1
τ + 1

)]
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≤ E0,0

[
max

s≤z2−ε

(
B2

s − B1
s + 1

)2]
P0,z

{
τ1,2 ≤ z2−ε}1/2

≤ C
(
1 ∨ z2−ε)

P0,z

{
τ1,2 ≤ z2−ε}1/2

,

where we used the Cauchy–Schwarz inequality in the penultimate step. In order to
estimate the first collision time, denoting by τ(0) the first hitting time of 0 for a
single Brownian motion B started at z, we observe that

P0,z

{
τ1,2 ≤ z2−ε}= Pz

{
τ(0) ≤ 2z2−ε}

= P0

{
max

s≤2z2−ε
Bs ≥ z

}
= 2P0{B2z2−ε ≥ z}

≤ 1 ∧
(

2√
π

z−(1/2)εe−zε/4
)
,

where we used the reflection principle and a standard Gaussian estimate; see, for
example, [20], Remark 2.22. Combining the previous two displays shows that in
case (i) we obtain an upper bound

C
(
1 ∨ z2−ε−(1/4)ε)e−(1/8)zε

on the right-hand side of (29), which in turn can be estimated by the right-hand
side of (28).

Case (ii). In this scenario, we can find an upper bound on the expectation on the
right-hand side in (29) by

E(0,z),(0,z)

[
1{z2−ε<τ=τ2,3≤t}

× min
{
(B4

τ − B3
τ + 1)(B2

τ − B1
τ + 1)

(t − τ)1/2−δ
, (t − τ)δ ∨ 1

}
e�γ (L1,2

τ +L3,4
τ )

]
≤ E(0,z),(0,z)

[
1{z2−ε<τ2,3=τ≤t}

(
1 ∨ tδ

)
eγ�(L1,2

τ +L3,4
τ )]

≤ (
1 ∨ tδ

)
E0,0

[
exp

(
γ �L

1,2
z2−ε

)]2 ≤ C
(
1 ∨ tδ

)(
1 ∧ z−2+ε),

where we used the independence of the two pairs of Brownian motions and
then (30). Since we assume t ≤ 2 or z2−ε > t1/4, this latter expression can be
bounded by C(1 ∧ z−2+ε+4δ(2−ε)), which by our choice of δ = ε

8 is of the required
form.

Case (iii). In this case, we assume in particular that t ≥ 2 and z2−ε < τ ≤ t1/2−δ ,
so that we can estimate

(t − τ)−(1/2−δ) ≤ (
t − t1/2−δ)−(1/2−δ) ≤ Ct−1/2+δ.
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Hence, we can deduce from (29) that

E(0,z),(0,z)

[
1{z2−ε<τ=τ2,3≤t1/2−δ}

× min
{
(B4

τ − B3
τ + 1)(B2

τ − B1
τ + 1)

(t − τ)1/2−δ
, (t − τ)δ ∨ 1

}
e�γ (L1,2

τ +L3,4
τ )

]

≤ E(0,z),(0,z)

[
1{z2−ε<τ=τ2,3≤t1/2−δ}

× (B4
τ − B3

τ + 1)(B2
τ − B1

τ + 1)

(t − τ)1/2−δ
eγ �(L1,2

τ +L3,4
τ )

]
≤ Ct−1/2+δ

E(0,z),(0,z)

[
max

s≤t1/2−δ

(∣∣B4
s − B3

s

∣∣+ 1
)(∣∣B2

s − B1
s

∣∣+ 1
)

× exp
(
γ �

(
L

1,2
z2−ε + L

3,4
z2−ε

))]
.

Now, applying Hölder’s inequality with p = 1
1−ε/2 and q its conjugate, and then

using the independence of the two pairs of Brownian motions, we obtain an upper
bound

Ct−1/2+δ
E(0,z),(0,z)

[
max

s≤t1/2−δ

(∣∣B4
s − B3

s

∣∣+ 1
)(∣∣B2

s − B1
s

∣∣+ 1
)

× exp
(
γ �

(
L

1,2
z2−ε + L

3,4
z2−ε

))]
≤ Ct−1/2+δ

E(0,0)

[
max

s≤t1/2−δ

(∣∣B2
s − B1

s

∣∣+ 1
)q]2/q

E0,0
[
exp

(
γ �pL

1,2
z2−ε

)]2/p

≤ Ct−1/2+δ
E(0,0)

[
max
s≤1

(
t (1/2)(1/2−δ)

∣∣B2
s − B1

s

∣∣+ 1
)q]2/q

×E0,0
[
exp

(
γ �pL

1,2
z2−ε

)]2/p

≤ C
(
1 ∧ z−(2−ε)(1/p)),

where we used Brownian scaling (and t ≥ 2) to estimate the first term and (30) for
the second term. In particular, we obtain that the latter expression is bounded by
C(1 ∧ z−(2−ε)(1/p)) ≤ C(1 ∧ z−2(1−ε)), by our choice of p.

Case (iv). For the remaining case (where we can assume t ≥ 2), we use (29) and
the independence of the Brownian motions to get an upper bound

E(0,z),(0,z)

[
1{t1/2−δ<τ=τ2,3≤t} min

{
(B4

τ − B3
τ + 1)(B2

τ − B1
τ + 1)

(t − τ)1/2−δ
,

(t − τ)δ ∨ 1
}
e�γ (L1,2

τ +L3,4
τ )

]
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≤ (
1 ∨ tδ

)
E(0,z),(0,z)

[
exp

(
γ �

(
L

1,2
t1/2−δ + L

3,4
t1/2−δ

))]
≤ C

(
1 ∧ t−1/2+2δ)≤ C

(
1 ∧ z4(2−ε)(−1/2+2δ))

on (29), where we used again (30) and finally that z2−ε ≤ t1/4. Since 2δ = 1
4ε < 1

4 ,
the resulting expression is of the form (28).

These cases exhaust all possibilities so that the Lemma is proved via (29). �

3. Tightness. Recall that for initial conditions (u0, v0) ∈ (B+
rap)

2, respectively,

(B+
tem)2, we denote by (u

[γ ]
t , v

[γ ]
t )t≥0 ∈ C(0,∞)(C+

rap)
2, respectively, C(0,∞)(C+

tem)2

the solution to cSBM(�, γ )u0,v0 with these initial conditions and finite branching
rate γ > 0. Also recall that by the scaling property (4), this includes the framework
of diffusively rescaled solutions with complementary Heaviside initial conditions
as considered in (7). We consider the measure-valued processes

μ
[γ ]
t (dx) := u

[γ ]
t (x) dx, ν

[γ ]
t (dx) := v

[γ ]
t (x) dx,(31)

	
[γ ]
t (dx) := γ

∫ t

0
dsu[γ ]

s (x)v[γ ]
s (x) dx.(32)

In this section, we will prove tightness of the above processes on the space
of paths taking values in the space of rapidly decreasing, respectively tempered,
measures. For � < − 1√

2
and complementary Heaviside initial conditions, we ob-

tain tightness with respect to the Skorokhod topology on the space of continuous
paths. For � < 0 and general initial conditions, we can still obtain tightness in the
weaker Meyer–Zheng “pseudopath” topology on the space of càdlàg paths intro-
duced by [19]; see also the end of Appendix A.1 for a brief description of this
topology.

For tightness w.r.t. the Skorokhod topology, a nice exposition of the general
strategy in the same setting of measure-valued processes can be found in [5], Sec-
tion 4.1. We refer the reader to Appendix A.1 for a discussion of the spaces of
functions and measures that are employed in the following.

3.1. Some preliminary estimates. In this subsection, we derive some esti-
mates which are essential for establishing tightness in both the Skorokhod and
the Meyer–Zheng sense. Let (u0, v0) ∈ (B+

rap)
2 [resp., (B+

tem)2]. Recall that by
the Green function representation for cSBM(�, γ )u0,v0 (see [11], Corollary 19,
or Corollary A.4 in the Appendix), we have for every γ > 0 and φ ∈ ⋃

λ>0 C−λ

(resp., φ ∈⋃λ>0 Cλ) that

M
[γ ]
t (φ) := 〈

u
[γ ]
t , φ

〉− 〈u0, Stφ〉, N
[γ ]
t (φ) := 〈

v
[γ ]
t , φ

〉− 〈v0, Stφ〉(33)
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are martingales with quadratic (co-)variation[
M [γ ](φ),M [γ ](φ)

]
t

= [
N [γ ](φ),N [γ ](φ)

]
t

= γ

∫ t

0

∫
R

St−rφ(x)2u[γ ]
r (x)v[γ ]

r (x) dx dr,(34) [
M [γ ](φ),N [γ ](ψ)

]
t

= �γ

∫ t

0

∫
R

St−rφ(x)St−rψ(x)u[γ ]
r (x)v[γ ]

r (x) dx dr.

We start with the following lemma which shows in particular that the expecta-
tion of the previous display is bounded uniformly in γ > 0:

LEMMA 3.1. Suppose � < 0 and (u0, v0) ∈ (B+
rap)

2 [resp., (B+
tem)2]. Then for

all t > 0, γ > 0 and φ,ψ ∈⋃λ>0 C+
−λ (resp.,

⋃
λ>0 C+

λ ), we have

γEu0,v0

[∫ t

0

∫
R

St−sφ(x)St−sψ(x)u[γ ]
s (x)v[γ ]

s (x) dx ds

]
= 1

|�|
∫∫

φ(x)ψ(y)Ex,y

[
u0
(
B

(1)
t

)
v0
(
B

(2)
t

)(
1 − eγ�L

1,2
t
)]

dx dy(35)

↑ 1

|�|
∫∫

φ(x)ψ(y)Ex,y

[
u0
(
B

(1)
t

)
v0
(
B

(2)
t

)
1{L1,2

t >0}
]
dx dy < ∞,

as γ ↑ ∞, where B(1),B(2) are independent Brownian motions with intersection
local time L1,2.

PROOF. First, note that the limit on the right-hand side of (35) holds by mono-

tone convergence since (1 − eγ�L
1,2
t ) ↑ 1

L
1,2
t >0 as γ ↑ ∞. Also observe that the

right-hand side is finite under our assumptions since it is bounded by

1

|�|
∫∫

φ(x)ψ(y)Ex,y

[
u0
(
B

(1)
t

)
v0
(
B

(2)
t

)]
dx dy

(36)

= 1

|�| 〈φ,Stu0〉〈ψ,Stv0〉 < ∞;

see, for example, Lemma A.1(a).
In order to show the first equality in (35), we adapt and elaborate an argument

from the proof of [27], Lemma 4.4: For a suitable process X, denote by (L
x,X
t )t≥0

the local time of X at x ∈ R. Let B(1), B(2) be independent Brownian motions.
Then by a change of variables s → t − s, Fubini’s theorem and the colored particle
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moment duality, we have

γEu0,v0

[∫ t

0
ds

∫
R

dxSt−sφ(x)St−sψ(x)u[γ ]
s (x)v[γ ]

s (x)

]
= γ

∫ t

0
ds

∫
R

dxSsφ(x)Ssψ(x)(37)

×E0,0
[
u0
(
B

(1)
t−s + x

)
v0
(
B

(2)
t−s + x

)
exp

(
γ �L

0,B(2)−B(1)

t−s

)]
.

Writing B := (B(1),B(2)) and denoting by (Fs)s≥0 the natural filtration of B , we
use that (by the independence and stationarity of the increments) for functionals
f (B·) of the two-dimensional Brownian path, we have

E0,0
[
f (B·+s − Bs)|Fs

]≡ E0,0
[
f (B·)

]
for each fixed time s ≥ 0. Applying this with the functional

f (B·) := u0
(
B

(1)
t−s + x

)
v0
(
B

(2)
t−s + x

)
exp

(
γ �L

0,B(2)−B(1)

t−s

)
for s ∈ [0, t] and then shifting the dx-integral (change of variables y := −B

(2)
s +

x), we see that (37) is equal to

γ

∫ t

0
ds

∫
R

dxE0,0
[
φ
(−B(1)

s + x
)
ψ
(−B(2)

s + x
)

×E(0,0)

[
u0
(
B

(1)
t − B(1)

s + x
)
v0
(
B

(2)
t − B(2)

s + x
)

× exp(γ �
(
L

0,B(2)−B
(2)
s −(B(1)−B

(1)
s )

t

− L0,B(2)−B
(2)
s −(B(1)−B

(1)
s )

s

)|Fs

]]
= γ

∫ t

0
ds

∫
R

dyE0,0
[
φ
(
B(2)

s − B(1)
s + y

)
ψ(y)

× u0
(
B

(1)
t − B(1)

s + B(2)
s + y

)
v0
(
B

(2)
t + y

)
× exp

(
γ �

(
L

0,B(2)−B
(2)
s −(B(1)−B

(1)
s )

t

− L0,B(2)−B
(2)
s −(B(1)−B

(1)
s )

s

))]
= γ

∫
R

dyψ(y)E0,0

[
v0
(
B

(2)
t + y

) ∫ t

0
dsφ

(
B(2)

s − B(1)
s + y

)
× u0

(
B

(1)
t + B(2)

s − B(1)
s + y

)
× exp

(
γ �

(
L

B
(2)
s −B

(1)
s ,B(2)−B(1)

t

− LB
(2)
s −B

(1)
s ,B(2)−B(1)

s

))]
.
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Now for the inner integral
∫ t

0 · · · ds, we apply Lemma A.10 in the Appendix and
then another change of variables x := y + z to see that the above equals∫
R

dyψ(y)E0,0

[
v0
(
B

(2)
t + y

) ∫
R

dzφ(z + y)u0
(
B

(1)
t + z + y

)
×
∫ t

0
dLz,B(2)−B(1)

s γ exp
(
γ �

(
L

z,B(2)−B(1)

t − Lz,B(2)−B(1)

s

))]
=
∫∫

dx dyφ(x)ψ(y)

×E0,0

[
u0
(
B

(1)
t + x

)
v0
(
B

(2)
t + y

)
×
∫ t

0
dLx−y,B(2)−B(1)

s γ exp
(
γ �

(
L

x−y,B(2)−B(1)

t − Lx−y,B(2)−B(1)

s

))]
=
∫∫

dx dyφ(x)ψ(y)E0,0

[
u0
(
B

(1)
t + x

)
v0
(
B

(2)
t + y

)
× 1

|�|
(
1 − exp

(
γ �L

x−y,B(2)−B(1)

t

))]
,

which gives the first equality in (35). �

From the above estimate, we obtain a uniform bound on the first moment of
(u[γ ], v[γ ],	[γ ]) integrated against suitable test functions:

LEMMA 3.2. Suppose � < 0 and (u0, v0) ∈ (B+
rap)

2 [resp., (B+
tem)2]. Then for

all T > 0 and φ ∈⋃λ>0 C+
−λ (resp.,

⋃
λ>0 C+

λ ), we have

sup
γ>0

Eu0,v0

[
sup

0≤t≤T

〈
u

[γ ]
t , φ

〉]
< ∞, sup

γ>0
Eu0,v0

[
sup

0≤t≤T

〈
v

[γ ]
t , φ

〉]
< ∞(38)

and

sup
γ>0

Eu0,v0

[
sup

0≤t≤T

〈
	

[γ ]
t , φ

〉]
< ∞.(39)

PROOF. Suppose (u0, v0) ∈ (B+
rap)

2. By (33) and (34), using the Burkholder–
Davis–Gundy and Jensen inequalities as well as Lemma 3.1 [recall the upper
bound (36)], we have

Eu0,v0

[
sup

0≤t≤T

〈
u

[γ ]
t , φ

〉]≤ Eu0,v0

[
sup

t∈[0,T ]
∣∣M [γ ]

t (φ)
∣∣]+ sup

0≤t≤T

〈u0, Stφ〉

≤ C
(
Eu0,v0

[[
M [γ ](φ),M [γ ](φ)

]
T

])1/2 + sup
0≤t≤T

∣∣〈u0, Stφ〉∣∣
≤ C

(
1

|�| 〈φ,ST u0〉〈φ,ST v0〉
)1/2

+ sup
0≤t≤T

∣∣〈u0, Stφ〉∣∣< ∞,



836 J. BLATH, M. HAMMER AND M. ORTGIESE

and analogously for ṽ[γ ]. Since this bound is independent of γ , (38) follows. In
order to show (39), assume without loss of generality that φ = φλ with λ < 0.
Since

φλ(x) ≤ C(λ,T ) inf
t∈[0,T ]Stφλ(x), x ∈ R

[see Lemma A.1, estimate (69) in the Appendix], and again applying bound (36),
we get

Eu0,v0

[
sup

0≤t≤T

〈
	

[γ ]
t , φλ

〉]= Eu0,v0

[〈
	

[γ ]
T ,φ2

λ/2
〉]

= γEu0,v0

[∫ T

0

∫
R

φλ/2(x)2u[γ ]
s (x)v[γ ]

s (x) dx ds

]

≤ CγEu0,v0

[∫ T

0

∫
R

(
ST −sφλ/2(x)

)2
u[γ ]

s (x)v[γ ]
s (x) dx ds

]
≤ C

|�| 〈φλ/2, ST u0〉〈φλ/2, ST v0〉 < ∞
uniformly in γ > 0.

The proof for initial conditions in (B+
tem)2 is completely analogous. �

COROLLARY 3.3 (Compact containment). Suppose � < 0 and (u0, v0) ∈
(B+

tem)2 [resp., (B+
rap)

2]. Then the compact containment condition holds for the

family (u
[γ ]
t , v

[γ ]
t ,	

[γ ]
t )t≥0; that is, for every ε > 0 and T > 0, there exists a com-

pact subset K = Kε,T ⊆ Mtem (resp., Mrap) such that

inf
γ>0

P
{
u

[γ ]
t ∈ Kε,T for all t ∈ [0, T ]}≥ 1 − ε,

and similarly for v
[γ ]
t and 	

[γ ]
t .

PROOF. Let (u0, v0) ∈ (B+
tem)2. To check the compact containment condition,

as in the proof of [5], Proposition 37, use compact subsets of Mtem of the form

K = K
(
(cm)m∈N

) := {
ν ∈Mtem : 〈ν,φ1/m〉 ≤ cm for all m ∈ N

}
,

where (cm)m∈N is a sequence of positive numbers: Given ε > 0 and T > 0, for any
m ∈ N we can find by Lemma 3.2 a number cm = cm(ε, T ) > 0 such that for all
γ > 0,

P

{
sup

0≤t≤T

〈
u

[γ ]
t , φ1/m

〉≥ cm

}
≤ ε

2m
.

In particular, it follows that for all γ > 0,

P
{
u

[γ ]
t ∈ K

(
(cm)m∈N

)
for all t ∈ [0, T ]}≥ 1 − ε.(40)
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The same reasoning shows that the compact condition also holds for v[γ ] and 	[γ ].
The proof for rapidly decreasing initial conditions (ũ0, ṽ0) ∈ (B+

rap)
2 is com-

pletely analogous, using compact subsets of Mrap of the form

K = K
(
(cm)m∈N

) := {
ν ∈ Mrap : 〈ν,φ−m〉 ≤ cm for all m ∈ N

}
together with Lemma 3.2. �

3.2. Tightness in C. In this subsection we will prove tightness of the family
of processes (31)–(32) with respect to the Skorokhod topology on the space of
continuous paths. The proof relies on the fourth moment bound of Proposition 2.2
and thus requires complementary Heaviside initial conditions and the condition
� < − 1√

2
.

In the first step, we establish tightness of the above measures integrated against
suitable test functions:

LEMMA 3.4. Suppose � < − 1√
2

and (u0, v0) = (1R−,1R+). Then for all

φ ∈⋃λ>0 Cλ the family of coordinate processes (〈φ,u
[γ ]
t 〉, 〈φ,v

[γ ]
t 〉, 〈φ,	

[γ ]
t 〉)t≥0,

considered as a family indexed over γ > 0, is tight in the space C[0,∞)(R
3).

Having established the fourth moment bound in Proposition 2.2, the proof of
tightness follows closely the proof of [27], Lemma 4.1.

PROOF OF LEMMA 3.4. The Green function representation for cSBM(�,

γ )u0,v0 (see, e.g., Corollary A.4) yields for φ ∈⋃λ>0 Cλ that〈
φ,u

[γ ]
t

〉= 〈φ,Stu0〉 +
∫
[0,t]×R

St−rφ(x)M [γ ](dr, dx),(41)

where (St )t≥0 denotes the heat semigroup, and M [γ ](dr, dx) is a zero-mean mar-
tingale measure with quadratic variation given by

γ

∫ t

0

∫
R

u[γ ]
r (x)v[γ ]

r (x)
(
St−rφ(x)

)2
dx dr.

We check Kolmogorov’s tightness criterion for the stochastic integral in (41).
For 0 < s < t , we have∫

[0,t]×R

St−rφ(x)M [γ ](dr, dx) −
∫
[0,s]×R

Ss−rφ(x)M [γ ](dr, dx)

=
∫
[s,t]×R

St−rφ(x)M [γ ](dr, dx)(42)

+
∫
[0,s]×R

(
St−rφ(x) − Ss−rφ(x)

)
M [γ ](dr, dx).



838 J. BLATH, M. HAMMER AND M. ORTGIESE

Consider the fourth moment of the first term on the right-hand side in (42): Using
first the Burkholder–Davis–Gundy inequality, then Jensen’s inequality, the scaling
property (4) and finally the fourth moment bound of Proposition 2.2 for � < − 1√

2
,

we obtain

Eu0,v0

[(∫
[s,t]×R

St−rφ(x)M [γ ](dr, dx)

)4]

≤ CEu0,v0

[(
γ

∫ t

s

∫
R

u[γ ]
r (x)v[γ ]

r (x)
(
St−rφ(x)

)2
dx dr

)2]

≤ C‖φ‖4∞(t − s)2
Eu0,v0

[(
1

t − s

∫ t

s

∫
R

γ u[γ ]
r (x)v[γ ]

r (x) dx dr

)2]
(43)

≤ C(φ)(t − s)Eu0,v0

[∫ t

s

(∫
R

u
[1]
γ 2r

(x)v
[1]
γ 2r

(x) dx

)2

dr

]
≤ C(u0, v0, φ,�)(t − s)2.

Now consider the expectation of the fourth power of the second term on the right-
hand side in (42): Again using the Burkholder–Davis–Gundy inequality and the
elementary bound

‖Stφ − Ssφ‖∞ ≤ 2‖φ‖∞
(
(t − s)s−1 ∧ 1

)
,

which follows from the estimate ‖∂rSrφ‖∞ ≤ ‖φ‖∞ 1
r

together with ‖Srφ‖∞ ≤
‖φ‖∞ for any r > 0, we have

Eu0,v0

[(∫
[0,s]×R

(
St−rφ(x) − Ss−rφ(x)

)
M [γ ](dr, dx)

)4]

≤ C‖φ‖4∞Eu0,v0

[(∫ s

0

∫
R

γ u[γ ]
r (x)v[γ ]

r (x)(44)

× (
(t − s)2(s − r)−2 ∧ 1

)
dx dr

)2]
.

Now defining

f (r) := 1 ∧ (t − s)2(s − r)−2, r ∈ [0, s],
we can rewrite the right-hand side of (44) and then apply Jensen’s inequality, the
scaling property and finally the fourth moment bound to obtain

C‖φ‖4∞
(∫ s

0
f (r) dr

)2

Eu0,v0

[(
1∫ s

0 f (r) dr

∫ s

0

∫
R

γ u[γ ]
r (x)v[γ ]

r (x) dxf (r) dr

)2]

≤ C‖φ‖4∞
∫ s

0
f (r) dr

∫ s

0
Eu0,v0

[(∫
R

u
[1]
γ 2r

(x)v
[1]
γ 2r

(x) dx

)2]
f (r) dr(45)

≤ C(u0, v0, φ,�)

(∫ s

0
f (r) dr

)2

.
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Now note that if s ∈ [ t
2 , t), we have by an explicit calculation∫ s

0
f (r) dr =

∫ 2s−t

0

(
t − s

s − r

)2

dr +
∫ s

2s−t
1dr = 2(t − s) − (t − s)2

s
≤ 2(t − s).

On the other hand, if s ∈ [0, t
2 ], we find that f (r) = 1 for all r ∈ [0, s] and thus∫ s

0
f (r) dr = s ≤ t − s.

Thus in both cases we obtain from (45) that (44) is bounded by 4C(t − s)2.
Combining the fourth moment estimates of the two terms in (42), one can de-

duce that

Eu0,v0

[(∫
[0,t]×R

St−rφ(x)M [γ ](dr, dx) −
∫
[0,s]×R

Ss−rφ(x)M [γ ](dr, dx)

)4]
≤ C(t − s)2,

confirming that the stochastic integral satisfies Kolmogorov’s tightness criterion.
The proof for tightness of 〈φ,v

[γ ]
t 〉 is analogous. Finally, noting that

Eu0,v0

[〈
	

[γ ]
t − 	[γ ]

s , φ
〉2]≤ ‖φ‖2∞Eu0,v0

[(
γ

∫ t

s

∫
R

u[γ ]
r (x)v[γ ]

r (x) dx dr

)2]
,

tightness of 〈φ,	
[γ ]
t 〉 follows by the same argument as in (43). �

REMARK 3.5. Note that for the application of Kolmogorov’s tightness crite-
rion, it would suffice to control pth moments for any p > 2 instead of p = 4 in
the above proof. However, the duality technique only allows us to estimate integer
(mixed) moments. This is the reason for the restriction � < �(4) = − 1√

2
in the

above approach. We believe this restriction to be due to the technique of the proof
(duality), however, and expect the above results to hold for all � < �(2) = 0. Since
our approach allows us to control second moments, we can at least show tightness
in the weaker Meyer–Zheng topology for all � < 0; see Proposition 3.8 below.

PROPOSITION 3.6. Let � < − 1√
2

and (u0, v0) = (1R−,1R+). Then the fam-

ily (μ
[γ ]
t , ν

[γ ]
t ,	

[γ ]
t )t≥0 of measure-valued processes is tight with respect to the

Skorokhod topology on the space C[0,∞)(M3
tem).

PROOF. By a standard argument known as Jakubowski’s criterion (see [13],
Theorem 3.1 or [4], Theorem 3.6.4; see also [12], Theorem 3.9.1), tightness of
the measure-valued processes follows from tightness of the coordinate processes
together with the compact containment condition. We have already checked the lat-
ter in Corollary 3.3. Moreover, for each test function φ ∈⋃λ>0 C+

λ , the coordinate
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processes 〈φ,u
[γ ]
t 〉, 〈φ,v

[γ ]
t 〉 and 〈φ,	

[γ ]
t 〉 are tight in C[0,∞)(R) by Lemma 3.4.

Since the family of functions {〈φ, ·〉 :φ ∈ ⋃
λ>0 C+

λ } is separating for Mtem [re-
call the definition of the topology of Mtem in (65)], an application of [13], Theo-
rem 3.1, completes the proof. �

REMARK 3.7. Note that the restriction to � < − 1√
2

and complementary
Heaviside initial conditions in the previous proposition comes only from Lem-
ma 3.4 (tightness of coordinate processes). The compact containment condition,
on the other hand, holds for all � < 0 and general initial conditions by Corol-
lary 3.3. As a consequence, any generalization of Lemma 3.4 to other values of
� < 0 or to more general initial conditions would immediately result in a corre-
sponding strengthening of the conclusion in Proposition 3.6.

3.3. Meyer–Zheng tightness. The approach of the previous subsection relies
heavily on the assumption of complementary Heaviside initial conditions and that
� < − 1√

2
. In particular, only under those conditions we are able to establish the

fourth moment bound of Proposition 2.2, which in turn is essential for proving
tightness in the space of continuous paths w.r.t. the Skorokhod topology. We will
see now that both assumptions can be weakened if we consider tightness w.r.t. the
weaker Meyer–Zheng “pseudopath” topology on the space of càdlàg paths. This
extension will be of crucial importance in the uniqueness proof in Section 5 below.
Indeed, in order to show uniqueness of the limit point, we use self-duality for
solutions of the martingale problem (MP′)�μ0,ν0 . Therefore, we have to construct
a dual process, that is, solutions to the martingale problem, for a sufficiently rich
class of rapidly decreasing initial conditions. In particular, we will need solutions
for initial conditions with nondisjoint support.

We now show that tightness of the family (μ
[γ ]
t , ν

[γ ]
t ,	

[γ ]
t )t≥0 of measure-

valued processes in the Meyer–Zheng topology is a simple consequence of the
estimates already derived in Section 3.1:

PROPOSITION 3.8. Suppose � < 0 and (u0, v0) ∈ (B+
rap)

2 [resp., (B+
tem)2].

Then the family of processes (μ
[γ ]
t , ν

[γ ]
t ,	

[γ ]
t )t≥0 from (31)–(32) is tight with re-

spect to the Meyer–Zheng topology on D[0,∞)(M3
rap) [resp., D[0,∞)(M3

tem)].

PROOF. Suppose (u0, v0) ∈ (B+
rap)

2. We aim at applying [18], Corollary 1.4,
which requires us to check the Meyer–Zheng tightness condition [see, e.g., (71) in
the Appendix] for the coordinate processes plus a compact containment condition.
Let φ ∈ C+

tem, and fix T > 0.
For (〈φ,u

[γ ]
t 〉)t≥0, in view of (33) and since t → 〈u0, Stφ〉 has finite variation

on [0, T ], checking the Meyer–Zheng condition (71) amounts to showing that

sup
γ>0

sup
t∈[0,T ]

Eu0,v0

[〈
φ,u

[γ ]
t

〉]
< ∞,
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which is, however, implied immediately by Lemma 3.2. The same argument works
for (〈φ,v

[γ ]
t 〉)t≥0. For the increasing process t → 〈φ,	

[γ ]
t 〉, condition (71) reduces

to

sup
γ>0

Eu0,v0

[〈
φ,	

[γ ]
T

〉]
< ∞,

which is also ensured by Lemma 3.2.
This shows that the Meyer–Zheng tightness criterion is satisfied for the coordi-

nate processes.
The compact containment condition has already been checked in Corollary 3.3.

Applying [18], Corollary 1.4, we are done. The proof for initial conditions in
(B+

tem)2 is completely analogous. �

4. Properties of limit points. Having established tightness of our family
(31)–(32) of measure-valued processes on path space, we turn to the investiga-
tion of the properties of limit points in the respective topologies. Our starting point
is the observation that each limit point w.r.t. the Skorokhod topology on C satisfies
the martingale problem (MP)

�
μ0,ν0 from Definition 1.7. This implies in particular

the absolute continuity of the limit measures which is part of our main result Theo-
rem 1.12. We will also see that limit points w.r.t. the (weaker) Meyer–Zheng topol-
ogy still satisfy the (weaker) martingale problem (MP′)�μ0,ν0 from Definition 1.8,
which will be used in the proof of self-duality and uniqueness later on.

The second fundamental observation is the fact that each Meyer–Zheng limit
point has the “separation of types” property (16) (see Lemma 4.4 below), which
will allow us to prove self-duality and uniqueness without having to specify the
quadratic variation of the limit martingales in the martingale problem (MP)

�
μ0,ν0 .

For Skorokhod limit points, this will also imply the separation of types in the more
intuitive sense (8).

Suppose (μt , νt ,	t)t≥0 is a limit point of the family (31)–(32) of measure-
valued processes. [Recall that by Proposition 3.6, such a limit point exists un-
der complementary Heaviside initial conditions (u0, v0) = (1R−,1R+) when-
ever � < − 1√

2
.] By the definition of the finite rate symbiotic branching model

cSBM(�, γ )u0,v0
, we know that for every γ > 0, (μ

[γ ]
t , ν

[γ ]
t )t≥0 is a solution to the

martingale problem (MP)
�
μ0,ν0 , with the covariation structure in (10) given by the

measure 	[γ ] from (32). Thus it comes as no surprise that the limit point (μ, ν) of
(μ[γ ], ν[γ ]) satisfies the same martingale problem, with the covariation now con-
trolled by the limit point 	 of 	[γ ]:

PROPOSITION 4.1. Let � < 0 and (u0, v0) ∈ (B+
tem)2 [resp., (B+

rap)
2]. If

(μt , νt ,	t)t≥0 ∈ C[0,∞)(M3
tem) [resp., C[0,∞)(M3

rap)] is a limit point with re-

spect to the Skorokhod topology of the family (μ
[γ ]
t , ν

[γ ]
t ,	

[γ ]
t )t≥0, γ > 0, then

(μt , νt )t≥0 satisfies the martingale problem (MP)
�
u0,v0 with the covariation struc-

ture in (10) being given by the process (	t)t≥0.



842 J. BLATH, M. HAMMER AND M. ORTGIESE

PROOF. We give the proof for (u0, v0) ∈ (B+
tem)2, the proof for initial condi-

tions in B+
rap being completely analogous.

Consider a sequence γk ↑ ∞ such that(
μ

[γk]
t , ν

[γk]
t ,	

[γk]
t

)
t≥0

L→
k→∞(μt , νt ,	t)t≥0

in C[0,∞)(M3
tem). Let φ ∈ C(2)

rap . Then we have also(
M

[γk]
t (φ),N

[γk]
t (φ),	

[γk]
t

(
φ2))

t≥0
L→

k→∞
(
Mt(φ),Nt(φ),	t

(
φ2))

t≥0

in C[0,∞)(R
3), where (M [γk](φ),N [γk](φ)) and (M(φ),N(φ)) denote the pairs of

processes from (9) corresponding to (μ[γk], ν[γk]) and (μ, ν), respectively. We al-
ready know that M [γk](φ) and N [γk](φ) are martingales. In order for the weak limit
(M(φ), N(φ)) to be again a martingale, it suffices to show that (M

[γk]
t (φ))k∈N and

(N
[γk]
t (φ))k∈N are uniformly integrable for every fixed t ; see, e.g., [19], Theo-

rem 11). Using the Burkholder–Davis–Gundy and Jensen inequalities as well as
Lemma 3.2, we obtain for every 1 < p ≤ 2 that

sup
k∈N

E
[∣∣M [γk]

t (φ)
∣∣p] ≤ Cp sup

k∈N
E
[([

M [γk](φ),M [γk](φ)
]
t

)p/2]
≤ Cp sup

k∈N
(
E
[[

M [γk](φ),M [γk](φ)
]
t

])p/2

= Cp sup
k∈N

(
E
[〈
	

[γk]
t , φ2〉])p/2

< ∞.

An analogous assertion holds for N [γk](φ). Hence the weak limit (M(φ),N(φ)) is
again a martingale.

The quadratic (co)variation converges along with the sequence of martingales to
the quadratic (co)variation of the limit martingales (see, e.g., [19], Theorem 12).
Thus identity (10) on the covariation structure of the limit martingales follows
directly from the corresponding identity for the finite rate model, which completes
our proof. �

The fact that limit points w.r.t. the Skorokhod topology satisfy the martingale
problem (MP)

�
μ0,ν0 has important consequences: Namely, they also satisfy the

(weaker) martingale problem (MP′)�μ0,ν0 , which will be of crucial importance in
the uniqueness proof in Section 5 below. Also, they admit a similar Green func-
tion representation as for the finite rate symbiotic branching model. Since these
properties are true of any solution to the martingale problem (MP)

�
μ0,ν0 , not just

limit points of our family of processes, and since the methods to prove them are
standard, we have decided put the corresponding proofs into Appendix A.2; see
Lemma A.3 and Corollary A.6. At this point, we only prove the absolute continu-
ity of the limit measures which is part of our main result Theorem 1.12. This is in
fact also true for any solution to the martingale problem (MP)

�
μ0,ν0 and is a simple

consequence of a general criterion for absolute continuity due to [6]:
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PROPOSITION 4.2 (Absolute continuity). Let � ∈ (−1,0], and suppose
(μt , νt )t≥0 is any solution to the martingale problem (MP)

�
μ0,ν0 . Then for each

fixed t > 0, the measures μt and νt are absolutely continuous w.r.t. Lebesgue mea-
sure, Pμ0,ν0 -a.s.

PROOF. Fix T > 0. Using the same transformation as in [9], page 24, we de-
fine

μ̃t := μt, ν̃t := 1√
1 − �2

(νt − �μt).(46)

Then (μ̃t , ν̃t )t∈[0,T ] is a continuous M2-valued process, where M denotes the
space of Radon measures on R (note that � ≤ 0). Using the Green function rep-
resentation of (MP)

�
μ0,ν0 from Corollary A.4, it is easily checked that for all non-

negative test functions 0 ≤ φ ∈ C∞
c , the processes

M̃(φ)t := 〈μ̃t , ST −tφ〉, Ñ(φ)t := 〈ν̃t , ST −tφ〉, t ∈ [0, T ]
are martingales with covariance structure[

M̃(φ), M̃(φ)
]
t = [

Ñ(φ), Ñ(φ)
]
t ,

[
M̃(φ), Ñ(φ)

]
t = 0, t ∈ [0, T ].

Applying Theorem 57 in [6], we get a.s. absolute continuity of μ̃T and ν̃T . Thus

the same holds for μT = μ̃T and νT = �μ̃T +
√

1 − �2ν̃T . �

We remind the reader of our convention to use the same symbol for an absolutely
continuous measure and its density. Thus if (μt , νt )t≥0 is any limit point of the
family (31), we will write

μt(dx) = μt(x) dx, νt (dx) = νt (x) dx.

Note, however, that although μt and νt are (as measures) elements of the space
Mtem respectively Mrap, their densities have no reason to be elements of the func-
tion space Btem, respectively Brap, let alone Ctem, respectively Crap, as is the case
for solutions to the finite rate symbiotic branching model cSBM(�, γ )u0,v0

.
We now turn to limit points with respect to the Meyer–Zheng topology. It would

be nice to prove that every Meyer–Zheng limit point satisfies also the martingale
problem (MP)

�
u0,v0 , but unfortunately we have been unable to show an analogue

of Proposition 4.1 for the Meyer–Zheng topology.3 The reason is the following:
While in that case we can still apply [19], Theorem 11, in order to show that
the weak limit of the approximating martingales is again a martingale, it is no
longer clear that the Meyer–Zheng limit 	 of the quadratic variation processes

3As a consequence, we also cannot show a Green function representation or absolute continuity of
the limit measures μt and νt for fixed t .
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	[γ ] coincides with the quadratic variation of the limit martingales. (In order to
apply [19], Theorem 12, we would have to know that 	 is continuous.)

However, we can still prove that any Meyer–Zheng limit point of the family
(31)–(32) satisfies the weaker martingale problem (MP′)�

ũ0,ṽ0
of Definition 1.8:

PROPOSITION 4.3. Let � < 0 and (u0, v0) ∈ (B+
rap)

2 [resp., (B+
tem)2]. If

(μt , νt ,	t)t≥0 ∈ D[0,∞)(M3
rap) [resp., D[0,∞)(M3

tem)] is any limit point with re-

spect to the Meyer–Zheng topology of the family (μ
[γ ]
t , ν

[γ ]
t ,	

[γ ]
t )t≥0, γ > 0, then

(μt , νt )t≥0 solves the martingale problem (MP′)�u0,v0 , with the process (	t)t≥0
satisfying the requirements of Definition 1.8.

PROOF. We give the proof for (u0, v0) ∈ (B+
rap)

2.

First, we show that the limit point (	t)t≥0 of the family (	
[γ ]
t )t≥0 has the prop-

erties required in Definition 1.8. It is clear that (	t)t≥0 is increasing with 	0 = 0.
We check condition (14): By [19], Theorem 5 (see also [18], Theorem 1.1(b)), we
can find a sequence γk ↑ ∞ and a set I ⊆ (0,∞) of full Lebesgue measure such
that the finite dimensional distributions of (	

[γk]
t )t∈I converge weakly to those of

(	t)t∈I as k → ∞. Fix t ∈ I . Then for all test functions φ ∈ ⋃
λ>0 C+

−λ, by esti-
mate (39) in Lemma 3.2 and Fatou’s lemma, we have

Eu0,v0

[〈	t,φ〉]≤ lim inf
k→∞ Eu0,v0

[〈
	

[γk]
t , φ

〉]
< ∞.

Now use right-continuity and monotonicity of (	t)t≥0 and another application of
Fatou’s lemma to extend this to all t > 0. This shows that Eu0,v0[	t(dx)] ∈ Mrap
for all t > 0, that is, (14).

It remains to check that for all test functions φ,ψ ∈ (C(2)
tem)+, the process

M̃t := F(μt , νt , φ,ψ) − F(μ0, ν0, φ,ψ)

− 1

2

∫ t

0
F(μs, νs, φ,ψ)〈〈μs, νs,�φ,�ψ〉〉� ds(47)

− 4
(
1 − �2) ∫

[0,t]×R

F(μs, νs, φ,ψ)φ(x)ψ(x)	(ds, dx), t ≥ 0

is a martingale. Denote by M̃
[γ ]
t the same expression but with (μ, ν,	) replaced by

(μ[γ ], ν[γ ],	[γ ]). Choosing a sequence γk ↑ ∞ such that (μ
[γk]
t , ν

[γk]
t ,	

[γk]
t )t≥0

converges to (μt , νt ,	t)t≥0 w.r.t. the Meyer–Zheng topology on D[0,∞)(M3
rap),

we get that (M̃
[γk]
t )t≥0 converges to (M̃t )t≥0 w.r.t. the Meyer–Zheng topology on

D[0,∞)(R) as k → ∞. Moreover, by Corollary A.6 we know that M̃ [γ ] are martin-
gales for each γ > 0 with quadratic variation

8
(
1 − �2) ∫

[0,t]×R

F
(
μ[γ ]

s , ν[γ ]
s , φ,ψ

)2
φ(x)ψ(x)	[γ ](ds, dx).(48)
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Consequently, using the Burkholder–Davis–Gundy inequality and the fact that
|F(·)| ≤ 1, we have

Eu0,v0

[∣∣M̃ [γ ]
t

∣∣2] ≤ Eu0,v0

[[
M̃ [γ ], M̃ [γ ]]

t

]
≤ 8

(
1 − �2)

Eu0,v0

[∫
[0,t]×R

φ(x)ψ(x)	[γ ](ds, dx)

]
= 8

(
1 − �2)

Eu0,v0

[〈
	

[γ ]
t , φψ

〉]
.

By estimate (39) in Lemma 3.2, for each T > 0 the previous display is bounded
uniformly in γ > 0 and t ∈ [0, T ]. Hence we get

sup
γ>0

sup
t∈[0,T ]

Eu0,v0

[∣∣M̃ [γ ]
t

∣∣2]< ∞

for all T > 0. Applying [19], Theorem 11, we infer that the Meyer–Zheng limit M̃

is again a martingale, which completes our argument. �

We now turn to proving the “separation of types” property, that is, the fact that
for all limit points the measures μt and νt are mutually singular for each t > 0. In
fact, we will prove a slightly stronger assertion, namely (49) below. Its proof relies
on the colored particle moment duality of Lemma 2.1 applied to mixed second
moments of (μ

[γ ]
t , ν

[γ ]
t ).

LEMMA 4.4 (Separation of types). Let � < 0 and (u0, v0) ∈ (B+
rap)

2

[resp., (u0, v0) ∈ (B+
tem)2]. Suppose that (μt , νt )t≥0 ∈ D[0,∞)(M2

rap) [resp.,

D[0,∞)(M2
tem)] is a limit point with respect to the Meyer–Zheng topology of the

family of measure-valued processes (μ
[γ ]
t , ν

[γ ]
t )t≥0 from (31). Then for each t > 0,

x ∈ R and ε > 0 we have

St+εu0(x)St+εv0(x) ≥ Eu0,v0

[
Sεμt(x)Sενt (x)

] ε↓0→ 0.(49)

PROOF. We give the proof for (u0, v0) ∈ (B+
rap)

2, the proof for initial condi-

tions in B+
tem being completely analogous. Note that in either case, the left-hand

side of (49) is finite by Lemma A.1(a).
Again using [19], Theorem 5, choose a sequence γk ↑ ∞ and a set I ⊆

(0,∞) of full Lebesgue measure such that the finite dimensional distributions of
(μ

[γk]
t , ν

[γk]
t )t∈I converge weakly to those of (μt , νt )t∈I as k → ∞. Fix t ∈ I . Then

for all test functions φ,ψ we have weak convergence〈
μ

[γk]
t , φ

〉〈
ν

[γk]
t ,ψ

〉 k↑∞→ 〈μt,φ〉〈νt ,ψ〉(50)

in R. Thus for each x ∈ R, letting φ(·) := ψ(·) := pε(x − ·) we obtain weak con-
vergence

Sεμ
[γk]
t (x)Sεν

[γk]
t (x)

k↑∞→ Sεμt(x)Sενt (x).
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Using Fatou’s lemma and the colored particle moment duality in form (19) for
mixed second moments, we get since � < 0,

Eu0,v0

[
Sεμt(x)Sενt (x)

]
≤ lim inf

k→∞ Eu0,v0

[
Sεμ

[γk]
t (x)Sεν

[γk]
t (x)

]
= lim inf

k→∞

∫∫
dy dzpε(x − y)pε(x − z)Eu0,v0

[
u

[γk]
t (y)v

[γk]
t (z)

]
(51)

= lim inf
k→∞

∫∫
dy dzpε(x − y)pε(x − z)Ey,z

[
u0
(
B

(1)
t

)
v0
(
B

(2)
t

)
eγk�L

1,2
t
]

=
∫∫

dy dzpε(x − y)pε(x − z)Ey,z

[
u0
(
B

(1)
t

)
v0
(
B

(2)
t

)
1{L1,2

t =0}
]
,

for all x ∈ R and t ∈ I , where (B
(i)
t )t≥0, i = 1,2 are independent Brownian mo-

tions started at y and z, respectively, and (L
1,2
t )t≥0 denotes their intersection local

time. It is easy to see that the right-hand side of (51) is continuous in t . Using the
fact that I has full Lebesgue measure together with right-continuity of the paths of
(μt , νt )t≥0 and Fatou’s lemma, we get estimate (51) for all t > 0. This implies in
particular that

Eu0,v0

[
Sεμt(x)Sενt (x)

]≤ St+εu0(x)St+εv0(x) < ∞, x ∈ R, t > 0.

Moreover, using Hölder’s inequality we have

Ey,z

[
u0
(
B

(1)
t

)
v0
(
B

(2)
t

)
1{L1,2

t =0}
]

≤ (
Ey,z

[(
u0
(
B

(1)
t

)
v0
(
B

(2)
t

))2])1/2(
Py,z

{
L

1,2
t = 0

})1/2

= (
Stu

2
0(y)Stv

2
0(z)

)1/2(
Py,z

{
L

1,2
t = 0

})1/2
.

Observe that the right-hand side of the previous display tends to 0 as (y, z) →
(x, x): Assume without loss of generality that y < z, and let B be a Brownian mo-

tion starting at y−z < 0 with local time L0 at 0. Using the fact that L
1,2
t

d= 1
2L0

2t to-
gether with Lemma A.7 and the reflection principle (see, e.g., [20], Theorem 2.21),
we obtain for (y, z) → (x, x) that

Py,z

{
L

1,2
t = 0

} = Py−z

{
L0

2t = 0
}= Py−z

{
M+

2t = 0
}= Py−z{M2t ≤ 0}

= P0{M2t ≤ z − y} = 1 − 2P0{B2t > z − y}
→ 1 − 2P0{B2t > 0} = 0.

Since on the other hand clearly Ex,x[u0(B
(1)
t )v0(B

(2)
t )1{L1,2

t =0}] = 0 for t > 0, this
shows that the mapping

(y, z) → Ey,z

[
u0
(
B

(1)
t

)
v0
(
B

(2)
t

)
1{L1,2

t =0}
]
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is continuous at all points (x, x) of the diagonal in R
2, where it takes the value 0.

As a consequence, the right-hand side of (51) converges to 0 as ε ↓ 0, giving (49)
for all t > 0 and ∈ R. �

Of course, Lemma 4.4 holds in particular also for limit points in the stronger
Skorokhod topology. In this case, together with absolute continuity of the limiting
measures from Proposition 4.2, it implies the separation of types in the intuitive
sense (8), that is, the mutual singularity of the limiting measures (μt , νt ) for fixed
t > 0:

COROLLARY 4.5 (Separation of types). Let � < 0 and (u0, v0) ∈ (B+
rap)

2

[resp., (u0, v0) ∈ (B+
tem)2]. If (μt , νt )t≥0 ∈ C[0,∞)(M2

rap) [resp., C[0,∞)(M2
tem)] is

a limit point with respect to the Skorokhod topology of the family (31), then for
each t > 0 the measures μt and νt (which are known to be absolutely continuous
by Proposition 4.2) are mutually singular: We have

Eu0,v0

[∫
R

μt(x)νt (x) dx

]
= 0(52)

and thus also

μt(·)νt (·) = 0, Pu0,v0 ⊗ �-a.s.

PROOF. Let 0 ≤ ϕ ∈ C∞
c . By differentiation theory for measures (see, e.g.,

[25], Theorem 8.6), we have Pu0,v0 -a.s.(
Sεμt(x), Sενt (x)

) ε↓0→(
μt(x), νt (x)

)
for �-a.e. x ∈ R.

Using again Fatou’s lemma and Fubini’s theorem, we get

Eu0,v0

[∫
R

μt(x)νt (x)ϕ(x) dx

]
= Eu0,v0

[∫
R

lim
ε↓0

Sεμt(x)Sενt (x)ϕ(x) dx

]
(53)

≤ lim inf
ε↓0

∫
R

Eu0,v0

[
Sεμt(x)Sενt (x)

]
ϕ(x)dx.

By Lemma 4.4 the integrand in the integral
∫
R

· · ·dx on the right-hand side of the
previous display converges to 0 as ε ↓ 0 pointwise in x ∈ R and for ε ∈ [0,1] is
dominated by the integrable function

ϕ(x) sup
s∈[0,t+1]

{
Ssu0(x)Ssv0(x)

}
[note Lemma A.1(a)]. By dominated convergence, E[∫

R
μt(x)νt (x)ϕ(x) dx] = 0,

and since 0 ≤ ϕ ∈ C∞
c was arbitrary, our proof is complete. �
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5. Self-duality and uniqueness. In this section, we establish uniqueness for
the martingale problem (MP′)�μ0,ν0 [and thus also for the stronger martingale prob-
lem (MP)

�
μ0,ν0 ] subject to the restriction that the solutions have the “separation of

types” property (49). Recall from the Introduction that these martingale problems
are not well posed without putting some restrictions on the solutions, and that
for the finite rate symbiotic branching model cSBM(�, γ )u0,v0 uniqueness is es-
tablished by prescribing the structure of the quadratic variation process (	)t≥0.
In [11], Proposition 5, this is proved via an exponential self-duality. Our first goal
in this section is to extend this self-duality to solutions of the martingale problem
(MP′)�μ0,ν0 satisfying the said condition, circumventing an explicit specification of
the quadratic variation. We have the following result:

PROPOSITION 5.1. Let � ∈ (−1,1). Fix (possibly random) initial conditions
(μ0, ν0) ∈ M2

tem and (deterministic) initial conditions (μ̃0, ν̃0) ∈ (B+
rap)

2. Suppose

that (μt , νt , )t≥0 ∈ D[0,∞)(M2
tem) respectively (μ̃t , ν̃t )t≥0 ∈ D[0,∞)(M2

rap) are so-

lutions to the martingale problem (MP′)�μ0,ν0 respectively (MP′)�
μ̃0,ν̃0

. Further, as-
sume that the solutions satisfy the “separation of types” property in the sense that
for Lebesgue-a.e. t ∈ (0,∞) and all x ∈ R, we have

Eμ0,ν0

[
Sεμt(x)Sενt (x)

] ε↓0→ 0 and Eμ̃0,ν̃0

[
Sεμ̃t (x)Sεν̃t (x)

] ε↓0→ 0.(54)

Moreover, assume that for each T > 0 we have

sup
t∈[0,T ],ε∈[0,1]

Eμ0,ν0

[
Sεμt(·)Sενt (·)] ∈ B+

tem,

(55)
sup

t∈[0,T ],ε∈[0,1]
Eμ̃0,ν̃0

[
Sεμ̃t (·)Sεν̃t (·)] ∈ B+

rap.

Then the following approximate self-duality holds for the processes (μt , νt )t≥0 and
(μ̃t , ν̃t )t≥0, involving the function F as in (13): for T > 0,∫ T

0
E
[
F(μt , νt , μ̃0, ν̃0)

]
dt = lim

ε↓0

∫ T

0
E
[
F(Sεμ0, Sεν0, μ̃t , ν̃t )

]
dt.(56)

Moreover, for (μ0, ν0) ∈ (B+
tem)2, we have the self-duality

Eμ0,ν0

[
F(μt , νt , μ̃0, ν̃0)

]= Eμ̃0,ν̃0

[
F(μ0, ν0, μ̃t , ν̃t )

]
, t ≥ 0.(57)

The general strategy of the proof is similar to that of the results in [12], Sec-
tion 4.4; however none of those results is directly applicable in our case. Also, we
employ the same spatial smoothing procedure using the heat kernel as in the proof
of [1], Proposition 1.

PROOF OF PROPOSITION 5.1. By Definition 1.8, there exist increasing pro-
cesses (	t)t≥0 ∈ D[0,∞)(Mtem) and (	̃t )t≥0 ∈ D[0,∞)(Mrap), with 	0 = 	̃0 = 0
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and satisfying (14), such that for all test functions, expression (15) is a martin-
gale. For the purposes of the proof, we may assume that (μ, ν,	) and (μ̃, ν̃, 	̃)

are defined on a common sample space � and are independent of each other. The
corresponding probability, respectively expectation on �, will be denoted by P,
respectively E.

Observe that by the definition of 〈〈·〉〉� [recall (12)] and the symmetry of the heat

kernel, we have for each ε > 0 and φ,ψ ∈ (C(2)
rap)

+,

〈〈Sεμt , Sενt , φ,ψ〉〉� = 〈〈μt, νt , Sεφ,Sεψ〉〉�,

〈〈Sεμt , Sενt ,�φ,�ψ〉〉� = 〈〈μt, νt ,�Sεφ,�Sεψ〉〉�.

Thus by taking expectations in (15) with (Sεφ,Sεψ) in place of (φ,ψ), we get

E
[
F(Sεμt , Sενt , φ,ψ) − F(Sεμ0, Sεν0, φ,ψ)

]
= 1

2
E

[∫ t

0
F(Sεμs, Sενs, φ,ψ)〈〈Sεμs, Sενs,�φ,�ψ〉〉� ds

]
(58)

+ 4
(
1 − �2)

E

[∫
[0,t]×R

F(Sεμs, Sενs, φ,ψ)Sεφ(x)Sεψ(x)	(ds, dx)

]
for all ε > 0 and φ,ψ ∈ (C(2)

rap)
+. An analogous assertion holds for (μ̃, ν̃, 	̃) if

φ,ψ ∈ (C(2)
tem)+.

Now fix T > 0, and for t, s ∈ [0, T ], ε > 0, let

fε(t, s) := E
[
F(Sεμt , Sενt , Sεμ̃s, Sεν̃s)

]
.

Observe that this function is well defined since Sεμt and Sενt , respectively Sεμ̃t

and Sεν̃t , are in (C(2)
tem)+, respectively (C(2)

rap)
+; see, for example, Corollary A.2(b).

Then∫ T

0

(
fε(r,0) − fε(0, r)

)
dr

=
∫ T

0

(
fε(T − r, r) − fε(0, r)

)
dr −

∫ T

0

(
fε(r, T − r) − fε(r,0)

)
dr

=
∫ T

0

(
E
[
F(SεμT −r , SενT −r , Sεμ̃r , Sεν̃r )

− F(Sεμ0, Sεν0, Sεμ̃r , Sεν̃r )
])

dr

−
∫ T

0

(
E
[
F(Sεμr, Sενr , Sεμ̃T −r , Sεν̃T −r )

− F(Sεμr, Sενr , Sεμ̃0, Sεν̃0)
])

dr.

Now we use (58) [resp., the analogous identity for (μ̃, ν̃, 	̃)] with t replaced
by T − r for each r ∈ [0, T ] and (φ,ψ) := (Sεμ̃r , Sεν̃r ) [resp., (φ,ψ) :=
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(Sεμr, Sενr)] to see that the previous display is equal to

1

2

∫ T

0
E

[∫ T −r

0
F(Sεμs, Sενs, Sεμ̃r , Sεν̃r )〈〈Sεμs, Sενs,�Sεμ̃r ,�Sεν̃r〉〉� ds

]
dr

+ 4
(
1 − �2) ∫ T

0
E

[∫
[0,T −r]×R

F(Sεμs, Sενs, Sεμ̃r , Sεν̃r )

× S2εμ̃r (x)S2εν̃r (x)	(ds, dx)

]
dr

− 1

2

∫ T

0
E

[∫ T −r

0
F(Sεμr, Sενr , Sεμ̃s, Sεν̃s)

× 〈〈�Sεμr,�Sενr , Sεμ̃s, Sεν̃s〉〉� ds

]
dr

− 4
(
1 − �2) ∫ T

0
E

[∫
[0,T −r]×R

F(Sεμr, Sενr , Sεμ̃s, Sεν̃s)

× S2εμr(x)S2ενr(x)	̃(ds, dx)

]
dr.

Observe that due to symmetry of the Laplacian and Fubini’s theorem, the first and
third term of the last display cancel. Thus we have shown that∫ T

0

(
fε(r,0) − fε(0, r)

)
dr

= 4
(
1 − �2)(∫ T

0
E

[∫
[0,T −r]×R

F(Sεμs, Sενs, Sεμ̃r , Sεν̃r )

× S2εμ̃r (x)S2εν̃r (x)	(ds, dx)

]
dr

−
∫ T

0
E

[∫
[0,T −r]×R

F(Sεμr, Sενr , Sεμ̃s, Sεν̃s)

× S2εμr(x)S2ενr(x)	̃(ds, dx)

]
dr

)
.

We will show that each term in the difference on the right-hand side of the previous
display converges to 0 as ε ↓ 0. Consider the first term: Since |F(·)| ≤ 1, it is
bounded in absolute value up to a constant by∫ T

0
E

[∫
[0,T −r]×R

S2εμ̃r (x)S2εν̃r (x)	(ds, dx)

]
dr

=
∫ T

0
Eμ0,ν0

[∫
R

Eμ̃0,ν̃0

[
S2εμ̃r (x)S2εν̃r (x)

]
	T −r (dx)

]
dr

≤
∫ T

0
Eμ0,ν0

[∫
R

Eμ̃0,ν̃0

[
S2εμ̃r (x)S2εν̃r (x)

]
	T (dx)

]
dr.
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By assumption (54), the integrand in the above display converges to 0 for all x ∈ R

and almost all r ∈ [0, T ] as ε ↓ 0. Hence using conditions (14) and (55) together
with dominated convergence, we are done. The argument for the second term in
the difference is completely analogous. Thus in view of the definition of fε , we
have shown that

lim
ε↓0

∫ T

0

(
E
[
F(μt , νt , Sεμ̃0, Sεν̃0)

]−E
[
F(Sεμ0, Sεν0, μ̃t , ν̃t )

])
dt = 0.(59)

Since μ̃0 and ν̃0 are assumed to be in B+
rap, using estimate (68) in Lemma A.1(a)

and dominated convergence, it is easy to see that∫ T

0
E
[
F(μt , νt , Sεμ̃0, Sεν̃0)

]
dt →

∫ T

0
E
[
F(μt , νt , μ̃0, ν̃0)

]
dt,

as ε ↓ 0. [Note that the same argument cannot in general be employed for the
second term in the difference in (59): Since μ0 and ν0 are only assumed to be in
Mtem and not in B+

tem, we do not have (68) but only the weaker estimate (70) in
Lemma A.1(b), which, however, is not sufficient for dominated convergence here.]
Thus (56) is proved.

If (μ0, ν0) ∈ (B+
tem)2, we can again use estimate (68) and dominated conver-

gence to conclude that also∫ T

0
E
[
F(Sεμ0, Sεν0, μ̃t , ν̃t )

]
dt →

∫ T

0
E
[
F(μ0, ν0, μ̃t , ν̃t )

]
dt

as ε ↓ 0. Thus in this case we get from (59) that∫ T

0

(
E
[
F(μt , νt , μ̃0, ν̃0)

]−E
[
F(μ0, ν0, μ̃t , ν̃t )

])
dt

= lim
ε↓0

∫ T

0

(
E
[
F(μt , νt , Sεμ̃0, Sεν̃0)

]−E
[
F(Sεμ0, Sεν0, μ̃t , ν̃t )

])
dt = 0

for each T > 0. Since the processes (μt , νt )t≥0 and (μ̃t , ν̃t )t≥0 are assumed càdlàg,
it is readily checked that the same is true of the integrand in the last display. Dif-
ferentiating, we obtain the self-duality (57) for all t ≥ 0. �

PROPOSITION 5.2 (Uniqueness). Fix � ∈ (−1,0) and (possibly random) ini-
tial conditions (μ0, ν0) ∈ M2

tem or M2
rap. Then there is at most one solution

(μ, ν,	) to the martingale problem (MP′)�μ0,ν0 satisfying the “separation of
types” property (16).

PROOF. Let (μ, ν,	) and (μ′, ν′,	′) be any two solutions to (MP′)�μ0,ν0 ,
with (possibly random) initial conditions (μ0, ν0) ∈ M2

tem, which satisfy con-
dition (16). By Propositions 3.8 and 4.3, we know that for any (ũ0, ṽ0) ∈
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(B+
rap)

2, there exists a solution (μ̃t , ν̃t )t ∈ D[0,∞)(M2
rap) of the martingale prob-

lem (MP′)�
ũ0,ṽ0

, which by Lemma 4.4 satisfies also the “separation of types” con-
dition (16). Note that (16) ensures that both assumptions (54) and (55) of Proposi-
tion 5.1 hold [for (55), use Lemma A.1(a) in the Appendix]. Consequently, we can
apply the self-duality of Proposition 5.1 to conclude that for all (ũ0, ṽ0) ∈ (B+

rap)
2,

we have∫ T

0
E
[
F(μt , νt , ũ0, ṽ0)

]
dt = lim

ε↓0

∫ T

0
E
[
F(Sεμ0, Sεν0, μ̃t , ν̃t )

]
dt

=
∫ T

0
E
[
F
(
μ′

t , ν
′
t , ũ0, ṽ0

)]
dt, T ≥ 0.

Differentiating, we get

E
[
F(μt , νt , ũ0, ṽ0)

]= E
[
F
(
μ′

t , ν
′
t , ũ0, ṽ0

)]
(60)

first for Lebesgue-a.e. t > 0 and then, by right-continuity, for all t > 0. Since for
� ∈ (−1,1), the family of functions {F(·, ·; ũ0, ṽ0) : (ũ0, ṽ0) ∈ (B+

rap)
2} is measure-

determining for M2
tem (see, e.g., [7], proof of Lemma 3.1), it follows that the one-

dimensional distributions of (μ, ν) and (μ′, ν′) coincide. Arguing as in [2], proof
of Theorem VI.3.2, this can be easily extended to the finite-dimensional distribu-
tions; thus (μ, ν) and (μ′, ν′) have the same law on D[0,∞)(M2

tem).
The proof for initial conditions in Mrap is completely analogous. �

6. Bounds on the width of the interface. In this section, we will prove the
pth moment estimate on the approximate width of the interface (Rt (ε)−Lt(ε)) of
Theorem 1.15 using the fourth moment estimates established in Proposition 2.2.
Since we are interested in the dependence of the constants on γ , we write as above
(u

[γ ]
t , v

[γ ]
t ) for a solution of cSBM(�, γ ) and moreover define

L
[γ ]
t (ε) = inf

{
x :
∫ x

−∞
u

[γ ]
t (y)v

[γ ]
t (y) dy ≥ ε

}
∧ R

(
u

[γ ]
t , v

[γ ]
t

)
and

R
[γ ]
t (ε) = sup

{
x :
∫ ∞
x

u
[γ ]
t (y)v

[γ ]
t (y) dy ≥ ε

}
∨ L

(
u

[γ ]
t , v

[γ ]
t

)
.

PROOF OF THEOREM 1.15. First, we prove the statement for the case γ = 1,
and at the end we will deduce the statement for general γ using a scaling argument.
Therefore, we write (ut , vt ) := (u

[1]
t , v

[1]
t ) and (Rt ,Lt ) := (R

[1]
t ,L

[1]
t ). We recall

from (22) and (28) in the proof of Proposition 2.2 (for the system with branching
rate 1) that since � < − 1√

2
, for any ε̃ ∈ (0, 1

2) there exists a constant C(�, ε̃) > 0
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such that for all z > 0 and t ≥ 0,

E1
R− ,1

R+

[∫
R

ut (x)vt (x)ut (x + z)vt (x + z) dx

]
= E1

R− ,1
R+

[∫
R

ut (x)vt (x)ut (x − z)vt (x − z) dx

]
≤ C(�, ε̃)

(
1 ∧ z−2(1−ε̃)).

Defining for q ∈ (0,1)

Iq(t) :=
∫
R

∫
R

|x − y|qut (x)vt (x)ut (y)vt (y) dx dy

and choosing ε̃ = 1
4(1 − q), the estimate in (61) shows that for all t ≥ 0,

E1
R− ,1

R+
[
Iq(t)

]= 2
∫ ∞

0
|z|qE1

R− ,1
R+

[∫
R

ut(x)vt (x)ut (x + z)vt (x + z) dx

]
dz

≤ C

(
�,

1

4
(1 − q)

)∫ ∞
0

zq(1 ∧ z−2(1−ε̃))dz

≤ C

(
�,

1

4
(1 − q)

)(
1 +

∫ ∞
1

z−2+2ε̃+q dz

)
= C

(
�,

1

4
(1 − q)

)(
1 + 2

1 − q

)
< ∞

since by our choice of ε̃ we have 2ε̃ + q = 1
2 + 1

2q < 1. Fix z > 0. Then on the
event that Rt(ε) − Lt(ε) > z, we can estimate using the definition of Lt(ε),Rt (ε)

that

Iq(t) ≥ zq
∫ Lt (ε)

−∞
ut (x)vt (x) dx

∫ ∞
Rt (ε)

ut (y)vt (y) dy ≥ ε2zq.

Hence we can conclude that

P1
R− ,1

R+
{
Rt(ε) − Lt(ε) > z

}≤ ε−2z−q
E1

R− ,1
R+
[
Iq(t)1{Rt (ε)−Lt (ε)>z}

]
≤ ε−2z−q

E1
R− ,1

R+
[
Iq(t)

]≤ C̃(�, q)ε−2z−q,

where we define C̃(�, q) := C(�, 1
4(1 − q))(1 + 2

1−q
). Thus, we have by Fubini

that for any 0 < p < q < 1,

E1
R− ,1

R+
[((

Rt(ε) − Lt(ε)
)+)p]= p

∫ ∞
0

zp−1
P1

R− ,1
R+
{
Rt(ε) − Lt(ε) > z

}
dz

≤ p

∫ ∞
0

zp−1(1 ∧ C̃(�, q)ε−2z−q)dz

= p
(
C̃(�, q)ε−2)p/q

∫ ∞
0

zp−1(1 ∧ z−q)dz.
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Therefore, for any δ ∈ (0,2(1 − p)), by choosing q = 2p
2−δ

∈ (p,1) we can find a
constant C(�,p, δ) such that for all t ≥ 0,

E1
R− ,1

R+
[((

Rt(ε) − Lt(ε)
)+)p]≤ C(�,p, δ)ε−2+δ.(61)

Finally, we return to the case of a general branching rate γ . Then, by the scaling
property (4), we have that

L
[γ ]
t (ε) = inf

{
x :
∫ x

−∞
u

[γ ]
t (y)v

[γ ]
t (y) dy ≥ ε

}
∧ R

(
u

[γ ]
t , v

[γ ]
t

)
d= inf

{
x :
∫ x

−∞
u

[1]
γ 2t

(γy)v
[1]
γ 2t

(γy) dy ≥ ε

}
∧ 1

γ
R
(
u

[1]
γ 2t

, v
[1]
γ 2t

)
= 1

γ
L

[1]
γ 2t

(γ ε).

Similarly, R
[γ ]
t (ε)

d= 1
γ
R

[1]
γ 2t

(γ ε). Hence, by (61) (which holds for branching
rate 1), we can deduce that

E1
R− ,1

R+
[((

R
[γ ]
t (ε) − L

[γ ]
t (ε)

)+)p]
= γ −p

E1
R− ,1

R+
[((

R
[1]
γ 2t

(γ ε) − L
[1]
γ 2t

(γ ε)
)+)p]

≤ C(�,p, δ)ε−2+δγ −(2+p−δ). �

APPENDIX

A.1. Notation and spaces of functions and measures. In this appendix,
for the convenience of the reader, we have collected our notation, and we recall
some well-known facts concerning the spaces of functions and measures employed
throughout the paper. Most of the material in this subsection can be found, for ex-
ample, in [5, 7] or [11].

For λ ∈ R, let

φλ(x) := e−λ|x|, x ∈ R,

and for f :R→R, define

|f |λ := ‖f/φλ‖∞,

where ‖ · ‖∞ is the supremum norm. Let Bλ denote the space of all measurable
functions f :R → R such that |f |λ < ∞ and with the property that f (x)/φλ(x)

has a finite limit as |x| → ∞. Next, introduce the spaces

Brap := ⋂
λ>0

Bλ and Btem := ⋂
λ>0

B−λ(62)

of rapidly decreasing and tempered measurable functions, respectively.
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We write Cλ,Crap,Ctem for the subspaces of continuous functions in Bλ, Brap,
Btem, respectively. If we additionally require that all partial derivatives up to order
k ∈ N exist and belong to Cλ,Crap,Ctem, we write C(k)

λ ,C(k)
rap,C(k)

tem. We will also use
the space C∞

c of infinitely differentiable functions with compact support. If F is
any of the above spaces of functions, the notation F+ will refer to the subset of
nonnegative elements of F .

For each λ ∈ R, the linear space Cλ endowed with the norm | · |λ is a separable
Banach space, and the space Crap is topologized by the metric

dC
rap(f, g) :=

∞∑
n=1

2−n(|f − g|n ∧ 1
)
, f, g ∈ Crap,(63)

which turns it into a Polish space. Analogously, Ctem is Polish if we topologize it
with the metric

dC
tem(f, g) :=

∞∑
n=1

2−n(|f − g|−1/n ∧ 1
)
, f, g ∈ Ctem.(64)

Let M denote the space of (nonnegative) Radon measures on R. For μ ∈ M
and a measurable function f , we will use any of the following notation:

〈μ,f 〉,
∫
R

μ(dx)f (x),

∫
R

f (x)μ(dx)

to denote the integral of f with respect to the measure μ (if it exists). For integrals
with respect to the Lebesgue measure � on R, we will simply write dx in place
of �(dx). If μ ∈ M is absolutely continuous w.r.t. �, we will identify μ with its
density, writing

μ(dx) = μ(x)dx.

For λ ∈ R, define

Mλ := {
μ ∈ M : 〈μ,φλ〉 < ∞}

,

and introduce the spaces

Mtem := ⋂
λ>0

Mλ, Mrap := ⋂
λ>0

M−λ

of tempered and rapidly decreasing measures, respectively. These spaces of mea-
sures are topologized as follows: Let d0 be a complete metric on M inducing the
vague topology, and define

dM
tem(μ, ν) := d0(μ, ν) +

∞∑
n=1

2−n(|μ − ν|1/n ∧ 1
)
, μ, ν ∈ Mtem,(65)

where we write

|μ − ν|λ := ∣∣〈μ,φλ〉 − 〈ν,φλ〉
∣∣.
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Note that with the above metric, (Mtem, dM
tem) is also Polish, and it is easily seen

that μn → μ in Mtem if and only if 〈μn,ϕ〉 → 〈μ,ϕ〉 for all ϕ ∈⋃λ>0 Cλ. Denote
by Mf the space of finite measures on R endowed with the topology of weak
convergence. Note that we have Mrap ⊆ Mf . The space Mrap is then topologized
by saying that μn → μ in Mrap if and only if μn → μ in Mf (w.r.t. the weak
topology) and supn∈N〈μn,φλ〉 < ∞ for all λ < 0; see [7], page 140. It is easy to
see that this topology is also induced by the metric

dM
rap(μ, ν) := d̃0(μ, ν) +

∞∑
n=1

2−n(|μ − ν|−n ∧ 1
)
, μ, ν ∈ Mrap,(66)

where d̃0 is a complete metric on Mf inducing the weak topology. Again, when
endowed with this metric (Mrap, d

M
rap) becomes a Polish space.

It is clear that C+
tem may be viewed as a subspace of Mtem by taking a function

u ∈ C+
tem as a density w.r.t. Lebesgue measure, that is, by identifying it with the

measure u(x) dx. It is also clear that the topology of Mtem restricted to C+
tem is

weaker than the topology on Ctem introduced above. The same holds for the relation
between C+

rap and Mrap. Thus we have continuous embeddings C+
tem ↪→ Mtem and

C+
rap ↪→ Mrap.

Let (pt )t≥0 denote the heat kernel in R corresponding to 1
2�,

pt(x) = 1

(2πt)1/2 exp
{
−|x|2

2t

}
, t > 0, x ∈ R,(67)

and write (St )t≥0 for the associated heat semigroup (i.e., the transition semigroup
of Brownian motion). For μ ∈ M and x ∈ R, let Stμ(x) := ∫

R
pt(x − y)μ(dy).

The following estimates are well known and can be proved as in Appendix A
of [7] (see also [26], Lemma 6.2(ii)):

LEMMA A.1. Fix λ ∈ R and T > 0.

(a) For all ϕ ∈ B+
λ , we have

sup
t∈[0,T ]

Stϕ(x) ≤ C
(
λ,T

)|ϕ|λφλ(x), x ∈ R.(68)

Moreover, there is a positive constant C′(λ, T ) > 0 such that we have a lower
bound

inf
t∈[0,T ]Stφλ(x) ≥ C′(λ, T )φλ(x), x ∈R.(69)

(b) Let 0 < ε < T . Then for all μ ∈ Mλ we have

sup
t∈[ε,T ]

Stμ(x) ≤ C(λ,T , ε)〈μ,φλ〉φ−λ(x), x ∈R.(70)

In particular, the heat semigroup preserves the space Bλ and maps Mλ into Bλ.
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For T > 0 and λ ∈ R, let C(1,2)
T ,λ denote the space of real-valued functions ψ

defined on [0, T ] × R such that t → ψt(·), t → ∂tψt (·) and t → �ψt(·) are con-
tinuous Cλ-valued functions, and define

C(1,2)
T ,rap := ⋂

λ>0

C(1,2)
T ,λ , C(1,2)

T ,tem := ⋂
λ>0

C(1,2)
T ,−λ.

The following is a simple corollary of Lemma A.1:

COROLLARY A.2. Fix λ ∈ R and T > 0.

(a) For all ϕ ∈ C(2)
λ , the function

ψt(x) := ST −tϕ(x), t ∈ [0, T ], x ∈ R

is in C(1,2)
T ,λ .

(b) For all μ ∈ Mλ and ε > 0, the function

ψt(x) := ST −tμ(x), t ∈ [0, T − ε], x ∈R

is in C(1,2)
T −ε,λ.

For a Polish space E and I ⊆ R, we denote by DI(E), respectively CI (E), the
space of càdlàg, respectively continuous, E-valued paths t → ft , t ∈ I . (In our
case, we will always have I = [0,∞) or I = (0,∞) and E ∈ {(C+

tem)m, (C+
rap)

m,

Mm
tem,Mm

rap} for some power m ∈ N.) Endowed with the usual Skorokhod (J1)-
topology, DI(E) is then also Polish. In this paper, we will use the Skorokhod
topology only in restriction to CI (E) where it coincides with the usual topology of
locally uniform convergence.

For processes which are càdlàg but not continuous, we will instead use the
weaker Meyer–Zheng “pseudo-path” topology on D[0,∞)(E). To describe the
Meyer–Zheng topology, introduced in [19], let λ(dt) := exp(−t) dt , and let
w(t), t ∈ [0,∞) be an E-valued Borel function. Then, a “pseudo-path” corre-
sponding to w is the probability law ψw on [0,∞) × E given as the image mea-
sure of λ under the mapping t → (t,w(t)). Note that two functions which are
equal Lebesgue-a.e. give rise to the same pseudo-path. Further w → ψw is one-
to-one on the space of càdlàg paths D[0,∞)(E), and thus yields an embedding of
D[0,∞)(E) into the space of probability measures on [0,∞) × E. The induced
topology on D[0,∞) is then called the pseudo-path topology. Very conveniently,
convergence in this topology is equivalent to convergence in Lebesgue measure;
see [19], Lemma 1.

For E = R, [19], Theorem 4, provides a rather convenient sufficient condi-
tion for relative compactness of a sequence of stochastic processes on D[0,∞)(E)

equipped with this topology. The condition can be stated as follows: If (X
(n)
t )t≥0,
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n ∈ N is a sequence of càdlàg real-valued stochastic processes, with (X
(n)
t )t≥0

adapted to a filtration (F (n))t≥0, then Meyer and Zheng require that

sup
n∈N

(
VT

(
X(n))+ sup

t≤T

E
[∣∣X(n)

t

∣∣])< ∞(71)

for all T > 0. Here VT (X(n)) := supE[∑i |E[X(n)
ti+1

− X
(n)
ti

|F (n)
ti

]|], where the sup
is taken over all partitions of the interval [0, T ], denotes the conditional variation
of X(n) up to time T . In [18], this tightness criterion was extended to processes
taking values in general separable metric spaces E, which is the version we need
for our measure-valued processes. In fact, by [18], Corollary 1.4, we only have to
check condition (71) for the coordinate processes and in addition a compact con-
tainment condition in order to obtain tightness of our measure-valued processes in
the pseudopath topology (which again is equivalent to the topology of convergence
in Lebesgue measure).4

A.2. Martingale problems and Green function representations. We define
all stochastic processes over a sufficiently rich stochastic basis (�,F, (Ft )t≥0,P)

satisfying the usual hypotheses. If Y = (Yt )t≥0 is a stochastic process taking values
in E and starting at Y0 = y ∈ E, the law of Y is denoted Py , and we use Ey to
denote the corresponding expectation.

Recall that solutions to the finite rate symbiotic branching model cSBM(�, γ )

are characterized by the martingale problem given in [11], Definition 3. Con-
sequently, when the solutions are interpreted as densities w.r.t. Lebesgue mea-
sure, the corresponding measure-valued processes solve the martingale problem
(MP)

�
μ0,ν0 of Definition 1.7. In this appendix, we have collected some properties

of solutions to this martingale problem which for the finite rate model cSBM(�, γ )

can already be found in [11]; however, they are in fact true for any solution to
(MP)

�
μ0,ν0 . These are: an extended martingale problem for space–time functions

which in turn implies a Green function representation, and a (weaker) martingale
problem involving the self-duality function F from (13); see Proposition A.5 be-
low. We include a proof only for the latter, in order to illustrate the point that the
particular form of the quadratic variation process (	t)t≥0 from Definition 1.7 is
irrelevant in this respect.

Recall that we consider the increasing process t → 	t(dx) also as a (locally
finite) measure 	(ds, dx) on R

+ ×R, via

	
([0, t] × B

) := 	t(B).

The following “space–time version” of the martingale problem (MP)
�
μ0,ν0 can be

proved by standard arguments; see, for example, [5], Lemma 42:

4Note, however, that the main result in [18] is much stronger than just an extension of the Meyer–
Zheng tightness criterion to a general state space E. Also note that in [18], equation (1.7), there

seems to be missing a term sups≤t E[|fi ◦ X
(n)
s |]; cf. equation (1.2).
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LEMMA A.3. Fix � ∈ [−1,1] and initial conditions (μ0, ν0) ∈ M2
tem (resp.,

M2
rap). Let T > 0. If (μt , νt )t≥0 ∈ C[0,∞)(M2

tem) [resp., C[0,∞)(M2
rap)] is any solu-

tion to the martingale problem (MP)
�
μ0,ν0 , then for all test functions φ,ψ ∈ C(1,2)

T ,rap

(resp., φ,ψ ∈ C(1,2)
T ,tem) we have that

〈μt,φt 〉 = 〈μ0, φ0〉 +
∫ t

0

〈
μs,

1

2
�φs + ∂

∂s
φs

〉
ds

+
∫
[0,t]×R

φs(x)M
(
d(s, x)

)
,

(72)

〈νt ,ψt 〉 = 〈ν0,ψ0〉 +
∫ t

0

〈
νs,

1

2
�ψs + ∂

∂s
ψs

〉
ds

+
∫
[0,t]×R

ψs(x)N
(
d(s, x)

)
for t ∈ [0, T ], where M(d(s, x)) and N(d(s, x)) are zero-mean martingale mea-
sures with covariance structure[∫

[0,·]×R

fs(x)M
(
d(s, x)

)]
t

=
[∫

[0,·]×R

fs(x)N
(
d(s, x)

)]
t

=
∫
[0,t]×R

f 2
s (x)	(ds, dx),

(73) [∫
[0,·]×R

fs(x)M
(
d(s, x)

)
,

∫
[0,·]×R

gs(x)N
(
d(s, x)

)]
t

= �

∫
[0,t]×R

fs(x)gs(x)	(ds, dx),

with 	 from (10). Here, f and g are predictable functions defined on �×R+ ×R

such that

Eμ0,ν0

[∫
[0,t]×R

f 2
s (x)	(ds, dx)

]
< ∞, t ∈ [0, T ].(74)

The previous lemma immediately implies a Green function representation for
solutions to the martingale problem (MP)

�
μ0,ν0 [recall that (St )t≥0 denotes the heat

semigroup]:

COROLLARY A.4 (Green function representation). Under the assumptions
of Lemma A.3, we have for all T > 0 and test functions ϕ ∈ ⋃

λ>0 Cλ (resp.,⋃
λ>0 C−λ) that

〈μt, ST −tϕ〉 = 〈μ0, ST ϕ〉 +
∫
[0,t]×R

ST −sϕ(x)M(ds, dx),

(75)
〈νt , ST −tϕ〉 = 〈ν0, ST ϕ〉 +

∫
[0,t]×R

ST −sϕ(x)N(ds, dx)
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for t ∈ [0, T ], where M(d(s, x)), N(d(s, x)) are the martingale measures from
Lemma A.3. In particular, (〈μt, ST −tϕ〉)t∈[0,T ] and (〈νt , ST −tϕ〉)t∈[0,T ] are mar-
tingales with covariance structure given by (73) with fs(x) = gs(x) = ST −sϕ(x).

PROOF. For ϕ ∈ C(2)
rap (resp., C(2)

tem), this follows at once from the extended mar-
tingale problem of Lemma A.3 by putting φt := ψt := ST −tϕ for t ∈ [0, T ], ob-
serving that the latter function is in C(1,2)

T ,rap for ϕ ∈ C(2)
rap (resp., in C(1,2)

T ,tem for ϕ ∈ C(2)
tem)

by Corollary A.2, and that (1
2� + ∂

∂s
)ST −sϕ ≡ 0. In order to extend (75) to more

general ϕ, one uses simple approximation arguments involving monotone, respec-
tively dominated, convergence. �

PROPOSITION A.5. Fix � ∈ (−1,1) and (μ0, ν0) ∈ M2
tem (resp., M2

rap). Let

(μt , νt )t≥0 ∈ C[0,∞)(M2
tem) [resp., C[0,∞)(M2

rap)] be any solution to the mar-

tingale problem (MP)
�
μ0,ν0 . Then the process (	t)t≥0 ∈ C[0,∞)(Mtem) [resp.,

C[0,∞)(Mrap)] from Definition 1.7, governing the correlations of the martingales
as in (10), is increasing with 	0 = 0 and satisfies condition (14). Moreover, for
all T > 0 and (nonnegative) test functions 0 ≤ φ,ψ ∈ C(1,2)

T ,rap (resp., ∈ C(1,2)
T ,tem), the

process

F(μt , νt , φt ,ψt ) − F(μ0, ν0, φ0,ψ0)

−
∫ t

0
F(μs, νs, φs,ψs)

〈〈
μs, νs,

(
1

2
� + ∂

∂s

)
φs,

(
1

2
� + ∂

∂s

)
ψs

〉〉
�

ds(76)

− 4
(
1 − �2) ∫

[0,t]×R

F(μs, νs, φs,ψs)φs(x)ψs(x)	(ds, dx),

t ∈ [0, T ], is a martingale with quadratic variation given by

8
(
1 − �2) ∫

[0,t]×R

F(μs, νs, φs,ψs)
2φs(x)ψs(x)	(ds, dx).(77)

PROOF. In view of (10), it is clear that 	 is increasing and 	0 = 0. More-
over, since the martingales in Definition 1.7 are assumed square integrable, we
have Eμ0,ν0[〈	t,φ

2〉] = Eμ0,ν0[Mt(φ)2] < ∞ for all test functions φ ∈ C(2)
rap (resp.,

C(2)
tem). Thus (14) is satisfied.

The proof of (76) is basically a straightforward application of Itô’s formula; cf.
the proof of Proposition 5 in [11]. We sketch it here for the convenience of the
reader and to make clear that the arguments in [11] do not rely on properties of
the finite rate model, but actually work for any solution to the martingale problem
(MP)

�
μ0,ν0 . Define

Yt := 〈μt + νt , φt + ψt 〉 = 〈μ0 + ν0, φ0 + ψ0〉
+
∫ t

0

〈
μs + νs,

(
1

2
� + ∂

∂s

)
(φs + ψs)

〉
ds
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+
∫
[0,t]×R

(
φs(x) + ψs(x)

)
(M + N)(ds, dx),

Zt := 〈μt − νt , φt − ψt 〉 = 〈μ0 − ν0, φ0 − ψ0〉
+
∫ t

0

〈
μs − νs,

(
1

2
� + ∂

∂s

)
(φs − ψs)

〉
ds

+
∫
[0,t]×R

(
φs(x) − ψs(x)

)
(M − N)(ds, dx),

where M and N are the martingale measures from Lemma A.3. We observe that Y

and Z are continuous real-valued semimartingales with covariance structure easily
calculated as

[Y,Y ]t = 2(1 + �)

∫
[0,t]×R

(
φs(x) + ψs(x)

)2
	(ds, dx),

[Z,Z]t = 2(1 − �)

∫
[0,t]×R

(
φs(x) − ψs(x)

)2
	(ds, dx),

[Y,Z]t = 0.

Now define H(y, z) := exp(−√
1 − �y + i

√
1 + �z), apply Itô’s formula to the

process (H(Yt ,Zt))t≥0 and use the trivial identity (φ +ψ)2 − (φ −ψ)2 = 4φψ to
obtain by a straightforward calculation that

F(μt , νt , φt ,ψt )

= F(μ0, ν0, φ0,ψ0)

+
∫ t

0
F(μs, νs, φs,ψs) ·

〈〈
μs, νs,

(
�

2
+ ∂

∂s

)
φs,

(
�

2
+ ∂

∂s

)
ψs

〉〉
�

ds

+ 4
(
1 − �2) ∫ t

0

∫
R

F(us, vs, φs,ψs)φs(x)ψs(x)	(ds, dx)

+
∫
[0,t]×R

F(us, vs, φs,ψs)

× (−√1 − �
(
φs(x) + ψs(x)

)
+ i

√
1 + �

(
φs(x) − ψs(x)

))
M(ds, dx)

+
∫
[0,t]×R

F(us, vs, φs,ψs)

× (−√1 − �
(
φs(x) + ψs(x)

)
− i

√
1 + �

(
φs(x) − ψs(x)

))
N(ds, dx).

This gives (76), and computing the quadratic variation of the martingale term in
the above display, we obtain (77). �
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COROLLARY A.6. Fix � ∈ (−1,1) and (μ0, ν0) ∈ M2
tem (resp., M2

rap). Then

any solution (μt , νt )t≥0 ∈ C[0,∞)(M2
tem) [resp., C[0,∞)(M2

rap)] to the martingale

problem (MP)
�
μ0,ν0 is also a solution to the martingale problem (MP′)�μ0,ν0 .

A.3. Some facts on Brownian motion and its local time. In this subsection,
we recall some of the standard facts (and their variations) on Brownian motion in a
formulation adapted to our needs. In the following we will denote for any suitable
process (Xt)t≥0 its local time in x by Lx

t := L
x,X
t .

LEMMA A.7. If (Bt )t≥0 is a Brownian motion started at x ∈ R with local time
(L0

t )t≥0 in 0, then (
L0

t

)
t≥0

d= (
M+

t

)
t≥0,

where (Mt)t≥0 is the maximum process of a Brownian motion started at −|x|.

PROOF. We adapt the proof of Theorem 7.38 in [20]. By Tanaka’s for-
mula [20], Theorem 7.33, we find that

|Bt | − |x| =
∫ t

0
sign(Bs) dBs + L0

t .

By [20], Lemma 7.40, the stochastic integral is equal in distribution to a standard
Brownian motion, so if we set

Wt = −
(
|x| +

∫ t

0
sign(Bs) dBs

)
,

then W is a linear Brownian motion started at −|x|, and we have that

|Bt | = −Wt + L0
t .(78)

Let (Mt)t≥0 denote the maximum process of (Wt)t≥0. We want to show that for
all t ≥ 0, we have M+

t = L0
t . It follows immediately from (78) that Ws ≤ L0

s ≤ L0
t

for all s ≤ t , so that by taking the maximum we obtain M+
t = 0 ∨ Mt ≤ L0

t .
Now suppose there exists a time t such that M+

t < L0
t . Let u := inf{r ≤ t :L0

r =
L0

t }. Since L0 only increases on the set {s :Bs = 0}, by continuity and since L0
t >

0, we must have Bu = 0. In particular, from (78) we get Wu = L0
u with u ≤ t . Thus,

we can deduce that

Mu ≥ Wu = L0
u = L0

t > Mt,

which yields a contradiction since u ≤ t and M is obviously increasing. Hence,
M+

t = L0
t as claimed. �
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LEMMA A.8. Let (Bt )t≥0 be a Brownian motion started at z ∈ R with local
time (L0

t )t≥0 in 0. Then for all α > 0 and t ≥ 1,

Pz

{
L0

t ≤ α log t
}≤

√
2

π

α log t + |z|
t1/2 .

PROOF. Using Lemma A.7, we find that if (Mt)t≥0 denotes the maximum
process of a Brownian motion started at −|z|, we can estimate

Pz

{
L0

t ≤ α log t
}= P−|z|

{
M+

t ≤ α log t
}= P0

{
Mt ≤ α log t + |z|}

= P0
{|Bt | ≤ α log t + |z|}≤

√
2

π

α log t + |z|
t1/2 ,

where we used the reflection principle; see, for example, [20], Theorem 2.21, in
the second-to-last step. �

COROLLARY A.9. Suppose that (B
(1)
t )t≥0 and (B

(2)
t )t≥0 are independent

Brownian motions started at x < y, respectively, and denote their collision local
time as (L

1,2
t )t≥0. Then for all α > 0 and t ≥ 1,

Px,y

{
L

1,2
t ≤ α log t

}≤ 1√
π

2α log t + y − x

t1/2 .

PROOF. This follows immediately from Lemma A.8. Note that Wt := B
(2)
t −

B
(1)
t , t ≥ 0 is by definition a Brownian motion (with quadratic variation 2t and

started at y − x), and thus Bt := Wt/2 − (y − x), t ≥ 0 is a standard Brownian

motion. Moreover L
1,2
t = L

0,B(2)−B(1)

t = L
0,W
t . Now observe that

L
0,W
t = lim

ε↓0

1

2ε

∫ t

0
1{|Ws |≤ε} ds = lim

ε↓0

1

2ε

∫ t

0
1{|B2s+y−x|≤ε} ds

d= lim
ε↓0

1

2ε

∫ t

0
1{|√2Bs+y−x|≤ε} ds = 1√

2
L

(x−y)/
√

2,B
t .

Hence by Lemma A.8,

Px,y

{
L

1,2
t ≤ α log t

}= P0
{
L

(x−y)/
√

2,B
t ≤ √

2α log t
}

= P
(y−x)/

√
2

{
L

0,B
t ≤ √

2α log t
}

≤
√

2

π

√
2α log t + (1/

√
2)(y − x)

t1/2 ,

which proves the corollary. �

The following is a slightly generalized version of Lemma 2 in [1]. It follows
easily from the occupation times formula for Brownian local time.
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LEMMA A.10. Let B(1), B(2) be independent Brownian motions defined on
(�,F,P). Then for every h :R×R

+ × � → R measurable and bounded or non-
negative, we have∫ t

0
h
(
B(2)

s − B(1)
s , s, ·)ds =

∫
R

∫ t

0
h(z, s, ·) dLz,B(2)−B(1)

s dz, P-a.s.(79)

In [1], Lemma 2, this is stated for functions of the form h(z, s,ω) = f (z)Ys(ω),
where it is assumed that f is continuous and (Ys) is predictable. Neither of the
two assumptions is really needed. Also note that the factor 2 in the statement of
Lemma 2 in [1] seems to be incorrect.

PROOF OF LEMMA A.10. Let Xs := B
(2)
s − B

(1)
s . For h(z, s,ω) =

f (z)1(a,b](s)g(ω), with f and g measurable bounded and 0 ≤ a < b < ∞, (79)
holds by the occupation times formula [24], Corollary VI.1.6, since for P-almost
all ω ∈ �,∫ t

0
h
(
Xs(ω), s,ω

)
ds =

(∫ b∧t

0
f
(
Xs(ω)

)
ds −

∫ a∧t

0
f
(
Xs(ω)

)
ds

)
g(ω)

=
(∫

R

f (z)L
z,X
b∧t (ω) dz −

∫
R

f (z)L
z,X
a∧t (ω) dz

)
g(ω)

=
∫
R

f (z)

∫ b∧t

a∧t
dLz,X

s (ω)dzg(ω)

=
∫
R

∫ t

0
h(z, s,ω)dLz,X

s (ω)dz.

Let C denote the class of all functions h of the above form. Clearly, C is
closed under multiplication and generates the product σ -algebra BR ⊗ BR+ ⊗ F
on R × R

+ × �. Moreover, let H denote the space of all bounded measurable
functions h :R × R

+ × � → R for which (79) holds. Since (79) is stable under
linear combinations and under monotone convergence, H is a monotone vector
space of bounded measurable functions which contains C. Hence by the monotone
class theorem [24], Theorem 0.2.2, H contains all bounded measurable functions
h :R×R

+ × � →R, which proves the assertion. �
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