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Abstract. The parabolic Anderson model is the Cauchy problem for the heat equation with a random potential. We consider this
model in a setting which is continuous in time and discrete in space, and focus on time-constant, independent and identically
distributed potentials with polynomial tails at infinity. We are concerned with the long-term temporal dynamics of this system.
Our main result is that the periods, in which the profile of the solutions remains nearly constant, are increasing linearly over time,
a phenomenon known as ageing. We describe this phenomenon in the weak sense, by looking at the asymptotic probability of
a change in a given time window, and in the strong sense, by identifying the almost sure upper envelope for the process of the
time remaining until the next change of profile. We also prove functional scaling limit theorems for profile and growth rate of
the solution of the parabolic Anderson model.

Résumé. Le modèle parabolique d’Anderson est le problème de Cauchy pour l’équation de la chaleur avec un potentiel aléatoire.
Nous considérons ce modèle en temps continu et espace discret. Nous nous intéressons à des potentiels constants dans le temps,
indépendants et identiquement distribués avec queues polynomiales à l’infini. Nous étudions les dynamiques temporelles à temps
long de ce système. Notre résultat principal est que les périodes durant lesquelles le profil des solutions reste presque constant,
croissent linéairement au cours du temps, un phénomène connu sous le nom de vieillissement. Nous décrivons ce phénomène au
sens faible, en étudiant la probabilité asymptotique d’un changement dans un intervalle de temps donné, ainsi qu’au sens fort,
en identifiant l’enveloppe supérieure presque sûre pour le processus du temps restant jusqu’au prochain changement du profil.
Finalement nous démontrons des théorèmes de limite d’échelle fonctionnelle pour le profil et le taux de croissance de la solution
du modèle parabolique d’Anderson.
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1. Introduction

1.1. Motivation and overview

The long term dynamics of disordered complex systems out of equilibrium have been the subject of great interest in
the past decade. A key paradigm in this research programme is the notion of ageing. Roughly speaking, in an ageing
system the probability that there is no essential change of the state between time t and time t + s(t) is of constant
order for a period s(t) which depends increasingly, and often linearly, on the time t . Hence, as time goes on, in an
ageing system changes become less likely and the typical time scales of the system are increasing. Therefore, as
pointed out in [6], ageing can be associated to the existence of infinitely many time-scales that are inherently relevant
to the system. In that respect, ageing systems are distinct from metastable systems, which are characterized by a finite
number of well separated time-scales, corresponding to the lifetimes of different metastable states.
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The prime example of ageing systems is the class of trap models, see, e.g., [5,7,10]. The idea behind these models
is to represent a physical system as a particle moving in a random energy landscape with infinitely many valleys, or
traps. Given the landscape, the particle moves according to a continuous time random walk remaining at each trap
for an exponential time with a rate proportional to its depth. While there is good experimental evidence for the claim
that trap model dynamics capture the behaviour of some more complex spin glass models, a rigorous mathematical
derivation of this fact exists only in very few cases.

The aim of the present paper is to investigate whether ageing can also be observed for a different kind of dynamics,
given by a diffusion or heat flow with an inhomogeneous potential. This type of dynamics is present in a variety
of contexts describing, for example, the intensity of populations in inhomogeneous environments or of a chemical
reactant in the presence of an inhomogeneously distributed catalytic substance. There is some controversy in the
literature around the question whether such systems exhibit ageing. Two recent papers, Dembo and Deuschel [8] and
Aurzada and Döring [1], investigate ageing based on correlations. Both deal with a class of models which includes as
a special case a parabolic Anderson model with time-variable potential and show absence of correlation-based ageing
in this case. While correlation studies are probably the only way to deal rigorously with highly complex models, it is
not established that the effect picked up by these studies is actually really due to the existence or absence of ageing
in our sense, or whether other moment effects are accountable. In the present work we show presence of ageing (in
the original sense) for the parabolic Anderson model if the underlying random potential is sufficiently heavy-tailed.
We investigate the case of i.i.d. Pareto distributed potentials, but conjecture that similar behaviour holds for most
time-constant unbounded potentials. Our proofs however rely on techniques that are presently only available for the
most heavy-tailed potentials.

Our work has led to three main results. The first one, Theorem 1.1, shows that the probability that during the time
window [t, t + θt] the profiles of the solution of the parabolic Anderson problem remain within distance ε > 0 of each
other converges to a constant I (θ), which is strictly between zero and one. This shows that ageing holds on a linear
time scale. Our second main result, Theorem 1.3, is an almost sure ageing result. We define a function R(t) which
characterizes the waiting time starting from time t until the profile changes again. We determine the precise almost
sure upper envelope of R(t) in terms of an integral test. The third main result, Theorem 1.6, is a functional scaling
limit theorem for the location of the peak, which determines the profile, and for the growth rate of the solution. We
give the precise statements of the results in Section 1.2, and in Section 1.3 we provide a rough guide to the proofs.

1.2. Statement of the main results

The parabolic Anderson model is given by the heat equation on the lattice Z
d with a random potential, i.e. we consider

the solution u : (0,∞) × Z
d → [0,∞) of the Cauchy problem

∂

∂t
u(t, z) = �u(t, z) + ξ(z)u(t, z) for (t, z) ∈ (0,∞) × Z

d,

lim
t↓0

u(t, z) = 10(z) for z ∈ Z
d .

Here � is the discrete Laplacian

�f (x) =
∑
y∈Zd

y∼x

(
f (y) − f (x)

)
,

and y ∼ x means that y is a nearest-neighbour of site x. The potential ξ = (ξ(z): z ∈ Z
d) is a collection of independent,

identically distributed random variables, which we assume to be Pareto-distributed for some α > d , i.e. Prob{ξ(z) ≤
x} = 1 − x−α , for x ≥ 1. The condition α > d is necessary and sufficient for the Cauchy problem to have a unique,
nonnegative solution, see [11], while the choice of localized initial conditions ensures that the total mass of the solution

U(t) =
∑
z∈Zd

u(t, z) for t ≥ 0,
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is finite at all times. We define the profile of the solution as

v(t, z) = u(t, z)

U(t)
for t ≥ 0, z ∈ Z

d .

It is not hard to see that the total mass grows superexponentially in time. Our interest is therefore focused on the
changes in the profile of the solution.

1.2.1. Ageing: A weak limit theorem
Our first ageing result is a weak limit result. We show that for an observation window whose size is growing linearly
in time, the probability of seeing no change during the window converges to a nontrivial value. Hence the dynamics
of the system is slowing down over time, confirming the strong form of ageing.

Theorem 1.1. For any θ > 0 there exists I (θ) > 0 such that, for all sufficiently small ε > 0,

lim
t→∞ Prob

{
sup
z∈Rd

sup
s∈[t,t+tθ]

∣∣v(t, z) − v(s, z)
∣∣< ε

}
= I (θ).

Remark 1.2. An inspection of the proof shows that the same limit is obtained when only the states at the endpoints
of the observation window are considered. Hence we only have one ageing regime, which is contrast to the behaviour
of the asymmetric trap models described in [2]. An integral representation of I (θ) will be given in Proposition 2.4,
which shows that the limit is not derived from the generalized arcsine law as in the universal scheme for trap models
described in [3]. Moreover, see Corollary 2.5, there are positive constants C0,C1 such that limθ↓0 θ−1(1−I (θ)) = C0

and limθ↑∞ θdI (θ) = C1.

1.2.2. Ageing: An almost-sure limit theorem
The crucial ingredient in our ageing result is the fact that in the case of Pareto distributed potentials the profile of the
solution of the parabolic Anderson problem can be essentially described by one parameter, the location of its peak.
This is due to the one-point localization theorem [12], Theorem 1.2, which states that, for any Z

d -valued process
(Xt : t ≥ 0) with the property that v(t,Xt ) is the maximum value of the profile at time t , we have

v(t,Xt ) → 1 in probability. (1)

In other words, asymptotically the profile becomes completely localized in its peak. Assume for definiteness that
t 
→ Xt is right-continuous and define the residual lifetime function by R(t) = sup{s ≥ 0: Xt = Xt+s}, for t ≥ 0.
Roughly speaking, R(t) is the waiting time, at time t , until the next change of peak. We have shown in Theorem 1.1
that the law of R(t)/t converges to the law given by the distribution function 1 − I . In the following theorem, we
describe the smallest asymptotic upper envelope for the process (R(t): t ≥ 0) thus providing an ageing result that
holds pathwise for almost every sample solution of the parabolic Anderson problem.

Theorem 1.3 (Almost sure ageing). For any nondecreasing function h : (0,∞) → (0,∞) we have, almost surely,

lim sup
t→∞

R(t)

th(t)
=
{

0 if
∫∞

1
dt

th(t)d
< ∞,

∞ if
∫∞

1
dt

th(t)d
= ∞.

1.2.3. A functional scaling limit theorem
To complete the discussion of the temporal behaviour of the solution it is natural to study the macroscopic structure
of the solution in terms of a functional limit theorem under suitable space–time scaling. From [13], Theorem 1.2, we
know that there are heavy fluctuations even in the logarithm of the total mass, as we have for t ↑ ∞,

(log t)d/(α−d)

tα/(α−d)
logU(t) ⇒ Y, (2)
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where Y is a random variable of extremal Fréchet type with shape parameter α − d . We therefore focus on the
profile of the solution and extend it to (0,∞) × R

d by taking the integer parts of the second coordinate, letting
v(t, x) = v(t, �x). Taking nonnegative measurable functions on R

d as densities with respect to the Lebesgue measure,
we can interpret adv(t, ax) for any a, t > 0 as an element of the space M(Rd) of probability measures on R

d . By
δ(y) ∈ M(Rd) we denote the Dirac point mass located in y ∈ R

d .

Proposition 1.4 (Convergence of the scaled profile to a wandering point mass). There exists a nondegenerate
stochastic process (Yt : t > 0) such that, as T ↑ ∞, the following functional scaling limit holds,((

T

logT

)αd/(α−d)

v

(
tT ,

(
T

logT

)α/(α−d)

x

)
: t > 0

)
⇒ (

δ(Yt ): t > 0
)
, (3)

in the sense of convergence of finite-dimensional distributions on the space M(Rd) equipped with the weak topology.

Remark 1.5. The process (Yt : t > 0) will be described explicitly in and after Remark 1.7(iii).

In this formulation of a scaling limit theorem the mode of convergence is not optimal. Also, under the given scaling,
islands of diameter o(( t

log t
)α/(α−d)) at time t would still be mapped onto single points, and hence the spatial scaling

is not sensitive to the one-point localization described in the previous section. We now state an optimal result in the
form of a functional scaling limit theorem in the Skorokhod topology for the localization point itself. Additionally,
we prove joint convergence of the localization point together with the value of the potential there. This leads to a
Markovian limit process which is easier to describe, and from which the non-Markovian process (Yt : t > 0) can be
derived by projection. This approach also yields an extension of (2) to a functional limit theorem. Here and in the
following we denote by |x| the 	1-norm of x ∈ R

d .

Theorem 1.6 (Functional scaling limit theorem). There exists a time-inhomogeneous Markov process ((Y
(1)
t , Y

(2)
t ):

t > 0) on R
d × R such that,

(a) as T → ∞, we have(((
logT

T

)α/(α−d)

XtT ,

(
logT

T

)d/(α−d)

ξ(XtT )

)
: t > 0

)
⇒
((

Y
(1)
t , Y

(2)
t + d

α − d

∣∣Y (1)
t

∣∣): t > 0

)
,

in distribution on the space D(0,∞) of càdlàg functions f : (0,∞) → R
d × R with respect to the Skorokhod

topology on compact subintervals;
(b) as T → ∞, we have((

logT

T

)d/(α−d) logU(tT )

tT
: t > 0

)
⇒
(

Y
(2)
t + d

α − d

(
1 − 1

t

)∣∣Y (1)
t

∣∣: t > 0

)
,

in distribution on the space C(0,∞) of continuous functions f : (0,∞) → R with respect to the uniform topology
on compact subintervals.

Remark 1.7. Projecting the process onto the first component at time t = 1 we recover the result of [12], Theorem 1.3.
This result shows in particular that the peak Xt of the profile escapes with superlinear speed. From the proof of this
result it is easy to see that the convergence in both parts of Theorem 1.6 also holds simultaneously on the space of
càdlàg functions f : (0,∞) → R

d × R × R with respect to the Skorokhod topology on compact subintervals. The
process (Yt : t > 0) in Proposition 1.4 is equal to the projected process (Y

(1)
t : t > 0).

In order to describe the limit process we need to introduce some notation. Denote by Π a Poisson point process on
H 0 = {(x, y) ∈ R

d × R:y > − d
α−d

|x|} with intensity measure

ν(dx dy) = dx ⊗ α dy

(y + (d/(α − d))|x|)α+1
. (4)
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Fig. 1. The definition of the process (Y
(1)
t , Y

(2)
t ) in terms of the point process Π . Note that t parametrizes the opening angle of the cone, see (a) for

t < 1 and (b) for t > 1.

Given the point process, we can define an R
d -valued process Y

(1)
t and an R-valued process Y

(2)
t in the following way.

Fix t > 0 and define the open cone with tip (0, z)

Ct (z) =
{
(x, y) ∈ R

d × R: y + d

α − d

(
1 − 1

t

)
|x| > z

}
,

and let

Ct = cl

( ⋃
z>0

Π(Ct (z))=0

Ct (z)

)
.

Informally, Ct is the closure of the first cone Ct (z) that ‘touches’ the point process as we decrease z from infinity.
Since Ct ∩ Π contains at most two points, we can define (Y

(1)
t , Y

(2)
t ) as the point in this intersection whose pro-

jection on the first component has the largest 	1-norm, see Fig. 1(a) and (b) for illustration. The resulting process
((Y

(1)
t , Y

(2)
t ): t > 0) is an element of D(0,∞). The derived processes in Theorem 1.6 can be described as follows:

• ((Y
(2)
t + d

α−d
|Y (1)

t |): t > 0) corresponds to the vertical distance of the point (Y
(1)
t , Y

(2)
t ) to the boundary of the

domain given by the curve y = − d
α−d

|x|;
• ((Y

(2)
t + (1 − 1

t
)|Y (1)

t |): t > 0) corresponds to the y-coordinate of the tip of the cone Ct .

Remark 1.8 (Time evolution of the process). (Y
(1)
1 , Y

(2)
1 ) is the ‘highest’ point of the Poisson point process Π .

Given (Y
(1)
t , Y

(2)
t ) and s ≥ t we consider the surface given by all (x, y) ∈ R

d × R such that y = Y
(2)
t − d

α−d
(1 −

1
s
)(|x| − |Y (1)

t |). For s = t there are no points of Π above this surface, while (Y
(1)
t , Y

(2)
t ) (and possibly one further

point) is lying on it. We now increase the parameter s until the surface hits a further point of Π . At this time s > t

the process jumps to this new point (Y
(1)
s , Y

(2)
s ). Geometrically, increasing s means opening the cone further, while

keeping the point (Y
(1)
t , Y

(2)
t ) on the boundary and moving the tip upwards on the y-axis. The independence prop-

erty of Poisson processes ensures that the process ((Y
(1)
t , Y

(2)
t ): t > 0) is Markovian. An animation of the process

((Y
(1)
t , Y

(2)
t ): t > 0) can be found on the first author’s homepage at http://people.bath.ac.uk/maspm/animation_

ageing.pdf .

http://people.bath.ac.uk/maspm/animation_ageing.pdf
http://people.bath.ac.uk/maspm/animation_ageing.pdf
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1.3. Strategy of the proofs and overview

Let us first collect some of the key ingredients common to the proofs of our three main results. It is shown in [12] that,
almost surely, for all large t the total mass U(t) can be approximated by a variational problem. More precisely,

1

t
logU(t) ∼ max

z∈Zd
Φt (z), (5)

where, for any t ≥ 0, the functional Φt is defined as

Φt(z) = ξ(z) − |z|
t

log ξ(z) + η(z)

t

for z ∈ Z
d with tξ(z) ≥ |z|, and Φt(z) = 0 for other values of z. Here η(z) is the logarithm of the number of paths of

length |z| leading from 0 to z. Furthermore, [12] show that the peaks Xt agree for most times t with the maximizer Zt

of the functional Φt . This maximizer is uniquely defined, if we impose the condition that t 
→ Zt is right-continuous.
Defining the two scaling functions

rt =
(

t

log t

)α/(α−d)

and at =
(

t

log t

)d/(α−d)

,

it is shown in [12], refining the argument of [13], that, as t → ∞, the point process

Πt =
∑
z∈Zd

tξ(z)≥|z|

δ(z/rt ,Φt (z)/at ) (6)

converges (in a suitable sense) to the Poisson point process Π on H0 defined in (4).
Section 2 is devoted to the proof of the ‘annealed’ ageing result, Theorem 1.1. We show in Section 2.2 that

lim
t→∞ Prob

{
sup
z∈Rd

sup
s∈[t,t+tθ]

∣∣v(t, z) − v(s, z)
∣∣< ε

}
= lim

t→∞ Prob{Zt = Zt+tθ }.

Therefore we begin this proof, in Section 2.1, by discussing the limit on the right-hand side. To this end we approxi-
mate the probability in terms of the point process Πt . We are able to write

Φt+θt (z)

at

= Φt(z)

at

+ θ

1 + θ

d

α − d

|z|
rt

+ error, (7)

where the error can be suitably controlled, see Lemma 2.3. Hence (in symbolic notation)

Prob{Zt = Zt+tθ } ≈
∫ ∫

Prob

{
Πt(dx dy) > 0,Πt

{
(x̄, ȳ): ȳ > y

}= 0,

Πt

{
(x̄, ȳ): |x̄| > |x| and ȳ > y − d

α − d

θ

1 + θ

(|x̄| − |x|)}= 0

}
,

where the first line of conditions on the right means that x is a maximizer of Φt with maximum y, and the second line
means that x is also a maximizer of Φt+θt . As t ↑ ∞ the point process Πt is replaced by Π and we can evaluate the
probability.

Section 3 is devoted to the ‘quenched’ ageing result, Theorem 1.3. This proof is technically more involved, because
we cannot exploit the point process approach and have to do significant parts of the argument from first principles.
We now have to consider events

Prob

{
R(t)

t
≥ θt

}
≈ Prob{Zt = Zt+tθt }
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for θt ↑ ∞. We have to significantly refine the argument above and replace the convergence of Prob{Zt = Zt+tθ } by
a moderate deviation statement, see Section 3.1. Indeed, for θt ↑ ∞ not too fast we show that Prob{Zt = Zt+tθt } ∼
Cθ−d

t , for a suitable constant C > 0, see Proposition 3.1. Then, this allows us to show in Sections 3.2 and 3.3 that,
for any ε > 0, the series

∑
n Prob{R(en) ≥ εenh(en)} converges if

∑
n h(en)−d converges, which is equivalent to∫

h(t)−d dt/t < ∞. By Borel–Cantelli we get that

lim sup
n→∞

R(en)

enh(en)
= 0,

which implies the upper bound in Theorem 1.3, and the lower bound follows similarly using a slightly more delicate
second moment estimate, see Lemma 3.5.

The proofs of the scaling limit theorems, Proposition 1.4 and Theorem 1.6 are given in Section 4. By (7) we can
describe ZtT approximately as the maximizer of

ΦT (z)

aT

+ d

α − d

(
1 − 1

t

) |z|
rT

.

Instead of attacking the proof of Theorem 1.6 directly, we first show in Sections 4.1 and 4.2 a limit theorem for((
ZtT

rT
,
ΦtT (ZtT )

aT

)
: t > 0

)
, (8)

see Proposition 4.1. Informally, we obtain

P

{
ZtT

rT
∈ A,

ΦtT (ZtT )

aT

∈ B

}
≈

∫ ∫
x∈A,

y+q(1−1/t)|x|∈B

Prob

{
ΠT (dx dy) > 0,ΠT

{
(x̄, ȳ): ȳ − y >

d

α − d

(
1 − 1

t

)(|x| − |x̄|)}= 0

}
,

where the first line of conditions on the right means that there is a site z ∈ Z
d such that x = z/rT ∈ A and y =

ΦT (z)/aT ∈ B − q(1 − 1
t
)|x| , and the second line means that ΦtT (z) is not surpassed by ΦtT (z̄) for any other

site z̄ ∈ Z
d with x̄ = z̄/rT . We can then use the convergence of ΠT to Π inside the formula to give a limit theorem

for the one-dimensional distributions of (8). A minor strengthening of this argument given in Section 4.1 shows
convergence of the finite dimensional distributions, see Lemma 4.2. In Section 4.2 we check a tightness criterion in
Skorokhod space, see Lemma 4.5, and thus complete the proof of the convergence((

ZtT

rT
,
ΦtT (ZtT )

aT

)
: t > 0

)
⇒
((

Y
(1)
t , Y

(2)
t + d

α − d

(
1 − 1

t

)∣∣Y (1)
t

∣∣): t > 0

)
.

Based on this result we complete the proof of the scaling limit results in Section 4.3. Theorem 1.6(b) follows using (5)
and projecting on the second component. Observe that the convergence in (b) automatically holds in the uniform
sense, as all involved processes are continuous. We note further that

ξ(z)

aT

= ΦT (z)

aT

+ d

α − d

|z|
rT

+ error,

see Lemma 4.6. This allows us to deduce Theorem 1.6(a), and Proposition 1.4 is an easy consequence of this.

2. Ageing: A weak limit theorem

This section is devoted to the proof of Theorem 1.1. In Section 2.1 we show ageing for the two point function of
the process (Zt : t ≥ 0) of maximizers of the variational problem Φt , using the point process approach which was
developed in [13] and extended in [12]. In Section 2.2 we use this and the localization of the profile in Zt to complete
the proof.
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2.1. Ageing for the maximizer of Φt

In this section, we prove ageing for the two point function of the process (Zt : t ≥ 0), which from now on is chosen to
be left-continuous. The value I (θ) will be given by the formula in Proposition 2.4 below. Throughout the proofs we
use the abbreviation q = d

α−d
.

Proposition 2.1. Let θ > 0, then limt→∞ Prob{Zt = Zt+θt } = I (θ) ∈ (0,1).

For any t > 0 consider the point process Πt on R
d × R defined in (6). Define a locally compact Borel set

Ĥ = Ṙ
d+1∖({(x, y) ∈ R

d × R: y < −q(1 − ε)|x|}∪ {0}),
where 0 < ε < 1

1+θ
and Ṙ

d+1 is the one-point compactification of R
d+1. As in Lemma 6.1 of [12] one can show

that the point process Πt restricted to the domain Ĥ converges in law to a Poisson process Π on Ĥ with intensity
measure ν as given in (4). Here, Πt and Π are random elements of the set of point measures on Ĥ , which is given the
topology of vague convergence. For more background and similar arguments, see [13].

Our strategy is to express the condition Zt = Zt+θt in terms of the point process Πt . In order to be able to bound
error functions that appear in our calculations, we have to restrict our attention to the point process Π on a large box.
To this end, define the two boxes

BN =
{
(x, y) ∈ R

d × [0,∞): |x| ≤ N,
1

N
≤ y ≤ N

}
,

B̂N = {
(x, y) ∈ Ĥ : |x| ≤ N,y ≤ N

}
.

Now note that the condition Zt = Zt+θt means that

Φt+θt (z) ≤ Φt+θt (Zt ) (9)

for all z ∈ Z
d . We now show that it suffices to guarantee that this condition holds for all z in a sufficiently large

bounded box.

Lemma 2.2. Define the event

A(N, t) =
{(

Zt

rt
,
Φt (Zt )

at

)
∈ BN,Φt+θt (z) ≤ Φt+θt (Zt ) ∀z ∈ Z

d s.t.

( |z|
rt

,
Φt (z)

at

)
∈ B̂N

}
.

Then, provided the limit on the right-hand side exists, we find that

lim
t→∞ Prob{Zt = Zt+θt } = lim

N→∞ lim
t→∞ Prob

(
A(N, t)

)
.

Proof. We have the lower bound,

Prob{Zt = Zt+θt } ≥ Prob

{
Zt = Zt+θt ,

(
Zt

rt
,
Φt (Zt )

at

)
∈ BN

}
≥ Prob

(
A(N, t)

)− Prob

{ |Zt+θt |
rt

> N

}
.

Recall that, by [12], Lemma 6.2, we have that(
Zt

rt
,
Φt (Zt )

at

)
⇒ (

Y (1), Y (2)
)
, (10)
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where (Y (1), Y (2)) is a random variable on R
d × [0,∞) with an explicit density. In particular, we find that since

rt+θt = (1 + θ)q+1rt (1 + o(1))

lim
t→∞ Prob

{ |Zt+θt |
rt

> N

}
= Prob

{∣∣Y (1)
∣∣> N

(1 + θ)q+1

}
,

which converges to zero as N → ∞. A corresponding upper bound follows similarly from the convergence (10). �

We would like to translate the condition (9) into a condition on the point process Πt . To this end we express
Φt+θt (z) in terms of Φt(z).

Lemma 2.3. For any z ∈ Z
d such that ( z

rt
,

Φt (z)
at

) ∈ B̂N and tξ(z) ≥ |z|,
Φt+θt (z)

at

= Φt(z)

at

+ qθ

1 + θ

|z|
rt

+ δθ

(
t,

|z|
rt

,
Φt (z)

at

)
,

where the error δθ converges to zero as t → ∞ uniformly. Moreover, almost surely, eventually for all large enough
t , for all z ∈ Z

d such that ( z
rt

,
Φt (z)

at
) ∈ B̂N and tξ(z) < |z|, we have that Φt+θt (z) ≤ 0, and such a z ∈ Z

d will
automatically satisfy (9).

Proof. For any z such that tξ(z) ≥ |z|, we have

Φt+θt (z)

at

= Φt(z)

at

+ θq

1 + θ

|z|
rt

+ δ′
θ

(
t,

z

rt
,
ξ(z)

at

)
for a suitable error term δ′

θ . It is an elementary exercise to show that this error term is of the form claimed above and
also to show that the second statement holds. �

We now calculate Prob(A(t,N)) in the limit as t → ∞, i.e. we are interested in∫ ∫
(x,y)∈BN

Prob

{
Zt

rt
∈ dx,

Φt (Zt )

at

∈ dy,Φt+θt (z) ≤ Φt+θt (Zt ) ∀z ∈ Z
d s.t.

( |z|
rt

,
Φt (z)

at

)
∈ B̂N

}
.

First, we express the probability under the integral for fixed (x, y) ∈ BN in terms of the point process Πt . Given that
Πt contains the point (x, y) we require that there are no points in the set R

d × (y,∞), and requiring (9) for all points
z with (|z|/rt ,Φt (z)/at ) ∈ B̂N is, by Lemma 2.3, equivalent to the requirement that Πt should have no points in the
set {(x̄, ȳ) ∈ B̂N : ȳ + qθ

1+θ
|x̄| > y + qθ

1+θ
|x|}. Hence, defining the set

DN
θ (r, y) = {

(x, y) ∈ R
d × R: y > y

}∪
{
(x, y) ∈ B̂N : |x| > r,y > y − qθ

1 + θ

(|x| − r
)}

,

we see that

lim
t→∞ Prob

(
A(N, t)

) =
∫ ∫

(x,y)∈BN

Prob
{
Π(dx dy) = 1,Π

(
DN

θ

(|x|, y))= 0
}

=
∫ ∫

(x,y)∈BN

e−ν(DN
θ (|x|,y))ν(dx dy).

Taking the limit in this way is justified as DN
θ (|x|, y) is relatively compact in Ĥ and (x, y) ranges only over elements

in BN . Finally, if we similarly define (see also Fig. 2)

Dθ(r, y) =
{
(x, y) ∈ R

d × R: |x| ≤ r, y > y or |x| > r,y > y − qθ

1 + θ

(|x| − r
)}
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Fig. 2. The point process Π is defined on the set Ĥ indicated in grey. If we fix Zt /rt = x,Φt (Zt )/at = y, the condition that Zt = Zt+θt

corresponds to the requirement that the point process Π has no points in the shaded region Dθ (|x|, y).

we can invoke Lemma 2.2 to see that

lim
t→∞ Prob{Zt = Zt+θt } = lim

N→∞ lim
t→∞ Prob

(
A(N, t)

)= lim
N→∞

∫ ∫
(x,y)∈BN

e−ν(DN
θ (|x|,y))ν(dx dy)

=
∫

y≥0

∫
x∈Rd

e−ν(Dθ (|x|,y))ν(dx dy),

where the last equality follows by dominated convergence, as the integrand is dominated by e−ν(D0(|x|,y)) which by a
direct calculation can be shown to be integrable with respect to ν.

We now simplify the expression that arises from the point process calculation. We denote by B(a,b) the Beta
function with parameters a, b and define the normalized incomplete Beta function

B̃(x, a, b) = 1

B(a,b)

∫ x

0
va−1(1 − v)b−1 dv.

Proposition 2.4 (Explicit form of I (θ)). For any θ ≥ 0, we have∫
y≥0

∫
x∈Rd

e−ν(Dθ (|x|,y))ν(dx dy) = I (θ) := 1

B(α − d + 1, d)

∫ 1

0
vα−d(1 − v)d−1ϕθ (v)dv,

where the weight ϕθ (v) is defined by

1

ϕθ (v)
= 1 − B̃(v,α − d, d) + (1 + θ)α

(
θ

v
+ 1

)d−α

B̃

(
v + θ

1 + θ
,α − d, d

)
. (11)

Proof. The explicit form follows from standard manipulations of beta functions. �

As a corollary to this alternative representation, one can readily compute the tails of I (θ).

Corollary 2.5 (Tails of I ).

(a) limθ→∞ θdI (θ) = 1
dB(α−d+1,d)

.
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(b) limθ↓0 θ−1(1 − I (θ)) = C0, where the constant C0 is given by

C0 = 1

B(α − d + 1, d)

(∫ 1

0
αvα−d(1 − v)d−1B̃(v;α − d, d)dv + B

(
2(α − d),2d − 1

))
.

2.2. Ageing for the solution profile

In this section, we prove Theorem 1.1 by combining the results about ageing for the maximizer Zt from the previous
section with the localization results in [12]. We start with a preliminary calculation that will be used several times in
the remainder.

Lemma 2.6. If Φt(x) = Φt(y) for some t > 0 and x, y ∈ Z
d such that tξ(x) > |x| and tξ(y) > |y|, then for all s > 0

such that sξ(x) > |x| and sξ(y) > |y|, we have that

Φs(x) − Φs(y) = (
ξ(x) − ξ(y)

)(
1 − t

s

)
.

Proof. By the assumptions on t, x, y, we find that

Φt(x) − Φt(y) = (
ξ(x) − ξ(y)

)− 1

t

(|x| log ξ(x) − |y| log ξ(y) − η(x) + η(y)
)= 0.

Rearranging, we can substitute into

Φs(x) − Φs(y) = (
ξ(x) − ξ(y)

)− 1

s

(|x| log ξ(x) − |y| log ξ(y) − η(x) + η(y)
)

= (
ξ(x) − ξ(y)

)(
1 − t

s

)
,

which completes the proof. �

Remark 2.7. Let Z
(1)
t ,Z

(2)
t , . . . ∈ Z

d be sites in Z
d producing the largest values of Φt in descending order (choosing

the site with largest 	1-norm in case of a tie), and recall that Zt = Z
(1)
t . It is then easy to see that tξ(Z

(i)
t ) > |Z(i)

t | for
i = 1,2 and all t ≥ 1. Hence, if τ > 1 is a jump time of the process (Zt : t > 0), then Φτ (Z

(1)
τ ) = Φτ (Z

(2)
τ ), so that we

can apply Lemma 2.6 with x = Z
(1)
τ and y = Z

(2)
τ and the conclusion holds for all s ≥ τ .

Lemma 2.8. Almost surely, the function u 
→ ξ(Zu) is nondecreasing on (1,∞).

Proof. Let {τn} be the successive jump times of the process (Zt : t ≥ 1). By definition,

Φτn+1

(
Z(1)

τn+1

)= Φτn+1

(
Z(2)

τn+1

)
and by right-continuity of t 
→ Z

(1)
t , we have that Z

(2)
τn+1 = Z

(1)
τn . Now, consider τn+1 < t < τn+2 such that Z

(i)
t = Z

(i)
τn+1

for i = 1,2, then by Lemma 2.6 and Remark 2.7 we know that

Φt

(
Z

(1)
t

)− Φt

(
Z

(2)
t

) = Φt

(
Z(1)

τn+1

)− Φt

(
Z(2)

τn+1

)= (
ξ
(
Z(1)

τn+1

)− ξ
(
Z(2)

τn+1

))(
1 − τn+1

t

)
= (

ξ
(
Z(1)

τn+1

)− ξ
(
Z(1)

τn

))(
1 − τn+1

t

)
. (12)

As t < τn+2, and t 
→ Φt(Z
(1)
t )−Φt(Z

(2)
t ) is not constant, the left-hand side of (12) is strictly positive, which implies

that ξ(Zτn+1) − ξ(Zτn) > 0, thus completing the proof. �
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As an immediate consequence of this lemma, we get that (Zt : t > 1) never returns to the same point in Z
d . We

need the following additional fact about the maximizers Z(1) and Z(2).

Lemma 2.9. Let λt = (log t)−β for some β > 1+ 1
α−d

. If t1 ≤ t2 are sufficiently large with Z
(1)
t1

= Z
(1)
t2

and Φt(Z
(1)
t )−

Φt(Z
(2)
t ) ≥ 1

2atλt holds for t = t1, t2, then it holds for all t ∈ [t1, t2].

Proof. First, we additionally assume that Z
(2)
t = Z

(2)
t1

for all t ∈ [t1, t2). By Lemma 2.8 we have that Z
(1)
t = Z

(1)
t1

for

all t ∈ [t1, t2]. Using also the continuity of t 
→ Φt(Z
(i)
t ), i = 1,2, we get

Φt

(
Z

(1)
t

)− Φt

(
Z

(2)
t

) = Φt

(
Z

(1)
t1

)− Φt

(
Z

(2)
t1

)
= ξ

(
Z

(1)
t1

)− ξ
(
Z

(2)
t1

)− 1

t

(∣∣Z(1)
t1

∣∣ log ξ
(
Z

(1)
t1

)− ∣∣Z(2)
t1

∣∣ log ξ
(
Z

(2)
t1

)− η
(
Z

(1)
t1

)+ η
(
Z

(2)
t1

))
= A − 1

t
B for all t ∈ [t1, t2]

for some constants A,B ∈ R depending only on t1. Now, defining f (t) = A − 1
t
B − 1

2atλt , we get that f (t1) ≥ 0 and
f (t2) ≥ 0 by our assumption. By calculating the derivative of f , one easily show that this also implies that f (t) ≥ 0
for all t ∈ [t1, t2], in other words the claimed inequality holds for all t ∈ [t1, t2].

Now we drop the extra assumption on Z
(2)
t . By Proposition 3.4 in [12], the claimed inequality holds for each time

s(i) ∈ [t1, t2], i = 1, . . . ,N , when Z
(2)
t and Z

(3)
t produce the same value of Φt . Therefore, the assumption we made

above holds for each of the subintervals [t1, s(1)), [s(i), s(i+1)) for i = 1, . . . ,N − 1 and [s(N), t2), which concludes
the proof. �

Finally, we can now show ageing for the profile v and thereby complete the proof of Theorem 1.1.

Proof of Theorem 1.1. By Proposition 2.1, it suffices to show that

lim
t→∞ Prob

{
sup
z∈Rd

s∈[t,t+θt]

∣∣v(t, z) − v(s, z)
∣∣< ε

}
= lim

t→∞ Prob
{
Z

(1)
t = Z

(1)
t+θt

}
.

First of all, note that by Lemma 2.8 we know that Z
(1)
t = Z

(1)
t+θt if and only if Z

(1)
t = Z

(1)
s for all s ∈ [t, t + θt]. We

will work on the event

At = {
Φt

(
Z

(1)
t

)− Φt

(
Z

(2)
t

)≥ atλt/2
}∩ {Φt+θt

(
Z

(1)
t+θt

)− Φt+θt

(
Z

(2)
t+θt

)≥ at+θtλt+θt /2
}
.

Recall from Proposition 5.3 in [12] that if Φt(Z
(1)
t ) and Φt(Z

(2)
t ) are sufficiently far apart, then the profile is localized

in Z
(1)
t . More precisely, almost surely,

lim
t→∞

∑
z∈Zd\{Z(1)

t }
v(t, z)1

{
Φt

(
Z

(1)
t

)− Φt

(
Z

(2)
t

)≥ atλt/2
}= 0.

In particular, for given ε < 1
2 , we can assume that t is sufficiently large, so that for all s ≥ t ,

∑
z∈Zd\{Z(1)

s }
v(s, z)1

{
Φs

(
Z(1)

s

)− Φs

(
Z(2)

s

)≥ asλs/2
}

<
ε

2
. (13)
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Now, if Z
(1)
t �= Z

(1)
t+θt , then on At , we know by (13) that v(t + θt,Z

(1)
t ) ≤ ε

2 . Combining this with the fact that

v(t,Z
(1)
t ) > 1 − ε

2 , we have that

sup
z∈Zd

s∈[t,t+θt]

∣∣v(t, z) − v(s, z)
∣∣≥ ∣∣v(t,Z(1)

t

)− v
(
t + θt,Z

(1)
t

)∣∣> 1 − ε > ε.

Conversely, assume that Z
(1)
t = Z

(1)
t+θt , then by Lemma 2.8, Z

(1)
t = Z

(1)
s for all s ∈ [t, t + θt]. Now, on the event At

we know by Lemma 2.9 that for all s ∈ [t, t + θt],
Φs

(
Z(1)

s

)− Φs

(
Z(2)

s

)≥ asλs/2. (14)

This implies by (13) that
∑

z∈Zd\{Z(1)
s } v(s, z) < ε/2 for all s ∈ [t, t + θt], which yields that

sup
z∈Rd

s∈[t,t+θt]

∣∣v(t, z) − v(s, z)
∣∣< ε.

Hence, to complete the proof, it remains to notice that by [12], Lemma 6.2, the pair (Φt (Z
(1)
t )/at , Φt (Z

(2)
t )/at )

converges weakly to a limit random variable with a density, from which we conclude that Prob(At ) → 1 as t → ∞. �

3. Ageing: An almost-sure limit theorem

In this section, we prove Theorem 1.3. As in the previous section, we first concentrate on an analogous theorem for
the maximizer of the variational problem Φt . In particular, in Section 3.1, we extend Proposition 2.1 to a moderate
deviations principle. This estimate allows us to prove the equivalent of the almost sure ageing Theorem 1.3 in the
setting of the variational problem in Section 3.2. Finally, in Section 3.3, we transfer this result to the maximizer of v.

3.1. Moderate deviations

Recall from Corollary 2.5 that

lim
t→∞ Prob{Zt = Zt+θt } = I (θ) ∼ 1

dB(α − d + 1, d)
θ−d,

where the latter asymptotic equivalence holds for θ tending to infinity. We now show that we obtain the same asymp-
totic for Prob{Zt = Zt+θt } if we allow θ to grow slowly with t .

Proposition 3.1 (Moderate deviations). For any positive function θt such that θt → ∞ and θt ≤ (log t)δ for some
δ > 0, we have that

Prob{Zt = Zt(1+θt )} =
(

1

dB(α − d + 1, d)
+ o(1)

)
θ−d
t .

Unlike in the proof of Proposition 2.1, we cannot directly use the point process techniques, as the weak convergence
only applies to compact sets, whereas here we deal with sets that increase slowly with t to a set that has infinite mass
under the intensity measure ν. We start by expressing Φt(z) in terms of ξ(z) and |z|, while carefully controlling the
errors.

Lemma 3.2. There exist C1,C2 > 0 and t0 > 0 such that, for all z ∈ Z
d , t > t0 with tξ(z) > |z|,

ξ(z)

at

− q
|z|
rt

(
1 + 2

log(Nt + qgt )

log t

)
≤ Φt(z)

at

≤ ξ(z)

at

− q
|z|
rt

(
1 − C1

log log t

log t

)
+ C2

1

log t
,



982 P. Mörters, M. Ortgiese and N. Sidorova

where the lower bound holds uniformly for all functions Nt,gt such that Φt(z) ≤ atNt , |z| ≤ rtgt and Nt,gt → ∞ as
t → ∞. Similarly, for θ ≥ 0 and z ∈ Z

d such that (1 + θ)tξ(z) > |z|, we have

ξ(z)

at

− q

1 + θ

|z|
rt

(
1 + 2

log(Nt + qgt )

log t

)
≤ Φt+θt (z)

at

≤ ξ(z)

at

− q

1 + θ

|z|
rt

(
1 − C1

log log t

log t

)
+ C2

1

log t
,

again with the restriction that for the lower bound we assume that Φt(z) ≤ atNt and |z| ≤ rtgt .

Proof. The statement follows by a careful (but elementary) analysis of the explicit form of Φt . �

In analogy to the proof of Proposition 2.1, we will have to restrict (Zt/rt ,Φt (Zt )/at ) to large boxes in R
d × R.

The first step is therefore to estimate the probability that (Zt/rt ,Φt (Zt )/at ) lies outside a large box.

Lemma 3.3. There exist C,C′ > 0 such that for all t > 0 large enough, uniformly for all N ≥ 1,

(a) Prob{ |Zt |
rt

≥ N} ≤ CNd−α ,

(b) Prob{Φt (Zt )
at

≥ N} ≤ CNd−α ,

(c) Prob{Φt (Zt )
at

≤ ηt } ≤ Ce−C′ηd−α
t for any positive function ηt ≤ 1 such that ηtat → ∞.

Proof. (a) Using Lemma 3.2, we can estimate

Prob
{|Zt | ≥ Nrt

} ≤ Prob

{
∃z ∈ Z

d with |z| ≥ Nrt ,
Φt (z)

at

≥ 0

}
≤

∑
z∈Zd

|z|≥Nrt

Prob

{
ξ(z)

at

≥ q
|z|
rt

(
1 − C1

log log t

log t

)
− C2

1

log t

}

= (
1 + o(1)

) ∑
z∈Zd

{|z|≥Nrt

a−α
t

(
q

|z|
rt

)−α

= (
1 + o(1)

)
q−αrα−d

t

∑
z∈Zd

|z|≥Nrt

|z|−α,

where we used that rd
t = aα

t and o(1) tends to 0 as t → ∞ uniformly in N ≥ 1. We obtain the required bound by
noting that the sum is bounded by a constant multiple of (Nrt )

d−α .
Parts (b) and (c) follow similarly, using the precise error bounds from Lemma 3.2 and the independence of the

Pareto-distributed potential. �

Proof of Proposition 3.1. The main idea is again to restrict (Zt/rt ,Φt (Zt )/at ) to large boxes to be able to control
the error when approximating Φt . To set up the notation, we introduce functions ηt = (log t)−β ′

, Nt = (log t)β ,
gt = (log t)γ for some parameters β,β ′, γ > 0, which we will choose later on depending on the function θt such that

Prob{Zt = Zt(1+θt )} = Prob

{
Zt = Zt(1+θt ), |Zt | ≤ rtgt ,

Φt (Zt )

at

∈ [ηt ,Nt ]
}

+ o
(
θ−d
t

)
.

Once these growing boxes are defined, we can find by Lemma 3.2 a constant C > 0 such that the function δt = C
log log t

log t

satisfies

ξ(z)

at

− q
|z|
rt

(1 + δt ) ≤ Φt(z)

at

≤ ξ(z)

at

− q
|z|
rt

(1 − δt ) + δt ,

where the upper bound holds for all z ∈ Z
d and the lower bound for all z ∈ Z

d such that |z| ≤ rtgt and Φt(z) ≤ atNt .
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Upper bound. We use a slight variation on the general idea, and consider

Prob{Zt = Zt(1+θt )} ≤ Prob

{
Zt = Zt(1+θt ), ηt ≤ ξ(Zt )

at

− q
|Zt |
rt

(1 − δt ) + δt < Nt

}
+ Prob

{
Φt(Zt ) < ηtat

}+
∑
z∈Zd

Prob

{
ξ(z)

at

− q
|z|
rt

(1 − δt ) + δt ≥ Nt

}
. (15)

By Lemma 3.3 (with a slight modification), we have that

Prob
{
Φt(Zt ) < ηtat

}+
∑
z∈Zd

Prob

{
ξ(z)

at

− q
|z|
rt

(1 − δt ) + δt ≥ Nt

}
≤ C1

(
e−C2η

d−α
t + Nd−α

t

)
,

so that this error term is of order o(θ−d
t ) if β > 0 is large enough. Now we can unravel the definition of Zt being the

maximizer of Φt (in particular we know tξ(Zt ) > |Zt | and Φt(Zt ) is positive) and write

Prob
{
Zt = Zt+θt , η

′
t at ≤ Φt(Zt ) ≤ ηtat , |Zt | ≤ gt rt

}
=
∫ Nt

ηt

∑
z∈Zd

Prob

⎧⎨⎩
Φt(z) ≤ Φt(z) for z with tξ(z) > |z|;
Φt(1+θt )(z) ≤ Φt(1+θt )(z) for z with t (1 + θt )ξ(z) > |z|;
tξ(z) > |z| for ξ(z)

at
− q

|z|
rt

(1 − δt ) + δt ∈ dy

⎫⎬⎭ . (16)

Recalling that rt log t = tat it is easy to see that the inequalities on the left hold automatically for sufficiently large t ,
if the conditions on the right are violated. Therefore, using Lemma 3.2 and the independence of the ξ(z), we get an
upper bound on the expression in (16),∫ Nt

ηt

∑
z∈Zd

Prob

{
ξ(z)

at

− q
|z|
rt

(1 − δt ) + δt ∈ dy

} ∏
z∈Zd

|z|<|z|

Prob

{
ξ(z)

at

≤ y + q
|z|
rt

(1 + δt )

}

×
∏
z∈Zd

|z|<|z|<rtgt

Prob

{
ξ(z)

at

− q

1 + θt

|z|
rt

(1 + δt ) ≤ y + qθt

1 + θt

|z|
rt

(1 − δt )

}
. (17)

We now require that β ′ < 1, so that δtη
−1
t → 0. In the following steps, we treat the three factors in the above expression

separately. First, as ξ(0) is Pareto-distributed, we see that

1

dy
Prob

{
ξ(z)

at

− q
|z|
rt

(1 − δt ) + δt ∈ dy

}
≤ (

1 − δtη
−1
t

)−(α+1)
αa−α

t

(
y + q

|z|
rt

)−(α+1)

.

For the second expression in (17), we find that for all y > ηt and t large enough,∏
z∈Zd

|z|<|z|

Prob

{
ξ(z)

at

≤ y + q
|z|
rt

(1 + δt )

}
≤ (

1 + o(1)
)

exp

{
−(1 + o(1)

)∫
|x|<|z|/rt

(
y + q|x|)−α dx

}
.

Finally, we consider the last product in (17), and a similar calculation to above shows that uniformly in y ≥ ηt and for
all z ∈ Z

d ,∏
z∈Zd

|z|<|z|<rtgt

Prob

{
ξ(z)

at

− q

1 + θt

|z|
rt

(1 + δt ) ≤ y + qθt

1 + θt

|z|
rt

(1 − δt )

}

≤ (
1 + o(1)

)
exp

{
−(1 + o(1)

)∫
|z|/rt≤|x|≤gt

(
y + qθt

1 + θt

|z|
rt

+ q

1 + θt

|x|
)−α

dx

}
.
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Combining these estimates to bound (17) and thus (16), we obtain

Prob

{
Zt = Zt+θt , η

′
t at ≤ ξ(Zt )

at

− q
|Zt |
rt

(1 − δt ) + δt ≤ ηtat , |Zt | ≤ gt rt

}
≤ (

1 + o(1)
) ∫ Nt

ηt

∫
x∈Rd

exp

{
−(1 + o(1)

)∫
|x|<|x|

(
y + q|x|)−α dx

}

× exp

{
−(1 + o(1)

)∫
|x|≤|x|≤gt

(
y + qθt

1 + θt

|x| + q

1 + θt

|x|
)−α

dx

}
α dx dy

(y + q|x|)α+1
,

where we used that the approximation of the sum by an integral works because ηtat → ∞.
Note also that, uniformly in x and y, for some universal constant C′ > 0, we have∫

|x|≥gt

(
y + qθt

1 + θt

|x| + q

1 + θt

|x|
)−α

dx ≤ (1 + θt )
αq−α

∫
|x|≥gt

|x|−α ≤ C′θα
t gd−α

t .

Choosing γ > 0 large enough ensures that this term tends to 0.
Lower bound. Before we simplify the expression for the upper bound, we derive a similar expression for the lower

bound. As in the upper bound, we follow the main idea and restrict our attention to large boxes and estimate

Prob{Zt = Zt(1+θt )} ≥
∑
z∈Zd

|z|≤rt gt

Prob

{
Zt = z = Zt+θt ,

ξ(z)

at

− 2q
|z|
rt

≤ Nt

}

=
∑
z∈Zd

|z|≤rt gt

Prob

⎧⎨⎩
Φt(z) ≤ Φt(z) for z with tξ(z) > |z|;
Φt(1+θt )(z) ≤ Φt(1+θt )(z) for z with t (1 + θt )ξ(z) > |z|;
tξ(z) > |z|; ξ(z)

at
− 2q

|z|
rt

≤ Nt

⎫⎬⎭ . (18)

Similarly, to the upper bound, Lemma 3.2 expresses Φt(z) in terms of the potential ξ(z) and |z|. Then, one can show
that depending on whether |z| ≤ |z| or |z| > |z| one of the two conditions in the bracket above is superfluous, so that
the probabilities factorize. Finally, one can approximate the sums by integrals to obtain almost the same expression as
for the upper bound. However, one can show that the difference is of order o(θ−d

t ), by making β > 0 larger depending
on θt , and then choosing γ > 0 large depending on β and θt .

Final step. Combining the upper and lower bound we have shown that

Prob{Zt = Zt(1+θt )}

= (
1 + o(1)

)∫
y>0

∫
x∈Rd

exp

{
−(1 + o(1)

)∫
|x|<|x|

(
y + q|x|)−α dx

}

× exp

{
−(1 + o(1)

)∫
|x|≤|x|

(
y + qθt

1 + θt

|x| + q

1 + θt

|x|
)−α

dx

}
α dx dy

(y + q|x|)α+1
+ o

(
θ−d
t

)
.

Simplifying the integrals as in Proposition 2.4, we obtain that Prob{Zt = Zt(1+θt )} = (1+ o(1))I (θt ) + o(θ−d
t ), and

recalling the asymptotics of I from Corollary 2.5 completes the proof. �

Remark 3.4. In fact, the proof of Proposition 3.1 even shows a slightly stronger statement. Namely, let γ > 0 and
suppose 	t is a function such that 	t → ∞ as t → ∞. Then for any ε > 0, there exists T > 0 such that for all t ≥ T

and all 	t ≤ θ ≤ (log t)γ , we have that

(1 − ε)
1

dB(α − d − 1)
θ−d ≤ Prob{Zt = Zt+θt } ≤ (1 + ε)

1

dB(α − d − 1)
θ−d .
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As indicated in Section 1.3 the previous proposition suffices to prove the upper bound in Theorem 1.3. For the
lower bound we also need to control the decay of correlations.

Lemma 3.5. Let θt be a positive, nondecreasing function such that θt → ∞ as t → ∞ and for some δ > 0, θt ≤
(log t)δ for all t > 0. Then, for any t > 0 and s ≥ (1 + θt )t ,

Prob{Zt = Zt(1+θt ) �= Zs = Zs(1+θs )} ≤ (
1 + o(1)

) 1

d2B(α − d + 1, d)2
θ−d
t θ−d

s ,

where o(1) is an error term that vanishes as t → ∞.

Proof. We use a similar notation as in the proof of Proposition 3.1. In particular, we will choose functions gt , ηt ,Nt

depending on θt . Also, let δt = C
log log t

log t
, where C is the constant implied in the error bounds in Lemma 3.2. A lengthy

routine calculation similar to Lemma 3.3 shows that

Prob{Zt = Zt(1+θt ) �= Zs = Zs(1+θs )}

= Prob

⎧⎨⎩
Zt = Zt(1+θt ) �= Zs = Zs(1+θs );
ξ(Zt )

at
− q

|Zt |
rt

(1 − δt ) + δt ∈ [ηt ,Nt ];
ξ(Zs)

as
− q

|Zs |
rs

(1 − δs) + δs ∈ [ηs,Ns]

⎫⎬⎭+ error(s, t), (19)

where, for some constants C1,C2 > 0,

error(t, s) ≤ C1
(
e−C2η

d−α
t + Nd−α

t

)(
e−C2η

d−α
s + θ−d

s + Nd−α
s

)+ C1θ
−d
t

(
e−C2η

d−α
s + Nd−α

s

)
.

Taking Nt = θ
q+3/2
t and ηt = θ

−β ′
t for β ′ > 0 ensures that the error is of order o(θ−d

t θ−d
s ). We can therefore focus on

the probability on the right-hand side of (19). Using Lemma 3.2, we find the following upper bound

Prob

⎧⎨⎩
Zt = Zt(1+θt ) �= Zs = Zs(1+θs );
ξ(Zt )

at
− q

|Zt |
rt

(1 − δt ) + δt ∈ [ηt ,Nt ];
ξ(Zs)

as
− q

|Zs |
rs

(1 − δs) + δs ∈ [ηs,Ns]

⎫⎬⎭
≤
∑

z1∈Zd

∑
z2∈Zd\{z1}

Prob

⎧⎪⎪⎨⎪⎪⎩
Φt(1+θt )(z) ≤ Φt(1+θt )(z1) ∀|z| ≤ rtgt with z �= z1, z2;
Φs(1+θs )(z) ≤ Φs(1+θs )(z2) ∀rtgt < |z| ≤ rsgs with z �= z1, z2;
ξ(z1)
at

− q
|z1|
rt

(1 − δt ) + δt ∈ [ηt ,Nt ];
ξ(z2)
as

− q
|z2|
rs

(1 − δs) + δs ∈ [ηs,Ns]

⎫⎪⎪⎬⎪⎪⎭ ,

which, taking gt = θ
q+3/2
t and using the independence, we can finally estimate as (1 + o(1)) times∫ ∫ Nt

ηt

exp

{
−(1 + o(1)

)∫
|x|<gt

(
y1 + q

1 + θt

|x| + qθt

1 + θt

|x1|
)−α

dx

}
α dx1 dy1

(y1 + q|x1|)α+1

×
∫ ∫ Ns

ηs

exp

{
−(1 + o(1)

) ∫
gt rt /rs<|x|<gs

(
y2 + q

1 + θs

|x| + qθs

1 + θs

|x2|
)−α

dx

}
α dx2 dy2

(y2 + q|x2|)α+1
. (20)

In the remainder of the proof, we have to show that the first term is of order θ−d
t , whereas the second is of order θ−d

s .
The integral in the first factor equals in polar coordinates

2d

(d − 1)!
∫

0<r<gt

(
y1 + q

1 + θt

r + qθt

1 + θt

|x1|
)−α

rd−1 dr

≥ 2d

(d − 1)! (1 + θt )
d

{
q−α

(
y1 + q|x1|

)d−α
B(α − d, d) −

∫
r>gt /(1+θt )

(
y1 + qr + q|x1|

)−α
rd−1 dr

}
.
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The subtracted integral is bounded from above by q−αgd−α
t (1 + θt )

α−d and therefore, by our assumptions, together
with the (1 + θt )

d factor tends to zero. Hence, we can conclude that, with ϑ = 2dB(α − d, d)/qd(d − 1)!, the first
factor in (20) is bounded from above by

(
1 + o(1)

) ∫ ∫ Nt

ηt

e−(1+o(1))ϑ(1+θt )
d (y1+q|x1|)d−α α dy1 dx1

(y1 + q|x1|)α+1
≤ (

1 + o(1)
)
θ−d
t

1

dB(α − d + 1, d)
,

where the latter inequality follows after a standard simplification. For the second factor in (20), we almost get the
same expression, and it suffices to consider the following term and, using similar arguments as above, we can estimate
uniformly in y2 ≥ ηs ,∫

|x|<gt rt /rs

(
y2 + q

1 + θs

|x| + q|x2|
)−α

dx

≤ (1 + θs)
d 2d

qd(d − 1)!
(
y2 + q|x2|

)d−α
∫ 1

1−qgt rt /(rs (1+θs )ηs)

uα−d−1(1 − u)d−1 du.

Using that s/t ≥ (1 + θt ) and recalling that ηt = θ
−β ′
t , where we can assume 0 < β ′ < 1 and gt = θ

q+3/2
t , we obtain

gt rt

rs(1 + θs)ηs

≤ gt (log t + log(1 + θt ))
q+1

(log t)q+1θ
q+2−β ′
t

≤ (
1 + o(1)

)
θ

β ′−1/2
t ,

so that, by choosing β ′ < 1
2 , this term tends to 0. Now, we can simplify the second factor in (20) in the same way as

the first one to show that it is of the required form. �

3.2. Almost sure asymptotics for the maximizer of Φt

In analogy with the residual lifetime function R for the process Xt , we can also define the residual lifetime function
RV for the maximizer Zt of the variational problem, by setting

RV (t) = sup{s ≥ 0: Zt = Zt+s}.
Using the moderate deviation principle, Proposition 3.1, developed in the previous section together with the Borel–
Cantelli lemma, we aim to prove the following analogue of Theorem 1.3.

Proposition 3.6. For any nondecreasing function h : (0,∞) → (0,∞) we have, almost surely,

lim sup
t→∞

RV (t)

th(t)
=
{

0 if
∫∞

1
dt

th(t)d
< ∞,

∞ if
∫∞

1
dt

th(t)d
= ∞.

Proof of the first part of Proposition 3.6. Consider h : (0,∞) → (0,∞) such that
∫∞

1
dt

th(t)d
< ∞, which is equiva-

lent to
∫
t>1 h( 1

3 et )−d dt < ∞, so that

∞∑
n=1

h

(
1

3
en

)−d

< ∞. (21)

It is not hard to see that h(t) → ∞ and that we can assume, without loss of generality, that h(t) ≤ (log t)γ for some
γ > 1, replacing h(t) by h̃(t) = h(t) ∧ (log t)γ if necessary.

Fix ε > 0 and an increasing sequence tn → ∞. It suffices to show that almost surely,

lim sup
n→∞

RV (tn)

tnh(tn)
≤ ε.
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To this end, we now show that for all but finitely many n,

RV (tn)

tn
> εh(tn) implies

RV (t)

t
>

1

4
εh(tn) for all t ∈ [tn,3tn]. (22)

By definition, RV (tn) > εtnh(tn) implies that Zt does not jump during the interval [tn, tn(1+ εh(tn))]. As RV is affine
with slope −1 on this interval

RV (t)

t
= RV (tn) + tn − t

t
>

(1 + εh(tn))tn − t

t
≥ εh(tn)

4
for t ∈

[
tn, tn

(1 + εh(tn))

(1 + 1/4εh(tn))

]
.

Recall that h(t) → ∞, and hence we have, for all but finitely many n, that (1 + εh(tn)) ≥ 3(1 + 1
4εh(tn)), completing

the proof of (22).
Now, define k(n) = inf{k: ek ≥ tn}, so that in particular tn ≤ ek(n) < 3tn. Then, by (22) and monotonicity of ϕ, we

can deduce that for n large enough

RV (tn)

tn
≥ εh(tn) implies

RV (ek(n))

ek(n)
≥ ε

4
h(tn) ≥ ε

12
h

(
1

3
ek(n)

)
.

This shows in particular that

Prob

{
RV (tn)

tn
≥ εh(tn) infinitely often

}
≤ Prob

{
RV (en)

en
≥ ε

12
h

(
1

3
en

)
infinitely often

}
.

By Proposition 3.1 we can deduce that exists a constant C̃ such that for all n large enough

Prob

{
RV (en)

en
≥ ε

12
h

(
1

3
en

)}
≤ C̃h

(
1

3
en

)−d

.

By (21) these probabilities are summable, so that Borel–Cantelli completes the proof. �

For the second part of Proposition 3.6, we need to prove a lower bound on the limit superior, so our strategy is to
use the fine control over the decay of correlations that we developed in the previous section and combine it with the
Kochen–Stone lemma.

Proof of second part of Proposition 3.6. Let h : (0,∞) → (0,∞) be such that
∫∞

1
dt

th(t)d
= ∞. Then, we can deduce

that

∞∑
n=1

h
(
en
)−d = ∞. (23)

Without loss of generality, we can assume that h(t) → ∞ and also additionally that h(t) ≤ (log t)2/d for all t . Indeed,
if necessary, we may replace h(t) by h̃(t) = h(t)∧ (log t)2/d . For fixed κ > 0, define the event En = {R(en)

en ≥ κh(en)}.
By Proposition 3.1, and (23) we have

∑∞
n=1 Prob(En) = ∞. By the Kochen–Stone lemma, see, for instance, [9], we

then have that

Prob{En infinitely often} ≥ lim sup
k→∞

(
∑k

n=1 Prob(En))
2∑k

n=1
∑k

m=1 Prob(Em ∩ En)
. (24)

Fix ε > 0. By Proposition 3.1 and Remark 3.4 we can deduce that we can choose N large enough such that for all
t ≥ N and all (log t)1/2d ∧ h(t) ≤ θ ≤ (log t)6, we have that

(1 − ε)
1

dB(α − d + 1, d)
θ−d ≤ Prob{Zt = Zt+θt } ≤ (1 + ε)

1

dB(α − d + 1, d)
θ−d . (25)
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Also, by Lemma 3.5, we know that we can assume N is large enough such that such that for all n ≥ N and m ≥
n + log(1 + κh(en)), we have that

Prob{Zen = Zen(1+κh(en)) �= Zem = Zem(1+κh(em))}

≤ (1 + ε)

(
1

dB(α − d + 1,1)

)2

κ−2dh
(
en
)−d

h
(
em
)−d ≤ 1 + ε

1 − ε
Prob(En)Prob(Em). (26)

Note that by Lemma 2.8, we know that Zt never returns to the same point, therefore we have

Prob(En ∩ Em)

= Prob{Zen = Zem(1+κh(en))} + Prob{Zen = Zen(1+κh(en)) �= Zem = Zem(1+κh(em))}.
In particular, notice that the second probability is zero if n ≤ m ≤ n + log(1 + κh(en)). Hence, we can estimate for
n > N and for k large enough, using (25) and (26),

k∑
m=n

Prob(En ∩ Em)

≤
n+2 logn∑

m=n

Prob{Zen = Zem(1+κh(en))} +
k∑

m=n+2 logn

Prob{Zemn−2 = Zem(1+κh(em))}

+ 1 + ε

1 − ε

k∑
m=n+log(1+κh(en))

Prob(En)Prob(Em)

≤ C̃ Prob(En)

k∑
m=n

ed(n−m) + C̃n−2d
k∑

m=n

Prob(Em) + 1 + ε

1 − ε

k∑
m=n

Prob(En)Prob(Em),

where C̃ is some suitable constant. Finally, in order to bound the right-hand side of (24), we can estimate for k > N ,

k∑
n=1

k∑
m=1

Prob(En ∩ Em)

≤ 2N

k∑
n=1

Prob(En) +
k∑

n=N

k∑
m=N

Prob(En ∩ Em)

≤ 2
k∑

n=1

(
N +

k∑
m=1

m−2d +
k∑

m=n

C̃ed(n−m)

)
Prob(En) + 2

1 + ε

1 − ε

k∑
n=N

k∑
m=n

Prob(En)Prob(Em)

≤ C′
k∑

n=1

Prob(En) + 1 + ε

1 − ε

k∑
n=1

k∑
k=1

Prob(En)Prob(Em),

where C′ > 0. Therefore, we can conclude from (24) that Prob{En infinitely often} ≥ 1−ε
1+ε

, and since ε > 0 and κ > 0
were arbitrary, the second statement of Proposition 3.6 follows. �

3.3. Almost sure asymptotics for the maximizer of the solution profile

In this section, we prove Theorem 1.3. Thus, we have to transfer the almost sure ageing result of Proposition 3.6,
which was formulated on the level of the variational problem, to the residual lifetime function of the maximizer Xt of
the profile v. The underlying idea is that most of the time Xt and the maximizer of the variational problem Zt agree
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and we only have to control the length of the intervals when they can disagree. The latter scenario corresponds to
those times during which the processes relocate to another point. Therefore, our strategy is to look at the jump times
and show that both processes jump at almost the same times.

The period when the maximizers relocates correspond exactly to those times when Z
(1)
t and Z

(2)
t produce a com-

parable value of Φ . With this in mind, define for λt = (log t)−β with β > 1 + 1
α−d

, the set of exceptional transition
times

E = E (β) =
{
t > t0: Φt

(
Z

(1)
t

)− Φt

(
Z

(2)
t

)≤ 1

2
atλt

}
, (27)

where t0 is chosen sufficiently large and, to avoid trivialities, such that t0 �= inf E . By [12], Lemma 3.4, we can choose
t0 large enough such that for all t > t0,

Φt

(
Z

(1)
t

)− Φt

(
Z

(3)
t

)
> atλt . (28)

Lemma 3.7. The process (Z
(1)
t : t ≥ t0) jumps only at times contained in the set E . Moreover, each connected compo-

nent of E contains exactly one such jump time.

Proof. The first part of the statement is trivial, since at each jump time τ ≥ t0 of Z
(1)
t we have that Φτ (Z

(1)
τ ) =

Φτ (Z
(2)
τ ) so that τ ∈ E . For the second statement, let [b−, b+] be a connected component of E , then Φt(Z

(1)
t ) −

Φt(Z
(2)
t ) = 1

2atλt , for t = b−, b+ (here we use that b− ≥ inf E �= t0). Now, since t 
→ Φt(Z
(1)
t ) − Φt(Z

(2)
t ) is never

constant, if Z
(1)

b− = Z
(1)

b+ then by Lemma 2.9 there is t ∈ (b−, b+) such that t /∈ E contradicting the connectedness of

[b−, b+]. Thus, we can conclude that Z
(1)
t jumps at least once in [b−, b+]. Finally, the fact that, by Lemma 2.8, Z

(1)
t

never returns to the same point combined with (28) guarantees that Z
(1)
t only jumps once in [b−, b+] (namely from

Z
(1)

b− to Z
(2)

b− ). �

Denote by (τn) the jump times of the maximizer process (Z
(1)
t : t ≥ t0) in increasing order.

Lemma 3.8. (i) Fix β > 1 + 1
α−d

, then, almost surely, for all but finitely many n,

(
ξ
(
Z(1)

τn

)− ξ
(
Z(2)

τn

))(τn+1 − τn

τn

)
≥ aτn(log τn)

−β.

(ii) Fix γ > 1 + 2
α−d

, then, almost surely, for all but finitely many n,

τn+1 − τn

τn

≥ (log τn)
−γ .

(iii) Fix δ > 1 + 1
α−d

+ 1
d

, then, almost surely, for all but finitely many n,

ξ
(
Z(1)

τn

)− ξ
(
Z(2)

τn

)≥ aτn(log τn)
−δ.

Proof. (i) By Lemma 2.6 and Remark 2.7 we find that

Φτn+1

(
Z(1)

τn

)− Φτn+1

(
Z(2)

τn

) = (
ξ
(
Z(1)

τn

)− ξ
(
Z(2)

τn

))(τn+1 − τn

τn+1

)
≤ (

ξ
(
Z(1)

τn

)− ξ
(
Z(2)

τn

))(τn+1 − τn

τn

)
. (29)

Now, we can estimate the difference on the left-hand side from below by using that Z
(2)
τn cannot produce more than the

third largest value of Φ at time τn+1. Indeed, Lemma 2.8 ensures that Z(1) never visits the same point again, so that
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Z
(2)
τn = Z

(1)
τn−1 �= Z

(i)
τn+1 for i = 1,2 since Z

(2)
τn+1 = Z

(1)
τn . Hence, using [12], Proposition 3.4, for the second inequality,

Φτn+1

(
Z(2)

τn

) ≤ Φτn+1

(
Z(3)

τn+1

)≤ Φτn+1

(
Z(1)

τn+1

)− aτn+1(log τn+1)
−β

≤ Φτn+1

(
Z(1)

τn

)− aτn(log τn)
−β,

where in the last step we again used that Z
(1)
τn = Z

(2)
τn+1 and that t 
→ at (log t)−β is increasing for all sufficiently large t .

Substituting this inequality into (29) completes the proof of part (i).
(ii) By the first part, we need to get an upper bound on ξ(Z

(1)
τn ). Therefore, we note by [13], Lemma 3.5, combined

with [12], Lemma 3.2, that for any δ > 1
α−d

, and all t sufficiently large

ξ
(
Z

(1)
t

)≤ at (log t)δ. (30)

Now, if we combine part (i) for β = 1
2 (γ + 1) > 1 + 1

α−d
with (30) for δ = 1

2 (γ − 1), we obtain the statement of
part (ii).

(iii) Note that for any δ′ > 1
d

, Proposition 3.6, shows that for all but finitely many n,

τn+1 − τn

τn

= RV (τn)

τn

≤ (log τn)
δ′
.

This observation together with part (i), immediately implies the statement of part (iii). �

A similar statement to Lemma 3.7 also holds for the process Xt = argmax{u(t, z): z ∈ Z
d}. Fix 0 < ε < 1

3 , then
by [12], Proposition 5.3, we can assume additionally that t0 in the definition (27) of E is chosen large enough such
that for all t > t0[

U(t)−1
∑
z∈Zd

z �=Z
(1)
t

u(t, z)

]
1

{
Φt

(
Z

(1)
t

)− Φt

(
Z

(2)
t

)≥ 1

2
atλt

}
< ε. (31)

Furthermore, by the ‘two cities theorem’ [12], Theorem 1.1, we may assume that

u(t,Z
(1)
t ) + u(t,Z

(2)
t )

U(t)
> 1 − ε for all t ≥ t0. (32)

Lemma 3.9. The process (Xt : t ≥ t0) only jumps at times contained in E and each connected component of E contains
exactly one such jump time. Furthermore, it never returns to the same point in Z

d .

Proof. By (31), for any t ∈ [t0,∞) \ E , we have Xt = Zt so that, in particular, Xt jumps only at times in E . Now, let
[b−, b+] be a connected component of E . Note that the proof of Lemma 3.7 shows that for all t ∈ [b−, b+], the set
{Z(1)

t ,Z
(2)
t } consists of exactly two points, z(1) := Z

(1)

b+ and z(2) := Z
(2)

b+ = Z
(1)

b− . Hence, by (31) we find that Xb− = z(2)

and Xb+ = z(1). Also, the two-point localization (32) implies that {Xt : t ∈ [b−, b+]} = {z(1), z(2)}. Hence, it remains
to show that (Xt : t > 0) jumps only once (from z(2) to z(1)) in the interval [b−, b+]. Define the function

g(t) = u(t, z(1))

u(t, z(2))
.

Then, note that since u solves the heat equation, for z ∈ {z(1), z(2)},
∂

∂t
u(t, z) = �u(t, z) + ξ(z)u(t, z) =

∑
y∼z

(
u(t, y) − u(t, z)

)+ ξ(z)u(t, z).
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Furthermore, by [12], Lemmas 2.2 and 3.2, we have z(1) �∼ z(2) so that using (32) we get(−2d + ξ(z)
)
u(t, z)

<
∂

∂t
u(t, z) < 2dεU(t) − 2du(t, z) + ξ(z)u(t, z)

< 2d
ε

1 − ε

(
u
(
t, z(1)

)+ u
(
t, z(2)

))+ (
ξ(z) − 2d

)
u(t, z).

Therefore,

g′(t) = (∂/∂t)u(t, z(1))u(t, z(2)) − u(t, z(1))(∂/∂t)u(t, z(2))

u(t, z(2))2

>
1

u(t, z(2))2

[(
ξ
(
z(1)

)− ξ
(
z(2)

)− 2d
ε

1 − ε

)
u
(
t, z(1)

)
u
(
t, z(2)

)− 2d
ε

1 − ε
u
(
t, z(1)

)2]
= g(t)

(
ξ
(
z(1)

)− ξ
(
z(2)

)− 2d
ε

1 − ε

(
1 + g(t)

))
.

Now, since z(1) = Z
(1)

b+ and z(2) = Z
(1)

b− , Lemma 3.8 shows (again assuming that t0 is large enough) that, for any

δ > 1 + 1
α−d

+ 1
d

, if τ is the jump time of Z(1) in the interval [b−, b+], then ξ(z(1)) − ξ(z(2)) ≥ aτ (log τ)−δ . Hence,
we can deduce that if there exists t ′ such that g(t ′) = 1, then g′(t ′) > 0. Using the continuity of u we see that first
there can be at most one such t ′ and g(t) < 1 if t < t ′ and g(t) > 1 if t > t ′, and second that there exists t ′ ∈ [b−, b+]
such that g(t ′) = 1. Therefore it has to be unique and u(t, z(1)) < u(t, z(2)) if t < t ′ and u(t, z(1)) > u(t, z(2)) if t > t ′.
Thus, we can see that Xt jumps exactly once in the interval [b−, b+]. �

In order to be able to deduce the asymptotics of the jump times of (Xt : t > 0) from those of (Zt : t > 0), we find
bounds for the length of a connected component of E .

Lemma 3.10. Suppose in the definition (27) we choose β > 1 + q+2
d

+ 1
α−d

. Then, for any 0 < ε < 1
2 (β − (1 + q+2

d
+

1
α−d

)), almost surely for any connected component [b−, b+] of E with b− large enough, we find that

b+ − b−

τ
≤ (log τ)−ε,

where τ is the jump time of the process (Zt : t > 0) in the interval [b−, b+].

Proof. We start by expressing the distances b+ − τ and τ − b− in terms of the potential values at the sites Z
(1)
τ

and Z
(2)
τ . As we have seen in the proof of Lemma 3.7, Z

(i)
τ = Z

(i)

b+ for i = 1,2. Hence, we obtain that Φb+(Z
(1)
τ ) −

Φb+(Z
(2)
τ ) = Φb+(Z

(1)

b+ ) − Φb+(Z
(2)

b+ ) = 1
2ab+λb+ . Moreover, by Lemma 2.6 we get that Φb+(Z

(1)
τ ) − Φb+(Z

(2)
τ ) =

(ξ(Z
(1)
τ ) − ξ(Z

(2)
τ ))(1 − τ

b+ ). Combining these two equations and rearranging yields

b+ − τ = (1/2)b+ab+λb+

ξ(Z
(1)
τ ) − ξ(Z

(2)
τ )

. (33)

Similarly, we know that Z
(1)

b− = Z
(2)
τ and Z

(2)

b− = Z
(1)
τ and deduce in the same way that

τ − b− = (1/2)b−ab−λb−

ξ(Z
(1)
τ ) − ξ(Z

(2)
τ )

. (34)
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Define τ+ as the next jump of Z
(1)
t after τ , then b+ ≤ τ+. We use (33) and (34) to get

b+ − b−

τ
= b+ − τ

τ
+ τ − b−

τ
= 1

2

1

ξ(Z
(1)
τ ) − ξ(Z

(2)
τ )

(
ab+λb+

b+

τ
+ ab−λb−

b−

τ

)

≤ 1

2

1

ξ(Z
(1)
τ ) − ξ(Z

(2)
τ )

(
ab+λb+

τ+

τ
+ aτλτ

)
, (35)

where we used in the last step that β− ≤ τ and that t 
→ at (log t)−β = tq

(log t)q+β is increasing for all t large enough.
Next, by the definition of at and λt , we obtain that

ab+λb+ = (b+)q

(logb+)q+β
≤ τq

(log τ)q+β

(
τ+

τ

)q

= aτλτ

(
τ+

τ

)q

, (36)

where we used that b+ ≤ τ+ for the inequality. Using Lemma 3.8(i), if τ is large enough, for β ′ = 1 + 1
α−d

+ ε
2 ,

we get ξ(Z
(1)
τ ) − ξ(Z

(2)
τ ) ≥ τ

τ+−τ
aτ (log τ)−β ′

. Hence, substituting this estimate into (35) together with the previous
estimate (36) yields

b+ − b−

τ
≤ τ+ − τ

τ
(log τ)β

′−β

((
τ+

τ

)q+1

+ 1

)
≤ 2

(
τ+

τ

)q+2

(log τ)β
′−β.

It remains to bound the term τ+/τ . By Proposition 3.6, for δ = 1
d

+ ε
2(q+2)

, we get

τ+
τ

= 1 + τ+ − τ

τ
≤ (log τ)δ.

Finally, we have shown that if b− is large enough b+−b−
τ

≤ 2(log τ)β
′−β+(q+2)δ < (log τ)−ε , which completes the

proof. �

We are now in the position to translate the results from Section 3.2 from the setting of the variational problem to
the setting of the residual lifetime function of the maximizer of the solution.

Proof of Theorem 1.3. Suppose t 
→ h(t) is a nondecreasing function such that∫ ∞

1

dt

th(t)d
< ∞.

Without loss of generality, we can assume that there exists γ ′ > 0 such that h(t) ≤ (log t)γ
′

for all t > 0. Also, let
γ > 1+ 2

α−d
. Fix ε > 0 and choose β > 1+ q+2

d
+ 1

α−d
large enough such that δ := 1

4 (β − (1+ q+2
d

+ 1
α−d

)) > γ ′ +γ .
Define E = E (β) as in (27) and denote by [b−

n , b+
n ], n ≥ 1, the connected components of E . By Lemmas 3.7 and 3.9

each of the processes (Xt : t ≥ t0) and (Zt : t ≥ t0) jumps only at times in E and each interval [b−
n , b+

n ] contains exactly
one jump time, which we denote by σn for Xt and τn for Zt . By Lemma 3.8 and Proposition 3.6, for all n sufficiently
large,

2(log τn)
−γ ≤ τn+1 − τn

τn

≤ ε

3
h

(
1

2
τn

)
≤ 1

2
(log τn)

γ ′
. (37)

We now want to translate the upper bound to the jump times (σn). For this purpose, we can invoke Lemma 3.10 to
find that by our choice of β and δ we have that for all n sufficiently large

b+
n − b−

n

τn

≤ (log τn)
−δ. (38)



Ageing in the parabolic Anderson model 993

Now, we first use that |σn − τn| ≤ b+
n − b−

n and then the estimates (37) and (38) to obtain

R(σn)

σnh(σn)
= σn+1 − σn

σnh(σn)
≤
(

τn+1 − τn

τn

+ b+
n+1 − b−

n+1

τn+1

τn+1

τn

+ b+
n − b−

n

τn

)
× ((

1 − (log τn)
−δ
)
h
(
τn

(
1 − (log τn)

−δ
)))−1

≤
(

τn+1 − τn

τn

+ (log τn+1)
−δ+γ ′ + (log τn)

−δ

)(
1

2
h

(
1

2
τn

))−1

≤ 3
τn+1 − τn

h((1/2)τn)τn

≤ ε

for all but finitely many n. In particular, this shows that, almost surely, lim supn→∞
R(σn)

σnh(σn)
= 0. However, since R

jumps only at the points σn and decreases on [σn,σn+1), this immediately implies the first part of Theorem 1.3.
For the second part of the proof, suppose t 
→ h(t) is a nondecreasing function such that∫ ∞

1

dt

th(t)d
= ∞.

Fix κ > 0, then by Proposition 3.6, we know that there exists a sequence (tn)n≥1 such that RV (tn) ≥ 3κtnh(2tn).
Define a subsequence of the jump times (τn) by choosing nk such that for some index j we have that tj ∈ [τnk

, τnk+1).
In particular, since RV is decreasing on the interval [τnk

, τnk+1), we can deduce that for k large enough

τnk+1 − τnk

τnk
h(2τnk

)
= RV (τnk

)

τnk
h(2τnk

)
≥ RV (tj )

tj h(2tj )
≥ 3κ.

Similarly as for the upper bound, we can estimate

R(σnk
)

σnk
h(σnk

)
= σnk+1 − σnk

σnk
h(σnk

)
≥ τnk+1 − τnk

− (b+
nk+1 − b−

nk+1) − (b+
nk

− b−
nk

)

(τnk
+ (b+

nk
− b−

nk
))h(τnk

+ b+
nk

− b−
nk

)

≥ τnk+1 − τnk

τnk

(
1 − (log τnk+1)

γ+γ ′−δ − (log τnk
)γ−δ

)(
2h(2τnk

)
)−1

≥ 1

3

τnk+1 − τnk

τnk
h(2τnk

)
≥ κ,

eventually for all k large enough. This implies that lim supt→∞
R(t)
th(t)

≥ κ , thus completing the proof of Theorem 1.3. �

4. A functional scaling limit theorem

The aim of this section is to prove Theorem 1.6. As in previous sections, we start by dealing with the maximizer of
the variational problem formulating a limit theorem for the process((

ZtT

rT
,
ΦtT (ZtT )

aT

)
: t > 0

)
. (39)

Convergence will take place in the Polish space D(0,∞) := D((0,∞),R
d+1) of all càdlàg processes defined on

(0,∞) taking values in R
d+1 equipped with the Skorokhod topology on compact subintervals. This means that fn →

f if, for every 0 < a < b < ∞ we can find a continuous and strictly increasing time-changes λn : [a, b] → [a, b] such
that

sup
t∈[a,b]

∣∣λn(t) − t
∣∣→ 0 and sup

t∈[a,b]
∣∣f (t) − fn

(
λn(t)

)∣∣→ 0
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for more details see [4]. The main part of this section is devoted to the proof of the following proposition stated in
terms of the maximizer of the variational problem.

Proposition 4.1. As T → ∞((
ZtT

rT
,
ΦtT (ZtT )

aT

)
: t > 0

)
⇒
((

Y
(1)
t , Y

(2)
t + q

(
1 − 1

t

)∣∣Y (1)
t

∣∣): t > 0

)
,

in the sense of weak convergence on D(0,∞).

We will prove this result by first showing convergence of the finite-dimensional distributions in Section 4.1 and
then tightness in Section 4.2. In Section 4.3, we transfer the results to the maximizer of the profile and the potential
value at that site, hence showing Theorem 1.6 and, by a slight variation, also Proposition 1.4.

4.1. Finite-dimensional distributions

The next lemma shows that the finite-dimensional distributions of the process (39) converge weakly to those of the
limiting process defined in terms of Y = (Y (1), Y (2)).

Lemma 4.2. Fix 0 < t1 < · · · < tk < ∞. Then as T → ∞,((
Zt1T

rT
,
Φt1T (Zt1T )

aT

)
, . . . ,

(
ZtkT

rT
,
ΦtkT (ZtkT )

aT

))
⇒
((

Y
(1)
t1

, Y
(2)
t1

+ q

(
1 − 1

t1

)∣∣Y (1)
t1

∣∣), . . . ,

(
Y

(1)
tk

, Y
(2)
tk

+ q

(
1 − 1

tk

)∣∣Y (1)
tk

∣∣)).

Proof. First notice, by the continuous mapping theorem, see, e.g., [4], Theorem 2.7, we can equivalently show that
for Yt = (Y

(1)
t , Y

(2)
t ) we have((

Zt1T

rT
,
Φt1T (Zt2T )

aT

− q

(
1 − 1

t1

) |Zt1T |
rT

)
, . . . ,

(
ZtkT

rT
,
ΦtkT (ZtkT )

aT

− q

(
1 − 1

tk

) |ZtkT |
rT

))
⇒ (Yt1 , . . . , Ytk ).

Define H ∗ = {(x, y) ∈ R
d ×R: y > −q(1 − 1/tk)|x|} and recall that, for large T , all components in the vectors above

are in H ∗. Hence it suffices to show that, for any A ⊂ (H ∗)k with Lebk(d+1)(∂A) = 0, we have, as T → ∞,

Prob

{(
ZtiT

rT
,
ΦtiT (ZtiT )

aT

− q

(
1 − 1

ti

) |ZtiT |
rT

)k

i=1
∈ A

}
→ Prob

{
(Yti )

k
i=1 ∈ A

}
. (40)

By an argument similar to Lemma 3.3 we see that it suffices to show (40) for sets A contained in a large box BN =
{(x, y) ∈ H ∗: |x| ≤ N, 1

N
− q|x| ≤ y ≤ N}, for some N ≥ 1. Further we denote, for K > N by Z

K,T

tT the point
satisfying

ΦtT

(
Z

K,T

tT

)= max

{
ΦtT (z): tξ(z) ≥ z and

(
z

rT
,
ΦT (z)

aT

)
∈ BK

}
,

where in case of a tie we take the one with the larger 	1 norm. Then we find that

Prob
{
there exists i with Z

K,T

tiT
�= ZtiT

}≤
k∑

i=1

Prob

{(
ZtiT

rT
,
ΦT (ZtiT )

aT

)
/∈ BK

}
, (41)
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and use Lemma 3.3 to show that the expression (41) tends to zero if we first let T → ∞ and then K → ∞. Using the
point process we want to express the probability

Prob

{(
Z

K,T
tiT

rT
,
ΦtiT (Z

K,T
tiT

)

aT

− q

(
1 − 1

ti

) |ZK,T
tiT

|
rT

)k

i=1
∈ Bk

N ∩ A

}

=
∫

A∩Bk
N

Prob

{
Z

K,T
tiT

rT
∈ dxi,

ΦtiT (Z
K,T
tiT

)

aT

− q

(
1 − 1

ti

) |ZK,T
tiT

|
rT

∈ dyi for all i

}
, (42)

in the limit as T → ∞. First note that by Lemma 2.3 we have that, for any t ∈ [t1, tk],

ΦtT (z)

aT

= ΦT (z)

aT

+ q

(
1 − 1

t

) |z|
rT

+ δ1−t

(
T ,

z

rT
,
ΦT (z)

aT

)
,

where the error δ1−t goes to 0 uniformly for all z such that ( z
rT

,
ΦT (z)

aT
) ∈ BK and also uniformly for all t ∈ [t1, tk].

Recall also that ΠT converges weakly to Π on H ∗. Now, as the restriction to large boxes ensures that we are only
dealing with the point process on relatively compact sets, we can in the limit as T → ∞ express the condition

Z
K,T
tiT

rT
= xi,

ΦtiT (Z
K,T
tiT

)

aT

− q

(
1 − 1

ti

) |ZK,T
tiT

|
rT

= yi

by requiring that Π has an atom in (xi, yi) and all other points (x, y) of Π restricted to BK satisfy y + q(1 −
1
ti
)|x| ≤ yi + q(1 − 1

ti
)|xi |. Therefore, if we denote by Cti (xi, yi) the open cone of all points (x, y) ∈ H ∗ satisfying

y + q(1 − 1
ti
)|x| > yi + q(1 − 1

ti
)|xi |, we can express the probability in (42) in the limit as

lim
T →∞ Prob

{(
Z

K,T
tiT

rT
,
ΦtiT (Z

K,T
tiT

)

aT

− q

(
1 − 1

ti

) |ZK,T
tiT

|
rT

)k

i=1
∈ Bk

N ∩ A

}

=
∫

A∩Bk
N

Prob

{
Π |BK

(dxi dyi) = 1 for i = 1, . . . , k,Π |BK

(
k⋃

i=1

Cti (xi, yi)

)
= 0

}
.

Now, we can remove the restriction of the point process to BK , by letting K → ∞ and noting that the probability
that for some (xi, yi) ∈ A ∩ Bk

N and some i = 1, . . . , k the point process Π has a point in the set Cti (xi, yi) ∩ Bc
K can

be bounded from above by the probability that Π has a point in the set {(x, y) ∈ R
d+1: y > 1

N
− q(1 − 1

tk
)|x| and

(y > K or |x| > K)}. But the intensity measure ν of Π gives finite mass to this region, so that we can conclude that
the probability of the latter event tends to zero as K → ∞.

Hence, we can combine this observation with the estimate in (41) and letting first T → ∞ and then K → ∞, to
deduce that

lim
T →∞ Prob

{(
ZtiT

rT
,
ΦtiT (ZtiT )

aT

− q

(
1 − 1

ti

) |ZtiT |
rT

)k

i=1
∈ Bk

N ∩ A

}

=
∫

A∩Bk
N

Prob

{
Π(dxi dyi) = 1 for i = 1, . . . , k,Π

(
k⋃

i=1

Cti (xi, yi)

)
= 0

}

= Prob
{
(Yti )

k
i=1 ∈ Bk

N ∩ A
}
,

where in the last step we used the definition of Y . This completes the proof. �
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4.2. Tightness

To prepare the tightness argument we prove two auxiliary lemmas. For fixed 0 < a < b the first lemma gives us control
on the probability that the maximizer makes small jumps during the time interval [aT ,bT ]. The second shows that,
with arbitrarily high probability, during this time the maximizer stays within a box with side length a multiple of rT .

Lemma 4.3. Let τi denote the jump times of the process (Zt : t ≥ aT ) in increasing order. Then

lim inf
T →∞ Prob

{
τi+1 − τi ≥ δT for all jump times τi ∈ [aT ,bT ]}≥ p(δ),

where p(δ) → 1 as δ ↓ 0.

Proof. Cover the interval [aT ,bT ] by small subintervals of length δT by setting xi = aT + iδT for i = 0, . . . ,N + 1,
for N = �(b − a)/δ�. We estimate

Prob
{
τi+1 − τi < δT for some jump times τi ∈ [aT ,bT ]}

≤∑N−1
j=0 Prob

{
Zt jumps more than once in the interval [xj , xj+2]

}
.

Hence, taking the limit T → ∞, we have that

lim sup
T →∞

Prob
{
τi+1 − τi < δT for some jump time τi ∈ [aT ,bT ]}≤ Np̃(2δ),

where p̃(δ) := lim supT →∞ Prob{Zt jumps more than once in the interval [T , (1+δ)T ]}. Thus it remains to show that
p̃(δ)/δ → 0 as δ → 0.

We use notation and ideas from Section 2, which tell us in particular that, as T → ∞, if we fix (ZT /rT ,

ΦT (ZT )/aT ) = (x, y) then the probability that (Zt : t ≥ T ) jumps more than once in the interval [T , (1 + δ)T ] is
bounded from above by the probability that the point process Π has no points in the set D0(|x|, y) and at least two
points in the set Dδ(|x|, y) \ D0(|x|, y). To make this bound rigorous, one has restrict the process (Zt/rt ,Φt (Zt )/at )

to large boxes, let T → ∞ and then the size of the boxes go to infinity and finally justify interchanging the limit.
Details are very similar to Lemmas 2.2 and 4.2 and are therefore omitted. Using this observation, we obtain the bound

lim sup
T →∞

Prob
{
Zt jumps more than once in the interval

[
T , (1 + δ)T

]}
≤
∫

y≥0

∫
x∈Rd

Prob
{
Π(dx dy) = 1,Π

(
D0
(|x|, y))= 0,Π

(
Dδ

(|x|, y)∖D0
(|x|, y))≥ 2

}
=
∫

y≥0

∫
x∈Rd

e−ν(D0(|x|,y))
(
1 − e−fδ(|x|,y) − fδ

(|x|, y)e−fδ(|x|,y)
)
ν(dx dy), (43)

where fδ(r, y) = ν(Dδ(r, y)) − ν(D0(r, y)). It remains to be shown that the right-hand side divided by δ con-
verges to zero. Basic analysis shows that the integrand that depends on δ divided by δ is majorized by (2α +
max{( y

y+qr
)α−d−1,1}), which by further analysis is integrable, so that the proof is completed by applying the domi-

nated convergence theorem. �

Lemma 4.4. For fixed 0 < a < b, we have that

lim
κ→∞ lim sup

T →∞
Prob

{
sup

t∈[aT ,bT ]
|Zt |
rT

≥ κ

}
= 0.

Proof. Fix a jump time τ of Zt . By Lemma 2.8 we have ξ(Z
(1)
τ ) > ξ(Z

(2)
τ ). In particular, we have, using that χ(z) =

x − ρ logx is increasing on x > ρ,

Φτ

(
Z(1)

τ

)≥ ξ
(
Z(1)

τ

)− 1

τ

∣∣Z(1)
τ

∣∣ log ξ
(
Z(1)

τ

)
> ξ

(
Z(2)

τ

)− 1

τ

∣∣Z(1)
τ

∣∣ log ξ
(
Z(2)

τ

)
.
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Since Φτ (Z
(1)
τ ) = Φτ (Z

(2)
τ ), we thus obtain that

ξ
(
Z(2)

τ

)− 1

τ

∣∣Z(2)
τ

∣∣ log ξ
(
Z(2)

τ

)+ 1

τ
η
(
Z(2)

τ

)
> ξ

(
Z(2)

τ

)− 1

τ

∣∣Z(1)
τ

∣∣ log ξ
(
Z(2)

τ

)
.

Hence using that η(z) ≤ |z| logd , we find that

∣∣Z(2)
τ

∣∣< ∣∣Z(1)
τ

∣∣(1 − logd

log ξ(Z
(2)
τ )

)−1

<
∣∣Z(1)

τ

∣∣(1 − logd

q log τ(1 + o(1))

)−1

,

where we invoked [12], Lemma 3.2, to deduce that eventually ξ(Z
(2)
t ) > at (log t)−1. Hence, denoting by NT the

number of jumps of Zt in the interval [aT ,bT ], we have

sup
t∈[aT ,bT ]

|Zt | ≤
(

1 − 2 logd

q logaT

)−NT

|ZbT | for T large enough. (44)

Fix ε > 0. By Lemma 4.3, we can choose δ > 0 such that,

lim inf
T →∞ Prob

{
τi+1 − τi ≥ δT for all jump times τi ∈ [aT ,bT ]}≥ 1 − ε

4
.

If all jump times τi in [aT ,bT ] satisfy τi+1 − τi ≥ δT , then NT ≤ b−a
δ

+ 1 and hence

sup
t∈[aT ,bT ]

|Zt | ≤
(

1 − 2 logd

q logaT

)−(b−a)/δ−1

|ZbT |.

Therefore, for any κ > 1, we can estimate that

Prob

{
sup

t∈[aT ,bT ]
|Zt |
rT

≥ κ

}

≤ Prob

{(
1 − 2 logd

q logaT

)−(b−a)/δ−1 |ZbT |
rT

≥ κ

}
+ Prob{τi+1 − τi < δT for some 1 ≤ i ≤ NT }

≤
(

1 + ε

2

)
Prob

{∣∣Y (1)
1

∣∣≥ κb−(q+1)
}+ ε

2

for all t sufficiently large, where we use that Zt/rt ⇒ Y
(1)
1 . Hence, by choosing κ large enough, the latter expression

can be made smaller than ε, which completes the proof. �

To prove tightness we use the characterization of [4], Theorem. 13.2: A family (PT : T ≥ 1) of probability measures
on D([a, b]) is tight if and only if the following two conditions are satisfied:

(i) lim
κ→∞ lim sup

T →∞
PT

{
x: ‖x‖ ≥ κ

}= 0,

(45)
(ii) for any ε > 0 we have lim

δ→0
lim sup
T →∞

PT

{
x: w′

x(δ) ≥ ε
}= 0.

Here, ‖x‖ is the uniform norm, i.e. ‖x‖ = supt∈[a,b] |x(t)|, and the modulus w′
x(δ) is defined as

w′
x(δ) = inf{ti }

max
1≤i≤v

wx[ti−1, ti),

where the infimum runs over all partitions a = t0 < t1 < · · · < tv = b of [a, b] satisfying min1≤i≤v(ti − ti−1) > δ and
wx is the modulus of continuity defined for an interval I ⊂ [a, b] as

wx(I) = sup
s,t∈I

∣∣x(s) − x(t)
∣∣.
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Lemma 4.5. For any 0 < a < b, the family {ProbT : T ≥ 1} is a tight family of probability measures on D([a, b]),
where ProbT is the law of VT = ((

ZtT

rT
,

ΦtT (ZtT )
aT

): t ∈ [a, b]) under Prob.

Proof. We have to check the two conditions in (45). (i) First recall from [12], Lemma 3.2, that eventually for all t , the
function t 
→ Φt(Zt ) is increasing, so that we can assume throughout the proof that this property holds for all t ≥ aT .
Note that

‖VT ‖ = sup
t∈[a,b]

{∣∣∣∣ZtT

rT

∣∣∣∣+ ∣∣∣∣ΦtT (ZtT )

aT

∣∣∣∣}≤ sup
t∈[a,b]

{ |ZtT |
rT

}
+ ΦbT (ZbT )

aT

.

Therefore, we find that for any κ > 0

Prob
{‖VT ‖ ≥ κ

}≤ Prob

{
sup

t∈[a,b]
|ZtT |
rT

≥ κ

2

}
+ Prob

{
ΦbT (ZbT )

aT

≥ κ

2

}
. (46)

Now, by Lemma 4.4 and the weak convergence of Φt(Zt )/at ⇒ Y
(2)
1 , we can deduce that the above expressions tend

to zero, if we first let T → ∞ and then κ → ∞.
(ii) Fix δ > 0 and a partition (ti)

v
i=0 of [a, b] such that δ < ti+1 − ti < 2δ and such that all the jump times of

(ZtT : t ∈ [a, b]) are some of the ti . This is possible if all the jump times τi of Zt in [aT ,bT ] satisfy τi+1 − τi ≥ δT ,
an event which by Lemma 4.3 has probability tending to 1 if we first let T → ∞ and then δ → 0. Thus, we can work
on this event from now on.

First, using that ZtT does not jump in [ti−1, ti ) and the fact that Φt(Zt ) is increasing and t 
→ ξ(Zt ) nondecreasing
by Lemma 2.8, we can estimate

wVT
[ti−1, ti ) = sup

s,t∈[ti−1,ti )

∣∣∣∣ZtT

rT
− ZsT

rT

∣∣∣∣+ sup
s,t∈[ti−1,ti )

∣∣∣∣ΦtT (ZtT )

aT

− ΦsT (ZsT )

aT

∣∣∣∣
= 1

aT

(
ΦtiT (Zti−1T ) − Φti−1T (Zti−1T )

)≤ 2δ

a2
sup

s∈[a,b]

{ |ZsT |
rT

}
log ξ(ZbT )

logT
.

Now, recall that, by (30), we can bound ξ(Zt ) ≤ at log t eventually for all t so that together with logaT = (q +
o(1)) logT we obtain

w′
VT

(δ) ≤ 2δ

a2
sup

s∈[a,b]

{ |ZsT |
rT

}
log ξ(ZbT )

logT
≤ 2qδ

a2
sup

s∈[a,b]

{ |ZsT |
rT

}(
1 + o(1)

)
.

Finally, we can use Lemma 4.4 to deduce that

lim
δ↓0

lim sup
T →∞

Prob
{
w′

VT
(δ) ≥ ε

}≤ lim
δ↓0

lim sup
T →∞

Prob

{
2qδ

a2
sup

s∈[a,b]

{ |ZsT |
rT

}(
1 + o(1)

)≥ ε

}
= 0,

so that also the second part of the criterion (45) is satisfied. �

4.3. Functional limit theorem for the maximizer of the solution profile

In this section, we prove Theorem 1.6 by translating the functional limit theorem from the maximizer of the variational
problem to the maximizer of the solution profile. We prove both parts (a) and (b) simultaneously. The main argument
is contained in the following lemma.

Lemma 4.6. As T → ∞, the difference process((
ZtT

rT
,
Φt (ZtT )

aT

,
ΦtT (ZtT )

aT

+ q

t

|ZtT |
rT

)
−
(

XtT

rT
,

1

aT

logU(tT )

tT
,
ξ(XtT )

aT

)
: t > 0

)
tends to zero in probability.
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Proof. Denoting the difference process above by (DT (t): t > 0) it suffices to show that, for any fixed 0 < a < b,
there exist time-changes λT : [a, b] → [a, b] such that as T ↑ ∞, sup |λT (t) − t | and sup‖DT (λT (t))‖ converge to 0
in probability, where suprema are taken over all t ∈ [a, b]. Note that, by Proposition 2.1,

lim
γ↓0

lim
T →∞ Prob{ZaT = ZaT (1+γ ) and ZbT (1−γ ) = ZbT } = 1 (47)

so that we can henceforth assume that 0 < γ < b−a
4 is given such that the event above holds. Let (σi, i = 0,1, . . .)

be the jump times of (Xt : t ≥ aT ) and (τi, i = 0,1, . . .) be the jump times of (Zt : t ≥ aT ), both in increasing
order. Recall from the discussion in Section 3.3 that if T is large enough then the jump times always occur in pairs
which are close together, i.e. for β > 1 + 1

α−d
each connected component of the set E (β), defined in (27), contains

exactly one jump time of each of the two processes. In particular, by Lemma 3.10, there exists δ > 0 such that
|σi−τi |

τi
≤ (log τi)

−δ ≤ (logaT )−δ < γ , so that under the event in (47) there exists N = max{i: σi ∈ [aT ,bT ]} =
max{i: τi ∈ [aT ,bT ]}. Denote si = σi/T and ti = τi/T and define λ = λT : [a, b] → R such that λ(a) = a,λ(b) = b

and λ(si) = ti for all i = 0, . . . ,N , and linear between these points. Then

sup
t∈[a,b]

∣∣λ(t) − t
∣∣= sup

i=0,...,N

∣∣λ(si) − si
∣∣= sup

i=0,...,N

1

T
|τi − σi | ≤ b sup

i=0,...,N

|τi − σi |
τi

≤ b(logaT )−δ, (48)

which converges to 0 when T → ∞, as required.
We now look at the individual components of the process DT . For the first component, we simply observe that the

time-change is set up in such way that XtT = Zλ(t)T for all t ∈ [a, b]. For the second component, we split

1

aT

∣∣∣∣ logU(tT )

tT
− Φλ(t)T (Zλ(t)T )

∣∣∣∣ ≤ 1

aT

∣∣∣∣ logU(tT )

tT
− ΦtT (ZtT )

∣∣∣∣+ 1

aT

∣∣ΦtT (ZtT ) − Φλ(t)T (ZtT )
∣∣

+ 1

aT

∣∣Φλ(t)T (ZtT ) − Φλ(t)T (Zλ(t)T )
∣∣, (49)

and look at the three terms separately. For the first term, we use Propositions 4.2 and 4.4 from [12] to conclude that
there exists δ′ > 0 and C > 0 such that almost surely, for all t sufficiently large, Φt(Zt ) − 2d + o(1) ≤ 1

t
logU(t) ≤

Φt(Zt ) + Ctq−δ′
. Hence the first term in (49) tends to 0 uniformly for all t ∈ [a, b]. For the second term, we use

η(z) ≤ |z| logd , (48) for the time-change, and that, by (30) combined with [12], Lemma 3.2, there exists a δ′ > 0 such
that at (log t)−δ′ ≤ ξ(Zt ) ≤ at (log t)δ

′
. This gives, for T large enough and all t ∈ [a, b],

1

aT

∣∣ΦtT (ZtT ) − Φλ(t)T (ZtT )
∣∣ = 1

aT

∣∣∣∣ 1

tT
− 1

λ(t)T

∣∣∣∣∣∣|ZtT | log ξ(ZtT ) − η(ZtT )
∣∣

≤ 1

a2

∣∣λ(t) − t
∣∣ sup
t∈[a,b]

|ZtT |
rT logT

max
{∣∣log ξ(ZbT )

∣∣,2d
}

≤ (
1 + o(1)

)qb

a2
(logaT )−δ sup

t∈[a,b]
|ZtT |
rT

,

and the right-hand side tends to zero in probability by Lemma 4.4. In order to deal with the last term in (49), note
that if t ∈ (si ∨ ti , si+1 ∧ ti+1) for some i = 0, . . . ,N − 1, then ZtT = Zλ(t)T so that the term vanishes. Otherwise, if
t ∈ [si ∧ ti , si ∨ ti], then tT is in the set of transition times E as discussed in Section 3.3 and we find that {ZtT ,Zλ(t)T } ⊂
{Z(1)

λ(t)T
,Z

(2)
λ(t)T

} and also that there exists β > 1 + 1
α−d

such that

1

aT

∣∣Φλ(t)T (ZtT ) − Φλ(t)T (Zλ(t)T )
∣∣ ≤ 1

aT

(
Φλ(t)T

(
Z

(1)
λ(t)T

)− Φλ(t)T

(
Z

(2)
λ(t)T

))
≤ aλ(t)T

aT

(
logλ(t)T

)−β ≤ bq
(
1 + o(1)

)
(logaT )−β,

which tends to zero uniformly in t ∈ [a, b] completing the discussion of the second component.
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Finally, we consider the third component. Using that ZtT = Xλ−1(t)T , we estimate∣∣∣∣ΦtT (ZtT )

aT

+ q

t

|ZtT |
rT

− ξ(Xλ−1(t)T )

aT

∣∣∣∣ = ∣∣∣∣qt |ZtT |
rT

− |ZtT |
trT

log ξ(ZtT )

logT
+ η(ZtT )

trT logT

∣∣∣∣
≤ C′ 1

a
sup

t∈[a,b]

{ |ZtT |
rT

}
log logbT

logT
,

where C′ is some constant depending on a, b. By Lemma 4.4, the right-hand side converges in probability to zero,
which completes the proof of the lemma. �

Proof of Theorem 1.6. By a classic result on weak convergence, see, e.g., [4], Theorem 3.1, the previous lemma
ensures that the two processes whose difference we consider have the same limit, which was identified in Proposi-
tion 4.1. Hence, projecting onto the first and third component proves (a), and projecting onto the second component
and noting that all involved processes are continuous proves (b). �

Proof of Proposition 1.4. We focus on the one-dimensional distributions, as the higher dimensional case works
analogously. Fix t > 0 and let f be a continuous, bounded nonnegative function on R

d . Denote

ξtT (f ) :=
(

T

logT

)αd/(α−d) ∫
v

(
tT ,

(
T

logT

)α/(d−α)

x

)
f (x)dx =

∑
y∈Zd

v(tT , y)f

(
y

rT

)
.

Then, one can complete the proof by showing that the Laplace functional converges to that of f (Yt ), using that
v(tT ,ZtT ) ⇒ 1 combined with the Proposition 4.1. �
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