Stochastic Analysis

Exercise Sheet 9

Submission: 12/13/2017 2 p.m.

Exercise 1 (6 points)

Let $(X_n)_{n\geq 0}$ be a Markov chain (MC) taking values in a statespace S with transition probability $\pi(x, dy)$. Let \mathbb{P}_x denote the law of the MC starting at $x \in S$. Let $u : S \to \mathbb{R}$ be a function which is bounded above and below with a uniformly positive lower bound. Show that for all $n \in \mathbb{N}$

$$\mathbb{E}^{\mathbb{P}_x} \left[e^{\sum_{j=0}^{n-1} \log \left(\frac{u(X_j)}{\pi u(X_j)} \right)} \right] \le \sigma < \infty$$

where $(\pi u)(y) = \int_S u(z)\pi(y, dz)$.

Exercise 2 (6 points)

We know BM in \mathbb{R} has generator $L = \frac{1}{2} \frac{d^2}{dx^2}$. Let $u : \mathbb{R} \to \mathbb{R}$ s.t. u is bounded above and below with a uniformly positive lower bound. Show that for all t > 0 and all $x \in \mathbb{R}$

$$\mathbb{E}^{\mathbb{P}_x} \left[e^{\int_0^t \left(\frac{-Lu}{u} \right) (x(s)) ds} \right] \le C < \infty.$$

Exercise 3 (3 points)

Show that BM in \mathbb{R} has unbounded variation.

Exercise 4 (5 points)

Let $\tau_L = \inf\{t > 0 : x(t) \notin (-L, L)\}$ for some L > 0 that is fixed, where $x(\cdot)$ is BM starting at 0. Show that

 $\lim_{t \to \infty} \frac{1}{t} \log \mathbb{P}_0(\tau_L > t) < 0.$

Determine the value of the limit.