Stochastic Analysis
 Exercise Sheet 4

Submission: 11/8/2017 2 p.m.

Exercise 1 (5 points)
We consider the SRW $\left(S_{n}=X_{1}+\ldots+X_{n}, \mathbb{P}\left(X_{i}= \pm 1\right)=1 / 2\right)$ on \mathbb{Z} starting at $x \in(-R, R)$. We define the stopping time $\tau_{R}=\inf \left\{n \geq 0: S_{n} \notin(-R, R)\right\}$. Take $\lambda<\frac{\pi}{2 R}$ and $\sigma=-\log (\cos \lambda)>0$.
(a) Show that

$$
\mathbb{E}^{\mathbb{P}_{x}}\left[e^{\sigma \tau_{R}}\right] \leq \frac{\cos \lambda x}{\cos \lambda R}
$$

(b) Do we have equality in the above estimate? If so, what is the range of validity of the equality?
(c) Is it true that $\mathbb{E}^{\mathbb{P}_{x}}\left[e^{\sigma \tau_{R}}\right]<\infty$ for all $\sigma>0$?

Exercise 2 (5 points)
Take the SRW in $d \geq 3$, with transition kernel $\pi(x, y)$ and $(\Pi f)(x)=\sum_{y} f(y) \pi(x, y)$.
(a) Construct a function $v: \mathbb{Z}^{d} \rightarrow(0, \infty)$ such that

- $(\Pi v)(x) \leq v(x)$ for $|x|>L$ for some L.
$-v$ is strictly positive everywhere
$-v(x) \rightarrow 0$ as $|x| \rightarrow \infty$.
(b) Use optional stopping (OST) to show that

$$
\begin{equation*}
\mathbb{P}_{x}\left[\tau_{L}<\infty\right] \leq \frac{v(x)}{\inf _{|y| \leq L} v(y)} \tag{1}
\end{equation*}
$$

(c) Now for fixed L, let $|x| \rightarrow \infty$ to show that (1) goes to 0 . Hence $\mathbb{P}_{x}\left[\tau_{L}<\infty\right] \xrightarrow{|x| \rightarrow \infty} 0$. Therefore transience in \mathbb{Z}^{d} in $d \geq 3$.

Exercise 3 (5 points)
Use a similar strategy as in Exercise 2 (i.e. using OST) to show that the SRW is recurrent in $d=2$.

Exercise 4 (5 points)
Consider the SRW on $\mathbb{Z}($ see Ex 1$)$.
(a) Show that the SRW is null-recurrent.
(b) Consider the SRW on \mathbb{Z} with a slight drift towards 0 :

$$
\begin{array}{ll}
-\pi(x, x+1)-\pi(x, x-1) \geq \frac{a}{|x|} & \text { if } x \leq-l \\
-\pi(x, x-1)-\pi(x, x+1) \geq \frac{a}{|x|} & \text { if } x>l .
\end{array}
$$

Show that the RW with these transition probabilities is positive recurrent.
Hint for (b): Take X to be a countable set. Suppose you can find a function $v \geq 0$ a finite set F (which is the set of real values between $-l$ and l) and a constant $C \geq 0$ such that

$$
\Pi v(x)-v(x) \leq\left\{\begin{aligned}
-1, & \text { if } x \notin F \\
C, & \text { if } x \in F
\end{aligned}\right.
$$

Then show that for any $n \in \mathbb{N}$

$$
\begin{equation*}
-v(x) \leq-n+(1+C) \sum_{j=1}^{n} \sum_{y \in F} \pi^{(j-1)}(x, y) \tag{2}
\end{equation*}
$$

If a RW with transition operator Π was null-recurrent, then show that (2) implies a contradiction to the assumptions imposed on v.

Exercise 5 (Bonus 3 points)
In exercise 4 of Exercise Sheet 2 you had to prove the identity

$$
\limsup _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}}=1
$$

Now assume that the identity

$$
\liminf _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}}=-1
$$

holds true. Both identities together were called the "Law of the iterated logarithm".
Now let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of iid $\operatorname{Normal}(0,1)$-distributed random variables and $S_{n}=X_{1}+$ $\ldots+X_{n}$.
(a) Prove that $\frac{S_{n}}{\sqrt{2 n \log \log n}}-\frac{S_{n+1}}{\sqrt{2(n+1) \log \log (n+1)}}$ converges to 0 a.s.
(b) Use the Law of the iterated logarithm and (a) to prove that the limit points of $\frac{S_{n}}{\sqrt{2 n \log \log n}}$ were given by the whole intervall $[-1,1]$.

Exercise 6 (Bonus 3 points)
Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with the canonical filtration $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}_{0}}$. Let $X=\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ be a process adapted to the filtration $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}_{0}}$ and $X_{i} \in L^{1}$ for all $i=1,2, \ldots$
(a) Show that there is always a representation

$$
X=M+A
$$

where $M=\left(M_{n}\right)_{n \in \mathbb{N}_{0}}$ is a $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}_{0}}$-martingale and $A=\left(A_{n}\right)_{n \in \mathbb{N}_{0}}$ is a $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}_{0}}$-previsible process with $A_{0}=0$.
(b) Show that the decomposition is unique.

