Stochastic Analysis

Exercise Sheet 11

Submission: 01/10/2018 2 p.m.

Exercise 1 (6 points)

Let \mathbb{P}_x be the measure of a BM starting in x and \mathbb{Q}_x the measure of the Ornstein-Uhlenbeck Process. Remember that the O-U process is BM with drift b(x) = -cx and so corresponds to the operator

$$\frac{1}{2}\frac{\mathrm{d}^2}{\mathrm{d}x^2} - cx\frac{\mathrm{d}}{\mathrm{d}x}.$$

Calculate the Radon-Nikodym derivative $\frac{d\mathbb{P}_x}{d\mathbb{Q}_x}\Big|_{\mathcal{F}_{[0,t]}}$.

The following exercises let you train some earlier topics of this course.

Exercise 2 (continuous martingales and OS) (4 points)

(i) Let X be a right-continuous martingale. Show that

$$\lambda \mathbb{P}(\sup_{0 \le s \le t} X_s \ge \lambda) \le \mathbb{E}[X_t^+], \quad \lambda > 0,$$

where $X_t^+ = \max\{0, X_t\}.$

Hint: Remember the proof of Doob's inequality.

(ii) Let $(X_t)_{t\geq 0}$ be a continuous, non-negative supermartingale and $\tau=\inf\{t\geq 0: X_t=0\}$. Show that

$$X_{\tau+t} = 0$$
 for all $t \ge 0$

a.s. on the set $\{\tau < \infty\}$.

Exercise 3 (quadratic variation of BM) (3 points)

Let B be SBM and \mathcal{P}_n be the partition of [0,t] given by $t_j=j2^{-n}t,\,j=1,...,2^n$. Show

$$\lim_{n \to \infty} \sum_{i=1}^{2^n} (B_{t_i} - B_{t_{i-1}})^2 \to t \quad \text{a.s.}$$

by calculating mean and variance of the sum and using Borel-Cantelli.

Exercise 4 (BM as martingales) (3 points)

Let $B, B^{(1)}, B^{(2)}$ be SBM. Show that

(i) $X_t = B_t^3 - 3tB_t$ is a martingale

(ii) $Y_t = B_t^4 - 6tB_t^2 + 3t^2$ is a martingale

(iii) X, Y are martingales, where $(X_t, Y_t)^T = A(B_t^{(1)}, B_t^{(2)})^T$ for a 2×2 matrix A and where $B^{(1)}, B^{(2)}$ were independent.

Exercise 5 (Itô formula) (4 points)

Let B be SBM and f some function s.t. $\int_0^t f_s^2 ds < \infty$ a.s. for all t. Define Z_t to be

$$Z_t = \exp\left\{\int_0^t f_s dB_s - \frac{1}{2} \int_0^t f_s^2 ds\right\}.$$

Use Itô to show

(i) $Z_t = 1 + \int_0^t Z_s f_s dB_s$.

(ii) If
$$Y_t = 1/Z_t$$
, then $Y_t = 1 + \int_0^t Y_s f_s^2 ds - \int_0^t Y_s f_s dB_s$.

We wish a merry Christmas and a happy new year.