Stochastic Analysis

Exercise Sheet 10

Submission: 12/20/2017 2 p.m.

Exercise 1 (4 points)

Let v be a bounded, continuous function and let u(t,x) be a solution of

$$\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial^2}{\partial x^2} u + v(x) u(t, x) = 0.$$

Then show that

$$z(t) = u(t, x(t)) \exp\left(\int_0^t v(x(s)) ds\right)$$

is a martingale with respect to \mathbb{P}_x . What is the connection to Feynman-Kac formula?

Exercise 2 (5 points)

Let $b(x) = x^2$ and x(0) = x = 1. For $\beta(t)$ being a standard Brownian motion (SBM) starting at 0, show that the solution of $x(t) = 1 + \beta(t) + \int_0^t |x(s)|^2 ds$ blows up with positive probability before t = 2 by comparing it to the solution of

$$x(t) = \int_0^t |x(s)|^2 \mathrm{d}s$$

Hint: Note that if $\beta(t) \ge -1$ for $0 \le t \le T$, then $x(t) \ge \int_0^t |x(s)|^2 ds$.

Exercise 3 (3 points)

Show that $L = \frac{1}{2} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + b(x) \frac{\mathrm{d}}{\mathrm{d}x}$ is the generator of the process $x(t) = x + \beta(t) + \int_0^t b(x(s)) \mathrm{d}s$ where $\beta(\cdot)$ is SBM and $b(\cdot)$ is a uniformly Lipschitz function.

Exercise 4 (3 points)

Calculate by using Itô's formula:

- (i) $\int_0^t \mathrm{d}x(s)$
- (ii) $\int_0^t x(s) dx(s)$
- (iii) $\int_0^t x(s)^2 dx(s)$
- (iv) $\int_0^t (s + e^{x(s)}) dx(s)$
- (v) $\int_0^t \frac{1}{1+|x(s)|} dx(s)$
- (vi) $\int_0^t x(s)e^{x(s)^2} dx(s)$

where x(s) is always SBM.

Exercise 5 (5 points)

Let $x_1(t), ..., x_d(t)$ be independent Brownian motions. Then we call the vector $(x_1(t), ..., x_d(t))$ a d-dimensional Brownian motion.

(i) If d = 2 and r < |x| < R. Then prove that

$$\mathbb{P}_{x}(\tau_{B(0,r)} < \tau_{B(0,R)}) = \frac{\log R - \log |x|}{\log R - \log r}$$

where x is the starting point of the d-dimensional BM and $\tau_{B(0,r)}$ is the first time the BM visits the ball with radius r and center 0.

Then show $\mathbb{P}_x(\tau_{B(0,r)} < \infty) = 1$ and $\mathbb{P}_x(x(t) \in B(0,r))$ infinitely often = 1.

(ii) Now let $d \ge 3$, r < |x| < R. Show that

$$\mathbb{P}_x(\tau_{B(0,r)} < \tau_{B(0,R)}) = \frac{|x|^{2-d} - R^{2-d}}{r^{2-d} - R^{2-d}}$$

and

$$\mathbb{P}_x(\tau_{B(0,r)} < \infty) = \left(\frac{|x|}{r}\right)^{2-d}.$$