Übungen zur Vorlesung Stochastische Analysis

Wintersemester 2015/16

PD Dr. V. Paulsen

Blatt 05

17.11.2015

Aufgabe 1: 4 Punkte

Sei M ein L_2 -Martingal mit cadlag Pfaden und $M_0 = 0$ \mathbb{P} -fast sicher. Zeigen Sie

1. Für jede beschränkte Stoppzeit τ gilt

$$\mu_M((0,\tau]) = \mathbb{E}M_{\tau}^2.$$

- 2. Geben Sie ein Beispiel für eine Stoppzeit und ein Martingal, wo obige Gleichung nicht erfüllt ist.
- 3. Für jede Stoppzeit τ mit $\mu_M((0,\tau]))<\infty$ ist der gestoppte Prozeß M^τ ein \mathcal{H}_2 -Martingal und damit gilt

$$\mu_M((0,\tau]) = \mathbb{E}M_\tau^2.$$

Aufgabe 2: 4 Punkte

Seien W ein Wiener-Prozeß bezüglich einer Filtration $(\mathfrak{F}_t)_{t\geq 0}$ und τ eine beliebige $(\mathfrak{F}_t)_{t\geq 0}$ Stoppzeit. Zeigen Sie

- 1. $\mu_W((0,\tau]) = \mathbb{E}\,\tau$.
- 2. Ist $\mathbb{E} \tau < \infty$, so gilt $\mathbb{E} W_{\tau}^2 = \mathbb{E} \tau$.
- 3. Ist $(t_j^n)_{j=0..l(n)}$ eine Zerlegunsfolge des Intervalls [0,T], deren Feinheit gegen 0 strebt, so gilt

$$\sum_{j=1}^{l(n)} (W_{t_j^n} - W_{t_{j-1}^n})^2 \to T$$

in $L_2(P)$.

4. Ist τ beschränkt, σ eine weitere Stopzeit mit $\sigma \leq \tau$ und Y eine \mathfrak{F}_{σ} meßbare quadratintegrierbare Zufallsvariable, so gilt

$$\int Y 1_{(\sigma,\tau]} dW = Y(W_{\tau} - W_{\sigma}).$$

Aufgabe 3: 4 Punkte

Seien M ein L_2 -Martingal mit cadlag Pfaden und σ, τ \mathbb{P} -fast sichere endliche Stoppzeiten mit $\sigma \leq \tau$ und $\mu_M((\sigma, \tau]) < \infty$. Zeigen Sie

$$\int Y 1_{(\sigma,\tau]} dM = Y (M_{\tau} - M_{\sigma})$$

für jede beschränkte \mathfrak{F}_{σ} -meßbare Zufallsvariable Y.

Ist M ein \mathcal{H}_2 -Martingal und sind σ, τ beliebige Stoppzeiten mit $\sigma \leq \tau$, so gilt

$$\int Y 1_{(\sigma,\tau]} dM = Y (M_{\tau} - M_{\sigma})$$

für jede beschränkte \mathfrak{F}_{σ} -meßbare Zufallsvariable Y.

Aufgabe 4: 4 Punkte

Sei M ein L_2 -Martingal mit cadlag Pfaden und τ eine beliebige Stoppzeit. Zeigen Sie, dass das Doléans-Maß des gestoppten Martingals M^{τ} gegeben ist durch

$$\mu_{M^{\tau}}(A) = \int_{A} 1_{(0,\tau]} d\mu_{M} = \mu_{M}(A \cap (0,\tau])$$

für alle $A \in \mathcal{P}$.

Abgabe: Mi. 25.11.2015 bis spätestens 12.00 im Fach 145