Übungen zur Vorlesung Stochastische Analysis

Wintersemester 2015/16

PD Dr. V. Paulsen

Blatt 01

20.10.2015

Aufgabe 1:

4 Punkte

Seien W ein Wiener-Prozess bezüglich einer Filtration $(\mathfrak{F}_t)_{t\geq 0}$ und $\theta\in\mathbb{R}$. Zeigen Sie die Martingaleigenschaft der folgenden Prozesse:

- (i) $(W_t^2 t)_{t>0}$,
- (ii) $(\exp(\theta W_t \frac{1}{2}\theta^2 t))_{t\geq 0}$ für $\theta \in \mathbb{R}$.

Aufgabe 2: Sei $(W_t)_{t\geq 0}$ ein Wiener-Prozess bezüglich einer Filtration $(\mathfrak{F}_t)_{t\geq 0}$. Zeigen Sie:

- 1. $(W_{s+t} W_s)_{t \ge 0}$ ist ein Wiener-Prozess f.a. $s \ge 0$.
- 2. $(-W_t)_{t\geq 0}$ ist ein Wiener-Prozess.
- 3. $(cW_{\frac{t}{c^2}})_{t\geq 0}$ ist ein Wiener-Prozess f.a. c>0.

Aufgabe 3: 4 Punkte

Sei $(W_t)_{t\geq 0}$ ein Wiener-Prozess bezüglich einer Filtration $(\mathfrak{F}_t)_{t\geq 0}$. Definiere $M=\sup_{t\geq 0}W_t$. Zeigen Sie

- 1. M hat die gleiche Verteilung wie cM für alle c > 0.
- 2. $\mathbb{P}(M \in \{0, +\infty\}) = 1$
- 3. $\mathbb{P}(M=0)=0$

4.

$$\mathbb{P}(\sup_{t\geq 0} W_t = +\infty) = 1 \quad , \quad \mathbb{P}(\inf_{t\geq 0} W_t = -\infty) = 1.$$

Hinweis: Nutzen Sie Aufgabe 2. Günstig ist sich zu überlegen, dass

$$\mathbb{P}(M=0) \le \mathbb{P}(W_1 \le 0)\mathbb{P}(M=0)$$

gilt.

Aufgabe 4: 4 Punkte

Sei X ein bezüglich einer Filtration $(\mathfrak{F}_t)_{t\geq 0}$ adaptierter Prozess und sei Y eine Modifikation von X. Zeigen Sie:

Enthält \mathfrak{F}_0 alle \mathbb{P} -Nullmengen, so ist auch Y adaptiert bezüglich $(\mathfrak{F}_t)_{t\geq 0}$.

Bem: Unter der obigen Zusatzbedingung sind Modifikationen von adaptierten Prozessen wieder adaptiert. Dies ist ein Grund, wieso diese Zusatzbedingung wichtig ist.

Abgabe: Die. 27.10.2013 bis spätestens 11.00 im Fach 145