Lösung Übungen

Aufgabe 33 (2+2 Punkte)

Es sei $(\mathcal{X}, \mathcal{F}, \mu)$ ein σ -endlicher Maßraum und $\{\mathbb{P}_{\theta} : \theta \in \Theta\}$ für $\Theta \subseteq \mathbb{R}$, eine einparametrige Exponentialfamilie mit μ -Dichten der Form $f_{\theta}(x) = C(\theta) \cdot e^{\theta T(x)}$. Für θ_0 innerer Punkt von Θ sei weiter φ^* ein gleichmäßig bester Test zum Niveau $\alpha \in (0,1)$ für $H: \theta \leq \theta_0$ gegen $K: \theta > \theta_0$.

a) Zeigen Sie, dass die Gütefunktion von φ^* auf ganz Θ streng isoton ist.

Lösung: Seien $\theta_1, \theta_2 \in \Theta$ mit $\theta_1 < \theta_2$ und $0 < \beta := \mathbb{E}_{\theta_1} \varphi^* < 1$. Eine analoge Argumentation wie zu Beginn des Beweises von Satz 4.9 (ersetze dort θ_0 durch θ_1 und bestimme k^* mit β anstelle von α) zeigt, dass φ^* die Form

$$\varphi^*(x) = \begin{cases} 1 & f_{\theta_2}(x) > k f_{\theta_1}(x) \\ 0 & f_{\theta_2}(x) < k f_{\theta_1}(x) \end{cases}$$

mit $k := H_{\theta_1,\theta_2}(k^*) \in [0,\infty)$ hat. Nach dem Neyman-Pearson Lemma 4.5 ist φ^* deshalb ein bester Test z.N. β für $H = \{\theta_1\}$ gegen $K = \{\theta_2\}$, und es folgt aus Korollar 4.16 (β innerer Punkt von $Q_1 = [0,1]$)

$$\mathbb{E}_{\theta_2}\varphi^* > \beta = \mathbb{E}_{\theta_1}\varphi^*$$

also die Behauptung. ■

Aufgabe 36 (Lemma 4.28 aus dem Skript) (5 Punkte)

Es seien $(\mathbb{P}_{\theta})_{\theta \in \Theta}$ eine einparametrige Exponentialfamilie und es sei $\theta \in \Theta^{\circ}$. Zu testen sei

$$H = \{\theta_0\}$$
 gegen $K = \{\theta \in \Theta : \theta \neq \theta_0\}$

zum Niveau $\alpha \in (0,1)$. Es sei die Verteilung von T unter μ, μ^T , kein 2-Punkt-Maß, φ^* sei ein Test wie in Satz 4.26 (i) a) und b). Dann gilt

$$\mathbb{E}_{\theta}\varphi^* > \alpha \qquad \text{für alle } \theta \neq \theta_0.$$

Lösung: Es gilt schon aus den Beweis von Satz 4.26

$$\mathbb{E}_{\theta}\varphi^* \ge \mathbb{E}_{\theta}\varphi \qquad \forall \varphi \in \Phi_{\alpha}^u, \ \forall \theta \ne \theta_0 \qquad (*)$$

wobei Φ_{α}^{u} der Menge des unverfälscht Tests ist. Sei $\varphi \in \Phi_{\alpha}^{u}$, mit der Definition gilt $\mathbb{E}_{\theta} \varphi \geq \alpha$ für jeder $\theta \neq \theta_{0}$, so mit (*) gilt weiter

$$\mathbb{E}_{\theta} \varphi^* \geq \alpha$$
 für jeder $\theta \neq \theta_0$.

Wir nehmen $\theta \neq \theta_0$ an, mit $\mathbb{E}_{\theta} \varphi^* = \alpha$. Sei

$$\Lambda := \{ \varphi : \mathbb{E}_{\theta_0} \varphi = \alpha \quad \text{and} \quad \mathbb{E}_{\theta_0} \varphi T = \alpha \mathbb{E}_{\theta_0} T \}.$$

Wir haben im Beweis von Lemma 4.26 gesehen, dass

$$\mathbb{E}_{\theta}\varphi^* = \sup_{\varphi \in \Lambda} \mathbb{E}_{\theta}\varphi.$$

Dann, für $\varphi_{\alpha} \equiv \alpha$ gilt

$$\varphi_{\alpha} \in \Lambda$$
 und $\mathbb{E}_{\theta} \varphi_{\alpha} = \sup_{\varphi \in \Lambda} \mathbb{E}_{\theta} \varphi$

Andererseits $(\alpha, \alpha \mathbb{E}_{\theta_0} T)$ ist einer innerer Punkte von \tilde{Q}_2 . Der Neyman-Pearson Lemma sagt, dass es gibt konstanten k_1, k_2 so das

$$\varphi_{\alpha}(x) = \begin{cases} 1 & \text{if } C(\theta)e^{C(\theta)T(x)} > C(\theta_0)(k_1 + k_2T(x))e^{\theta_0T(x)} \\ 0 & \text{if } C(\theta)e^{C(\theta)T(x)} < C(\theta_0)(k_1 + k_2T(x))e^{\theta_0T(x)} \end{cases} \mu\text{-f.s.}$$

Wir haben $\varphi_{\alpha} \equiv \alpha$ so weiter es gilt

$$a_1 + a_2 T(x) = e^{bT(x)}$$

für geeignete gewählte $a_1, a_2, b \neq 0$. Aber, für die Menge

$$L := \{ y : a_1 + a_2 y = e^{by} \}$$

gilt $|L| \leq 2$. Da

$$\mu(x:T(x)\notin L)=0$$

gilt noch, dass μ^T auf einen oder zwei Punkte ausgerichtet ist. \blacksquare