
Appendix A
Prerequisites

A.1 Generating functions

Since generating functions of distributions on N0 = N0∪{∞} play a central role in
this text, we collect some of their most important properties in this appendix. We
begin with the definition for the case of proper distributions on N0.

Definition A.1. Given a random variable X taking values in N0 and with dis-
tribution Q = (pn)n≥0, the generating function (gf) of X or Q is defined as

f (s) := EsX = ∑
n≥0

pnsn for |s| ≤ RQ,

where RQ ≥ 1 denotes the radius of convergence of the right-hand power se-
ries.

Although formulated for distributions on N0, which are our main concern here,
the same definition holds for the gf of any finite, or even σ -finite measure Q on this
set. Since f (1) = ∑n≥0 pn = Q(N0), we see that RQ ≥ 1 if Q(N0) is finite, whereas
even RQ = 0 may hold if Q(N0) = ∞.

If ϕ(t) = Ee−tX for t > σQ := inf{s≤ 0 : Ee−sX < ∞} denotes the Laplace trans-
form (LT) of X , then the gf f can be directly derived from it by a logarithmic trans-
form of its argument, viz. f (s) = ϕ(− logs) for |s| < RQ = e−σQ . Furthermore, f
is actually defined on the whole complex disc DRQ = {z ∈ C : |z| ≤ RQ}, where it
constitutes a continuous function [+ Prop. A.4]. On the interior of DRQ it is even
analytic (holomorphic). On the other hand, our analysis will mostly deal with f only
on the subdomain [0,1] in which case the definition of gf’s may easily be extended
to random variables on N0 under the usual convention that s∞ := 0 for s ∈ [0,1) and
s∞ := 1 if s = 1.
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Definition A.2. Given a random variable X taking values in N0 and with dis-
tribution Q = (pn)n∈N0

, the generating function (gf) of X or Q is defined as

f (s) := EsX = ∑
n≥0

pnsn for s ∈ [0,1].

Notice that f , when restricted to [0,1), coincides with the gf f ∗, say, of the defec-
tive distribution Q∗=(pn)n≥0 on N0. However, we have f ∗(1)=∑n≥0 pn =Q∗(N0),
while f (1)= 1> f ∗(1)= f (1−) whenever p∞ > 0. This shows that f ∗ is continuous
at 1 while f is so only if p∞ = 0.

It is a well-known fact in complex analysis that an analytic function is uniquely
determined by its values on a set {sn : n≥ 0} with accumulation point in the interior
of its domain. Therefore, the following uniqueness theorem is immediate.

Theorem A.3. [Uniqueness theorem] Let f1, f2 be the gf’s of distributions
Q1,Q2 on N0. Then the following assertions are equivalent:

(a) f1 = f2.
(b) f1(s) = f2(s) for all s∈ I, where I is a subset of [0,1) with accumulation

point in [0,1).
(c) Q1 = Q2.

The most important analytic properties of gf’s are listed in the following propo-
sition.

Proposition A.4. Let X be a random variable taking values in N0 and with
distribution Q = (pn)n∈N0

, The the following assertions hold true for its gf
f (s) = EsX :

(a) For any R < RQ, f is uniformly continuous on DR with | f (z)| ≤ f (R).
(b) For any R≤ RQ, f is analytic (holomorphic) on the interior of DR with

nth derivative

f (n)(z) = n! ∑
k≥n

(
k
n

)
pkzk−n = n!E

[(
X
n

)
zX−n

]
.

(c) f (n)(1−) = lims↑1 f (n)(s) exists for all n ∈ N0 and is given by the nth

factorial moment of X, viz.
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f (n)(1−) = EX(X−1) · ... · (X−n+1) = n!E
(

X
n

)
,

where f (0) := f and
(k

n

)
:= 0 if k< n. In particular, EX = f ′(1−), EX2 =

f ′′(1−)+ f ′(1−) and VarX = f ′′(1−)+ f ′(1−)(1− f ′(1−)). If p∞ =
P(X = ∞) = 0, then f (n)(1−) = f (n)(1) for all n ∈ N0.

(d) For each n ∈ N0, f (n) is nondecreasing and convex on [0,RQ), and it is
increasing if P(X > n)> 0, and strictly convex if P(X > n+1)> 0.

Finally, we want to present a continuity theorem for gf’s that provides the con-
nection between the vague ( v→) or weak ( w→) convergence of distributions on N0 and
the pointwise convergence of their gf’s.

Theorem A.5. Let Q1,Q2, ... be distributions on N0 with gf’s f1, f2, ...

(a) If Qn
v→ Q for a possibly defective distribution Q with gf f , then

limn→∞ fn(s) = f (s) for all s ∈ [0,1).
(b) If Qn

w→ Q for a distribution Q with gf f , then limn→∞ fn(s) = f (s) for
all s ∈ [0,1], and the convergence is uniform.

(c) Conversely, if f (s) := limn→∞ fn(s) exists for all s ∈ [0,1], then f is the
gf of a possibly defective distribution Q and Qn

v→Q. If f continuous at
1, i.e. f (1−) = f (1), then Q(N0) = 1 and the convergence holds true in
the weak sense, i.e. Qn

w→ Q.

A.2 Total variation distance and coupling

Let M± =M±(X,A ) denote the space of finite signed measures on a given a mea-
surable space (X,A ), i.e. the vector space of all differences λ−µ of finite measures
λ ,µ on this space. Endowed with the supremum norm ‖ · ‖, that is

‖λ‖ := sup
A∈A
|λ (A)|,

(M±,‖ · ‖) becomes a complete normed space (Banach space). The induced metric
dtv is called total variation distance. Clearly, convergence in total variation of λn to
λ means uniform convergence, that is

lim
n→∞

sup
A∈A
|λn(A)−λ (A)| = 0.

By a standard extension argument the latter condition is further equivalent to
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lim
n→∞

sup
g∈bA :‖g‖∞≤1

∣∣∣∣∫ g dλn−
∫

g dλ

∣∣∣∣ , (A.1)

where bA denotes the space of bounded A -measurable functions g : X→ R.
Confining to probability distributions λ ,µ , we have

‖λ −µ‖ =
∫
{ f>g}

( f −g) dν =
∫
{ f<g}

(g− f ) dν =
1
2

∫
| f −g| dν , (A.2)

where f ,g are the densities of λ ,µ with respect to an arbitrary dominating measure
ν (e.g. λ + µ). With the help of this fact, we immediately get the following result
for the set P(X,A ) of probability measures on (X,A ).

Theorem A.6. The metric space (P(X,A ),dtv) is complete.

Proof. Given a Cauchy sequence (λn)n≥1 in (P(X,A ),dtv), let µ be a dominating
probability measure, e.g. µ = ∑n≥1 2−nλn, and fn a µ-density of λn for any n ≥ 1.
By (A.2),

‖λn−λm‖ =
1
2
‖ fn− fm‖1 → 0

as m,n→ ∞, where ‖ · ‖1 is the usual L1-norm on the space L1(µ) of µ-integrable
functions (modulo µ-a.s. equality). Since this space is a Banach space, we infer
the existence of some (nonnegative) f ∈ L1(µ) such that ‖ fn− f‖1 → 0 and thus
‖ f‖1 = 1. Putting λ := f µ , we finally obtain

‖λn−λ‖ =
1
2
‖ fn− f‖1 → 0

as n→ ∞ and therefore dtv(λn,λ )→ 0. ut

In the discrete case, where λ ,µ are distributions on N0 (or any countable X),
(A.2) becomes

‖λ −µ‖ =
1
2 ∑

x∈X
|λx−µx| (A.3)

when choosing f ,g as counting densities and setting λx = λ ({x}). Note further that
λ ,µ are mutually singular if, and only if, ‖λ −µ‖ = 1 or, equivalently, λ ∧µ = 0,
where

λ ∧µ(dx) := ( f ∧g)(x)ν(dx).

In general, we have by (A.2) that

‖λ −µ‖ =
∫
{ f>g}

( f − f ∧g) dν =
∫
( f − f ∧g) dν = 1−‖λ ∧µ‖. (A.4)

A pair (X ,Y ) of random variables, defined on a probability space (Ω ,A,P), is called

a coupling for λ and µ if X d
= λ and Y d

= µ . It satisfies the coupling inequality
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‖λ −µ‖ ≤ P(X 6= Y ), (A.5)

because, for all A ∈A ,

|λ (A)−µ(A)| = |P(X ∈ A)−P(Y ∈ A)|
= |P(X ∈ A,X 6= Y )−P(Y ∈ A,X 6= Y )| ≤ P(X 6= Y ).

The following lemma shows that there is always a coupling that provides equality
in (A.5).

Lemma A.7. (Maximal coupling lemma)Given two distributions λ ,µ on a
measurable space (X,A ) there exist random variables X ,Y on a common

probability space (Ω ,A,P) such that X d
= λ , Y d

= µ and

‖λ −µ‖ = P(X 6= Y ).

The pair (X ,Y ) is called a maximal coupling of λ and µ .

Proof. Put α := ‖λ ∧µ‖, ϕ := α−1(λ ∧µ) ∈P(X) and observe that

λ = αϕ +(1−α)λ ′ and µ = αϕ +(1−α)µ ′

with obviously defined λ ′,µ ′ ∈P(X). Now let η ,X ′,Y ′ and Z be independent ran-

dom variables on a common probability space (Ω ,A,P) such that X ′ d
= λ ′, Y ′ d

= µ ′,

Z d
= ϕ and P(η = 1) = 1−P(η = 0) = α . Defining

X :=

{
Z, if η = 1,
X ′, if η = 0

and Y :=

{
Z, if η = 1,
Y ′, if η = 0

it is easily seen that X d
= λ , Y d

= µ , and

P(X 6= Y ) = P(η = 0) = 1−α = 1−‖λ ∧µ‖

which, by (A.4), proves the assertion. ut

Let us return to the special case of distributions on N0 and finally point out that
for those weak convergence and total variation convergence (i.e. uniform conver-
gence) are actually equivalent.

Theorem A.8. Let (λn)n≥0 be a sequence of distributions on N0. Then λn
w→

λ0 holds iff ‖λn−λ0‖→ 0 as n→ ∞.
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Proof. We must only verify that λn
w→ λ0 implies ‖λn− λ0‖ → 0. Hence assume

weak convergence, fix any ε ∈ (0,1) and choose N so large that

sup
n≥0

λn([N +1,∞)) = sup
n≥0

∑
k>N

λn,k < ε,

where λn,k = λn({k}). This is possible by tightness of the λn. Using (A.3), we now
infer that

‖λn−λ0‖ ≤
ε

2
+

1
2

N

∑
k=0
|λn,k−λ0,k|.

But the last sum converges to 0, for weak convergence on N0 clearly entails point-
wise convergence of the counting densities. Hence ‖λn−λ0‖→ 0, for ε ∈ (0,1) was
chosen arbitrarily. ut




