Appendix A Prerequisites

A.1 Generating functions

Since generating functions of distributions on $\overline{\mathbb{N}}_0 = \mathbb{N}_0 \cup \{\infty\}$ play a central role in this text, we collect some of their most important properties in this appendix. We begin with the definition for the case of proper distributions on \mathbb{N}_0 .

Definition A.1. Given a random variable *X* taking values in \mathbb{N}_0 and with distribution $Q = (p_n)_{n>0}$, the *generating function* (*gf*) of *X* or *Q* is defined as

$$f(s) := \mathbb{E}s^X = \sum_{n \ge 0} p_n s^n \quad \text{for } |s| \le R_Q$$

where $R_Q \ge 1$ denotes the radius of convergence of the right-hand power series.

Although formulated for distributions on \mathbb{N}_0 , which are our main concern here, the same definition holds for the gf of any finite, or even σ -finite measure Q on this set. Since $f(1) = \sum_{n \ge 0} p_n = Q(\mathbb{N}_0)$, we see that $R_Q \ge 1$ if $Q(\mathbb{N}_0)$ is finite, whereas even $R_Q = 0$ may hold if $Q(\mathbb{N}_0) = \infty$.

If $\varphi(t) = \mathbb{E}e^{-tX}$ for $t > \sigma_Q := \inf\{s \le 0 : \mathbb{E}e^{-sX} < \infty\}$ denotes the Laplace transform (LT) of X, then the gf f can be directly derived from it by a logarithmic transform of its argument, viz. $f(s) = \varphi(-\log s)$ for $|s| < R_Q = e^{-\sigma_Q}$. Furthermore, f is actually defined on the whole complex disc $\mathbb{D}_{R_Q} = \{z \in \mathbb{C} : |z| \le R_Q\}$, where it constitutes a continuous function [INFERRED Prop. A.4]. On the interior of \mathbb{D}_{R_Q} it is even analytic (holomorphic). On the other hand, our analysis will mostly deal with f only on the subdomain [0, 1] in which case the definition of gf's may easily be extended to random variables on $\overline{\mathbb{N}}_0$ under the usual convention that $s^{\infty} := 0$ for $s \in [0, 1)$ and $s^{\infty} := 1$ if s = 1.

Definition A.2. Given a random variable *X* taking values in $\overline{\mathbb{N}}_0$ and with distribution $Q = (p_n)_{n \in \overline{\mathbb{N}}_0}$, the *generating function* (*gf*) of *X* or *Q* is defined as

$$f(s) := \mathbb{E}s^X = \sum_{n \ge 0} p_n s^n$$
 for $s \in [0,1]$.

Notice that f, when restricted to [0, 1), coincides with the gf f^* , say, of the defective distribution $Q^* = (p_n)_{n\geq 0}$ on \mathbb{N}_0 . However, we have $f^*(1) = \sum_{n\geq 0} p_n = Q^*(\mathbb{N}_0)$, while $f(1) = 1 > f^*(1) = f(1-)$ whenever $p_{\infty} > 0$. This shows that f^* is continuous at 1 while f is so only if $p_{\infty} = 0$.

It is a well-known fact in complex analysis that an analytic function is uniquely determined by its values on a set $\{s_n : n \ge 0\}$ with accumulation point in the interior of its domain. Therefore, the following uniqueness theorem is immediate.

Theorem A.3. [Uniqueness theorem] Let f_1, f_2 be the gf's of distributions Q_1, Q_2 on $\overline{\mathbb{N}}_0$. Then the following assertions are equivalent:

- $(a) \quad f_1 = f_2.$
- (b) $f_1(s) = f_2(s)$ for all $s \in I$, where I is a subset of [0, 1) with accumulation point in [0, 1).
- $(c) \qquad Q_1 = Q_2.$

The most important analytic properties of gf's are listed in the following proposition.

Proposition A.4. Let X be a random variable taking values in $\overline{\mathbb{N}}_0$ and with distribution $Q = (p_n)_{n \in \overline{\mathbb{N}}_0}$, The the following assertions hold true for its gf $f(s) = \mathbb{E}s^X$:

- (a) For any $R < R_O$, f is uniformly continuous on \mathbb{D}_R with $|f(z)| \le f(R)$.
- (b) For any $R \leq R_Q$, f is analytic (holomorphic) on the interior of \mathbb{D}_R with n^{th} derivative

$$f^{(n)}(z) = n! \sum_{k \ge n} \binom{k}{n} p_k z^{k-n} = n! \mathbb{E}\left[\binom{X}{n} z^{X-n}\right].$$

(c) $f^{(n)}(1-) = \lim_{s \uparrow 1} f^{(n)}(s)$ exists for all $n \in \mathbb{N}_0$ and is given by the n^{th} factorial moment of X, viz.

$$f^{(n)}(1-) = \mathbb{E}X(X-1) \cdot \ldots \cdot (X-n+1) = n! \mathbb{E} \binom{X}{n},$$

where
$$f^{(0)} := f$$
 and $\binom{k}{n} := 0$ if $k < n$. In particular, $\mathbb{E}X = f'(1-)$, $\mathbb{E}X^2 = f''(1-) + f'(1-)$ and $\mathbb{V}ar X = f''(1-) + f'(1-)(1-f'(1-))$. If $p_{\infty} = \mathbb{P}(X = \infty) = 0$, then $f^{(n)}(1-) = f^{(n)}(1)$ for all $n \in \mathbb{N}_0$.

(d) For each $n \in \mathbb{N}_0$, $f^{(n)}$ is nondecreasing and convex on $[0, R_Q)$, and it is increasing if $\mathbb{P}(X > n) > 0$, and strictly convex if $\mathbb{P}(X > n+1) > 0$.

Finally, we want to present a continuity theorem for gf's that provides the connection between the vague $(\stackrel{\nu}{\rightarrow})$ or weak $(\stackrel{w}{\rightarrow})$ convergence of distributions on \mathbb{N}_0 and the pointwise convergence of their gf's.

Theorem A.5. Let $Q_1, Q_2, ...$ be distributions on \mathbb{N}_0 with gf's $f_1, f_2, ...$

- (a) If $Q_n \xrightarrow{\nu} Q$ for a possibly defective distribution Q with gf f, then $\lim_{n\to\infty} f_n(s) = f(s)$ for all $s \in [0, 1)$.
- (b) If $Q_n \xrightarrow{w} Q$ for a distribution Q with gf f, then $\lim_{n\to\infty} f_n(s) = f(s)$ for all $s \in [0, 1]$, and the convergence is uniform.
- (c) Conversely, if $f(s) := \lim_{n \to \infty} f_n(s)$ exists for all $s \in [0, 1]$, then f is the gf of a possibly defective distribution Q and $Q_n \xrightarrow{\nu} Q$. If f continuous at 1, i.e. f(1-) = f(1), then $Q(\mathbb{N}_0) = 1$ and the convergence holds true in the weak sense, i.e. $Q_n \xrightarrow{w} Q$.

A.2 Total variation distance and coupling

Let $\mathcal{M}_{\pm} = \mathcal{M}_{\pm}(\mathfrak{X}, \mathscr{A})$ denote the space of finite signed measures on a given a measurable space $(\mathfrak{X}, \mathscr{A})$, i.e. the vector space of all differences $\lambda - \mu$ of finite measures λ, μ on this space. Endowed with the supremum norm $\|\cdot\|$, that is

$$\|\lambda\| := \sup_{A \in \mathscr{A}} |\lambda(A)|,$$

 $(\mathcal{M}_{\pm}, \|\cdot\|)$ becomes a complete normed space (Banach space). The induced metric d_{tv} is called *total variation distance*. Clearly, *convergence in total variation* of λ_n to λ means uniform convergence, that is

$$\lim_{n\to\infty}\sup_{A\in\mathscr{A}}|\lambda_n(A)-\lambda(A)| = 0.$$

By a standard extension argument the latter condition is further equivalent to

A Prerequisites

$$\lim_{n \to \infty} \sup_{g \in b \mathscr{A} : \|g\|_{\infty} \le 1} \left| \int g \, d\lambda_n - \int g \, d\lambda \right|,\tag{A.1}$$

where $b\mathscr{A}$ denotes the space of bounded \mathscr{A} -measurable functions $g: \mathfrak{X} \to \mathbb{R}$.

Confining to probability distributions λ, μ , we have

$$\|\lambda - \mu\| = \int_{\{f > g\}} (f - g) \, d\nu = \int_{\{f < g\}} (g - f) \, d\nu = \frac{1}{2} \int |f - g| \, d\nu, \quad (A.2)$$

where f, g are the densities of λ, μ with respect to an arbitrary dominating measure ν (e.g. $\lambda + \mu$). With the help of this fact, we immediately get the following result for the set $\mathscr{P}(\mathfrak{X}, \mathscr{A})$ of probability measures on $(\mathfrak{X}, \mathscr{A})$.

Theorem A.6. The metric space $(\mathscr{P}(\mathfrak{X}, \mathscr{A}), d_{tv})$ is complete.

Proof. Given a Cauchy sequence $(\lambda_n)_{n\geq 1}$ in $(\mathscr{P}(\mathfrak{X},\mathscr{A}), d_{tv})$, let μ be a dominating probability measure, e.g. $\mu = \sum_{n\geq 1} 2^{-n} \lambda_n$, and f_n a μ -density of λ_n for any $n \geq 1$. By (A.2),

$$\|\lambda_n-\lambda_m\| = \frac{1}{2}\|f_n-f_m\|_1 \to 0$$

as $m, n \to \infty$, where $\|\cdot\|_1$ is the usual L^1 -norm on the space $L^1(\mu)$ of μ -integrable functions (modulo μ -a.s. equality). Since this space is a Banach space, we infer the existence of some (nonnegative) $f \in L^1(\mu)$ such that $\|f_n - f\|_1 \to 0$ and thus $\|f\|_1 = 1$. Putting $\lambda := f \mu$, we finally obtain

$$\|\lambda_n - \lambda\| = \frac{1}{2} \|f_n - f\|_1 \to 0$$

as $n \to \infty$ and therefore $d_{tv}(\lambda_n, \lambda) \to 0$.

In the discrete case, where λ, μ are distributions on \mathbb{N}_0 (or any countable \mathfrak{X}), (A.2) becomes

$$\|\lambda - \mu\| = \frac{1}{2} \sum_{x \in \mathfrak{X}} |\lambda_x - \mu_x|$$
(A.3)

when choosing *f*, *g* as counting densities and setting $\lambda_x = \lambda(\{x\})$. Note further that λ, μ are mutually singular if, and only if, $\|\lambda - \mu\| = 1$ or, equivalently, $\lambda \wedge \mu = 0$, where

$$\lambda \wedge \mu(dx) := (f \wedge g)(x) \nu(dx).$$

In general, we have by (A.2) that

$$\|\lambda - \mu\| = \int_{\{f > g\}} (f - f \wedge g) \, d\nu = \int (f - f \wedge g) \, d\nu = 1 - \|\lambda \wedge \mu\|.$$
 (A.4)

A pair (X, Y) of random variables, defined on a probability space $(\Omega, \mathfrak{A}, \mathbb{P})$, is called a *coupling for* λ *and* μ if $X \stackrel{d}{=} \lambda$ and $Y \stackrel{d}{=} \mu$. It satisfies the *coupling inequality*

138

A.2 Total variation distance and coupling

$$\|\lambda - \mu\| \le \mathbb{P}(X \neq Y), \tag{A.5}$$

because, for all $A \in \mathscr{A}$,

$$\begin{aligned} |\lambda(A) - \mu(A)| &= |\mathbb{P}(X \in A) - \mathbb{P}(Y \in A)| \\ &= |\mathbb{P}(X \in A, X \neq Y) - \mathbb{P}(Y \in A, X \neq Y)| \le \mathbb{P}(X \neq Y). \end{aligned}$$

The following lemma shows that there is always a coupling that provides equality in (A.5).

Lemma A.7. (Maximal coupling lemma) *Given two distributions* λ, μ *on a measurable space* $(\mathfrak{X}, \mathscr{A})$ *there exist random variables* X, Y *on a common probability space* $(\Omega, \mathfrak{A}, \mathbb{P})$ *such that* $X \stackrel{d}{=} \lambda, Y \stackrel{d}{=} \mu$ *and*

$$\|\lambda - \mu\| = \mathbb{P}(X \neq Y).$$

The pair (X, Y) is called a maximal coupling of λ and μ .

Proof. Put $\alpha := \|\lambda \wedge \mu\|, \varphi := \alpha^{-1}(\lambda \wedge \mu) \in \mathscr{P}(\mathfrak{X})$ and observe that

$$\lambda = \alpha \varphi + (1 - \alpha) \lambda'$$
 and $\mu = \alpha \varphi + (1 - \alpha) \mu'$

with obviously defined $\lambda', \mu' \in \mathscr{P}(\mathfrak{X})$. Now let η, X', Y' and Z be independent random variables on a common probability space $(\Omega, \mathfrak{A}, \mathbb{P})$ such that $X' \stackrel{d}{=} \lambda', Y' \stackrel{d}{=} \mu', Z \stackrel{d}{=} \varphi$ and $\mathbb{P}(\eta = 1) = 1 - \mathbb{P}(\eta = 0) = \alpha$. Defining

$$X := \begin{cases} Z, & \text{if } \eta = 1, \\ X', & \text{if } \eta = 0 \end{cases} \text{ and } Y := \begin{cases} Z, & \text{if } \eta = 1, \\ Y', & \text{if } \eta = 0 \end{cases}$$

it is easily seen that $X \stackrel{d}{=} \lambda, Y \stackrel{d}{=} \mu$, and

$$\mathbb{P}(X \neq Y) = \mathbb{P}(\eta = 0) = 1 - \alpha = 1 - \|\lambda \wedge \mu\|$$

which, by (A.4), proves the assertion.

Let us return to the special case of distributions on \mathbb{N}_0 and finally point out that for those weak convergence and total variation convergence (i.e. uniform convergence) are actually equivalent.

Theorem A.8. Let $(\lambda_n)_{n\geq 0}$ be a sequence of distributions on \mathbb{N}_0 . Then $\lambda_n \xrightarrow{w} \lambda_0$ holds iff $\|\lambda_n - \lambda_0\| \to 0$ as $n \to \infty$.

139

Proof. We must only verify that $\lambda_n \xrightarrow{w} \lambda_0$ implies $\|\lambda_n - \lambda_0\| \to 0$. Hence assume weak convergence, fix any $\varepsilon \in (0, 1)$ and choose *N* so large that

$$\sup_{n\geq 0}\lambda_n([N+1,\infty)) = \sup_{n\geq 0}\sum_{k>N}\lambda_{n,k} < \varepsilon,$$

where $\lambda_{n,k} = \lambda_n(\{k\})$. This is possible by tightness of the λ_n . Using (A.3), we now infer that

$$\|\lambda_n-\lambda_0\| \leq rac{arepsilon}{2} + rac{1}{2}\sum_{k=0}^N |\lambda_{n,k}-\lambda_{0,k}|.$$

But the last sum converges to 0, for weak convergence on \mathbb{N}_0 clearly entails pointwise convergence of the counting densities. Hence $\|\lambda_n - \lambda_0\| \to 0$, for $\varepsilon \in (0, 1)$ was chosen arbitrarily.