
Chapter 5
Size-biased Galton-Watson trees with a spine

LYONS, PEMANTLE & PERES [24] developed a conceptual tool that allows to give
new and totally different probabilistic proofs of some classical limit theorems for
GWP’s including Theorem 2.2 of KESTEN & STIGUM. It is based on the compar-
ison of a GWT GW with a certain size-biased version of it, denoted as ĜW, and
essentially amounts to a change of measure argument involving a harmonic trans-
form. In order to elaborate this further, we first provide a short introduction of the
concept of size-biasing before proceeding with the definition of a size-biased GWT
and a subsequent study of its relevant properties.

5.1 Size-biased distributions and random variables

As size-biased distributions and random variables form an important ingredient to
the construction of a size-biased GWT in the next section, we start by defining these
objects properly.

Definition 5.1. Let ν be a distribution on (R≥,B(R≥)) with finite and posi-
tive mean γ =

∫
xν(dx). Then the distribution ν̂ , defined by

ν̂(B) =
1
γ

∫
B

x ν(dx), B ∈B(R≥),

is called the size-biasing of ν or size-biased distribution associated with ν .
Given a random variable X with distribution ν , any random variable X̂ with
distribution ν̂ is called a size-biasing of X .

In the following, we will mainly consider size-biasings of distributions ν =
(νn)n≥0 on N0. In this case, we obviously have ν̂ = (ν̂n)n≥0 with
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92 5 Size-biased Galton-Watson trees with a spine

ν̂n =
nνn

γ
, n ∈ N0,

where γ = ∑n≥1 nνn.
If X̂ denotes the size-biasing of a random variable X with distribution ν , then

ν̂ = P(X̂ ∈ ·) has the ν-density

dν̂

dν
(x) =

x
γ

1R≥(x) =
x
EX

1R≥(x) (5.1)

which immediately implies that, for any measurable function ϕ : R≥ → R≥, the
identity

Eϕ(X̂) =
∫

ϕ(x) ν̂(dx) =
∫ xϕ(x)

EX
ν(dx) =

EXϕ(X)

EX
(5.2)

holds true. We further note that X̂ is almost surely positive.
If ν has a λλ -density g, where λλ denotes Lebesgue measure, then the same holds

naturally true for ν̂ , and we infer with the help of the product rule for Radon-
Nikodym derivatives that

ĝ(x) :=
dν̂

dλλ
(x) =

dν̂

dν
(x)

dν

dλλ
(x) =

xg(x)
γ

1R≥(x). (5.3)

Problems

Problem 5.2. Let ν = (νn)n≥0 be a distribution on N0 with gf f and finite positive
mean. Find the gf f̂ of the size-biasing ν̂ .

Problem 5.3. Let ν be a distribution on R≥ with finite positive mean. Show that ν̂

is stochastically larger than ν , i.e. ν((x,∞))≤ ν̂((x,∞)) for all x ∈ R≥.

5.2 Size-biased Galton-Watson trees: construction and
properties

The concept of size-biasing a nonnegative random variable shall now be extended
in an appropriate manner so as to construct a size-biasing ĜW of a given GWT GW.
In connection with the Kesten-Stigum theorem, we will then deal with the question
under which condition on the underlying offspring distribution the distribution of
ĜW, denoted as ĜW, is dominated by GW, which is the analog of (5.1). As it further
turns out, GW and ĜW are mutually singular [+ Lemma 5.24 and Theorem 5.25]
whenever domination fails to hold.
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Construction of ĜW. Given any offspring distribution (pn)n≥0 with finite positive
mean m, the reader is reminded that an associated GWT GW is constructed from a
family {Xv : v ∈V} of iid random variables with this distribution, where Xv denotes
the number of children of the (potential) individual v. Let now {(X̂n,Un) : n≥ 0} be
an additional family of iid random vectors, defined on the same probability space
(Ω ,A,P), with generic copy (X̂ ,U), and satisfying the following conditions:

(SB1) {(X̂n,Un) : n≥ 0} and {Xv : v ∈ V} are independent.
(SB2) The distribution of X̂ is (p̂n)n≥0, that is

P(X̂ = n) = p̂n =
npn

m

for n ∈ N0.
(SB3) For any n with pn > 0, the conditional distribution of U given X̂ = n is a

discrete uniform distribution on {1, ...,n}, that is

P(U = k|X̂ = n) =
1
n

for k = 1, ...,n.

With the help of these random vectors, the construction of the size-biased GWT
ĜW with distinguished path V = (υn)n≥0, called spine, can now be accomplished
as follows: As usual, start at the root ∅ which is viewed as the ancestor of a given
population and is also the first vertex of the spine. It produces X̂0 ≥ 1 children of
which υ1, the next vertex of the spine, is picked at random with the help of U0. This
vertex (individual) has X̂1 ≥ 1 descendants (children), while any other individual
v of the first generation produces offspring in accordance with (pn)n≥0 (using the
random variable Xv). Continuing in this manner, each υn of the spine is picked at
random from the X̂n−1 ≥ 1 children of its predecessor (mother) υn−1 (using Un−1)
and reproduces in accordance with the size-biased distribution (p̂n)n≥0. All other
individuals not belonging to the spine reproduce in the usual way in accordance with
the offspring distribution (pn)n≥0. As a result, we obtain an infinite, but locally finite
random tree ĜW with a distinguished infinite path (υn)n≥0 as depicted in Figure 5.2.

Here are the formal details: Put ĜW :=
⋃

n≥0 ĜWn, where ĜW0 := {∅} and the
ĜWn for n≥ 1 are recursively defined by

ĜWn = An∪Bn,

with

An :=
{
vi ∈ Nn : v ∈ ĜWn−1\{υn−1}, i≤ Xv

}
,

Bn :=
{

υn−1i : 1≤ i≤ X̂n−1

}
.

Put further V := (υn)n≥0, where υ0 :=∅ and
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υn := υn−1Un−1 = U0...Un−1.

for n≥ 1. We have thus defined a mapping

(ĜW,V) : Ω → T×∂V,

where
∂V := {(vn)n≥0 : vn ∈ Nn and vn+1 � vn for n≥ 0}

denotes the set of infinite paths (rays) in V. It may be identified with N∞ via

(vn)n≥0 ←→ (vn)n≥0

where vn = v1...vn for each n≥ 1. This will be done hereafter wherever useful.

Fig. 5.1 A size biased Galton-Watson tree with distinguished path (υ0,υ1, ...)

The next step is to turn (ĜW,V) into a random element in T×∂V by endowing
the latter space with a suitable σ -field. The subsequent lemma, which is proved in
a similar manner as Lemma 4.2, provides us with a metric on the enlarged Ulam-
Harris tree V := V∪ ∂V. Notice that the ordering introduced in Definition 4.6 as
well as the minimum relation ∧ extend to V in an obvious manner.
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Lemma 5.4. Defining ρ : V×V→ [0,1] by

ρ(v,w) = e−|v∧w|

with e−∞ := 0, the pair (V,ρ) forms a compact metric space with topological
boundary ∂V and countable, dense and open subset V.

Proof. Problem 5.10. ut

In analogy to the definition of B(T) we now define

B(v,ε) = {w ∈ V : ρ(v,w)< ε} (5.4)

for v ∈ V, ε > 0 and then

B(V) = σ
(
{B(v,ε) : v ∈ V, ε > 0}

)
.

By the separability of (V,ρ), this is again the Borel σ -field with respect to ρ with
countable generator {B(v,ε) : v ∈V, ε > 0} [+ Problem 5.11]. The good news for
our purposes comes next.

Lemma 5.5. The mapping (ĜW,V) : Ω→T×V is A-B(T)⊗B(V)-measur-
able.

Proof. It suffices to verify [+ [5, Remark after Thm. 22.2]] that

(i) ĜW is A-B(T)-measurable and
(ii) V is A-B(V)-measurable.

As for (i), we proceed as in Lemma 4.11(a). Given τ ∈ T and n ∈ N, we obtain

ĜW
−1
([τ]n) =

{
ω ∈Ω : ĜW|n(ω) = τ|n

}
∈ σ

(
(X̂k,Uk)0≤k<n, (Xv)|v|<n

)
⊂ A

and thus the asserted measurability.
Turning to (ii), let u= u1u2...∈N∞, u0 :=∅, un := u1...un for n≥ 1 and 0 < ε <

1, w.l.o.g. ε = e−m for some m≥ 1. Then

V−1(B(u,ε)) = {ω ∈Ω : υm(ω) = um} ∈ σ

(
(υk,Uk)0≤k<m

)
⊂ A

gives the desired conclusion. ut
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We now put

ĜW∗ := P
(
(ĜW,V) ∈ ·

)
and ĜW := P

(
ĜW ∈ ·

)
and note the following counterpart of Prop. 4.13.

Proposition 5.6. Let (ĜW,V) be a size-biased spinal GWT with distribution
ĜW∗. Then the following assertion holds true for any n∈N: If In⊂Nn and v∈
In are such that P(ĜW ∈ In,υn = v) > 0, then the mappings (ΘvĜWv,ΘvV)
and ΘuĜWu, u ∈ in\{v} are measurable and conditionally independent given
(ĜW,υn) = (In,v) with distribution ĜW∗ and ĜW, respectively.

Proof. Problem 5.12. ut

The relation between GW and ĜW forms the key for the techniques developed
hereafter and is described by the next result. For τ ∈T, n∈N0 and u∈ τn, we define
the set

[τ;u]n =
{
(τ ′,(vk)k≥0) ∈ T×∂V : τ

′ ∈ [τ]n and vn = u
}
.

which consists of all pairs (τ ′,(vk)k≥0) ∈ T× ∂V such that the tree τ ′ equals τ up
to level n and the infinite path (vk)k≥0 passes through u.

Lemma 5.7. [Comparison lemma] Let (pn)n≥0 be an offspring distribution
with finite positive mean m and put wn(τ) :=m−nzn(τ) for τ ∈ T and n ∈N0.
Then the following assertions about GW, ĜW and ĜW∗ hold true:

(a) For all τ ∈ T and n ∈ N0,

GW([τ]n+1) = pz1(τ)

z1(τ)

∏
k=1

GW([Θkτ
k]n). (5.5)

(b) For all τ ∈ T, n ∈ N0 and u ∈ τn,

ĜW∗([τ;u]n) = m−nGW([τ]n). (5.6)

(c) For all τ ∈ T and n ∈ N0,

ĜW([τ]n) = wn(τ)GW([τ]n). (5.7)

(d) Put Ẑn := zn ◦ ĜW for n ∈ N0. Then Ẑn is a size-biasing of Zn, that is

P(Ẑn = k) =
kP(Zn = k)

mn =
kP(Zn = k)

EZn
(5.8)
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for all k,n ∈ N0.

Proof. (a) Let τ ∈ T, n ∈ N0 and z1(τ) = l. Since (5.5) is trivial if l = 0 or pl = 0,
let further l ≥ 1 and pl > 0. Then it follows with the help of Prop. 4.13 that

GW([τ]n+1) = P(Z1 = l,ΘkGWk ∈ [Θkτ
k]n for 1≤ k ≤ l)

= pl P(ΘkGWk ∈ [Θkτ
k]n for 1≤ k ≤ l|Z1 = l)

= pl

l

∏
k=1

GW([Θkτ
k]n)

which is the assertion.

(b) Using induction over n, note first that

υ0 = u=∅, [τ;∅]0 = T×∂V and [τ]0 = T

for all τ ∈ T imply

ĜW∗([τ;u]0) = ĜW∗([τ;∅]0) = 1 = GW([τ]0)

for all τ ∈ T.
Now assume the assertion has been proved for some n∈N0, all τ ′ ∈T and u′ ∈ τ ′n

(inductive hypothesis). We need the following intermediate calculation: Given τ ∈T
with z1(τ) = l ≥ 1 and u ∈ τn+1, there obviously exists a unique j ∈ {1, ..., l} such
that u ∈ τ j. Setting A := {ΘiĜW i ∈ [Θiτ

i]n for 1≤ i≤ l, i 6= j}, we hence infer{
(ĜW,V) ∈ [τ;u]n+1

}
=
{

X̂0 = l,U0 = j, (Θ jĜW j,Θ jV) ∈ [Θ jτ
j;Θ ju]n

}
∩A.

If pl > 0, which entails P(X̂0 = l,U0 = j) = m−1l pl l−1 = m−1 pl > 0, we obtain
with the help of Prop. 5.6

ĜW∗([τ;u]n+1) = P
(
(ĜW,V) ∈ [τ;u]n+1

)
=

pl

m
P
({

(Θ jĜW j,Θ jV) ∈ [Θ jτ
j;Θ ju]n

}
∩A
∣∣∣X̂0 = l,U0 = j

)
=

pl

m
ĜW∗([Θ jτ

j;Θ ju]n) ∏
i6= j

GW([Θiτ
i]n).

Applying to this the inductive hypothesis and then (5.5), we obtain

ĜW∗([τ;u]n+1) =
pl

mn+1 GW([Θ jτ
j]n) ∏

i 6= j
GW([Θiτ

i]n)

=
1

mn+1 GW([τ]n+1)
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as claimed.

(c) Here the assertion follows with the help of (5.6), viz.

ĜW([τ]n) = P(ĜW ∈ [τ]n)

= ∑
u∈τn

P(ĜW ∈ [τ]n, υn = u)

= ∑
u∈τn

ĜW∗([τ;u]n)

= ∑
u∈τn

m−nGW([τ]n)

= wn(τ)GW([τ]n)

for all τ ∈ T and n ∈ N0.

(d) Finally, the just shown (5.7) provides us with

P(Ẑn = k) = ∑
τ∈Tn:zn(τ)=k

ĜW([τ]n)

= ∑
τ∈Tn:zn(τ)=k

wn(τ)GW([τ]n)

= ∑
τ∈Tn:zn(τ)=k

k
mn GW([τ]n)

=
kP(Zn = k)

mn

for any k ∈ N, thus (5.8). ut

Remark 5.8. With the help of the parts (b) and (c) of the Comparison lemma, one can
easily prove the intuitively evident result that, given ĜWn = {u1, ...,up} for some
p ∈ N, the conditional distribution of the nth vertebra υn is uniform on this set [+
Problem 5.13].

Remark 5.9. Regarding the question raised at the beginning of this section, when
ĜW is dominated by GW, the Comparison lemma does not yet provide a complete
answer, but at least shows that, for any τ ∈ T and n ∈ N0,

ĜW([τ]n) = wn(τ)GW([τ]n) =
∫
[τ]n

wn(χ) GW(dχ),

for wn is constant on [τ]n. We content ourselves here with this statement and return
to the question when reproving the Kesten-Stigum theorem in Section 5.4.
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Problems

Problem 5.10. Prove Lemma 5.4.

Problem 5.11. Let B(v,ε) be defined by (5.4). Prove that {B(v,ε) : v ∈ V, ε > 0}
is a countable and a generator of the Borel σ -field B(V) with respect to ρ .

Problem 5.12. Prove Prop. 5.6.

Problem 5.13. Let n, p∈N and u1, ...,un ∈Nn be such that P(ĜWn = {u1, ...,up})>
0. Show that

P
(

υn = uk
∣∣∣ĜWn = {u1, ...,up}

)
=

1
p

for any k = 1, ..., p, that is, υn conditioned upon ĜWn = {u1, ...,up} is discrete uni-
form on this set.

5.3 Size-biased Galton-Watson trees and GWPI

In this section, we return to Galton-Watson processes with immigration (GWPI)
studied in Chapter 3 and prove extensions of two results from there in the noncritical
case, Cor. 3.3 by HEATHCOTE and Theorem 3.12 by SENETA, with the help of
the previously developed tools. The primary reason for doing this is that, as we
will show first, the size-biased GWP (Ẑn)n≥0, given by Ẑn = zn ◦ ĜWn and already
encountered in the Comparison lemma 5.7, forms a noncritical GWPI and may thus
be studied with the help of the afore-mentioned results.

Unlike our definition in Chapter 3, it is stipulated here for sake of convenience
that a GWPI (Yn)n≥0 starts with zero individuals, i.e. Y0 = 0, and is fed by an iid
sequence of numbers of immigrants ζ1,ζ2, ... as of generation one only. In other
words, it is (Yn+1)n≥0 that constitutes a GWPI in the sense of the original Definition
3.1. As usual, let (pn)n≥0 denote the underlying offspring distribution and (cn)n≥0
the immigration distribution, thus the distribution of the ζn. Then

Yn = ζn +
Yn−1

∑
k=1

ξn,k, n≥ 1 (5.9)

with iid random variables ξn,k having distribution (pn)n≥0 and independent of
(ζn)n≥1. We also call (Yn)n≥0 a GWPI with immigration sequence (ζn)n≥1. It may
given in alternative form as

Yn =
n

∑
k=1

ζk

∑
j=1

Zn−k(k, j), n≥ 1 (5.10)
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where the (Zn( j,k))n≥0 denote iid ordinary GWP’s with one ancestor and off-
spring distribution (pn)n≥0 which are independent of (ζn)n≥1. One may interpret
(Zn( j,k))n≥0 as the process spawned by the j th immigrant in generation k.

5.3.1 Connection between GWPI and size-biased GWT’s

The result we are going to show next is that in a size-biased GWT the children pro-
duced by the individuals of the spine may be viewed as immigrants. This provides
a connection with GWPI that will subsequently be utilized.

Theorem 5.14. Let (Yn)n≥0 be a GWPI with immigration sequence (ζn)n≥1
defined by ζn = X̂n−1 for n ∈ N. Then

P((Yn)n≥0 ∈ ·) = ĜW((zn−1)n≥0 ∈ ·) = P((Ẑn)n≥0 ∈ ·).

Proof. Obviously, ĜW(z0−1 ∈ ·) = δ0 = P(Y0 ∈ ·). For n ∈N0 and (k1, ...,kn+1) ∈
Nn+1, we obtain by making use of the independence of ζn+1, (ξn+1, j) j≥1 and
(Y1, ...,Yn) that

P(Y1 = k1, ...,Yn = kn,Yn+1 = kn+1)

= P

(
Y1 = k1, ...,Yn = kn,ζn+1 +

kn

∑
j=1

ξn+1, j = kn+1

)

= P(Y1 = k1, ...,Yn = kn)P

(
ζn+1 +

kn

∑
j=1

ξn+1, j = kn+1

)

= P(Y1 = k1, ...,Yn = kn)
kn+1

∑
l=0

P

(
X̂n+1 = l +1,

kn

∑
j=1

ξn+1, j = kn+1− l

)

= P(Y1 = k1, ...,Yn = kn)
kn+1

∑
l=0

(l +1)pl+1

m
p∗kn

kn+1−l . (5.11)

On the other hand, setting Π(k1, ...,kn) := {τ ∈ Tn : z j(τ)−1 = k j for 1 ≤ j ≤ n},
we find that
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ĜW(z1−1 = k1, ...,zn−1 = kn,zn+1−1 = kn+1)

= ∑
τ∈Π(k1,...,kn)

∑
u∈τn

P

(
ĜW = [τ]n,υn = u, X̂n + ∑

v∈τn\{u}
Xv = kn+1 +1

)

= ∑
τ∈Π(k1,...,kn)

∑
u∈τn

ĜW∗([τ;u]n)P

(
X̂n + ∑

v∈τn\{u}
Xv = kn+1 +1

)

=

(
∑

τ∈Π(k1,...,kn)

ĜW([τ]n)

)(
kn+1

∑
l=0

(l +1)pl+1

m
p∗kn

kn+1−l

)

= ĜW(z1−1 = k1, ...,zn−1 = kn)

(
kn+1

∑
l=0

(l +1)pl+1

m
p∗kn

kn+1−l

)
(5.12)

having utilized the independence of (ĜW,υn) and (X̂n,(Xv)v∈Nn) for the second
equality, and the Comparison lemma 5.7 for the third one.

By combining (5.11) and (5.12), it follows upon induction over n that

P(Y1 = k1, ...,Yn = kn) = ĜW(z1−1 = k1, ...,zn−1 = kn)

for all n ∈ N and k1, ...,kn ∈ Nn and thus the assertion. ut

Remark 5.15. The previous result can be quite easily understood even without pro-
viding formal arguments: When removing the spine V from the size-biased GWT
ĜW, each generation n ≥ 1 of the remaining population, and thus of size zn− 1,
can be decomposed into those members that are direct descendants of the spinal
vertex υn−1, i.e. Bn\{υn} [+ Section 5.2] and all other ones that are children of
any individual in An = ĜWn−1\{υn−1}. The elements of Bn\{υn} are interpreted as
immigrants, having offspring distribution (ck)k≥0 defined by ck = p̂k+1, whereas all
other individuals reproduce in accordance with (pk)k≥0.

The next two subsections are devoted to the already announced derivation of two
results for noncritical GWPI that will be useful thereafter and are minor extensions
of results already obtained in Chapter 3. More important than the latter fact, how-
ever, is that the proofs do not use gf’s but rather probabilistic arguments based on
the previously developed theory.

5.3.2 Asymptotic growth of supercritical GWPI

Let us begin with two general auxiliary lemmata the first of which is based on the
well-known Borel-Cantelli lemma.
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Lemma 5.16. Given a sequence (Xn)n≥0 of iid nonnegative random variables,
the following assertions hold:

(a) If EX0 < ∞, then lim
n→∞

Xn

n
= 0 a.s.

(b) If EX0 = ∞, then limsup
n→∞

Xn

n
= ∞ a.s.

(c) If EX0 < ∞, then ∑
n≥1

cneXn < ∞ a.s. for all c ∈ (0,1).

(d) If EX0 = ∞, then ∑
n≥1

cneXn = ∞ a.s. for all c ∈ (0,1).

Proof. Using the well-known inequality ∑n≥1P(X > n)≤ EX ≤∑n≥0P(X > n) for
any nonnegative random variable X , we infer that

∑
n≥1

P
(

Xn

n
> ε

)
≤ EX0

ε
≤ ∑

n≥0
P
(

Xn

n
> ε

)
for all ε > 0. Hence, by the Borel-Cantelli lemma, P(n−1Xn > ε i.o.) = 0 or = 1
according as EX0 < ∞ or = ∞. This yields (a) and (b).

(c) Suppose that EX0 < ∞ and let c ∈ (0,1) and 0 < ε < − logc. For ω ∈ A :=
{limn→∞ n−1Xn = 0} and all sufficiently large n, we then infer Xn(ω) ≤ nε from
P(A) = 1, thus

cneXn(ω) ≤ en(ε+logc).

This shows the convergence of ∑n≥1 cneXn on A because eε+logc < 1.

(d) If EX0 = ∞, then P(B) = 1 for B := {limsupn→∞ n−1Xn = ∞}. As a conse-
quence, cneXn(ω) ≥ 1 holds true for any fixed c ∈ (0,1), ω ∈ B and infinitely many
n ∈ N, which proves the divergence of ∑n≥1 cneXn on B. ut

The second lemma is an extension of the martingale convergence theorem to
sequences of nonnegative random variables having the submartingale property but
only conditionally integrable.

Lemma 5.17. Let M = (Mn)n≥0 be a sequence of nonnegative random vari-
ables adapted to a filtration (Fn)n≥0 and satisfying the following two condi-
tions:

(i) E(Mn+1|Fn)≥Mn a.s. for all n ∈ N0. [submartingale property]
(ii) supn≥0E(Mn|F0)< ∞ a.s. [conditional L1-boundedness]

Then Mn converges a.s. to a finite random variable M∞.
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Proof. Problem 5.22 ut

We are ready now to prove the following variant of Theorem 3.12 by SENETA
for supercritical GWPI.

Theorem 5.18. [Seneta] Let (Yn)n≥0 be a supercritical GWPI with finite off-
spring mean m and immigration sequence (ζn)n≥1 with generic copy ζ . Then
the following assertions hold true:

(a) If E log+ ζ < ∞, then m−n Yn converges a.s. to a finite limit Y∞.
(b) If E log+ ζ = ∞, then

limsup
n→∞

Yn

cn = ∞ a.s.

for any c ∈ R>.

Proof. (a) Putting F0 := σ((ζn)n≥1), we obtain upon using (5.9) that

E(Yn|F0) = ζn + ∑
k≥0

E

(
1{Yn−1=k}

k

∑
j=1

ξn, j

∣∣∣∣F0

)
= ζn + ∑

k≥1
kmP(Yn−1 = k|F0)

= ζn + mE(Yn−1|F0) a.s.,

for ∑
k
j=1 ξn, j and (Yn−1,(ζn)n≥1) are independent for each k ∈N0. Recalling Y0 = 0,

this inductively leads to

E
(

Yn

mn

∣∣∣∣F0

)
=

n

∑
k=1

ζk

mk a.s.

for all n ∈ N0. An application of Lemma 5.16 to the sequence (log+ ζn)n≥1 now
shows that, if E log+ ζ < ∞,

sup
n≥0

E
(

Yn

mn

∣∣∣∣F0

)
= ∑

k≥1

n

∑
k=1

ζk

mk ≤ ∑
k≥1

e− log+ ζk

mk < ∞ a.s. (5.13)

After these observations we infer the almost sure convergence of m−nYn from the
previous lemma if we still verify that besides its assumption (ii) [valid by (5.13)]
all other assumptions there are fulfilled as well. Put Fn := σ((ζk)k≥1,Y0, ...,Yn) for
n ∈ N so that (Yn)n≥0 is adapted with respect to (Fn)n≥0. Furthermore,

E
(

Yn+1

mn+1

∣∣∣∣Fn

)
=

ζn+1

mn+1 +
1

mn+1 E

(
n

∑
k=1

ξn+1,k

∣∣∣∣Fn

)
≥ Yn

mn a.s.
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for each n ∈ N0, because the independence of Fn and (ξn+1,k)k≥1 and the Fn-
measurability of Yn ensure that

E

(
n

∑
k=1

ξn+1,k

∣∣∣∣Fn

)
= YnEξn+1,1 = mYn a.s.

Having verified all assumptions of Lemma 5.17, the latter gives the desired conclu-
sion.

(b) If E log+ ζ = ∞, then Lemma 5.16 yields

limsup
n→∞

log+ ζn

n
= ∞ a.s.

and therefore for each positive c

∞ = limsup
n→∞

1
c

exp
(

logζn

n

)
= limsup

n→∞

(
ζn

cn

)1/n

a.s.

As Yn ≥ ζn for each n≥ 1, we arrive at the assertion. ut
Remark 5.19. Even when disregarding the slightly different definitions of a GWPI
here and in Chapter 3 concerning its initial distribution, Theorems 3.12 and 5.18 do
not match exactly. First of all, part (a) of the latter result considers the normalization
mn, whereas Theorem 3.12 uses the Heyde-Seneta norming kn which is of the same
order of magnitude only if the ξn,k satisfy the (ZlogZ)-condition. Since m−nkn→ 0
if this condition fails to hold, we conclude further in Theorem 5.18(a) that Y∞ is a.s.
positive and finite under (ZlogZ) and a.s. equal to zero otherwise. If E log+ ζ = ∞,
then Theorem 3.12 asserts that k−1

n Yn→ ∞ a.s. and thus c−nYn→ ∞ a.s. as well for
any 0 < c < m, for c−nkn → ∞ [+ Theorem 2.1 and its proof]. This is a stronger
assertion than in part (b) of the above result which, on the other hand, goes beyond
Theorem 3.12 by providing information on the behavior of c−nYn also for c≥m.

5.3.3 Subcritical GWPI: Heathcote’s result revisited

To take another look at Cor. 3.3 due to HEATHCOTE, we need the following gener-
alization of the Borel-Cantelli lemma.

Lemma 5.20. Let (kn)n≥0 denote a sequence of nonnegative integers,
(An,k)n,k≥1 an array of independent events and Bn :=

⋃kn
k=1 An,k for n ∈N (de-

fined as /0 if kn = 0). Then the implication

P
(

limsup
n→∞

Bn

)
= 0 ⇒ ∑

n≥1

kn

∑
k=1

P(An,k)< ∞
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holds true.

Proof (by contraposition). If ∑n≥1 ∑
kn
k=1P(An,k) = ∞, then

P
(

liminf
n→∞

Bc
n

)
= lim

n→∞
P

⋂
j≥n

k j⋂
k=1

Ac
j,k


= lim

n→∞
∏
j≥n

k j

∏
k=1

(
1−P(A j,k)

)
= lim

n→∞
exp

(
−∑

j≥n

k j

∑
k=1

log
(

1−P(A j,k)
))

≤ exp

(
−∑

j≥n

k j

∑
k=1

P(A j,k)

)
= 0

which proves the assertion. ut

Theorem 5.21. [Heathcote] Let (Yn)n≥0 be a subcritical GWPI with p0 < 1
and immigration sequence (ζn)n≥1 with generic copy ζ . Then the following
assertions hold true:

(a) If E log+ ζ < ∞, then Yn converges in distribution to a nonnegative ran-
dom variable Y∞.

(b) If E log+ ζ = ∞, then Yn
P→ ∞, i.e.

lim
n→∞

P(Yn > t) = 1

for any t ∈ R>.

By making a more precise statement in the case when E log+ ζ = ∞, this result
is a slight extension of Cor. 3.3.

Proof. It is a simple exercise [+ Problem 5.23] to verify that (5.10) implies the
distributional identity

Yn
d
= Y ′n :=

n

∑
k=1

ζk

∑
j=1

Zk−1(k, j) (5.14)

for any n ∈ N, where it should be recalled that the (Zn(k, j))n≥0 are iid GWP’s with
one ancestor and offspring distribution (pn)n≥0 and independent of the immigration
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sequence. The Y ′n, in contrast to their copies Yn, have nonnegative increments Λn :=
∑

ζn
k=1 Zn−1(n,k) and hence converge almost surely to the random variable

Y ′∞ := ∑
n≥1

Λn.

taking values in N0. Since the Λn are obviously independent and a.s. taking values
in N0, the ordinary Borel-Cantelli lemma provides us with the implications

∑
n≥1

P(Λn ≥ 1)

{
< ∞

= ∞
⇒ P(Λn ≥ 1 i.o.)

{
= 0
= 1

⇒ P(Y ′∞ < ∞)

{
= 1
= 0

and thereby with
P(Y ′∞ < ∞) ∈ {0,1}. (5.15)

(a) Assume now E log+ ζ < ∞ and let F0 = σ((ζn)n≥1) as before. Since all
Zn−1(n,k) are independent of F0, we infer

E(Y ′∞|F0) = ∑
k≥1

E(Λk|F0) = ∑
k≥1

E

(
ζn

∑
k=1

Zn−1(n,k)
∣∣∣∣F0

)
= ∑

n≥1

ζn

mn−1 a.s.

Now apply Lemma 5.16 to (log+ ζn)n≥1 with c =m ∈ (0,1) to infer the a.s. finite-
ness of the series ∑n≥1m

nelog+ ζn and thus

∑
n≥1

mn−1
ζn = E(Y ′∞|F0) < ∞ a.s.

Therefore, we arrive at the desired conclusion via (5.14), viz.

Yn
d→ Y ′∞ < ∞ a.s.

(b) Let E log+ ζ = ∞. Further assuming P(Y ′∞ = ∞) < 1 we will produce a con-
tradiction hereafter. By (5.15),

P(Y∞ = ∞) = P

(
∑
n≥1

Λn = ∞

)
= 0,

which, for Dn := {Λn ≥ 1}= {∑ζn
k=1 Zn−1(n,k)≥ 1}, entails

0 = P
(

limsup
n→∞

Dn

)
= P

(
limsup

n→∞

Dn

∣∣∣F0

)
a.s.

Recalling the independence of all Zn−1(n,k) and F0, this means that
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P
(

limsup
n→∞

Dn

∣∣∣ζn = yn, n≥ 1
)

= P

(
limsup

n→∞

{
yn

∑
k=1

Zn−1(n,k)≥ 1

})
= 0

for P((ζn)n≥1 ∈ ·)-almost all y= (yn)k≥1. For any such y and all k,n∈N, put An,k :=
{Zn−1(n,k)≥ 1} and Bn :=

⋃yn
k=1 An,k. Then we may invoke Lemma 5.20 (with kn =

yn) to infer from P(limsupn→∞ Bn) = 0 that

∑
n≥1

yn

∑
k=1

P(An,k) = ∑
n≥1

yn

∑
k=1

P(Zn−1(n,k)≥ 1)

= ∑
n≥1

ynP(Zn−1(1,1)≥ 1) < ∞

for P((ζn)n≥1 ∈ ·)-almost all y and therefore

∑
n≥1

ζnP(Zn−1(1,1)≥ 1) < ∞ a.s.

By finally using the simple inequality elog+ ζn ≤ 1+ ζn and P(Zn−1(1,1) ≥ 1) ≤
(1− p0)

n−1, we obtain (as 0 < p0 < 1)

∑
n≥1

(1− p0)
nelog+ ζn < ∞ a.s.

and thereupon with the help of Lemma 5.16 (with c = 1− p0) the contradiction
E log+ ζ < ∞. So we have shown P(Y ′∞ = ∞) = 1, which by another appeal to (5.14)
gives

lim
n→∞

P(Yn > t) = lim
n→∞

P(Y ′n > t) = P(Y ′∞ > t) = 1

for all t > 0. ut

Problems

Problem 5.22. [Proof of Lemma 5.17] Let (Mn,Fn)n≥0 be as in Lemma 5.17.

(a) If H = (Hn)n≥1 denotes a predictable (with respect to (Fn)n≥0) sequence of
bounded, nonnegative random variables and M(a) := ((Mn−a)+)n≥0 for a ∈
R, prove that the martingale transform H ·M(a) =((H ·M(a))n)n≥0, defined by
(H ·M(a))0 = 0 and (H ·M(a))n = ∑

n
k=1 Hk(M

(a)
k −M(a)

k−1) for n ≥ 1, satisfies
the inequality

E((H ·M(a))n+1|Fn) ≥ (H ·M(a))n a.s.

for any n ∈ N0.
(b) For a,b ∈ R with a < b, let Un(a,b) denote the number of upcrossings of the

interval [a,b] made by M by time n and put U∞(a,b)= limn→∞ Un(a,b). Prove
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with the help of (a) [+ also [36, Ch. 11]] that the conditional upcrossing
inequality

(b−a)E(Un(a,b)|F0) ≤ E((Mn−a)+|F0)−E((M0−a)+|F0) (5.16)

holds true a.s. for all n ∈ N and a < b.
(c) Use (5.16) and assumption (ii) of Lemma 5.17 to show that

(b−a)E(U∞(a,b)|F0) ≤ |a| + sup
n≥0

E(Mn|F0) < ∞ a.s.

and then conclude the a.s. convergence of Mn from this result.

Problem 5.23. Prove that (5.10) implies (5.14), for instance, by making use of gf’s.

5.4 Supercritical GWP’s: Another proof of the Kesten-Stigum
theorem

We have gathered all necessary ingredients to proceed with a first demonstration of
how the theory of GWT’s and their size-biasings can be utilized to give alternative
proofs of classical results for GWP’s. We begin with one of the most prominent
results in the supercritical case, the Kesten-Stigum theorem. As already mentioned,
the general method is due to LYONS, PEMANTLE & PERES [24] and essentially
rests upon the Comparison lemma 5.7, Theorems 5.14, 5.18 and the following very
generally formulated lemma about the relation between two probability measures
on a filtered probability space.

Lemma 5.24. Let P, Q be two probability measures on a measurable space
(X,A ) and (An)n≥0 a filtration on X such that A =σ(An, n≥ 0). Let further
Pn, Qn denote the restrictions of P, Q to An and suppose that Pn� Qn with
Xn := dPn

dQn
for each n ∈ N0. The the following assertions hold true with X :=

limsupn→∞ Xn:

(a) P possesses the decomposition

P(A) =
∫

A
X dQ + P(A∩{X = ∞}), A ∈A (5.17)

in a Q-continuous and a Q-singular part.
(b) The following assertions are equivalent:

(b1) P�Q.
(b2) X < ∞ P-a.s.
(b3)

∫
X X dQ = P(X) = 1.
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(c) By duality, the following assertions are equivalent as well:
(b1) P⊥Q.
(b2) X = ∞ P-a.s.
(b3)

∫
X X dQ = 0.

Proof. We restrict ourselves to the verification of (a) and leave the rather straight-
forward arguments for (b) and (c) to the reader [+ Problem 5.26].

We first show that (Xn,An)n≥0, called likelihood process of P with respect to Q,
forms a Q-martingale. Plainly, any Xn is An-measurable and also Q-integrable, for∫

Xn dQ=P(X)= 1. For any n∈N0 and A∈An, we further obtain using An⊂An+1
that ∫

A
Xn+1 dQ = Pn+1(A) = Pn(A) =

∫
A

Xn dQ

and thus EQ(Xn+1|An) = Xn Q-a.s., which proves the martingale property.

For the proof of (5.17), we first consider the case when P� Q and let Y be the
Q-density of P. For each n ∈ N0 and A ∈An, we then have∫

A
Y dQ = P(A) = Pn(A) =

∫
A

Xn dQn =
∫

A
Xn f Q

and thus infer Xn =EQ(Y |An) Q-a.s. This shows that (Xn)n≥0 is a ui martingale [+
e.g. [36]] which converges a.s. and in L1(Q) to Y , hence X = Y = dP

dQ Q-a.s. and

P(X = ∞) =
∫
{X=∞}

X dQ = 0.

This clearly proves (5.17).
Turning to the general case, we put ν := (P+Q)/2 and let νn be the restriction

of ν to An, that is νn = (Pn+Qn)/2 for each n∈N0. Then P� ν as well as Q� ν ,
whence we may use the first part of the proof for Un := dPn

dνn
and Vn := dQn

dνn
. Define

U := limsupn→∞ Un and V accordingly. For each n ∈ N and A ∈An, we have∫
A
(Un +Vn) dν = P(A)+Q(A) = 2ν(A) =

∫
A

2 dν

implying
Un +Vn = 2 ν-a.s. (5.18)

By the same arguments as above, we find that Un→U = dP
dν

and Vn→V = dQ
dν

ν-a.s.,
which in combination with (5.18) further shows ν(U = V = 0) = 0. Consequently,
U
V is ν-a.s. well-defined, and it follows

U
V

= lim
n→∞

Un

Vn
= lim

n→∞

dPn/dνn

dQn/dνn
= lim

n→∞

dPn

dQn
= lim

n→∞
Xn = X ν-a.s.
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and particularly {V = 0}= {X = ∞} ν-a.s. Finally, we conclude

P(A) =
∫

A
U dν

=
∫
{A∩{V>0}

U dν +
∫

A∩{V=0}
U dν

=
∫

A
XV dν +

∫
A∩{V=0}

U dν

=
∫

A
X dQ + P(A∩{X = ∞}),

which is (5.17). ut

Here is once again the theorem by KESTEN & STIGUM in reduced form, fo-
cussing on the main equivalent assertions.

Theorem 5.25. [Kesten-Stigum] Let (Zn)n≥0 be a supercritical GWP with
one ancestor, finite offspring mean m, extinction probability q and normaliza-
tion Wn =m−nZn for n ∈ N0 with a.s. limit W. Then the following assertions
are equivalent:

P(W = 0) = q, (5.19)
EW = 1, (5.20)

EZ1 logZ1 = ∑
n≥1

pn n logn < ∞. (ZlogZ)

Proof. Let the Zn be given in the form zn ◦GW for a GWT GW. For n ∈ N0, we
define En = { /0,T}∪{[τ]n : τ ∈ T} and An = σ(En). We will make use of the pre-
vious lemma with X = T, A = B(T), P = ĜW and Q = GW. Notice that A is
indeed equal to σ(An, n≥ 0) as required there, because E defined by (4.1) satisfies
E =

⋃
n≥0 En and A = σ(E ) by (4.2).

Consider now, for n≥ 1,

Γn(B) :=
∫

B
wn(τ) GW(dτ), B ∈B(T),

which defines a probability measure on (T,B(T)), the normalization following
from

Γn(T) =
∫
T

wn(τ) GW(dτ) = m−nE(wn ◦GW) = EWn = 1.

Part (c) of the Comparison lemma 5.7, with A = [τ]n ∈ En, provides us with

ĜW(A) = wn(τ)GW([τ]n) =
∫
[τ]n

wn(χ) GW(dχ) = Γn(A),
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where we have utilized that wn(χ) = wn(τ) for any χ ∈ [τ]n. The measures ĜW and
Γn thus coincide, first on En, but then in fact on An = σ(En) because En is ∩-stable
and containing T [+ [5, Thm. 5.4]]. We have thus found that

ĜW|An � GW|An and
ĜW|An

GW|An

= wn

where we should mention the An-measurability of wn which follows from

z−1
n ({k}) = {τ ∈ T : zn(τ) = k} =

⋃
τ∈Tn:|τn|=k

[τ]n ∈ An

for any k ∈ N.
For the rest of the proof let w := limsupn→∞ wn, so that W = w ◦GW P-a.s.

Having verified all assumptions of Lemma 5.24, its parts (b) and (c) provide us with
the crucial dichotomy: On the one hand,∫

T
w dGW = 1 ⇔ ĜW� GW ⇔ w < ∞ ĜW-a.s. (5.21)

and on the other hand,

w = 0 GW-a.s. ⇔ ĜW ⊥ GW ⇔ w = ∞ ĜW-a.s. (5.22)

The dichotomy will help us here because it relates the distribution of w under GW
with the one under ĜW, for which the Theorems 5.14 and 5.18 yields further infor-
mation.

”(ZlogZ)⇒(5.20)” Integrability of Z1 log+ Z1 obviously implies (by means of
(5.2)) that

E log+(X̂1−1) = m−1EZ1 log+(Z1−1) < ∞,

for X̂1 is a size-biasing of Z1. Denoting by (Yn)n≥0 a GWPI on the given probability
space (Ω ,A,P) with offspring distribution (pn)n≥0 and immigration sequence ζn =
X̂n−1 for n≥ 1, we infer from Theorem 5.18 that

Y∞ := lim
n→∞

Yn

mn < ∞ P-a.s.

Since, by Theorem 5.14, the distributions of (m−nYn)n≥0 under P and of (wn −
m−n)n≥0 under ĜW coincide, we further infer upon using m−n→ 0 that

ĜW(w < ∞) = ĜW

(
limsup

n→∞

(wn−m−n)< ∞

)
= 1,

which, by (5.21), finally shows

1 =
∫
T

w dGW =
∫

Ω

w◦GW dP = EW,
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that is (5.20).

”(5.20)⇒(5.19)” Clearly, EW = 1 entails P(W = 0)< 1 and thus P(W = 0) = q
by Lemma 1.24.

”(5.19)⇒(ZlogZ)” (by contraposition) If EZ1 log+ Z1 = ∞, we infer by similar
arguments as in the part ”(ZlogZ)⇒(5.20)” and by making use of Theorems 5.14
and 5.18 that

ĜW(w = ∞) = 1

and therefore, by an appeal to (5.22), the desired conclusion GW(w = 0) = 1. The
details are left to the reader [+ Problem 5.27]. ut

Problems

Problem 5.26. Prove the parts (b) and (c) of Lemma 5.24, of course with the help
of part (a).

Problem 5.27. Provide the details for the proof of ”(5.19)⇒(ZlogZ)” in the above
proof of Theorem 5.25.

5.5 The limiting behavior of subcritical GWP’s

If (Zn)n≥0 is a subcritical GWP with one ancestor and offspring mean m, the simple
estimate

P(Zn > 0) ≤ EZn = mn

for any n∈N0 provides first evidence on the rate of exponential decay of the survival
probability P(Zn > 0) to 0. As in Section 2.2, but by different methods again taken
from LYONS, PEMANTLE & PERES [24], we will pursue the question when mn is
the exact rate of decay of P(Zn > 0), which suggests to study the sequences

cn :=m−nP(Zn > 0) and m+
n := E(Zn|Zn > 0) = c−1

n

for n ∈ N0. The already known answer, given in Theorem 2.13 by KOLMOGOROV,
is restated and proved here as part of Theorem 5.29 after the following preparative
lemma about size-biased distributions.

Lemma 5.28. For each n∈N0, let Xn be an integrable N-valued random vari-
able with distribution Pn := P(Xn ∈ ·) and associated size-biasing X̂n, thus
P̂n = P(X̂n ∈ ·). Then the following assertions hold true:

(a) If (P̂n)n≥0 is tight, then supn≥0EXn < ∞.
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(b) If, in contrast, X̂n
P→ ∞, i.e. limn→∞P(X̂n ≤ t) = 0 for all t ∈ R>, then

limn→∞EXn = ∞.

Proof. (a) The tightness of the P̂n ensures the existence of some N ∈ N such that

inf
n≥0

P(X̂n ∈ {1, ...,N}) = inf
n≥0

1
EXn

n

∑
k=1

k Pn({k}) ≥
1
2

and therefore
1
N

sup
n≥0

EXn ≤ sup
n≥0

EXn

∑
N
k=1 k Pn({k})

≤ 2.

(b) Suppose that liminfn→∞EXn < ∞ and thus w.l.o.g. (possibly after switching
to a subsequence) M := supn≥0EXn < ∞. Since then

lim
n→∞

N

∑
k=1

k Pn({k}) ≤ lim
n→∞

M
EXn

N

∑
k=1

k Pn({k}) = M lim
n→∞

P(X̂n ≤ N) = 0

holds true for any N ∈ N, we obtain

lim
n→∞

P(Xn ≤ N) ≤ lim
n→∞

N

∑
k=1

k Pn({k}) = 0

and thereby
sup
n≥1

EXn ≥ sup
n≥1

sup
N≥1

NP(Xn > N) = ∞

contradicting our assumption M < ∞. ut

Theorem 5.29. For any GWP (Zn)n≥0 with finite positive offspring mean m
the sequence cn =m−nP(Zn > 0), n∈N0, is nonincreasing and hence conver-
gent. Moreover, in the subcritical case m< 1, each of the following assertions
is equivalent to (ZlogZ):

c := lim
n→∞

cn > 0, (5.23)

sup
n≥0

µ
+
n < ∞. (5.24)

Proof. As µ+
n = c−1

n , the equivalence of (5.23) and (5.24) is trivial once the mono-
tonicity of the cn (or the µ+

n ) has been verified.
For n ∈ N0, put Pn := P(Zn ∈ ·|Zn > 0) and let Zn again be given in the form

zn ◦GW for a GWT GW. For v ∈ GW, define Zn(v) := zn ◦Θv ◦GWv, which is the
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size of the nth generation of the subpopulation stemming from v with associated
(shifted) subtree Θv ◦GWv (a copy of GW). On {Zn > 0}, we further define ρn to be
the individual of the first generation GW1 with minimal label having descendants in
generation n, the number being Hn. Formally,

ρn := inf{v ∈ GW1 : Zn−1(v)> 0} and Hn := Zn−1(ρn)1{Zn>0}

for n ∈ N. A simple calculation for k,n ∈ N yields

P(Hn = k) = ∑
i≥1

P(ρn = i, Zn > 0, Hn = k)

= ∑
i≥1

P(Z1 ≥ i, Zn−1(l) = 0 for l < i, Zn−1(i) = k)

= ∑
i≥1

∑
j≥i:p j>0

p j P(Zn−1(l) = 0 for l < i, Zn−1(i) = k|Z1 = j)

= ∑
i≥1

∑
j≥i:p j>0

p j P(Zn−1 = k)P(Zn−1 = 0)i−1

= P(Zn−1 = k)∑
i≥1

P(Z1 ≥ i)P(Zn−1 = 0)i−1,

where Prop. 4.13 has been used in the penultimate line. It follows that

P(Zn > 0) = ∑
k≥1

P(Hn = k) = P(Zn−1 > 0)∑
i≥1

P(Z1 ≥ i)P(Zn−1 = 0)i−1 (5.25)

and then upon taking ratios

P(Hn = k|Zn > 0) =
P(Hn = k)
P(Zn > 0)

=
P(Zn−1 = k)
P(Zn−1 > 0)

= P(Zn−1 = k|Zn−1 > 0),

for any k ∈ N, that is P(Hn ∈ ·|Zn > 0) = Pn−1 for n ∈ N.
As Hn ≤ Zn, we now obtain for k,n ∈ N that

Pn([k,∞)) = P(Zn ≥ k|Zn > 0)
≥ P(Hn ≥ k|Zn > 0)
= P(Zn−1 ≥ k|Zn−1 > 0) = Pn−1([k,∞))

and thereby

E(Zn|Zn > 0) = ∑
k≥1

Pn([k,∞)) ≥ ∑
k≥1

Pn−1([k,∞)) = E(Zn−1|Zn−1 > 0),

that is the monotonicity of the sequence (µ+
n )n≥0.

For the rest of the proof let m < 1. Bringing the size-biasings Ẑn into play, the
reader is reminded that Ẑn = zn ◦ ĜW. By part (d) of the Comparison lemma 5.7 and
Problem 5.32, we have Ẑn

d
= P̂n, the latter as usual denoting the size-biasing of Pn.
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Hence, if (Yn)n≥0 is again a GWPI with immigration sequence ζn = X̂n− 1, n ≥ 1,
and offspring distribution (pn)n≥0, then also

P̂n = P(1+Yn ∈ ·) (5.26)

for any n ∈ N0 by Theorem 5.14.
”(5.24)⇒(ZlogZ)” If (µ+

n )n≥0 is bounded, then Lemma 5.28(b) shows that Ẑn
cannot tend to ∞ in probability, nor can Yn by (5.26). Hence, Theorem 5.21(b) in
combination with (5.2) yields

E log+ ζ1 = E log+(X̂1−1) = m−1EZ1 log+(Z1−1) < ∞ (5.27)

and thus validity of (ZlogZ).
”(ZlogZ)⇒(5.24)” A look at (5.27) shows that (ZlogZ) is equivalent to the inte-

grability of log+ ζ1. Now use part (a) of Theorem 5.21 to infer the a.s. convergence
of Yn and thus the weak convergence of the P̂n, in particular the tightness of this
sequence. By another appeal to Lemma 5.28, this finally provides us with

sup
n≥0

∫
x Pn = sup

n≥0
E(Zn|Zn > 0) < ∞,

which is the desired conclusion. ut

For the next result let ‖P−Q‖ denote the total variation distance of two distribu-
tions P and Q on N0 [+ Appendix A.2 for a short survey of the most relevant facts
about ‖ ·‖ and coupling]. The next result shows the convergence in total variation of
Pn = P(Zn ∈ ·|Zn > 0). Since, for distributions on N0, weak convergence and total
variation convergence are actually equivalent [+ Theorem A.8 in the Appendix],
this does not improve, but only reconfirm the classical result by YAGLOM stated in
Theorem 2.14. On the other hand, (5.28) gives little more than just total variation
convergence of the Pn.

Theorem 5.30. [Yaglom] Given a subcritical GWP (Zn)n≥0 with one ances-
tor and p0 < 1, the conditional distributions Pn = P(Zn ∈ ·|Zn > 0) satisfy

∑
n≥1
‖Pn−Pn−1‖ < ∞. (5.28)

In particular, limn→∞ ‖Pn−π‖= 0 for a distribution π on N0 (viz. the quasi-
stationary distribution of (Zn)n≥0, + (2.25)).

Proof. We have shown in the proof of Theorem 5.29, the notation of which is natu-
rally kept here, that the conditional distribution of the there defined random variables
Hn given Zn > 0 equals Pn−1. Therefore, (Hn,Zn) provides a coupling of (Pn−1,Pn)
under P(·|Zn > 0), and we obtain with the coupling inequality (A.5) in the Appendix
that
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‖Pn−Pn−1‖ ≤ P(Hn 6= Zn|Zn > 0).

Since the event {Hn 6= Zn}= ∑i≥1{ρn = i, Hn 6= Zn} can be decomposed as

∑
i≥1

∑
j≥i

{
Z1 = j,

i−1

∑
l=1

Zn−1(l) = 0, Zn−1(i)> 0,
j

∑
l=i+1

Zn−1(l)> 0

}
,

another application of Prop. 4.13 shows

‖Pn−Pn−1‖ ≤ P(Hn 6= Zn|Zn > 0)

=
P(Zn−1 > 0)
P(Zn > 0) ∑

i≥1
∑
j≥i

p j P(Zn−1 = 0)i−1(1−P(Zn−1 = 0) j−i).

As one can easily see with the help of gf’s,

1
m
≤ P(Zn−1 > 0)

P(Zn > 0)
↓ 1

m
, as n→ ∞

so that δ := supn≥1
P(Zn−1>0)
P(Zn>0) < ∞. Defining

α(k) = min{n≥ 1 : P(Zn > 0)< 1/k}, k ≥ 1,

we obtain after a suitable rearrangement of terms that

∑
n≥1
‖Pn−Pn−1‖ ≤ δ ∑

n≥1
∑
i≥1

∑
j≥i

p j P(Zn−1 = 0)i−1(1−P(Zn−1 = 0) j−i)

≤ δ (I1 + I2),

where I1 := ∑
j≥1

p j

α( j)−1

∑
n=1

j

∑
i=1

P(Zn−1 = 0)i−1(1−P(Zn−1 = 0) j−i)

and I2 := ∑
j≥1

p j ∑
n≥α( j)

j

∑
i=1

P(Zn−1 = 0)i−1(1−P(Zn−1 = 0) j−i).

The expressions I1 and I2 will now be estimated separately. The following inequality
results from the monotonicity of the cn, viz.

P(Zα(k)−1 > 0) ≤ mα(k)−1−nP(Zn > 0)

for 0≤ n < α(k), and is utilized to give
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I1 ≤ ∑
j≥1

p j

α( j)−1

∑
n=1

j

∑
i=1

P(Zn−1 = 0)i−1

≤ ∑
j≥1

p j

α( j)−1

∑
n=1

1
P(Zn > 0)

≤ ∑
j≥1

p j

α( j)−1

∑
n=1

mα( j)−1−n

P(Zα( j)−1 > 0)

≤ ∑
j≥1

j p j ∑
n≥0

mn (as P(Zα( j)−1 > 0)≥ 1/ j)

=
m

1−m
< ∞.

For I2 we proceed in a similar manner. First,

P(Zn > 0) ≤ mn−α(k)P(Zα(k) > 0)

for n ≥ α(k), which in combination with 1− (1− x) j ≤ jx for x ∈ [0,1] and j ∈ N
yields

I2 ≤ ∑
j≥1

p j ∑
n≥α( j)

j

∑
i=1

(
1−P(Zn−1 = 0) j−i)

≤ ∑
j≥1

p j ∑
n≥α( j)

P(Zn > 0)
j

∑
i=1

( j− i)

≤ ∑
j≥1

j2 p j ∑
n≥0

mnP(Zα( j) > 0)

=
m

1−m
< ∞. (as P(Zα( j) > 0)≤ 1/ j)

So we have verified that

∑
n≥1
‖Pn−Pn−1‖ ≤ δ (I1 + I2) < ∞

which is (5.28). In particular, (Pn)n≥0 forms a Cauchy sequence with respect to ‖ ·‖
and thus converges in total variation to a distribution π . ut

Problems

Problem 5.31. Prove the following stronger version of Lemma 5.28: The sequence
(P̂n)n≥0 is tight iff the sequence (Xn)n≥0 is ui. [Hint: Show that tightness (P̂n)n≥0
holds iff there exists a nondecreasing, unbounded function ϕ : R≥→ R≥ such that
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sup
n≥0

Eϕ(X̂n)< ∞.

Then use (5.2).]

Problem 5.32. Let X be a nonnegative integrable random variable with distribution
P and Q := P(X ∈ ·|X > 0). Show that P and Q have the same size-biasings, that is
P̂ = Q̂.

Problem 5.33. Let the situation and notation of Theorem 5.29 and its proof be
given. Further, let Z′1 be a random variable with P(Z′1 = i) = m−1P(Z1 ≥ i) for
i ∈ N. Show with the help of (5.25) that

cn− cn+1 = cn

(
1−E(1−mncn)

Z′1−1
)
≤ mnE(Z′1−1)2

(which particularly shows the monotonicity of the cn) and use this to conclude

cn = c+O(mn), n→ ∞,

if (Zn)n≥0 has finite offspring variance.

Problem 5.34. Given the situation and notation of Theorem 5.30 and its proof,
prove the following assertions:

(a) If (ZlogZ) holds, then α(k)' logk/ log |m| as k→ ∞.
(b) For each p≥ 1,

∑
n≥1

pn n logp n < ∞ ⇒ ∑
n≥1

np ‖Pn−Pn−1‖< ∞ ⇒ lim
n→∞

np ‖Pn−π‖= 0

holds true.
(c) For each γ ∈ (1,m),

∑
n≥1

nγ+1 pn < ∞ ⇒ ∑
n≥1

γ
n ‖Pn−Pn−1‖< ∞ ⇒ lim

n→∞
γ

n ‖Pn−π‖= 0

holds true.

Problem 5.35. Given again the situation and notation of Theorem 5.30, recall that

pk
i j = P(Zn+k = j|Zn = i) = Pi(Zk = j)

denote the k-step transition probabilities of the Markov chain (Zn)n≥0. A distribution
π = (πn)n≥0 is called

— β -invariant for (Zn)n≥0 for some 0 < β < 1 if, for all j ∈ N0,

βπ j = ∑
i≥1

πi pi j.

Notice that this entails π0 = 1, for p00 = 1.
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— quasi-invariant for (Zn)n≥0 if π = Pπ(Zn ∈ ·|Zn > 0) for all n ∈ N, i.e.

π j =
Pπ(Zn = j)
Pπ(Zn > 0)

=
∑i≥1 πi pn

i j

∑k≥1 ∑i≥1 πi pn
ik

for j,n ∈ N [+ also (2.25)].
— quasi-stationary for (Zn)n≥0 if Pλ (Zn ∈ ·|Zn > 0) w→ π for some initial distri-

bution λ on N0, i.e.

π j = lim
n→∞

Pλ (Zn = j|Zn > 0) for all j ∈ N0. (5.29)

Prove the following assertions for the limiting distribution π in Theorem 5.30, which
is obviously quasi-stationary with λ = δ1:

(a) π is m-invariant.
(b) π is quasi-invariant.
(c) π satisfies (5.29) under each initial distribution λ with λ0 = 0. [Hint: Prove

(5.29) for any λ = δk, k ∈ N, by induction over k.]
(d) π is the unique quasi-invariant distribution for (Zn)n≥0.

5.6 And finally critical GWP’s again

We close this chapter with an approach towards critical GWP’s (Zn)n≥0 in the
framework of GWT’s and their size-biasings, again in essence taken from [24]. The
following decomposition of Ẑn = zn ◦ ĜW is fundamental.

Keeping the notation of the previous sections, put

Zn(u) := zn ◦Θu ◦ ĜWu

for n ∈ N0 and u ∈ ĜW, and then, for ( j,n) ∈ N2,≤ := {(k, l) ∈ N2 : k ≤ l},

Sn, j := ∑
ρ∈ĜW j :υ j−1�ρ 6=υ j

Ẑn− j(ρ) = Ẑn− j+1(υ j−1)− Ẑn− j(υ j)

and Rn, j := ∑
ρ∈ĜW j :υ j−1�ρ,υ j<ρ

Ẑn− j(ρ).

This means that Sn, j counts the number of descendants of υ j−1 in ĜW n, i.e. genera-
tion n, which are not descendants of υ j, while Rn, j gives the number of descendants
of υ j−1 in ĜW n whose unique ancestors in generation j are positioned right of υ j

in the size-biased GWT ĜW. Obviously, Rn, j ≤ Sn, j for any ( j,n) ∈ N2,≤.
The announced decomposition of Ẑn may now be stated as a telescoping sum,

viz.
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Ẑn = 1+ Ẑn(υ0)− Ẑn(υn) = 1+
n

∑
j=1

Sn, j. (5.30)

Finally putting
An, j := {Rn, j = Sn, j}

for ( j,n) ∈ N2,≤, which describes the event that all descendants of υ j−1 in gener-
ation n that are not descendants of υ j have an ancestor in generation j to the right
of υ j, the subsequent lemma lists a number of relevant properties of the previously
defined random variables.

Lemma 5.36. Given a critical GWP (Zn)n≥0 with reproduction variance σ2 >
0, the following assertions hold true:

(a) For each n ∈ N, the random vectors (Rn,1,Sn,1), ...,(Rn,1,Sn,1) and thus
also the events An,1, ...,An,n are independent.

(b) For each ( j,n) ∈ N2,≤, ERn, j = σ2/2.
(c) For each ( j,n) ∈ N2,≤,

P(An, j) =
P(Zn− j+1 > 0)
P(Zn− j > 0)

.

(d) For each j ∈ N,

lim
n→∞

ERn, j1An, j =
σ2

2

and furthermore, if σ2 is finite,

lim
n→∞

ERn, j1Ac
n, j

= 0.

Proof. (a) For 1≤ j ≤ n, let (r j,s j) ∈ N2,≤,

M j := {ρ ∈ ĜW j : ρ � υ j−1, ρ < υ j}

and N j := {ρ ∈ ĜW j : ρ � υ j−1, ρ > υ j}.

These sets divide the children 6= υ j of υ j−1 into those left and right of υ j in ĜW.
On the event Dn := {X̂i = ki,Ui = vi for 0≤ i < n}, we have that

υ j = v0...v j−1 ∈ N j,

and, given P(Dn) = ∏
n−1
i=0 pki > 0, the random variables

Ẑn− j(u), 1≤ j ≤ n, u ∈M j ∪N j
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are conditionally independent and for fixed j also identically distributed as Γn− j :=
P(Zn− j ∈ ·). The last assertion can be deduced from Prop. 5.6. Since

{Rn, j = r j, Sn, j = s j} =

{
∑

u∈M j

Ẑn− j(u) = s j− r j, ∑
u∈N j

Ẑn− j = r j

}

for any j, it follows that

P(Rn, j = r j, Sn, j = s j, 1≤ j ≤ n)

= ∑
∗

n−1

∏
i=0

pki

n

∏
j=1

Γ
∗(u j−1−1)

n− j

(
{s j− r j}

)
Γ
∗(k j−1−u j−1)

n− j

(
{r j}

)
=

n

∏
j=1

∑
1≤u j−1≤k j−1

pk j−1 Γ
∗(u j−1−1)

n− j

(
{s j− r j}

)
Γ
∗(k j−1−u j−1)

n− j

(
{r j}

)
,

where ∑
∗

denotes summation over all ((u0,k0), ...,(un−1,kn−1)) ∈ (N2,≤)n and the

last line is obtained after rearrangement of this sum. This shows the asserted inde-
pendence of the (Rn, j,Sn, j) for j = 1, ...,n with

P(Rn, j = r, Sn, j = s) =
k

∑
l=1

pk Γ
∗(l−1)

n− j

(
{s− r}

)
Γ
∗(k−l)

n− j

(
{r}
)

(5.31)

for (r,s) ∈ N2,≤ and j = 1, ...,n.

(b) Using (5.31), we obtain

ERn, j = ∑
r≥1

rP(Rn, j = r)

= ∑
r≥1

r ∑
k≥1

k

∑
l=1

pk Γ
∗(k−l)

n− j

(
{r}
)

= ∑
k≥1

pk

k

∑
l=1

∑
r≥1

rΓ
∗(k−l)

n− j

(
{r}
)

= ∑
k≥1

pk

k

∑
l=1

(k− l) EZn− j︸ ︷︷ ︸
=1

= ∑
k≥1

pk
k(k−1)

2
=

σ2

2
.

(c) Here we obtain with (5.31)
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P(An, j) = P(Rn, j = Sn, j)

= ∑
k≥1

k

∑
l=1

pk Γ
∗(l−1)

n− j

(
{0}
)

= ∑
k≥1

pk

k

∑
l=1

P(Zn− j = 0)l−1

=
1

P(Zn− j > 0) ∑
k≥1

pk
(
1−P(Zn− j = 0)k)

=
1

P(Zn− j > 0) ∑
k≥1

pk P(Zn− j+1 > 0|Z1 = k)

=
P(Zn− j+1 > 0)
P(Zn− j > 0)

.

(d) Once again with the help of (5.31), we find that

ERn, j1An, j = ∑
r≥1

rP(Rn, j = Sn, j = r)

= ∑
r≥1

r ∑
k≥1

k

∑
l=1

pk Γ
∗(l−1)

n− j

(
{0}
)

Γ
∗(k−l)

n− j

(
{r}
)

= ∑
k≥1

pk

k

∑
l=1

P(Zn− j = 0)l−1
∑
r≥1

rΓ
∗(k−l)

n− j

(
{r}
)

= ∑
k≥1

pk

k

∑
l=1

(k− l)P(Zn− j = 0)l−1.

which implies

lim
n→∞

ERn, j1An, j = ∑
k≥1

pk

k

∑
l=1

(k− l) =
σ2

2

by an appeal to the monotone convergence theorem (using P(Zn = 0) ↑ 1) and the
calculation in part (b). If σ2 < ∞, this further entails

ERn, j1Ac
n, j

=
σ2

2
− ERn, j1An, j → 0,

as n→ ∞, and the proof is complete. ut
Remark 5.37. By similar arguments as in the previous proof, it can be shown that
ESn, j = σ2 for any ( j,n) ∈ N2,≤. Since this will not be needed hereafter, we leave
its proof as an exercise for the reader [+ Problem 5.44].

The above proof has shown that ERn, j1An, j , ERn, j1Ac
n, j

and P(An, j) depend on
( j,n) only through its difference n− j. Therefore, we can define

αn− j := ERn, j1An, j , βn− j := ERn, j1Ac
n, j

and γn− j := P(An, j),
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for which Lemma 5.36 provides us with

lim
n→∞

αn =
σ2

2
, lim

n→∞
γn = 1 and lim

n→∞
βn = 0 (5.32)

where the last statement further requires σ2 < ∞.
We are now able to give probabilistic proof of (2.31) and (2.32) in Theorem 2.24,

first derived by KOLMOGOROV [18] under EZ3
1 < ∞ and later in full generality by

KESTEN, NEY & SPITZER [16].

Theorem 5.38. [Kolmogorov] Let (Zn)n≥0 be a critical GWP with finite and
positive reproduction variance σ2. Then

lim
n→∞

nP(Zn > 0) = lim
n→∞

E
(

Zn

n

∣∣∣∣Zn > 0
)−1

=
2

σ2

with the usual convention that 1
∞

:= 0.

Proof. For n ∈ N, we define

Rn = 1+
n

∑
j=1

Rn, j.

Since Rn, j counts the number of individuals in ĜWn which are greater than υn and
stemming from υ j−1, but not from υ j, we see that Rn just accounts for the total
number of individuals greater or equal to υn.

For a better understanding of the subsequent arguments that are again based on
a coupling, we first give the following informations: It is straightforward to infer
from Lemma 5.36(b) that n−1ERn has the same limit, viz. σ2/2, as asserted for
E(n−1Zn|Zn > 0). Therefore, we will proceed with the construction of random vari-
ables R∗n, n ∈ N satisfying:

(i) R∗n
d
= Pn = P(Zn ∈ ·|Zn > 0) for any n≥ 1 [+ (5.37)].

(ii) If σ2 < ∞, then n−1E|Rn−R∗n| → 0 as n→ ∞ [+ (5.32)].

However, this construction is by no means obvious and requires at first the insight
that Ẑn conditioned upon the event

An := {υn is leftmost individual in ĜWn} = {υn = min ĜWn}

has conditional distribution Pn as well [+ (5.34)]. As Rn, j ≤ Sn, j for ( j,n) ∈ N2,≤,
we have

An = {Rn = Ẑn} =
n⋂

j=1

{Rn, j = Sn, j} =
n⋂

j=1

An, j (5.33)
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and thus infer with the help of Lemma 5.36 that

P(An) =
n

∏
j=1

P(An, j) =
n

∏
j=1

P(Zn− j+1 > 0)
P(Zn− j > 0)

=
P(Zn > 0)
P(Z0 > 0)

= P(Zn > 0).

By combining this with the calculation

P({Ẑn = k}∩An) = P(Ẑn = k, υn = min ĜWn)

= ∑
τ∈Tn:zn(τ)=k

ĜW∗
(
[τ;minτn]n

)
= ∑

τ∈Tn:zn(τ)=k
ĜW([τ]n)

= P(Zn = k),

where the Comparsion lemma 5.7 has been utilized in the penultimate line, we arrive
at the announced distributional identity

P({Ẑn ∈ ·}∩An) = P(Zn ∈ ·|Zn > 0) = Pn. (5.34)

Now we can turn to the construction of the R∗n with distribution Pn. For n≥ 1, let
R′n,1, ...,R

′
n,n be independent random variables on (Ω ,A,P) which are independent

of (Rn,1,Sn,1), ...,(Rn,n,Sn,n) and such that

P(R′n, j ∈ ·) = P(Rn, j ∈ ·|An, j) = P(Sn, j ∈ ·|An, j)

for 1≤ j ≤ n. Here P(An, j) = γn− j > 0 should be recalled. Then defining

R∗n, j = Rn, j1An, j +R′n, j1Ac
n, j
, 1≤ j ≤ n (5.35)

and further

R∗n = 1+
n

∑
j=1

R∗n, j, (5.36)

the random variables R∗n,1, ...,R
∗
n,n are also independent by Lemma 5.36, and we with

the help of the stated independence assumptions that

P(R∗n, j = k) = P({Rn, j = k}∩An, j)+P({R′n, j = k}∩Ac
n, j)

= P({Sn, j = k}∩An, j)+P(R′n, j = k)P(Ac
n, j)

= P(Sn, j = k|An, j)
(
P(An, j)+P(Ac

n, j)
)

= P(Sn, j = k|An, j)

for k ∈ N and 1≤ j ≤ n and thereupon, by (5.30) and (5.33), that
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P(R∗n = k) = ∑
k1+...+kn=k−1

P(R∗n, j = k j for 1≤ j ≤ n)

= ∑
k1+...+kn=k−1

n

∏
j=1

P(R∗n, j = k j)

= ∑
k1+...+kn=k−1

n

∏
j=1

P(S∗n, j = k j|An, j)

=
1

P(An)
∑

k1+...+kn=k−1
P({S∗n, j = k j for 1≤ j ≤ n}∩An, j)

=
1

P(An)
P({Ẑn = k}∩An)

= P(Ẑn = k|An).

In view of (5.34), this yields as announced in (i) above that

P(R∗n ∈ ·) = Pn = P(Zn ∈ ·|Zn > 0). (5.37)

Next, we must verify (ii) and do so first under the assumption σ2 < ∞. By the
definition of the R∗n, j and another appeal to Lemma 5.36, we then obtain

1
n

∣∣E(Rn−R∗n)
∣∣ ≤ 1

n
E|Rn−R∗n|

≤ 1
n

n

∑
j=1

E|Rn, j−R∗n, j|

≤ 1
n

n

∑
j=1

∫
Ac

n, j

(Rn, j +R∗n, j) dP

=
1
n

n

∑
j=1

∫
Ac

n, j

(Rn, j +R′n, j) dP

=
1
n

n

∑
j=1

(
βn− j +P(Ac

n, j)ER′n, j
)

=
1
n

n

∑
j=1

(
βn− j +

1− γn− j

γn− j
ERn, j

)
=

1
n

n

∑
j=1

(
βn− j +

1− γn− j

γn− j

σ2

2

)
. (5.38)

But the sum in (5.38) converges to 0, for it is the nth Césaro mean of a null sequence
[+ (5.32)]. Consequently,
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n
− σ2

2

∣∣∣∣ ≤ |E(R∗n−Rn)|
n

+

∣∣∣∣ERn

n
− σ2

2

∣∣∣∣
= o(1) +

∣∣∣∣∣1n +
1
n

n

∑
j=1

ERn, j︸ ︷︷ ︸
=σ2/2

−σ2

2

∣∣∣∣∣ = o(1)

as n→ ∞, which finally leads to

1
nP(Zn > 0)

=
E(Zn|Zn > 0)

n
=

ER∗n
n

=
σ2

2
+o(1), n→ ∞.

Left with the case σ2 = ∞, it follows from (5.35) and (5.36) that

R∗n ≥
n

∑
j=1

Rn, j1An, j

and thereby furthermore

1
nP(Zn > 0)

=
ER∗n

n
≥ 1

n

n

∑
j=1

ERn, j1An, j =
1
n

n−1

∑
j=0

α j →
σ2

2
= ∞,

as n→ ∞, where we have used that Césaro’s theorem remains valid for sequences
with limit ∞. ut

Remark 5.39. Assertion (ii) in the previous proof, valid if σ2 < ∞, just states the
L1-convergence of n−1(Rn−R∗n) to 0 and particularly implies that

Rn

n
− R∗n

n
P→ 0, as n→ ∞.

This fact will be utilized in the proof of Theorem 5.43, for it ensures by Slutky’s
theorem that convergence in distribution of n−1Rn and of n−1R∗n are equivalent con-
ditions, with necessarily identical limit distribution.

In order to also give an alternative proof of the last statement (2.33) in Theorem
2.24 due to YAGLOM, viz. the weak convergence of the conditional distribution of
n−1Zn given Zn > 0 to an exponential law with parameter 2/σ2, three subsequent
results provide the necessary prerequisites. The first one sheds light on the distri-
butional relation between Rn and Ẑn. Roughly speaking, Rn is obtained from Ẑn by
scaling with a factor having a uniform distribution on (0,1).

Lemma 5.40. Let U be independent of (Ẑn)n≥0 with U d
= Unif(0,1). Then

Rn
d
= dUẐne
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for each n ∈ N, where as usual dxe := min{n ∈ Z : n≥ x} for x ∈ R.

Proof. We have seen in the proof of Theorem 5.38 that Rn−1 counts the number of
nodes in ĜWn lying to the right of υn, in particular Rn ≤ Ẑn. Given any τ ∈ T with
zn(τ) = m, the nodes in τn increasingly ordered are denoted as ρ

(1)
n (τ), ...,ρ

(m)
n (τ).

By another appeal to the Comparison lemma 5.7, we infer for k ≥ 1 that

P(Rn = k) = ∑ l ≥ kP(Ẑn = l, Rn = k)

= ∑
l≥k

∑
τ∈Tn:zn(τ)=l

ĜW∗([τ;ρ
(l−k+1)
n (τ)]n)

= ∑
l≥k

∑
τ∈Tn:zn(τ)=l

GW([τ]n)

= ∑
l≥k

P(Zn = l)

= ∑
l≥k

P(Ẑn = l) P
(

k−1
l

<U ≤ k
l

)
︸ ︷︷ ︸

=1/l

= P(k−1 <UẐn ≤ k)

= P(dUẐne= k).

This obviously proves the assertion. ut

The second lemma, the proof of which we leave to the reader as an exercise [+
Problem 5.45], shows compatibility of distributional convergence ands size-biasing.

Lemma 5.41. Let (Xn)n≥0 be a sequence of nonnegative random variables
with finite positive means and associated sequence (X̂n)n≥0 of size-biasings.

Suppose that Xn
d→ X0 and that X̂n converges in distribution as well. Then

X̂n
d→ X̂0.

Two characterizations of the exponential distribution are the content of the third
preparative result and of interest also in their own right. One of these involves once
again a distributional equation which is further discussed in Problem 5.46 and 5.47.
For more detailed information including extensions to the multidimensional case
we refer to the articles by KOTZ & STEUTEL [19], PAKES & KHATTREE [30] and
PAKES [29].
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Proposition 5.42. Let X ,X1,X2 be iid nonnegative random variables with
mean µ ∈R>, X̂ a size-biasing of X and U a further Unif(0,1)-variable inde-
pendent of the afore-mentioned variables. Then the following three statements
are equivalent:

(a) X d
= Exp(1/µ). (b) X d

=UX̂. (c) X d
=U(X1 +X2).

Proof. We first prove ”(a)⇔(b)” and let ϕ denote the LT of X . Since LT’s deter-
mine the distribution uniquely, assertion (b) is equivalent to [use (5.2) and Fubini’s
theorem]

ϕ(t) = Ee−tUX̂ =
∫ 1

0
Ee−tuX̂ du

=
1
µ

∫ 1

0
EXe−tuX du

=
1
µ
E
(

X
∫ 1

0
e−tuX du

)
=

1−ϕ(t)
µt

for all t ∈ R> and thus

ϕ(t) =
1/µ

t +1/µ
, t ∈ R>.

This gives (a) by another appeal to the uniqueness theorem for LT’s.

”(a), (b)⇒(c)” may be assessed by a comparison of λλ -densities [+ 5.3 for the
density of X̂] which immediately gives X̂ d

= X1 +X2
d
= Γ (2,1/µ).

”(c)⇒(a)” Since X1 +X2 has LT ϕ2, we find the equivalence of (c) with

ϕ(t) =
∫ 1

0
ϕ(ut)2 du =

1
t

∫ t

0
ϕ(u)2 du, t ∈ R>, (5.39)

which yields upon differentiation

ϕ
′(t) = − 1

t2

∫ t

0
ϕ(u)2 du +

ϕ(t)2

t
, t ∈ R>. (5.40)

A combination of both, (5.39) and (5.40), provides us with the differential equation

tϕ ′(t)+ϕ(t) = ϕ(t)2, t ∈ R>. (5.41)

By next considering the function Ψ := (1−ϕ)/ϕ , positive on R> and with deriva-
tive Ψ ′ =−ϕ ′/ϕ2, it follows from (5.41) that

Ψ ′(t)
Ψ(t)

=
ϕ ′(t)

ϕ(t)2−ϕ(t)
=

1
t
, t ∈ R>
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and then upon integration over arbitrary intervals (s, t)⊂ R> that

log
(

Ψ(t)
Ψ(s)

)
=
∫ t

s

Ψ ′(u)
Ψ(u)

du =
∫ t

s

1
u

du = log
( t

s

)
,

that is t−1Ψ(t) = s−1Ψ(s) for all t > s ∈ R>. Consequently, Ψ(t) = at on R> for
some a ∈ R> or, equivalently,

ϕ(t) =
1

1+Ψ(t)
=

1
1+at

=
1/a

t +1/a
, t ∈ R>,

which means that X must have an exponential law with parameter 1/a. But a then
is the expectation of X and thus a = µ . ut

Now we are ready to give a probabilistic proof of the convergence result (2.33)
due to YAGLOM [37].

Theorem 5.43. [Yaglom] For a critical GWP (Zn)n≥0 with offspring variance
σ2 ∈ R>, the conditional law of Zn given Zn > 0 converges weakly to an
exponential law with parameter 2/σ2, that is

lim
n→∞

P
(

Zn

t
≤ t
∣∣∣∣Zn > 0

)
= 1− e−2t/σ2

for any t ∈ R>.

Proof. We keep the notation from Theorem 5.38 and its proof. By (5.37), we must
show n−1R∗n

d→ Exp(2/σ2). Since σ2 is finite, we know that ER∗n/n→ σ2/2 [+
proof of Theorem 5.38], EẐn = EZ2

n/EZn = VarZn +1 = nσ2 +1 [+ Prop. 1.4],

sup
n≥1

ERn

n
=

σ2

2
+1 < ∞, κ := sup

n≥1

ER∗n
n

< ∞ and sup
n≥1

EẐn

n
= σ

2 +1 < ∞,

which easily implies tightness of the distribution families{
P
(

Rn

n
∈ ·
)

: n≥ 1
}
,

{
P
(

R∗n
n
∈ ·
)

: n≥ 1
}

and

{
P

(
Ẑ∗n
n
∈ ·

)
: n≥ 1

}
.

The Helly-Bray selection theorem in combination with n−1(Rn−R∗n)
P→ 0 [+ Re-

mark 5.39] ensures the existence of random variables S,T , w.l.o.g. defined on the
same probability space (Ω ,A,P), such that

Rnk

nk

d→ S,
R∗nk

nk

d→ S and
Ẑ∗nk

nk

d→ T (5.42)



130 5 Size-biased Galton-Watson trees with a spine

for a suitable subsequence (nk)k≥1. Moreover, using (5.37), we find that

P(Ẑn/n≤ t) =
EZn1{Zn/n≤t}

EZn

=
E(Zn1{Zn/n≤t}|Zn > 0)

E(Zn|Zn > 0)

=
E(1{R∗n/n≤t}R∗n/n)

ER∗n/n

for t ∈ R> and n ∈ N, so that Ẑn/n is a size-biasing of R∗n/n, in particular

E(1{R∗n/n>t}R
∗
n/n) ≤ κ P(Ẑn/n > t)

for t ∈R> and n∈N. Now the tightness of {P(Ẑn/n∈ ·) : n≥ 1} entails the uniform
integrability of the sequence (R∗n/n)n≥1 and thus

ES = lim
k→∞

ER∗nk

nk
=

σ2

2
∈ R>. (5.43)

Next, an application of Lemma 5.41 (with X0 = S, Xk = R∗nk
/nk and X̂k = Ẑnk/nk for

k ≥ 1) yields T d
= Ŝ for any size-biasing Ŝ of S and therefore

Ẑnk

nk

d→ Ŝ, k→ ∞.

Let U be a Unif(0,1)-variable independent of Ŝ and (Ẑn)n≥0. Then

UẐnk

nk

d→ UŜ, k→ ∞.

Since

0 ≤ ∆n :=
dUẐne

n
−UẐn

n
≤ 1

n
→ 0, n→ ∞

we infer with the help of Lemma 5.40 that

Rnk

nk

d
=
dUẐnke

nk
=

UẐnk

nk
+∆nk

d→ UŜ, k→ ∞.

By combining this with the first statement in (5.42), we see that S d
= UŜ which in

turn shows S d
= Exp(2/σ2) by invoking Prop. 5.42 and recalling ES = σ2/2 from

above [+ (5.43)].
The proof is finally completed by noting that the previous arguments obviously

apply to any subsequence (nk)k≥1 such that (5.42) holds. In other words, any distri-
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butionally convergent n−1
k R∗nk

has limit Exp(2/σ2) whence n−1R∗n itself converges
to this distribution, as required. ut

Problems

Problem 5.44. Prove that ESn, j = σ2 for any ( j,n) ∈ N2,≤ as claimed in Remark
5.37.

Problem 5.45. Prove Lemma 5.41. [Hint: Argue that it suffices to show vague con-
vergence of P(X̂n ∈ ·) to P(X̂0 ∈ ·) and use Problem 5.31.]

Problem 5.46. Consider the situation of Prop. 5.42 and let T2 =
⋃

n≥0{1,2}n be the
infinite binary tree. Then let {Uv : v ∈ T2} be family of iid random variables with
uniform distribution on [0,1]. For v = v1...vn ∈ T2, put

T (v) = (T1(v),T2(v)) := (Uv,Uv))

and then

L(v) := Tv1(∅)Tv2(v1) · ... ·Tvn(v1...vn−1) = U∅Uv1 · ... ·Uv1...vn−1 .

This may be interpreted as follows: To each edge (v,vi) in T2 the weight Ti(v) is
assigned, which upon multiplication of edge weights leads to a total weight L(v) for
the unique path connecting the root with v.

Finally, let {Xv : v∈T2} be a second family of iid random variables with common
distribution F , finite and positive mean µ , and independent of {Uv : v ∈ T2}. Prove
the following assertions:

(a) If F = Exp(1/µ), then

X∅
d
= ∑

v∈T:|v|=n
L(v)Xv

for all n ∈ N.
(b) For general F with expectation µ and finite variance

∑
v∈T:|v|=n

L(v)Xv
d→ Exp(1/µ) as n→ ∞.

[Hint: Consider ∆n := ∑v∈T:|v|=n L(v)(Xv −X ′v) for a family {X ′v : v ∈ T2}
of iid Exp(1/µ)-variables which is independent of all Xv and L(v), v ∈ T2.

Prove ∆n
P→ 0 by computing Var∆n and use (a).]

(c) If F = δ1, then

Wn := ∑
v∈T:|v|=n

L(v)Xv = ∑
v∈T:|v|=n

L(v), n≥ 0



132 5 Size-biased Galton-Watson trees with a spine

constitutes a martingales which converges a.s. to some W d
= Exp(1/µ).

Problem 5.47. Still in the situation of Prop. 5.42, let U1,U2 be two independent
Unif(0,1)-variables independent of X ,X1,X2. Prove the equivalence of

(a) X d
= Γ (2,1/µ) (b) X d

=U1X1 +U2X2.
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